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Chapter 1. Diffusion Models


A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the third chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.



In late 2020 a little-known class of models called diffusion models
began causing a stir in the machine-learning world. Researchers figured
out how to use these models to generate synthetic images at higher quality
than any produced by previous techniques. A flurry of papers followed,
proposing improvements and modifications that pushed the quality up even
further. By late 2021 there were models like GLIDE that showcased incredible
results on text-to-image tasks, and a few months later, these models had
entered the mainstream with tools like DALL-E 2 and Stable Diffusion.
These models made it easy for anyone to generate images just by typing
in a text description of what they wanted to see.

In this chapter, we’re going to dig into the details of how these models
work. We’ll outline the key insights that make them so powerful,
generate images with existing models to get a feel for how they work,
and then train our own models to deepen this understanding further. The field
is still rapidly evolving, but the topics covered here should give you a
solid foundation to build on. Chapter 5 will explore more advanced techniques through the lens of a model called Stable Diffusion, and chapter 6 will explore applications of these techniques beyond simple image generation.


The Key Insight: Iterative Refinement

So what is it that makes diffusion models so powerful? Previous
techniques, such as VAEs or GANs, generate their final output via a
single forward pass of the model. This means the model must get
everything right on the first try. If it makes a mistake, it can’t go
back and fix it. Diffusion models, on the other hand, generate their
output by iterating over many steps. This ‘iterative refinement’ allows
the model to correct mistakes made in previous steps and gradually
improve the output. To illustrate this, let’s look at an example of a
diffusion model in action.

We can load a pre-trained model using the Hugging Face diffusers
library. The pipeline can be used to create images directly, but this
doesn’t show us what is going on under the hood:

# Load the pipeline
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
image_pipe.to(device);

# Sample an image
image_pipe().images[0]

[image: image]

We can re-create the sampling process step by step to get a better look
at what is happening as the model generates images. We initialize our
sample x with random noise and then run it through the model for 30
steps. On the right, you can see the model’s prediction for what the
final image will look like at specific steps - note that the initial
predictions are not particularly good! Instead of jumping right to that
final predicted image, we only modify x by a small amount in the
direction of the prediction (shown on the left). We then feed this new,
slightly better x through the model again for the next step, hopefully
resulting in a slightly improved prediction, which can be used to update
x a little more, and so on. With enough steps, the model can produce
some impressively realistic images.

# The random starting point for a batch of 4 images
x = torch.randn(4, 3, 256, 256).to(device)

# Set the number of timesteps lower
image_pipe.scheduler.set_timesteps(num_inference_steps=30)

# Loop through the sampling timesteps
for i, t in enumerate(image_pipe.scheduler.timesteps):

    # Get the prediction given the current sample x and the timestep t
    with torch.no_grad():
        noise_pred = image_pipe.unet(x, t)["sample"]

    # Calculate what the updated sample should look like with the scheduler
    scheduler_output = image_pipe.scheduler.step(noise_pred, t, x)

    # Update x
    x = scheduler_output.prev_sample

    # Occasionally display both x and the predicted denoised images
    if i % 10 == 0 or i == len(image_pipe.scheduler.timesteps) - 1:
        fig, axs = plt.subplots(1, 2, figsize=(12, 5))

        grid = torchvision.utils.make_grid(x, nrow=4).permute(1, 2, 0)
        axs[0].imshow(grid.cpu().clip(-1, 1) * 0.5 + 0.5)
        axs[0].set_title(f"Current x (step {i})")

        pred_x0 = scheduler_output.pred_original_sample
        grid = torchvision.utils.make_grid(pred_x0, nrow=4).permute(1, 2, 0)
        axs[1].imshow(grid.cpu().clip(-1, 1) * 0.5 + 0.5)
        axs[1].set_title(f"Predicted denoised images (step {i})")
        plt.show()

[image: image]
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Note

Don’t worry if that code looks a bit intimidating - we’ll
explain how this all works over the course of this chapter. For now,
just focus on the results.



This core idea of learning how to refine a ‘corrupted’ input gradually
can be applied to a wide range of tasks. In this chapter, we’ll focus on
unconditional image generation - that is, generating images that resemble the training data, with no additional controls over what these generated samples look like. Diffusion models have also been
applied to audio, video, text and more. And while most implementations
use some variant of the ‘denoising’ approach that we’ll cover here, new
approaches utilizing different types of ‘corruption’ together with
iterative refinement are emerging that may move the field beyond the
current focus on denoising diffusion specifically. Exciting times!




Training a Diffusion Model

In this section, we’re going to train a diffusion model from scratch to
gain a better understanding of how they work. We’ll start by using
components from the Hugging Face diffusers library. As the chapter
progresses, we’ll gradually demystify how each component works. Training
a diffusion model is relatively straightforward compared to other types
of generative models. We repeatedly:


	
Load in some images from the training data.



	
Add noise in different amounts. Remember, we want the model to do a
good job estimating how to ‘fix’ (denoise) both extremely noisy images
and images that are close to perfect.



	
Feed the noisy versions of the inputs into the model.



	
Evaluate how well the model does at denoising these inputs.



	
Use this information to update the model weights.





To generate new images with a trained model, we begin with a completely
random input and repeatedly feed it through the model, updating the
input on each iteration by a small amount based on the model prediction.
As we’ll see, there are a number of sampling methods that try to
streamline this process so that we can generate good images with as few
steps as possible.


The Data

For this example, we’ll use a dataset of images from the Hugging Face
Hub- specifically,
this
collection of 1000 butterfly pictures. Later on, in the projects
section, you will see how to use your own data.

dataset = load_dataset("huggan/smithsonian_butterflies_subset", split="train")

We need to do some preparation before this data can be used to train a
model. Images are typically represented as a grid of ‘pixels’, with
color values between 0 and 255 for each of the three color channels
(Red, Green and Blue). To process these and make them ready for
training, we: - Resize them to a fixed size - (Optional) Add some
augmentation by randomly flipping them horizontally, effectively
doubling the size of our dataset - Convert them to a PyTorch tensor
(which represents the color values as floats between 0 and 1) -
Normalize them to have a mean of 0, with values between -1 and 1

We can do all of this with torchvision.transforms:

image_size = 64

# Define data augmentations
preprocess = transforms.Compose(
    [
        transforms.Resize((image_size, image_size)),  # Resize
        transforms.RandomHorizontalFlip(),  # Randomly flip (data augmentation)
        transforms.ToTensor(),  # Convert to tensor (0, 1)
        transforms.Normalize([0.5], [0.5]),  # Map to (-1, 1)
    ]
)

Next, we need to create a dataloader to load the data in batches with
these transforms applied:

batch_size = 32

def transform(examples):
    images = [preprocess(image.convert("RGB")) for image in examples["image"]]
    return {"images": images}


dataset.set_transform(transform)

train_dataloader = torch.utils.data.DataLoader(
    dataset, batch_size=batch_size, shuffle=True
)

We can check that this worked by loading a single batch and inspecting
the images.

batch = next(iter(train_dataloader))
print('Shape:', batch['images'].shape,
      '\nBounds:', batch['images'].min().item(), 'to', batch['images'].max().item())
show_images(batch['images'][:8]*0.5 + 0.5) # NB: we map back to (0, 1) for display

Shape: torch.Size([32, 3, 64, 64])
Bounds: -0.9921568632125854 to 1.0

[image: image]




Adding Noise

How do we gradually corrupt our data? The most common approach is to add
noise to the images. The amount of noise we add is controlled by a noise
schedule. Different papers and approaches tackle this in different ways,
which we’ll explore later in the chapter. For now, let’s see one common approach
in action based on the paper “Denoising diffusion probabilistic models” by Ho et al. In the diffusers
library, adding noise is handled by something called a scheduler, which
takes in a batch of images and a list of ‘timesteps’ and determines how
to create the noisy versions of those images:

scheduler = DDPMScheduler(num_train_timesteps=1000, beta_start=0.001, beta_end=0.02)
timesteps = torch.linspace(0, 999, 8).long()

x = batch['images'][:8]
noise = torch.rand_like(x)
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x*0.5 + 0.5).clip(0, 1))

[image: image]

During training, we’ll pick the timesteps at random. The scheduler takes
some parameters (beta_start and beta_end) which it uses to determine how
much noise should be present for a given timestep. We will cover
schedulers in more detail in section X.




The UNet

UNet is a convolutional neural network invented for tasks such as image
segmentation, where the desired output has the same spatial extent as
the input. It consists of a series of ‘downsampling’ layers that reduce
the spatial size of the input, followed by a series of ‘upsampling’
layers that increase the spatial extent of the input again. The
downsampling layers are also typically followed by a ‘skip connection’
that connects the downsampling layer’s output to the upsampling layer’s
input. This allows the upsampling layers to ‘see’ the higher-resolution
representations from earlier in the network, which is useful for tasks
with image-like outputs where this high-resolution information is
especially useful.

The UNet architecture used in the diffusers library is more advanced
than the original UNet proposed in 2015 by Ronneberger et al, with
additions like attention and residual blocks. We’ll take a closer look
later, but the key feature here is that it can take in an input (the
noisy image) and produce a prediction that is the same shape (the
predicted noise). For diffusion models, the UNet typically also takes in
the timestep as additional conditioning, which again we will explore in
the UNet deep dive section.

Here’s how we might create a UNet and feed our batch of noisy images
through it:

# Create a UNet2DModel
model = UNet2DModel(
    in_channels=3,  # 3 channels for RGB images
    sample_size=64,  # Specify our input size
    block_out_channels=(64, 128, 256, 512), # N channels per layer
    down_block_types=("DownBlock2D", "DownBlock2D",
                      "AttnDownBlock2D", "AttnDownBlock2D"),
    up_block_types=("AttnUpBlock2D", "AttnUpBlock2D",
                    "UpBlock2D", "UpBlock2D"),
)

# Pass a batch of data through
with torch.no_grad():
    out = model(noised_x, timestep=timesteps).sample
out.shape

torch.Size([8, 3, 64, 64])

Note that the output is the same shape as the input, which is exactly
what we want.




Training

Now that we have our model and our data ready, we can train it. We’ll
use the AdamW optimizer with a learning rate of 3e-4. For each training
step, we:


	
Load a batch of images.



	
Add noise to the images, choosing random timesteps to determine how
much noise is added.



	
Feed the noisy images into the model.



	
Calculate the loss, which is the mean squared error between the
model’s predictions and the target - which in this case is the noise
that we added to the images. This is called the noise or ‘epsilon’
objective. You can find more information on the different training
objectives in section X.



	
Backpropagate the loss and update the model weights with the
optimizer.





Here’s what all of that looks like in code:

num_epochs = 50 # How many runs through the data should we do?
lr = 1e-4 # What learning rate should we use
model = model.to(device) # The model we're training (defined in the previous section)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr) # The optimizer
losses = [] # somewhere to store the loss values for later plotting

# Train the model (this takes a while!)
for epoch in range(num_epochs):
    for step, batch in enumerate(train_dataloader):

        # Load the input images
        clean_images = batch["images"].to(device)

        # Sample noise to add to the images
        noise = torch.randn(clean_images.shape).to(clean_images.device)

        # Sample a random timestep for each image
        timesteps = torch.randint(
            0,
            scheduler.num_train_timesteps,
            (clean_images.shape[0],),
            device=clean_images.device,
        ).long()

        # Add noise to the clean images according timestep
        noisy_images = scheduler.add_noise(clean_images, noise, timesteps)

        # Get the model prediction for the noise
        noise_pred = model(noisy_images, timesteps, return_dict=False)[0]

        # Compare the prediction with the actual noise:
        loss = F.mse_loss(noise_pred, noise)

        # Store the loss for later plotting
        losses.append(loss.item())

        # Update the model parameters with the optimizer based on this loss
        loss.backward(loss)
        optimizer.step()
        optimizer.zero_grad()

It takes an hour or so to run the above code on a GPU, so get some tea while you wait or lower the number of epochs. Here’s what the loss curve looks like after training:

# Plot the loss curve:
plt.plot(losses);

[image: image]

The loss curve trends downwards as the model learns to denoise the
images. The curve is fairly noisy, thanks to different amounts of noise
being added to the images based on the random sampling of timesteps for
each iteration. It is hard to tell just by looking at the mean squared
error of the noise predictions whether this model will be any good at
generating samples, so let’s move on to the next section and see how
well it does.




Sampling

The diffusers library uses the idea of ‘pipelines’ which bundle together
all of the components needed to generate samples with a diffusion model:

pipeline = DDPMPipeline(unet=model, scheduler=scheduler)
ims = pipeline(batch_size=4).images
show_images(ims, nrows=1)

[image: image]

Of course, offloading the job of creating samples to the pipeline
doesn’t really show us what is going on. So, here is a simple sampling
loop that shows how the model is gradually refining the input image:

# Random starting point (4 random images):
sample = torch.randn(4, 3, 64, 64).to(device)

for i, t in enumerate(scheduler.timesteps):

    # Get model pred
    with torch.no_grad():
        noise_pred = model(sample, t).sample

    # Update sample with step
    sample = scheduler.step(noise_pred, t, sample).prev_sample

show_images(sample.clip(-1, 1)*0.5 + 0.5, nrows=1)

[image: image]

This is the same code we used at the beginning of the chapter to
illustrate the idea of iterative refinement, but hopefully, now you have
a better understanding of what is going on here. We start with a
completely random input, which is then refined by the model in a series
of steps. Each step is a small update to the input, based on the model’s
prediction for the noise at that timestep. We’re still abstracting away
some complexity behind the call to pipeline.scheduler.step() - in a
later chapter we will dive deeper into different sampling methods and
how they work.




Evaluation

Generative model performance can be evaluated using FID scores (Fréchet
Inception Distance). FID scores measure how closely generated samples
match real-world samples by comparing statistics between feature maps
extracted from both sets of data using a pre-trained neural network. The
lower the score, the better the quality and realism of generated images
produced by a given model. FID scores are popular due to their ability
to provide an ‘objective’ comparison metric for different types of
generative networks without relying on human judgment.

As convenient as FID scores are, there are some important caveats to be
aware of:


	
The FID score for a given model depends on the number of
samples used to calculate it, so when comparing between model,s we need
to make sure both reported scores are calculated using the same number
of samples. Common practice is to use 50,000 samples for this purpose,
although to save time, you may evaluate on a smaller number of samples
during development and only do the full evaluation once you’re ready to
publish the results.



	
When calculating FID, images are resized to 299px
square images. This makes it less useful as a metric for extremely
low-res or high-res images. There are also minor differences between how
resizing is handled by different deep learning frameworks, which can
result in small differences in the FID score! We recommend using a
library such as clean-fid to standardize the FID calculation.



	
The
network used as a feature extractor for FID is typically a model trained
on the Imagenet classification task. When generating images in a
different domain, the features learned by this model may be less useful.
A more accurate approach would be to somehow train a classification
network on domain-specific data first, but this would make it harder to
compare scores between different papers and approaches, so for now the
imagenet model is the standard choice.



	
If you save generated samples
for later evaluation, the format and compression can again affect the
FID score. Avoid low-quality JPEG images where possible.





Even if you account for all these caveats, FID scores are just a rough
measure of quality and do not perfectly capture the nuances of what
makes images look more ‘real’. So, use them to get an idea of how one
model performs relative to another but also look at the actual images
generated by each model to get a better sense of how they compare. Human
preference is still the gold standard for quality in what is ultimately
a fairly subjective field!






In Depth: Noise Schedules

In the training example above, one of the steps was ‘add noise, in
different amounts’. We achieved this by picking a random timestep
between 0 and 1000 and then relying on the scheduler to add the
appropriate amount of noise. Likewise, during sampling, we again relied
on the scheduler to tell us which timesteps to use and how to move from
one to the next given the model predictions. It turns out that choosing
how much noise to add is an important design decision that can
drastically affect the performance of a given model. In this section,
we’ll see why this is the case and explore some of the different
approaches that are used in practice.


Why Add Noise?

At the start of this chapter, we said that the key idea behind diffusion
models is that of iterative refinement. During training, we ‘corrupt’ an
input by different amounts. During inference, we begin with a ‘maximally
corrupted’ input and iteratively ‘de-corrupt’ it, in the hopes that we
will eventually end up with a nice final result.

So far, we’ve focused on one specific kind of ‘corruption’: adding
Gaussian noise. One reason for this is the theoretical underpinnings of
diffusion models - if we use a different corruption method we are no
longer technically doing ‘diffusion’! However, a paper titled Cold
Diffusion by Bansal et al dramatically demonstrated that we do not
necessarily need to constrain ourselves to this method just for
theoretical convenience. They showed that a diffusion-model-like
approach works for many different ‘corruption’ methods (see Figure 1-1). More recently, models like MUSE, MaskGIT and PAELLA have used random token
masking or replacement as an equivalent ‘corruption’ method for
quantized data - that is, data that is represented by discrete tokens
rather than continuous values.


[image: image.png]
Figure 1-1. Illustration of the different degradations used in the Cold Diffusion Paper



Nonetheless, adding noise remains the most popular approach for several
reasons:


	
We can easily control the amount of noise added, giving a
smooth transition from ‘perfect’ to ‘completely corrupted’. This is not
the case for something like reducing the resolution of an image, which
may result in ‘discrete’ transitions.



	
We can have many valid random
starting points for inference, unlike some methods which may only have a
limited number of possible initial (fully corrupted) states, such as a
completely black image or a single-pixel image.





So, for the moment at least, we’ll stick with adding noise as our
corruption method. Next, let’s take a closer look at how we add noise to
our images.




Starting Simple

We have some images (x) and we’d like to combine them somehow with some
random noise.

x = next(iter(train_dataloader))['images'][:8]
noise = torch.rand_like(x)

One way we could do this is to linearly interpolate (lerp) between them
by some amount. This gives us a function that smoothly transitions from
the original image x to pure noise as the ‘amount’ varies from 0 to 1:

def corrupt(x, noise, amount):
  amount = amount.view(-1, 1, 1, 1) # make sure it's broadcastable
  return x*(1-amount) + noise*amount

Let’s see this in action on a batch of data, with the amount of noise
varying from 0 to 1:

amount = torch.linspace(0, 1, 8)
noised_x = corrupt(x, noise, amount)
show_images(noised_x*0.5 + 0.5)

[image: image]

This seems to be doing exactly what we want, smoothly transitioning from
the original image to pure noise. Now, we’ve created a noise schedule
here that takes in a value for ‘amount’ from 0 to 1. This is called the
‘continuous time’ approach, where we represent the full path on a time
scale from 0 to 1. Other approaches use a discrete time approach, with
some large integer number of ‘timesteps’ used to define the noise
scheduler. We can wrap our function into a class that converts from
continuous time to discrete timesteps and adds noise appropriately:

class SimpleScheduler():
  def __init__(self):
    self.num_train_timesteps = 1000
  def add_noise(self, x, noise, timesteps):
    amount = timesteps / self.num_train_timesteps
    return corrupt(x, noise, amount)

scheduler = SimpleScheduler()
timesteps = torch.linspace(0, 999, 8).long()
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images(noised_x*0.5 + 0.5)

[image: image]

Now we have something that we can directly compare to the schedulers
used in the diffusers library, such as the DDPMScheduler we used during
training. Let’s see how it compares:

scheduler = DDPMScheduler(beta_end=0.01)
timesteps = torch.linspace(0, 999, 8).long()
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x*0.5 + 0.5).clip(0, 1))

[image: image]




The Maths

There are many competing notations and approaches in the literature. For
example, some papers parametrize the noise schedule in continuous-time
where t runs from 0 (no noise) to 1 (fully corrupted) - just like our
corrupt function in the previous section. Others use a discrete-time
approach with integer timesteps running from 0 to some large number T,
typically 1000. It is possible to convert between these two approaches
the way we did with our SimpleScheduler class - just make sure you’re
consistent when comparing different models. We’ll stick with the
discrete-time approach here.

A good place to start for pushing deeper into the maths is the DDPM paper mentioned earlier. You can find an annotated implementation here which is a great
additional resource for understanding this approach.

The paper begins by specifying a single noise step to go from timestep
t-1 to timestep t. Here’s how they write it:




q

(
𝐱 t 
|
𝐱 t-1 
)

=
𝒩

(
𝐱 t 
;


1
-
β t 


𝐱 t-1 
,
β t 
𝐈
)

.




Here 
β t 
 is defined for all timesteps t and is used to
specify how much noise is added at each step. This notation can be a
little intimidating, but what this equation tells us is that the noisier

𝐱 t 
 is a distribution with a mean of




1
-
β t 


𝐱 t-1 

 and a variance of

β t 
. In other words, 
𝐱 t 
 is a
mix of 
𝐱 t-1 
 (scaled by



1
-
β t 


) and some random noise, which we can
think of as unit-variance noise scaled by 

β t 

.
Given 
x t-1 
 and some noise 
ϵ
, we
can sample from this distribution to get 
x t 
 with:




𝐱 t 
=


1
-
β t 


𝐱 t-1 
+

β t 

ϵ




To get the noisy input at timestep t, we could begin at t=0 and
repeatedly apply this single step, but this would be very inefficient.
Instead, we can find a formula to move to any timestep t in one go. We
define 

α t 
=
1
-
β t 

 and then use the following
formula:




x t 
=

α ¯ t 

x 0 
+


1
-
α ¯ t 


ϵ




where - 
ϵ
 is some gaussian noise with unit variance
- 
α ¯
 (‘alpha_bar’) is the cumulative product of
all the 
α
 values up to the time 
t
.

So 
x t 
 is a mixture of 
x 0 
 (scaled by


α ¯ t 

) and 
ϵ
 (scaled
by 


1
-
α ¯ t 


). In the diffusers library the

α ¯
 values are stored in
scheduler.alphas_cumprod. Knowing this, we can plot the scaling
factors for the original image 
x 0 
 and the noise

ϵ
 across the different timesteps for a given
scheduler:

plot_scheduler(DDPMScheduler()) # The default scheduler

[image: image]

Our SimpleScheduler above just linearly mixes between the original image
and noise, as we can see if we plot the scaling factors (equivalent to


α ¯ t 

 and



(
1
-
α ¯ t 
)


 in the DDPM case):

plot_scheduler(SimpleScheduler())

[image: image]

A good noise schedule will ensure that the model sees a mix of images at
different noise levels. The best choice will differ based on the
training data. Visualizing a few more options, note that:


	
Setting beta_end too low means we never completely erase the image, so the model
will never see anything like the random noise used as a starting point
for inference.



	
Setting beta_end extremely high means that most of the
timesteps are spent on almost complete noise, which will result in poor
training performance.



	
Different beta schedules give different curves.





The ‘cosine’ schedule is a popular choice, as it gives a smooth
transition from the original image to the noise.

fig, (ax) = plt.subplots(1, 1, figsize=(8, 5))
plot_scheduler(DDPMScheduler(beta_schedule="linear"),
               label = 'default schedule', ax=ax, plot_both=False)
plot_scheduler(DDPMScheduler(beta_schedule="squaredcos_cap_v2"),
               label = 'cosine schedule', ax=ax, plot_both=False)
plot_scheduler(DDPMScheduler(beta_end=0.003, beta_schedule="linear"),
               label = 'Low beta_end', ax=ax, plot_both=False)
plot_scheduler(DDPMScheduler(beta_end=0.1, beta_schedule="linear"),
               label = 'High beta_end', ax=ax, plot_both=False)

[image: image]

Note

All of the schedules shown here are called ‘Variance Preserving’ (VP),
meaning that the variance of the model input is kept close to 1 across
the entire schedule. You may also encounter ‘Variance Exploding’ (VE)
formulations where noise is simply added to the original image in
different amounts (resulting in high-variance inputs). We’ll go into
this more in the chapter on sampling. Our SimpleScheduler is almost a VP
schedule, but the variance is not quite preserved due to the linear
interpolation.



As with many diffusion-related topics, there is a constant stream of new
papers exploring the topic of noise schedules, so by the time you read
this there will likely be a large collection of options to try out!




Effect of Input Resolution and Scaling

One aspect of noise schedules that was mostly overlooked until recently
is the effect of input size and scaling. Many papers test potential
schedulers on small-scale datasets and at low resolution, and then use
the best-performing scheduler to train their final models on larger
images. The problem with this is can be seen if we add the same amount
of noise to two images of different sizes.


[image: image]
Figure 1-2. Comparing the effect of adding noise to images of different sizes



Images at high resolution tend to contain a lot of redundant
information. This means that even if a single pixel is obscured by
noise, the surrounding pixels contain enough information to reconstruct
the original image. This is not the case for low-resolution images,
where a single pixel can contain a lot of information. This means that
adding the same amount of noise to a low-resolution image will result in
a much more corrupted image than adding the equivalent amount of noise
to a high-resolution image.

This effect was thoroughly investigated in two independent papers, both
of which came out in January 2023. Each used the new insights to train
models capable of generating high-resolution outputs without requiring
any of the tricks that have previously been necessary. Simple
diffusion by Hoogeboom et al introduced a method for adjusting the noise schedule based on
the input size, allowing a schedule optimized on low-resolution images
to be appropriately modified for a new target resolution. A paper called “On the Importance of Noise Scheduling for Diffusion Models” by Ting Chen performed similar experiments, and noted another key variable: input
scaling. That is, how do we represent our images? If the images are
represented as floats between 0 and 1 then they will have a lower
variance than the noise (which is typically unit variance) and thus the
signal-to-noise ratio will be lower for a given noise level than if the
images were represented as floats between -1 and 1 (which we used in the
training example above) or something else. Scaling the input images
shifts the signal-to-noise ratio, and so modifying this scaling is
another way we can adjust when training on larger images.






In Depth: UNets and Alternatives

Now let’s address the actual model that makes the all-important
predictions! To recap, this model must be capable of taking in a noisy
image and estimating how to denoise it. This requires a model that can
take in an image of arbitrary size and output an image of the same size.
Furthermore, the model should be able to make precise predictions at the
pixel level, while also capturing higher-level information about the
image as a whole. A popular approach is to use an architecture called a
UNet. UNets were invented in 2015 for medical image
segmentation, and have since become a popular choice for various
image-related tasks. Like the AutoEncoders and VAEs we looked at in the
previous chapter, UNets are made up of a series of ‘downsampling’ and
‘upsampling’ blocks. The downsampling blocks are responsible for
reducing the size of the image, while the upsampling blocks are
responsible for increasing the size of the image. The downsampling
blocks are typically made up of a series of convolutional layers,
followed by a pooling or downsampling layer. The upsampling blocks are
typically made up of a series of convolutional layers, followed by an
upsampling or ‘transposed convolution’ layer. The transposed convolution
layer is a special type of convolutional layer that increases the size
of the image, rather than reducing it.

The reason a regular AutoEncoder or VAE is not a good choice for this
task is that they are less capable of making precise predictions at the
pixel level since the output must be entirely re-constructed from the
low-dimensional latent space. In a UNet, the downsampling and upsampling
blocks are connected by ‘skip connections’, which allow information to
flow directly from the downsampling blocks to the upsampling blocks.
This allows the model to make precise predictions at the pixel level,
while also capturing higher-level information about the image as a
whole.


A Simple UNet

To better understand the structure of a UNet, let’s build a simple UNet
from scratch.


[image: image.png]
Figure 1-3. Our simple UNet architecture



This UNet takes single-channel inputs at 32px resolution and outputs
single-channel outputs at 32px resolution, which we could use to build a
diffusion model for the MNIST dataset. There are three layers in the
encoding path, and three layers in the decoding path. Each layer
consists of a convolution followed by an activation function and an
upsampling or downsampling step (depending on whether we are in the
encoding or decoding path). The skip connections allow information to
flow directly from the downsampling blocks to the upsampling blocks, and
are implemented by adding the output of the downsampling block to the
input of the corresponding upsampling block. Some UNets instead
concatenate the output of the downsampling block to the input of the
corresponding upsampling block, and may also include additional layers
in the skip connections. Here’s what this network looks like in code:

from torch import nn

class BasicUNet(nn.Module):
    """A minimal UNet implementation."""
    def __init__(self, in_channels=1, out_channels=1):
        super().__init__()
        self.down_layers = torch.nn.ModuleList([
            nn.Conv2d(in_channels, 32, kernel_size=5, padding=2),
            nn.Conv2d(32, 64, kernel_size=5, padding=2),
            nn.Conv2d(64, 64, kernel_size=5, padding=2),
        ])
        self.up_layers = torch.nn.ModuleList([
            nn.Conv2d(64, 64, kernel_size=5, padding=2),
            nn.Conv2d(64, 32, kernel_size=5, padding=2),
            nn.Conv2d(32, out_channels, kernel_size=5, padding=2),
        ])
        self.act = nn.SiLU() # The activation function
        self.downscale = nn.MaxPool2d(2)
        self.upscale = nn.Upsample(scale_factor=2)

    def forward(self, x):
        h = []
        for i, l in enumerate(self.down_layers):
            x = self.act(l(x)) # Through the layer and the activation function
            if i < 2: # For all but the third (final) down layer:
              h.append(x) # Storing output for skip connection
              x = self.downscale(x) # Downscale ready for the next layer

        for i, l in enumerate(self.up_layers):
            if i > 0: # For all except the first up layer
              x = self.upscale(x) # Upscale
              x += h.pop() # Fetching stored output (skip connection)
            x = self.act(l(x)) # Through the layer and the activation function

        return x

A diffusion model trained with this architecture on MNIST produces the
following samples (code included in the supplementary material but
omitted here for brevity):




Improving the UNet

This simple UNet works for this relatively easy task, but it is far from
ideal. So, what can we do to improve it?


	
Add more parameters. This can
be accomplished by using multiple convolutional layers in each block, by
using a larger number of filters in each convolutional layer, or by
making the network deeper.



	
Add residual connections. Using ResBlocks
instead of regular convolutional layers can help the model learn more
complex functions while keeping training stable.



	
Add normalization,
such as batch normalization. Batch normalization can help the model
learn more quickly and reliably, by ensuring that the outputs of each
layer are centered around 0 and have a standard deviation of 1.



	
Add regularization, such as dropout. Dropout helps by preventing the model
from overfitting to the training data, which is important when working
with smaller datasets.



	
Add attention. By introducing self-attention
layers we allow the model to focus on different parts of the image at
different times, which can help it learn more complex functions. The
addition of transformer-like attention layers also lets us increase the
number of learnable parameters, which can help the model learn more
complex functions. The downside is that attention layers are much more
expensive to compute than regular convolutional layers at higher
resolutions, so we typically only use them at lower resolutions
(i.e. the lower resolution blocks in the UNet).



	
Add an additional input for the timestep, so that the model can tailor its predicitons according to the noise level. This is called timestep conditioning, and is used in almost all recent diffusion models. We’ll see more on conditional models in the next chapter.





For comparison, here are the results on MNIST when using the UNet
implementation in the diffusers library, which features all of the above
improvements:

Warning

This section will likely be expanded with results and more details in
the future. We just haven’t gotten around to training variants with the
different improvements yet!






Alternative Architectures

More recently, a number of alternative architectures have been proposed
for diffusion models. These include:


	
Transformers. The DiT paper (“Scalable Diffusion Models with Transformers”) by Peebles and Xie showed that a transformer-based architecture can be used to train
a diffusion model, with great results. However, the compute and memory
requirements of the transformer architecture remain a challenge for very
high resolutions.



	
The UViT architecture from the Simple Diffusion
paper link aims to get the best of both worlds by replacing the
middle layers of the UNet with a large stack of transformer blocks. A
key insight of this paper was that focusing the majority of the compute
at the lower resolution blocks of the UNet allows for more efficient
training of high-resolution diffusion models. For very high resolutions,
they do some additional pre-processing using something called a wavelet
transform to reduce the spatial resolution of the input image while
keeping as much information as possible through the use of additional
channels, again reducing the amount of compute spent on the higher
spatial resolutions.



	
Recurrent Interface Networks. The RIN paper (Jabri et al) takes a similar approach, first mapping the high-resolution inputs
to a more manageable and lower-dimensional ‘latent’ representation which
is then processed by a stack of transformer blocks before being decoded
back out to an image. Additionally, the RIN paper introduces an idea of
‘recurrence’ where information is passed to the model from the previous
processing step, which can be beneficial for the kind of iterative
improvement that diffusion models are designed to perform.





It remains to be seen whether transformer-based approaches completely
supplant UNets as the go-to architecture for diffusion models, or
whether hybrid approaches like the UViT and RIN architectures will prove
to be the most effective.






In Depth: Objectives and Pre-Conditioning

We’ve spoken about diffusion models taking a noisy input and “learning
to denoise” it. At first glance, you might assume that the natural
prediction target for the network is the denoised version of the image,
which we’ll call x0. However, in the code, we compared the model
prediction with the unit-variance noise that was used to create the
noisy version (often called the epsilon objective, eps). The two
appear mathematically identical since if we know the noise and the
timestep we can derive x0 and vice versa. While this is true, the
choice of objective has some subtle effects on how large the loss is at
different timesteps, and thus which noise levels the model learns to
denoise best. To gain some intuition, let’s visualize some different
objectives across different timesteps:

[image: image]

At extremely low noise levels, the x0 objective is trivially easy
while predicting the noise accurately is almost impossible. Likewise, at
extremely high noise levels, the eps objective is easy while
predicting the denoised image accurately is almost impossible. Neither
case is ideal, and so additional objectives have been introduced that
have the model predict a mix of x0 and eps at different timesteps.
The v objective (introduced in “Progressive distillation for fast sampling of diffusion models.” by Salimans and Ho) is one such objective, which is defined as 

v
=

α ¯

·
ϵ
+


1
-
α ¯


·
x 0 

. The EDM paper by Karras et al introduce a similar idea via a
parameter called c_skip, and unify the different diffusion model
formulations into a consistent framework. If you’re interested in
learning more about the different objectives, scalings and other nuances
of the different diffusion model formulations, we recommend reading
their paper for a more in-depth discussion.




Project Time: Train Your Own Diffusion Model

Now that you have an understanding of the basics of diffusion models, it’s time to train some for yourself! The supplementary material for this chapter includes a notebook that walks you through the process of training a diffusion model on your own dataset. As you work through it, check back with this chapter and see how the different pieces fit together. The notebook also includes lots of suggested changes you can make to better explore how different model architectures and training strategies affect the results.




Summary

In this chapter, we’ve seen how the idea of iterative refinement can be applied to train a diffusion model capable of turning noise into beautiful images. You’ve seen some of the design choices that go into creating a successful diffusion model, and hopefully put them into practice by training your own model. In the next chapter, we’ll take a look at some of the more advanced techniques that have been developed to improve the performance of diffusion models and to give them extraordinary new capabilities!
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Chapter 2. Building up to Stable Diffusion


A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the fourth chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.



In the previous chapter, we introduced diffusion models and the
underlying idea of iterative refinement. By the end of the chapter, we
could generate images, but training the model was time-consuming and we
had no control over the images that were generated. In this chapter,
we’ll see how to go from this to text-conditioned models that can
efficiently generate images based on text descriptions, with a model
called Stable Diffusion (SD) as a case study. Before we get to SD,
though, we’ll first look at how conditional models work and go over some
of the innovations that lead up to the text-to-image models we have
today.


Adding Control: Conditional Diffusion Models

Before we deal with the problem of generating images from text
descriptions (a very challenging task!), let’s focus on something
slightly easier first. We’ll see how we can steer our models outputs
towards specific types or classes of images. We can use a method
called conditioning, where the idea is to ask the model to generate
not just any image, but an image belonging to a pre-defined class.

Model conditioning is a simple but effective idea. We’ll start from
the same diffusion model we used in Chapter 3, with just a couple of
changes. First, we’ll use a new dataset called Fashion MNIST instead of butterflies so that we can identify categories easily. Then, crucially, we’ll run two
inputs through the model. Instead of just showing it how real images
look like, we’ll also tell it the class every image belongs to. We hope
the model will learn to associate images and labels, so it gets an idea
about the distinctive features of sweaters, boots and the like.

Note that we are not interested in solving a classification problem – we
don’t want the model to tell us the class, given an input image –. We
still want it to perform the same task as in Chapter 3, namely: please,
generate plausible images that look like they came from this dataset.
The only difference is that we are giving it additional information
about those images. We’ll use the same loss function and training
strategy, as it’s the same task as before.


Preparing the Data

We need a dataset with distinct groups of images. Datasets intended for
computer vision classification tasks are ideal for this purpose. We could start with something like the ImageNet dataset, which contains millions of images across 1000 classes. However, training models on this dataset would take an extremely long time. When approaching a new problem, it’s often a good idea to start with a smaller dataset first, to make sure everything works as expected. This keeps the feedback loop short, so we can iterate quickly and make sure we’re on the right track.

For this example, we could choose MNIST as we did in Chapter 3. To make
things just a little bit different, we’ll choose Fashion MNIST instead. Fashion
MNIST, developed and open-sourced by Zalando, is a replacement for MNIST
that shares some of the same characteristics: a compact size, black &
white images, and 10 classes. The main difference is that instead of
being digits, classes correspond to different types of clothing and the images contain more detail than simple handwritten digits.

Let’s look at some examples.

from datasets import load_dataset

fashion_mnist = load_dataset("fashion_mnist")

clothes = fashion_mnist["train"]["image"][:8]
classes = fashion_mnist["train"]["label"][:8]
show_images(clothes, titles=classes, figsize=(4,2.5))


[image: image]




So class 0 means t-shirt, 2 is a sweater and 9 means boot. Here’s
a list of the 10 categories in Fashion MNIST:
https://huggingface.co/datasets/fashion_mnist#data-fields. We
prepare our dataset and dataloader similarly to how we did it in Chapter
3, with the main difference that we’ll also include the class
information as an input. Instead of resizing, in this case we’ll pad our
image inputs (which have a size of 28 × 28 pixels) to 32 × 32, as we
did in Chapter 3.

preprocess = transforms.Compose([
    transforms.RandomHorizontalFlip(),   # Randomly flip (data augmentation)
    transforms.ToTensor(),               # Convert to tensor (0, 1)
    transforms.Pad(2),                   # Add 2 pixels on all sides
    transforms.Normalize([0.5], [0.5]),  # Map to (-1, 1)
])

batch_size = 256

def transform(examples):
    images = [preprocess(image.convert("L")) for image in examples["image"]]
    return {"images": images, "labels": examples["label"]}

train_dataset = fashion_mnist["train"].with_transform(transform)

train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True
)




Creating a Class-Conditioned Model

If we use the UNet model from the diffusers library, we can provide
our own custom conditioning information. Here we create a similar model to the one we used in
Chapter 3, but we add a num_class_embeds argument to the UNet
constructor. This argument tells the model that we’d like to use class
labels as additional conditioning. We’ll use 10, because we have 10
classes in Fashion MNIST.

model = UNet2DModel(
    in_channels=1,   # 1 channel for grayscale images
    out_channels=1,  # output channels must also be 1
    sample_size=32,
    block_out_channels=(32, 64, 128, 256),
    norm_num_groups=8,
    num_class_embeds=10, # Enable class conditioning
)

To make predictions with this model, we must pass in the class labels as
additional inputs to the forward method:

x = torch.randn((1, 1, 32, 32))
with torch.no_grad():
    out = model(x, timestep=7, class_labels=torch.tensor([2])).sample
out.shape

torch.Size([1, 1, 32, 32])

Note

You’ll notice we also pass something else to the model as conditioning:
the timestep! That’s right, even the model from Chapter 3 can be
considered a conditional diffusion model! We condition it on the
timestep in the hopes that knowing how far we are in the diffusion
process will help it generate more realistic images.



Internally, both the timestep and the class label are turned into embeddings that the model uses during its forward pass. At multiple stages throughout the UNet, these embeddings are projected onto a dimension that matches the number of channels in a given layer and are then added to the outputs of that layer. This means the conditioning information is fed to every block of the UNet, giving the model ample opportunity to learn how to use it effectively.




Training the Model

Adding noise works just as well on greyscale images as it did on the
butterflies from Chapter 3.

scheduler = DDPMScheduler(num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02)
timesteps = torch.linspace(0, 999, 8).long()
batch = next(iter(train_dataloader))
x = batch['images'][:8]
noise = torch.rand_like(x)
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x*0.5 + 0.5).clip(0, 1))


[image: image]




Our training loop is also almost exactly the same as in Chapter 3 too,
except that we now pass the class labels for conditioning. Note that
this is just additional information for the model, but it doesn’t affect
our loss function in any way.

for step, batch in enumerate(train_dataloader):
        # Load the input images
        clean_images = batch["images"].to(device)
        class_labels = batch["labels"].to(device)

        # *Sample noise to add to the images*
        # *Sample a random timestep for each image*
        # *Add noise to the clean images according to the timestep*

        # Get the model prediction for the noise - note the use of class_labels
        noise_pred = model(noisy_images, timesteps, class_labels=class_labels, return_dict=False)[0]

        # *Calculate the loss and update the parameters as before*
        ...

In this case we train for 25 epochs - full code can be found in the supplementary material.




Sampling

Now we have a model that expects two inputs when making predictions: the
image and the class label. We can create samples by beginning with
random noise and then iteratively denoising, passing in whatever class
label we’d like to generate:

def generate_from_class(class_to_generate, n_samples=8):
    sample = torch.randn(n_samples, 1, 32, 32).to(device)
    class_labels = [class_to_generate] * n_samples
    class_labels = torch.tensor(class_labels).to(device)

    for i, t in tqdm(enumerate(scheduler.timesteps)):
        # Get model pred
        with torch.no_grad():
            noise_pred = model(sample, t, class_labels=class_labels).sample

        # Update sample with step
        sample = scheduler.step(noise_pred, t, sample).prev_sample

    return sample.clip(-1, 1)*0.5 + 0.5

# Generate t-shirts (class 0)
images = generate_from_class(0)
show_images(images, nrows=2)

1000it [00:21, 47.25it/s]
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# Now generate some sneakers (class 7)
images = generate_from_class(7)
show_images(images, nrows=2)

1000it [00:21, 47.20it/s]


[image: image]




# ...or boots (class 9)
images = generate_from_class(9)
show_images(images, nrows=2)

1000it [00:21, 47.26it/s]


[image: image]




As you can see, the generated images are far from perfect. They’d
probably get much better if we explored the architecture and trained for
longer. But it’s amazing that the model not only learnt the shapes of
different types of clothing, but also realized that shape 9 looks
different than shape 0, just by sending this information alongside the
training data. To put it in a slightly different way: the model is used
to seeing the number 9 accompanying boots. When we ask it to generate
an image and provide the 9, it responds with a boot. We have successfully built a class-conditioned model capable of generating images conditioned on class labels from fasionMNIST!






Improving Efficiency: Latent Diffusion

Now that we can train a conditional model, all we need to do is scale it up and condition it on text instead of class labels, right? Well, not quite. As image size grows, so does the computational power required to work
with those images. This is especially pronounced in an operation called
self-attention, where the amount of operations grows quadratically with
the number of inputs. A 128px square image has 4x as many pixels as a
64px square image, and so requires 16x (i.e. 
4 2 
) the
memory and compute in a self-attention layer. This is a problem for
anyone who’d like to generate high-resolution images!


[image: image.png]
Figure 2-1. The architecture introduced in the Latent Diffusion Models paper. Note the VAE encoder and decoder on the left for translating between pixel space and latent space



Latent diffusion tries to mitigate this issue by using a separate model
called a Variational Auto-Encoder (VAE). As we saw in Chapter 2, VAEs
can compress images to a smaller spatial dimension. The rationale behind
this is that images tend to contain a large amount of redundant
information - given enough training data, a VAE can hopefully learn to
produce a much smaller representation of an input image and then
reconstruct the image based on this small latent representation with a
high degree of fidelity. The VAE used in SD takes in 3-channel images
and produces a 4-channel latent representation with a reduction factor
of 8 for each spatial dimension. That is, a 512px square input image
will be compressed down to a 4x64x64 latent.

By applying the diffusion process on these smaller latent
representations rather than on full-resolution images, we can get many
of the benefits that would come from using smaller images (lower memory
usage, fewer layers needed in the UNet, faster generation times…) and
still decode the result back to a high-resolution image once we’re ready
to view it. This innovation dramatically lowers the cost to train and
run these models. The paper that introduced this idea (High-Resolution Image Synthesis with Latent Diffusion Models by
Rombach et al) demonstrated the power of this technique by training
models conditioned on segmentation maps, class labels and text. The
impressive results led to further collaboration between the authors and
partners such as RunwayML, LAION, and EleutherAI to train a more
powerful version of the model, which later became Stable Diffusion.




Stable Diffusion: Components in Depth

Stable Diffusion is a text-conditioned latent diffusion model. Thanks to its popularity, there are hundreds of websites and apps that let you use it to create images with no technical knowledge required. It’s also very well-supported by libraries like diffusers, which let us sample an image with SD using a user-friendly pipeline:

pipe("Watercolor illustration of a rose").images[0]

  0%|          | 0/50 [00:00<?, ?it/s]
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In this section we’ll explore all of the components that make this
possible.


The Text Encoder

So how does Stable Diffusion understand text? Earlier on we showed how feeding additional information to the UNet
allows us to have some additional control over the types of images
generated. Given a noisy version of an image,
the model is tasked with predicting the denoised version based on
additional clues such as a class label. In the case of SD, the additional clue is the text prompt. At inference time, we can
feed in the description of an image we’d like to see and some pure noise
as a starting point, and the model does its best to denoise the random
input into something that matches the caption.


[image: simplified_unet.png]
Figure 2-2. The text encoder turns an input string into text embeddings which are fed into the UNet along with the timestep and the noisy latents.



For this to work, we need to create a numeric representation of the text
that captures relevant information about what it describes. To do this,
SD leverages a pre-trained transformer model based on CLIP, which was
also introduced in Chapter 2. The text encoder is a transformer model that takes in a
sequence of tokens and produces a 1024-dimensional vector for each token (0r 768-dimensional in the case of SD version 1 which we’re using for the demonstrations in this section).
Instead of combining these vectors into a single representation, we keep
them separate and use them as conditioning for the UNet. This allows the
UNet to make use of the information in each token separately, rather
than just the overall meaning of the entire prompt. Because we’re
extracting these text embeddings from the internal representation of the
CLIP model, they are often called the “encoder hidden states”. Figure
3 shows the text encoder architecture.


[image: text encoder]
Figure 2-3. Diagram showing the text encoding process which transforms the input prompt into a set of text embeddings (the encoder_hidden_states) which can then be fed in as conditioning to the UNet.



The first step to encode text is to follow a process called tokenization. This converts a sequence of characters into a sequence of numbers, where each number represents a group of various characters. Characters that are usually found together (like most common words) can be assigned a single token that represents the whole word or group. Long or complicated words, or words with many inflections, may be translated to multiple tokens, where each one usually represents a meaningful section of the word.

There is no single “best” tokenizer; instead, each language model comes with its own one. Differences reside in the number of tokens supported, and on the tokenization strategy – do we use single characters, as we just described, or should we consider different primitive units.
In the following example we see how the tokenization of a phrase works with Stable Diffusion’s tokenizer. Each word in our sentence is assigned a unique token number (for example, photograph happens to be 8853 in the tokenizer’s vocabulary). There are also additional tokens that are used to provide additional context, such as the point where the sentence ends.

prompt = 'A photograph of a puppy'

# Turn the text into a sequence of tokens:
text_input = pipe.tokenizer(prompt, padding="max_length",
                            max_length=pipe.tokenizer.model_max_length,
                            truncation=True, return_tensors="pt")

# See the individual tokens
for t in text_input['input_ids'][0][:8]: # We'll just look at the first 7
    print(t, pipe.tokenizer.decoder.get(int(t)))

tensor(49406) <|startoftext|>
tensor(320) a</w>
tensor(8853) photograph</w>
tensor(539) of</w>
tensor(320) a</w>
tensor(6829) puppy</w>
tensor(49407) <|endoftext|>
tensor(49407) <|endoftext|>

Once the text is tokenized, we can pass it through the text encoder to get the final text embeddings that will be fed into the UNet:

# Grab the output embeddings
text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
print('Text embeddings shape:', text_embeddings.shape)

Text embeddings shape: torch.Size([1, 77, 768])

We’ll go into more detail about how a transformer model processes a string of tokens in the chapters focusing on transformer models.




Classifier-free guidance

It turns out that even with all of the effort put into making the text
conditioning as useful as possible, the model still tends to default to
relying mostly on the noisy input image rather than the prompt when
making its predictions. In a way, this makes sense - many captions are
only loosely related to their associated images and so the model learns
not to rely too heavily on the descriptions! However, this is
undesirable when it comes time to generate new images - if the model
doesn’t follow the prompt then we may get images out that don’t relate
to our description at all.


[image: image.png]
Figure 2-4. Images generated from the prompt “An oil painting of a collie in a top hat” with CFG scale 0, 1, 2 and 10 (left to right)



To fix this, we use a trick called Classifier-Free Guidance (CGF).
During training, text conditioning is sometimes kept blank, forcing the
model to learn to denoise images with no text information whatsoever
(unconditional generation). Then at inference time, we make two separate
predictions: one with the text prompt as conditioning and one without.
We can then use the difference between these two predictions to create a
final combined prediction that pushes even further in the direction
indicated by the text-conditioned prediction according to some scaling
factor (the guidance scale), hopefully resulting in an image that better
matches the prompt. Figure 4 shows the outputs for a prompt at
different guidance scales - as you can see, higher values result in
images that better match the description.




The VAE

The VAE is tasked with compressing images into a smaller latent
representation and back again. The VAE used with Stable Diffusion is a
truly impressive model. We won’t go into the training details here, but
in addition to the usual reconstruction loss and KL divergence described
in Chapter 2 they use an additional patch-based discriminator loss to
help the model learn to output plausible details and textures. This adds
a GAN-like component to training and helps to avoid the slightly blurry
outputs that were typical in previous VAEs. Like the text encoder, the
VAE is usually trained separately and used as a frozen component during
the diffusion model training and sampling process.


[image: vae.drawio.png]
Figure 2-5. Encoding and decoding and image with the VAE



Let’s load an image and see what it looks like after being compressed
and decompressed by the VAE:

# NB, this will be our own image as part of the supplementary material to avoid external URLs
im = load_image('https://images.pexels.com/photos/14588602/pexels-photo-14588602.jpeg', size=(512, 512))
show_image(im);


[image: image]




# Encode the image
with torch.no_grad():
    tensor_im = transforms.ToTensor()(im).unsqueeze(0).to(device)*2-1
    latent = vae.encode(tensor_im.half()) # Encode the image to a distribution
    latents = latent.latent_dist.sample() # Sampling from the distribution
    latents = latents * 0.18215 # This scaling factor was introduced by the SD authors to reduce the variance of the latents

latents.shape

torch.Size([1, 4, 64, 64])

Visualizing the low-resolution latent representation, we can that some of the rough structure of the input image is still visible in the different channels:

# Plot the individual channels of the latent representation
show_images([l for l in latents[0]], titles=[f'Channel {i}' for i in range(latents.shape[1])], ncols=4)


[image: image]




And decoding back to image space, we get an output image that is almost identical to the original. Can you spot the difference?

# Decode the image
with torch.no_grad():
    image = vae.decode(latents / 0.18215).sample
image = (image / 2 + 0.5).clamp(0, 1)
show_image(image[0].float());


[image: image]




When generating images from scratch, we create a random set of latents
as the starting point. We iteratively refine these noisy latents to
generate a sample, and then the VAE decoder is used to decode these
final latents into an image we can view. The encoder is only used if
we’d like to start the process from an existing image, something we’ll
explore in chapter 5.




The UNet

The UNet used in stable diffusion is somewhat similar to the one we used
in chapter 3 for generating images. Instead of taking in a 3-channel
image as the input we take in a 4-channel latent. The timestep embedding
is fed in in the same way as the class conditioning was in the example at
the start of this chapter. But this UNet also needs to accept the text
embeddings as additional conditioning. Scattered throughout the UNet are
cross-attention layers. Each spatial location in the UNet can attend
to different tokens in the text conditioning, bringing in relevant
information from the prompt. The diagram in Figure 7 shows how this text
conditioning (as well as timestep-based conditioning) is fed in at
different points.


[image: SD digram]
Figure 2-6. The Stable Diffusion UNet



The UNet for Stable Diffusion version 1 and 2 has around 860 million
parameters. The more recent SD XL has even more, at around (details TBC),
with most of the additional parameters being added at the
lower-resolution stages via additional channels in the residual blocks
(N vs 1280 in the original) and additional transformer blocks.

NB: Stable Diffusion XL has not yet been publically released, so this section will be updated when more information is public.






Putting it All Together: Annotated Sampling Loop

Now that we know what each of the components does, let’s put them
together to generate an image without relying on the pipeline. Here are
the settings we’ll use:

# Some settings
prompt = ["Acrylic palette knife painting of a flower"] # What we want to generate
height = 512                        # default height of Stable Diffusion
width = 512                         # default width of Stable Diffusion
num_inference_steps = 30            # Number of denoising steps
guidance_scale = 7.5                # Scale for classifier-free guidance
seed = 42                           # Seed for random number generator

The first step is to encode the text prompt. Because we plan to do
classifier-free guidance, we’ll actually create two sets of text
embeddings: one with the prompt, and one representing an empty string.
You can also encode a negative prompt in place of the empty string, or
combine multiple prompts with different weightings, but this is the most
common usage:

# Tokenize the input
text_input = pipe.tokenizer(prompt, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")

# Feed through the text encoder
with torch.no_grad():
    text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]

# Do the same for the unconditional input (a blank string)
uncond_input = pipe.tokenizer("", padding="max_length", max_length=pipe.tokenizer.model_max_length, return_tensors="pt")
with torch.no_grad():
    uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]

# Concatenate the two sets of text embeddings embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

Next we create our random initial latents and set up the scheduler to
use the desired number of inference steps:

# Prepare the Scheduler
pipe.scheduler.set_timesteps(num_inference_steps)

# Prepare the random starting latents
latents = torch.randn(
    (1, pipe.unet.in_channels, height // 8, width // 8), # Shape of the latent representation
    generator=torch.manual_seed(32),  # Seed the random number generator
).to(device).half()
latents = latents * pipe.scheduler.init_noise_sigma

Now we loop through the sampling steps, getting the model prediction at
each stage and using this to update the latents:

# Sampling loop
for i, t in enumerate(pipe.scheduler.timesteps):

    # Create two copies of the latents to match the two text embeddings (unconditional and conditional)
    latent_model_input = torch.cat([latents] * 2)
    latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)

    # predict the noise residual for both sets of inputs
    with torch.no_grad():
        noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

    # Split the prediction into unconditional and conditional versions:
    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)

    # perform classifier-free guidance
    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

    # compute the previous noisy sample x_t -> x_t-1
    latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample

Notice the classifier-free guidance step. Our final noise prediction is
noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond),
pushing the prediction away from the unconditional prediction towards
the prediction made based on the prompt. Try changing the guidance scale
to see how this affects the output.

By the end of the loop the latents should hopefully now represent a
plausible image that matches the prompt. The final step is to decode the
latents into an image using the VAE so that we can see the result:

# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
with torch.no_grad():
    image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)

# Display
show_image(image[0].float());


[image: image]




If you explore the source code for the StableDiffusionPipeline you’ll
see that the code above closely matches the call method used by
the pipeline. Hopefully this annotated version shows that there is
nothing too magical going on behind the scenes! Use this as a reference
for when we encounter additional pipelines that add additional tricks to
this foundation.




Training Data for Text-To-Image Models (TBD)

NB: We may add a more in-depth section here with the history and technical details of how LAION came together, and some of the nuances and debate around training on public data scraped from the internet.




Open Data, Open Models

The LAION-5B dataset includes over 5 billion image-caption pairs scraped
from the internet. This dataset was created by and for the open-source
community, which saw the need for a publically-accessible dataset of
this kind. Before the LAION initiative, only a handful of research labs
at large companies had access to such data. These organizations kept the
details of their private datasets to themselves, which made their
results impossible to validate or replicate. By creating a publically
available source of training data, LAION enabled a wave of smaller
communities and organizations to train models and perform research that
would otherwise have been impossible.


[image: image]
Figure 2-7. “An explosion of artistic creativity” - Image generated by the authors using Stable Diffusion



Stable Diffusion was one such model, trained on a subset of LAION as
part of a collaboration between the researchers who had invented latent
diffusion models and an organization called Stability AI. Training a
model like SD requires a significant amount of GPU time. Even with the
freely-available LAION dataset, there aren’t many who could afford the
investment. This is why the public release of the model weights and code
was such a big deal - it marked the first time a powerful text-to-image
model with similar capabilities to the best closed-source alternatives
was available to all. Stable Diffusion’s public availability has made it
the go-to choice for researchers and developers looking to explore this
technology over the past year. Hundreds of papers build upon the base
model, adding new capabilities or finding innovative ways to improve its
speed and quality. And innumerable startups have found ways to integrate
these rapidly-improving tools into their products, spawning an entire
ecosystem of new applications.

The months after the introduction of Stable Diffusion demonstrated the
impact of sharing these technologies in the open. SD is not the best
text-to-image model, but it IS the best model most of us had access to,
so thousands of people have spent their time making it better and
building upon that open foundation. We hope this example encourages
others to follow suit and share their work with the open-source
community in the future!




Summary

In this chapter we’ve seen how conditioning gives us new ways to
control the images generated by diffusion models. We’ve seen how latent diffusion lets us train diffusion models more efficiently. We’ve seen how a text
encoder can be used to condition a diffusion model on a text prompt,
enabling powerful text-to-image capabilities. And we’ve explored how all
of this comes together in the Stable Diffusion model by digging into the
sampling loop and seeing how the different components work together. In
the next chapter, we’ll show some of the many additional capabilities
that can be added to diffusion models such as SD to take them beyond
simple image generation. And later, in part 2 of the book, you’ll learn
how to fine-tune SD to add new knowledge or capabilities to the model.
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