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welcome
Thank you for purchasing the MEAP for Mastering Unlabeled Data.

This is a cliché in today’s world – “Data is the new oil and electricity.”
Businesses need to analyze patterns and trends of data, detect anomalies,
reduce complexity of really high-dimensional datasets and then make sound
decisions. There is an ever-growing need to draw meaningful insights which
are sometimes quite difficult for us to comprehend. This book is an attempt to
equip you with unsupervised learning techniques which will perform the
complex modelling for you.

Throughout the book, we introduce an algorithm, examine mathematical and
statistical foundation and study the various forms and types. This book is a
step to bridge the gap between complex mathematical and statistical concepts
and pragmatic real-world case studies. Real-world cases on retail,
telecommunication, banking, manufacturing etc. are discussed at length to
make the knowledge complete. Python implementation of the datasets
completes the knowledge.

We are exploring clustering methods, dimensionality reduction methods and
advanced concepts of machine learning. You will also work on text and
images along with structured datasets.

We are examining the best practices to be followed and the common issues
faced. We are also dealing with end-to-end model development including
model deployment. You will develop thorough knowledge and understanding
of unsupervised learning based algorithms.

This book is for both budding and experienced data analysts and data
scientists. A researcher or a student who wishes to explore unsupervised
algorithms or a manager who yearns to feel confident when discussing with
their clients are some of the target minds.

A curious mind and an attitude to conquer a mountain is required. To get the



most benefit from this book, you’ll need a basic understanding of Python and
Jupyter notebook. Some basic understanding of data and data science might
prove handy. We are working on real-world datasets which are available
freely online.

Please let me know your thoughts in the liveBook Discussion forum on
what's been written so far and what you'd like to see in the rest of the book.
Your feedback will be invaluable in improving Mastering Unlabeled Data.

Thanks again for your interest and for purchasing the MEAP!

—Vaibhav Verdhan

 

In this book

Copyright 2022 Manning Publications welcome brief contents 1 Introduction
to machine learning 2 Clustering techniques 3 Dimensionality reduction 4
Association rules 5 Clustering (advanced) 6 Dimensionality reduction
(advanced) 7 Unsupervised learning for text data



1 Introduction to machine learning
“There are only patterns, patterns on top of patterns, patterns that affect other
patterns. Patterns hidden by patterns. Patterns within patterns– Chuck
Palahniuk”

We love patterns. Be it our business or our life, we find patterns and
(generally) tend to stick to them. We have our preferences of groceries we
buy, telecom operators and calling packs we use, news articles we follow,
movie genre and audio tracks we like – these all are examples of patterns of
ours preferences. We love patterns, and more then patterns we love finding
them, arranging them and may be getting used to them!

Then there is a cliché going on -  “Data is the new electricity”. Data is indeed
precious, nobody can deny that. But data in its purest form will be of no use.
We have to clean the data, analyse and visualise it and then we can develop
insights from it. Data sciences, machine learning and artificial intelligence are
helping us in uncovering these patterns – so that we can take more insightful
and balanced decisions in our activities and business.

In this book, we are going to solve some of such mysteries. We will be
studying a branch of machine learning referred to as Unsupervised Learning.
Unsupervised learning solutions, are one of the most influential approaches
which are changing face of the industry. They are utilized in banking and
finance, retail, insurance, manufacturing, aviation, medical sciences, telecom
and almost every sector.

Throughout the book, we are discussing concepts of unsupervised learning -
the building blocks of algorithms, their nuts and bolts, background processes
and mathematical foundation. The concepts are examined, best practices are
studied, common errors and pitfalls are analysed and a case study based
approach complements the learning. At the same time, we are developing
actual Python code for solving such problems. All the codes are accompanied
by step-by-step explanation and comments.



This book is divided into three parts. First part explores the basics of
unsupervised learning and covers easier concepts of k-means clustering,
hierarchical clustering, principal component analysis etc. This part gently
prepares you for the journey ahead. If you are already well-versed with these
topics, you can directly start with second part of the book. Though, it is
advisable to give the chapters a quick read to refresh the concepts.

The second part is at an intermediate level. We start with association rules
algorithm like apriori, ECLAT and sequence rule mining. We then increase
the pace and study more complex algorithms and concepts – spectral
clustering, GMM clustering, t-SNE, multidimensional scaling (MDS) etc.
And then we work on text data in the next chapter.

The third and final part is advanced. We are discussing complex topics like
Restricted Boltzmann Machine, autoencoders, GANs etc. We also examine
end-to-end model development including model deployment, best practices,
common pitfalls in the last chapter of the book.

By the time you finish this book, you will have a very good understanding of
unsupervised technique based machine learning, various algorithms,
mathematics and statistical foundation on which the algorithm rests, business
use cases, Python implementation and best practices followed.

This book is suitable for students and researchers who want to generate in-
depth understanding of unsupervised learning algorithms. It is recommended
for professionals pursuing data science careers who wish to gather the best
practices followed and solution of common challenges faced. The content is
well suited for managers and leaders who intend to have a confidence while
communicating with teams and clientele. Above all, a curious person who
intends to get educated on unsupervised learning algorithms and develop
Python experience to solve the case studies is well suited.

It is advisable that you have a basic understanding of programming in object-
oriented languages like C++, Java, Objective-C etc. We are going to use
Python throughout the book, so if you are experienced with Python it will
surely help. Basic understanding of mathematics and geometry will help in
visualising the results and some knowledge of data related use cases will help
to relate to the business use cases. Most important of all, an open mindset to



absorb knowledge is necessary throughout the chapters in the book.

The first chapter is designed to introduce the concepts of machine learning to
you. In this opening chapter, we are going to cover the following topics:

1. Data, data types, data management and quality
2. Data Analysis, Machine Learning, Artificial Intelligence and Deep

Learning
3. Nuts and bolts of Machine Learning
4. Different types of machine learning algorithms
5. Technical tool kit available
6. Summary

Let’s first understand the smallest grain we have – “data” as the first topic. 
Welcome to the first chapter and all the very best!

1.1 Data, data types, data management and quality

We are starting with the protagonist of everything called “data”. Data can be
termed as facts and statistics which are collected for performing any kind of
analysis or study. But data has its own traits, attributes, quality measures and
management principles. It is stored, exported, loaded, transformed and
measured.

We are going to study all of it now- starting with the definition of data. Then
we will proceed to different types of data, their respective examples and what
are the attributes of data which make it useful and of good quality.

1.1.1 What is Data

“DATA” is ubiquitous. You make a phone call using a mobile network – you
are generating data. You are booking a flight ticket and hotel for upcoming
vacation – data is being created. Making a bank transaction, surfing social
media and shopping websites online, buying an insurance policy or buying a
car – everywhere data originates. It is transformed from one form to another,
stored, cleaned, managed and analysed.



Formally put -  data is a collection of facts, observations, measures, text,
numbers, images, videos. It might be clean or unclean, ordered or unordered,
having mixed data types or completely pure and historical or real-time.

Figure 1-1 How we can transform raw data to become information, knowledge and finally
insights which can be used in business to drive decisions and actions

Data in itself is not useful till we clean it, arrange it, analyse it and draw
insights from it. We can visualise the transition in (Figure 1-1). Raw data is
converted to information when we are able to find distinctions in it. When we
relate the terms and “connect the dots”, the same piece of information
becomes knowledge. Insight is the stage when we are able to find the major
centres and significant points. An insight has to be actionable, succinct and
direct. For example, if a customer retention team of a telecom operator is told
that customers who do not make a call for 9 days have 30% more chances of
churn than those who do use, it will be an useful insight on which they can
work and try to resolve. Similarly, if a line technician in a manufacturing
plant is informed that using Mould ABC results in 60% more defects if used
with Mould PQR, they will refrain from using this combination. An insight is
quite useful for a business team and hence they can take corrective measures.

We now know what is data. Let us study various types of data and their
attributes and go deeper in data.

1.1.2 Various types of Data

Data is generated across all the transactions we make, be it online mode or
offline medium, as we discussed at the start of the section. We can broadly
classify the data as shown in (Figure 1-2) below:



Figure 1-2 Data can be divided into quantitative and qualitative categories, which are further
sub-classified

1. Qualitative Data is the data type which cannot be measured or weighed
for example, taste, colour, odour, fitness, name etc. They can only be
observed subjectively. Formally put, when we categorize something or
make a classification for it, the data generates is qualitative in nature.
For example, colours in a rainbow, cities in a country, quality of a
product, gender etc. They are also called as categorical variables.
Qualitative data can be further sub-categorised in binary, nominal and
ordinal data sets.

2. Binary data, as the name suggests, has only two classes which are
mutually exclusive to each other. For example, Yes/No, dry/wet,
hard/soft, good/bad, true/false etc.

3. Nominal data can be described as the type of data which though is
categorised but does not have any sequence or order in it. For example,
distinct languages spoken in a country, colours in a rainbow, types of
services available to a customer, cities in a country etc.

4. Ordinal data is similar to nominal data except we can order it in a
sequence. For example, fast/medium/slow, positive/neutral/negative etc.

5. Quantitative data: All the types of data points which can be measured,
weighed, scaled, recorded etc. are quantitative. For example, height,
revenue, number of customers, demand quantity, area, volume etc. They
are the most common form of data and allow mathematical and
statistical operations on them too. Quantitative data is further sub-



categorised as discrete and continuous:
6. Discrete data are precise, to-the-point and integers. For example,

number of passengers in a plane or population of a city cannot be in
decimals.

7. Continuous data points can take any value, usually in a range. For
example, height can take decimal values or price of a product can need
not be an integer.

Any data point generally will fall in the above discussed classes. These
classes are based on the variable and it’s type. There is one more logical
grouping which can be done using source and usage, which makes a lot of
sense while solving business problems. This grouping allows us to designs
solutions customized to the data type.

Depending on the source and usages, we can also think of data in two broad
classes: unstructured data and structured data.

1. Structured data: dataset which can be represented in a row column
structure easily is a structured dataset. For example, transactions made
by 5 customers in a retail store can be stored as shown in table below
(Table 1-1):

Table 1-1 An example of structured dataset having attributes like amount, data, city, items etc.

Customer
ID Txn Date Amount

($)
# of
items

Payment
Mode City

1001 01-June-
2020 100 5 Cash New

Delhi

1002 02-June-
2020 101 6 Card New York



1003 03-June-
2020

102 7 Card London

1004 04-June-
2020 103 8 Cash Dublin

1005 05-June-
2020 104 9 Cash Tokyo

In the table above, for each unique customer ID we have the transaction date,
amount spent in $, number of items purchased, the model of payment and the
city in which the transaction has been made. Such data type can be extended
to employee details, call records, banking transactions etc.

Note:

Most of the data used in analysis and model building is structured. Structured
data is easier to store, analyse and visualise in the form of graphs and charts.

We have lot of algorithms and techniques catering to structured data – in
normal real-world language we refer to structured data primarily.

2. Unstructured data: Unstructured data can be text, audio, image or a
video. The examples of unstructured data and their respective sources
are given in (Figure 1-3) below, where we explain the primary types of
unstructured data: text, images, audio and video along with their
examples:

Figure 1-3 Unstructured data along with its various types and examples. This data is usually
complex to analyze and generally requires deep learning-based algorithms



To be noted is, our computers and processors understand only binary
numbers. So these unstructured data points still need to be represented as
numbers so that we can perform mathematical and statistical calculations on
them. For example, an image is made up of pixels. If it is a coloured image,
each pixel will have RGB (red, green, blue) values and each of the RGB can
take a value from (0-255). Hence we will be able to represent an image as a
matrix on which further mathematical calculations can be made. Similarly,
text, audio and videos can be represented too.

Note:

Mostly deep learning based solutions like CNN, RNN are used for
unstructured data. We are going to work on text and image data at a later
stage in the book

The representation of unstructured data can be understood as shown below in
an example in (Figure 1-4). We have shown a picture of a vacuum cleaner. A
portion of the image if represented as a matrix, will look like this. It is only
for illustration purpose and not the actual values.

Figure 1-4 An image which is an example of unstructured data can be represented as a matrix to
analyze



Similarly, we can have the representations of text or audio or video data.
Owing to the size and large number of dimensions, unstructured data is
complex to process and model and hence mostly deep learning based models
serve the purpose. These deep learning models form the background of
artificial intelligence based solutions.  

These are the broad types of data. We can have more categories like ratios or
scales which can be used to define the relationship of one variable with other.
All of these data points (whether structured or unstructured) are defined by
the way they are generated in real life.

These all data points  have to be captured, stored and managed. There are
quite a few tools available for managing data which we will be discussing in
due course. But before that let us examine one of the most crucial but often
less talked subject – data quality.

1.1.3 Data quality

“Garbage in, garbage out” – this principle summarises the importance of a
good quality data. If the data is not clean, usable, correct and related, we will
not be able to solve the business problem at hand. But what is the meaning of 
“good quality”. We have shown the major components of data quality in



(Figure 1-5) below, let’s explore them one by one.

Figure 1-5 Data quality is of paramount importance, attributes of a good quality data are shown

The major attributes of good quality data are:

1. Completeness: we would expect our dataset to be proper and not
missing any values. For example, if we are working on sales data for a
year, a good data will have all values for all the 12 months. Then it will
be a complete data source. Completeness of a dataset ensures that we are
not missing on an important variable or data point.

2. Valid: validity of data is it’s conformance to the properties,
characteristics and variations that are present and being analysed in our
use case. Validity indicates if the observation and measurement we have
captured is reliable and valid. For example, if the scope of study is for
2015-2019, then using 2014 data will be invalid.

3. Accurate: Accuracy is an attribute focussing on the correctness of data.
If we have inaccurate data, we will generate inaccurate insights and
actions will be faulty. It is a good practice to start the project by
generating KPI (key performance indicators) and comparing them with
the numbers reported by the business to check the authenticity of the



data available to us.
4. Representative: It is one of the most important attribute of the data.

And often most undermined too. Representation of a data means, if the
data in use truly captures the business need and is not biased. If the
dataset is biased or is not representative enough, the model generated
will not be able to make predictions on the new and unseen data and the
entire efforts will go down the drain.

5. Available: Non-availability of data is a challenge we face quite a lot.
Data might not be available for the business problem and then we face a
dilemma to continue the use case. Sometimes we face operational
challenges and do not have access to the database or face permission
issues or data might not be available at all for a particular variable since
it is not captured. In such cases, we have to work with the data available
to us and use surrogate variables. For example, imagine we are working
on a demand generation problem. We want to predict how many
customers can be expected during the upcoming sale season to a
particular store. But we do not historical records of number of customers
visiting for few months. We can then use revenue as a surrogate field
and synthesize the missing data points for us.

6. Consistent: Here we check if the data points are consistent across
systems and interfaces. It should not be the case that one system is
reporting a different revenue figure while another system is showing a
completely different value. When faced with such an issue, we generate
the respective KPIs as per the data available to us and seek guidance
from the business team.

7. Timeliness: It simple means that do we have all the data which is
required at this point of time. If the data set is not available now but
might become available in the future, then it might be prudent that we
wait till then.

8. Integrity: The data tables and variables we have are interlinked and
interrelated to each other. For example, an employee’s details can be
spread over multiple tables which are linked to each other using
employee ID. Data integrity addresses this requirement and ensures that
all such relations between the tables and respective entities is consistent.

A good quality of data is of paramount importance. In pragmatic day-to-day
business, often we do not get a good quality data. Due to multiple challenges



good clean data, which is accessible, consistent, representative and complete
is seldom found on the systems.

Degradation in quality can be due to challenge during data capturing and
collection, exporting or loading, transformations done etc. Few of the issues
are listed below:

1. We can get integers as names, or special characters like “#$!&” in a few
columns, or null values, blanks or NaN (not a number) as some of the
values.

2. Duplicates in the records are also one of issues we face.
3. Outliers is one of nuisance we have to deal with quite a lot. For

example, let’s say that average daily transactions are 1000 for an online
retailer. One fine day, due to a server problem there were no transactions
done. It is an outlier situation. Or one fine day, the number of
transactions were 1,000,000. It is again an example of outlier.

4. Then there are seasonal variations, movements with respect to time of
the day and days of the week – all of them should be representative
enough in the dataset.

5. Inconsistencies in the date format leads to multiple challenges while we
try to merge multiple data sources. Source 1 might be using
DD/MM/YYYY while another might be using MM/DD/YYYY. It is to
be taken care off during the data loading step itself.

All these aberrations and quality issues have to be addressed and cleaned
thoroughly. We will be solving these data issues throughout the book and
sharing the best practices to be followed. 

Note:

The quality of your raw data and rigour shown during the cleaning process -
defines the impact of your final analysis and the maturity of your solution.

We have now defined the major attributes of a data. We will now study the
broad process and techniques used for data engineering and management.

1.1.4 Data engineering and management



A strong data engineering process and mature data management practice is a
pre-requisite for a success machine learning model solution. Refer to the
(Figure 1-6) below where the end-to-end journey of data is described – right
from the process of data capturing, data pipeline, data loading to the point it
is ready for analysis.

Figure 1-6 Data engineering paves the way for data analysis. It involves data loading,
transformation, enrichment, cleaning and preparation etc. which leads to creation of data ready
for analysis

In the data engineering step, data is cleansed, conformed, reshaped,
transformed and ingested. Generally we have a server where the final data is
hosted and is ready for access,. The most used process is creation of ETL
(export, transform, load) processed. Then we make the data ready for
analysis. We create new variables, treat null values, enrich the data with
methods and then we finally proceed to the analysis/model building stage.

Tip:

It will be a good idea to understand the basics of data engineering to



complement the knowledge about data science as both go hand-in-hand

We have thus studied what is data and what are the qualities of good data to
use. The data is used for analysis, modelling, visualization, dashboards and
insight generation. Many times, we find that terms like data analysis, data
science, machine learning, data mining, artificial intelligence, business
intelligence, big data etc. are used quite interchangeably in the business. It
will be a good idea to clarify them – which is the topic of the next section.
There are plenty of tools available for each respective function, which we are
discussing. And we will also understand the role of software engineering in
this entire journey.

1.2 Data Analysis, Machine Learning, Artificial
Intelligence and Business Intelligence

Data and its importance have opened new avenues and created a lot of job
opportunities in the market. At the same time, machine learning and artificial
intelligence being a relatively newer field, there are not much standardisation
and differentiation in the scope of work. It has resulted in not-so-clear
definitions and demarcation of these fields. We are examining these fields –
where they overlap, where they differ and how one empowers the another. It
can be visualised by the means of a diagram below in (Figure 1-7):

Each of the function empowers each other and complements each other.

Figure 1-7 How the various fields are interlinked with each other and how they are dependent on
each other



Data mining and data engineering starts all of it by providing the data
required for analysis. It also exports, transforms, cleans, loads so that it can
be consumed by all of the respective functions. Business intelligence and
visualisations use this data to generate reports and dashboards. Data analytics
generates insights and trends using data. Data Science stands on the pillars of
data analysis, statistics, business intelligence, statistics, data visualization,
machine learning and data mining. Machine learning creates statistical and
mathematical models. And artificial intelligence further pushes the
capabilities.

Machine learning uses traditional coding. The coding is done in traditional
languages and hence all the logics and rules of computer science and
software engineering are valid in machine learning too. Machine learning
helps us in making sense of the data which we are otherwise not able to
comprehend. And in that aspect, it is a fantastic solution. It is able to relate to
the historical trends. The most fascinating advantage with machine learning is
its ability to work on very complex and high dimensional data points like
video, audio, image, text or complex datasets generated by sensors. It allows
us to think beyond the obvious. Now artificial intelligence is able to achieve
the feats which were previously thought not possible at all. Like self-driving



cars, chat-bots conversing like humans, speech-to-text conversion and
translation to other language of choice, automated grading of essays, photo
captioning etc.

We are now clear how the various fields are different from each other yet
interlinked and how machine learning is different from traditional software
engineering. It is the foundation of our under topic of discussion, which goes
deeper into machine learning and its various components, different types of
machine learning algorithms and their respective use cases.

1.3 Nuts and bolts of Machine Learning

Consider this. If a child has to be taught how to open a door knob, we show
her the exact steps quite a few times. The child tries to open, fails. Tries again
and fails again. But in each subsequent try, the child is improvising the
approach. And after sometime, the child is able to open the door knob. Or
when we try to learn driving, we make mistakes, we learn from them and we
improve. Machine Learning works similarly - wherein the statistical
algorithm looks at the historical data and find patterns and insights. The
algorithm uncovers relationships and anomalies, trends and deviations,
similarities and differences – and then shares back actionable results to us. 

Formally put, machine learning can be called as a branch or a study of
computer algorithms which works on historical data to generate insights and
helps in making data-driven decisions. The algorithms are based on statistical
and mathematical foundation and hence have a sound logical explanation.
Machine Learning algorithms require coding which can be done in any of the
language and tools available viz. Python, R, SPSS, SAS, MATLAB, Weka,
Julia, Java etc. It also requires domain understanding of the business.

Note:

Languages are only means to an end. All the languages generate similar
results for a machine learning algorithm even if used across different
languages.

So whenever you are doing some online shopping for a dress and the website



recommends you accessories which go along with it, or you are booking an
air-ticket and the travel operator shows you a customized deal as per your
needs and plan – machine learning is in the background. It has learnt your
preferences and compared with your historical trends. It is also looking for
similarities you have with other customers who behave almost the same. And
based on all of those analysis, the algorithm is making an intelligent
recommendation to you. Quite fascinating, right!

Many times we ask this question, why do we require machine learning and
why it surpasses human intelligence? The reason is, we humans can analyse
only two or many be three dimensions simultaneously. But a machine
learning algorithm can work on 50,60 or may be 100s of dimensions
simultaneously. It can work on any type of data, be it structured or
unstructured and can help in automation of tasks. And hence it generates
patterns and insights quite difficult for a human mind to visualise.

Machine Learning like any other project requires a team of experts who are
working closely with each other and complementing each other’s skillsets. As
shown in the (Figure 1-8) below, a machine learning project requires the
following roles:

Business stakeholders and Subject Matter Experts (SME): They
define the business problem for the project. They own the solution, have
a clear understanding of the ask and have a clear measurable goal in
sight. They course correct the team in case of confusions and serve as an
expert who have a deep understanding of the business processes and
operations. They are marketing managers, product owners, process
engineers, quality experts, risk analysts, portfolio leads etc.

Note:

It is imperative that business stakeholders are closely knit in the team from
day 1.

Operations Team: This team comprises of the scrum master, project
manager, business analysts etc. The role of the team can be compared to
typical project management team which tracks the progress, maintains
the records, reports the day-to-day activities and keep the entire project



on track. They create user stories and act as a bridge between the
business team and data team.

Figure 1-8 Team required for a data science project and the respective interactions of them with
each other

Data Team: The core team which creates the solution, does the coding,
generates the output in the form of a model, dashboard, report, insights
is the data team. It comprises of three main pillars: Data engineering,
UI/Visualization team and the Data Science team. There functions are as
follows:
o Data engineering team is responsible for building, maintaining,
integrating and ingesting all the data points. They do a periodic data
refresh and act as a prime custodian of data. They use ETL, SQL, AWS,
Kafka etc.
o UI/ Visualisation team builds dashboards, reports, interactive modules
and web applications. They use SQL, Tableau. Qlik, Power BI etc.
o Data Science team is responsible for all the data analysis and model
building tasks. They discover patterns and insights, test hypothesis and
generate the final output which is to be finally consumed by all. The
final output can be a machine learning model which will be used to
solve the business problem. In situations where a machine learning
model is not possible, the team might generate actionable insights which
can be useful for the business. This team requires SQL, Python, R, SAS,
SPSS etc. to complete their job.



We have understood the typical team structure for a data science project. We
will not examine what are the broad steps in a data science project.

A data science project runs like any other project having deadlines, stages,
testing, phases etc. The raw material is the data which passes through various
phase to be cleaned, analysed and modelled.

We are shown an illustration of a data science project stages in (Figure 1-9)
below.

Figure 1-9 Data science project is like any other project, having stages and deadlines,
dependencies and processes

It starts with a business problem definition of the project. Business problem
has to be concise, clear, measurable and achievable. The table (Table 1-2)
below depicts example of a bad and a good business problem.

Table 1-2 Examples on how to define a business problem to make it clear, concise and
measurable

Examples of an
ill-defined
business problem

Example of a good business problem



Increase the
production Optimize the various cost heads (A,B, C and D) and

identify the most optimal combination to decrease the
cost by 1.2% in next 6 months

Decrease the cost

Increase the
revenue by 80%
in 1 month From the various factors of defects in the process

(X,Y,Z), identify the most significant factors to reduce
the defect % by 1.8% in next 3 months

Automate the
entire process

Then we move to the data discovery phase during which we list down all the
data sources and host them. All the various datasets like customer’s details,
purchase histories, social media data, portfolio etc. are identified and
accessed. The data tables which are to be used are finalised in this step and
most of the time, we create a database for us to work, test and learn.

We go ahead with data pre-processing. It involves cleaning of data like
removal of null values, outliers, duplicates, junk values etc. The previous step
and this one can take 60-70% of the project time.

We create few reports and generate initial insights during the exploratory data
analysis phase. These insights are discussed with the business stakeholders
and their guidance is taken for course correction.

The data is now ready for modelling. Quite a few versions of the solution are
tested. And depending on the requirements we choose the best version.
Mostly parameters like accuracy and statistical measures like precision, recall
drive the selection of the model. We will be exploring the process to choose
the best model and terms like precision, recall in later chapters of the book.



The final model is chosen and now we are ready for deploying the model in
the production environment where it will work on unseen data.

These are the broad steps in a machine learning project. Like any other
project, there is a code repository, best practices and coding standards,
common error, pitfalls etc. which we are discussing throughout the book.

We will now move to one of the important topics which is types of machine
learning algorithms, which we are discussing now.

1.4 Types of Machine Learning algorithms

Machine Learning models are impacting the decision making and follow a
statistical approach to solve a business problem. It works on historical data
and finds patterns and trends in it. The raw material is the historical data
which is analysed and modelled to generate a predictive algorithm. This
historical data available and the business problem to be solved allow us to
classify the machine learning algorithms in broadly four classes: supervised
learning, unsupervised learning, semi-supervised learning and
reinforcement learning as depicted in the (Figure 1-10) below. We are
examining all of the four types in detail now with a focus on unsupervised
learning which is the topic of this book.

Figure 1-10 Machine learning algorithms can be classified as supervised learning algorithms,
unsupervised learning algorithms, semi-supervised learning algorithms and reinforcement
learning algorithms



1.4.1 Supervised Learning

As the name suggests, supervised learning algorithm have a “guidance” or
“supervision” to direct toward the business goal of predicting for the future.

Formally put, supervised models are statistical models which use both the
input data and the desired output to predict for the future. The output is the
value which we wish to predict and is referred as the target variable and the
data used to make that prediction is called as training data. Target variable is
sometimes referred as the label. The various attributes or variables present in
the data are called as independent variables. Each of the historical data point
or a training example contains these independent variables and corresponding
target variable. Supervised learning algorithms make a prediction for the
unseen future data. The accuracy of the solution depends on the training done
and patterns learned from the labelled historical data. The example to
describe the concept is in the next section. 

Supervised learning problems are used in demand prediction, credit card
fraud detection, customer churn prediction, premium estimation etc. They are
heavily used across retail, telecom, banking and finance, aviation, insurance
etc.

Supervised learning algorithms can be further broken into regression
algorithms and classification algorithms. We will first work with Regression
problems.

Regression algorithms

Regression algorithms are supervised learning algorithms i.e. they require a
target variables which needs to be predicted. These algorithms are used to
predict the values of a continuous variable. For example, revenue, amount of
rainfall, number of transactions, production yield and so on. In supervised
classification problems, we predict a categorical variable like whether it will
rain (yes/no), whether the credit card transaction is fraud or genuine and so
on. This is the main difference between classification and regression
problems.



Let us understand regression problem with an example. If we assume that the
weight of a person is only dependent on height and not on other parameters
like gender, ethnicity, diet etc. In such a case, we want to predict the weight
of a person based on the height. The dataset can look like below and the
graph plotted for the same data will look like as shown below in (Figure 1-
11).

A regression model will be able to find the inherent patterns in the data and
fit a mathematical equation describing the relationship. It can then take height
as an input and predict the weight. Here height is the independent variable
and weight is the dependent variable or the target variable or the label we
want to predict.

Figure 1-11 Data and plot of relationship between height and weight which is used for regression
problem

There are quite a few algorithms available for regression problems, the major
ones are listed below:

1. Linear regression
2. Decision tree
3. Random forest



4. K-nearest neighbour
5. Boosting algorithms
6. Neural network

We can use any of the algorithms to solve this problem. We will explore
more by using a linear regression to solve this problem.

Linear regression algorithm models the relationship between dependent and
target variables by assuming a linear relationship exists between them. The
linear regression algorithm would result in a mathematical equation for the
problem as shown in the equation (1-1)

Weight = β0 * height + β1                                                                  (Equation 1-1)

Generally put, a linear regression is used to fit a mathematical equation
depicting the relationship between dependent and independent variables as
shown in (1-2).

Y = β0 + β1 x1 + β2x2 + ….+ε                                                         (Equation
1-2)

here Y is the target variable which we want to predict

 x1 is the first independent variable

 x2 is the second independent variable

 ε  is the error term in the equation

 β0 is the intercept of the equation

A simple visualization for a linear regression problem is shown in (Figure 1-
12). Here, we have the x and Y variables where x is independent variable and
Y is the target variable. The objective of the linear regression problem is to
find the line of best fit which is able to explain the randomness present in the
data.

Figure 1-12 Raw data which needs to be modelled is on the left. Using regression, a line of best fit



is identified

This equation is used to make predictions for the unseen data. There are
variations in linear regression too like simple linear regression, multiple
linear regression, non-linear regression etc. Depending on the data at hand,
we choose the correct algorithm. A complex dataset requires might require a
non-linear relationship between the various variables.

The next regression algorithm we are discussing is Tree based solutions. For
tree based algorithms like decision tree, random forest etc. the algorithm will
start from the top and then like an “if-else” block will split iteratively to
create nodes and sub-nodes till we reach a terminal node. It can be
understood better by the means of (Figure 1-13). In the decision tree diagram,
we start from the top with the root node and then splitting is done till we
reach the end point which is terminal node.

Figure 1-13 Decision tree has a root node and after splitting we get a decision node and terminal
node is the final node which cannot be split further



Decision tree is very easy to comprehend, implement and fast to train. Their
usability lies in the fact that they are intuitive enough to understand by
everyone.

There are other famous regression algorithms like k-nearest neighbour,
gradient boosting, deep learning based solutions. Based on the business
problem and respective accuracies we prefer one regression algorithm over
another.

To understand the impact of regression use cases, there are a few business
relevant use cases which are implemented in the industry:

1. An airport operations team is doing an assessment of the staffing
requirement and want to estimate the number of passenger traffic
expected. The estimate will help the team to prepare a plan for the
future. It will result in optimization of resources required. Regression
algorithms can be of help in predicting the passengers.

2. A retailer wants to understand what is the expected demand for the
upcoming sales season so that the inventory can be planned for various
goods. It will result in cost saving and avoiding stock-outs. Regression
algorithms can help in such a planning.

3. A manufacturing plant wishes to improve the yield from the existing
usage of various moulds and raw material. The regression solutions can
suggest the best combination of moulds and predict the expected yield
too.

4. A bank offers credit cards to its customers. But what should be the credit
limit offered to a new customers is to be resolved. Based on the



attributes of customer like age, occupation, income, previous transaction
history – regression algorithms can help in suggesting credit limit at a
customer level.

5. An insurance company wishes to come up with a premium table for its
customers using historical claims. The risk can be assesses based on the
historical data around driver details, car information etc. Regression can
surely help with such problems.

Regression problems form the basics of supervised learning problems and are
quite heavily used in the industry. Along with classification algorithms, they
serve as a go-to solution for most of the predictive problems which we are
discussing now.

Classification algorithms

Simply put, classification algorithms are used to predict the values of a
categorical variable which is the dependent variable. This target variable can
be binary (Yes/No, good/bad, fraud/genuine, pass/fail etc.) or multi-class
(positive/negative/neutral, Yes/No/Don’t know etc.). Classification
algorithms will ascertain whether the target event will happen or not by
generating probability score for the target variable.

After the model has been trained on historical data, a classification algorithm
will generate a probability score for the unseen dataset which can be used to
make the final decision. Depending on the number of classes present in the
target variable, our business decision will vary.

Let’s have a look at a use case for classification problems.

Consider this. A telecom operator is facing issue with its decreasing
subscriber base.  The number of existing subscribers is shrinking and the
telecom operator would like to arrest this churn of subscribers. And for this
purpose a machine learning model is envisioned.

In this case, the historical data or the training data available for model
building can look like the table below in (Table 1-3). These data points are
only for illustration purpose and not exhaustive. There can be many other



significant variables available.

Table 1-3 Example of a structured dataset for a telecom operator showing multiple data
attributes

ID Revenue($) Duration of service
(years)

Avg.
Cost

Monthly usage
(days)

Churned
(Y/N)

1001 100 1.1 0.10 10 Y

1002 200 4.1 0.09 25 N

1003 300 5.2 0.05 28 N

1004 200 0.9 0.25 11 Y

1005 100 0.5 0.45 12 Y

In the above example, the dataset comprises of the past usage data of
subscribers. The last column (Churned) depicts if that subscriber churned out
of system or now. Like  subscriber # 1001 churned while 1002 did not. 
Hence the business problem is, we want to build a machine learning model
based on this historical data and predict if a new unseen customer will churn
or not.

Here, “churned” status (Yes/No) is the target variable. It is also referred as
dependent variable. The other attributes like revenue, duration, average cost,
monthly usage etc. are independent variables which are used to create the
machine learning model. The historical data is called as the training data. Post
the training of the model, the trained supervised learning model will generate



prediction probabilities for a new customer. 

There are quite a few algorithms available for classification problems, the
major ones are listed below:

1. Logistic Regression
2. Decision tree
3. Random forest
4. K-nearest neighbour
5. Naïve Bayes
6. Support Vector Machine
7. Boosting algorithms
8. Neural network

We will discuss one of most popular classification algorithm called logistic
regression. Logistic regression uses a logit function to model the
classification problem. If we are solving for a binary classification problem, it
will be binary logistic regression else multiple logistic regression.

Similar to linear regression, logistic regression also fits an equation, albeit it
uses a sigmoid function to generate the probability score for the event to
happen or not.

A sigmoid function is a mathematical function which has a characteristic “S”
shaped curve or a sigmoid curve. The mathematical equation of a sigmoid
function is:

S(x) = 1/(1 + ex) which can be rewritten as S(x) = ex/(ex + 1)

The logistic regression uses sigmoid function. The equation used in logistic
regression problem is:

log (p/1-p) = β0 + β1 x1

where p: probability for the event to happen

 β0 : intercept term



 β1 : coefficient for the independent variable x1

   log(p/1-p) is called the logit and (p/1-p) is the odds

As depicted in the (Figure 1-14) below, if we try to fit a linear regression
equation for the probability function, it will not do a good job. We want to
obtain the probability scores (i.e. a value between 0 and 1). The linear
regression will not only return values between 0 and 1 but also probability
scores which are greater than 1 or less than 0. Hence, we have a sigmoid
function of the right which generates probability scores for us between 0 and
1 only.

Figure 1-14 Linear regression model will not be able to do justice (left) hence we have logistic
regression for classification. Linear regression can generate probability scores more than 1 or less
than 0 too, which is mathematically incorrect. Whereas, sigmoid function generates probability
scores between 0 and 1 only.

Logistic regression algorithm is one of the most widely used technique for
classification problems. It is easy to train and deploy and is often the
benchmark algorithm whenever we start any supervised classification
learning project.

Tree based algorithms like decision tree, random forest can also be used for
classification problems. The other algorithms are also used as per the
requirements.



We have studied supervised learning algorithms briefly. We will now discuss
unsupervised learning algorithms in the next section – the main topic of this
book and then move to semi-supervised learning algorithms.

1.4.2 Unsupervised algorithms

Imagine you are given some paper labels like shown in the figure (Figure 1-
15) below. The ask is to arrange them using some similarity. Now there are
multiple approaches to that problem. You can use colour, or shape or size.
Here we do not have any label with us to guide on this arrangement. This is
the difference which unsupervised algorithm have.

Figure 1-15 Example of various shapes which can be clubbed together using different parameters

Formally put, unsupervised learning only take the input data and then find
patterns in them without referencing to the target variable. An unsupervised
learning algorithm hence reacts based on the presence or lack of patterns in
the dataset.

Unsupervised learning is hence used for pattern detection, exploring the
insights in the dataset and understanding the structure of it, segmentation and
anomaly detection.



We can understand unsupervised learning algorithms by the means of (Figure
1-16) below. The figure on the left shows the raw datapoints represented in a
vector space diagram. On the right is the clustering done which will be done
using unsupervised learning algorithm.

Figure 1-16 Unsupervised learning algorithm find patterns in the data on the left and results in
clusters on the right.

The use cases for unsupervised algorithms are:

1. A retail group wants to understand the customers better. The ask is to
improve the customer’s stickiness, revenue, number of visits, basket size
etc. Customer segmentation using unsupervised learning can be done
here. Depending on the customer’s attributes like revenue, number of
visits, last visit date, age since joining, demographic attributes etc. the
segmentation will result in clusters which can be targeted personally.
The result will be improved customer experience, increased customer
life time value etc.

2. A network provider requires to create an anomaly detection system. The
historical data will serve as the anomalies data. The unsupervised
learning algorithm will be able to find patterns and the outliers will be
given out by the algorithm. The distinguished anomalies will be the ones
which need to be addressed.

3. An medical product company wishes to find if there is any underlying



patterns in the images data of their patients. If there are any patterns and
factors, those patients can be treated better and may be they require a
different kind of approach. Unsupervised learning can help on the
images data which will help in addressing the patients better.

4. A digital marketing company wants to understand the “unknowns” in
the incoming customer data like social media interactions, page clicks,
comments, stars etc.. The understanding will help in improving
customer’s recommendations and overall purchasing experience.

Unsupervised learning algorithms offer flexibility and performance when it
comes to funding the patterns. They are usable for all kinds of data –
structured data or text or images or text.

The number of unsupervised learning algorithms are lesser than supervised
learning. The major unsupervised learning algorithms are:

1. Clustering algorithms
2. k-means clustering
3. Hierarchical clustering
4. DB Scan clustering
5. Spectral clustering
6. Principal component analysis
7. Singular Value Decomposition
8. Association rules
9. t-SNE (t-distributed stochastic neighbour embedding)

10. Autoencoders

We will be covering all of these algorithms in detail in the coming chapters.
We will examine the mathematical concepts, the hidden processes, Python
implementation and the best practices throughout the book.

Let us understand by means of a case study.

A retailer wants to develop deeper understanding of its consumer base. And
then wants to offer personalised recommendation, promotions, discounts,
offers etc. The entire customer dataset has to segmented using attributes like
persona, previous purchase, response, external data etc.



For the use case, the steps which are followed in an unsupervised learning
project are shown in the (Figure 1-17) below.

Step 1: We start the project by defining the business problem. We wish to
understand the customer base better. A customer segmentation approach can
be a good solution. We want segments which are distinguishable using
mathematical KPIs (key performance indicators). 

Figure 1-17 Steps in an unsupervised learning algorithm from data sources to the final solution
ready for deployment

Step 2: This is the data discovery phase. All the various datasets like
customer’s details, purchase histories, social media data, portfolio etc. are
identified and accessed. The data tables to be used are finalised in this step.
Then all the data tables are generally loaded to a common database, which we
will use to analyse, test and learn.

Step 3: Now we have access to the data. The next step is to clean it and make
is usable.



We will treat all the null values, NAN, junk values, duplicates etc.

Step 4: Once the data is clean and ready to be used, we will perform an
exploratory data analysis of it. Usually during exploratory analysis, we
identify patterns, cyclicity, aberrations, max-min range, standard deviation
etc. The outputs of EDA stage will be insights and understandings. We will
also generate few graphs and charts as shown below in (Figure 1-17):

Figure 1-17 Examples of the graphs and charts from the exploratory data analysis of the data

Step 6: We will begin with the unsupervised approach now. We want to
implement clustering methods and hence we can try a few clustering methods
like k-means, hierarchical clustering etc. The clustering algorithms will result
in homogeneous segments of customers based on their various attributes.

In the case study, we will be working on last 2-3 years of data which is the
training data. Since we are using an unsupervised approach there is no target
variable over here. The algorithm will merge the customer segments which
behave alike using their transactional patterns, their demographic patterns and
their purchase preferences. It will look like the figure below in (Figure 1-18):



Figure 1-18 Output of the clustering algorithm where we can segment customers using various
attributes

Step 7: we will now check how the various algorithms have performed or in
other words we will compare the accuracy of each algorithm. The final
clustering algorithm chosen will result in homogeneous segments of
customers which can be targeted and offered customized offers.

Step 8: we will discuss the results with the business stakeholders. Sometimes,
utilizing the business acumen we merge or break a few segments.

Step 9: Deploy the solution in production environment and we are ready to
work on new unseen datasets.

These are the broad steps in an unsupervised problem. The algorithm creation
and selection is a tedious task. We will be studying it in details in the book.

So far we have discussed supervised and unsupervised problem. Next we
move to semi-supervised algorithms which lie at juxtaposition of supervised
and unsupervised algorithms.

1.4.3 Semi-supervised algorithms



Semi-supervised learning is a middle-path of the two approaches. The
primary reason of a semi-supervised approach is lack of availability of a
complete labelled dataset for training.

Formally put, semi-supervised approach uses both supervised and
unsupervised approaches – supervised to classify the data points and
unsupervised to group them together.

In semi-supervised learning, we train initially on less number of labelled
datapoints available using a supervised algorithm. And then we use it to label
or pseudo-label new datapoints. The two dataset (labelled and pseudo-
labelled) are  combined together and we use this dataset further for analysis.

Semi-supervised algorithms are used in cases where dataset is partially
available like images in medical industry. If we are creating a cancer
detection solution by analysing the images of the patients, most probably we
will not have enough sample set of training images. Here, semi-supervised
approach can be helpful.

Now we will discuss the last category in machine learning called
reinforcement learning.

1.4.4 Reinforcement learning

Image you are playing a game of chess with a computer. And it goes like this:

Round 1: You win after 5 moves

Round 2: You win after 8 moves

Round 3: you win after 14 moves

Round 4: you win after 21 moves

Round 5: computer wins!

What is happening here is, the algorithm is training itself iteratively
depending on each interaction and correcting/improving itself.



Formally, reinforcement learning solutions are self-sustained solutions which
train themselves using a sequence of trial and error. One sequence follows the
other. The heart of reinforcement learning are reward signals. If the action is
positive then the reward is positive indicating to continue on it. If the action
is negative, the reward will penalise the activity. Hence, the solution will
always correct itself and move ahead thereby improving itself iteratively.

Self-driving cars are the best examples for reinforcement learning algorithms.
They detect when they have to turn left or right, when to move and when to
stop. Modern video games also employ reinforcement learning algorithms.
Reinforcement learning is allowing us to break the barriers of technology and
imagine things which were earlier thought impossible.

With this we have covered the different types of machine learning algorithms.
Together, they are harnessing the true power of data and creating a long-
lasting impact on our lives.

But the heart of the solutions is the technology, which we have not discussed
yet. We will now move to the technology stack required to make these
solutions tick.

1.5 Technical toolkit

The following tools are used for different facets of the project:

1. Data Engineering: Hadoop, Spark, Scala, Java, C++, SQL, AWS
Redshift, Azure

2. Data Analysis: SQL, R, Python, Excel
3. Machine Learning: SQL, R, Python, Excel, Weka, Julia, MATLAB,

SPSS, SAS
4. Visualization: Tableau, Power BI, Qlik, COGNOS
5. Model deployment: docker, flask, Amazon S3
6. Cloud Services: Azure, AWS, GCP

In this book, we are going to work using Python. You are advised to install
latest version of Python on your system. Python version of (3.5+) is
advisable. We will be using Jupyter Notebook, hence it is advised to install



Anaconda on your system.

Note:

All the codes and datasets will be checked-in at the GitHub repository. You
are expected to replicate them and try to reproduce the results.

A most common question is: which is better R or Python? Both are fantastic
languages. Both are heavily used. But recently after the introduction of
TensorFlow, keras libraries on Artificial Intelligence the balance has slightly
tilted in the favour of Python.

With this, we conclude the discussion on technology. Technology along with
the concepts make machine learning algorithms work for us. We will be
exploring all of such finer aspects throughout the book.

Congratulations ! you have completed your very first step in your journey
towards learning unsupervised machine learning techniques. It is time to
wrap up and move to the summary.

1.6 Summary

Machine learning and artificial intelligence are indeed path-breaking. They
are changing the way we travel, we order food, we plan, we buy, we see a
doctor or order prescriptions – they are making a “dent” everywhere.
Machine learning is indeed a powerful capability which is paving the path for
the future and is proving much better than existing technology stacks when it
comes to pattern identification, anomaly detection, customizations and
automation of tasks. Autonomous driving, cancer detection, fraud
identification, facial recognition, image captioning, chat-bots are only a few
examples where machine learning and artificial intelligence are
outperforming traditional technologies. And now is the best time to enter this
field. This sector is attracting investments from almost all the business
functions. The field has created tons of job opportunities across the spectrum.
Incredible and impressive indeed!

At the same time, the field lacks trained professionals – data analysts, data



engineers, visualisation experts, data scientists and data practitioners. They
all are a rare breed now. The field requires a regular supply of budding talents
who will become the leaders of tomorrow and will take data-driven-
decisions. But we only scratched the surface in understanding the power of
data – there are still miles to be covered.

In this introductory chapter of this book, we introduced concepts of machine
learning, data science to you. We compared various processes, what are steps
in a data science project, team required for it. We examined types of machine
learning algorithms with their respective use cases with an emphasis on
unsupervised learning algorithms.

In the following chapter, we will dive deeper into unsupervised learning
concepts of clustering. All the mathematical and statistical foundations,
pragmatic case study, Python implementation are being discussed. The
second chapter deals with easier clustering algorithms – kmeans clustering,
hierarchical clustering and DBSCAN. In the later chapters of the book we
will study more complex clustering topics like GMM clustering, time series
clustering, fuzzy clustering etc.

You can now proceed to the question section now!

Questions

Q1: Why is machine learning so powerful that it is being used very heavily
now?

Q2: What are the different types of machine learning algorithms and how are
they different from each other?

Q3: What are the steps in a machine learning project?

Q4: What is the role of data engineering and why is it important?

Q5: What are the various tools available for machine learning?



2 Clustering techniques
“Simplicity is the ultimate sophistication – Leonardo da Vinci”

Nature loves simplicity. And teaches us to follow the same path. Most of the
time, our decisions are simple choices. Simple solutions are easier to
comprehend, are less time consuming, painless to maintain and ponder over.
The machine learning world is no different. An elegant machine learning
solution is not the one which is the most complicated algorithm available but
which solves the business problem. A robust machine learning solution is
easier to decipher and pragmatic enough to implement. A fully functional
machine learning solution cracks the business challenge effectively and
efficiently and is deployable is a production environment. As a data scientist,
we always strive to attain a mature, effective and scalable machine learning
solution.

Recall from Chapter 1, where we discussed data and its types, nuts and bolts
of machine learning and different types of algorithms available – we started
with defining unsupervised learning. We also studied the steps followed in an
unsupervised learning solution. Continuing on the same path, in this second
chapter we are going to start our study on unsupervised learning based
clustering algorithms.

We will define clustering first and then study the different types of clustering
techniques. We will examine the mathematical foundation, accuracy
measurements and pros and cons of each algorithm. We will implement three
of these algorithms using Python code on a dataset to complement the
theoretical knowledge. The chapter ends with the various use cases of
clustering techniques in the pragmatic business scenario to prepare for the
actual business world. This technique is being followed throughout the book
where we study the concepts first, implement the actual code to enhance the
Python skills and dive into the real-world business problems.

We are going to study basic clustering algorithms in this chapter which are
kmeans clustering, hierarchical clustering and DBSCAN clustering. These



clustering algorithms are generally the starting points whenever we want to
study clustering. In the later chapters of the book, we are going to explore
more complex algorithms like spectrum clustering, Gaussian Mixture
Models, time series clustering, fuzzy clustering etc. If you have a good
understanding of kmeans clustering, hierarchical clustering and DBSCAN –
you can skip to the next chapter. Still, it is advisable to read the chapter once
– you might find something useful to refresh your concepts!

In this second chapter, we are going to cover the following topics:

1. Clustering techniques and salient use cases in the industry
2. Various clustering algorithms available
3. K-means, hierarchical clustering and DBSCAN clustering
4. Implementation of algorithms in Python
5. Case study on cluster analysis
6. Summary

Let’s first understand what we mean by “clustering”. All the very best on
your journey to master unsupervised learning based clustering techniques!

2.1 Technical toolkit

We are using the 3.6+ version of Python in this chapter. A basic
understanding of Python and code execution is expected. You are advised to
refresh concepts of object-oriented programming and Python concepts.

Throughout the book, we are using Jupyter notebook to execute the code.
Jupyter offers flexibility in execution and debugging, hence it is being used.
It is quite user-friendly and is platform or operating system agnostic. So if
you are using Windows or Mac OS, Jupyter should work just fine.

All the datasets and code files are checked-in to the Github repository at
(https://github.com/vverdhan/UnsupervisedLearningWithPython/tree/main/Chapter2
You need to install the following Python libraries to execute the code –
numpy, pandas, matplotlib, scipy, sklearn. CPU is good enough for
execution, but if you face some computing lags, switch to GPU or Google
Collaboratory (colab). Google colab offers free-of-cost computation for



machine learning solutions. You are advised to study more about Google
Colab and how to use it for training the machine learning algorithms.

Now, we are starting with clustering in the following section.

2.2 Clustering

Consider this. A group of children is asked to group the items in a room into
different segments. Each child can use their own logic. Someone might club
the objects based on the weight, other children might use material while
someone might use all three - weight, ,material and colour. The permutations
are many and depend on the parameters used for grouping. Here, a child is
segmenting or clustering the objects based on the chosen logic.

Formally put, clustering is used to group objects with similar attributes in the
same segments, and the objects with different attributes in different segments
. The resultant clusters are homogeneous within themselves while
heterogeneous with each other. We can understand it better by means of a
diagram below (Figure 2-1).

Figure 2-1 Clustering is grouping of objects with similar attributes into logical segments. The
grouping is based on a similarity trait shared by different observations and hence they are
grouped into a group

Cluster analysis is not one individual algorithm or solution, rather it is used
as a problem solving mechanism in practical business scenarios. It is an
iterative process following a logical approach and qualitative business inputs.
It results in generating a thorough understanding of the data, logical patterns



in it, pattern-discovery and information retrieval. Being an unsupervised
approach, clustering does not need a target variable . It performs segmenting
by analysing underlying patterns in the dataset which are generally multi-
dimensional and hence difficult to analyse with traditional methods.

Ideally we would want the clustering algorithms to have the following
attributes:

1. The output clusters should be easy to explain and comprehend, usable
and should make business sense. The number of clusters should not be
too little or too much. For example, if we have only 2 clusters the
division is not clear and decisive. Or if we have 20 clusters, the handling
will become a challenge.

2. The algorithm should not be too sensitive to outliers or missing values
or the noise in the dataset. Generally put, a good solution will be able to
handle multiple data types.

3. A good solution will require less domain understanding for the input
parameters used for the clustering purpose. It allows analysts with less
domain understanding to train the clustering algorithm.

4. The algorithm should be independent of the order of the input
parameters. If the order matters, the clustering is biased on the order and
hence it will add more confusion to the process.

5. As we generate new datasets continuously, the clusters have to be
scalable to newer training examples and should not be a time-consuming
process.

As one could imagine, the clustering output will depend on the attributes used
for grouping. In the (Figure 2-2) shown below, there can be two logical
groupings for the same dataset and both are equally valid. Hence, it is prudent
that the attributes or variables for clustering are chosen wisely and often it
depends on the business problem at hand.

Figure 2-2 Using different attributes for clustering results in different clusters for the same
dataset. Hence, choosing the correct set of attributes define the final set of results we will achieve



Along with the attributes used in clustering, the actual technique used also
makes a lot of difference. There are quite a few (in-fact more than 80)
clustering techniques researchers have worked upon. For the interested
audience, we are providing a list of all the clustering algorithms in the
Appendix. We are starting with understanding different clustering techniques
in the next section.

2.2.1 Clustering techniques

Clustering can be achieved using a variety of algorithms. These algorithms
use different methodologies to define similarity between objects. For
example, density based clustering, centroid based clustering, distribution
based methods etc. Even to measure the distance between objects, there are
multiple techniques like Euclidean distance, Manhattan distance etc. The
choice of distance measurement leads to different similarity scores. We are
going to study these similarity measurement parameters in a later section.

At a high-level we can identify two broad clustering methods: hard clustering
and soft clustering. When the decision is quite clear that an object belongs to
a certain class or cluster it is referred as Hard clustering. In hard clustering
we are quite sure of  an object’s class. On the other hand, soft clustering
assigns a likelihood score for an object to belong to a particular cluster. So a
soft clustering method will not put an object into a cluster, rather an object
can belong to multiple clusters . Soft clustering sometimes is also called fuzzy



clustering.

Figure 2-3 Hard clustering has distinct clusters whereas in the case of soft clustering, a data point
can belong to multiple clusters and we get likelihood score for a data point to belong to a cluster

We can broadly classify the clustering techniques as shown in the (Table 2-1)
below:

Table 2-1 Classification of clustering methodologies, brief descriptions and examples

S.
No.

Clustering
methodology A brief description of the method Example

1 Centroid based
clustering Distance from a defined centroid k-means

2 Density based
models

Data points are connected in dense
regions in a vector space

DBSCAN,
OPTICS

3 Connectivity
based clustering

Distance connectivity is the modus
operandi

Hierarchical
clustering,
BIRCH



4 Distribution
models

Modelling is based on statistical
distributions

Gaussian Mixture
models

5 Deep learning
models

Unsupervised neural network
based

Self-organizing
maps

The methods described in (Table 2-1) are not the only ones which are
available to be used. We can have graph-based models, overlapping
clustering, subspace models etc.

Generally, the popular six algorithms used in clustering in the industry are as
follows:

1. K-means clustering (with variants like k-medians, k-medoids)
2. Agglomerative clustering or hierarchical clustering
3. DBSCAN (Density-Based Spatial Clustering of Applications with

Noise)
4. Spectral Clustering
5. Gaussian mixture models or GMM
6. BIRCH (Balanced Iterative Reducing & Clustering using Hierarchies)

There are multiple other algorithms available like Chinese whisper, canopy
clustering, SUBCLU, FLAME etc. We are studying the first three algorithms
in this chapter and some of the advanced ones in subsequent chapters in the
book.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   DBSCAN clustering is centroid-based clustering technique. TRUE or
FALSE.

2.   Clustering is a supervised learning technique having a fixed target
variable. TRUE or FALSE.



3.   What is the difference between hard clustering and soft clustering?

In the next section, we are starting with the centroid based clustering methods
where we will study k-means clustering.

2.3 Centroid based clustering

Centroid based algorithms measure similarity of the objects based on their
distance to the centroid of the clusters. The smaller the distance is, higher is
the similarity. We can understand the concept by (Figure 2-3) below. The
figure on the right side represents the respective centroids for each of the
group of clusters.

To get more clarity on the concept of centroid and other mathematical
concepts, refer to the appendix at the end.

Figure 2-3 Centroid based clustering methods create a centroid for the respective clusters and the
similarity is measured based on the distance from the centroid. In this case, we have 5 centroids.
And hence, we have five distinct clusters here

In clustering, distance plays a central part as many algorithms use it as a
metric to measure the similarity. In centroid-based clustering, distance is
measured between points and between centroids. There are multiple ways to
measure the distance. The most widely used are listed below:



1. Euclidean distance: It is the most common distance metric used. It
represents the straight line distance between the two points in space and
is the shortest path between the two points. If we want to calculate the
distance between points P1 and P2 where coordinates of P1 are (x1, y1)
and P2 are (x2, y2), then Euclidean distance is given by (Equation 2-1)
below. The geometric representation is shown in (Figure 2-4)

Distance = √(y2 – y1)2 + (x2 –
x1)2                                                                                                       (Equation 2-1)

2. Chebyshev distance: Named after Russian mathematician Pafnuty
Chebyshev, it is defined as the distance between two points such that
their differences are maximum value along any co-ordinate dimension.
Mathematically, we can represent Chebyshev distance in (Equation 2-2)
below and shown in (Figure 2-4):

Distance Chebyshev = max (|y2 – y1|, |x2 – x1|)                                                   
(Equation 2-2)

3. Manhattan distance: Manhattan distance is a very easy concept. It
simply calculates the distance between two points in a grid-like path and
the distance is hence measured along the axes at right angles. Hence,
sometimes it is also referred to as city block distance or taxi cab metric.
Mathematically, we can represent Manhattan distance in (Equation 2-3)
and is shown in (Figure 2-4):

Distance Manhattan = (|y2 – y1| +  |x2 – x1|)                                                        
(Equation 2-3)

Manhattan distance in L1 norm form while Euclidean distance is L2 norm
form. You can refer to the Appendix to study the L1 norm and L2 norm in
detail. If we have high number of dimensions or variables in the dataset,
Manhattan distance is a better choice than Euclidean distance. This is due to
Curse of Dimensionality which we are studying in Chapter 3 of the book.

4. Cosine distance: Cosine distance is used to measure the similarity
between two points in a vector-space diagram. In trigonometry, cosine



of 0 is 1 and cosine of 900 is 0. Hence, if two points are similar to each
other, the angle between them will be zero hence cosine will be 1 which
means the two points are very similar to each other, and vice versa.
Mathematically, cosine similarity can be shown as (Equation 2-4). If we
want to measure the cosine between two vectors A and B, then cosine is

Distance cosine = (A . B) / (||A|| ||B||)                                                              
(Equation 2-4)

Figure 2-3 Euclidean distance, Manhattan distance, Chebyshev distance and cosine similarity are
the primary distance metrics used. Note, how the distance is different for two points using these
metrics

There are other distance measuring metrics like Hamming distance, Jaccard
distance etc. Mostly, we use Euclidean distance in our pragmatic business
problems but other distance metrics are also used sometimes.

Note:

The above distance metrics are true for other clustering algorithms too. You
are advised to test the Python codes in the book with different distance
metrics and compare the performance.

Now we have understood the various distance metrics, we will proceed to
study k-means clustering which is the most widely used algorithm.

2.3.1 K-means clustering



k-means clustering is an easy and straightforward approach. It is arguably the
most widely used clustering method to segment the data points and create
non-overlapping clusters. We have to specify the number of clusters “k” we
wish to create as an input and the algorithm will associate each observation to
exactly one of the k clusters.

Note:

k-means clustering is sometimes confused with k-nearest neighbour classifier
(knn). Though there is some relationship between the two, knn is used for
classification and regression problems.

It is quite an elegant approach and starts with some initial cluster centres and
then iterates to assign each observation to the closest centre. In the process
the centres are re-calculated as the mean of points in the cluster. Let’s study
the approach used in step-by-step fashion by using the diagram in (Figure 2-
4) below. For the sake of simplicity, we are assuming that there are three
clusters in the dataset below.

Step 1: Let us assume that we have all the data points as shown below in Step
1.

Figure 2-4 Step 1 represents the raw data set. In step 2, the algorithm initiates random three
centroids as we have given the input of a number of clusters as three. In step 3, all the
neighboring points of the centroids, are assigned the same cluster

Step 2: The three centres are initialized randomly as shown by three squares
– blue, red and green. This input of three is the final number of clusters we
wish to have.



Step 3: The distance of all the data points is calculated to the centres and the
points are assigned to the nearest centre. Note that the points have attained
blue, red and green colours as they are nearest to those respective centres.

Step 4: The three centres are re-adjusted in this step. The centres are re-
calculated as the mean of the points in that cluster as shown in (Figure 2-5)
below. We can see that in Step 4, the three squares have changed their
respective positions as compared to Step 3.

Figure 2-5 The centroids are re-calculated in step 4. In step 5, the data points are again re-
assigned new centers. In step 6, the centroids are again re-adjusted as per the new calculations

Step 5: The distance of all the data points is re-calculated to the new centres
and the points are reassigned to the nearest centres again. Note that two blue
data points have become red while a red point has become green in this step.

Step 6: The centres are again re-adjusted as they were done in Step 4.

Figure 2-6 The centroids are re-calculated and this process continues till we can no longer
improve the clustering. And then the process stops as shown in step 8



Step 7: The data points are again assigned a new cluster as shown in (Figure
2-6) above.

Step 8: And the process will continue till the convergence is achieved. In
other words, the process continues till there is no more reassignment of the
data points. And hence, we cannot improve the clustering further and the
final clustering is achieved.

The objective of k-means clustering is to ensure that the within-cluster
variation is as small as possible while the difference between clusters is as
big as possible. In other words, the members of the same cluster are most
similar to each other while members in different clusters are dissimilar. Once
the results no longer change, we can conclude that a local optimum has been
reached and clustering can stop. Hence, the final clusters are homogeneous
within themselves while heterogeneous with each other.

It is imperative to note two points here:

1. Since k-means clustering initializes the centres randomly, hence it finds
a local optimum solution rather than a global optimum solution. Hence,
it is advisable to iterate the solution multiple times and choose the best
output from all the results.

2. We have to input the number of final clusters “k” we wish to have and it
changes the output drastically. A very small value of k will result in
redundant clusters as there will not be any use. Having a very high value
of k, will create clusters which are different from each other minutely.
Moreover, having a very high number of clusters will be difficult to
manage and refresh in the long run. Let’s study by an example. If a
telecom operator has 1 million subscribers, then if we take number of
clusters as 2 or 3, the resultant cluster size will be very large. It can also
lead to similar customers classified in the same segment. On the other
hand, if we take the number of clusters as 50 or 60, due to the sheer
number of clusters – the solution becomes unmanageable to manage and
maintain.

With different values of “k” we get different results, hence it is necessary that
we understand how we can choose the optimum number of clusters for a
dataset. But before that, we have to examine the parameters to assess the



accuracy of the clustering algorithms because it is an input to find the
optimum number of clusters.

2.3.2 Measure the accuracy of clustering

The objective of clustering is to find the most clean clusters. Ideally, if we
have the same number of clusters as the number of observations the results
will be completely accurate. In other words, if we have 1 million customers,
the purest clustering will have 1 million clusters – wherein each customer is
in a separate cluster. But it is not the best approach and is not a pragmatic
solution. Clustering intends to create group of similar observations in one
cluster and we use the same principle to measure the accuracy of our
solution.

1. With the cluster sum of squares (WCSS) or Cohesion: This index
measures the variability of the data points with respect to the distance
they are from the centroid of the cluster. Here, first we calculate the
distance between a data point and the centroid to the respective cluster.
This process is done for all the data points in that cluster. The results are
added and then divided by the total number of points in that cluster. The
process is repeated for all the clusters. And finally, the results are
averaged across all the clusters. If the value is too large, it shows there is
a large data spread whereas the smaller value indicates that the data
points are quite similar and homogeneous and hence the cluster is
compact.

Sometimes, this intracluster distance is also referred to as inertia for that
cluster. It is simply the summation of all the distances. Lower the value of
inertia, better the cluster is.

Figure 2-7 Intra cluster vs inter cluster distance – both are used to measure the purity of the final
clusters and the performance of the clustering solution



2. Inter cluster sum of squares: This metric is used to measure the
distance between centroids of all the clusters. To get it, we measure the
distance between centroids of all the clusters and divide it by the number
of clusters to get the average value. The bigger it is, better is the
clustering indicating that clusters are heterogeneous and distinguishable
from each other. It is shown in (Figure 2-7) above.

3. Silhouette Value is one of the metrics used to measure the success of
clustering. It ranges from -1 to +1 and a higher value is better. It
measures how an observation is similar to the objects in its own cluster
as compared to other clusters. As a first step, for each observation - we
calculate the average distance from all the data points in the same
cluster, let’s call is xi. Then we calculate the average distance from all
the data points in the nearest cluster, let’s call it yi. We will then
calculate the coefficient by the equation (Equation 2-5) below

Silhouette Coefficient = (yi – xi)/ max (yi, xi)                                               
(Equation 2-5)

If the value of coefficient is -1, it means that the observation is in the wrong
cluster.

If it is 0, the observation is very close to the neighboring clusters.

If the values of coefficient +1, it means that the observation is at a distance
from the neighboring clusters.

Hence, we would expect to get the highest value for the coefficient to have a
good clustering solution.



4. Dunn Index can also be used to measure the efficacy of the clustering.
It uses the KPI defined in point 2 and point 3 above and is given by the
(Equation 2-6) below

Dunn Index = min (Inter cluster distance)/max (Intra cluster
distance)               (Equation 2-6)

Clearly, we would strive to maximize the value of Dunn index. To achieve it,
the numerator should be as big as possible implying that clusters are at a
distance from each other, while the denominator should be as low as possible
signifying that the clusters are quite robust and close-packed.

Now we have examined the methods to measure the performance of our
algorithm. We will now move to find out the best value of “k” for k-means
clustering.

2.3.3 Finding the optimum value of “k”

Choosing the most optimum number of clusters is not easy. As we have said
earlier, the finest clustering is when the number of clusters equals the number
of observations – but as we studied in the last section, it is not practically
possible. But we have to provide the number of clusters “k” as an input to the
algorithm.

Figure 2-8 Elbow method to find the optimal number of clusters. The red circle shows the kink.
But the final number of clusters is dependent on business logic and often we merge/split clusters
as per business knowledge. Ease to maintain the clusters also plays a crucial role in the same



Perhaps the most widely used method for finding the optimum value of “k” is
the Elbow Method. In this method, we calculate within the cluster sum of
squares or WCSS for different values of “k”. The process is the same as
discussed in the last section. Then, WCSS is plotted on a graph against
different values of “k”. Wherever we observe a kink or elbow, as shown in
(Figure 2-8), it is the most optimum number of clusters for the dataset. Notice
the sharp edge depicted in (Figure 2-8).

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   K-means clustering does not require number of clusters as an input-
TRUE or FALSE

2.   Knn and k-means clustering are one and the same thing – TRUE or
FALSE

3.   Describe the process to find the most optimal value of “k”



But it does not mean that it is the final number of clusters we suggest for the
business problem. Based on the number of observations falling in each of the
clusters, a few clusters might be combined or broken into sub-clusters. We
also consider the computation cost required to create the clusters. Higher the
number of clusters, greater is the computation cost and the time required.

We can also find the optimum number of clusters using the Silhouette
Coefficient we discussed earlier.

Note:

It is imperative that business logic of merging a few clusters or breaking a
few clusters is explored. Ultimately, the solution has to be implemented in
real-world business scenarios.

With this, we have examined nuts and bolts of k-means clustering – the
mathematical concepts and the process, the various distance metrics and
determining the best value of k. We will now study the advantages k-means
algorithm offers to us.

2.3.4 Pros and cons of k-means clustering

k-means algorithm is quite a popular and widely implemented clustering
solution. The solution offers the following advantages:

1. It is simple to comprehend and relatively easier to implement as
compared to other algorithms. The distance measurement calculation
makes it quite intuitive to understand even by users from non-statistics
backgrounds.

2. If the number of dimensions is large, k-means algorithm is faster than
other clustering algorithms and creates tighter clusters. It is hence
preferred if the number of dimensions are quite big.

3. It quickly adapts to new observations and can generalize very well to
clusters of various shapes and sizes.

4. The solution produces results through a series of iterations of re-
calculations. Most of the time the Euclidean distance metric is used
which makes it less computationally expensive. It also ensures that the



algorithm surely converges and produces results.

K-means is widely used for real life business problems. Though there are
clear advantages of k-means clustering, we do face certain challenges with
the algorithm:

1. Choosing the most optimum number of clusters is not easy. We have to
provide it as an input. With different values of “k”, the results will be
completely different. The process to choose the best value of “k” is
explored in the next section.

2. The solution is dependent on the initial values of centroids. Since the
centroids are initialized randomly, the output will be different with each
iteration. Hence, it is advisable to run multiple versions of the solution
and choose the best one.

3. The algorithm is quite sensitive to outliers. They can mess up the final
results and hence it is imperative that we treat outliers before starting
with clustering. We can also implement other variants of k-means
algorithm like k-modes clustering to deal with the issue of outliers. We
are discussing dealing with outliers in subsequent chapters.

4. Since the basic principle of k-means clustering is to calculate the
distance, hence the solution is not directly applicable for categorical
variables. Or in other words, we cannot use categorical variables
directly, since we can calculate the distance between numeric values but
cannot perform mathematical calculations on categorical variables. To
resolve it, we can convert categorical variables to numeric ones using
one-hot encoding which we are discussing towards the end of this
chapter.

Despite these problems, k-means clustering is one of the most used clustering
solutions owing to its simplicity and ease to implement. There are different
implementations of k-means algorithm like k-medoids, k-median etc. which
are sometimes used to resolve the problems faced.

5. As the name suggests, k-median clustering is based on medians of the
dataset as compared to centroid in k-means. This increases the amount
of computation time as median can be found only after the data has been
sorted. But at the same time, k-means is sensitive to outliers whereas k-
medians is less affected by them.



6. Next, we have k-medoids clustering as one of the variants of the k-
means algorithm. Medoids are similar to means except they are always
from the same dataset and are implemented when it is difficult to get
means like images. A medoid can be thought as the most central point in
a cluster which is least dissimilar to all the other members in the cluster.
K-medoids choose the actual observations as the centers as compared to
k-means where the centroids may not even be part of the data. It is less
sensitive to outliers as compared to k-means clustering algorithm.

There are other versions too like kmeans++, mini-batch k-means etc.
Moreover, having different distance measurement metrics may produce
different results for k-means algorithm.

This section concludes our discussion on k-means clustering algorithm. It is
time to hit the lab and develop actual Python code!

2.3.5 k-means clustering implementation using Python

We will now create a Python solution for k-means clustering. In this case, we
are using the dataset from (link). The details of the data can be found here.

This dataset has information about features of four models of cars. Based on
the features of the car, we are going to group them into different clusters.

Step 1: Import the libraries and the dataset into a dataframe. Here,
vehicles.csv is the input data file. If the data file is not in the same folder as
the Jupyter notebook, you would have to provide the complete path to the
file. Dropna is used to remove the missing values, if any.

import pandas as pd

vehicle_df = pd.read_csv('vehicle.csv').dropna()

Step 2: Perform some initial checks on the data, like shape, info, top five
rows, distribution of classes etc. This is to ensure that we have loaded the
complete dataset and there is no corruption while loading the dataset. Shape
command will give the number of rows and columns in the data, info with
describe all the variables and their respective types and head will display the
first 5 rows. The value_counts displays the distribution for the class



variable. Or in other words,  value_counts returns the count of the unique
values.

vehicle_df.shape

vehicle_df.info()

vehicle_df.head()

pd.value_counts(vehicle_df['class'])

Step 3: Let’s generate two plots for the variable “class”. The dataset has
more examples from car while for bus and van it is a balanced data. We have
used matplotlib library to plot these graphs. The output of the plots are shown
below.

import matplotlib.pyplot as plt

%matplotlib inline

pd.value_counts(vehicle_df["class"]).plot(kind="bar")

pd.value_counts(vehicle_df['class']).hist(bins=300)

Step 4: We will now check if there are any missing data points in our dataset.
There are no missing data points in our dataset as we have already dealt with
them.

vehicle_df.isna().sum()

Note:

We will be discussing the methods to deal with missing values in later
chapters as dropping the missing values is generally not the best approach.

Step 5: We will standardise our dataset now. It is a good practice to
standardise the dataset for clustering. It is important as the different



dimensions might be on a different scale. This is done using zscore and
StandardScaler() function below. Refer to the appendix of the book to
examine the difference between zscore and StandardScaler() function.

vehicle_df_1 = vehicle_df.drop('class', axis=1)

from scipy.stats import zscore

vehicle_df_1_z = vehicle_df_1.apply(zscore)

from sklearn.preprocessing import StandardScaler

import numpy as np

sc = StandardScaler()

X_standard = sc.fit_transform(vehicle_df_1)

Step 6: We will now have a quick look at the dataset by generating a scatter
plot. The plot displays the distribution of all the data points we have created
as X_standard in the last step.

plt.scatter(X_standard[:,0], X_standard[:,1])

plt.show()

Step 7: We will now perform k-means clustering. First, we have to select the
optimum number of clusters using the elbow-method. From sklearn library,
we are importing KMeans. In a for loop, we iterate for the values of clusters
from 1 to 10. In other words, the algorithm will create 1, 2,3, 4 upto 10
clusters and will then generate the results for us to choose the most optimal
value of k.

In the code snippet below, model object contains the output of KMeans
algorithm which is then fit on the X_standard generated in the last step. Here,
Euclidean distance has been used as a distance metric.

from sklearn.cluster import KMeans

from scipy.spatial.distance import cdist



clusters=range(1,10)

meanDistortions=[]

for k in clusters:

    model=KMeans(n_clusters=k)

    model.fit(X_standard)

    prediction=model.predict(X_standard)

    meanDistortions.append(sum(np.min(cdist(X_standard, model.cluster_centers_, 'euclidean'), axis=1)) / X_standard

                           .shape[0])

plt.plot(clusters, meanDistortions, 'bx-')

plt.xlabel('k')

plt.ylabel('Average distortion')

plt.title('Selecting k with the Elbow Method')

Step 8: As we can observe, optimal number of clusters as 3. It is the point,
where we can observe a sharp kink in the graph. We will continue with k-
means clustering with a number of clusters as 3. random_state is a parameter
which is used to determine random numbers for centroid initialization. We
are setting it to a value to make randomness deterministic.

kmeans = KMeans(n_clusters=3, n_init = 15, random_state=2345) 

kmeans.fit(X_standard)

Step 9: Get the centroids for the clusters

centroids = kmeans.cluster_centers_

centroids

Step 10: Now we are using the centroids so that they can be profiled by the
columns.



centroid_df = pd.DataFrame(centroids, columns = list(X_standard) )

Step 11: We will now create a dataframe only for the purpose of creating the
labels and then we are converting it into categorical variables.

dataframe_labels = pd.DataFrame(kmeans.labels_ , columns = list(['labels']))

dataframe_labels['labels'] = dataframe_labels['labels'].astype('category')

Step 12: In this step, we are joining the two dataframes

dataframe_labeled = vehicle_df_1.join(dataframe_labels)

Step 13: A group by is done to create a data frame requires for the analysis

dataframe_analysis = (dataframe_labeled.groupby(['labels'] , axis=0)).head(1234)

dataframe_labeled['labels'].value_counts()

Step 15: Now, will create a visualization for the clusters we have defined.
This is done using the mpl_toolkits library. The logic is simple to
understand. The data points are coloured as per the respective labels. The rest
of the steps are related to the display of plot by adjusting the label, title, ticks
etc. Since it is not possible to plot all the 18 variables in the plot, we have
chosen 3 variables to show in the plot.

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8, 6))

ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=20, azim=60)

kmeans.fit(vehicle_df_1_z)

labels = kmeans.labels_

ax.scatter(vehicle_df_1_z.iloc[:, 0], vehicle_df_1_z.iloc[:, 1], vehicle_df_1_z.iloc[:, 3],c=labels.astype(np.float), edgecolor='k')

ax.w_xaxis.set_ticklabels([])

ax.w_yaxis.set_ticklabels([])

ax.w_zaxis.set_ticklabels([])

ax.set_xlabel('Length')

ax.set_ylabel('Height')

ax.set_zlabel('Weight')

ax.set_title('3D plot of KMeans Clustering on vehicles dataset')



We can also test the above code with multiple other values of k. We have
created the code with different values of k. In the interest of space, we have
put the code of testing with different values of k at the github location.

In the example above, we first did a small exploratory analysis of the dataset.

Note:

Exploratory data analysis (EDA) holds the key to a robust machine learning
solution and a successful project. In the subsequent chapters, we will create
detailed EDA for datasets.

It was followed with identifying the optimum number of clusters which in
this case comes out to be three. Then we implemented k-means clustering.
You are expected to iterate the k-means solution with different initializations
and compare the results, iterate with different values of k and visualize to
analyze the movements of data points. We will be using the same dataset later
in the chapter where we will create hierarchical clustering using Python.

Centroid based clustering is one of the most recommended solutions owing to
its less complicated logic, ease to implement, flexibility and trouble-free
maintenance. Whenever we require clustering as a solution, mostly we start



with creating a k-means clustering solution which acts as a benchmark. The
algorithm is highly popular and generally one of the first solutions utilized
for clustering. Then we test and iterate with other algorithms.

This marks the end of discussion on centroid-based clustering algorithms. We
will now move forward to connectivity-based solutions and discuss
hierarchical clustering in the next section.

2.4 Connectivity based clustering

“Birds of the same feather flock together” is the principle followed in
connectivity based clusters. The core concept is - objects which are closer to
each other are similar to each other. Hence, based on the distance between
these objects they are clubbed into clusters. An example of such a
representation is shown in (Figure 2-9) below where we can iteratively group
observations. As an example, we are initiating with all things, dividing into
living and non-living and so on. Such representation is better shown using the
diagram on the right, called the Dendrogram.

Figure 2-9 Hierarchical clustering utilizes grouping similar objects iteratively. On the right, we
have the visual representation of the clustering called dendrogram

Since there is a tree-like structure, connectivity based clustering is sometimes
referred as Hierarchical clustering.

Hierarchical clustering fits nicely into human intuition, and hence is easy to
comprehend by us. Unlike k-means clustering, in hierarchical clustering we



do not have to input the number of final clusters but the method does require
a termination condition i.e. when the clustering should stop. At the same
time, hierarchical clustering does not suggest the optimum number of
clusters. From the hierarchy/ dendrogram generated we have to choose the
best number of clusters ourselves. We will explore more on it when we create
the Python code for it in subsequent sections.

Hierarchical clustering can be understood by means of (Figure 2-10) below.
Here the first node is the root, which is then iteratively split into nodes and
subnodes. Whenever a node cannot be split further, it is called a terminal
node or leaf.

Figure 2-10 Hierarchical clustering has a root which splits into nodes and subnodes. A node
which cannot be split further is called the leaf. In bottom-up approach, merging of the leaves will
take place

Since there are more than one process or logic to merge the observations into
clusters, we can generate a large number of dendrograms which is given by
the (Equation 2-7) below:

Number of dendrograms = (2n-3)!/[2(n-2) (n-
2)!]                                                          (Equation 2-7)

where  n is the number of observations or the leaves. So if we have only 2
observations, we can have only 1 dendrogram. If we have 5 observations, we
can have 105 dendrograms.

Hierarchical clustering can be further classified based on the process used to



create grouping of observations, which we are exploring next.

2.4.1 Types of hierarchical clustering

Based on the strategy to group, hierarchical clustering can be subdivided into
two types: agglomerative clustering and divisive clustering.

S.No. Agglomerative methodology Divisive methodology

1 Bottom-up approach Top-down approach

2

Each observation creates its
own cluster and then
merging takes place as the
algorithm goes up

We start with one cluster and then
observations are iteratively split to
create a tree-like structure

3 Greedy approach is followed
to merge Greedy approach is followed to split

4

An observation will find the
best pair to merge and the
process completes when all
the observations have
merged with each other

All the observations are taken at the
start and then based on division
conditions, splitting takes place until all
the observations are exhausted or the
termination condition is met

Figure 2-11 Step followed in hierarchical clustering. Left-to-right we have agglomerative
clustering (splitting of the nodes) while right-to-left we have divisive clustering (merging of the
nodes)



Let’s explore the meaning of greedy approach first. Greedy approach or
greedy algorithm is any algorithm which makes a best choice at each step
without considering the impact on the future states. In other words, we live
in-the-moment and choose the best option from the available choices at that
moment. The current choice is independent of the future choices and the
algorithm will solve the subproblems later. Greedy approach may not provide
the most optimal solution but still provides a locally optimal solution which
is closer to the most optimal solution in a reasonable time. Hierarchical
clustering follows this greedy approach while merging or splitting at a node.

We will now examine the steps followed in hierarchical clustering approach:

Step 1: As shown in (Figure 2-11) above, let us say we have five observations
in our data set – 1, 2, 3, 4 and 5.

Step 2: In this step, observation 1 and 2 are grouped into one, 4 and 5 are
clubbed in one. 3 is not clubbed in any one.

Step 3: Now in this step, we group the output of 4,5 in the last step and
observation 3 into one cluster.

Step 4: The output from step 3 is clubbed with the output of 1,2 as a single
cluster.

In this approach, from left-to-right, we have an agglomerative approach and
from right-to-left a divisive approach is represented. In an agglomerative



approach, we are merging the observations while in a divisive approach we
are splitting the observations. We can use both agglomerative or divisive
approaches for hierarchical clustering. Divisive clustering is an exhaustive
approach and sometimes might take more time than the other.

Similar to k-means clustering, the distance metric used to measure plays a
significant role here. We are aware and understand how to measure the
distance between data points but there are multiple methods to define that
distance which we are studying now.

2.4.2 Linkage criterion for distance measurement

We are aware that we can use Euclidean distance or Manhattan distance or
Chebyshev distance etc. to measure the distance between two observations.
At the same time, we can employ various methods to define that distance.
And based on this input criterion, the resultant clusters will be different. The
various methods to define the distance metric are:

1. Nearest neighbours or single linkages use the distance between the
two nearest points in different clusters. The distance between the closest
neighbours in distinct clusters is calculated and it is used to determine
the next split/merging.

2. Farthest neighbour or complete linkage is opposite of the nearest
neighbour approach. Here, instead of taking the nearest neighbours we
concentrate on most-distant neighbours in different clusters. In other
words, we determine the distance between the clusters is calculated by
the greatest distance between two objects.

3. Group average linkage calculates the average of distances between all
the possible pairs of objects in two different clusters.

4. Ward linkage method aims to minimize the variance of the clusters
which are getting merged into one.

We can use these options of distance metrics while we are developing the
actual code for hierarchical clustering, and compare the accuracies to
determine the best distance metrics for the dataset. During the algorithm
training, the algorithm merges the observations which will minimize the
linkage criteria chosen.



Note:

Such inputs to the algorithm are referred to as hyper-parameters. These are
the parameters we feed to the algorithm to generate the results as per our
requirement.

We can visualise the various linkages in (Figure 2-12) below. 

Figure 2-12 (i) Single linkage is for closest neighbors (ii) Complete linkage is for farthest
neighbors and (iii) Group average is for average of the distance between clusters

With this, we have understood the working mechanisms in hierarchical
clustering. But we have still not addressed the mechanism to determine the
optimum number of clusters using hierarchical clustering, which we are
examining next.

2.4.3 Optimal number of clusters

Recall in k-means clustering we have to give the number of clusters as an
input to the algorithm. We use elbow method to determine the optimum
number of clusters. In the case of hierarchical clustering, we do not have to
specify the number of clusters to the algorithm, but still we have to identify
the number of final clusters we wish to have. We use a dendrogram to answer
that problem.

Let us assume that we have 10 data points in total at the bottom of the chart
as shown in (Figure 2-13). The clusters are merged iteratively till we get the
one final cluster at the top. The height of the dendrogram at which two
clusters get merged with each other represents the respective distance
between the said clusters in the vector-space diagram.

Figure 2-13 Dendrogram to identify the optimum number of clusters. The distance between X



and Y is more than A & B and P & Q, hence we choose that as the cut to create clusters and
number of clusters chosen are 5

From a dendrogram, the number of clusters is given by the number of vertical
lines being cut by a horizontal line. The optimum number of clusters is given
by the number of the vertical lines in the dendrogram cut by a horizontal line
such that it intersects the tallest of the vertical lines. Or if the cut is shifted
from one end of the vertical line to another, the length hence covered is the
maximum.

In the example shown in (Figure 2-13), we have shown three potential cuts –
AB, PQ and XY. If we take a cut above AB it will result into two very broad
clusters while below PQ will result in nine clusters which will become
difficult to analyse further.

Here the distance between X and Y is more than A & B and P & Q. So we
can conclude that the distance between X and Y is the maximum and hence
we can finalise that as the best cut. This cut, intersects at five distinct points
hence we should have five clusters. Hence, the height of the cut in the
dendrogram is similar to the value of k in k-means clustering. In k-means
clustering, “k” determines the number of clusters. In hierarchical clustering,
the best cut determines the number of clusters we wish to have.



Similar to k-means clustering, the final number of clusters is not dependent
on the choice from the algorithm only. The business acumen and the
pragmatic logic plays a vital role in determining the final number of clusters.
Recall that one of the important attribute of clusters is their usability which
we discussed in section 1.2 earlier.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   What is the greedy approach used in hierarchical clustering?

2.   Complete linkage is used for finding distances for closest neighbours –
TRUE or FALSE

3.   What is the difference between group linkage and ward linkage?

Describe the process to find the most optimal value of “k”

We have now covered the background of hierarchical clustering and how we
determine the clusters. We will now discuss the advantages and challenges
we face with hierarchical clustering.

2.4.4 Pros and cons of hierarchical clustering

Hierarchical clustering is a strong clustering technique and quite popular too.
Similar to k-means, it is also using distance as a metric to measure the
similarity. At the same time, there are a few challenges with the algorithm.
We are discussing pros and cons of hierarchical clustering now. The
advantages of hierarchical clustering are:

1. Perhaps the biggest advantage we have with hierarchical clustering is
reproducibility of results. Recall in k-means clustering, the process starts
with random initialization of centroids giving different results. In
hierarchical clustering we can reproduce the results.

2. In hierarchical clustering, we do not have to input the number of clusters
to segment the data.



3. The implementation is easy to implement and comprehend. Since it
follows a tree-like structure, it is explainable to users from non-technical
backgrounds.

4. The dendrogram generated can be interpreted to generate a very good
understanding of the data with a visualization.

At the same time, we do face some challenges with hierarchical clustering
algorithm which are :

1. The biggest challenge we face with hierarchical clustering is the time
taken to converge. The time complexity for k-means is linear while for
hierarchical clustering is quadratic. For example, if we have “n” data
points, then for k-means clustering the time complexity will be O(n)
while for hierarchical clustering is O(n).

2. Since the time complexity is O(n), it is a complex task. Hence the
memory required to compute is at least O(n2) making hierarchical
clustering quite a time consuming and memory intensive process. And
this is the issue even if the dataset is medium. The computation required
might not be a challenge if we are using really high-end processors but
surely can be a concern for regular computers we use.

3. The interpretation of dendrograms at times can be subjective hence due
diligence is required while interpretation of dendrograms. It can be
subjective as different analysts can decipher different cuts and try to
prove their methodology. Hence, it is advisable to interpret the results in
the light of mathematics and marry the results with real-world business
problem.

4. The hierarchical clustering cannot undo the previous steps it has done.
In case, we feel that a connection made is not proper and should be
rolled back, still there is no mechanism to remove the connection.

5. The algorithm is very sensitive to outliers and messy dataset. Presence
of outliers, NULL, missing values, duplicates etc. make a dataset messy.
And hence the resultant output might not be proper and not what we
expected.

But despite all the challenges, hierarchical clustering is one of the most
widely used clustering algorithms. Generally, we create both k-means
clustering and hierarchical clustering for the same dataset to compare the



results of the two. If the number of clusters suggested and the distribution of
respective clusters look similar, we get more confident on the clustering
methodology used.

This marks our end of the theoretical and mathematical study of hierarchical
clustering. It is time for action and jump into Python for coding.

2.4.5 Hierarchical clustering case study using Python

We will now create a Python solution for hierarchical clustering, using the
same dataset we used for k-means clustering.

Step 1: Load the libraries and dataset till step 6 in k-means algorithm.

Step 7: Next, we are going to create hierarchical clustering using three
linkages methods – average, ward and complete. Then the clusters are getting
plotted. The input to the method is the X_Standard variable, linkage method
used and the distance metric. Then, using matplotlib library, we are plotting
the dendrogram. In the code snippet, simply change the method from
‘average’ to ‘ward’ and ‘complete’ and get the respective results.

from scipy.cluster.hierarchy import dendrogram, linkage

Z_df_average = linkage(X_standard, 'average', metric='euclidean')

Z_df_average.shape

plt.figure(figsize=(30, 12))

dendrogram(Z_df_average)

plt.show()

Step 8: We now want to choose the number of clusters we wish to have. For
this purpose, let’s recreate the dendrogram by sub-setting the last 10 merged
clusters. We have chosen 10 as it is generally an optimal choice, you are
advised to test with other values too.



dendrogram(

    Z_df_complete,

    truncate_mode='lastp',    p=10,)

plt.show()

Step 9: We can observe that the most optimal distance is 10.

Step 10: Cluster the data into different groups. By using the logic described
in the last section, the number of optimal clusters is coming to be four.

from scipy.cluster.hierarchy import fcluster

hier_clusters = fcluster(Z_df_complete, max_distance, criterion='distance')

hier_clusters

len(set(hier_clusters))

Step 11: Plot the distinct clusters using matplotlib library.

plt.scatter(X_standard[:,0], X_standard[:,1], c=hier_clusters)  

plt.show()

Step 12: For different values of distance, the number of clusters will change
and hence the plot will look different. We are showing different results for



distances of 5, 15 20 and different number of clusters generated for each
iteration. Here, we can observe that we get completely different results for
different values of distances while we move from left to the right. We have to
be cautious while we choose value of the distance and sometimes, we might
have to iterate a few times to get the best value.

Hence, we can observe that using hierarchical clustering, we have segmented
the data on the left-side to the one on the right-side of the Figure 2- below.
The left side is the raw data while on the right we have representation of the
clustered dataset.

Hierarchical clustering is a robust method and is a highly recommended one.
Along with k-means, it creates a great foundation for clustering-based
solutions. Most of the time, at least these two techniques are worked upon
when we create clustering solutions. And then we move to iterate with other
methodologies.

This marks the end of discussion on connectivity-based clustering algorithms.
We will now move forward to density-based solutions and discuss DBSCAN



clustering in the next section

2.5 Density based clustering

We have studied k-means in the earlier sections. Recall how it uses a centroid
based method to assign a cluster to each of the data points. Even if an
observation is an outlier, the outlier point pulls the centroid towards itself and
is also assigned a cluster like a normal observation. These outliers do not
necessarily bring information to the cluster and can impact other data points
but are still made a part of the cluster. Moreover, getting clusters of arbitrary
shape as shown in (Figure 2-14) is a challenge with k-means algorithm.
Density based clustering methods solve the problem for us.

Figure 2- 14 DBSCAN is highly-recommended for irregular shaped clusters. With k-means we
generally get spherical clusters, DBSCAN can resolve it for us

In a density-based clustering algorithm, we resolve both of these problems. In
the density-based method, the clusters are identified as the areas which have
higher density as compared to the rest of the dataset. In other words, given a
vector-space diagram where the data points are represented – a cluster is
defined by adjacent regions or neighbouring regions of high-density points.
This cluster will be separated from other clusters by regions of low-density
points. The observations in the sparse areas or separating regions are
considered as noise or outliers in the dataset. The density-based clustering is
shown in (Figure 2-).

We mentioned two terms - “neighbourhood” and “density”. To understand
density-based clustering, we will study these terms in the next section.



2.5.1 Neighborhood and density

Imagine we represent data observations in a vector-space. And we have a
point P. We now define the neighbourhood for this point P. The
representation is shown in (Figure 2-15) below.

Figure 2- 15 Representation of data points in a vector-space diagram. On the right-side we have a
point P and the circle drawn is of radius ε. So, for ε > 0, the neighborhood of P is defined by the
set of points which are at ε distance from the point P

As we can make out from (Figure 2-15) above, for a point P we have defined
a ε - neighborhoods for it which are the points equidistant from P. In a 2-D
space, it is represented by a circle, in a 3-D space it is sphere and for a n-
dimensional space it is n-sphere with center P and radius ε.  This defines the
concept of neighborhood.

Now, let’s explore the term, density. Recall density is mass divided by
volume (mass/volume). Higher the mass, higher the density and lower the
mass, lower the density. Conversely, lower the volume, higher the density
and higher the volume, lower the density.

In the context above, mass is the number of points in the neighborhood. In
(Figure 2-16) below, we can observe the impact of ε on the number of data
points or the mass.

Figure 2-16 The impact of radius ε, on the left side the number of points is more than on the
right-side. So, the mass of right side is less since it contains a smaller number of data points



When it comes to volume, in the case of a 2-d space, volume is πr2, while for
a sphere which is three-dimensional it is 4/3 πr3. For spheres of n-dimensions,
we can calculate the respective volume as per the number of dimensions.

So, in the two cases shown in (Figure 2-16), for a point “P” we can get the
number of points (mass) and volumes and then we can calculate the
respective densities. But the absolute values of these densities mean nothing
to us. It is used to cluster the points having similar density. Or in other words,
the points which are in the same neighbourhood and have similar densities
can be clubbed in one cluster.

In an ideal case scenario, we wish to have highly dense clusters having
maximum number of points. In the two cases shown in (Figure 2-17) below,
we have a less dense cluster depicted on the left and high-dense one on the
right-hand side.

Figure 2-17 Denser clusters are preferred over less dense ones. Ideally a dense cluster, with
maximum number of data points is what we aim to achieve from clustering

From the discussion above, we can conclude that:

1. If we increase the value of ε, we will get a higher volume but not



necessarily a higher number of points (mass). It depends on the
distribution of the data points.

2. Similarly, if we decrease the value of ε, we will get lower volume but
not necessarily lower number of points (mass).

It is the fundamental principle we adhere to. Hence, it is imperative that while
choosing the clusters we choose clusters which have high density and cover
the maximum number of neighboring points.

We have hence concluded the concepts for density-based clustering. These
concepts are the building blocks for DBSCAN clustering which we are
discussing next!

2.5.2 DBSCAN Clustering

Density-Based Spatial Clustering of Applications with Noise or DBSCAN
clustering is a one of the highly recommended density-based algorithms. It
clusters the data observations which are closely packed in a densely
populated area but not considering the outliers in low-density regions. Unlike
k-means, we do not specify the number of clusters and the algorithm is able
to identify irregular shaped clusters whereas k-means generally proposes
spherical-shaped clusters. Similar to hierarchical clustering, it works by
connecting the data points but with the observations which satisfy the
density-criteria or the threshold value.

Note:

DBSCAN was proposed in 1996 by Martin Ester, Hans-Peter Kriegal, Jörg
Sander and Xiaowei Xu. The algorithm was awarded the test of time award in
2014 at ACM SIGKDD. The paper can be assessed at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980.

DBSCAN works on the concepts of neighbourhood we discussed in the last
section. We will now dive deep into the working methodology and building
blocks of DBSCAN.

nuts and bolts of DBSCAN clustering



We will now examine the core building blocks of DBSCAN clustering. We
know it is a density-based clustering algorithm and hence neighbourhood
concept is applicable over here.

Consider we have a few data observations which we need to cluster. We also
locate a data point “P”. Then, we can easily define two terms:

1. The radius of the neighbourhood around P, called as ε, which we have
discussed in the last section.

2. The minimum number of points we wish to have in the neighbourhood
of P or in other words, minimum number of points that are required to
create a dense region. This is referred to as minPts. And is one of the
parameters we can input by applying a threshold on minPts.

Based on the concepts above, we can classify the observations in three broad
categories - core points, border or reachable points and outliers:

3. Core points: any data point “x” can be termed as a core point if at least
minPts are within ε distance of it (including x), shown as squares in
(Figure 2-18) below. They are the building blocks of our clusters and
hence are called core. We use the same value of radius (ε) for each point
and hence the volume of each neighborhood remains constant. But the
number of points will vary and hence the mass varies. And hence, the
density varies as well. Since we put a threshold using minPoints, we are
putting a limit on density. So, we can conclude that core points fulfil the
minimum density threshold requirement. It is imperative to note that
minPts can be used to iterate and fine-tune the clusters.

Figure 2-18 Core points are shown in square, border points are shown in filled circle while noise
is unfilled circles. Together these three are the building blocks for DBSCAN clustering



4. Border points or reachable points: a point which is not a core-point in
the clusters is called a border point, shown as filled circles in (Figure 2-
18) above.

A point “y” is directly reachable from x if y is within ε distance of core point
x. A point can only be approached from a core point and it is the primary
condition or rule to be followed. Only a core-point can reach a non-core point
and the opposite is not true. In other words, a non-core point can only be
reached, it cannot reach anyone else.

To understand the process better, we have to understand the term density-
reachable or connectedness. As shown in (Figure 2-19) below, we have two
core points X and Y. We can directly go from X to Y. Point Z is not in the
neighbourhood of X but is the neighbourhood of Y. So, we cannot directly
reach Z from X. But we can surely reach Z from X through Y or in other
words using neighbourhood of Y, we can travel to Z from X.

Figure 2-19 X and Y are the core points and we can travel from X to Y. Though Z is not in the
immediate neighbourhood of X, we can still reach Z from X through Y. It is the core concept of
density-connected points



5. Outliers: all the other points are outliers. In other words, if it is not a
core point or is not a reachable point, it is an outlier, shown as unfilled
circles in (Figure 2-18) above. They are not assigned any cluster.

Now we have defined the building block for DBSCAN. We will now proceed
to the process followed in DBSCAN in the next section.

steps in DBSCAN clustering

Now we have defined the building block for DBSCAN. We will now
examine the steps followed in DBSCAN:

1. We start with assigning values for ε and minimum points (minPts)
required to create a cluster.

2. We start with picking a random point let’s say “P” which is not yet
given any label i.e. which has not been analysed and assigned any
cluster.

3. We then analyse the neighbourhood for P. If it contains sufficient
number of points i.e. higher than minPts, then the condition is met to
start a cluster. We can call the point P as core-point. If a point cannot be
recognised as a core-point, we will assign it the tag of outlier or noise.
We should note this point can be made a part of a different cluster later.

4. Once this core point is finalised, we start creating this cluster by adding
all directly reachable points from P and then increase this cluster size by
adding more directly reachable from P. Then we add all the points to the
cluster, which can be included using the neighbourhood. If we add an
outlier point to the cluster, the tag of the outlier point is changed to
border point.

5. This process continues till density-cluster is complete. We then find a



new unassigned point and repeat the process.
6. Once all the points have been assigned to a cluster or called as an

outlier, we stop our clustering process.

There are iterations done in the process. And once the clustering concludes,
we utilize business logic to either merge or split a few clusters.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   Compare and contrast the importance of DBSCAN clustering with respect
to kmeans clustering.

2.   A non-core point can reach a core point and vice versa is also true –
TRUE or FALSE

3.   Explain the significance of neighbourhood and minPts.

Describe the process to find the most optimal value of “k”

Now we are clear with the process of DBSCAN clustering. Before creating
the Python solution, we will examine advantages and disadvantages with the
DBSCAN algorithm.

pros and cons of DBSCAN clustering

DBSCAN has following advantages:

1. Unlike k-means, we need not specify the number of clusters to
DBSCAN.

2. The algorithm is quite a robust solution for unclean datasets. Unlike
other algorithms, it can deal with outliers effectively.

3. We can determine irregular shaped clusters too. Perhaps, it is the biggest
advantage with DBSCAN clustering.

4. Only the input of radius and minPts is required by the algorithm.



DBSCAN suffers from following challenges:

1. The differentiation in clusters is sometimes not clear using DBSCAN.
Depending on the order of processing the observations, a point can
change its cluster. In other words, if a border point P is accessible by
more than one cluster, P can belong to either cluster, which is dependent
on the order of processing the data.

2. If the difference in densities is very big, then the optimum combination
of ε and minPts will be difficult to determine and hence, DBSCAN will
not be generating effective results.

3. The distance metric used plays a highly significant role in DBSCAN.
Arguably, the most common metric used in Euclidean distance, but if
the number of dimensions are quite large then it becomes a challenge to
compute.

4. The algorithm is very sensitive to different values of ε and minPts.
Sometimes, getting the most optimum value becomes a challenge.

We will now create a Python solution for DBSCAN clustering.

python solution for DBSCAN clustering

We will use the same dataset we have used for k-means and hierarchical
clustering.

Step 1: Load the libraries and dataset till step 6 in k-means algorithm.

Step 7: Import additional libraries

from sklearn.cluster import DBSCAN 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import normalize 

from sklearn.neighbors import NearestNeighbors

Step 8: We are fitting the model with a value for minDist and radius.

db_default = DBSCAN(eps = 0.0375, min_samples = 6).fit(X_standard) 

labels = db_default.labels_

Step 9: The number of distinct clusters are one.



list(set(labels))

Step 10: We are not getting any results for clustering here. In other words,
there will not be any logical results of clustering since we have not provided
the optimal values for minPts and ε. So, first we will find out the optimum
values for the ε. For this, we will calculate the distance to nearest points for
each point and then sort and plot the results. Wherever the curvature is
maximum, it is the best value for ε. For minPts, generally minPts ≥ d+1
where d is the number of dimensions in the dataset.

Note:

You are advised to go through the paper at the link to further study on how to
choose the values of radius for DBSCAN
https://iopscience.iop.org/article/10.1088/1755-1315/31/1/012012/pdf

neigh = NearestNeighbors(n_neighbors=2)

nbrs = neigh.fit(X_standard)

distances, indices = nbrs.kneighbors(X_standard)

distances = np.sort(distances, axis=0)

distances = distances[:,1]

plt.plot(distances)

Step 10: The best value is coming as 1.5 as observed the point of defection



above. We will use it and set the minPts as 5 which is generally taken as a
standard.

db_default = DBSCAN(eps=1.5, min_samples=5)

db_default.fit(X_standard)

clusters = db_default.labels_

Step 11: Now we can observe that we are getting more than one cluster.

list(set(clusters))

Step 12: Let’s plot the clusters.

colors = ['blue', 'red', 'orange', 'green', 'purple', 'black', 'brown', 'cyan', 'yellow', 'pink']

vectorizer = np.vectorize(lambda x: colors[x % len(colors)]) 

plt.scatter(X_standard[:,0], X_standard[:,1], c=vectorizer(clusters))

We have thus created the solution using DBSCAN. You are advised to
compare the results from all the three algorithms. In real-world scenario, we
test the solution with multiple algorithms, iterate with hyperparameters and
then choose the best solution.

Density-based clustering is quite a novel solution and to a certain extent very
effective one too. It is heavily recommended if the shape of the clusters is
uneven. We have studied DBSCAN now, there is one more algorithm called
OPTICS which we will study in subsequent chapters in the book.

With this, we conclude our discussion on DBSCAN clustering. In the next
section, we are solving a business use case on clustering. In the case study,
the focus is less on technical concepts but more on the business



understanding and the solution generation.

2.6 Case study using clustering

We will now define a case study which employs clustering as one of the
solutions. This case study-based approach is generally followed in job related
interviews wherein a case is discussed during the interview stage. And hence,
it is highly recommended for you to understand how we implement machine
learning solutions in pragmatic business scenarios.

A case study typically has a business problem, the data set available, the
various solutions which can be used, challenges faced and the final chosen
solution. We also discuss the issues faced while implementing the solution in
real-world business.

So, let’s start our case study on clustering using unsupervised learning. In the
case study, we are focussing on the steps we take to solve the case study and
not on the technical algorithms, as there can be multiple technical solutions to
a particular problem.

Business context: The industry we are considering can be retail, telecom,
BFSI, aviation, health-care. Basically, any business which deals with
customers (almost all businesses have customers). For any business, one of
the many objectives can be to increase the revenue/sales. And to increase the
revenue, the business would wish to have increasingly newer customers. The
business would also wish the existing consumers to buy more and buy more
often. So, the business always strives to keep the consumers engaged, keep
them happy and increase their transactional value with themselves.

For this to happen, the business should have a thorough understanding of a
consumer base, know their preferences, tastes, price points, liking of
categories etc. And once the business has examined and understood the
consumer base minutely, then:

1. The product team can improve the product features as per the
consumer’s need.

2. The pricing team can improve the price of the products by aligning them



to customer’s preferred prices. The prices can be customized for a
customer or loyalty discounts can be offered.

3. The marketing team and customer relationship team (CRM), can target
the consumers by a customized offer.

4. The teams can win-back the consumers which are going to churn or stop
buying from the business, can enhance their spend, increase the
stickiness and increase the customer lifetime value.

5. Overall, different teams can align their offerings as per the
understanding of the consumers generated. And the end consumer will
be happier, more engaged, more loyal to the business leading to more
fruitful consumer engagement.

The business hence has to dive deep into the consumers data and generate
understanding of the base. The customer data can look like as shown in the
next section.

Dataset for the analysis: We are taking an example for an apparel retailer
(H&M, Uniqlo etc). A retailer having a loyalty program saves the customer’s
transaction details. The various (not exhaustive) data sources can be as shown
below:

We can have store details which have all the details of a store like store ID,
store name, city, area, number of employees etc. We can have the item
hierarchies table which has all the details of the items like price, category etc.
Then we can have customer demographic details like age, gender, city and
customer transactional history which has details of the consumer’s past sales
with us. Clearly, by joining such tables, we will be able to create a master



table which will have all the details at one place.

Note:

You are advised to develop a good skill set for SQL. It is required in almost
each of the domains related to data – be it data science, data engineering or
data visualization, SQL is ubiquitous.

We are depicting an example of master table below. It is not an exhaustive
list of variables and number of variables can be much larger than the ones
below. The master table has some raw variables like Revenue, Invoices etc.
and derived variables like Average Transaction value and Average basket
size etc.

We could also take an example of a telecom operator. In that subscriber’s
usage, call rate, revenue, days spent on network, data usage etc. will be the
attributes we will be analysing. Hence, based on the business domain at hand,
the data sets will change.

Once we have got the data set, we generally create derived attributes from
them. For example, the average transaction value attributes is total revenue
divided by the number of invoices. We create such attributes in addition to
the raw variables we already have.

Suggested solutions: There can be multiple solutions to the problem, some
of which we are describing below:

1. We can create a dashboard to depict the major KPI (key performance
indicators). It will allow us to analyse the history and take necessary
actions based on it. But the solution will be more reporting in nature
with trends, KPI which we already are aware of.

2. We can perform data analysis using some of techniques we used in the



solutions in the earlier sections. It will solve a part of the problem and
moreover, it is difficult to consider multiple dimensions simultaneously.

3. We can create predictive models to predict if the customers are going to
shop in the coming months or going to churn in the next X days, but it
will not solve the problem completely. To be clear, churn here refers that
customer no longer shops with the retailer in the next X days. Here,
duration X is defined as per the business domain. For example, for
telecom domain X will be lesser than insurance domain. It is due to the
fact that people use mobile phone everyday whereas for insurance
domain, most customers might be paying premium yearly. So customer
interaction is less for insurance.

4. We can create customer segmentation solutions wherein we are
grouping customers based on their historical trends and attributes. This
is the solution we will use to solve this business problem.

Solution for the problem: Recall in Chapter 1 in (Figure 1-9), where we
discussed the steps, we follow in the machine learning algorithm. Everything
starts with defining the business problem and then data discovery, pre-
processing etc. For the case study above, we will utilize the similar strategy.
We have already defined the business problem; data discovery is done and
we have completed the EDA and pre-processing of the data. We wish to
create the segmentation solution using clustering.

Step 1: We start with finalizing the dataset we wish to feed to the clustering
algorithms. We might have created some derived variables, treated some
missing values or outliers etc. In the case study, we would want to know the
minimum/maximum/average values of transactions, invoices, items bought
etc. We would be interested to know the gender and age distribution. We also
would like to know the mutual relationships between these variables like if
women customers use online mode more than male customers. All these
questions are answered a part of this step.

A Python Jupyter notebook is checked-in at the Github repository, which
provides detailed steps and code for the exploratory data analysis(EDA) and
data pre-processing. Check it out!

Step 2: We create the first solution using k-means clustering followed by
hierarchical clustering. For each of the algorithms, iterations are done by



changing hyperparameters. In the case study, we will choose parameters like
number of visits, total revenue, distinct categories purchased, online/offline
transactions ratio, gender, age etc. as parameters for clustering.

Step 3: A final version of the algorithm and respective hyperparameters are
chosen. The clusters are analysed further in the light of business
understanding.

Step 4: More often, the clusters are merged or broken, depending on the size
of the observations and the nature of the attributes present in them. For
example, if the total customer base is 1 million, it will be really to action on
cluster of size 100 . At the same time, it will be equally difficult to manage a
cluster of size 700,000.

Step 5: We then analyse the clusters we have finally got. The clusters
distribution is checked for the variables, their distinguishing factors are
understood and we give logical names to the clusters. We can expect to see
such a clustering output as shown in (Figure 3-) below.

In the example clusters shown below, we have depicted spending patterns,
responsiveness to previous campaigns, life stage, overall engagement as a
few dimensions. And respective sub-divisions of each of these dimensions
has also been shown. The clusters will be a logical combination of these
dimensions. The actual dimensions can be much higher.



The segmentation shown above can be used for multiple domains and
businesses. The parameters and attributes might change, the business context
is different, the extent of data available might vary – but the overall approach
remains similar.

In addition to the few applications, we saw in the last section, we are
examining some of the use cases now:

1. Market research utilizes clustering to segment the groups of consumers
into market segments. And then the groups can be analysed better in
terms of their preferences. The product placement can be improved,
pricing can be made tighter and geography selection will be more
scientific.

2. In the bioinformatics and medical industry, clustering can be used to
group the genes into distinct categories. Groups of genes can be
segmented and comparisons can be assessed by analysing the attributes
of the groups.

3. It is used as an effective data pre-processing step before we create
algorithms using supervised learning solutions. It can also be used to
reduce the data size by focussing on the data points belonging to a
cluster.

4. It is utilized for pattern detection across both structured and unstructured
dataset. We have already studied the case for structured dataset. For text
data, it can be used to group similar types of documents, journals, news
etc. We can also employ clustering to work and develop solutions for
images. We are going to study unsupervised learning solutions for text
and images in later chapters.

5. As the algorithms work on similarity measurements, it can be used to
segment the incoming data set as fraud or genuine, which can be used to
reduce the amount of criminal activities.

The use cases of clustering are quite a lot. We have discussed only the
prominent ones. It is one of the algorithms which change the working
methodologies and generate a lot of insights around the data. It is widely used
across telecom, retail, BFSI, aviation etc.

At the same time, there are a few issues with the algorithm. We will now
examine the common problems we face with clustering in the next section.



2.7 Common challenges faced in clustering

Clustering is not a completely straight-forward solution without any
challenges. Similar to any other solution in the world, clustering too has its
share of issues faced. We are discussing the most common challenges we
face in clustering which are:

1. Sometimes the magnitude of the data is quite big and there are a lot of
dimensions available. In such a case, it becomes really difficult to
manage the data set. The computation power might be limited and like
any project, there is finite time available. To overcome the issue, we
can:

2. Try to reduce the number of dimensions by finding the most significant
variables by using supervised learning-based regression approach or
decision tree algorithm etc.

3. Reduce the number of dimensions by employing Principal Component
Analysis (PCA) or Singular Value Decomposition (SVD) etc.

4. Noisy data set: “Garbage in garbage out” – this cliché is true for
clustering too. If the data set is messy it creates a lot of problems. The
issues can be:

5. Missing values i.e. NULL, NA, ? , blanks etc.
6. Outliers are present in the dataset.
7. Junk values are present like #€¶§^ etc. are present in the dataset.
8. Wrong entries are made in the data. For example, if name are entered in

the revenue field it is an incorrect entry.

We are going to discuss the steps and process to resolve these issues in each
of the chapters. In this chapter, we are examining – how to work with
categorical variables

3. Categorical variables: Recall that while discussing we discussed the
issue with k-means not able to use categorical variables. We are solving
that issue now.

To convert categorical variables into numeric one, we can use one-hot
encoding. This technique adds additional columns equal to the number of
distinct classes as shown in (Figure 2-) below. The variable city has unique



values as London and NewDelhi. We can observe that two additional
columns have been created with 0 or 1 filled for the values.

But using one-hot encoding does not always ensure an effective and efficient
solution. Imagine if the number of cities in the example above are 100, then
we will have 100 additional columns in the dataset and most of the values
will be filled with zero. Hence, in such a situation it is advisable to group few
values.

4. Distance metrics: with different distance metrics we might get different
results. Though there is no “one size fits all”, mostly you would find
Euclidean distance being used for measuring distance.

5. Interpretations for the clusters are quite subjective. By using different
attributes, completely different clustering can be done for the same
datasets. As discussed earlier, the focus should be on solving the
business problem at hand. This holds the key to choose the
hyperparameters and the final algorithm.

6. Time consuming: since a lot of dimensions have to be dealt
simultaneously, sometimes converging the algorithm takes a lot of time.

But despite all these challenges, clustering is a widely recognized and utilized
technique. We have discussed the use cases of clustering in the real-world in
the last section.

This marks the end of the discussion on challenges with clustering. You can
proceed to summary now.

2.8 Summary

Unsupervised learning is not an easy task. But it is certainly a very engaging



one. It does not require any target variable and the solution identifies the
patterns itself, which is one of the biggest advantages with unsupervised
learning algorithms. And the implementations are already creating a great
impact on the business world. We studied one of such solution classes called
clustering in this chapter.

Clustering is an unsupervised learning solution which is useful for pattern
identifications, exploratory analysis and of course segmenting the data points.
Organizations heavily use clustering algorithms and proceed to the next level
of understanding the consumer data. Better prices can be offered, more
relevant offers can be suggested, consumer engagement can be improved and
overall customer experience is fantastic. After all, a happy consumer is the
goal of any business. Not only structured data, we can use clustering for text
data, images, videos and audios too. Owing to its capability in finding
patterns across multiple data sets using a large number of dimensions –
clustering is the go-to solution whenever we want to analyse multiple
dimensions together.

In this second chapter of this book, we introduced concepts of unsupervised
based clustering methods. We examined different types of clustering
algorithms – k-means clustering, hierarchical clustering and DBSCAN
clustering along with their mathematical concepts, respective use cases, pros
and cons with an emphasis on creating actual Python code for the same
datasets.

In the following chapter, we will study dimensionality reduction techniques
like PCA and SVD. The building blocks for techniques, their mathematical
foundation, advantages and disadvantages, use cases and actual Python
implementation will be done.

You can proceed to the question section now!

Practical next steps and suggested readings

1. Get the online retail data from the link
(https://www.kaggle.com/hellbuoy/online-retail-customer-clustering).
This dataset contains all the online trasactions occurring between



1/12/2010 and 09/12/2011 for a UK based retailer. Apply the three
algorithms described in the chapter to identify which customers the
company should target and why.

2. Get the IRIS dataset from the link (https://www.kaggle.com/uciml/iris).
It includes three iris species with 50 samples each having some
properties of the flowers. Use kmeans and DBSCAN and compare the
results.

3. Explore the dataset at UCI for clustering
(http://archive.ics.uci.edu/ml/index.php)

4. Study the following papers on kmeans clustering, hierarchical clustering
and DBSCAN clustering

5. Kmeans algorithm:
6. i. https://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf
7. ii.

https://www.researchgate.net/publication/271616608_A_Clustering_Method_Based_on_K-
Means_Algorithm

8. iii. https://ieeexplore.ieee.org/document/1017616
9. Hierarchical clustering

10. i. https://ieeexplore.ieee.org/document/7100308
11. ii. https://papers.nips.cc/paper/7200-hierarchical-clustering-beyond-the-

worst-case.pdf
12. iii. https://papers.nips.cc/paper/8964-foundations-of-comparison-based-

hierarchical-clustering.pdf
13. DBSCAN clustering
14. i. https://arxiv.org/pdf/1810.13105.pdf
15. ii. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220



3 Dimensionality reduction
“Knowledge is a process of piling up facts; wisdom lies in their
simplification.” – Martin H. Fischer

We face complex situations in life. Life throws multiple options to us and we
choose a few viable ones from them. This decision of shortlisting is based on
the significance, feasibility, utility and perceived profit from each of the
options. And the ones which fit the bill are then chosen. A perfect example
can be selecting the holiday destinations. Based on the weather, travel time,
safety, food, budget and a number of other options; we choose a few where
we would like to spend the next holidays. In this chapter, we are studying
precisely the same – how to reduce the number of options, albeit in the data
science and machine learning world.

In the last chapter we covered major clustering algorithms. We also studied a
case-study over there. The datasets we generate and use in such real-world
examples have a lot of variables. Sometimes, there can be more than a 100
variables or dimensions in the data. But not all of them are important; not all
of them are significant. This is referred to as “Curse of Dimensionality”. To
perform any further analysis we choose a few from the list of all of the
dimensions or variables. In this chapter we are going to study the need for
dimension reductions, various dimensionality techniques and the respective
pros and cons. We will dive deeper into the concepts of Principal Component
Analysis (PCA) and SVD (Singular Value Decomposition), their
mathematical foundation and complement with the Python implementation.
And continuing our structure from the last chapter, we will examine a real-
world case study in the telecommunication sector towards the end. There are
other advanced dimensionality reduction techniques like t-SNE, LDA which
we will explore in later chapters. 

Clustering and dimensionality reductions are the major categories of
unsupervised learning. We studied major clustering methods in the last
chapter and we will cover dimensionality reduction in this chapter. With
these two solutions, we would cover a lot of ground in the unsupervised



learning domain. But there are much more advanced topics to be covered,
which are part of the latter chapters of the book.

In this third chapter, we are going to cover the following topics:

1. Curse of dimensionality and its disadvantages
2. Various methods of reducing dimensions
3. Principal Component Analysis (PCA)
4. Singular Value Decomposition (SVD)
5. Python solutions for both PCA and SVD
6. Case study on dimension reduction

Let’s first understand what we mean by “Curse of dimensionality”.

3.1 Technical toolkit

We are using the 3.6+ version of Python as used in the last chapters. Jupyter
Notebook will be used in this chapter too.

All the datasets and code files are checked-in to the Github repository at
(https://github.com/vverdhan/UnsupervisedLearningWithPython/tree/main/Chapter3
You need to install the following Python libraries to execute the  numpy,
pandas, matplotlib, scipy, sklearn. Since you have used the same
packages in the last chapter, you need not install them again. CPU is good
enough for execution, but if you face some computing lags, switch to GPU or
Google colab. You can refer to Appendix to the book if you face any issues
in the installation of any of these packages.

Now, we are starting with “Curse of dimensionality” in the following section.

3.2 Curse of Dimensionality

Let us continue from the holiday destination example we introduced earlier.
The choice of the destination is dependent on a number of parameters –
safety, availability, food, night-life, weather, budget, health and so on.
Having too many parameters to decide is a confusing thought. It is the Curse
of Dimensionality. Let us understand by a real-life example.



Consider this. A retailer wishes to launch a new range of shoes in the market.
And for that a target group of customers have to be chosen. This target group
will be reached through email, newsletter etc. The business objective is to
entice these customers to buy the newly launched shoes. From the entire
customer base, the target group of customers can be chosen based on the
variables like customer’s age, gender, pocket-size, preferred category,
average spend, frequency of shopping and so on. These many variables or
dimensions give us a hard time to shortlist the customers based on a sound
data analysis technique. We would be analysing too many parameters
simultaneously, examining the impact of each on the shopping probability of
the customer and hence it becomes too tedious and confusing a task. It is the
Curse of Dimensionality problem we face in the real-world data science
projects. We can face curse of dimensionality in one more situation wherein
the number of observations are lesser than the number of variables. For
example, consider a dataset where the number of observations are X while
the number of variables are more than X – in such a case we face Curse of
Dimensionality.

An easy method to understand any dataset is through visualization. Let’s
visualize a dataset in a vector-space diagram. If we have only one attribute or
feature in the dataset, we can represent it in one dimension. It is shown in
(Figure 3-1(i)) below. For example, we might wish to capture only the height
of an object using a single dimension. In case we have two attributes, we
need two dimensions as shown in (Figure 3-1(ii)), wherein to get the area of
an object we will require both length and breadth. In case we have three
attributes, for example to calculate the volume which requires length, breadth
and height, it requires a three-dimensional space, as shown in (Figure 3-
1(iii)). And this requirement will continue to grow based on the number of
attributes.

Figure 3-1 (i) Only one dimension is required to represent the data points, for example to
represent height of an object (ii) We need two dimensions to represent a data point. Each data
point can correspond to length and breadth of an object which can be used to calculate the area
(iii) Three dimensions are required to show a point. Here, it can be length, breadth and height
which are required to get the volume of an object. This process continues based on the number of
dimensions present in the data.



Now imagine if we have in total 20 data points to be analyzed. If we have
only one attribute, we can represent it as x1, x2, x3, x4, x5 …. x20 and hence a
20-dimension space will be sufficient to represent these points. in the second
example where we require two dimensions, we will require (x1,y1), (x2,y2),
(x3,y3), (x4,y4), (x5,y5)….. (x20,y20) or in other words 20*20 = 400 dimension
space. For a three-dimensional one, we will represent a point as (x1,y1,z1),
(x2,y2,z2), (x3,y3,z3), (x4,y4,z4), (x5,y5,z5)….. (x20,y20,z20) and we will need
20*20*20 = 800 dimension space. And this process will continue. 

Hence, it is quite easy for us to conclude that with increase in the number of
dimensions, the amount of the space required to represent increases by leaps
and bounds. It is referred to as the Curse of Dimensionality. The term was
introduced by Richard E. Bellman and is used to refer to the problem of
having too many variables in a dataset – some of which are significant while
a lot may be of less importance.

There is another well-known theory known as Hughes’ Phenomenon shown
in (Figure 3-2). Generally, in data science and machine learning, we wish to
have as much variables as possible to train our model. It is observed that the
performance of the supervised learning classifier algorithm will increase to a
certain limit and will peak with the most optimal number of variables. But,
using the same amount of training data and with increased number of



dimensions, there is a decrease in the performance of a supervised
classification algorithm. In other words, it is not advisable to have the
variables in a dataset if they are not contributing to the accuracy of the
solution. And we should remove such variables from the dataset. 

Figure 3-2 Hughes phenomenon shows that the performance of a machine learning model will
improve initially with increase in the number of dimensions. But with a further increase, it leads
to a decrease in the model’s performance.

Increase in number of dimensions has the following impacts on the machine
learning model:

1. As the model is dealing with an increased number of variables, the
mathematical complexity increases. For example, in the case of the k-
means clustering method we discussed in the last chapter – when we
have a greater number of variables, the distance calculation between
respective points will become complex. And hence, the overall model
becomes more complex.

2. The dataset generated in a larger-dimensional space can be much sparser
as compared to a smaller number of variables. The dataset will be
sparser as some of the variables will have missing values, NULLs etc.
The space is hence much emptier, the dataset is less dense, and a smaller
number of variables have values associated with them.

3. With an increased complexity in the model, the processing time required
increases. The system feels the pressure to deal with so many
dimensions.

4. And the overall solution becomes more complex to comprehend and



execute. Recall from Chapter 1 where we have discussed supervised
learning algorithms. Due to the high number of dimensions, we might
face the problem of overfitting in supervised learning models.

When a supervised learning model has a good accuracy on training data but
lesser accuracy on unseen data, it is referred as Overfitting. Overfitting is a
nuisance as the very aim of machine learning models is to work well on
unseen datasets and overfitting defeats this purpose.

Let us relate it to a real-world example. Consider an insurance company
offering different types of insurance policies like life insurance, vehicle
insurance, health insurance, home insurance etc. The company wishes to
leverage data science and execute clustering use cases to increase the
customer base and the total number of policies sold. They have customer
details like age, gender, profession, policy amount, historical transactions,
number of policies held, annual income, type of policy, number of historical
defaults etc. At the same time, let us assume that variables like whether the
customer is left-handed or right-handed, wears black or brown shoes, the
shampoo brand used, colour of hair, favourite restaurant are also captured. If
we include all the variables in the dataset, the total number of variables in the
resultant dataset will be quite high. The distance calculation will be more
complex for a k-means clustering algorithm, the processing time will increase
and the overall solution will be quite a complex one.

It is also imperative to note that not all the dimensions or variables are
significant. Hence, it is vital to filter the important ones from all the variables
we have. Remember, nature always prefers simpler solutions! In the case
discussed above, it is highly likely that variables like colour of the hair and
favourite restaurant etc. will not impact the outputs. So, it is in our best
interest to reduce the number of dimensions to ease the complexity and
reduce the computation time. At the same time, it is also vital to note that
dimensionality reduction is not always desired. It depends on the type of
dataset and the business problem we wish to resolve. We will explore it more
when we work on the case study in subsequent sections of the chapter.

 



 POP QUIZ – answer these questions to check your understanding..
Answers at the end of the book

1.   Curse of dimensionality refers to having a big size of data. TRUE or
FALSE.

2.   Having a high number of variables will always increase the accuracy of a
solution. TRUE or FALSE.

3.   How a large number of variables in a dataset impact the model?

We have established that having a lot of dimensions is a challenge for us. We
are now examining the various methods to reduce the number of dimensions.

3.3 Dimension reduction methods

We studied the disadvantages of having a really high dimensional data in the
last section. A lesser number of dimensions might result into a simpler
structure which will be computationally efficient. At the same time, we
should be careful with reducing the number of variables. The output of
dimension reduction method should be complete enough to represent the
original data and should not lead to any information loss. In other words, if
originally, we had for example 500 variables and we reduced it to 120
significant ones, still these 120 should be robust enough to capture almost all
the information. Let us understand using a simple example.

Consider this, we wish to predict the amount of rainfall a city will receive in
the next month. The rainfall prediction for that city might be dependent on
temperature over a period of time, wind speed measurements, pressure,
distance from the sea, elevation above the sea level etc. These variables make
sense if we wish to predict the rainfall. At the same time, variables like
number of cinema halls in the city, whether the city is a capital of the country
or number of red cars in the city might not impact the prediction of rainfall.
In such a case, if we do not use the number of cinema halls in the city to
predict the amount of rainfall, it will not reduce the capability of the system.
The solution in all probability, will be still able to perform quite well. And
hence, in such a case no information will be lost by dropping such a variable



and surely, we can drop it from the dataset. It is a very simple example to
highlight the need to reduce the number of variables.

The dimensions or the number of variables can be reduced by a combination
of manual and algorithm-based methods. But before studying them in detail,
there are a few mathematical terms and components which we should be
aware of before proceeding ahead, which we are discussing now.

3.3.1 Mathematical foundation

There are quite a few mathematical terms which one must grab to develop a
thorough understanding of dimensionality reduction methods. These
mathematical terms are intuitive enough and you might have covered them in
your earlier mathematical courses.

We are trying to reduce the number of dimensions of a dataset. A dataset is
nothing but a matrix of values – hence a lot of the concepts are related to
matrix manipulation methods, geometrical representation of them and
performing transformations on such matrices. The mathematical concepts are
discussed in the Appendix Mathematical Foundation of the book. You would
also require understanding of eigen values and eigen vectors. These concepts
will be reused throughout the book and hence they have been put in the
Appendix for quick reference. You are advised to go through them before
proceeding.We will now explore a few manual methods for dimensionality
reduction methods and then proceed to algorithm-based ones.

3.4 Manual methods of dimensionality reduction

To tackle curse of dimensionality, we wish to reduce the number of variables
in a dataset. The reduction can be done by removing the variables from the
dataset. Or a very simple solution for dimensionality reduction can be
combining the variables which can be grouped logically or can be represented
using a common mathematical operation.

For example, as shown in (Table 3-5) below, the data can be of a retail store
where different customers have generated different transactions. We will get
the sales, number of invoices and the number of items bought for each



customer over a period of time. In the table below, customer 1 has generated
two invoices, bought 5 items in total and generated a total sale of 100.

If we wish to reduce the number of variables, we might combine three
variables as two variables. Here, we have introduced variables ATV (average
transaction value) and ABS (average basket size) wherein ATV =
Sales/Invoices and ABS = NumberOfItems/Invoices.

So, in the second table for Customer 1, we have ATV as 50 and ABS as 2.5.
Hence, the number of variables has been reduced from three to two.

Table 3-5 In the first table, we have the sales, invoices and number of items as the variables. In
the second table, they have been combined to create new variables.

And this process can continue to reduce the number of variables.  Similarly
for a telecom subscriber, we will have the minutes of mobile calls made
during 30 days in a month. We can add them to create a single variable –
minutes used in a month. The above examples are very basic ones to start
with. Using manual process, we can employ two other commonly used
methods – manual selection and using correlation coefficient.

Manual feature selection

Continuing from the rainfall prediction example we discussed in the last
section – a data scientist might be able to drop a few variables. This will be
based on the deep understanding of the business problem at hand and the
corresponding dataset being used. However, it is an underlying assumption
that the dataset is quite comprehensible for the data scientist and they
understand the business domain well. Most of the time, the business
stakeholders will be able to guide on such methods. It is also necessary that



the variables are unique and not much of a dependency exists.

As shown in (Table 3-6) below, we can remove a few of the variables which
might not be useful for predicting rainfall.

Table 3-6 In the first table, we have all the variables present in the dataset. Using business logic,
some of the variables which might be not much use have been discarded in the second table. But
this is to be done with due caution. And the best way is to get guidance from the business
stakeholders.

Sometimes, feature selection methods are also referred to as wrapper
methods. Here, a machine learning model is wrapped or fitted with a subset
of variables. In each iteration, we will get a different set of results. The set
which generates the best results is selected for the final model.

The next methods are based on the correlation existing between various
attributes.

Correlation coefficient

Correlation between two variables simply mean that have a mutual
relationship with each other. The change in the value of one variable will
impact the value of other. The variables which are highly correlated with
each other are supplying similar information and hence one of them can be
dropped.

Correlation is described in detail in the Appendix Mathematical Foundation
of the book.

For example, for a retail store the number of invoices generated in a day will
be highly correlated with the amount of sales generated and hence, one of
them can be dropped. Another example can be – students who study for a
higher number of hours will have better grades than the ones who study less



(mostly!).

But we should be careful in dropping the variables and should not trust
correlation alone. The business context of a variable should be thoroughly
understood before taking any decision.

It is a good idea to discuss with the business stakeholders before dropping
any variables from the study.

Correlation based methods are sometimes called filter methods. Using
correlation coefficients, we can filter and choose the variables which are most
significant.

 

 POP QUIZ – answer these questions to check your understanding..
Answers at the end of the book

1.   We can drop a variable simply if we feel is not required. TRUE or
FALSE.

2.   If two variables are correlated, ALWAYS drop one of them. TRUE or
FALSE.

Manual methods are easier solutions and can be executed quite efficiently.
The dataset size is reduced and we can proceed ahead with the analysis. But
manual methods are sometimes subjective and depend a lot on the business
problem at hand. Many times, it is also not possible to employ manual
methods for dimension reduction. In such situations, we have algorithm-
based methods which we are studying in the next section.

3.4.1 Algorithm based methods for reducing dimensions

We examined manual methods in the last section. Continuing from there, we
will examine algorithm-based methods in this section. The algorithm-based
techniques are based on a more mathematical base and hence prove to be
more scientific methods. In real-world business problems, we use a
combination of both manual and algorithm-based techniques. Manual



methods are straightforward to execute as compared to algorithm-based
techniques. Also, we cannot comment on the comparison of both techniques,
as they are based on different foundations.  But at the same time, it is
imperative that you put due diligence in the implementation of algorithm-
based techniques.

The major techniques used in dimensionality reductions are listed below. We
will be exploring most of them in this book.

1. Principal Component Analysis (PCA)
2. Singular Value Decomposition (SVD)
3. Linear Discriminant Analysis (LDA)
4. Generalized Discriminant Analysis (GDA)
5. Non-negative matrix factorization (NMF)
6. Multi-dimension scaling (MDS)
7. Locally Linear Embeddings (LLE)
8. IsoMaps
9. Autoencoders

10. t-SNE (T-distributed Stochastic Neighbor Embedding)

These techniques are utilized for the common end goal – transform the data
from a high dimensional space to a low dimensional one. Some of the data
transformations are linear in nature, while some are non-linear.

We are going to discuss Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD) in detail in this chapter. In the later chapters of
the book, other major techniques are being explored. The reason to choose
PCA and SVD is owing to their popularity. They might not offer the best
solution in all the situations, but are quite a robust methods and heavily used.
Perhaps, PCA is the most quoted dimensionality reduction method which we
are exploring in the next section.

3.5 Principal Component Analysis (PCA)

Consider this. You are working on a dataset which has 250 variables. It is
almost impossible to visualize such a high-dimensional space. Some of the
250 variables might be correlated with each other, some of them might not be



and there is a need to reduce the number of variables without losing much
information. Principal Component Analysis or PCA allows us to
mathematically select the most important features and leave the rest. PCA
does reduce the number of dimensions but also preserves the most important
relationships between the variables and the important structures in the
dataset. Hence, the number of variables is reduced but the important
information in the dataset is kept safe.

PCA is a projection of high-dimensional data in lower dimensions. In simpler
terms, we are reducing a n dimensional space into an m dimensional one
where n > m while maintaining the nature and the essence of the original
dataset. In the process, the old variables are reduced to newer ones, while
maintaining the crux of the original dataset The new variables thus created
are called Principal Components.  The principal components are a linear
combination of the raw variables. As a result of this transformation, the first
principal component captures the maximum randomness or the highest
variance in the dataset. The second principal component created is orthogonal
to the first component.

If two straight lines are orthogonal to each other, it means they are at an angle
of 900 to each other,

And the process continues to the third component and so on. Orthogonality
allows us to maintain that there is no correlation between subsequent
principal components.

PCA utilizes linear transformation of the dataset and such methods are
sometimes referred to as feature projections. The resultant dataset or the
projection is used for further analysis.

Let us understand better by means of an example. In the (Table 3-7) shown
below, we have represented the total perceived value from a home using
some variables. The variables are area (sq m), number of bedrooms, number
of balconies, distance from the airport, distance from the train station and so
on – we have 100+ variables.

Table 3-7 The variables based on which a price of a house can be estimated



We can combine some of the variables mathematically and logically. PCA
will create a new variable which is a linear combination of some of the
variables as shown in the example below. It will get the best linear
combination of original variables so that the new_variable is able to capture
the maximum variance of the dataset. The Equation 3-7 is only an example
shown for illustration purpose wherein we are showing a new_variable
created by a combination of other variables.

new_variable = a*area – b*bedrooms + c*distance – d*schools
                               (Equation 3-7)

Now let’s understand the concept visually. In a vector-space diagram, we can
represent the dataset as shown in (Figure 3-4) below. The first figure
represents the raw data where we can visualize the variables in a x-y diagram.
As discussed above, we wish to create a linear combination of variables. Or
in other words, we wish to create a mathematical equation which will be able
to explain the relationship between x and y.

The output of such a process will be a straight line as shown in the second
figure in (Figure 3-4). This straight line is sometimes referred to as the Line
of Best fit. Using this line of best fit, we can predict a value of y for a given
value of x. These predictions are nothing but the projections of data points on
the straight line.

The difference between the actual value and the projections is the error as
shown in the third figure in (Figure 3-4) below). The total sum of these errors
is called total projection error.

Figure 3-4 (i) The dataset can be represented in a vector-space diagram (ii) The straight line can
be called as the line of best fit having the projections of all the data points on it. (iii) The
difference between the actual value and the projections are the error terms.



There can be multiple options for this straight line as shown in (Figure 3-5)
below. These different straight lines will have different errors and different
values of variances captured.

Figure 3-5 The data set can be captured by a number of lines, but not all the straight lines will be
able to capture the maximum variance. The equation which gives the minimum error will be the
chosen one.

The straight line which is able to capture the maximum variance will be
chosen one. Or in other words, it is giving the minimum error. It will be the
first principal component and the direction of maximum spread will be the
principal axis.



The second principal component will be derived in a similar fashion. Since
we know the first principal axis, we can subtract the variance along this
principal axis from the total variance to get the residual variance. Or in other
words, using the first principal component we would capture some variance
in the dataset. But there will be a portion of total variance in the dataset
which is still unexplained by the first principal component. The portion of
total variance unexplained is the residual variance. Using the second principal
component, we wish to capture as much variance as we can.

Using the same process to capture the direction of maximum variance, we
will get the second principal component. The second principal component
can be at a number of angles with respect to the first one as shown in (Figure
3-6). It is mathematically proven that if the second principal component is
orthogonal to the first principal component, it allows us to capture the
maximum variance using the two principal components. In (Figure 3-6), we
can observe that the two principal components are at an angle of 900 with
each other.

Figure 3-6 (i) The first figure on the left is the first principal component. (ii) The second principal
component can be at different angles with respect to the first principal component. We have to
find the second principal which allows to capture the maximum variance (iii) To capture the
maximum variance, the second principal component should be orthogonal to the first one and
hence the combined variance captured in maximized.

And the process continues for the third, fourth principal component and so
on. Once all the principal components are derived, the dataset is projected
onto these axes. The columns in this transformed dataset are the principal
components. The principal components created will be lesser than the number



of original variables and capturing maximum information present in the
dataset.

Before we examine the process of PCA in depth, let’s study its important
characteristics:

1. PCA aims to reduce the number of dimensions in the resultant dataset.
2. PCA produces principal components which aim to reduce the noise in

the dataset by maximizing the feature variance.
3. At the same time, the principal components reduce the redundancy in

the dataset. It is achieved by minimizing the covariance between the
pairs of features.

4. The original variables no longer exist in the newly created dataset.
Instead, new variables are created using these variables.

5. It is not necessary that the principal components will map one-to-one
with all the variables present in the dataset. They are a new combination
of the existing variables. And hence, they can be a combination of
several different variables in one principal component (as shown in
Equation 3-7).

6. The new features created from the dataset do not share the same column
names.

7. The original variables might be correlated with each other, but the newly
created variables are unrelated with each other.

8. The number of newly created variables is lesser than the original number
of variables. After all, that is the whole purpose of dimensionality
reduction.

9. If PCA has been used for reducing the number of variables in a training
dataset, the testing/validation datasets have to be reduced too using
PCA.

10. PCA is not synonyms to dimensionality reduction. It can be put into use
for a number of other usages too. It is generally a PCA only for
dimensionality reduction will be a misnomer for sure.

We will now examine the approach used while implementing PCA and then
we will develop a Python solution using PCA. Though we need not apply all
the steps while we develop the codes, as the heavy lifting has already been
done by the packages and libraries. The steps given below are hence taken



care of by the packages, but still it is imperative that you understand these
steps to appreciate the full understanding of PCA.

The steps followed in PCA are:

1. In PCA, we start with normalizing our dataset as a first step. It ensures
that all our variables have a common representation and become
comparable. We have methods to perform the normalization in Python,
which we will study when we develop the code. To explore more on
normalizing the dataset, you can refer to the Appendix Mathematical
Foundation.

2. Get the covariance in the normalized dataset. It allows us to study the
relationship between the variables. We generally create a covariance
matrix as shown in the Python example in the next section.

3. We can then calculate the eigenvectors and eigenvalues of the
covariance matrix.

4. We then sort the eigenvalues in the decreasing order of eigenvalues. The
eigenvectors corresponding to the maximum value of eigenvalues are
chosen. The components hence chosen will be able to capture the
maximum variance in the dataset. There are other methods to shortlist
the principal components which we will explore while we develop the
Python code.

 

 POP QUIZ – answer these questions to check your understanding..
Answers at the end of the book

1.   PCA will result in the same number of variables in the dataset. TRUE or
FALSE.

2.   PCA will be able to capture 100% information in the dataset. TRUE or
FALSE.

3.   What is the logic of selecting principal components in PCA?

So, in essence, principal components are the linear combinations of the
original variables. The weight in this linear combination is the eigenvector



satisfying the error criteria of the least square method. We are studying
Eigenvalue decomposition now and SVD is covered in the next section.

3.5.1 Eigenvalue Decomposition

We studied PCA in the last section where we said that principal components
are the linear combination of the original variables. We will explore on the
eigenvalue decomposition for PCA now.

In the context of PCA, the eigenvector will represent the direction of the
vector and the eigenvalue will be the variance that is captured along that
eigenvector. It can be shown by means of the (Figure 3-7) below, where we
are breaking the original nxn matrix into components.

Figure 3-7 Using Eigenvalue decomposition, the original matrix can be broken into eigenvector
matrix, eigenvalue matrix and an inverse of eigenvector matrix. We implement PCA using this
methodology.

Mathematically, we can show the relation by (Equation 3-8)

A*v = λ*v
                                                                                                                                    
(Equation 3-8)

where A is a square matrix, v is the eigenvector and λ is the eigenvalue. Here,
it is important to note that Eigenvector matrix is the orthonormal matrix and
its columns are eigenvectors. Eigenvalue matrix is the diagonal matrix and its
eigenvalues are the diagonal elements. The last component is the inverse of



the eigenvector matrix. Once we have the eigenvalues and the eigenvectors,
we can choose the significant eigenvectors for getting the principal
components.

We are presenting PCA and SVD as two separate methods in this book. Both
of the methods are used to reduce high-dimensional data into fewer ones, and
in the process retain the maximum information in the dataset. The difference
between the two is – SVD exists for any sort of matrix (rectangular or
square), whereas the eigen decomposition is possible only for square
matrices. You will understand it better once we have covered SVD in the
later part of this chapter.

We will now create a Python solution using eigenvalue decomposition.

3.5.2 Python solution using PCA

We have studied the concepts of PCA and the process using eigenvalue
decomposition. It is time for us to dive into Python and develop a PCA
solution on a dataset. We will show you how to create eigenvectors and eigen
values on the dataset. To implement the PCA algorithms, we will use the
sklearn library. Libraries and packages provide a faster solution for
implementing algorithms.

We are using the Iris dataset for this problem. It is one of the most popular
datasets used for machine learning problems. The dataset contains data of
three iris species with 50 samples each and having properties of each flower –
like petal length, sepal length etc. The objective of the problem is to predict
the species using the properties of the flower.  The independent variables
hence are the flower properties whereas the variable “Species” is the target
variable. The dataset and the code are checked-in at the Github repository.
Here, we are using the inbuilt PCA functions which reduce the effort required
to implement PCA.

Step1: Load all the necessary libraries first. We are going to use numpy,
pandas, seaborn, matplotlib and sklearn. Note that we have imported PCA
from sklearn.

These are the most standard libraries. You will find that almost all the



machine learning solutions would import these libraries in the solution
notebook.

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

Step 2: Load the dataset now. It is a .csv file.

iris_df = pd.read_csv('iris.csv')

Step 3: We will now perform a basic check on the dataset – looking at the
first five rows, shape of the data, spread of the variables etc. We are not
performing an extensive EDA here as the steps are covered in Chapter 2. The
dataset has 150 rows and 6 columns.

iris_df.head()

iris_df.describe()

iris_df.shape



Step 4: Here we have to break the dataset into independent variables and
target variable. X_variables here represent the independent variables which
are in the first 4 columns of the dataset while y_variable is the target variable
which is Species in this case and is the final column in the dataset. Recall, we
wish to predict the Species of a flower using the other properties. Hence we
have separated the target variable Species and other independent variables.

X_variables = iris_df.iloc[:,1:5]

X_variables

y_variable = iris_df.iloc[:,5]

Step 5: We are now normalizing our dataset. The inbuilt method of
StandardScalar() does the job for us quite easily.

StandardScalar method normalizes the dataset for us. It subtracts the mean
from the variable and divided by the standard deviation. For more details on
normalization, refer to the Appendix Mathematical Foundation.

We invoke the method and then use it on our dataset to get the transformed
dataset. Since, we are working on independent variables, we are using
X_variables here. First we invoke the StandardScalar() method. And then we
use fit_transform method. The fit_transform method first fits the transformers
to X and Y and then returns a transformed version of X.

sc = StandardScaler()

transformed_df = sc.fit_transform(X_variables)

Step 6: We will now calculate the covariance matrix. And print it, the output
is shown below. Getting the covariance matrix is straightforward using
numpy.

covariance_matrix = np.cov(transformed_df.T)

covariance_matrix



Step 7: Now in this step the eigenvalues are being calculated. Inside numpy
library we have the inbuilt functionality to calculate the eigenvalues. We will
then sort the eigenvalues in descending order. To shortlist the principal
components, we can choose eigenvalues greater than 1. This criterion is
called Kaiser criteria. We are exploring other methods too.

Eigenvalue represents how much a component is good as a summary of the
data. If the eigenvalue is 1, it means that the component contains same
amount of information as a single variable. And hence we choose the
eigenvalue which is greater than 1.

In this code, first we are getting the eigen_values and eigen_vectors. And
then we are arranging then in descending order.

eigen_values, eigen_vectors = np.linalg.eig(covariance_matrix)

eigen_pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]) for i in range(len(eigen_values))]

print('Eigenvalues arranged in descending order:')

for i in eigen_pairs:

    print(i[0])

Step 8: We will now invoke the PCA method from the sklearn library. The
method is used to fit the data here. To be noted is, we have not yet
determined the number of principal components we wish to use in this
problem yet.

pca = PCA()

pca = pca.fit(transformed_df)

Step 9: The principal components are now set. Let’s have a look at the
variance explained by them. We can observe that the first component
captures 72.77% variation, second captures 23.03% variation and so on.

explained_variance = pca.explained_variance_ratio_



explained_variance

Step 10: We are now plotting the components in a bar plot for better
visualization.

dataframe = pd.DataFrame({'var':pca.explained_variance_ratio_,

             'PC':['PC1','PC2','PC3','PC4']})

sns.barplot(x='PC',y="var", 

           data=dataframe, color="b");

Step 11: We are drawing a scree-plot to visualize the cumulative variance
being explained by the principal components.

plt.plot(np.cumsum(pca.explained_variance_ratio_))

plt.xlabel('number of components')

plt.ylabel('cumulative explained variance')

plt.show()



Step 12: In this case study, if we choose the top two principal components as
the final solutions as these two capture 95.08% of the total variance in the
dataset.

pca_2 = PCA(n_components =2 )

pca_2 = pca_2.fit(transformed_df)

pca_2d = pca_2.transform(X_variables)

Step 13: We will now plot the dataset with respect to two principal
components. For that, it is a requirement that Species are tied-back to the
actual values of the Species variable which are Iris-setosa, Iris-versicolor and
Iris-virginica. Here, 0 is mapped to Iris-setosa, 1 is Iris-versicolor and 2 is
Iris-virginica. In the code below, first the Species variable gets its values
replaced by using the mapping discussed above.

iris_df['Species'] = iris_df['Species'].replace({'Iris-setosa':0, 'Iris-versicolor':1, 'Iris-virginica':2})

Step 14: We will now plot the results with respect to two principal
components. The plot is showing the dataset reduced to two principal
components we have just created. These principal components are able to
capture 95.08% variance of the dataset. The first principal component
represents the x-axis in the plot while the second principal component
represents the y-axis in the plot. The colour represents the various classes of
Species.

plt.figure(figsize=(8,6))

plt.scatter(pca_2d[:,0], pca_2d[:,1],c=iris_df['Species'])

plt.show()



The above solution has reduced the number of components from four to 2 and
still is able to retain most of the information. Here, we have examined three
approaches to select the principal components – based on Kaiser criteria, the
variance captured and scree plot.

Let us quickly analyse what we have achieved using PCA. The (Figure 3-8)
shows two representations of the same dataset. The one on the left is the
original dataset of X_variables. It has four variables and 150 rows. The right
is the output of PCA. It has 150 rows but only two variables. Recall, we have
reduced the number of dimensions from four to two. So the number of
observations have remained as 150 only while the number of variables have
reduced from four to two.

Figure 3-8 The figure on the left shows the original dataset which has 150 rows and 4 variables.
After the implementation of PCA, the number of variables has been reduced to two. The number
of rows remain the same as 150 which is shown by the length of pca_2d.



Once we have reduced the number of components, we can continue to
implement a supervised learning or an unsupervised learning solution. We
can implement the above solution for any of the other real-world problems
where we aim to reduce the number of dimensions. You will be exploring
more on it in the case study section.

With this we have covered PCA. We will now explore Singular Value
Decomposition (SVD) in the next section.

3.6 Singular Value Decomposition (SVD)

In the last section we studied PCA. PCA transforms the data linearly and
generate principal components which are not correlated with each other. But
the process followed of eigenvalue decomposition can only be applied to
square matrices. Whereas SVD can be implemented to any m x n matrix. We
will study this in more detail now.

Let us consider we have a matrix A. The shape of A is m x n or it contains m
rows and n columns. The transpose of A can be represented as AT.

We can create two other matrices using A and AT as A AT and ATA. These
resultant matrices A AT and ATA have some special properties which are
listed below. The mathematical proof of the properties is beyond the scope of
the book.



The properties of A AT and ATA are:

1. They are symmetric and square matrices.
2. Their eigenvalues are either positive or zero.
3. Both A AT and ATA are having the same eigenvalue.
4. Both A AT and ATA are having same rank as the original matrix A.

The eigenvectors of A AT and ATA are referred to as singular vectors of A.
The square root of their eigenvalues is called singular values.

Since both of these matrices (A AT and ATA) are symmetrical, their
eigenvectors can be orthonormal to each other. In other words, being
symmetrical - the eigenvectors can be perpendicular to each other and can be
of unit length.

Now, with these mathematical understanding we can define SVD. As per
Singular Value Decomposition method, it is possible to factorize any matrix
A as

A = U * S * VT                                                                                             
(Equation 3-9)

Here, A is the original matrix,

U and V are the orthogonal matrices with orthonormal eigenvectors taken
from A AT and ATA respectively and

S is the diagonal matrix with r elements equal to the singular values.

In simple terms, SVD can be said as an enhancement of the PCA
methodology using eigenvalue decomposition.

Singular values are better and numerically more robust than eigenvalues
decomposition.

PCA was defined as the linear transformation of input variables using
principal components. All those concepts of linear transformation, choosing
the best components etc. remain the same. The major process steps remain



similar, except in SVD we are using a slightly different approach wherein the
eigenvalue decomposition has been replaced with using singular vectors and
singular values. It is often advisable to use SVD when we have a sparse
dataset, in the case of denser dataset PCA can be utilized.

 

 POP QUIZ – answer these questions to check your understanding..
Answers at the end of the book

1.   SVD works on eigenvalue decomposition technique. TRUE or FALSE.

2.   PCA is a much more robust methodology than SVD. TRUE or FALSE.

3.   What are singular values and singular vectors in SVD?

We will now create Python solution using SVD in the next section.

3.6.1 Python solution using SVD

In this case study, we are using mushrooms dataset. This dataset contains
descriptions of 23 species of grilled mushrooms. There are two classes –
either the mushroom is “e” which means it is edible else the mushroom is “p”
meaning it is poisonous.

Step 1: Import the libraries. We are importing

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelEncoder, StandardScaler

Step 2: Import the dataset and check for shape, head etc.

mushrooms_df = pd.read_csv('mushrooms.csv')

mushrooms_df.shape

mushrooms_df.head()



Step 3: As we can observe, the values are categorical in nature in the dataset.
They have to be first encoded into numeric values. This is not the only
approach we deal with categorical variables. There are other techniques too
which we will explore throughout the book. We will dive deep into the
techniques in the last chapter of the book.

First, we are invoking the LabelEncoder and then apply it to all the columns
in the dataset. The LabelEncoder converts the categorical variables into
numeric ones using one-hot encoding method.

encoder = LabelEncoder()

for col in mushrooms_df.columns:

    mushrooms_df[col] = encoder.fit_transform(mushrooms_df[col])

Step 4: Have a re-look at the dataset. All the categorical values have been
converted to numeric ones.

mushrooms_df.head()

Step 5: The next two steps are same as the last case study wherein we break
the dataset into X_variables and y_label. And then the dataset is normalized.



X_variables = mushrooms_df.iloc[:,1:23]

y_label = mushrooms_df.iloc[:, 0]

scaler = StandardScaler()

X_features = scaler.fit_transform(X_variables)

Step 6: In this step, we implement the SVD. There is a method in numpy
which implements SVD. The output is u, s and v, where u and v are the
singular vectors and s is the singular value. If you wish you can analyse their
respective shapes and dimensions.

u, s, v = np.linalg.svd(X_features, full_matrices=True)

Step 7: We know that singular values allow us to compute variance explained
by each of the singular vectors. We will now analyze the % variance
explained by each singular vector and plot it. The results are being shown till
three places of decimal. And then we are plotting the results as a histogram
plot. On the x-axis we have the singular vectors while on the y-axis we have
the % of variance explained.

variance_explained = np.round(s**2/np.sum(s**2), decimals=3)

variance_explained

sns.barplot(x=list(range(1,len(variance_explained)+1)),

            y=variance_explained, color="blue")

plt.xlabel('SVs', fontsize=16)

plt.ylabel('Percent of the variance explained', fontsize=15)



Step 7: We will now create a data frame. This new data frame svd_df
contains the first two singular vectors and the metadata. We are then printing
the first 5 rows using the head command.

col_labels= ['SV'+str(i) for i in range(1,3)]

svd_df = pd.DataFrame(u[:,0:2], index=mushrooms_df["class"].tolist(), columns=col_labels)

svd_df=svd_df.reset_index()

svd_df.rename(columns={'index':'Class'}, inplace=True)

svd_df.head()

Step 8: Similar to the last case study, we are replacing numeric values with
actual class labels. 1 is edible while 0 is Poisonous.

svd_df['Class'] = svd_df['Class'].replace({1:'Edible', 0:'Poison'})

Step 9: We are now plotting the variance explained by the two components.
Here we have chosen only the first two components. You are advised to take
optimum number of components using the methods described in the last
section and plot the respective scatter plots.  Here, on the x-axis we have
shown the first singular vector SV1 and on the y-axis we have shown the
second singular vector SV2. 

color_dict = dict({'Edible':'Black',

                   'Poison': 'Red'})

sns.scatterplot(x="SV1", y="SV2", hue="Class", 

                palette=color_dict, 

                data=svd_df, s=105,

                alpha=0.5)

plt.xlabel('SV 1: {0}%'.format(variance_explained[0]*100), fontsize=15)

plt.ylabel('SV 2: {0}%'.format(variance_explained[1]*100), fontsize=15)



We can observe the distribution of the two classes with respect to the two
components. The two classes – edible and poison are colour coded as black
and red respectively. As we have noted above, we have chosen only two
components to show the impact using a visualization plot. You are advised to
choose the optimum number of components using the methods described in
the last case study and then visualize the results using different singular
vectors. This solution can be used to reduce dimensions in a real-world
dataset.

This concludes our discussion on SVD. We will now observe the positives
and challenges with PCA and SVD in the next section.

3.7 Pros and cons of dimensionality reduction

In the initial sections of the chapter, we discussed the drawbacks the of curse
of dimensionality. In the last few sections, we discovered PCA and SVD and
implemented using Python. In the current section, we will examine the
advantages and challenges we have with these techniques.

The major advantages we get with implementing PCA or SVD are as:

1. Reduced number of dimensions lead to less complexity in the dataset.
The correlated features are removed and are transformed. Treating



correlated variables manually is a tough task which is quite manual and
frustrating. Techniques like PCA and SVD do that job for us quite
easily. The number of correlated features is minimized, and overall
dimensions are reduced.

2. Visualization of the dataset is better if the number of dimensions is
lesser. It is very difficult to visualize and depict a very-high dimensional
dataset.

3. Accuracy of the machine learning model is improved if the correlated
variables are removed. These variables do not add anything to the
performance of the model.

4. The training time is reduced as the dataset is less complex. Hence,
lesser computation power is required, and lesser time is required.

5. Overfitting is a nuisance in supervised machine learning models. It is a
condition where the model is behaving very well on the training dataset
but not so well on the testing/validation dataset. It means that the model
may not be able to perform well on the real-world unseen datasets. And
it beats the entire purpose of building the machine learning model.
PCA/SVD helps in tackling overfitting by reducing the number of
variables.

At the same time, there are a few challenges we face with dimensionality
reduction techniques which are as follows:

1. The new components created by PCA/SVD are less interpretable. They
are the combination of the independent variables in the dataset and do
not actually relate to the real-world, hence it becomes quite difficult to
relate them to the real-world scenario.

2. Numeric variables are required for PCA/SVD. And hence all the
categorical variables have to be represented in numeric form.

3. Normalization/standardization of the dataset is required to be done
before the solution can be implemented.

4. There might be information loss when we use PCA or SVD. The
principal components cannot replace the original dataset and hence there
might be some loss of information while we implement these methods.

But despite a few challenges, PCA and SVD are used for reducing the
dimensions in the dataset. They are one of the most popular methods and



quite heavily used. At the same time, it is imperative to note that

With this we have covered the two important techniques used in
dimensionality reduction. We will examine more advanced techniques in the
later chapters. It is time to move to the case study which is the next section of
the chapter.

3.8 Case study for dimension reduction

We will now explore a real-world case to relate usage of PCA and SVD in
real-world business scenarios.

Consider this. You are working for a telecommunication service provider like
Vodafone, Verizon etc. You have a subscriber base, and you wish to cluster
the consumers over a number of parameters. But the challenge can be the
huge number of dimensions available to be analyzed.

The objective will be to reduce the number of attributes using dimension
reduction algorithms. The consumer dataset can look like below.

1. Demographic details of the subscriber will consist of age, gender,
occupation, household size, marital status etc. The list shown below is
not exhaustive.

Table 3-8 Demographic details of a subscriber like age, gender, marital status, household size,
City etc.

2. Subscription details of the consumer might look like the table below.
The list shown below is not exhaustive.

Table 3-9 Subscription details of a subscriber like tenure, postpaid/prepaid connection etc.



3. The usage of the consumer will describe the minutes, call rates, data
usages, services etc. The list shown below is not exhaustive.

Table 3-10 Usage of a subscriber specifies the number of minutes used, SMS sent, data used, days
spent in a network, national or international usage etc.

4. Payment and transaction details of the subscribers will talk about the
various transactions made, the mode of payment, frequency of
payments, days since last payment made etc.

Table 3-11 Transaction details of a subscriber showing all the details of amount, mode etc.

The dataset can have many more attributes. So far, we have established that
the number of datasets involved are indeed high. Once we join all these



datapoints, the number of dimensions in the final data can be very huge.

Table 3-12 The final dataset is a combination of all the above-mentioned datasets. It will be a big,
really high-dimensional dataset which is to be analyzed

We have to reduce the number of attributes before we can proceed to any
supervised or unsupervised solution. In this chapter, we are focusing on
dimensionality reduction techniques and hence the steps are covering that
aspect of the process. In the later chapters, we will examine the exploratory
analysis in more detail.

As a first step, we will perform a sanity check of the dataset and do the data
cleaning. We will examine the number of data points, number of missing
values, duplicates, junk values present etc. This will allow us to delete any
variables which might be very sparse or contain not much information. For
example, if the gender is available for only 0.01% of the population it might
be a good idea to drop the variable. Or if all the customers have gender as
male, the variable is not adding any new information to us and hence it can
be discarded. Sometimes, using business logic a variable might be dropped
from the dataset. An example has been discussed in the earlier sections. In
this step, we might combine a few variables. For example, we might create a
new variable as average transaction value by dividing total amount spent by
total number of transactions. In this way, we will be able to reduce a few
dimensions.

A Python Jupyter notebook is checked-in at the Github repository, wherein
we have given a very detailed solution for data cleaning step.

Once we are done with the basic cleaning of the data, we start with the
exploratory data analysis. As a part of exploratory analysis, we examine the
spread of the variable, its distribution, mean/median/mode of numeric
variables. This is sometimes referred to as univariate analysis. This step
allows us to measure the spread of the variables, understand the central
tendencies, examine the distribution of different classes for categorical



variables and look for any anomalies in the values. For example, using the
dataset mentioned above we will be interested to analyse the
maximum/minimum/average data usage or the % distribution of gender or
age. We would want to know the most popular method to make a transaction
and we would also be interested to know maximum/minimum/average
amount of the transactions. And this list will go on.

Then we explore the relationships between variables which is referred to as
bivariate analysis. Crosstabs, distribution of data is a part of bivariate
analysis. Correlation matrix is created during this step. Variables which are
highly correlated are examined thoroughly. And based on a business logic,
one of them might be dropped. This step is useful to visualize and understand
the behavior of one variable in the presence of other variables. We can
examine their mutual relationships and respective strength of the
relationships. In this case study, we would answer the questions like – do
subscribers who use more data spend more time on network as compared to
subscribers who send more SMS. Or hypothesis like – do the subscribers who
make a transaction using online mode generate more revenue than the ones
using cash. Or is there a relationship between gender/age with the data usage.
Many such questions are answered during this phase of the project.

A Python Jupyter notebook is checked-in at the Github repository, which
provides detailed steps and code for the univariate and bivariate phase. Check
it out!

At this step, we have a dataset which has a huge number of dimensions and
we require to reduce the number of dimensions. Now it is good time to
implement PCA or SVD. The techniques will reduce the number of
dimensions and will make the dataset ready for the next steps in the process,
as shown in (Figure 3-9). The figure is only representative in nature to depict
the impact of dimensionality reduction methods. Notice how the large
number of black lines in the left figure are getting reduced to lesser number
of red lines in the right figure.

Figure 3-9 A very high dimensional dataset will be reduced to a low dimensional one by using
principal components which capture the maximum variance in the dataset



The output of dimensionality reduction methods will be a dataset with lower
number of variables. The dataset can be then used for supervised or
unsupervised learning. We have already looked at the examples using Python
in the earlier sections of the chapter.

This concludes our case study on telecom subscribers. The case can be
extended to any other domain like retail, BFSI, aviation, healthcare,
manufacturing etc.

We will now proceed to the summary of the chapter.

3.9 Summary

Data is everywhere, in various forms, levels, dimensions and with varying
levels of complexity. It is often mentioned that “the more data the better. It is
indeed true to a certain extent. But with a really high number of dimensions,
it becomes quite a herculean task to make sense out of it. The analysis can
become biased and really complex to deal with. We explored this curse of
dimensionality in this second chapter. PCA/SVD are helpful to reduce this
complexity. They make the dataset ready for the next steps.

But dimensionality reduction is not as straightforward as it looks like. It is
not an easy task. But it is certainly a very rewarding one. And requires a
combination of business acumen, logic and common sense to deal with. The
resultant dataset might still require some additional work. But it is a very
good point for building a machine learning model.



This marks the end of third chapter. It also ends the part one of the book. In
this part, we have covered the more basic algorithms. We started with the
first chapter of the book, where we explored the fundamentals and basics of
machine learning. In the second chapter we examined three algorithms for
clustering. In this third chapter, we explored PCA and SVD.

In the second part of the book, we are changing gears and studying more
advanced topics. We are starting with association rules in the next chapter.
Then we go into advanced clustering methods of time-series clustering, fuzzy
clustering, GMM clustering etc. It is followed by a chapter on advanced
dimensionality reduction algorithms like t-SNE, LDA. And then to conclude
the second part, we are examining unsupervised learning on text datasets. The
third part of the book is even more advanced where we dive into neural
network based solutions and use images datasets. So still a long way to go!
Stay tuned!

You can proceed to the question section now!

Practical next steps and suggested readings

1. Use the vehicles dataset used in the last chapter for clustering and
implement PCA and SVD on it. Compare the performance on clustering
before and after implementing PCA and SVD.

2. Get the datasets from the (). Here, you will find a lot of datasets like
USDA National Nutrient database, Pizza dataset etc. Compare the
performance of PCA and SVD on these datasets.

3. Go through the following papers on PCA
4. https://www.sciencedirect.com/science/article/pii/009830049390090R
5. https://web.stanford.edu/~hastie/Papers/spc_jcgs.pdf
6. https://web.cs.ucdavis.edu/~vemuri/papers/pcaVisualization.pdf
7. https://cseweb.ucsd.edu/~ravir/papers/pca/pamifinal.pdf
8. Go through the following research papers on SVD
9. https://people.maths.ox.ac.uk/porterm/papers/s4.pdf

10. https://papers.nips.cc/paper/3473-quic-svd-fast-svd-using-cosine-
trees.pdf

11. https://arxiv.org/pdf/1211.7102.pdf
12. http://glaros.dtc.umn.edu/gkhome/fetch/papers/sarwar_SVD.pdf



4 Association rules
“The power of association is stronger than the power of beauty; therefore the
power of association is the power of beauty– John Ruskin”

Congratulations on finishing the first part of the book! You explored the
basics of unsupervised learning and algorithms like k-means clustering,
hierarchical clustering, DBSCAN, principal component analysis and others. It
is expected that you have covered the mathematical concepts in the first part
and created the Python codes to solve the exercise given at the end of each
chapters.

Welcome to the second part of the book wherein we leverage the concepts
learned in the first part and explore slightly more complex topics. We are
starting with association rules in the chapter 4 of this book. All the very best!

Next time you visit a nearby grocery store, look around inside the store and
the arrangements of various items. You would find shelves with items like
milk, eggs, bread, sugar, washing powder, soaps, fruits, vegetables, cookies
and various other items neatly stacked. Have you ever wondered what is the
logic of this arrangement and how these items are laid out? Why certain
products are kept near to each other while others are quite far from each
other? Obviously, the arrangement cannot be done in a random manner and
there has to be scientific reasoning behind it. Or do you wonder, how does
Netflix recommend movies to you based on your movie history like a
sequence? We are going to find the answers to these questions in this chapter.
Like always, we will study the concepts first. We will go through the
mathematical logic for different algorithms, pros and cons of each and
practical implementations using Python. A business case study is provided at
the end of the chapter to complement the knowledge.

In this fourth chapter of the book, we are going to cover the following topics:

1. Association rule learning
2. Different types of association rules algorithms



3. Implementation of different association rules algorithm
4. Sequence learning using SPADE
5. Case study
6. Summary

Welcome to the fourth chapter and all the very best!

4.1 Technical toolkit

We will continue to use the same version of Python and Jupyter notebook as
we have used so far. The codes and datasets used in this chapter have been
checked-in at this location.

You would need to install a few Python libraries in this chapter which are –
apyori, pyECLAT, fpgrowth_py and pyspade. Along with this we will need
numpy and pandas. Using libraries, we can implement the algorithms very
quickly. Otherwise, coding these algorithms is quite a time-consuming and
painstaking task.

Let’s get started with association rules.

4.2 Association rule learning

You might have heard the famous “beer and diaper story”. As per this
anecdote, customers (mostly young men) of a supermarket who buy diapers
also buy beer in the same invoice. In other words, young men who are buying
diapers for their babies have quite a high probability to buy beers in the same
transaction. We will not comment on the authenticity of the story, but
association rule learning can be attributed as the logic derived from this
story.

Formally put -  association rules can be used to find compelling relationships
between the variables which are present in the data sets. We can use
association rules for measuring the correlations and co-occurrences between
the variables in a dataset. In the example given above (assuming the story is
true), one could analyse the daily customer transactions. And if a relationship
emerges between beer and diapers, it is a very strong insight for the



supermarket, which can allow them to customize their placements of beer and
diapers or tailor the marketing strategy or even alter the prices.

We can understand by a different example in a supermarket. Consider the
example below. Assume that by analysing five invoices generated in a
supermarket, we get the data below as shown in Table 4-1. In this example, in
invoice number 1001 milk is purchased hence it has value as 1, whereas
cheese is not purchased, hence it is 0.

Table 4-1 Examples of invoices generated in a supermarket. The first invoice number is 1001 and,
in that invoice, milk is bought. Hence, there is 1 in front of milk. While cheese is not bought in
1001 and hence, there is 0 in front of cheese.

Invoice Number Milk Eggs Bread Cheese

1001 1 1 1 0

1002 0 0 0 1

1003 1 1 1 0

1004 0 1 0 1

1005 1 1 0 1

So, in invoice number 1001, milk, eggs, bread are purchased while in invoice
number 1002 only cheese is purchased. Here, we can see that whenever milk
and eggs are purchased together, bread is always purchased in the same
invoice. It is an important discovery indeed.

Now scale up this understanding to thousands of transactions made in a day.



It will lead to very strong relationships which are generally oblivious to
human eyes. But association rule algorithms can uncover them for us. It can
lead to better product placements, better prices of the products and much
more optimized marketing spends. Such patterns will enhance the customer
experience and prove quite handy to improve the overall customer
satisfaction.

We can visualize association rules as shown in (Figure 4-1). Here, there are
some incoming variables represented as nodes 1,2,3,4 etc. These nodes are
related to each other as shown by the arrows. This relationship between them
gives rise to rules A and B.

Figure 4-1 Association rule can be visualized as the relationships between various variables in the
dataset. These variables are linked to each other, and significant relationships are established
between them.

The example of the supermarket discussed above is sometime referred to as
Market Basket Analysis. But association rules are applicable not only in
grocery retail. Their utility has been proven in other sectors like
bioinformatics and medical industry, intrusion detection etc. They can be
utilised by Netflix or Spotify to analyse the historical user behaviour and then
recommend the content which the user most likely is going to like. Web
developers can analyse the historical clicks and usages of the customers on



their websites. By identifying the patterns, they can find out what user tends
to click and which features will maximise their engagements. Medical
practitioners can use association rules to better diagnose patients. The doctors
can compare the probability of the symptoms in relationships with other
symptoms and provide more accurate diagnosis. The use cases are across
multiple business domains and business functions.

We will now understand the building blocks for association rules.

4.3 Building blocks of association rule

We covered the definition of association rule in the last section.

Now let's understand the mathematical concept behind association rules.
Assume that we have the following datasets in a retail store-

1. Let X = {x, x2, x3, x4, x5 …., xn} ar`e the n items available in the retail
store. For example, they can be milk, eggs, bread, cheese, apples and so
on.

2. Let Y = {y, y2, y3, y4, y5 …., ym} are the m transactions generated in
that retail store. Each transaction could have all or some items from the
retail store.

Obviously, each item in the transactions will be bought from the retail store
only. Or, in other words, every item in transactions in set Y will be a subset
of items in the set X. At the same time, each item would have a unique
identifier attached to it and each transaction would have a unique invoice
number attached to it.

Now, we are interested to analyze the patterns and discover the relationships.
This will be used to generate any rule or insight. So, let’s define the meaning
of rule first.

3. Assume that we find a rule that whenever items in a list P are bought,
items in list Q are also bought. This rule can be written as follows:

4. The rule is P -> Q. It means that whenever items defined in P are bought
it leads to the purchase of Q too.



5. Items in P will be a subset of Y or P Í Y.
6. Similarly, items in Q will be a subset of Y or Q Í Y.
7. P and Q cannot have any common element or P Ç Q = 0

Now, let’s understand these mathematical concepts with a real-world
example.

Assume that X = {milk, bananas, eggs, cheese, apples, bread, salt, sugar,
cookies, butter, cold-drinks, water}. These are the total items available in the
retail shop.

Y = {1001, 1002, 1003, 1004, 1005}. These are the five invoices generated in
that retail store. The respective items purchased in each of these invoices is
given in Table 4-2.

Table 4-2 Example of five invoices generated in a retail store. Note how for each invoice, we have
0 and 1 associated for each of the items. These invoices are just for illustration purpose. In the
actual invoices, the number of items can be much more.

Using this dataset, let’s assume we create two rules that {milk, bananas} ->
{eggs} and {milk, bananas} -> {bread}.

First rule means that whenever milk and bananas are bought together, eggs
are also purchased in the same transaction. And second rule means that
whenever milk and bananas are bought together, bread is also bought in the
same transaction. By analyzing the dataset above, we can clearly see that rule
1 is always true whereas rule 2 is not.

The items on the left side are called the antecedent or the LHS and the ones
on the right side are called the consequents or the RHS.

In the real-world, for any such rule to have significance, the same pattern
must repeat itself across several hundreds and thousands transactions. Then



only we would conclude that the rule is indeed true and can be generalized
across the entire data base.

At the same time, there can be many such rules. In a retail shop where daily
thousands of invoices are generated, there can be hundreds of such rules.
How can be find out which rules are significant, and which are not? This can
be understood using the concept of support, confidence and lift which we will
study in the next section.

4.3.1 Support, confidence, lift, and conviction

We identified the meaning of a rule in association rule mining. We also
understand that there can be hundreds of rules based on the transactional data
set. In this section we will explore, how we can measure the effectiveness of
such rules and can short list the most interesting ones. This can be achieved
using the concepts of support, confidence, lift, and conviction.

Recall in the last section we discussed about generalization of a rule. Support,
confidence, lift, and conviction allow us to measure the level of
generalization. In simple words, using these three parameters we can
determine how useful the rule can be in our pragmatic real-world business.
After all, if a rule is not useful or is not powerful enough, it is not required to
be implemented. Support, confidence, lift, and conviction are the parameters
to check the efficacy of the rule. We will understand these concepts in detail
now.

We will use the below data set in Table 4-3 to understand the concept of
support, confidence, and lift.

Table 4-3 Data set we are going to use to understand the concept of support, confidence, and lift.
The first invoice 1001 has milk, eggs, and bread while cheese is not purchased. Again, for the sake
of this example, we have taken only 4 items in total.

Invoice Number Milk Eggs Bread Cheese

1001 1 1 1 0



1002 0 1 1 1

1003 1 1 1 0

1004 0 1 0 1

1005 0 1 1 0

Here, for an invoice, 1 represents if an item is present in that invoice while 0
shows that the item was not purchased in that particular invoice. For
example, invoice number 1001 has milk, eggs and bread while 1002 has eggs,
bread and cheese.

Let’s study support now.

Support

Support measures the frequency percentage of the items in the datasets. In
other words, it measures the percentage of transactions in which the items are
occurring in the data set.

Support can be denoted as shown below

Refer to Table 4-3, if we are interested in the rule {milk, eggs} -> {bread}. In
such a scenario, there are two transactions in which all three items (milk,
eggs, and bread) are present. The total number of transactions are five. So, it
means that the support for the rule is 2 / 5 which is 0.4 or 40%.

If we are interested in the rule {bread, eggs} -> {cheese}. In such a scenario,



there is only one transaction in which all three items are present. The total
number of transactions are five. So, it means that the support for the rule is 1
/ 5 which is 0.2 or 20%.

Higher the support for a rule, better it is. Generally, we put a minimum
threshold to get support. Minimum threshold is generally determined in
consultation with the business stakeholders.

We will now study confidence for a rule.

Confidence

Confidence measures how often the rule is true. In other words, it measures
the percentage of transactions which if contain antecedents also contain
consequents.

So, if we wish to measure the confidence of the rule A->B

Here, the numerator is support when both A and B are present in the
transaction, while the denominator refers to the support only for A.

Refer to Table 4-3, if we are interested in the rule {milk, eggs} -> {bread}. In
such a scenario, there are two transactions in which both milk and eggs are
present. Hence, the support is 2/5 = 0.4. It is the denominator. There are two
transactions in which all three (milk, eggs, bread) are present. Hence, support
is 2/5 = 0.4, which is the numerator. Putting in the equation above, the
confidence for the rule {milk, eggs} -> {bread} is 0.4/0.4 = 1.

If we are interested in the rule {eggs, bread} -> {cheese}. In such a scenario,
there are three transactions in which (eggs, bread) are present. The total
number of transactions are five. So, it means that the support is 3 / 5 which is
0.6. There is only one transaction in which all the three items (eggs, bread,
cheese) are present. So, the support is 1/5 = 0.2. Hence the confidence for the
rule {eggs, bread} -> {cheese}is 0.2/0.6 = 0.33.



Higher the confidence for the rule, better it is. Like support, we put a
minimum threshold on confidence.

Sometimes, it is also referred to as the conditional probability of A on B. It
can be understood as probability of B occurring provided A has already
occurred and can be written as P(A|B). So, in the examples quoted above,
probability of cheese to be bought provided eggs, bread is already bought is
33% while probability of bread to be purchased, provided milk, eggs are
already purchased is 100%

We have covered confidence and support so far. We will now study lift and
conviction for a rule which are real criteria to evaluate a rule.

Lift and conviction

Lift is a very important measurement criteria for a rule. Lift for a rule A-> B
can be defined as

Here, the numerator is support when both A and B are present in the
transaction, while the denominator refers to the support for A multiplied by
support for B.

Refer to Table 4-3, if we are interested in the rule {milk, eggs} -> {bread}. In
such a scenario, there are two transactions in which all three (milk, eggs,
bread) are present. Hence, support is again 2/5 = 0.4, which is the numerator.
There are two transactions in which only (milk, eggs) are present, so the
support is 2/5 = 0.4. There are four transactions in which bread is present,
hence the support is 4/5 = 0.8. Putting in the equation above, the lift for the
rule {milk, eggs} -> {bread} is 0.4/(0.4x0.8) = 1.25.

If we are interested in the rule {eggs, bread} -> {cheese}. In such a scenario,
there is only one transaction in which (eggs, bread, cheese) are present. The
total number of transactions are five. So, it means that the support is 1 / 5
which is 0.2. There are two transactions in which (cheese) is present. So, the



support is 2/5 = 0.4. There are four transactions in which (eggs, bread) are
present, so the support is 4/5 = 0.8. Putting in the equation above, the lift for
the rule {eggs, bread} -> {cheese} is 0.2/(0.4x0.8) = 0.625.

If the value of the lift is equal to 1, it means that the antecedent and precedent
are independent of each other, and no rule can be drawn from it.

If the value of lift is greater than one, it means that the antecedent and
precedent are dependent on each other. This rule can be used for predicting
the antecedent in future transactions. This is the insight we want to draw from
the data set.

The value of lift is lesser then one, it means that the antecedent and precedent
are substitute of each other. The presence of one can have a negative impact
on the other. It is also an important insight which can be used by the business
teams for strategic planning.

While we evaluate any rule using the lift, it is imperative that we apply
domain knowledge to it. For example, if we evaluate the rule {eggs, bread} -
> {cheese}, it suggests that eggs, bread can be a substitute for cheese. We
know that it is not true in the real life. Hence, in such a scenario we cannot
make any decision for this role. We must take help of domain knowledge to
draw any conclusions for this rule.

At the same time, rule {milk, eggs} -> {bread} seems to be quite logical. We
know that when milk and eggs are purchased together it is highly likely that
bread will be purchased too in the same transaction. Hence this rule makes
much more sense to us.

Conviction is an important parameter which is given by the formula below

For example, if we are interested in the rule {eggs, bread} -> {cheese}. In
such a scenario, there is only one transaction in which (cheese) is present.
The total number of transactions are five. So, it means that the support is 1 / 5
which is 0.2 and will be used in the numerator. We have already calculated



the confidence as 0.625. Putting back in the formula, we can calculate
conviction as (1-0.2)/(1-0.625) = 2.13

We can interpret the conviction as – the rule {eggs, bread} -> {cheese}
would be incorrect 2.13 times more often if the association between {eggs,
bread, cheese} was purely chosen at random.

In most of the business scenarios, lift is the measurement criteria used. There
are other measurement parameters too like leverage, collective strength etc.
But most of the time confidence, support and lift are used to measure the
effectiveness of any rule.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   Support measures how often the rule is present in the dataset. True or
False

2.   If the lift is greater than 1, it means that the two items are independent of
each other. True or False.

3.   Lower the value of confidence, better is the rule. True or False.

While we evaluate any rule while analyzing the data set, most of the time we
set a threshold for the confidence, support, and the lift. It allows us to reduce
the number of rules and filter out the irrelevant ones. In other words, we are
interested in only the rules which are very frequent. We will study it in more
detail when we create a Python solution for a dataset.

We will now study the various algorithms used in association rule. The first
such algorithm is Apriori algorithm which is the next topic.

4.4 Apriori algorithm

Apriori algorithm is one of the most popular algorithms used for association



rules. It was proposed by Agrawal and Shrikant in 1994. The link to the paper
is given at the end of the chapter.

Apriori is used to understand and analyse the frequent items in a transactional
database. It utilizes a “bottoms-up” approach where first candidates are
generated based of the frequency of the subsets. Let us understand the entire
process by means of an example.

We will use the same dataset we have discussed earlier. 

Table 4-3 Data set we are going to use to understand the concept of support, confidence, and lift.
The first invoice 1001 has milk, eggs, and bread while cheese is not purchased.

Invoice Number Milk Eggs Bread Cheese

1001 1 1 1 0

1002 0 1 1 1

1003 1 1 1 0

1004 0 1 0 1

1005 0 1 1 0

The process used in Apriori algorithm it will look like the process below in
Figure 4-2.

Figure 4-2 Apriori algorithm process can be depicted as shown here.



Let us say we wish to analyse the relationship of bread with all the other
items in the dataset. In this case, the level 1 is Bread and we find its
frequency of occurrence.

Then we move to the next layer which is Layer 2. Now we find the
relationship of Bread with each of the other items – Milk, Eggs and Cheese
which are at Layer 2. Here again we find the respective frequencies of
occurrence for all the possible combinations which are {Bread, Milk},
{Bread, Eggs} and {Bread, Cheese}. It can be shown in Figure 4-3.

Figure 4-3 We have bread at Level 1 while the other items (milk, eggs, and cheese) are kept at
Level 2. Bread is kept at level 1 since we wish to analyze the relationship of bread with all the
other items.

After this Layer 2 has been analysed, we move to the third layer and fourth



layer and so on. This process continues till we reach the last layer wherein all
the items have been exhausted.

As a result of this process, we can calculate the support for all the possible
combinations. For example, we would know the support for

{Bread} -> {Milk},

{Bread} -> {Eggs} and

{Bread} -> {Cheese}.

For the next level, we would also get the support for

{Bread, Milk} -> {Eggs},

{Bread, Eggs} -> {Milk},

{Bread, Milk} -> {Cheese},

{Bread, Cheese} -> {Milk},

{Bread, Cheese} -> {Eggs} and

{Bread, Eggs} -> {Cheese}.

Now, using the same process, all the possible combinations for the next level
are calculated. For example, {Bread, Eggs, Milk} -> {Cheese}, {Bread, Eggs,
Cheese} -> {Milk} and so on.

When all the item sets have exhausted, the process will stop. The complete
architecture can look like in Figure 4-4.

Figure 4-4 The complete architecture for Apriori algorithm. Here, we would have calculated
support for all the possible combinations. The relationships between all the items are explored
and because of this entire database scan, the speed of Apriori gets hampered.



Now, we can easily understand that the possible number of combinations are
quite high, which is one of the challenges with apriori. There are a few other
shortcomings for Apriori algorithm which we will study later. But right now
is the time to implement Apriori using Python.

4.4.1 Python implementation

We will now proceed with Python implementation of Apriori algorithm. The
dataset and Python Jupyter notebook is checked-in at the GitHub repository.

You might have to install apyori.

To install the libraries, simply do the step below

import sys

!{sys.executable} -m pip install apyori

Step 1. Import the necessary libraries for the use case. We are importing
numpy, pandas. For implementing apriori, we have a library called apyori
which is also imported.

import numpy as np

import pandas as pd



from apyori import apriori

Step 2: We now import the datset store_data.csv file.

store_dataset = pd.read_csv('store_data.csv')

You are also advised to have a look at the dataset by opening the .csv file. It
will look like the screenshot below. The first 25 rows are shown in the
screenshot. Each row represents an invoice.

Step 3: Let’s perform some basic checks on the data by .info, .head
command.

store_dataset.info()



store_dataset.head()

Step 4: Here we can see that the first transaction has been considered as the
header by the code. Hence, we would import the data again but this time he
would specify that headers are equal to None.

store_dataset = pd.read_csv('store_data.csv', header=None)

Step 5: Let’s look at the head again. This time it looks correct.



store_dataset.head()

Step 6: The library we are using for the code accepts the dataset as a list of
lists. The entire dataset must be a big list while each transaction is an inner
list in the big list. So, to achieve it, we first convert our store_dataset data
frame into a list.

all_records = []

for i in range(0, 7501):

    all_records.append([str(store_dataset.values[i,j]) for j in range(0, 20)])

Step 7: Next, we implement the Apriori algorithm.

For the algorithm, we are working on all_records list we have created in
Step 6. The minimum support specified is 0.5 or 50%, minimum confidence
is 25%, minimum lift is 4 and minimum length of the rule is 2.

The output of this step is apriori_rules class object. This object is then
converted into a list which we can understand. And finally, we print this list.

apriori_rules = apriori(all_records, min_support=0.5, min_confidence=0.25, min_lift=4, min_length=2)

apriori_rules = list(apriori_rules)

print(len(apriori_rules))

The output of the code will be 0. It means that no such rules exist which
satisfy the condition we have set for the rules.



We again try to execute the same code albeit by reducing the minimum
support to 25%

apriori_rules = apriori(all_records, min_support=0.25, min_confidence=0.25, min_lift=4, min_length=2)

apriori_rules = list(apriori_rules)

print(len(apriori_rules))

Again, no rules are generated and the output is zero. Even reducing the
minimum support to 10% does not lead to any rules.

apriori_rules = apriori(all_records, min_support=0.1, min_confidence=0.25, min_lift=4, min_length=2)

apriori_rules = list(apriori_rules)

print(len(apriori_rules))

Now, we reduce the minimum lift to 2. This time we get 200 as the output. It
means that there are 200 such rules which fulfil the criteria.

apriori_rules = apriori(all_records, min_support=0.25, min_confidence=0.25, min_lift=2, min_length=2)

apriori_rules = list(apriori_rules)

print(len(apriori_rules))

Step 8: Let’s look at the first rule.

print(apriori_rules[0])

The rule explains the relationship between almonds and burgers. Support is
.005 while the confidence is 0.25. Lift which is 2.92 indicates that this rule is
quite strong in itself.

Step 9: We will now look at all the rules in detail. For that, loop through the
rules and extract information from each of the iteration. Each of the rule has
got the items constituting the rule and respective values for support,
confidence and lift. We have shown an example in Step 8. Now in Step 9, we
are just extracting that information for all of the rules using a for loop.

for rule in apriori_rules:



    item_pair = rule[0] 

    items = [x for x in item_pair]

    print("The apriori rule is: " + items[0] + " -> " + items[1])

 

    print("The support for the rule is: " + str(rule[1]))

 

    print("The confidence for the rule is: " + str(rule[2][0][2]))

    print("The lift for the rule is: " + str(rule[2][0][3]))

    print("************************")

The output for this step is shown below. Here, we can observe the each rule
in listed along with the respective values of support, confidence and lift.

We can interpret the rules easily. For example, rule almonds-> burgers has a
lift of 2.92 with a confidence of 25.49% and support of 0.51%. This
concludes our implementation using Python. This example can be extended
to any other real-world business dataset.

Not all the rules generated are not good for using. We will examine how to
get the best rules from all the rules generated when we deal with the case
study in the last section of the chapter.

Apriori algorithm is a robust and very insightful algorithm. But like any other



solution, it has a few shortcomings which we are discussing now.

4.4.2 Challenges with Apriori algorithm

We examined in previous sections how the number of subsets generated in
Apriori algorithm are quite high.

Figure 4-5 Complete scan of dataset is done hence the speed is decreased significantly.

It is very tedious to generate candidates item sets and hence it becomes quite
cumbersome to analyse the dataset. Apriori scans the entire dataset multiple
times and hence it requires the database to be loaded in the memory. We can
safely deduce that the complexity of the algorithm is quite high. It requires a
lot of time to make the computations. This problem is magnified when we are
dealing with a very large dataset. In fact, for real-world problems where
millions of transactions are generated, quite a huge number of candidates
itemsets are generated and hence it is very time consuming to use Apriori on
the entire dataset.

Due to this very reason, generally a minimum value of support is set to
reduce number of possible rules. In the example given above, we can
calculate the support for level 1 combinations as shown below in Table 4-4.



Here, if we set the minimum value of support as 0.5, only one rule will be
shortlisted.

Table 4-4 Support is calculated for each of the combination of the items. For example, for milk
and bread – the number of transactions is 2 while the total number of transactions are 5. So, the
support is 2/5 which is 0.4.

Combination Number of txns Total Txns Support

Milk, Eggs 2 5 0.4

Milk, Bread 2 5 0.4

Milk, Cheese 0 5 0

Eggs, Bread 4 5 0.8

Eggs, Cheese 2 5 0.4

Bread, Cheese 1 5 0.2

Setting up a minimum value of support is hence an intelligent tactic to make
the rules much more manageable. It reduces the time and generates the rules
which are much more significant. After all, the rules generated from the
analysis should be generalizable enough so that they can be implemented
across the entire data base.

 

 POP QUIZ – answer these question to check your understanding..



Answers at the end of the book

1.   Apriori algorithm scans the database only once. TRUE or FALSE.

2.   If bananas are present in 5 transactions out of a total of 12 transactions, it
means the support for banana is 5/12. TRUE or FALSE.

But Apriori algorithm is a path-breaking solution. It is still highly popular
and generally one of the very first algorithms whenever association rules are
discussed.

Data preparation is one of the key steps and quite a challenge, we will
explore this challenge during the case study in the last section of the chapter.

We will now study the next algorithm, which is ECLAT algorithm

4.5 Equivalence class clustering and bottom-up
lattice traversal (ECLAT)

We will now study Equivalence class clustering and bottom-up lattice
traversal algorithm or ECLAT in this section, which is sometimes said is
better than apriori.

ECLAT uses a depth-first search approach. It means that ECLAT performs
the search in a vertical fashion throughout the dataset. It starts at the root
node. Then goes one level deep and continues delete reach the first terminal
note. Let’s say the terminal node is at level X. One start terminal node is
reached, the algorithm then takes a step back and reaches level (X-1) and
continues till it finds a terminal node again. Let's understand this process by
means of a tree diagram as shown in Table 4-6.

Figure 4-6 Tree diagram to understand the process of ECLAT algorithm. It starts with 1 and
ends at 16.



ECLAT will take the following steps:

1. The algorithm starts at the root node 1.
2. It then goes one level deep to root node 2.
3. It will then continue one more level deep till it reaches terminal node 11.
4. Once it reaches the terminal note 11, it then takes a step back and goes

to node 5.
5. The algorithm then searches if there is any node available which can be

used. At node 5 we can see that there is no such node available.
6. Hence the algorithm again takes a step back and it reaches node 2.
7. At node 2, the algorithm explores again. It finds that it is possible to go

to note 6.
8. So, the algorithm goes to node 6 and starts exploring again till it reaches

the terminal node 12.
9. This process continues till all the combinations have been exhausted.

Obviously, the speed of computation depends on the total number of distinct
items present in the data set. It is because the number of distinct items define
the width of the tree. The items purchased in each of the transactions would
define the relationship between each node.

During execution time of ECLAT, each item (either individually or in a pair)
is analyzed. Let us use the same example we have used for Apriori to



understand ECLAT better as shown in Table 4-5.

Table 4-5 Data set we are going to use to understand ECLAT. The first invoice 1001 has milk,
eggs, and bread while cheese is not purchased.

Invoice Number Milk Eggs Bread Cheese

1001 1 1 1 0

1002 0 1 1 1

1003 1 1 1 0

1004 0 1 0 1

1005 0 1 1 0

ECLAT will undergo the following steps to analyze the dataset:

1. In the first run ECLAT will find the invoice numbers for all single
items. Or in other words, it would find the invoice numbers for all the
items individually. It can be shown in the Table 4-6 below, wherein milk
is present in invoice number 1001 and 1003 while eggs are present in all
the invoices.

Table 4-6 Respective invoices in which each item is present. Milk is present in 1001 and 1003
while eggs is present in five invoices.

Item Invoice Numbers



Milk 1001,1003

Eggs 1001, 1002, 1003, 1004, 1005

Bread 1001, 1002, 1003, 1005

Cheese 1002, 1004

2. Now in the next step, all the two items dataset are explored as shown
below in Table 4-7. For example, milk and eggs are present in invoice
number 1001 and 1003, while milk and cheese are not present in any
invoice.

Table 4-7 Two item data sets are explored now. Milk and eggs are present in invoice number
1001 and 1003 while there is no invoice for milk and cheese.

Item Invoice Numbers

Milk, Eggs 1001, 1003

Milk, Bread 1001, 1003

Milk, Cheese -

Eggs, Bread 1001, 1002, 1003, 1005

Eggs, Cheese 1002, 1004



Bread, Cheese 1002

3. In the next step, all the three item datasets are explored as shown in the
table 4-8.

Table 4-8 Three item datasets are analyzed in this step. We have two combinations only.

Item Invoice Numbers

Milk, Eggs, Bread 1001, 1003

Eggs, Bread, Cheese 1002

4. There are no invoices present in our data set which contains four items.
5. Now depending on the threshold, we set for the value of support count,

we can choose the rules. So, if we want that minimum number of
transactions in which the rule should be true is equal to three then only
one rule qualifies which is {Eggs, Bread}. If we decide the threshold for
the minimum number of transactions as two, then rules like {Milk, Eggs,
Bread}, {Milk, Eggs}, {Milk, Bread}, {Eggs, Bread} and {Eggs,
Cheese} qualify as the rules.

We will now create a Python solution for ECLAT.

4.5.1 Python implementation

We will now implement ECLAT using Python. The code is quite simple to
understand. We are using pyECLAT library here. The dataset looks like



Step 1: We will import the libraries here.

import numpy as np

import pandas as pd

from pyECLAT import ECLAT

Step 2: Import the dataset now

data_frame = pd.read_csv('Data_ECLAT.csv', header = None)

Step 3: Here we are generating an ECLAT instance.

eclat = ECLAT(data=data_frame)

There are some properties of ECLAT instance eclat generated in the last
step like eclat.df_bin which is a binary dataframe and eclat.uniq_ which is a
list of all the unique itesms.

Step 4: We will now fit the model. We are giving a minimum support of 0.02
here. After that we are printing the support.



get_ECLAT_indexes, get_ECLAT_supports = eclat.fit(min_support=0.02,

                                                           min_combination=1,

                                                           max_combination=3,

                                                           separator=' & ')

get_ECLAT_supports

The output is

We can easily interpret the results here. For each of the item and combination
of items, we are getting the value of the support. For example, for French
fries and eggs, the value of support is 3.43%.

ECLAT has some advantages over Apriori algorithm. Since it uses a depth-
search approach it is surely faster than Apriori and requires lesser memory to
compute. It does not scan the dataset iteratively and hence it makes it even
faster than Apriori. We will compare these algorithms once more after we
have studied the last algorithm.

We will now move to the third algorithm which is F-P growth algorithm.

4.6 Frequent-Pattern growth algorithm (F-P
algorithm)

F-P algorithm or frequent-pattern growth algorithm is the third algorithm we
will discuss in this chapter. It is an improvement over the Apriori algorithm.
Recall in Apriori we face challenges of time consuming and costly
computations. FP resolves these issues by representing the data base in the
form of a tree called a frequent pattern tree or FP tree. Because of this



frequent pattern, there is no need for generating the candidates as done in
Apriori algorithm. Let’s discuss FP in detail now.

FP tree or Frequent Pattern tree is a tree-shaped structure, and it mines the
most frequent items in the datasets. It can look like Figure 4-7.

Figure 4-7 FP algorithm can be depicted in a tree-diagram structure. We will be creating this tree
in a step-by-step fashion in the next steps. Each node represents a unique item. The root node is
NULL.

Each node represents the unique item in the dataset. The root node of the tree
is generally kept as NULL. The other nodes in the tree are the items in the
dataset. The nodes are connected with each other if they are in the same
invoice. We will study the entire process in a step-by-step fashion.

Assume we are using the following dataset as shown in (Table 4-9). So, we
have unique items as Apple, Milk, Eggs, Cheese and Bread. There are in total
9 transactions and the respective items in each of the transaction is shown in
Table 4-9.

Table 4-9 Data set we are going to use to understand the concept FP algorithm. We have nine
transactions here, for example in T1 we have apple, milk, and eggs.



Transactions Item sets

T1 Apple, Milk, Eggs

T2 Milk, Cheese

T3 Milk, Bread

T4 Apple, Milk, Cheese

T5 Apple, Bread

T6 Milk, Bread

T7 Apple, Bread

T8 Apple, Milk, Bread, Eggs

T9 Apple, Milk, Bread

Let’s apply FP algorithm on this dataset now.

Step 1: Like Apriori, the entire dataset is scanned first. Occurrences for each
of the items is counted and a frequency is generated. The results are as in
Table 4-10. We have arranged the items in descending order of the frequency
or the respective support count in the entire dataset.



Table 4-10 Respective frequency for each of the item set. For example, apples have been
purchased in six transactions.

Item Frequency or Support Count

Milk 7

Apple 6

Bread 6

Cheese 2

Eggs 2

If two items have exactly same frequency, anyone can be ordered first. In the
example above, we have bread and apple having same frequency. So, we can
keep either bread or apple as the first one.

Step 2: Let’s start the construction of the FP tree. We start with creating the
root node which is generally the NULL node in Figure 4-8.

Figure 4-8 The root node for the tree is generally kept NULL.

Step 3: Now analyse the first transaction T1. Here, we have Apple, Milk and
Eggs in the first transaction. Out of these three, milk has the highest support
count which is 7. So, a connection is extended from root node to Milk and we



denote it by Milk:1. We have shown in Figure 4-9.

Figure 4-9 Connection from the root node to Milk. Milk has the highest support hence we have
chosen milk.

Step 4: We will now look at the other items in T1. Apple have a support
count of 6 and Eggs have a support count of 2. So, we will extend the
connection from Milk to Apple and name it Apple:1 and then from Apple to
Eggs and call it Eggs:1. We have shown in Figure 4-10.

Figure 4-10 Step 4 of the process where we have finished all the items in T1. All the items milk,
apple and eggs are now connected with each other.



Step 5: Let’s look at T2 now. It has Milk and Cheese. Milk is already
connected to the root node. So, the count for Milk becomes 2 and it becomes
Milk:2. We will next create a branch from Milk to cheese and name it
Cheese:1. The addition is shown in Figure 4-11.

Figure 4-11 Step 5 of the process where we started to analyze T2. Milk is already connected so it’s
count increases by 2 while cheese gets added to the tree.



Step 6: It is the turn of T3 now. T3 has Milk and Bread. So, similar to step 5,
the count for milk is 3 and it becomes Milk: 3. And similar to step 5, we add
another connection from Milk to Bread and call it Bread:1. The updated tree
is shown in Figure 4-12.

Figure 4-12 In step 6, T3 is analyzed now. Milk’s count increased by one more and becomes 3
while bread is added as a new connection.



Step 7: In T4, we have Apple, Milk and Cheese. The count for milk becomes
4 now, for apple it is now 2. Then we create a branch from Apple to Cheese
calling it Cheese:1. We are showing in Figure 4-13.

Figure 4-13 In the step 7 of the process, T4 is being analyzed. The count of milk becomes 4, for
apple it increases to 2 and a new branch from apple to cheese is added.

Step 8: We can find in T5 that we have Apple and Bread. Both are not
directly connected to the root node and have an equal frequency of 6. So, we
can take anyone to be connected to the root node. The figure gets updated to
Figure 4-14.

Figure 4-14 After analyzing T5, the diagram changes as shown here. We have apple and bread
which get added to the tree.



Step 9: And this process continues till we exhaust all the transactions
resulting in the final figure as shown in Figure 4-15.

Figure 4-15 The final tree once we have exhausted all the possible combinations. But there are
more steps after this. So far, we have created only the tree. Now we need to generate the data set
as shown in Table 4-11.

Great job so far! But the process is not over yet. We have just made the



connections between the items in the dataset. Now we need to fill a table
which looks like Table 4-11.

Table 4-11 Table we are going to complete for FP algorithm. It is the output we wish to generate.

Items Conditional Pattern Base Conditional FP Tree Frequent Pattern Generated

Cheese

Bread

Eggs

Apple

You might be wondering that why there are only 4 items listed. Since Milk
has directly originated from the root node and there is no other way to reach
it, we need not have a separate row for milk.

Step 10: Before starting, we are fixing the minimum support count as 2 for
any rule to be acceptable. We are doing it for simplicity sake as the dataset is
quite small.

For real-life business problems, you are advised to test with multiple and
even much higher values for the support counts otherwise the number of rules
generated can be very high.

Let’s start with Cheese as the first item. We can reach cheese through
{NULL-Milk-Cheese} and {NULL-Milk-Apple-Cheese}. For both the paths,
the count of Cheese is 1. Hence, (if we ignore NULL) our conditional pattern
base is {Milk-Cheese} or {Milk:1} and {Milk-Apple:Cheese} or {Milk-
Apple:1}. The complete conditional pattern base become {{Milk:1},{Milk-



Apple:1}}. This information is added to the second column of Table 4-12.

Table 4-12 Step 10 of the process where we have filled the first cell for cheese. We have filled the
first cell for cheese.

Items Conditional Pattern Base Conditional FP Tree Frequent Pattern Generated

Cheese {{Milk:1},{Milk-Apple:1}}

Bread

Eggs

Apple

Step 11: Now if we add the two values in conditional pattern base, we would
get Milk as 2 and Apple as 1. Since we have set up a threshold for the
frequency count of 2, we will ignore the count of Apple. The value for
conditional FP tree which is the third column in the table become {Milk:2}.
Now we simply add the original item to this which become frequent patten
generated or the column 4. The table now is 4-13

Table 4-13 Step 11 of the process where we have finished the details for the item cheese.
Similarly, all the other items are going to be analyzed and added to the table.

Items Conditional Pattern Base Conditional FP Tree Frequent Pattern Generated

Cheese {{Milk:1},{Milk-Apple:1}} {Milk:2} {Milk-Cheese:2}



Bread

Eggs

Apple

Step 12: In this similar fashion all the other cells are filled in the table
resulting in the final table as Table 4-14.

Table 4-14 Final table after we analyzed all the combinations for the items.

Items Conditional Pattern Base Conditional FP Tree

Cheese  {{Milk:1},{Milk-Apple:1}}  {Milk:2}

Bread  {{Milk-Apple:2}, {Milk:2}, {Apple:2}}  {{Milk:4, Apple:2}, {Apple:2}}

Eggs  {{Milk-Apple:1},{Milk-Apple-Bread:1}}  {Milk:2, Apple:2}

Apple  {Milk:4}  {Milk:4}

It is a complex process indeed. But once the steps are clear, it is pretty
straightforward one.

As a result of this exercise, we have received the final set of rules as depicted
in the final column Frequent Pattern Generated.

Note that none of the rules are similar to each other.



We will be using the final column “Frequent Pattern Generated” as the rules
for our dataset.

The Python implementation for FP growth algorithm is quite simple and is
easy to compute. In the interest of space, we have uploaded the Jupyter
Notebook at the GitHub repo of the chapter. 

We will now explore another interesting topic which is sequence rule mining.
It is very powerful solution which allows the business to tailor their
marketing strategies and product recommendations to the customers.

4.7 Sequence rule mining 

Consider this. Netflix would have the transactional database of all the movies
ordered by customers over time. If they analyse and finds that 65% of
customers who bought a war movie X also bought a romantic comedy Y in
the following month, this is a very insightful and actionable understanding. It
will allow them to recommend their offerings to the customers, and they can
customize their marketing strategy. Isn’t it?

So far in the chapter, we have covered three algorithms for association rules.
But all the data points were limited to the same dataset and there was no
sequencing involved. Sequential pattern mining allows us to analyze a dataset
which has a sequence of events happening. By analyzing the data set we can
find statistically relevant patterns, which allows us to decipher the entire
sequence of events. Obviously, the sequence of events is in a particular order
which is a very important property to be considered during sequence rule
mining.

Sequence rule mining is different from time-series analysis. To know more
about time-series analysis refer to Appendix.

Sequence rule mining is utilized across multiple domains and functions. It
can be used in biology to extract information during DNA sequencing or can
be used to understand the online search pattern of a user. Sequence rule
mining would help us understand what the user is going to search next.
During the discussion of association rules, we used the transactions in which



milk, bread, eggs were purchased in the same transaction. Sequence rule
mining is an extension to that wherein we analyze consecutive transactions
and try to decipher the sequence in the but tears of item sets.

While studying SPADE algorithm, we will study the mathematical concepts
which form the base of the algorithm. These concepts are a little tricky to get
and might require more than one reading to grasp.

4.7.1 SPADE

We are now exploring the sequence rule mining using Sequential Pattern
Discovery using Equivalence classes) or SPADE. It was suggested by
Mohammed J. Zaki, the link to the paper is at the end of this chapter.

We understand that we wish to analyze the sequence of events. For example,
the customer bought a mobile phone and a charger. After a week bought
earphones and after two weeks bought a mobile cover and mobile screen
guard. So, in each of the transactions, there are items purchased. And each
transaction can be called as an event. Let’s understand it in more detail.

Let us assume we have I as the complete list of items for the discussion. I will
contain items like i1, i2, i3, i4, i5 and so on. So, we can write

I = {i1, i2, i3, i4, i5………, in} where we have n distinct items in total.

Items can be anything. If we consider the same example of a grocery store,
items can be milk, eggs, cheese, bread and so on.

An event will be a collection of items in the same transaction. An event can
contain items like (i1, i5, i4, i8). For example, an event can contain items
bought in the same transaction (milk, sugar, cheese, bread). We will denote
an event by ⍺.

Next let’s understand a sequence. A sequence is nothing but events in an
order. In other words, ⍺1 -> ⍺2 ->⍺3 ->⍺4 can be termed as a sequence of
event. For example, (milk, cheese) -> (bread, eggs)-> (cheese, bread, sugar)-
> (milk, bread) is a sequence of transactions. It means that in first transaction



milk, cheese is bought. In the following transaction, bread and eggs were
bought and so on.

A sequence with k items is a k-item sequence. For example, sequence {Milk,
Bread) -> (Eggs) contain 3 items.

We will now understand SPADE algorithm step-by-step.

Let’s say we have the following sequences generated. In the first sequence
1001 of transactions, milk is bought in the very first transaction. In the
second one, milk, eggs and bread are bought. They are followed by milk and
bread. In fourth one only sugar is purchased. In the fifth and final transaction
of sequence 1001, bread and apples are purchased. And this is applicable for
all the respective sequences.

Table 4-15 The dataset for sequence mining. In sequence Id 1001, we have multiple events. In the
first purchase, milk is bought. Then (milk, eggs, bread) are bought and so on.

Sequence ID Sequence

1001 <(Milk) (Milk, Eggs, Bread) (Milk, Bread) (Sugar)(Bread, Apple)>

1002 <(Milk, Sugar) (Bread) (Eggs, Bread) (Milk, Cheese)>

1003 <(Cheese, Apple) (Milk, Eggs) (Sugar, Apple) (Bread) (Eggs)>

1004 <(Cheese, Banana)(Milk, Apple)(Bread)(Eggs)(Bread)>

This (Table 4-15 ) can be converted into a vertical data format as shown in
Table 4-16. In this step, we calculate the frequencies for 1-sequence items,
which are sequence with only one item. For this only a single database scan is
required.



Table 4-16 Vertical format for table 4-15. We have simply got the sequence Id and Item id for
each of the item and represented it here.

Sequence ID Element ID Items

1001 1 Milk

1001 2 Milk, Eggs, Bread

1001 3 Milk, Bread

1001 4 Sugar

1001 5 Bread, Apple

1002 1 Milk, Sugar

1002 2 Bread

1002 3 Eggs, Bread

1002 4 Milk, Cheese

1003 1 Cheese, Apple

1003 2 Milk, Eggs



1003 3 Sugar, Apple

1003 4 Bread

1003 5 Eggs

1004 1 Cheese, Banana

1004 2 Milk, Apple

1004 3 Bread

1004 4 Eggs

1004 5 Bread

The Table 4-16 is nothing but a vertical tabular representation of Table 4-15.
For example, in sequence Id 1001, at the element ID 1 we have Milk. For
sequence ID 1001, at the element ID 2 we have Milk, Eggs, Bread and so on.

For the purpose of explanation, we are considering only two items 0 milk and
eggs and the support threshold of 2.

Then, in the next step we will break it down for each of the items. For
example, milk appears in sequence Id 1001 and element Id 1, sequence Id
1001 and element Id 2, sequence Id 1001 and element Id 3, sequence Id 1002
and element Id 1 and so on. It results into a table like Table 4-17 where we
have shown for Milk and Eggs. It can be applied to all the items in the
dataset.



Table 4-17 Respective sequence Ids for milk and eggs. The same can be done across all the items
and the sequences.

Milk Eggs

Sequence ID Element ID Sequence ID Element ID

1001 1 1001 2

1001 2 1002 3

1001 3 1003 2

1002 1 1003 5

1002 4 1004 5

1003 2   

1004 3   

Now, we wish to count 2-sequences or with 2 item sequences. We can have
two sequence – either Milk -> Eggs or Eggs -> Milk. Let’s first take Milk->
Eggs.

For Milk -> Eggs we need to have milk in front of eggs. For the same
sequence Id, if the element Id of milk is less than element Id of eggs, then it
is an eligible sequence. In the example above, for sequence Id 1002, element



Id of milk is 1 while element Id of eggs is 2. So we can add that as the first
eligible pair as shown in the first row of Table 4-18. The same is true for
sequence Id 1002. In Table 4-17, row 4 we have sequence Id 1002. Element
Id of milk is 1 while that of eggs in row 2 is 3. Again element Id of milk is
lesser than element Id of eggs, so it becomes the second entry. And the
process continues.

Table 4-18 Sequence Milk Eggs can be written down here. The key point is to have the same
sequence Id while comparing the respective element Ids of milk and eggs.

Milk Eggs

Sequence ID Element ID (Milk) Element ID (Eggs)

1001 1 2

1002 1 3

1003 2 5

1004 3 5

By using the same logic, we can create the table for eggs -> milk which is
shown in Table 4-19 below.

Table 4-19 Sequence Eggs Milk can be written down here. The key point is to have the same
sequence Id while comparing the respective element Ids of milk and eggs.

Eggs Milk



Sequence ID Element ID (Milk) Element ID (Eggs)

1001 2 3

1002 3 4

This can be done for each of the possible combinations. We will now move to
creating 3-item sequences and we will create Milk, Eggs -> Milk. For this
purpose, we have to join the two tables.

Table 4-20 Combining both the sequence i.e., milk-> eggs and eggs-> milk to
join the tables.

The logic of joining is matching the sequence Id and the element Id. We have
highlighted the matching ones in red and green colour respectively. For
sequence Id 1001, the element Id of eggs in the left table matches with
element Id of eggs in the right table and that becomes the first entry of Table
4-21. Similarly for sequence Id 1002, element Id 3 matches. This results in
the Table 4-21.

Table 4-21 Final table after we analyzed all the combinations for the items.

Milk, Eggs -> Milk



Sequence ID Element ID (Milk) Element ID (Eggs) Element ID (Milk)

1001 1 2 3

1002 1 3 4

This process continues. The algorithm stops when no frequent sequences can
be found.

We will now implement SPADE on a dataset using Python. The coding for
SPADE is quite simple. We are using pyspade library and hence we have to
load the dataset and call the function. It generates the result for us. The
support is kept as 0.6 here and then we are printing the results.

from pycspade.helpers import spade, print_result

spade_result = spade(filename='SPADE_dataset.txt', support=0.6, parse=True)

print_result(spade_result)

This concludes our four algorithms which we wish to discuss in this chapter.



We will now move to the case study to give a real-life experience to you.

4.8 Case study for association rules 

Association rule mining is quite a helpful and powerful solution. We are
going to solve an actual case study using association rules.

Recall that at the start of the chapter we suggested to study the pattern of a
grocery store. What is the logic of such arrangements in the store?

Consider this. You are working for a grocery retailer like Walmart or Tesco
or Spar or Marks & Spencer’s etc. And they have to plan the visual layout of
a new store. Obviously, it is imperative that retail stores utilize the space in
the store wisely and to the maximum of its capacity. At the same time, it is
vital that the movement of the customers is not hindered. Customers should
have access to all the items at display and can navigate easily. You might
have experienced some stores where we feel choked and bombarded with
displays while others are neatly stacked.

How do we solve this problem?

There can be multiple solutions to this problem. Some retailers might wish to
group the items based on their categories. They might want to keep all the
baking products in one shelf or using any other condition. We are studying
the machine learning example here.

Using market basket analysis, we can generate the rules which indicate the
respective relationships between various items. We can predict which items
are frequently bought together and they can be kept together in the store. For
example, if we know that milk and bread are bought together, then bread can
be kept near the milk counter. The customer purchasing milk can locate bread
easily and continue with their purchase. 

But it is not that easy as it sounds. Let us solve this case step-by-step.

1. Business problem definition : the very first step is defining the
business problem which is clear to us. We wish to discover the



relationships between various items so that the arrangement in the store
can be made better. Here planograms come into picture. Planogram help
the retailer plan the utilization of the space in the store in a wise manner
so that the customer can also navigate and access the products easily. It
can be considered as a visual layout of the store. An example can be
shown as in Figure 4-16.

Figure 4-16 An example of planogram is shown here. Planograms are very useful for visual
merchandising.

In the figure , we can see that there are specific areas for each and every item
categories. Association rules are quite insightful to help generate directions
for planogram.

2. Data discovery : the next step is the data discovery wherein the
historical transactions are scouted and loaded into a database. Typically,
a transaction can look like the Table 4-22.



Table 4-22 Example of invoices generated in real-world retail store. It is quite a challenge to
convert this data format into the one which can be consumed by the association rule algorithms.

Invoice Number Date Items

1001 01-Jun-21 Milk, eggs, cheese, bread

1002 01-Jun-21 Bread, banana, apples, butter

1003 01-Jun-21 Butter, carrots, cheese, eggs, bread, milk, bananas

1004 01-Jun-21 Milk

1005 01-Jun-21 Bread

3. Data preparation: this step perhaps is the most difficult step. As you
would have realised that association rules model creation is a vey simple
task. We have libraries which can do the heavy lifting for us. But the
data set expected by them is in a particular format. This is a tedious task,
quite time consuming and requires a lot of data pre-processing skills.
There are a few considerations you have to keep in mind while
preparing the data set, which are:

4. Sometimes we get NULL or blank values during the data preparation
phase. Missing values in the data sets can lead to problems while
computing. In other machine learning solution, we would advise to treat
the missing values. In the case of association rules, we would suggest to
ignore the respective transactions and do not consider it in the final
dataset.

5. Many times, we get junk values in the data. Special characters like
!@%^&*()_ are found in the datasets. It can be attributed to incorrect
entries in the system. Hence, data cleaning is required.



6. We are covering the data pre-processing step in great detail in the
appendix of the book, wherein we deal with NULL values and junk
values.

7. Converting Table into a format which can be understood and consumed
by the association rule learning algorithms is an imperative but arduous
step. Go through the concept of SQL pivoting to understand the concept
better. Else, you might need someone (a data engineer) to create the
dataset for you.

8. Model preparation : perhaps the easiest of the steps is modelling. We
have already solved Python solutions for different algorithms. So, you
should be quite comfortable with it.

9. Model interpretation : creating the model might be easy but
interpretation of the rules is not. Most of the time, you can rules like:

10. #NA -> (Milk, Cheese) – such a rule is obviously non-usable and does
ot make any sense. It indicated that the data preparation was not correct
and some junk values are still present in the dataset.

11. (Some items) -> (Packaging material) – perhaps the most obvious rule
but again not usable. This rule indicates that whenever shopping is done,
packaging material is also purchased, quite obvious right?

12. (Potatoes, Tomatoes) -> (Onions) : this kind of rule might look correct
but it a common sense knowledge which the retailer would already
know. Obviously, most of the customer who are buying vegetables will
buy potatoes, tomatoes and onion together. Such rules, might not add
much value to the business.

13. Threshold for support, confidence and lift allows to filter out the most
important rules. We can sort the rules in the descending order of the lift
and then remove the most obvious ones.

14. Business subject-matter expert : it is of vital importance that business
stakeholders and subject matter experts are involved at each and every
step. In this case study, operations team, visual merchandising team,
product teams and marketing teams are the key players which should be
closely aligned at each and every step.

15. Once the rules are generated and accepted, then we can use them to
improve the planogram for the retail space. The retailer can use them to
improve the marketing strategy and improve the product promotions.
For example, if a rule like (A, B) -> (C) is accepted, the retailer might
wish to create a bundle of the products and sell them as a single entity. It



will increase the average items purchased in the same transaction for the
business.

16. This case study can be extended to any other domain or business
function. For example, the same steps can be used if we wish to examine
user’s movement across web pages. Web developers can analyse the
historical clicks and usages of the customers on their websites. By
identifying the patterns, they can find out what user tends to click and
which features will maximise their engagements. Medical practitioners
can use association rules to better diagnose patients. The doctors can
compare the probability of the symptoms in relationships with other
symptoms and provide more accurate diagnosis.

We will now examine limitations of these algorithms and other solutions
which are available for association rules and sequence rules.

4.9 Limitations and Summary 

There are some assumptions and limitations in the association rules and
sequence rules we have studied.

1. The respective significance of an item is ignored while we generate the
rules. For example, if a customer purchased 5 cans of milk and one kg of
apples in a transaction, it is treated similar to an invoice in which one
can of milk and five kg of apples are purchased. Hence, we have to bear
in mind that the respective weight of an item in not being considered.

2. The cost of an item indicated the perceived value of a product. Some
products which are costly are more important and hence, if they are
purchased by the customer more revenue can be generated. While
analysing the invoices, we ignore the cost associated with an item.

3. While analysing the sequence, we have not considered the respective
time periods between the two transactions. For example, if between T1
and T2, there were 10 days while between T2 and T3 there were 40 days
– both are considered as same.

4. In all the analysis, we have considered different categories as same.
Perishable items and non-perishable items are treated in a similar
fashion. For example, milk with a shelf life of 2-3 days is treated similar
to washing powder.



5. Many times we receive non-interesting rules after analysis. These results
are from common sense (Potatoes, Tomatoes) -> (Onion). Such rules are
not of much use. We face such an issue a lot of the time.

6. While non-interesting rules are a challenge, huge number of discovered
rules are again one of the problems. We get hundreds of rules and it
becomes difficult to understand and analyse each one of them. Here, the
thresholding becomes handy.

7. The time and memory requirements for computations are huge. The
algorithms require to scan the data sets many times and hence it is quite
a time consuming exercise.

8. The rules generated are dependent on the data set which has been used
for analysis. For example, if we analyse the data set generated during
summers only, we cannot use the rules for winters as consumers
preference change between different weathers. Moreover, we have to
refresh the algorithms over time since with the passage of time, the
macro and micro economic factors change and hence, the algorithms
should be refreshed too.

There are some other algorithms which are also of interest. For association
rules, we can have multi-relation association rules, k-optimal pattern
discovery, approximate frequent data set, generalized association rules, high
order pattern discovery etc. For sequence mining, we have Generalized
Sequence Pattern, FreeSpan, PrefixSpan, Mining associated patterns etc.
These algorithms are quite interesting and can be studied for knowledge
enhancement.

Association rules and sequence mining are quite interesting topics. Various
business domains and functions are increasingly using association rules to
understand the pattern of events. These insights allow the teams to take sound
and scientific decisions to improve the customer experience and overall
engagement. This chapter is the first chapter in the second part of the book.
We have explored association rules and sequence mining in this chapter.
These are studied using Apriori, FP and ECLAT algorithms and for sequence
mining we used SPADE.

In the next chapter, we are studying advanced clustering algorithms. So stay
tuned!



You can now progress to question section.

Practical next steps and suggested readings

1. Go through these research papers for association rules algorithm
2. Fast discovery of association rules

(http://www.cs.bme.hu/~marti/adatbanya/apriori_hashtree.pdf)
3. Fast algorithms for Mining Association Rules (https://rakesh.agrawal-

family.com/papers/vldb94apriori.pdf)
4. Efficient analysis of Pattern and Association Rule Mining Approaches

(https://arxiv.org/pdf/1402.2892.pdf)
5. A review of association rule mining techniques with respect to their

privacy preserving capabilities
(https://www.ripublication.com/ijaer17/ijaerv12n24_216.pdf)

6. For sequence mining, go through these research papers:
7. SPADE: An efficient algorithm for mining frequent sequences

(https://link.springer.com/content/pdf/10.1023/A:1007652502315.pdf)
8. Sequential mining: patterns and algorithm analysis

(https://arxiv.org/pdf/1311.0350.pdf)
9. Sequential pattern mining algorithm based on interestingness

(https://ieeexplore.ieee.org/document/8567170)
10. A new approach for problem of Sequential Pattern Mining

(https://link.springer.com/chapter/10.1007/978-3-642-34630-9_6)



5 Clustering (advanced)
“Out of complexity, find simplicity– Einstein”

Sometimes life is very simple, and sometimes we experience quite complex
situations. We sail through both the situations and change our approach as per
the situation.

In the Part one of the book we covered easier and simpler topics. It made you
ready for the journey ahead. We are currently in Part two which is slightly
more complex than Part one. Part three is more advanced than the first two
parts. So, the level of difficulty will increase slightly with each and every
chapter along with the expectations.

We studied clustering algorithms in part one of the book. We understand that
clustering is an unsupervised learning technique where we wish to group the
data points by discovering interesting patterns in the datasets. We went
through the meaning of clustering solutions, different categories of clustering
algorithm and a case study at the end. In that chapter, we explored kmeans
clustering, hierarchical clustering and DBSCAN clustering in depth. We went
through the mathematical background, process, Python implementation and
pros and cons of each. Before starting this chapter, it is advisable to refresh
chapter two.

Many times you might encounter datasets which do not conform to a simple
shape and form. Moreover, we have to find the best fit before making a
choice of the final algorithm we wish to implement. Here, we might need
help of more complex clustering algorithms; the topic for the chapter. In this
chapter, we are going to again study three such complex clustering
algorithms – spectral clustering, Gaussian Mixture Models (GMM) clustering
and fuzzy clustering. As always, Python implementation will follow the
mathematical and theoretical concepts. This chapter is slightly heavy on the
mathematical concepts. There is no need for you to be a PhD. in
mathematics, but it is sometime important to understand how the algorithms
work in the background. At the same time, you will be surprised to find that



Python implementation of such algorithms is not tedious. This chapter is not
having any case study.

In this fifth chapter of the book, we are going to cover the following topics:

1. Spectral clustering
2. Fuzzy clustering
3. Gaussian Mixture Models (GMM) clustering
4. Summary

Welcome to the fifth chapter and all the very best!

5.1 Technical toolkit

We will continue to use the same version of Python and Jupyter notebook as
we have used so far. The codes and datasets used in this chapter have been
checked-in at GitHub
(https://github.com/vverdhan/UnsupervisedLearningWithPython/tree/main/Chapter%205

We are going to use the regular Python libraries we have used so far –
numpy, pandas, sklearn, seaborn, matplotlib etc. You would need to install a
few Python libraries in this chapter which are – skfuzzy and network . Using
libraries, we can implement the algorithms very quickly. Otherwise, coding
these algorithms is quite a time-consuming and painstaking task.

Let’s get started with a refresh of clustering!

5.2 Clustering

Recall from chapter 2, clustering is used to group similar objects or data
points. It is an unsupervised learning technique where we intend to find
natural grouping in the data as shown in Figure 5-1.

Figure 5-1 Clustering of objected result into natural grouping.



Here we can observe that on the left side we have ungrouped data and on the
right side the data points have been grouped into logical groups. We can also
observe that there can be two methodologies to do the grouping or clustering,
and both result into different clusters. Clustering as a technique is quite
heavily used in business solutions like customer segmentation, market
segmentation etc.

We have understood kmeans, hierarchical and DBSCAN clustering in chapter
2. We also covered various distance measurement techniques and indicators
to measure the performance of clustering algorithms. You are advised to
revisit the concepts.

In this chapter, we are focussing on advanced clustering methods. We will
now start with Spectral clustering in the next section.

5.3 Spectral Clustering

Spectral clustering is one of the unique clustering algorithms. There are some
good quality research is done in this field. Revered researchers like Prof.
Andrew Yang, Prof. Michael Jordan, Prof. Yair Weiss, Prof. Jianbo Shi, Prof.
Jitendra Malik to name a few. We are quoting some of the papers in the last



section of the chapter.

Let’s define spectral clustering first. Spectral clustering works on the affinity
and not the absolute location of the data points for clustering. And hence,
wherever the data is in complicated shapes, spectral clustering is the answer.
We have shown a few examples in the Figure 5-2 where spectral clustering
can provide a logical solution.

Figure 5-2 Examples of various complex data shapes which can be clustered using Spectral
Clustering.

For Figure 5-2, we could have used other algorithms like k-means clustering
too. But they might not be able to do justice to such complicated shapes of
the data. Formally put, algorithms like kmeans clustering utilize compactness
of the data points. In other words, the closeness of the points to each other
and compactness towards the cluster center, drive the clustering in kmeans.
On the other hand, in Spectral clustering connectivity is the driving logic. In
connectivity, either the data points are immediately close to one another or
are connected in some way. The examples of such connectivity-based
clustering have been depicted in Figure 5-2.

Look at the Figure 5-3(i) where the data points are in this doughnut pattern.
There can be data points which can follow this doughnut pattern. It is a
complex pattern and we have to cluster these data points. Imagine that by
using a clustering method, the red circles are made a part of the same cluster,



which is shown in Figure 5-3(ii). After all, they are close to each other. But if
we look closely, the points are in a circle, are in a pattern and hence the actual
cluster should be as shown in Figure 5-3(iii).

Figure 5-3 (i) We can have such a complex representation of data points which need to be
clustered. Observe the doughnut shape (ii) A very simple explanation can result in red dots being
considered as a part of the same cluster but clearly, they are not part of the same cluster (iii) We
have two circles over here. The points in the inner circle belong to one cluster whereas the outer
points belong to another cluster

The example shown in Figure 5-3 is to depict the advantages with Spectral
clustering.

Like we said earlier, spectral clustering utilizes connectivity approach in
clustering. In spectral clustering, data points which are immediately next to
each other are identified in a graph. These data points are sometimes referred
to as node. These data points or nodes are then mapped to a low-dimensional
space. A low dimensional space is nothing but having During this process,
spectral clustering uses eigenvalues, affinity matrix, Laplacian matrix and
degree matrix derived from the data set. The low-dimensional space can then
be segregated into clusters.

Spectral clustering utilizes connectivity approach for clustering wherein It
relies on graph theory wherein we identify clusters of nodes based on the
edges connecting them.

We will study the process in detail. But before examining the process, there
are a few important mathematical concepts which form the foundation of



spectral clustering which we will cover now.

5.3.1 Building blocks of Spectral Clustering

We know that the goal of clustering is to group data points which are similar
into one cluster, while the data points which are not similar into another one.
There are a few mathematical concepts we should be aware. We will start the
concept of similarity graphs, which is quite an innate representation for data
points.

Similarity graphs

A graph is one of the easiest and intuitive method to represent data points. In
the Figure 5-4(i), we are showing an example of a graph which is nothing but
a connection between data points represented by the edge. Now two data
points are connected if the similarity between them is positive or it is above a
certain threshold which is shown in Figure 5-4(ii). Instead of absolute values
for the similarity, we can use weights for the similarity. So, in Figure 5-4(ii),
as point 1 and 2 are similar as compared to point 1 and 3, the connection
between point 1 and 2 has a higher weight than point 1 and 3.

Figure 5-4(i) A graph is a simple representation of data points. The points or nodes are connected
with each other if they are very similar (ii) The weight is higher if the similarity between data
points is high else for dissimilar data points, the weight is less.

So, we can conclude that – using Similarity Graphs we wish to cluster the



data points such that

the edges of the data points have higher value of weight and hence are
similar to each other and so are in the same cluster.
the edges of the data points have lower values of weight and hence are
not similar to each other and so they are in different clusters.

Apart from similarity graphs, we should also know the concept of Eigen
values and Eigen vectors which we have covered in detail in the previous
chapter. You are advised to refresh it. We will now move to the concept of
Adjacency matrix.

Adjacency Matrix

Have a close look at Figure 5-5. We can see those various points from 1 to 5
are connected with each other. And then we are representing the connection
in a matrix. That matrix is called Adjacency Matrix.

Formally put, in adjacency matrix, the rows and columns are the respective
nodes. The values inside the matrix represent the connection – if the value is
0 that means there is no connection and if the value is 1, it means there is a
connection.

Figure 5-5 Adjacency matrix represents the connection between various nodes, if the value is 1
that means the corresponding nodes in the row and column are connected. If the value is 0, it
means they are not connected. For example, there is a connection between node 1 and node 5
hence the value is 1 while there is no connection between node 1 and node 4 hence the
corresponding value is 0.



So for adjacency matrix, we are only concerned if there is a connection
between two data points. If we extend the concept of adjacency matrix, we
get degree matrix which is our next concept.

Degree Matrix

Formally put, a degree matrix is a diagonal matrix, where the degree of a
node along the diagonal is the number of edges connected to it. If we use the
same example as above, we can have the degree matrix as shown in Figure 5-
6. Node 3 and 5 have three connections each and they are getting 3 as the
values along the diagonal while the other nodes have only two connections
each, so they have 2 as the value along the diagonal.

Figure 5-6 While adjacency matrix represents the connection between various nodes, degree
matrix is for the number of connections to each node. For example, node 5 has three connections
and hence has 3 in front of it while node 1 has only two connections so it has 2.



You might be wondering why do we use matrix? Matrix provide an elegant
representation of the data and can clearly depict the relationships between
two points.

Now we have covered both adjacency matrix and degree matrix, we can
move to Laplacian matrix.

Laplacian Matrix

There are quite a few variants of Laplacian matrix, but if we take the simplest
form of Laplacian matrix, it is nothing but a subtraction of adjacency matrix
from the degree matrix. In other words, L = D – A. We can show it as Figure
5-7.

Figure 5-7 Laplacian matrix is quite simple to understand. To get a Laplacian matrix, we can
simply subtract an adjacency matrix from the degree matrix as shown in the example above.
Here, D represents the degree matrix, A is the adjacency matrix and L is the Laplacian matrix.



Laplacian matrix is quite an important one and we use the eigen values of L
to develop spectral clustering. Once we get the eigen values and eigen
vectors, we can define two other values – spectral gap and Fielder value. The
very first non-zero eigen value is the Spectral Gap which defines the density
of the graph. The Fielder value is the second eigen value which provides us
an approximation of the minimum cut required to separate the graph into two
components. The corresponding vector for Fielder value is called the Fielder
vector.

Fielder vector has both negative and positive components and their resultant
sum is zero.

We will use this concept once we study the process of Spectral clustering in
detail in the next section. We will now cover one more concept of Affinity
matrix before moving to the process of Spectral clustering.

Affinity Matrix

In the adjacency matrix, if we replace the number of connections with the
similarity of the weights, we will get affinity matrix. If the points are
completely dissimilar, the affinity will be 0 else if they are completely similar
the affinity will be 1. The values in the matrix represent different levels of
similarity between data points.

 



 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   The degree matrix is created by counting the number of connections. True
or False.

2.   Laplacian is a transpose of the division of degree and adjacency matrix.
True or False.

3.   Write a matrix on a paper and then derive its adjacency and degree
matrix.

We have now covered all the building blocks for Spectral clustering. We can
now move to the process of Spectral clustering.

5.3.2 Process of Spectral Clustering

Now we have covered all the building blocks for Spectral clustering. At a
high level, the various steps can be noted as:

1. We get the dataset and calculate its degree matrix and Adjacency matrix.
2. Using them, we get the Laplacian matrix.
3. Then we calculate the first k eigen vectors of the Laplacian matrix. The

k eigenvectors are nothing but the ones which correspond to the k
smallest eigen values.

4. The matrix such formed is used to cluster the data points in k-
dimensional space.

We will now cover the process of Spectral clustering using an example as
shown in Figure 5-8. These are the steps which are generally not followed in
real-world implementation as we have packages and libraries to achieve it.
These steps are covered here to give you the idea of how the algorithm can be
developed from scratch. For the Python implementation, we will use the
libraries and packages only. Though it is possible to develop an
implementation from scratch, it is not time efficient to reinvent the wheel.

Figure 5-8 Consider the example shown where we have some data points and they are connected
with each other. We will perform Spectral clustering on this data.



Now when we wish to perform the spectral clustering on this data.

1. We will leave it upto you to create the adjacency matrix and degree
matrix.

2. The next step is creating the Laplacian matrix. We are sharing the output
Laplacian matrix in Figure 5-9.

Figure 5-9 Laplacian matrix of the data is shown here. You are advised to create the degree and
adjacency matrix and check the output.



3. Now, the Fielder vector is shown in Figure 5-10 for the above Laplacian
matrix. We create the Fielder vector as described in the last section.
Observe how the sum of the matrix is zero.

Figure 5-10 Fielder vector is the output for the Laplacian matrix, observe that the sum is zero
here.



4. We can see that there are a few positive values and a few negative
values, based on which we can create two distinct clusters. This is a very
simple example to illustrate the process of Spectral Clustering.

Figure 5-11 The two clusters are identified. This is a very simple example to illustrate the process
of Spectral Clustering.



The above process is a very simple representation of Spectral Clustering. 
Spectral clustering is useful for image segmentation, speech analysis, text
analytics, entity resolution etc. It is quite easy and intuitive method and does
not make any assumption about the shape of the data. Methods like kmeans
assume that the points are in a spherical form around the center of the cluster
whereas there is no such strong assumption in Spectral clustering.

Another significant difference is that in spectral clustering the data points
need not have convex boundaries as compared to other methods where
compactness drives clustering. Spectral clustering is sometimes slow since
eigne values, Laplacians etc. have to be calculated. With a large dataset the
complexity increases and hence Spectral clustering can become slow, but it a
fast method when we have a sparse dataset.

We will now proceed to Python implementation of Spectral Clustering
algorithm.

5.2.1     Python implementation of Spectral Clustering

We have covered so far, the theoretical details of Spectral Clustering, it is
time to get into the code. For this, we will curate a dataset and run k-means
algorithm. And then Spectral Clustering to compare the results.



Step 1: Import all the necessary libraries first. These libraries are standard
libraries except a few which we will cover. sklearn is one of the most
famous and sought-after libraries and from sklearn we are importing
SpectralClustering, make_blobs and make_circles.

from sklearn.cluster import SpectralClustering

from sklearn.datasets import make_blobs

import matplotlib.pyplot as plt

from sklearn.datasets import make_circles

from numpy import random

import numpy as np

from sklearn.cluster import SpectralClustering, KMeans

from sklearn.metrics import pairwise_distances

from matplotlib import pyplot as plt

import networkx as nx

import seaborn as sns

Step 2: We will now curate a dataset. We are using make_circles method.
Here we are taking 2000 samples and representing them in a circle. The
output is shown below.

data, clusters = make_circles(n_samples=2000, noise=.01, factor=.3, random_state=5)

plt.scatter(data[:,0], data[:,1])

Step 3: We will now test this dataset with kmeans clustering. The two colors
are showing two different clusters which are overlapping with each other.

kmeans = KMeans(init='k-means++', n_clusters=2)



km_clustering = kmeans.fit(data)

plt.scatter(data[:,0], data[:,1], c=km_clustering.labels_, cmap='prism', alpha=0.5, edgecolors='g')

Step 4: We will now run the same data with Spectral Clustering and we find
that the two clusters are being handled separately here.

spectral = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', random_state=5)

sc_clustering = spectral.fit(data)

plt.scatter(data[:,0], data[:,1], c=sc_clustering.labels_, cmap='prism', alpha=0.5, edgecolors='g')

We can observe here that the same dataset is handled differently by the two
algorithms. Spectral clustering is handling the dataset better as the circles
which are separate are depicted separately.



Step 5: You are advised to simulate various cases by changing the values in
the dataset and run the algorithms. Observe the different outputs for
comparison.

With this we have finished the first algorithm in this chapter. We will now
move to Fuzzy Clustering in the next section.

5.3 Fuzzy Clustering

So far, we have covered quite a few clustering algorithms. Did you wonder
that why a data point should belong to only one cluster? Why can’t a data
point belong to more than one clusters? Have a look at Figure 5-12.

Figure 5-12 The figure of the left represents all the data points. The red points can belong to more
than one clusters. In fact, we can allocate more than one cluster to each and every point. A
probability score can be given for a point to belong to a particular cluster.

We know that clustering is used to group items in cohesive groups based on
the similarities between them. The items which are similar are in one cluster,
whereas the items which are dissimilar are in different clusters. The idea of



clustering is to ensure the items in same cluster should be as much similar to
each other. When the items can be only in one cluster, it is called as hard
clustering. K-means clustering is a classic example of hard clustering. But if
we reflect back on the Figure 5-12, we can observe that an item can belong to
more than one clusters. It is also called soft clustering.

It is computationally cheaper to create fuzzy boundaries than create hard
clusters.

In fuzzy clustering, an item can be assigned to more than one cluster. The
items which are closer to the center of a cluster, might be the part of the
cluster to a higher degree than the items which are near the cluster’s edge. It
is referred as membership. It employs least-square solutions to the most
optimal location of an item. This optimal location might be the probability
space between the two or more clusters. We will examine this concept in
detail when we study the process of fuzzy clustering in detail and now, we
will move to types of fuzzy clustering algorithms.

5.3.3 Types of Fuzzy Clustering

Fuzzy clustering can be further divided between classical fuzzy algorithms
and shape-based fuzzy algorithms which we are showing by means of a
diagram Figure 5-13.

Figure 5-13 Fuzzy algorithms can be divided into Classical Fuzzy algorithm and Shape-based
fuzzy algorithm.



We will cover the Fuzzy c-means algorithm in detail here. Rest of the
algorithms we will cover in brief.

1. Gaustafson-Kessel algorithm or sometimes called as GK algorithm
works by associating an item with a cluster and a matrix. GL results in
elliptical clusters and in order to modify as per varied structures in the
datasets GK uses the covariance matrix. It allows the algorithm to
capture the elliptical properties of the cluster. GK can result in narrower
clusters and wherever the number of items is higher, those areas can be
thinner.

2. Gath-Geva algorithm is not based on an objective function. The clusters
can result in any shape since it is a fuzzification of statistical estimators.

3. The shape based clustering algorithms are self-explanatory as per their
names. A circular fuzzy clustering algorithm will result in circular
shaped clusters and so on.

4. Fuzzy c-means algorithm or FCM algorithm is the most popular fuzzy



clustering algorithm. It was initially developed in 1973 by J.C. Dunn
and then it has been improved multiple times. It is quite similar to k-
means clustering. There is a concept of membership which we will
cover now.

Refer to Figure 5-14. In the first figure, we have some items or data points.
These data points can be a part of a clustering dataset like customer
transactions etc. In the second figure, we create a cluster for these data points.
While this cluster is created, membership grades are allocated to each of the
data points. These membership grades suggest the degree or the level to
which a data point belong to a cluster. We will shortly examine the
mathematical function to calculate these values.

We should not be confused between the degree and the probabilities. If we
sum these degrees, we may not get 1 as these values are normalized between
0 and 1 for all the items.

In the third figure, we can observe and compare that the point 1, is closer to
the cluster center and hence belong to the cluster to a higher degree than point
2 which is closer to the boundary or the edge of the cluster.

Figure 5-14 (i) We have some data points here which can be clustered (ii) The data points can be
grouped into two clusters. For the first cluster, the cluster centroid is represented using a + sign.
(iii) We can observe here that point 1 is much closer to the cluster center as compared to point 2.
So, we can conclude that point 1 belongs to this cluster to a higher degree than cluster 2.

We will now venture into the technical details of the algorithm. It might be a
little mathematically heavy though and hence this section can be treated as



optional.

Consider we have a set of n items

X = {x1, x2, x3, x4, x5…. xn}

We apply FCM algorithm on these items. These n items are clustered into c
fuzzy clusters based on some criteria. Let’s say that we will get from the
algorithm, a list of c cluster centers as    C = {c1, c2, c3, c4, c5…. cc}

The algorithm also returns a partition matrix which can be defined as below.

Here, each of the element wi,j is the degree to which each of the element in X
belong to cluster cj. This is the purpose of partition matrix.

Mathematically, we can get wi,j as shown in Equation 5-1. The proof of the
equation is beyond the scope of the book.

The algorithm generates centroids for the clusters too. The centroid of a
cluster is the mean of all the points in that cluster and the mean is weighted
by their respective degrees of belonging to that cluster. wherein If we
represent it mathematically, we can write it like in Equation 5-2.



In the Equation 5-1 and 5-2 we have a very important term “m”. m is the
hyperparameter which is used to control the fuzziness of the clusters. The
values for m ≥ 1 and can be kept as 2 generally.

Higher the value of m, we will receive fuzzier clusters.

We will now examine step-by-step process in FCM algorithm:

1. First, we start as we start in k-means clustering. We choose the number
of clusters we wish to have in the output.

2. Then the coefficients are allocated randomly to each of the data points.
3. Now we wish to iterate till the algorithm has converged. Recall how the

k-means algorithm converges, wherein we initiate the process by
randomly allocating the number of clusters. And then iteratively we
calculate the centroid for each of the clusters. This is how kmeans
converges. For FCM, we will utilizing the similar process albeit with
slight differences. We have added a membership value wi,j and m.

4. For FCM, for the algorithm to converge we calculate the centroid for
each of the cluster as per Equation 5-2.

5. For each of the data points, we also calculate its respective coefficient
for being in that particular cluster. We will use Equation 5-1.

6. Now we have to iterate until FCM algorithm has converged. The cost
function which we wish to minimize is given by the ()



Once this function has been minimized, we can conclude that that the FCM
algorithm has converged. Or in other words, we can stop the process as the
algorithm has finished processing.

It will be a good stage now to compare with kmeans algorithm. In kmeans,
we have a strict objective function which will allow only one cluster
membership while for FCM clustering, we can get different clustering
membership based on the probability scores.

FCM is a very useful for the business cases where the boundary between
clusters is not clear and stringent. Consider in the field of bio-informatics
wherein a gene can belong to more than one cluster. Or if we have
overlapping datasets like in fields of the marketing analytics, image
segmentation etc. FCM can give comparatively more robust results than
kmeans.

We will now proceed to Python implementation of FCM clustering in the
next section.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   Fuzzy clustering allows us to create overlapping clusters. True or False.

2.   A data point can belong to one and only one cluster. True or False.

3.   If the value of “m” is lower, we get more clear clusters. True or False.

5.3.4 Python implementation of FCM



We have covered the process of FCM in the last section. We will now work
on the Python implementation of FCM in this section.

Step 1: Import the necessary libraries.

import skfuzzy as fuzz

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

Step 2: We will now declare a color palette, which will be used later for color
coding the clusters.

color_pallete = ['r','m','y','c', 'brown', 'orange','m','k', 'gray','purple','seagreen']

Step 3: We will define the cluster centers.

cluster_centers = [[1, 1],

           [2, 4],

           [5, 8]]

Step 4:

sigmas = [[0.5, 0.6],

          [0.4, 0.5],

          [0.1, 0.6]]

Step 5:

np.random.seed(5)  

 

 

xpts = np.zeros(1)

ypts = np.zeros(1)

labels = np.zeros(1)

for i, ((xmu, ymu), (xsigma, ysigma)) in enumerate(zip(cluster_centers, sigmas)):

    xpts = np.hstack((xpts, np.random.standard_normal(500) * xsigma + xmu))

    ypts = np.hstack((ypts, np.random.standard_normal(500) * ysigma + ymu))

    labels = np.hstack((labels, np.ones(500) * i))

Step 6:



fig0, ax0 = plt.subplots()

for label in range(5):

    ax0.plot(xpts[labels == label], ypts[labels == label], '.')

ax0.set_title('Data set having 500 points.')

plt.show()

Step 7:

fig1, axes1 = plt.subplots(3, 3, figsize=(10, 10))

alldata = np.vstack((xpts, ypts))

fpcs = []

 

for ncenters, ax in enumerate(axes1.reshape(-1), 2):

    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(

        alldata, ncenters, 2, error=0.005, maxiter=1000, init=None)

 

    # Store fpc values for later

    fpcs.append(fpc)

 

    # Plot assigned clusters, for each data point in training set

    cluster_membership = np.argmax(u, axis=0)

    for j in range(ncenters):

        ax.plot(xpts[cluster_membership == j],

                ypts[cluster_membership == j], '.', color=colors[j])

 

    # Mark the center of each fuzzy cluster

    for pt in cntr:

        ax.plot(pt[0], pt[1], 'rs')

 

    ax.set_title('cluster_centers = {0}; FPC = {1:.2f}'.format(ncenters, fpc), size=12)



    ax.axis('off')

 

fig1.tight_layout()



With this we conclude Fuzzy Clustering and we can move to Gaussian
Mixture model in the next section.

5.4 Gaussian Mixture Model

We would continue our discussion of soft clustering from the last section.
Recall we introduced Gaussian Mixture Model there. Now we will elaborate
on it. We will study the concept and have a Python implementation for it.

First let refresh our understanding of the Gaussian distribution or sometimes
called as normal distribution. You might have heard bell-curve, it means the
same thing.

In the Figure 5-15, observe that the distribution where the µ (mean) is 0 and
σ2 (standard deviation) is 1. It is a perfect normal distribution curve. Compare
the distribution in different curves here.

(Image source – Wikipedia)

Figure 5-15 A Gaussian distribution is one of the most famous distributions. Observe how the
values of mean and standard deviation are changed and their impact on the corresponding curve.



The mathematical expression for Gaussian distribution is

The equation above is also called the Probability Density Function (pdf). In



the Figure 5-15, observe that the distribution where the µ is 0 and σ2 is 1. It is
a perfect normal distribution curve. Compare the distribution in different
curves in the Figure 5-15 where by changing the values of mean and standard
distribution, we are getting different graphs.

You might be wondering why we are using Gaussian distribution here. There
is a very famous statistical theorem call as the Central Limit Theorem. We are
explaining the theorem briefly here. As per the theorem, the more and more
data we collect, the distribution tends to become more and more Gaussian.
This normal distribution can be observed across all walks of like, be it
chemistry, physics, mathematics, biology or any other branch. That is the
beauty of Gaussian distribution.

The plot shown in Figure 5-15 is one-dimensional. We can have multi-
dimensional Gaussian distribution too. In case of a multi-dimensional
Gaussian distribution, we will get a 3-D figure shown in Figure 5-16. Our
input was a scalar in one-dimensional. Now instead of scalar, out input is
now a vector, mean is also a vector and represents the center of the data. And
hence mean has the same dimensionality as the input data. The variance is
now covariance matrix ∑. This matrix not only tells us the variance in the
inputs, it also comments on the relationship between different variables. In
other words, if the value of x is changed, how the values of y get impacted. 
Have a look at Figure 5-16 below. We can understand the relationship
between x and y variable here.

(Image source – Wikipedia)

Figure 5-16 3-D representation of a Gaussian Distribution is shown here.



Covariance plays a significant role here. K-means does not consider the
covariance of a dataset, which is used in GMM model.

Let’s examine the process of GMM clustering. Imagine we have a dataset
with n items. When we use GMM clustering, we do not find the clusters
using centroid method, instead we fit a set of k gaussian distributions to the
data set at hand. In other words, we have k clusters. We have to determine the
parameters for each of these Gaussian distributions which are mean, variance
and weight of a cluster. Once the parameters for each of the distribution are
determined, then we can find the respective probability for each of the n
items to belong to k clusters.

Mathematically, we can calculate the probability as shown in Equation 5-5.
The equation is used to for us to know that a particular point x is a linear
combination of k Gaussians. The term Φj is used to represent the strength of
the Gaussian and it can be seen in the second equation that the sum of such
strength is equal to 1.



For spectral clustering, we have to identify the values of Φ, ∑ and µ. As you
would imagine, getting the values of these parameters can be a tricky
business. It is indeed a slightly complex called Expectation-Maximization
technique or EM technique, which we will cover now. This section is quite
heavy on mathematical concepts and is optional.

5.4.1 Expectation-Maximization (EM) technique

EM is a statistical and mathematical solution to determine the correct
parameters for the model. There are quite a few techniques which are
popular, perhaps maximum likelihood estimation is the most famous of them
all. But at the same time, there could be a few challenges with maximum
likelihood too. The data set might have missing values or in other words the
dataset is incomplete. Or it is a possibility that a point in the dataset is
generated by two different Gaussian distributions. Hence, it will be very
difficult to determine that which distribution generated that data point. Here,
EM can be helpful.

k-means uses only mean while GMM utilizes both mean and variance of the
data.

The processes which are used to generate a data point are called latent
variables. Since we do not know the exact values of these latent variables,
EM firsts estimates the optimum values of these latent variables using the
current data. Once this is done, then the model parameters are estimated.
Using these model parameters, the latent variables are again determined. And
using these new latent variables, new model parameters are derived. And the
process continues till a good enough set of latent values and model



parameters are achieved which fit the data well. Let’s study in more detail
now.

We will take the same example we had in the last section.

Imagine we have a dataset with n items. When we use GMM clustering, we
do not find the clusters using centroid method, instead we fit a set of k
gaussian distributions to the data set at hand. In other words, we have k
clusters. We have to determine the parameters for each of these Gaussian
distributions which are mean, variance and weight of a cluster. Let’s say that
mean is µ1, µ2, µ3, µ4…. µk and covariance is ∑1, ∑2, ∑3, ∑4…. ∑k. We can
also have one more parameter to represent the density or strength of the
distribution and it can be represented by the symbol Φ.

Now we will start with the Expectation or the E step. In this step, each data
point is assigned to a cluster probabilistically. So, for each point we calculate
its probability to belong to a cluster, if this value is high the point is in the
correct cluster else the point is in the wrong cluster. In other words, we are
calculating the probability that each data point is generated by each of the k
Gaussians.

Since we are calculating probabilities, these are called soft assignments.

The probability is calculated using the formula in Equation 5-6. If we look
closely, the numerator is the probability and then we are normalizing by the
denominator. The numerator is the same we have seen in Equation 5-5.

In the Expectation step above, for a data point xi,j, where i is the row and j is
the column, we are getting a matrix where rows are represented by the data
points and columns are their respective Gaussian values.



Now the expectation step is finished, we will perform the maximization or
the M step. In this step, we will update the values of µ, ∑ and Φ using the
formula below in Equation 5-7. Recall in k-means clustering, we simply take
the mean of the data points and move ahead. We do something similar here
albeit use the probability or the expectation we calculated in the last step.

The three values can be calculated using the Equation below. Equation 5-7 is
the calculation of the covariances ∑j, wherein we calculate the covariances of
all the points, which is then weighted by the probability of that point being
generated by Gaussian j. The mathematical proofs are beyond the scope of
this book.

The mean µj, is determined by Equation 5-8. Here, we determine the mean
for all the points, weighted by the probability of that point being generated by
Gaussian j. 

Similarly, the density or the strength is calculated by Equation 5-9, where we
add all the probabilities for each point to be generated by Gaussian j and then
divide by the total number of points N.



Based on these values, new values for ∑, µ and Φ are derived, and the
process continues till the model converges. We stop when we are able to
maximize the log-likelihood function.

It is a complex mathematical process. We have covered it to give you the in-
depth understanding of what happens in the background of the statistical
algorithm. The Python implementation is much more straight forward than
the mathematical concept which we will cover now.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   Gaussian distribution has mean equal to 1 and standard deviation equal to
0. True or False.

2.   GMM models does not consider the covariance of the data. True or False.

5.4.2 Python implementation of GMM

We will first import the data and then we will compare the results using
kmeans and GMM.

Step 1: We will import all the libraries and import the dataset too.

import pandas as pd

data = pd.read_csv('vehicle.csv')

import matplotlib.pyplot as plt

Step 2: We will now drop any NA from the dataset.



data = data.dropna()

Step 3: We will now fit a kmeans algorithm. We are keeping the number of
clusters as 5. Please note that we are not saying that they are idle number of
clusters. These number of clusters are only for illustrative purpose. We are
declaring a variable kmeans and then using five clusters and then the dataset
is fit next.

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=5)

kmeans.fit(data)

Step 4: We will now plot the clusters. First, a prediction is made on the
dataset and then the values are added to the data frame as a new column. The
data is then plotted with different colors representing different clusters.

The output is shown in the plot below.

pred = kmeans.predict(data)

frame = pd.DataFrame(data)

frame['cluster'] = pred

 

color=['red','blue','orange', 'brown', 'green']

for k in range(0,5):

    data = frame[frame["cluster"]==k]

    plt.scatter(data["compactness"],data["circularity"],c=color[k])

plt.show()



Step 4: We will now fit a GMM model. Note that the code is the same as the
kmeans algorithm only the algorithm’s name has changed from kmeans to
GaussianMixture.

from sklearn.mixture import GaussianMixture

gmm = GaussianMixture(n_components=5)

gmm.fit(data)

 

#predictions from gmm

labels = gmm.predict(data)

frame = pd.DataFrame(data)

frame['cluster'] = labels

Step 5: We will now plot the results. The output is shown below.

color=['red','blue','orange', 'brown', 'green']

for k in range(0,5):

    data = frame[frame["cluster"]==k]

    plt.scatter(data["compactness"],data["circularity"],c=color[k])

plt.show()

Step 6: You are advised to run the code with different values of clusters to
observe the difference. In the plots below, the left one is kmeans with two
clusters while the right is GMM with two clusters.



Gaussian distribution is one of the most widely used data distribution used. If
we compare kmeans and GMM model, we would understand that kmeans
does not consider the normal distribution of the data. The relationship of
various data points is also not considered in kmeans.

Kmeans is a distance-based algorithm, GMM is a distribution based
algorithm.

In short, it is advantageous to use GMM models for creating the clusters
particularly when we have overlapping datasets. It is a useful technique for
financial and price modelling, NLP based solutions etc.



With this, we have covered all the algorithms in the chapter. We can now
move to the summary.

5.5 Summary

In this chapter, we have explored three complex clustering algorithms. You
might have felt the mathematical concepts a bit heavy. They are indeed heavy
but give a deeper understanding of the process. It is not necessary that these
algorithms are the best ones for each and every problem. Ideally, in the real-
world business problem we should first start with classical clustering
algorithms – kmeans, hierarchical and DBSCAN. If we do not get acceptable
results then, we can try the complex algorithms.

Many times, a data science problem is equated to the choice of algorithm,
which it is not. The algorithm is certainly an important ingredient of the
entire solution, but it is not the only one. In the real-world datasets, there are
a lot of variables and the amount of data is also quite big. The data has a lot
of noise. We have to account for all these factors when we shortlist an
algorithm. Algorithm maintenance and refresh is also one of the major
questions we have in mind. All these finer points are covered in much detail
in the last chapter of the book.

We will cover complex dimensionality reduction techniques in the next
chapter. You can move to questions now.

Practical next steps and suggested readings

1. In chapter 2 we have done clustering using various techniques. Use the
datasets from there and perform Spectral clustering, GMM and FCM
clustering to compare the results.

2. There are datasets provided at the end of chapter 2 which can be used
for clustering.

3. Get the credit card dataset for clustering from this Kaggle link
(https://www.kaggle.com/vipulgandhi/spectral-clustering-detailed-
explanation) and from the famous IRIS dataset which we have used
earlier too.

4. There is a great book Computational Network Science by Henry



Hexmoor to study the mathematical concepts.
5. Get Spectral clustering papers from the links below and study them:
6. On spectral clustering: analysis and an algorithm

https://proceedings.neurips.cc/paper/2001/file/801272ee79cfde7fa5960571fee36b9b-
Paper.pdf

7. Spectral clustering with eigenvalue selection
http://www.eecs.qmul.ac.uk/~sgg/papers/XiangGong-PR08.pdf

8. The mathematics behind spectral clustering and the equivalence to PCA
https://arxiv.org/pdf/2103.00733v1.pdf

9. Get GMM papers from the link below and explore them:
10. A particular Gaussian Mixture Model for clustering

https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.79.7057&rep=rep1&type=pdf

11. Application of Compound Gaussian Mixture Model in the data stream
https://ieeexplore.ieee.org/document/5620507

12. Get FCM papers from the link below and study them:
13. FCM: the fuzzy c-means clustering algorithm

https://www.sciencedirect.com/science/article/pii/0098300484900207
14. A survey on Fuzzy c-means clustering techniques

https://www.ijedr.org/papers/IJEDR1704186.pdf
15. Implementation of Fuzzy C-Means and Possibilistic C-Means Clustering

Algorithms, Cluster Tendency Analysis and Cluster Validation
https://arxiv.org/pdf/1809.08417.pdf



6 Dimensionality reduction
(advanced)
“Life is really simple, but we insist on making it complicated - Confucius”

Simplicity is a virtue. Both in life and in data science. We have discussed a
lot of algorithms so far – a few of them are simple enough and some of them
are a bit complicated. In Part one of the book, we studied simpler clustering
algorithms and in the last chapter, we examined advanced clustering
algorithms. Similarly, we studied a few dimensionality algorithms like PCA
in chapter 3. Continuing on the same note, we will study two advanced
dimensionality reduction techniques in this chapter. 

The advanced topics we are covering this part and the next part of the book
are meant to prepare you for complex problems. Whilst you can apply these
advanced solutions, it is always advisable to start with the classical solution
like PCA for dimensionality reduction. And if the solution achieved it not at
par, then you can try the advanced solutions.

Dimensionality reduction is one of the most sought-after solution particularly
when we have a large number of variables. Recall “Curse of Dimensionality”
we discussed in chapter 3. You are advised to refresh chapter 3 before
moving forward. We will cover t-distributed Stochastic Neighbour
Embedding (t-SNE) and Multidimensional Scaling (MDS) in this chapter.
This chapter will have some mathematical concepts which create the
foundation of the advanced techniques we are going to discuss. As always,
we will have the concept discussion followed by Python implementation. We
will have a short case study at the end of the chapter. And, in this chapter we
are developing a solution using images dataset too!

There can be a dilemma in your mind. What is the level of mathematics
required and is an in-depth statistical knowledge is a pre-requisite? The
answer is both Yes and No. Whilst, having a mathematical understanding will
allow you to understand the algorithms and appreciate the process in greater



depth; at the same time for real-world business implementation sometimes
one might want to skip the mathematics and directly move to the
implementation in Python. We would suggest to have at least more than basic
understanding of the mathematics to fully grasp the concept. In this book, we
are providing that level of mathematical support without going in too much
depth – an optimal mix of practical world and mathematical concepts.

In this sixth chapter of the book, we are going to cover the following topics:

1. t-distributed Stochastic Neighbour Embedding (t-SNE)
2. Multidimensional Scaling (MDS)
3. Python implementations of the algorithms
4. Case study

Welcome to the sixth chapter and all the very best!

6.1 Technical toolkit

We will continue to use the same version of Python and Jupyter notebook as
we have used so far. The codes and datasets used in this chapter have been
checked-in at
https://github.com/vverdhan/UnsupervisedLearningWithPython/tree/main/Chapter%206
location.

You would need to install Keras as an additional Python libraries in this
chapter . Along with this we will need the regular libraries – numpy, pandas,
matplotlib, seaborn, sklearn. Using libraries, we can implement the
algorithms very quickly. Otherwise, coding these algorithms is quite a time-
consuming and painstaking task.

Let’s get started with Chapter 6 of the book!

6.2 Multidimensional Scaling (MDS)

I love to travel. Unfortunately, due to the COVID pandemic, the travelling
has taken a hit. As you know, maps prove to be quite handy while travelling.
Now, imagine you are given a task. You receive distances between some



cities around the world. For example, between London and New York,
London and Paris, Paris and New Delhi and so forth. And then we ask you to
recreate the map from which these distances have been derived. If we have to
recreate that two-dimensional map, that will be through trial and error, we
will make some assumptions and move ahead with the process. It will surely
be a tiring exercise prone to error and quite time consuming indeed. MDS can
do this task easily for us.

While thinking of the above example, ignore the fact that earth is not flat.
And assume that the distance measurement metric is constant. For example,
there is no confusion in miles or kilometres.

As an illustration, consider the Figure 6-1.

Figure 6-1 Illustration of distance between the cities and if they are represented on a map. The
figure is only to help develop an understanding and does not represent the actual results.

Formally put, if we have x data points, multidimensional scaling (MDS) can
help us in converting the information of the pairwise distance between these
x points to a configuration of points in a Cartesian space. Or simply put,
MDS transforms a large dimensional dataset into a lower dimensional one
and in the process keeping the distance or the similarity between the points
same.

To simplify, consider the image below. Here we have three points - A, B and
C. We are representing these points in a 3D space. And then we are
representing the three points in a 2D space and finally they are represented in
a 1D space. The distance between the points is not up to scale in the diagrams



below in Figure 6-2. The example shown in Figure 6-2 represents the
meaning of lowering the number of dimensions.

Figure 6-2 Representation of three points – first we are showing three points in a three-
dimensional space. Then they are being represented in a 2D space and then finally in a single
dimensional space.

Hence, in MDS a multidimensional data is reduced to lower number of
dimensions.

We can have three types of MDS algorithms

1. Classical MDS,
2. Metric multidimensional scaling and
3. Non-metric multidimensional scaling.

We will examine metric MDS process in detail in the book while we will
cover the classical and non-metric briefly.

Imagine we have two points – i and j. Let us assume that the original distance
between two points is dij and the corresponding distance in the lower



dimensional space is dij.

In classical MDS, the distances between the points are treated as Euclidean
distances and the original and fitted distances are represented in the same
metric. It means that if the original distances in higher dimensional space are
calculated using Euclidean method, the fitted distances in lower dimensional
are also calculated using Euclidean distance. We already know how to
calculate Euclidean distances. For example, we have to find the distance
between points i and j and let’s say the distance is dij. The distance can be
given by the Euclidean distance formula given by Equation 6-1.

Recall in earlier chapters, we have discussed other distance functions like
Manhattan, Hamming distance etc. You are advised to refresh them.

We will now come to non-metric MDS. We just now noted that Euclidean
distance can be used to calculate the distance between two points. Sometimes
it is not possible to take the actual values of the distances like when dij is the
result of an experiment where subjective assessments were made. Or in other
words, where a rank was allocated to the various data parameters. For
example, if the distance between point 2 and 5 was at rank 4 in the original
data, in such a scenario, it will not be wise enough to use absolute values of
dij and hence relative values or rank-values have to be used. This is the
process in non-metric MDS. For example, imagine we have four points – A,
B, C and D. We wish to rank the respective distances between these four
points. The respective combinations of points can be – A and B, A and C, A
and D, B and C, B and D, and final C and D. Their distances can be ranked as
shown in the Table 6-1.

Table 6-1 Representing the respective distance between four points and the ranks of the distances

Pair of the points Distance Ranks of the respective distances



A and B 100 3

A and C 105 4

A and D 95 2

B and C 205 6

B and D 150 5

C and D 55 1

So, in non-metric MDS method, instead of using the actual distances we use
the respective ranks of the distance. We will now move to metric MDS
method.

We know that in classical MDS, the original and fitted distances are
represented in the same metric. In metric MDS, it is assumed that the values
of dij can be transformed into Euclidean distances by employing some
parametric transformation on the datasets. In some articles, you might find
classical and metric MDS to be used interchangeably.

In MDS, as a first step, the respective distances between the points are
calculated. Once the respective distances have been calculated, then MDS
will try to represent the higher dimensional data point into lower dimensional
space. To perform this, an optimization process has to be carried so that the
most optimum number of resultant dimensions can be chosen. And hence, a
loss function or cost function has to be optimized.

If you do not know what is a cost function, go through this section below.



Cost function

We use algorithms to predict the values of a variable. For example, we might
use some algorithm to predict the expected demand of a product next year.
We would want the algorithm to predict as much accurate as possible. Cost
functions are a simple method to check the performance of the algorithms.

Cost function is a simple technique to measure the effectiveness of our
algorithms. It is the most common method used to gauge the performance of
a predictive model. It compares the original values and the predicted values
by the algorithm and calculates how wrong the model is in its prediction.

As you would imagine, in an ideal solution, we would want the predicted
values to be the same as the actual values, which is very difficult to achieve.
If the predicted values differ a lot from the actual values, the output of a cost
function is higher. If the predicted values are closer to the actual values, then
the value of a cost function is lower. A robust solution is one which has a
lower value of the cost function. Hence, the objective to optimize any
algorithm will be to minimize value of the cost function. Cost function is also
referred as loss function, these two terms can be used interchangeably.

In metric MDS, we can also call the cost function as Stress. The formula for
Stress is given by Equation 6-2 as given below:

Let’s understand the equation now:

1. Term StressD is the value MDS function has to minimize.
2. The data points with the new set of coordinates in a lower dimensional

space are represented by x, x2, x3…. xN.
3. The term ||xi – xj|| is the distance between two points in their lower

dimensional space.



4. The term dij is original distance between the two points in the original
multi-dimensional space.

By looking at the equation, we can clearly understand that if the values of ||xi
– xj|| and dij are close to each other, the value of the resultant stress will be
small.

Minimizing the value of stress is the objective of the loss function.

To optimize this loss function, multiple approaches can be used. One of the
most famous method is using a gradient descent which was originally
proposed by Kruskal and Wish in 1978. The gradient descent method is very
simple to understand and can be explained using a simple analogy.

Imagine you are standing on top of a mountain and you want to get down.
While doing so, you want to choose the fastest path because you want to get
down as fast as possible (no, you cannot jump!). So, to take the first step, you
will look around and whichever is the steepest path, you can take a step in
that direction and you will reach a new point. And then again, you will take a
step in the steepest direction. We are showing that process in Figure 6-3(i).

Figure 6-3 (i) The first figure is of a person standing on top of a mountain and trying to get down.
The process of gradient descent follows this method (ii) The actual process of optimization of a
cost function in gradient descent process. Note that at the point of convergence, the value of the
cost function is minimum.



Now, if an algorithm has to achieve the similar feat, the process can be
represented in Figure 6-3 (ii), wherein a loss function starts at a point and
finally reaches the Point of convergence. At this point of convergence, the
cost function is minimum.

MDS differs from the other dimensionality reduction techniques. As
compared to techniques like PCA, MDS does not make any assumptions
about the data set and hence can be used for a larger type of datasets.
Moreover, MDS allows to use any distance measurement metric. Unlike
PCA, MDS is not an eigenvalue-eigenvector technique. Recall in PCA, the
first axis captures the maximum amount of variance, second axis has the next
best variance and so on. In MDS, there is no such condition. The axes in
MDS can be inverted or rotated as per the need. Next, in most of the other
dimensional reduction methods used, the algorithms do calculate a lot of axes
but they cannot be viewed. In MDS, smaller number of dimensions are
explicitly chosen at the start. And hence, there is less ambiguity in the
solution. Further, in other solutions generally there is only one unique
solution whereas MDS tries to iteratively find the acceptable solution. It
means in MDS there can be multiple solutions for the same dataset.

But at the same time, the computation time required for MDS is higher for
bigger datasets. And there is a catch in the Gradient Descent method used for
optimization. Refer to Figure 6-4. Let’s refer to the mountain example we
covered in the last section. Imagine that while you are coming down from the



top of the mountain. The starting point is A and the bottom of the mountain is
at point C. While you are coming down, you reached point B. As you can see
in Figure 6-4(i), there is a slight elevation around point B. At this point B,
you might incorrectly conclude that you have reached the bottom of the
mountain. In other words, you will think that you have finished your task.
This is the precise problem of the local minima.

It is a possibility that instead of global minima, the loss function might be
stuck in a local minima. The algorithm might think that it has reached the
point of convergence, while the complete convergence might not have been
achieved still and we are at local minima.

Figure 6-4 While the first figure is the point of convergence and represents the gradient descent
method, note that in the second figure the global minima is somewhere else, while the algorithm
can be stuck at a local minima. The algorithm might believe that it has optimized the cost
function and reached the point of global minima whereas, it has only reached the local minima.

There is still a question to be answered about the efficacy of the MDS
solution. How can we measure the effectiveness of the solution? In the
original paper, Kruskal has recommended about the stress values to measure
the goodness-of-fit of the solution which are shown in Table 6-1. The
recommendations are mostly based on empirical experience of Kruskal.
These stress values are based on Kruskal’s experience.



Stress Values Goodness-of-fit

0.200 Poor

0.100 Fair

0.050 Good

0.025 Excellent

0.000 Perfect

The next logical question is – how many final dimensions we should choose?
Scree plot provides the answer as shown in Figure 6-5. Recall, in chapter 2
we used the similar elbow method to choose the optimal number of clusters
in kmeans clustering. For MDS too, we can have the elbow method to
determine the most optimal number of components to represent the data.

Figure 6-5  Scree plot to find the most optimal number of components. It is similar to the kmeans
solution we have discussed in the earlier chapters; we have to look for the elbow in the plot.



This concludes our discussion on MDS. We will now move to the Python
implementation of the algorithm.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   What is the difference between metric and non-metric MDS algorithm?

2.   Gradient descent is used to maximise the cost. True or False.

3.   Explain gradient descent method using a simple example.

6.2.1     Python implementation of MDS

We will now have the Python implementation of MDS method. We will use
the famous Iris dataset which we have used previously too. The
implementation of the algorithm is quite simple, thanks to the libraries
available in the scikit learn package.



The implementation is generally simple as the heavy lifting is done by the
libraries.

Step 1: We will first load the libraries. The usual suspects are sklearn,
matplotlib, numpy and we also load MDS from sklearn.

import numpy as np

from sklearn.datasets import load_iris

import matplotlib.pyplot as plt

from sklearn.manifold import MDS

from sklearn.preprocessing import MinMaxScaler

import pandas as pd

import warnings

warnings.filterwarnings("ignore")

Step 2: Load the data set now. Iris dataset is available in the sklearn library
so we need not import excel or .csv file here.

raw_data = load_iris()

dataset = raw_data.data

Step 3: A requirement for MDS is that the dataset should be scaled before the
actual visualization is done. We are using MixMaxScalar() function to
achieve the same. MinMax scaling simply scales the data using the formula
below:

d_scaler = MinMaxScaler()

dataset_scaled = d_scaler.fit_transform(dataset)

As an output of this step, the data is scaled and ready for the next step of
modelling.

Step 4: We now invoke the MDS method from sklearn library. The
random_state value allows us to reproduce the results. We have decided the
number of components as 3 for the example.



mds_output = MDS(3,random_state=5)

Step 5: We will now fit the scaled data created earlier using the MDS model.

data_3d = mds_output.fit_transform(dataset_scaled)

Step 6: We are now declaring the colors we wish to use for visualization. And
next, the data points are visualized in a scatter plot.

mds_colors = ['purple','blue', 'yellow']

for i in np.unique(raw_data.target):

  d_subset = data_3d[raw_data.target == i]

  

  x = [row[0] for row in d_subset]

  y = [row[1] for row in d_subset]

  plt.scatter(x,y,c=mds_colors[i],label=raw_data.target_names[i])

plt.legend()

plt.show()

The output of the code above can be shown below in Figure 6-6:

Figure 6-6 Output for the IRIS data

The above example of Python implementation is a visualization of the IRIS
data. It is quite simple example but it does not involve stress and
optimization for the number of components. We will now work on a curated
dataset to implement MDS.



Let us assume we have five cities and the respective distance between them is
given in Table 6-2.

Step 1: We have already imported the libraries in the last code.

import numpy as np

from sklearn.datasets import load_iris

import matplotlib.pyplot as plt

from sklearn.manifold import MDS

from sklearn.preprocessing import MinMaxScaler

import pandas as pd

import warnings

warnings.filterwarnings("ignore")

Step 2: Let’s now create the dataset. We are creating the dataset here, but in
real business scenarios it will be in the form of distances only.

data_dummy_cities = {'A':[0,40,50,30,40],

          'B':[40,0,40,50,20],

          'C':[50,40,0,20,50],

          'D':[30,50,20,0,20],

          'E':[40,20,50,20,0],

          }

cities_dataframe = pd.DataFrame(data_dummy_cities, index =['A','B','C','D','E'])

cities_dataframe



Step 3: We will now use the MinMaxScalar() function to scale the dataset as
we did in the last coding exercise.

scaler = MinMaxScaler()

df_scaled = scaler.fit_transform(cities_dataframe)

Step 4: Now, let’s work towards finding the most optimal number of
components. We will iterate for different values of number of components.
For each of the value of number of components, we will get the value of
stress. And at a point, where a kink is observed, that is the most optimal
number of components.

As a first step, we will declare an empty dataframe which can be used to store
the values of number of components and corresponding stress values. Then,
we are iterating from 1 to 10 in a for loop. And finally, for each of the values
of components (1 to 10), we get the respective values of stress.

MDS_stress = []

for i in range(1, 10):

    mds = MDS(n_components=i)

    pts = mds.fit_transform(df_scaled)

    MDS_stress.append(mds.stress_)

Step 5: We have got the values of stress. We will now plot these values in a
graph. The respective labels for each of the axes are also given. Look at the
kink at values 2 and 3. This can be the values of optimal values of number of



components.

plt.plot(range(1, 10), MDS_stress)

plt.xticks(range(1, 5, 2))

plt.title('Plot of stress')

plt.xlabel('Number of components')

plt.ylabel('Stress values')

plt.show()

Figure 6-7 Scree plot to select the optimized number of components

Step 6: We will now run the solution for number of components = 3. If we
look at the values of stress, number of components = 3, it generates the
minimum values of stress as 0.00665.

mds = MDS(n_components=3)

x = mds.fit_transform(df_scaled)

cities = ['A','B','C','D','E']

 

plt.figure(figsize=(5,5))

plt.scatter(x[:,0],x[:,1])

plt.title('MDS with Sklearn')

for label, x, y in zip(cities, x[:, 0], x[:, 1]):

    plt.annotate(

        label,

        xy = (x, y), 

        xytext = (-10, 10),

        textcoords = 'offset points'

    )

plt.show()



print(mds.stress_)

Figure 6-8 Output for the MDS dataset, representation of the 5 cities in a plot

This concludes our section on MDS algorithm. We discussed the foundation
and concepts, pros and cons, algorithm assessment and Python
implementation of MDS. It is a great solution for visualization and
dimensionality reductions. It is one of the non-linear dimensionality
reductions methods.

We will now move to t-SNE, second dimensionality reduction methods in
this chapter.

6.3 t-distributed stochastic neighbor embedding (t-
SNE)

If a data set is really high dimensional, the analysis becomes cumbersome.
The visualization is even more confusing. We have covered that in great
detail in Curse of Dimensionality section in Chapter 2. You are advised to
revisit the concept before proceeding.



One such really high-dimensional dataset can be image data. We find it
difficult to comprehend such data which is really high-dimensional.

You would have used facial recognition software in your smartphones. For
such solutions, facial images have to analyzed and machine learning models
have to be trained. Look at the pictures below in Figure 6-9– we have a
human face, a bike, a vacuum cleaner and screen capture of a game.

Figure 6-9 Images are quite complex to decipher by an algorithm. Images can be of any form and
can be of a person, or an equipment or even any game screen.

Image is a complex data point. Each image is made up of pixels, and each
pixel can be made up of RGB (red, green, blue) values. And values for each
of the red, green, blue can range from 0 to 255. The resulting dataset will be a
very high-dimensional dataset.

Now, recall Principal Component Analysis (PCA) we studied in Chapter 3.
PCA is a linear algorithm. And being a linear algorithm, its capability is
limited to resolve non-linear and complex polynomial functions. Moreover,
when a high-dimensional dataset has to represented in a low-dimensional
space the algorithm should keep similar datapoints close to each other, which
can be challenge in linear algorithms. PCA being a linear dimension
reduction technique, it tries to separate the different data points as far away
from each other as PCA is trying to maximize the variance between the data
points. The resulting analysis is not robust and might not be best suited for
further usage and visualization. Hence, we have non-linear algorithms like t-
SNE to help.

Formally put, t-SNE is a non-linear dimensionality reduction technique



which is quite handy for high dimensional data. It is based on Stochastic
Neighbor Embedding which was developed by Sam Roweis and Geoffrey
Hinton. The t-distributed variant was proposed by Lauren van der Maaten.
So, t-SNE is an improvement on the SNE algorithm.

At a high level, SNE measures the similarity between instances pairs in a
high-dimensional space and in a low dimensional space. A good solution is
where the difference between these similarity measures is the least and hence
SNE then optimizes these similarity measure using a cost function.

We will examine the step-by-step process of t-SNE now. The process
described below is a little heavy on mathematics.

1. Consider we have a high-dimensional space and we have some points in
this high-dimensional space.

2. We will now measure the similarities between the various points. For a
point xi, we will then create a Gaussian distribution centered at that
point. We have already studied Gaussian or normal distribution is the
last chapters of the book. The Gaussian distribution is shown in Figure
6-10.

Figure 6-10 Gaussian or normal distribution which we have already studied earlier. Image has
been taken from Wikipedia.

3. Now we will measure the density of points (let’s say xj) which fall under
that Gaussian Distribution and then we renormalize them to get the
respective conditional probabilities (pj|i). For the points which are



nearby and hence similar, this conditional probability will be high and
for the points which are far and dissimilar, the value of conditional
probabilities (pj|i) will be very small. These values of probabilities are
the ones in high-dimensional space. For the curious ones, the
mathematical formula for this conditional probability is Equation 6-3:

where σ is the variance of the Gaussian Distribution centered at xi. The
mathematical proof is beyond the scope of this book.

4. Now we will measure one more set of probabilities in the low-
dimensional space. For this set of measurements, we use Cauchy
Distribution.

Cauchy Distribution

5. Cauchy distribution, belongs to the family of continuous probability
distributions. Though there is a resemblance with the normal
distribution, as we have represented in Figure 6-11, the Cauchy
distribution has narrower peak and spreads out more slowly. It means
that as compared to a normal distribution, the probability of obtaining
values far from the peaks are higher. Sometimes, Cauchy distribution is
also known as Lorentz distribution. It is interesting to note that Cauchy
does not a well-defined mean but the median is the center of symmetry.

Figure 6-11 Comparison of Gaussian distribution vs Cauchy distribution. (Image source: Quora)



6. Consider we get yi and yj as the low-dimensional counterparts for the
high-dimensional data points xi and xj. So, we can calculate the
probability score like we did in the last step. Using Cauchy distribution,
we can get second set of probabilities qj|i too. The mathematical formula
is shown below in Equation 6-4.

7. So far, we have calculated two set of probabilities (pj|i) and (qj|i). In this
step, we compare the two distributions and measure the difference
between the two. In other words, while calculating (pj|i) we measured the
probability of similarity in a high-dimensional space whereas for (qj|i)
we did the same in a low-dimensional space. Ideally, if the mapping of
the two spaces to be similar and for that there should be not be any
difference between (pj|i) and (qj|i). So, the SNE algorithm tries to
minimize the difference in the conditional probabilities (pj|i) and (qj|i).



8. The difference between the two probability distributions is done using
Kullback-Liebler divergence or KL divergence, which we will explore
here.

KL divergence

KL divergence or relative entropy is used to measure the difference between
two probability distributions – usually one probability distribution is the data
or the measured scores. The second probability distribution is an
approximation or the prediction of the original probability distribution. For
example, if the original probability distribution is X and the approximated
one is Y. KL divergence can be used to measure the difference between X
and Y probability distributions. In absolute terms if the value is 0 then it
means that the two distributions are similar. The KL divergence is applicable
for neurosciences, statistics and fluid mechanics.

9. To minimize the KL cost function, we use the gradient descent
approach. We have already discussed the gradient descent approach in
the section where we discussed MDS algorithm.

10. There is one more important point we should be aware while we work
on t-SNE, an important hyperparameter called perplexity. Perplexity is a
hyperparameter which allows us to control and optimize the number of
close neighbors each of the data point has.

As per the official paper, a typical value for perplexity lies between 5 and 50.

11. There can be one additional nuance – the output of a t-SNE algorithm
might never be same on successive runs. We have to optimize the values
of the hyperparameters to receive the best output.

 

 POP QUIZ – answer these question to check your understanding..
Answers at the end of the book

1.   Explain Cauchy distribution is your own words.

2.   PCA is a non-linear algorithm. True or False.



3.   KL divergence is used to measure the difference between two probability
distributions. True or False

We will now proceed to the Python implementation of the algorithm.

6.3.1 Python implementation of t-SNE

We will use two datasets in this example. The first one is the already known
IRIS dataset, which we have already used more than once in this book. The
second dataset is quite an interesting one. It is MNIST dataset which is a
database of handwritten digits. It is one of the most famous datasets used to
train image processing solutions and generally is considered “Hello World”
program for image detection solutions. An image representation is shown
below in ().

Figure 6-12 MNIST dataset- it is a collection of handwritten images of digits.

Step 1: We will first import the necessary libraries. Note that we have
imported MNIST dataset from keras library.

from sklearn.manifold import TSNE

from keras.datasets import mnist

from sklearn.datasets import load_iris



from numpy import reshape

import seaborn as sns

import pandas as pd

Step 2: First we will work with the IRIS dataset. We will load the IRIS
dataset. The dataset comprises of two parts – one is the “data” and second is
the respective label or “target” for it. It means that “data” is the description of
the data and “target” is the type of IRIS. We are printing the features and the
labels using a piece of code.

iris = load_iris()

iris_data = iris.data

iris_target = iris.target

iris.feature_names

iris.target_names

Step 3: The next step is invoking the tSNE algorithm. We are using the
number of components = 2 and random_state =5 to reproduce the results.
And then the algorithm is used to fit the data.

tsne = TSNE(n_components=2, verbose=1, random_state=5)

fitted_data = tsne.fit_transform(iris_data)

Step 4: We are now plotting the data. This step allows us to visualize the data
fitted by the algorithm in the last step.

First, we will initiate an empty dataframe. We will add three columns one at a
time. We will start with iris_target, followed by tSNE_first_component and
tSNE_second_component. tSNE_first_component is the first column of the
fitted_data dataframe and hence the index is 0. tSNE_second_component is



the second column of the fitted_data dataframe and hence the index is 1.
Finally, we are representing the data in a scatterplot.

iris_df = pd.DataFrame()

iris_df["iris_target"] = iris_target

iris_df["tSNE_first_component"] = fitted_data[:,0]

iris_df["tSNE_second_component"] = fitted_data[:,1]

 

sns.scatterplot(x="tSNE_first_component", y="tSNE_second_component", hue=iris_df.iris_target.tolist(),

                palette=sns.color_palette("hls", 3),

                data=iris_df).set(title="Iris data tSNE projection")

Figure 6-13 tSNE projection of the IRIS dataset. Note how we are getting three separate clusters
for the three classes we have in the dataset

Now we will implement the algorithm for MNIST dataset.

Step 1: the libraries are already loaded in the last code example. Then we
load the dataset. The dataset requires reshape which is done here

(digit, digit_label), (_ , _) = mnist.load_data()

digit = reshape(digit, [digit.shape[0], digit.shape[1]*digit.shape[2]])

Step 2: the subsequent steps are exactly same to the last example we used. 

tsne_MNIST = TSNE(n_components=2, verbose=1, random_state=5)



fitted_data = tsne_MNIST.fit_transform(digit)

 

mnist_df = pd.DataFrame()

mnist_df["digit_label"] = digit_label

mnist_df["tSNE_first_component"] = fitted_data[:,0]

mnist_df["tSNE_second_component"] = fitted_data[:,1]

 

sns.scatterplot(x="tSNE_first_component", y="tSNE_second_component", hue=mnist_df.digit_label.tolist(),

                palette=sns.color_palette("hls", 10),

                data=mnist_df).set(title="MNIST data T-SNE projection")

Figure 6-14 Output of tSNE for the 10 classes of digits represented in different colors.

There are a few important points which you should keep in mind while
running tSNE:

1. Run the algorithm with different values of hyperparameters before
finalizing a solution.

2. Ideally, perplexity should be between 5 and 50 and for an optimized
solution, the value of perplexity should be less than the number of



points.
3. tSNE guess the number of close neighbors for each of the point. And

because of this reason, a dataset which is denser will require a much
higher perplexity value.

4. Particularly, we should note that perplexity is the hyper parameter which
balances the attention given to both the local and global aspects of the
data.

tSNE is one of the widely popular algorithms. It is used for studying topology
of an area, but a single tSNE cannot be used for making a final assessment.
Instead, multiple tSNE plots should be created to make any final
recommendation. Sometimes, there are complaints that tSNE is a black box
algorithm. This might be true to a certain extent. What makes the adoption of
tSNE harder is that it does not generate same results in successive iterations.
Hence, you might find tSNE being recommended only for exploratory
analysis.

This concludes our discussion on tSNE. We will now move to the case study.

6.4 Case study

Recall from chapter 3 where we explored a case study for telecom industry
employing dimensionality. In this chapter, we will examine a small case
study wherein tSNE or MDS can be utilized for dimensionality reduction.

Have you heard about hyperspectral images? As you know, we humans see
the colors of visible light in mostly three bands – long wavelengths, medium
ones and short wavelengths. The long wavelengths are perceived as red color,
medium are green and short ones are perceived as blue color. Spectral
imagining on the other hand, divides the spectrum into many greater numbers
of bands and this technique can be extended beyond the visible ones and
hence is of usage across biology, physics, geoscience, astronomy, agriculture
and many more avenues.

Hyperspectral imaging collects and processes information from across the
electromagnetic spectrum. It obtains the spectrum for each of the pixel in the
image.



Figure 6-15 Hyperspectral image of "sugar end" potato strips shows invisible defects (Image
source: Wikipedia)

One such dataset can be the Pavia University Dataset. It is acquired by
ROSIS sensor on Pavia, northern Italy. The details of the dataset are given
below and the dataset can be downloaded from
(http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat
http://www.ehu.eus/ccwintco/uploads/5/50/PaviaU_gt.mat)

In this dataset the spectral bands are 103, HIS size is 610*340 pixels and it
contains 9 classes. Now, such a type of data can be used for crop analysis,
mineral examining and explorations etc. Since this data contains information
about the geological patterns, it is quite useful for scientific purpose. Before
developing any image recognition solutions, we have to reduce the number of
dimensions for this dataset. Moreover, the computation cost will be much
higher if we have a large number of dimensions. Hence, it is obvious to have
lesser number of representative number of dimensions. We are showing a few
example bands of below. You are advised to download the dataset (which is
also checked-in at the git Hub repo) and use the various dimensionality
reduction techniques on the dataset to reduce the number of dimensions.

Figure 6-16 Example of bands in the dataset. These are only random examples, you are advised to
load the dataset and run dimensionality reduction algorithms.



There can be many other image datasets and complex business problems
where tSNE and MDS can be of pragmatic usage. Some of such datasets have
been listed in the next steps.

6.5 Summary

Dimensionality reduction is quite an interesting and useful solution. It makes
the machine learning less expensive and time consuming. Imagine that you
have a dataset with thousands of attributes or features. You do not know the
data very well; the business understanding is quite less and at the same time
you have to find the patterns in the dataset. You are not even sure that if these
variables are all relevant or just random noise. At such a moment, when we
have to quickly reduce the number of dimensions in the dataset, make it less
complex to crack and reduce the time – dimensionality reduction is the
solution.

We covered dimensionality reduction techniques earlier in the book. This
chapter covers two advanced techniques – tSNE and MDS. Both of these
techniques should not be considered a substitute to the other easier techniques
we discussed. Rather, they are two be used if we are not getting meaningful
results. It is always advised to use PCA first, then try tSNE or MDS.



We are increasing the complexity in the book. This chapter started with
images – we have only wet our toe though. In the next chapter, we are
dealing with text data, perhaps you will find it very interesting and useful.

Practical next steps and suggested readings

1. Use the vehicles dataset used in the Chapter2 for clustering and
implement MDS on it. Compare the performance on clustering before
and after implementing MDS.

2. Get the datasets used in Chapter 2 for Python examples and use them for
implementing MDS.

3. For MDS, you can refer to the following research papers:
4. Dimensionality reduction: a comparative review by Lauren van der

Maaten, Eric Postma and H. Japp Van Den Herik
https://www.researchgate.net/publication/228657549_Dimensionality_Reduction_A_Comparative_Review

5. Multidimensional scaling -based data dimension reduction method for
application in short term traffic flow prediction for urban road network
by Satish V. Ukkusuri and Jian Lu
https://www.hindawi.com/journals/jat/2018/3876841/

6. Get tSNE research papers from the links below and study them
7. Visualizing data using t-SNE by Laurens van der Maaten and Geoffrey

Hinton
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

8. The art of using t-SNE for single cell transcriptomics
https://www.nature.com/articles/s41467-019-13056-x

9. There is one more paper which might be of interest- Performance
evaluation of t-SNE and MDS dimensionality reduction techniques with
KNN, SNN and SVM classifiers https://arxiv.org/pdf/2007.13487.pdf



7 Unsupervised learning for text
data
“Everybody smiles in the same language – George Carlin”

Our world has so many languages. These languages are the most common
medium of communication to express our thoughts and emotions to each
other. This ability to express our thoughts in words is unique to humans.
These words are a source of information to us. These words can be written
into text. In this chapter, we are going to explore the analysis we can do on
text data. Text data falls under unstructured data and carries a lot of useful
information and hence is a useful source of insights for the business. We use
natural language processing or NLP to analyse the text data.

At the same time, to analyse text data, we have to make the data analysis
ready. Or in very simple terms, since our algorithms and processors can only
understand numbers, we have to represent the text data in numbers or vectors.
We are exploring all such steps in this chapter. Text data holds the key to
quite a few important use cases like sentiment analysis, document
categorization, language translation etc. to name a few. We will cover the use
cases using a case study and develop Python solution on the same.

The chapter starts with defining text data, sources of text data and various use
cases of text data. We will then move to the steps and processes to clean and
handle the text data. We will cover the concepts of NLP, mathematical
foundation and methods to represent text data into vectors. We will create
Python codes for the use cases. And at the end, we are sharing case study on
text data. In this book, we are providing that level of mathematical support
without going in too much depth – an optimal mix of practical world and
mathematical concepts.

In this seventh chapter of the book, we are going to cover the following
topics:



1.  Text data and various use cases of Text data analysis
2.  Challenges we face with text data
3.  Pre-processing of text data and data cleaning
4.  Methods to represent text data in vectors
5.  Sentiment analysis using Python – a case study
6.  Text clustering using Python

Welcome to the seventh chapter and all the very best!

7.1 Technical toolkit

We will continue to use the same version of Python and Jupyter notebook as
we have used so far. The codes and datasets used in this chapter have been
checked-in at this location.

You would need to install a few Python libraries in this chapter which are –
XXXX. Along with this we will need numpy and pandas. Using libraries, we
can implement the algorithms very quickly. Otherwise, coding these
algorithms is quite a time-consuming and painstaking task.

Here we are dealing with text data, perhaps you will find it very interesting
and useful.

Let’s get started with Chapter 7 of the book!

7.2 Text data is everywhere

Recall in the very first chapter of the book, we explored structured and
unstructured datasets. Unstructured data can be text, audio, image or a video.
The examples of unstructured data and their respective sources are given in
(Figure 7-1) below, where we explain the primary types of unstructured data:
text, images, audio and video along with their examples. The focus for this
chapter is on text data.

Figure 7-1 Unstructured data can be text, images, audio, video. We are dealing with text data in
this chapter



Language is indeed a gift to the mankind. We indulge in speaking,
messaging, writing, listening to convey our thoughts. And this is done using
text data which is generated using blogs and social media posts, tweets,
comments, stories, reviews, chats and comments to name a few. Text data is
generally much more direct, and emotionally expressive. It is imperative that
business unlocks the potential of text data and derives insights from it. We
can understand our customers better, explore the business processes and
gauge the quality of services offered. We generate text data is the form of
news, Facebook comments, tweets, Instagram posts, customer reviews,
feedback, blogs, articles, literature, stories etc. This data represents a wide
range of emotions and expressions.



Have you even reviewed a product or a service on Amazon? You award stars
to a product; at the same time, you can also input free text. Go to Amazon
and look at some of the reviews. You might find some reviews have good
amount of text as the feedback. This text is useful for the product/service
providers to enhance their offerings. Also, you might have participated in a
few surveys which ask you to share your feedback. Moreover, with the
advent of Alexa, Siri, Cortona etc. the voice command is acting as an
interface between humans and machines – which is again a rich source of
data. Even the customer calls we make to a call centre can be source of text
data. These calls can be recorded and using speech-to-text conversion, we can
generate huge amount of text data. Massive dataset, right!

We are discussing some of the important use cases for text data in the
following section.

7.3 Use cases of text data

Text data is indeed super useful. It is really a rich source of insights for the
business. There are some of the use cases which are of much interest, which
we are listing below. The list is not exhaustive. At the same time, not all the
use cases given implement unsupervised learning. Some of the use cases
require supervised learning too. Nevertheless, for your knowledge we are
sharing both types of use cases – based on supervised learning and
unsupervised learning.

1. Sentiment analysis: You might have participated in surveys or given
your feedback of products/surveys. These survey generate tons of text
data for us. That text data can be analyzed and we can determine
whether the sentiment in the review is positive or negative. In simple
words, sentiment analysis is gauging what is the positiveness or
negativity in the text data. And hence, what is the sentiment about a
product or service in the minds of the customers. We can use both
supervised and unsupervised learning for sentiment analysis.

2. News categorization or document categorization: Look at the Google
News webpage, you will find that each news item has been categorized
to sports, politics, science, business or any other category. Incoming
news will be classified based on the content of the news which is the



actual text. Similarly, imagine we have some documents with us and we
might want to segregate them based on their categories of based on the
domain of study. For example, medical, economics, history, arts, physics
etc. Such a use case will save a lot of time and man power indeed.

3. Language Translation: Translation of text from one language to
another is a very interesting use case. Using natural language processing
we can translate between languages. Language translation is very tricky
as different languages have different grammatical rules. Generally, deep
learning based solutions are the best fit for language translation.

4. Spam filtering: email spam filter can be composed using NLP and
supervised machine learning. A supervised learning algorithm can
analyze incoming mail parameters and can give a prediction if that email
belongs to a spam folder or not. The prediction can be based on the
various parameters like sender email-id, subject line, body of the mail,
attachments, time of mail etc. Generally, supervised learning algorithms
are used here.

5. Part of speech tagging or POS tagging is one of the popular use cases.
It means that we are able to distinguish the noun, adjectives, verbs,
adverbs etc. in a sentence. Named-entity recognition or NER is also
one of the famous applications of NLP. It involves identifying a person,
place, organization, time, number in a sentence. For example, John lives
in London and works for Google. NER can generate understanding like
[John]Person lives in [London]Location and works for [Google]organization.

6. Sentence generation, captioning the images, speech-to-text or text-to-
speech tasks, handwriting recognition are a few other significant and
popular use cases.

The use cases listed above are not exhaustive. There are tons of other use
cases which can be implemented using NLP. NLP is a very popular research
field too. We are sharing some significant papers at the end of the chapter for
your perusal.

Whilst, text data is of much importance, at the same time is quite a difficult
dataset to analyze. To be noted is, our computers and processors understand
only numbers. So, the text still needs to be represented as numbers so that we
can perform mathematical and statistical calculations on them. But before
diving into the preparation of text data, we will cover some of the challenges



we face while working on text dataset.

7.4 Challenges with text data

Text is perhaps the most difficult data to work with. There are a large number
of permutations to express the same thought. For example, if I may ask, “Hey
buddy, what is your age?” and “Hey buddy, may I know how old are you?”
mean the same, right! The answer to both the questions is same, and it is
quite easy for humans to decipher. But can be an equally daunting task for a
machine.

The most common challenges we face are:

1. Text data can be complex to handle. There can be a lot of junk
characters like $^%*& present in the text.

2. With the advent of modern communications, we have started to use
short forms of words like “u” can be used for “you”, “brb” for “be right
back” and so on.

3. Language is changing, unbounding and ever evolving. It changes every
day and new words are added to the language.

If you do a simple Google search, you will find that quite a few words are
added to the dictionary each year.

4.  The world has close to 6500 languages, and each and every one carries
their uniqueness. Each and every one complete our world. For example,
Arabic, Chinese, English, French, German, Hindi , Italian, Japanese,
Spanish etc. Each language follows its own rules and grammar which
are unique in usage and pattern. Even the writing can be different - some
are written left to right; some might be right to left or may be vertically!
The same emotion, might take lesser or a greater number of words in
different languages.

5.  The meaning of a word is dependent on the context. A word can be an
adjective and can be a noun too depending on the context. Look at these
examples below:

6. “This book is a must read” and “Please book a room for me”.
7. “Tommy” can be a name but when used as “Tommy Hilfiger” its usage



is completely changed.
8. “Apple” is a fruit while “Apple” is a company producing Macintosh,

iPhones etc.
9. “April” is a month and can be a name too.

10.  Look at one more example - “Mark travelled from the UK to France
and is working with John over there. He misses his friends”. The
humans can easily understand that “he” in the second sentence is Mark
and not John, which might not be that simple for a machine.

11.  There can be many synonyms for the same word, like “good” can be
replaced by positive, wonderful, superb, exceptional in different
scenarios. Or, words like “studying”, “studying”, “studies”, “studies” are
related to the same root word “study”.

12.  And the size of text data can be daunting too. Managing a text dataset,
storing it, cleaning it and refreshing it is a herculean task in itself.

Like any other machine learning project, text analytics follow the principles
of machine learning albeit the precise process is slightly different. Recall in
chapter 1, we examined the process of a machine learning project as shown in
Figure 7-2. You are advised to refresh the process from Chapter 1.

Figure 7-2 Overall steps in data science project are same for text data too. The pre-processing of
text data is very different from the structured dataset.



Defining the business problem, data collection and monitoring etc. remain the
same. The major difference is in processing of the text, which involves data
cleaning, creation of features, representation of text data etc. We are covering
it now.

 

POP QUIZ – answer these question to check your understanding.. Answers at
the end of the book

(1)      Note the three most impactful use cases for the text data.

(2)      Why is working on text data so tedious?

7.5 Preprocessing of the text data



Text data, like any other data source can be messy and noisy. We clean some
of it in the data discovery phase and a lot of it in the pre-processing phase. At
the same time, we have to extract the features from our dataset. This cleaning
process is sometimes and can be implemented on most of the text datasets.
Some text datasets might require a customized approach. We will start with
cleaning the raw text data.

7.5.1 Data cleaning

There is no second thought about the importance of data quality. The cleaner
the text data is, the better the analysis will be. At the same time, the pre-
processing is not a straight-forward task. It is complex and time-consuming
task.

Text data is to be cleaned as it contains a lot of junk characters, irrelevant
words, noise and punctuations, URLs etc. The primary ways of cleaning the
text data are:

1. Stop words removal: out of all the words that are used in any language,
there are some words which are most common. Stop words are the most
common words in a vocabulary which carry less importance than the
key words. For example, “is”, “an”, “the”, “a”, “be”, “has”, “had”, “it”
etc. Once we remove the stop words from the text, the dimensions of the
data are reduced and hence complexity of the solution is reduced.
At the same time, it is imperative that we understand the context very
well while removing the stop words. For example, if we ask a question
“is it raining?”. Then the answer “it is” is a complete answer in itself.
To remove the stop words, we can define a customized list of stop words
and remove them. Else there are standard libraries are to remove the stop
words.

When we are working with solutions where contextual information is
important, we do not remove stop words.

2.  Frequency based removal of words: Sometimes, you might wish to
remove the words which are most common in your text or very unique.
The process is to get the frequency of the words in the text and then set a



threshold of frequency. We can remove the most common ones. Or
maybe you might wish to remove the ones which have occurred only
once/twice in the entire dataset. Based on the requirement, you will
decide.

3.  Library based cleaning is done when we wish to clean the data using
pre-defined and customized library. We can create a repository of words
which we do not want in our text and can iteratively remove from the
text data. This approach allows us flexibility to implement the cleaning
of our own choice.

4.  Junk or unwanted characters: A text data particularly tweets,
comments etc. might contain a lot of URLs, hashtags, numbers,
punctuations, social media mentions, special characters etc. We might
need to clean them from the text. At the same time, we have to be
careful as some words which are not important for one domain might be
quite required for a different domain. If data has been scraped from
websites or HTML/XML sources, we need to get rid of all the HTML
entities, punctuations, non-alphabets and so on.

Always keep business context in mind while cleaning the text data.

As we know that a lot of new type of expressions have entered the language.
For example, lol, hahahaha, brb, rofl etc. These expressions have to be
converted to their original meanings. Even emojis like :-), ;-) etc. have to be
converted to their original meanings.

5.  Data encoding: There are a number of data encodings available like
ISO/IEC, UTF-8 etc. Generally, UTF-8 is the most popular one. But it is
not a hard and fast rule to always use UTF-8 only.

6.  Lexicon normalization: Depending on the context and usage, the same
word might get represented in different manners. During lexicon
normalization we clean such ambiguities. The basic idea is to reduce the
word to its root form. Hence, words which are derived from each other
can be mapped to the central word provided they have the same core
meaning.
Look at Figure 7-2 wherein we have shown that the same word “eat”,
has been used in various forms. The root word is “eat” but these
different forms are so many different representations for eat.



Figure 7-3 Ate, eaten, eats, eating all have the same root word – eat. Stemming and lemmatization
can be used to get the root word.

We wish to map all of these words like eating, eaten etc. to their central word
“eat”, as they have the same core meaning. There are two primary methods to
work on this:

a. Stemming: Stemming is a basic rule-based approach of mapping a word
to its core word. It removes “es”, “ing”, “ly”, “ed” etc. from the end of
the word. For example, studies will become studi and studying will
become study. As visible being a rule-based approach, the output
spellings might not always be accurate.

b. Lemmatization: is an organized approach which reduces words to their
dictionary form. Lemma of a word is its dictionary or canonical form.
For example, eats, eating, eaten etc. all have the same root word eat.
Lemmatization provides better results than stemming but it takes more
time then stemming.

These are only some of the methods to clean the text data. These techniques
will help to a large extent. But still business acumen is required to further
make sense to the dataset. We will clean the text data using these approaches
by developing Python solution.

Once the data is cleaned, we have to start representation of data so that it can
be processed by machine learning algorithms – which is our next topic.

7.5.2 Extracting features from the text dataset

Text data, like any other data source can be messy and noisy. We explored



the concepts and techniques to clean it in the last section. Now we have
cleaned the data and it is ready to be used. The next step is to represent this
data in a format which can be understood by our algorithms. As we know that
our algorithms can only understand numbers. Text data in its purest form
cannot be understood by algorithms. So, everything needs to be converted to
numbers.

A very simple technique can be to simply perform one-hot encoding on our
words and represent them in a matrix.

We have covered one hot encoding in the previous chapters of the book

If we describe the steps, the words can be first converted to lowercase and
then sorted in an alphabetical order. And then a numeric label can be
assigned to them. And finally, words are converted to binary vectors. Let us
understand using an example.

For example, the text is “It is raining heavily”. We will use the steps below:

a. Lowercase the words so the output will be “it is raining heavily”
b. We will now arrange them in alphabetical order. The result is – heavily,

is, it, raining.
c. We can now assign place values to each word as heavily:0, is:1, it:2,

raining:3.
d. Finally, we can transform them to binary vectors as shown below

[[0. 0. 1. 0.] #it

[0. 1. 0. 0.] #is

[0. 0. 0. 1.] #raining

[1. 0. 0. 0.]] #heavily

Though this approach is quite intuitive and simple to comprehend, it is
pragmatically not possible due to the massive size of the corpus and the
vocabulary.

Corpus refers to a collection of texts. It is Latin for body. It can be a body of
written words or spoken words, which will be used to perform a linguistic
analysis.



Moreover, handling massive data size with so many dimensions will be
computationally very expensive. The resulting matrix thus created will be
very sparse too. Hence, we look at other means and ways to represent our text
data.

There are better alternatives available to one-hot encoding. These techniques
focus on the frequency of the word or the context in which the word is being
used. This scientific method of text representation is much more accurate,
robust and explanatory. It generates better results too. There are multiple such
techniques like tf-idf, bag-of-words approach etc. We are discussing a few of
these techniques in the next sections. But we will examine an important
concept of tokenization first!

Tokenization

Tokenization is simply breaking a text or a set of text into individual tokens.
It is the building block of NLP. Look at the example in Figure 7-3, where we
have created individual tokens for each of the word of the sentence.
Tokenization is an important step as it allows us to assign unique identifiers
or tokens to each of the words. Once we have allocated each word a specific
token, the analysis become less complex.

Figure 7-3 Tokenization can be used to break a sentence into different tokens of words.

Tokens are usually used on individual words, but it is not always necessary.
We are allowed to tokenize a word or the sub-words or characters in a word.
In the case of sub-words, the same sentence can have sub-word tokens as
rain-ing.



If we wish to perform tokenization at a character level, it can be r-a-i-n-i-n-g.
In fact, in the one-hot encoding approach discussed in the last section as a
first step, tokenization was done on the words.

Tokenization is the building blocks for Natural Language Processing
solutions.

Once we have obtained the tokens, then the tokens can be used to prepare a
vocabulary. Vocabulary is the set of unique tokens in the corpus.

There are multiple libraries for tokenization. Regexp tokenization uses the
given patterns arguments to match the tokens or separators between the
tokens. Whitespace tokenization uses by treating any sequence of whitespace
characters as a separator. Then we have blankline which use sequence of
blank lines as a separator. And wordpunct tokenizes by matching sequence of
alphabetic characters and sequence of non-alphabetic and non-whitespace
characters. We will perform tokenization when we create Python solutions
for our text data.

Now, we will explore more methods to represent text data. The first such
method is Bag of Words.

Bag of words approach

As the name suggests, all the words in the corpus are used. In bag of words
approach, or BOW, the text data is tokenized for each word in the corpus and
then the respective frequency of each token is calculated. During this process,
we disregard the grammar, or the order or the context of the word. We simply
focus on the simplicity. Hence, we will represent each text (sentence or a
document) as a bag of its own words.

In the BOW approach for the entire document, we define the vocabulary of
the corpus as all of the unique words present in the corpus. Please note we
use all the unique words in the corpus. If we want, we can also set a threshold
i.e., the upper and lower limit for the frequency of the words to be selected.
Once we have got the unique words, then each of the sentence can be
represented by a vector of the same dimension as of the base vocabulary



vector. This vector representation contains the frequency of each word of the
sentence in the vocabulary. It might sound complicated to understand, but it
is actually a straightforward approach.

Let us understand this approach with an example. Let’s say that we have two
sentences – It is raining heavily and We should eat fruits.

To represent these two sentences, we will calculate the frequency of each of
the word in these sentences as shown in Figure 7-4.

Figure 7-4 The frequency of each word has been calculated. In this example, we have two
sentences.

Now, if we assume that only these two words represent the entire vocabulary,
we can represent the first sentence as shown in Figure 7-5. Note that the table
contains all the words, but the words which are not present in the sentence
have received value as 0.

Figure 7-5 The first sentence if represented for all the words in the vocabulary, we are assuming
that in the vocabulary only two sentences are present



In this example, we examined how BOW approach has been used to represent
a sentence as a vector. But BOW approach has not considered the order of the
words or the context. It focuses only on the frequency of the word. Hence, it
is a very fast approach to represent the data and computationally less
expensive as compared to its peers. Since it is frequency based, it is
commonly used for document classifications.

But, due to its pure frequency-based calculation and representation, the
solution accuracy can take a hit. In language, the context of the word plays a
significant role. As we have seen earlier, apple is both a fruit as well as a
well-known brand and organization. And that is why we have other advanced
methods which consider more parameters than frequency alone. One of such
methods is tf-idf or term frequency-inverse document frequency, which we
are studying next.

 

POP QUIZ – answer these question to check your understanding.. Answers at
the end of the book



(1)      Explain tokenization in simple language as if you are explaining to a
person who does not know NLP.

(2)      Bag of words approach the context of the words and not frequency
alone. True or False.

(3)      Lemmatization is less rigorous approach then stemming. True or False.

tf-idf (Term frequency and inverse document frequency)

We studied Bag of words approach in the last section. In the BOW approach,
we gave importance to the frequency of a word only. The idea is that the
words which have higher frequency might not offer meaningful information
as compared to words which are rare but carry more importance. For
example, if we have a collection of medical documents, and we wish to
compare two words “disease” and “diabetes”. Since the corpus consists of
medical documents, the word disease is bound to be more frequent whilst the
word “diabetes” will be less frequent but more important to identify the
documents which deal with diabetes. The approach tf-idf allow us to resolve
this issue and extract information on the more important words.

In term-frequency and inverse-document-frequency (tf-idf), we consider the
relative importance of the word. TF-idf means term frequency and idf means
inverse document frequency. We can define tf-idf as:

a. Term frequency (t is the count of a term in the entire document. For
example, the count of the word “a” in the document “D”.

b. Inverse document frequency (id is the log of the ratio of total
documents (N) in the entire corpus and number of documents(df) which
contain the word “a”.

So, the tf-idf formula will give us the relative importance of a word in the
entire corpus. The mathematical formula is the multiplication of tf and idf
and is given by

wi,j = tfi,j * log (N/dfi) (Equation 7-1)



where N: total number of documents in the corpus

tfi,j is the frequency of the word in the document

dfi is the number of documents in the corpus which contain that word.

The concept might sound complex to comprehend. Let’s understand this with
an example.

Consider we have a collection of 1 million sports journals. These sports
journals contain have many articles of various lengths. We also assume that
all the articles are in English language only. So, let’s say, in these documents,
we want to calculate tf-idf value for the word “ground” and “backhand”.

Let’s assume that there is a document of 100 words having “ground” word
five times and backhand only twice. So tf for ground is 5/100 = 0.05 and for
backhand is 2/100 = 0.02.

We understand that the word “ground” is quite a common word in sports,
while the word “backhand” will have lesser number of usage. Now, we
assume that “ground” appears in 100,000 documents out of 1 million
documents while “backhand” appears only in 10. So, idf for “ground” is log
(1,000,000/100,000) = log (10) = 1. For “backhand” it will be log
(1,000,000/10) = log (100,000) = 5.

To get the final values for “ground” we will multiply tf and idf = 0.05 x 1 =
0.05.

To get the final values for “backhand” we will multiply tf and idf = 0.02 x 5
= 0.1.

We can observe that the relative importance of “backhand” is more than the
relative importance of the word “ground”. This is the advantage of tf-idf over
frequency-based BOW approach. But tf-idf takes more time to compute as
compared to BOW since all the tf and idf have to be calculated. Nevertheless,
tf-idf offer a better and more mature solution as compared to BOW approach.

We will now cover language models in the next section.



Language models

So far, we have studied the bag of words approach and tf-idf. Now we are
focusing on language models.

Language models assign probabilities to the sequence of words. N-grams are
the simplest in language models. We know that to analyze the text data they
have to be converted to feature vectors. N-gram models create the feature
vectors so that text can be represented in a format which can be analyzed
further.

n-gram is a probabilistic language model. In a n-gram model we calculate the
probability of the Nth word given the sequence of (N-1) words. If we go more
specific, an n-gram model will predict the next word xi based on the words xi-

(n-1), xi-(n-2)…xi-1. If we wish to use the probability terms, we can represent as
conditional probability of xi given the previous words which can be
represented as P(xi | xi-(n-1), xi-(n-2)…xi-1). The probability is calculated by
using the relative frequency of the sequence occurring in the text corpus.

If the items are words, n-grams may be referred to as shingles.

Let’s study this using an example.

Consider we have a sentence It is raining heavily. We have shown the
respective representations using different values of n. You should note that
how the sequence of words and their respective combinations is getting
changed for different values of n. If we wish to use n=1 or a single word to
make a prediction, the representation will be as shown in Figure 7-6. Note
that each word is used separately here. They are referred to as unigrams.

If we wish to use n=2, the number of words now used will become two. They
are referred to as bigrams and the process will continue.

Figure 7-6 Unigrams, bigrams, trigrams can be used to represent the same sentence. The concept
can be extended to n-grams too.



Hence, if we are having a unigram, it is a sequence of one word, for two
words it is bi-gram, for three words it is tri-gram and so on. So, a tri-gram
model will approximate the probability of a word given all the previous
words by using the conditional probability of only the preceding two words.
Whereas a bi-gram will do the same by considering only the preceding word.
This is a very strong assumption indeed that the probability of a word will
depend only on the preceding word and is referred to as Markov assumption.
Generally, N > 1 is considered to be much more informative than unigrams.
But obviously the computation time will increase too.

n-gram approach is very sensitive to the choice of n. It also depends
significantly on the training corpus which have been used, which makes the
probabilities heavily dependent on the training corpus. So, if an unknown
word is encountered, it will be difficult for the model to work on that new
word.

We will create a Python example now. We will show a few examples of text
cleaning using Python.



Text cleaning using Python

We will clean the text data using Python now. There are a few libraries which
you may need to install. We will show a number of small code snippets. You
are advised to use them as per the requirement. We are also pasting the
respective screenshot of the code snippets and their results.

Code 1: Remove the blank spaces in the text. We import the library re, it is
called Regex expression. The text is It is raining outside with a lot of blank
spaces in between.

import re

doc = "It is     raining       outside"

new_doc = re.sub("\s+"," ", doc)

print(new_doc)

Code 2: Now we will remove the punctuations in the text data.

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."

re.sub("[^-9A-Za-z ]", "" , text_d)



Code 3: This is one more method to remove the punctuation.

import string

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."

cleaned_text = "".join([i for i in text_d if i not in string.punctuation])

cleaned_text

Code 4: We will now remove the punctutions as well as convert the text to
lowercase.

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."

cleaned_text = "".join([i.lower() for i in text_d if i not in string.punctuation])

cleaned_text



Code 5: We will now use a standard nltk library. Tokenization will be done
here using NLTK library. The output is also pasted below.

import nltk

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."

nltk.tokenize.word_tokenize(text_d)





Note that in the output of the code, we have all the words including the
punctuation marks as different tokens. If you wish to exclude the
punctuations, you can clean the punctuations using the code snippets shared
earlier.

Code 6: Next comes the stop words. We will remove the stopwords using
nltk library. Post that, we are tokenizing the words.

stopwords = nltk.corpus.stopwords.words('english')

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."

text_new = "".join([i for i in text_d if i not in string.punctuation])

print(text_new)

words = nltk.tokenize.word_tokenize(text_new)

print(words)

words_new = [i for i in words if i not in stopwords]

print(words_new)

Code 7: We will now perform stemming on a text example. We use NLTK
library for it. The words are first tokenized and then we apply stemming on



them.

import nltk

from nltk.stem import PorterStemmer

stem = PorterStemmer()

text = "eats eating studies study"

tokenization = nltk.word_tokenize(text)

for word in tokenization:

    print("Stem for {} is {}".format(word, stem.stem(w)))

Code 8: We will now perform lemmatization on a text example. We use
NLTK library for it. The words are first tokenized and then we apply
lemmatization on them.

import nltk

from nltk.stem import WordNetLemmatizer

wordnet_lemmatizer = WordNetLemmatizer()

text = "eats eating studies study"

tokenization = nltk.word_tokenize(text)

for word in tokenization:

    print("Lemma for {} is {}".format(word, wordnet_lemmatizer.lemmatize(w)))



Observe and compare the difference between the two outputs of stemming
and lemmatization. For studies and studying, stemming generated the output
at studi while lemmatization generated correct output as study.

We covered bag-of-words, tf-idf and N-gram approaches so far. But in all of
these techniques, the relationship between words has been neglected which is
used in word embeddings – our next topic.

Word Embeddings

"A word is characterized by the company it keeps” – John Rupert Firth.

So far, we studied a number of approaches, but all the techniques ignore the
contextual relationship between words. Let’s study by an example.

Imagine we have 100,000 words in our vocabulary – starting from aa to
zoom. Now, if we perform one-hot encoding we studied in the last section, all
of these words can be represented in a vector form. Each word will have a
unique vector. For example, if the position of the word king in 21000, the
vector will have shape like the vector below which has 1 at the 21000
position and rest of the values as 0.

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0…………………1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]



There are a few glaring issues with this approach:

a. The number of dimensions is very high to compute and complex.
b. The data is very sparse in nature.
c. If n new words have to be entered, the vocabulary increases by n and

hence each vector dimensionality increases by n.
d. This approach ignores the relationship between words. We know that

ruler, king, monarch is sometimes used interchangeably. In the one-hot-
encoding approach, any such relationships are ignored.

If we wish to perform language translation, or generate a chat bot, we need to
pass such knowledge to the machine learning solution. Word embeddings
provide a solution to the problem. They convert the high-dimensional word
features into lower dimensions while maintaining the contextual relationship.
Word-embeddings allow us to create much more generalized models. We can
understand the meaning by looking at an example.

In the example shown below in Figure 7-7, the relation of “man” to “woman”
is similar to “king” to “queen”, “eat” to “eating” is similar as “study” to
“studying” or “UK” to “London” is similar to “Japan” to “Tokyo”.

Figure 7-7 Word embeddings can be used to represent the relationships between words. For
example, there is a relation from men to women which is similar to king to queen.



In simple terms, using word embeddings we can represent the words
similarly which have similar meaning. Word embeddings can be thought as a
class of techniques where we represent each of the individual words in a
predefined vector space. Each of the word in the corpus is mapped to one
vector. The distributed representation is understood based on the word’s
usage. Hence, words which can be used similarly have similar
representations. This allows the solution to capture the underlying meaning of
the words and their relationships. Hence, the meaning of the word plays a
significant role. This representation hence is more intelligent as compared to
bag of words approach where each word is treated differently, irrespective of
their usage. Also, the number of dimensions is lesser as compared to one-hot
encoding. Each word is represented by 10 or 100s of dimensions which is
significantly less than one-hot encoding approach where more than 1000s of
dimensions are used for representation.

We will cover two most popular techniques Word2Vec and GloVe in the next
section. The section provides an understanding of Word2Vec and GloVe. The
mathematical foundation for Word2Vec and GloVe are beyond the scope of
this book. We are providing un understanding on the working mechanism of
the solutions and then developing Python code using Word2Vec and GloVe.
There are a few terms which we have not discussed in the book so far, so the
next section on Word2Vec and GloVe might be quite tedious to understand.
If you are interested only in the application of the solutions, you can skip the
next section.

Word2Vec and GloVe

Word2Vec was first published in 2013. It was developed by Tomas Mikolov,
et al. at Google. We are sharing the link to the paper at the end of the chapter.
You are advised to study the paper thoroughly.

Word2Vec is a group of models used to produce word embeddings. The input
is a large corpus of text. The output is a vector space, with a very large
number of dimensions. In this output, each of the word in the corpus is
assigned a unique and corresponding vector. The most important point is that
the words which have similar or common context in the corpus, are located
similar in the vector space produced.



In Word2Vec, the researchers introduced two different learning models –
Continuous Bag of Words and Continuous Skip-gram model, which we are
covering briefly:

a. Continuous bag of words or CBOW: in CBOW, the model makes a
prediction of the current word from a window of surrounding context
words. So, the CBOW learns Recall that in bag of words approach, the
order of the words does not play any part. Similarly, in CBOW, the
order of the words is insignificant.

b. Continuous skip-gram model: it uses the current word to predict the
surrounding window of context words. While doing so, it allocates more
weight to the neighboring words as compared to the distant words.

GloVe or Global vectors for Word Representation is an unsupervised
learning algorithm for generating vector representation for words. It was
developed by Pennington, et al. at Stanford and launched in 2014. It is a
combination of two techniques – matrix factorization techniques and local
context-based learning used in Word2Vec. GloVe can be used to find
relationships like zip codes and cities, synonyms etc. It generated a single set
of vectors for the words having the same morphological structure.

Both the models (Word2Vec and GloVe) learn and understand vector
representation of their words from the co-occurrence information. Co-
occurrence means how frequently the words are appearing together in a large
corpus. The prime difference is that word2vec is a prediction-based model,
while GloVe is a frequency-based model. Word2Vec predicts the context
given a word while GloVe learns the context by creating a co-occurrence
matrix on how frequent a word appears in a given context.

POP QUIZ – answer these question to check your understanding.. Answers at
the end of the book

(1)      BOW is more rigorous than tf-idf approach. True or False.

(2)      Differentiate between Word2Vec and GloVe.



We will now move to the Case Study and Python implementation in the next
section.

Sentiment analysis case study with Python implementation

We have so far discussed a lot of concepts on NLP and Text data. In this
section, we are first going to explore a business case and then develop Python
solution on the same. We are working on Sentiment analysis.

Product reviews are a rich source of information – both to the customers and
the organizations. Whenever we wish to buy any new product or services, we
tend to look at the reviews by fellow customers. You might have reviewed
products and services yourself. These reviews are available at Amazon,
blogs, surveys etc.

Let’s consider a case. A water utilities provider receives complaints from its
customers, reviews about the supply and comments about the overall
experience. The streams can be – product quality, pricing, onboarding
experience, ease of registration, payment process, supply reviews, power
reviews etc. We want to determine the general context of the review –
whether it is positive, negative or neutral. The reviews have the number of
stars allocated, actual text reviews, pros and cons about the product/service,
attributes etc. But at the same time, there are a few business problems like:

1. Many times, it is observed that the numbers of stars received ay a
product/service is very high, while the actual reviews are quite negative.

2.  The organizations and the product owners, need to know which features
are appreciated by the customers and which features are disliked by the
customers. The team can then work on improving the features which are
disliked by the customers.

3.  There is also a need to gauge and keep an eye on the competition! The
organizations need to know, the attributes of the popular products of
their competitors.

4.  The product owners can better plan for the upcoming features they wish
to release in the future.

So, the business teams will be able to answer these two most important



questions:

a. What is our customer’s satisfaction levels for the products and services?
b. What are the major pain points and dissatisfactions of the customers,

what drives the customers engagement, which services are complex and
time-consuming, and which are the most liked services/products?

This business use case will drive the following business benefits:

1. The products and services which are most satisfactory and are most
liked ones should be continued.

2.  The ones which are not liked and receiving a negative score have to be
improved and challenges have to be mitigated.

3.  The respective teams like finance, operations, complaints, CRM etc.
can be notified and they can work individually to improve the customer
experience.

4.  The precise reasons of liking or disliking the services will be useful for
the respective teams to work in the correct direction.

5.  Overall, it will provide a benchmark to measure the Net Promoter Score
(NPS) score for the customer base. The business can strive to enhance
the overall customer experience.

6.  We might like to represent these findings by means of a dashboard.
This dashboard will be refreshed at a regular cycle like monthly or
quarterly refresh.

To solve this business problem, the teams can collect relevant data from
websites, surveys, Amazon, blogs etc. And then an analysis can be done on
that dataset. It is relatively easy to analyze the structured data. In this
example we are going to work on text data.

The Python Jupyter notebook is checkedin at the Github location. You are
advised to use the Jupyter notebook from the GitHub location as it contains
more steps.

Step 1: We import all the libraries here.

#### Loading all the required libraries here

from lxml import html  

import requests



import pandas as pd

from nltk.corpus import stopwords

from textblob import TextBlob

import matplotlib.pyplot as plt

import sys

import numpy as np

import pandas as pd

import matplotlib

import matplotlib.pyplot as plt

import sklearn

import scikitplot as skplt

import nltk

#to ignore warnings

import warnings

warnings.filterwarnings("ignore")

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

Step 2: We will define the tags here. These tags are used to get the attributes
of the product from the reviews.

xpath_reviews = '//div[@data-hook="review"]'

reviews = parser.xpath(xpath_reviews)

xpath_rating  = './/i[@data-hook="review-star-rating"]//text()' 

xpath_title   = './/a[@data-hook="review-title"]//text()'

xpath_author  = './/a[@data-hook="review-author"]//text()'

xpath_date    = './/span[@data-hook="review-date"]//text()'

xpath_body    = './/span[@data-hook="review-body"]//text()'

xpath_helpful = './/span[@data-hook="helpful-vote-statement"]//text()'

Step 3: We are now making everything ready to extract the data. We are
creating a dataframe to store the customer reviews. Then we are iterating
through all the reviews and then extracting the information.

# Create a dataframe here. 

 

reviews_df = pd.DataFrame()

for review in reviews:

    rating  = review.xpath(xpath_rating)

    title   = review.xpath(xpath_title)

    author  = review.xpath(xpath_author)

    date    = review.xpath(xpath_date)

    body    = review.xpath(xpath_body)

    helpful = review.xpath(xpath_helpful)

 



    review_dict = {'rating': rating,

                   'title': title,

                   'author': author,             

                   'date': date,

                   'body': body,

                   'helpful': helpful}

    reviews_df = reviews_df.append(review_dict, ignore_index=True)

all_reviews = pd.DataFrame()

Step 4: Let’s iterate through the reviews and then fill the details.

# Fill the values of the reviews here. . 

 

for i in range(1,90):

    amazon_url = 'https://www.amazon.co.uk/Hive-Heating-Thermostat-Professional-Installation/product-reviews/B011B3J6KY/ref=cm_cr_othr_d_show_all?ie=UTF8&reviewerType=all_reviews&pageNumber='+str(i)

    headers = {'User-Agent': user_agent}

    page = requests.get(amazon_url, headers = headers)

    parser = html.fromstring(page.content)

    xpath_reviews = '//div[@data-hook="review"]'

    reviews = parser.xpath(xpath_reviews)

    reviews_df = pd.DataFrame()

    xpath_rating  = './/i[@data-hook="review-star-rating"]//text()' 

    xpath_title   = './/a[@data-hook="review-title"]//text()'

    xpath_author  = './/a[@data-hook="review-author"]//text()'

    xpath_date    = './/span[@data-hook="review-date"]//text()'

    xpath_body    = './/span[@data-hook="review-body"]//text()'

    xpath_helpful = './/span[@data-hook="helpful-vote-statement"]//text()'

    #print(i)

    for review in reviews:

        rating  = review.xpath(xpath_rating)

        title   = review.xpath(xpath_title)

        author  = review.xpath(xpath_author)

        date    = review.xpath(xpath_date)

        body    = review.xpath(xpath_body)

        helpful = review.xpath(xpath_helpful)

 

        review_dict = {'rating': rating,

                       'title': title,

                       'author': author,             

                       'date': date,

                       'body': body,

                       'helpful': helpful}

        reviews_df = reviews_df.append(review_dict, ignore_index=True)

    #print(reviews_df)

    all_reviews = all_reviews.append(reviews_df)

Step 5: Let’s have a look at the output we generated.



all_reviews.head()

Step 6: we will now save the output to a path. You can give your own path.

out_folder = '/Users/vaibhavverdhan/Book/UnsupervisedLearningBookFinal/'

all_reviews.to_csv(out_folder + 'Reviews.csv')

Step 7: Load the data and analyze it.

#Load the data now and analyse it

data_path = '/Users/vaibhavverdhan/Book/UnsupervisedLearningBookFinal/'

reviewDataCSV = 'Reviews.csv'

reviewData = (pd.read_csv(data_path+reviewDataCSV,index_col=0,))

Step 8: We will now look at the basic information about the dataset

reviewData.shape

reviewData.rating.unique()

reviewData.rating.value_counts()

Step 9: We will now look at the distribution of the stars given in the reviews.
This will allow us to understand the reviews given by the customers.

labels = '5 Stars', '1 Star', '4 Stars', '3 Stars', '2 Stars'

sizes = [reviewData.rating.value_counts()[0], reviewData.rating.value_counts()[1],reviewData.rating.value_counts()[2],reviewData.rating.value_counts()[3],reviewData.rating.value_counts()[4]]

colors = ['green', 'yellowgreen', 'coral', 'lightblue', 'grey']

explode = (0, 0, 0, 0, 0)  # explode 1st slice

 

# Plot

plt.pie(sizes, explode=explode, labels=labels, colors=colors,

        autopct='%1.1f%%', shadow=True, startangle=140)

 

plt.axis('equal')

plt.show()

Step 10: Make the text as lowercase, and then we remove the stop words and
the words which have highest frequency.

reviewData.body = reviewData.body.str.lower()

reviewData.body = reviewData.body.str.replace('[^\w\s]','')

stop = stopwords.words('english')

reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in x.split() if x not in stop))

freq = list(freq.index)

reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in x.split() if x not in freq))



freq = pd.Series(' '.join(reviewData.body).split()).value_counts()[-10:]

freq = list(freq.index)

reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in x.split() if x not in freq))

Step 11: tokenize the data now.

from nltk.tokenize import word_tokenize

tokens = word_tokenize(reviewData.iloc[1,1])

print(tokens)

Step 12: we are performing lemmatization now.

from textblob import Word

reviewData.body = reviewData.body.apply(lambda x: " ".join([Word(word).lemmatize() for word in x.split()]))

reviewData.body.head()

Step 13: Now we are appending all the reviews to the string.

sentimentString = reviewData.iloc[1,1]

# append to this string 

for i in range(2,len(reviewData)):

    sentimentString = sentimentString + reviewData.iloc[i,1]

Step 14: the sentiment analysis is done here. From TextBlob we are taking
the sentiment method. It generates polarity and subjectivity for a sentiment.

# the functions generates polarity and subjectivity here, subsetting the polarity only here

allReviewsSentiment = reviewData.body[:900].apply(lambda x: TextBlob(x).sentiment[0])

# this contains boths subjectivity and polarity

allReviewsSentimentComplete = reviewData.body[:900].apply(lambda x: TextBlob(x).sentiment)

allReviewsSentimentComplete.head()

Step 15: save the sentiment to a csv file.

allReviewsSentiment.to_csv(out_folder + 'ReviewsSentiment.csv')

Step 15: we will now allocate a meaning or a tag to the sentiment. We are
classifying each of the score from extremely satisfied to extremely
dissatisfied.

allReviewsSentimentDF = allReviewsSentiment.to_frame()

# Create a list to store the data

grades = []

 



# For each row in the column,

for row in allReviewsSentimentDF['body']:

    # if more than a value,

    if row >= 0.75:

       grades.append('Extremely Satisfied')

    elif (row >= 0.5) & (row < 0.75):

        grades.append('Satisfied')

    elif (row >= 0.2) & (row < 0.5):

        grades.append('Nice')

    elif (row >= -0.2) & (row < 0.2):

        grades.append('Neutral')

    elif (row > -0.5) & (row <= -0.2):

        grades.append('Bad')

    elif (row >= -0.75) & (row < -0.5):

        grades.append('Dis-satisfied')

    elif  row < -0.75:

        grades.append('Extremely Dis-satisfied')

    else:

        # Append a failing grade

        grades.append('No Sentiment')

        

# Create a column from the list

allReviewsSentimentDF['SentimentScore'] = grades

allReviewsSentimentDF.head()

Step 16: We will now look at the sentiment scores and plot them too. Finally,
we will merge them with the main dataset.

allReviewsSentimentDF.SentimentScore.value_counts()

allReviewsSentimentDF['SentimentScore'].value_counts().plot(kind='bar')

#### Merge the review data with Sentiment generated

 

# add column Polarity Score

reviewData['polarityScore'] = allReviewsSentimentDF['body']

In this case study, you not only scraped the reviews from the website, you
also analyzed the dataset. If we compare the sentiments, we can see that the
stars given to a product, do not represent a true picture.

In (), we are comparing the actual stars and the output from sentiment
analysis. We can observe that 73% have given 5 stars and 7% have given 4
stars, while in the sentiment analysis most of the reviews have been classified
as neutral. This is the real power of sentiment analysis!



Figure 7-8 Compare the original distribution of number of stars on the left side, observe the real
results from the sentiment analysis

Sentiment analysis is quite an important use case. It is very useful for the
business and the product teams.

We will now move to the second case studt on document classification using
Python.

Text clustering using Python

Consider this. You have got a bunch of text datasets or documents. But they
all are mixed up. We do not know the text belongs to which class. In this
case, we will assume that we have two types of text datasets with us – one
which has all the data related to football and second class is travel. We will
develop a model which can segregate these two classes.



Step 1: Import all the libraries

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.cluster import KMeans

import numpy as np

import pandas as pd

Step 2: We are now creating a dummy dataset. This text data has a few
sentences we have written ourselves. There are two categories -

text = ["It is a good place to travel",

            "Football is a nice game", "Lets go for holidays and travel to Egypt",

            "It is a goal, a great game.", "Enjoy your journey and fortget the rest", "The teams are ready for the same" ]

Step 3: We will use tfidf to vectorize the data.

tfidf_vectorizer = TfidfVectorizer(stop_words='english')

X = tfidf_vectorizer.fit_transform(text)

Step 4: let’s do the clustering now.

k = 2

model = KMeans(n_clusters=k, init='k-means++', max_iter=10, n_init=2)

model.fit(X)

Step 5: Lets represent centroids and print the outputs.

centroids = model.cluster_centers_.argsort()[:, ::-1]

features = vectorizer.get_feature_names()

 

for i in range(k):

    print("Cluster %d:" % i),

    for ind in centroids[i, :10]:

        print("%s" % terms[ind])





You can extend this example to other datasets too. Use your own dataset and
replicate the code in the example above.

There is no more Python Jupyter notebook which uses Word2Vec and
GloVe. We have checked-in the code at the GitHub location of the book. You
are advised to use it. It is really an important source to represent text data.

With this, we are coming to the end of this exciting chapter. Let’s move to
the summary now.

7.6 Summary

Text data is one of the most useful datasets. A lot of intelligence is hidden in
the texts. Logs, blogs, reviews, posts, tweets, complaints, comments, articles
and so on – the sources of text data are many. Organizations have started to
invest in setting up the infrastructure for accessing text data and storing it.
Analyzing text data requires better processing powers and better machines. It
requires special skill sets and deeper understanding of the concepts. NLP is
an evolving field and a lot of research is underway. At the same time, we
cannot ignore the importance of sound business acumen and knowledge.

Data analysis and machine learning are not easy. We have to understand a lot
of concepts around data cleaning, exploration, representation and modelling.
But, analyzing unstructured data might be even more complex than structured
datasets. We worked on images dataset in the last chapter. In the current
chapter, we worked on text data.

Text data is one of the most difficult to analyze. There are so many
permutations and combinations for text data. Cleaning the text data is not
easy and is quite a complex task. In this chapter we discussed few of those
important techniques to clean the text data. We also covered few important
methods to represent text data in vector forms. You are advised to do practice
of each of these methods and compare the performances by applying each of
the techniques.

With this, we come to an end to the chapter seven of the book. This also



marks an end to part two of the book. In the next part of the book, the
complexity increases. We will be studying even deeper concepts of
unsupervised learning algorithms.

You can now move to the practice questions.

Practical next steps and suggested readings

1.  Get the datasets from the link below. You will find a lot of text datasets
here. You are advised to implement clustering and dimensionality
reduction solutions.
https://blog.cambridgespark.com/50-free-machine-learning-datasets-
natural-language-processing-d88fb9c5c8da

2.  This is the second source of text datasets, where you will find a lot of
useful datasets.
https://www.kaggle.com/datasets?search=text

3.  You are advised to go through the research paper – Efficient Estimation
of Word Representations in Vector Space by Tomas Mikolov, Kai Chen,
Greg Corrado, Jeffrey Dean
https://arxiv.org/pdf/1301.3781.pdf

4.  You are advised to go through the research paper – GloVe: Global
Vectors for Word Representation by Jeffrey Pennington, Richard
Socher, Christopher D. Manning
https://nlp.stanford.edu/pubs/glove.pdf

5.  There are a few papers which are really quoted widely
6. Avrim Blum and Tom Mitchell: Combining Labeled and Unlabeled

Data with Co-Training, 1998
7. Kevin Knight: Bayesian Inference with Tears, 2009.
8. Thomas Hofmann: Probabilistic Latent Semantic Indexing, SIGIR 1999.
9. Donald Hindle and Mats Rooth. Structural Ambiguity and Lexical

Relations, Computational Linguistics, 1993.
10. Collins and Singer: Unsupervised Models for Named Entity

Classification, EMNLP 1999.
11.  You are advised to go through the research paper- Using TF-IDF to

Determine Word Relevance in Document Queries by Juan Ramos
https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.121.1424&rep=rep1&type=pdf



12.  You are advised to go through the research paper – An Improved Text
Sentiment Classification Model Using TF-IDF and Next Word Negation
by Bijoyan das and Sarit Chakraborty
https://arxiv.org/pdf/1806.06407.pdf
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