[image: Cover]

 Machine Learning Algorithms in Depth MEAP V03

 	
 Copyright_2023_Manning_Publications

 	
 welcome

 	
 1_Machine_Learning_Algorithms

 	
 2_Markov_Chain_Monte_Carlo

 	
 3_Variational_Inference

 	
 4_Software_Implementation

 	
 5_Classification_Algorithms

 	
 6_Regression_Algorithms

[image:]

MEAP Edition

Manning Early Access Program

Machine Learning Algorithms in Depth

Version 3

Copyright 2023 Manning Publications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.

These will be cleaned up during production of the book by copyeditors and proofreaders.

https://livebook.manning.com/#!/book/machine-learning-algorithms-in-depth/discussion

For more information on this and other Manning titles go to

manning.com

welcome

Thank you for purchasing the MEAP for Machine Learning Algorithms in Depth. This book will take you on a journey from mathematical derivation to software implementation of some of the most intriguing algorithms in ML.

This book dives into the design of ML algorithms from scratch. Throughout the book, you will develop mathematical intuition for classic and modern ML algorithms, learn the fundamentals of Bayesian inference and deep learning, as well as the data structures and algorithmic paradigms in ML.

Understanding ML algorithms from scratch will help you choose the right algorithm for the task, explain the results, troubleshoot advanced problems, extend an algorithm to a new application, and improve performance of existing algorithms.

Some of the prerequisites for reading this book include basic level of programming in Python and intermediate level of understanding of linear algebra, applied probability and multivariate calculus.

My goal in writing this book is to distill the science of ML and present it in a way that will convey intuition and inspire the reader to self-learn, innovate and advance the field. Your input is important. I’d like to encourage you to post questions and comments in the liveBook discussion forum to help improve presentation of the material.

Thank you again for your interest and welcome to the world of ML algorithms!

— Vadim Smolyakov

In this book

Copyright 2023 Manning Publications
welcome
brief contents
1 Machine Learning Algorithms
2 Markov Chain Monte Carlo
3 Variational Inference
4 Software Implementation
5 Classification Algorithms
6 Regression Algorithms

1 Machine Learning Algorithms

This chapter covers

	Types of ML algorithms

	Importance of learning algorithms from scratch

	Introduction to Bayesian Inference and Deep Learning

	Software implementation of machine learning algorithms from scratch

An algorithm is a sequence of steps required to achieve a particular task. An algorithm takes an input, performs a sequence of operations and produces a desired output. The simplest example of an algorithm is sorting: given a list of integers, we perform a sequence of operations to produce a sorted list. A sorted list enables us to organize information better and find answers in our data.

Two popular questions to ask about an algorithm is how fast does it run (run-time complexity) and how much memory does it take (memory complexity) for an input of size n. For example, a comparison-based sort, as we’ll see later, has O(nlogn) run-time complexity and requires O(n) memory storage.

There are many approaches to sorting, and in each case, in the classic algorithmic paradigm, the algorithm designer creates a set of instructions. Imagine a world where you can learn the instructions based on a sequence of input and output examples available to you. This is a setting of ML algorithmic paradigm. Similar to how a human brain learns, when we are playing connect-the-dots game or sketching a nature landscape, we are comparing the desired output with what we have at each step and filling in the gaps. This in broad strokes is what (supervised) machine learning (ML) algorithms do. During training, ML algorithms are learning the rules (e.g. classification boundaries) based on training examples by optimizing an objective function. During testing, ML algorithms apply previously learned rules to new input data points to give a prediction as shown in Figure 1.1

1.1 Types of ML Algorithms

Let’s unpack the previous paragraph a little bit and introduce some notation. This book focuses on machine learning algorithms that can be grouped together in the following categories: supervised learning, unsupervised learning and deep learning. In supervised learning, the task is to learn a mapping f from inputs x to outputs given a training dataset D = {(x1,y1),…,(xn,yn)} of n input-output pairs. In other words, we are given n examples of what the output should look like given the input. The output y is also often referred to as the label, and it is the supervisory signal that tells our algorithm what the correct answer is.

Figure 1.1 Supervised Learning: Training (left) and Testing (right)

[image: 01_01]

Supervised learning can be sub-divided into classification and regression based on the quantity we are trying to predict. If our output y is a discrete quantity (e.g. K distinct classes) we have a classification problem. On the other hand, if our output y is a continuous quantity (e.g. a real number such as stock price) we have a regression problem.

Thus, the nature of the problem changes based on the quantity y we are trying to predict. We want to get as close as possible to the ground truth value of y.

A common way to measure performance or closeness to ground truth is the loss function. The loss function is computing a distance between the prediction and the true label. Let y = f(x; θ) be our ML algorithm that maps input examples x to output labels y, parameterized by θ, where θ captures all the learnable parameters of our ML algorithm. Then, we can write our classification loss function as follows in Equation 1.1:

Equation 1.1 Loss function for classification

[image: 01_E01]

Where 1[] is an indicator function, which is equal to 1 when the argument inside is true and 0 otherwise. What the expression above says is we are adding up all the instances in which our prediction f(xi; θ) did not match the ground truth label yi and we are dividing by the total number of examples n. In other words, we are computing an average misclassification rate. Our goal is to minimize the loss function, i.e. find a set of parameters θ, that make the misclassification rate as close to zero as possible. Note that there are other alternative loss functions for classification such as cross entropy that we will look into in later chapters.

For continuous labels or response variables, a common loss function is the Mean Square Error (MSE), defined as follows in Equation 1.2:

Equation 1.2 Loss function for regression

[image: 01_E02]

Essentially, we are subtracting our prediction from the ground truth label, squaring it and aggregating the result as an average over all data points. By taking the square we are eliminating the possibility of negative loss values, which would impact our summation.

One of the central goals of machine learning is to be able to generalize to unseen examples. We want to achieve high accuracy (low loss) on not just the training data (which is already labelled) but on new, unseen, test data examples. This generalization ability is what makes machine learning so attractive: if we can design ML algorithms that can see outside their training box, we’ll be one step closer to Artificial General Intelligence (AGI).

In unsupervised learning, we are not given the label y nor are we learning the mapping between input and output examples, instead we are interested in making sense of the data itself. Usually, that implies in a lower dimension and with some properties so it could be easier to understand by human. In other words, our training dataset consists of D = {x1,…,xn} of n input examples without any corresponding labels y. The simplest example of unsupervised learning is finding clusters within data. Intuitively, data points that belong to the same cluster have similar characteristics. In fact, data points within a cluster can be represented by the cluster center as an exemplar and used as part of a data compression algorithm. Alternatively, we can look at the distances between clusters in a projected lower-dimensional space to understand the inter-relation between different groups. Additionally, a point that’s far away from all the existing clusters can be considered an anomaly leading to an anomaly detection algorithm. As you can see, there’s an infinite number of interesting uses cases that arise from unsupervised learning, and we’ll be learning from scratch some of the most intriguing algorithms in that space.

Figure 1.2 Unsupervised Learning: clusters of data points projected onto 2-dimensional space

[image: 01_02]

Another very important area of modern machine algorithms is deep learning. The name comes from a stack of computational layers forming together a computational graph. The depth of this graph refers to sequential computation and the breadth to parallel computation.

As we’ll see, deep learning models gradually refine their parameters through back-propagation algorithm until they meet the objective function. Deep learning models permeated the industry due to their ability to solve complex problems with high accuracy. For example, Figure 1.3 shows a deep learning architecture for sentiment analysis. We’ll learn more about what individual blocks represent in future chapters.

Figure 1.3 Deep Neural Network (DNN) architecture for sentiment analysis

[image: 01_03]

Deep learning is a very active research area and we’ll be focusing on the modern deep learning algorithms throughout this book. For example, in self-supervised learning, used in Transformer models, we are using the context and structure of the natural language as a supervisory signal thereby extracting the labels from the data itself. In addition to classic applications of deep learning in Natural Language Processing (NLP) and Computer Vision (CV), we’ll be taking a look at generative models, learning how to predict time-series data and journey into relational graph data.

1.2 Why Learn Algorithms from Scratch?

Understanding ML algorithms from scratch has a number of valuable outcomes for the reader. First, you will be able to choose the right algorithm for the task. By knowing the innerworkings of the algorithm, you will understand its shortcomings, assumptions made in the derivation of the algorithm as well as advantages in different data scenarios. This will enable you to exercise judgement when selecting the right solution to a problem and save time by eliminating approaches that don’t work.

Secondly, you will be able to explain the results of the given algorithm to the stakeholders. Being able to interpret the results and present them to the audience in the industrial or academic settings is an important trait of ML algorithm designer.

Thirdly, you will be able to use intuition developed by reading this book to troubleshoot advanced ML problems. Breaking down a complex problem into smaller pieces and understanding where things went wrong often requires a strong sense of fundamentals and algorithmic intuition. This book will allow the reader to construct minimum working examples and build upon existing algorithms to develop and be able to debug more complex models.

Fourthly, you will be able to extend an algorithm when a new situation arises in the real world, in particular, where the textbook algorithm or a library cannot be used as is. The in-depth understanding of ML algorithms that you will acquire in this book will help you modify existing algorithms to meet your needs.

Finally, we are often interested in improving performance of existing models. The principles discussed in this book will enable the reader to accomplish that. In conclusion, understanding ML algorithms from scratch will help you choose the right algorithm for the task, explain the results, troubleshoot advanced problems, extend an algorithm to a new situation and improve performance of existing algorithms.

1.3 Bayesian Inference and Deep Learning

Bayesian inference allows us to update our beliefs about the world given observed data. Our minds hold a variety of mental models explaining different aspects of the world, and by observing new data points, we can update our latent representation and improve our understanding of reality. Any probabilistic model is described by a set of parameters θ modelled as random variables, which control the behavior of the model, and associated data x.

The goal of Bayesian inference is to find the posterior distribution p(θ|x) in order to capture well a particular aspect of reality. The posterior distribution is proportional to the product of the likelihood p(x|θ) and the prior p(θ), which follows from the Bayes rule in Equation 1.3:

Equation 1.3 Bayes Rule

[image: 01_E03]

Prior p(θ) is our initial belief and can be either non-informative (e.g. uniform over all possible states) or informative (e.g. based on experience in a particular domain). Moreover, our inference results depend on the prior we choose: not only the value of prior parameters but also on the functional form of the prior. We can imagine a chain of updates in which the prior becomes a posterior as more data is obtained in a form of Bayes engine shown in Figure 1.4. We can see how our prior is updated to a posterior via Bayes rule as we observe more data.

Figure 1.4 Bayes engine showing the transformation of a prior to a posterior as more data is observed

[image: 01_04]

Posteriors that have the same form as the prior are known as conjugate priors, which are historically preferred since they simplify computation by having closed form updates. The denominator Z=p(x)=∫p(x|θ)p(θ)dθ is known as the normalizing constant or the partition function and is often intractable to compute due to integration in high dimensional parameter space. We’ll look at a number of techniques in this book that work around the problem of estimating Z.

We can model relationships between different random variables in our model as a graph as shown in Figure 1.5 giving rise to probabilistic graphical models. Each node in the graph represents a random variable (RV) and each edge represents conditional dependency. The topology of the graph itself changes according to specific application you are trying to model. However, the goals of Bayesian inference remain the same.

Figure 1.5 Probabilistic Graphical Model (PGM) for a Gaussian Mixture Model

[image: 01_05]

In contrast to PGMs, where the connections are specified by domain experts, deep learning model learn representations of the world automatically through the algorithm of back-propagation that minimizes an objective function. Deep Neural Networks (DNNs) consist of multiple layers parameterized by weight matrices and bias parameters. Mathematically, DNNs can be expressed as a composition of individual layer functions as in Equation 1.4:

Equation 1.4 Deep Neural Network Composition

[image: 01_E04]

Where fl(x)=f(x;θl) is the function at layer l. The compositional form of the DNNs reminds us of the chain rule when it comes to differentiating with respect to parameters as part of stochastic gradient descent. Throughout this book, we’ll look at a number of different kinds of DNNs such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) as well as Transformers and Graph Neural Networks (GNNs) with applications ranging from computer vision to finance.

1.3.1 Two Main Camps of Bayesian Inference: MCMC and VI

Markov Chain Monte Carlo (MCMC) is a methodology of sampling from high dimensional parameter spaces in order to approximate the posterior distribution p(θ|x). There are many approaches to sampling in high dimensional parameter spaces. As we’ll see in later chapters, MCMC is based on constructing a Markov chain whose stationary distribution is the target density of interest, i.e. posterior distribution. By performing a random walk over the state space, the fraction of time we spend in each state θ will be proportional to p(θ|x).As a result, we can use Monte Carlo integration to derive the quantities of interest associated with our posterior distribution.

Before we get into high dimensional parameter spaces, let’s take a look at how we can sample from low dimensional spaces. The most popular method for sampling form univariate distributions is known as the inverse CDF method, where CDF stands for cumulative density function and it is defined as CDFX(x)=P(X ≤ x)

Figure 1.6 Exponential Random Variable PDF (left) and CDF (right)

[image: 01_06]

For example, for an exponential random variable (RV) with probability density function (PDF) and CDF given by Equation 1.5:

Equation 1.5 Probability Density Function (PDF) and Cumulative Density Function (CDF) of Exponential RV

[image: 01_E05]

The inverse CDF can be found as follows:

Equation 1.6 Inverse CDF for Exponential RV

[image: 01_E06]

Thus, to generate a sample from an exponential RV, we first need to generate a sample from uniform random variable u ~ Unif(0,1) and apply the transformation -ln(1-u)/λ. By generating enough samples, we can achieve an arbitrary level of accuracy. One challenge regarding MCMC is how to efficiently generate samples from high-dimensional distributions. We’ll look at two ways of doing that in this book: Gibbs sampling and Metropolis-Hastings (MH) sampling.

Variational Inference (VI) is an optimization based approach to approximating the posterior distribution p(x). The basic idea behind VI is to choose an approximate distribution q(x) from a family of tractable distributions and then make this approximation as close as possible to the true posterior distribution p(x). As we will see in the mean-field section of the book, the approximate q(x) can take on a fully factored representation of the joint posterior distribution. This factorization significantly speeds up computation.

Figure 1.7 Forward KL (left) and Reverse KL (right) approximate distribution q(x) fit to Gaussian mixture p(x)

[image: 01_07]

We will introduce KL divergence and use it as a way to measure closeness of our approximate distribution to the true posterior. Figure 1.7 shows the two versions of KL divergence.

Equation 1.7 Forward KL (left) and Reverse KL (right) divergence definitions

[image: 01_E07]

The original distribution p(x) is a bi-modal Gaussian distribution (aka Gaussian mixture with two components), while the approximating distribution q(x) is a uni-modal Gaussian. As we can see from the Figure 1.7, we can approximate the distribution with two peaks either at the center with q(x) that has high variance so as to capture the support of the bimodal distribution or at one of its modes as shown on the right. This is a result of forward and reverse KL divergence definitions in Equation 1.7. As we’ll see in later chapters, by minimizing KL divergence we will effectively convert VI into an optimization problem.

1.3.2 Modern Deep Learning Algorithms

Over the years, deep learning architecture has changed from the basic building blocks of LeNet convolutional neural network (CNN) to inception modules of GoogLeNet. We saw the emergence of certain architectural design themes such as residual connections in the ResNet model, which became the standard architectural choice of modern neural networks of arbitrary depth. In the later chapters of this book, we’ll be taking a look at modern deep learning algorithms which include self-attention based Transformers, generative models such as Variational Auto-Encoders (VAE) and Graph Neural Networks.

We will also take a look at amortized variational inference which is an interesting research area as it combines the expressiveness and representation learning of deep neural networks with domain knowledge of probabilistic graphical models. We will see one such application of Mixture Density Networks, where we’ll use a neural network to map from observation space to the parameters of the approximate posterior distribution.

A vast majority of deep learning models fall in the area of narrow AI showing high-performance on a specific dataset. While it is a useful skill to be able to do well on a narrow set of tasks, we would like to generalize away from narrow AI and towards Artificial General Intelligence (AGI).

1.4 Implementing Algorithms

A key part of learning algorithms from scratch is software implementation. It’s important to write good code that is both efficient in terms of its use of data structures and has low algorithmic complexity. Throughout this chapter, we’ll be grouping the functional aspects of the code into classes and implementing different computational methods from scratch. Thus, you’ll be exposed to a lot of object oriented programming (OOP) which is common practice with popular ML libraries such as scikit-learn. While the intention of this book is to write all code from scratch (without reliance on third party libraries), we can still use ML libraries (such as scikit-learn: https://scikit-learn.org/stable/) to check the results of our implementation if available. We’ll be using Python language throughout this book.

1.4.1 Data Structures

A data structure is a way of storing and organizing data. Each data structure offers different performance trade-offs and some are more suitable for the task than others. We’ll be using a lot of linear data structures such as fixed size arrays in our implementation of ML algorithms since the time to access an element in the array is constant O(1). We’ll also frequently use dynamically resizable arrays (such as lists in Python) to keep track of data over multiple iterations.

Throughout the book, we’ll be using non-linear data structures, such as map (dictionary) and set. The reason is that ordered dictionary and ordered set are built upon self-balanced binary search trees (BSTs) that guarantee O(nlogn) insertion, search and deletion operations. Finally, a hash table or unordered map is another commonly used, efficient data structure with O(1) access time assuming no collisions.

1.4.2 Problem-Solving Paradigms

Many ML algorithms in this book can be grouped into four main problem-solving paradigms: complete search, greedy, divide and conquer, and dynamic programming. Complete search is a method for solving a problem by traversing the entire search space in search of a solution. A machine learning example where complete search takes place is an exact inference by complete enumeration. During exact inference, we must completely specify a number of probability tables to carry out our calculations. A greedy algorithm takes a locally optimum choice at each step with the hope of eventually reaching a globally optimum solution. Greedy algorithms often rely on a greedy heuristic. A machine learning example of a greedy algorithm consists of sensor placement. For example, given a room and several temperature sensors, we would like to place the sensors in a way that maximizes room coverage. Divide and conquer is a technique that divides the problem into smaller, independent sub-problems and then combines the solutions to each of the sub-problems. A machine learning example that uses divide and conquer paradigm can be found in CART decision tree algorithm. As we’ll see in a future chapter, in CART algorithm an optimum threshold for splitting a decision tree is found by optimizing a classification objective (such as Gini index). The same procedure is applied to a tree of depth one greater resulting in a recursive algorithm. Finally, Dynamic Programming (DP) is a technique that divides a problem into smaller, overlapping sub-problems, computes a solution for each sub-problem and stores it in a DP table. A machine learning example that uses dynamic programming occurs in Reinforcement Learning (RL) in finding a solution to Bellman equations. For a small number of states, we can compute the Q-function in tabular way using dynamic programming.

1.5 Summary

	An algorithm is a sequence of steps required to achieve a particular task. Machine learning algorithms can be grouped into supervised learning, unsupervised learning and deep learning.

	Understanding algorithms from scratch will help you choose the right algorithm for the task, explain the results, troubleshoot advanced problems and improve performance of existing models

	Bayesian inference allows us to update our beliefs about the world given observed data, while deep learning models learn representations of the world through the algorithm of back-propagation that minimizes an objective function. There are two camps of Bayesian inference: Markov Chain Monte Carlo (MCMC) and Variational Inference (VI) that deal with sampling and approximating the posterior distribution, respectively

	It is important to write good code that is both efficient in terms of its use of data structures and that has low algorithmic complexity. Many machine learning algorithms in this book can be grouped into four main problem-solving paradigms: complete search, greedy, divide and conquer, and dynamic programming.

2 Markov Chain Monte Carlo

This chapter covers

	Introduction to Markov Chain Monte Carlo (MCMC)

	Estimating Pi via Monte Carlo Integration

	Binomial Tree Model Monte Carlo Simulation

	Self-Avoiding Random Walk

	Gibbs Sampling Algorithm

	Metropolis-Hastings Algorithm

	Importance Sampling

In the previous chapter we reviewed different types of ML algorithms and software implementation. Now we are going to focus on one popular class of ML algorithms known as Markov Chain Monte Carlo. Any probabilistic model that explains a part of reality contains multiple parameters and can be described by distributions that live in high dimensional parameter spaces. Markov Chain Monte Carlo (MCMC) is a methodology of sampling from high dimensional parameter spaces, in order to approximate the posterior distribution p(θ│x). Originally developed by physicists this method became popular in Bayesian statistics community because it allows one to estimate high dimensional posterior distributions using sampling. The basic idea behind MCMC is to construct a Markov chain whose stationary distribution is equal to the target posterior p(θ│x). In other words, if we perform a random walk across the parameter space, the fraction of time we spend in a particular state θ is proportional to p(θ│x). We’ll start by introducing MCMC in the following section. We’ll proceed with three warm-up Monte Carlo examples (Estimating Pi, Binomial Tree Model and self-avoiding random walk) before looking at three popular sampling algorithms (Gibbs sampling, Metropolis-Hastings and Importance sampling).

2.1 Introduction to Markov Chain Monte Carlo

Let’s start by understanding high dimensional parameter spaces based on a simple example of classifying Iris. Iris is a species of flowers consisting of three types: Setosa, Versicolor and Virginica. The flowers are characterized by their petal and sepal length and width which can be used as features to determine the Iris type. Figure 2.1 shows the Iris pairplot.

Figure 2.1 Iris pairplot: pair-wise scatterplots color coded by Iris species

[image:]

A pairplot is a matrix of plots where off-diagonal entries contain a scatter plot of every feature (such as petal length) against every other feature, while the main diagonal entries contain plots of every feature against itself color coded by the three Iris species. The pairplot captures pairwise relationships in the Iris dataset. Let’s focus on the main diagonal entries and try to model the data we see. Since we have three types of Iris flowers, we can model the data as a mixture of three Gaussian distributions. Equation 2.1 captures this in mathematical terms:

Equation 2.1 Mixture of Gaussians

[image: 02_E01]

A mixture of Gaussians consists of K Gaussian RVs scaled by mixture proportions πk that are positive and add up to 1: ∑πk = 1, πk > 0 This is a high dimensional parameter problem because to fit the Gaussian mixture model we need to find the values for the means μk, covariances σ2k and mixture proportions πk. In the case of Iris dataset, we have K=3, which means that the number of parameters for Gaussian mixture is equal to 9-1=8, i.e. we have 9 parameters in θ = {μk, σ2k, πk}3(k=1) and we subract 1 because of the sum-to-one constraint for πk. In a later chapter, we’ll look at how to find the Gaussian mixture parameters via Expectation-Maximization (EM) algorithm.

2.1.1 Posterior Distribution of Coin Flips

In MCMC algorithms, we are going after approximating the posterior distribution through samples. In fact, most of Bayesian inference is designed to efficiently approximate the posterior distribution. Let’s understand what a posterior distribution is in a little more detail. Posterior arises when we have a model with parameters θ that we are trying to fit to observed data x. Namely, it’s the probability of parameters given the data: p(θ│x).Consider an example of a sequence of coin flips where every coin is heads with probability θ and tails with probability 1-θ as shown in Figure 2.2

Figure 2.2 Bernoulli Random Variable

[image: 02_02]

Figure 2.2 shows the probability mass function (PMF) of a Bernoulli RV modeling the coin flip. If θ=1/2 we have a fair coin with equal chance of heads (1) or tails (0), otherwise, we say that the coin is biased with the bias equal to θ. We can write down the PMF of Bernoulli RV as follows:

Equation 2.2 Bernoulli Random Variable

[image: 02_E02]

The mean of Bernoulli RV is equal to, E[X]= ∑x x px (x│θ) = 0(1-θ)+1(θ)= θ while the variance is equal to VAR(x)=E[x2]-E[x]2= θ- θ2= θ(1-θ) . Let’s go back to our coin tossing example. Let D={x1,…,xn} be a sequence of independent and identically distributed (iid) coin flips. Then we can compute the likelihood as follows:

Equation 2.3 Likelihood of n coin flips

[image: 02_E03]

Where N1 = ∑n(i=1)xi or the total number of counts for which the coin landed heads and N0=n-N1 or the total number of counts for which the coin landed tails.

Equations 2.2 and 2.3 have the form p(x│θ) which is by definition the likelihood of data x given the parameter θ. What if we have some prior information about the parameter θ, in other words we know something about p(θ), such as the number of heads and tails we obtained in another experiment with the same coins. We can capture this prior information as follows:

Equation 2.4 Unnormalized Beta Prior Distribution

[image: 02_E04]

where a is the number of heads and b is the number of tails in our previous experiment. When computing the posterior distribution, we are interested in computing p(θ|x). We can use Bayes rule from Chapter 1 to express the posterior distribution as proportional to the product of the likelihood and the prior:

Equation 2.5 Beta Posterior Distribution

[image: 02_E05]

Equation 2.5 computes the posterior distribution p(θ|D) which tells us the probability of heads for a sequence of coin flips. We can see that the posterior is distributed as a Beta random variable. Remember that our prior was also a Beta random variable. We say that the prior is conjugate to the posterior. In other words, the posterior can be computed in closed form by updating the prior counts with observed data.

2.1.2 Markov Chain for Page Rank

Before we dive into MCMC algorithms, we need to introduce the concept of a Markov chain. A Markov chain is a sequence of possible events, in which the probability of the current event depends only on the previous event. A first-order Markov chain can be written as follows. Let x1,…,xt be the samples from our posterior distribution, then we can write the joint as:

Equation 2.6 Factorized First Order Markov Chain

[image: 02_E06]

Notice how the joint factors as a product of conditional distributions where the current state is conditioned only on the previous state. A Markov chain is characterized by the initial distribution over the states p(x1 = i) and a state transition matrix Aij=p(xt=j│xt-1 = i) from state i to state j. Let’s motivate Markov chains via Google page rank example. Google uses page rank algorithm to rank billions of web pages. We can formulate a collection of n web-pages as a graph G=(V,E). Let every node v ∈ V represent a web-page and let every edge e ∈ E represent a link from one page to another. Knowing how the pages are linked allows us to construct a giant, sparse transition matrix A, where Aij is the probability of following a link from page i to page j as shown in Figure 2.3

Figure 2.3 A graph of web-pages with transition probabilities

[image: 02_03]

Note that every row in the matrix A sums to 1, i.e. ∑j Aij = 1. A matrix with this property is known as a stochastic matrix. Note that Aij corresponds to transition probability from state i to state j. As we will see in a later chapter, the page rank is a stationary distribution over the states of the Markov chain. To make it scale to billions of web-pages, we’ll derive from scratch and implement a power iteration algorithm. But for now, in the next few sections, we are going to look at different Markov Chain Monte Carlo sampling algorithms: from Gibbs sampler to Metropolis-Hastings to Importance Sampling. Let’s start with a couple of warm up examples as our first exposure to Monte Carlo algorithms.

2.2 Estimating Pi

The first example we are going to look at is estimating the value of π via Monte Carlo integration. Monte Carlo (MC) integration has an advantage over numerical integration (which evaluates a function at a fixed grid of points) in that the function is only evaluated in places where there is non-negligible probability. Thus, MC integration scales better to high dimensional problems.

Let's take a look at the expected value of some function f: ℝ → ℝ of a random variable Z=f(Y). We can approximate it by drawing samples y from the distribution p(y) as follows:

Equation 2.7 Monte Carlo Expectation

[image: 02_E07]

Let’s now use the same idea but apply it to evaluating an integral I =∫f(x)dx. We can approximate the integral as follows:

Equation 2.8 Monte Carlo Integration

[image: 02_E08]

where p(x) ~ Unif(a,b) = 1/(b-a) is the pdf of a uniform random variable over the interval (a,b) and w(x) = f(x)(b-a) is our scaled function f(x).

As we increase the number of samples N, our empirical estimate of the mean becomes more accurate. In fact, the standard error is equal to σ/sqrt(N), where σ is the empirical standard deviation:

Equation 2.9 Empirical Variance

[image: 02_E09]

Now that we have an idea of how Monte Carlo integration works, let’s use it to estimate π. We know that the area of a circle with radius r is I=π r^2. Alternatively, the area of the circle can be computed as an integral:

Equation 2.10 Area of a circle of radius r

[image: 02_E10]

where 1[x^2+y^2 ≤ r^2] is an indicator function equal to 1 when a point is inside the circle of radius r and equal to 0 otherwise. Therefore, π = I / r^2. To compute I note that:

Equation 2.11 Integrand used to estimate pi

[image: 02_E11]

We can summarize the Pi estimation algorithm in the following pseudo-code:

[image: 02_03a]

We generate N samples from a Uniform distribution with support from -R to R and compute a Boolean expression of whether our sample is inside the circle or outside. If the sample is inside, it factors into the integral computation. Once we have an estimate of the integral, we divide the result by R^2 to compute our estimate of pi.

We are now ready to implement our pi estimator!

Listing 2.1 Pi Estimator

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(42) #A

def pi_est(radius=1, num_iter=int(1e4)): #B

 X = np.random.uniform(-radius,+radius,num_iter)
 Y = np.random.uniform(-radius,+radius,num_iter)

 R2 = X**2 + Y**2
 inside = R2 < radius**2
 outside = ~inside

 samples = (2*radius)*(2*radius)*inside

 I_hat = np.mean(samples)
 pi_hat = I_hat/radius ** 2 #C
 pi_hat_se = np.std(samples)/np.sqrt(num_iter) #D
 print("pi est: {} +/- {:f}".format(pi_hat, pi_hat_se))

 plt.figure()
 plt.scatter(X[inside],Y[inside], c='b', alpha=0.5)
 plt.scatter(X[outside],Y[outside], c='r', alpha=0.5)
 plt.show()

if __name__ == "__main__":

 pi_est()

If we execute the code, we get π = 3.1348 ± 0.0164 which is a pretty good result (within the error bounds). Try experimenting with different numbers of samples N and see how fast we converge to π as a function of N. Figure 2.4 shows the accepted Monte Carlo samples in blue corresponding to samples inside the circle and the rejected samples in red.

Figure 2.4 Monte Carlo samples used to estimate pi

[image: 02_04]

In the above example, we assumed that samples came from a uniform distribution X,Y ~ Unif(-R,R).In the following section, we are going to look at simulating a stock price over different time horizons using the binomial tree model.

2.3 Binomial Tree Model

Let's take a look now at how Monte Carlo sampling can be used in finance. In a binomial tree model of a stock price, we assume that at each time step, the stock could be in either up or down states with unequal payoffs characteristic for a risky asset. Assuming the initial stock price at time t=0 is $1, at the next time step t=1 the price is u in the up state and d in the down state with up-state transition probability p. A binomial tree model for the first two timesteps is shown in Figure 2.5. Note that the price in the next up (down) state is u (d) times the price of the previous state.

Figure 2.5 Binomial Tree Model

[image: 02_05]

We can use Monte Carlo to generate uncertainty estimates of the terminal stock price after some time horizon T. When using a binomial model to describe the price process of the stock, we can use the following calibration:

Equation 2.12 Binomial Tree Calibration

[image: 02_E12]

where T is the length of prediction horizon in years and n is the number of time steps. We assume 1 year equals 252 trading days, 1 month equals 21 days, 1 week equals 5 days and 1 day equals 8 hours. Let's simulate the stock price using the binomial model with a daily time step for two different time horizons: 1 month from today and 1 year from today. We can summarize the algorithm in the following pseudo-code:

[image: 02_05a]

We begin by initializing up price u and down price d, along with up state transition probability p. Next, we simulate all the up-state transitions by sampling from a Binomial random variable with the number of trials equal to T/step, success probability p and the number of monte carlo simulations equal to N. The down-state transitions are computed by complimenting up-state transitions. Finally, we compute the asset price by multiplying the initial price S0 with the price of all the up-state transitions and all the down-state transitions.

Listing 2.2 Binomial Tree Stock Price Simulation

import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt

np.random.seed(42)

def binomial_tree(mu, sigma, S0, N, T, step):

 #compute state price and probability
 u = np.exp(sigma * np.sqrt(step)) #A
 d = 1.0/u #B
 p = 0.5+0.5*(mu/sigma)*np.sqrt(step) #C

 #binomial tree simulation
 up_times = np.zeros((N, len(T)))
 down_times = np.zeros((N, len(T)))
 for idx in range(len(T)):
 up_times[:,idx] = np.random.binomial(T[idx]/step, p, N)
 down_times[:,idx] = T[idx]/step - up_times[:,idx]

 #compute terminal price
 ST = S0 * u**up_times * d**down_times

 #generate plots
 plt.figure()
 plt.plot(ST[:,0], color='b', alpha=0.5, label='1 month horizon')
 plt.plot(ST[:,1], color='r', alpha=0.5, label='1 year horizon')
 plt.xlabel('time step, day')
 plt.ylabel('price')
 plt.title('Binomial-Tree Stock Simulation')
 plt.legend()
 plt.show()

 plt.figure()
 plt.hist(ST[:,0], color='b', alpha=0.5, label='1 month horizon')
 plt.hist(ST[:,1], color='r', alpha=0.5, label='1 year horizon')
 plt.xlabel('price')
 plt.ylabel('count')
 plt.title('Binomial-Tree Stock Simulation')
 plt.legend()
 plt.show()

if __name__ == "__main__":

 #model parameters
 mu = 0.1 #D
 sigma = 0.15 #E
 S0 = 1 #F

 N = 10000 #G
 T = [21.0/252, 1.0] #H
 step = 1.0/252 #I

 binomial_tree(mu, sigma, S0, N, T, step)

Figure 2.6 shows that our yearly estimates have higher volatility compared to the monthly estimates.

Figure 2.6 Binomial Tree Stock Simulation

[image: 02_06]

This makes sense as we expect to encounter more uncertainty over long time horizons. In the next section, we are going to look into using Monte Carlo to simulate self-avoiding random walks.

2.4 Self-Avoiding Random Walk

Consider a random walk on a 2D grid. At each point on the grid, we take a random step with equal probability. This process forms a Markov chain {X_i}n(i=1) on ℤ x ℤ with X0=(0,0) and transition probabilities given by:

Equation 2.13 Random Walk Transition Matrix

[image: 02_E13]

In other words, we have an equal probability of 1/4 for transitioning from a point on the grid to any of the four up, down, left, and right neighbors. In addition, self-avoiding random walks are simply random walks that do not cross themselves. We can use monte carlo to simulate a self-avoiding random walk as shown in the following pseudo-code.

[image: 02_06a]

We start by initializing the grid (lattice) to an all zero matrix. We position the start of the random walk in the center of the grid as represented by xx and yy. Notice that num_step is the number of steps in a random walk. We begin each iteration by computing the up, down, left, right values which are equal to 1 if the grid is occupied and 0 otherwise. Therefore, we can compute available directions (neighbors) by computing 1 minus the direction. If the sum of neighbors is zero that means there are no available directions (all the neighboring grid cells are occupied) and the random walk is self-intersecting at which point we stop. Otherwise, we compute an importance weight as a product between the previous weight and sum of neighbors. The importance weights are used to compute the weighted mean square distances of the random walk. Next, we sample a move direction from the available directions represented by a sample from the Categorical random variable. Since the neighbors array can only take the values of 0 and 1,we are sampling uniformly from the available directions. Next, we update the grid coordinates xx and yy,and mark the occupancy by setting lattice[xx, yy]=1.While only a single iteration is shown in the pseudo-code, the code listing below wraps the pseudo-code in an additional for loop over the number of iterations num_iter. Each iteration is an attempt or a trial to produce a non-intersecting, i.e. self-avoiding random walk. The square distance of the random walk and the importance weight are recorded in each trial. We are now ready to look at the self-avoid random walk code.

Listing 2.3 Self-Avoiding Random Walk

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

np.random.seed(42)

def rand_walk(num_step, num_iter, moves):

 #random walk stats
 square_dist = np.zeros(num_iter)
 weights = np.zeros(num_iter)

 for it in range(num_iter):

 trial = 0
 i = 1

 while i != num_step-1: #D

 #init
 X, Y = 0, 0
 weight = 1
 lattice = np.zeros((2*num_step+1, 2*num_step+1))
 lattice[num_step+1,num_step+1] = 1
 path = np.array([0, 0])
 xx = num_step + 1 + X
 yy = num_step + 1 + Y

 print("iter: %d, trial %d" %(it, trial))

 for i in range(num_step):

 up = lattice[xx,yy+1]
 down = lattice[xx,yy-1]
 left = lattice[xx-1,yy]
 right = lattice[xx+1,yy]

 neighbors = np.array([1, 1, 1, 1]) - np.array([up, down, left, right]) #E

 if (np.sum(neighbors) == 0): #F
 i = 1
 break
 #end if

 weight = weight * np.sum(neighbors) #G

 direction = np.where(np.random.rand() < np.cumsum(neighbors/float(sum(neighbors)))) #H

 X = X + moves[direction[0][0],0]
 Y = Y + moves[direction[0][0],1]

 path_new = np.array([X,Y])
 path = np.vstack((path,path_new)) #I

 #update grid coordinates
 xx = num_step + 1 + X
 yy = num_step + 1 + Y
 lattice[xx,yy] = 1
 #end for

 trial = trial + 1
 #end while

 square_dist[it] = X**2 + Y**2 #J

 weights[it] = weight
 #end for

 mean_square_dist = np.mean(weights * square_dist)/np.mean(weights)
 print("mean square dist: ", mean_square_dist)

 #generate plots
 plt.figure()
 for i in range(num_step-1):
 plt.plot(path[i,0], path[i,1], path[i+1,0], path[i+1,1], 'ob')
 plt.title('random walk with no overlaps')
 plt.xlabel('X')
 plt.ylabel('Y')
 plt.show()

 plt.figure()
 sns.displot(square_dist)
 plt.xlim(0,np.max(square_dist))
 plt.title('square distance of the random walk')
 plt.xlabel('square distance (X^2 + Y^2)')
 plt.show()

if __name__ == "__main__":

 num_step = 150 #A
 num_iter = 100 #B
 moves = np.array([[0, 1],[0, -1],[-1, 0],[1, 0]]) #C

 rand_walk(num_step, num_iter, moves)

Figure 2.7 shows a self-avoiding random walk generated by the last iteration.

Figure 2.7 Self-Avoiding Random Walk (left) and Random Walk Square Distance (right)

[image: 02_07]

There are 4^n possible random walks of length n on the 2D lattice, and for large n it is very unlikely that a random walk will be self-avoiding. The Figure also shows a histogram of the square distance computed for each random walk iteration. The histogram is positively skewed showing a smaller probability of large distance walks. In the next section we are going to look at a popular sampling algorithm called the Gibbs sampling.

2.5 Gibbs Sampling

In this section we introduce one of the fundamental Markov Chain Monte Carlo (MCMC) algorithms called Gibbs sampling. It's based on the idea of sampling one variable at a time from a multi-dimensional distribution conditioned on the latest samples from all the other variables. For example, for a d=3 dimensional distribution, given a starting sample x^{k}, we generate the next sample x^{k+1} as follows:

Equation 2.14 Gibbs Sampling

[image: 02_E14]

The distributions in the equations above are called fully conditional distributions. Also, notice that the naive Gibbs sampling algorithm is sequential (with the number of steps proportional to dimensionality of the distribution) and it assumes that we can easily sample from the fully conditional distributions. The Gibbs sampling algorithm is applicable to scenarios where full conditional distributions in Equation 2.14 are easy to compute.

One instance where the fully conditional distributions are easy to compute is in the case of multi-variate Gaussians with pdf defined as follows:

Equation 2.15 Multivariate Gaussian Distribution

[image: 02_E15]

If we partition the Gaussian vector into two sets x{1:D} = (xA,xB) with parameters:

Equation 2.16 Subsets of mean and variance

[image: 02_E16]

Then, it can be shown in Section 2.3 of Bishop, “Pattern Recognition and Machine Learning” that the full conditionals are given by:

Equation 2.17 Full Conditional Gaussian Distribution

[image: 02_E17]

Let’s understand the Gibbs sampling algorithm by looking at the following pseudo-code.

[image: 02_07a]

Our gibbs_gauss class contains two functions: gauss_conditional and sample. The gauss_conditional function computes the conditional Gaussian distribution p(xA|xB) for any sets of variables setA and setB. setA is an input to the function, while setB is computed as a set difference between the universal set of dimension D and setA. Recall, that in Gibbs sampling we sample one dimension at a time while conditioning the distribution on all the other dimensions. In other words, we cycle through available dimensions and compute the conditional distribution in each iteration. That’s exactly what sample function does. For each sample we iterate over each dimension and compute the mean and covariance of gauss conditional distribution from which we then take and record a sample. We repeat this process until the maximum number of samples is reached. Let's see the Gibbs sampling algorithm in action for sampling from a 2-D Gaussian distribution.

Listing 2.4 Gibbs Sampling

import numpy as np
import matplotlib.pyplot as plt

import itertools
from numpy.linalg import inv
from scipy.stats import multivariate_normal

np.random.seed(42)

class gibbs_gauss:

 def gauss_conditional(self, mu, Sigma, setA, x): #A
 dim = len(mu)
 setU = set(range(dim))
 setB = setU.difference(setA)
 muA = np.array([mu[item] for item in setA]).reshape(-1,1)
 muB = np.array([mu[item] for item in setB]).reshape(-1,1)
 xB = np.array([x[item] for item in setB]).reshape(-1,1)

 Sigma_AA = []
 for (idx1, idx2) in itertools.product(setA, setA):
 Sigma_AA.append(Sigma[idx1][idx2])
 Sigma_AA = np.array(Sigma_AA).reshape(len(setA),len(setA))

 Sigma_AB = []
 for (idx1, idx2) in itertools.product(setA, setB):
 Sigma_AB.append(Sigma[idx1][idx2])
 Sigma_AB = np.array(Sigma_AB).reshape(len(setA),len(setB))

 Sigma_BB = []
 for (idx1, idx2) in itertools.product(setB, setB):
 Sigma_BB.append(Sigma[idx1][idx2])
 Sigma_BB = np.array(Sigma_BB).reshape(len(setB),len(setB))

 Sigma_BB_inv = inv(Sigma_BB)
 mu_AgivenB = muA + np.matmul(np.matmul(Sigma_AB, Sigma_BB_inv), xB - muB)
 Sigma_AgivenB = Sigma_AA - np.matmul(np.matmul(Sigma_AB, Sigma_BB_inv), np.transpose(Sigma_AB))

 return mu_AgivenB, Sigma_AgivenB

 def sample(self, mu, Sigma, xinit, num_samples):
 dim = len(mu)
 samples = np.zeros((num_samples, dim))
 x = xinit
 for s in range(num_samples):
 for d in range(dim):
 mu_AgivenB, Sigma_AgivenB = self.gauss_conditional(mu, Sigma, set([d]), x)
 x[d] = np.random.normal(mu_AgivenB, np.sqrt(Sigma_AgivenB))
 #end for
 samples[s,:] = np.transpose(x)
 #end for
 return samples

if __name__ == "__main__":

 num_samples = 2000
 mu = [1, 1]
 Sigma = [[2,1], [1,1]]
 xinit = np.random.rand(len(mu),1)
 num_burnin = 1000

 gg = gibbs_gauss()
 gibbs_samples = gg.sample(mu, Sigma, xinit, num_samples)

 scipy_samples = multivariate_normal.rvs(mean=mu,cov=Sigma,size=num_samples,random_state=42)

 plt.figure()
 plt.scatter(gibbs_samples[num_burnin:,0], gibbs_samples[num_burnin:,1], label='Gibbs Samples')
 plt.grid(True); plt.legend(); plt.xlim([-4,5])
 plt.title("Gibbs Sampling of Multivariate Gaussian"); plt.xlabel("X1"); plt.ylabel("X2")
 plt.show()

 plt.figure()
 plt.scatter(scipy_samples[num_burnin:,0], scipy_samples[num_burnin:,1], label='Ground Truth Samples')
 plt.grid(True); plt.legend(); plt.xlim([-4,5])
 plt.title("Ground Truth Samples of Multivariate Gaussian"); plt.xlabel("X1");
 plt.ylabel("X2")
 plt.show()

From Figure 2.8 we can see that Gibbs samples resemble the ground truth 2-D Gaussian distribution samples parameterized by μ = [1,1]T and Σ = [[2,1],[1,1]].

Figure 2.8 Gibbs Samples of Multivariate Gaussian

[image: 02_08]

In the next section, we are going to look at a more general MCMC sampling algorithm called the Metropolis Hastings sampling.

2.6 Metropolis-Hastings Sampling

Let's look at a more general MCMC algorithm for sampling from distributions. Our goal is to construct a Markov chain whose stationary distribution is equal to our target distribution p(x). The target distribution p(x) is the distribution (typically a posterior p(θ|x) or a density function p(θ) that we are interested in drawing samples from.

The basic idea in the Metropolis-Hastings (MH) algorithm is to propose a move from the current state x to a new state x' based on a proposal distribution q(x'|x) and then either accept or reject the proposed state according to MH ratio that ensures that detailed balance is satisfied, i.e.

Equation 2.18 Detailed Balance Equation

[image: 02_E18]

The detailed balance equation says that the probability of transitioning out of state x is equal to the probability of transition into state x. To derive the MH ratio, assume for a moment that the detailed balanced equation above is not satisfied, then there must exist a correction factor r(x'|x), s.t. the two sides are equal, solving for it leads to the MH ratio:

Equation 2.19 MH ratio derivation

[image: 02_E19]

We can summarize the Metropolis-Hastings algorithm as follows:

[image: 02_08a]

Let's implement the MH algorithm for a Multivariate Mixture of Gaussian target distribution and a Gaussian proposal distribution:

Equation 2.20 Target and Proposal Distributions

[image: 02_E20]

Let’s take a look at the code listing below. The mh_gauss class that consists of target_pdf function that defined the target distribution (in our case the Gaussian mixture p(x)), the proposal_pdf function that defines the proposal distribution (a multivariate normal), and the sample function, which samples a new state from the proposal q(x’|xk) conditioned on the previous state xk, computes the metropolis-hastings ratio and either accepts the new sample with probability r(x’|x) or rejects the sample with probability 1-r(x’|x)

Listing 2.5 Metropolis Hastings Sampling

import numpy as np
import matplotlib.pyplot as plt

from scipy.stats import uniform
from scipy.stats import multivariate_normal

np.random.seed(42)

class mh_gauss:

 def __init__(self, dim, K, num_samples, target_mu, target_sigma, target_pi, proposal_mu, proposal_sigma):
 self.dim = dim #A
 self.K = K #A
 self.num_samples = num_samples #A
 self.target_mu = target_mu #A
 self.target_sigma = target_sigma #A
 self.target_pi = target_pi #A

 self.proposal_mu = proposal_mu #B
 self.proposal_sigma = proposal_sigma #B

 self.n_accept = 0 #C
 self.alpha = np.zeros(self.num_samples) #C
 self.mh_samples = np.zeros((self.num_samples, self.dim)) #C

 def target_pdf(self, x):
 prob = 0 #D
 for k in range(self.K): #D
 prob += self.target_pi[k]*\
 multivariate_normal.pdf(x,self.target_mu[:,k],self.target_sigma[:,:,k]) #D
 #end for #D
 return prob

 def proposal_pdf(self, x):
 return multivariate_normal.pdf(x, self.proposal_mu, self.proposal_sigma) #E

 def sample(self):
 x_init = multivariate_normal.rvs(self.proposal_mu, self.proposal_sigma, 1) #F
 self.mh_samples[0,:] = x_init

 for i in range(self.num_samples-1):
 x_curr = self.mh_samples[i,:]
 x_new = multivariate_normal.rvs(x_curr, self.proposal_sigma, 1)

 self.alpha[i] = self.proposal_pdf(x_new) / self.proposal_pdf(x_curr) #G
 self.alpha[i] = self.alpha[i] * (self.target_pdf(x_new)/self.target_pdf(x_curr)) #G

 r = min(1, self.alpha[i]) #H
 u = uniform.rvs(loc=0, scale=1, size=1)
 if (u <= r):
 self.n_accept += 1
 self.mh_samples[i+1,:] = x_new #I
 else:
 self.mh_samples[i+1,:] = x_curr #J
 #end for
 print("MH acceptance ratio: ", self.n_accept/float(self.num_samples))

if __name__ == "__main__":

 dim = 2
 K = 2
 num_samples = 5000
 target_mu = np.zeros((dim, K))
 target_mu[:,0] = [4,0]
 target_mu[:,1] = [-4,0]
 target_sigma = np.zeros((dim, dim, K))
 target_sigma[:,:,0] = [[2,1],[1,1]]
 target_sigma[:,:,1] = [[1,0],[0,1]]
 target_pi = np.array([0.4, 0.6])

 proposal_mu = np.zeros((dim,1)).flatten()
 proposal_sigma = 10*np.eye(dim)

 mhg = mh_gauss(dim, K, num_samples, target_mu, target_sigma, target_pi, proposal_mu, proposal_sigma)
 mhg.sample()

 plt.figure()
 plt.scatter(mhg.mh_samples[:,0], mhg.mh_samples[:,1], label='MH samples')
 plt.grid(True); plt.legend()
 plt.title("Metropolis-Hastings Sampling of 2D Gaussian Mixture")
 plt.xlabel("X1"); plt.ylabel("X2")
 plt.show()

From Figure 2.9, we can see that MH samples resemble the ground truth mixture of two 2-D Gaussian distributions with means μ1 = [4,0], μ2 = [-4,0], covariances Σ_1 = [[2,1],[1,1]] and Σ_2 = [[1,0],[0,1]] and mixture proportions π = [0.4,0.6]

Figure 2.9 Metropolis-Hastings samples of multivariate Gaussian mixture

[image: 02_09]

Notice that we are free to choose any proposal distribution q(x'|x) which makes the method flexible. A good choice of the proposal will result in high sample acceptance rate. In our implementation, we chose a symmetric Gaussian distribution centered on the current state:

Equation 2.21 Proposal Distribution

[image: 02_E21]

This is known as a random walk Metropolis algorithm. If we use a proposal of the form q(x'|x) = q(x'), where the new state is independent of the old state, we get an independence sampler, which is similar to importance sampling that we will look at in the next section.

Also, notice that to compute the MH ratio we don't need to know the normalization constants Z of our distributions since we are taking the ratio and the Z's cancel out. There's a connection between MH algorithm and Gibbs sampling: the Gibbs algorithm acceptance ratio is always 1.

2.7 Importance Sampling

Importance Sampling (IS) is a Monte Carlo algorithm for estimating integrals of the form:

Equation 2.22 Expectation of a function

[image: 02_E22]

The idea behind important sampling is to draw samples in interesting regions, i.e. where both p(x) and |f(x)| are large. Importance sampling works by drawing samples from an easier to sample proposal distribution q(x). Thus, we can compute the expected value of f(x) with respect to the target distribution p(x) by drawing samples from the proposal q(x) and using Monte Carlo integration:

Equation 2.23 Monte Carlo Expectation

[image: 02_E23]

where we defined the importance weights as w(x) = p(x)/q(x). Let's look at an example where we use importance sampling to approximate an expected value of f(x) = 2 sin(πx/1.5), x ≥ 0. We are asked to take the expectation with respect to an unnormalized Chi distribution parameterized by a non-integer degree of freedom (DoF) parameter k:

Equation 2.24 Unnormalized Chi distribution

[image: 02_E24]

We will use an easier to sample from proposal distribution q(x):

Equation 2.25 Proposal distribution

[image: 02_E25]

Let’s look at the following pseudo-code.

[image: 02_09a]

Our importance_sampler class contains a function called sample that takes the number of samples N as its input. Inside the sample function, we loop over the number of samples and for each iteration we sample from the proposal distribution q(x) and compute the importance weight as the ratio of target distribution p(x) to proposal distribution q(x). Finally, we compute Monte Carlo integral by weighting our function of interest f(x) by the importance weights, summing over all samples and dividing by N. Let’s look at the following code listing that captures all the details.

Listing 2.6 Importance Sampling

import numpy as np
import matplotlib.pyplot as plt

from scipy.integrate import quad
from scipy.stats import multivariate_normal

np.random.seed(42)

class importance_sampler:

 def __init__(self, k=1.5, mu=0.8, sigma=np.sqrt(1.5), c=3):
 self.k = k #A

 self.mu = mu #B
 self.sigma = sigma #B
 self.c = c #C

 def target_pdf(self, x):
 return (x**(self.k-1)) * np.exp(-x**2/2.0) #D

 def proposal_pdf(self, x):
 return self.c * 1.0/np.sqrt(2*np.pi*1.5) * np.exp(-(x-self.mu)**2/(2*self.sigma**2)) #E

 def fx(self, x):
 return 2*np.sin((np.pi/1.5)*x) #F

 def sample(self, num_samples):
 x = multivariate_normal.rvs(self.mu, self.sigma, num_samples) #G

 idx = np.where(x >= 0) #H
 x_pos = x[idx] #H

 isw = self.target_pdf(x_pos) / self.proposal_pdf(x_pos) #I

 fw = (isw/np.sum(isw))*self.fx(x_pos) #J
 f_est = np.sum(fw) #J

 return isw, f_est

if __name__ == "__main__":

 num_samples = [10, 100, 1000, 10000, 100000, 1000000]

 F_est_iter, IS_weights_var_iter = [], []
 for k in num_samples:
 IS = importance_sampler()
 IS_weights, F_est = IS.sample(k)
 IS_weights_var = np.var(IS_weights/np.sum(IS_weights))
 F_est_iter.append(F_est)
 IS_weights_var_iter.append(IS_weights_var)

 #ground truth (numerical integration)
 k = 1.5
 I_gt, _ = quad(lambda x: 2.0*np.sin((np.pi/1.5)*x)*(x**(k-1))*np.exp(-x**2/2.0), 0, 5)

 #generate plots
 plt.figure()
 xx = np.linspace(0,8,100)
 plt.plot(xx, IS.target_pdf(xx), '-r', label='target pdf p(x)')
 plt.plot(xx, IS.proposal_pdf(xx), '-b', label='proposal pdf q(x)')
 plt.plot(xx, IS.fx(xx) * IS.target_pdf(xx), '-k', label='p(x)f(x) integrand')
 plt.grid(True); plt.legend(); plt.xlabel("X1"); plt.ylabel("X2")
 plt.title("Importance Sampling Components")
 plt.show()

 plt.figure()
 plt.hist(IS_weights, label = "IS weights")
 plt.grid(True); plt.legend();
 plt.title("Importance Weights Histogram")
 plt.show()

 plt.figure()
 plt.semilogx(num_samples, F_est_iter, label = "IS Estimate of E[f(x)]")
 plt.semilogx(num_samples, I_gt*np.ones(len(num_samples)), label = "Ground Truth")
 plt.grid(True); plt.legend(); plt.xlabel('iterations'); plt.ylabel("E[f(x)] estimate")
 plt.title("IS Estimate of E[f(x)]")
 plt.show()

Figure 2.10 (left) shows the target pdf p(x), the proposal pdf q(x), and the integrand p(x)f(x). Notice, that we scaled the proposal pdf q(x) by constant c, s.t. p(x) < cq(x) for all x≥0. Furthermore, we restricted the samples from q(x) to be positive (thus sampling from a truncated Gaussian) in order to meet our constraint of x≥0 for f(x). Figure (right) shows the improvement in the estimate of E[f(x)] vs the number of samples as compared to the ground truth computed via numerical integration.

Figure 2.10 IS Components (left) and IS Estimate (right)

[image: 02_10]

In the previous example, we used a normalized proposal distribution. However, for more complex distributions we often do not know the normalization constant (aka the partition function), since we are working with ratios of pdfs we'll see that the math holds for unnormalized distributions in addition we'll look at a way of estimating ratios of partition functions and discuss IS properties as an estimator.

Let's define a normalized pdf p(x) and q(x) as follows:

Equation 2.26 Normalized PDFs

[image: 02_E26]

where Zp and Zq are normalization constants of p(x) and q(x), respectively and p ̃(x) and q ̃(x) are unnormalized distributions. We can write our estimate as follows:

Equation 2.27 Importance Sampling Estimate

[image: 02_E27]

Notice, in the equation above w ̃(s) are unnormalized importance weights. We can compute the ratio of normalizing constants as follows:

Equation 2.28 Ratio of Normalization Constants

[image: 02_E28]

Combining the two expressions above, we get:

Equation 2.29 Importance Sampling Estimate

[image: 02_E29]

The equation above justifies our computation in the code example for the estimate of E[f(x)]. Let's look at a few properties of IS estimator and compute quantities relevant to characterizing the performance of IS. The IS estimator can be defined as follows:

Equation 2.30 Importance Sampling Estimator

[image: 02_E30]

By the Weak Law of Large Numbers (WLLN), assuming independent samples xi, we know that the average of iid samples converges in probability to the true mean:

Equation 2.31 Unbiased Estimator

[image: 02_E31]

where Xi are assumed to be iid random variables distributed according to q(x). As a result, IS is in theory an unbiased estimator. The variance of the IS estimator is given by:

Equation 2.32 Estimator Variance

[image: 02_E32]

To check whether IS estimate is consistent, we need to show that as we increase the number of samples n, the estimate converges to the true value a in probability:

Equation 2.33 Convergence in Probability

[image: 02_E33]

Using Chebyshev's inequality, we can bound the deviation from a as follows:

Equation 2.34 Chebyshev’s Inequality

[image: 02_E34]

As a result, the IS estimator is consistent, here we didn't need to use an assumption that samples are independent but we needed to assume that the variance of importance weights is finite. Thus, we expect the variance around the estimate to shrink as we add more samples. One factor that affects the variance of the estimator is the magnitude of importance weights. Since w(xi) = p(xi)/q(xi) the weights are small if q(xi) is similar to p(xi) and has heavy tails. This is the desired case that leads to a small variance in our estimate.

We would like to have a way of telling when the importance weights are problematic, e.g. when only a couple of weights dominate the weighted sum. When samples are correlated the variance is σ^2 / neff , where neff is the effective sample size. To compute an expression for effective sample size, we set the variance of weighted average equal to the variance of unweighted average:

Equation 2.35 Effective Sample Size Derivation

[image: 02_E35]

Solving for neff, we get:

Equation 2.36 Effective Sample Size

[image: 02_E36]

We can use neff as a kind of diagnostics for the importance sampler where the target number neff depends on the application.

2.8 Exercises

2.1 Derive full conditionals p(xA|xB) for multivariate Gaussian distribution where A and B are sub-sets of x1,x2,...,xn of jointly Gaussian random variables.

2.2 Derive marginals p(xA) and p(xB) for multivariate Gaussian distribution where A and B are sub-sets of x1,x2,...,xn of jointly Gaussian random variables.

2.3 Let 𝑦~N(μ,Σ), where Σ = LLT. Show that you can get samples 𝑦 as follows: 𝑥~N(0,I); 𝑦 = L𝑥 +μ

2.9 Summary

	Markov Chain Monte Carlo (MCMC) is a methodology of sampling from high dimensional parameter spaces in order to approximate the posterior distribution p(θ│x)

	Monte Carlo (MC) integration has an advantage over numerical integration (which evaluates a function at a fixed grid of points) in that the function is only evaluated in places where there is non-negligible probability

	In a binomial tree model of a stock price, we assume that at each time step, the stock could be in either up or down states with unequal payoffs characteristic for a risky asset.

	Self-avoiding random walks are simply random walks that do not cross themselves. We can use Monte Carlo to simulate a self-avoiding random walk.

	Gibbs sampling is based on the idea of sampling one variable at a time from a multi-dimensional distribution conditioned on the latest samples from all the other variables.

	The basic idea in the Metropolis-Hastings (MH) algorithm is to propose a move from the current state x to a new state x' based on a proposal distribution q(x'|x) and then either accept or reject the proposed state according to MH ratio that ensures that detailed balance is satisfied

	The idea behind important sampling is to draw samples in interesting regions, i.e. where both p(x) and |f(x)| are large. Importance sampling works by drawing samples from an easier to sample proposal distribution q(x)

3 Variational Inference

This chapter covers

	Introduction to KL Variational Inference

	Mean-field approximation

	Image Denoising in Ising Model

	Mutual Information Maximization

In the previous chapter, we covered one of the two main camps of Bayesian Inference: Markov Chain Monte Carlo. We examined different sampling algorithms and approximated the posterior distribution using samples. In this chapter, we are going to look at the second camp of Bayesian Inference: Variational Inference. Variational Inference (VI) is an important class of approximate inference algorithms. The basic idea behind VI is to choose an approximate distribution q(x) from a family of tractable or easy to compute distributions with trainable parameters and then make this approximation as close as possible to the true posterior distribution p(x).

As we will see in the mean-field section, the approximate q(x) can take on a fully factored representation of the joint posterior distribution. This factorization significantly speeds up computation. We will introduce KL divergence and use it as a way to measure closeness of our approximate distribution to the true posterior. By optimizing KL divergence we will effectively convert VI into an optimization problem. In the following section, we will derive the Evidence Lower BOund (ELBO) and interpret it in three different ways, which will become handy during our implementation of mean-field for image denoising.

3.1 KL Variational Inference

We can use KL divergence to measure distance between probability distributions. This is particularly useful when making an approximation to the target distribution, since we want to find out how close our approximation is. Let q(x) be our approximating distribution and p(x) be the target posterior distribution. Then the reverse KL is defined as follows:

Equation 3.1 Reverse KL definition

[image: 03_E01]

Consider a simple example, in which our target distribution is a standard univariate normal distribution p(x)∼N(0,1) and our approximating distribution is a univariate normal with mean μ and variance σ2: q(x)∼N(μ,σ2) Then we can compute KL(q||p) as follows:

Equation 3.2 KL(q||p) where p(x)~N(0,1) and q(x)∼N(μ,σ2)

[image: 03_E02]

We can visualize how KL(q||p) changes as we vary the parameters of our approximate distribution q(x).Let’s fix σ2=4 and vary the mean μ ∈[-4,4]. We obtain Figure 3.1

Figure 3.1 KL(q||p) for p(x)∼N(0,1) and q(x)∼N(μ,4)

[image: 03_01]

Notice that the KL divergence is non-negative and it is smallest when μ=0, i.e. the mean of approximating distribution is equal to the mean of our target distribution p(x)∼N(0,1). We can interpret KL divergence as a measure of distance between distributions.

Let p ̃(x) = p (x) be the un-normalized distribution, then consider the following objective function:

Equation 3.3 Objective Function

[image: 03_E03]

Since KL divergence is non-negative, J(q) is an upper bound on the marginal likelihood:

Equation 3.4 Upper Bound

[image: 03_E04]

when q(x) equals the true posterior p(x), the KL divergence vanishes and the optimal value J(q*) equals the log partition function and for all other values of q it yields a bound. J(q) is called the variational free energy and can be written as:

Equation 3.5 Variational Free Energy

[image: 03_E05]

The variational objective function in Equation 3.4 is closely related to energy minimization in statistical physics. The first term acts as a regularizer by encouraging maximum entropy, while the second term is the expected energy and encourages the variational distribution q to explain the data.

The reverse KL that acts as a penalty term in the variational objective is also known as I-projection or information projection. In the reverse KL, q(x) will typically under-estimate the support of p(x) and will lock onto one of its modes. This is due to q(x)=0 whenever p(x)=0 to make sure the KL divergence stays finite. On the other hand, the forward KL, known as M-projection or moment projection is zero avoiding for q(x) and will over-estimate the support of p(x) as shown in Figure 3.2

Figure 3.2 Forward KL (left) q(x) over-estimates the support, while Reverse KL (right) q(x) locks onto a mode.

[image: 03_02]

Figure 3.2 shows samples from a 2-D Gaussian mixture with 4 components p(x) as well as density ellipses of approximating distribution q(x). We can see that optimizing forward KL leads to q(x) centered at zero (in low density region) as we over-estimate the support of p(x). On the other hand, optimizing reverse KL leads to q(x) centered at one of the four modes of the Gaussian mixture.

We can use the Jensen's inequality to derive the Evidence Lower BOund (ELBO), an objective that we can maximize to learn the variational parameters of our model. Let x be our data and z be the latent variables, then we can derive our ELBO objective as follows:

Equation 3.6 ELBO derivation

[image: 03_E06]

Notice that the first term is the average negative energy and the second term is the entropy. Thus, a good posterior must assign most of its probability mass to regions of low energy (i.e. high joint probability density) while also maximizing the entropy of q(z). Thus, Variational Inference, in contrast to MAP estimator, prevents q(z) from collapsing to an atom.

One form of ELBO emphasizes that the lower bound becomes tighter as the variational distribution better approximates the posterior:

Equation 3.7 ELBO expression

[image: 03_E07]

Therefore, we can improve the ELBO by improving the model log evidence log p(x) through the prior p(z) or the likelihood p(z|x) or by improving the variational posterior approximation q(z).

Finally, we can write the ELBO as follows:

Equation 3.8 ELBO expression

[image: 03_E08]

this version emphasizes a likelihood term for the i-th observation and KL divergence term between each approximating distribution and the prior. In all cases above, the expectation wrt q(z) can be computed by sampling from our approximating distribution. Let’s look at one of the most common variational approximations in the next section.

3.2 Mean-Field

One of the most popular forms of variational inference is called the mean field approximation, where we assume that the posterior is a fully factorized approximation of the form:

Equation 3.9 Mean Field Approximation

[image: 03_E09]

where we optimize over the parameters of each marginal distribution qi(xi). We can visualize fully factored distribution as in Figure 3.3.

Figure 3.3 True Posterior (left), Structured Approximation (middle), Fully-Factored Approximation (right)

[image: 03_03]

For a distribution with three random variables x1, x2 and x3, we have the true posterior p(x1,x2,x3) that we are attempting to approximate by a fully factored distribution q(x1)q(x2)q(x3).

Our goal is to minimize variational free energy J(q) or equivalently, maximize the lower bound:

Equation 3.10 Lower Bound

[image: 03_E10]

We can re-write the objective for each marginal distribution qj, keeping the rest of the terms as constants as in Section 21.3 of K. Murphy, “Probabilistic Machine Learning”:

Equation 3.11 Objective for Marginal Distribution

[image: 03_E11]

Where we defined:

Equation 3.12 log f(x) definition

[image: 03_E12]

Since we are replacing the values by their mean value, the method is known as mean field. We can re-write L(qj) = -KL(qj ||fj) and therefore maximize the objective by setting qj = fj or equivalently:

Equation 3.13 log q(x) definition

[image: 03_E13]

where the functional form of qj will be determined by the type of variables xj and their probability model. We will use this result in the next section in deriving the image denoising algorithm from scratch.

3.3 Image Denoising in Ising Model

The Ising model is an example of a Markov Random Field (MRF) and has its origins in statistical physics. A Markov Random Field is a set of random variables with a Markov property described by an undirected graph. The Ising model assumes that we have a grid of nodes, where each node can be in one of two possible states. The state of each node depends on the neighboring nodes through interaction potentials. In the case of images, this translates to a smoothness constraint, i.e. a pixel prefers to be of the same color as the neighboring pixels. In the image denoising problem, we assume that we have a 2-D grid of noisy pixel observations of an underlying true image and we would like to recover the true image.

Let yi be noisy observations of binary latent variables xi ∈ {-1,+1}. We can write down the joint distribution as follows:

Equation 3.14 Ising Model Joint Distribution

[image: 03_E14]

where the interaction potentials are represented by Ψst for every pair of nodes xs and xt in a set of edges E and the observations yi are Gaussian with mean xi and variance σ2. Here, wst is the coupling strength and assumed to be constant and equal to J>0 indicating a preference for the same state as neighbors (i.e. the potential Ψ(xs,xt)=exp{xs J xt} is higher when xs and xt are both either +1 or -1).

To fit the model parameters using variational inference, we want to maximize the ELBO:

Equation 3.15 Ising Model ELBO

[image: 03_E15]

where we are using the mean-field assumption of a fully-factored approximation q(x):

Equation 3.16 Mean-Field Approximation

[image: 03_E16]

Using the previously derived result in Equation 3.12, we state that q(xi;μi) that minimizes the KL divergence is given by:

Equation 3.17 Optimum Approximating Distribution

[image: 03_E17]

where E-q_i denotes the expectation over every qj except for j=i. To compute, qi(xi) we only care about the terms that involve xi, i.e. we can isolate them as follows:

Equation 3.18 Expectation Derivation

[image: 03_E18]

where N(i) denotes the neighbors of node i and μj is the mean of a binary random variable.

Equation 3.19 Mean of Binary Random Variable

[image: 03_E19]

Figure 3.4 shows the parametric form of our mean-field approximation for the Ising model:

Figure 3.4 Ising model and its approximating distribution q(x)

[image: 03_04]

In order to compute this mean, we need to know the values of qj(xj=+1) and qj(xj=-1). Let mi =Σ_{j∈ N(i)} wij μj be the mean value of neighbors and let Li+ = N(xi = +1,σ2) and Li- = N(xi = -1,σ2), then we can compute the mean as follows:

Equation 3.20 q(x) derivation

[image: 03_E20]

Where ai = mi + 1/2(L+i – L-i) and σ(x) is a sigmoid function. Since qi(xi=-1)=1-qi(xi=+1)=1-σ(2ai)=σ(-2ai), we can write the mean of our variational approximation qi(xi) as follows:

Equation 3.21 Mean of Binary Random Variable in the Ising Model

[image: 03_E21]

In other words, our mean-field updates of the variational parameters μi at iteration k are computed as follows:

Equation 3.22 Mean field updates of variational parameters

[image: 03_E22]

where we added a learning rate parameter λ ∈ (0,1]. We further note that we can simplify the computation of ELBO term by term as follows:

Equation 3.23 Ising Model ELBO term

[image: 03_E23]

Similarly,

Equation 3.24 Ising Model ELBO term

[image: 03_E24]

To better understand the algorithm, let’s look at the following pseudo-code.

[image: 03_04a]

In the image_denoising class, we have a single method called mean_field, which takes as input the noise level sigma, noisy binary image y, the coupling strength w=J,learning rate lambda and max number of iterations. We start by computing logodds ratio, i.e. the probability of observing image pixel y under Gaussian random variable with means +1 and -1. We then compute sigmoid function of logodds and use the result to initialize the mean variable. Next, we iterate until the max number of iterations and in each iteration we compute the influence of the neighbors Sij, which we include in the mean-field update equation. We then compute our objective function ELBO and mean entropy Hx in order to monitor the convergence of the algorithm.

We now have all the tools we need to implement the mean-field variational inference for the Ising model in application to image denoising! In the following listing, we will read-in a noisy image and execute mean-field variational inference on a grid of pixels to denoise it.

Listing 3.1 Mean-Field Variational Inference in Ising Model

import numpy as np
import pandas as pd

import seaborn as sns
import matplotlib.pyplot as plt

from PIL import Image
from tqdm import tqdm
from scipy.special import expit as sigmoid
from scipy.stats import multivariate_normal

np.random.seed(42)
sns.set_style('whitegrid')

class image_denoising:

 def __init__(self, img_binary, sigma=2, J=1):

 #mean-field parameters
 self.sigma = sigma #A
 self.y = img_binary + self.sigma*np.random.randn(M, N) #B
 self.J = J #C
 self.rate = 0.5 #D
 self.max_iter = 15
 self.ELBO = np.zeros(self.max_iter)
 self.Hx_mean = np.zeros(self.max_iter)

 def mean_field(self):

 #Mean-Field VI
 print("running mean-field variational inference...")
 logodds = multivariate_normal.logpdf(self.y.flatten(), mean=+1, cov=self.sigma**2) - \
 multivariate_normal.logpdf(self.y.flatten(), mean=-1, cov=self.sigma**2)
 logodds = np.reshape(logodds, (M, N))

 #init
 p1 = sigmoid(logodds)
 mu = 2*p1-1 #E

 a = mu + 0.5 * logodds
 qxp1 = sigmoid(+2*a) #q_i(x_i=+1)
 qxm1 = sigmoid(-2*a) #q_i(x_i=-1)

 logp1 = np.reshape(multivariate_normal.logpdf(self.y.flatten(), mean=+1, cov=self.sigma**2), (M, N))
 logm1 = np.reshape(multivariate_normal.logpdf(self.y.flatten(), mean=-1, cov=self.sigma**2), (M, N))

 for i in tqdm(range(self.max_iter)):
 muNew = mu
 for ix in range(N):
 for iy in range(M):
 pos = iy + M*ix
 neighborhood = pos + np.array([-1,1,-M,M])
 boundary_idx = [iy!=0,iy!=M-1,ix!=0,ix!=N-1]
 neighborhood = neighborhood[np.where(boundary_idx)[0]]
 xx, yy = np.unravel_index(pos, (M,N), order='F')
 nx, ny = np.unravel_index(neighborhood, (M,N), order='F')

 Sbar = self.J*np.sum(mu[nx,ny])
 muNew[xx,yy] = (1-self.rate)*muNew[xx,yy] + self.rate*np.tanh(Sbar + 0.5*logodds[xx,yy])
 self.ELBO[i] = self.ELBO[i] + 0.5*(Sbar * muNew[xx,yy])
 #end for
 #end for
 mu = muNew

 a = mu + 0.5 * logodds
 qxp1 = sigmoid(+2*a) #q_i(x_i=+1)
 qxm1 = sigmoid(-2*a) #q_i(x_i=-1)
 Hx = -qxm1*np.log(qxm1+1e-10) - qxp1*np.log(qxp1+1e-10) #entropy

 self.ELBO[i] = self.ELBO[i] + np.sum(qxp1*logp1 + qxm1*logm1) + np.sum(Hx)
 self.Hx_mean[i] = np.mean(Hx)
 #end for
 return mu

if __name__ == "__main__":

 #load data
 print("loading data...")
 data = Image.open('./figures/bayes.bmp')
 img = np.double(data)
 img_mean = np.mean(img)
 img_binary = +1*(img>img_mean) + -1*(img<img_mean)
 [M, N] = img_binary.shape

 mrf = image_denoising(img_binary, sigma=2, J=1)
 mu = mrf.mean_field()

 #generate plots
 plt.figure()
 plt.imshow(mrf.y)
 plt.title("observed noisy image")
 plt.show()

 plt.figure()
 plt.imshow(mu)
 plt.title("after %d mean-field iterations" %mrf.max_iter)
 plt.show()

 plt.figure()
 plt.plot(mrf.Hx_mean, color='b', lw=2.0, label='Avg Entropy')
 plt.title('Variational Inference for Ising Model')
 plt.xlabel('iterations'); plt.ylabel('average entropy')
 plt.legend(loc='upper right')
 plt.show()

 plt.figure()
 plt.plot(mrf.ELBO, color='b', lw=2.0, label='ELBO')
 plt.title('Variational Inference for Ising Model')
 plt.xlabel('iterations'); plt.ylabel('ELBO objective')
 plt.legend(loc='upper left')
 plt.show()

Figure 3.5 shows experimental results for binary image denoising via mean-field variational inference.

Figure 3.5 Mean-Field Variational Inference for Image Denoising in Ising Model

[image: 03_05]

The noisy observed image is shown in the top-left obtained by adding Gaussian noise to each pixel and binarizing the image based on mean threshold. We then set the variational inference parameters such as the coupling strength J=1, noise level σ=2, smoothing rate λ=0.5 and max number of iterations to 15. The resulting de-noised binary image is shown in the bottom-left corner of the Figure. We can also see an increase in the ELBO objective (top-right) and a decrease in the average entropy of our binary random variables qi(xi) representing the value of each pixel (bottom-right) as the number of mean-field iterations increases. The 2-D Ising model can be extended in multiple ways, for example: 3-D grids and K-states per node (aka Potts model).

3.4 MI Maximization

In this section, we look at mutual information (MI) maximization which commonly occurs in information planning and data communications settings. Consider a wireless communications scenario, in which we transmit a signal x∼pX(x), it passes through a Multiple-Input Multiple-Output (MIMO) channel H and at the output we receive our signal, y=Hx+n, where n∼N(0,σ2I) is an additive Gaussian noise. We would like to maximize the amount of information transmitted over the wireless channel. In other words, we would like to maximize the capacity or mutual information between the transmitted signal X and the received signal Y: C=max I(X;Y) where the maximization is taken over p(x). To compute channel capacity, we discuss a general procedure based on KL divergence to approximately maximize mutual information.

Equation 3.25 Mutual Information (MI) definition

[image: 03_E25]

Let q(x) be an approximating distribution to p(x), then consider KL divergence between the posterior distributions of p and q:

Equation 3.26 Nonnegativity of KL divergence

[image: 03_E26]

We would like to derive a lower bound on Mutual Information (MI). Expanding the expression above, we can proceed as follows:

Equation 3.27 KL divergence expansion

[image: 03_E27]

Multiplying both sides by p(y), we get:

Equation 3.28 MI lower bound derivation

[image: 03_E28]

Recognizing the left-hand side as -H(X|Y), we obtain the following MI lower bound:

Equation 3.29 MI lower bound

[image: 03_E29]

Using the lower bound above, we can describe MI maximization Algorithm.

[image: 03_05a]

The above algorithm alternates between finding a set of parameters that maximize MI lower bound and finding the approximate distribution.

In this section, we saw how we can use the definitions of entropy, mutual information and KL divergence to derive a lower bound that could then be iteratively maximized by updating our approximation distribution q. In the following chapter, we will look at ML from computer science perspective and explore useful data-structures and algorithmic paradigms.

3.5 Exercises

3.1 Compute KL divergence between two univariate Guassians: p(x) ∼ N(μ1, σ21) and q(x) ∼ N(μ2, σ22).

3.2 Compute E[X],Var(X), and H(X)for a Bernoulli distribution.

3.3 Derive the mean, mode and variance of Beta(a,b) distribution.

3.6 Summary

	The main idea behind variational inference is to choose an approximate distribution q(x) from a family of tractable distributions and then make this approximation as close as possible to the true posterior distribution p(x)

	Evidence Lower BOund (ELBO) is an objective function that we seek to maximize to learn variational parameters of our model

	In mean-field approximation, we assume that the approximate distribution q(x) is fully factorized

	Mutual Information maximization can be carried out by deriving and maximizing MI lower bound.

4 Software Implementation

This chapter covers

	Data Structures: Linear, Non-Linear, and Probabilistic

	Problem-Solving Paradigms: Complete Search, Greedy, Divide and Conquer, and Dynamic Programming

	ML Research: Sampling Methods and Variational Inference

In the previous chapters, we looked at two main camps of Bayesian inference: Markov Chain Monte Carlo and Variational Inference. In this chapter, we review computer science concepts required for implementing algorithms from scratch. In order to write high quality code, it's important to have a good grasp of data structures and algorithm fundamentals. This chapter is designed to introduce common computational structures and problem-solving paradigms. Many of the concepts reviewed in this section are interactively visualized at https://visualgo.net/en

4.1 Data Structures

A data structure is a way of storing and organizing data. Data structures support a number of operations such as insertion, search, deletion, and updates, and the right choice of the data structure can simplify the run-time of an algorithm. Each data structure offers different performance trade-offs. As a result, it's important to understand how data structures work.

4.1.1 Linear

A data structure is considered linear if its elements are arranged in a linear fashion. The simplest example of a linear data structure is a fixed size array (where the size of the array may be specified as a constraint of the problem). The time it takes to access an element in an array is constant O(1). In case the size of the array is not known ahead of time, it's better to use a dynamically resizable array (e.g. a List in Python or a Vector in C++): these data structures are designed to handle resizing natively.

Two common operations applied to arrays are searching and sorting. The simplest search is a linear scan through all elements in O(n) time. If the array is sorted, we can use binary search in O(log n) time, which is an example of divide and conquer algorithm that we will discuss soon. Naive array sorting algoirthms such as selection sort and insertion sort have a complexity of O(n2) and only work well for small inputs. In general, comparison-based sorts where elements are compared pair-wise such as merge, heap, or quicksort, have the run-time of O(n log n)because the time complexity can be thought of as traversing a complete binary tree where each leaf represents one sorted ordering. In this representation, the height of the tree h is equal to algorithm run-time. Since there are n! possible orderings (leaf nodes), we can bound the run-time as follows:

Equation 4.1 Comparison-Based Sort Run-time Derivation

[image: 04_E01]

If we add additional constraints on the input, we can construct linear-time O(n) sorting algorithms such as Count sort, Radix sort and Bucket sort. For example, Count sort can be applied to integers in a small range and Radix sort works by applying Count sort digit by digit as discussed in Steven Halim’s “Competitive Programming” book. Making algorithms distributed can further reduce run-time as described in “The Art of Multiprocessor Programming” by M. Herlihy and N. Shavit.

A linked list consists of nodes that store a value and a next pointer starting from the head node. It's usually avoided due to its linear O(n) search time. A stack allows O(1) insertions (push) and O(1) deletions (pop) in last in first out (LIFO) order. This is particularly useful in algorithms that are implemented recursively (e.g. bracket matching, topological sort). A queue allows O(1) insertion (enqueue) from the back and O(1) deletion (dequeue) from the front, thus following first in first out (FIFO) model. It's a commonly used data structure in algorithms such Breadth First Search (BFS) and algorithms based on BFS. In the next section, we are going to define and look at several examples of non-linear data structures.

4.1.2 Non-Linear

A data structure is considered non-linear if its elements do not follow a linear order. Examples of non-linear data structures include map (dictionary) and set. This reason is that ordered dictionary and ordered sets are built on self-balanced binary search trees (BST) that guarantee O(n log n) insertion, search, deletion operations. BSTs have the property that root node value is greater than its left child and less than its right child for every sub-tree. Self-balanced BSTs are typically implemented as Adelson-Velskii-Landis (AVL) or Red-Black (RB) trees, see CLRS “Introduction to Algorithms” for details. The difference between ordered map (dictionary) and ordered set data structures is that the map stores (key, value) pairs while the set only stores keys. A heap is another way to organize data in a tree representation. For example, an array A = [2,7,26,25,19,17,1,90,3,36] can be represented as a tree as shown in Figure 4.1

Figure 4.1 A binary heap

[image: 04_01]

We can easily navigate the binary heap A = [90,36,17,25,26,7,1,2,3,19] by starting with a vertex i and using simple index arithmetic: 2i to access left child, 2i+1 to access the right child and ⌊i/2⌋ to access the parent node. Instead of enforcing the BST property, the (max) heap enforces the heap property: in each subtree rooted at x, items on the left and right subtrees of x are smaller than (or equal to) x. This property guarantees that the top of the (max) heap is always the maximum element. Thus, (max) heap allows for fast extraction of the maximum element. Indeed, extract max and insert operations are achieved in O(log n) tree traversal, performing swapping operations to maintain the heap property whenever necessary. A heap forms the basis for a priority queue which is an important data structure in algorithms such as Prim and Kruskal Minimum Spanning Trees (MST), Dijkstra's Single-Source Shortest Paths (SSSP) and the A* search. Finally, a hash table or unordered map is a very efficient data structure with O(1) access assuming no collisions. One commonly used class of hash tables is direct addressing (DA), where they keys themselves are the indices. The goal of hash function is to uniformly distribute the elements in the table so as to minimize collisions. On the other hand, if you are looking to group similar items in the same bucket, locality sensitive hashing (LSH) allows you to find nearest neighbors as in “Beyond Locality-Sensitive Hashing”, SODA 2014 by A. Andoni et al.

4.1.3 Probabilistic

Probabilistic data structures are designed to handle big data. They provide probabilistic guarantees and result in drastic memory savings. Probabilistic data structures tackle the following common big data challenges:

	Membership querying: Bloom filter, Counting Bloom filter, Quotient filter, Cuckoo filter

	Cardinality: Linear counting, probabilistic counting, LogLog, HyperLogLog, HyperLogLog++

	Frequency: Majority algorithm, Frequent, Count Sketch, Count-Min Sketch

	Rank: Random sampling, q-digest, t-digest

	Similarity: LSH, MinHash, SimHash

For a comprehensive discussion on probabilistic data structures, please refer to “Probabilistic Data Structures and Algorithms for Big Data Applications” by A. Gakhov. In the next section, we are going to look at four main algorithmic paradigms.

4.2 Problem-Solving Paradigms

There are four main algorithmic paradigms: complete search, greedy, divide and conquer, and dynamic programming. Depending on the problem at hand, the solution can often be found by recalling the algorithmic paradigms. In this section, we'll discuss each strategy and provide an example.

4.2.1 Complete Search

Complete search (aka brute force) is a method for solving a problem by traversing the entire search space in search of a solution. During the search we can prune parts of the search space that we are sure do not lead to the required solution. For example, consider the problem of generating subsets. We can either use a recursive solution or an iterative one. In both cases, we terminate when we reach the required subset size. In the following listing, we will implement a complete search strategy based on generating subsets example.

Listing 4.1 Subset Generation

def search(k, n):
 if (k == n):
 print(subset) #A
 else:
 search(k+1, n)
 subset.append(k)
 search(k+1, n)
 subset.pop()
 #end if

def bitseq(n):
 for b in range(1 << n):
 subset = []
 for i in range(n):
 if (b & 1 << i):
 subset.append(i)
 #end for
 print(subset)
 #end for

if __name__ == "__main__":
 n = 4
 subset = []
 search(0, n) #B

 subset = []
 bitseq(n) #C

A machine learning example where complete search takes place is in exact inference by complete enumeration, for details see Chapter 21 of “Information Theory, Inference and Learning Algorithms” by D. MacKay. Given a graphical model, we would like to factor a joint distribution according to conditional independence relations and use the Bayes rule to compute posterior probability of certain events. In this case, we need to completely fill out the necessary probability tables in order to carry out our calculation.

4.2.2 Greedy

A greedy algorithm takes a locally optimum choice at each step with the hope of eventually reaching a globally optimum solution. Greedy algorithms often rely on a greedy heuristic and one can often find examples in which greedy algorithms fail to achieve the global optimum. For example, consider the problem of fractional knapsack. A greedy knapsack problem is to select items to place in a knapsack of limited capacity W so as to maximize the total value of knapsack items, where each item has an associated weight and value. We can define a greedy heuristic to be a ratio of item value to item weight, i.e. we would like to greedily choose items that are simultaneously high value and low weight and sort the items based on this criteria. In the fractional knapsack problem, we are allowed to take fractions of an item (as opposed to 0–1 Knapsack). In the following listing, we will implement a greedy strategy based on fractional knapsack example.

Listing 4.2 Fractional Knapsack

class Item:
 def __init__(self, wt, val, ind):
 self.wt = wt
 self.val = val
 self.ind = ind
 self.cost = val // wt

 def __lt__(self, other):
 return self.cost < other.cost

class FractionalKnapSack:
 def get_max_value(self, wt, val, capacity):

 item_list = []
 for i in range(len(wt)):
 item_list.append(Item(wt[i], val[i], i))

 # sorting items by cost heuristic
 item_list.sort(reverse = True) #O(nlogn)

 total_value = 0
 for i in item_list:
 cur_wt = int(i.wt)
 cur_val = int(i.val)
 if capacity - cur_wt >= 0:
 capacity -= cur_wt
 total_value += cur_val
 else:
 fraction = capacity / cur_wt
 total_value += cur_val * fraction
 capacity = int(capacity - (cur_wt * fraction))
 break
 return total_value

if __name__ == "__main__":
 wt = [10, 20, 30]
 val = [60, 100, 120]
 capacity = 50

 fk = FractionalKnapSack()
 max_value = fk.get_max_value(wt, val, capacity)
 print("greedy fractional knapsack")
 print("maximum value: ", max_value)

Since sorting is the most expensive operation, the algorithm runs in O(n log n) time. We can see that the input items are sorted in decreasing ratio of value / cost, after greedily selecting items 1 and 2, we take a 2/3 fraction of item 3 for a total value of 60+100+(2/3)120 = 240.

A machine learning example of a greedy algorithm consists of sensor placement. Given a room and several temperature sensors, we would like to place the sensors in a way that maximizes room coverage. A simple greedy approach is to start with an empty set S0 and at iteration i add the sensor A that maximizes the increment function, such as mutual information: FMI(A) = H(V\A) - H(V\A|A) where V is the set of all sensors. Where we used the identity I(X;Y) = H(X) - H(X|Y). Turns out that mutual information is submodular if observed variables are indpendent given the latent state, which leads to efficient greedy submodular optimization algorithms with performance guarantees, e.g. see “Optimizing Sensing: Theory and Applications” PhD thesis by A. Kraus.

4.2.3 Divide and Conquer

Divide and Conquer is a technique that divides a problem into smaller, independent sub-problems and then combines solutions to each of the sub-problems. Examples of divide and conquer technique include sorting algorithms such as quick sort, merge sort and heap sort as well as binary search. The classic use of binary search is in searching for a value in a sorted array. First, we check the middle of the array to see if if contains what we are looking for. If it does or there are no more items to consider, we stop. Otherwise, we decide whether the answer is to the left or the right of the middle element and continue searching. As the size of the search space is halved after each check, the complexity of the algorithm is O(log n). In the following listing, we will implement a divide and conquer strategy based on binary search example.

Listing 4.3 Binary Search

def binary_search(arr, l, r, x):
 #assumes a sorted array
 if l <= r:
 mid = int(l + (r-l) / 2)

 if arr[mid] == x:
 return mid
 elif arr[mid] > x:
 return binary_search(arr, l, mid-1, x)
 else:
 return binary_search(arr, mid+1, r, x)
 #end if
 else:
 return -1

if __name__ == "__main__":

 x = 5
 arr = sorted([1, 7, 8, 3, 2, 5])

 print(arr)
 print("binary search:")
 result = binary_search(arr, 0, len(arr)-1, x)

 if result != -1:
 print("element {} is found at index {}.".format(x, result))
 else:
 print("element is not found.")

A machine learning example that uses divide and conquer paradigm can be found in CART decision tree algorithm in which the threshold partitioning is done in a divide and conquer way, and the nodes are split recursively until the maximum depth of the tree is reached. In CART algorithm, as we will see in the next chapter, an optimum threshold is found greedily by optimizing a classification objective (such as Gini index) and the same procedure is applied on a tree of depth one greater resulting in a recursive algorithm.

4.2.4 Dynamic Programming

Dynamic Programming (DP) is a technique that divides a problem into smaller overlapping sub-problems, computes a solution for each sub-problem and stores it in a DP table. The final solution is read off the DP table. Key skills in mastering dynamic programming is the ability to determine the problem states (entries of the DP table) and the relationships or transitions between the states. Then, having defined base cases and recursive relationships, one can populate the DP table in a top-down or bottom-up fashion. In the top-down DP, the table is populated recursively, as needed, starting from the top and going down to smaller sub-problems. In the bottom-up DP, the table is populated iteratively starting from the smallest sub-problems and using their solutions to build-on and arrive at solutions to bigger sub-problems. In both cases, if a sub-problem was already encountered, its solution is simply looked up in the table (as opposed to re-computing the solution from scratch). This dramatically reduces computational cost.

We use binomial coefficients example to illustrate the use of top-down and bottom-up DP. The code below is based on the recursion for binomial coefficients with overlapping sub-problems. Let C(n,k) denote n choose k, then, we have:

Equation 4.2 Binomial Coefficients Recursion

[image: 04_E02]

Notice that we have multiple over-lapping sub-problems. E.g. For C(n=5,k=2) the recursion tree is as follows

Figure 4.2 Binomial Coefficient C(5,2) Recursion

[image: 04_02]

We can implement top-down and bottom-up DP as follows:

Listing 4.4 Binomial Coefficients

def binomial_coeffs1(n, k):
 #top down DP
 if (k == 0 or k == n):
 return 1
 if (memo[n][k] != -1):
 return memo[n][k]
 memo[n][k] = binomial_coeffs1(n-1, k-1) + binomial_coeffs1(n-1, k)
 return memo[n][k]

def binomial_coeffs2(n, k):
 #bottom up DP
 for i in range(n+1):
 for j in range(min(i,k)+1):
 if (j == 0 or j == i):
 memo[i][j] = 1
 else:
 memo[i][j] = memo[i-1][j-1] + memo[i-1][j]
 #end if
 #end for
 #end for
 return memo[n][k]
def print_array(memo):
 for i in range(len(memo)):
 print('\t'.join([str(x) for x in memo[i]]))

if __name__ == "__main__":
 n = 5
 k = 2
 print("top down DP")
 memo = [[-1 for i in range(6)] for j in range(6)]
 nCk = binomial_coeffs1(n, k)
 print_array(memo)
 print("C(n={}, k={}) = {}".format(n,k,nCk))

 print("bottom up DP")
 memo = [[-1 for i in range(6)] for j in range(6)]
 nCk = binomial_coeffs2(n, k)
 print_array(memo)
 print("C(n={}, k={}) = {}".format(n,k,nCk))

The time complexity is O(nk) and the space complexity is O(nk). In the case of top-down DP, solutions to sub-problems are stored (memoized) as needed, whereas in the bottom-up DP, the entire table is computed starting from the base case.

A machine learning examples that uses dynamic programming occurs in Reinforcement Learning (RL) in finding solution to Bellman equations. We can write down the value of a state based on its reward at time t and sum of future discounted rewards as follows:

Equation 4.3 Bellman Optimality

[image: 04_E03]

The above equation is known as Bellman optimality equation for v(s). We can recover the optimum policy by solving for action that maximizes state reward described by the Q-function:

Equation 4.4 Optimum Policy

[image: 04_E04]

For a small number of states and actions we can compute the Q-function in tabular way using dynamic programming. In RL, we often want to balance exploration and exploitation, in which case we take the argmax above with probability 1-ϵ and take a random action with probability ϵ.

4.3 ML Research: Sampling Methods and Variational Inference

In this section, we focus on ML research. It is an important skill to have if you want to stay current in the field.

We focus on the latest developments in the area of sampling methods and variational inference. As we observed in this chapter, many modern ML algorithms include clever algorithms to approximate hard-to-compute posterior densities as a result of intractable, high-dimensional integrals involved in the computation of the posterior.

It is worth comparing briefly the differences between MCMC and variational inference. The advantages of variational inference is that for small to medium problems it is usually faster, it is deterministic, it is easy to determine when to stop, and it often provides a lower bound on log-likelihood. The advantages of sampling are that it is often simpler to implement, it is applicable to broader range of problems (e.g. problems without nice conjugate priors) and sampling can be faster when applied to really big models or datasets. See Chapter 24, “Machine Learning: A Probabilistic Perspective” by K. Murphy for additional discussion.

In addition to the classic MCMC sampling algorithms we studied in previous chapters, a few others deserving attention are Slice Sampling (R. Neal, “Slice Sampling”, Annals of Statistics, 2003), Hamiltonian Monte Carlo (HMC) (R. Neal, “MCMC Using Hamiltonian Dynamics”, arXiv, 2012) and the No-U-Turn Sampler (NUTS) (M. Hoffman et al, “The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo”, JMLR, 2014). The state-of-the-art NUTS algorithm is commonly used as MCMC inference method for probabilistic graphical models and is implemented in the PyMC3, Stan, TensorFlow Probability, and Pyro probabilistic programming libraries.

There have been a number of attempts to scale MCMC for big data leading to Stochastic Monte Carlo methods that can be generally grouped into stochastic gradient based methods, methods using approximate Metropolis-Hastings with randomly sampled mini-batches and data augmentation. Another popular class of MCMC algorithms are streaming Monte Carlo that approximate the posterior for online Bayesian inference. Sequential Monte Carlo (SMC) rely on re-sampling and propagating samples over time with a large number of particles. Parallelizing Monte Carlo algorithms is another big area of research. If blocks of independent samples can be drawn from the posterior or a proposal distribution, the sampling algorithm could be parallelized by running multiple independent samplers on separate machines and then aggregating the results. Additional methods include divide-and-conquer and pre-fetching (J. Zhu et al, “Big Learning with Bayesian Methods”, National Science Review, 2017).

Advances in Variational Inference (VI) span scalable VI, which includes stochastic approximations, generic VI which extends the applicability of VI to non-conjugate models, accurate VI, that includes variational models beyond mean-field approximation and amortized VI which implements the inference over local latent variables with inference networks (C. Zhang, et al, “Advances in Variational Inference”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019). Scalable VI includes Stochastic Variational Inference (SVI) that applies stochastic optimization techniques of the variational objective. The efficiency of Stochastic Gradient Descent (SGD) depends on the variance of gradient estimates (smaller gradient noise allows for larger learning rates and leads to faster convergence). Techniques such as adaptive learning rates and mini-batch size as well as variance reduction such as control variates, non-uniform sampling and other approaches are used to speed up convergence.

In addition to stochastic optimization, leveraging model structure can help achieve the same objective. Examples include collapsed, sparse, parallel and distributed inference. The collapsed VI relies on the idea of analytically integrating out certain model parameters. Sparse inference exploits either sparsely distributed parameters or datasets that can be summarized by a small number of representative points. In addition, Structured Variational Inference examines variational distributions that are not fully factorized leading to more accurate approximations.

Finally, amortized variational inference is an interesting research area that combines probabilistic graphical models and neural networks. The term amortized refers to utilizing inference from past computations to support future computations. Amortized inference became a popular tool for inference in deep latent variable models (DLVM) such as Variational Auto-Encoder (VAE) (D. Kingma et al, “Auto-encoding variational Bayes”, arXiv, 2013). Similarly, neural networks can be used to learn the parameters of conditional distributions in directed probabilistic graphical models (PGM) (D. Kingma, “Variational Inference and Deep Learning: A New Synthesis”, PhD Thesis, 2017).

4.4 Exercises

4.1 Prove binomial identity: C(n,k) = C(n-1,k-1) + C(n-1,k)

4.2 Derive the Gibbs inequality: H(p,q)≥ H(q) , where H(p,q)=-∑xp(x)log q(x) is the cross-entropy and H(q)=-∑ q(x)log q(x) is the entropy

4.3 Use Jensen's inequality with f(x) = log(x) to prove AM ≥ GM inequality

4.4 Prove that I(x;y) = H(x) - H(x|y) = H(y) - H(y|x)

4.5 Summary

	A data structure is a way of storing and organizing data. Data structures can be categorized into: linear, non-linear and probabilistic.

	We looked at four algorithmic paradigms in this chapter: complete search, greedy, divide and conquer, and dynamic programming.

	Complete search (aka brute force) is a method for solving a problem by traversing the entire search space in search of a solution. During the search we can prune parts of the search space that we are sure do not lead to the required solution.

	A greedy algorithm takes a locally optimum choice at each step with the hope of eventually reaching a globally optimum solution.

	Divide and Conquer is a technique that divides a problem into smaller, independent sub-problems and then combines solutions to each of the sub-problems.

	Dynamic Programming (DP) is a technique that divides a problem into smaller overlapping sub-problems, computes a solution for each sub-problem and stores it in a DP table. The final solution is read off the DP table.

	Mastery of algorithms and software implementation can be achieved through practice of competitive programming (see Appendix for resources)

	Machine learning mastery requires a solid understanding of fundamentals. See recommended texts section in the Appendix for ideas on how to increase the depth and breadth of your knowledge.

	The field of machine learning is rapidly evolving and the best way to stay on top of latest research is by digesting conference papers.

5 Classification Algorithms

This chapter covers

	Introduction to Classification

	Perceptron Algorithm

	SVM Algorithm

	SGD Logistic Regression

	Bernoulli Naïve Bayes Algorithm

	Decision Tree (CART) Algorithm

In the previous chapter, we looked at computer science fundamentals required to implement ML algorithms from scratch. In this chapter, we focus on supervised learning algorithms. Classification is a fundamental class of algorithms and is widely used in machine learning. We will derive from scratch and implement a number of selected classification algorithms to build our experience with fundamentals and motivate the design of new ML algorithms.

5.1 Introduction to Classification

In supervised learning, we are given a dataset D={(x1,y1),…,(xn,yn)} consisting of tuples of data x and labels y. The goal of a classification algorithm is to learn a mapping from inputs x to outputs y, where y is a discrete quantity, i.e. y∈{1,...,K}. If K=2, we have a binary classification problem, while for K>2 we have multi-class classification.

A classifier h can be viewed as a mapping between a d-dimensional feature vector ϕ(x) and a k-dimensional label y, i.e. h:Rd→Rk. We often have several models to choose from, let's call this set of classifier models H. Thus, for a given h ∈ H, we can obtain a prediction y=h(ϕ(x)). Note that we are typically interested in predicting on new or unseen data. In other words, our classifier h must be able to generalize to new data samples.

Finding the right classifier is known as model selection. We want to choose a model that has sufficient number of parameters (degrees of freedom) so as to not under-fit and not over-fit to training data as shown in Figure 5.1

Figure 5.1 Model selection to avoid over-fitting and under-fitting to training data

[image: 05_01]

For model classes H=[1,2,3], training and test loss functions are both decreasing, which indicates that there’s more capacity to learn and as a result these models under-fit the data. For model classes H=[6,7,8],the training loss decreases while the test loss is starting to increase, which indicates that we are over-fitting the data.

5.2 Perceptron

Let's start with the most basic classification model: a linear classifier. We’ll be using the perceptron classifier on the Iris dataset. We can define a linear classifier as follows:

Equation 5.1 Linear classifier

[image: 05_E01]

Notice how the sign function of the inner product between the parameter θ and the feature input x maps to ±1 labels. Geometrically, θx+θ0=0 describes a hyper-plane in d-dimensional space uniquely determined by the normal vector θ. Any point that lies on the same side as the normal θ is labeled +1, while any point on the opposite side is labeled -1. As a result, θx+θ0=0 represents the decision boundary. Figure 5.2 illustrates these concepts in 2 dimensions.

Figure 5.2 Linear classifier decision boundary

[image: 05_02]

How do we measure performance of this classifier? One way is to count the number of mistakes it makes when compared to ground truth labels y. We can count the number of mistakes as follows:

Equation 5.2 Error rate of linear classifier

[image: 05_E02]

where [[∙]] is an indicator function, which is equal to 1 when the expression inside is true and 0 otherwise. Notice, in the equation above, a mistake occurs whenever the label yi ϵ [+1,-1] disagrees with the prediction of the classifier h(xi;θ) ∈ [+1,-1], i.e. their product is negative.

Another way to measure performance of a binary classifier is via a confusion matrix.

Figure 5.3 Confusion Matrix for a Binary Classifier

[image: 05_03]

Figure 5.3 shows the table of errors called the confusion matrix. The prediction is correct when the predicted value matches the actual value as in the case of True Positive (TP) and True Negative (TN). Similarly, the prediction is wrong when there is a mismatch between predicted and actual values as in the case of False Positive (FP) and False Negative (FN). As we vary the classification threshold, we get different values for TP, FP, FN, and TN. In order to better visualize the performance of classifier under different classification thresholds, we can construct two additional figures: Receiver Operating Characteristic (ROC) and Precision-Recall curve.

Figure 5.4 Receiver Operating Characteristic (ROC) plot (left) and Precision-Recall plot (right).

[image: 05_04]

In the ROC plot on the left of Figure 5.4, TPR stands for True Positive Rate and can be computed as follows: TPR=TP/(TP+FN). We can also compute the False Positive Rate (FPR) by using FPR=FP/(FP+TN). By varying our classification threshold, we get different points along the ROC curve. A perfect classification results in TPR=1 and FPR=0, in reality the closer we are to upper left corner the better is the classifier. At chance level, we get the diagonal TPR=FPR line. The quality of ROC curve is often summarized by a single number using the area under the curve or AUC. Higher AUC scores are better with the maximum AUC=1.

In information retrieval, it is common to use Precision-Recall plot as shown on the right of Figure 5.4. The precision is defined as Precision=TP/(TP+FP) and the recall is defined as Recall=TP/(TP+FN). A precision recall curve is a plot of precision vs recall as we vary the classification threshold. The curve can be summarized by a single number using the mean precision by averaging over the recall values, which approximates the area under the curve. Also, for a fixed threshold, we can summarize performance in a single statistic called the F1 score, which is the harmonic mean of precision and recall: F1=2PR/(P+R).

Perceptron is a mistake driven algorithm: it starts with θ=0 and successively adjusts the parameter θ for each training example until there are no more classification mistakes, assuming the data is linearly separable. The perceptron update rule can be summarized as follows:

Equation 5.3 Perceptron Update Rule

[image: 05_E03]

where index k denotes the number of times parameter updates, aka the number of mistakes. Think of θ0 update as similar to θ update but with x=1. If the training examples are linearly separable then the above perceptron algorithm converges after a finite number of iterations. Notice, that the order of input data points makes a difference on how parameter θ is learned and therefore, we can randomize (shuffle) the training dataset. In addition, we can introduce a learning rate to help with θ convergence, the properties of which we'll discuss following the implementation. The perceptron algorithm can be summarized in the pseudo-code below:

[image: 05_04a]

The code consists of Perceptron class with two functions: fit and predict. In the fit function, we are taking the training data X and labels y and upon encountering an error (in which case the if statement condition is true), we update the learning rate and update theta as derived previously. Finally, in the predict function, we make a prediction for test data based on the sign of the decision boundary.

We now have all the tools to implement the perceptron algorithm from scratch! In the following code listing, we will be classifying Iris by training the perceptron algorithm on the training feature data and making a prediction based on the test data.

Listing 5.1 Perceptron Algorithm

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from scipy.stats import randint
from sklearn.datasets import load_iris
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split

class perceptron:
 def __init__(self, num_epochs, dim):
 self.num_epochs = num_epochs
 self.theta0 = 0
 self.theta = np.zeros(dim)

 def fit(self, X_train, y_train):
 n = X_train.shape[0]
 dim = X_train.shape[1]

 k = 1
 for epoch in range(self.num_epochs):
 for i in range(n):
 idx = randint.rvs(0, n-1, size=1)[0] #A
 if (y_train[idx] * (np.dot(self.theta, X_train[idx,:]) + self.theta0) <= 0): #B
 eta = pow(k+1, -1) #C
 k += 1

 self.theta = self.theta + eta * y_train[idx] * X_train[idx, :] #D
 self.theta0 = self.theta0 + eta * y_train[idx] #D
 #end if

 print("epoch: ", epoch)
 print("theta: ", self.theta)
 print("theta0: ", self.theta0)
 #end for
 #end for

 def predict(self, X_test):
 n = X_test.shape[0]
 dim = X_test.shape[1]

 y_pred = np.zeros(n)
 for idx in range(n):
 y_pred[idx] = np.sign(np.dot(self.theta, X_test[idx,:]) + self.theta0)
 #end for
 return y_pred

if __name__ == "__main__":

 iris = load_iris() #E
 X = iris.data[:100,:]
 y = 2*iris.target[:100] - 1 #F

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

 #perceptron (binary) classifier
 clf = perceptron(num_epochs=5, dim=X.shape[1])
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)

 cmt = confusion_matrix(y_test, y_pred)
 acc = np.trace(cmt)/np.sum(np.sum(cmt))
 print("percepton accuracy: ", acc)

 #generate plots
 plt.figure()
 sns.heatmap(cmt, annot=True, fmt="d")
 plt.title("Confusion Matrix"); plt.xlabel("predicted"); plt.ylabel("actual")
 plt.savefig("./figures/perceptron_acc.png")
 plt.show()

After running the algorithm, we get the following classification accuracy results on test dataset.

Figure 5.5 Perceptron Binary Classifier Confusion Matrix (Iris Dataset)

[image: 05_05]

Let's take a second look at our implementation and understand it a little better. Perceptron algorithm can be formulated as stochastic gradient descent that minimizes a hinge loss function. Consider, a loss function that penalizes the magnitude of disagreement zi=yi(θ∙xi+θ0) between the label yi and the prediction h(xi;θ).

Equation 5.4 Hinge Loss Function

[image: 05_E04]

This is known as a hinge loss function as illustrated in Figure 5.6

Figure 5.6 Hinge Loss, 0-1 Loss and log-loss functions

[image: 05_06]

The stochastic gradient descent attempts to minimize the hinge loss by taking a gradient with respect to θ. However, the max operator is not differentiable at zi=1. In fact, we have several possible gradients at that point, collectively known as sub-differential. Since hinge loss is a piece-wise linear function, the gradient for zi>1 is equal to 0, while the gradient for zi≤1 is equal to:

Equation 5.5 Gradient of Hinge Loss

[image: 05_E05]

Combining the expressions above with stochastic gradient descent update (where eta is the learning rate):

Equation 5.6 Perceptron Update Rule

[image: 05_E06]

We get the perceptron algorithm! In the next section, we’ll talk about another important classification algorithm: Support Vector Machine (SVM).

5.3 SVM

In the previous section, we evaluated the performance of our classifier by minimizing expected loss function aka empirical risk. One problem with current formulation is there are multiple classifiers (multiple parameter values θ and θ0) that can achieve the same empirical risk. So how do we choose the best model and what does best mean?

One solution is to regularize the loss function to favor small parameter values:

Equation 5.7 Regularized Loss Function

[image: 05_E07]

where the regularization applies to θ and not θ0. The reason is because θ specifies the orientation of the decision boundary, whereas θ0 is related to its offset from the origin, which is unknown at the start.

Let's try to understand the decision boundary better from geometric point of view. It's desirable for the decision boundary to first of all classify all data points correctly and secondly, to be maximally removed from all the training examples, i.e. to have the maximum margin. Suppose, condition 1 is met and to optimize for condition 2, we need to compute and maximize the distance from every training example to the decision boundary. Geometrically, this distance is:

Equation 5.8 Distance from training example to decision boundary

[image: 05_E08]

Since we want to maximize the margin, we would like to maximize the minimum distance to the decision boundary across all data points, i.e. to find max[min_i γi]. This can be formulated more simply as a quadratic program with linear constraints:

Equation 5.9 Quadratic Primal Optimization Program for SVM

[image: 05_E09]

Notice, how we are essentially minimizing the regularized loss function by choosing θ with small l2 norm subject to the constraints that every training examples is correctly classified.

Figure 5.7 Max Margin Solution of SVM Classifier

[image: 05_07]

Notice, as we minimize ||θ||2, we are effectively increasing the distance γi ∝ 1/||θ|| between the decision boundary and the training data points indexed by i. Geometrically, we are pushing the margin boundaries away from each other as shown in Figure 5.7. At some point, they cannot be pushed further without violating classification constraints. At this point, the margin boundaries lock into unique maximum margin solution. The training data points that lie on the margin boundaries become support vectors. Notice that we only need a subset of training examples (support vectors) to fully learn SVM model parameters.

Let's see if we gain any advantages of solving the dual form of the quadratic program. We can obtain the dual form by writing out the Lagrangian (by adding constraints to the objective function with non-negative Lagrange multipliers):

Equation 5.10 Lagrangian objective function for SVM

[image: 05_E10]

We can now compute the gradient with respect to our parameters:

Equation 5.11 Gradient of the Lagrangian

[image: 05_E11]

By substituting the expression for θ back into our Lagrangian, we get:

Equation 5.12 Quadratic Dual Optimization Program for SVM

[image: 05_E12]

Notice, the big change in the dual formulation is that d-dimensional data points xi and xj interact via inner product. This has significant computational advantages over the primal formulation (in addition to simpler constraints in the dual).

The inner product measures the degree of similarity between two vectors and can be generalized via kernels K(xi,xj). Kernels measure a degree of similarity between objects without explicitly representing them as feature vectors. This is particularly advantageous when we don't have access to or choose not to look into the internals of our objects. Typically, a kernel function that compares two objects xi,xj ∈ Χ is symmetric K(xi,xj)=K(xj,xi) and non-negative K(xi,xj)≥0. There is a wide variety of kernels, ranging from graph kernels to compute similarity between graphs to string kernels and document kernels. One popular kernel example that we will use in our SVM implementation is a radial basis function or RBF kernel:

Equation 5.13 Radial Basis Function Kernel

[image: 05_E13]

We are now ready to implement a binary SVM classifier from scratch using CVXOPT optimization package. CVXOPT is a free software package for convex optimization based on Python programming language and can be downloaded at cvxopt.org

The standard form of a quadratic program (QP) following CVXOPT notation is:

Equation 5.14 Quadratic Program in CVXOPT notation

[image: 05_E14]

Note that the above objective function is convex if and only if matrix P is positive semi-definite. The CVXOPT QP expects the problem in the above form parameterized by (P,q,G,h,A,b). Let us convert our dual QP into this form. Let P be a matrix such that

Equation 5.15 Definition of Matrix P

[image: 05_E15]

Then the optimization program becomes:

Equation 5.16 SVM quadratic program formulation

[image: 05_E16]

We can further modify the QP by multiplying the objective and the constraint by -1 which turns this into minimization problem and reverses the inequality. In addition, we can convert the sum over alphas into a vector form by multiplying the alpha vector with an all ones vector.

Equation 5.17 SVM quadratic program for CVXOPT

[image: 05_E17]

We can now use CVXOPT to solve our SVM quadratic program. Let’s start by looking at the following pseudocode first.

[image: 05_07a]

The SVM class consists of two functions: fit and predict. In the fit function, we start off by formulating the quadratic problem to be solved by CVXOPT and defining all input parameters: (P,q,G,h,A,b). After calling the solver, we find the support vectors as alphas greater than 0 (up to a rounding error). We compute the normal vector next and the intercept as discussed previously. In the predict function, we use the computed normal and intercept support vectors to make label prediction on test data.

Listing 5.2 SVM Algorithm

import cvxopt
import numpy as np

from sklearn.svm import SVC #A
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

def rbf_kernel(gamma, **kwargs):
 def f(x1, x2):
 distance = np.linalg.norm(x1 - x2) ** 2
 return np.exp(-gamma * distance)
 return f

class SupportVectorMachine(object):
 def __init__(self, C=1, kernel=rbf_kernel, power=4, gamma=None):
 self.C = C #B
 self.kernel = kernel #C
 self.power = power #C
 self.gamma = gamma #C
 self.lagr_multipliers = None
 self.support_vectors = None
 self.support_vector_labels = None
 self.intercept = None

 def fit(self, X, y):

 n_samples, n_features = np.shape(X)

 if not self.gamma:
 self.gamma = 1 / n_features

 self.kernel = self.kernel(#D
 power=self.power, #D
 gamma=self.gamma) #D

 kernel_matrix = np.zeros((n_samples, n_samples)) #E
 for i in range(n_samples): #E
 for j in range(n_samples): #E
 kernel_matrix[i, j] = self.kernel(X[i], X[j]) #E

 P = cvxopt.matrix(np.outer(y, y) * kernel_matrix, tc='d') #F
 q = cvxopt.matrix(np.ones(n_samples) * -1) #F
 A = cvxopt.matrix(y, (1, n_samples), tc='d') #F
 b = cvxopt.matrix(0, tc='d') #F

 if not self.C: #if its empty
 G = cvxopt.matrix(np.identity(n_samples) * -1)
 h = cvxopt.matrix(np.zeros(n_samples))
 else:
 G_max = np.identity(n_samples) * -1
 G_min = np.identity(n_samples)
 G = cvxopt.matrix(np.vstack((G_max, G_min)))
 h_max = cvxopt.matrix(np.zeros(n_samples))
 h_min = cvxopt.matrix(np.ones(n_samples) * self.C)
 h = cvxopt.matrix(np.vstack((h_max, h_min)))

 minimization = cvxopt.solvers.qp(P, q, G, h, A, b) #G

 lagr_mult = np.ravel(minimization['x']) #H

 # Get indexes of non-zero lagr. multipiers #I
 idx = lagr_mult > 1e-11 #I
 # Get the corresponding lagr. multipliers #I
 self.lagr_multipliers = lagr_mult[idx] #I
 # Get the samples that will act as support vectors #I
 self.support_vectors = X[idx] #I
 # Get the corresponding labels #I
 self.support_vector_labels = y[idx] #I

 self.intercept = self.support_vector_labels[0] #J
 for i in range(len(self.lagr_multipliers)): #J
 self.intercept -= self.lagr_multipliers[i] * self.support_vector_labels[
 i] * self.kernel(self.support_vectors[i], self.support_vectors[0])

 def predict(self, X): #K
 y_pred = []
 for sample in X:
 prediction = 0
 # Determine the label of the sample by the support vectors
 for i in range(len(self.lagr_multipliers)):
 prediction += self.lagr_multipliers[i] * self.support_vector_labels[
 i] * self.kernel(self.support_vectors[i], sample)
 prediction += self.intercept
 y_pred.append(np.sign(prediction))
 return np.array(y_pred)

def main():

 #load dataset
 iris = load_iris()
 X = iris.data[:100,:]
 y = 2*iris.target[:100] - 1 #L

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
 clf = SupportVectorMachine(kernel=rbf_kernel, gamma = 1)
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)
 accuracy = accuracy_score(y_test, y_pred)
 print ("Accuracy (scratch):", accuracy)

 clf_sklearn = SVC(gamma = 'auto')
 clf_sklearn.fit(X_train, y_train)
 y_pred2 = clf_sklearn.predict(X_test)
 accuracy = accuracy_score(y_test, y_pred2)
 print ("Accuracy :", accuracy)

if __name__ == "__main__":
 main()

We can see that SVM classification accuracy based on our implementation matches the accuracy of sklearn model!

5.4 Logistic Regression

Logistic regression is a classification algorithm. Let's dive into some of the theory behind logistic regression before implementing it from scratch! In a probabilistic view of classification, we are interested in computing p(Ck|x) the probability of class label Ck given the input data x. Consider two classes C1 and C2, we can use Bayes rule to compute our posterior probability:

Equation 5.18 Class posterior probability

[image: 05_E18]

where p(Ck) are prior class probabilities. We can divide the left hand side by the numerator and obtain:

Equation 5.19 Class posterior probability

[image: 05_E19]

where we defined:

Equation 5.20 Log-Likelihood Ratio

[image: 05_E20]

In the multi-class scenario (K>2), we have:

Equation 5.21 Class posterior probability

[image: 05_E21]

Where ak=ln p(x|Ck)p(Ck). The expression above is also known as a softmax function. Now, it's a matter of choosing class conditional densities that model the data well. In the case of binary logistic regression parameterized by θ and with class label y=Ck, we have

Equation 5.22 Class posterior probability

[image: 05_E22]

We can compute the joint distribution as follows:

Equation 5.23 Joint distribution

[image: 05_E23]

Since we are not modelling the distribution of data p(xi|θ)=p(xi), we can write the log-likelihood as follows:

Equation 5.24 Log-likelihood

[image: 05_E24]

Note that we are interested in maximizing the log-likelihood or equivalently minimizing the loss or the negative log-likelihood (NLL):

Equation 5.25 Negative Log-likelihood Loss

[image: 05_E25]

We are planning on minimizing the logistic regression loss via Stochastic Gradient Descent (SGD) that can be written as follows:

Equation 5.26 Gradient Descent

[image: 05_E26]

where gk is the gradient and ηk is the step size. To gaurantee convergence of SGD, the following conditions known as Robbins-Monro conditions on the learning rate must be satisfied:

Equation 5.27 Robbins-Monro conditions

[image: 05_E27]

We can use the following learning rate schedule that satisfies the conditions above:

Equation 5.28 Learning Rate Schedule

[image: 05_E28]

where τ0≥0 slows down early iterations of the algorithm and κ∈(0.5,1] controls the rate at which old values are forgotten. To compute the steepest descent direction gk, we need to differentiate our loss function NLL(θ):

Equation 5.29 Gradient computation

[image: 05_E29]

where we used the fact d/dx σ(x)=(1-σ(x))σ(x) and that the mean of the Bernoulli distribution μi=σ(θ^T xi). Note, that there exist a number of autograd libraries to avoid deriving the gradients by hand. Furthermore, we can add regularization to control parameter size. Our regularized objective and the gradient become:

Equation 5.30 Regularized loss function and gradient

[image: 05_E30]

We are now ready to implement SGD for logistic regression. Let’s start with the following pseudocode.

[image: 05_07b]

The sgdlr class consists of three main functions: lr_objective, fit and predict. In the lr_objective function, we compute the regularized objective function and the gradient of the objective as discussed in the text. In the fit function, we first set the learning rate, and for each iteration we update the theta parameters in the direction opposite to the gradient. Finally, in the predict function, we make a binary prediction of the label based on test data. In the following code listing, we’ll be using a synthetic Gaussian mixture dataset to train the logistic regression model.

Listing 5.3 SGD Logistic Regression

import numpy as np
import matplotlib.pyplot as plt

def generate_data():

 n = 1000
 mu1 = np.array([1,1])
 mu2 = np.array([-1,-1])
 pik = np.array([0.4,0.6])

 X = np.zeros((n,2))
 y = np.zeros((n,1))

 for i in range(1,n):
 u = np.random.rand()
 idx = np.where(u < np.cumsum(pik))[0]

 if (len(idx)==1):
 X[i,:] = np.random.randn(1,2) + mu1
 y[i] = 1
 else:
 X[i,:] = np.random.randn(1,2) + mu2
 y[i] = -1
 return X, y

class sgdlr:

 def __init__(self):

 self.num_iter = 100
 self.lmbda = 1e-9

 self.tau0 = 10
 self.kappa = 1
 self.eta = np.zeros(self.num_iter)

 self.batch_size = 200
 self.eps = np.finfo(float).eps

 def fit(self, X, y):

 theta = np.random.randn(X.shape[1],1) #A

 for i in range(self.num_iter):
 self.eta[i] = (self.tau0+i)**(-self.kappa) #B

 batch_data, batch_labels = self.make_batches(X,y,self.batch_size) #C
 num_batches = batch_data.shape[0]
 num_updates = 0

 J_hist = np.zeros((self.num_iter * num_batches,1))
 t_hist = np.zeros((self.num_iter * num_batches,1))

 for itr in range(self.num_iter):
 for b in range(num_batches):
 Xb = batch_data[b]
 yb = batch_labels[b]

 J_cost, J_grad = self.lr_objective(theta, Xb, yb, self.lmbda)
 theta = theta - self.eta[itr]*(num_batches*J_grad)

 J_hist[num_updates] = J_cost
 t_hist[num_updates] = np.linalg.norm(theta,2)
 num_updates = num_updates + 1
 print("iteration %d, cost: %f" %(itr, J_cost))

 y_pred = 2*(self.sigmoid(X.dot(theta)) > 0.5) - 1
 y_err = np.size(np.where(y_pred - y)[0])/float(y.shape[0])
 print("classification error:", y_err)

 self.generate_plots(X, J_hist, t_hist, theta)
 return theta

 def make_batches(self, X, y, batch_size):
 n = X.shape[0]
 d = X.shape[1]
 num_batches = int(np.ceil(n/batch_size))

 groups = np.tile(range(num_batches),batch_size)
 batch_data=np.zeros((num_batches,batch_size,d))
 batch_labels=np.zeros((num_batches,batch_size,1))

 for i in range(num_batches):
 batch_data[i,:,:] = X[groups==i,:]
 batch_labels[i,:] = y[groups==i]

 return batch_data, batch_labels

 def lr_objective(self, theta, X, y, lmbda): #D

 n = y.shape[0]
 y01 = (y+1)/2.0

 mu = self.sigmoid(X.dot(theta))

 mu = np.maximum(mu,self.eps) #E
 mu = np.minimum(mu,1-self.eps) #E

 cost = -(1/n)*np.sum(y01*np.log(mu)+(1-y01)*np.log(1-mu))+np.sum(lmbda*theta*theta) #F

 grad = X.T.dot(mu-y01) + 2*lmbda*theta #G

 #compute the Hessian of the lr objective
 #H = X.T.dot(np.diag(np.diag(mu*(1-mu)))).dot(X) + 2*lmbda*np.eye(np.size(theta))

 return cost, grad

 def sigmoid(self, a):
 return 1/(1+np.exp(-a))

 def generate_plots(self, X, J_hist, t_hist, theta):

 plt.figure()
 plt.plot(J_hist)
 plt.title("logistic regression")
 plt.xlabel('iterations')
 plt.ylabel('cost')
 #plt.savefig('./figures/lrsgd_loss.png')
 plt.show()

 plt.figure()
 plt.plot(t_hist)
 plt.title("LR theta l2 norm")
 plt.xlabel('iterations')
 plt.ylabel('theta l2 norm')
 #plt.savefig('./figures/lrsgd_theta_norm.png')
 plt.show()

 plt.figure()
 plt.plot(self.eta)
 plt.title("LR learning rate")
 plt.xlabel('iterations')
 plt.ylabel('learning rate')
 #plt.savefig('./figures/lrsgd_learning_rate.png')
 plt.show()

 plt.figure()
 x1 = np.linspace(np.min(X[:,0])-1,np.max(X[:,0])+1,10)
 plt.scatter(X[:,0], X[:,1])
 plt.plot(x1, -(theta[0]/theta[1])*x1)
 plt.title('LR decision boundary')
 plt.grid(True)
 plt.xlabel('X1')
 plt.ylabel('X2')
 #plt.savefig('./figures/lrsgd_clf.png')
 plt.show()

if __name__ == "__main__":

 X, y = generate_data()
 sgd = sgdlr()
 theta = sgd.fit(X,y)

Figure 5.8 shows the stochastic nature of loss function that decreseases with the number of iterations as well as the decision boundary learned by our binary logistic regression and the learning rate schedule.

Figure 5.8 SGD Logistic Regression: cost (left), decision boundary (middle) and learning rate (right)

[image: 05_08]

A natural extension to the binary logistic regression is a multinomial logistic regression that handles more than 2 classes.

5.5 Naïve Bayes

This section focuses on understanding, deriving, and implementing the Naive Bayes algorithm. The fundamental assumption of the algorithm is that the features are conditionally independent given the class label. This allows us to write the class conditional density as a product of one-dimensional densities.

Equation 5.31 Naïve Bayes Class-Conditional Density

[image: 05_E31]

The model is called naive because we don't expect the features to be conditionally independent. However, even if the assumption is false, the model performs well in many scenarios. Here we will focus on Bernoulli Naive Bayes for document classification with graphical model shown in Figure 5.9. Note the shaded nodes represent the observed variables.

Figure 5.9 Naïve Bayes Probabilistic Graphical Model (PGM)

[image: 05_09]

The choice of class conditional density p(x|y=c,θ) determines the type of Naive Bayes classifier such as Gaussian, Bernoulli or Multinomial. In the section, we focus on Bernoulli Naive Bayes due to its high performance in classifying documents.

Let xij be Bernoulli random variables indicating the presence (xij=1) or absence (xij=0) of a word j∈{1,...,D} for document i∈{1,...,n}, parameterized by θjc for a given class label y=c ∈ {1,...,C}. In addition, let π be a Dirichlet distribution representing the prior over the class labels. Thus, the total number of learnable parameters is |θ|+|π|=O(DC)+O(C)=O(DC), where D is the dictionary size and C is the number of classes. Due to the small number of parameters, the Naive Bayes model is immune to over-fitting.

We can write-down the class conditional density as follows:

Equation 5.32 Naïve Bayes Class-Conditional Density

[image: 05_E32]

We can derive the Naive Bayes inference algorithm by maximizing the log-likelihood. Consider words xi in a single document i:

Equation 5.33 Naïve Bayes Likelihood for a Single Sample

[image: 05_E33]

Using the Naive Bayes assumption, we can compute the log-likelihood objective:

Equation 5.34 Naïve Bayes Log-Likelihood for Training Dataset

[image: 05_E34]

Note this is a constrained optimization program since the probabilities of class labels must sum to one: ∑πc=1. We can solve the above optimization problem using a Lagrangian by including the constraint into the objective function and setting the gradient of the Lagr angian L(θ,λ) wrt to model parameters to zero:

Equation 5.35 Naïve Bayes Lagrangian

[image: 05_E35]

Differentiating wrt πc, we get:

Equation 5.36 Derivative of Lagrangian wrt pi

[image: 05_E36]

Which gives us an expression for πc in terms of λ: πc =(1/λ) Nc. To solve for λ, we use our sum to one constraint:

Equation 5.37 Solving for lambda

[image: 05_E37]

Substituting λ back into expression for πc, we get: πc=Nc/∑Nc=Nc/Ntot. Similarly, we can compute the optimum θjc parameters by setting the gradient of objective wrt θjc to zero:

Equation 5.38 Derivative of Lagrangian wrt theta

[image: 05_E38]

As a result, the optimum Maximum Likelihood Estimate (MLE) value of θjc=Njc/Nc, where Nc=∑1[y_i=c] Note, that it's straight forward to add a Beta conjugate prior for the Bernoulli random variables and a Dirichlet conjugate prior for the class density to smooth the MLE counts:

Equation 5.39 Conjugate priors for pi and theta

[image: 05_E39]

where we use conjugate prior for computational convenience since the posterior and the prior have the same form which enables closed form updates.

During test time, we would like to predict the class label y given the training data D and the learned model parameters. Applying the Bayes rule:

Equation 5.40 Conjugate priors for pi and theta

[image: 05_E40]

Substituting the distributions for p(y=c|D) and p(xij|y=c,D) and taking the log, we get:

Equation 5.41 log class conditional density

[image: 05_E41]

Where πc and θjc are the MLE estimates obtained during training. The Naive Bayes algorithm is summarized in pseudo-code below.

Figure 5.10 Naïve Bayes Algorithm

[image: 05_10]

The run-time complexity of MLE inference during training is O(ND) where N is the number of training documents and D is the dictionary size. The run-time complexity during test time is O(TCD) where T is the number of test documents, C is the number of classes and D is the dictionary size. Similarly, space complexity is the size of arrays required to store model parameters that grows as O(DC).

We are now ready to implement Bernoulli Naive Bayes algorithm!

Listing 5.4 Bernoulli Naïve Bayes Algorithm

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from time import time
from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer

from sklearn.metrics import accuracy_score
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer

sns.set_style("whitegrid")
tokenizer = RegexpTokenizer(r'\w+')
stop_words = set(stopwords.words('english'))
stop_words.update(['s','t','m','1','2'])

class naive_bayes:
 def __init__(self, K, D):
 self.K = K #A
 self.D = D #B

 self.pi = np.ones(K) #C
 self.theta = np.ones((self.D, self.K)) #D

 def fit(self, X_train, y_train):

 num_docs = X_train.shape[0]
 for doc in range(num_docs):

 label = y_train[doc]
 self.pi[label] += 1

 for word in range(self.D):
 if (X_train[doc][word] > 0):
 self.theta[word][label] += 1
 #end if
 #end for
 #end for

 #normalize pi and theta
 self.pi = self.pi/np.sum(self.pi)
 self.theta = self.theta/np.sum(self.theta, axis=0)

 def predict(self, X_test):

 num_docs = X_test.shape[0]
 logp = np.zeros((num_docs,self.K))
 for doc in range(num_docs):
 for kk in range(self.K):
 logp[doc][kk] = np.log(self.pi[kk])
 for word in range(self.D):
 if (X_test[doc][word] > 0):
 logp[doc][kk] += np.log(self.theta[word][kk])
 else:
 logp[doc][kk] += np.log(1-self.theta[word][kk])
 #end if
 #end for
 #end for
 #end for
 return np.argmax(logp, axis=1)

if __name__ == "__main__":

 import nltk
 nltk.download(‘stopwords’)

 #load data
 print("loading 20 newsgroups dataset...")
 tic = time()
 classes = ['sci.space', 'comp.graphics', 'rec.autos', 'rec.sport.hockey']
 dataset = fetch_20newsgroups(shuffle=True, random_state=0, remove=('headers','footers','quotes'), categories=classes)
 X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.5, random_state=0)
 toc = time()
 print("elapsed time: %.4f sec" %(toc - tic))
 print("number of training docs: ", len(X_train))
 print("number of test docs: ", len(X_test))

 print("vectorizing input data...")
 cnt_vec = CountVectorizer(tokenizer=tokenizer.tokenize, analyzer='word', ngram_range=(1,1), max_df=0.8, min_df=2, max_features=1000, stop_words=stop_words)
 cnt_vec.fit(X_train)
 toc = time()
 print("elapsed time: %.2f sec" %(toc - tic))
 vocab = cnt_vec.vocabulary_
 idx2word = {val: key for (key, val) in vocab.items()}
 print("vocab size: ", len(vocab))

 X_train_vec = cnt_vec.transform(X_train).toarray()
 X_test_vec = cnt_vec.transform(X_test).toarray()

 print("naive bayes model MLE inference...")
 K = len(set(y_train)) #number of classes
 D = len(vocab) #dictionary size
 nb_clf = naive_bayes(K, D)
 nb_clf.fit(X_train_vec, y_train)

 print("naive bayes prediction...")
 y_pred = nb_clf.predict(X_test_vec)
 nb_clf_acc = accuracy_score(y_test, y_pred)
 print("test set accuracy: ", nb_clf_acc)

As we can see from the output, we achieve 82% accuracy on the 20 newsgroups test dataset.

5.6 Decision Tree (CART)

This section focuses on Classification and Regression Trees (CART) algorithm. Tree based algorithms partition the input space into axis parallel regions such that each leaf represents a region. They can then be used to either classify the region by taking a majority vote or regress the region by computing the expected value. Tree based models are interpretable and provide insight into feature importance. They are based on a greedy, recursive algorithm since optimum partitioning of space is NP complete.

In tree-based models during training we are interested in constructing a binary tree in a way that optimizes an objective function and does not lead to under or over fitting. A key determinant in growing a decision tree is the choice of the feature and the threshold to use when classifying the data points. Consider an input data matrix Xn×d with n data points of dimension (feature size) d. We would like to find the optimum feature and threshold for that feature that results in the split of data with minimum cost. Let j∈ {1,...,d} represent feature dimension and t ∈ τj represent a threshold for feature j out of all possible thresholds τj (constructed by taking mid-points of our data xij), then we would like to compute:

Equation 5.42 Objective Function

[image: 05_E42]

Before we look at an example, let's look at potential costs we can use for optimizing the tree for classification. Our goal in defining a cost function is to evaluate how good our data partition is. We would like the leaf nodes to be pure, i.e. contain data from the same class and still be able to generalize to test data, i.e. we would like to limit the depth of the tree (to prevent overfitting) while minimizing impurity. One notion of impurity is the Gini index:

Equation 5.43 Gini Index

[image: 05_E43]

where πk is a fraction of points in the region that belongs to cluster k:

Equation 5.44 Definition of pi_k

[image: 05_E44]

Notice that since πk is the probability of a random point in the leaf belonging to class k and 1-πk is the error rate, the Gini index is the expected error rate. If the leaf cluster is pure (πk=1) then the Gini index is zero. Thus, we are interested in minimizing the Gini index.

An alternative objective is the entropy:

Equation 5.45 Entropy Definition

[image: 05_E45]

Entropy measures the amount of uncertainty. If we are certain that the leaf cluster is pure (i.e. πk=1) then the entropy is zero. Thus, we are interested in minimizing the entropy when it comes to CART.

Let's look at a 1-D example of choosing the optimum splitting feature and its threshold. Let X=[1.5,1.7,2.3,2.7,2.7] and class label y=[1,1,2,2,3]. Since the data is one dimensional, our task is to find a threshold that will split X in a way that minimizes the Gini index. If we choose a threshold t1=2 as a midpoint between 1.7 and 2.3 and compute the resulting Gini index we get:

Equation 5.46 Gini Index Example

[image: 05_E46]

where Gleft is the Gini index of {xi,yi: xij≤2} and is equal to zero since both class labels are equal to 1, i.e. a pure leaf cluster; and Gright is the Gini index of {xi,yi: xij>2} and contains a mix of class labels yright = [2,2,3].

The key to CART algorithm is finding the optimal feature and threshold such that the cost (such as Gini index) is minimized. During training, we'll need to iterate through every feature one by one and compute the Gini cost for all possible thresholds for that feature. But how do we compute τj a set of all possible threshold for feature j? We can sort the training data X[:,j] in O(nlogn) time and consider all mid-points between two adjacent data values. Next, we'll need to compute the Gini index for each threshold that can be done as follows. Let m be the size of the node and mk be the number of points in the node that belong to class k, then

Equation 5.47 Gini Index Computation

[image: 05_E47]

We can iterate through the sorted thresholds τj in O(n) time and in each iteration compute the Gini index that would result in applying that threshold. For i-th threshold, we get

Equation 5.48 Gini Index Computation for the i-th threshold

[image: 05_E48]

Having found the optimum feature and threshold, we split each node recursively until the maximum depth is reached. Once we've constructed a tree during training, given test data, we simply traverse the tree from root to leaf which stores our class label. We can summarize CART algorithm in the following pseudo-code:

[image: 05_10a]

As we can see from the definition of TreeNode, it stores the predicted class label, id of feature to split on and the best threshold to split on, pointers to left and right subtrees as well as the gini cost and the size of node. We can grow the decision tree recursively by calling the grow_tree function as long as the depth of the tree is less than the maximum depth determined ahead of time. First, we compute the class label via majority vote and the gini index for training labels. Next, we determine the best split by iterating over all features and over all possible splitting thresholds. Once, we determined the best feature idx and feature threshold to split on, we initialize left and right pointers of the current node with new TreeNode objects that contain data less the splitting threshold and greater than the splitting threshold, respectively. And we iterate in this fashion until we reach the maximum tree depth. We are now ready to implement the CART algorithm.

Listing 5.5 CART Decision Tree Algorithm

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

class TreeNode():
 def __init__(self, gini, num_samples, num_samples_class, class_label):
 self.gini = gini #A
 self.num_samples = num_samples #B
 self.num_samples_class = num_samples_class #C
 self.class_label = class_label #D
 self.feature_idx = 0 #E
 self.treshold = 0 #F
 self.left = None #G
 self.right = None #H

class DecisionTreeClassifier():
 def __init__(self, max_depth = None):
 self.max_depth = max_depth

 def best_split(self, X_train, y_train):
 m = y_train.size
 if (m <= 1):
 return None, None

 mk = [np.sum(y_train == k) for k in range(self.num_classes)] #I

 best_gini = 1.0 - sum((n / m) ** 2 for n in mk) #J
 best_idx, best_thr = None, None

 #iterate over all features
 for idx in range(self.num_features):

 thresholds, classes = zip(*sorted(zip(X[:, idx], y))) #K

 num_left = [0]*self.num_classes
 num_right = mk.copy()

 for i in range(1, m): #L

 k = classes[i-1]

 num_left[k] += 1
 num_right[k] -= 1

 gini_left = 1.0 - sum(
 (num_left[x] / i) ** 2 for x in range(self.num_classes)
)

 gini_right = 1.0 - sum(
 (num_right[x] / (m - i)) ** 2 for x in range(self.num_classes)
)

 gini = (i * gini_left + (m - i) * gini_right) / m

 if thresholds[i] == thresholds[i - 1]:
 continue

 if (gini < best_gini):
 best_gini = gini
 best_idx = idx
 best_thr = (thresholds[i] + thresholds[i - 1]) / 2 #M
 #end if
 #end for
 #end for
 return best_idx, best_thr

 def gini(self, y_train):
 m = y_train.size
 return 1.0 - sum((np.sum(y_train == k) / m) ** 2 for k in range(self.num_classes))

 def fit(self, X_train, y_train):
 self.num_classes = len(set(y_train))
 self.num_features = X_train.shape[1]
 self.tree = self.grow_tree(X_train, y_train)

 def grow_tree(self, X_train, y_train, depth=0):

 num_samples_class = [np.sum(y_train == k) for k in range(self.num_classes)]
 class_label = np.argmax(num_samples_class)

 node = TreeNode(
 gini=self.gini(y_train),
 num_samples=y_train.size,
 num_samples_class=num_samples_class,
 class_label=class_label,
)

 if depth < self.max_depth: #N
 idx, thr = self.best_split(X_train, y_train)
 if idx is not None:
 indices_left = X_train[:, idx] < thr
 X_left, y_left = X_train[indices_left], y_train[indices_left]
 X_right, y_right = X_train[~indices_left], y_train[~indices_left]
 node.feature_index = idx
 node.threshold = thr
 node.left = self.grow_tree(X_left, y_left, depth + 1)
 node.right = self.grow_tree(X_right, y_right, depth + 1)

 return node

 def predict(self, X_test):
 return [self.predict_helper(x_test) for x_test in X_test]

 def predict_helper(self, x_test):
 node = self.tree
 while node.left:
 if x_test[node.feature_index] < node.threshold:
 node = node.left
 else:
 node = node.right
 return node.class_label

if __name__ == "__main__":

 #load data
 iris = load_iris()
 X = iris.data[:, [2,3]]
 y = iris.target

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

 print("decision tree classifier...")
 tree_clf = DecisionTreeClassifier(max_depth = 3)
 tree_clf.fit(X_train, y_train)

 print("prediction...")
 y_pred = tree_clf.predict(X_test)

 tree_clf_acc = accuracy_score(y_test, y_pred)
 print("test set accuracy: ", tree_clf_acc)

As we can see from the output, we achieve test classification accuracy of 80% on the Iris dataset.

5.7 Exercises

5.1 Given a data point y ∈ Rd and a hyper-plane θ⋅x+θ0=0, compute Euclidean distance from the point to the hyper-plane.

5.2 Given a primal linear program (LP) min c^T x subject to Ax <= b, x >= 0, write down the dual version of the LP.

5.3 Show that Radial Basis Function (RBF) kernel is equivalent to computing similarity between two infinite dimensional feature vectors.

5.4 Verify that the learning rate schedule ηk=(τ0+k)^(-κ) satisfies Robbins-Monro conditions.

5.5 Compute the derivative of the sigmoid function σ(a) = [1+exp(-a)]^(-1)

5.6 Compute run-time and memory complexity of Bernoulli Naive Bayes Algorithm.

5.8 Summary

	The goal of a classification algorithm is to learn a mapping from inputs x to outputs y, where y is a discrete quantity

	Perceptron is a classification algorithm that updates the decision boundary until there are no more classification mistakes

	SVM is max-margin classifier. The training data points that lie on the margin boundaries become support vectors.

	Logistic regression is a classification algorithm that computes class conditional density based on softmax function.

	Naive Bayes algorithm assumes that features are conditionally independent given the class label. It's commonly used in document classification.

	CART decision tree is greedy, recursive algorithm that finds the optimum feature splits by minimizing an objective function such as the Gini index.

6 Regression Algorithms

This chapter covers

	Introduction to Regression

	Bayesian Linear Regression

	Hierarchical Bayesian Regression

	KNN Regression

	Gaussian Process Regression

In the previous chapter, we looked at supervised algorithms for classification. In this chapter, we focus on supervised learning in which we are trying to predict a continuous quantity. We are going to study four intriguing regression algorithms: Bayesian Linear Regression, Hierarchical Bayesian Regression, KNN regresion and Gaussian Process Regression. We will derive them from first principles. Regression algorithms that predict a continuous quantity find many uses in a variety of applications. For example, predicting the price of financial assets or predicting CO2 levels in the atmosphere. Let’s begin by reviewing the fundamentals of regression.

6.1 Introduction to Regression

In supervised learning, we are given a dataset D={(x1,y1),…,(xn,yn)} consisting of tuples of data x and labels y. The goal of a regression algorithm is to learn a mapping from inputs x to outputs y, where y is a continuous quantity, i.e. y ∈ R.

A regressor f can be viewed as a mapping between a d-dimensional feature vector ϕ(x) and a label y, i.e. f: Rd → R. Regression problems are typically harder (to achieve higher accuracy) compared to classification problems because we are trying to predict a continuous quantity. Moreover, we are often interested in predicting future response variable y based on past training data.

One of most widely used models for regression is linear regression, which models the response variable y as a linear combination of input feature vectors ϕ(x):

Equation 6.1 Formulation of Linear Regression

[image: Diagram, schematic Description automatically generated]

where ϵ is the residual error between our linear predictions and the true response. We can characterize the quality of our regressor based on the Mean Squared Error (MSE):

Equation 6.2 Mean Squared Error Definition

[image: Diagram, schematic Description automatically generated]

In this section, we are going to look at several important regression models starting with KNN and Bayesian regression, and their extensions to hierarchical regression models and conclude with Gaussian Process (GP) regression. We'll focus on both the theory and implementation of each model from scratch.

6.2 Bayesian Linear Regression

Recall, that we can write the linear regression as y(x) = wT x +ϵ. If we assume that ϵ∼N(0,σ2) is a zero-mean Gaussian RV with variance σ2, then we can formulate linear regression as follows:

Equation 6.3 Bayesian Linear Regression Formulation

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} p(y|x, \theta) = N(y|w^{T}x, \sigma^2) \nonumber \end{equation} \end{document}]

where w are regression coefficients. To fit a linear regression model to data, we minimize the negative log likelihood:

Equation 6.4 Negative Log Likelihood Derivation

[image: Diagram, text Description automatically generated]

Keeping σ2 fixed and differentiating with respect to w, we get:

Equation 6.5 Derivative of NLL wrt w in matrix form

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} 2X^{T}Xw - 2X^{T}y = 0 \nonumber \end{equation} \end{document}]

from which we can write the following:

Equation 6.6 Optimum Regression Weights

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} \hat{w} = (X^{T}X)^{-1}X^{T}y \nonumber \end{equation} \end{document}]

One problem with above estimation is that it can result in over-fitting. To make the Bayesian linear regression robust against overfitting, we can encourage the parameters to be small by placing a zero-mean Gaussian prior:

Equation 6.7 Zero-Mean Gaussian Prior Over Regression Weights

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} p(w) = \prod_{d} N(w_d| 0, \tau^2) \nonumber \end{equation} \end{document}]

Thus, we can re-write our regularized objective as:

Equation 6.8 Regularized Bayesian Linear Regression Objective

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} \textrm{min}_w \mathrm{NLL}(w, \sigma^2) + \lambda ||w||_{2}^{2} \nonumber \end{equation} \end{document}]

Solving for w as before, we get the following coefficients:

Equation 6.9 Regularized Optimum Regression Weights

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} \hat{w}_{ridge} = (X^{T}X + \lambda I)^{-1}X^{T}y \nonumber \end{equation} \end{document}]

We can learn the parameters w using gradient descent! Let’s look at the following pseudo-code:

[image: Text, letter Description automatically generated]

The ridge_reg class consists of fit and predict function. In the fit function, we compute the gradient of the objective function wrt w and updated the weight parameters. In the predict function, we use the learned regression weights to make a prediction on test data.

Listing 6.1 Bayesian Linear Regression

import math
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing

class ridge_reg():

 def __init__(self, n_iter=20, learning_rate=1e-3, lmbda=0.1):
 self.n_iter = n_iter
 self.learning_rate = learning_rate
 self.lmbda = lmbda

 def fit(self, X, y):
 X = np.insert(X, 0, 1, axis=1) #A

 self.loss = []
 self.w = np.random.rand(X.shape[1])

 for i in range(self.n_iter):
 y_pred = X.dot(self.w)
 mse = np.mean(0.5*(y - y_pred)**2 + 0.5*self.lmbda*self.w.T.dot(self.w))
 self.loss.append(mse)
 print(" %d iter, mse: %.4f" %(i, mse))
 grad_w = - (y - y_pred).dot(X) + self.lmbda*self.w #B
 self.w -= self.learning_rate * grad_w #C

 def predict(self, X):
 X = np.insert(X, 0, 1, axis=1) #D
 y_pred = X.dot(self.w)
 return y_pred

if __name__ == "__main__":

 X, y = fetch_california_housing(return_X_y=True)
 X_reg = X[:,2].reshape(-1,1) #E
 X_std = (X_reg - X_reg.mean())/X.std() #F
 y_std = (y - y.mean())/y.std() #F

 X_std = X_std[:200,:]
 y_std = y_std[:200]

 rr = ridge_reg()
 rr.fit(X_std, y_std)
 y_pred = rr.predict(X_std)

 print(rr.w)

 plt.figure()
 plt.plot(rr.loss)
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 plt.tight_layout()
 plt.show()

 plt.figure()
 plt.scatter(X_std, y_std)
 plt.plot(np.linspace(-1,1), rr.w[1]*np.linspace(-1,1)+rr.w[0], c='red')
 plt.xlim([-0.01,0.01])
 plt.xlabel("scaled avg num of rooms")
 plt.ylabel("scaled house price")
 plt.show()

Figure 6.1 shows the output of Bayesian Logistic regression algorithm.

Figure 6.1 Bayesian Logistic Regression loss function (left) and plot (right)

[image: Chart, scatter chart Description automatically generated]

We can see the decrease in loss function over epochs on the left and a fit to California house pricing dataset projection on the right. Note that both axis are standardized. The Bayesian linear regression is able to capture the trend of increasing house price with average number of rooms. In the next section, we are going to look into the benefits of hierarchical model of linear regression.

6.3 Hierarchical Bayesian Regression

Hierarchical models enable sharing of features among groups. The parameters of the model are assumed to be sampled from a common distribution that models similarity between groups. Figure 6.2 shows three different scenarios that illustrate the benefit of hierarchical modeling. In the figure on the left, we have a single set of parameters θ that model the entire sequency of observations referred to as a pooled model. Here any variation in data is not modelled explicitly since we are assuming a common set of parameters that give rise to the data. On the other hand, we have an unpooled scenario where we model a different set of parameters for each observation. In the unpooled case, we are assuming that there is no sharing of parameters between groups of observations and that each parameter is independent. The hierarchical model combines the best of both worlds: it assumes that there's a common distribution from which individual parameters are sampled and therefore captures similarities between groups.

Figure 6.2 Pooled, Unpooled, and Hierarchical Graphical Models

[image: A picture containing clock, watch Description automatically generated]

In Bayesian Hierarchical Regression, we can assign priors on model parameters and use MCMC sampling to infer posterior distributions. We use the radon dataset to regress radon gas levels in houses of different counties based on the floor number (in particular if there's a basement or not). Thus our regression model looks like the following:

Equation 6.10 Hierarchical Bayesian Regression Model

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{eqnarray} \alpha_c &\sim& N(\mu_a, \sigma_{a}^{2}) \nonumber\\ \beta_c &\sim& N(\mu_{\beta}, \sigma_{\beta}^{2}) \nonumber\\ \mathrm{radon}_c &=& \alpha_c + \beta_c \times \mathrm{floor}_{i,c} + \epsilon_c \nonumber \end{eqnarray} \end{document}]

Notice that subscript c indicates a county, thus we are learning an intercept and a slope for each county sampled from a shared Gaussian distribution. Thus, we are assuming a hierarchical model in which our parameters (αc and βc) are sampled from a common distribution. In the following code listing, we are going to define probability distributions over regression coefficients and model the data likelihood as the normal distribution with uniform standard deviation. Having specified the graphical model, we can run inference using the No-U-Turn Sampler (NUTS) initialized with ADVI with the help of PyMC library. PyMC is probabilistic programming library in Python which can be downloaded from https://docs.pymc.io/ It is an excellent tool for Bayesian modeling and can be considered from scratch since we are defining the probabilistic graphical model from scratch and then using off-the-shelf tools for sampling the posterior distribution. If this is your first exposure to probabilistic programming languages, I highly recommend going through PyMC online examples to learn more about its capabilities.

Let’s take a look at the following pseudo-code.

[image: Text Description automatically generated with medium confidence]

The code consists of a single main function. In the first section of the code, we are defining the probabilistic model and in the second section we are using PyMC3 library for variational inference. First, we set the hyperpriors for the mean and variance of the regression intercept and slope models. Next, we define the intercept and slope model as the Gaussian RVs and we define the error model as a Uniform RV. Finally, we compute the regression expression and set it as a mean in the data likelihood model. We then proceed with NUTS inference implemented in PyMC.

Listing 6.2 Hierarchical Bayesian Regression

import numpy as np
import pandas as pd

import seaborn as sns
import matplotlib.pyplot as plt

import pymc3 as pm

def main():

 data = pd.read_csv('./data/radon.txt') #A

 county_names = data.county.unique()
 county_idx = data['county_code'].values

 with pm.Model() as hierarchical_model:

 mu_a = pm.Normal('mu_alpha', mu=0., sd=100**2) #B
 sigma_a = pm.Uniform('sigma_alpha', lower=0, upper=100) #B
 mu_b = pm.Normal('mu_beta', mu=0., sd=100**2) #B
 sigma_b = pm.Uniform('sigma_beta', lower=0, upper=100) #B

 a = pm.Normal('alpha', mu=mu_a, sd=sigma_a, shape=len(data.county.unique())) #C
 b = pm.Normal('beta', mu=mu_b, sd=sigma_b, shape=len(data.county.unique())) #D

 eps = pm.Uniform('eps', lower=0, upper=100) #E

 radon_est = a[county_idx] + b[county_idx] * data.floor.values #F

 y_like = pm.Normal('y_like', mu=radon_est, sd=eps, observed=data.log_radon) #G

 with hierarchical_model:
 # Use ADVI for initialization
 mu, sds, elbo = pm.variational.advi(n=100000)
 step = pm.NUTS(scaling=hierarchical_model.dict_to_array(sds)**2, is_cov=True)
 hierarchical_trace = pm.sample(5000, step, start=mu)

 pm.traceplot(hierarchical_trace[500:])
 plt.show()

if __name__ == "__main__":
 main()

From the trace plots in Figure 6.3 we can see convergence in our posterior distributions for αc and βc indicating different intercepts and slopes for different counties.

Figure 6.3 MCMC traceplots for hierarchical Bayesian regression

[image: A picture containing chart Description automatically generated]

In addition, we also recover the posterior distribution of the shared parameters. μa tells us that the group mean of log radon levels is close to 1.5, while μb tells us that the slope is negative with a mean of -0.65 and therefore having no basement decreases radon levels. In the next section, we are going to look at an algorithm suitable for non-linear data.

6.4 KNN Regression

K Nearest Neighbors (KNN) regression is an example of a non-parametric model, in which for a given query data point q, we find its k nearest neighbors in the training set and compute the average response variable y. In this section, we’ll compute the average of KNN target labels for the Iris dataset. The average is taken over the local neighborhood of K points that are closest to our query q:

Equation 6.11 K Nearest Neighbors Regression

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} y_q = \frac{1}{K}\sum_{i\in N_{K}(q, D)} y_i \nonumber \end{equation} \end{document}]

where NK(q,D) denotes the local neighborhood of k nearest neighbors to query q from the training dataset D. To find the local neighborhood NK(q,D), we can compute a distance between the query point q and each of the training dataset points xi ∈ D, sort these distances in ascending order and take the top K data points. The run-time complexity of this approach is O(n log n), where n is the size of the training dataset due to the sort operation. We are now ready to implement a KNN regressor from scratch! In the following listing, KNN regression is computed by averaging the labels of K nearest neighbors based on Euclidean distance.

[image: Text, letter Description automatically generated]

The code consists of knn_search function in which for every K nearest neighbor query Q, we compute the Euclidean distance between the query and all of the data points, sort the results and pick out K lowest distance IDs. We then form KNN region by collecting the labels with KNN IDs. Finally, we compute our result by averaging over KNN labels.

Listing 6.3 K Nearest Neighbors Regression

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.model_selection import train_test_split

np.random.seed(42)

class KNN():

 def __init__(self, K):
 self.K = K

 def euclidean_distance(self, x1, x2):
 dist = 0
 for i in range(len(x1)):
 dist += np.power((x1[i] - x2[i]), 2)
 return np.sqrt(dist)

 def knn_search(self, X_train, y_train, Q):
 y_pred = np.empty(Q.shape[0])

 for i, query in enumerate(Q):
 idx = np.argsort([self.euclidean_distance(query, x) for x in X_train])[:self.K] #A
 knn_labels = y_train[idx] #B
 y_pred[i] = np.mean(knn_labels) #C

 return y_pred

if __name__ == "__main__":

 plt.close('all')

 #iris dataset
 iris = datasets.load_iris()
 X = iris.data[:,:2]
 y = iris.target

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

 K = 4
 knn = KNN(K)
 y_pred = knn.knn_search (X_train, y_train, X_test)

 plt.figure(1)
 plt.scatter(X_train[:,0], X_train[:,1], s = 100, marker = 'x', color = 'r', label = 'data')
 plt.scatter(X_test[:,0], X_test[:,1], s = 100, marker = 'o', color = 'b', label = 'query')
 plt.title('K Nearest Neighbors (K=%d)'% K)
 plt.legend()
 plt.xlabel('X1')
 plt.ylabel('X2')
 plt.grid(True)
 plt.show()

Finding the exact nearest neighbors in high-dimensional space is often computationally intractable, and therefore there exist approximate methods. There are two classes of approximate methods: ones that partition the space into regions such as k-d tree implemented in FLANN (fast library for approximate nearest neighbors) library and hashing based methods such as locality sensitive hashing (LSH). In the next section, we are going to look at a different type of regression over functions.

6.5 Gaussian Process Regression

Gaussian processes (GPs) define a prior over functions that can be updated to a posterior once we have observed data (C. E. Rasmussen et al, “Gaussian Processes for Machine Learning”, The MIT Press, 2006). In a supervised setting, the function gives a mapping between the data points xi and the target value yi: yi = f(xi). Gaussian processes infer a distribution over functions given the data p(f|x,y) and then use it to make predictions given new data. A GP assumes that the function is defined at a finite and arbitrary chosen set of points x1,...,xn, such that p(f(x1),...,f(xn)) is jointly Gaussian with mean μ(x) and covariance Σ(x), where Σ_ij=κ(x_i,x_j) and κ is a positive definite kernel function.One example which can be solved by Gaussian Process regression is predicting the CO2 level based on observed measurements. In our code listing, we will assume a sinusoidal model and a radial basis function kernel.

Consider a simple regression problem:

Equation 6.12 Bayesian Linear Regression Definition

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} f(x) = x^{T}w ~~~~ y = f(x) + \epsilon ~~~~ \epsilon \sim N(0,\sigma_{n}^{2}) \nonumber \end{equation} \end{document}]

Assuming independent and identically distributed noise, we can write down the likelihood function:

Equation 6.13 Likelihood function used in posterior computation

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} p(y|X,w) = \prod_{i=1}^{n}p(y_i|x_i,w) = \prod_{i=1}^{n}\frac{1}{\sqrt{2\pi}\sigma_n}\exp\{-\frac{(y_i - x_{i}^{T}w)^{2}}{2\sigma_{n}^{2}} \} \sim N(Xw, \sigma_{n}^{2}I) \nonumber \end{equation} \end{document}]

In Bayesian framework, we need to specify a prior over the parameters: w∼N(0,Σp). Writing only the terms of the likelihood and the prior which depend on the weights, we get:

Equation 6.14 Posterior distribution over the weights

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{eqnarray} p(w|X,y) &\propto& \exp\{-\frac{1}{2\sigma_{n}^{2}}||y-Xw||^{2}\}\exp\{-\frac{1}{2}w^{T}\Sigma_{p}^{-1}w\} \nonumber\\ &\propto& \exp\{-\frac{1}{2}(w-\bar{w})(\frac{1}{\sigma_{n}^{2}}XX^{T}+\Sigma_{p}^{-1})(w-\bar{w})\} \nonumber\\ &\sim& N(\frac{1}{\sigma_{n}^{2}}A^{-1}Xy, A^{-1}) \nonumber \end{eqnarray} \end{document}]

Where

Thus, we have a closed form posterior distribution over the parameters w. To make predictions using this equation, we need to invert the matrix A of size p x p.

Assuming the observations are noiseless, we want to predict the function outputs y*=f(x*). Consider the following joint GP distribution:

Equation 6.15 Joint GP distribution for prediction

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} \left(\begin{array}{c} f\\ f_{\ast} \end{array} \right) \sim N \bigg(\left(\begin{array}{c} \mu\\ \mu_{\ast} \end{array} \right), \left(\begin{array}{cc} K & K_{\ast}\\ K_{\ast}^{T} & K_{\ast\ast} \end{array} \right) \bigg) \nonumber \end{equation} \end{document}]

where K=κ(X,X), K*=κ(X,X*)and K**=κ(X*,X*). Using standard rules for conditioning Gaussians, the posterior has the following form:

Equation 6.16 Posterior predictive distribution

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{eqnarray} p(f_{\ast}|X_{\ast}, X, f) &\sim& N(f_{\ast}|\mu_{\ast},\Sigma_{\ast}) \nonumber\\ \mu_{\ast} &=& \mu(X_{\ast}) + K_{\ast}^{T}K^{-1}(f-\mu(X)) \nonumber\\ \Sigma_{\ast} &=& K_{\ast\ast} - K_{\ast}^{T}K^{-1}K_{\ast} \nonumber \end{eqnarray} \end{document}]

In the following code listing, we are going to use Radial Basis Function kernel as a measure of similarity defined in Equation 6.17. We are now ready to implement GP regression from scratch!

[image:]

The code consists of kernel_func and compute_posterior functions. The kernel_func returns Radial Basis Function (RBF) kernel which measures similarity between two inputs x and z. In computer_posterior function, we first compute the ingredients required for posterior mean and covariance equations and then compute and return posterior mean and covariance as derived in the text.

Listing 6.4 Gaussian Process Regression

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist

np.random.seed(42)

class GPreg:

 def __init__(self, X_train, y_train, X_test):

 self.L = 1.0
 self.keps = 1e-8

 self.muFn = self.mean_func(X_test)
 self.Kfn = self.kernel_func(X_test, X_test) + 1e-15*np.eye(np.size(X_test))

 self.X_train = X_train
 self.y_train = y_train
 self.X_test = X_test

 def mean_func(self, x):
 muFn = np.zeros(len(x)).reshape(-1,1)
 return muFn

 def kernel_func(self, x, z):
 sq_dist = cdist(x/self.L, z/self.L, 'euclidean')**2
 Kfn = 1.0 * np.exp(-sq_dist/2)
 return Kfn

 def compute_posterior(self):
 K = self.kernel_func(self.X_train, self.X_train)
 Ks = self.kernel_func(self.X_train, self.X_test)
 Kss = self.kernel_func (self.X_test, self.X_test) + self.keps*np.eye(np.size(self.X_test))
 Ki = np.linalg.inv(K) #A

 postMu = self.mean_func (self.X_test) + np.dot(np.transpose(Ks), np.dot (Ki, (self.y_train - self.mean_func(self.X_train))))
 postCov = Kss - np.dot(np.transpose(Ks), np.dot(Ki, Ks))

 self.muFn = postMu
 self.Kfn = postCov

 return None

 def generate_plots(self, X, num_samples=3):
 plt.figure()
 for i in range(num_samples):
 fs = self.gauss_sample(1)
 plt.plot(X, fs, '-k')
 #plt.plot(self.X_train, self.y_train, 'xk')

 mu = self.muFn.ravel()
 S2 = np.diag(self.Kfn)
 plt.fill(np.concatenate([X, X[::-1]]), np.concatenate([mu - 2*np.sqrt(S2), (mu + 2*np.sqrt(S2))[::-1]]), alpha=0.2, fc='b')
 plt.show()

 def gauss_sample(self, n): #B
 A = np.linalg.cholesky(self.Kfn)
 Z = np.random.normal(loc=0, scale=1, size=(len(self.muFn),n))
 S = np.dot(A,Z) + self.muFn #C
 return S

def main():

 # generate noise-less training data
 X_train = np.array([-4, -3, -2, -1, 1])
 X_train = X_train.reshape(-1,1)
 y_train = np.sin(X_train)

 # generate test data
 X_test = np.linspace(-5, 5, 50)
 X_test = X_test.reshape(-1,1)

 gp = GPreg(X_train, y_train, X_test)
 gp.generate_plots(X_test,3) #D
 gp.compute_posterior()
 gp.generate_plots(X_test,3) #E

if __name__ == "__main__":
 main()

Figure 6.4 shows three functions drawn at random from a GP prior (left) and GP posterior (right) after observing five data points in the case of noise-free observations. The shaded area corresponds to two times the standard deviation around the mean (95% confidence region). We can see that the model perfectly interpolates the training data and that the predictive uncertainty increases as we move further away from the observed data.

Figure 6.4 Gaussian Process Regression: samples from the prior (left) and posterior (right)

[image: A picture containing chart Description automatically generated]

Since our algorithm is defined in terms of inner products in the input space, it can be lifted into feature space by replacing the inner products with k(x,x'), this is often referred to as the kernel trick. The kernel measures similarity between objects and it doesn't require pre-processing them into feature vector format. For example, a common kernel function is a radial basis function:

Equation 6.17 Radial Basis Function (RBF) Kernel

[image: Title: IguanaTex Bitmap Display - Description: \documentclass{article} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{equation} k(x,x^{\prime}) = \exp\bigg(-\frac{||x-x^{\prime}||^{2}}{2\sigma^2} \bigg) \nonumber \end{equation} \end{document}]

In the case of a Gaussian kernel, the feature map lives in an infinite dimensional space. In this case, it is clearly infeasible to explicitly represent the feature vectors.

Regression algorithms help us predict continuous quantities. Based on the nature of data (e.g. linear vs non-linear relationship between the variables), we can choose either a linear algorithm such as Bayesian linear regression or a non-linear K nearest neighbors regression. We may benefit from a hierarchical model in which certain features are shared among the population. Also, in the case of predicting functional relationships between variables, Gaussian Process Regression provides the answer to do so. In the following chapter, we are going to look at more advanced supervised learning algorithms.

6.6 Exercises

6.1 Compute run-time and memory complexity of a KNN regressor

6.2 Derive Gaussian Process (GP) update equations based on the rules for conditioning of multivariate Gaussian

random variables.

6.7 Summary

	The goal of a regression algorithm is to learn a mapping from inputs x to outputs y, where y is a continuous quantity.

	In Bayesian linear regression defined by y(x) = wT x +ϵ, we assume that the noise term is a zero-mean Gaussian random variable.

	Hierarchical models enable sharing of features among groups. A hierarchical model assumes that there's a common distribution from which individual parameters are sampled and therefore captures similarities between groups.

	K Nearest Neighbors (KNN) regression is a non-parametric model, in which for a given query data point q, we find its k nearest neighbors in the training set and compute the average response variable y.

	Gaussian processes (GPs) define a prior over functions that can be updated to a posterior once we have observed data. A GP assumes that the function is defined at a finite and arbitrary chosen set of points x1,...,xn, such that p(f(x1),...,f(xn)) is jointly Gaussian with mean μ(x) and covariance Σ(x), where Σ_ij=κ(xi,xj) and κ is a positive definite kernel function.

[image:]

MEAP Edition

Manning Early Access Program

Machine Learning Algorithms in Depth

Version 3

Copyright 2023 Manning Publications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.

These will be cleaned up during production of the book by copyeditors and proofreaders.

https://livebook.manning.com/#!/book/machine-learning-algorithms-in-depth/discussion

For more information on this and other Manning titles go to

manning.com

EPUB/images/03_E13.png
log gj(z;) = log f;(z;) = E_g;[log p()]

EPUB/images/06image004.png
NLL(w,0%) = —logp(yl|z,6) Definition of NLL

1
= —log]__[1 { — exp [— T‘Z(yn —w'z)?]
n=
N) N

= —) log()+ (yn — w')?

— V2ro? ; 202 7"

X
= 502 Z(yn —wT2)? + = log(2n0?)

EPUB/images/03_E12.png
log fj(w;) = 32, Ilizy @:(wi) log p(x) = E_qg, [log p(x)]

EPUB/images/06image003.png
p(ylz, 8) = N(ylw' z, 0?)

EPUB/images/03_E11.png
ean fea appean Hean i agprox

| |
STt ogte) - 3 oo |
El *

= ZZ%(m,)Hm(r,)[lngﬁ(m)—Zlom(mk)] B

@ o i
- th(a)log f(x;) — ZqJ) S [Lat) [Zloqu(mﬂogq](m
@y i) k#j

= Z‘b ;) log fj(x;) *zq] ;) log ¢;(;) + const «— Tesmnapmss ot

L(gj)

EPUB/images/06image002.png

EPUB/images/03_E10.png

EPUB/images/06image001.png
Features

D
y(x) =w"$(@) + €= wad(a) +
=1

Regression Gaussian
Weights Noise

EPUB/images/03_E17.png
) = 5 o0 [y o))

EPUB/images/03_E16.png

EPUB/images/03_E15.png
ELBO = Eq(r)[logp(-r«,y)] *Eqm[logq(m)] =

n
= q(r)[3o uw¢+zlogN T30)] fZE,,m[long(w)}

(s,t)EE i=1

EPUB/images/03_E14.png
ple,y) =p@)plyle) = J] Talas L,)Hp(y,u I explaswnd [Nk o?

(s.)EE (s.0)EE

EPUB/images/03_E19.png
pj = Eq, [:EJ] = QJ(x] =+1) x (+1) + (11(59.7' =-1)x(-1)

EPUB/images/03_E18.png
E_,{logp(z)} = E_g{z; Z w;jxj + log N(x;,0%) + const} =
JEN(D)
= Z J x pj +log N(z;,02) + const
JEN(i)

EPUB/images/05_10a.png
1: class TreeNode(gini, num_samples, num_samples_class, class_label):

2: self.gini = gini //gini cost

3: self. num_samples = num_samples //size of node

num_samples_class //number of pts with label k
s label

cl
self.feature_idx = 0 //idx of feature to split on
self.threshold = 0 //best threshold to split on
self.left = None //left subtree pointer
self.right = None //right subtree pointer

10: function grow_tree(X_train, y_train, depth)
11: ¢l abel = majority_vote(y-train)

12: gini = compute_gini(y-train)

13: node = new TreeNode(gini. class_label)

14: //split recursively until max depth is reached
15: if depth < max_depth:

16: idx, threshold = best_split(X_train, y_train)
17: if idx is not None:

18: indices_left = X_train[:.idx] < threshold

19: node.feature_index = idx

20: node.threshold = threshold

21: node.left = grow_tree(X left, y_left, depth+1)

22: node.right = grow_tree(X_right, y_right, depth+1)

23: return node

EPUB/images/03_05a.png
Lo S

=

Choose approximating distribution family Q(x;#)
Initialize 6
repeat
for a fixed ¢(x|y;0), find
67w = argmaxg I(X;Y)
for a fixed 6, find
q" (x]y; 0) = arg max, (e [(X:Y)

8: until convergence

EPUB/images/05_10.png
© %3

10:
11 7

12: return 7.

13: Testing (for a single test document):
14: for ¢ =1.2.....C' do

15: log plc] = log e

16: for j=1,2,...D do

17: if 2; = 1 then

18: log plc]+ = log ;.

19: else R
20: log plc]+ = log(1 — 6;.)
21: end for

22: end for

23: ¢ = arg max, log p|c|

return c

EPUB/images/03_E02.png
q(z)

Kifalp) = [atwos &)
1

= */'Q(r)[—ilogZW—%z] / [——loghrzr 72%(17;@2]

1 1 5
- [510g27r+ 5(02+1L2)] +[- Elonga - 5]

- [a@)ogpt@) + [at@) oga(e)

1 P 5 5
= —5(1 +logo? — p* —o?)

EPUB/images/03_E01.png
approximating distribution

KL(gll) = Y a(o)log 1

T

Log ratio of approximate to actual

EPUB/images/03_E06.png
log p(x) logzp(w)= loszq(@) =log By [p(x'z)]

q(2)

= Eq(z)[logp‘(jz;)} E(x)[logp(x Z)] q(z)[logq(x)] ~ ELBO
1 —

Energy Term Entropy Term

EPUB/images/03_E05.png
min J(g) = Eyllogg(x)] + Ey[~logp(2)] = —H(q) + Eg[E(2)]

EPUB/images/03_E04.png
J(q) = KL(ql|lp) —log Z > —log Z = —logp(D)

EPUB/images/03_E03.png
Zq()logﬂ—lo Z=
> o) o KL(q|lp) —log Z

J
(a) = KL(q|lp) = Zq log

EPUB/images/03_E09.png

EPUB/images/03_E08.png
[Eq(z)[logp(wilzi)} K L(q(z)|p(z:))

sample likelihood distance between approximating q(z)
and the prior p(z) for sample i

EPUB/images/03_E07.png
ELBO = B, [log ”f]‘f;:)] =By [log %] —KL(q(2)|[p(2]2))+log p()

distance between approximating q(z)
and the posterior p(z}x)

EPUB/images/05_07.png
Max Margin

1]l

Decision Boundary O-x+0)=

EPUB/images/05_06.png

EPUB/images/05_09.png
@) - (@)

@—
6

W3

Naive Bayes (train) Naive Bayes (test)

EPUB/images/05_08.png
logtic ragression

EPUB/images/03_04a.png
class image_denoising
function mean ficld(o, y, w, A, max_iter):
logpl = log N(y;; = +1,02)
logml = log N(y; ; = —1,0%)
logodds = logpl - logm1
pl = sigmoid(logodds) //init
pu© =2xpl-1//iit
for k=1 to max_iter:
(k=1)

Sij = Xjent) Wijh;
10: [lik) = tanh(S;; + 1/2 logodds) x A + (1 — A) x /sz")
1 ELBO[K = ELBO[K| + 1/2(S;; x n{?)
122 a=p® +1/2 logodds
13 qxpl = sigmoid(+2a)
14 qxml = sigmoid(-2a)
15: Hx = —qgxml x log(qxm1) — qxpl x log(qxpl)
16: ELBO[K] = ELBO[K] + SN, (axpli] x logpli] + qxml[i] x logm1[i]) + SN (Hxli])
17: end for
18: return /1(")

LA I

EPUB/images/01_01.png
ML Algorithm

trai

Yi
ground

truth labels =
Training

0

parameters

test data
Ti
[4

learned
parameters

ML Algorithm

Testing

predicted
label

EPUB/images/04_02.png
C(2,2)

e
N
c(1,0)

C(2,1)

€(2,0)

c(1,1)

EPUB/images/04_01.png
Parent: [i/2]

Vertex: ¢

Left child: 2i

EPUB/images/05_E48.png
right
Gi

EPUB/images/05_E47.png

EPUB/images/05_E46.png
2 3 2 3 22 12
G=ZGleft+ =Grignt == x0+-x(1-- —=)=027
51ft+5 ght = 5 X +5><(3 3)

EPUB/images/05_E45.png

EPUB/images/05_E44.png
! i = k]
=57 > v
™= o2

EPUB/images/05_E43.png

EPUB/images/05_E42.png
Jhtt=arg min | mincost({z:,y; : zi; < t}) + cost({zi, i : 7i; >)

EPUB/images/05_E41.png
log p(y = 7 E = = 0] log{1 —
clz, D) log . + + [4
, 3
¢ : 1(1[11] 1]log§]C 1z, 0] I
k) g(l 0))
je

EPUB/images/Manning_copyright.png

EPUB/images/05_E40.png
ply = clzin, ... zi,p, D) o< p(y=c|D)p(ziz,....,zi,ply = ¢, D)

D
= ply=cD) [] p(zily = ¢, D)
=1

EPUB/images/04_E01.png
h = logn!=logn(n—1)(n—2)x---x1=logn+log(n —1)+---+logl
< logn+logn+---+logn =nlogn = O(nlogn)

EPUB/images/04_E03.png
Sam(als)Srsp(r, s'|s,a)[r + yve(s')]
Ex[Ry + v0r(Si41)|5: =]

EPUB/images/04_E02.png
C(n,n) =1
C(n—1,k—1)+C(n—1,k)

Base case : C(n,0)
Recursion : C(n, k)

EPUB/images/04_E04.png
m(s) = argmax q(s,a)
a

EPUB/images/05_03.png
Actual

FP

TN

o,
=

Z.
=3

—

Il
>

o

>

pojIpaIg

EPUB/images/05_02.png
o)

EPUB/images/05_05.png
True Negatives (TN) False Positives (FP)

-12

-10

Actual

0

o
False Negatives (FN) Predicted True Positives (TP)

EPUB/images/05_04.png
TPR

—
UOTSTOIJ

Recall

FPR

EPUB/images/05_01.png
loss function
o = =N
o o o o

=3
15}

4 5
model class H

—— train
---- test

EPUB/images/05_E39.png
p(r|D) = Dir(Ny + ay,..., Ne + ac)
p(05e|D) = Beta([N. — Njc] + Bo, Nje + b1)

EPUB/images/05_E38.png
db;.

logp(D|0)

P>

d
o5,

7 [wijlog(05e) + (1 — i) log(L
“iyi=c

Tij 1- 1= Ty
7:[@ 1-6] 0

- 0]‘¢)} =0

EPUB/images/05_E37.png

EPUB/images/05_E36.png
d d
LN =

logp(D|0) — A= Ncl —-A=0
dm, Te

EPUB/images/05_E35.png
L(0,)) = log p(D|0) + A(1 = > mc)

c

EPUB/images/05_E34.png
log p(D|6) = log Hp i, yilf) = ilogp(-m»ihlf’) Zt\ 10gn+zz > logp(xi;lose)
=

J=1e=li:

EPUB/images/05_E33.png
C

D D C
p(zi,yil0) = p(yilm) Hiﬂ(ﬂm\yi.@) = H mylve=el H HP(-%J‘W,«)W':(]
j=1 ol eml

e=1

EPUB/images/05_E32.png
n D
plxly =c.0) H Hp(ru\u =¢,0jc) H H Bernoulli(6;.)

1j=1

EPUB/images/05_E31.png
p(ily =
c,0) pru\y:ce)
J=1 *

EPUB/images/05_E30.png
main Loss(f) = muin [NLL(6) + A076]

g = XT(u-y)+2\0

EPUB/images/05_E29.png
4 o IR T, N 0T
b logp(D|f) = ;[glde logo (0" x;) + (1 y,)dg log(1 — (0 .1,1))]

o0 zi) (1~ o(67x:))

0T)(1 — o (6T,
- Zl [.uld(T {)f((gTTa)(T))x,) T P (—)]
= Z [yiwi(1 = 0(6" 1) — (1 - gi)wio (0" y)

=

n n

= S o0 w)ai= [y —pilwi=—-X"(n-y)

i=1 i=1

EPUB/images/05_E28.png
e = (r0+ k)"

EPUB/images/05_E27.png

EPUB/images/05_E26.png
Or1 = Ok — Nigr

EPUB/images/05_E25.png
moin Loss(0) = moinNLL(G) = max log p(D|6)

EPUB/images/05_E24.png
logp(Dl9) = 1og1'[p(z1,y,vw)=Zlogp<w,ﬁy,w>

= ZlogBer ylo(87z)) = Zlug [(7 Oy (1 - (F/T.T,,))I""]
i=1
n

Z [yl log (67 ;) + (1 — y;) log(1 — U(QT],‘,))}

i=1

EPUB/images/05_E23.png
p(xi,vil0) = p(yilzi, 0)p(x:]0) = Ber(y|o (87 x))p(x;]0)

EPUB/images/05_E22.png
p(Cilx) = ply|w,0) = Ber(ylo(8"x))

EPUB/images/05_E21.png
P(Cul) p(|Ch)p(Cr) _ exp(ax)

T X pEICHH(C) T T, explar)

EPUB/images/05_E20.png
0= 1 PEICHP(C)
p(x|C2)p(Ca)

EPUB/images/05_07b.png
1: class sgdlr

2: function Ir_objective(d, X, y, \)

1; = sigmoid (87 X;)

cost = — S [yilog i + (1 — yi) log(1 — p13)] + A6T6
5: grad = X7 (10— y) + 2\« compute gradient

6: return cost, grad

7: function fit(X, y):

8 mi=(t+1i)7" <« Setlearning rate

9: fori=1, 2, ... nun_iter

10: cost, grad = Ir_objective(d, X, y,)

11: 0 =6 —n; grad « Update theta
12: end for

13: return ¢

14: function predict(X, 6):

15: § = sigmoid (87 X) < Make a prediction
16: return y

EPUB/images/05_07a.png
class SupportVectorMachine
function fit(X, y):
Pij = yiy; K (i, xj)
q=-1

Gii=—1

Formulate SVM

:h=0 Quadratic Program

A=y

b=0

: sol = cvxopt.solvers.qp(P,q.G.h,A,b) «—— solve vith cvxoPT
: alphas
: S = alphas > le-11 <« Find support vectors

sol[x]

2 0= i < Find the normal vector
: 0 =ys — Zmes WY
: return 6,6,

15:
16:
17:

s < Find the intercept

function predict(X, 6. 6)):
i = sign(07 X + 6p) < Make a prediction
return gy

EPUB/images/03_01.png
KL(qllp)

0
mean, /i

EPUB/images/03_03.png
L % o e

True posterior p(x1, X2, x3) Structured approximation Fully-factorized approximation
q(x1) q(x2) q(x3)

EPUB/images/03_02.png

EPUB/images/01_E07.png
qu P 10g o) KL z)log
Z q(x) (q”p) EQ() O, I’E ;
3

EPUB/images/01_E06.png
F~Yu) = —In(1 —u)/x

EPUB/images/01_E05.png
p(z|A) = e 2 >0 F(z[A) = [p(a[\)dz =1—e,2>0

EPUB/images/01_E04.png
DNN(z;0) = fr(fo—1--- (fi(z;01))---))

EPUB/images/05_E19.png
p(Cilz) =

1 1

1+

p(IC2)p(Ca) _
pagney Ltexp(-a

)

EPUB/images/01_E03.png
likelihood prior

p(0]z) = p(z|)p(®) _ p(]0)p(0) ~ p(2]0)p(6)

p) [p(=l0)p(6)dd

posterior evidence partition function Z

EPUB/images/05_E18.png
p(z|C1)p(C1)
p(|C1)p(C1) + p(z|C2)p(C2)

p(Cilz) =

EPUB/images/01_E02.png
L(0) =+ Salyi — fzi0))

EPUB/images/05_E17.png
1
min —a’Pa —1Ta subject to —a; <0, yTa=0
o

EPUB/images/01_E01.png
L) = + 3212y Uy # f(x3;6)]

EPUB/images/05_E16.png
n
T .
m{?xZal — 7ry Pa subject to «; >0, Z%‘?ﬁ =0
i=1

EPUB/images/05_E15.png
“’ﬂ

Pij = vy, [z; x j]

EPUB/images/05_E14.png
1
min ixTPa: +q%z subject to Gz <h, Az =10

EPUB/images/05_E13.png
a2
K (5, 2;) = exp (_ M)

202

EPUB/images/05_E12.png
n
] subject to «; >0, Zaly, =0

i=1

<

EPUB/images/05_E11.png
VoL

P

(07 00; 0‘)

(8,005)

EPUB/images/05_E10.png
1 Y s _
max L(0, 0p; &) = =||0]|* — § a;i[yi(0 - @i+ 60) — 1]
a>0 2 ~

EPUB/images/05_E09.png
1 p
(primal) min §H0H2 subject to yi(0 -z +6p) > 1, i=1,..,n

EPUB/images/05_E08.png
- yi (0 - @ + 6o)
! 1161

EPUB/images/05_E07.png
A 1«
L, (0,6p) = §H0H2 + - ZLoss(yi(Q Sx + 90))

i=1

EPUB/images/05_E06.png
o+ = (k) _ Nk VeLossp (y; (6 - z; + 6p))

EPUB/images/05_E05.png
VH(I_?/i(e‘fl?i+90)) = —Yi%;
Veo(l—yf(9'$i+€o)> = -y

EPUB/images/05_E04.png
Lossp(z) = Zmax{l 2,0} = Zmax{l — (0 - ; + 0y),0}

EPUB/images/05_E03.png
ity # h(z;0%) then
OUHD) oy
6[()k:+1) _ 65f”+y,

EPUB/images/05_E02.png

EPUB/images/05_E01.png
) Gua +00) = sign(@-z o) — 4 F1 0w +0>0
h(x;0) = sign(0rz1 + -+ Oz +0o) = sign(0-x+0p) = 1 if0-246)<0

EPUB/cover.jpg

EPUB/images/02_08a.png
1: Init xy at random

: for k=0.1.2,... do ~— Sample from the
: , , proposal distribution
3: propose a new state z’ ~ g(z

4: compute metropolis-hastings ratio:

5. r(2'|z) = min [1. %))%j—,%))]
/

a!, with prob. r(2’|z) “——— Accept the sample

S

6: set Ty = . ,
2y, with prob. 1 —r(a/|z) <—— Reject the sample
7: end for

EPUB/images/02_E21.png
q('|z) = N(2'|z, %)

EPUB/images/02_E20.png
= N(@[z,%)

g(a’|2)

EPUB/images/02_E27.png
(z)

'31

- [sew dr—/f = 7 1@ B e
AL s)
~ 7§§:: (s), where s ~ g(z) and w(s) = %

EPUB/images/02_E26.png

EPUB/images/02_E29.png
E[f ()] ~

EPUB/images/02_E28.png

EPUB/images/02_E23.png
Bl = [1@ gt ~ 3 (o) f (o) whete a: ~ g(s)
q(x) N~

EPUB/images/05_04a.png
: class perceptron
function fit(X, y):
s k=1

4: for epoch
5: for i=

.num_epochs

N

6: if y;(0 -z +6p) <0
T n=1/(k+1) st .
s hr =1 pdate leaming rate
9: 0 =0+nyi
B =00 +1 y; Update theta
end if
end for
: end for

: return 6,0y

5: function predict(X):
5: g = sign(f - X +)

: return g

EPUB/images/02_E22.png
E[f(z)] = /p(x)f(m)df

EPUB/images/02_E25.png
q(z) ~ N(z;0.8,1.5)

EPUB/images/02_E24.png
p(a) ~ 2D exp{ -4

}xz()

EPUB/images/02_09a.png
class importance_sampler
function sample(N):
fori=1toN:
; ~ q(x) = N(a;p,07)
w(w;) = p(xi)/q(xi)
end for
E[f(@)] = % T, w@i)f (i)
return w(z), E[f(x)]

‘Sample from the proposal

Compute importance weights

EPUB/images/02_E30.png

EPUB/images/02_E32.png

EPUB/images/02_E31.png
a = Elw.(X;)a(X;)] = bla) = Ela] —a=0

EPUB/images/02_E34.png
VAR(a 2
lim P(la—al >¢€) < 2((1) =L2=()
n-ro0 € ne

EPUB/images/03_05.png

EPUB/images/02_E33.png
lim P(|a, —a|l >¢€) =0

n—00

EPUB/images/03_04.png

EPUB/images/02_E36.png
O3 Wv)z n

Teff = S w? 1+ VAR(wi)

EPUB/images/02_E35.png
o %ZLI walz:) where VAR(a(z;)) = o®
= VAR(2Zisl o
Neff W im W

EPUB/images/02_E09.png

EPUB/images/02_E08.png
b b N
1 :/a f(x)dz :/m w(z)p(z)de = Eylw(z)] = %;w x;), where z; ~ p(z)

EPUB/images/02_06a.png
1: function rand_walk(num_step, num_iter, moves):
2 X, Y, lattice = 0, 0, 0

3: weight = 1

4: XX = num.ste,
5 yy = numstep + 1 4 Y < Middieof the y-axis
lattice[xx, yy] = 1 <« Init grid position

¢ for i = 1 to num_step:

8 up = lattice[xx, yy+1]

9: down = lattice[xx, yy-1]

10: left = lattice[xx-1, yy]

P4+ 14X < Middeof e xaxs

neighbors

if sum(ne; :
break «—— self-loop

end if

weight = weight x sum(neighbors) < Compute importance weights

ion ~ Cat(neighbors /sum(neighbors)) «—— sample a move direction

X = X + moves|[direction]

Y =Y + moves[direction]

//update grid coordinates

21: xx = numstep + 1 + X

vy = numstep + 1 + Y

: lattice[xx, yy] = 1

: end for

return lattice

EPUB/images/02_E05.png
0D DIo — N N -1 — Ny -
p(0|D) x p(D|0)p(6) = O (1-0)Nop =1 (1-9)*~" = oV e~ (1-9) N4~ o Beta(6| Ny +a, No+b)

EPUB/images/02_E04.png
Beta(fa, b) oc 8371 (1 — #)b~!

EPUB/images/02_E07.png
S
B = [50wy 5 3 5o, where ye ~ p(0)
v s=1

EPUB/images/02_E06.png

EPUB/images/02_E01.png
Sum of K Gaussians Mixture Proportions

p(z]0) = ZN(z Wk O2) Tk

Gaussian Mixture Gaussian RV

EPUB/images/02_E03.png
N
g)i= =

g)No

EPUB/images/02_E02.png
pe(z]0) = 0%(1 - 0)12, 2z € {0,1}

EPUB/images/02_E19.png
p(a’)g(xla’)

r(a’|z)

r(@'|z)p(z)q(a’|z)

min {

p(x)q(a’|x)

p(a")q(z|2")

]

EPUB/images/02_07a.png
1: class gibbs_gauss

»

AN

10:
11:
12:
13:
14:
15:
16:
17
18:
19:

function gauss_conditional(mu, Sigma, setA, x):

: setU = set(range(len(mu))) Universal set

setB = setU \ setA
2B, pa, i = x[setB], mu[setA], mu[setB]
pap = A+ SapSpp(es — 1iB)
Yap =Saa — LapSpEEna
return iy, X B
function sample(mu, Sigma, xinit, num_samples):
X = xinit
dim = len(mu)
for s = 1 to num_samples:
for d = 1 to dim:

paBs Xap = gauss_conditional(mu, Sigma, set(d), x)

2[d] ~ N(x;pa B, XaB) Gibbs samples
end for
samples[s,:] = x
end for

return samples

EPUB/images/02_E10.png
I= 1a? + 42 < r?) da dy = By y[w(z,y)]
v

EPUB/images/01_06.png
Pl

pleld)

I

EPUB/images/02_E16.png
14

na
B
Yaa Zan
Ypa XBB

EPUB/images/01_07.png
0.20
0.15
0.10
0.05
0.00

EPUB/images/02_E15.png
1 1 "

1
N@Wsz):WeXD *i(l*ﬂ) T (@ —p)

EPUB/images/02_E18.png
p(a’)q(z|z") = p(x)q(a’|z)

EPUB/images/02_E17.png
p(zalrs)
HA|B
SAB

N(zalpap: XaB)
pa+SasSpp(e — 1)
Yaa—ZanXpsTea

EPUB/images/01_02.png
-100
-150

200 300

100

100

~200

EPUB/images/02_E12.png

EPUB/images/01_03.png
word_1
word_2

word_n

word

-

embed
ding

ConviD

Global

soft-

Max-
Pooling

MLP

max

EPUB/images/02_E11.png
w(z,y) = (bp—ay)(by—ay)1[z7+y? < %] = (2r)(2r)1[2%+y” < r?] = 4?1 [2%+y” < r?)

EPUB/images/01_04.png
»(6)

Bayes

p(Ola1)

Bayes

p(0lz1,22)

p(0lay, @2, ...

Rule

Rule

=

=

2 Tn)

EPUB/images/02_E14.png
pla a5, z5)

p(x2]z
p(z3lz

k+1
1

k+1
1

k
,T3)

k+1
s Lo

)

EPUB/images/01_05.png

EPUB/images/02_E13.png
o 14, 0 k=il + - jl =1
P(Xi = (kD) Xioy = (i,5)) = 0, otherwise

EPUB/images/02_10.png
125

100

o075

050

025

000

025

Importance Sampling Components

IS Estimate of E[f(x)]

— target pot plx)
— proposal pf abx)
— paitx) ntegrand

Elf0) estimate.

105

100

035

050

oss

— 5 Estimate of Eft0]
— Ground Truth

10

o

o

100 100 10¢
Rerations

EPUB/images/06image025.png
k(x,2') = exp

||z — =z
202

)

EPUB/images/06image024.png

EPUB/images/06image023.png
class GPreg:

function kernel_func(x, z)

Kfn = (3XI){72—‘];§||:IT —2||?}
return Kfn

function compute_posterior(X)

: K = kernel_func(X_train, X_train)

Ks = kernel_func(X_train, X_test)
Kss = kernel_func(X_test, X_test)
l“pasl = II‘(XLesl) + I(qTI(_l(f - H(Xlrain))

H Epost = I(ss - K’ZK'71K’5
: return fipost, Lpost

Radial Basis Function Kernel

Gaussian Process
Posterior

EPUB/images/06image022.png
plfXu, X,)~ N, 2)
e = (X)) + KTK N — (X))
Y, = K.,.—-KTK'K,

EPUB/images/06image021.png

EPUB/images/06image020.png
p(w|X,y) o exp{— 7lly = Xwl|*}exp{—3 wTE lw}

x exp{—%(uz)(—XXT+E Y(w — @)}

77

1 -
U—%A 1Xy,A)

~ N(

EPUB/images/02_03a.png
AN A

® 3

function pi-est(R, N):
fori=1toN:
X[i] ~ Unif(—R, R)
Y[i| ~ Unif(—R, R)
IN[i] = X[i]* + Y[i]* < R?
S[i] = (2R) x (2R) x IN[i]

Uniform RVs

9: T = I/Rz < PiEstimate
10:
11:

frse = GS/\/ N «—— Pistandard Deviation
return 7 + 7,

EPUB/images/06image019.png

EPUB/images/06image018.png

EPUB/images/06image017.png
1: class KNN:

2: function knn search(K, X, y, Q)

3: for query in Q:

4: idx = argsort(euclidean_dist(query, X))[:K]
5. kun labels = [yli] for i in idx]

6: y-pred = mean(knn_labels)

7: end for

8: return y_pred

KNN IDs
KNN labels

KNN regression

EPUB/images/06image016.png
Ye = —~

i€EN{(q,D)

Yi

EPUB/images/02_07.png
sauare distance of the random walk

random walk with no overlaps.

.
ceeese

44

s

s0

ED

¢
H
i
4

EPUB/images/02_08.png
Gibbs Sampling of Multivariate Gaussian

® Gibbs Samples °
® Ground Truth Samples =

EPUB/images/02_09.png
Metropolis-Hastings Sampling of 2D Gaussian Mixture

@ MH samples

EPUB/images/02_03.png
Transition probability

0.2 A=

Web page

02 04 0 04

04 02 04 0

04 0 02 04
0 08 0 02

Transition Matrix

EPUB/images/02_04.png
Rejected samples

Accepted Monte Carlo
samples inside the circle

EPUB/images/02_05.png
Up-state transition
probability p

Down-state transition
probability 1-p

EPUB/images/02_06.png
20

18

16

12

10

o8

o6

Binomial-Tree Stock Simulation

Binomial-Tree Stock Simulation

X month horizon
1 year horizon

3500

=1 month horizon
1 year horizon

I3 W0 w0 60 w00
time step, day

E3

1o 12 18 16 18 7o

EPUB/images/02_01.png
sepal_length
5~

«

petal_length sepal_widih
i ROE e m W oa

petal_width

A

Fad
Lo .
. species
. . + selosa
e = versicolor
o + viginica

50 75 2 4 25 50 750 2
sepal_length sepal_width petal_length petal_width

EPUB/images/02_02.png
P (]0) Probability of heads
Probability of tails

1-0

EPUB/images/03_E20.png
exp{m; + L]}
exp{m; + L } + exp{—m; + L; }
1 B 1
T+exp{-2m; +L; — L} 1+exp{—2a;}

gi(zi =+41) =

= o(2a;)

EPUB/images/03_E24.png
ELBO 2% term By definition.of expectation

A R , | ‘

n

BrolloeNG@io?] =Y [¥) og Ve -

i=1 “z;e{—1,+1}

Z [U(Zai)log N(z; = +1,0%) + 0(—2a;) log N (z; = —1,02)]

=1 =y)

After expanding the summation

EPUB/images/06image015.png
mu_alpha

mu_alpha

|

anpen ajdures

(

w2 o g
? 3 3 8
fouanbaiy

000

1000

140 145 150 155 160 165

135

g
M,
mm

733
e s

£
g

< o~ o
fouanbas

2000

2000

1000

08 07 06 05 04

09

=
m“
®

anjen ajdures.
2
5
®
v & o
fouanbay

2000

2000

1000

05 10 15 20 25 20

00

beta

M

anpen aidwes.

]

2000

g

sigma_alpha

sigma_alpha

|

3 3 8

anjen ajdures

!

w o v o
? 3 3 8

fouanbaiy

0s

2000

2000

1000

025 030 03 040 045 050

020

]

sigma_beta

beta

]

sigma,

M

g 3 3

anjen ajdures

!

o & o oo
fouanbaig

200

1000

02 03 04 0s 06 o7

01

|

5 5

anjen ajdures.

A

2000

1000

0s8 07 072 074 076 078

066

EPUB/images/03_E23.png
e — ‘ | .
Y bl =3Y ¥ (XY atwns) -

(s,t)eE i=1jEN(i) “mi€{-1,41} z;€{~1,+1}

,Z) (q, . +1)JE[1,]7q,(;t,:—l)JE[I]]) :%2 S ElwJEl)
i=1 jEN(i)) i=1jEN (i)
J l 7 .—'—A

At substtuion of vales or i a0 By cetntion of expeciaton

EPUB/images/06image014.png
1: function main(X, y):
2: with pyme3.Model() as hierarchical . model:
3: Jta ~ N(0,100%)

4: 04 ~ Unif[0, 100] ")
5y~ N(0,1002) ypetpriors
6: oy, ~ Unif[0, 100]
f a~ N(jta,02) Intercept model
: b~ N (. 0f) slope model
9: €~ Ullif[(). 1()[)] error model
10: Yeaxp = a + bx X expected value
11 Y ~ N (X Yexps) data likelihood
12: with hierarchical model:
13: mu, sds, elbo = pyme3.variational.advi(n = 100000)
14: step = pyme3. NUTS(scaling = sds?, is_cov = True) PYMO inference
15: trace = pyme3.sample(5000, step, start = mu)

16: return trace

EPUB/images/02_05a.png
ey

=

function binomial_tree(p, o, So, N, T, step):
u=exp (oy/T/n) <« vopree

d=1/u < Down Price

p= % + %(5) ’1'/n <« Up State Transition Probability
up_times = Binomial(T/step, p, N)
down_times = T'/step - up_times

ST - S() X 1 Lup_h'mes X ¢ own_times

return Sy

EPUB/images/03_E22.png
(k1)
X 1

EPUB/images/06image013.png
Qe N(M(NUZ)

ﬁc ~ N(M/‘h U?—})
radon, = a.+ 8. x floor; . + €,

EPUB/images/03_E21.png
wi = Eq,[z;] = 0(2a;) — 0(—2a;) = tanh(a;)

EPUB/images/06image012.png
\a@

@ﬂW@
@
@@

G20

EPUB/images/03_E28.png
> p()p(ely) logp(aly) = Y p(x,y)log q(xly)

z,y xr,y

EPUB/images/06image011.png
Loss

0.75

070

0.65

0.60

055

0.50

0.45

0.40

scaled house price

25

2.0

15

10

0.5

0.0

-1.0

0.0

25

5.0

75

100
Epoch

125

15.0

17.5

~0.0100 —0.0075 —0.0050 —0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

scaled avg num of rooms

EPUB/images/03_E27.png
> plaly) logplaly) - Zp aly) log q(xly) > 0

=

EPUB/images/06image010.png
1: class ridge_reg:

2: function fit(X, y)

3: for i = 1,2, ..., num_iter

4: j=wlX

5 grad = —(y —)T X + \w

6: w=w—1; grad Update regression
7: end for e

8: return w

9: function predict(w, X)
10: ’!7 = TUTX Make a prediction
11: return y

EPUB/images/03_E26.png
Dxr(p(zly)lle(zly)) > 0

EPUB/images/03_E25.png
I(X;Y) = H(X) — H(X|Y) = —Ey(a) [log p(x)] — By(ay) [log p(z|y)]

EPUB/images/03_E29.png
I(X;Y) = H(X) - HX|Y) > H(X) = By [loga(zly)] = [(X;Y)

EPUB/images/06image009.png
Wridge = (X7 X + M) X1y

EPUB/images/06image008.png
min,, NLL(w, 0%) + \||wl|3

EPUB/images/06image007.png

EPUB/images/06image006.png
W= (X"X)"" Xy

EPUB/images/06image005.png
2X' Xw —
w—2X"y =0

