

Practical Python Data Wrangling and Data Quality

Getting Started with Reading, Cleaning, and Analyzing Data

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Susan E. McGregor

 Practical Python Data Wrangling and Data Quality

 by
 Susan E.
 McGregor

 Copyright © 2022 Susan McGregor. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquitisions Editor:
 Jessica Haberman

 	
 Development Editor:
 Jeff Bleiel

 	
 Production Editor:
 Daniel Elfanbaum

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 February 2022:
 First Edition

 Revision History for the Early Release

 	2020-12-08: First Release

 	2021-02-01: Second Release

 	2021-03-02: Third Release

 	2021-04-05: Fourth Release

 	2021-05-12: Fifth Release

 	2021-06-15: Sixth Release

 	2021-07-21: Seventh Release

 	2021-09-08: Eighth Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492091509
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Practical Python Data Wrangling and Data Quality, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author, and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-09143-1

 [LSI]

Preface

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

Welcome! If you’ve picked up this book, you’re likely one of the many millions of people who is intrigued by the processes and possibilities surrounding “data” — that incredible, elusive new “currency” that’s transforming the way we live, work, and even connect with one another. Most of us are vaguely aware of the fact that data — collected by from our electronic devices and other activities — is being used to shape what advertisements we see, what media is recommended to us and which search results populate first when we look for something online.

But data is not just something that is available — or useful — to big companies or governmental number-crunchers. Being able to access, understand and gather insight from data is a valuable skill whether you’re a data scientist or a daycare worker. And fortunately, the tools needed to use data effectively are more freely accessible than ever before. Not only can you do significant data work using only free software and programming languages, you don’t even need an expensive computer — all of the exercises in this book, for example, were designed and run on a Chromebook that cost less than $500.

The goal of this book is to provide you with the guidance and confidence you need to begin exploring the world of data, from wrangling it (in other words, getting it into a state where it can be assessed and analyzed), to evaluating its quality (which is often both more nuanced and more difficult). With those foundations in place, we’ll move on to some of the basic methods of analyzing and presenting data to generate meaningful insight. While these latter sections will be far from comprehensive (both data analysis and visualization are robust fields unto themselves), they will give you the core skills needed to generate accurate, informative analyses and visualizations using your newly cleaned and acquired data.

Who should read this book?

This book is intended for true beginners; all you need are a basic understanding of how to use computers (e.g. how to download a file, open a program, copy and paste etc.), an open mind, and a willingness to experiment. I especially encourage you to take a chance on this book if you are someone who feels intimidated by data or programming, if you’re “bad at math”, or imagine that working with data or learning to program will be too “hard” for you. I have spent nearly a decade teaching hundreds of people who didn’t think of themselves as technical the exact skills contained in this book, and I have never once had a student who was truly unable to complete this work. In my experience, the biggest barrier to programming and work with data is not the difficulty of the material, but the quality of the instruction. I am grateful to the many students over the years whose questions have, I think, made my ability to convey this material immeasurably better---and that I now have the opportunity to pass that insight on to so many others through this book. And while I won’t pretend that a book can truly replace having access to a human teacher, I am confident that it will give you enough information to master the basics, while pointing the way towards more in-depth (and interactive) resources when necessary.

Folks who have some experience with data wrangling but have reached the limits of spreadsheet tools or want to expand the range of data formats they can easily access and manipulate will also find this book useful, as will those with front-end programming skills (in JavaScript or PHP, for example) who are looking for a way to get started with Python.

Where would you like to go?

In the preface to media theorist Douglas Rushkkoff’s 2010 book Program or be Programmed he compares the act of programming to that of driving a car. Unless you learn to program, Rushkoff writes, you are a perpetual passenger in the digital world, one who “is getting driven from place to place. Only the car has no windows and if the driver tells you there is only one supermarket in the county, you have to believe him.”

“You can relegate your programming to others,” Rushkoff continues,“but then you have to trust them that their programs are really doing what you’re asking, and in a way that is in your best interests.” More and more these days, the latter assertion is being thrown into question.

Yet while most of us would agree that almost anyone can learn to drive I have met few people — apart from myself — who truly believe that anyone can program. This is despite the fact that, from a cognitive perspective, driving a motor vehicle is vastly more complex than programming a computer. Why, then, do so many of us imagine that programming will be “too hard” for us?

Here, for me, is the real strength of Rushkoff’s analogy, because the windowless car he describes doesn’t just hide the outside world from the passenger, it also hides the “driver” from passersby. Part of the reason why it is easy for so many of us to believe that anyone can drive a car is because we have evidence of it: we quite literally see all kinds of people driving cars, every day.

When it comes to programming, however, we rarely get to see who is “behind the wheel”, so our idea of who can program and who should program is too often defined by media representations that portray programmers as largely white and overwhelmingly male. As a result, those characteristics have come to dominate who does program — but there’s no reason why it should. Because if you can drive a car — or even write a grammatical sentence---I promise you can program a computer, too.

Who shouldn’t read this book?

As noted above, this book is intended for beginners. So while you may find some sections useful if you are new to data analysis or visualization, this volume is not designed to serve those with prior experience in Python or another data-focused programming language (like R). Fortunately, O’Reilly has many specialized volumes that deal with advanced Python topics and libraries, which you can find listed here: (To Come).

What to expect from this volume

The content of this book is designed to be followed in the order presented, as the concepts and excercises in each chapter build on those explored previously. In addition to addressing new topics, such as data analysis or visualization, later chapters build on earlier ones to offer strategies for working with data sets that are larger, “messier”, or more frequently updated than earlier examples. Throughout, however, you will find that exercises are presented in two ways: as code “notebooks” and as “standalone” programming files. The purpose of this is two-fold. First, it allows you, the reader, to use whichever approach you prefer or find most accessible; second, it provides a way to compare these two methods of interacting with data-driven Python code. In my experience, Python “notebooks” are extremely useful for getting up and running quickly, but can become tedious if you develop a reliable piece of code that you wish to run repeatedly. Since the code from one format often cannot simply be copied and pasted to the other, both are provided. As you follow along with the exercises, you will be able to use the format you prefer, and have the option of beginning to observe the differences in creating code for each.

Although Python is the primary tool used in this book, effective data wrangling and analysis is made easier through the smart use of a range of tools, from text editors (the programs in which you will actually write your code) to spreadsheet programs. Because of this, there are occasional exercises in this book that rely on other free and/or open source tools (we’ll address what “open source” means in Chapter 1) besides Python. Wherever these are introduced, I will offer some context as to why that tool has been chosen, along with sufficient instructions to complete the example task. In many cases, these other tools, like Python, have active user communities and published resources available, and links will be provided to those as well.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Monospaced

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Monospaced bold

	
Shows commands or other text that should be typed literally by the user.

	Monospaced italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at (to come).

If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Practical Python Data Wrangling and Data Quality by Susan McGregor (O’Reilly). Copyright 2021 Susan McGregor, 978-1-492-09150-9.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at (to come).

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Introduction to Data Wrangling
and Data Quality

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

These days it seems like data is the answer to everything: we use the data in product and restaurant reviews to decide what to buy and where to eat; companies use the data about what we read, click and watch to decide what content to produce and which advertisements to show; recruiters use data to decide which applicants get job interviews; the government uses data to decide everything from how to allocate highway funding to where your child goes to school. Data—whether it’s a basic table of numbers or the foundation of an “artificial intelligence” system—permeates our lives. The pervasive impact that data has on our experiences and opportunities every day is precisely why data wrangling is — and will continue to be — an essential skill for anyone interested in understanding and influencing how data-driven systems operate. Likewise, the ability to assess — and even improve — data quality is indispensible for anyone interested in making these sometimes (deeply) flawed systems work better.

Yet because both the terms data wrangling and data quality will mean different things to different people, we’ll begin this chapter with a brief overview the three main topics addressed in this book: data wrangling, data quality, and the Python programming language. The goal of this overview is to give you a sense of my approach to these topics, partly so you can determine if this book is right for you. After that, we’ll spend some time some time on the necessary logistics of how to access and configure the software tools and other resources you’ll need to follow along with and complete the exercises in this book. Though all of the resources that this book will reference are free to use, many programming books and tutorials take for granted that readers will be coding on (often quite expensive) computers that they own. Since I really believe that anyone who wants to can learn to wrangle data with Python, however, I wanted to make sure that the material in this book can work for you even if you don’t have access to a full-featured computer of your own. To help ensure this, all of the solutions you’ll find here and in the following chapters were written and tested on a Chromebook, as well as on using free, online-only tools that a shared computer (for example, at a library), using free, online-only tools and accounts. I hope that by illustrating how accessible not just the knowledge, but the tools, of data wrangling can be will encourage you to explore this exciting and empowering practice.

What is Data Wrangling?

Data wrangling is the process of taking “raw” or “found” data, and transforming it into something that can be used to generate insight and meaning. Driving every substantive data wrangling effort is a question: something about the world you want to investigate or learn more about. Of course, if you came to this book because you’re really excited about learning to program, then data wrangling can be a great way to get started, but let me urge you now not to try to skip straight to the programming without engaging the data quality processes in the chapters ahead. Because as much as data wrangling may benefit from programming skills, it is about much more than simply learning how to access and manipulate data; it’s about making judgements, inferences and selections. As this book will illustrate, most data that is readily available is not especially good quality, so there’s no way to do data wrangling without making choices that will influence the substance of the resulting data. To attempt data wrangling without considering data quality is like trying drive a car without steering: you may get somewhere — and fast! — but it’s probably nowhere you want to be. If you’re going to spend time wrangling and analyzing data, you want to try to make sure it’s at least likely to be worth the effort.

Just as importantly, though, there’s no better way to learn a new skill than to connect it to something you genuinely want to get “right”, because that personal interest is what will carry you through the inevitable moments of frustration. This doesn’t mean that question you choose has to be something of global importance. It can be a question about your favorite video games, bands or types of tea. It can be a question about your school, your neighborhood or your social media life. It can be a question about economics, politics, faith or money. It just has to be something that you genuinely care about.

Once you have your question in hand, you’re ready to begin the data wrangling process. While the specific steps may need adjusting (or repeating) depending on your particular project, in principle data wrangling involves some or all of the following steps:

	
Locating or collecting data

	
Reviewing the data

	
“Cleaning”, standardizing, transforming, and/or augmenting the data

	
Analyzing the data

	
Visualizing the data

	
Communicating the data

The time and effort required for each of these steps, of course, can vary considerably: if you’re looking to speed up a data wrangling task you already do for work, you may already have a data set in hand and know basically what it contains. Then again, if you’re trying to answer a question about city spending in your community, collecting the data may be the most challenging part of your project.

Also know that, despite my having numbered the list above, the data wrangling process is really more of a cycle than it is a linear set of steps. More often than not, you’ll need to revisit earlier steps as you learn more about the meaning and context of the data you’re working with. For example, as you analyze a large data set, you may come across suprising patterns or values that cause you to question assumptions you may have made about it during the “review” step. This will almost always mean seeking out more information — either from the original data source or completely new ones — in order to understand what is really happening before you can move on with your analysis or visualization. Finally, while I haven’t explicitly included it above, it would be a little more accurate to start each of the above steps with Research and. While the “wrangling” parts of our work will focus largely on the data set(s) we have in front of us, the “quality” part is almost all about research and context, and both of these are integral to every stage of the data wrangling process.

If this all seems a little overwhelming right now—don’t worry! The examples in this book are built around real data sets, and as you follow along with coding and quality-assessment processes, this will all begin to feel much more organic. And if you’re working through your own data wrangling project and start to feel a little lost, just keep remindnig yourself of the question you are trying to answer. Not only will that remind you why you’re bothering to learn about all the minutaie of data formats and API access keysfoonote:[We’ll cover these in detail in Chapter 4 and Chapter 5, respectively], it will also almost always lead you intuitively to the next “step” in the wrangling process — whether that means visualizing your data, or doing just a little more research in order to improve its context and quality.

What is data “quality”?

There is plenty of data out in the world, and plenty of ways to access and collect it. But all data is not created equal. Understanding data quality is an essential part of data wrangling because any data-driven insight can only be as good as the data it was built upon1. So if you’re trying to use data to understand something meaningful about the world, you have to first make sure that the data you have accurately reflects that world. As we’ll see in later chapters (Chapter 3 and Chapter 6, in particular), the work of improving data quality is almost never as clear-cut as the often tidy-looking, neatly-labeled rows and columns of data you’ll be working with.

That’s because — despite the use of terms like “machine learning” and “artificial intelligence" — the only thing that computational tools can do is follow the directions that have been given to them, using the data they have been provided. And even the most complex, sophisticated, and abstract data is irrevocably human in its substance, because it is the result of human decisions about what to measure and how. Moreover, even today’s most advanced computer technologies make “predictions” and “decisions” via what amounts to large-scale pattern-matching — patterns that exist in the particular selections of data that the humans “training” them provide. Computers do not have original ideas or make creative leaps; they are fundamentally bad at many tasks (like explaining the “gist” of an argument, or the plot of a story) that humans find intuitive. On the other hand, computers excel at performing repetitive calculations, very very fast, without getting bored, tired or distracted. In other words, while computers are a fantastic complement to human judgment and intelligence, they can only amplify it — not substitute for it.

What this means is that it is up to the humans involved in data collection, acquisition and analysis to ensure its quality, so that the outputs of our data work actually means something. While we will go into significant detail around data quality in Chapter 3, I do want to introduce two distinct (though equally important) axes for evaluating data quality: (1) the integrity of the data itself and (2) the “fit” or appropriateness of the data with respect to a particular question or problem:

Data integrity

For our purposes, the integrity of a data set is evaluated using the data values and descriptors that make it up. If it our data set includes measurements over time, for example, have they been recorded at consistent intervals, or sporadically? Do the values represent direct individual readings, or are only averages available? Is there a data dictionary that provides details about how the data was collected, recorded, or should be interpreted — for example, by providing relevant units? In general, data that is complete, atomic, and well-annotated — among other things — we would consider higher integrity because these characteristics make it possible to do a wider range of more conclusive analyses. In most cases, however, you’ll find that a given data set is lacking on any number of data integrity dimensions, meaning that it’s up to you to try to understand its limitations and improve it where you can. While this often means augmenting a given data set by finding others that can complement, contextualize or extend it, it almost always means looking beyond “data” of any kind and reaching out to experts: the people who designed the data, collected it, have worked with it previously, or know a lot about the subject area your data is supposed to address.

Data “fit”

Even a dataset that has excellent integrity, however, cannot be considered high-quality unless it is also appropriate for your particular purpose. Let’s say, for example, that you were interested in knowing which Citibike station has had the most bikes rented and returned in a given 24-hour period. Although the real-time Citibike API 2 contains high-integrity data, it’s poorly suited to answering the particular question of which Citibike station has seen the greatest turnover on a given date. In this case, you would be much better off trying to answer this question using the CitiBike “trip history” data 3.

Of course, it’s rare that a data fit problem can be solved so simply; often we have to do a significant amount of integrity work before we can know with confidence that our data set is actually fit for our selected question or project. There’s no way to bypass this time investment, however: short cuts when it comes to either data integrity or data fit will inevitably compromise the quality and relevance of your data wrangling work overall. In fact, many of the harms caused by today’s computational systems are related to problems of data fit. For example, using data that describes one phenomenon (such as income) to try to answer questions about a potentially related — but fundamentally different — phenomenon (like educational attainment), can lead to distorted conclusions about what is happening in the world, with sometimes devastating consequences. In some instances, of course, using such proxy measures is unavoidable. An initial medical diagnosis based on a patient’s observable symptoms may be required to provide emergency treatment until the results of a more definitive test are available. While such substitions are sometimes acceptable at the individual level, however, the gap between any proxy measure and the real phenomenon multiplies with the scale of the data and the system it is used to power. When this happens, we end up with a massively distorted view of the very reality our data wrangling and analysis hoped to illuminate. Fortunately, there are a number of ways to protect against these types of errors, as we’ll explore further in Chapter 3.

Unpacking COMPAS

One high-profile example of the harms that can be caused by using bad proxy data in a large scale computational system was demonstrated a number of years ago by a group of journalists at ProPublica, a non-profit investigative news organization.4 In the series “Machine Bias”, reporters examined discrepancies in the way that an algorithmic tooled called the Correctional Offender Management Profiling for Alternative Sanctions, or COMPAS, made re-offense predictions for Black and white defendants who were up for parole. In general, Black defendants with a similar criminal history to white defendants were given higher risk scores—in large part because the data used to predict — or “model" — their risk of reoffense treated arrest rates as a proxy for crime rates. But because patterns of arrest were already biased against Black Americans (i.e. Black people were being arrested for “crimes" — like walking to work — that white people were not being arrested for), the risk assessments the tool generated were biased, too.5

Unfortunately, similar examples of how poor data “fit” can create massive harms are not hard to come by. That’s why assessing your data for both integrity and fit is such an essential part of the data wrangling process: if the data you use is inappropriate, your work may not be just wrong, but actively harmful.

Why Python?

If you’re reading this book, chances are you’ve already heard of the Python programming language, and may even pretty be certain that it’s the right tool for starting — or expanding — your work on data wrangling. Even if that’s the case, I think it’s worth briefly reviewing what makes Python especially suited to the type of data wrangling and quality work that we’ll do in this book. Of course if you haven’t heard of Python before, consider this an introduction to what makes it one of the most popular and powerful programming languages in use today.

Versatility

Perhaps one of the greatest strengths of Python as a general progamming language is its versatility: it can be easily used to access APIs, scrape data from the web, perform statistical analyses and generate meaningful visualizations. While many other programming languages do some of these things, few do all of them as well as Python.

Accessibility

One of Python creator Guido van Rossum’s goal in designing the language was to make “code that is as understandable as plain English” 6; Python uses English keywords where many other scripting languages (like R and JavaScript) use punctuation. For English-language readers, then, Python may be both easier and more intuitive to learn than other scripting languages.

Readability

One of the core tenets of the Python programming language is that “readability counts” 7. In most programming languages, the visual layout of the code is irrelevant to how it functions — as long as the “punctuation” is correct, the computer will understand it. Python, by contrast, is what’s known as “whitespace-dependent”: without proper tab and/or space characters indenting the code, it actually won’t do anything except produce a bunch of erros. While this can take some getting used to, it enforces a level of readability in Python programs that can make reading other people’s code (or, more likely, your own code after a little time has passed), much less difficult. Another aspect of readability is commenting and otherwise documenting your work, which I’ll address in more detail in “Documenting, saving and versioning your work”.

Community

Python has a very large and active community of users, many of whom help create and maintain “libraries” of code that enormously expand what you can quickly accomplish with your own Python code. For example, Python has popular and well-developed code libraries like NumPy and Pandas that can help you clean and analyze data, as well as others like Matplotlib and Seaborn to create visualizations. There are even powerful libraries like Scikit-Learn and NLTK that can do the heavy lifting of machine learning and natural language processing. Once you have a handle on the essentials of data wrangling with Python that we’ll cover in this book (in which will use many of the libraries just mentioned), you’ll probably find yourself eager to explore what’s possible with many of these libraries and just a few lines of code. Fortunately, the same folks who write the code for these libraries often write blog posts, make video tutorials and share code samples that you can use to expand your Python work.

Similarly, the size and enthusiasm of the Python community means that finding answers to both common (and even not-so-common) problems and errors that you may encounter often have detailed solutions posted online. As a result, troubleshooting Python code can be easier than for more specialized languages with a smaller community of users.

Python Alternatives

	R

	
The R programming language is probably Python’s nearest competitor for data work, and many teams and organizations rely on R for its combination of data wrangling, advanced statistical modeling, and visualization capabilities. At the same time, R lacks some of the accessibility and readability of Python.

	SQL

	
Simple Query Language is just that: a language designed to “slice and dice” database data. While SQL can be powerful and useful, it requires data to exist in a particular format to be useful, and is therefore of limited use for “wrangling” data in the first place.

	Scala

	
Although Scala is well-suited to dealing with large data sets, it has a much steeper learning curve than Python, and a much smaller user community. The same is true of Julia.

	Java, C/C++

	
While these have large user communities and are very versatile, they lack the natural-language and readability bent of Python, and are oriented more towards building software than doing data wrangling and analysis.

	JavaScript

	
In a web-based environment JavaScript is invaluable, and many popular visualization tools (e.g. D3) are built using variations of JavaScript. At the same time, JavaScript does not have the same breadth of data analysis features as Python, and is generally slower.

Getting started with Python

In order to follow along with the exercises in this book, you’ll need to get familiar with the tools that will help you write and run your Python code; you’ll also want a system for backing up and documenting your code so that don’t lose valuable work to an errant keystroke8, and so that you can easily remind yourself what all that great code can do, even when you haven’t looked at it for a while. Because there are multiple toolsets for solving these problems, I recommend that you start by reading through the following sections, and then choosing the approach (or combination of approaches) that works best for your preferences and resources. At a high level, the key decisions will be whether you want to work “online only" — that is, with tools and services you access via the internet — or whether you can and want to be able to do Python work without an internet connection, which requires installing these tools on a device that you control.

Writing and “Running” Python

We all write differently depending on context: you probably use a different style and structure when writing an email than when sending a text message; for a job application cover letter you may use a whole different tone entirely. I know I also use different tools to write depending on on what I need to accomplish: I use online documents when I need to write and edit collaboratively with co-workers and colleagues, but I prefer to write books and essays in super-plain text editor that lives on my device. More particular document formats, like PDFs, are typically used for contracts and other important documents that we don’t want others to be able to easily change.

Just like natural human languages, Python can be written in different types of documents, each of which supports slightly different styles of writing, testing and running your code. The primary types of Python documents are notebooks and standalone files. While either type of document can be used for data wrangling, analysis and visualization, they have slightly different strengths and requirements. Since it takes some tweaking to convert one format to the other, I’ve made the exercises in this book available in both formats. I did this not only to give you the flexibility of choosing the document type that you find easiest or most useful, but also so that you can compare them and see for yourself how the translation process affects the code. Here’s a brief overview of these document types to help you make an initial choice:

	Notebooks

	
A Python notebook is an interactive document used to run chunks of code, using a web browser window as an interface. In this book, we’ll be using a tool called “Jupyter” to create, edit and execute our Python notebooks9. A key advantage of using notebooks for Python programming is that they offer a simple way to write, run and document your Python code all in one place. You may prefer notebooks if you’re looking for a more “point and click” programming experience, or if working entirely online is important to you. In fact, the same Python notebooks can be used on your local device or in an online coding environment with minimal changes — meaning that this option may be right for you if you a) don’t have access to a device where you’re able to install software or b) you can install software, but you also want to be able to work on your code when you don’t have your machine with you.

	Standalone files

	
A standalone Python file is really any plain-text file that contains Python code. You can create such standalone Python files using any basic text editor, though I strongly recommend that you use one specifically designed for working with code, like Atom (I’ll walk through setting this up in “Installing Python, Jupyter Notebook and a Code Editor”). While the software you choose for writing and editing your code is up to you, in general the only place you’ll be able to run these standalone Python files is on a physical device (like a computer or phone) that has the Python programming language installed. You (and your computer) will be able to recognize standalone Python files by their .py file extension. Although they might seem more restrictive at first, standalone Python files can have some advantages. You don’t need an internet connection to run standalone files, and they don’t require you to upload your data to the cloud. While both of those things are also true of locally-run notebooks, you also don’t have to wait for any software to start up when running standalone files: once you have Python installed, you can run standalone Python files instantly from the command line (more on this shortly) — this is especially useful if you have a Python script that you need to run on a regular basis. And while notebooks’ ability to run bits of code independently of one another can make them feel a bit more approachable, the fact that standalone Python files also always run your code “from scratch” can help you avoid the errors or unpredictable results that can occur if you run bits of notebook code out of order.

Of course, you don’t have to choose just one or the other; many people find that notebooks are especially useful for exploring or explaining data (thanks to their interactive and reader-friendly format), while standalone files are better-suited for accessing, transforming and cleaning data (since standalone files can more quickly and easily run the same code on different data sets, for example). Perhaps the bigger question is whether you want to work online or locally: If you don’t have a device where you can install Python, you’ll need to work in cloud-based notebooks; otherwise you can use choose to use either (or both!) notebooks or standalone files on your device. As noted previously, notebooks that can be used either online or locally, as well as standalone Python files, are available for all the exercises in this book, in order to give you as much flexibility as possible, and also so you can compare how the same tasks get done in each case!

Working with Python on your own device

In order to understand and run Python code, you’ll need to install it on your device. Depending on your device, you there may be a downloadable installation file available, or you may need to use a text-based interface (which you’ll need to use at some point if you’re using Python on your device) called the command line. Either way, the goal is to get you up and running with at least Python 3.910. Once you’ve got Python up and running, you can move on to installing Jupyter notebook and/or a code editor (instructions included here are for Atom). If you’re planning to work only in the cloud, you can skip right to “Working with Python online” for information on how to get started.

Getting started with the command line

If you plan to use Python locally on your device, you’ll need to learn to use the command line (also sometimes referred to as the terminal or command prompt), which is a text-based way of providing instruction to your computer. While in principle you can do anything in the command line that you can do with a mouse, it’s particularly efficient for installing code and software (especially the Python libraries that we’ll be using throughout the book), and backing up and running code. While it may take a little getting used to, the command line is often faster and more straightforward for many programming-related tasks than using a mouse. That said, I’ll provide instructions for using both the command line and your mouse where both are possible, and you should feel free to whichever you find more convenient for a particular task.

To get started, let’s open up a command line (sometimes also called the terminal) interface and use it to create a folder for our data wrangling work. If you’re on a Chromebook, Mac, or Linux machine, search for “terminal” and select the application called “Terminal”; on a PC, search for “cmd” and choose the program called “Command Prompt.”

[image: chrome terminal search]

[image: win10 cmd search]

Tip

To enable Linux on your Chromebook, just go to your ChromeOS settings (click the gear icon in the start menu, or search “settings” in the Launcher). Towards the bottom of the left-hand menu you’ll see a small penguin icon labeled Linux (Beta). Click this and then follow the directions to enable Linux on your machine. You may need to restart before you can continue.

Once you have a terminal open, it’s time to make a new folder! To help you get started, here is a quick glossary of useful command-line terms:

	ls

	
The “list” command shows files and folder in current location. This is a text-based version of what you would see in a finder window.

	cd foldername

	
The “change directory” command moves you from the current location into foldername, as long as foldername is shown when you use the ls command. This is equivalent to “double-clicking” on a folder within a finder window using your mouse.

	cd ../

	
“Change directory” once again, but the ../ moves your current position to the containing folder or location.

	cd ~/

	
“Change directory”, but the ~/ returns you to your “home” folder.

	mkdir foldername

	
“Make directory” with name foldername. This is equivalent to choosing New > Folder in the context menu with your mouse, and then naming the folder once its icon appears.

Tip

When using the command line, you never actually have to type out the full name of a file or folder; think of it more like search, and just start by typing the first few characters of the (admittedy case-sensitive) name. Once you’ve done that, hit the tab key, and the name will autocomplete as much as possible.

For example, if you have two files in a folder, one called xls_parsing.py and one called xlsx_parsing.py (as you will when you’re finished with Chapter 4), and you wanted to run the latter, you can type:

python xl

And then hit tab, which will cause the command line to autocomplete to

python xls

At this point, since the two possible file names diverge, you’ll need to supply either an x or an _, after which hitting tab one more time will complete the rest of the filename, and you’re good to go!

Any time you open a new terminal window on your device, you’ll be in what’s known as your “home” folder. On Macs, PCs and Linux machines this is often the “User” folder, which is not the same as the the “desktop” area you’re shown when you first log in. This can be a little disorienting a first, since the files and folders you’ll see when you first run ls in a terminal window will probably be unfamiliar. Don’t worry; just point your terminal at your regular desktop by typing:

cd ~/Desktop

Into the terminal, and hitting enter or return (for efficiency’s sake, I’ll just refer to this as the enter key from here on out).

On Chromebooks, Python (and the other programs we’ll need) can only be run from inside the Linux files folder, so you can’t actually navigate to the “desktop” area, so all you have to do is open a terminal window.

Next, type the following command into your terminal window and hit enter:

mkdir data_wrangling

Did you see the folder appear? If so, congratulations on making your first folder in the command line! If not, double-check the text at the left of the command line prompt ($ on Chromebook, % on Mac, > on Windows). If you don’t see the word Desktop in there, run cd ~/Desktop and then try again.

Tip

Although most operating systems will let you do it, I strongly recommend that against using either spaces or any punctuation marks apart from the underscore character (_) in your folder and file names. As you’ll see firsthand in Chapter 2, both the command line and Python (along with most programming languages) rely on whitespace and punctuation as shorthand for specific functionality, which means these characters have to be “escaped" — usually by preceding them with some additional character, like a backslash (\) — if they are part of a file or folder name you want to access. In fact, you can’t even do this from the command line; if you were to type:

mkdir data wrangling

You’d just end up with two new folders: one called data and another called wrangling. If you really wanted to force it and you used your mouse to create a folder called data wrangling, moreover, to access it from from the command line, you’d need to type:

cd data\ wrangling/

Not impossible, of course, but more trouble than it’s worth. To avoid this hassle, it’s easier to just get in the habit of not using spaces or non-underscore punctuation when naming files, folders, and, soon, Python variables!

Now that you’ve gotten a little bit of practice with the command line, let’s see how it can help when installing and testing Python on your machine.

Installing Python, Jupyter Notebook and a Code Editor

To keep things simple, we’re going to use a software distribution manager called “Miniconda”, which will automatically install both Python and Jupyter Notebook; even if you don’t plan to use notebooks for your own coding, they’re popular enough that being able to view and run other people’s is useful, and it doesn’t take up that much additional space on your device. In addition to getting your Python and Jupyter Notebook tools up and running, nstalling Miniconda will also create a new command-line function called conda, which will give you a quick and easy way to keep both your Python and Jupyter Notebook installations up-to-date11. You can find more information about how to do these updates in [Link to Come].

If you’re planning to do most of your Python programming in a notebook, I also still recommend installing a code editor. Even if you never use them to write a single line of Python, code editors are indispensible for viewing, editing and even creating your own data files more effectively and efficiently than most devices’ built-in text-editing software. Most importantly, code editors do something called syntax highlighting, which is basically built-in grammar-checking for code and data. While that may not sound like much, the reality is that it will make your coding and debugging processes much faster and more reliable, because you’ll know (literally) where to look when there’s a problem. This combination of features makes a solid code editor one of the most important tools for both Python programming and general data wrangling.

In this book I’ll be using and referencing the Atom (https://atom.io/) code editor, which is free, multi-platform, and open-source. If you play around with the settings, you’ll find many ways to customize your coding environment to suit your needs. Where I reference the color of certain characters or bits of code in this book, they reflect the default “One Dark” theme in Atom, but use whatever settings work best for you.

Note

You’ll need a strong, stable internet connection and about 30-60 minutes in order to complete the setup and installation processes below. I also strongly recommend that you have your device plugged into a power source.

Chromebook

To install your suite of data wrangling tools on a Chromebook, the first thing you’ll need to know is whether your version of the ChromeOS operating system is 32-bit or 64-bit.

To find this information, open up your Chrome settings (click the gear icon in the start menu, or search “settings” in the Launcher), and then click on About Chrome OS at the lower left. Towards the top of the window, you’ll see the version number followed by either (32-bit) or (64-bit), as shown below:

[image: Chrome OS version detail]

Make a note of this information before continuing with your setup.

Installing Python and Jupyter Notebook

To get started, go to: https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links and download the Linux installer that matches the bit format of your ChromeOS version. Then, open your Downloads folder and drag the installer file (it will end in .sh) into your Linux files folder.

Next, open up a terminal window, run the ls command, and make sure that you see the Miniconda .sh file. If you do, run the following command (remember, you can just type the beginning of the file name and then hit the tab key, and it will autocomplete!):

bash _Miniconda_installation_filename_.sh

Follow the directions that appear in your Terminal window (accept the license and the conda init prompt) then close and reopen your terminal window. Next, you’ll need to run:

conda init

Then close and reopen your terminal window again so that you can install Jupyter Notebook with the following command:

conda install jupyter

Answer yes to the subsequent prompts, close your terminal one last time, and you’re all set!

Installing Atom

To install Atom on your Chromebook, you’ll need to download the .deb package from https://atom.io/ and save it in (or move it to) your “Linux files” folder.

To install the software using the terminal, open a terminal window and type:

sudo dpkg -i atom-amd64.deb

And hit `enter`12. Once the text has finished scrolling past and the command prompt (which ends with a $) is back, the installation is complete.

Alternatively, you can context-click on the .deb file in your Linux files folder and choose the “Install with Linux” option from the top of the context menu, then choose “Install” and “OK”. You should see a progress bar on the bottom right of your screen and get a notification when the installation is complete.

Whichever method you use, once the installation is finished, you should see the green Atom icon appear in your “Linux apps” bubble in the Launcher.

MacOS

You have two options when installing Miniconda on a Mac: you can use the terminal to install it using a .sh file, or you can install it by downloading and double-clicking the .pkg installer.

To get started, go to: https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links. If you want to do your installation with the terminal, download the Python 3.9 “bash” file that ends in .sh; if you prefer to use your mouse, download the .pkg file (You may see a notification from the operating system during the download process warning you that “This type of file can harm your computer”; choose “Keep”).

Whichever you method you select, open your Downloads folder and drag the file onto your Desktop.

If you want to try installing Miniconda using the terminal, start by opening a terminal window and using the cd command to point it to your Desktop:

cd ~/Desktop

Next, run the ls command, and make sure that you see the Miniconda .sh file in the resulting list. If you do, run the following command (remember, you can just type the beginning of the file name and then hit the tab key, and it will autocomplete!):

bash _Miniconda_installation_filename_.sh

Follow the directions that appear in your terminal window:

	
Use the spacebar to move through the license aggrement a full page at a time, and when you see (END) hit return

	
Type yes followed by return to accept the license agreement

	
Hit return to confirm the installation location, and type yes followed by return to accept the “conda init” prompt

Finally, close your terminal window.

If you would prefer to do the installation using your mouse, just double-click the .pkg file and follow the installation instructions.

Now that you have Miniconda installed, you need to open a new terminal window and type:

conda init

Then hit return'. Next, close and reopen your terminal window, and use the following command (followed by `return) to install Jupyter Notebook:

conda install jupyter

Answer yes to the subsequent prompts.

Installing Atom

To install Atom on a Mac, visit https://atom.io/ and click the large yellow “Download” button in order to download the installer.

Click on the atom-mac.zip file in your Downloads folder, and then drag the Atom application (which will have a green icon next to it) into your Applications folder (this may prompt you for your password).

Windows 10+

TKTKTK

Linux

Testing Your Setup

To make sure that both Python and Jupyter Notebook are working as expected, start by opening a terminal window and pointing it to the data_wrangling folder you created in “Getting started with the command line” by running the following command13:

cd ~/Desktop/data_wrangling

Then, run:

python --version

If you see something like:

Python 3.9.4

That means that Python was installed successfully.

Next, test out Jupyter Notebook by running:

jupyter notebook

If a browser window opens that looks something like the image in Figure 1-1, you’re all set and ready to go!

[image: Jupyter Notebook running in an empty folder]
Figure 1-1. Jupyter Notebook running in an empty folder

Working with Python online

If you want to skip the hassle of installing Python and code editor on your machine—and you plan to only use Python when you have a strong, consistent internet connection—working with Jupyter notebooks online through Google Colab is a great option. All you’ll need to get started is an unrestricted Google account (you can create a new one if you prefer — make sure you know your password!). If you have those elements in place, you’re ready to get wrangling with our “Hello World!” exercise!

Hello World!

Now that you’ve got your data wrangling tools in place, you’re ready to get started writing and running your first Python program. For this, we’ll bow to programming tradition and create a simple “Hello World” program; all it’s designed to do is print out the words “Hello World!” To get started, you’ll need a new file where you can write and save your code.

Using Atom to Create a Standalone Python File

Atom works just like any other text-editing program; you can launch it using your mouse or even using your terminal.

To launch it with your mouse, locate the program icon on your device.

	Chromebook

	
Inside the “Linux apps” applications bubble

	Mac

	
In “Applications” or in the “Launchpad” on Mac

	Windows

	
In the “start” menu or via search on Windows. If Atom doesn’t appear in your start menu or in search after installing it for the first time on Windows 10, this troubleshooting video may help: https://www.youtube.com/watch?v=N4liFqsK9nM]

Alternatively, you can open Atom from the terminal by simply running:

atom

The first time you open Atom, on a Chromebook, you’ll see a prompt that says “Choose password for new keyring.” Since we’ll just be using Atom for code and data editing, you can choose hit “Cancel” to close this prompt. On a Mac, you’ll see a warning that Atom was downloaded from the internet — you can also click past this prompt.

You should now see a screen similar to the one shown in Figure 1-2.

[image: Atom welcome screen]
Figure 1-2. Atom welcome screen

By default, when Atom launches it shows one or more “Welcome” tabs; you can just close these by clicking the x close button that appears to the right of the text when you hover over it with your mouse. This will move the untitled file towards the center of your screen (if you like, you can also collapse the Project panel on the left by hovering over its right edge until the < appears, and then clicking on that).

Before we start writing any code, let’s go ahead and save our file where we’ll know where to find it — in our data_wrangling folder! In the File menu select Save As... and save the file in your data_wrangling folder with the name HelloWorld.py.

Tip

When saving standalone Python files, it’s essential to make sure you add the .py extension. While your Python code will still work properly without it, having the correct extension will let Atom do the super-useful syntax highlighting I mentioned in “Installing Python, Jupyter Notebook and a Code Editor”. This feature will make it much easier to write your code correctly the first time!

Using Jupyter to Create a New Python Notebook

As you may have noticed when you tested Jupyter Notebook, in “Testing Your Setup”, the interface you’re using is actually just a regular browser window. Believe it or not, when you run the jupyter notebook command, your regular computer is actually creating a tiny web server on your device!14 Once that main Jupyter window is up and running, you can use your mouse to create new Python files and run other commands right in your web browser!

To get started, open a terminal window and use the command:

cd ~/Desktop/data_wrangling/

To move into the data_wrangling folder on your Desktop. Next, run:

jupyter notebook

You’ll see a lot of code run past on the terminal window, and your computer should automatically open a browser window that will show you an empty directory. Under New in the upper right hand corner, choose Python 3 to open a new notebook. Double-click the word Untitled in upper left-hand corner next to the Jupyter logo to name your file HelloWorld.

Warning

Because Jupyter Notebook is actually running a web server (yes, the same kind that runs regular websites) on your local computer, it’s essential that you leave that terminal window open and running for as long as you are interacting with your notebooks. If you close that particular terminal window, your notebooks will “crash.”

Fortunately, Jupyter notebooks autosave every 2 minutes, so even if something does crash, you probably won’t lose much work. That being said, you may want to minimize the terminal window you use to launch Jupyter, just to avoid accidentally closing it while you’re working.

Using Google Colab to Create a New Python Notebook

First, sign in to the Google account you want to use for your data wrangling work, then visit https://colab.research.google.com/. You’ll see something similar the overlay shown in Figure 1-3.

[image: Google Colab Landing Page (signed in)]
Figure 1-3. Google Colab Landing Page (signed in)

In the bottom right corner choose New notebook, then double-click at the top left to replace Untitled0.ipynb with HelloWorld.ipynb.15

Adding the Code

Now, we’ll write our first bit of code, which is designed to print out the words “Hello World”. No matter which type of Python file you’re using, the code is the same:

Example 1-1. HelloWorld

The code below should print "Hello World!"
print("Hello World!")

In a standalone file

All you need to do is copy (or type) the code in Example 1-1 into your file and save it!

In a notebook

When you create a new file, there is one empty “code cell” in it by default (in Jupyter Notebook, you’ll see In [] to the left of it; in Google Colab, there’s a little “play” button). Copy (or type) the code in Example 1-1 into that cell.

Running the Code

Now that we’ve added and saved our Python code in our file, we need to run it.

In a standalone file

Open a terminal window and move it into your data_wrangling folder using:

cd ~/Desktop/data_wrangling

Run the ls command and make sure you see your HelloWorld.py file listed in response. Finally, run:

python HelloWorld.py

You should see the words Hello World! print out on its own line, before the command prompt returns (signaling that the program has finished running).

In a notebook

Hit the “play” button to the left of the cell. You should see the words Hello World! print out beneath it.

If everything worked as expected — congratulations! You’ve now written your first bit of Python code!

Documenting, saving and versioning your work

Before we really dive into Python in Chapter 2, there are a few more more bits of preparation to do. I know these may seem tedious, making sure you’ve laid the groundwork for properly documenting your work will save you dozens of hours of effort and frustration. What’s more, carefully commenting, saving and versioning your code and is a crucial part of “bulletproofing” your data wrangling work. And while it’s not exactly enticing right now, pretty soon all of these steps will be second nature (I promise!), and you’ll see how much speed and efficiency it adds to your data work.

Documenting

You may have noticed that the first line you wrote in your code cell or Python file above didn’t show up in the output; the only thing that printed was Hello World!. That first line in our file was a comment, which provides a plain-language description of what the code on the following line(s) will do. Almost all programming languages (and some data types!) provide a way to include comments, precisely because they are an excellent way to provide anyone reading your code16 with the context and explanation necessary to understand what the specific program or section of code is doing.

Though many individual programmers tend to overlook (read: skip) the commenting process, it is probably the single most valuable programming habit you can develop. Not only will it save you — and anyone you collaborate with — an enormous amount of time and effort when you are looking through a Python program, commenting is also the single best way to really internalize what you’re learning about programming more generally. So even though the code samples provided with this book will already have comments, I strongly encourage you to rewrite them in your own words. This will help ensure that when future you returns to these files, they’ll contain a clear walkthrough of how you understood each particular coding challenge the first time.

The other essential documentation process for data wrangling is keeping what I call a “data diary”. Like a personal diary, your data diary can be written and organized however you like; the key thing is to capture what you are doing as you are doing it. Whether you’re clicking around the web looking for data, emailing experts, or designing a program, you need somewhere to keep track of everything, because you will forget.

The first entry in your “diary” for any data wrangling project should be the question you are trying to answer. Though it may be a challenge, try to write your question as a single sentence, and put it at the top of your data wrangling project diary. Why is it important that your question be a single sentence? Because the process of real data wrangling will inevitably lead you down enough “rabbit holes" — to answer a question about your data’s origin, for example, or to solve some programming problem — that it’s very easy to lose track of what you were originally trying to accomplish (and why). Once you have that question at the top of your data diary, though, you can always come back to it for a reminder.

Your data diary quesiton will also be invaluable for helping you make decisions about how to spend your time when data wrangling. For example, your data set may contain terms that are unfamiliar to you — should you try to track down the meaning of every single one? Yes, if doing so will help answer your question. If not, it may be time to move on to another task.

Of course, once you succeed in answering your question (and you will! at least in part), you’ll almost certainly find you have more questions you want to answer, or that you want to answer the same question again, but a week, a month, or a year later. Having your data diary on hand as a guide will help you do it much faster and more easily the next time. That’s not to say that it doesn’t take effort: in my experience, keeping a thorough data diary makes a project take about 40% longer to complete the first time around, but it makes doing it again (with a new version of the data set, for example) at least twice as fast. Having a data diary is also a valuable proof of work: if you’re ever for the process by which you got your data wrangling results, your data diary will have all the information that you (or anyone else) might need.

When it comes to how you keep your data diary, however, it’s really up to you. Some folks like to do a lot of fancy formatting; others just use a plain old text file. You may even want to use a real gosh-for-sure paper notebook! Whatever works for you is fine. While your data diary will be an invaluable reference when it comes time to communicate with others about your data (and the wrangling process), you should organize it however suits you best.

Saving

In addition to documenting your work carefully through comments and data diaries, you’ll want to make sure you save it regularly. Fortunately, the “saving” process is essentially built in to our workflow: notebooks autosave regularly, and in order to run the code in our standalone file, we have to save our changes first. Whether you rely on keyboard shortcuts (for me, hitting Ctrl+S is something of a nervous habit) or rely on mouse-driven menus, you’ll probably want to save your work every 10 minutes or so at least.

Tip

If you are using standalone files, one thing to get familiar with is how your code editor indicates that a file has unsaved changes. In Atom, for example, a small colored dot appears in the document tab just to the right of the file name when there are unsaved changes to the file. If the code you’re running isn’t behaving as you expect, double-check that you have it saved first, and then try again.

Versioning

Programming — like most writing — is an iterative process. My preferred approach has always been to write a little bit of code, test it out, and if it works? Write a little more and test again. One goal of this approach is to make it easier to backtrack in case I add something that accidentally “breaks” the code17

At the same time, it’s not always possible to guarantee that your code will be “working” when you have to step away from it — whether because the kids just got home, the study break is over or it’s time for bed — you always want to have a “safe” copy of your code that you can come back to. This is where version control comes in.

Getting Started With GitHub

Version control is basically just a system for backing up your code, both on your computer and in the cloud. In this book, we’ll be using GitHub for version control; it’ a hugely popular website where you can back up your code for free. Although there are many different ways to interact with GitHub, we’ll use the command line because it just takes a few quick commands to get your code safely tucked away until you’re ready to work on it again. To get started, you’ll need to create an account on GitHub.com install git on your computer, and then connect the accounts to one another:

	
Visit the GitHub website at github.com and choose “Sign Up”. Enter your preferred username (you may need to try a few to find one that’s available), your email address and your chosen password (make sure to write this down or save it to your password manager — you’ll need it soon!)

	
Once you’ve logged in, click the green “New” button on the left. This will bring you to the “Create a new repository” page.

	
Give your repository a name. This can be anything you like, but I suggest you make it something descriptive, like data_wrangling_exercises.

	
Select the “Private” radio button and select the checkbox next to the option that says “Add a README file.”

	
Click the green “Create repository” button.

[image: Creating a new repository (or 'repo') on GitHub.com]
Figure 1-4. Creating a new repository (or “repo”) on GitHub.com

You’ll now see a page that shows data_wrangling_exercises in large type, with a small pencil icon just above and to the right. Click on the pencil and you’ll be shown an editing interface where you can add text. This is your README file, which you can use to describe your repository. Since we’ll be using this repository (or “repo” for short) to store exercises from this book, you can just add a sentence to that effect, as shown in Figure 1-5.

[image: Updating the README file on GitHub.com]
Figure 1-5. Updating the README file on GitHub.com

Scroll to the bottom of the page and you’ll see your profile icon with an editable area to the right that says Commit changes, and below that some default text that says Update README.md. Replace that default text with a brief description of what you did; this is your “commit message.” For example, I wrote: Added description of repo contents, as shown in Figure 1-6. Then click the green Commit changes button.

[image: Adding a commit message to the README file changes.]
Figure 1-6. Adding a commit message to the README file changes.

When the screen refreshes, you’ll now see the text you added to the main file underneath the original data_wrangling_exercises title. Just above that, you should be able to see the text of your commit message, along with the approximate about of time that’s passed since you clicked Commit changes. If you click on the text that says 2 commits to the right of that, you’ll be brought to the “commit history”, which will show you all the changes (so far just two) that have been made to that repo, as shown in Figure 1-7. If you want to see how a commit changed a particular file, just click on the six-character code to the right, and you’ll see what’s know as a diff (for “difference”) view of the file. On the left is the file as it existed before the commit, and on the right is the version of the file in this commit.

[image: A brief commit history for our new repo.]
Figure 1-7. A brief commit history for our new repo

By this point, you may be wondering how this relates to backing up code, since all we’ve done is click some buttons and edit some text. Now that we’ve got a “repo” started on GitHub, we can create a copy of it on our local machine, and use the command line to make “commits” of working code and back them up to this website—all with just a few commands.

For Backing Up Local Files: Installing and Configuring git

Like Python itself, git is software that you install on your computer and run via the command line. Because version control is such an integral part of most coding processes, git comes built in on MacOS and Linux; instructions for Windows machines can be found at: https://github.com/git-guides/install-git and for ChromeBooks using the Termux app at: https://www.techrepublic.com/article/how-to-use-github-in-chrome-os/. Once you’ve completed the necessary steps, open up a terminal window and type:

git --version

Followed by ‘enter’. If anything prints, you’ve already got git! You’ll still, however, want to set your username and email (you can use any name and email you like) by running the following commands:

git config --global user.email your_email@domain.com
git config --global user.name your_username

Now that you have git installed and have added your name and email of choice to your local git account, you need to create an authentication key on your device so that when you backup your code, GitHub.com knows that it really came from you (and not just someone on the other side of the world who figured out your username and password)!

To do this, you’ll need to create what’s known as an ssh key — which is basically a long, unique string of characters stored on your device that GitHub.com can use to identify it. Creating these keys with the command line is easy: just open up a terminal window and type:

ssh-keygen -t rsa -b 4096 -C "_++your_email@domain.com++_"

When you see the prompt that says “Enter a file in which to save the key”, just press enter or return key, so it saves the default location (this will make it easier to find in a minute, when we want to add it to GitHub.com). When you see the prompt:

Enter passphrase (empty for no passphrase):

Definitely add a passphrase! And don’t make it the password to your GitHub.com (or any other) account. However, since you’ll need to supply this passphrase every time you want to back your code up to GitHub18, it needs to be memorable — try someting like the first three words of the second verse of your favorite song or poem, for example. As long as it’s at least 8-12 characters long, you’re set!

Once you’ve re-entered your passphrase for confirmation, you can copy your key to your GitHub account; this will let GitHub match the key on your account to the one on your device. To do this, start by clicking on your profile icon in the upper-right-hand corner of GitHub.com and choosing Settings from the dropdown menu. Then, on the left-hand navigation bar, click on the SSH and GPG Keys option. Towards the upper right, click on the green New SSH key button, as shown in Figure 1-8.

[image: SSH key landing page on GitHub.com.]
Figure 1-8. SSH key landing page on GitHub.com

To access the SSH key you just generated, you’ll need to navigate to the main user folder on your device (this is the folder that a new terminal window will open in) and set it to (temporarily) “show hidden files”:

	Chromebook

	
Your main user folder is just the one called Linux files. To show hidden files, just click the three stacked dots at the top right of any Files window and choose Show hidden files.

	Mac

	
Use the keyboard shortcut Command+Shift+. to show/hide hidden files.

	Windows

	
Open File Explorer on the taskbar, then choose View > Options > Change folder and search options. On the View tab in Advanced settings select Show hidden files, folders, and drives, then click OK.

Look for the folder (it actually is a folder!) called .ssh and click into it, then using a basic text editor (like Atom) open the file called id_rsa.pub. Using your keyboard to select and then copy everything in the file, paste it into the empty text area labeled Key, as shown in Figure 1-9.

[image: Uploading your SSH key to your GitHub.com account.]
Figure 1-9. Uploading your SSH key to your GitHub.com account

Finally, give this key a name so you know what device it’s associated with, and click the green Add new SSH key button — you will probably have to re-enter your main GitHub.com password. That’s it! Now you can go back to leaving hidden files hidden and finish connecting your GitHub account to your device and/or Colab account.

Tip

I recommend using keyboard shortcuts to copy/paste your SSH key because the exact string of characters (including spaces) actually matters; if you use a mouse something might get dragged around. If you paste in your key and GitHub throws an error, however, there are a couple of things to try:
 . Make sure you’re uploading the contents of the .pub file (you never really want to do anything with the other one)
 . Close the file (without saving) and try again

If you still have trouble, you can always just delete your whole .ssh folder and generate new keys — since they haven’t been added to anything yet, there’s no loss in just starting over!

Tying it all together

Our final step is to create a linked copy of our GitHub repo on our local computer. This is easily done via the git clone command:

	
Open a terminal window, and navigate to your data_wrangling folder

	
On GitHub.com, go to your_github_username`/data_wrangling_exercises`

	
Still on GitHub.com, click the green Code button towards the top of the page.

	
In the Clone with SSH popup, click the small clipboard icon next to the URL, as shown in Figure 1-10.

[image: Retrieving the repo's SSH location.]
Figure 1-10. Retrieving the repo’s SSH location

	
Back in your terminal window, type git clone and then paste the URL from your clipboard (or type it directly if needed). It will look something like:

git clone git@github.com:susanemcg/data_wrangling_exercises.git

	
You may get a prompt asking if you would like to add the destination to the list of “known hosts.” Type yes and hit return. If prompted, provide your SSH password.

	
When you see the done message, type ls. You should now see data_wrangling_exercises in your data_wrangling folder.

	
Finally, type cd data_wrangling_exercises and hit enter to move your terminal into the copied repo. Use the ls command to have the terminal show the README.md file.

Whew! That probably seems like a lot, but keep in mind that you only ever need to create an SSH key once, and you’ll only have to go through the cloning process once per repo (and all the exercises in this book can be done in the same repo).

Now let’s see how this all works in action by adding our Python file to our repo. In a finder window, navigate to your data_wrangling folder. Save and close your HelloWorld.py or HelloWorld.ipynb file, and drag it into the data_wrangling_exercises folder. Back in terminal, use the ls command to confirm that you see your Python file.

Our final step is to use the add command to let git know that we want our Python file to be part of what gets backed up to GitHub. We’ll then use a commit to save the current version, followed by the push command to actually upload it to GitHub.

To do this, we’re going to start with by running git status in the terminal window. This should generate a message that mentions “untracked files” and shows the name of your Python file. This is what we expected (but running git status is a nice way to confirm it). Now we’ll do the adding, committing, and pushing process described above. Note that the add commands produce output messages in the terminal;

	
In terminal, run git add your_python_filename

	
Then run git commit -m "Adding my Hello World Python file."" _++your_python_filename++_ . The `-m command indicates that the quoted text should be used as the commit message—the command line equivalent of what we entered on GitHub for our README update a few minutes ago.

	
Finally, run git push

The final command is what uploads your files to GitHub (note that this clearly will not work if you don’t have an available internet connection, but you can make commits anytime you like and run the push command whenever you have internet again). To confirm that everything worked correctly, reload your GitHub repo page, and you’ll see your Python file and commit message have been added!

For Backing Up Online Python Files: Connecting Google Colab to GitHub

If you’re doing all of your data wrangling online, you can connect Google Colab directly to your GitHub account. Make sure you’re logged in to your data wrangling Google account, and then visit https://colab.research.google.com/github/. In the pop-up window, it will ask you to sign into your GitHub account, and then to “Authorize Colaboratory”. Once you do so, you can select a GitHub repo from the drop-down menu on the left, and any Jupyter notebooks that are in that repo will appear below.

Note

The Google Colab view of your GitHub repos will only show you Jupyter notebooks (files that end in .ipynb). To see all files in a repo, you’ll need to visit it on the GitHub website.

Tying it all together

If you’re working on Google Colab, all you have to do to add a new file to your GitHub repo is to choose File --> Save a copy in GitHub. After automatically opening and closing a few pop-ups (this is Colab logging in to your GitHub account in the background), you’ll once again be able to choose the GitHub repo where you want to save your file from the dropdown at the top left. You can then choose to keep (or change) the notebook name, and add a commit message. If you leave the Include a link to Colaboratory checked in this window, then the file in GitHub will include a little Open in Colab' label, which you'll be able to click to automatically open the notebook in Colab from GitHub. Any notebooks that you don't explicitly back up in GitHub this way will be in your Google Drive, inside a folder called `Colab Notebooks. You can also find them by visiting https://colab.research.google.com/ and selecting the Google Drive tab at the top.

Folders, Directories, Repos — Oh My!

You may have noticed over the course of this chapter that there doesn’t seem to be much difference between “folders”, “directories” and even “repos”. In fact, the first two are just different names for the same thing, while the last specifically refers to folders where at least some of the files are tracked by git.

In other words, you can still interact with all of them using your mouse and regular finder windows, to add, remove, and open files. The only difference is that, in the case of a repo, you’ll need to use git commands like add and rm to keep everything in order — but we’ll address each of these situations as they arise in future chapters.

Conclusion

The goal of this chapter was to provide you with a general overview of what you can expect to learn in this book: what I mean by data wrangling, data quality, and why I think the Python programming language is the right tool for this work.

In addition, we covered all the setup you’ll need to get started (and keep going!) with Python for data wrangling, by offering instructions for setting up your choice of programming environment: working with “standalone” Python files or Jupyter notebooks on your own device, or using Google Colab to use Jupyter notebooks online. Finally, we covered how you can use version control (no matter which setup you have) in order to back up, share and document your work.

In the next chapter, we’ll move far beyond our “Hello World” program as we work through the foundations of the Python programming language, and even tackle our first data wrangling project: a day in the life of New York’s Citibike system.

1 In the world of computing, this is often expressed as “garbage in/garbage out”
2 http://gbfs.citibikenyc.com/gbfs/gbfs.json
3 https://s3.amazonaws.com/tripdata/index.html
4 Disclosure: Many ProPublica staffers, including the lead reporter on this series, are former colleagues of mine.
5 The “Machine Bias” series generated substantial debate in the academic community, where some took issue with ProPublica’s definition of “bias.” Much more importantly, however, the controversy spawned an entirely new area of academic research: fairness and transparency in machine learning and intelligence.
6 https://en.wikipedia.org/wiki/Guido_van_Rossum#Python
7 https://en.wikipedia.org/wiki/Zen_of_Python
8 Remember that even a misplaced space character can cause problems in Python
9 This same software can also be used to create notebooks in R and other scripting languages
10 The numbers here are called version numbers, and they increase sequentially as the Python language is changed and upgraded over time. The first number (3) indicates the “major” version, and the second number (9) indicates the “minor” version. Unlike regular decimals, it’s possible for the minor version to be higher than 9, so in the future you might encounter a Python 3.12.
11 Miniconda is a smaller version of the popular “Anaconda” software, but since the latter installs the R programming language and a number of other items we won’t need, we’ll use Miniconda to save space on our device.
12 If you have a 32-bit Chromebook, the filename might be slightly different.
13 Unless otherwise noted, all terminal commands should be followed by hitting enter or return.
14 Don’t worry, it’s not visible on the internet!
15 Early versions of Jupyter Notebook were knows as “iPythonNotebook”, which is where the .ipynb file extension comes from.
16 Especially “future you!”
17 Meaning that I no longer get the output I expect, or that I get errors and no output at all!
18 Depending on your device, you can save this password to your “keychain.” For more information see: https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/working-with-ssh-key-passphrases

Chapter 2. Introduction to Python

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

Can you read this? If so, I have good news for you: you won’t have any trouble learning to program. Why? Because computer programming languages in general — and Python in particular — are much less complex than natural human languages. Programming languages are designed by humans to be read, for the most part, by computers, so they have simpler grammar and far fewer “parts of speech” than natural languages. So if you feel reasonably comfortable reading English — a language notorious for its large vocabulary and irregular spellings and pronunciation — rest assured that learning the fundamentals of Python is well within your reach.

By the end of this chapter, you’ll have all the Python skills you need to begin doing basic data wrangling with the common data formats that we’ll cover in Chapter 4. To get to that point, we’ll start by doing some basic coding exercises that cover the following:

	
essential Python “parts of speech” and its basic grammar/syntax

	
understanding how the computer reads and interprets your Python code

	
how to use code “recipes” that are built by others (and yourself!) to quickly expand what your own code can do

Throughout this chapter, you’ll find code snippets that illustrate each concept, which are also collected in the accompanying Jupyter notebooks and standalone Python files on GitHub; these can be pulled into Google Colab or downloaded and run on a computer. While these files will let you see this chapter’s code in action, however, I strongly suggest that you create a new Colab/Jupyter notebook or standalone Python file and practice writing, running and commenting this code for yourself (for a refresher on how to do this, see “Hello World!”). While you might think this is silly, there is actually nothing more useful for building your data wrangling skills and confidence than setting up a Python file “from scratch” and then seeing code you wrote yourself make the computer do what you want — even if you are “just” retyping it from another file. Yes, you will encounter more hiccups this way, but that’s sort of the point: doing good data wrangling is not really about learning to do anything “right,” it’s about learning how to recover when things go wrong. Giving yourself room to make little mistakes early on (and learning how to recognize and fix them), is how you’ll truly make progress as both a data wrangler and programmer. You’ll never get that experience if all you do is run already-working code.

Because these little mistakes are so important, I’ve included some “Fast Forward” sections in this chapter, which will offer you ways to take the code examples I’ve provided one step further — which often involves intentionally “breaking” it. By the end of this chapter, you’ll be ready to combine the basics we’ve covered into a full-fledged data wrangling program that relies on real-world data. For that, example, I’ll also include some explicit reminders about the kinds of things you’ll want to include in your data diary, when you’ll want to back up your code to GitHub and so on, so that you can begin to get really comfortable with those processes and also start to develop a feel for when you’ll want to take those steps during your own data wrangling projects.

Now that you know where we’re headed — let’s get started!

The Programming “Parts of Speech”

Different human languages use different vocabularies and syntax structures, but there many fundamental concepts that they typically share. For example, let’s take a look at the following two sentences:

My name is Susan. // English

Je m'appelle Susan. // French

Both of these sentences express essentially the same thing: they state what my name is. And though each language uses different words and slightly different grammatical structures, they both include parts of speech like subjects, objects, verbs, and modifiers. They also both follow similar grammar and syntax rules, in that they organize words and ideas in structures like sentences, paragraphs and so on.

Many programming languages also share key structural and organizational elements that roughly parallel those found in natural languages. To get a better idea of how this works, let’s start in the same way that we might when learning a new human language: by exploring programming languages’ “parts of speech.”

Nouns ≈ Variables

Example 2-1.

>>>>>>> master

	
number

	
string

	
list

	
dict

	
Boolean

As with human languages, there is a lot of overlap in types of variables that different programming languages support: what in Python we call lists are known as arrays in JavaScript or C, for example; JavaScript objects, on the other hand, are officially known as maps (or dictionaries) in Python. 1

Having read the above, you can probably already guess what at least some of these data types will look like. The good news is that, unlike nouns in the real world, every data type in Python can be reliably identified by its formatting and punctuation — so there’s no need to worry that you’ll mix up your dicts and your lists, as long as you take the time to look closely at the symbols that surround your data.

To get a sense of the unique punctuation structure of each data type, take a look at Example 2-2. In particular, make sure you open or make a copy of this code in your code editor or notebook, so you can see the syntax highlighting in action. Numbers should be a different color than strings, for example, and the brackets, braces and comments (on the lines that begin with a #), should all be another color as well:

Example 2-2. parts_of_speech.py

 # A number is just digits
 25

 # A string is anything surrounded by matching quotation marks
 "Hello World"

 # A list is surrounded by square brackets, with commas between items
 # Note that in Python, the first item in a list is considered to be
 # in position `0`, the next in position `1` and so on
 ["this","is",1,"list"]

 # An dict is a set of key:value pairs, separated by commas and surrounded
 # by curly braces
 {"title":"Practical Python for Data Wrangling and Data Quality",
 "format": "book",
 "author": "Susan E. McGregor"
 }

 # A Boolean is a data type that has only two values, true and false.
 True

Of course, this list is far from exhaustive; just as human languages support “complex nouns” (like “haircut” and “bedroom”), it is possible to build more complex data types in programming languages as well. As you’ll soon see, however, there’s quite a lot that we can get done even with just this handful of basic types.

In the real world we also often give names to the many unique instances of “people, places and things” in our lives, in to reference and communicate about them more easily. We do this in programming, too, and for exactly the same reason: naming our variables let’s us reference and modify specific pieces of data in a way the computer can understand. To see how this works, let’s try translating a simple English sentence into Python code:

The author is Susan E. McGregor

After reading this sentence, you will associate the name “Susan E. McGregor” with the label “author”. If someone asks you who wrote this book, you will (hopefully) remember this and say “Susan E. McGregor”. The equivalent “sentence” in Python code is shown in Example 2-3:

Example 2-3. Naming a Python variable

author = "Susan E. McGregor"

This code tells the computer to set aside a box in memory, label it author, and then put the string "Susan E. McGregor" into that box. Later on in our program, if we asked the computer about the author variable, it would tell us that it contains the string "Susan E. McGregor", as shown in Example 2-4:

Example 2-4. Printing the contents of a Python variable

create a variable named author, set its contents to "Susan E. McGregor"
author = "Susan E. McGregor"

confirm that the computer "remembers" what's in the `author` variable
print(author)

===== What’s in a Name?

In the example above, I chose to name my variable author, but there is nothing magic about that choice. In principle, you can name variables almost anything you want---the only “hard-and-fast” rules are that variable names cannot:

	
Begin with a digit

	
Contain punctuation marks other than underscores (_)

	
Be “reserved” words or “keywords” (like Number or Boolean, for example)

For example, I could just as easily have called the variable in Example 2-4 nyc_resident or even fuzzy_pink_bunny. What matters most is that you, as the programmer, follow the few restrictions listed above — and that you use exactly the same variable name when trying to access its contents later (capitalization counts!). For example, create a new Python file containing the code in Example 2-5, and then run it to see what results you get:

Example 2-5. Experimenting with variable names

create a variable named nyc_resident, set its contents to "Susan E. McGregor"
nyc_resident = "Susan E. McGregor"

confirm that the computer "remembers" what's in the `nyc_resident` variable
print(nyc_resident)

create a variable named fuzzyPinkBunny, set its contents to "Susan E. McGregor"
fuzzyPinkBunny = "Susan E. McGregor"

confirm that the computer "remembers" what's in the `fuzzyPinkBunny` variable
print(fuzzyPinkBunny)

but correct capitalization matters!
the following line will produce an error
print(fuzzypinkbunny)

While all of the examples used in Example 2-5 are legitimate variable names, however, not all of them are especially good variable names. As we’ll see throughout this book, writing good code — like any other kind of writing — is about more than just writing code that “works;” it’s also about how useful and intelligible that code is to both computers and people. Because of this, I consider naming variables well an essential part of good programming. In practice, good variable names are:

	
descriptive

	
unique (within a given file or program)

	
readable

Because achieving the first two properties often requires using more than one word, programmers typically use one of two stylistic conventions to help ensure that their variable names also remain readable, both of which are shoiwn in Example 2-5. One approach is to add underscores (_) between words (e.g. nyc_residents), or using “camel case”, in which the first letter of every word (except the first) is capitalized (e.g. fuzzyPinkBunny). In general, you should use one style and stick to it, though your code will work fine (and mostly meet the readability criteria) even if you mix them together. In this book, we’ll mostly use underscores, which also happen to be considered more “Pythonic.”

==== Verbs ≈ Functions

In the English language, verbs are often described as “actions"' or “states of being.” We’ve already seen a programming language equivalent of the latter: the equals sign (=) and the print() function used in the examples above. In English, we use forms of the verb “to be” to describe what something is; in Python (and many other programming languages) the value of a variable is whatever appears on the right-hand side of the equals sign. This is why the equals sign is also sometimes described as the assignment operator.

In programming, the equivalent of “action verbs” are functions. In Python and many other programming languages, there are built-in functions, which represents tasks — like printing output via the print() function — that the language “just knows” how to do. While similar, methods are special functions that are designed to work with a particular data type and need to be “called on” an example of that data type in order to work. The methods available for a given data type tend to reflect common tasks you might want to perform with it. So just as most humans can walk, talk, eat, drink and grasp objects, most programming languages have string methods that can do tasks like stick two strings together (known as concatenation), split two strings apart, and so on. But since it doesn’t make sense to “split” the number 5, the Number data type doesn’t have a split() method.

What is the difference between a built-in function and a method in practice? Not much, except for the way we include these “verbs” in our Python “sentences” or statements. With a built-in function, we can simply write the function name, and pass along any “ingredients” it needs, by placing them between the round parentheses. For example, if you recall our Example 1-1, all we had to do was pass the string Hello World! to the print() function, like this:

 print("Hello World!")

In the case of the split() method, however, we have to attach the method to a specific string. That string can either be a literal (that is, a series of characters surrounded by quotation marks), or it can be a variable whose value is a string. Try the code in Example 2-6 in a standalone file or notebook, and see what kind of output you get!

Example 2-6. Using the String split() method

splitting a string "literal" and then printing the result
split_world = "Hello World!".split()
print(split_world)

assigning a string to a variable
then printing the result of calling the `split()` method on it
world_msg = "Hello World!"
print(world_msg.split())

Note that if you try to run the split() method by itself or on a data type where it doesn’t make sense, you’ll get an error. Try each of these out in succession (or in two different cells if you’re using a notebook) and see what happens:

the following will produce an error because
the `split()` method must be called on a string in order to work!
split("Hello World!")

the following will produce an error because
there is no `split()` method for numbers!
print(5.split())

Just like data types, methods and functions are recognizable thanks to their typography and punctuation. A built-in function (like print()) will turn a specific color in your code editor or notebook. In Atom’s default OneDark theme, for example, variable names are light grey, operators like = are purple, and built-in functions like print() are aqua. You can also recognize functions by their associated punctuation: anywhere you see text immediately followed by round parentheses (e.g. print()), you are looking at a function. The same is true of methods, except that these are always preceded by an appropriate data type or variable name, and separated from it by a period (.).

In a programming language like Python, you can actually get a fair bit done with just operators, methods, and built-in functions — especially if you are mostly doing tasks like basic math. When it comes to data wrangling, however, we need a little bit more sophistication. In exactly the same way we can think about complex tasks like playing a piano or kicking a ball as “just” a careful combination of many simpler actions — like moving our fingers or feet, for example — very sophisticated programming functions can be built by thoughtfully composing relatively simple operators, methods and built-in functions. These user-defined functions are where we can start to really amplify the power of our code, by making what are essentially code “recipes” that can be used again and again.

For example, let’s say we wanted to print out the same greeting to two different people. We could simply use the print() function has we have been:

Example 2-7.

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use the built-in print function to output "Hello" messages to each person
print("Hello "+author)
print("Hello "+editor)

There are a couple of things to notice about the code in Example 2-7. First, using the print() function works just fine; this code totally gets the job done. And that’s great! The first time we write code for something (including a given data wrangling task), that’s pretty much our main goal: get it to work correctly.

Once we’ve accomplished that, though, we can start to think about some simple ways to make our code “cleaner” and more useful. In the example above, the two print statements are identical, except for the variable being used. Any time we see this type of repetition in our code, it’s a clue that we may want to make our own user-defined function instead. For example:

Example 2-8. greet_me.py

create a function that prints out a greeting
to any name passed to the function

def greet_me(a_name):
 print("Hello "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use my custom function, `greet_me` to output "Hello" messages to each person
greet_me(author)
greet_me(editor)

Pretty nifty, right? In some ways, we didn’t change much at all — but there’s actually quite a lot going in Example 2-8. We’ll take a few moments now to highlight some of the new concepts being used here, but don’t worry if it doesn’t all make sense right away — we’ll continue to revisit these ideas throughout the book.

The main thing we’ve done in Example 2-8 is write our first custom function, greet_me(). We did this by using a few different syntax structures and typographic indicators to let the computer know that we want it to create and remember this function for future use. Some of these conventions match what we’ve already seen for creating our own custom variables (for example, using the descriptive name greet_me()) as well as the conventions of built-in functions and methods, like following the name of our function immediately with round parentheses (()). In Figure 2-1 below, I’ve diagrammed the code for our `greet_me()`function in order to highlight what’s happening on each line:

[image: Components of a custom function]
Figure 2-1. Components of a custom function

As you can see from Figure 2-1, creating a custom function means including multiple signposts to the computer:

	
The def keyword (short for define), tells the computer that what comes next is a function name

	
The round parentheses immediately following the function name reinforce that this is a function, and are used to enclose the function’s parameters (if there are any)

	
The colon (:) indicates that the indented lines of code that follow are part of the function

	
If we want to access the variable that was passed into our function as an argument, we use the “local” parameter name that appears between the round parentheses in the function definition

	
We can use any type of functions (both built-in and custom) or methods inside our custom function. This is key strategy for building efficient, flexible code.

When it comes to using or “calling” our function, we can simply write the name of the function (greet_me()), making sure that we put the same number of “ingredients” between the parentheses that appear in the function definition. Since we have defined greet_me() to take exactly one argument “ingredient” (in this case, the a_name parameter), we have to provide exactly one argument when we want to use it — otherwise, we’ll get an error.

Fast forward

We’ll discuss errors a little more in-depth in ???, but you should always feel free to play around with the code in these examples to see what happens when something goes “wrong” with your code. For the code in Example 2-8, here are a few ways to start experimenting:

	
Without any parameter “ingredients”, e.g. greet_me()

	
With too many parameter “ingredients”, e.g. greet_me(author,editor)

	
With something that isn’t a variable, e.g. greet_me("Samantha")

	
With something that isn’t a string, e.g. greet_me(14)

In each case, notice what happens when you try to run the code. If it produces an error message, see if you can connect the contents of that message to the changes you made. While programming error messages are not brilliantly descriptive, it’s usually possible to glean at least some useful information from them about why the computer is complaining. We’ll walk through debugging — the process of methodically fixing “broken” code — in detail soon, but this is a great way to get started now!

==== Cooking with Custom Functions

As you may have noticed, I like to think of user-defined or “custom” functions as programming “recipes”: Like food recipes, they provide the computer with reusable instructions for transforming one or more raw data “ingredients” into some other useful resource. Sometimes there is only one parameter or “ingredient”, as in our greet_me() recipe above; sometimes there are many parameters of many different data types. There’s no strictly “right” or “wrong” way to write a custom function — much as there’s no right or wrong way to write a cooking recipe; everyone will have their own style. At the same time, when it comes to strategies for deciding what should go into a given function, it can help to think about how we tend to use (or maybe even write!) recipes for cooking food.

For example, it’s obviously possible to write a single cooking recipe called “Thanksgiving” that described how to make an entire holiday meal from start to finish. Depending on your holiday style, it might take anywhere from 2 to 72 hours to “run”, and it would be very useful once a year — and almost never otherwise. If you did want to make just part of that massive recipe — perhaps you want to serve your Thanksgiving mashed potatoes at New Year’s — you’d first have to dig through the Thanksgiving instructions to identify and piece together just the ingredients and steps for making mashed potatoes. That would mean investing a lot of work before you ever even got cooking!

So while we want our custom functions to do things that are somewhat more complex than what the computer can do already, we generally don’t want them to be truly complicated. Like a “Thanksgiving” recipe, making giant functions (or even programs) limits how effectively they can be reused. Creating simple, focused functions actually makes our code more useful and flexible in the long run — a process we’ll explore in more detail in Chapter 8.

==== Libraries: Borrowing Custom Functions from Other Coders

If custom functions are programming recipes, then libraries are programming cookbooks: large collections of other people’s custom functions that we can use to transform our raw data ingredients without having to figure out and write our own recipe “from scratch”. As I mentioned in Chapter 1, the large community of coders who have written useful Python libraries is one of the reasons we’re using Python in the first place — and you’ll see in ??? at the end of this chapter, using them is both useful and powerful.

Before we can really take advantage of libraries, however, we need to cover two more essential grammatical structures of Python: loops and conditionals.

=== Taking Control: “Loops” and “Conditionals”

As we have discussed, writing Python code is similar to writing in English in many ways. In addition to relying on some basic “parts of speech”, Python code is written left-to-right and read essentially top-to-bottom. But the path that the computer takes through a data wrangling program is much more like a “Choose Your Own Adventure” book than a traditional essay or article: depending on the commands that you, as the programmer, provide, some bits of code may be skipped or repeated based on your data or other factors.

==== In the Loop

When we’re data wrangling with Python, one of our most common goals will be to do something to every record in a dataset. For example, let’s say we wanted to add together a list of numbers to find their sum:

create a list that contains the number of pages in each chapter
of the print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

If you needed to total a group of numbers like this without programming, you would have several options: you could use the calculator program on a computer, a physical calculator or even (gasp!) a pencil and paper. If you know how to use a spreadsheet program, you could enter each data item there and use a SUM() function, too. For short lists, any of these solutions would probably be fine, but they don’t scale well: Sure, adding up 10 numbers by hand (or by calculator) might not take too long, but adding up 100 numbers would. The spreadsheet solution is somewhat better in terms of time, but it still requires a number of external steps — like copying and pasting the data into a spreadsheet and more or less manually selecting which rows or columns should be summed. With a programmatic solution, we can avoid almost all of those drawbacks — and whether we need to add 10 rows or 10 million, it will take no more work on our part, and only slightly longer for the computer to actually calculate.

Because programming is still writing, of course, there are multiple ways we can express the instructions we give to the computer. One way is to have the computer look at each number in the list, and keep a running total:

Example 2-9. Looping through a list to count pages

create a list that contains the number of pages in each chapter
of the print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

create a variable to keep track of the total number of pages,
starting its value at 0
total_pages = 0

for every item in the list, perform some action - in this case,
add the number to our "total_pages" variable
for a_number in page_counts:
 total_pages = total_pages + a_number

print(total_pages)

Before we look at some other ways we could tell the computer to do this task, let’s break down Example 2-9. Obviously, we start with the list of numbers. Next, we create a variable to keep track of total_pages, which we have to explicitly assign a value of 0 to start out (most calculator programs do this more or less implicitly). Finally, we begin going through our list:

for a_number in page_counts:

To me, the easiest way to understand this line of code is to say it out loud like an English sentence: “For every a_number in the list page_counts do the following:”. And in fact, that’s exactly what happens. For every item in the page_counts list, the computer follows the instructions in the code indented under the for...in...: statement. In this case, that means adding together the current value of total_pages and the value of a_number and storing that back in total_pages again.

In some ways, this is straightforward: We’ve already told the computer, very explicitly, the values of both page_counts (that’s our list of numbers) and total_pages. But what about a_number? Where did that come from, and how does the computer know where to find it?

Like the print() statement or the def...function_name(): construction, the for...in...: configuration is built-in to the Python language, which is why we don’t have to give it quite as many instructions as we usually will when coding. In this case, what we have to provide the for...in...: statement to work is two things: a list-like variable (in this case, page_counts), and a name that the computer can use to refer to the current item in the list (in this case, a_number).

[image: Structure of a `for` loop.]
Figure 2-2. Structure of a for loop

As with all variable names, there is nothing “magic” about the variable name a_number — I thought that was a good option because it’s descriptive and readable. What matters is that when I want the computer to do something with each list item, the variable name I use in my indented code has to match what I’ve written in that top for...in...: statement.

Fast forward

Here’s another opportunity to experiment with errors. Take the page_counts code above and:

	
Change the variable name a_number to something else only in the for...in...: statement

	
Change the variable name a_number to something else in both the for...in...: statement and in the code indented below it (use the same new variable name in both places)

Again, notice what happens when you try to run the code. If you’re still getting an error after the second step, make sure that your variable name is exactly the same in both places (copying and pasting is great for this).

In programming lingo, this for...in...: construction is known as a for loop — and every commonly-used programming language has one. The reason why it’s known as a “loop” is because for every item in the list provided, the computer runs every relevant line of code — in the case of Python, every indented line below the for...in...: statement — and then moves to the next item and “loops” back to the first indented line of code again. This is a little hard to see when our “loop” only has one line of code, so let’s add a few more lines to better illustrate what’s going on, as shown in Example 2-10:

Example 2-10. page_loop.py

create a list that contains the number of pages in each chapter
of the print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

create a variable to keep track of the total number of pages,
starting its value at 0
total_pages = 0

for every item in the list, perform some action - in this case,
add the number to our "total_pages" variable
for a_number in page_counts:
 print("Top of loop!")
 print("The current item is:")
 print(a_number)
 total_pages = total_pages + a_number
 print("The running total is:")
 print(total_pages)
 print("Bottom of loop!")

print(total_pages)

By now you might be thinking, “This seems like a lot of work just to sum a list of numbers.” And there is, of course, a more efficient way to complete this specific task: Python has a built-in sum() function that will take our list of numbers as a argument:

Example 2-11. pagecounts_sum.py

create a list that contains the number of pages in each chapter
of the print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

use the sum() function to print the total of all numbers in the list
try adding this to your program on your own!
print(sum(page_counts))

I took this opportunity to introduce for loops, however, for a couple of reasons. First, because it’s a good reminder that even when it comes simple programming tasks, there’s always more than one approach. Second, because for loops are an essential part of data wrangling (and, really, all programming) — for...in...: loops are one of the key tools we’ll use to filter, evaluate and reformat data.

==== One Condition…

The for loop gives us a straightforward way to look at every item in a data set, but data wrangling requires making decisions about our data as well. Usually, that means evaluating some aspect of the data and doing one thing if the data has a certain value, and otherwise something (or nothing!) else. For example, what if we wanted to know how many chapters in this book have more than 30 pages, and how many have fewer than 30 pages? We’d need a way to:

	
Check whether a particular number in our page_counts list is more than 30

	
Add 1 to an over_30 counter if it’s more than 30

	
Otherwise, add 1 to our under_30 counter

Fortunately, Python has abuilt-in grammatical structure for doing exactly this kind of evaluation and decision-making: the if...else statement. Let’s see how it works by modifying the for loop in Example 2-10 to also track the number of chapters that are more and less than 30 pages:

Example 2-12. page_counts.py

create a list that contains the number of pages in each chapter
of the print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

create variables to keep track of the total pages,
the number of chapters with more than 30 pages,
and the number of chapters with fewer than 30 pages
total_pages = 0
under_30 = 0
over_30 = 0

for every item in the page_counts list:
for a_number in page_counts:
 # add the current number of pages to our total_pages count
 total_pages = total_pages + a_number
 # check if the current number of pages is more than 30
 if a_number > 30:
 # if the current number of pages *is* more than 30,
 # add 1 to our over_30 counter
 over_30 = over_30 + 1
 # otherwise...
 else:
 # add 1 to our under_30 counter
 under_30 = under_30 + 1

print(total_pages)
print("Number of chapters over 30 pages:")
print(over_30)
print("Number of chapters under 30 pages:")
print(under_30)

As with for loops, I think the easiest way to understand what’s happening in an if...else conditional is to say it out loud as a sentence (and, just as importantly, write that sentence in the comments of your code): "if the current number of pages is more than 30, add one to the over_30 counter. Otherwise (else), add one to the under_30 counter.”

While hopefully this makes some sense intuitively, I want to slow down again and go through what’s happening in a bit more detail, since if...else statements are another programming structure that we’ll come back to over and over.

First, let’s look at the indenting structure of the example above: everything that’s part of the for loop is indented one tab from the left margin; that’s how the computer knows that code is “inside” that loop. Similarly, the code that belongs to each part of the if...else statement is indented one tab more. In Python, this process of progressive indentation is actually required for the code to work properly—if the indenting isn’t correct, Python will complain.2 This is mechanism is often referred to as “nesting”. A more visual way to think about what’s happening is shown in Figure 2-3, below:

[image: A Venn-style diagram of code nesting.]
Figure 2-3. Code “nesting”

There are a number of implications of nesting that we’ll address later in this book, but the main takeaway for now is that in order to make a line of code “belong” to a function, loop, or conditional, it must be indented one tab to the right of the structure you want to be part of. To see this in action, let’s bring together everything we’ve done up to this point, to create a Python program that uses a loop, a conditional, and a custom-defined function as shown in Example 2-13:

Example 2-13. page_counts_complete.py

create a list that contains the number of pages in each chapter
of the print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

by adding a function line that takes a list of numbers as an "ingredient"/argument
we can just indent our existing code by one tab to make it part of that function
def count_pages(page_count_list):

 # create variables to keep track of the total pages,
 # the number of chapters with more than 30 pages,
 # and the number of chapters with fewer than 30 pages
 total_pages = 0
 under_30 = 0
 over_30 = 0

 # for every item in the page_counts list:
 for a_number in page_counts:
 # add the current number of pages to our total_pages count
 total_pages = total_pages + a_number
 # check if the current number of pages is more than 30
 if a_number > 30:
 # if the current number of pages *is* more than 30,
 # add 1 to our over_30 counter
 over_30 = over_30 + 1
 # otherwise...
 else:
 # add 1 to our under_30 counter
 under_30 = under_30 + 1

 print(total_pages)
 print("Number of chapters over 30 pages:")
 print(over_30)
 print("Number of chapters under 30 pages:")
 print(under_30)

if we want anything to happen, we have to actually run this "recipe",
being sure to pass in our list "ingredient"
count_pages(page_counts)

If you compare Example 2-13 to Example 2-12, you’ll see that I actually just copied the code from Example 2-12 and did three things:

	
I added the function defining statement def count_pages(page_count_list):

	
I indented all the existing code one additional tab, so that the computer views it as “belonging” to our new count_pages() function. In Atom, you can do this all at once by highlighting all the lines of code you want to move and hitting the tab key

	
I made sure to “call” the function at the end, giving it the page_counts variable as an “ingredient” or argument. Notice that the count_pages(page_counts) statement isn’t indented at all.

Hopefully, you’re starting to get a little bit of a handle on how all this fits together. Before we start using these tools to do some real-world data wrangling, though, we need to spend some time talking about what happens when code goes wrong.

=== Understanding errors

As we’ve mentioned in Chapter 1, computers are very good at doing repetitive tasks quickly (and usually accurately). This lets us write programs that scale well: the same code that can sum or sort a list that’s 10 items long (like our page_counts example) can also be used pretty effectively on a list that’s 10,000 items long.

At the same time, however, computers are truly, importantly, and irretrievably stupid. Computers can’t really infer or innovate — they can only choose paths through their code based on the instructions and data that humans provide to them. As a result, there are many ways in which writing code is like giving instructions to a toddler: you have to be extremely literal, very explicit — and if something unexpected happens, you should expect a tantrum.3

For example, when humans encounter a spelling or grammmatical error in a written sentence, we often don’t even notice it: based on the context of the surrounding sentence or paragraph, much of the time we’ll infer the appropriate meaning without even really trying. In fact, even if almost all of the letters in all of the words in a sentence are rearranged, we can uusally siltl raed it wihtuot too mcuh erfoft.4 Computers, by contrast, will just complain loudly and stop reading altogether if your code has even a comma out of place.

Because of this, errors in programming aren’t just inevitable, they’re expected. No matter how much you program, any chunk of code you write that’s longer than a few lines will have errors in it of one kind or another. Rather that worrying about how to avoid errors, it is much more useful to learn how to interpret and correct errors. Throughout this book, I will at times intentionally generate errors (or encourage you to do so, as in “Fast forward” and “Fast forward”) so that you can get familiar with them and begin to develop your own process for working through them. As a starting point, we’ll discuss the three main types of errors that occur in programming: syntax errors, runtime errors, and logic errors.

==== Syntax Snafus

Grammatical or syntax errors in programming may simultaneously be the simplest and most frustrating type of error you’ll encounter — in part because they happen very frequently, and because the computer complains loudly about them. The example I gave above about a comma being out of place is an example of a syntax error: In one way or another, your code has violated the grammatical rules of the programming language.

The reason I describe these errors as “simple” is that they almost always are. In my experience, most most syntax errors — and, by extension, programming errors — are basically typos: a comma or quotation mark gets forgotten, or a line of code gets indented too much or not enough. Unfortunately, many newer programmers I’ve worked with seem find these errors especially frustrating precisely because they are simple — and because they feel silly for making them.

In truth, experienced programmers experience syntax errors all the time. If you’re just starting out, the main thing you can learn from syntax errors is how not to let them derail you. In fact, one of the reasons why I’ve included the “Fast Forward” sections above on how to “break” your code intentionally is to help illustrate how easily errors can happen — and be fixed. In some ways one of the greatest skills you’ll learn when programming is how to be wrong a lot, and not let it discourage you.

Get Your Game On

One thing that can help make programming errors less frustrating — especially early on — is to approach the process sort of like a video game: beating a difficult level often means attempting it (at least) dozens of times. Sometimes you’ll have to retry because an enemy (or problem) is truly difficult, but sometimes you just make a mistake and fall down a hole (or forget a comma). In both cases, the key thing is to try again — up to a point. While you certainly don’t want to give up on a programming task as soon as you get an error, you can definitely burn out in a programming session the same way you might when you’re trying to beat a hard level on a game. When that happens, try to take a break for at least 20 or 30 minutes before trying again. Over time, you’ll start to develop a sense for when you need a break — another programming skill that will be invaluable in the long run.

If you run a piece of code that has a syntax error, you’ll know because the last line of the (usually multi-line) error message will say SyntaxError. But more useful than this is in actually fixing the error will be the part of the error message that tells you which file the error is in and which line the error is on. Over time, just going to that line of code and looking for problems (typically missing punctuation: commas, brackets, colons and quotation marks) will be enough for you to spot what’s wrong. While the error message will also include the (presumably) offending line of code with a caret ^ below the spot where Python believes the missing character might belong, this isn’t foolproof. For example, here is a Python dict that is missing a comma on one line:

Example 2-14.

1 # Although the actual error is on line 4 (missing comma)
2 # the error message points to line 5
3 book = {"title":"Practical Python for Data Wrangling and Data Quality",
4 "format": "book"
5 "author": "Susan E. McGregor"
6 }

And here is the error output:

 File "ObjectError.py", line 5
 "author": "Susan E. McGregor"
 ^
SyntaxError: invalid syntax

As you can see, even though the code in Example 2-14 is missing a comma after the value "book" on line 4, the computer reports the error as being on the line 5 (because that’s the point at which the computer has realized there is a problem). In general, though, you can usually find a syntax error on the line (or the line before) wherever the computer has reported it.

==== Runtime Runaround

A runtime error in programming is used to describe any type of problem that crops up in the process of “running” or executing your code. Like syntax errors, a large portion of runtime errors are also essentially typos, such as incorrectly copied variable names. For example, anytime you see an error that includes the phrase _++some_variable++_ is not defined, you’ve almost certainly got mismatched variable names somewhere in your code (remember: capitalization counts!). Since reading the entire “traceback” error can get a little convoluted (they tend to reference the inner workings of the Python programming language more than I, personally, find strictly useful), I recommend copying the variable name directly from the error and then doing a case-insensitive search for it in your code (this is the default behavior in Atom). This approach will highlight similar (but not quite identical) spellings of a variable name, speeding up your search for the mismatch.

For example, in Example 2-15 the parameter name provided in the function definition for greet_me(a_name) doesn’t precisely match what’s used within the body of the function definition on the next line:

Example 2-15. Slightly mismatched variable names will generate runtime errors

create a function that prints out a greeting to any name passed to the function

def greet_me(a_name):
 print("Hello "+A_name)

create a variable named author
author = "Susan E. McGregor"

pass my `author` variable as the "ingredient" to the `greet_me` function
greet_me(author)

Because the parameter name that appears inside the round parentheses of the function definition always takes precedence, running the code in Example 2-15 generates the following error:

 File "greet_me_parameter_mismatch.py", line 10, in <module>
 greet_me(author)
 File "greet_me_parameter_mismatch.py", line 4, in greet_me
 print("Hello "+A_name)
NameError: global name 'A_name' is not defined

Note that, as usual, the last few lines of the error message are giving us the most helpful information. The last line let’s us know that we’re trying to use the variable name A_name without having defined it first, and the line above contains the actual code where it appears. With these two pieces of information (plus our search strategy above), it probably won’t take too long before we see where we went wrong.

Another very common type of runtime error occurs when you try to do something with a particular data type that it wasn’t designed for. In the “Fast forward”, you may have tried running the code greet_me(14). In this case, the last line of the error output will include the word TypeError, which means that some part of our code received a different data type than it was expecting. In that example, the problem is that the function expects a string (which can be “added” or concatenated to another string using the + sign), but we provided it with a number, in this case, 14.

This challenge with fixing this kind of error is that identifying exactly where the problem lies can be a bit tricky, because it involves a mismatch between where a variable’s value was assigned and where that variable (and therefore its value) was actually used. Especially as your programs grow more sophisticated, these two processes may be nowhere near each other in your code. Looking at the error output from Example 2-15 above, for example, you can see that it reports two locations. The first is line where the variable was passed into the function, and so where the available value was assigned:

File "greet_me_parameter_mismatch.py", line 10, in <module>

The second is the line where the value passed to it was used:

File "greet_me_parameter_mismatch.py", line 4, in greet_me

As I have mentioned already, starting your debugging work with where a problematic variable or value was used and then working backwards through your code to see where the value was assigned is helpful; just know that the line of code where the value was assigned may or may not actually appear in the error output. This is part of what makes these kinds of runtime errors more difficult to track down than your average syntax error.

The fact that runtime errors are some of the harder ones to diagnose is a key reason why I recommend both saving and testing your code frequently. The source of a new runtime error is much easier to identify if you’ve only written a few new lines of code since you last tested it, because the problem must be in that little bit of new code. This sort of write, run, repeat approach, you’ll have much less ground to cover when it comes to looking for the source of any new errors, and you’ll probably be able to fix them relatively quickly.

Except…

One of the realities of data wrangling is that our code will often come up against inappropriate or unpredictable input, because the data we’re working with may have missing or invalid values. For example, a column of otherwise numerical values may have some that are empty. As we’ll see in Chapter 6 in particular, those empty values won’t automatically be converted to a number like zero5. This means that those empty values may generate errors if your code is only written to handle numerical values.

In Python, this kind of unfortunate-but-foreseeable error is known as an exception, because it happens when your program encounters an “exceptional” or unexpected situation — like an inappropriate data type. While especially common in data wrangling work, it is possible to write our programs to “handle” exceptions — that is, to tell our code to do something other than throw an error and stop running.

While handling exceptions can be useful, we won’t be spending a lot of time on it in this book. The reason is that our goal here is not simply to create programs that can work on a given set of data, but to ensure the quality of that data as well. As a result, most of the time we’ll actually want to know when and where our data is not what we expect, rather than writing our code to just roll past those problems without stopping. So it usually makes more sense for us to deal with runtime errors as they arise, rather than trying to plan for (and handle) all possible errors in advance.6

Of course, it is possible to write Python exceptions that can help us meaningfully assess data quality, it’s just that in most cases we won’t need to do this directly because the Python libraries we’ll use (again, especially in Chapter 6) do much of this work for us. We’ll also minimize the likelihood of needing exceptions by taking an incremental approach to writing our data wrangling code: we’ll start by designing and testing our code on a subset of our target dataset, and then we’ll run the program on the entire data set (or versions of the entire data set) to see how it performs. This will help us balance speed and scale by allowing us to quickly assess the quality of a given data set while still creating code that can handle the entire data set if things work out.

==== Logic Loss

By far the trickiest type of programming problem is the logic error, which is broadly used to describe what happens when your program works, just not how you intended. These errors are especially insidious because — from the computer’s perspective — everything is fine: your code is not trying to do anything it finds confusing or “wrong.” But computers are stupid, remember, so they will happily let your program do things that produce meaningless, nonsensical, or even misleading results. In precisely the same way that one can do correct math on bad data (as we’ll discuss in Chapter 3), it’s very possible to write functioning code that does something inappropriate or incorrect. In fact, we already have!

If you look back at Example 2-13, you’ll notice that there’s actually a slight disconnect between what our comments say we wanted to accomplish, and what our code actually does. The output of that example looks like this:

291
Number of chapters over 30 pages:
5
Number of chapters under 30 pages:
4

But our data looks like this:

 page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

See the problem? While it’s true that we have 5 chapters whose page count is more than 30, we actually have only 3 chapters whose page count is under 30 — there’s one chapter with exactly 30 pages.

Right now, this may not seem like a particularly significant error — after all, how important is it if one 30 page chapter gets lumped in with chapters that are less than 30 pages? But imagine that instead of counting chapter pages, this code was being used to determine voting eligibility? If that code was counting only people who were “over 18”, hundreds of thousands of people would be disenfranchised.

Fixing this error is not difficult or complicated in terms of the code we need to adjust. All we have to do is change this:

 # check if the current number of pages is more than 30
 if a_number > 30:

To this:

 # check if the current number of pages is greater than or equal to 30
 if a_number >= 30:

The challenge this type of error presents is that it relies entirely on our diligence as programmers to make sure that as we design our programs, we don’t overlook some possible data value or discrepancy that can result in incorrect measurements or results. Because the computer cannot warn us about logic errors, the only reliable way to avoid them is to plan our programs carefully in the first place, and to carefully “sanity check” their results. In ???, we’ll see what this process looks like when we write a program to deal with a real-world data set.

Don’t Forget git!

Encountering errors can be frustrating, but it will be less so if you are confident that new errors aren’t costing you previous progress you’ve made in getting your code to work. That’s why I recommend that whenever you do get a new bit of code working properly, you should not just save but also commit your code to your git repo.

This doesn’t have to be a difficult process, whether you are working in a notebook or in a standalone file. If you’ve been working inside the data_wrangling folder that we set up in “Tying it all together”, then your repo is already set up and connected to GitHub.com. All you need to do is add any new files you’ve created to your local repo, commit them (with messages!) and then push. While that may sound like a lot, it’s really only a few commands in the terminal, and they’ll be almost second nature once you’ve done this a few times.

I always like to start any commit process by first checking the status of my repo, so I know which files need to be add`ed, and which just need to `commit`ted. So for me, a typical `git “check in” process would look like:

git status
git add filename
git commit -m "Descriptive commit message!" filename
git push

That’s it! Of course, you don’t need to git push with every commit; whenever you git push all the `commit`s you’ve made locally will get uploaded to GitHub.com all at once. Either way, checking in your code this way on a regular basis means that if something goes wrong or you need to take a break, it will always be easy to restart with working code.

Phew! Now that we’ve covered all the fundamentals of Python programming (really!), we’re ready to move on from our “toy” examples using data that is (sort of) about this book. To get our feet wet with a data wrangling task using a real data set, we’ll turn to information from from the New York City bike-sharing system, Citi Bike.

=== Hitting the Road with Citi Bike Data

Every month, millions of people use bike-sharing systems to navigate cities and towns around the world. New York City’s Citi Bike program launched in 2013 with 6,000 bikes, and in 2020, the system saw its 100 millionth ride.

Citi Bike provides freely accessible data about its system operations that is both real-time and historical. To see what it takes to do data wrangling with a real-world data set, we’re going to use Citi Bike data to answer a simple question: How many rides each day are taken by different types of Citi Bike riders?

We need our Python skills to answer this question because Citi Bike riders take hundreds of thousands of rides per day — meaning that just one day of this data has too many rows for either Microsoft Excel or Google Sheets to handle. But even on a Chromebook, Python will have no problem working with this amount of data.

To think about how to approach this, let’s revisit the steps of data wrangling outlined in “What is Data Wrangling?”:

	
Locating or collecting data

	
Assessing the data’s quality

	
“Cleaning”, standardizing, and/or transforming the data

	
Analyzing the data

	
Visualizing the data

	
Communicating the data

For this exercise, we’lre going to focus on steps 1-4, though as you’ll see, I’ve done some preparation that will cut down on how long we spend with certain steps. For example, I’ve already located the Citi Bike system data and downloaded the September, 2020 trip history data, confirmed that the only values that appear in the User Type column are Customer and Subscriber, and cut down the whole September data set to just the rides that began on September 1, 2020. While we’ll delve into how to do all of these processes in subsequent chapters, for now I want to focus on how to apply the lessons from this chapter to data that we didn’t make up for ourselves7.

==== Starting with Pseudocode

One of the best ways to get started with a data wrangling project of any size is to plan out my approach in advance, and include that program outline in my Python file through a process known as pseudocoding. Pseudocoding basically means writing, in regular English (though you could certainly pseudocode in another natural language if you prefer!), what your program will do, step-by-step. In addition to giving you space to think through what your program needs to accomplish without worrying about how to code it, pseudocoding will give you a valuable reference for what to work on next when you need to take a break from your project and come back to it later. Although you’ll no doubt meet many professional programmers who don’t do this part of the process regularly, I can guarantee you that it will help you finish your wrangling projects more quickly — and that it’s the kind of habit that is welcome in any professional programming or data science setting.

I prefer to put my program outline and pseudocode right at the top of my Python file, in a large block of comments. To start out, I’m going to do three things:

	
State my question

	
Describe how I will “answer” my question

	
Outline in plain language the steps my program will take

This means that the first thing I’m going to do is write a lot of comments in my file, as you can see in Example 2-16:

Example 2-16. Program outline and pseudocode for Citi Bike data

Question: How many Citi Bike rides each day are taken by subscribers versus "customers"?

Answer: Choose a single day of rides to examine. The data set located here: XXXXX was generated from the original system data found here: https://s3.amazonaws.com/tripdata/index.html -> 202009-citibike-tripdata.csv.zip

Program Outline:
1. Read in the data file: 202009CtibikeTripdataExample.csv
2. Create variables to count: subscribers, customers and other
3. For each row in the file:
a. If the "User Type" is "Subscriber" add 1 to "subscriber_count" variable
b. If the "User Type" is "Customer" add 1 to "customer_count" variable
c. Otherwise, add 1 to the "other" variable
4. Print out my results

Now that the program outline is all squared away, it’s time to get started with the first part of our program: reading in our data.

Tip

Anytime you start a new file like, remember that even if it’s saved inside a local git repo folder, you’ll need to run git add to have git backup any changes you make (you can’t commit a file until you add it, remember). These steps are outlined in “Don’t Forget git!”, in case you’d like a refresher. While how often you commit is up to you, for this exercise I recommend that you commit your code (with a descriptive commit message, of course!) after each code block in this section. As you get more comfortable with the coding and `commit`ting process, of course, you’ll find a frequency and rhythm for backing up your code that works best for you.

Loading different data formats, as we’ll see in-depth in Chapter 4, can actually be one of the trickier aspects of data wrangling. Fortunately, there are many Python libraries available to help, and we’re going to make use of one right now! I mentioned libraries briefly in ???; they are essentially cookbooks of code. For project, we’re going to use the code “recipes” from the csv library, which is mostly designed to deal with — you guessed it! — .csv files. The file extension .csv stands for comma-separated value, and if you haven’t seen it before, don’t worry. We’ll go into (significant) detail about file types in Chapter 4. Right now, having the csv library on hand means that we don’t actually need to know too much about this filetype in order to work with it, because the library’s code recipes are going to do a lot of the work for us!

If you’re following along in your own file, you’ll want to add the code in Example 2-17 below the program outline.

Example 2-17. Importing and using the csv library

import the "csv" library, which will give us lots of handy code recipes
for dealing with our data file
import csv

open is a built-in function that takes a file name and
a "mode" as parameters. In this example, the file
`202009CitibikeTripdataExample.csv` should be in the same folder
as our Python script or notebook. Values for the mode can be
"r" for "read" or "w" for "write"
source_file = open("202009CitibikeTripdataExample.csv","r")

pass our source_file as an ingredient to the the `csv` library's
DictReader "recipe".
Store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(source_file)

the DictReader function has added some useful information to our data,
like a label that shows us all the values in the first or "header" row
print(citibike_reader.fieldnames)

from the output of the `print()` statement, we can see that
the exact label for the "User Type" column is `usertype`

So far, we’ve succeeded in completing the first step of our outline: we’ve read in our data. But we’ve also used the csv library to transform that data and even generate some metadata about it. Importantly, we now know that the precise name of the column containing our “User Type” information is actually usertype. This will help us when it comes time to write our if...else statements. To confirm that things are working as you expect, be sure to save and run your code. If it works as expected (that is, it prints out a list of column headers), now is a good time to do a git commit cycle:

git status
git commit -m "_Commit message here_" _filename_with_extension_
git push

Remember that if you are working on Google Colab, you can commit your code direclty to GitHub by choosing File -> Save a copy in GitHub, and entering your commit message in the overlay window that appears.

Now that we’ve completed step one successfully, let’s go on to step two, as shown in Example 2-188:

Example 2-18. Setting up the count variables

now we'll create our three variables to hold the count of each type of Citi Bike
user, beginning the count for each at zero
subscriber_count = 0
customer_count = 0
other_user_count = 0

Pretty simple, right? On to step three! Since we need to check each row of data in the file, we’ll need to write a for...in loop, which will need to have an if...else inside of it to test for specific values in the usertype column. To help keep track of what each line of code is doing, I’m going to write a lot of comments explaining the code in English, as shown in Example 2-19:

Example 2-19. Looping through our data and counting values

we want to make sure our for loop is working with the data that's already
been transformed by our DictReader recipe
so for Step 3, we'll write a `for...in` loop
using our `citibike_reader` variable
for a_row in citibike_reader:

 # in order for my `if` statements to be "inside" my loop,
 # they have to be indented one more `tab` to the right

 # Step 3a: if the value in the `usertype` column of
 # the current row is "Subscriber"
 if a_row["usertype"] == "Subscriber":

 # indenting one more time so that this next line only happens if
 # `usertype` actually _is_ "Subscriber"
 subscriber_count = subscriber_count +1

 # Step 3b:because we need to use `else` here, but also need
 # another "if" statement, we're using the keyword `elif`,
 # which is short for "else if"
 elif a_row["usertype"] == "Customer":

 # indenting again so that this next line only happens if
 # `usertype` actually _is_ "Customer"
 customer_count = customer_count + 1

 #Step 3c: in this case, we're not checking for anything,
 # we just know that the `usertype` value is neither
 # "Subscriber" nor "Customer", so we'll add one to our catch-all
 # "other" category
 else:
 other_user_count = other_user_count + 1

Ok, there is a lot going on Example 2-19 — or at least it looks like there is! Really, all we did was check whether the value in each row’s usertype column was "Subscriber" or "Customer", and add one to (or increment) the corresponding count variable if it was. If the usertype value was neither of those, we added one to the other_user_count variable.

While it may seem strange that we’ve added so many more lines of comments than code, this is actually pretty normal — even good! After all, while the computer never “forgets” how to read Python code, you will absolutely forget what this code is doing and why if you don’t explain it in the comments. And that’s not a bad thing! After all, memorizing all of your code would make programming pretty inefficient. By writing detailed comments, you ensure that you can easily understand your code in the future, without having to do the work of translate Python to English all over again!

Before we move on, make sure to run your code. Since “no news is good news” for our most common types of errors, if you don’t get any errors, go ahead and do a git commit cycle. Otherwise, now is a good time to pause and troubleshoot any issues you’ve encountered. Once those are resolved, you’ll see there’s only one, very simple step left: printing! Let’s just go the most straightforward route, and use built-in print statements, as shown in Example 2-20:

Example 2-20. Printing our results

Step 4: Print out our results, being sure to include "labels" in the process:
Note that this _isn't_ indented, because we only want to print these values
once our `for` loop has finished going through the entire data set
print("Number of subscribers:")
print(subscriber_count)
print("Number of customers:")
print(customer_count)
print("Number of 'other' users:")
print(other_user_count)

When you’ve added the code in Example 2-20 to your file, save and run it. Your output should look something like this:

['tripduration', 'starttime', 'stoptime', 'start station id', 'start station name', 'start station latitude', 'start station longitude', 'end station id', 'end station name', 'end station latitude', 'end station longitude', 'bikeid', 'usertype', 'birth year', 'gender']
Number of subscribers:
58961
Number of customers:
17713
Number of 'other' users:
0

If that’s what you see — congratulations! You’ve successfully written your first real-world data wrangling program. Make sure to do a git commit cycle to back up your great work!

==== Seeking Scale

In writing this script, we’ve accomplished a number of things:

	
We’ve successfully and precisely counted the number of “Subscribers” and “Customers” who used Citi Bikes on a single day in September, 2020

	
We’ve confirmed that there are no other values in the usertype column (because the value in our other_user_count variable was 0)

If you’ve done data wrangling before using spreadsheet or database programs, for example, but this was your first time working in Python, chances are this process took longer than your previous method, all things considered. But as I’ve mentioned a few times already, a key advantage that coding offers over many other methods is the ability to scale almost seamlessly. That scale works in two ways: First, it does the same work on a larger data set almost as fast as a smaller one. For example, on my Chromebook, the script above completes in about half a second. If I run the same script on the data from the entire month of September, it takes about 12 seconds. Most software programs that could even handle the entire month’s data would probably need that long just to open the file, much less do any work to it. So, using Python helps us scale because we can handle larger data sets much more quickly and effectively. You can test this out for yourself by changing the line:

source_file = open("202009CitibikeTripdataExample.csv","r")

To:

source_file = open("202009-citibike-tripdata.csv","r")

If you’re working in a standalone Python file, you can even measure how long it takes to run your script on the new file by adding the time keyword before your python command:

time python _your_filename_.py

This illustrates the second type of scale we achieve with Python, which has to do with the marginal effort required to have the computer do the same task on a different data set (with the same structure) once we have written our program, and this is where Python (and programming in general) really shines. In order to run my script on data from the whole month of September, 2020, all I had to do was load a different data file. By changing the target filename that I opened with my source_file = statement, I was able to process all of the September data instead of just the data from one day. In other words, the additional (or “marginal”) effort to process hundreds of thousands of additional rows of data was exactly as long as it took me to copy and paste the file name. Building on that example, I could process an entire year of data in a few minutes (or less, as we’ll see in Chapter 8). That is something that is nearly impossible to achieve with any non-coding data wrangling method.

The complete script we’ve built in this section is an example of how, even using just the basic structures we’ve covered in this chapter, you can do some really useful and efficient data wrangling with Python. Though there are many new data formats and challenges to explore in the remaining chapters, I hope this has given you a sense of how much you can achieve with even these “basic” Python tools and just a little effort and attention to detail. Imagine what else you can accomplish if you keep going!

=== Conclusion

Believe it or not, in this chapter we’ve covered all the essential Python tools you’ll need to do data wrangling — as well as almost any other kind of Python programming! To recap what we’ve covered, we learned about:

	Data types

	
These are the “nouns” of programming: numbers, strings, lists, dicts, and Booleans

	Functions

	
These are the “verbs” of programming: operators, built-in functions and user-defined functions

	Using for...in... loops

	
These let us run a particular chunk of code on every item in a list

	Using if...else conditionals

	
These let us to make “decisions” about what code should be run, based (usually) on the attributes of our data

	Errors

	
We explored the different types of errors that we’re likely to encounter when programming, and how to best address and prevent them

We also practiced combining and composing these concepts to create a basic program to work with some sample data from the New Yorks’ CitiBike system. While we’ll expand on this example and explore others in future chapters, our next task is to understand more about how to evaluate data itself as part of our data wrangling work.

1 There are also many language-specific data types (such as Python’s tuple data type) that are not as relevant to our data wrangling efforts, so we won’t address these in detail.
2 In many other programming languages, curly braces are used to indicate which pieces of code belong inside a loop or a conditional statment. As we mentioned in “Readability”, however, Python is whitespace dependent.
3 Unlike computers, of course, toddlers are capable of genuine originality and learning.
4 http://www.wordyard.com/2003/09/15/if-u-cn-rd-ths-msg-u-r-jst-lke-vryne-lse/
5 This is actually a good thing, as we’ll see in Chapter 3.
6 https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
7 All of the code for this exercise can be found in the hitting_the_road_with_citibike.py and hitting_the_road_with_citibike.ipynb files. However, I strongly encourage you to create your new files of your own and add the provided code yourself.
8 Once again — and from here on out — add this code to your file below the last line of the previous block.

Chapter 3. Understanding Data Quality

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

Data is everywhere. It’s automatically generated by our mobile devices, our shopping activities and our physical movements. It’s captured by our electric meters, public transportation systems and communications infrastructure. And it’s used to estimate our health outcomes, our earning potential and our credit worthiness. Economists have even declared that data is the “new oil”, given its potential to transform so many aspects of human life.

While data may be plentiful, however, the truth is that good data is scarce. The claim of “the data revolution” is that, with enough data, we can better understand the present and improve — or even predict — the future. For any of that to even be possible, however, the data underlying those insights has to be high quality. Without good quality data, all of our efforts to wrangle, analyze, visualize and communicate it will, at best, leave us with no more insight about the world than when we started. While that would be an unfortunate waste of effort, the consequences of failling to recognize that we have poor quality is even worse, because it can lead us to develop a seemingly rational but dangerously distorted view of reality. What’s more, because data-driven systems are used to make decisions at scale, the harms caused by even a small amount of bad data can be significant. Sure, data about hundreds or even thousands of people may be used to “train” a machine-learning model. But if that data is not representative of the population to which the model will be applied, the repercussions of that system can affect hundreds or thousands of times the number of people in the original data set. Because the stakes are so high, ensuring data quality is an essential part of data wrangling. But what does it mean for data to be “high quality?” My view is that data is high quality only if it is both fit for purpose and have high internal integrity.

What do each of those terms actually mean? That is exactly what we’ll explore, in depth, in this chapter. We’ll begin by discussing the concept of data fit, which relates to the appropriateness of data for use in a particular context, or to answer a particular question. We’ll then break down the many aspects of data integrity: the characteristics of a data set that influence both its fitness for purpose and the types of analyses we can responsibly use it for. Finally, we’ll discuss some tools and strategies for finding and working with data that can help you maximize its overall quality, lending confidence and credibility to the work that you produce with it.

In case you start to find any of this tedious, let me repeat my exhortations from “What is Data Wrangling?”: trying to “skip over” the work of assessing data quality can only undermine your data wrangling efforts. At best, you’ll go to share your work and encounter questions about your process that you don’t have answers for. At worst, you’ll end up promoting “insights” that are both wrong and do active harm. Along the way, you’ll also be cheating yourself out of good technical skills, because solving data quality problems is where you’ll expand your programming knowledge the most. If you truly want to be good at the work of data wrangling, assessing data quality has to be part of your practice.

Don’t Forget To Document

While thoroughly commenting your code is a sound time investment if you want to improve your coding skills and get more value out of that code in the future, with enough time and effort it’s almost always possible to re-translate computer code later on if you need to.

The same is not true for your work on data quality: the documentation in your data diary is actually irreplaceable. The conclusion that you reach about a data set being representative or valid will, in most cases, be informed by everything from your own reading and research to conversations with experts to additional data sets you’ve located. But without good documentation of who said what or how you came across the information, any attempt to repeat or confirm your previous work will almost certainly fail.

Why? Because information sources — especially on the internet — move, change and disappear1. The expert you spoke to six months ago may no longer be available, or the search you conducted may return different results. While the way you approach it is up to you, I cannot state emphatically enough how important it is to document your data wrangling work, especially as it pertains to data quality (which is pretty much all of it). Without a detailed description of your process, you may find you’re on uncertain footing when it’s time to share the results of your work — forcing you to start from the beginning all over again.

Assessing data fit

Perhaps one of the most common misconceptions about data wrangling is that it is a predominantly quantitative process; that is, that data wrangling is mostly about working with numbers, formulas and code. In fact, irrespective of the type of data you’re dealing with — it could be anything from temperature readings to social media posts — the core work of data wrangling involves making judgment calls: about whether your data accurately represents the phenomenon you’re investigating, to what to do about missing data points and whether you have enough data to generate any real insight at all. That first concept — the extent to which a given data set accurately represents the phenomenon you’re investigating — is broadly what I mean by its fit, and assessing your data set’s fitness for purpose is much more about applying informed judgment than it is about applying mathematical formulas. The reason for this is quite simple: the world is a messy place, and what may seem like even the simplest data about it is always filtered through some kind of human lens. Take something as straightforward as measuring the temperature in your workspace over the course of a week. In theory, all you need to do is get a thermometer, put it in the space and note down the reading every day. Done, right?

Or are you? Let’s start with your equipment. Did you use a digital thermometer, or a mercury thermometer? Where in the space did you place it? Is it near a door, a window or a heating or cooling source? Did you take the reading at the same time every day? Is the thermometer ever in direct sunlight? What is the typical humidity level?

You may think I’m introducing a contrived level of complexity here, but if you’ve ever lived in a shared space (like an apartment building), you’ve probably been through the experience of feeling like it’s much warmer or colder than what some thermometer said. Likewise, if you’ve ever looked after a child who’s ill, you’re likely all too familiar with the different body temperature readings that you’ll get with different types of thermometers — or even with the same one, just minutes apart.

In other words, there are a huge number of factors contributing to that two- or three-digit temperature you record — and the number itself doesn’t provide information about any of them. That’s why when you begin the process of trying to answer a question with data, it’s not enough to know just the contents of the data set, you need know about the processes and mechanisms used to collect it. Then, given everything you know about how the data was gathered, you need to determine if it can really be used to answer your specific question in a meaningful way.

Of course, this problem is neither new nor unique; it’s the same challenge that all scientific fields face in their efforts to discover new information about the world. Cancer research could hardly advance if every single researcher had to conduct every single study themselves; without the ability to build on the work of others, scientific and technological progress would grind to a halt (if not go off the rails entirely). Because of this, over time the scientific community has developed three key metrics for determining the appropriateness or fit of a data set for answering a given question: validity, reliability and representativeness.

Validity

At its most basic, validity describes the extent to which something measures what it is supposed to. In our room temperature example, this would mean ensuring that the type of thermometer you’ve chosen will actually measure the air temperature rather than something else. For example, while traditional liquid-in-glass thermometers will probably capture air temperature well, infrared thermometers will tend to capture the temperature of whatever surface they’re pointed at. So even with something as seemingly basic as room temperature, you need to understand the tools and methods used to collect your data readings in order to ensure their validity with respect to your question.

Unsurprsingly, things only get more involved when we’re not collecting data about common physical phenomena. Construct validity describes the extent to which your data measurements effectively capture the (usually abstract) construct, or idea, you’re trying to understand. For example, let’s say you want to know which are the “best” schools in your area. What data can help you answer that question? First we have recognize that the term “best” is imprecise. Best in what way? Are you interested in which school has the highest graduation rate? Standardized test scores? School-assigned grades? Teacher evaluations? Student satisfaction? Extra-curricular participation?

In order to use data to begin to answer this your question, you first need to articulate two things. First, “best” for whom? Are you trying to answer this question for your own child? A friend’s? Having answered that, you’ll be better able to complete the second task, which is operationalizing your specific idea of “best.” If your friend’s child love sports, for example, extra-curriculars might be more important than academics.

In data analysis, this process of selecting measures is known as operationalizing a construct, and it inevitably requires choosing among — and balancing — proxies for the idea or concept you are trying to understand. These proxies — like graduation rates, test scores, extra-curricular activities and so on — are things about which you can collect data that you are choosing to use to represent an abstract concept (“best” school) which cannot be measured directly. Good quality data, to say the least, must have good construct validity with respect to your question, otherwise your data wrangling results will be meaningless.

How? And for whom?

Once you begin thinking about the construct validity of your own data wrangling questions, you’ll likely find yourself much more curious about it anywhere you encounter data being used to make decisions or “predictions” about the world. More than likely, you’ll find many situations where imprecise claims (like “best”) are being made, with little or no explanation being offered about how the concept of “best” was defined. Similarly, the designers of data-driven systems may initially answer the question of “For whom?” with an enthusiastic, “For everyone!” the real answer lies in their choice of proxies, which they may well have selected heuristically based only on their own tastes or preferences. In those instances, the real answer to the question, “For whom?” is “For people like me.”

Of course, sometimes you may be told that there’s simply no way to know how “best” is being defined, because the system being used to make the decisions or predictions is a so-called “black box" — which is how unsupervised machine-learning systems are often described. As I mentioned in “What is data “quality”?”, however, this is somewhat misleading. Because though it’s true that we can’t currently say with confidence precisely how such a machine-learning system has weighted or prioritized certain things when making predictions, we do know that it will always replicate and amplify the patterns that exist within the data on which it was “trained.” In those instances, then, it’s the composition of the training data that will tell you both “How?” and “For whom?" — if the people who made the system are confident enough to share it.

The other type of validity that is important for data fit is content validity. This type of validity has to do with how complete your data is for a given proxy measurement. In the “best” school example, let’s say you have determined that grades are relevant for determining what school is best, but you only have grades for history and physical education courses available. Though for many people grade data might, in principle, have construct validity for identifying the best school, having grade data for only two types of courses wouldn’t be sufficient to satisfy the requirement for content validity — and for high-quality data, you need to have both.

“Let’s see what the data says.”
Data-driven decision making can be a powerful tool for understanding what's happening in the world. But sometimes it is attractive because it appears to transcend (or at least avoid) the need to wade through difficult discussions about norms, values and ethics.

In reality, though, relying on “the data” this way just means that you are deferring to the values, assumptions, and biases of the data’s creators — whoever designed the data collection and carried it out. This is why data itself can never be objective — only the data wrangling processes we use to handle it.

Reliability

Within a data set, the reliability of a given measure describes its accuracy and stability. Together, these help us assess whether the same measure taken twice in the same circumstances, will give us the same — or at least very similar — results. To revisit our temperature example: taking a child’s temperature with an oral thermometer is not likely to be very reliable, because the process requires that the child keep their mouth closed for a relatively long time (which, in my experience, they’re not great at). By contrast, taking a child’s temperature under their arm might be more reliable — because you can hug them to keep the thermometer in place — but it may not provide as accurate a reading of the child’s true internal body temperature as some other methods. This is why most medical advice lists difference temperature thresholds for a fever in children, depending on which method you use to take their temperature.

With abstract concepts and real-world data, determining the reliability of a data measure is especially tricky, because it’s never really possible to collect the data more than once — whether because the cost is prohibitive, the circumstances can’t be replicated, or both. In those cases, we typically estimate reliability by comparing one similar group to another, using either previously or newly collected data. So though a dramatic fluctuation in a school’s standardized test scores from one year to the next indicates that those scores may not be a reliable measure of school quality, this inconsistency is itself only part of the story. After all, those test scores might reflect the quality of teaching, but they might also reflect a change in the test being administered, how it was scored, or some other disruption to the learning or test-taking environment. In order to determine whether the standardized test data is reliable enough be part of your “best” school assessment, you would need to look at comparison data from other years or other schools, in addition to learning more about the broader circumstances that may have led to the fluctuation. In the end, you may conclude that most of the test score information is reliable enough to be included but that a few particular data points should be removed, or you may conclude that the data is too unreliable to be part of a high-quality data process.

Representativeness

The key value proposition for data-driven systems is that they allow us to generate insights — or even predictions — about people and phenomena that are too massive or too complex for humans to reason about effectively. By wrangling and analyzing data, the logic goes, we can make decisions faster and more fairly. Given the powerful computational tools that even individuals — to say nothing of companies — have access to these days, there’s no doubt that data-driven systems can generate “decisions” more quickly than humans can. Whether those insights are an accurate portrait of a particular population or situation, however, depends directly on the representativeness of the data being used.

Whether a data set is sufficiently representative depends on a few things, the most significant of which goes back to the “For whom?” question we discussed in “Validity”. If you’re trying to design a new course schedule for a specific grade school, you may be able to collect data about its entire population. If all the other criteria for data fitness have been met, then you already know that your data is representative, because you have collected data directly from or about the entire population to which it will apply.

But what if you’re trying to complete the same task for an entire city’s worth of schools? It’s deeply unlikely that you’ll succeed in collecting data about every single student in every single school, which means that you’ll be relying on input from only a subset of the students when you try to design the new schedule.

Anytime you’re working with a subset or sample in this way, it’s crucial to make sure that it is representative of the broader population to which you plan to apply your findings. While proper sampling methodology is beyond the scope of this book2, the basic idea is that in order for your insights to accurately generalize to a particular community of people, the data sample you use must proportionally reflect that community’s make-up. That means that you need to invest the time and resources to understand a number of things about that community as a whole before you can even know if your sample is representative.

At this point you may be thinking: Wait, if we could already get information about the whole population, we wouldn’t need a sample in the first place! And that’s true — sort of. In many cases, it’s possible to get some information about an entire community — just not precisely the information we need. In our school-scheduling scenario, for example, we would would ideally get information about how — and how long — students spend traveling to and from school each day, as well as some sense of the their caretakers’ schedules. But the information we might have about the entire school population (if we are working cooperatively with the school system) will probably include only things like home address, school address and, perhaps, type of transportation support. Using this information, likely in conjunction with some additional administrative information, we could begin to create estimates for the proportion of certain types of student commuters that exist in the entire population, and then seek to replicate those proportions in selecting a representative sample from our survey results. Only at that point would we be ready to move on to the next step of the data wrangling process.

As you can see, ensuring representativeness demands that we carefully consider which characteristics of a population are relevant to our data wrangling question, and that we seek out enough additional information to ensure that our data set proportionally represents those characteristics. Perhaps unsurprisingly, this is the data fitness test that many data-driven goods and services fail on, again and again. While companies and researchers may tout the quantity of data they use to develop in their systems, the reality is that most data sets that are readily available to companies and researchers tend to not be representative of, say, the US or global population. For example, data about search engine trends, social media activity, public transit usage or smartphone ownership, for example, are all extremely unlikely to be representative of the broader population, since they are inevitably influenced by things like internet access and income level. This means that communities are overrepresented in these data sets while others are (sometimes severely) underrepresented. The result is systems that don’t generalize — like facial recognition systems that cannot “see” Black faces.

If you are faced with non-representative data, what do you do? At the very least, you will need to revise (and clearly communicate) your “For whom?” assessment to reflect whatever population it does represent; this is the only community for whom your data wrangling insights will be valid. Also keep in mind that representativeness can only ensure that the outcome of your data wrangling efforts accurately reflect reality; it is not a value judgment on whether that reality should be perpetuated. If the outcome of your data wrangling effort will be used to make changes to a system or organization, the end of your data wrangling process is really just the starting point for thinking about what should be done with your insights, especially with respect to complex issues like fairness.

This is true even if you have data about an entire population. For example, if you want to know which organizations have received a certain type of grant then the “population” or community your interested in is just those grant recipients. At the same time, checking your data for representativeness against the population at large still has value: if one or more communities are over- or underrepresented in your population of grant recipients, it may hint at hidden factors influencing who receives that money.

The problem of context collapse

A huge source of “bad” data and data analyses can be traced to a kind of context collapse, in which data generated for one purpose is used — typically without much critical reflection — for another. For example, online advertising networks often use our web browsing or buying history to determine what ads to display to us or products to recommend. But in doing so these systems frequently conflate what we have bought with what we will buy, and the result are often pointedly tone-deaf, as illustrated in the following Tweet:

Dear Amazon, I bought a toilet seat because I needed one. Necessity, not desire. I do not collect them. I am not a toilet seat addict. No matter how temptingly you email me, I’m not going to think, oh go on then, just one more toilet seat, I’ll treat myself.
Jacqui Rayner via Twitter

When data generated in one context (browsing) is used to make decisions about another (advertising) the results can become nonsensical to the point of absurdity. And while situations like the above are among the familiar oddities of online life, as we saw in “Unpacking COMPAS”, similar instances of context collapse can — and do — cause serious harm.

Assessing data integrity

Data fit is essentially about whether you have the right data for answering your data wrangling question. Data integrity, on the other hand, is largely about whether the data you have can support the analyses you’ll need to perform in order to answer that question. As you’ll see throughout “Characteristics of Data Integrity”, there are a lot of different aspects of the data to consider when performing an integrity assessment. But does a given data set need to have all of them in order to be high integrity, and therefore high quality? Not necessarily. While some are essential, the importance of others depends on your specific question and the methods you’ll need to answer it. And with rare exceptions, many are characteristics of the data that you will enhance and develop as part of your data wrangling process.

In other words, while ensuring data fit is non-optional, the types and degree of integrity that your particular data wrangling project requires will vary. Of course, the more of these requirements your data meets, the more useful it will be — both to you and others.

Characteristics of Data Integrity

In general, a high-integrity data set will, to one degree or another, be3:

	
of known pedigree

	
well-annotated

	
timely

	
complete

	
high volume

	
multivariate

	
atomic

	
consistent

	
clear

	
dimensionally structured

As I have already mentioned, however, not all of these data integrity characterstics are equally important. Some of them are non-negotiable, while others are almost always the result of certain steps in the data wrangling process, not precursors to it. And while the goal is for your data to have as many of these characteristics as possible before you begin your analysis, there is always a balance to be struck between more fully elaborating your data and completing your work in time for your insights to be useful.

In this sense, assessing data integrity can be a useful way to prioritize your data wrangling efforts. For example, if a data set is missing either of the characteristics in “Necessary, But Not Sufficient”, you may as well move on from it entirely. If it’s missing one or two of the characteristics in “Important”, it may still be possible to salvage the data you’re working with by combining it with others or limiting the scope of your analyses — and claims. Meanwhile, developing the characteristics in “Achievable”, is often the goal of your data wrangling process’s “cleaning” step, rather than something can expect most real-world data to have when you first encounter it.

In the end, the degree to which your data set embodies many of the characteristics below will depend on the time you have to invest in your data wrangling project, but without a good solid majority of them, your insights will be limited. As will be illustrated (in detail!) in Chapter 6, this variability is precisely why data wrangling and data quality are so thoroughly intertwined.

Necessary, But Not Sufficient

Of Known Pedigree

As discussed in “What is data “quality”?”, data is the output of human decisions about what to measure and how. This means that using a data set collected by others requires putting a significant amount of trust in them, especially because independently verifying every single data point is rarely possible; if it were, you would probably just collect your own data instead. This is why knowing the provenance or pedigree of a data set is so important; if you don’t know who compiled the data, the methods that they used and/or the purpose for which they collected it, you will have a very hard time judging whether it is fit for your data wrangling purpose, or how to correctly interpret it.

Of course, this doesn’t mean you need to know the birthdays and favorite colors of everyone who helped build a given data set. But you should try to find out enough about their professional backgrounds, motivations for collecting the data (Is it legally mandated, for example?), as well as the methods they employed that you have some sense of which measures you’ll want to corroborate versus those that might be okay to take at face value. Ideally, both information about the data authors and sufficient documentation about these processes (we’ll discuss what this might include in ???), will be readily enough available that you can answer all of these questions about the data’s pedigree fairly quickly. If they prove hard to locate, however, you may wish to move on; since you need this information to assess data fit, your time may be better spent looking for a different data set or even collecting the data yourself.

Well-Annotated

A well-annotated data set has enough surrounding information, or metadata, to make interpretation possible. This will include everything from high-level explanations of the data collection methodology to the “data dictionaries” that describe each data measure right down to its units. While this may seem straightforward, there are not always well-accepted standards for how such annotation information should be provided; sometimes it appears directly in data files or data entries themselves; sometimes the information might be contained in separate files or documents in a location totally separate from where you retrieved the data.

However they are structured or provided, robust data annotation documents are an essential component of high integrity data because without them, it’s impossible to apply any analyses or draw any inferences from it. For example, imagine trying to interpret a budget without knowing if the figures provided refer to dollars, thousands of dollars, or millions of dollars — it’s clearly impossible. Or for a very American expression of the importance of annotation documents like data dictionaries, know that they sometimes require a lawsuit to get.

USDA Data Sleuthing

The USDA’s Agricultural Marketing Service provides daily reports about the food moving through 16 terminal markets around the world. Each day, USDA experts walk through the markets, noting the size, price, condition, origin and other aspects of the goods for sale, such as apples. While the data has many high-integrity features — it is clean, richly segmented and high volume — the meaning of some of the data values is unclear. What do “FINEAPPEAR” and “FRAPPEAR” mean? Fortunately, knowing that this data is compiled by the USDA about the terminal markets makes answering that question much simpler. Halfway down the page of web search results for “USDA Terminal Market” is a link for a Los Angeles terminal market report which includes a phone number. One quick phone call, and the mystery is solved!

Important

Timely

How up-to-date is the data that you’re using? Unless you’re studying an historical period, ensuring that your data is recent enough to meaningfully describe the current state of the world is important — though how old is “too old” will depend on both the phenomenon you’re exploring and the frequency with which data about it is collected and released.

For example, if you’re interested in neighborhood demographics but your most recent data is several years old, there’s a strong likelihood that things may have changed considerably since. For unemployment data, data older than a month will no longer be timely, while for stock market data it takes just a few seconds for information to be considered too old to inform trades. Unless its about field you’re already familiar with, assessing whether your data is timely will likely require some research with experts as well as the data publisher.

Complete

Does the data set contain all of the data values it should? In the USDA apple data in “USDA Data Sleuthing”, for example, only a few of the rows contain appearance descriptions, while most are left blank. Can we still generate useful data insights when parts of the data are so incomplete? Addressing this question means first answering two others: First, why is the data missing? Second, do you need that data measure in order to perform a specific analysis needed for your data wrangling process?

For example, your data may be incomplete because individual values are missing, or because the data has been reported irregularly — perhaps there is half-year gap in data that is usually recorded every month. The data set may also have been truncated, which is a common problem when large data sets are opened in a spreadsheet programs. Whatever the reason, discovering why some part of the data is missing essential in order to know how to proceed. In “USDA Data Sleuthing”, we could potentially ignore the “appearance” category if our primary interest is in the way that different varietals of apple are priced, or we could contact the terminal market again to clarify if blank values in the appearance column actually correspond to some default value that they don’t bother to indicate explicitly. Even truncated data may not be a problem if what we have available covers a sufficient time period for our purposes, but it is still useful to learn the true number of records and date range of the data for context. And while there are statistical tricks that can sometimes make gaps in data collection less problematic, learning that the recording gap is due to some disruptive event may change the type of analysis you do, or even the question you’re pursuing altogether.

In other words, while having complete data is always preferable, once you know why that data is missing, you may be able to proceed with your data wrangling process regardless. But you should always find out — and be sure to document what you learn!

High Volume

How many data points are “enough”? At minimum, a data set will need to have sufficient records to support the type of analysis needed to answer your particular question. If what you need is a count — for example, the number of 311 calls that involved noise complaints in a particular year — then having “enough” data means having records of all of the 311 calls for that year particular year.

If your question is about general or generalizable patterns or trends, however, what counts as “enough” is a little less clear. For example, if you wanted to determine what Citi Bike station is the “busiest”, how long a time period should you consider? A week? A month? A year? Should only weekdays be considered, or all days? The correct answer will partly depend on more thoroughly specifying your question. Are you interested in the experiences of commuters or visitors? Are you trying to generate insights to drive transit planning, retail placement, or service quality? Also, are you really interested in what station is “busiest,” or is it really more about a particular rate of turnover? As is so often the case, the correct answer is largely about specifying the question correctly — and that requires being, in most cases, very specific.

One of the trickiest parts of assessing data “completeness,” however, is that accounting for factors that may influence the trend or pattern you’re investigating is difficult without knowing the subject area pretty well already. For example, while we might easily expect that Citi Bike usage might vary across seasons, but what about a reduction in public transit service? An increase in fares? These changes might have implications for our analysis, but how can we know that when we’re still starting out?

The answer — as it is so often — is (human) experts. Maybe fare increases temporarily increase bike share ridership, but only for a few months. Maybe bicycle commuters are prepared for bad weather, and stick with their patterns even when it’s snowing. With infinite time and infinite data, we might be able to answer these questions for ourselves, talking to humans is just so much faster and so much more informative. And believe it or not, there is an expert in almost everything. For example, a quick search for “seasonal ridership bike sharing” returns everything from blog posts to peer-reviewed research on the topic.

What does this mean for data completeness? Existing research or — even better — a real-time conversation with a subject matter expert (see [Link to Come] for more on this), will help you decide which factors you’re going to include in your analysis, and, as a result, how much data you need for your chosen analysis in order for it to be complete.

Multivariate

Wrangling real-world data inevitably means encountering real-world complexity, where a huge range of factors may influence the phenonmenon we’re trying to investigate. Our “busiest” Citi Bike station is one example: beyond seasonality and transit service, the surrounding terrain or the density of stations could play a role. If our Citi Bike data contained only information about how many trips started and ended at a particular station, then we it would be very difficult to create an analysis that could say more than “This station had the most bikes removed and returned” in a given time period.

When data is multivariate, though, it means that is has multiple attributes or features associated with each record. For the historical Citi Bike data, for example, we know we have all of the following, thanks to our little bit of wrangling in [Link to Come]:

['tripduration', 'starttime', 'stoptime', 'start station id', 'start station name', 'start station latitude', 'start station longitude', 'end station id', 'end station name', 'end station latitude', 'end station longitude', 'bikeid', 'usertype', 'birth year', 'gender']

That’s 15 different features about each recorded ride, any number of which might be able to leverage towards a more meaningful or nuanced way to understand which Citi Bike station is the “busiest.”

Atomic

Atomic data is highly granular; it is both measured precisely and not aggregrated into summary statistics or measures. In general, summary measures like rates and averages aren’t great candidates for further analysis, because so much of the underlying data’s detail has already been lost. For example, the arithmetic average or mean of both of the following sets of numbers is 30: 20, 25, 30, 45 and 15, 20, 40, 45. While summary statistics are often helpful when making comparisons across different data sets, they offer too little insight into the data’s underlying structure to support further analysis.

Achievable

Consistent

High-integrity data needs to be consistent in a number of different ways. Often the most obvious type of consistency in a data set has to do with the frequency of data that has been collected over time. Are the time intervals between individual records consistent? Are there gaps? Irregular intervals between data records are important to investigate (if not resolve) in part because they can be a first indicator of disruptions or disparities within the data collection process itself. Another source of pervasively inconsistent data tends to turn up anytime a data field has text involved: fields that contain names or descriptors will almost inevitably contain multiple spellings of what is supposed to be the same term. Even fields that might seem straightforward to standardizes may contain varying degrees of detail. For example, a “zip code” field might contain both 5-digit zip code entries and more precise “Zip+4” values.

Other types of consistency may be less obvious but no less important. Units of measure, for example, need to be consistent across the data set. While this might seem obvious, it’s actually easier that you might first imagine for this not to be the case. Let’s say you’re looking at the cost of an apple over a period of a decade. Sure, your data may record all of the prices in dollars, but inflation will be constantly changing what a dollar is worth. And while most of us are aware that Celsius and Farenheit “degrees” are of different sizes, it doesn’t stop there: an imperial pint is about 568 ml, whereas an American pint is about 473 ml. In fact, even accounts of Napoleon Bonaparte’s famously short stature is likely the result of an inconsistency between the size of the 19th century French inch (about 2.71cm) and today’s version (about 2.54 cm).

The solution to such inconsistencies is to normalize your data before doing any comparisons or analyses. In most cases, this is a matter of simple arthimetic, you simply have to choose which interpretation of the unit to which you will convert all others (another important moment for documentation!). This is true even of currency, which analysts often begin by converting to “real” (read: inflation-controlled) dollars, using some chosen year as a benchmark. For example, if we wanted to compare the real dollar value of the US federal minimum wage in 2009 (when it was last increased) to 2021, we could use an inflation calculator like the one maintained by the Bureau of Labor Statistics (BLS) to see that the real dollar value of $7.25 per hour in 2009 is equivalent to only $5.72 per hour in 2021.

Who Tops the “Hit” List?

Data providers don’t always make it clear what units they’re using — or whether or not their numbers have been normalized. For example, Box Office Mojo provides a running tallying of the world’s highest-grossing films, but it’s not clear whether the dollar amounts provided have been normalized to real dollars. If they haven’t, it’s pretty clear that there would be some definite reshuffling at the top of that list!

Clear

Like our Python code, our data and its labels will ideally be easy to read and interpret. Realistically, field (and even data set) descriptors can sometimes be little more than cryptic codes that require constant cross-referencing with a data dictionary or other resources. This is part of why this type of data integrity is almost always the product of rather than the precursor to some degree of data wrangling.

For example, is there some logic to the fact that the table code for the US Census Bureau’s American Community Survey Demographic and Housing Estimates is DP05? Perhaps. But it’s hardly obvious to an occasional user of Census data, any more than the column label DP05_0001E is likely to be4. While a download of this Census table does include multiple files that can help you piece together the meaning of the filenames and column headers, developing a clear, high integrity data set may well require a fair amount of relabeling, reformatting and reindexing — especially where government-produced data is involved. As always, however, documenting your information sources and renaming processes as you go is crucial.

Dimensionally Structured

Dimensionally structured data contains fields that have been grouped into or additionally labeled with useful categories, such as geographic region, year or language. Such features often provide quick entry points for both data augmentation (which we’ll address in “Data Augmentation”) and data analysis, because they reduce the correlation and aggregation effort we have to do ourselves. These features can also serve as an indicator of what the data creator thought was important to record. For example, the dimensions of our Citi Bike data include whether a bike was checked out to the account of a “Subscriber” or a “Customer”, as well as the account holder’s birth year, and gender — suggesting that the data’s designers believed these features might yield useful insights about Citi Bike trips and usage. As we’ll see in Chapter 7, however, they did not choose to include any sort of “weekday/holiday” indicator — meaning that is a dimension of the data we’ll have to derive ourselves if we need it.

Data decoding

Although easily-readable filenames and column headers are useful, coded data descriptors aren’t necessarily all bad. As we’ll explore later on, building robust, high-quality data sets sometimes requires combining two or more data sources. In these instances, the use of standardized — if occasionally cryptic — codes can be useful. For example, the New York State Department of Education website provide individual school profiles, along with multiple identifiers for each one. While these id numbers aren’t very informative in and of themselves, plugging one into a search engine can help turn up other documents and data sets — making it easier to collate multiple data sources with high confidence.

Improving Data Quality

As previously noted, many aspects of data quality are themselves the product of a data wrangling process — whether that involves reconciling and normalizing units, clarifying the meaning of obscure data labels, or seeking out background information about the representativeness of your data set. Part of what this illustrates is that, in the real world, ensuring data quality is at least partly the result of multiple, iterative data wrangling processes. While the terms for these phases of the data wrangling process vary, I usually describe them as data cleaning and data augmentation.

Data cleaning

In reality, data “cleaning” is not so much its own step in the data wrangling process as it is a constant activity that accompanies every other step, both because most data is not clean when we encounter it, and because how a data set (or part of it) needs to be “cleaned” is often revealed progressively as we work. At a high level, clean data might be summarized as being free from errors or typos — such as mismatched units, multiple spellings of the same word or term, and fields that are not well-separated — and missing or impossible values. While many of these are at least somewhat straightforward to recognize (though not always to correct), however, deeper data problems may still persist. Measurement changes, calculation errors and other oversights — especially in system-generated data — often don’t reveal themselves until some level of analysis has been done and the data has been “reality-checked” with folks who significant expertise and/or first-hand experience with the subject.

The iterative nature of data cleaning is an example of why data wrangling is a cycle rather than a linear series of steps: as your work reveals more about the data and your understanding of its relationship to the world deepens, you may find that you need to revisit earlier work that you’ve done and repeat or adjust certain aspects of the data. Of course, this is just another reason why documenting your data wrangling work is so crucial: you can use your documentation to quickly identify where and how you made any changes or updates, and to reconcile them with what you now know. Without robust documentation to guide you, you may quickly find yourself needing to start from scratch.

Data Augmentation

Augmenting a data set is the process of expanding or elaborating it, usually by connecting it with other data sets — this is really the nature of “big data” in the 21st century 5. By using features shared among data sets, it’s possible to bring together data from multiple sources in order to get a more complete portrait of what is happening in the world, by filling in gaps, providing corroborating measures, or adding contextual data that helps us better assess data fit. In our “best” school example, this might mean using school codes to bring together the several types of data collected by different entities, such as the state-level standardized test scores and local building information mentioned in “Data decoding”. Through a combination of effective research and data wrangling, data augmentation can help us build data quality and answer questions far too nuanced to address through any single data set.

Like data cleaning, opportunities for data augmentation may arise at almost any point in the data wrangling process. At the same time, each new data set we introduce will spawn a data wrangling processes of its own. This means that unlike data cleaning, data augmentation has no definitive “end state" — there will always be another data set we can add. This is yet another reason why specifically and succinctly stating our data wrangling question up front is so essential to the process: without a clearly articulated statement about what you’re trying to investigate, it’s all to easy to run out of time or other resources for your data wrangling effort. The good news is that if you’ve been keeping up your data diary, you’ll never lose track of a promising data set for use in a future project.

Since our hands-on work with actual data has been limited up to this point, many of the concepts discussed in this chapter may seem a little bit abstract right now. Don’t worry! Things are about to get very hands on. In the coming chapters, we’ll start wrangling that comes in data formats and from different sources, offering an inside look at how various characteristics of data quality play into the decisions we make as we access, evaluate, clean, analyze and present our data. And you can be confident that by the end of this volume, you’ll be able to create meaningful, accurate, and compelling data analyses and visualizations to share your insights with the world!

In the next chapter, we’ll start this process by working through how to wrangle data from a wide variety of formats into a structure that will let us do the cleaning, augmentation and analyses we need. Let’s dive in!

1 Even in the course of just a few months, many of the links I originally included in this book moved or stopped working.
2 For a highly readable overview, see “Statistics Without Tears”.
3 This list is adapted from Stephen Few’s excellent book Now You See It: Simple Visualization Techniques for Quantitative Analysis, with adjustments based on my own data wrangling experience.
4 It indicates the total population estimate, by the way.
5 https://www.tandfonline.com/doi/full/10.1080/1369118X.2012.678878

Chapter 4. Working with File-Based and Feed-Based Data in Python

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

In Chapter 3 we focused on the many characteristics that contribute to data quality — from the completeness, consistency and clarity of data integrity to the the reliability, validity and reprensentativeness of data fit. We discussed the need to both “clean” and standardize data, as well as the need to augment it by combining it with other data sets. But how do we actually accomplish these things in practice?

Obviously, it’s impossible to begin assessing the quality of a data set without first reviewing its contents — but this is sometimes easier said than done. For decades, data wrangling was a highly specialized pursuit, leading companies and organizations to create a whole range of distinct (and sometimes proprietary) digital data formats designed to meet their particular needs. Often, these formats came with their own file extensions — some of which you may have seen: xls, csv, dbf, and spss are all file formats typically associated with “data” files1. While their specific structures and details vary, all of these formats are what I would describe as file-based — that is, they contain (more or less) historical data in static files that can be downloaded from a database, emailed by a colleague or accessed via file-sharing sites. Most significantly, a file-based data set will, for the most part, contain the same information whether you open it today or a week, a month, or a year from now.

Today, these file-based formats stand in contrast to the data formats and interfaces that have emerged alongside real-time web services over the past 20 years. Web-based data today is available for everything from news to weather monitoring to social media sites, and these feed-style data sources have their own unique formats and structures. Extensions like xml, json and rss indicate this type of real-time data, which often needs to be accessed via specialized application programming interfaces, or APIs. Unlike file-based formats, accessing the same web-based data location or “endpoint” via an API will always show you the most recent data available — and that data may change in days, hours, or even seconds.

These aren’t perfect distinctions, of course. There are many organizations (especially government departments), that provide file-based data for download — but then overwrite those files with new ones that have the same name whenever the source data is updated. At the same time, feed-style data formats can be downloaded and saved for future reference — but their source location online will not generally provide access to older versions. Despite these sometimes unconvential uses for each class of data format, however, in most cases you can use the high-level differences between file-based and feed-based data formats to you choose the most appropriate sources for a given data wrangling project.

How do you know if you want file-based or feed-based data? In many cases, you won’t have a choice. Social media companies, for example, provide ready access to their data feeds through their APIs, but don’t generally provide retrospective data. Other types of data — especially data that is itself synthesized from other sources or heavily reviewed before release — is much more likely to be made available in file-based formats. If you do have a choice between file-based and feed-based formats, then which you choose will really depend on the nature of your data wrangling question: if it hinges on having the most recent data available, then a feed-style format will probably be preferable. But if you’re concerned about trends, file-based data, which is more likely to contain information collected over time, will probably be your best bet. That said, even when both formats are available, there’s no guarantee they contain the same fields, which once again might make your decision for you.

One Data Source, Two Ways

We’ve actually already worked with a data source that is available in both a file-based and a feed-based format: our Citi Bike data from Chapter 2. In our ??? example, we used a subset of the file-based data to examine how many “Subscriber” versus “Customer” rides were taken by Citi Bike riders on September 1, 2020. For data wrangling questions about trends in ridership and station activity, these retrospective files are invaluable.

At the same time, if we wanted information about how many bikes were available at a particular Citi Bike station right now, that file-based data just can’t help us. But we can access this information using Citi Bike’s real-time json feed, located at https://gbfs.citibikenyc.com/gbfs/en/station_status.json. The wall of text you’ll see when you open that link in most web browsers isn’t especially user-friendly2, but it does contain information that the file-based data doesn’t — like a count of currently available bikes and parking spots, as well as how many bikes there are not usable, etc. In order determine the physical location of a particular station_id, however, you’d need to augment this data with information from either a different Citi Bike data feed, or with the file-based data we’ve already used.

In other words, there are plenty of data sources where it makes sense to have both file-based and feed-based data formats — which is better for you will really depend (as always!) on your particular data wrangling question.

Over the course of this chapter, we’ll work through hands-on examples of wrangling data from several of the most common file-based and feed-based data formats, with the goal of making them easier to review, clean, augment and analyze. We’ll also take a look at some of the tougher-to-wrangle data formats that you might need to work with strictly out of necessity. Throughout these processes, we’ll rely heavily on the excellent variety of libraries that the Python community has developed for these purposes, including specialty libraries and programs for processing everything from spreadsheets to images. By the time we finish, you’ll have the skills and sample scripts you need to tackle a huge variety of data wrangling projects, paving the way forward for your next data wrangling project!

Structured Versus Unstructured data

Before we dive into writing code and wrangling data, I want to briefly discuss one other key attribute of data sources that can impact the direction (and speed) of your data wrangling projects — working with structured versus unstructured data.

The goal of most data wrangling projects is to generat insight and, often, to use data to make better decisions. But decisions are time-sensitive, so our work with data also requires balancing tradeoffs: instead of waiting for the “perfect” data set, we may combine two or three not-so-perfect ones in order to build a valid approximation of the phenomenon we’re investigating, or we may look for data sets that share common identifiers (for example, zip codes), even if that means we need to later derive the particular dimensional structure (like neighborhood) that truly interests us. As long as we can gain these efficiencies without sacrificing too much in terms of data quality, improving the timeliness of our data work can also increase its impact.

One of the simplest ways to make our data wrangling more efficient is to seek out data formats that are easy for Python and other computational tools to access and understand. Although advances in computer vision, natural language processing and machine learning have made it easier for computers to analyze data regardless of its underlying structure or format, the fact is that structured, machine-readable data remains — unsurprisingly, perhaps — the most straightforward type of data to work with. In truth, while anything from interviews to images to the text of books can be used as a data source, when many of us think of “data,” we often think of structured, numerical data more than anything else.

What do we mean by machine-readable?

Believe it or not, the United States actually has a legal definition of “machine-readable” data, thanks to the Foundations for Evidence-Based Policymaking Act, which went into effect in early 2019. According to the law, machine-readable data is:

data in a format that can be easily processed by a computer without human intervention while ensuring no semantic meaning is lost
Foundations for Evidence-Based Policymaking Act, 2019

Helpful, right? While it may seem a bit formal now, as you continue to work with data (especially if you are requesting it from government agencies), you’ll begin to appreciate why this definition is important. Particularly when it comes to dealing with “unstructured” data (like text documents), for example, there is a big difference between one that was generated by a word-processing program and one that was scanned in from a piece of paper. While both are “machine-readable” in the sense that you can view them on a computer, good luck trying to access the underlying text from the scanned document programmatically3! Since there will be times that the folks providing your data might be a little reluctant to do so, a clear (legal!) definition of what “machine-readable” means is actually very valuable.

Structured data is any type of data that has been has been organized and classified in some way, into some version of records and fields. In filed-based formats, these are usually rows and columns; in feed-based formats they are often (essentially), lists of objects or dictionaries.

Unstructured data, by contrast, may consist of a mash-up of different data types, combining text, numbers and even photographs or illustrations. The contents of a magazine or a novel, or the waveforms of a song, for example, would typically be considered unstructured data.

If right now you’re thinking: “Hang on, novels have structure! What about chapters?” then congratulations: you’re already thinking like a data wrangler. We can create data about almost anything by collecting information about the world and applying structure to it.4 And in truth, this is how all data is created: The data sets that we access via files and feeds are all the product of someone’s decisions about how to collect and organize information. In other words, there is always more than one way to organize information, but the structure chosen influences how it can be analyzed. This is why it’s a little ridiculous to suggest that data can somehow be “objective;” after all it’s the product of (inherently subjective) human choices.

For example, try conducting this mini-experiment: Think about how you organize some collection of yours — it could be a collection of music, books, games, or varieties of tea — you name it. Now ask a friend how they organize their own collection of that item. Do you do it the same way? Which is “better”? Now ask someone else, and maybe even a third person. While you may find similarities among the systems that you and your friends use for organizing your music collections, for example, I would be very suprised if you find that any two of you do it precisely the same way. In fact, you’ll probably find that everyone does it a little bit differently, but also feels passionately that their way is “best.” And it is! For them.

If this is reminding you of our discussion in “How? And for whom?”, that’s no coincidence, because the result of your data wrangling question and efforts will eventually be — you guessed it! — another data set, which will reflect your interests and priorities. It, too, will be structured and organized makes working with it in certain ways easier than others. But the takeaway here is not that any given way is right or wrong, just that every choice involves tradeoffs. Identifying and acknowledging those tradeoffs is a key part of using data honestly and responsibly.

So a key tradeoff when using structured data is that it requires depending on someone else’s judgments and priorities in organizing the underlying information. Obviously, this can be a good — or even great! — thing, if that data has been structured according to a open, transparent process that involves well-qualified experts. Thoughtfully applied data structures like this can give us early insight into a subject we may otherwise know little to nothing about. On the other hand, there is also the possibility that we will inherit someone else’s biased or poorly-designed choices.

Unstructured data, of course, gives us complete freedom to organize information into data structures that suit our needs best. Unsurprisingly, this requires us to take responsibility for engaging a robust data quality process, which may be both complex and time-consuming.

How do we know if a particular data set is structured or unstructured up front? In this case, file extensions can definitely help us out. Feed-based data formats always have at least some structure to them, even if they contain chunks of “free text,” like social media posts. So if you see the file extensions .json, .xml, .rss or .atom, the data has at least some type of record-and-field structure, as we’ll explore in “Feed-Based Data — Web-Driven Live Updates”. File-based data that ends in .csv, .tsv, .txt, .xls(x) or .ods tends to follow a table-type, rows-and-columns structure, as we’ll see in “File-Based, Table-Type Data — Take it to Delimit”. Truly unstructured data, meanwhile, is most likely to come to us as .doc(x) or .pdf.

Smart Searching for Specific Data Types

Since search engines are the first place most of us turn when we’re looking for information, wouldn’t it be great to be able to use the power of search engines to find more efficiently find the data sources (and formats) we need?

While using keywords, sentences or phrases is a typical way to begin an online search, tweaking those habits just a little can make all the difference when it comes to turning up useful data formats. By mixing in one or more search operators, you can tell your search engine to return results from only specific websites, domain types (like .gov) — or even results with specific file extensions. For example:

	Search terms or keywords filetype: .csv

	
You can replace .csv with any file extension you like, including .tsv, .txt, .pdf or even .jpg, .mp3 etc. This will return files with the specified extension that also match your search terms or keywords.

	Search terms or keywords site: oreilly.com

	
This search will return only results matching your search terms or keywords from within the site oreilly.com. This is particularly handy if you are looking for data created or published by a particular organization. Note that you can also use this to search within an entire top-level domain like .gov or .co.uk.

	Search terms or keywords inurl: https

	
A handy way to locate only secure websites.

	Search terms or keywords -other search terms or keywords

	
While this won’t help you find specific files, using the minus symbol (-) can be a great way to focus your search for information when you specifically want to exclude results that would be commonly associated with your main search term. To see this in action, compare the results of the search steve jobs with steve jobs -apple on your favorite search engine.

Of course, a search engine is just one way to find data; for more ideas about locating the data you need, check out [Link to Come].

Now that we’ve got a good handle on the different types of data sources that we’re likely to encounter — and even some sense of how to locate them — let’s get wrangling!

Working with Structured Data

Since the early days of digital computing, the table has been one of the most common ways to structure data. Even today, many of the most common and easy-to-wrangle data formats today are little more than tables, or collections of tables. In fact, we already worked with one very common table-type data format in Chapter 2: the .csv or comma-separated value format.

File-Based, Table-Type Data — Take it to Delimit

In general, all of the table-type data formats you’ll typically encounter are examples of what we are known as delimited files: each data record is on its own line or row, and the boundaries between fields or columns of data values is indicated — or delimited — by a specific text character. Often, an indication of which text character is being used as the delimiter in a file is incorporated into the data set’s file extension. For example, the .csv file extension stands for comma-separated value, because these files use a comma character (,) as a delimiter; the .tsv file extension stands for tab-separated value, because the data columns are separated by a tab. Below is a list of file extensions commonly associated with delimited data.

	.csv

	
Comma-separated value files are among the most common form of table-type structured data files you’ll encounter. Almost any software system that handles tabular data (such as government or corporate data systems, spreadsheet programs and even specialized commercial data programs) can output data as a_ .csv_, and, as we saw in Chapter 2, there are handy libraries for working with this data type easily in Python.

	.tsv

	
Tab-separated value files have been around for a long time, but the descriptive .tsv extension has only become common relatively recently. While data providers don’t often explain why they choose one delimiter over another, tab-delimited files may be more common for data sets whose values need to include commas — such as postal addresses.

	.txt

	
Structured data files with this extension are often .tsv files in disguise; older data systems often labeled tab-separated data with the .txt extension. As you’ll see in the worked examples that follow, it’s a good idea to open and review any data file you want to wrangle with a basic text program (or a code editor like Atom) before you write any code, since looking at the contents of the file is the only sure-fire way to know what delimiters you’re working with.

	.xls(x)

	
This is the file extension of spreadsheets produced with Microsoft Excel. Because these files can contain multiple “sheets” in addition to formulas, formatting and other features that simple delimited files cannot replicate, they need more memory to store the same amount of data. They also have other limitations (like only being able to handle a certain number of rows) that can have implications for your data set’s integrity.

	.ods

	
Open-document spreadsheet files are the default extension for spreadsheets produced by a number of open-source software suites like LibreOffice and OpenOffice, and have limitations and features similar to those of .xls(x) files.

Before we dive into how to work with each of these file types in Python, it’s worth spending just a little time thinking about when we might want to work with table-type data, and where to find it when we do.

When To Work With Table-Type Data

Most of the time, we don’t get much of a choice about the format of our source data. In fact, much of the reason we need to do data wrangling in the first place is because the data we have doesn’t quite meet our needs. That said, it’s still valuable to know what data format you would prefer to be able to work with, so that you can use that to inform your search for initial search for data.

In “Structured Versus Unstructured data”, we talked about the benefits and limitations of structured data, and we now know that table-type data is one of the oldest and most common forms of machine-readable data. This history means, in part, that over the years many forms of source data have been crammed into tables, even though they may not necessarily be well-suited to table-like representations. Still, this format can be especially useful for answering questions about trends and patterns over time. In our Citi Bike exercise from Chapter 2, for example, we examined how many “Customers” versus “Subscribers” had taken Citi Bike rides over the course of a single month; if we wanted to, we could perform the same calculation for every available month of Citi Bike rides in order to understand any patterns in this ratio over time.

Of course, table-type data is generally not a great format for real-time data, or data where not every observation contains the same possible values. These kinds of data are often better-suited to the feed-based data formats that we’ll discuss later in “Feed-Based Data — Web-Driven Live Updates”.

Where to Find Table-Type Data

Since the vast majority of machine-readable data is still in table-type data formats, it is among the easiest data formats to locate. Spreadsheets are common in every discipline, and a large number of government and commercial information systems rely on software that organizes data in this way. Almost any time you request data from an expert or organization, a table-type format is what you are likely to get. This is also true of almost every open-data portal and data-sharing site you’ll find online. As we covered in “Smart Searching for Specific Data Types”, you can even find table-type data (and other specific file formats) via search engines, if you know how to look.

Wrangling Table-Type Data with Python

To help illustrate how simple it is to work with table-type data in Python, we’ll walk through examples of how to read in data from all of the file types mentioned in this section — plus a few others, just for good measure. While in later chapters we’ll look at how to do more with cleaning, transformation and data quality assessments, our focus for the time being will simply be on accessing the data within each type of data file and interacting with it using Python.

Reading Data from CSVs

In case you didn’t follow along in Chapter 2, here’s a refresher on how to read data from a .csv file, using a sample from the Citi Bike dataset. As always, I’ve included a description of what the program is doing — as well as links to any source files — in the comments at the top of my script. Since we’ve worked with this data format before, for now we’ll just worry about printing out the first few rows of data to see what they look like.

Example 4-1. csv_parsing.py

A simple example of reading data from a .csv file with Python
using the "csv" library.
The source data was sampled from the Citi Bike system data:
https://drive.google.com/file/d/17b461NhSjf_akFWvjgNXQfqgh9iFxCu_/
Which can be found here:
https://s3.amazonaws.com/tripdata/index.html

import the "csv" library, which will give us lots of handy code recipes
for dealing with our data file
import csv

open is a built-in function that takes two "ingredients":
1. the data file name (in the same folder as your script or notebook)
2. a "mode": "r" for "read" or "w" for "write"
csv_source_file = open("202009CitibikeTripdataExample.csv","r")

pass our csv_source_file as an ingredient to the the csv library's DictReader
"recipe" and store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(csv_source_file)

the DictReader function has added useful information to our data,
like a label that shows us all the values in the first or "header" row
print(citibike_reader.fieldnames)

since even this smaller dataset is pretty large,
let's just print the first few rows to see what's in there
for i in range(0,5):
 print (next(citibike_reader))

The output from running this should look something like:

['tripduration', 'starttime', 'StartDate', 'stoptime', 'start station id', 'start station name', 'start station latitude', 'start station longitude', 'end station id', 'end station name', 'end station latitude', 'end station longitude', 'bikeid', 'usertype', 'birth year', 'gender']
{'tripduration': '4225', 'starttime': '2020-09-01 00:00:01.0430', 'StartDate': '2020-09-01', 'stoptime': '2020-09-01 01:10:26.6350', 'start station id': '3508', 'start station name': 'St Nicholas Ave & Manhattan Ave', 'start station latitude': '40.809725', 'start station longitude': '-73.953149', 'end station id': '116', 'end station name': 'W 17 St & 8 Ave', 'end station latitude': '40.74177603', 'end station longitude': '-74.00149746', 'bikeid': '44317', 'usertype': 'Customer', 'birth year': '1979', 'gender': '1'}
 ...
{'tripduration': '1193', 'starttime': '2020-09-01 00:00:12.2020', 'StartDate': '2020-09-01', 'stoptime': '2020-09-01 00:20:05.5470', 'start station id': '3081', 'start station name': 'Graham Ave & Grand St', 'start station latitude': '40.711863', 'start station longitude': '-73.944024', 'end station id': '3048', 'end station name': 'Putnam Ave & Nostrand Ave', 'end station latitude': '40.68402', 'end station longitude': '-73.94977', 'bikeid': '26396', 'usertype': 'Customer', 'birth year': '1969', 'gender': '0'}

Adding iterators: The range function

Unlike many other programming languages, Python’s for loop is designed to run through all values in a list or a data set by default. While this can be handy for processing entire data sets quickly, it’s not so helpful when we just want to quickly review a handful of rows.

This is where a special type of variable called an iterator comes in. Like any variable, you can name an iterator anything you like, though i (for iterator!) is traditional. As you can see from the example above, one place where Python iterators typically appear is within the range function — another example of a control flow function which, like for loops and if statements, has special, built-in properties.

For example, the range function includes an iterator variable that lets us write a slightly different kind of for loop — one that goes through a certain number of rows, rather than all of them. So rather than taking the form of:

for item in complete_list_of_items:

It lets us write a for loop that starts at a particular point in our list and continues for a certain number of items:

for _++item_position++_ in range (_++starting_position++_, _++number_of_places_to_move++_):

In our Example 4-1 example above, we chose to print the first several rows of the file:

for i in range(0,5):
 print (next(citibike_reader))

One thing to note is that when the range iterates over the values specified in the parentheses, it includes the first number but excludes the second one. This means that in order to print 5 rows of data, we need to provide an initial value of 0, because lists in Python are what’s known as zero-indexed — they starting “counting” positions at 0 rather than `1`5.

Reading Data from TSV and TXT files

Despite its name, the Python csv library is basically a one-stop shop for wrangling table-type data in Python, thanks to the DictReader function’s delimiter option. Unless you tell it differently, DictReader assumes that the comma-character (,) is the separator it should look for. Overriding that assumption is easy, however: you can simply specify a different character when you call the function. In the Example 4-2, we specify the tab character (\t), but we could easily substitute any delimiter we prefer (or that appears in a particular source file).

Example 4-2. tsv_parsing.py

A simple example of reading data from a .tsv file with Python, using
the "csv" library. The source data was downloaded as a .tsv file
from Jed Shugerman's Google Sheet on prosecutor politicians:
https://docs.google.com/spreadsheets/d/1E6Z-jZWbrKmit_4lG36oyQ658Ta6Mh25HCOBaz7YVrA/
Discovered via Jeremy Singer-Vine's (@jsvine) "Data is Plural" newsletter:
https://tinyletter.com/data-is-plural

import the "csv" library, which will give us lots of handy code recipes
for dealing with our data file
import csv

open is a built-in function that takes two "ingredients":
1. the data file name (in the same folder as your script or notebook)
2. a "mode": "r" for "read" or "w" for "write"
tsv_source_file = open("ShugermanProsecutorPoliticians-SupremeCourtJustices.tsv","r")

pass our tsv_source_file as an ingredient to the the csv library's DictReader
"recipe" and store the result in a variable called `politicians_reader`
politicians_reader = csv.DictReader(tsv_source_file, delimiter='\t')

the DictReader function has added useful information to our data,
like a label that shows us all the values in the first or "header" row
print(politicians_reader.fieldnames)

let's use the `next()` function to print
just print the first row of data
print (next(politicians_reader))

This should result in output that looks something like:

['', 'Justice', 'Term Start/End', 'Party', 'State', 'Pres Appt', 'Other Offices Held', 'Relevant Prosecutorial Background']
{'': '40', 'Justice': 'William Strong', 'Term Start/End': '1870-1880', 'Party': 'D/R', 'State': 'PA', 'Pres Appt': 'Grant', 'Other Offices Held': 'US House, Supr Court of PA, elect comm for elec of 1876', 'Relevant Prosecutorial Background': 'lawyer'}

What’s in a file extension?

While having computers take care of certain things for us “automagically” can often be convenient, one thing that learning to wrangle data and program in Python will hopefully make clear is that we have much more influence over how our computers behave than it might first appear.

A perfect example of this is file extensions. Throughout the course of this chapter, I’ve highlighted how file extensions can give us clues about the format of a data set and even help us search for them more efficiently. Of course, computers also use file extensions to make inferences about the contents of a particular file, typically relying on them to select the appropriate program for opening it. This is why if you’ve ever changed a file extension — whether intentionally or by accident — you’ve probably seen a warning message to the effect of: “Are you sure you want to change this? The file might not work properly if you do.” While no doubt well-intentioned, those types of warning messages make it seem like you can actually break or corrupt your files by accidentally changing the file extension.

In fact, nothing could be further from the truth. Changing the extension of a file (for example, from .tsv to .txt or vice versa) does absolutely nothing to change its contents. All it does is change what your computer assumes should be done with it.

Fortunately, Python tools like the ones we’re using don’t make those sorts of assumptions. When we’re working with table-type data, as long as the delimiter we specify matches what’s actually used in the file, the extension on the data file doesn’t matter either way. In fact, the .txt file we’ll use in Example 4-3 was created simply be saving a copy of the .tsv file from Example 4-2, and changing the extension!

Though the .tsv file extension has become a relatively common nowadays, many files generated by older databases that are actually tab-separated may reach you with a .txt file extension. Fortunately, as described in “What’s in a file extension?”, this changes nothing about how we handle the file as long as we specify the correct delimiter — as you can see below in Example 4-3.

Example 4-3. txt_parsing.py

A simple example of reading data from a .tsv file with Python, using
the "csv" library. The source data was downloaded as a .tsv file
from Jed Shugerman's Google Sheet on prosecutor politicians:
https://docs.google.com/spreadsheets/d/1E6Z-jZWbrKmit_4lG36oyQ658Ta6Mh25HCOBaz7YVrA/
Discovered via Jeremy Singer-Vine's (@jsvine) "Data is Plural" newsletter:
https://tinyletter.com/data-is-plural
The original .tsv file was renamed with a file extension of .txt

import the "csv" library, which will give us lots of handy code recipes
for dealing with our data file
import csv

open is a built-in function that takes two "ingredients":
1. the data file name (in the same folder as your script or notebook)
2. a "mode": "r" for "read" or "w" for "write"
txt_source_file = open("ShugermanProsecutorPoliticians-SupremeCourtJustices.txt","r")

pass our tsv_source_file as an ingredient to the the csv library's DictReader
"recipe" and store the result in a variable called `politicians_reader`
add the "delimiter" parameter and specify the tab character, "\t"
politicians_reader = csv.DictReader(txt_source_file, delimiter='\t')

the DictReader function has added useful information to our data,
like a label that shows us all the values in the first or "header" row
print(politicians_reader.fieldnames)

since even this smaller dataset is pretty large,
let's just print the first few rows to see what's in there
for i in range(0,5):
 print (next(politicians_reader))

If everything has gone well, the output from this script should look the same as that from Example 4-2.

One question you may be asking yourself at this point is, “How do I know what delimiter my file has?” While there are programmatic ways to help detect this, the simple answer is: Look! Anytime you begin working with (or thinking about working with) a new data set, start by opening it up in the most basic text program your device has to offer (any code editor will also be a reliable choice). Especially if the file is large, using the simplest program possible will let your device devote maximum memory and processing power to actually reading the data — reducing the likelihood that the program will hang or your device will crash (closing other programs and excess browser tabs will help, too)!

Though I’ll talk about some ways to inspect small parts of really large files later on in the book, now is the time to start practicing the skills that are essential to assessing data quality — all of which require reviewing your data and making judgments about it. So while there are ways to “automate away” tasks like identifying the correct delimiter for your data, eyeballing it in a text editor will often be not just faster and more intuitive, it will help you get more familiar with other important aspects of the data at the same time.

It’s all just text

One reason why opening .csv, .tsv and many other data formats in a text editor is so helpful is that most of the data formats we will (or want to) deal with are, at the most basic level, just text. In exactly the same way that written English is organized into sentences and paragraphs through the (somewhat) standardized use of periods, spaces, capital letters and newlines, what distinguishes one data format from another at a practical level is also just the punctuation used to organize it. As we’ve seen above, basic table-type data is separated into fields or columns through the use of delimiters, and into records or rows by using newlines. Feed-type data, which we’ll look at in the next section, is a bit more flexible (and involved), but ultimately follows relatively simple punctuation and structure rules of its own.

Of course, there are plenty of non-text data formats out there, which are usually the output of specialized, proprietary programs that are designed to make data wrangling (and analysis, and visualization) possible without writing much, if any, code. While these programs can make very specific data tasks faster or more approachable, the tradeoff is that they are often expensive, challenging to learn, and sometimes inflexible. As we’ll see in “XLSX, ODS and All the Rest” and beyond, getting data out of these proprietary formats can also be difficult, unreliable — or even impossible. So while Python can still help us wrangle some of the most common proprietary data formats, in some cases using alternate software (or enlisting someone else’s help) is our best option.

Real-World Data Wrangling: Understanding Unemployment

The underlying data set that we’ll use to explore some of our trickier table-type data formats is unemployment data about the United States. Why? In one way or another, unemployment affects most of us, and in recent decades the US has experienced some particularly high unemployment rates. Unemployment numbers for the US are released monthly by the Bureau of Labor Statistics (BLS), and while they are often reported by general-interest news sources, they are usually treated as a sort of abstract indicator of how “the economy” is doing. What the numbers really represent is rarely discussed in-depth.

When I first joined the Wall Street Journal in 2007, building an interactive dashboard for exploring monthly economic indicator data — including unemployment — was my first major project. One of the more interesting things I learned in the process is that there isn’t “an” unemployment rate calculated each month, there are several (six, to be exact). The one that usually gets reported by news sources is the so-called “U3” unemployment rate, which the BLS describes as:

Total unemployed, as a percent of the civilian labor force (official unemployment rate)

On its surface, this seems like a reasonable and straightforward definition of unemployment: Of all the people who reasonably could be working, what percentage are not?

Yet the real story is a bit more complex. What does it mean to be “employed” or be counted as part of the “labor force”? A look at different unemployment number makes more clear what the “U3” number does not take into account. The “U6” unemployment rate is defined as:

Total unemployed, plus all persons marginally attached to the labor force, plus total employed part time for economic reasons, as a percent of the civilian labor force plus all persons marginally attached to the labor force.

When we read the accompanying note, this longer definition starts to take shape:

NOTE: Persons marginally attached to the labor force are those who currently are neither working nor looking for work but indicate that they want and are available for a job and have looked for work sometime in the past 12 months. Discouraged workers, a subset of the marginally attached, have given a job-market related reason for not currently looking for work. Persons employed part time for economic reasons are those who want and are available for full-time work but have had to settle for a part-time schedule. Updated population controls are introduced annually with the release of January data.6

In other words, if you want a job (and have looked for one in the past year) but haven’t looked for one very recently — or if you have a part-time job but want a full-time job, then you don’t officially count as “unemployed” in the U3 definition. This means that the economic reality of Americans working multiple jobs (who are more likely to be women and have more children7), and potentially of “gig” workers8 (recently estimated as up to 30% of the American workforce9) are not necessarily reflected in the U3 number. Unsurprisingly, the U6 rate is typically several percentage points higher each month than the U3 rate.

To see how these rates compare over time, we can download them from the website of the St. Louis Federal Reserve, which provides thousands of economic data sets for download in a range of formats, including table-type .xls(x) files and, as we’ll see later in Example 4-12, feed-type formats as well.

To download the data for these exercises, go to: https://fred.stlouisfed.org/series/U6RATE. This shows the current U6 unemployment rate since the measure was first created in the early 1990s.

To add the U3 rate to this graph, at the top right choose “Edit graph” >> ADD LINE. In the search field, type UNRATE and then select “Unemployment Rate” when it populates below the search bar. Finally, click “Add series.” Close this side window using the X at the top right, and then select “Download,” being sure to select the first option, “Excel.”10 This will be an .xls file, which we’ll handle last because although still widely available, this is a relatively outdated file format (it was replaced by .xlsx as the default format for Microsoft Excel spreadsheets in 2007).

To get the additional file formats we need, just open the file you downloaded with a spreadsheet program like Google Sheets and choose “Save As”, then select .xlsx, then repeat the process choosing .ods. You should now have the following three files, all containing the same information: fredgraph.xlsx, fredgraph.ods and `fredgraph.xls`11.

Note

If you opened the original fredgraph.xls file, you probably noticed that it contains more than just the unemployment data, it also contains some header information about where the data came from, and the definitions of U3 and U6 unemployment, for example. While doing analysis on the unemployment rates these files contain would require separating this metadata from the table-type data further down, remember that our goal for the moment is simply to convert all of our various files to a .csv format. We’ll tackle the data cleaning process that would involve removing this metadata in Chapter 7.

XLSX, ODS and All the Rest

For the most part, it’s preferable to avoid processing data saved as .xlsx, .ods and most other non-text table-type data formats directly if possible. If you’re just at the stage of exploring data sets, I suggest you review these files simply by opening them with your preferred spreadsheet program and saving them as a .csv or .tsv file format before accessing them in Python. Not only will this make them easier to work with, it will give you a chance to actually look at the contents of your data file and get a sense of what it contains.

Resaving and reviewing .xls(x) and similar data formats as a .csv or equivalent text-based file format will both reduce the file size and give you a better sense of what the “real” data looks like. Because of the formatting options in spreadsheet programs, sometimes what you see onscreen is substantially different from the raw values that are stored in the actual file. For example, values that appear as percentages in a spreadsheet program (e.g. 10%) might actually be decimals (.1). This can lead to problems if you try to base aspects of your Python processing or analysis on what you saw in the spreadsheet as opposed to a text-based data format like .csv.

Still, there will definitely be situations where you need to access files .xls(x) and similar file types with Python directly12. For example, if there’s a .xls data set you need to wrangle on a regular basis (say, every month), resaving the file manually each time would become unnecessarily time-consuming.

Fortunately, that active Python community we talked about in “Community” has created libraries that can handle an impressive range of data formats with ease. To get a thorough feel for how these libraries work with more complex source data (and data formats), the following code examples read in the specified file format and then create a new .csv file that contains the same data.

To make use of these libraries, however, you’ll first need to install them on your device13 by running the following commands one-by-one in a terminal window:

pip install openpyxl
pip install pyexcel-ods
pip install xlrd==2.0.1

In the code examples below, we’ll be using the openpyxl library to access (or parse) .xlsx files, the pyexcel-ods library for dealing with .ods files, and the xlrd library for reading from .xls files (for more on finding and selecting Python libraries, see [Link to Come]).

To better illustrate the idiosyncrasies of these different file formats, we’re do something similar to what we did in Example 4-3: we’ll take sample data that is natively released as an .xls file, and create .xlsx and .ods files containing the exact same data by resaving that source file in the other formats using a spreadsheet program. Along the way, I think you’ll starting to get a sense of how these non-text formats make the process of data wrangling more (and, I would argue, unnecessarily) complicated.

Example 4-4. xlsx_parsing.py

An example of reading data from a .xlsx file with Python, using the "openpyxl"
library. First, you'll need pip install the openpyxl library:
https://pypi.org/project/openpyxl/
The source data can be composed and downloaded from:
https://fred.stlouisfed.org/series/U6RATE

specify the particular "chapter" you want to import the "openpyxl" library
in this case, "load_workbook"
from openpyxl import load_workbook

we'll also import the "csv" library because we want to convert our workbook
to a `.csv`
import csv

because this is a very specialized library, there are fewer functions, and
they do more in one step. We'll start by passing our source filename as an
ingredient to the openpyxl library's load_workbook "recipe", and we'll store
the result in a variable called `source_workbook`
source_workbook = load_workbook(filename = 'fredgraph.xlsx')

an .xlsx workbook can have multiple sheets
like the "DictReader" function, load_workbook includes useful information,
like a list that shows us the names of all the data sheets in our workbook
print(source_workbook.sheetnames)

even though our example workbook only includes one worksheet
we might have more in the future. So we'll use the "enumerate" functions
to get both an iterator *and* the sheet name. This will help us
create one `.csv`file per worksheet
for sheet_num, sheet_name in enumerate(source_workbook.sheetnames):
 # we'll create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to `source_workbook`
 current_sheet = source_workbook[sheet_name]
 # let's print the value of `sheet_name` just to see what that value is
 print(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # to do this, we "open" a new file, but make it *writable* ("w")
 # instead of *readable* ("r"), as we have in previous examples
 # for now, we'll just name it "xlsx_"+sheet_name
 output_file = open("xlsx_"+sheet_name+".csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 # so, just as we did when "reading", now that we've opened our `output_file`
 # we'll use this recipe to easily write rows, instead of reading them
 output_writer = csv.writer(output_file)

 # now, we need to loop through every row in our sheet
 # the function `iter_rows()` is specific to the `openpyxl` library and
 # converts the rows of `source_workbook` into a list that can be
 # *iterated*, or looped, over
 for row in current_sheet.iter_rows():
 # the `openpyxl` library treats each cell as a `tuple`.
 # if we try to just print the rows directly, we'll get sort of
 # unhelpful cell locations, rather than the data values they contain.
 # So we'll to make *another* loop to go through every cell in every row
 # one at a time. We'll print both the cell location and the value here,
 # though only the latter will be actually written to our new file

 # we'll create an empty list where we'll put the actual
 # values of the cells in each row
 row_cells = []

 # for every cell (or column) in each row....
 for cell in row:

 # let's print what's in here, just to see how the code sees it
 print(cell, cell.value)

 # just add the values to our list, so we get a nice clean `.csv`
 # `append` is a method/recipe that we can use on lists
 # to add things to the end
 row_cells.append(cell.value)

 # notice that the code below is left-aligned with the
 #`for cell in row` code above
 # this means that it will only be run *after* all the cells in a given
 # row have been gone through, with its values appended to our list
 # now we'll actually write these rows to the output file
 output_writer.writerow(row_cells)

 # just for good measure, let's close the `.csv` file we just
 # wrote all that data to...
 output_file.close()

Example 4-4 illustrates one of the first major differences between dealing with text-based table-type data files and non-text formats: because the non-text formats support multiple “sheets”, we needed to include a for loop at the top of our script, within which we put the code for creating our individual output files (one for each sheet).

This script also begins to demonstrate the way that, just as two chefs may have different ways of preparing the same dish, library creators may make different choices about how to (re)structure each source file type — with corresponding implications for our code. The creators of the openpyxl library, for example, chose to store each data cell’s location label (e.g. A6) and the value it contains in a Python tuple. That design decision is why we need a second for loop to go through each row of data — because we actually have to access the data cell by cell in order to build the Python list that will become our a single row in our output .csv file. Likewise, if you use a spreadsheet program to open the xlsx_FRED Graph.csv created by the script in Example 4-4, you’ll see that the original .xls file shows the values in the observation_date column in a YYYY-MM-DD format, but our output file shows those values in a YYYY-MM-DD HH:MM:SS format. This is because the creator(s) of the openpyxl decided to that it would convert automatically convert any “date-like” data strings into the Python datetime datatype. Obviously, none of these choices are right or wrong; we simply need to account for them in writing our code so that we don’t distort or misinterpret the source data.

Now that we’ve wrangled the .xlsx version of our data file, let’s see what happens when we parse it as an .ods, as shown in Example 4-5.

Example 4-5. ods_parsing.py

An example of reading data from an .ods file with Python, using the
"pyexcel_ods" library. First, you'll need to pip install the library:
https://pypi.org/project/pyexcel-ods/

specify the particular "chapter" you want to import the "pyexcel_ods" library
in this case, "get_data"
from pyexcel_ods import get_data

we'll also import the "csv" library because we want to convert our workbook
to a `.csv`
import csv

because this is a very specialized library, there are fewer functions, and
they do more in one step. We'll start by passing our source filename as an
ingredient to the pyexcel_ods library's get_data "recipe"
and store the result in a variable called `source_workbook`
source_workbook = get_data("fredgraph.ods")

an .ods workbook can have multiple sheets
in this case, our library converts the `.ods` data into
Python's "OrderedDict" data type.
Rather than having to explicitly create an iterator as we did for the `.xlsx`
example, the `items()` method lets us access
each sheet's name and data as a "key/value" pair
where the entire sheet's data is stored in the "value" variable
even though our example workbook only includes one worksheet
we might have more in the future.
in this case, we've descriptively called the key `sheet_name` and the value
`sheet_data` to make clear what we're handling
for sheet_name, sheet_data in source_workbook.items():

 # let's print the value of `sheet_name` just to see what that value is
 print(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # to do this, we "open" a new file, but make it *writable* ("w")
 # instead of *readable* ("r"), as we have in previous examples
 # for now, we'll name it "ods_"+sheet_name
 output_file = open("ods_"+sheet_name+".csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 # so, just as we did when "reading", now that we've opened our `output_file`
 # we'll use this recipe to easily write rows, instead of reading them
 output_writer = csv.writer(output_file)

 # now, we need to loop through every row in our sheet
 # `sheet_data` is already a list, so we can just loop through that list with
 # a basic `for` loop
 for row in sheet_data:

 # because each row is already a list, we can just use the
 # `writerow` recipe directly for our output file
 output_writer.writerow(row)

 # just for good measure, let's close the `.csv` file we just wrote all that
 # data to...
 output_file.close()

In the case of the pyexcel_ods library, the contents of our output .csv file much more closely resembles what we see visually when we open the original fredgraph.xls via a spreadsheet program like Google Sheets — the observation_date field, for example, is in a simple YYYY-MM-DD format. Moreover, the library creator(s) decided to treat the values in each row as a list, allowing us to write each record directly to our output file without creating any additional loops or lists.

Finally, let’s see what happens when we use the xlrd library to parse the original .xls file directly.

Example 4-6. xls_parsing.py

A simple example of reading data from a .xls file with Python
using the "xrld" library. First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the "xlrd" library
import xlrd

we'll also import the "csv" library because we want to convert our workbook
to a `.csv`
import csv

because this is a very specialized library, there are fewer functions, and
they do more in one step. We'll start by passing our source filename as an
ingredient to the xlrd library's open_workbook "recipe" and store the result
in a variable called `source_workbook`. Notice that this structure is similar
to the one we use when working with the `csv` library
source_workbook = xlrd.open_workbook("fredgraph.xls")

an .xls workbook can have multiple sheets
like the "DictReader" function, open_workbook generates useful information,
like a list that shows us the names of all the data sheets in our workbook
print(source_workbook.sheet_names())

even though our example workbook only includes one worksheet, the
`open_workbook` recipe has generated a list of sheet names that we can loop
through. In the future, we could use this to create one `.csv`file per sheet
for sheet_name in source_workbook.sheet_names():

 # we'll create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # let's print the value of `sheet_name` just to see what that value is
 print(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # to do this, we "open" a new file, but make it *writable* ("w")
 # instead of *readable* ("r"), as we have in previous examples
 # for now, we'll just name it "xlsx_"+sheet_name
 output_file = open("xls_"+sheet_name+".csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 # so, just as we did when "reading", now that we've opened our `output_file`
 # we'll use this recipe to easily write rows, instead of reading them
 output_writer = csv.writer(output_file)

 # now, we need to loop through every row in our sheet
 # the function `iter_rows()` is specific to the `openpyxl` library and
 # converts the rows of `source_workbook` into a list that can be looped over.
 # Here's where you'll find most of the data accessing documentation:
 # https://xlrd.readthedocs.io/en/latest/api.html#xlrd-sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # although each row is already a list, we want the *values* so we can
 # use the `writerow` recipe directly for our output file
 # a note that we'll find some serious funkiness in the "dates" this
 # produces. More on that here:
 # https://xlrd.readthedocs.io/en/latest/dates.html
 # And how to fix up the dates here (we'll do this later):
 # https://xlrd.readthedocs.io/en/latest/api.html#module-xlrd.xldate
 output_writer.writerow(current_sheet.row_values(row_num))

 # just for good measure, let's close the `.csv` file we just wrote all that
 # data to...
 output_file.close()

In this case, we see some serious weirdness in the values recorded in the observation_date field, reflecting the fact that, as the xlrd library’s creators put it14:

Dates in Excel spreadsheets: In reality, there are no such things. What you have are floating point numbers and pious hope.
https://xlrd.readthedocs.io/en/latest/dates.html

As a result, getting a useful, human-readable date out of an .xls file requires some signficant cleanup, which we’ll address in Chapter 7.

As these exercises have hopefully demonstrated, with some clever libraries and a few tweaks to our basic code configuration, it’s possible to wrangle data from a wide range of table-type data formats with Python quickly and easily. At the same time, I hope that these examples have also illustrated why working with text-based and/or open-source formats is almost always preferable15, because they often require less “cleaning” and transformation to get them into a clear, usable state.

Finally, Fixed-Width

Though I didn’t mention it at the top of this section, one of the very oldest versions of table-type data is what’s known as “fixed-width.” As the name implies, each data column in a fixed-width table contains a specific, pre-defined number of characters — and always that number of characters. This means that the meaningful data in fixed-width files are often padded with extra characters, such as spaces or zeroes.

Though very uncommon in contemporary data systems, you are still likely to encounter fixed-width formats if you’re working with government data sources whose infrastructure may be decades old. For example, the US National Oceanic and Atmospheric Administration (NOAA), whose origins date back to the early 19th century, offers a wide range of detailed, up-to-date weather information online for free through its Global Historical Climatology Network, much of which is published in a fixed-width format. For example, information about stations’ unique identifier, locations, and what network(s) they are a part of are all stored in the ghcnd-stations.txt file, available here: https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/. In order to interpret any actual weather data readings (many of which are also released as fixed-width files), you’ll need to cross-reference the station data with the weather data.

Even more than other table-type data files, working with fixed-width data can be especially tricky if you don’t have access to the metadata that describes how the file and its fields are organized. With delimited files, it’s often possible to eyeball the file in a text editor and identify the delimiter used with a reasonable level of confidence. At worst, you can simply try parsing the file using different delimiters and see which yields the best results. With fixed-width files — especially large ones — if there’s no data for a particular field in the sample of the data you inspect, it’s easy to end up lumping together multiple data fields inadvertently.

Tab-separated vs. Fixed-width

As mentioned in “File-Based, Table-Type Data — Take it to Delimit”, it’s still not uncommon to come across tab-separated files that have a file extension of .txt — which is the same one used for fixed-width files. Since both file formats also rely on whitespace (spaces or tabs) to separate fields, how can you be sure which one you’re working with?

This is yet another situation where opening up your data file and looking at it in a text or code editor will save you some headaches, because there are clear visual differences between these two file formats. Start by looking at the right side of the document: tab-separated files will be “ragged-right” (the data records will have different line lengths), while fixed-width files will be “justified” (all the records will end at the same point). For example, here’s how a few lines of our .tsv data from Example 4-2 looks in Atom:

42	Ward Hunt	1873-1882	R	NY	Grant	NY House, NY Court of Appeals	lawyer
43	Morrison Waite	1874-1888	R	OH	Grant	mayor of Maumee, OH, OH Sen	lawyer
44	John Marshall Harlan	1877-1911	R	KT	Hayes	KT AG	lawyer

And here’s how a few lines of the ghcnd-stations.txt file looks:

AEM00041217 24.4330 54.6510 26.8 ABU DHABI INTL 41217
AEM00041218 24.2620 55.6090 264.9 AL AIN INTL 41218
AF000040930 35.3170 69.0170 3366.0 NORTH-SALANG GSN 40930

As you can see, not only is the fixed-width file right justified, but so are all the numbers. This is another clue that what you’re looking at is actually a fixed-width file, rather than a tab-delimited one.

Fortunately, metadata about the ghcnd-stations.txt file that we’re using as our data source is included in the readme.txt file in the same folder on the NOAA site at: https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt. Looking through that readme.txt file, we find the heading IV. FORMAT OF "ghcnd-stations.txt", which contains the following table:

Variable Columns Type

ID 1-11 Character
LATITUDE 13-20 Real
LONGITUDE 22-30 Real
ELEVATION 32-37 Real
STATE 39-40 Character
NAME 42-71 Character
GSN FLAG 73-75 Character
HCN/CRN FLAG 77-79 Character
WMO ID 81-85 Character

This is followed in by a detailed description of what each field contains or means, including information like units. Thanks to this robust data dictionary, we now know not just how the ghcnd-stations.txt file is organized, but how to interpret the information it contains. As we’ll see in Chapter 6, finding (or building) a data dictionary is an essential part of assessing or improving the quality of our data. At the moment, however, we can just focus on transforming this fixed-width file into a .csv.

Example 4-7. fixed_width_parsing.py

An example of reading data from a fixed-width file with Python.
The source file for this example comes from the NOAA, and can be accessed here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt
The metadata for the file can be found here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

we'll start by importing the "csv" library because we want to convert
fixed-width file to a `.csv`
import csv

filename = "ghcnd-stations"

reading from a basic text file doesn't require any special libraries
so we'll just open the file in read format ("r") as usual
source_file = open(filename+".txt", "r")

the built-in "readlines()" method does just what you'd think:
it reads in a text file and converts it to a list of lines
stations_list = source_file.readlines()

as usual, we'll create an output file to write to
output_file = open(filename+".csv","w")

and we'll use the `csv` library to create a "writer" that gives us handy
"recipe" functions for creating our new file in csv format
output_writer = csv.writer(output_file)

since we don't have anything *within* the file that we can draw on for column
headers, we will just need to "hard code" these based on the information in
the `readme.txt` file
note that I've eliminated special characters and used underscores in place of
spaces. While not strictly necessary, this can minimize hassles when cleaning
and analyzing our data later on
headers = ["ID","LATITUDE","LONGITUDE","ELEVATION","STATE","NAME","GSN_FLAG","HCNCRN_FLAG","WMO_ID"]

write our headers to the output file
output_writer.writerow(headers)

loop through each line of our file
for line in stations_list:

 # let's print what's on each line just to see what it is
 #print(line)

 # create an empty list, to which we'll append each set of characters that
 # makes up a given "column" of data, according to our `readme.txt` description
 new_row = []

 # Python actually views lines of text as just lists of characters, so we can
 # just tell it to give us the characters that begin at one position (or index)
 # and end before another
 # note that, like the `range()` function, the first number is included,
 # but the second number is not. Also Python starts counting lists
 # of items at zero (often called "zero-indexing"). This means that for
 # each entry, the first number will be *one less* than whatever the metadata
 # says, but the right-hand number will be the same

 # ID: positions 1-11
 new_row.append(line[0:11])

 # LATITUDE: positions 13-20
 new_row.append(line[12:20])

 # LONGITUDE: positions 22-30
 new_row.append(line[21:30])

 # ELEVATION: positions 32-37
 new_row.append(line[31:37])

 # STATE: positions 39-40
 new_row.append(line[38:40])

 # NAME: positions 42-71
 new_row.append(line[41:71])

 # GSN_FLAG: positions 73-75
 new_row.append(line[72:75])

 # HCNCRN_FLAG: positions 77-79
 new_row.append(line[76:79])

 # WMO_ID: positions 81-85
 new_row.append(line[80:85])

 # now all that's left is to use the
 # `writerow` function to write new_row to our output file
 output_writer.writerow(new_row)

just for good measure, let's close the `.csv` file we just wrote all that
data to...
output_file.close()

If you run the above script and open your output .csv file in a spreadsheet program, you’ll notice that the values in some of the columns are not formatted consistently. For example, in the ELEVATION column, the numbers with decimals are left-justified, but those without decimals are right-justified. What’s going on?

Once again, opening the file in a text editor is enlightening. Although the file we’ve created is technically comma-separated, the values we put into each of our newly “delimited” columns still contain the extra spaces that existed in the original file. As a result, our new file still looks pretty “fixed-width.”

In other words — just as we saw in the case of Excel “dates" — converting our file to a .csv does not “automagically” generate sensible data types in our output file. Determining what data type each field should have — and cleaning them up so that they behave appropriately — is part of the data cleaning process that we’ll address in Chapter 7.

Feed-Based Data — Web-Driven Live Updates

The structure of table-type data formats is well-suited to a world where most “data” has already been filtered, revised and processed into a relatively well-organized collection of numbers, dates, and short strings. With the rise of the internet, however, came the need to transmit large quantities of the type of “free” text found in, for example, news stories and social media feeds. Because this type of data content typically include characters like commas, periods and quotation marks that affect its semantic meaning, fitting it into a traditional delimited format will be problematic at best. What’s more, the horizontal-bias of delimited formats (which involves lots of left-right scrolling) runs counter to the vertical-scrolling conventions of the web. Feed-based data formats have been designed to address both of these limitations.

At a high level, there are two main types of feed-based data formats: XML and JSON. Both are text-based formats that allow the data provider to define their own unique data structure, making them extremely flexible and, consequently, useful for the wide variety of content found on internet-connected websites and platforms. Whether they’re located online or you save a copy locally, you’ll recognize these formats, in part, by their coordinating .xml and .json file extensions.

	.xml

	
extensible markup language encompasses a broad range of file formats, including .rss, .atom, and even .html. As the most generic type of markup language, XML is extremely flexible, and was perhaps the original data format for web-based data feeds.

	.json

	
javascript object notation files are somewhat more recent than XML files, but serve a similar purpose. In general, JSON files are less descriptive (and therefore shorter and more concise) than XML files. This means that they can encode an almost identical amount of data as an XML file while taking up less space, which is especially important for speed on the mobile web. Equally important is the fact that JSON files are essentially large object data types within the JavaScript programming language — which is the language that underpins many — if not most — websites and mobile apps. This means that parsing JSON-formatted data is very easy for any site or program that uses JavaScript, especially when compared with XML. Fortunately, JavaScript object data types are very similar to Python dict data types, which also makes working with JSON in Python very straightforward.

Before we dive into how to work with each of these file types in Python, let’s review when we might want feed-type data, and where to find it when we do.

When To Work With Feed-Type Data

In a sense, feed-type data is to the 21st century what table-type data was to the 20th: the sheer volume of feed-type data generated, stored and exchanged on the web every day is probably millions of times greater than that of all of the table-type data in the world put together — in large part because feed-type data is what powers social media sites, news apps and everything in between.

From a data wrangling perspective, you’ll generally want feed-type data when the phenomenon you’re exploring is time-sensitive and updated on a frequent and/or unpredictable basis. Typically, this type of data is generated in response to a human or natural process, such as (once again) posting to social media, publishing a news story, or recording an earthquake.

Both file-based, table-type data and web-based, feed-type data can contain historical information, but as we discussed at the start of this chapter, the former usually reflects the data as it stood at a fixed point in time. The latter, by contrast, is typically organized in a “reverse-chronological” (most recent first) order, with the first entry being whatever data record was most recently created at the time you accessed the data, rather than a predetermined publication date.

Where to Find Feed-Type Data

Feed-type data is found almost exclusively on the web, often at special URLs known as Application Programming Interface (API) endpoints. We’ll get into the details of working with APIs in Chapter 5, but for now the to know is that API endpoints are really just data-only webpages: you can view many of them using a regular web browser, but all you’ll see is the data itself. Some API endpoints will even return different data depending on the information you send to them, and this is part of what makes working with feed-type data so flexible: by changing just a few words or values in your code, you can access a totally different data set!

Finding APIs that offer feed-type data doesn’t require too much in the way of special search strategies because usually the sites and services that have APIs want you to find them. Why? Simply put, when someone writes code that makes use of an API, it (usually) returns some benefit to the company that provides it — even if that benefit is just exposure. In the early days of Twitter, for example, many web developers wrote programs using the Twitter API — both making the platform more useful and saving the company the expense and effort of figuring out what users wanted and then building it. By making so much of their platform data available for free (at first), the API gave rise to several companies that Twitter would eventually purchase  — though many more would also be put out of business when either the API or its terms of service changed. This highlights one of the particular issues that can arise when working with any type of data, but especially the feed-type data made available by for-profit companies: both the data and your right to access it can change at any time, without warning. So while feed-type data sources are indeed valuable, they are also ephemeral in more ways than one.

Wrangling Feed-Type Data with Python

As with table-type data, wrangling feed-type data in Python is made possible by a combination of helpful libraries and the fact that formats like JSON already resemble existing data types in the Python programming language. Moreover, we’ll see below that XML and JSON are often functionally interchangeable for our purposes (though many APIs will only offer data in one or format the other).

XML: One Markup To Rule Them All

Markup languages are among the oldest forms of standardized document formats in computing, designed with the goal of creating text-based documents that could be easily read by both humans and machines.
XML became an increasingly important part of internet infrastructure in the 1990s as the variety of devices accessing and displaying web-based information made the separation of content (e.g. text and images) from formatting (e.g. page layout) more of a necessity. Unlike an HTML document — in which content and formatting are fully commingled — an XML document says pretty much nothing about how its information should be displayed. Instead, its tags and attributes act as metadata about what kind of information it contains, along with the data itself.

To get a feel for what XML looks like, take a look at Example 4-8:

Example 4-8. A Sample XML Document

 <?xml version="1.0" encoding="UTF-8"?>
 <mainDoc>
 <!--This is a comment-->
 <elements>
 <element1>This is some text in the document.</element1>
 <element2>This is some other data in the document.</element2>
 <element3 someAttribute="aValue" />
 </elements>
 <someElement anAttribute="anotherValue">More content</someElement>
</mainDoc>

There are a couple of things going here. The very first line is called the document type (or doc-type) declaration; it’s letting us know that the rest of the document should be interpreted as XML (as opposed to any of the other web or markup languages, some of which we’ll review later in this chapter).

Starting with the line:

<mainDoc>

we are into the substance of the document itself. Part of what makes XML so flexible is only contains two real grammatical structures, both of which are included in Example 4-8:

	tags

	
Tags can be either paired (like element1, element2, someElement or even mainDoc), or self-closed (like element3). The name of a tag is always enclosed by carets (<>). In the case of a closing tag, the opening caret is immediately followed by a forward slash (/). A matched pair of tags, or a self-closed tag are also described as XML elements.

	attributes

	
Attributes can exist only inside of tags (like anAttribute). Attributes are a type of key/value pair in which the attribute name (or key)is immediately followed by an equals sign (=), followed by the value surrounded in double quotation marks ("").

An XML element is whatever is contained between an opening tag and its matching closing tag (e.g. <elements> and </elements>). As such, a given XML element may containg many tags, each of which may also contain other tags. Any tags may also have any number of attributes (including none). A self-closed tag is also considered an element.

The only other meaningful rule for structuring XML documents is that when tags appear inside other tags, the most recently opened tag must be closed first. In other words, while this is a legitimate XML structure:

 <outerElement>
 <!-- Notice that that the `innerElement1` is closed before the `innerElement2` tag is opened -->
 <innerElement1>Some content</innerElement1>
 <innerElement2>More content</innerElement2>
 </outerElement>

This is not:

 <outerElement>
 <!-- NOPE! The `innerElement2` tag was openend before the `innerElement1` tag was closed -->
 <innerElement1>Some content<innerElement2>More content</innerElement1>
 </innerElement2>
 </outerElement>

This principle of last opened first closed is also described as nesting, similar to the “nested” for...in loops from Figure 2-316. Nonetheless, we could visualize Example 4-8 as:

[image: Need to update with XML image.]
Figure 4-1. XML “nesting”

Nesting is especially important in XML documents because it governs one of the primary mechanisms that we use to read or parse XML (and other markup language) documents with code. In an XML document, the first element after the doc-type declaration is known as the root element. If the XML document has been formatted, the root element will always be left-justified, and any element that is nested directly within that element will be indented one level to the right and is referred to as a child element. In Example 4-8, then, <mainDoc> would be considered the root element, and <elements> be its child. Likewise, <mainDoc> the parent element of <elements>.

Example 4-9. An Annotated XML Document

 <?xml version="1.0" encoding="UTF-8"?>
 <mainDoc>
 <!--`mainDoc` is the *root* element, and `elements` is its *child*-->
 <elements>
 <!-- `elements` is the *parent* of `element1`, `element2` and `element3`, which are
 siblings of one another -->
 <element1>This is text data in the document.</element1>
 <element2>This is some other data in the document.</element2>
 <element3 someAttribute="aValue" />
 </elements>
 <!-- `someElement` is also a *child* of `mainDoc`, and a *sibling* of `elements` -->
 <someElement anAttribute="anotherValue">More content</someElement>
</mainDoc>

Given this trend for geneological jargon, you might be wondering: If <elements> is the parent of <element3>, and <mainDoc> is the parent of <elements> — does that make <mainDoc> the grandparent of <element3>? The answer is: yes, but no. While <mainDoc> is the “parent” of the “parent” of <element3>, the term “grandparent” is never used in describing an XML structure — that could get complicated fast! Instead, we simply describe the relationship as exactly that: <mainDoc> is the parent of the parent of <element3>.

Fortunately, there is no such complexity associated with XML attributes: they are simply key/value pairs, and they can only exist within XML tags, like so:

 <element3 someAttribute="aValue" />

Note that there is no space on either side of the equals sign, just as there is no space between the carets and slashes of an element tag.

Like writing in English (or in Python), the question of when to use tags versus attributes for a particular piece of information is largely a matter of preference and style. Both Example 4-10 and Example 4-11, for example, contain the same information about this book, but each is structured slightly differently:

Example 4-10. Sample XML Book Data — More Attributes

 <aBook>
 <bookURL url="https://www.oreilly.com/library/view/practical-python-data/9781492091493/"/>
 <bookAbstract>There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them.</bookAbstract>
 <pubDate date="2022-02-01" />
 </aBook>

Versus:

Example 4-11. Sample XML Book Data — More Elements

 <aBook>
 <bookURL>https://www.oreilly.com/library/view/practical-python-data/9781492091493/</bookURL>
 <bookAbstract>There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them.</bookAbstract>
 <pubDate>2022-02-01</pubDate>
 </aBook>

This degree of flexibility means XML is highly adaptable to a wide variety of data sources and formatting preferences. At the same time, it can easily create a situation where every new data source requires writing custom code. Obviously, this would be a pretty inefficient system, especially if many people and organizations were publishing pretty similar types of data.

It’s not surprising, then, that there are a large number of XML specifications that define additional rules for formatting XML documents that are intended to hold particular types of data. I’m highlighting a few notable examples below, as these are formats you may come across in the course of your data wrangling work. Despite their various format names and file extensions, however, we can parse them all using the same method that we’ll look at shortly in Example 4-12:

	RSS

	
Really Simple Syndication is an XML specification first introduced in the late 1990s for news information. The .atom XML format is also widely used for these purposes.

	KML

	
Keyhole Markup Language is an internationally-accepted standard for encoding both 2-dimensional and 3-dimensional geographic data, and is compatible with tools like Google Earth.

	SVG

	
Scalable Vector Graphics is a commonly-used format for graphics on the web, thanks to is ability to scale drawings without loss of quality. Many common graphics programs can output .svg files, which can then be included in webpages and other documents that will look good on a wide variety of screen sizes and devices.

	EPUB

	
Electronic PUBlishing format (.epub) is the widely-accepted open standard for digital book publishing.

As you can see from the above, some common XML formats clearly indicate their relationship to XML; many others do not17

Now that we have a high-level sense of how XML files work, let’s see what it takes to parse one with Python. Although Python has some built-in tools for parsing XML, we’ll be using a library called lxml, which is particularly good at quickly parsing large XML files. Even though our example files below are quite small, know that we could use basically the same code even if our data files got considerably larger.

To begin with, we’ll be using an XML version of the same “U6” unemployment data that I’ve already downloaded from the FRED website using their API18. After downloading a copy of this file from Google Drive here: https://drive.google.com/file/d/1gPGaDTT9Nn6BtlTtVp7gQLSuocMyIaLU/, you can use the script in Example 4-12 to convert the source XML to a .csv.

Start with the pip install:

pip install lxml

Example 4-12. xml_parsing.py

An example of reading data from a .xml file with Python, using the "lxml" library.
First, you'll need pip install the lxml library: https://pypi.org/project/lxml/
A helpful tutorial can be found here: https://lxml.de/tutorial.html
The data used here is an instance of
https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&api_key=YOUR_API_KEY_HERE

specify the particular "chapter" you want to import from the "lxml" library
in this case, "etree", which stands for "ElementTree"
from lxml import etree

we'll also import the "csv" library because we want to convert our workbook
to a `.csv`
import csv

in this instance, there's nothing within the data file that really identifies
what the data is, so we'll make the filename a separate variable so that
we can use it to both load our source data and label our output file
filename = "U6_FRED_data"

open is a built-in function that takes two "ingredients":
1. a file name (the file should be in the same folder as this Python script or notebook)
2. a "mode": "r" for "read" or "w" for "write"
Because the lxml library expects byte data rather than text, in this case the
second argument "ingredient" is "rb" for "read bytes"
xml_source_file = open(filename+".xml","rb")

pass our xml_source_file as an ingredient to the the lxml etree library's parse method
and store the result in a variable called `xml_doc`
xml_doc = etree.parse(xml_source_file)

there is a lot of malformed xml out there! in order to make sure that
what looks like good xml actually *is*, we'll start by getting
the current xml document's "root" element
document_root = xml_doc.getroot()

let's print it out to see what it looks like. Because it's currently
stored as byte data, we need to use the etree.tostring() method in order
to see anything useful
print(etree.tostring(document_root))

if the document_root is a well-formed XML element, continue with our
wrangling efforts
if etree.iselement(document_root):

 # create our output file, naming it "xml_"+filename
 output_file = open("xml_"+filename+".csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 # so, just as we did when "reading", now that we've opened our `output_file`
 # we'll use this recipe to easily write rows, instead of reading them
 output_writer = csv.writer(output_file)

 # thanks to lxml, each xml element (or "node") has a property called "attrib"
 # whose data type is a Python dictionary (dict).
 # a `dict` type has several methods of accessing its contents
 # including the `.keys()`, `.values()`, and `.items()` methods, which return
 # lists (see: https://docs.python.org/3/library/stdtypes.html#typesmapping)
 # in this case, the list returned by the `.keys()` method will be useful as column headers
 # so we'll write those to our output file first
 # in this case, all of our elements are identical, so we can just grab the
 # first one (document_root[0]) and use its keys as the column headers
 output_writer.writerow(document_root[0].attrib.keys())

 # now, we need to loop through every element in our XML file
 # in the lxml library, XML elements are already lists, so we can use a
 # simple `for...in` loop to go through it: https://lxml.de/tutorial.html#elements-are-lists
 for child in document_root:

 # now we'll use the `.values()` method to get each element's values
 # as a list, and then use that along with the
 # `writerow` recipe directly
 output_writer.writerow(child.attrib.values())

 # just for good measure, let's close the `.csv` file we just wrote all that
 # data to...
 output_file.close()

As it happens, the XML version of our unemployment data is structured very simply: it just a list of elements, and all the values we want to access are stored as attributes. As a result, we were able to pull the attribute values out of each element as a list, and write them directly to our .csv file with only one line of code.

Of course, there are many times when we’ll want to pull data from more complex XML formats, especially those like RSS or Atom. To see what it takes to handle something slightly more complex, in Example 4-13 we’ll parse the BBC’s RSS feed of science and environment stories, which can you download a copy of here: https://drive.google.com/file/d/1zOaksshLfmXxLTipoOjTTnuO6PsVQgg2/.

Example 4-13. rss_parsing.py

An example of reading data from a .xml file with Python, using the "lxml" library.
First, you'll need pip install the lxml library: https://pypi.org/project/lxml/
The data used here is an instance of
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml

specify the particular "chapter" you want to import from the "lxml" library
in this case, "etree", which stands for "ElementTree"
from lxml import etree

we'll also import the "csv" library because we want to convert our workbook
to a `.csv`
import csv

even though there is content inside our RSS we could use to identify the
output file, the easiest thing to do is just give it the same file name
with a `.csv` extension - then we'll know what data source it goes with!
filename = "BBC News - Science & Environment XML Feed"

open is a built-in function that takes two "ingredients":
1. a file name (the file should be in the same folder as this Python script or notebook)
2. a "mode": "r" for "read" or "w" for "write"
Because the lxml library expects byte data rather than text, in this case the
second argument "ingredient" is "rb" for "read bytes"
xml_source_file = open(filename+".xml","rb")

pass our xml_source_file as an ingredient to the the lxml etree library's parse method
and store the result in a variable called `xml_doc`
xml_doc = etree.parse(xml_source_file)

there is a lot of malformed xml out there! in order to make sure that
what looks like good xml actually *is*, we'll start by getting
the current xml document's "root" element
document_root = xml_doc.getroot()

if the document_root is a well-formed XML element, continue with our
wrangling efforts
if etree.iselement(document_root):

 # create our output file, naming it "rss_"+filename
 output_file = open("rss_"+filename+".csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 # we'll use this recipe to easily write rows, instead of reading them
 output_writer = csv.writer(output_file)

 # as always, we'll want to balance what we handle programmatically and what
 # we review visually. In looking at our data, it's clear that each article's
 # information is stored in a separate `item` element. since copying over
 # the individual tag and attribute names would be time-consuming and error-
 # prone, however, we'll go through *one* item element and make a list of
 # all the tags (and attributes) within it, which we'll then use as the column
 # headers for our output `.csv` file

 # document_root[0] is the "channel" element
 main_channel = document_root[0]

 # the `find()` method returns *only* the first instance of the element name
 article_example = main_channel.find('item')

 # create an empty list in which to store our future column headers
 tag_list = []

 # iterdescendants() is a method particular to the lxml library, which returns
 # *only* the descendants of an element. The more common iter() method would
 # return both the element *itself* and its "descendants"
 # https://lxml.de/api.html#iteration
 for child in article_example.iterdescendants():
 # child.tag will provide the text of the tagname of the element
 # for example, for the <pubDate> element it will return "pubDate"
 # add each tag to our would-be header list
 tag_list.append(child.tag)

 # only one tag in our <item> element has an attribute, but we still want
 # to include it in our output

 # if the current tag has any attributes...
 if child.attrib:

 # we want the name or "key" of the attribute
 # the .keys() method will give us a list, so even though there is
 # only one attribute, we need to write a `for...in` loop to
 # go through and get its name as a string (instead of a one-item list)
 # fortunately, this code can be easily reused where we have multiple
 # attributes
 for attribute_name in child.attrib.keys():

 # append the attribut name to our `tag_list` column headers
 tag_list.append(attribute_name)

 # that whole `article_example` for loop was just to build `tag_list`
 # now that we're done, we'll write its contents to our output file as
 # column headers
 output_writer.writerow(tag_list)

 # now we want to grab *every* <item> elment in our file
 # so we use the `findall()` method instead of 'find()', as we did above
 for item in main_channel.findall('item'):

 # empty list for holding our new row's content
 new_row = []

 # now we'll use our list of tags to get the contents of each element
 # within each item
 for tag in tag_list:

 # if there is anything in the element with a given tag name
 if item.findtext(tag):
 # append it to our new row
 new_row.append(item.findtext(tag))
 # otherwise, make sure it's the "isPermaLink" attribute
 elif tag == "isPermaLink":

 # and grab its value from the <guid> element
 # and append it to our row
 new_row.append(item.find('guid').get("isPermaLink"))

 # write the new row to our output file!
 output_writer.writerow(new_row)

 # just for good measure, let's close the `.csv` file we just wrote all that
 # data to
 output_file.close()

As you can see from Example 4-13, with the help of the lxml library, parsing even slightly more complex XML in Python is still reasonably straightforward.

While XML is still a popular data format for news feeds and a handful of other file types, there are a number of features that make it less than ideal for handling the high-volume data feeds of the modern web.

First, there is the simple issue of size. While XML files can be wonderfully descriptive — reducing the need for separate data dictionaries — the fact that most elements contain both an opening tag and a corresponding closing tag (e.g. <item> and </item>) also makes XML somewhat verbose: there is a lot of text in an XML document that isn’t content. This isn’t a big deal when your document has a few dozen or even a few thousand elements, but when you’re trying to handle millions or billions of posts on the social web, all that redundant text can really slow things down.

Second, while XML isn’t exactly difficult to transform into other data formats, the process also isn’t exactly seamless. The lxml library (among others) makes parsing XML with Python pretty simple, but doing the same task with web-focused languages like JavaScript is convoluted and onerous. Given JavaScript’s prevalence on the web, it’s not surprising that a feed-type data format that works seamless with JavaScript would be developed at some point. As we’ll see in “JSON: Web Data, the Next Generation”, many of XML’s limitations as a data format are addressed by the object-like nature of the .json format, which is at this point the most popular format for feed-type data on the internet.

JSON: Web Data, the Next Generation

In principle, JSON is similar to XML in that it uses nesting to cluster related pieces of information into records and fields. JSON is also fairly human-readable, though the fact that it doesn’t support comments means that JSON feeds may require more robust data dictionaries than XML documents.

To get started, let’s take a look at the small JSON document in Example 4-14:

Example 4-14. Sample JSON Document

 {
 	"author": "Susan E. McGregor",
 	"book": {
 		"bookURL": "https://www.oreilly.com/library/view/practical-python-data/9781492091493/",
 		"bookAbstract": "There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them.",
 		"pubDate": "2022-02-01"
 	},
 	"papers": [{
 		"paperURL": "https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/mcgregor",
 		"paperTitle": "Investigating the computer security practices and needs of journalists",
 		"pubDate": "2015-08-12"
 	},
 {
 		"paperURL": "https://www.aclweb.org/anthology/W18-5104.pdf",
 		"paperTitle": "Predictive embeddings for hate speech detection on twitter",
 		"pubDate": "2018-10-31"
 	}
]
 }

Like XML, the grammatical “rules” of JSON are quite simple: there are only three distinct data structures in JSON documents, all of which appear in Example 4-14:

	Key/value pairs

	
Technically, everything within a JSON document is a key/value pair, with the key enclosed in quotes to the left of a colon (:), and the value being whatever appears to the right of the colon. Note that while keys must always be strings, values can be strings (as in author), objects (as in book), or lists (as in papers).

	Objects

	
These are opened and closed using pairs of curly braces ({}). In Example 4-14, there are four objects total: the document itself (indicated by the left-justified curly braces), the book object, and the two unnamed objects in the papers list.

	Lists

	
These are enclosed by square brackets ([]), and can only contain comma-separated objects.

While XML and JSON can be used to encode the same data, there are some notable differences in what each allows. For example, JSON files do not contain a doc-type specification, nor can they include comments. Also, while XML lists are somewhat implicit (any repeated element functions something like a list), in JSON, lists must be specified by square brackets ([]).

Finally, although JSON was designed with JavaScript in mind, you may have noticed that its structures are very similar to Python dict and list types. This is part of what makes parsing JSON very straightforward with Python as well as JavaScript (and a range of other languages).

To see just how straightforward this is, in Example 4-15 we’ll parse the same data as we did in Example 4-12, but in the .json format also provided by the FRED API. You can download the file here: https://drive.google.com/file/d/1m_erMvGF9zQEwFp3RZKGshtpPWYwdkh-/.

Example 4-15. json_parsing.py

A simple example of reading data from a .json file with Python,
using the built-in "json" library. The data used here is an instance of
https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&file_type=json&api_key=YOUR_API_KEY_HERE

import the json library
import json

we'll also import the "csv" library because we want to write our
data out as a `.csv`
import csv

in this instance, there's nothing within the data file that really identifies
what the data is, so we'll make the filename a separate variable so that
we can use it to both load our source data and label our output file
filename = "U6_FRED_data"

open is a built-in function that takes two "ingredients":
1. a file name (in the same folder as the Python script or notebook)
2. a "mode": "r" for "read" or "w" for "write"
json_source_file = open(filename+".json","r")

pass our json_source_file as an ingredient to the json library's "load" method
and store the result in a variable called `json_data`
json_data = json.load(json_source_file)

create our output file, naming it "json_"+filename
output_file = open("json_"+filename+".csv","w")

there is a "writer" recipe that lets us easily write `.csv`-formatted rows
so, just as we did when "reading", now that we've opened our `output_file`
we'll use this recipe to easily write rows, instead of reading them
output_writer = csv.writer(output_file)

because the json library interprets every object as a Python dictionary (dict).
we can use the `.keys()`, `.values()`, and `.items()` methods to access its
contents. In this case, however, each of these methods returns
a `dictionary view object`
(see https://docs.python.org/3/library/stdtypes.html#dict-views)
this means that while we can use what is returned by the `.keys()` method as
our column headers, we'll need to tell Python to convert it to a regular list
since all of our elements are identical, however, we can just grab the
first one (at position "0"), and use its keys as the column headers
output_writer.writerow(list(json_data["observations"][0].keys()))

in most cases, the simplest way to find the name (or "key") of the main JSON
object in our document is just to look at it. While XML data will
often be rendered readably in a web browser, however, JSON data is usually
shown as a single line. To get a better sense of its structure, try pasting
it into: https://jsonlint.com/ This lets us see that our target data
is a list whose key is "observations"

for obj in json_data["observations"]:

 # because of the way that the `json` library works, if we try to just write
 # the rows directly, we'll get the values labeled with `dict`, rather than
 # the data values themselves. So we need to make *another* loop, to go
 # through every value in every json object one at a time. We'll print both
 # the key and the value here, though only the latter will be actually
 # written to our new file

 # we'll create an empty list where we'll put the actual values of each object
 obj_values = []

 # for every "key" (or column) in each object....
 for key, value in obj.items():

 # let's print what's in here, just to see how the code sees it
 print(key,value)

 # just add the values to our list, so we get a nice clean `.csv`
 # `append` is a method/recipe that we can use to add things to the end
 # of a list
 obj_values.append(value)

 # notice that the code below is left-aligned with the
 # `for key, value in obj.items()` code above
 # this means that it will only be run *after* all the keys in a given
 # json object have been gone through, with its values appended to our list

 # now we'll actually write these rows to the output file
 output_writer.writerow(obj_values)

just for good measure, let's close the `.csv` file we just wrote all that
data to...
output_file.close()

Although JSON is not quite as human-readable as XML, its other advantages that we’ve touched on, like smaller file size and broader code compatibility. Likewise, while JSON is not as descriptive as XML, JSON data sources (often APIs) are usually reasonably well-documented; this reduces the need to simply infer what a given key/value pair is describing. Like all work with data, however, the first step in wrangling JSON-formatted data is to understand its context as much as possible.

Wherefore Art Thou, Whitespace?

Unlike .tsv and .txt files — and the Python programming language itself — neither XML nor JSON is “whitespace-dependent.” As long as the carets, curly braces and other punctuation marks are all in the right place, these data feed-type formats can have everything crushed up on a single line and still work just fine. For readability’s sake, the examples I’ve presented in this chapter have all been nicely formatted, but that’s not how you’ll usually encounter these data types, especially on the web. Though many web browsers will show XML in its properly indented format (for example, see the _Los Angeles Times’ daily “sitemap”: https://www.latimes.com/sitemap-202101.xml), most JSON data will be rendered as run-on lines of text (as with the Citi Bike real-time data feed: https://feeds.citibikenyc.com/stations/stations.json).

Since effectively parsing either data format first requires understanding its overall structure, looking at a properly-formatted version of any feed-type data file you’re working with is a crucial first step. With well-structured XML, opening the file (or URL) a web browser in usually enough19.

For smaller .json files, you can copy and paste (using keyboard shortcuts to “Select All” and “Copy” is easiest) the data straight from the source into an online formatting tool like JSONLint or JSON formatter. If the JSON file is especially large, or you don’t have internet access, however, it’s also possible to use Python in the terminal to create a new, formatted .json file from an unformatted source JSON file, using the following command:

cat ugly.json | python -mjson.tool > pretty.json

Where ugly`.json` is your unformatted file. This will create the output file pretty.json, which you can then open in Atom or another text editor in order to see the structure of the document.

Working with Unstructured Data

As we discussed in “Structured Versus Unstructured data”, the process of creating data depends on introducing some structure to information; otherwise we can’t methodically analyze or derive meaning from it. Even though the latter often includes large segments of human-written “free” text, both table-type and feed-type data are relatively structured, and, most importantly, machine-readable.

When we deal with unstructured data, by contrast, our work always involves approximations: we cannot be certain that our programmatic wrangling efforts will return an accurate interpretation of the underlying information. This is because most unstructured data is a representation of content that is designed to be perceived and interpreted by humans. And, as we discussed in Chapter 2, while they can process large quantities of data much faster and with fewer errors than humans can, computers still be tricked by unstructured data that would never fool a human, such as mistaking a slightly modified stop sign for a speed limit sign. Naturally, this mens that when dealing with data that isn’t machine readable, we always need to do extra proofing and verification — but Python can still help us wrangle such data into a more usable format.

Image-Based Text - Accessing Data in PDFs

The Portable Document Format (PDF) was created in the early 1990s as a mechanism for preserving the visual integrity of electronic documents — whether they had been created in a text-editing program or captured from printed materials20. Preserving documents’ visual appearance also meant that, unlike machine-readable formats (such as word-processing documents), it was difficult to alter or extract their contents — an important feature for creating everything from digital versions of contracts to formal letters.

In other words, wrangling the data in PDFs was, at first, somewhat difficult by design. Because accessing the data in printed documents is a shared problem, however, work in optical character recognition (OCR) actually began as early as the late nineteenth century21. Even digital OCR tools have been widely available in software packages and online for decades, so while they are far from perfect, the data contained in this type of file is also not entirely out of reach.

When To Work With Text in PDFs

In general, working with PDFs is a last resort (much, as we’ll see in Chapter 5, web scraping should be). In general, if you can avoid relying on PDF information, you should. As noted above, the process of extracting information from PDFs will generally yield an approximation of the document’s contents, so proofing for accuracy is a non-negotiable part of any .pdf-based data wrangling workflow. That said, there is an enormous quantity of information that is only available as images or PDFs of scanned documents, and Python is an efficient way to extract a reasonably accurate first version of such documents’ text.

Where to Find PDFs

If you’re confident that the data you want can only be found in PDF format, then you can (and should) use the tips in “Smart Searching for Specific Data Types” to locate this file type using an online search. More likely is that you will request information from a person or organization, and they will provide them as PDFs, leaving you to deal with the problem of how to extract the information you need. As a result, most of the time you will not need to go looking for PDFs — more often than not they will, unfortunately, find you.

Wrangling PDFs with Python

Because PDFs can be generated both from machine-readable text (such as word-processing documents) and from scanned images, it is sometimes possible to extract the document’s “live” text programmatically with relatively few errors. While it seems straightforward, however, this method can still be unreliable because .pdf files can be generated with a wide range of encodings that can be difficult to detect accurately. So while this can be a high-accuracy method of extracting text from a .pdf, the likelihood of it working for any given file is low.

Because of this, I’m going to focus here on using OCR to recognize and extract the text in .pdf files. This will require two steps:

	
Convert the document pages into individual images

	
Run OCR on the page images, extract the text, and write it to individual text files

Unsurprisingly, we’ll need to install quite a few more Python libraries in order to make this all possible. First, we’ll install a couple of libraries for converting our .pdf pages to images. The first is a general-purpose library called poppler that is needed to make our Python-specific library pdf2image, work. We’ll be using pdf2image to (you guessed it!) convert our .pdf file to a series of images:

sudo apt install poppler-utils

Then:

pip install pdf2image

Next, we need to install the tools for performing the OCR process. The first one is a general library called tesseract-ocr, which uses machine-learning to recognize the text in images; the second is a Python library that relies on tesseract-ocr called pytesseract:

sudo apt-get install tesseract-ocr

Then:

pip install pytesseract

Finally, we need a helper library for Python can that do the computer vision needed to bridge the gap between our page images and our OCR library:

pip install opencv-python

Phew! If that seems like a lot of extra libraries, keep in mind that what we’re technically using here are is machine-learning, one of those buzzy data science technologies that drives so much of the “artificial intelligence” out there. Fortunately for us, Tesseract in particular is relatively robust and inclusive: though it was originally developed by Hewlett-Packard as a proprietary system in the early 1980s, it was open-sourced in 2005 and currently supports more than 100 languages22--so feel free to try the solution in Example 4-16 out on non-English text as well!

Example 4-16. pdf_parsing.py

A basic example of reading data from a .pdf file with Python,
using pdf2image to convert it to images, and then using the
openCV and tesseract libraries to extract the text
The source data was downloaded from:
https://files.stlouisfed.org/files/htdocs/publications/page1-econ/2020/12/01/unemployment-insurance-a-tried-and-true-safety-net_SE.pdf

the built-in `operating system` or `os` Python library will let us create
a new folder in which to store our converted images and output text
import os

we'll import the `convert_from_path` "chapter" of the `pdf2image` library
from pdf2image import convert_from_path

the built-in `glob`library offers a handy way to loop through all the files
of a certain type in a folder, without needing to specify their individual
file names
import glob
`cv2` is the actual library name for `openCV`
import cv2

and of course, we need our Python library for interfacing with the tesseract
OCR process
import pytesseract

we'll use the pdf name to name our generated images and text files, too
pdf_name = "SafetyNet"

our source pdf is just in the same folder as our Python script
pdf_source_file = pdf_name+".pdf"

if a folder with the same name as the pdf does not already exist
if os.path.isdir(pdf_name) == False:
 # create a new folder with that name
 target_folder = os.mkdir(pdf_name)

store all the pages of the PDF in a variable, by providing the path to then
source file and the desired dots per inch (DPI) resolution of the output images
while a lower DPI will be much faster, the poorer quality images my yield
significantly less accurate OCR results. 300 DPI is a standard "print" quality
pages = convert_from_path(pdf_source_file, 300)

loop through all the converted pages, enumerating them so that the page
number can be used to label the resulting images
for page_num, page in enumerate(pages):

 # use the `.join` function to save the new files into the target_folder
 # we created above
 # we have to use the `str()` function to make the page number into a string
 # for use in the filename
 filename = os.path.join(pdf_name,"p"+str(page_num)+".png")

 # save the image of the page in system
 page.save(filename, 'PNG')

next, go through the images in the folder and extract the text from each one
note that '*.png' means "any file ending in .png"
the `glob()` function creates a list of all the filenames in the specified
folder, which in this case is the same as `pdf_name` - the folder where our
images are stored
for img_file in glob.glob(os.path.join(pdf_name, '*.png')):

 # we need the image's file name, but `img_file` starts with the folder
 # name (e.g. "SafteyNet/" and ends in `.png`. So we'll replace the
 # forward slash with a period
 temp_name = img_file.replace("/",".")

 # `temp_name` is now something like, "SafteyNet.p1.png"
 # if we `split()` that on the period, we'll get a list like:
 # ["SafetyNet","p1","png"]
 # we want the second item, but since lists start counting at 0, we need to
 # target the item at position 1
 text_filename = temp_name.split(".")[1]

 # now! create a new, writable file, also in our target folder, that
 # has the same name as the image, but is a `.txt` file
 output_file = open(os.path.join(pdf_name,text_filename+".txt"), "w")

 # use the `cv2` library to interpret our image
 img = cv2.imread(img_file)

 # create a new variable to hold the results of using pytesseract's
 # `image_to_string()` function, which will do just that
 converted_text = pytesseract.image_to_string(img)

 # write our extracted text to our output file
 output_file.write(converted_text)

 # close the output file
 output_file.close()

For the most part, running the above script serves our purposes: with a few dozen lines of code, it converts a multi-page PDF file first into images and then writes (most of) their contents to a series of new text files.

This all-in-one approach also has its limitations, however. Converting a PDF to images — or images to text — is the kind of task that we might need to do quite often, but not always at the same time. In other words, it would probably be much more useful in the long run to have two separate scripts for solving this problem, and then to run them one after the other. In fact, with a little bit of tweaking, we could probably break up the script above in such a way that we could convert any PDF to images or any images to text without having to write any new code at all. Sounds pretty nifty, right?

This process of rethinking and reorganizing working code is known as code refactoring. In writing English, we would describe this as revising or editing, and the objective in both cases is the same: to make your work simpler, clearer and more effective. And just like documentation, refactoring is actually another important way to scale your data wrangling work, because it makes reusing your code much more straightforward. We’ll look at various strategies for code refactoring and script reuse in Chapter 8.

Accessing PDF Tables with Tabula

If you looked at the text files produced above, you’ll likely have noticed that there are a lot of “extras” in those files: page numbers and headers, line breaks and other “cruft.” There are also some key elements missing, like images and tables.

While our data work won’t extend to analyzing images (that is a much more specialized area), it’s not unusual to find tables inside PDFs that hold data we might want to work with. In fact, this problem is common enough in my home field of journalism that a group of investigative journalists designed and built a tool called Tabula specifically to deal with this problem.

Tabula isn’t a Python library — it’s actually a standalone piece of software. To try it out, go to https://tabula.technology/ and download the installer for your system; if you’re on a Chromebook or Linux machine, you’ll need to download the .zip file and follow the directions in the README.txt. Whatever system you’re using, you’ll probably need to install the Java programming library first, which you can do by running the following command in a terminal window:

sudo apt install default-jre

Like some of the other open-source tools we’ll discuss in later chapters (like OpenRefine, which I used to prepare some of the sample data in Chapter 2 and cover briefly in [Link to Come]), Tabula does its work behind the scenes (though some of it is visible in the terminal window), and you interact with it in a web browser. This is a way to get access to a more traditional graphical interface while still leaving most of your computer’s resources free to do the heavy-duty data work.

Conclusion

Hopefully, the coding examples in this chapter have started to give you an idea of the wide variety of data wrangling problems you can solve with relatively little Python code, thanks to the a combination of carefully-selected libraries and those few essential Python scripting concepts that were introduced in Chapter 2.

You may also have noticed that, with the exception of our PDF text, the output of all the exercises above was essentially a .csv file. This is not by accident. Not only are .csv files efficient and versatile, it turns out that to do almost any basic statistical analyses or visualizations, we need table-type data to work with. That’s not to say that it isn’t possible to analyze non-table data; that, in fact, is what much of contemporary computer science research (like machine learning) is all about. However, because those more systems are often both complex and opaque, they’re not really suitable for the type of data wrangling work we’re focused on here. As such, we’ll spend our energy on the types of analyses that can help us understand, explain and communicate new insights about the world.

Finally, while our work in this chapter focused on file-based data and pre-saved versions of feed-based data, in Chapter 5 we’ll explore how we can use Python with APIs and web scraping to wrangle data out of online systems and, where necessary, right off of web pages themselves!

1 Contrast these with some others you might know, like mp4 or png, which are usually associated with music and images, respectively.
2 Though you’ll know how to wrangle it shortly!
3 Actually, you won’t need that much luck — we’ll look at how to do this in “Wrangling PDFs with Python”.
4 In computer science, the terms data and information are applied in exactly the opposite way: data is the raw facts collected about the world, and information is the meaningful end product of organizing and structuring it. In recent years, however, as talk about “big data” has dominated many fields, the interpretation I use here has become more common, so I’ll stick with it throughout this book for clarity.
5 Fun! https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
6 https://www.bls.gov/news.release/empsit.t15.htm
7 https://research.stlouisfed.org/publications/economic-synopses/2018/12/21/multiple-jobholders
8 https://blogs.bls.gov/blog/tag/contingent-workers/
9 https://www.nber.org/system/files/working_papers/w23296/w23296.pdf
10 You can also find instructions for this on the FRED website: https://fredhelp.stlouisfed.org/fred/graphs/customize-a-fred-graph/data-transformation-add-series-to-existing-line/
11 You can also download copies of these files directly from my Google Drive at: https://drive.google.com/drive/u/0/folders/1cU5Tdg_fvrCcwvAAyhMOhpbEcI2fF7sb
12 As of this writing, LibreOffice can handle the same number of rows as Microsoft Excel (2^20), but far fewer columns. While Google Sheets can handle more columns than Excel, it can only handle about 40,000 rows.
13 As of this writing, all of these libraries are already available and ready to use in Google Colab
14 https://xlrd.readthedocs.io/en/latest/dates.html
15 If you open the output files from the last three code examples above in a text editor, you’ll notice that the open-source .ods format is the simplest and cleanest.
16 Unlike Python code, XML documents do not have to be properly indented in order to work, though it certainly makes them more readable!
17 Fun fact: Tthe second x in the .xlsx format actually refers to XML!
18 Again, we’ll walk through using APIs like this one step-by-step in Chapter 5, but using this document let’s us see how different data formats influence our interactions with the data.
19 If a stylesheet has been applied, as in the case of the BBC feed we used in Example 4-13, you can context+click the page and select “View Source” to see the “raw” XML
20 https://acrobat.adobe.com/us/en/acrobat/about-adobe-pdf.html
21 George Nagy,Disruptive developments in document recognition, Pattern Recognition Letters, Volume 79, 2016,Pages 106-112, https://doi.org/10.1016/j.patrec.2015.11.024. Available at: https://www.ecse.rpi.edu/~nagy/PDF_chrono/2016_PRL_Disruptive_asPublished.pdf
22 https://github.com/tesseract-ocr/tesseract

Chapter 5. Accessing Web-based Data

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

The internet is an incredible source of data; it is, arguably, the reason that data has become such a dominant part of social, economic, political and even creative life. Up until now, we have focused our data wrangling efforts on the process of accessing and reformatting data that was already available on our devices or in the cloud. While it may have come from the internet originally — whether downloaded from a website, like the unemployment data, or accessed via a URL, like the Citi Bike data — we mostly skipped over the logistics of getting our target data from the web to a location where our Python code could access it.

In this chapter, we’re going to look at how to tackle that middle step programmatically, by using Python and a handful of helper libraries to do the work of downloading web-based data for us. In its most basic form, as we’ll see in the first section, this means using Python to download a webpage already formatted as JSON or XML, which is easily accomplished with just a URL and the requests library. We’ll then move on to the process of interacting with a type of web-based data portal known as an Application Programming Interface (API), which is the primary (and sometimes only) way to obtain data from social media services like Twitter, as well as large data repositories like the Federal Reserve Economic Database we discussed in Chapter 4. While APIs are a powerful way to access web platforms’ unique data streams, however, working with them almost always requires a significant amount of prep work, including pre-registering with the platform, storing (and protecting) your credentials for that platform in a separate file, and reading through the related documentation to understand how to access the data you’re after. Despite the volume of up-front work, learning to programmatically interact with APIs has big payoffs, allowing you to “unlock” huge quantities of data1. Finally, we’ll see how we can use code to “scrape” data from websites when it’s not available any other way. Throughout each of these processes, we’ll see how using Python helps lets us scale our efforts by (usually) loading and downloading data faster than we could with a browser and mouse.

Accessing Online XML and JSON

In Chapter 4, we explored the process of accessing and transforming two common forms of web-based data: XML and JSON. What we didn’t address, however, is what the process is for actually getting those data files from the internet onto your computer. Fortunately, with the help of the versatile requests library, it only take a few lines of code to access that data without ever having to open a web browser.

For the sake of comparison, let’s start by “manually” downloading two of the files we’ve used in previous examples: the BBC’s RSS feed of articles from Example 4-13, and the Citi Bike JSON data.

In both cases, the process is basically the same:

	
Visit the target URL (in this case, either http://feeds.bbci.co.uk/news/science_and_environment/rss.xml or https://gbfs.citibikenyc.com/gbfs/en/station_status.json)

	
Context-click (also known as “right-click” or sometime “ctrl+click”, depending on your system). From the menu that appears, simply choose “Save As” and save the file to the same folder where your Jupyter notebook or Python script is.

That’s it! Now you can run the scripts from Example 4-13 on that updated XML file, or paste the Citi Bike JSON data into JSONLint.org to see what it looks like when it’s properly formatted. Note that even though the the BBC page looks almost like a “normal” website in your browser, true to its .xml file extension, it downloads as well-formatted XML.

Now that we’ve seen how to do this part of the process by hand, let’s see what it takes to do the same thing in Python. For simplicity’s sake, the code in Example 5-1 will download and save both files, one after the other.

Example 5-1. data_download.py

A basic example of downloading data from the web with Python,
using the requests library
#
The source data we are downloading will come from the following URLs:
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
https://gbfs.citibikenyc.com/gbfs/en/station_status.json

the requests library lets us write Python code that acts like
a web browser
import requests

our chosen filename for our XML file
XMLfilename = "BBC_RSS.xml"

open a new, writable file with the filename we stored in our `XMLfilename`
variable
xml_output_file = open(XMLfilename,"w")

use the requests library's "get" recipe to access the contents of our
target URL and store it in a our `xml_data` variable
xml_data = requests.get('http://feeds.bbci.co.uk/news/science_and_environment/rss.xml')

the requests library's "get" function has put the contents of the webpage
in a property "text", which we'll write directly to our xml_output_file
using the built-in "write" method
xml_output_file.write(xml_data.text)

close our xml_output_file
xml_output_file.close()

our chosen filename for our XML file
JSONfilename = "citibikenyc_station_status.json"

open a new, writable file with the filename we stored in our `JSONfilename`
variable
json_output_file = open(JSONfilename,"w")

use the requests library's "get" recipe to access the contents of our
target URL and store it in a our `json_data` variable
json_data = requests.get('https://gbfs.citibikenyc.com/gbfs/en/station_status.json')

the requests library's "get" function has put the contents of the webpage
in a property "text", which we'll write directly to our json_output_file
using the built-in "write" method
json_output_file.write(json_data.text)

close our json_output_file
json_output_file.close()

Pretty simple, right? Apart from different filenames, the .xml and .json files produced by the script above are exactly the same as the ones we saved manually from the web. And once we have this script set up, of course, all we have to do to get the latest data is run it again, and it will overwrite the earlier files.

Download by hand, or write a program?

In almost every phase of our data wrangling work, there will be moments when we have to decide between doing part of a task “by hand” rather than writing some kind of program. In Chapter 4 for example, we didn’t try to have our program “detect” too much about our JSON file structure; we simply looked at the data and then wrote our code to match. Now that we’re tackling the process of getting data from the web into a location where we can wrangle it with Python, we have another choice: download the data “by hand,” or download it programmatically.

For the most part, I will always recommend that you download a sample copy of your data “by hand” when you’re first starting to work with it, simply because doing so is (usually) less work than writing a script to do it. Especially if your data source is XML or JSON, you’ll probably have found the it through a web search of some kind, which means that you already have the data right in front of you, in a web browser. At that point, you may as well just context-click and save a copy of the data to your device right then and there, rather than opening up a Jupyter notebook or code editor and starting to write code. Since you’ll also need to look through the data carefully to assess its quality, doing a first download this way makes sense. Once you know it’s worth looking at more closely, of course, you’ll probably want to automate that download process with Python.

Introducing APIs

Up until this point, most of our data wrangling work has focused on data sources that are (or seem) relatively static. Though the contents of spreadsheet files, documents — and even the webpages containing XML and JSON that we accessed just now in Example 5-1 — may change based on when we access them, we don’t really have any influence on what data they contain.

In most cases, though, we are used to having much more influence — if not control — over the information we get on the internet. Often our first step in seeking out new information is to visit a search engine, where we expect to receive a list of highly customized “results” based (at least in part) on our chosen combination of terms. This process is so common for most of us that we rarely stop to think about what is happening behind the scenes.

Although they have mostly been designed for humans to interact with via web browsers, the search engines we’re used to are actually just special cases of the broad category of data-retrieval tools known as APIs. Like search engines, APIs offer us a way to retrieve information that is responsive to our particular needs or interests — it’s just that they are generally designed to be accessed via code rather than a keyboard. Search engines are also a bit more flexible than other APIs, because you can enter any kind of text you want and usually get some kind of sensible result.

Still, a search engine is essentially just webpage that lets you interface with a database containing information about websites on the internet, such as their URLs, titles, text, images, videos and more. When you enter your search terms and hit “Enter” or “Return,” the search engine queries its database for web content that “matches” your search in some respect, and then the webpage is updated to display those results in a list. Though the specialized APIs made available by social media platforms and other online services require us to programmatically identify ourselves and structure our searches in a very particular way, there is enough overlap in how a typical search engine and more specialized APIs operate that we can learn something useful about APIs by deconstructing a basic Google search.

Basic APIs: A Search Engine Example

As previously mentioned, an internet search engine is probably the most straightforward form of API around — though that’s not always obvious from the way we see them behave onscreen. For example, if you were to visit https://google.com and search for “weather sebastopol”, you would probably see a page that looks something like this:

[image: Sebastopol weather search results]
Figure 5-1. Sample search results

Rather than looking at the search results, however, take a closer look at what’s in the URL bar. What you see will definitely be different from the Figure 5-1 screenshot, but it should contain at least some of the same information. Specifically, look through the text that now appears in your URL bar to find the following:

q=weather+sebastopol

Found it? Great. Now without refreshing the page, change the text in the search box to “weather san francisco” and hit enter. Once again look through the text in the URL to find:

q=weather+san+francisco

Finally, copy and paste the following into your URL bar and hit “enter”:

https://www.google.com/search?q=weather+san+francisco

Notice anything? Hopefully, you’re seeing the same (or almost the same) search results when you type “weather san francisco” into Google’s search bar and hit enter as when you directly visit the Google search URL with the key/value pair of q=weather+san+francisco appended (e.g. https://www.google.com/search?q=weather+san+francisco). That’s because q=weather+san+francisco is the part of the query string that delivers your actual search terms to Google’s database; everything else is just additional information the Google tacks on for further customization or tracking purposes.

Irrespective of what Google appends, we can add other useful key/value pairs to a URL. For example, in “Smart Searching for Specific Data Types”, we looked at searching for specific file types, such as .xml by adding filetype: .xml to our search box query; we can do the same thing by adding the key/value pair `as_filetype=xml`to our query string:

https://www.google.com/search?q=weather+san+francisco&as_filetype=xml

Not only will this return results in the correct format, notice that it updates the contents of the search box as well!

What we’re seeing here with the Google search engine is almost identical to what we’ll see with more specialized APIs in the next section. Many APIs follow the structure we’re seeing above, which combines an endpoint (in this case https://www.google.com/search) with one or more query parameters or key/value pairs in the appended query string (for example, q=weather+san+francisco or as_filetype=xml). A general overview of endpoint and query string structures is given in Figure 5-2.

[image: Sebastopol weather search query, limited to 5 results]
Figure 5-2. Basic query string structure

In addition to this structure, there are some key features of query string-based APIs that are worth noting:

	
Key/value pairs (such as as_filetype=xml, num=5 or even q=weather+san+francisco) can appear in any order, as long as they are added after the question mark (?) that indicates the start of the query string.

	
The particular keys and values that are meaningful for a given API are determined by the API provider, and can only be identified by reading the API documentation, or through experiment (though this can present problems of its own). Anything appended to the query string that is not a recognized key or valid parameter value will probably be ignored.

One final difference between search engine APIs and most of the others that we’ll see in this book is that, for the most part, web search engines don’t require you to authenticate — that is, identify — yourself before you use them. While you certainly can log in to before searching if you want to save your results, it’s definitely not required. As we’ll see in the next section, however, that’s not the case with most of the data APIs you’re likely to encounter online.

Specialized APIs - Adding Basic Authentication

In order to use most APIs you’ll first need to create some kind of account with the API provider. Although many useful APIs can be used to access data for free, compiling, storing, searching for and returning data to you over the internet still costs money, so providers want to track who is using their APIs — and be able to cut off access to anyone whose usage they find problematic2. This first part of the authentication process usually consists of creating an account and requesting an API “key” for yourself and/or each project, program or “app” you plan to have interact with the API. In a “basic” API authentication process, like the one we’ll set up in the next section, all you need to do is add your key to your data request just like any other query parameter, and you’re all set.

To see how this works in practice, let’s see what it takes to access the unemployment data we worked with in Example 4-15. We’ll start by making an account on the FRED website and requesting an API key. Once we have that, we can just append it to our query string to start downloading data!

Getting a FRED API Key

To create an account with the Federal Reserve Economic Database (FRED), visit https://fred.stlouisfed.org/ and click on MY ACCOUNT in the upper right hand corner as shown in Figure 5-3.

[image: Federal Reserve Economic Database (FRED) homepage]
Figure 5-3. FRED login link

Follow the directions in the pop-up, either creating an account with a new username and password, or using your Google account to log in. Once your registration/login process is complete, clicking on the MY ACCOUNT link will open a dropdown menu that includes an option titled API Keys, as shown in Figure 5-4.

[image: FRED account actions]
Figure 5-4. FRED account actions

Clicking that link will take you to a page where you can request one or more API keys using the + Request API Key button as shown in Figure 5-5.

[image: FRED API key screen]
Figure 5-5. FRED API key display

On the next page, you’ll be asked to provide a brief description of the application with which the API key will be used; this can just be a sentence or two. You’ll also need to read and agree to the Terms of Service by checkin the provided box. Complete the process by clicking the Request API Key button.

If your request is successful (and it should be), you’ll be taken to an interim page that will display the key that’s been generated, but you can always just log in and visit https://research.stlouisfed.org/useraccount/apikeys to see all of your available API keys).

Using your API Key to Request Data

Now that you have API key, let’s explore how to request the data we used in Example 4-15; start by trying to load the following URL in a browser:

https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&file_type=json

Even if you’re already logged in to FRED on that browser, you’ll see something like this:

{"error_code":400,"error_message":"Bad Request. Variable api_key is not set.
Read https:\/\/research.stlouisfed.org\/docs\/api\/api_key.html for more
information."}

This is a pretty descriptive error message: it not only tells you that something went wrong but gives you some idea of how to fix it. Fortunately, you already have an API key, so all you have to do is add it to your request as an additional parameter:

https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&file_type=json&api_key=YOUR_API_KEY_HERE

Replacing YOUR_API_KEY_HERE with, of course, your API key. Loading that page in a browser should return something that looks like the code in Example 5-2.

Example 5-2.

{"realtime_start":"2021-02-03","realtime_end":"2021-02-03","observation_start":
"1600-01-01","observation_end":"9999-12-31","units":"lin","output_type":1,
"file_type":"json","order_by":"observation_date","sort_order":"asc","count":324,
"offset":0,"limit":100000,"observations":[{"realtime_start":"2021-02-03",
"realtime_end":"2021-02-03","date":"1994-01-01","value":"11.7"},
...
{"realtime_start":"2021-02-03","realtime_end":"2021-02-03","date":"2020-12-01",
"value":"11.7"}]}

Pretty nifty, right? Now you can download the latest U6 unemployment data whenever you like.

Reading API documentation

As you can see from the Example 5-2 example, once we have an API key, we can load the latest data from the FRED database whenever we want. All we need to do is construct the right URL and add our API key.

But how do we know what key/value pairs the FRED API will accept, and what they mean? The only way to do this is to read the API documentation, which should offer guidance and (hopefully) examples of how the API can be used.

Unfortunately, there’s no widely-adopted standard for API documentation, which means that using a new API is almost always something of a trial-and-error process, especially if the documentation quality is poor or the provided examples don’t include the information you’re looking for. In fact, even finding the documentation for a particular API isn’t always straightforward, and often a web search is the simplest route.

For example, getting to the FRED API documentation from the FRED homepage (fred.stlouisfed.org) requires clicking on the Tools tab about halfway down the page, then selecting the Developer API link at the bottom right, which takes you to https://fred.stlouisfed.org/docs/api/fred/. By contrast, a web search for fred api documentation will take you to the same page, shown in Figure 5-6, directly.

[image: FRED API documentation homepage]
Figure 5-6. FRED API key request page

Unfortunately, the list of links on this page is actually a list of endpoints — different base URLs that you can use to request more specific information (recall that the endpoint is everything before the question mark (?), which separates it from the query string). In the example above, you used the endpoint https://api.stlouisfed.org/fred/series/observations and then paired it with the key/value pairs of series_id=U6RATE, file_type=json and, of course, your API key in order to generate a response.

Scrolling down the page in Figure 5-6 and clicking on the documentation link labeled “fred/series/observations” will take you https://fred.stlouisfed.org/docs/api/fred/series_observations.html, which outlines all of the valid keys (or parameters) for that endpoint and the valid values for those keys, as well as some sample query URLs, as shown in Figure 5-7.

[image: FRED API 'observations' endpoint documentation]
Figure 5-7. FRED API observations endpoint documentation

For example, you could limit the number of observations returned by using the limit parameter, or reverse the sort order of the returned results by adding sort_order=desc. You can also specify particular data formats (such as file_type=xml for XML output) or units (such as units=pc1 to see the output as percent change from a year ago).

History, revisited.

At about the same time I discovered that the U3 unemployment number excluded many people who probably thought of themselves (and almost certainly felt) unemployed, I also learned something else about economic indicator reporting: the numbers often change after the fact. While I don’t remember the specific date on which it happened, I distinctly remember my reaction to a colleague casually mentioning that the United States’ gross domestic product (GDP) growth rate for the previous quarter had been officially revised. Given that GDP is often used to inform national economic policy, this ability for economists to seemingly just change their minds was shocking to me. For example, a recession is officially defined as multiple consecutive quarters of “negative growth" — that is, when GDP is less than the previous quarter at least twice in a row. But if the people calculating those numbers can just change their minds months later, what does that mean for the real people who often feel the effects of those recessions long before even the first version of this data comes out?

While I don’t have a solution for the fact that the numbers themselves can be revised, the good news is that FRED is at least keeping track of the revisions that happen — and the API gives you a way to see them. This is what’s behind the vintage_dates parameter for the “observations” endpoint (https://api.stlouisfed.org/fred/series/observations?). For example, we can see what the monthly 2020 U6 unemployment figures were believed to be as of May 31, 2020 by making the following API call:

https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&
file_type=json&sort_order=desc&limit=3&vintage_dates=2020-05-31
&api_key=YOUR_API_KEY_HERE

In late May, then, U6 unemployment for March 2020 was reported at 8.7%, but was later revised to 8.8% the same measure for April was reported at 22.8% but was later revised to 22.9%. While these adjustments may seem small, keep in mind that the often the unemployment rate doesn’t change by more than a few tenths of a percent up or down over the course of an entire year.

Most importantly, these changes illustrate one of the more subtle concerns around data integrity: is the information we have now the same as what was available during the period are investigating? If not, it’s essential to adjust our claims — if not our data — accordingly.

Protecting Your API Key When Using Python

As you may have already guessed, downloading data from FRED (or other, similar APIs) is as simple as replacing one of the URLs in Example 5-1 with your complete query, because the webpage it generates is just another JSON file on the internet.

At the same time, that query contains some sensitive information: your API key. Remember that as far as FRED (or any other API owner) is concerned, you are responsible for any activity on their platform that uses your API key. This means that while you always want to be documenting, saving, and versioning your code with something like git, you never want your API keys or other credentials to end up in a file that others can access.

Warning

Properly protecting your API key takes some effort, and if you’re new to working with data, Python, APIs (or all three), you may be tempted to skip these next couple of sections and leave your API credentials inside files that could get uploaded to the internet. Don’t! While you may be thinking, “Who’s ever going to bother looking at my work?” or “I’m just playing around anyway - what difference does it make?” there are two things you should know.

First, as with documentation, if you don’t deal with protecting your credentials correctly now, it will be much more difficult and time-consuming to fix them up later, because by then you’ll have forgotten just exactly what it was you needed to do. Second, while few of us feel that what we’re doing is “important” or visible enough that anyone else would bother looking at it, the reality is that folks looking to do something they’re not supposed to are happy to cover their tracks however they can. And the fallout may not be limited to someone getting you kicked off a data platform you want to use: In 2021, the former SolarWinds CEO claimed that the massive breach of thousands of high-security systems through compromises to the company’s software was made possible, in part, by the fact that an intern uploaded a file containing a company password to their personal GitHub account. In other words, even if you’re “just practicing,” now is the time to start practicing good security hygiene as well.

Properly protecting your API credentials is two-part process. First, you need to separate your API key or other sensitive information from the rest of your code by storing it in a separate file that your main code only loads when you run the script. Second, you need a reliable way to ensure that as you are backing up your code using git, for example, those credential files are never backed up to any online location.

To make sure that we can achieve both of these things consistently, we want to define a naming convention for any file that contains API keys or other sensitive login-related information. In this case, we’ll make sure that any such file as the word “credentials” somewhere in the filename. Using this convention, we can create a special file known as a .gitignore that ensures any files whose names or extensions match a particular set of patterns are never committed to our repository and/or uploaded to GitHub. By including our “credentials” naming convention keyword in that file, we guarantee that no files containing sensitive login information get uploaded to GitHub by accident.

Creating Your “Credentials” File

Up until now, we’ve been putting all our code for a particular task — such as downloading a data file — in a single Python file or notebook. Fortunately, separating our functional code from our credentials is very straightforward.

First, create and save a new, empty Python file called FRED_credentials.py. You’ll want this to be in the same folder where you plan to put your scripts to download data from FRED.

Then, simply create a new variable and set its value to your own API key as shown in Example 5-3.

Example 5-3. Example FRED credentials file

my_api_key = "your_api_key_surrounded_by_double_quotes"

Now save your file!

Using Your Credentials in a Separate Script

Now that your API key exists as a variable in another file, you can import it into any file where you want to use it, in just the same way that we’ve imported libraries to help us with wrangling different file formats so far. For example, Example 5-4 is a sample script for downloading the U6 unemployment data from FRED using the API key stored in my FRED_credentials.py file.

Example 5-4. FRED_API_example.py

we can import our API key by first giving Python the name of our credentials
file, and then telling it the variable to import
from FRED_credentials import my_api_key

import the requests library, which let's us write Python that acts like
a web browser through code
import requests

specify the FRED endpoint we want to use
FRED_endpoint = "https://api.stlouisfed.org/fred/series/observations?"

also specify the query parameters and their values
FRED_parameters = "series_id=U6RATE&file_type=json"

construct the complete URL for our API request, adding our API key to the end
complete_data_URL = FRED_endpoint + FRED_parameters +"&api_key="+my_api_key

open a new, writable file with our chosen filename
FRED_output_file = open("FRED_API_data.json","w")

use the requests library's "get" recipe to access the contents of our
target URL and store it in a our `FRED_data` variable
FRED_data = requests.get(complete_data_URL)

the requests library's "get" function has put the contents of the webpage
in a property "text", which we'll write directly to our FRED_output_file
using the built-in "write" method
FRED_output_file.write(FRED_data.text)

close our FRED_output_file
FRED_output_file.close()

When you run the script above, you’ll probably notice that it does more than just successfully download the FRED data — it also creates a new folder called __pycache__ that contains a single file called FRED_credentials.cpython38.pyc or something similar. Where did this come from? It turns out that in order to import data from another Python file, your device first converts the imported file’s contents to bytecode, which is what the device actually uses to run your Python script (that’s why the program that makes Python run on your device is often called a Python interpreter — because it translates the code we humans write into bytecode that your device can actually understand). These Python bytecode files have the extension .pyc. Although we haven’t dealt with them directly before, there are lots of .pyc files already on your device associated with the other libraries we have been importing (they’re just stored in a part of the system that we’re not looking at directly). In both cases, your system is saving resources by translating those files once and storing that translation in a .pyc file, rather than translating them over and over again when their contents haven’t changed. When you import those libraries (and now, your credentials), your system relies the pre-translated version to make the rest of your code run a little bit faster.

Fortunately, you don’t have to do anything with — or about — either the __pycache__ folder or the .pyc file inside it — you can even delete them if you like (though they will reappear the next time you run a Python script that imports your credentials). Since our credentials file is very small, it’s not going to slow things up very much if it’s regenerated each time. On the other hand, if it doesn’t bother you to see it in your folder, you can just leave it alone.

Now that we’ve succeeded in separating our API credentials from the main part of our code, we need to make sure that that credentials file doesn’t accidentally get backed up when we commit our work to a code repo. This is where we’ll want to make use of a special type of file known as .gitignore.

Getting Started with .gitignore

As the name suggests, a .gitignore file let’s you specify certain types of files that — surprise, surprise! — you want git to “ignore,” rather than track or back up. By creating (or modifying) the .gitignore file for a repository, and then adding or modifying test-based matching rules that git will compare to the names of files in our repo, we can automate the process of “deciding” whether a file is tracked or uploaded. In theory, of course, we could accomplish the same thing manually (by never using git add on files we don’t want to track), but without a .gitignore file every time we run git status, git will “warn” us that we have untracked files and print out all their names. That approach would require reading through all those filenames each time and making sure they’re really something we don’t want to track, which would quickly get tedious and probably lead to mistakes: All it would take is one hasty git add -A command to accidentally begin tracking everything in a repository, and getting things out of your git history is much trickier than getting them in.

In other words, .gitignore files are our friend. They help prevent all kinds of problems by letting us create general rules so that we never track files we don’t want to, and by making sure that git only reports the status of files that we genuinely care about.

For the time being, we’ll create a new .gitignore file in the same folder/repository where our FRED_credentials.py file is, just to get a feel for how they work. To do this, we’ll start by opening up a new file in Atom (or, you can add a new file directly in your GitHub repo) and save it in the same folder as your FRED_credentials.py with the name .gitignore (be sure to start the filename with a dot (.) — that’s important!).

Next, add the following lines to your file:

ignoring all credentials files
**credentials*

As in Python, comments in .gitignore files are started with a hash (#) symbol, so the first line of this file is just descriptive. The contents of the second line (**credentials*) is a sort of regular expression — a special kind of pattern-matching system that let’s us describe strings (including file names) in the sort of generic way we might explain them to another person3 In this case, the expression **credentials* translates to “a file anywhere in this repository that contains the word credentials”. By adding this line to our .gitignore file, we ensure that any file in this repository whose filename includes the word “credentials” will never be tracked or uploaded to GitHub.

To see your .gitignore in action, save the file and then in the command line, run:

git status

While you should see the new file you created for the code in Example 5-4, you should not see your FRED_credentials.py file listed. If you want to be really sure that the files you intend are being ignored, you can also run:

git status --ignored

Which will show you only the files in your repository that are currently being ignored. Among them you’ll probably also see the __pycache__ folder, which we also don’t need to back up.

Where Did My .gitignore File Go?

Once you’ve saved and closed your .gitignore file, you might be suprised to see that, well, you don’t see it anymore! Whether you’re looking for it in a folder on your device or via the command line, sometimes finding your .gitignore file seems like a challenge in itself!

The reason why these files can be hard to find is that, by default, most device operating systems hide any files that begin with a dot (.). While your .gitignore files will always be easy to find (and edit!) on the GitHub website, if you want to change them on your device, there are a few tricks that can make working with them easier.

Since your .gitignore file is one of the few “dot files” on your device that you’ll probably ever want to see and edit, I find the easiest thing to do is look for it with the command line, by navigating to the relevant folder/repository and using the “list all” command:

ls -a

If you don’t see an existing .gitignore file, you can, of course, create one. If it is there, though, how do you edit it? While you’ve probably been opening the Atom code editor from an icon on your device, you can actually use it to open files right from the command line by using the atom keyword (similar to the way we use python). So to open your .gitignore file using Atom, you can just type:

atom .gitignore

While it may take a few seconds to open (even if you have other Atom files open already), using the command line to start a program is an easy way to find and modify files, hidden or otherwise!

Specialized APIs - Working With OAuth

So far, we have been working with APIs that have a fairly straightforward authentication process: we register with the API provider and are given a key that we can just include in our data request as we did in the Example 5-4 example.

While this process is very straightforward, it has some drawbacks. These days, APIs can do much more than just return data: they are what apps use to do things like post updates to a social media account or add items to your online calendar. In order for apps to do that, they need some type of access to your account, but of course you don’t want to be sharing your credentials with apps and programs willy-nilly. If you did that, the only way to later stop an app from accessing your account would be to change your username and password — and then you’d have to give your udpated credentials to all the apps you still want to use in order for them to continue working…it gets messy and complicated, fast.

The OAuth workflow was designed to address these problems by providing a way to authorize access to API data without passing around usernames and passwords. In general, this is achieved by scripting a so-called authorization loop, which includes three basic steps:

	
Obtaining and encoding your API key and “secret” (really just strings, which you get from the API provider, just as we did with the FRED API key)

	
Sending that encoded, combination key to a special “authorization” endpoint (that is, a specific URL)

	
Receiving an access token (yet another string)from the authorization endpoint, which you then send along with your request for data

While this probably seems especially complex right now, rest assured that even this complicated-sounding process really just involves passing strings back and forth to and from specific URLs. Yes, in the process we’ll need to do some “encoding” on them — but, as you may have guessed, all the hard work will be handled for us by helpful Python libraries.

Apart from that, the process of interacting with these more specialized APIs via Python is, at a high level, the same as for the more “basic” versions: We’ll need to create an account and request API credentials, and then we’ll create a file that both contains those credentials and does a little bit of preparatory work to them so we can use them in our main script. Then our main script will pull in those credentials and use them to request data from our target platform and write them to an output file.

For this example, the platform we’ll be targeting is Twitter, but you’ll be able to access data on a wide range of platforms (including Facebook) using roughly the same process we’ll go through here. One thing you’ll notice is that we don’t spend a ton of time here talking about how to structure specific queries; the ins and outs of any given API could easily be a book in and of itself! That said, once you have this authentication process down, you’ll have what you need to do some experimenting in order to access the data you want. So let’s get started!

Applying for a Twitter Developer Account

As with every API process, our first step will be to request an API key from Twitter. Even if you already have a Twitter account, you’ll need to apply for “developer access,” which will take about fifteen minutes (not counting the time for Twitter to review and/or approve) all told. Start by visiting https://developer.twitter.com/en/apply-for-access and click the “Apply for a developer account” button. Once you’ve logged in, you’ll be taken to a screen asking for more information about how you plan to use the API. For the purposes of this exercise, you can select “Hobbyist” and “Exploring the API,” as shown in Figure 5-8.

[image: Use case selection for the Twitter developer API]
Figure 5-8. Twitter Developer API Use Case Selection

In the next step, you’ll be asked to provide a 200+ character explanation of what you plan to use the API for; here you can enter something like this:

Using the Twitter API to learn more about using Python to do data wrangling.
Interested in experimenting with OAuth loops and pulling different kinds of
information from public Twitter feeds and conversations.

Since our goal here is just to practice downloading data from Twitter using a Python script and an OAuth loop, you can toggle the answer to the four subsequent questions to “No” (though if you begin using the API in some other way, you will need to update these answers).

[image: Intended use selection for data from the Twitter developer API]
Figure 5-9. Twitter Developer API Intended Uses

On the next two screens, you’ll be asked to review your previous selections and click a check box to acknowledge the Developer Agreement. You can then click “Submit application,” which will trigger a verification email. If the email doesn’t arrive in your inbox within a few minutes, be sure to check your Spam and Trash. Once you locate it, click on the link in the email for your access to be confirmed!

Creating Your Twitter “App” and Credentials

Once your developer access has been approved by Twitter, you can create a new “app” by logging into your Twitter account and visiting https://developer.twitter.com/en/portal/projects-and-apps. In the center of the page, click on the “+ Create Project” button.

[image: Twitter developer dashboard]
Figure 5-10. Twitter Developer Dashboard

Here you’ll be taken through a mini version of the process you just went through to apply for developer access; you’ll need to provide a name for your project, indicate how you intend to use the Twitter API, describe that purpose in words, and provide a name for the first app associated with that project, as shown in Figure 5-11, Figure 5-12, Figure 5-13 and Figure 5-14.

[image: Twitter project name screen]
Figure 5-11. Twitter Project Creation: Project Name

[image: Twitter project purpose screen]
Figure 5-12. Twitter Project Creation: Project Purpose

[image: Twitter project description screen]
Figure 5-13. Twitter Project Creation: Project Description

[image: Twitter app name]
Figure 5-14. Twitter Project Creation: App Name

Once you’ve added your app name, you’ll be taken to a screen that shows your API key, API secret and Bearer token, as shown in Figure 5-154.

[image: API Keys and tokens screen]
Figure 5-15. Twitter API Keys and Tokens screen

What’s in an “App” After All?

For most of us, the word “app” brings to mind phone games and services, not using Python to pull data from an API. For most API providers, however, an “app” is anything that programmatically interacts with their services — whether that’s a Python script downloading Tweets or a full-blown mobile app that users can install on their devices. That said though, once you’ve got your developer account and are downloading Tweets, you can honestly say that you’re an “app developer”!

For security reasons, you’ll only be able to your API key and API secret key on this screen, so we’re going to put them into a file for our Twitter credentials right away (note that on other screens these are referred to as the “API Key” and “API Key Secret" — even big tech companies can have trouble with consistency!). Don’t worry though! If you accidentally click away from this screen too soon, mis-copy a value or anything else, you can always go back to your dashboard at https://developer.twitter.com/en/portal/dashboard and click on the key icon next to your app, as shown in Figure 5-16.

[image: Twitter Dashboard with Apps]
Figure 5-16. Twitter Dashboard with Apps

Then, just click on “Regenerate” under “Consumer Keys” to get a new API Key and API Key Secret.

[image: Twitter Regenerate Keys]
Figure 5-17. Twitter Regenerate Keys

Now that we know how to access the API Key and API Key Secret for our app, we need to put these into a new “credentials” file, similar to the one we created for our FRED API key. To start, create a new file called Twitter_credentials.py and save it in the folder where you want to put your Python script for accessing Twitter data, as shown in Example 5-5.

Example 5-5.

my_Twitter_key = "your_api_key_surrounded_by_double_quotes"
my_Twitter_secret = "your_api_key_secret_surrounded_by_double_quotes"

Warning

Be sure to include the word credentials in the name of the file where you store your Twitter API Key and API Key Secret! Recall that in “Getting Started with .gitignore”, we created a rule that ignores any file whose name includes the word credentials to make sure our API keys never get uploaded to GitHub by accident. So make sure to double-check the spelling in your filename! Just to be extra-sure, you can always run

git status --ignored

In the command line to confirm that all of your credentials files are indeed being ignored.

Encoding your API Key and Secret

So far, we haven’t needed to do things too differently than we did for the FRED API, we’ve just had to create two variables (my_Twitter_key and my_Twitter_secret) instead of one.

Now, however, we need to do a little bit of work to these values to get them in the right format for the next step of our authentication process. While we won’t go too far into the details of what’s happening here, just know that these coding and decoding steps are necessary for protecting the raw string values of your API Key and API Key Secret so that they can be sent over the internet.

So, to our Twitter_credentials.py file we’re going to add several lines of code so that the completed file looks like Example 5-6.

Example 5-6.

my_Twitter_key = "your_api_key_surrounded_by_double_quotes"
my_Twitter_secret = "your_api_key_secret_surrounded_by_double_quotes"

import the base64 encoding library, which will let us transform our raw
API Key and API Key Secret into the correct format for sending to the
Twitter authoriation endpoint
import base64

first, combine the API Key and API Key Secret into a single string, with a
colon between them
combined_key_string = my_Twitter_key+':'+my_Twitter_secret

encode that combined string to the ASCII format
(see: https://en.wikipedia.org/wiki/ASCII)
encoded_combined_key = combined_key_string.encode('ascii')

encode the ASCII-formatted string to base64, which will adds security
b64_encoded_combined_key = base64.b64encode(encoded_combined_key)

decode the encoded string back to ASCII, so that it's ready to send
over the internet
auth_ready_key = b64_encoded_combined_key.decode('ascii')

Now that we’ve got our API Key and API Key Secret properly encoded, we can import just the auth_ready_key into the Python file that we’ll use to access data from the Twitter API.

Requesting an Access Token and Data from the Twitter API

As we did in Example 5-4, we’ll now create a new Python file where we’ll do the next two steps of our Twitter data loading process:

	
Requesting (and receiving) an access token or bearer token from Twitter

	
Including that bearer token in a data request to Twitter, and receiving the results

Requesting an Access Token - Get vs. Post

Requesting an access or bearer token from Twitter is really just a matter of sending a well-formatted request to the authorization endpoint, which is https://api.twitter.com/oauth2/token. This time, however, we’re to request the webpage slightly differently, using something called a post request (recall that in Example 5-1 and Example 5-4, the requests recipe we used was called get).

While a post request offers some additional security over get requests (the contents of a post request are not saved in browser history the way that get requests are), the main reason we need to use the post method for our authorization request is functional: post requests are simply the preferred method for sending information to a web server when it will do some action beyond just returning data. For example, in Example 5-4, although the data we got back was unique to our query, the API would return that same data to anyone who submitted that same request. By contrast, when we use post to submit our auth_ready_key, the Twitter API will process our unique key and return a unique bearer token. So we use a post request.

The other difference we see in interacting with a more complex API (like Twitter’s), is that we need to format the data we send differently. Specifically, we will create two dict objects: one that contains the request’s headers (this is additional information about the request, and where we’ll put our auth_ready_key or other credentials), and another that contains the request’s data (such as the name of what we’re requesting or, later, our query parameters). Again, while this may sound complicated, all we’re really doing is creating two Python dict objects and passing them as ingredients to our website request, rather than sticking them on the end of the URL string.

Example 5-7. Twitter_data_download.py

from Twitter_credentials import auth_ready_key

include the requests library in order to get data from the web
import requests

specify the Twitter endpoint that we can use to request an access token
or bearer token
auth_url = 'https://api.twitter.com/oauth2/token'

construct a dict containing the information the authorization endpoint wants
in order to return an access token to us. This includes the "header"
information, which gives the endpoint our encoded key and tells it about
the data formatting
auth_headers = {
 'Authorization': 'Basic '+auth_ready_key,
 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8'
}

we also need to pass along information about what we're asking for. The
format of both the headers and the data is decided by the API provider,
so we're just following their directions here
auth_data = {
 'grant_type': 'client_credentials'
}

now we actually make our complete request to the authorization endpoint.
The data sent back will be stored in this variable
auth_resp = requests.post(auth_url, headers=auth_headers, data=auth_data)

pull the access token out of the data sent back from the authorization
endpoint
access_token = auth_resp.json()['access_token']

Pretty straightforward, right? If everything went well (which we’ll confirm in the next shortly), we can then use our access token to go ahead and request some actual Twitter data.

What About the Bearer Token in the Developer Dashboard?

When you were copying your API Key and API Key Secret out of the developer dashboard screen shown in Figure 5-15, you may have noticed that there was also a “Bearer Token” listed. Why aren’t we just using that, instead of writing code to get one?

The short answer is: While the Twitter API provides access tokens in the dashboard, many similar APIs (such as Facebook’s) do not. Since the goal here is to illustrate a more general process for interacting with APIs that use OAuth, we’re walking through the access/bearer token request loop so you can more easily modify and reuse this code with other APIs.

Now that we have an access token handy, we can go ahead and make a request for some data from Twitter. For demonstration purposes, we’re going to keep our request simple: we’ll submit a basic search request for recent Tweets that contain the word “Python”, and ask to have a maximum of four (4) Tweets returned. Continuing the script begun in Example 5-7, we’ll structure and make this request, passing our newly acquired bearer token in the header. Once we have the response, we’re going to both write the data we get back to a file, and, because there is a lot in the data besides the text of the Tweets, we’re going to print out the text of each Tweet received as well, just so we’re confident we got what we expected.

Example 5-8.

now that we have an access/bearer token, we're ready to request some data!
we'll create a new dict that includes this token
search_headers = {
 'Authorization': 'Bearer ' + access_token
}

this is the Twitter search API endpoint for version 1.1 of the API
search_url = 'https://api.twitter.com/1.1/search/tweets.json'

we'll create a new dict that includes our search query parameters
in this case, our query (`q`) is "Python", we're looking for recent results
and we want a maximum of 4 Tweets back.
search_params = {
 'q': 'Python',
 'result_type': 'recent',
 'count': 4
}

now we can build and send our data request; the data sent back will be stored
in this variable
search_resp = requests.get(search_url, headers=search_headers, params=search_params)

we'll store the data we get back in a variable, because we're both going
to write it to a file and print out some of its contents
Twitter_data = search_resp.json()

we'll open an output file where we can store the results
Twitter_output_file = open("Twitter_search_results.json", "w")

write the returned Twitter data to our output file
because the response is a JSON object, we have to use the built-in `str()`
recipe to convert it to a string before we can write it to our file
Twitter_output_file.write(str(Twitter_data))

close the output file
Twitter_output_file.close()

because there is a LOT of information in each result, we're going to print
out the text of each Tweet returned, just to get a sense of what's in the
data. The `statuses` is the list of Tweets in the JSON object, and the
actual text of the Tweets is can be accessed with the key/property `text`
for a_Tweet in Twitter_data['statuses']:
 print(a_Tweet['text'] + '\n')

Depending on how actively Twitter users have been posting about Python recently, you may see different results every time you run this script (remember that each time you run it, you will also overwrite your output file, so that will only ever contain the most recent results). Of course you can change this search to contain any query term you want; just modify the value of the search_params variable as you like. To see all the possible parameters and their valid values, you can look through the API documentation for this endpoint here: https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets.

And that’s it! While there are a number of different APIs that Twitter makes available (others allow you to actual post to your own timeline or even someone else’s), for the purposes of accessing and wrangling data, understanding how to request and use an access or bearer token will get you started with this and other similar APIs.

API Ethics

Now that you know how to make API requests from services like Twitter (Facebook and many others use a similar process), you may be imagining all the cool things you can do with the data you can collect. Before you start writing dozens more scripts to track the conversations happening around your favorite topics online, however, there are a number of practical and ethical considerations to take into account.

First, know that almost every API will impose something known as rate-limiting, in which a limit is set on how much data you can pull within a given time interval. On the particular API endpoint we used in Example 5-8, for example, you can make a maximum of 450 requests in a 15-minute time period, and each request can return a maximum of 100 Tweets. If you exceed this, your data requests will probably fail until Twitter determines that the next 15-minute window has begun.

Second, while you probably didn’t read the Developer Agreement in detail (don’t worry, you’re not alone5; you can find a reference copy here: https://developer.twitter.com/en/developer-terms/agreement-and-policy), it includes provisions that have important practical and ethical implications. For example, Twitter’s Developer Agreement specifically prohibits the practice of “Off-Twitter matching” to combine Twitter data with other information about a user, unless that user has provided you the information directly or expressly provided their consent. It also contains rules about how you can store and display Twitter content that you may get from the API, and a whole other host of rules and restrictions.

Whether or not those terms of service are legally binding6, or necessarily ethical in and of themselves, remember that it is ultimately your responsibility to make sure that you are gathering, analyzing, storing and sharing any data you use in an ethical way. That means taking into account the privacy and security of the people you may be using data about, as well as thinking about the implications of aggregating and sharing it.

As important as these ethical considerations are, however, there is no hard-and-fast way to determine whether a particular activity is ethical or not. That’s why universities (and even some companies) have ethics committees and oversight processes. For my own part, I find that a good place to start is the Society of Professional Journalists’ Code of Ethics (https://www.spj.org/ethicscode.asp). While this doesn’t cover every possible ethics situation in detail, it includes some core principles that I think all data users would do well to consider when they are collecting, analyzing and sharing information.

In the end, however, the most important thing is that whatever choices you make, you’re ready to stand behind them. One of the great possibilities of data access and wrangling is the ability to uncover new information and generate new insights. Just as the skills for doing that are now entirely in your control, so is the responsibility for how you use them.

Web Scraping: The Data Source of Last Resort

While APIs are designed specifically to let you access rich, diverse data sets via the internet, there is a whole lot of information online where the situation is exactly the opposite: the data lives on static or form-based webpages of one kind or another, and it isn’t otherwise available through an API or even a static file of some kind like a CSV or a PDF. For situations like these, the only real solution is web scraping, which is the process of using code to programmatically retrieve the contents of a webpage and systematically extract (usually) structured data from it.

The reason why I describe web scraping as “the data source of last resort” is that it’s both a technically and ethically complicated process. Writing web scraping scripts almost always requires manually wading through a jumble of HTML code to find the data you’re looking for, usually followed by a significant amount of trial-and-error to write code that actually finds everything you’re looking for (and nothing you aren’t). While it’s sometimes unavoidable, web scraping is time-consuming, fiddly and often frustrating. And if the webpage changes even a little, you may have to start from scratch all over again to make your script work with updated page.

Web scraping is ethically complicated because, for a variety of reasons, many website owners don’t want you to scrape their pages. Poorly coded scraping programs, for example, can cause larger problems with the website and make it inaccessible to other users. Making lots of scripted data requests in quick succession can also drive up costs the website owner’s costs, because they have to pay their own service provider more to return lots of data in a short period. That’s why many websites explicitly prohibit web scraping in their Terms of Service.

At the same time, if important accountability information — especially about powerful organizations or government agencies — is only available via a webpage, then scraping may be your only option even it goes against the Terms of Service. While it is far beyond the scope of this book to provide even pseudo-legal advice on the subject, keep in mind that even if your scripts are written responsibly and there is a good, public-interest reason for your scraping activity, you may face sanction from the website owner (such as a “cease and desist” letter) or even legal action.

Because of this, I strongly recommend that before you start down the road of writing any web scraping script, you work through the excellent flowchart compiled by Sophie Chu (@mpetitchou)7, shown in [Link to Come].

Once you’ve determined that scraping is your only/best option, it’s time to get to work.

Carefully Scraping the MTA

For this example, we’re going to use web scraping to download and extract data from a webpage from New York City’s Metropolitan Transit Authority (MTA) website that provides links to all of the turnstile data for the city’s subway stations going back to 2010. To ensure that we’re doing this as responsibly as possible we’re going to make sure that any Python script we write:

	
Identifies who we are and how to get in touch (we’ll include an email address)

	
Pauses between webpage requests to make sure that we don’t overwhelm the server

In addition, we’ll structure and separate the parts of our script to make sure that we never download a particular webpage more than absolutely necessary. In this case, that means that we’ll first download and save a copy of the webpage that provides the links to all of turnstile data files, then we’ll write a separate script that goes through our saved version of the page and extracts the data we need. That way, any trial-and-error we go through in extracting the data happens on our saved version, and we’re only downloading the original webpage once. Finally, we’ll write a third script that parses our extracted data file and downloads the last four weeks of data.

Before we begin writing any code, however, let’s take a look at the page we’re planning to scrape, which you can view here at http://web.mta.info/developers/turnstile.html. As you can see, the page is little more than a header and a long list of links, each of which will take you to a comma-separated .txt file. In order to load the last several weeks of these data files, our first step is to download a copy of this index-style page.

Example 5-9. MTA_turnstiles_data_download.py

include the requests library in order to get data from the web
import requests

specify the url of the webpage we're downloading
this one contains a linked list of all the NYC MTA turnstile data files
going back to 2010
mta_turnstiles_index_url = "http://web.mta.info/developers/turnstile.html"

since we're *not* using an API, the website owner will have no way to identify
us unless we provide some additional information. In this case, we're
describing the browser it should treat our traffic as being from. We're also
providing our name and contact information. This is data that the website
owner will be able to see in their server logs.
headers = {
 'User-Agent': 'Mozilla/5.0 (X11; CrOS x86_64 13597.66.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.109 Safari/537.36',
 'From': 'YOUR NAME HERE - youremailaddress@emailprovider.som'
}

because we're just loading a regular webpage, we send a `get` request to the
URL, along with our informational headers
mta_webpage = requests.get(mta_turnstiles_index_url, headers=headers)

opening up a local file to save the contents of the webpage to
mta_turnstiles_output_file = open("MTA_turnstiles_index.html","w")

the webpage's code is in the `text` property of the website's response
so write that to our file
mta_turnstiles_output_file.write(mta_webpage.text)

close our output file!
mta_turnstiles_output_file.close()

Now you’ll have a file called MTA_turnstiles_index.html in the same folder where your Python script was located; to see what it contains you can just double-click on it, and it should open in your default web browser. Of course, because we only downloaded the raw code on the page and none of the extra files, images and other materials that it would normally have access to on the web, it’s going to look a little wonky:

[image: Viewing our local copy of the MTA webpage in a browser]
Figure 5-18. Viewing our local copy of the MTA webpage in a browser

Fortunately, that doesn’t matter at all, since what we’re after here is the list of links that’s stored in the page’s own HTML. Before we worry about how to pull that data programmatically, however, we need to locate it within the page’s HTML code. To do this most efficiently, we’re going to use our web browser’s inspection tools.

Using Browser Inspection Tools

With the local copy of the MTA turnstile data page open in the browser in front of you, scroll down until you can see the “Data Files” header, as shown in Figure 5-18. To better target just the information we want on this webpage with our Python script, we need to try to identify some unique bits of HTML code that surround it — this will give our script something particular. The easiest way to do this is by “inspecting” the code alongside the regular browser interface.

To get started, put your mouse cursor over the “Data Files” text and “context-click” (also known as “right-click” or sometime “ctrl+click”, depending on your system). At the bottom of the menu that pops up, choose “Inspect.”

[image: The context menu on our local copy of the MTA webpage]
Figure 5-19. The context menu on our local copy of the MTA webpage

While the precise location and shape of your particular browser’s inspection tools window will vary (this screenshot is from Chrome browser), its contents will hopefully look at least somewhat similar to the image in Figure 5-20.

[image: The inspection tools window with the Data Files header highlighted.]
Figure 5-20. Inspection tools example

Wherever your own window appears (sometimes it is anchored to the side or bottom of your browser window, and, as there are in Figure 5-20, there are often multiple panes of information) the main thing we want to locate in the inspection tools window are the words “Data Files.” If you lose them (or never saw them in the first place!) once the window appeared, just move your mouse over those words on the webpage and context-click to open the inspection tools again.

Making the most of inspection tools

Browser inspection tools can be useful in a lot of ways, but they are especially important in web scraping, when we want to find unique ways to identify specific chunks of information on a web page. Once you have them open, hovering over a piece of code will visibly highlight the part of the web page it corresponds to. By moving around the code in the inspection tools with your mouse, you can focus the script you write to more precisely grab the parts of the page you need, which will make extracting the data you want both faster and more efficient.

If you use your mouse to hover over the code in the inspection tools window that says:

<div class="span-84 last">

You should see the “Data Files” section of the webpage highlighted in your browser window, and it appears that the highlight includes the entire list of links we’re interested in. We can confirm this by scrolling down in the inspection tools window, where we’ll see that all of the data links we want (which end in .txt) are indeed inside this div (notice how they are indented beneath it?). Now, if we can confirm that class span-84 last only exists once on the webpage, then we’ve got a good place to start in writing our script to extract the list of links.

Starting the Soup

Before we begin writing our next Python script, let’s confirm that that span-84 last class really is unique on the page we downloaded. The simplest way to do this is to first open the page in Atom (context-click on the filename instead of double-clicking, and choose Atom from the Open with... menu option), which will show us the page’s code. Then do a regular “find” command (Ctrl+F or Command+F) and search for span-84 last. As it turns out, even the span-84 part only appears once in our file, so this is a good starting point!

Now we’re ready to start writing the Python script that will extract the links from the webpage. For this we’ll install and use a new library that’s widely used for parsing the sometimes messy markup we find on webpages: “Beautiful Soup.” While Beautiful Soup has some functionality overlap with the lxml library that we used in Example 4-12, the main difference between them is that Beautiful Soup is effective at parsing even imperfectly-structured HTML and XML — which is what we often find on real webpages. In addition, Beautiful Soup lets us “grab” bits of markup by almost any feature we want — class name, tag type, or even attribute value — so it’s pretty much the go-to library for pulling data out of the “soup” of markup we often find online. You can read the full documentation for the library at https://www.crummy.com/software/BeautifulSoup/bs4/doc/, but the easiest way to install it will be the same process we’ve used for other libraries, via pip:

pip install beautifulsoup4

Now, we’re ready to open the local copy of our webpage and use the Beautiful Soup library along with what we’ve learned from our inspection tools to quickly grab all the links we need and write them to a simple .csv file.

import the BeautifulSoup recipe from the bs4 library
this will let us zero in on parts of our webpage based on their class name
and/or tag type
from bs4 import BeautifulSoup

open the saved copy of our MTA turnstiles webpage, original here:
http://web.mta.info/developers/turnstile.html
mta_webpage = open("MTA_turnstiles_index.html", "r")

if we click one of the data links on the live copy of the webpage, we
see that the first part of the URL is "http://web.mta.info/developers/"
each link only contains "data/nyct/turnstile/turnstile_YYMMDD.txt",
so we'll need to combine those links with this base URL for them to work later
base_url = "http://web.mta.info/developers/"

the BeautifulSoup recipe takes the contents of our webpage and another
"ingredient", which tells it what kind of code it is working with. In this
case, it's HTML
soup = BeautifulSoup(mta_webpage, "html.parser")

using the "find" recipe, we can pass a tag type and class name as
"ingredients" to zero in on the content we want. Thanks to our work with the
inspection tools, we can go straight to a `div` with the class `span-84 last`
note that because the word "class" has a special meaning in Python, the
ingredient name adds an underscore to the end: `class_`
data_files_section = soup.find("div", class_="span-84 last")

within that div, we can now just look for all the "anchor" tags
all_data_links = data_files_section.find_all("a")

need to open a file to write our extracted links to
mta_data_list = open("MTA_data_index.csv","w")

the "find_all()" recipe returns a list of everything it matches, so we
use a for...in loop to go through all the links
for a_link in all_data_links:

 # creat a variable that combines our base URL with the contents of the
 # "href" property of each link (which is where the link information lives)
 complete_link = base_url+a_link["href"]

 # write this completed link to our output file, manually adding a
 # newline `\n` character to the end, so each link will be on its own row
 mta_data_list.write(complete_link+"\n")

once we've written all the links to our file, close it!
mta_data_list.close()

Almost there! Now that we have a file with a list of all the data links, we just need to read those in and download them. However, because we want to be careful not to download the files too quickly, we’re going to use the built-in Python time library to space out our requests by a second or two each. This will help ensure that we don’t overwhelm the MTA’s web server. Also, we’ll be sure to only download the four (4) files that we really want, rather than downloading everything just for the sake of it.

include the requests library in order to get data from the web
import requests

the built-in `operating system` or `os` Python library will let us create
a new folder in which to store our downloaded data files
import os

the built-in `time` Python library will let us `pause` our script for 2
seconds between data requests, so that we don't overload the MTA server with
too many requests in too short a time period
import time

open the file where we stored our list of links
mta_data_links = open("MTA_data_index.csv","r")

create a folder name so that we can keep the data organized
folder_name = "turnstile_data"

since we're *not* using an API, the website owner will have no way to identify
us unless we provide some additional information.
headers = {
 'User-Agent': 'Mozilla/5.0 (X11; CrOS x86_64 13597.66.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.109 Safari/537.36',
 'From': 'YOUR NAME HERE - youremailaddress@emailprovider.som'
}

the built-in `readlines()` function reads one line of data from our file
at a time, and makes them into a list
mta_links_list = mta_data_links.readlines()

as we did when working with PDFs, we want to confirm that no folder with
our chosen name exists before creating it; otherwise we'll get an error
if os.path.isdir(folder_name) == False:
 # create a new folder with that name
 target_folder = os.mkdir(folder_name)

we only need four files, so we should only download that many
for i in range(0,4):
 # we use the built-in `strip()` recipe to remove the newline `\n` character
 # at the end of each row
 data_url = (mta_links_list[i]).strip()

 # we split the url on slashes, and take the item from the resulting list
 # which is the `.txt` filename. This is the filename we'll use to save
 # our local copy of the data
 data_filename = data_url.split("/")[-1]

 # make our request for the data
 turnstile_data_file = requests.get(data_url, headers=headers)

 # open a new, writable file inside our target folder, using the appropriate
 # filename
 local_data_file = open(os.path.join(folder_name,data_filename), "w")

 # save the contents of the downloaded file to that new file
 local_data_file.write(turnstile_data_file.text)

 # close the local file
 local_data_file.close()

 # "sleep" for two seconds before moving on to the next item in the loop
 time.sleep(2)

If everything has gone well, you should now have a new folder called turnstile_data, with the four most recent turnstile data files saved inside it. Pretty neat, right?

Conclusion

Now that we have explored the many ways to actually get the data we’re after and convert it into formats we can use, the next question is: What do we do with it all? Since the goal of all this data wrangling is to be able to answer questions and generate some insight about the world, we now need to move on from the process of acquiring the data and start the process of assessing, cleaning and improving it. In the next chapter, we’ll explore the methods and tools of data evaluation and cleaning, all with an eye towards understanding the data we have while creating efficient, streamlined mechanisms for preparing it for transformation and analysis.

1 It’s also the first step to building your own “apps!”
2 While this can include doing things like making too many data requests in too short a timeframe, note that most API providers have the right to terminate your access to their API for pretty much any reason they want.
3 We used this approach with the glob library in Example 4-16, and will examine it in more detail in Chapter 7.
4 These keys have since been replaced and will not work!
5 See: McDonald, Aleecia M., and Lorrie Faith Cranor. “The cost of reading privacy policies.” Isjlp 4 (2008): 543, and Obar, Jonathan A., and Anne Oeldorf-Hirsch. “The biggest lie on the internet: Ignoring the privacy policies and terms of service policies of social networking services.” Information, Communication & Society 23.1 (2020): 128-147.
6 https://doi.org/10.7916/d8-15sw-fy51
7 The accompanying blog post is also excellent: https://www.storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web/

Chapter 6. Assessing Data Quality

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

Over the past two chapters, we’ve focused our efforts on identifying and accessing different formats of data — from spreadsheets to websites. But getting our hands on (potentially) interesting data is really only the beginning. The next step is conducting a thorough quality assessment, to understand if what we have is useful, salvageable, or just straightup garbage.

As you may have gleaned from reading Chapter 3, crafting quality data is a complex and time-consuming business. The process is roughly equal parts research, experimentation, and dogged perseverence. Most importantly, you have to be willing to invest the time and energy required and still be willing to throw it all out and start over if, despite your best efforts, the data you have just can’t be brought up to par.

When it comes down to it, in fact, that last criterion is probably what makes doing really high-quality, meaningful work with data truly difficult. The technical skills, as I hope you are already discovering, take some effort to master but are not really out of reach, no matter what your background. Research skills are somewhat harder to document and/or describe comprehensively, but we’ll continue to walk through examples in this book that illustrate some valuable approaches to the information discovery and collation needed for assessing and improving data quality.

When it comes to reconciling yourself to the fact that, after dozens of hours of work, you may need to “give up” on a data set because its flaws are too deep or widespread, the only advice I can offer is to try to remember that learning meaningful things about the world is a “long game”. That’s why I always suggest that folks interested in learning about how to do data wrangling and analysis choose a question that is truly interesting and/or important to them. To do this work well, you have to care more about getting it right than getting it “done.” But it also helps if you actually find what you learn in the process of data wrangling important — whether because you learn a new Python or data wrangling strategy, or because you make contact with a new expert or discover a new information resource. It’s not that the effort of doing good data work is ever wasted, if you really care about the topic you’re exploring. It’s just that it might not immediately lead you where you first hoped it would.

On occasion, you may find that data that fails to answer your original question can still shed light on some part of it. Or if you find that there’s no data on the subject you’re exploring, you may be able to leverage that fact to get help — highlighting what data doesn’t exist can sometimes be a persuasive way to engage others in your efforts. And since there will never be a “perfect” data set, there are times when you may choose to — very carefully — share data that you know has flaws, but which nonetheless has important public interest benefits. What matters in every case is that you are willing to personally take responsibility for whatever choice you make, because no matter where the “original” data came from, the cleaned, augmented, transformed and/or analyzed dataset is still one that you have created.

If this feels a little overwhelming — that’s not entirely an accident. We are living in a moment when it is all too easy to wield powerful tools without considering their consequences, and where the people building “advanced” technologies are writing the algorithmic rules largely in their own favor. Data can be a mechanism for informing and manipulating, for explaining and exploiting. Ensuring which sides of those lines your work falls on is ultimately up to you.

To understand what all this means in practice, we’ll spend the remainder of this chapter evaluating real-world data in terms of the aspects of data integrity and data fit introduced in Chapter 3, and applying techniques for improving data quality where we can. We’ll also pick up on a few issues we encountered with the data sets from Chapter 4 — the kinds of formatting and normalization problems that we’re likely to run into with data again and again. The data set we’ll use for this is a single instance of loan data from the US Paycheck Protection Program (PPP), which contains information about millions of loans to small businesses during the COVID-19 pandemic. As we’ll encounter firsthand throughout the remainder of this chapter, the PPP data exemplifies many of the challenges common in “found” data, whether they are compiled by government agencies or private companies: unclear terms, missing metadata and unexplained changes from one version of the data to the next all create data fit issues that we will need to do additional research to address. More straightforward (though not necessarily faster to resolve) are the data integrity issues — like confirming whether a given bank is spelled the same way throughout the dataset, or that our data file(s) contain the values and time ranges they should. While we will find our way through most of these challenges, our conclusions will be high-confidence, not incontrovertible. As with all data work, our insights will instead be the cumulative result of informed decisions, logical reasoning — and a whole lot of data wrangling.

The Pandemic and the PPP

In the spring of 2020, the U.S. government announced a pandemic-related loan program designed to help shore up the American economy in the face of job losses related to the COVID-19 pandemic. With designated funding of nearly $1 trillion1, the objective of the Paycheck Protection Program (PPP) was ostensibly to help small-businesses pay rent and keep paying employees despite sometimes mandatory closures and other restrictions. Although a drop in unemployment appeared to follow the first roll-out of funds, the federal government appeared determined to resist calls for transparency about where the money had gone.

So did the PPP loans help save American small businesses? Now that some time has passed, one might imagine that would be a straightforward enough question to answer. To find out if that’s the case, of course, we need to look at the data — but first we need to ensure that it meets our expectations for data quality. To do this systematically, we’ll review our PPP loan data for each of the characteristics of data quality in turn. Just as importantly, we’re doing to carefully document each part of this process, so that we have a record of what we did, the choices we made, and the reasoning behind them. Remember that, just like a regular diary, the form and format of your “data diary” is up to you. Since I like to have my data diary live near my code, I’m going to document my work in a markdown file that I can easily back up to and read on GitHub. Since this file is really a running tally of everything I’m doing, I’m going to call it ppp_process_log.md.

Assessing Data Integrity

Should you begin your data wrangling process by assessing data integrity, or data fit? Unsurprisingly: a little of both. As discussed in “What is Data Wrangling?”, you should never really start a data wrangling process unless you have some sort of question you’re looking to answer, and some sense that a particular data set can help you answer it — in other words, until you have chosen an objective for your data wrangling process and have some notion that your data is “fit” for it. At the same time, fully assessing a data set’s fit is often difficult until its integrity has been explored. For example, if there are gaps in the data, can they be filled in somehow? Can missing metadata be located? If so, then we may be able to resolve these integrity issues and return to the assessment of fit with more complete information. If then find that we can improve the data’s fit by augmenting it (which we’ll explore in detail in Chapter 7), of course, this will initiate another round of data integrity assessments. And then the cycle begins again.

If it seems like this implies an infinite loop of data wrangling, you’re not wrong — because of course no matter what phenomenon we’re exploring or question we’re trying to answer, there’s always more to learn. That said, our available time, energy and resources are not infinite — that’s why data wrangling requires making decisions. The purpose of assessing data quality is to help us make those decisions well. By methodically examing your data for integrity and fit, you ensure that you not only end up with high quality data, but you generate well-documented, replicable decisions that you can use to describe (and even defend, if necessary) any conclusions you draw. This doesn’t mean that everyone will agree with your conclusions, but it does help ensure you can have a meaningful discussion about them — and that’s what really advances insight and understanding about the world.

So without further ado — let’s dive into to our data integrity evaluation!

Is it Timely?

If we want to use data to learn something about about the state of the world as it is now, the first thing we need to establish is when our data dates from — and confirm that it’s the most recent available.

If this seems like it should be a straightforward proposition, keep in mind that many websites don’t automatically date every post, so even determining when something went online is often a challenge. In other words: you’ll have to dig. For example, at the time of this writing the first search result for the phrase “most recent ppp loan data” is a page on the US Treasury’s website, which links to data from August, 20202. But the second result links to more recent data, from the Small Business Administration — the government department charged with actually adminstering the funds3. The only way to confirm for yourself what the most recent data is will be to try a few different search terms and click through several sets of results for each one. In the process, you’ll most likely find enough references to reassure you what the most recently available data is. In our case, that will be the data available on the SBA website4.

Is it Complete?

Our research thus far has illustrated that there have been several data releases for the PPP; while we’ve successfully located where the most recent data can be found, the next question is: Is this all the data?

Since we’re primarily interested in businesses that received larger loans, we only have to worry about downloading one file: public_150k_plus.csv. How can we know if this includes all phases of the program, or just the loans made since the first data release in August? Since we have access to both sets of data, we have a few strategies we can use:

	
Find the earliest date(s) in the data file we have, and confirm that they are before August 8, 2020

	
Compare the file sizes and/or row counts of the two data sets, to confirm that the more recent file is larger than the older file

	
Compare the data they contain to confirm that all the records in the earlier file already exist in the later file

At this point you might be thinking: “Hang on, isn’t confirming the earliest date enough? Why would we do the other two? Both of those seem much more difficult.” Well, sure. In theory, just confirming that we have data from the earlier phases should be enough. But in reality, that’s a pretty cursory check. Obviously, we cannot feasibly collect more comprehensive information about the PPP loans than what is being released by the federal government. On the other hand (and as we’ll see shortly), the data collection processes of governments and large organizations (including — and perhaps especially — banks) are far from perfect5. Since we’re the ones who we’ll be relying on this data to draw conclusions, it’s worth being thorough.

Conducting our first “completeness” check is quite simple: just by opening the data in a text editor, we can see that the first entry contains a “DateApproved” value of 05/01/2020, suggesting that this data set does in fact include data from the first round of PPP loans that were disbursed in the spring of 2020, as shown below.

[image: Quick text editor view of recent PPP loan data.]
Figure 6-1. Quick text editor view of recent PPP loan data

Next, we need to compare the current data file to the one that was released in August 2020. To avoid confusion, let’s rename the more recent file to public_150k_plus_recent.csv. Following the data linked from https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data leads to a different folder on the SBA Box account, which shows an upload date of August 14, 2020: https://sba.app.box.com/s/ox4mwmvli4ndbp14401xr411m8sefx3i. We have to download the entire folder, 150k plus 0808.zip but we can pull out the CSV and rename it public_150k_plus_080820.csv

At this point, we can easily see that the file size of the more recent data is much larger than the earlier one: the August data is ~124MB, while the recent data is several hundred megabytes. So far so good.

Now, let’s write a quick script to determine how many rows of data are in each file, as shown in Example 6-1.

Example 6-1. ppp_numrows.py

Quick script to print out the number of rows in each of our PPP loan data files
This is a pretty basic task, so no need to import extra libraries!

open the August PPP data in "read" mode
august_data = open("public_150k_plus_080820.csv","r")

the `readlines()` method can be used on any text file where each there's a
newline at the end of each row. It puts the lines into a list, whose length
can then be measured with the built-in `len()` method. Finally, we have to
cast that as a string with the built-in `str()` method, or Python will yell
us for trying to combine a string and a number.
print("August file has "+str(len(august_data.readlines()))+" rows.")

ditto for the recent PPP data
recent_data = open("public_150k_plus_recent.csv","r")

once again, print the number of lines
print("Recent file has "+str(len(recent_data.readlines()))+" rows.")

Running this script confirms that while the file from August, 2020 contains 662,516 rows, the more recent version (from February 1, 2021) contains 766,500 rows.

Finally, let’s look at comparing the contents of the two files to confirm that everything in the earlier file appears in the newer file. Let’s start by opening up the August file in a text editor, just as we did with the more recent one.

[image: Quick text editor view of August, 2020 PPP loan data.]
Figure 6-2. Quick text editor view of August, 2020 PPP loan data

Right away it’s clear there are some…differences, which will make this particular check even more complicated that we might initially expect. First, it’s clear that there are many more columns of data in the more recent file, which means that we’ll need to do some digging to determine how we can match up the records from the earlier data set to the most recent one.

To do this, we need to get a handle on which data columns seem to overlap between the two files, which we’ll do by creating and comparing CSV files that contain the first few rows of data from each data set. As usual, we’ll be looking towards another Python library to smooth the way — this time in the form of Pandas, a well-known Python library for manipulating table-type data in Python. While we won’t examine the Pandas library in detail here (there is an excellent O’Reilly book for that already!), we will definitely make use of its many helpful features in carrying out our data quality checks going forward.

To start with, we’ll need to install the library, by running the following from the command line:

pip install pandas

Next, we’ll write a quick script that converts each of our source files into a DataFrame — a special Pandas data type for table-type data — and then writes the first few rows to a separate CSV, as shown in Example 6-2.

Example 6-2. ppp_data_samples.py

Quick script for creating new CSVs that each contain the first few rows of
our larger data files

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the august data into a pandas DataFrame using the library's
`read_csv()` method
august_ppp_data = pd.read_csv('public_150k_plus_080820.csv')

the pandas `head()` function returns the column headers and first 5 rows
of data
august_sample = august_ppp_data.head()

write those first few rows to a CSV called `august_sample.csv`
pandas adds an index (essentially a column with row numbers) to every
DataFrame it creates. The second "ingredient" here specifies that we
don't want those row numbers to appear in our output CSV
august_sample.to_csv('august_sample.csv', index=False)

read the recent data into a pandas DataFrame using the library's
`read_csv()` method
recent_ppp_data = pd.read_csv('public_150k_plus_recent.csv')

grab the first 5 rows of data along with the column headers, using the
`head()` function
recent_sample = recent_ppp_data.head()

write those first few rows to a CSV called `recent_sample.csv`, making sure
not to write the row index that pandas added
recent_sample.to_csv('recent_sample.csv', index=False)

Now that we have our two smaller file samples, we need to open them up and look through them to see what columns they share, by comparing both the column headers and their contents. Below are screenshots of the resulting files.

[image: First few lines of August PPP loan data file.]
Figure 6-3. First few lines of August PPP loan data file.

[image: First few lines of recent PPP loan data file.]
Figure 6-4. First few lines of recent PPP loan data file.

Fortunately for us, it appears that the first few rows of both files contain at least some of the same entries; this will make it easier for us to confirm which columns we can use to match up the rows.

Let’s start by choosing an single entry to work with, ideally one with as many completed fields as possible. For example, something called SUMTER COATINGS, INC. appears on line 6 of the August data sample (as labeled in the spreadsheet interface) under the column heading BusinessName. On line 2 of the recent data sample, the same value appears under the column heading BorrowerName. In the August sample file, the term Synovus Bank appears in a column called Lender, while that term appears in the recent sample file in a column called ServicingLenderName. So far so good — or is it?

Although many details between these rows seem to match across the two data files, some seemingly important ones don’t. For example, in the August data sample, the value in the DateApproved column is 05/03/2020; in the recent data sample it is 05/01/2020. If we look at another seemingly shared entry, we see that for the business/borrower called PLEASANT PLACES, INC. (row 5 in the August data and row 3 in the recent data) the column titled CD in both files (spreadsheet column AF in the recent file, column P in the August file) has different values, showing SC-01 in the August data and `SC-06`in the recent data. What’s going on?

At this point, we have to make some judgment calls about which columns’ values need to match in order for us to treat a particular loan as the same between the two. Requiring that the business name and the lender name match seems like a good starting point. Since we know that multiple rounds of loans have been made by now, we probably want to require that the values in the DateApproved column match as well (even though it seems unlikely that Synovus Bank made two loans to SUMTER COATINGS, INC. two days apart). What about the mismatched congressional district? If we look at a map of South Carolina’s congressional districts, it’s clear that their boundaries haven’t been changed since 20136, though it does seem like the 1st and the 6th district share a boundary. Given that, we might conclude that the discrepancy here is just a mistake.

As you can see, we’re already finding some significant data quality issues — and we’ve only looked at 5 rows of data! Since we can’t answer all of these questions right now, what we need is a way to put together the rows that (we hope) really match, while making sure to keep track of any that don’t. To do this, we’ll need to join or merge the two data sets. But because we already know there will be discrepancies between the two, we want to be sure that our output contains every row from both data sets, whether they match or not. To do this, we need what’s called an outer join.

Note that because an outer join preserves all data rows, it’s possible that our resulting data set could have as many rows as the individual data sets combined — in this case about 1.4 million rows. Don’t worry though! Python can handle it. But can your device?

If you have a Mac or Windows machine, chances are that working with the ~500 MB of data that we need to here will be no problem. If, like me, you’re working on a Chromebook or something similar, now’s the moment to move to the cloud.

Example 6-3. ppp_data_join.py

Quick script for creating new CSVs that each contain the first few rows of
our larger data files

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the august data into a pandas DataFrame using the library's
`read_csv()` method
august_ppp_data = pd.read_csv('public_150k_plus_080820.csv')

read the recent data into a pandas DataFrame using the library's
`read_csv()` method
recent_ppp_data = pd.read_csv('public_150k_plus_recent.csv')

now that we have both files in memory, let's merge them
we're going to preserve the index here because it will be the easiest way
to keep track of what matched (and what didn't)
merged_data = pd.merge(august_ppp_data,recent_ppp_data,how='outer',left_on=['BusinessName','Lender','DateApproved'],right_on=['BorrowerName','ServicingLenderName','DateApproved'],indicator=True)

when we use the `indicator=True` argument/ingredient, it produces a column
called '_merge' that shows which data set that particular row matched
as we will see from the following print statement, that value can be
'both', 'left_only', or 'right_only'
print(merged_data.value_counts('_merge'))

If everything went well you get an output like this:

_merge
both 595866
right_only 171334
left_only 67333
dtype: int64

So what does this mean? It looks like our effort to match the August data with the recent data on business name, servicing lender name and the date of the loan successfully matched 595,866 loans. The right_only loans are the recent loans that weren’t matched — we found 171,334 of these. This seems perfectly plausible, since we can imagine that that many new loans may have been issued since August.

The troubling number here is left_only: 67,333 loans that appear in the August data were not matched in our recent data set. That suggests that either our recent data is incomplete, or there are some serious quality issues still lurking in our data set.

From our very cursory examination of the sample data earlier, we already know that the DateApproved columns may have some problems, so let’s see what happens if we eliminate the need to match on date. To do this, we’ll just add the following snippet to Example 6-3, but without specifying that the dates need to match. Let’s see what happens.

Example 6-4. ppp_data_join.py (continued)

now that we have both files in memory, let's merge them
we're going to preserve the index here because it will be the easiest way
to keep track of what matched (and what didn't)
merged_data_no_date = pd.merge(august_ppp_data,recent_ppp_data,how='outer',left_on=['BusinessName','Lender'],right_on=['BorrowerName','ServicingLenderName'],indicator=True)

when we use the `indicator=True` argument/ingredient, it produces a column
called '_merge' that shows which data set that particular row matched
as we will see from the following print statement, that value can be
'both', 'left_only', or 'right_only'
print(merged_data_no_date.value_counts('_merge'))

Now we get an output something like this:

_merge
both 671942
right_only 96656
left_only 22634
dtype: int64

In other words, if we only require that the business name and lender match, then we “find” another ~45,000 loans from the August data in the recent data. Of course, what we don’t know is how many of those new “matches” are the result of data entry errors (along the lines of our 05/03/2020 vs 05/01/2020 problem), and how many of them represent multiple loans. All we know is that we’re down to 22,634 loans from the August data that we can’t locate in the recent data.

So what if we simply check whether a given business shows up in both data sets? This seems like the most basic form of comparison: in theory, the bank or lender servicing the PPP loan could change over the course of many months, or there could be additional mismatches because of (possibly) minor data-entry differences. Remember: our goal right now is simply to evaluate how far we can trust that the recent data includes all of the August data.

So let’s add on a final, very relaxed merge to see what happens. Adding the below snippet, we’ll match only on business name and see what we get.

Example 6-5. ppp_data_join.py (continued)

now that we have both files in memory, let's merge them
we're going to preserve the index here because it will be the easiest way
to keep track of what matched (and what didn't)
merged_data_biz_only = pd.merge(august_ppp_data,recent_ppp_data,how='outer',left_on=['BusinessName'],right_on=['BorrowerName'],indicator=True)

when we use the `indicator=True` argument/ingredient, it produces a column
called '_merge' that shows which data set that particular row matched
as we will see from the following print statement, that value can be
'both', 'left_only', or 'right_only'
print(merged_data_biz_only.value_counts('_merge'))

And now our output is the following:

_merge
both 706349
right_only 77064
left_only 7207
dtype: int64

Things are looking a little bit better: out of a total of 790,620 (706,349 + 77,064 + 7,207) possible loans, we’ve “found” all but 7,207 — a little less than 0.1%. That’s pretty good; we might be tempted to call that quantity of missing data a “rounding error” and move on. But before we get complacent about having accounted for 99.9% of all the PPP loans, let’s stop for a moment and consider what that “small” amount of missing data really represents. Even if we assume that every one of those “missing” loans was for the minimum possible (recall that we’re only looking at loans of $150,000 or more), that’s still means that our recent data set has at least $1,081,050,000 — over $1 billion! — in possible loans that are unaccounted for. Given how hard I work to figure (and pay) my taxes every year, I certainly hope the federal government isn’t simply going to “lose” $1 billion in taxpayer money and not worry about it. But what can we do to account for it? This is where we get to the part of data work that can be both daunting and energizing: it’s time to talk to people!

While reaching out to subject matter experts is always a great place to start your data quality investigations, in this instance we have something even better: information about the lenders and loan recipients themselves. Between the business names and locations contained in the file, we can probably track down contact information for at least a handful of our “lost” 7,207 loans from the August data set, and try to find out what happened.

Before you pick up the phone and start calling people (and yes, most of the time you should be calling), however, figure out what you’re going to ask. While it may be tempting to imagine that something nefarious is going on (Are the lenders hiding money? What about the businesses?) there is an old (and very malleable) quote that goes something like: “Never attribute to malice that which can be explained by incompetence/stupidity/neglect.7" In other words, it’s likely that these loans don’t appear in the more recent data because of some data-entry error, or because the loans simply never came through.

And in fact, after calling a few autobody repair shops and barber shops around the country — that seems to be exactly what happened. Several people I spoke to described the same thing: They applied for a loan, had been told it was approved and then — the money simply never came through. While it would be impractical to try to confirm that this was the case for every single “missing” loan, hearing basically the same story from mulitiple businesses that are thousands of miles apart makes me confident that these loans don’t appear in the final data set because they were never actually made.

At this point, then, it seems fairly clear that our recent PPP loan data is, in fact, “complete” for our purposes. While this may have felt like a lot of work to test our data set for just one of almost a dozen data integrity measures, in the process we’ve learned enough that many of our later “tests” will be much faster — or even trivial — to complete. So with that, let’s turn to our next criterion.

Is it Well-Annotated?

Now that we’ve satisfied ourselves that we’re working with appropriately timely and complete data, we need to try to understand what information the data columns in our recent PPP loan data actually contain. As with our completeness assessment, one place we can start is with the data itself. By looking at the column names and some of the values they contain, we can start to get a sense of what we understand and what we need more information about. If the column name seems descriptive and the data values we find in that column align with our interpretation of the column name, that’s a pretty good starting point.

While we have a couple of options for reviewing our column names and their corresponding values, let’s go ahead and take advantage of the sample files we created earlier in order to get a look at our data. Because our screen width will generally prevent us from easily printing lots of columns of data (whereas we can easily scroll down to see more rows), we’re going to start by transposing our sample data (that is, converting the columns to row and rows to columns) to make seeing the column titles easier. We’re also going to apply some additional data type filtering to make it easier for us to see where data is just missing. Our first pass at this can be seen in Example 6-6.

Example 6-6. ppp_columns_review.py

Quick script for reviewing the all the column names in the PPP data
to see what we can infer about them from the data itself

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data_sample = pd.read_csv('recent_sample.csv')

for the sake of speed, the pandas `read_csv()` method converts all missing
entries to `NaN` (Not a Number), as described here:
https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
To get these values converted to a more general (and intuitive) '<NA>'
label, we'll use the `convertdtypes()` method, as described here:
https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data-na-conversion
converted_data_sample = ppp_data_sample.convert_dtypes()

now that we have more generic values for the cells with missing data,
transpose the whole sample
transposed_ppp_data_sample = converted_data_sample.transpose()

print out the results!
print(transposed_ppp_data_sample)

As you can see, this let’s us see all of the original column names as rows, along with a couple of the original rows as columns of data. By looking through these, we can start to get a sense of what we know — and what we don’t:

LoanNumber 9547507704 ... 9662437702
DateApproved 05/01/2020 ... 05/01/2020
SBAOfficeCode 464 ... 101
ProcessingMethod PPP ... PPP
BorrowerName SUMTER COATINGS, INC. ... AERO BOX LLC
BorrowerAddress 2410 Highway 15 South ... <NA>
BorrowerCity Sumter ... <NA>
BorrowerState <NA> ... <NA>
BorrowerZip 29150-9662 ... <NA>
LoanStatusDate 12/18/2020 ... <NA>
LoanStatus Paid in Full ... Exemption 4
Term 24 ... 24
SBAGuarantyPercentage 100 ... 100
InitialApprovalAmount 769358.78 ... 367437.0
CurrentApprovalAmount 769358.78 ... 367437.0
UndisbursedAmount 0 ... 0
FranchiseName <NA> ... <NA>
ServicingLenderLocationID 19248 ... 57328
ServicingLenderName Synovus Bank ... The Huntington National Bank
ServicingLenderAddress 1148 Broadway ... 17 S High St
ServicingLenderCity COLUMBUS ... COLUMBUS
ServicingLenderState GA ... OH
ServicingLenderZip 31901-2429 ... 43215-3413
RuralUrbanIndicator U ... U
HubzoneIndicator N ... N
LMIIndicator <NA> ... <NA>
BusinessAgeDescription Existing or more than 2 years old ... Unanswered
ProjectCity Sumter ... <NA>
ProjectCountyName SUMTER ... <NA>
ProjectState SC ... <NA>
ProjectZip 29150-9662 ... <NA>
CD SC-05 ... <NA>
JobsReported 62 ... 25
NAICSCode 325510 ... 484210
RaceEthnicity Unanswered ... Unanswered
UTILITIES_PROCEED <NA> ... <NA>
PAYROLL_PROCEED 769358.78 ... 367437.0
MORTGAGE_INTEREST_PROCEED <NA> ... <NA>
RENT_PROCEED <NA> ... <NA>
REFINANCE_EIDL_PROCEED <NA> ... <NA>
HEALTH_CARE_PROCEED <NA> ... <NA>
DEBT_INTEREST_PROCEED <NA> ... <NA>
BusinessType Corporation ... <NA>
OriginatingLenderLocationID 19248 ... 57328
OriginatingLender Synovus Bank ... The Huntington National Bank
OriginatingLenderCity COLUMBUS ... COLUMBUS
OriginatingLenderState GA ... OH
Gender Unanswered ... Unanswered
Veteran Unanswered ... Unanswered
NonProfit <NA> ... <NA>

Thanks to their relatively descriptive names, we can guess at the meaning of the values we’re likely to find in many of these columns. For example, columns like DateApproved, ProcessingMethod, BorrowerName, BorrowerAddress, BorrowerCity, BorrowerCity, BorrowerState, and BorrowerZip are fairly straightforward. In some cases, the name is descriptive, but doesn’t give us all the information we need. For example, while SBAGuarantyPercentage gives us information about both column’s content and its units (the amount of the loan guaranteed by the SBA, as a percentage), the Term column doesn’t tell us if the value should be interpreted as 24 days, weeks, months or years. Likewise, while the values in BusinessAgeDescription are themselve descriptive (e.g. Existing or more than 2 years old), a LoanStatus value of Exemption 4 doesn’t really help us understand what happened to the loan. Finally, there are column names like LMIIndicator that might be easy for an expert to interpret, but difficult for those of us not well-versed in loan jargon to identify.

What we really need at this point is a “data dictionary" — the term sometimes used to refer to the document that describes the contents of (especially) table-type data. Because while table-type data is very handy for conducting analyses, it doesn’t natively offer a way to include the type of metadata — that is, data about the data — that we need to answer questions like, “What units should be used? What do coded categories mean?”, and the many others that will come up with complex data sets.

The most likely place to find a data dictionary should be the same location where we originally obtained the data (remember that in Chapter 4, we found the description of the ghcnd-stations.txt file linked from the readme.txt file in the same folder where the data was located). In this instance, that means going back to the SBA website (https://www.sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program/ppp-data) and seeing what we can find.

At first, things look fairly promising. Under the “All Data” section on that page, we see a link promising a summary of “key data aspects.”

[image: Landing page for PPP loan data on the SBA's website]
Figure 6-5. Landing page for PPP loan data on the SBA’s website

Following the link brings us to a page that (as of this writing) lists two PDF documents from the summer of 2020. Unfortunately, neither of them seems to contain what we need — they are mostly filled with disclaimer-type text about how PPP loans are processed, though they do confirm our discovery that “cancelled” loans will not appear in the database.

[image: Excerpt of 'Information to keep in mind when reviewing Paycheck Protection Program (PPP) data']
Figure 6-6. Excerpt of Information to keep in mind when reviewing Paycheck Protection Program (PPP) data

Now what? We have a few options. We can return to a more general research strategy, to try to learn more about the PPP in an effort to fill in some of the blanks. For example, reading enough articles on websites targeting potential PPP applicants will make clear that the appropriate units for the Term column is almost certainly weeks. Likewise, if we do enough web searches for the term LMIIndicator, LMI Indicator and LMI Indicator loans, we’ll eventually come across a Wikipedia page that suggests this term may be shorthand “Loan Mortgage Insurance Indicator”, but it’s hard to know.

In other words, it’s once again time to look for some human help. But who can we reach out to? Scholars who have looked at the PPP data already are one place to start, but as we did when trying to confirm what happened to all those missing loans from the August data set, it’s always preferable to go straight to the source: the SBA. And fortunately, if we go back to the site where we downloaded our actual data files, it turns out there is a name attached to those uploads: Stephen Morris.

[image: PPP data download portal]
Figure 6-7. PPP data download portal

After placing a call and sending an email, I learned that, at the time of my inquiry, the SBA hadn’t yet created a data dictionary for the PPP loan data, though Morris did refer me to both the original PDF and a data dictionary for the SBA’s 7a loan program, on which the PPP loan structure was based. While the latter file (located here: https://data.sba.gov/dataset/7a-and-504-foia-data-dictionary) still differed significantly from the PPP loan data columns, it did provide insight into some key elements. For example that file included a description of a column also called LoanStatus, whose possible values seem to parallel at least some of what we’ve found in the PPP loan data so far:

LoanStatus Current status of loan:
 • NOT FUNDED = Undisbursed
 • PIF = Paid In Full
 • CHGOFF = Charged Off
 • CANCLD = Cancelled
 • EXEMPT = The status of loans that have been disbursed but have not been cancelled, paid in full, or charged off are exempt from disclosure under FOIA Exemption 4

So is this data “well-annotated”? Somewhat. It’s not as well-annotated as, say the NOAA data we worked with in Chapter 4, but with some effort, we’ll probably be able to build up our own data dictionary for the PPP loan data that we can be pretty confident in.

Is it High-Volume?

Since we have already finished our “completeness” review, we have largely already answered the question of whether the data we’re using is generally high-volume; there are few instances in which having more than 750,000 rows of data won’t be sufficient for conducting at least some useful form of analysis.

At the same time, we also can’t say yet exactly what types of analysis we will be able to conduct, because the number of data rows we have doesn’t matter if they don’t actually have information in them. So how can we check this? Well, for rows like LoanStatus, where we only expect to find a few possible values, we can use the value_counts() method to summarize the contents. For columns that have very diverse values (such a BorrowerName or BorrowerAddress), we can check specifically for missing values, as a way to get a sense of how many of our rows actually contain helpful data.

Example 6-7. ppp_columns_summary.py

Quick script for reviewing the all the column names in the PPP data
to see what we can infer about them from the data itself

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

print the summary of values that appear in the `LoanStats` column
print(ppp_data.value_counts('LoanStatus'))

print the total number of entries in the `LoanStatus` column
print(sum(ppp_data.value_counts('LoanStatus')))

print the summary of values that appear in the `Gender` column
print(ppp_data.value_counts('Gender'))

print the total number of entries in the `Gender` column
print(sum(ppp_data.value_counts('Gender')))

print how many rows do not list a value for `BorrowerAddress`
print(ppp_data['BorrowerAddress'].isna().sum())

The output from the script above starts to paint a picture of what kind of data is actually contained in our data set’s ~750,000 rows. For example, the status of most loans is “Exemption 4”, which we know from our annotation investigation means it is “exempt from disclosure under FOIA Exemption 4.”8. Similarly, we can see that more than two-thirds of loan applicants did not indicate their gender when applying, and 17 loans don’t even list the borrower’s address!

LoanStatus
Exemption 4 549011
Paid in Full 110120
Active Un-Disbursed 107368
dtype: int64
766499

Gender
Unanswered 563074
Male Owned 168969
Female Owned 34456
dtype: int64
766499

17

So is this data “high-volume”? Yes — in some cases we’ll be able to generate insights from as little as a few dozen rows of data as long as they contain truly meaningful information. That’s why we can’t answer this question based solely on the size of a data file or even the number of rows it contains, we actually have to dig into the data a little bit first, to be sure.

Is it Historical?

Fortunately for us, the data integrity assessments we’ve already done make this one a quick one to answer: Yes! We know this because we’ve already gone through the painstaking process of determining that our more recent data set contains all of the data (that it reasonably should) from previous releases. If we want to get a sense of how historical it is, of course, we can always write a quick script to find the oldest and most recent LoanStatus dates, as shown in Example 6-8.

Example 6-8. ppp_date_range.py

Quick script for finding the earliest and latest loan dates in the PPP loan
data

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

in order to find the oldest and most recent dates, we need to first convert
the values in our data set to *actual* dates. Here, we'll use the
pandas `to_datetime()` function, and provide it with:
1. the column we want converted
(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html)
2. the format of the dates as they *currently* appear in our dataset
(https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)
ppp_data['DateApproved'] = pd.to_datetime(ppp_data['DateApproved'], format='%m/%d/%Y')

now that the values in the `DateApproved` column are actual dates, we can
just use regular `min()` and `max()` functions to retrieve the
oldest and most recent dates, respectively
print(ppp_data['DateApproved'].min())
print(ppp_data['DateApproved'].max())

As we can see from the output below, the earliest loan in this dataset was made on April 3, 2020, and the most recent was made on January 31, 2021:

2020-04-03 00:00:00
2021-01-31 00:00:00

Note that while we don’t absolutely have to pass the format ingredient to the pandas to_datetime() function, it’s always a good idea to do so; if we don’t provide this information, then pandas has to try to “guess” what date format it’s looking at, which can be a time-consuming process. Here it only saves us about a second of processing time, but with more complex date formats, it could be significantly more.

Is it Consistent?

Another thing we know from our earlier completeness check is that the format of the PPP loan data absolutely was not consistent from August to December: the data releases beginning in December, 2020 were much more detailed than those released previously9, and even most of the column names differed between the two files.

Since we’re now relying only on the more recent data files, there is a different kind of consistency we need to think about: How consistent are the values within the data set itself? While we can hope, for example, that the same units will have been used in the dollar amount columns like InitialApprovalAmount and CurrentApprovalAmount. Still, it’s better to check for errors just in case. Here, we’ll do another quick min/max confirmation, to ensure that the figures for these fall within the range we expect.

Example 6-9. ppp_min_max_loan.py

Quick script for finding the minimum and maximum loans currently approved
in our PPP loan data set

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

just use regular `min()` and `max()` functions to retrieve the
largest and smallest values, respectively
print(ppp_data['CurrentApprovalAmount'].min())
print(ppp_data['CurrentApprovalAmount'].max())

Based on the title of our data file — 150k_plus — we would expect that the minimum loan amount we’ll find approved is $150,000. A quick web search for “maximum loan under ppp” leads to a document on the SBA website indicating that for most types of businesses, the maximum loan amount is $10 million. And, indeed, running our script seems to confirm that this minimum and maximum are reflected in our data.

150000.0
10000000.0

At this point, we also want to check for one of the most common (and insidious) forms of inconsistency: spelling differences. Anytime you’re dealing with data that has been entered by humans, there are going to be spelling issues: extra spaces, typos, and differences in punctuation, at minimum. This is a problem because if we want to be able to answer a seemingly simple question like, “How many loans originated with lender X?” we need the spelling of that bank’s name to be consistent throughout the data. And it’s almost guaranteed that it won’t be.

Fortunately, because this is such a common data problem, there are a number of well-developed approaches for dealing with it. Here we’re going to use an approach called “fingerprinting” to check the consistency of bank name spellings in our data set. While there are many ways that we could cluster these company names (phonetically, for example) when looking for differently-spelled duplicates, we’re choosing fingerprinting because it follows a simple, strict-but-effective algorithm that minimizes the risk that we’ll end up matching up two names that really shouldn’t be the same.

Specifically, the fingerprinting algorithm we’ll be using does the following things10:

	
remove leading and trailing whitespace

	
change all characters to their lowercase representation

	
remove all punctuation and control characters

	
normalize extended western characters to their ASCII representation (for example “gödel” → “godel”)

	
split the string into whitespace-separated tokens

	
sort the tokens and remove duplicates

	
join the tokens back together

As usual, while we could write the code for this ourselves, we’re lucky that someone in the Python community has already done this, and has created the library fingerprints, which we can install using pip:

pip install fingerprints
pip install pyICU

For the moment, our main concern is confirming whether we have any spelling discrepancies to speak of; actually transforming our data to address these differences is something we’ll look at in Chapter 7. Because of that, right now we’re just going counting all the unique bank names in our data set, and then see how many unique fingerprints there are in that list. If all the bank names are truly distinct, then in theory the two lists should be the same length. If, on the other hand, some of the bank names in our data set are “unique” only because of minor punctuation and whitespace differences, for example, then our list of fingerprints will be shorter than our list of “unique” bank names. This would suggest that we’ll need to do some data transformations in order to ensure that when we look for a bank name, for example, we’re really able to pull up all of the loans associated with it.

Example 6-10. ppp_lender_names.py

Quick script for determining whether there are typos &c. in any of the PPP
loan data's bank names

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

importing the `fingerprints` library, which will help us generate normalized
labels for each of the bank names in our data set
import fingerprints

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

use the pandas DataFrame `unique()` function to create a list of unique
bank names in our data's `OriginatingLender` column
unique_names = ppp_data['OriginatingLender'].unique()

confirm how many unique names there are
print(len(unique_names))

create an empty list to hold the fingerprint of each of the unique names
fingerprint_list = []

iterate through each name in the list of unique names
for name in unique_names:

 # for each name, generate its fingerprint
 # and append it to the end of the list
 fingerprint_list.append(fingerprints.generate(name))

use the built-in `set()` method on our fingerprint_list, which will
remove duplicates (and sort it)
fingerprint_set = set(fingerprint_list)

check the length of the fingerprint_set
print(len(fingerprint_set))

Running this script yields the output:

4337
4242

Given the length difference between the two lists, it seems there are almost certainly some spelling discrepancies in our data set: the number of “unique” names in the raw data is 4,337, but the number of distinct fingerprints for those names is only 4,242. While having only ~100 differences may not seem extreme, keep in mind that these differences may affect many more thank 100 rows of data, since we don’t know how many rows of our original data set contain each of the “misspelled” names (nor can we be sure that this is exhaustive). In Chapter 7, we’ll go through the process of transforming our data to include these fingerprints, in order to better identify which loans were processed by a particular bank.

Is it Multivariate?

In much the same way that a data set is high-volume if it contains many rows, it is more likely to be multivariate if it has many columns. Just like our quality check for volume, however, determining whether the columns we have make our data truly multivariate means doing a quality check on the data they contain as well.

For example, while our PPP loan data contains 50 data columns, about a dozen of these are essentially expanded addresses, since the location of the borrower, originating lender and servicing lender are each broken out into a separate column for street address, city, state and zip code. While many of the remaining columns may contain unique data, we need to get a sense of how much meaningful data has actually been recorded in them.

For example, how many of the loans in our data set have reported requesting money for something other than payroll costs? While the data structure (and the loan program) allows borrowers to use the loans for other things (such as healthcare costs and rent) to what extent does that show up in the data?

Just as we did when assessing how “high-volume” our data really was, we’ll look at the contents of a few more columns to determine whether the detail that they appear to offer is really born out by the information they contain. In this case, we’ll do this by counting how many rows for each of the PROCEED columns does not contain some value.

Example 6-11. ppp_loan_uses.py

Quick script for determining what borrowers did (or really, did not) state
they would use PPP loan funds for

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

print how many rows do not list a value for `UTILITIES_PROCEED`
print(ppp_data['UTILITIES_PROCEED'].isna().sum())

print how many rows do not list a value for `PAYROLL_PROCEED`
print(ppp_data['PAYROLL_PROCEED'].isna().sum())

print how many rows do not list a value for `MORTGAGE_INTEREST_PROCEED`
print(ppp_data['MORTGAGE_INTEREST_PROCEED'].isna().sum())

print how many rows do not list a value for `RENT_PROCEED`
print(ppp_data['RENT_PROCEED'].isna().sum())

print how many rows do not list a value for `REFINANCE_EIDL_PROCEED`
print(ppp_data['REFINANCE_EIDL_PROCEED'].isna().sum())

print how many rows do not list a value for `HEALTH_CARE_PROCEED`
print(ppp_data['HEALTH_CARE_PROCEED'].isna().sum())

print how many rows do not list a value for `DEBT_INTEREST_PROCEED`
print(ppp_data['DEBT_INTEREST_PROCEED'].isna().sum())

create a new DataFrame that contains all rows reporting *only* payroll costs
i.e. where all other costs are listed as "NA"
payroll_only = ppp_data[(ppp_data['UTILITIES_PROCEED'].isna()) & (ppp_data['MORTGAGE_INTEREST_PROCEED'].isna()) & (ppp_data['MORTGAGE_INTEREST_PROCEED'].isna()) & (ppp_data['RENT_PROCEED'].isna()) & (ppp_data['REFINANCE_EIDL_PROCEED'].isna()) & (ppp_data['HEALTH_CARE_PROCEED'].isna()) & (ppp_data['DEBT_INTEREST_PROCEED'].isna())]

print(len(payroll_only.index))

As we can see from the output below, the vast majority of businesses (all but 1,828) said that they intended to use money for payroll expenses when they applied, with less than one third reporting that they would (probably also) use the money to pay utilities. Another portion provided information about using the money for rent. Our last test, meanwhile, shows that well over two-thirds of all businesses listed only payroll expenses as the intended use of their PPP funds.

570995
1828
719946
666788
743125
708892
734456
538905

What does this mean about how “multivariate” our data is? Even if we were to discount the additional columns dedicated to address details, or the seemingly-underused “PROCEED” columns, there’s still quite a lot of information in this data set that we can explore and use to begin to draw conclusions about who has received PPP loans and what they used it for. As always, however, we can never take for granted what’s actually in the columns or rows of our data set; we always need to check and confirm what they contain for ourselves.

Is it Atomic?

This is another instance where our previous work on the data lets us say “Yes!” fairly quickly on this measure of data integrity. While the August version of our data contained only loan amount ranges, we know that this data set contains one loan per row, including their exact dollar amounts. Since we have specific numbers rather than summary or aggregate values, we can feel pretty confident that our data is sufficiently granular or “atomic” to support a wide range of possible data analyses later on.

Is it Clear?

Although this data set did not turn out to be especially well-annotated, we’ve been able to make our way through many of our data integrity checks nonetheless because, for the most part, its column labels and their meanings are fairly clear. For example, if we weren’t sure what CD stood for, a peek at some of the values (such as SC-05) makes inferring that this stands for “congressional district” fairly easy to infer — especially as one gains more experience working with public and government data sets.

For the columns whose labels weren’t so clear, exchanging a few emails with Stephen Morris at the SBA was enlightening. For example, he confirmed that the appropriate units for the Term column was months, and that the PROCEED columns describe what the loan funds would be used for, according to “what the lender submitted to SBA (as stated by the borrower to them on the borrower application).”

My correspondence with Morris also illustrated why going to a primary source expert, if at all possible, is an essential step in conducting data integrity checks. If you recall, one of the column headers whose meaning was not clear at the start was LMIIndicator. Since my sample data rows did not contain values for this column, I started doing some web searches and ended up with results that included “lenders’ mortgage insurance”, which seemed like a reasonable interpretation of the column heading.

[image: Search results for LMI Indicator loans]
Figure 6-8. Search results for LMI Indicator loans

The only problem? It’s wrong. As Morris clarified via email, “The LMI Indicator tells whether a borrower is geographically located in a Low-Moderate Income zone.”

The lesson here is that when you don’t have an official data dictionary, you always want to be a bit cautious about how much you try to infer from column headers; even those that seem clear with a bit of searching may not mean what you think. If there’s any doubt, it’s always best to reach out to the experts (ideally the folks who compiled the data) to confirm your inferences.

Is it Dimensionally Structured?

If the idea of dimensionally structured data seemed a bit abstract when we discussed it in Chapter 3, hopefully it makes a bit more sense now that we have a real dataset in front of us. Dimensionally structured data includes information about useful categories or classes that we can use to group our data, alongside the more atomic features that help us make conduct more granular analyses.

In the case of our PPP loan data, I would say that some of those usefully “dimensional” data columns include ones like RuralUrbanIndicator, HubzoneIndicator, LMIIndicator, NAICSCode and to some extent even SBAOfficeCode. Columns like RaceEthnicity, Gender and Veteran could also be dimensionally useful, but as we know many of them are “Unanswered,” limiting what we can infer from them. The others, meanwhile, can help us answer useful questions about the location and types of businesses that have so far benefited from the PPP.

Even more than that, columns like NAICSCode offer the possibility of usefully augmenting our data set, by allowing us to understand what industries benefiting businesses belong to, which we can potentially compare to things like Bureau of Labor Statistics and other data sets about employment sectors in the United States.

Is it of Known Pedigree?

Recall that when we first set out to determine if our data was sufficiently timely, our web search brought us to (essentially) two different data sources: the PPP loan data as of August, and the more recently updated (and much more detailed) loan data that we have been using since. Though both results eventually brought us to the SBA’s Box account, the first data set was linked from the Department of the Treasury website, while the second was linked from the website of the Small Business Administration, the government agency actually tasked with administering the PPP. Since we have continued to get our data from the SBA — following links from their site, and even through correspondence with their staff — we can feel pretty confident about the provenance of this data set. But it was not the first thing we found.

I really want to highlight this because the Department of the Treasury is obviously both a reasonable and reputable source for the data we were seeking, but it was still not the best one available. That’s why it matters to evaluate not just where your data came from, but how you came to find it.

So far, we’ve been able to answer some of our data integrity questions with a resounding “Yes!”, while others have been more qualified, suggesting the need for additional transformations and evaluations before we move on to the data analysis phase. Before we do that, however, we need to turn to the crucial question(s) of data fit: whether our data demonstrates the validity, reliability and representativeness we need in order to draw meaningful conclusions about (in this case), how the PPP is affecting small businesses in the United States.

Assessing Data Fit

Now that we’ve evaluated our data set’s integrity on nearly a dozen different measures, it’s time to assess the extent to which it is fit for our purposes; that is, whether this data can really give us answers to the question(s) that we’re asking. In order to do that, we’ll turn to our three main criteria for data fitness: validity, reliability and representativeness. To do that, we need examine our data set with our original question in mind: Did the PPP help save American small businesses?

Validity

Remember that our working definition of validity is “the extent that something measures what it’s supposed to.” Even if our PPP loan data was perfect, we need to determine whether it can answer that question, or at least part of it. We know that our data set does provide one essential piece of that answer, because we are pretty confident now that we have a dataset that accurately details which businesses currently have approved PPP loans. Through our investigations into its integrity (especially around completeness and in our search for annotating information, or metadata), we are also pretty confident that cancelled loans are not showing up in the dataset — we confirmed this both through the SBA’s published information about the PPP program, and by reaching out to reach businesses that had been approved for a loan early in the program but don’t seem to have ever received the money.

We can also use elements of the dataset to check on the LoanStatus and the LoanStatusDate; this will give us some sense of which, of the more than 750,000 businesses that have been approved for a loan, how many have actually received the money. We can check this by first summarizing the LoanStatus column, using the value_counts() method as we have before. Note that because the value_counts() method will not include NA values, I am also summing the entries to confirm that every row has been accounted for.

Example 6-12. ppp_loan_status.py

Quick script for determining how many loans have been disbursed

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

print a summary of values in the `LoanStatus` column
print(ppp_data['LoanStatus'].value_counts())
print(sum(ppp_data['LoanStatus'].value_counts()))

The output from this confirms that of the 766,499 loans currently in our data set, the funds for over 100,000 of them have not actually been sent to businesses yet, while more than another 100,000 businesses appear to have repaid their loans already.

Exemption 4 549011
Paid in Full 110120
Active Un-Disbursed 107368
Name: LoanStatus, dtype: int64
766499

If we’re hoping to evaluate the fate of small businesses that received PPP loans, then, we need to start by making sure that we look only at those who have actually received the funds — meaning that we should restrict our inquiry to those whose LoanStatus value is either “Exemption 4” or “Paid in Full.”

In theory, when businesses applied for PPP loans, they asked for enough money to keep their businesses afloat, so we might be tempted to assume that if a business has gotten the PPP money, they should be doing all right. But just as potentially too-loose criteria may have allowed many businesses to get PPP loans when they could have survived without them, the fact that a business received PPP money is no guarantee that it’s still doing OK. This reality is exemplified by this Wall Street Journal article, which tells the story of one company that filed for bankruptcy despite receiving a PPP loan. Since we already know that this business filed for bankruptcy, finding its record within our data set can help give us a sense of what these records potentially look like, as shown in Example 6-13.

Example 6-13. ppp_find_waterford.py

Quick script for finding a business within our data set by (partial) name

importing the `pandas` library. The `as` keyword let's us essentially create
a nickname for the library so that we can refer to it in fewer characters
import pandas as pd

read the recent data sample into a pandas DataFrame using the library's
`read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

pandas won't let us search for a string within any column that has NA values
so we need to create one that doesn't have any in our target column
ppp_data_named_borrowers = ppp_data[ppp_data['BorrowerName'].notna()]

how many loans does that leave?
print(len(ppp_data_named_borrowers.index))

as we saw from our work on the bank names, matching strings can be tricky,
so we'll use the pandas `str.contains()` method to search for part
of the target business name, noting that, unlike bank names,
borrower names are in ALL CAPS.
bankruptcy_example = ppp_data_named_borrowers[ppp_data_named_borrowers['BorrowerName'].str.contains('WATERFORD RECEPTIONS')]

transposing the result so it's easier to see what values the columns contain
print(bankruptcy_example.transpose())

The output from this script is telling: the loan shows up with a status of “Exemption 4”, and perhaps even more interestingly, with a LoanStatusDate of “NA”. But otherwise, there’s no indicator that this business is, well, no longer in business.

LoanNumber 7560217107
DateApproved 04/14/2020
SBAOfficeCode 353
ProcessingMethod PPP
BorrowerName WATERFORD RECEPTIONS, LLC
BorrowerAddress 6715 COMMERCE STREET
BorrowerCity SPRINGFIELD
BorrowerState VA
BorrowerZip 22150
LoanStatusDate NaN
LoanStatus Exemption 4
Term 24
SBAGuarantyPercentage 100
InitialApprovalAmount 413345.0
CurrentApprovalAmount 413345.0
UndisbursedAmount 0.0
FranchiseName NaN
ServicingLenderLocationID 122873
ServicingLenderName EagleBank
ServicingLenderAddress 7815 Woodmont Ave
ServicingLenderCity BETHESDA
ServicingLenderState MD
ServicingLenderZip 20814
RuralUrbanIndicator U
HubzoneIndicator N
LMIIndicator NaN
BusinessAgeDescription New Business or 2 years or less
ProjectCity SPRINGFIELD
ProjectCountyName FAIRFAX
ProjectState VA
ProjectZip 22150-0001
CD VA-08
JobsReported 45.0
NAICSCode 722320.0
RaceEthnicity Unanswered
UTILITIES_PROCEED NaN
PAYROLL_PROCEED 413345.0
MORTGAGE_INTEREST_PROCEED NaN
RENT_PROCEED NaN
REFINANCE_EIDL_PROCEED NaN
HEALTH_CARE_PROCEED NaN
DEBT_INTEREST_PROCEED NaN
BusinessType Limited Liability Company(LLC)
OriginatingLenderLocationID 122873
OriginatingLender EagleBank
OriginatingLenderCity BETHESDA
OriginatingLenderState MD
Gender Male Owned
Veteran Non-Veteran
NonProfit NaN

In fact, if we quickly check how many loans appear with a LoanStatusDate of “NA” by adding the following line to the end of our script, we see that it is a perfect match for those with a LoanStatus of “Exemption 4”:

print(sum(ppp_data['LoanStatusDate'].isna()))

So does this PPP loan data measure what it is supposed to measure? I would say yes, but that’s not the whole story. As we saw from our summary of the LoanStatus information, not all of the businesses that appear in this data set have actually gotten a loan; they have been approved and still could (we know their loans have not been cancelled), but 107,368 have not yet taken the money — and we can’t know for sure if they ever will.

We also can’t say from this data set alone what has happened to the businesses that have received the money. Some may still be in operation, others have gone bankrupt. Still others could have liquidated without filing for bankruptcy. In other words, while the PPP data has strong validity when it comes to answering certain parts of our question, answering the whole question will require much more than just this one data set.

Reliability

When it comes to reliability, the primary criteria we are interested in are accuracy and stability. In other words, how well does the PPP data reflect who has gotten PPP loans, and how likely is it the picture of who has gotten those loans will change over time?

Thanks to our previous investigations, we know by now that the stability of this data set is far from perfect. Several thousand businesses that were approved for loans and appeared in the August data set do not appear in the current one (we’ll address the implications this has for representativeness in the next section), which comports with documentation from the SBA that cancelled loans are not included. It’s also not clear whether, as updates are made, previous versions of the data will still be available, making it difficult to determine what has changed unless we begin downloading and archiving each release ourselves.

Even the figures within the dataset itself may not be especially stable over time. For example, we know that as 538,905 businesses reported that they would only be using their PPP loan for payroll costs. But as SBA representative Stephen Morris explained via email, “this data is speculative to some extent because it’s not required that the borrower use the funds for the purpose they selected on their application.” In other words, unless some part of the loan forgiveness or repayment process requires that PPP loan recipients detail how the money way spent (and that information is subsequently updated in this dat set), we can’t know for sure whether the figures we see in the various PROCEED columns are either accurate or stable.

Representativeness

Is the PPP loan data representative of everyone who actually received a PPP loan? Most likely. After a public outcry led many large and/or publicly-traded companies to return early PPP loans, the SBA indicated that they would be closely scrutinizing loans over $2 million, and almost $30 billion in loans had been returned or cancelled by early July. After our relatively exhaustive comparisons between the August and February data sets, we can feel pretty confident that the data set we have is at least representative of who has received PPP loans to date.

At the same time, this doesn’t really tell us as much as we might think. We already know that the vast majority of PPP loan recipients that appear in this data did not disclose their gender, race, ethnicity or veteran status, meaning that we have no real way of knowing how well (if at all) the demographics of PPP loan recipients reflects the population of small business owners in the United States. In fact, as we’ll see in Chapter 9 it’s very unlikely that we can draw conclusions about the demographics of PPP loan recipients at all, because the number of applicants who included this information is so small.

But the question of representativeness actually goes deeper than that, back to (and beyond) those 7,207 loans that we found in the August data, but not in our Februrary data. Those missing loans reflect businesses that applied for loans and were approved, but in the words of an employee of one of those businesses: “The money just never arrived.” That means that while we know how many businesses got a PPP loan, we have no way of knowing how many applied. Because those cancelled loans have been removed from the data, we are now left with an instance of what I like to call the “denominator” problem.

The denominator problem

What I am calling the “denominator” problem is just one term for a problem that is recognized — albeit under different names across almost every field of data-driven inquiry. Sometimes called the benchmarking or baseline problem11, the denominator problem encapsulates the difficulty of trying to draw meaning from data, which inevitably requires that you put it in context, usually by comparing it to something else. The heart of the problem is that, in many instances, you don’t have the data you need to make a useful comparison.

In our exploration of the PPP data, we’ve already encountered one version of this problem: We know what businesses have received loans, but we don’t know who applied and was rejected, or why (in at least some cases, it seems, the recipients don’t know, either). This is a problem for making value judgments about the PPP loan process, because we don’t know if legitimate applicants have been rejected even as some businesses are granted multiple rounds of loans. If we want to know whether the distribution of loans was fair or even effective, knowing who hasn’t been included is as important as finding out who has.

Some of the denominator problems we’ve encountered so far we may be able to find the complementary data we need to answer — that’s what the Wall Street Journal did in comparing PPP loan data to bankruptcy filings. In others, the solution will be for us to build our own archive if, as with this information, it seems like the shifted data sets may not be recorded by the data provider itself.

Conclusion

So, did the Paycheck Protection Program help save small businesses? Maybe. On the one hand, it’s hard to imagine that so much money could be spent without some positive benefit. On the other hand, both the real world — and the data we have about it — is a complicated, interdependent mess. If a PPP loan recipient pivoted its business model and found new revenue streams, would we put in the “saved by the PPP” category, or not? Similarly, if a business that didn’t receive a loan fails, is that because it didn’t receive a loan, or would it have failed anyway? The more of these “what ifs” we propose, the more likely it is that a couple of things will happen:

	
We’ll develop a violent headache, decide it isn’t possible to really know anything, and look for a reassuring way to procrastinate.

	
After enough time playing games/reading the internet/complaining to confused friends and relations about how we spent all this time wrangling a data set that we’re not sure is worth anything and we can hardly remember why we started this whole thing in the first place, we’ll come across something that gives us an idea for a slightly different, possibly much narrower question to explore, and excitedly return to our data set, eager to see if we can somehow answer this new question any better than the last one.

Is this process arduous and circuitous? Yes. But it is also actually how new knowledge is formed. The uncertain, frustrating and slippery work of considering new options, thinking them through, testing them out and then (potentially) starting the whole process over again with a bit more information and understanding the next time is where genuinely original insight takes place. It’s the thing that every algorithmic system in the world is desperately trying to approximate, or imitate. But if you’re willing to put the effort in, you can actually succeed.

At this point, I have learned quite a bit about this data set — enough that I know I probably cannot answer my original question with it, but can still imagine some interesting insights it could yield. For example, I feel confident that whatever the most recent data accurately reflects the state of the program, because I confirmed that loans missing from more recent files were (for some reason or other) never actually made. At the same time, while the SBA announced that as of early January, 2021, over $100 billion in PPP loans had been forgiven, there didn’t seem to be a distinct value in the LoanStatus column to indicate forgiven loans, even in the February, 2021 data set. While the SBA’s Stephen Morris stopped responding to my emails in early March (¯_(ツ)_/¯), as of early May 2021, a data dictionary does seem to be online, even if neither it — nor the updated data — contains this information, either. But there’s still plenty to learn here — about who has received loans, for how much and where, as well as who is making those loans. And while the data is far from perfect, I can keep copies of past data sets on hand to reassure myself that if anything in the future changes significantly, I will at least have the resources to spot it. And since our efforts here have indicated we have a clear set of next steps for actually cleaning and transforming our data, we’ll turn to those next, in Chapter 7.

1 https://en.wikipedia.org/wiki/Paycheck_Protection_Program#cite_note-troubling-196
2 https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data
3 https://www.sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program/ppp-data
4 The data set used for the analyses in this chapter can be downloaded here: https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing. As we’ll see in subsequent sections, this data set, like so many others, is very much “subject to change.”
5 Following the 2008 financial crisis, for example, it became clear that many banks had not kept proper records as they repackaged and sold — or “securitized” home mortgages — leading some courts to reject their attempts to foreclose on homeowners.
6 https://en.wikipedia.org/wiki/South_Carolina%27s_congressional_districts#Historical_and_present_district_boundaries
7 Attempting to attribute axioms is always problematic, but while I prefer the phrasing of incompetence or neglect, I like the attribution of this expression as “Hanlon’s Razor” found in The Jargon File, mostly because that document explains the origin of a lot of computer/programming slang.
8 For more information on FOIA requests and exemptions, see [Link to Come] and https://www.justice.gov/oip/exemption-4-after-supreme-courts-ruling-food-marketing-institute-v-argus-leader-media.
9 https://www.washingtonpost.com/business/2020/06/11/trump-administration-wont-say-who-got-511-billion-taxpayer-backed-coronavirus-loans/
10 https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth
11 The term “denominator problem” appears to have a very specific meaning when it comes to US property law, but needless to say that is not precisely how I am using it here.

Chapter 7. Cleaning, Transforming and Augmenting Data

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

Most of the time, the data that we have, collect or acquire doesn’t quite suit our needs in one way or another. The format is awkward, or the data structure is wrong. The data itself might contain errors, inconsistencies or gaps. It may contain references we don’t understand or hint at additional possibilities that aren’t realized. Whatever the limitation may be, in our quest to use data as a source of insight, it is inevitable that we will have to do work on it.

Up until now, we have put off most of this work because there was some other problem to solve. In Chapter 4, our focus was on getting data out of a tricky file formats and into something more accessible; in Chapter 6, our priority was to fully assess the quality of our data, so we could make an informed decision about whether to spend even more time preparing it for analysis.

At this point, however, it’s time to roll up our sleeves and begin what to me is sort of the second phase of data wrangling and quality work: Now that we have our data in a format we can use and have determined it’s of high enough quality to yield some insights (if not all, or precisely the ones we wanted), we need to set about preparing it for analysis.

Since it’s obviously impossible to identify and address every possible data cleaning, transforming and/or augmentation possibility, my approach here will be to work through the actual situations we’ve already encountered where data “cleaning” is required. For example, we’ll look at different ways we might need to transform date-type information using datasets we encountered in Chapter 2 and Chapter 4. We’ll also look at different ways we can clean up the “cruft” in data files that contain both structured data and metadata. We’ll even explore regular expressions, which offer us a powerful way to select parts of a data field, as well as find particular terms and patterns even when things like capitalization and/or punctuation don’t match. Even with just this handful of examples, we’ll actually cover a fair range of the strategies you’re likely to need when it comes to cleaning up and transforming most data sets. At the very least, the approaches outlined in this chapter will give you a starting place if you encounter something truly gnarly or unique.

Selecting a Subset of Citi Bike Data

Way back in Chapter 2, we used Citi Bike system data to test out some of our freshly unboxed Python concepts, like for...in loops and if/else conditionals. For the sake of convenience, we started with a sample data set that I had excerpted from the September, 2020 system data file1 (which we later adapted our script to process).

But how was this excerpt constructed? For a whole variety of reasons, there are cases where we’ll want to segment large datasets for analysis — either because we don’t have the resources to process everything at once, or because of the type of analysis we want to conduct. If all we wanted to do was select a specific number of rows, we could write a for...in loop using the range() function described in “Adding iterators: The range function”. But we can imagine wanting to excerpt the data based on its values as well. In the case of the example in Chapter 2, I selected all of the rides from September 1, 2020, but I can also imagine wanting to evaluate weekday Citi Bike data separately from weekends and holidays.

In principle, it seems like this should be a straightforward task: We just want to keep every row in our dataset containing a ride that started on the first day of September. If we revisit the data set, however, it quickly becomes clear that even this task is not so simple:

[image: First few lines of Citi Bike trip data.]
Figure 7-1. First few lines of Citi Bike trip data

As you can see in Figure 7-1, the starttime column is not simply a date, but some kind of date/time format that includes not just the month, day and year, but also the hours, minutes and seconds (to four decimal points!). The first entry in our dataset, for example, the value of the starttime looks like this:

2020-09-01 00:00:01.0430

Obviously, if we are going to analyze just the first day of rides — or just rides during the morning “rush hour” commute or just weekday rides — we need a way to effectively filter our data based on just part of the information that’s stored in this column. But how can we do this? In the next few sections, we’ll look at each of these tasks in turn as a means to explore the various tools Python offers for solving problems like these — and when and why we might choose one over the other.

A Simple Split

Solving the first problem — excerpting just the rides that started on September 1, 2020 — is actually relatively easy to do using tools that we’ve already used before (though we didn’t focus on them too much at the time). It starts with recognizing that when we read in a basic CSV file with Python, most of our data will be treated as strings2. This means that, even though we humans clearly know that 2020-09-01 00:00:01.0430 should be interpreted as a date and time, unless we tell it to do otherwise, Python just sees it as a collection of numbers and characters.

If we look at the starttime field this way, then the question of how to find all the rides that started on September 1, 2020 becomes a bit more straightforward, because the part of our data that contains the date information is always separated from the time information by a single space. This means that if we can find a way to just look at what comes before that space, we can easily set up an if/else conditional to compare that to our target date — 2020-09-01 — and use that to keep only the rows we want.

Fortunately Python — like almost all programming languages — has a built-in string method called split, which lets us specify a single character that should be used to split a string into parts. The output of this method is a list, which contains the “leftover” pieces of the string in the order in which they appeared, with the character you split on removed. So, for example, splitting the string 2020-09-01 00:00:01.0430 on a space will yield the list ['2020-09-01', '00:00:01.0430'].

To see how this works in action, let’s modify our script from [Link to Come] in Chapter 2. I’ve edited down some of the comments here because these tasks are much more familiar now, but it’s still a good idea to outline the script’s objective at the top.

Example 7-1. citibike_september1_rides.py

Objectives: Filter all September, 2020 Citi Bike rides, and output a new
file containing only the rides from 2020-09-01

Program Outline:
1. Read in the data file: 202009-citibike-tripdata.csv
2. Create a new output file, and write the header row to it.
3. For each row in the file, split the `starttime` value on space:
a. If the first item in the resulting list is '2020-09-01', write
the row to our output file
4. Close the output file

import the "csv" library
import csv

open our data file in "read" mode
source_file = open("202009-citibike-tripdata.csv","r")

open our output file in "write" mode
output_file = open("2020-09-01-citibike-tripdata.csv","w")

pass our source_file to the DictReader "recipe"
and store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(source_file)

create a corresponding DictWriter and specify that the fieldnames should
come from `citibike_reader`
output_writer = csv.DictWriter(output_file, fieldnames=citibike_reader.fieldnames)

actually write the header row to the output file
output_writer.writeheader()

use a `for...in` loop to go through our `citibike_reader` list of rows
for a_row in citibike_reader:

 # get the value in the 'starttime' column
 start_timestamp = a_row["starttime"]

 # split the value in 'starttime' on the space character
 timelist = start_timestamp.split(" ")

 # the "date" part of the string is the first item in the list, so its
 # index position is 0
 the_date = timelist[0]

 # if `the_date` matches our desired date
 if the_date == "2020-09-01":

 # write that row of data to our output file
 output_writer.writerow(a_row)

close the output file
output_file.close()

Pretty simple, right? Of course, you could easily modify this script to capture a different date, or even multiple dates if you wanted to. For example, you could modify the if statement to be something like:

 if the_date == "2020-09-01" or the_date == "2020-09-02":

Of course, while the or statement above works perfectly well if you’re looking for two or three specific dates, it starts to get very messy if you need to look for more than a handful (we had to use a similarly awkward conditional when evaluating the quality of our Paycheck Protection Program data in Example 6-11). In order to filter our data with the precision we need without generating extraordinarily complex, awkward, and error-prone code, we need to turn to a whole different toolkit: the regular expression.

Regular Expressions: Super-charged String-matching

A regular expression (often shortened to regex), is a tool found in most programming languages that allows you to quickly and efficiently search for string patterns within a larger string or piece of text. In most cases, if you’re trying to solve a matching or filtering problem and find that the solution involves lots of and or or statements, it’s an early sign that what you really need is a regular expression.

In general, regular expressions are concise, powerful — and, at times, extremely tricky to work with. While a complex search pattern can be contained within a single regular expression, designing elaborate regexes that work as expected can be extremely time-consuming. As with other programming tasks, our goal is for our work to be efficient by also comprehensible. So while there are certain tasks where regular expressions are indispensible, they are many cases where they are best paired with other tools.

To make this more concrete, let’s use a regular expression to tackle one of the filtering tasks outlined above; in this case, let’s turn to the problem of filtering out rides that take place within the typical “morning commute” hours, which we’ll roughly outline as being from 7 a.m. to 9 a.m. To get started, let’s look at an example starttime entry that is outside of this time range:

 2020-09-01 00:00:01.0430

Now let’s look at a starttime entry that falls within it:

 2020-09-01 00:08:17.5150

While we could address this with the string-splitting method we saw above, it feels a little awkward to do so. Still, we could start by splitting on the : character, which would, in the second instance, give us this:

['2020-09-01 00', '08', '17.5150']

Then we could take the middle item from the list and use a compound conditional — that is, an if statement that joins two or more tests — to see if it matches the strings 07, 08, or 09.

This approach certainly works, but a regular expression will let us narrow in on those hour values in a single step, while still being fairly readable. In order to do that, let’s do a quick overview of the vocabulary of Python regular expressions, and then start work on our regex.

Regular Expression Building Blocks

Because a regular expression has to use characters and strings to describe patterns of characters and strings, the Python regular expression “language” uses a set of metacharacters and special sequences to make describing the pattern you’re searching for simpler. In Table 7-1 I’ve included some of the most useful ones, drawn from a more complete list here3.

Table 7-1. Common Regular Expresson Building Blocks

	[]

	A set of characters

	“\”

	Signals a special sequence (can also be used to escape special characters)

	.

	Any character (except newline character)

	*

	Zero or more occurrences

	+

	One or more occurrences

	{}

	Exactly the specified number of occurrences

	|

	Either or

	()

	Capture and group

	\d

	Returns a match where the string contains digits (numbers from 0-9)

	\D

	Returns a match where the string DOES NOT contain digits

	\s

	Returns a match where the string contains a white space character

	\S

	Returns a match where the string DOES NOT contain a white space character

	\w

	Returns a match where the string contains any word characters (characters from a to Z, digits from 0-9, and the underscore _ character)

	\W

	Returns a match where the string DOES NOT contain any word characters

As always with writing, regular expressions give us more than one way to “capture” the pattern we’re looking for. In most cases, we want to hone in on the pattern that we need to match as much as possible, to avoid accidentally matching on something we don’t intend to. In this case, we can take advantage of the fact that the “hours” digits in the starttime column are surrounded by colons (:), and nothing else is. This means that we can use this “surrounded by colons” pattern as part of our regular expression, and feel confident that we won’t accidentally match on something else. To see this in action, let’s set up a few sample regular expressions to test against some (real and constructed) sample data to see how they do.

Example 7-2. regex_tests.py

The goal of this script is to try out how a couple of regular expressions
fare with some sample test data. An interactive version of this can also
be done in a Jupyter notebook, of course, or online at:
https://www.w3schools.com/python/trypython.asp?filename=demo_regex

import the regular expression library
import re

using the `re.compile()` method is a helpful way of keeping a reference to
our various regular expressions
bookend_regex = re.compile("\s0[7-9]:")

always try to be descriptive with the variable names
one_sided_regex = re.compile("0[7-9]:")

this example should *fail*
sample1 = "2020-09-01 00:00:01.0430"

this example should *match*
sample2 = "2020-09-01 09:04:23.7930"

this example should *fail*
sample3 = "2020-09-01 10:07:02.0510"

let's see what happens!
print("bookend_regex:")
print(bookend_regex.search(sample1))
print(bookend_regex.search(sample2))
print(bookend_regex.search(sample3))

print("one_sided_regex:")
print(one_sided_regex.search(sample1))
print(one_sided_regex.search(sample2))
print(one_sided_regex.search(sample3))

When you run the above script, your output should look something like this:

bookend_regex:
None
<re.Match object; span=(10, 14), match=' 09:'>
None
one_sided_regex:
None
<re.Match object; span=(11, 14), match='09:'>
<re.Match object; span=(14, 17), match='07:'>

As you can see, the “bookended” regex, where we specified both of the colons, correctly matches (or fails to match) in all three case; the “one-sided” regex, on the other hand, erroneously finds a match on the seconds value of sample3. This is precisely why defining the string you’re looking for as precisely as possible is important. If you look at the Match object printed out above, you’ll see that it contains information about what was matched (e.g. match='07:') and where (e.g. from positions 14-17 in the string).

So far, this seems pretty straightforward. Things can still get a little tricky, however, when the structure of the thing we want to match changes. For example, what if we wanted to expand the hours we’re interested in to range from 7 a.m. to 10 a.m.? Our bookend_regex won’t work as written, because it specifies that the first character after the colon has to be a 0. We could try just adding the digits 1 and 0 as options to our digit ranges, like so:

plus_ten = re.compile("\s[01][0789]:")

print("plus_ten")
print(plus_ten.search("2020-09-01 18:09:11.0980"))

Which produces the output:

plus_ten
<re.Match object; span=(10, 14), match=' 18:'>

The problem, as we can see from the output above, is that our data uses a 24-hour clock, and will end up matching on a whole range of times that we don’t want. That’s because regular expressions don’t “see” numbers, in the way we think of them — all they see are sequences of characters.

The solution, in this case, is to use the “either/or” pipe character (|), which we can use to combine to (otherwise) completely distinct regular expressions. In this case, that will look something like this:

seven_to_ten = re.compile("\s0[7-9]:|\s10:")

Try it out yourself with a few sample data points, just to confirm that it captures what we’re looking for (and nothing else).

We won’t go too much further with regular expressions than this; like web-scraping, no two regular expression problems (or solutions) are alike. However, I hope you can see the potential these offer for doing pattern matching that would be very awkward with compound conditionals and basic string functions alone.

Making a Date

One of the reasons it’s appealing to treat date-like data as strings is because, as we saw in Chapter 4, the way they are interpreted can vary dramatically across data sources and even Python libraries. Still, there are situations and tasks where converting date-like data to an actual datetime object can be very useful. For example, if we want to isolate the weekday rides from our Citi Bike data, we could go the route of looking at a calendar and identifying the dates of all the weekdays, and then writing a regular expression to filter for those. In the case of the September, 2020 data, such a regular expression object might look something like:

september2020_weekday = re.compile("-0[123489]-|-1[0145678]-|-2[1234589]-|-30-")

This certainly works, but it is still basically one giant compound conditional — even if it is expressed a bit more succinctly because it’s in a regular expression. Moreover, it’s not a solution that scales very well. If we wanted to extend our analysis to any other month, it would mean getting out the calendar and picking out specific dates again.

Fortunately, a well-constructed Python datetime object has a number of built-in methods that can help with exactly this kind of task. In fact there is a simple weekday() method that returns a number from 0 to 6 (with 0 being Monday and 6 being Sunday) based on the day of the week on which a certain date falls. This means that if we convert the contents of our starttime column to a date, we can use this method to quickly identify the day of the week for any date, meaning that we don’t need to adapt our code to deal with a different month or year of data.

Example 7-3. weekday_rides.py

Objectives: Filter all September, 2020 Citi Bike rides, and output a new
file containing only weekday rides

Program Outline:
1. Read in the data file: 202009-citibike-tripdata.csv
2. Create a new output file, and write the header row to it.
3. For each row in the file, make a date from the `starttime`:
a. if it's a weekday, write the row to our output file
4. Close the output file

import the "csv" library
import csv

import the "datetime" library
from datetime import datetime

open our data file in "read" mode
source_file = open("202009-citibike-tripdata.csv","r")

open our output file in "write" mode
output_file = open("202009-citibike-weekday-tripdata.csv","w")

pass our source_file to the DictReader "recipe"
and store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(source_file)

create a corresponding DictWriter and specify that the fieldnames should
come from `citibike_reader`
output_writer = csv.DictWriter(output_file, fieldnames=citibike_reader.fieldnames)

actually write the header row to the output file
output_writer.writeheader()

use a `for...in` loop to go through our `citibike_reader` list of rows
for a_row in citibike_reader:

 # convert the value in the 'starttime' column to a date object
 # have to specify the format per:
 # https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
 the_date = datetime.strptime(a_row['starttime'], '%Y-%m-%d %H:%M:%S.%f')

 # if `the_date` is a weekday
 if the_date.weekday() <= 4:
 # write that row of data to our output file
 output_writer.writerow(a_row)

close the output file
output_file.close()

Depending on your device, you may notice that the script in Example 7-3 takes a while to run. For example, on my (not very powerful) device, it takes more than 85 seconds to complete. Accomplishing the same task using the september2020_weekday regular expression takes only 45 seconds — and I can easily tweak the regular expression to skip days that are officially weekdays, but are also holidays (like Labor Day).

In other words, what actually works best for solving your particular data wrangling/cleaning/transformation process is going to depend on the particularities of your problem, as well as the resources you have available. If answering your question means looking for weekday commute patterns in a decade’s worth of Citi Bike data, you’re probably better off using the weekday() method, because you don’t have to change your code to deal with different months or years. On the other hand, if you have not very many months to work with and execution speed is your top concern, you might prefer to go the regular expression route. Either way, though, the choice you make is really up to you.

De-crufting Data Files

In Chapter 4, we encountered a number of instances where we needed to “clean up” a data set that would otherwise be awkward or unintelligible. You may remember that when we went through the process of parsing an old-school-style .xls file in Example 4-6, we encountered a couple of problems. First, the spreadsheet contained both table-type data and descriptive header information that, despite being useful in principle, would inevitably need to be relocated. Second, the .xls format’s lack of support for “real” dates means that we need to do some work in order to translate the date-like values to something meaningful. Though I put off those tasks in Chapter 4, the time has come to confront them.

In designing our solution to the first problem, I think it’s important to stress that we don’t want to just “throw out” the information that’s currently stored at the top of the fredgraph.xls file. As is hopefully clear from our experience in Chapter 6, metadata is a precious resource and we want to make sure we can find it when we need it. Because of this, my approach to this problem is to turn one file into two: we’ll strip out the metadata and store it in a separate — but appropriately named — text file, while still parsing the table-type data to an analysis-friendly CSV format. While it’s easy enough to see where the metadata ends and the table-type data begins if we preview our data in a spreadsheet-style program, the question is: How will we detect this transition within our code?

As so often with data cleaning, our solution will be effective — if not necessarily elegant. The row containing the column-headers for our table-type data is where our metadata ends, so if we look at the first value in each row we can “split off” the metadata file whenever we find the first column header in that position. In this case, then, when we find the value observation_date at the beginning of our current row, we’ll stop writing data to our _metadata file, and start writing it to our main data output file instead.

Convention Over Configuration

Even this book’s simplest examples there are lots of decisions to be made — including naming variables, programming files, data output files and more. The concept of “convention over configuration,” while it may not be perfectly “Pythonic,” still has something to offer us as we collect, generate and reorganize files in the data wrangling process. In particular, the idea of using a naming covention for the metadata file we split off from our table-type data can potentially save us headaches both now, when we need to create it, and later when we need to find it again. While you don’t have to follow the precise pattern I do here, choosing a consistent method for naming these files across your projects is something that will save you time, effort and anxiety both now and in the long run.

Tip

Before you begin, check your source file carefully to see where the metadata appears within it. Especially in cases where the data contains estimates or other qualifiers, you’re likely to find metadata both before and after the table-type data in your source file.

Example 7-4. xls_meta_parsing.py

Converting data in an .xls file with Python to csv + metadata file
using the "xrld" library. First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the "xlrd" library
import xlrd

import the csv library
import csv

start by passing our source filename as an ingredient to the xlrd library's
open_workbook "recipe" and store the result in a variable called
`source_workbook`.
source_workbook = xlrd.open_workbook("fredgraph.xls")

we'll probably only need one metadata file per workbook, though we could
easily move this inside the loop and create a per-sheet metadata file
if necessary
source_workbook_metadata = open("fredgraph_metadata.txt","w")

even though our example workbook only includes one worksheet, the
`open_workbook` recipe has generated a list of sheet names that we can loop
through. In the future, we could use this to create one `.csv`file per sheet
for sheet_name in source_workbook.sheet_names():

 # we'll create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # for clarity, we'll name it "xls_"+sheet_name
 output_file = open("xls_"+sheet_name+".csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 output_writer = csv.writer(output_file)

 # we'll use a boolean (True/False) "flag" variable so that we know when
 # to start writing to our "data" file instead of our "metadata" file
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':
 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # write this row to the data output file
 output_writer.writerow(current_sheet.row_values(row_num))

 # otherwise, this row must be metadata
 else:
 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in current_sheet.row(row_num):

 # write the value of the cell
 source_workbook_metadata.write(item.value)

 # separate it from the next cell with a tab
 source_workbook_metadata.write('\t')

 # at the end of each line of metadata, add a newline
 source_workbook_metadata.write('\n')

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

Before we move on to dealing with the (still inexplicable) dates in this file, I want to highlight a new technique introduced in Example 7-4: the use of a so-called flag variable. This term typically refers to any Boolean (True/False) variable that is used to keep track of whether a certain event has taken place or condition has been met. In Example 7-4, for example, we are using the is_table_data variable as a way to keep track of whether we have yet encountered the row of data that marks the beginning of our table data. Since a given row of data in our for...in loop is essentially “forgotten” as soon as the next one is read, we need to create this variable before our loop. This keeps the is_table_data variable available beyond the scope of our loop — a concept we’ll look at more closely in Chapter 8.

Decrypting Excel Dates

At this point, it seems we can avoid the issue of those Excel dates no longer. While hopefully you will not encounter this situation often, I’m including it here both for completeness, and because it illustrates a few different ways that our code may need to evolve as we add (even seemingly small) bits of functionality to it. For example, in Example 7-5, we’ll need to check whether a variable contains a number or not. In Chapter 6, we used a function from the pandas library to do this; here, we’ll use the numbers library because it’s much smaller, and checking that our value is a number is really the only thing we need it to do. Likewise, the need to examine and change the values in the first column of data requires adapting our approach to writing the table-type data to our output file.

Example 7-5. xls_meta_and_date_parsing.py

Converting data in an .xls file with Python to csv + metadata file, with
functional date values using the "xrld" library.
First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the "xlrd" library
import xlrd

import the csv library
import csv

needed to test if a given value is *some* type of number
from numbers import Number

for parsing/formatting our newly interpreted Excel dates
from datetime import datetime

start by passing our source filename as an ingredient to the xlrd library's
open_workbook "recipe" and store the result in a variable called
`source_workbook`.
source_workbook = xlrd.open_workbook("fredgraph.xls")

we'll probably only need one metadata file per workbook, though we could
easily move this inside the loop and create a per-sheet metadata file
if necessary
source_workbook_metadata = open("fredgraph_metadata.txt","w")

even though our example workbook only includes one worksheet, the
`open_workbook` recipe has generated a list of sheet names that we can loop
through. In the future, we could use this to create one `.csv`file per sheet
for sheet_name in source_workbook.sheet_names():

 # we'll create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # for clarity, we'll name it "xls_"+sheet_name
 output_file = open("xls_"+sheet_name+"_dates.csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 output_writer = csv.writer(output_file)

 # we'll use a boolean (True/False) "flag" variable so that we know when
 # to start writing to our "data" file instead of our "metadata" file
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':
 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # extract the table-type data values into separate variables
 the_date_num = current_sheet.row_values(row_num)[0]
 U6_value = current_sheet.row_values(row_num)[1]
 # create a new row object with each of the values
 new_row = [the_date_num, U6_value]

 # if the value is a number, then the current row is *not*
 # the header row, so transform the date
 if isinstance(the_date_num, Number):

 # if it is, use the xlrd library's `xldate_as_datetime` recipe
 # with the value + the workbook's datemode to generate a
 # Python datetime object
 the_date_num = xlrd.xldate.xldate_as_datetime(the_date_num, source_workbook.datemode)

 # replace the first value in the new row with the_date_num,
 # formatted to MM/DD/YYYY using the `strftime()` recipe)
 new_row[0] = the_date_num.strftime('%m/%d/%Y')

 # write this new row to the data output file
 output_writer.writerow(new_row)

 # otherwise, this row must be metadata
 else:
 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in current_sheet.row(row_num):

 # write the value of the cell
 source_workbook_metadata.write(item.value)

 # separate it from the next cell with a tab
 source_workbook_metadata.write('\t')

 # at the end of each line of metadata, add a newline
 source_workbook_metadata.write('\n')

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

While the xlrd library makes the process of converting our strange Excel dates to something understandable relatively straightforward, our work in Example 7-5 demonstrates how the idiosyncrasies of wrangling a particular data set can quickly add complexity — especially in the form of additional, nested if statements — to what started as a very simple program. This is just one of the reasons why we’ll spend Chapter 8 exploring strategies and techniques for effectively and efficiently streamline our code so that it meets all of our needs, but also stays as readable and reusable as possible.

Generating True CSVs from Fixed-Width Data

In addition to strange Excel dates, in Example 4-7 we also had only moderate success in transforming our fixed-width data into a usable CSV; while technically our resulting output was comma-separated, it retained many of the formatting artifacts of the original file, which could lead to further problems down the line.

Fortunately, the problem of “leading” and/or “trailing” whitespace is well-known, since the data technologies that typically generate it have been around for a long time. As such, we don’t need to do much to fix this problem, other than recognize that it’s one that probably has a readily-accessible solution. In this case, that solution exists in the form of the built-in Python strip() function.

Example 7-6. fixed_width_strip_parsing.py

An example of reading data from a fixed-width file with Python and creating
a well-formatted CSV file.
The source file for this example comes from the NOAA, and can be accessed here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt
The metadata for the file can be found here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

we'll start by importing the "csv" library
import csv

variable to match our output filename to the input filename
filename = "ghcnd-stations"

we'll just open the file in read format ("r") as usual
source_file = open(filename+".txt", "r")

the "readlines()" method converts a text file to a list of lines
stations_list = source_file.readlines()

as usual, we'll create an output file to write to
output_file = open(filename+".csv","w")

and we'll use the `csv` library to create a "writer" that gives us handy
"recipe" functions for creating our new file in csv format
output_writer = csv.writer(output_file)

since we don't have column headers within these file we have to "hard code"
these based on the information in the `readme.txt` file
headers = ["ID","LATITUDE","LONGITUDE","ELEVATION","STATE","NAME","GSN_FLAG","HCNCRN_FLAG","WMO_ID"]

write our headers to the output file
output_writer.writerow(headers)

loop through each line of our file
for line in stations_list:

 # create an empty list, to which we'll append each set of characters that
 # makes up a given "column" of data
 new_row = []

 # lines of text fucntion as just lists of characters, so we can just use
 # the indices from the readme file to identify each "column"
 # to make the resulting csv more usable, we'll apply the `strip()`
 # function to each set of characters, which will eliminate excess whitespace

 # ID: positions 1-11
 new_row.append((line[0:11]).strip())

 # LATITUDE: positions 13-20
 new_row.append((line[12:20]).strip())

 # LONGITUDE: positions 22-30
 new_row.append((line[21:30]).strip())

 # ELEVATION: positions 32-37
 new_row.append((line[31:37]).strip())

 # STATE: positions 39-40
 new_row.append((line[38:40]).strip())

 # NAME: positions 42-71
 new_row.append((line[41:71]).strip())

 # GSN_FLAG: positions 73-75
 new_row.append((line[72:75]).strip())

 # HCNCRN_FLAG: positions 77-79
 new_row.append((line[76:79]).strip())

 # WMO_ID: positions 81-85
 new_row.append((line[80:85]).strip())

 # now all that's left is to use the
 # `writerow` function to write new_row to our output file
 output_writer.writerow(new_row)

just for good measure, let's close the `.csv` file we just created
output_file.close()

Once again, we see that modifying our original code to solve a formatting or “cleaning” issue isn’t necessarily that hard, but the resulting script isn’t exactly elegant, either. Stripping the whitespace from our output with the strpi() method is definitely straightforward, but we’ve had to add a whole lot of parentheses in the process — leaving us with code that is far less readable than we’d like.

This illustrates yet way in which creating Python code is really just another form of writing. If we view our first efforts in Chapter 4 as something like the “outline” of our final program — where we solve the high-level problem of getting the data format we have into at least the table-type structure that we’re after — it gives us space to come back later and revise that work, filling in the details that allow it to be more nuanced in its handling of the specific data set we’re working with.

The next pass, as we’ll see in Chapter 8, will let us take these programs — which already do everything we need them to do — and refine them still further, to make them more concise and easier to understand, just as we would ideally do with any piece of writing. This iterative approach to programming not only means that we eventually end up with better, more useful code, but it also lets us break down big, complicated programming problems into a series of less intimidating ones that we can solve one step at a time. Just as important, we have a functioning program each step of the way, so we know we have something to fall back on if something doesn’t turn out as planned. This approach is especially important as we turn to even more complex data-cleaning tasks, such as resolving minor spelling differences in names within a data set.

Correcting for Spelling Inconsistencies

In Chapter 6, we used a “fingerprinting” process to help address the possibility that information about banks in our Paycheck Protection Program (PPP) data might have spelling inconsistencies — a common issue in any dataset that relies on human data entry. For evaluation purposes, the code we wrote in Example 6-10 only estimated the number of distinct entries in the OriginatingLender column that resulted in the same fingerprint. Our results — which found 4337 unique bank names but only 4242 unique fingerprints — suggested that as many as 95 bank names in the data were ambiguous, because they included different spellings but generated the same fingerprint.

Because those 95 distinct bank names could affect thousands of rows of data, it’s essential that we find a way to transform our data set such that we feel confident that we can accurately aggregate it by lender. While our fingerprinting results suggest that there are some spelling inconsistencies that we need to address, we also need to make sure that we don’t overcorrect by grouping together entries that don’t actually belong together.

This is an instance where transforming our data is invaluable: we don’t want to risk losing any of our original data (keeping this is essential for validation and spot-checking), but we need to add another element to it in order to facilitate later analysis. Because our data set is large, the process of grouping and filtering it to meet our needs is likely to be time-consuming, so we want to actually add new columns in order to avoid needing to do it more than once.

Fortunately, some of our go-to libraries make this process very straightforward. Since we already know how we can aggregate bank names (using the fingerprinting process from Example 6-10, the trickier piece is deciding how we will decide when banks that share the same fingerprint should actually be treated as different. Looking back at the output from Example 6-6 (shown below), there are not a lot of fields that contain “originating” lender information, so the most likely option for deciding if two originating banks whose names share all the same words (think “First Bank Texas” and “Texas First Bank”) are actually two different banks is the value shown in OriginatingLenderLocationID:

LoanNumber 9547507704
DateApproved 05/01/2020
SBAOfficeCode 464
ProcessingMethod PPP
BorrowerName SUMTER COATINGS, INC.
BorrowerAddress 2410 Highway 15 South
BorrowerCity Sumter
BorrowerState <NA>
BorrowerZip 29150-9662
LoanStatusDate 12/18/2020
LoanStatus Paid in Full
Term 24
SBAGuarantyPercentage 100
InitialApprovalAmount 769358.78
CurrentApprovalAmount 769358.78
UndisbursedAmount 0
FranchiseName <NA>
ServicingLenderLocationID 19248
ServicingLenderName Synovus Bank
ServicingLenderAddress 1148 Broadway
ServicingLenderCity COLUMBUS
ServicingLenderState GA
ServicingLenderZip 31901-2429
RuralUrbanIndicator U
HubzoneIndicator N
LMIIndicator <NA>
BusinessAgeDescription Existing or more than 2 years old
ProjectCity Sumter
ProjectCountyName SUMTER
ProjectState SC
ProjectZip 29150-9662
CD SC-05
JobsReported 62
NAICSCode 325510
RaceEthnicity Unanswered
UTILITIES_PROCEED <NA>
PAYROLL_PROCEED 769358.78
MORTGAGE_INTEREST_PROCEED <NA>
RENT_PROCEED <NA>
REFINANCE_EIDL_PROCEED <NA>
HEALTH_CARE_PROCEED <NA>
DEBT_INTEREST_PROCEED <NA>
BusinessType Corporation
OriginatingLenderLocationID 19248
OriginatingLender Synovus Bank
OriginatingLenderCity COLUMBUS
OriginatingLenderState GA
Gender Unanswered
Veteran Unanswered
NonProfit <NA>

Before we proceed, of course, we want to make sure that we understand what the data in OriginatingLenderLocationID actually means. Lucky for us, a web search for the words originating lender location id brings up a document from the SBA website as the first result. Searching through this PDF for the term “location” brings us to the page shown in Figure 7-2, which reassures us that the “Location ID” value entered should not change from branch to branch of the same bank, but indicates the main branch of a given bank.

[image: Information about lender location ID]
Figure 7-2. Information about lender location ID

With this additional information, we can go about creating a new version of our PPP loan data that includes a new column, “OriginatingLenderFingerprint,” which we can use later on to quickly aggregate our data by originating lender, (reasonably) confident that we are not missing entries due to different spellings or treating what should be two separate banks as one.

Example 7-7. ppp_add_fingerprints.py

Quick script for adding a "fingerprint" column to our loan data, which will
help us confirm/correct for any typos or inconsistencies in, e.g. bank names

import the csv library
import csv

importing the `fingerprints` library
import fingerprints

read the recent data sample into a variable
ppp_data = open('public_150k_plus_recent.csv','r')

the DictReader function has added useful information to our data,
like a label that shows us all the values in the first or "header" row
ppp_data_reader = csv.DictReader(ppp_data)

create an output file to write our modified data set to
augmented_ppp_data = open('public_150k_plus_fingerprints.csv','w')

create a "writer" so that we can output whole rows at once
augmented_data_writer = csv.writer(augmented_ppp_data)

because we're adding a column, we need to create a new header row as well
header_row = []

for every column header
for item in ppp_data_reader.fieldnames:

 # append the existing column header
 header_row.append(item)

 # if we're at 'OriginatingLender'
 if item == 'OriginatingLender':

 # it's time to add a new one!
 header_row.append('OriginatingLenderFingerprint')

write the completed header row to the output file
augmented_data_writer.writerow(header_row)

iterate through row in the data
for row in ppp_data_reader:

 # adding a column means we need to build the new row of data
 # item by item, just as we did with the header row
 new_row = []

 # for each column of data in the *original* data set
 for column_name in ppp_data_reader.fieldnames:

 # first, append this row's value for that column
 new_row.append(row[column_name])

 # when we get to the 'OriginatingLender' column, it's time
 # to add our new "fingerprint" value
 if column_name == 'OriginatingLender':

 # our fingerprint will consist of the generated fingerprint PLUS
 # the OriginatingLenderLocationID
 the_fingerprint = fingerprints.generate(row[column_name]) +" "+ row['OriginatingLenderLocationID']
 new_row.append(the_fingerprint)

 # once the whole row is complete, write it to our output file
 augmented_data_writer.writerow(new_row)

close both files
augmented_ppp_data.close()
ppp_data.close()

The structure of the resulting file is the same as the original, except that a new column OriginatingLenderFingerprint column has now been added between OriginatingLender and OriginatingLenderCity:

LoanNumber 9547507704
DateApproved 05/01/2020
SBAOfficeCode 464
ProcessingMethod PPP
BorrowerName SUMTER COATINGS, INC.
BorrowerAddress 2410 Highway 15 South
BorrowerCity Sumter
BorrowerState NaN
BorrowerZip 29150-9662
LoanStatusDate 12/18/2020
LoanStatus Paid in Full
Term 24
SBAGuarantyPercentage 100
InitialApprovalAmount 769358.78
CurrentApprovalAmount 769358.78
UndisbursedAmount 0.0
FranchiseName NaN
ServicingLenderLocationID 19248
ServicingLenderName Synovus Bank
ServicingLenderAddress 1148 Broadway
ServicingLenderCity COLUMBUS
ServicingLenderState GA
ServicingLenderZip 31901-2429
RuralUrbanIndicator U
HubzoneIndicator N
LMIIndicator NaN
BusinessAgeDescription Existing or more than 2 years old
ProjectCity Sumter
ProjectCountyName SUMTER
ProjectState SC
ProjectZip 29150-9662
CD SC-05
JobsReported 62.0
NAICSCode 325510.0
RaceEthnicity Unanswered
UTILITIES_PROCEED NaN
PAYROLL_PROCEED 769358.78
MORTGAGE_INTEREST_PROCEED NaN
RENT_PROCEED NaN
REFINANCE_EIDL_PROCEED NaN
HEALTH_CARE_PROCEED NaN
DEBT_INTEREST_PROCEED NaN
BusinessType Corporation
OriginatingLenderLocationID 19248
OriginatingLender Synovus Bank
OriginatingLenderFingerprint bank synovus 19248
OriginatingLenderCity COLUMBUS
OriginatingLenderState GA
Gender Unanswered
Veteran Unanswered
NonProfit NaN

While this transformation will help us easily aggregate our data by a particular “originating” lender, this process would also be easy to extend to the “servicing” lender as well. We could even write a script that compares the value of these two resulting fingerprints to create a “flag” column indicating whether the servicing and originating banks are the same.

The Circuitous Path to “Simple” Solutions

While I hope that you found the Example 7-7 exercise straightforward to follow, you should know that the script you see above was not the first solution I tried — it wasn’t even the second or third. In fact, I probably spent about a dozen hours, all told, thinking, hacking, wrangling and failing before I finally realized that the approach above was the fastest, simplest, and most effective way to strike a balance between making sure that loans from the same bank were grouped together without accidentally conflating two different institutions.

It’s important to describe how I actually worked my way through this process because — as is hopefully also starting to become clear — both data wrangling (and programming in general) is not so much about coding as it is about reasoning and problem-solving. This means that thinking through the problem in front of you, trying different solutions and, perhaps most importantly, being willing to change course even if it means “throwing out” a bunch of code you’ve written are all much more important skills for effective data wrangling than being able to sit down and start writing Python code without having to look things up every 5 minutes (which is something that I and most professional programmers do all the time). So in an effort to illustrate what just one of these problem-solving efforts entails, I’m going to briefly (at least compared to the time I spent trying out different solutions!) walk through here everything that I tried before settling on the solution in “Correcting for Spelling Inconsistencies”.

For example, I started out by adapting the script from Example 6-10, creating a new column that contained just those fingerprints and creating a new CSV that included this new column. But I realized that there was a strong likelihood that some banks with similar names would share the same “fingerprint,” so I wrote a script that:

	
Created a list of the unique fingerprints

	
For every unique fingerprint, created a new list (actually a pandas dataframe) of all the unique OriginatingLenderLocationID values

	
If there was more than one distinct OriginatingLenderLocationID value, I then updated the “fingerprint” column to incorporate the OriginatingLenderLocationID, much as we ended up doing for all the entries in Example 7-7.

Even creating that script, however, was not as straightforward as it sounds when it’s written out neatly in numbered steps. The first step was easy, of course — we’d pretty much done that already. But when it came time to start working with the new file in pandas, my scrappy little Chromebook didn’t have enough memory, so I moved my work to Google Colab. This gave me more memory to work with (sort of), but now when I stepped away from the code for more than a few minutes, I had to authenticate and reload the data from my Google Drive file all over again, which usually took a couple of minutes. Also, while I was pretty confident that I had figured out how to update my dataframe correctly, my efforts to check my work (by searching for a new fingerprint that I was sure should exist) wasn’t working reliably: sometimes I got matches, and sometimes I got an empty dataframe! Add to this that it took about 3 or more minutes to run step 3 each time, and you can imagine how it took a number of hours to settle on a solution.

In the end, once I had managed to code up (and check) my multi-step solution, I realized that the result wasn’t all that different than what I’d started with. In fact, it was a little less satisfying because now the format of my “fingerprints” was inconsistent: some had location ids appended, some didn’t. But since the actual value of the fingerprint didn’t matter — only that it could be used accurately to both aggrerate and disambiguate banks — why was I going to all the trouble to only add location ids to the ones that had several? Couldn’t they all just have the location ids appended, and leave it at that?

It was only at that point that I bothered to look up the documentation shown in Figure 7-2, which confirmed that adding location ids wouldn’t break up fingerprints that should be the same (I was concerned, at first, that the location ids might refer to an individual bank branch, for example). At that point, I came full circle: rather than assigning potentially overlapping fingerprints and then trying to “weed out” the problems with an awkward and time-consuming search process, it became clear that the best solution was just to make the location ids part of the “fingerprint” column right from the start.

Of course, having spent hours working out how to “fix” the original fingerprints — and in the process, contending with the limits of my device, the vagaries of Google Colab, and the tedium of making a small change to a script and then having to wait several minutes for it to run, just to see if my adjustment had “worked" — it felt like a bit of a letdown to realize that the best solution was really just a small tweak on my original script.

But if there’s one thing that I’ve learned over the years with data wrangling in particular (and problem-solving in general): learning when to let go and start over (or go back to the beginning) is one of the most important skills you can develop. Sometimes you have to let go of a dataset, even if you’ve sunk hours into researching, evaluating and even cleaning it. And sometimes you have to let go of a programming approach, even if you’ve spent hours reading documentation and experimenting with new methods just to get the result you’re after. Because in the end, our goal is not to use a particular dataset, or to use a particular library or coding method. It’s to use data to understand something about the world. And if you can keep your focus on that, letting go when you need to will be much easier.

Something else that can make it easier to accept that it’s time to let go of a dataset or scripting solution you’ve already spent hours on is to realize that even if you abandon it, you will have inevitably learned valuable things along the way. Before my detour into “fixing” my original, text-only fingerprints, for example, I didn’t really know how to update values within a pandas dataframe; now I do (I really do). I also now know a bit more about Google Colab’s strengths and inconsistencies, and was reminded about some key “gotchas” to working with diverse data sets (more on that in “Gotchas That Will Get Ya!”).

The same goes for data sets that might not turn out to be usable for answering a particular question: just because they aren’t right for your current project, doesn’t mean they might not be for another one. But whether or not you ever look at them again, working with those data sets will teach you so many things — about the subject of the data, about common pitfalls of certain data types, about experts on the topic and more. In other words, letting go of a data set or a coding approach is never a “waste”: the experience you gain in the process will only make your next effort better, if you let it.

Gotchas That Will Get Ya!

One of the reasons why it is so important to document your work is that very often the person you’re writing that documentation for is really just “future you,” who may be returning to a particular dataset or script — or even Python altogether — after days, weeks, or months away. In that time, things that were once obvious will seem confusing and obscure unless you document them thoroughly, and even common “lessons” can get overlooked when you’re in a hurry or focused on something else. I had that experience as I worked through the last few of chapters, especially as I made an effort to check my own work — and are just another reminder that when something’s wrong with your script, it’s usually something simple ;)

	Confirm the case

	
Anytime you are checking to see if two strings are the same remember that capitalization matters! When I was working on Example 6-13, I overlooked at first that all of the business names (but not the bank names!) were in all caps. I had a frustrating few minutes thinking that my data set did not contain the WATERFORD RECEPTIONS example, until I finally looked at the data again and realized my error.

	Insist on the data type

	
As I worked my way through the process described in “The Circuitous Path to “Simple” Solutions”, I once again had trouble finding matches for values that I felt certain should be in the data set. I had forgotten, however, that the pandas library (unlike the csv library) actually tries to apply data types to the columns of data it reads into a dataframe. In this case, that meant that OriginatingLenderLocationID became a number (instead of a string), so my efforts to find particular values for that column was failing because I was trying to match, for example the number 71453 to the string "71453" — which definitely doesn’t work!

In that instance, I found the simplest solution was simply to add a parameter to the read_csv() function call, specifying that all the data should be read as strings (e.g. fingerprinted_data1 = pd.read_csv('public_150k_plus_fingerprints.csv', dtype='string')). This also avoided some of the larger dollar amounts in the data from being converted to scientific notation (e.g. 1.21068e+06 rather than 1210681).

After basic typos, the sort of data-type “gotchas” described above are probably the next most common data wrangling “errors” you’re likely to encounter. So if you find you’ve made an oversight like the ones above at some point, try not to be too frustrated: it’s really just a sign that your programming logic is good, and some of your formatting needs to be fixed.

Augmenting Your Data

Adding the OriginatingLenderFingerprint column in Example 7-7 was a valuable way to increase the utility and usability of the PPP loan data, and we’ll start to see how in more detail in Chapter 9. But in addition to improving a data set by better clustering and/or disambiguating the values it already has, an important way to augment a data set is to look for other data sets to match it to. Usually, this is easiest when the data set already references a widely-used standard of some kind, which is fairly common in goverment-generated data. In the PPP loan data, for example, there is a column called NAICSCode, which a quick web search confirms is the:

…North American Industry Classification System. The NAICS System was developed for use by Federal Statistical Agencies for the collection, analysis and publication of statistical data related to the US Economy.
https://www.naics.com/what-is-a-naics-code-why-do-i-need-one/

Given this, it’s likely that we can usefully augment our data by finding and adding more information about the NAICS code for each entry, which might help us understand more about what industries and types of businesses are participating in the PPP loan program. While we could probably pull a comprehensive list of NAICS codes from the main website above, a web search for naics sba brings up some interesting options. Specifically, a pdf4 that provides information about Small Business Adminsitration size guidelines for businesses by NAICS code, in either millions of dollars or number of employees. In addition to providing us with more human-readable descriptions of the NAICS codes themselves, augmenting our PPP loan data with this additional information also helps answer more general questions about what really qualifies as a “small business.”

Our process for this won’t be too much different than data merges we’ve done previously, both in the process we’ll follow and the issues it introduces. To start off with, we’ll look for a non-PDF version of the SBA size guidelines; by clicking on the “SBA’s Size Standards Webpage” link on the first page of the above PDF brings us to a more general page on the SBA website5, where, in “Numerical Requirements” section we find a link labeled “table of small business size standards”6. Scrolling down that page turns up an XLSX version of the PDF document that we already found7. From there, we can export the second sheet (which contains the actual codes and descriptions) as a CSV file, which we’ll eventually import into our script to match with our PPP loan data.

As you’ll see in Example 7-8, anytime we integrate a new data source, it means we have to evaluate, clean and transform it just as we have our “primary” data set. In this case, that means that we want to proactively update any <NA> values in the NAICSCode column of our PPP loan data to a flag value (I have chosen the string “None”), in order to prevent their being matched with essentially random <NA> values in our SBA NAICS code file. Similarly, once we’ve done our merge, we still want to see what codes from our PPP loan file didn’t get matched successfully. For now, we’ll leave open the decision about how to handle these, until we’ve done a bit more digging around in our analysis phase to see whether we want “fill them in” (e.g. with the regular NAICS values/interpretations), flag them as being atypical for the SBA, or some combination thereof.

Example 7-8. ppp_adding_naics.py

script to merge our PPP loan data with information from the SBA's NAICS
size requirements, found here:
https://www.sba.gov/document/support--table-size-standards

import pandas to facilitate the merging and sorting
import pandas as pd

read our PPP loan data into a new dataframe
ppp_data = pd.read_csv('public_150k_plus_fingerprints.csv', dtype='string')

read the NAICS data into a separate dataframe
sba_naics_data = pd.read_csv('SBA-NAICS-data.csv', dtype='string')

if there's no value in the 'NAICSCode' column, replace it with the string
"None" to avoid it getting "matched" with a random "NA" value in the
SBA-NAICS-data.csv file
ppp_data['NAICSCode'] = ppp_data['NAICSCode'].fillna("None")

merge the two data sets using a "left" merge, which will just "fill in" our
PPP loan data table.
merged_data = pd.merge(ppp_sample,sba_naics_data,how='left',left_on=['NAICSCode'],right_on=['NAICS Codes'],indicator=True)

open a file to save our merged data to
merged_data_file = open('ppp-fingerprints-and-naics.csv', 'w')

write the merged data to an output file as a CSV
merged_data_file.write(merged_data.to_csv())

print out the values in the '_merge' column to see how many
entries in our loan data don't get matched to a NAICS code in the SBA table
print(merged_data.value_counts('_merge'))

create a new dataframe that is *just* the unmatached rows
unmatched_values = merged_data[merged_data['_merge']=='left_only']

open a file to write the unmatched values to
unmatched_values_file = open('ppp-unmatched-naics-codes.csv', 'w')

write a new CSV file that contains all the unmatched NAICS codes in our
PPP loan data, along with how many times it appears
unmatched_values_file.write(unmatched_values.value_counts('NAICSCode').to_csv())

As you can see, augmenting our data sets can help us expand the types of questions it can answer, and, as we’ll see in Chapter 9 help support faster, more straightforward analysis and interpretation of the data. At the same time, anytime we introduce new data, we need to complete the same life-cycle of evaluation, cleaning, transformation and (probably) augmentation that we applied to our “primary” data set. This means that we’ll always need to strike a balance between making our primary data more elaborate (and possibly useful) with the time and effort involved in finding and wrangling the “secondary” data that we use to augment it.

Conclusion

While the variety of data cleaning, transformation and augmentation possibilities are as varied as both data sets and analysis possibilities, the goal of this chapter was to illustrate a few common issues that tend to arise in the process of preparing our data for analysis.

Before we move on to actually trying to generate insights with our data, however, we’ll take a small “detour” in Chapter 8 in order to explore some programming best practices that can help us make sure our code is as clear, efficient, and effective as possible. Because while just using Python in the first place lets us do data wrangling that would be impossible with other tools, looking for ways we can optimize our code for both use and reuse is another way to make sure we get the most out of each program and piece of code we write, too. This means structuring our files so that they are more versatile and composable, as we’ll see in the next chapter!

1 https://s3.amazonaws.com/tripdata/index.html
2 And even if they weren’t, we could always convert them to strings.
3 https://www.w3schools.com/python/python_regex.asp
4 https://www.sba.gov/sites/default/files/2019-08/SBA%20Table%20of%20Size%20Standards_Effective%20Aug%2019%2C%202019.pdf
5 https://www.sba.gov/federal-contracting/contracting-guide/size-standards
6 https://www.sba.gov/document/support-object-object-table-size-standards
7 https://www.sba.gov/sites/default/files/2019-08/SBA%20Table%20of%20Size%20Standards_Effective%20Aug%2019%2C%202019.xlsx

Chapter 8. Structuring and Refactoring Your Code

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 8th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

Before we move on to the analyzing and visualizing aspects of data wrangling, it’s worth taking a brief “detour” to think about how we can make the most of the work we’ve done so far. In the last few chapters, we’ve explored how to access and parse data from a variety of data formats and sources, how to evaluate its quality in practical terms, and how to clean and augment it for eventual analysis. In the process, our relatively simple programs have evolved and changed, becoming — inevitably — more convoluted and complex.

While commenting our code can do a lot to help keep the logic of our scripts understandable — both to potential collaborators and our future selves — detailed documentation isn’t the only way that we can make our Python programs easy to follow. Just like other written documents, there are many useful ways that we can structure and organize our Python code to make it simpler to use — and even reuse — down the line.

In this chapter, we’re going to go cover the tools and concepts that will allow us to refine our programs so that we can get the most out of them with the least amount of effort. This refining and restructuring is another key way that using Python makes it possible to scale our data wrangling efforts in ways that are all but impossible using other approaches: instead of relying on the functionality that someone else has designed, we can create ones customized to exactly our own preferences and needs.

Revisiting Custom Functions

When we were covering the Python fundamentals way back in Chapter 2, one of the things we touched on was the concept of “custom” or user-defined functions (in this case, we are actually the “user”). In Example 2-8, we saw how a custom function could be used to encapsulate the simple task of printing out a greeting when a particular name was provided, but of course we can create custom functions that are as simple or as complex as we like. Before we dive into the mechanics of writing our own custom functions, however, let’s take a step back and review some of the design considerations that can help us decide when writing a custom function is likely to improve our code. Like all writing, there are few hard and fast rules, but a few heuristics can help you strike the right balance.

Will You Use It More Than Once?

Like variables, one way to identify parts of your code that could use refactoring into custom functions is to look for any particular task that gets done more than once. From validating input to formatting output and everything in between, if your current script includes lots of fiddly conditionals or repetitive steps, that’s the place to start when you’re thinking about designing custom functions. Keep in mind, too, that repeating within a single script isn’t strictly necessary for something to be worth refactoring into a custom function: if you find that there are particular tasks that you’re doing frequently across the scripts that you’re writing (for example, testing to see if a given day is a weekday), you can always pull the custom function into an external script and include it in new ones where you might use it, just as we did with our credentials files in Chapter 5.

Is It Ugly And Confusing?

I’ve put a lot of emphasis in this book on the importance of documenting your work, as a gift to both current collaborators and your future self (by which I mean: good documentation will save your $h!t sometimes). Still, thoroughly commenting your code to include not just the how but the why of your approach, can eventually make it a bit unwieldly to read. Making a piece of code truly comprehensible, then, is a balancing act between being providing enough detail to be comprehensive while being brief enough that your documentation actually gets read.

Folding more of your code into custom functions is a key way to help thread this needle: Like variables, custom functions can (and should!) have descriptive names. This means that just reading the function name can give whoever is looking at your code some essential information about what is happening. At the same time, because the documentation for that function is neatly tucked away in another part of the program, the casual reader can ignore it, while someone seeking more explanation can go elsewhere to find it. This means that the inline comments for our main script can become relatively concise without sacrificing the precision of more complete documentation.

Do You Just Really Hate The Default Functionality?

Ok, so this is maybe not the best reason to write a custom function, but it is a real one. Over time, you may find that there are tasks you need to complete over and over again as part of your data wrangling endeavors, and that there’s something about the existing functions and libraries that just bugs you. Maybe it’s a function name that you find confusin, so that you always have to remind yourself precisely what it’s called. Or maybe there’s a parameter you consistently forget to add that just makes everything more difficult (I’m looking at you, pd.read_csv()!). If you’re working alone or in a small team, it’s perfectly fine to write custom functions that just help make your life easier because — they do. You don’t need a grand rationale. If it will make your life easier, go ahead! That’s the power of being the programmer.

Of course, there are some limits to this. Unless you want to take a much more formal and involved approach to writing Python code, you can’t very effectively do things like define a new function that has the same name as an existing function, or make operators like + or - behave differently1. However, if you just really wish that an existing function you have to use all the time worked a little bit differently, go with it — just make sure you document the heck out of your version!

Understanding Scope

Now that we’ve gone over some of the reasons you might refactor your code with custom functions, it’s time to discuss the mechanics a little bit. Probably the most important concept to understand when you start writing custom functions is scope. Although we haven’t used this term before, scope is something that we’ve actually been working with since we declared our first variables way back in ???. In that example, we saw that we could:

	
Create and assign a value to a variable (author = "Susan E. McGregor")

	
Use that variable to pass refer to its contents later (print(author))

At the same time, we know that if we created a program that simply consisted of the line:

print(author)

We’d get an error, because in the universe of our one-line script, there is no memory-box labeled author. So Python chucks an error at us and declines to go any further.

When we talk about scope in programming, what we’re actually talking about whatever currently exists in the “universe” from the perspective of a particular piece of code. An individual script has a scope that evolves as each line of code is read by the computer, from top to bottom, which is what leads to the (very much expected) behaviors of Example 8-1 and Example 8-2.

Example 8-1. No author variable in scope

no variable called "author" exists in the "universe" where this line of code does; throw an error
print(author)

Example 8-2. An author variable in scope

create variable "author"
author = "Susan E. McGregor"

variable "author" exists in the universe from the perspective of this line of code; carry on!
print(author)

Just as every time we create a new variable a new “box” is created in the computer’s memory, each time we define a new custom function, a new little universe, or scope is created for it as well. This means that when we use custom functions, we are compartmentalizing our code not just visually, but logically and functionally. In other words, we can treat our own custom functions much the way we do the built-in Python methods and library functions that we’ve been using throughout this book: As “recipes” to which we provide “ingredients,” and which returns to us some freshly made Python object in return. The only difference is that with custom functions, we are the chefs!

To get a handle on what this all means in practice, let’s revisit the Example 2-8 example from Chapter 2, but with a couple of tweaks, as shown in Example 8-3.

Example 8-3. greet_me_revisited.py

create a function that prints out a greeting to any name passed to the function
def greet_me(a_name):
 print("Variable `a_name` in `greet_me`: "+a_name)
 print("Hello "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

a_name = "Python"
print("Variable `a_name` in main script: "+a_name)

use my custom function, greet_me to output "Hello" messages to each person
greet_me(author)
greet_me(editor)

print("Variable `a_name` in main script again: "+a_name)

This yields the output:

Variable `a_name` in main script: Python
Variable `a_name` in `greet_me`: Susan E. McGregor
Hello Susan E. McGregor
Variable `a_name` in `greet_me`: Jeff Bleiel
Hello Jeff Bleiel
Variable `a_name` in main script again: Python

Because any custom function automatically gets its own scope, it only “sees” the variables and values that are explicitly passed into it, which are in turn “hidden” from the primary script. This means that when we write custom functions, we don’t need to worry about what variable names have been used in the primary script or vice versa. This reduces the number of unique variable names we need to come up as we write more complex pieces of code, and also means that once we have a custom function working as we expect, reusing its functionality becomes a matter of calling a single function rather than copying and adjusting several (or more!) lines of code.

Defining the Parameters for Function “Ingredients”

We already have a fair amount of experience with providing “ingredients” (also known as arguments) to the methods and functions built in to Python or made available through the many libraries we have used up to this point. As we begin to write custom functions, however, we need to look in more detail and the process of defining the parameters that those functions will accept2.

Unlike some programming languages, Python doesn’t require (or even really allow) you to insist that a function’s parameters have specific data types; if someone wants to pass entirely the wrong types of data into your function, they can absolutely do that. This means that as the function author, you need to decide how much time you want to spend validating the arguments or “ingredients” that have been passed in. In principle, there are three ways we can approach this:

	
Check the data types of all the arguments that have been passed into your function, and complain to the programmer if you find something you don’t like

	
Wrap your code in Python’s try...except blocks so that you can capture certain types of errors without halting the entire program, or just to customize your description of what went wrong

	
Not worry about it and let the function user fix any resulting errors using the default Python error messages

While it may seem a bit laissez faire, my primary recommendation at this point is actually to go with option three: don’t worry about it. Not because errors won’t happen (they will — you can revisit “Fast forward” if you want to refresher on what this looks like), but because our primary interest here is wrangling data, not writing enterprise-level Python. As with the scripts we wrote in Chapter 4, we want to strike a balance between what we try to handle programmatically, and what we rely on the programmer to investigate and handle for themselves. Especially since the programs we’re writing can’t really hurt anything if they fail (we might lose time, but they won’t bring down a website or corrupt the only copy of our data), relying on the programmer to check what type of data our functions expect and provide them what they need seems reasonable. Unsurprisingly, of course, I will strongly recommend that you document your functions clearly, which we’ll look at in more detail in “Documenting Your Custom Scripts and Functions with pydoc”.

What Are Your Options?

Even if we’re not trying to write custom functions that are used by thousands of people, we can still make them flexible and fully-featured. One of the simplest ways to do this is to write our functions to solve the most common version of our problem, but allow optional arguments — like those we’ve seen in pandas and other libraries — so that we don’t end up writing multiple functions that only differ slightly in functionality. For example, we could modify our greet_me function so that while “Hello” is the default greeting, that default can be overridden by an optional value passed in by the programmer. This let’s us craft and adapt our own functions so we can use them in many different contexts.

To get a look at how this works in practice, let’s look at a modified version of greet_me in Example 8-4.

Example 8-4. greet_me_options.py

create a function that prints out a greeting to any name
def greet_me(a_name, greeting="Hello"):
 print(greeting+" "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use my custom function, greet_me to output greeting messages to each person
say "Hello" by default
greet_me(author)
let the programmer specify "Hi" as the greeting
greet_me(editor, greeting="Hi")

As you can see, adding optional arguments is really as simple as specifying a default value in the function definition; if the programmer passes a different value, it will simply overwrite that default when the function is called.

Getting Into Arguments?

Providing a default value in the function declaration is not the only way to add optional arguments to your custom functions in Python. There are also two generic types of optional arguments: *args and **kwargs.

	*args

	
The *args parameter is useful when you want to be able to pass a list of several values into a function, and giving all of them names and/or default values would be tedious. These values are then accessed by writing a for…in loop to go through them one by one, e.g. for arg in args.

	**kwargs

	
The **kwargs parameter is similar to *args, except that it allows an arbitrary number of keyword arguments to be passed to the function without assigning any of them a default value as we did for greeting in Example 8-4. Values passed this way can be accessed via the kwargs.get() method, e.g. my_var = kwargs.get("greeting")

If using *args and **kwargs seems like a handy way to (literally) leave your options open when writing custom functions, keeps in mind: it’s always better to write custom functions that address exactly the needs you have, and worry about adapting them (and possibly using one of these parameters, if absolutely necessary) later. Otherwise, you risk spending lots of time writing functionality that you might never need. In the meantime: we have data to wrangle!

Return Values

So far, our variations on a “greet_me” function have been pretty limited in what they accomplish; we’ve really just used them print (lightly) customized messages out to the console. Meanwhile, the functions we’ve used from external libraries are incredibly powerful: they can take a humble csv and transform it into a pandas dataframe, or convert an xls file into something that lets us easily access all kinds of information about the data it contains. While that level of Python programming is beyond the scope of this book, we can still create clean, super-useful custom functions by learning a bit more about function return values.

If parameters/arguments are the “ingredients” in our function “recipes”, then return values are the final dish — the outputs that get consumed by the rest of our program. Really, return values are just pieces of data; they can be literals (like the string “Hello”), or they can be variables. They are useful because they let us hand off to a function whatever it wants and get back whatever we need, without worrying (from the perspective — or scope — of the main program) how the proverbial sausage gets made. If we restructure the basic greet_me function in Example 8-3 to use a return value, it might look something like Example 8-5.

Example 8-5. make_greeting.py

create a function that **returns** a greeting to any name passed in
def make_greeting(a_name):
 return("Hello "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use my custom function, greet_me to create "Hello" messages to each person
author_greeting = make_greeting(author)
editor_greeting = make_greeting(editor)

print the gretting messages that were returned by each function call
print(author_greeting)
print(editor_greeting)

At first you might be thinking, “How did that help?” Our main program, of course, got longer. At the same time, it also arguably became a little bit more flexible and easier to understand. Because my make_greeting() function returns the greeting (rather than just printing it directly), I can do more things with it. Sure, I can just print it as we did in Example 8-5, but I can now also store its return value in a variable and do something else with it later. For example, I could add the line:

print(editor_greeting+", how are you?")

While that new message might not seem so exciting, it does let me both compartmentalize some work into the function (adding “Hello” to any name), but also do different things with the output (add more text to one, but not the other).

Climbing the “Stack”

Of course, creating a whole new variable just to store a simple greeting (as we do with author_greeting), does seem like a little bit more trouble than it’s worth. And in fact, there’s no rule that says we have to stash the output from a function in a variable before passing it to another function — the first function’s output just becomes the next function’s input. So I could also rewrite Example 8-5 as shown in Example 8-6, and add a new function to add the “, how are you?” text as well.

Example 8-6. make_greeting_no_vars.py

function that returns a greeting to any name passed in
def make_greeting(a_name):
 return("Hello "+a_name)

function that adds a question to any greeting
def add_question(a_greeting):
 return(a_greeting+", how are you?")

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

print the greeting message
print(make_greeting(author))

pass the greeting message to the question function and print the result!
print(add_question(make_greeting(editor)))

While the code print(make_greeting(author)) is fairly easy to interpret, things start to get more complicated with print(add_question(make_greeting(editor))), illustrating that there’s a limit to how much you want to do this kind of function call nesting. As you nest more and more, the code gets increasingly difficult to read, even though the “order of operations” is quite straightforward: the “innermost” function is always executed first, and its return value “bubbles up” to become the input for the next function, whose return value bubbles up to the next function, and so on and so forth. In traditional programming terminology this is known as the function stack, where the innermost function is the “bottom” of the stack and the outermost is the “top”3. An illustration of the function stack for the last line of Example 8-6 is shown in Figure 8-1.

[image: A nested function call stack.]
Figure 8-1. A nested function call stack

Refactoring For Fun and Profit

Now that we’ve explored some of the key programming principles associated with refactoring our code to use custom functions, let’s revisit some of the scripts from previous chapters that became a little unweildly as we added functionality, and see what happens when we repackage parts of them into custom functions. As we move through the examples below, keep in mind that choices about what to refactor and how (as with any kind of written document) are partly a matter of preference and style. For that reason, I’ll describe my reasoning below each example, so that you can get a sense of what you might consider as you develop your own refactoring practice.

A Function for Identifying Weekdays

In Example 7-3, we created a small script designed to read in our Citi Bike rides data, and output a new file containing only the rides that took place on a weekday. While there was nothing fundamentally wrong with the approach we used in that example, to me this is a candidate for refactoring for a couple of reasons:

	
The existing script relies on a couple of ugly and not-very-descriptive function calls. The first one is required to convert the available date string into an actual datetime format that Python can evaluate meaningfully:

the_date = datetime.strptime(a_row['starttime'], '%Y-%m-%d %H:%M:%S.%f')

While the built-in weekday() method is reasonably straightforward (although it might be better-named dayofweek()), we have to compare it to the “magic number” 4 in order to determine if the date we passed in is not a weekend day:

if the_date.weekday() <= 4:

	
Checking whether a particular date-like string is a Monday-through-Friday weekday seems like the kind of task that might come up reasonably frequently. If I put this capability into a custom function, it will be easier to reuse in other scripts.

My refactored version of this script can be seen in Example 8-7.

Example 8-7. weekday_rides_refactored.py

Objectives: Filter all September, 2020 Citi Bike rides, and output a new
file containing only weekday rides

Program Outline:
1. Read in the data file: 202009-citibike-tripdata.csv
2. Create a new output file, and write the header row to it.
3. For each row in the file, make a date from the `starttime`:
a. if it's a weekday, write the row to our output file
4. Close the output file

import the "csv" library
import csv

import the "datetime" library
from datetime import datetime

def main(): [image: 1]
 # open our data file in "read" mode
 source_file = open("202009-citibike-tripdata.csv","r")

 # open our output file in "write" mode
 output_file = open("202009-citibike-weekday-tripdata.csv","w")

 # pass our source_file to the DictReader "recipe"
 # and store the result in a variable called `citibike_reader`
 citibike_reader = csv.DictReader(source_file)

 # create a corresponding DictWriter and specify that the fieldnames should
 # come from `citibike_reader`
 output_writer = csv.DictWriter(output_file, fieldnames=citibike_reader.fieldnames)

 # actually write the header row to the output file
 output_writer.writeheader()

 # use a `for...in` loop to go through our `citibike_reader` list of rows
 for a_row in citibike_reader:

 # if the current 'starttime' value is a weekday
 if is_weekday(a_row['starttime']):
 # write that row of data to our output file
 output_writer.writerow(a_row)

 # close the output file
 output_file.close()

def is_weekday(date_string, date_format='%Y-%m-%d %H:%M:%S.%f'): [image: 2]

 # convert the value in the 'date_string' to datetime format
 the_date = datetime.strptime(date_string, date_format)

 # if `the_date` is a weekday (i.e. its integer value is 0-5)
 if the_date.weekday() <= 4:
 return(True)
 else:
 return(False)

if __name__ == "__main__": [image: 3]
 main()

As you can see, while the bulk of the code (and even many of the comments) in Example 8-7 are the same as those in Example 7-3, things have been reorganized slightly:

	[image: 1]

	The bulk of our script as now been wrapped into a function called “main().” This is a Python convention, but also serves an important functional purpose: because the computer reads Python top-to-bottom, if we don’t wrap this code in a function, then the computer won’t know what we’re talking about when it reaches if is_weekday(a_row['starttime']), because it hasn’t gotten to the definition of is_weekday() yet.

	[image: 2]

	We can partition the finicky work of converting our value to a date string through the is_weekday() function, while keeping the meaningful bulk of our code towards the top of the file, and making it more readable in the process.

	[image: 3]

	This works because the computer reads both the main() and is_weekday() functions as usual from top-to-bottom, but doesn’t actually try to execute anything of it until it reaches the main() function call.

What’s the main Frame?

If you’re wondering about the if statement at <3> above, the first thing to know is that is is also a Python convention, and is a programmatic shorthand for telling the computer “if this script is being run directly…”. The principal objective of this protective if statement is to prevent unexpected behaviors if you import one Python script into another4. While useful, I would generally recommend that as you accrue useful functions (as, perhaps our is_weekday() method from Example 8-7 may prove to be), you simply group these thematically and add them to descriptively-named files (e.g. “date_functions.py”), rather than importing scripts with distinct functionality into one another. While the if __name__ == "__main__": statement will help keep things runnning smoothly, as you adapt and refine your commonly-used functions, it will be easier to keep track of them if you keep them all in one (or a few) well-named places.

Metadata Without the Mess

In Example 7-5, we built on code from Example 4-6 and Example 7-4 to create a single script that both handled Microsoft Excel dates correctly and split our source data file into a metadata text file and a structured CSV. While the result was effective, the resulting code was leggy and hard to read, full of hard-to-interpret conditionals and obscure date-formatting function calls.

While we obviously still want to accomplish the same thing, we can clean things up a little bit by handling the formatting of the different types of row content (for the CSV or the TXT file, respectively) in separate functions. This requires rearranging (and clarifying) our logic somewhat, in addition to considering how to get the required information into our custom functions. One approach is ilustrated in Example 8-8.

Example 8-8. xls_meta_and_date_parsing_refactored.py

Converting data in an .xls file with Python to csv + metadata file, with
functional date values using the "xrld" library.
First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the "xlrd" library
import xlrd

import the csv library
import csv

needed to test if a given value is *some* type of number
from numbers import Number

for parsing/formatting our newly interpreted Excel dates
from datetime import datetime

def main():
 # start by passing our source filename as an ingredient to the xlrd library's
 # open_workbook "recipe" and store the result in a variable called
 # `source_workbook`.
 source_workbook = xlrd.open_workbook("fredgraph.xls")

 global the_datemode [image: 1]

 the_datemode = source_workbook.datemode

 # we'll probably only need one metadata file per workbook, though we could
 # easily move this inside the loop and create a per-sheet metadata file
 # if necessary
 source_workbook_metadata = open("fredgraph_metadata.txt","w")

 # even though our example workbook only includes one worksheet, the
 # `open_workbook` recipe has generated a list of sheet names that we can loop
 # through. In the future, we could use this to create one `.csv`file per sheet
 for sheet_name in source_workbook.sheet_names():

 # we'll create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # for clarity, we'll name it "xls_"+sheet_name
 output_file = open("xls_"+sheet_name+"_dates.csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 output_writer = csv.writer(output_file)

 # we'll use a boolean (True/False) "flag" variable so that we know when
 # to start writing to our "data" file instead of our "metadata" file
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':
 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 new_row = create_table_row(current_sheet, row_num) [image: 2]
 # write this new row to the data output file
 output_writer.writerow(new_row)

 # otherwise, this row must be metadata
 else: [image: 3]

 metadata_line = create_meta_text(current_sheet, row_num)

 source_workbook_metadata.write(metadata_line)

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

def create_table_row(the_sheet, the_row_num):

 # extract the table-type data values into separate variables
 the_date_num = the_sheet.row_values(the_row_num)[0]
 U6_value = the_sheet.row_values(the_row_num)[1]
 new_row = [the_date_num, U6_value]

 # confirm the the value is a number, then the current row is *not*
 # the header row, so transform the date
 if isinstance(the_date_num, Number):

 # if it is, use the xlrd library's `xldate_as_datetime` recipe
 # with the value + the workbook's datemode to generate a
 # Python datetime object
 the_date_num = xlrd.xldate.xldate_as_datetime(the_date_num, the_datemode)

 # create a new list containing the_date_num (formatted to MM/DD/YYYY
 # using the `strftime()` recipe) and the value in the second column
 new_row = [the_date_num.strftime('%m/%d/%Y'),U6_value]

 return(new_row)

def create_meta_text(the_sheet, the_row_num):

 meta_line = ""

 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in the_sheet.row(the_row_num):

 # write the value of the cell, followed by a tab character
 meta_line = meta_line + item.value + '\t'

 # at the end of each line of metadata, add a newline
 meta_line = meta_line+'\n'

 return(meta_line)

if __name__ == "__main__":
 main()

	[image: 1]

	Though they should be used sparingly, creating a global variable called the_datemode, means we don’t have to worry about passing around the entire spreadsheet object just to be able to format our dates correctly.

	[image: 2]

	For example, if we didn’t create a global variable, for the date mode, we would have to pass it as another argument to create_table_row(), which feels a bit incongruous.

	[image: 3]

	(Callout text to come.)

If you compare Example 8-8 with Example 8-7, you’ll see they have several key features in common: instead of code that executes automatically, everything in this script has been containerized into functions, with the conventional main() function call protected by a if __name__ == "__main__": conditional. Example 8-8 also shares quite a bit, in terms of code and structure, with the original script in Example 7-5: the includes are all the same, and a large portion of the code — although it has been rearranged somewhat into three functions instead of a single, linear script — is the shared between the two.

Going Global?

In Python, global variables like the one used in Example 8-8 differ from typical variables in two ways:

	
Using the global keyword indicates that this variable can be accessed — and modified — from inside any function in our program.

	
A global variable (like the_datemode) cannot be declared and assigned a value in the same code statement, the way we do with most variables (e.g. is_table_data = False). Instead, we have to declare it with the global keyword on one line, and assign a value to it on a subsequent line.

While global variables can be quite in certain circumstances (especially in a situation like this, where we’re forced to work with an older data format), they should be used with care. Though you might initially be thinking, “Hey, this global keyword is handy. Why don’t I just make all my variables global?”

In the short term, such an approach may seem appealing, because it helps minimizing how much you have to rewrite your existing code in order to effectively refactor it. At the same time, using lots of global variables basically erases many of the advantanges of refactoring — especially the ability to reuse variable names across functions and scripts. As you complete more and more data wrangling projects, you’ll almost certainly start to develop conventions of your own when it comes to naming variables, which can save you time and effort. As your collection of commonly-used functions grows, you’ll save even more time by reusing them across your scripts. But if in one of those scripts you create a global variable that shares a name with one used by your included function, then you’ll get you errors (if you’re lucky) or just wrong results (worse, really). Whichever way you discover something is wrong (and hopefully it will be you, and not someone reviewing your data, who discovers it), you’re then in for the bug-hunt of your life, because you’ll have to go through your code line-by-line in order to uncover the mix up. In other words, use global variables extremely sparingly — and not at all if you can avoid it!

Given all the reasons not to use global variables, why did I ultimately decide to use one here? First, there is only one possible value for source_workbook.datemode in the entire script, because there is only one datemode attribute per Excel spreadsheet data source. Even if a particular workbook had 20 sheets with 100 columns of data each, there would still only be a single, unchanging value for datemode, which would apply to all of them. In this sense, the value of datemode is conceptually “global”, and so it is reasonable to make the variable that holds this value global as well. And since the value of datemode will never need to be updated within the script, there is less risk of retrieving an unexpected value from it.

As with all writing, however, these choices are partly a matter of taste — and even our own taste can change over time. While at first I liked the symmetry of creating one function to “build” each row of table data and another function to “build” each line of metadata text, there’s also something to be said for breaking that symmetry and avoiding the use of the global datemode variable altogether, as shown in Example 8-9.

Example 8-9. xls_meta_and_date_parsing_refactored_again.py

Converting data in an .xls file with Python to csv + metadata file, with
functional date values using the "xrld" library.
First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the "xlrd" library
import xlrd

import the csv library
import csv

needed to test if a given value is *some* type of number
from numbers import Number

for parsing/formatting our newly interpreted Excel dates
from datetime import datetime

def main():
 # start by passing our source filename as an ingredient to the xlrd library's
 # open_workbook "recipe" and store the result in a variable called
 # `source_workbook`.
 source_workbook = xlrd.open_workbook("fredgraph.xls")

 # we'll probably only need one metadata file per workbook, though we could
 # easily move this inside the loop and create a per-sheet metadata file
 # if necessary
 source_workbook_metadata = open("fredgraph_metadata.txt","w")

 # even though our example workbook only includes one worksheet, the
 # `open_workbook` recipe has generated a list of sheet names that we can loop
 # through. In the future, we could use this to create one `.csv`file per sheet
 for sheet_name in source_workbook.sheet_names():

 # we'll create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # for each sheet in our workbook, we'll create a separate `.csv` file
 # for clarity, we'll name it "xls_"+sheet_name
 output_file = open("xls_"+sheet_name+"_dates.csv","w")

 # there is a "writer" recipe that lets us easily write `.csv`-formatted rows
 output_writer = csv.writer(output_file)

 # we'll use a boolean (True/False) "flag" variable so that we know when
 # to start writing to our "data" file instead of our "metadata" file
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':
 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # extract the table-type data values into separate variables
 the_date_num = current_sheet.row_values(row_num)[0]
 U6_value = current_sheet.row_values(row_num)[1]

 # if the value is a number, then the current row is *not*
 # the header row, so transform the date
 if isinstance(the_date_num, Number):
 the_date_num = format_excel_date(the_date_num, source_workbook.datemode)

 # write this new row to the data output file
 output_writer.writerow([the_date_num, U6_value])

 # otherwise, this row must be metadata
 else:
 metadata_line = create_meta_text(current_sheet, row_num)

 source_workbook_metadata.write(metadata_line)

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

def format_excel_date(a_date_num, the_datemode):

 a_date_num = xlrd.xldate.xldate_as_datetime(a_date_num, the_datemode)

 # create a new list containing the_date_num (formatted to MM/DD/YYYY
 # using the `strftime()` recipe) and the value in the second column
 formatted_date = a_date_num.strftime('%m/%d/%Y')

 return(formatted_date)

def create_meta_text(the_sheet, the_row_num):

 meta_line = ""

 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in the_sheet.row(the_row_num):

 # write the value of the cell, followed by a tab character
 meta_line = meta_line + item.value + '\t'

 # at the end of each line of metadata, add a newline
 meta_line = meta_line+'\n'

 return(meta_line)

if __name__ == "__main__":
 main()

Which of these is the better solution? As with all writing, it depends on your preferences, your use cases, and your audience. Some groups or institutions will be “opinionated” about the choice to use — or avoid — global variables; some will feel that shorter solutions are preferable, while others will prize structural symmetry, or resuability. While Example 8-9 sacrifices some of the structural symmetry of its predecessor, it generates a function that may be more broadly reusable. The choice of which is more important is, as always, up to you to decide.

Documenting Your Custom Scripts and Functions with pydoc

Up until now, we’ve taken a thorough—but fairly free-form—approach to documenting our code. There’s nothing wrong with this approach, but as your inventory of Python scripts expands, it becomes more useful to be able to review the functionality they contain without individually opening up and reading through the each and every script to find what you’re looking for. If nothing else, having lots of files open makes it that much more likely that a stray keystroke will introduce an error into one of them, which is a really quick way to ruin your day

Fortunately, with just a little bit of formatting, we can adapt our existing program descriptions and comments to work with a commannd-line function called pydoc, which will print out our script and function descriptions to the command line, without our having to open anything at all!

To see this in action, let’s start by refactoring one more script. In this case, we’ll revise Example 7-6 to make it a little bit more concise. In the process, I’ll also update the comments at the top of the script (and add some to our new function), to make them compatible with the pydoc command. You can see what this looks like in Example 8-10.

Example 8-10. fixed_width_strip_parsing_refactored.py

""" NOAA data formatter [image: 1]
Reads data from an NOAA fixed-width data file with Python and outputs
a well-formatted CSV file.

The source file for this example comes from the NOAA, and can be accessed here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt

The metadata for the file can be found here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

Available functions

* convert_to_columns: Converts a line of text to a list

Requirements

* csv module

"""
we'll start by importing the "csv" library
import csv

def main():
 # variable to match our output filename to the input filename
 filename = "ghcnd-stations"

 # we'll just open the file in read format ("r") as usual
 source_file = open(filename+".txt", "r")

 # the "readlines()" method converts a text file to a list of lines
 stations_list = source_file.readlines()

 # as usual, we'll create an output file to write to
 output_file = open(filename+".csv","w")

 # and we'll use the `csv` library to create a "writer" that gives us handy
 # "recipe" functions for creating our new file in csv format
 output_writer = csv.writer(output_file)

 # since we don't have column headers within these file we have to "hard code"
 # these based on the information in the `readme.txt` file
 headers = ["ID","LATITUDE","LONGITUDE","ELEVATION","STATE","NAME","GSN_FLAG","HCNCRN_FLAG","WMO_ID"]

 column_ranges = [(1,11),(13,20),(22,30),(32,37),(39,40),(42,71),(73,75),(77,79),(81,85)] [image: 2]
 # write our headers to the output file
 output_writer.writerow(headers)

 # loop through each line of our file
 for line in stations_list:

 # send our data to be formatted
 new_row = convert_to_columns(line, column_ranges)

 # use the `writerow` function to write new_row to our output file
 output_writer.writerow(new_row)

 # just for good measure, let's close the `.csv` file we just created
 output_file.close()

def convert_to_columns(data_line, column_info, zero_index=False): [image: 3]
 """Converts a line of text to a list based on the index pairs provided

 Parameters

 data_line : str
 The line of text to be parsed
 column_info : list of tuples
 Each tuple provides the start and end index of a data column
 zero_index: boolean, optional
 If False (default), reduces starting index position by one

 Returns

 list
 a list of data values, stripped of surrounding whitespace
 """

 new_row = []

 # default value assumes that list of index pairs is *NOT* zero-indexed,
 # which means that starting index values need to be reduced by 1
 index_offset = 1

 # if column_info IS zero-indexed, don't offset starting index values
 if zero_index:
 index_offset = 0

 for index_pair in column_info:

 start_index = index_pair[0]-index_offset
 end_index = index_pair[1]

 # strip whitespace from around the data
 new_row.append((data_line[start_index:end_index]).strip())

 return new_row

if __name__ == "__main__":
 main()

	[image: 1]

	By starting and ending the file description and the convert_to_columns() function description with a set of three double quotation marks ("""), both of them stand out more from the rest of the comments in the file5. Even more significantly, we can now access the file description from the command line by running the command:

pydoc fixed_width_strip_parsing_refactored

Which will display all of the file and function descriptions within the command line interface (use the arrow keys to scroll up and down, or the spacebar to move an entire “page” down at once). To exit the documentation and return to the command-line, just hit the q key.

	[image: 2]

	Instead of writing a unique line of code to pull each column of data out of a given line of text, I’ve put all the start/end values for each column into a list of Python tuples, which are essentially unchangeable lists.

	[image: 3]

	Now I can pass those values to the convert_to_columns() function <2>, along with each line of data. Because the start/end index pairs are in a list, we can then use a for...in loop to convert the text to columns. Not only does this make our main script easier to read, in the process we’ve created a function that could actually be used to convert any line of text into columns, as long as we pass in the start/end index pairs in the correct format. I’ve even added a flag value called zero_index, which let’s us use this function with start/end pairs that consider zero to be the first position (the default value assumes that the first position is “1”).

Note that in addition to viewing the documentation for the whole file, it is possible to use pydoc to view the documentation for a single function (for example, the convert_to_columns() function) by running:

pydoc fixed_width_strip_parsing_refactored.convert_to_columns

And moving through/exiting its documentation in the same way as you did for the entire file.

Navigating Documentation in The Command Line

Generically, you can view the documentation of any Python script (if its description has been properly formatted) using the command:

pydoc __filename_without_.py_extension__

Likewise, you can access the documentation of any function in a script using:

pydoc __filename_without_.py_extension__.__function_name__

And since you can’t use your mouse to get around these files, the following keyboard shortcuts are essential:

	arrow up/arrow down

	
Move one line up/down

	spacebar

	
Move one entire page down

	q

	
Quit/exit documentation

The Case for Command-Line Arguments

Refactoring one long script into a series of functions isn’t the only way we can make our data wrangling code more reusable. For scripts that involve downloading data and/or converting it from PDF images to text, breaking up a single data wrangling process into multiple scripts is another way to save time and effort both now and in the future. That’s partly because we want to minimize how often we do the resource-intensive parts of these processes (like the downloads or the conversion of PDFs to images) even in the short term, and partly because these tasks are usually pretty rote — meaning that with a few additional tricks, we can transform our bespoke data wrangling scripts into standalone code that we can easily reuse over and over again.

As an example, let’s look back at Example 5-9. In this script, the main thing we’re doing is downloading the contents of a webpage — though in this case it happens to be http://web.mta.info/developers/turnstile.html specifically. But is that really so different from what we would be doing if we downloaded the list of Citi Bike monthly operating reports at https://www.citibikenyc.com/system-data/operating-reports? Similarly, the code that downloaded the XML and JSON files in Example 5-1 was almost identical — the only substantive differences were the source URLs and the file names of the local copies. If there was a way that we could refactor these scripts so that the whole thing acted more like a function, that could potentially save us a lot of time and effort.

Fortunately, this is very achievable with standalone Python files, thanks to the built-in argparse Python library, which lets us write our scripts to both require — and use — arguments passed in from the command line. Thanks to argparse, we don’t need to write a new script for every individual webpage we want to download, because it lets us specify both the target URL and the name of our output file right from the command line, as shown in Example 8-11.

Example 8-11. webpage_saver.py

""" Webpage Saver!

Downloads the contents of a webpage and it locally

Usage

python webpage_saver.py target_url filename

Parameters

target_url : str
 The full URL of the webpage to be downloaded
filename : str
 The desired filename of the local copy

Requirements

* argparse module
* requests module

"""
include the requests library in order to get data from the web
import requests

include argparse library to pull arguments from the command line
import argparse

parser = argparse.ArgumentParser()
arguments will be assigned based on the order in which they were provided
parser.add_argument("target_url", help="The full URL of the webpage to be downloaded")
parser.add_argument("filename", help="The desired filename of the local copy")
args = parser.parse_args()

pull the url of the webpage we're downloading from the provided arguments
target_url = args.target_url

pull the intended output filename from the provided arguments
output_filename = args.filename

since we're *not* using an API, the website owner will have no way to identify
us unless we provide some additional information. In this case, we're
describing the browser it should treat our traffic as being from. We're also
providing our name and contact information. This is data that the website
owner will be able to see in their server logs.
headers = {
 'User-Agent': 'Mozilla/5.0 (X11; CrOS x86_64 13597.66.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.109 Safari/537.36',
 'From': 'YOUR NAME HERE - youremailaddress@emailprovider.com'
}

because we're just loading a regular webpage, we send a `get` request to the
URL, along with our informational headers
webpage = requests.get(target_url, headers=headers)

opening up a local file to save the contents of the webpage to
output_file = open(output_filename,"w")

the webpage's code is in the `text` property of the website's response
so write that to our file
output_file.write(webpage.text)

close our output file!
output_file.close()

Now we have an easy way to download any webpage to our device, without having to write separate scripts for every URL. For example, if we run:

python webpage_saver.py "http://web.mta.info/developers/turnstile.html" "MTA_turnstiles_index.html"

We will get exactly the same result as in Example 5-9, but we can also run:

python webpage_saver.py "https://www.citibikenyc.com/system-data/operating-reports" "citibike_operating_reports.html"

To get the Citi Bike operating reports, without having to even open, much less modify our script. Handy, no?

Tip

Using command line arguments with your task-specific scripts can save you time — but not it if you end up meticulously copying complex URLs, for example, into your command line interface by hand. To make things simpler, here’s a quick overview of how to copy/paste to the command line, depending on your operating system:

	Linux (including Chromebook)

	
Highlight the URL/text you want to copy, then context-click and select “Copy.” In your command-line window, just click and it will automatically paste.

	Windows/Mac

	
Highlight the URL/text you want to copy, then context-click and select “Copy.” In your command-line window, context-click again and select “Paste.”

Where Scripts and Notebooks Diverge

By now you may have noticed that in the preceding sections, I didn’t describe a way to get arguments from the command line into a Jupyter notebook, nor have I talked much about generating and interacting with script and function documentation for Jupyter notebooks, either. This is not because these things are impossible, but because Jupyter notebooks are designed to let you interact with Python differently than standalone scripts, and so some of these concepts are less applicable to those. As someone who started working with Python before Jupyter (formerly IPython) notebooks existed, my bias is still toward standalone scripts for the majority of my rubber-to-the-road Python data wrangling. While notebooks are (generally) great for testing and tweaking chunks of code, I almost always end up migrating back to standalone scripts once I’ve identified the approach that works for a particular data wrangling task. This is mostly because as I move further along in a project, I often get impatient even with the process of opening a modifying a script unless I have to — which is part of the reason that I favor using command-line arguments and standalone scripts for common, straightforward tasks.

As we’ll soon see, however, the interactivity of Jupyter notebooks makes them generally far superior to standalone Python scripts when it comes to experimenting with — and especially sharing — data analysis and visualization. As a result, we’ll look more closely at how to use Jupyter notebooks in particular as we turn to the basics of data analysis in Chapter 9

Conclusion

In this chapter, we’ve taken a bit of a break from direct data wrangling to revisit some of our prior work whose code had gotten unweildly. Through the process of refactoring, we explored how we can reorganize code that works into code that works well — and in the process becomes more readable and reusable. As our data wrangling projects evolve, this lets us build up our own collection of custom functions that we can turn to for solving the kinds of problems — from formatting to data access — that we, personally, deal with frequently. Similarly, by applying a bit more structure to our documentation, we made it accessible — and useful — right from the command line, so that we can find what we’re looking for without opening a single script. And in a similar vein, we applied that refactoring logic to our scripts themselves, so that we can customize their functionality without having to open them up, either!

In the next chapter, we’ll return to our focus on data with a brief tour of basic data analysis techniques, followed by an overview of the visualization approaches that will help you better understand and present your data to the world!

1 Doing these things is definitely possible, but is well beyond the scope of most data wrangling activities, and therefore, this book.
2 Technically, parameters describe the variable names assigned in the function definition, while arguments are the actual values that are passed to the function when it is called. In practice, though, these terms are often used interchangeably.
3 This term is also why the forum is called StackExchange.
4 You can find an helpful description/demonstration of the reasoning behind this convention here: https://www.freecodecamp.org/news/if-name-main-python-example/
5 The actual structure/formatting I’ve used here a mashup of different styles derived from this guide: https://realpython.com/documenting-python-code/#documenting-your-python-code-base-using-docstrings. While using a standard approach may matter if you are working with a large team, if you are working alone or in a small group, find a style that works for you!

Chapter 9. Introduction to Data Analysis

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 9th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at pythondatawranglingandquality@gmail.com.

So far, this book has focused mostly on the logistics of acquiring, transforming, augmenting and assessing data. We’ve explored how to write code that can retrieve data from the internet, extract it from unfriendly formats, and evaluate its completeness and other qualities. We’ve even spent some time thinking about how to make sure that the tools we use to do all this — our Python scripts themselves — are optimized to meet our needs, both now and in the future.

At this point, though, it makes sense to revisit the why of all this work: back in “What is Data Wrangling?”, I described the purpose of data wrangling as transforming “raw” or found data into something that can be used to generate insight and meaning. But just doing that transformation work without actually doing the analysis to find some of that meaning would be like setting up your mise en place and then walking out of the kitchen. You don’t spend hours cutting vegetables and prepping your ingredients unless you want to cook. And that’s what data analysis is: taking all that beautifully cleaned and prepared data you’ve been working with, and turning it into new insight and knowledge.

If this all sounds very lofty, don’t worry — the processes themselves are simple enough. Like our data quality assessments, however, they will require you to use both a little bit of technical effort and a whole lot of judgment. Because even though the basics of data analysis involve reassuring, 2+2=4 style math, the insights only come from interpreting the outputs of those very straightforward formulas. And that’s where you need logic, research and human judgment and expertise to bridge the gap.

Over the course of this chapter, then, we’ll be exploring the basics of data analysis — the simple measures of central tendency and distribution that help us properly contextualize data, as well as the rules of thumb for making appropriate inferences about it. We’ll explore the role that both numerical analysis and visualization play in helping us understand what patterns exist in our data set. Towards the end of the chapter, we’ll also turn to the limits of data analysis, and why we always need more than a data set (or several) to get from the “what” to the why. Along the way, of course, we’ll see how Python can help us in all these tasks, and why it’s the right too for everything from quick calculations to essential visualizations.

Context is Everything

If I offered to sell you an apple right now for $0.50, would you buy it? Let’s imagine that you like apples and you’re feeling like a snack. Also, this is a beautiful apple: shiny, fragrant and heavy in the hand. Let’s also suppose you trust me enough to feel confident I’m not trying to harm you with this apple. It’s just a nice, fresh, apple, for $0.50. Would you buy it?

For most people, the answer is: it depends. Depends on what? Lots of things. No matter how much you trust me (and my suspiciously appealing apple), if someone standing next to me was selling also-very-good-looking apples for $0.25 each, you might buy one of those because they’re cheaper, and otherwise probably just as nice. Then again, if your cousin was standing on the other side of me selling tasty apples for $0.60 each, you might buy one of those because you want to support your cousin’s new apple-selling business.

While this might seem like a pretty complicated decision-making process for choosing a piece of fruit, the reality is that we make these kinds of choices all the time, and the results are sometimes surprising. Economists like Dan Ariely and Tim Harford have conducted research illustrating things like how influential a “free” gift is — even if it creates an added cost, or how wage satisfaction goes down because of what people around us are earning1. In order to make any kind of value judgment, we need to know what the other options are. Would I buy a fairy-tale-perfect apple for $0.50? It depends. Probably not if I could get a really similar one right next door for half the price. But I probably would if I was in a hurry and had to walk a mile to get one otherwise. Though we all know what we mean when we say is, a more complete way of expressing the idea of “it depends” would be to say “It depends on the context.”

The importance of context is why a data point in isolation is meaningless: even if it is factually “true,” a single data point can’t help us make decisions. Generating and acquiring new knowledge, in general, is about connecting new information to information we already know: the knowledge isn’t in the the data itself, but really in its relationship to other things. But since we don’t have the time or resources to thoroughly explore the context of every situation (including your possible feelings about your cousin’s new apple business and the importance of supporting family efforts), we often have to restrict ourselves to examining those parts of the context that we can (or have chosen to) consistently measure and quantify. In other words, we turn to data.

How do we derive context from data? We do things like examine its provenance, asking questions about who collected it, and when and why. And we look for ways to systematically compare each data point to the rest, in order to understand how it conforms to — or breaks — any patterns that might exist within the data set as a whole. Of course, none of those things are going to lead us to “answers,” but they will give us insights and ideas — the raw materials we need to ask our next question about what’s happening in the world around us.

Same Same But Different

While building context is essential for generating insight from data, even that context needs some context. That is, there are an infinite number of relationships we could identify, even among the data point in a pretty small data set. Take, for example, the data in Example 2-10, which was just a simple list of page counts:

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

Even with so few data points, we could come up with all of kinds ways to give “context” to this data: we could describe it in terms of even versus odd values, for example, or which ones can be evenly divided by 8. The problem is, most of those relationships are not all that interesting. But how can we know what is interesting?

It turns out, the human brain is pretty well wired to notice — and care about — two types of relationships in particular: sameness and differentness. Trends and anomalies in almost any type of stimulus — from seeing patterns in clouds or lottery results to quickly identifying a difference in orientation among similar objects catch our attention — making them, almost by definition, interesting. This means that a pretty good place to start when we want to build interesting context is by looking at the ways in which the individual records in a given data set are similar to or different from each other.

What’s Typical? Evaluating Central Tendency

What does it mean for something to be “average?” When we use it in day-to-day life, the term “average” is often a stand-in for “unremarkable,” “expected,” or “typical.” Given its specifically unextraordinary associations, then, in many cases “average” can be a synonym for “boring.”

When comes to analyzing data, however, it turns out that what’s “average” is often pretty interesting, because it’s a basis for comparison — and that’s something we know humans care about a lot. Rememeber the research on wages? As humans, we want to know how things that affect us compare to what is “typical” for other people. So even if we never hope to be “average,” in general we still want to know what it is, and how our own experience compares.

What’s That Mean?

Most of us probably recall from grade school the process for calculating the “average” of a set of numbers: add them all up and divide by how many you have. That particular measure of central tendency is more precisely known as the arthimetic mean, and it’s calculated just the way you remember. So for our page_counts example, the mean would be:

mean_pgs = (28+32+44+23+56+32+12+34+30)/9

Which would give us a mean value of:

32.333333333333336

This looks pretty reasonable, since so many of our chapter page counts are pretty close to 30, and of course, two chapters are precisely 32 pages. So having a mean page count per chapter of just over 32 seems about right.

While the mean can be useful, however, as a measure of “typicality” it can also be deeply misleading. For example let’s imagine I went way overboard and wrote one really long chapter - say 100 pages long. Then our calculation would look like this:

mean_pgs = (28+32+44+23+56+32+12+34+30+100)/10

Which would generate a mean value of:

39.1

That’s pretty different, especially when you consider that fully half of our chapters are 28-34 pages long. Is a chapter that’s roughly 39 pages truly “typical” in this case? Not really.

What we’re seeing even in this small example, is that the mean is simple enough to calculate, it’s also very susceptible to extreme values — just one of which can easily drag it away from the truly “typical” values that appear in a data set. But what are our alternatives?

Embrace the Median

Another way to think about “typical” values in a data set is to figure out what’s in the “middle" — quite literally. The “middle” value in a series of readings is known as the median, and finding it actually takes even less math than the mean. All you need to do is sort, and count. For example, in our original set of chapter lengths, we would first sort the values from lowest to highest2:

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]
page_counts.sort()
print(page_counts)

Which gives us:

[12, 23, 28, 30, 32, 32, 34, 44, 56]

Now, all we have to do is choose the “middle” value — that is the one that is positioned halfway between the beginning and end of the list. Since this is a nine-item list, that will be the value in the fifth position (leaving 4 items on either side). Thus, the median value of our page_count data set is 32.

Now, let’s see what happens to the median when we add that extra-long chapter. Our sorted data will look like this:

[12, 23, 28, 30, 32, 32, 34, 44, 56, 100]

And what about the median? Since the list now has an even number of items, we can just take the two “middle” values, add them together and divide by two. In this case, that will be the values in positions 5 and 6, which are both 32. So our median value is (32+32)/2 = 32. Even when we add our extra-long chapter, the median value is still the same!

Now at first you might be thinking: hold on, this feels wrong. A whole new chapter was added — a really long chapter, but the median value didn’t change at all. Shouldn’t it move, at least a little bit?

The real difference between the mean and the median is that the mean is powerfully affected by the size of the values in data set — as in, how high or low they are — while the median is dictated by the frequency with which high or low values appear. In a sense, the median is much closer to a “one value, one vote” sort of approach, whereas the mean lets the most extreme values speak the “loudest.” Since our current goal is to understand what values are “typical” in our data set, it makes sense that the median will usually be our measure of choice.

Think Different: Identifying Outliers

In “Same Same But Different”, I noted that human beings, in general, are interested in “sameness” and “differentness.” In looking at our two possible measures of central tendency, we were exploring ways in which values in a data set are similar. But what about the ways in which they are different? If we look again at our original page_count data set, we’d probably feel confident that a 32-page chapter is “typical,” and probably a 30, 28 or 34 page chapter, too. But what about a 12-page chapter? Or a 56-page chapter? They certainly don’t seem typical, but how do we know what’s truly “unusual?”

It turns out that the answer is not so simple. While measures of central tendency can easily be calcuated, truly unusual values in a data set — known as outliers — cannot be unequivocally identified through arithmetic alone. Especially as data sets get larger and more complex, we need to use an analytical system that can process lots of data at once. For humans, that means making our data visual.

Visualization for Data Analysis

The role of visualization in working with data is two-fold. On the one hand, visualization can be used to help us analyze and make sense of data; on the other, it can be used to convey the insights that we’ve generated from that analysis. Using data for the latter purpose — as a communication tool to share insights about our data with a broader audience — is something that we’ll explore in-depth in [Link to Come]. Here, we’re going to focus on the ways in which visualization can offer us insight into the data we have.

In order to understand how visualization can help us identify extreme values in our data, we first need to look — quite literally — at the data itself. By this I don’t mean that we’re going to open up our CSV file and start reading through data records. Rather, we’re going create a special kind of bar chart known as a histogram, in which each bar represents the number of times a particular value appears in our data set. For example, we can see a very simple histogram of our (expanded) page_count data in Figure 9-1.

[image: A sample histogram]
Figure 9-1. A basic histogram

For a data set as small as our page_counts example, a histogram can’t tell us much — in fact, a data set with only 10 values arguably has too few data points for the concepts of central tendency and outliers to have much meaning. Even so, however, we can see the beginnings of what looks like a pattern: the two chapters of equal length form a spike, with the single readings of similar page lengths clustered reasonably close to that spike. Our 100-page chapter, meanwhile, is way out on the right end, with other values anywhere near it.

In order to really appreciate what visualizing data can do to help us analyze a data set, we’ll need to look at an example that has a few more values to work with. Fortunately, the Paycheck Protection Program (PPP) data that we worked through in Chapter 6 is definitely not lacking in this regard, with almost hundreds of thousands of loans whose records we can look at. As a starting point, we’ll write a quick script to generate a histogram of the currently approved loan values in the PPP, and then label that histogram with the mean and median values in order to see how they line up as potential measures of central tendency. After that, we’ll return to the question of identifying outliers using both our visualization of the data and some math to back it up.

For this work, we’ll once again be turning leveraging some powerful Python libraries — specifically matplotlib and seaborn — both of which have functions for calculating and visualizing data. We’re using both here because while matplotlib remains the foundational Python library for creating charts and graphs in Python, seaborn adds to that some very helpful functionality in the form of more advanced calculations and formats. However, since even seaborn itself is built on top of matplotlib, this combination will offer us the flexibility we need to quickly create basic visualizations, but also customize them for presenting data in [Link to Come].

For now, though, let’s see what’s involved in creating a basic histogram with mean and median lines using our PPP loan data, as shown in Example 9-1.

Example 9-1. ppp_loan_central_measures.py

we'll use pandas to read in our data
import pandas as pd
the seaborn library offers us some nice built-in themes and chart types
import seaborn as sns
matplotlib is the foundational library for Python visualization
import matplotlib.pyplot as plt

read in our data
ppp_data = pd.read_csv('public_150k_plus_221.csv')

set a basic color theme for our visualization
sns.set_theme(style="whitegrid")

the `CurrentApprovalAmount` column in our PPP data tells us the dollar amount
of each loan that is currently approved (whether or not it has been disbursed)

we can use pandas' built-in `mean()` and `median()` methods to caculate
these values
mean=ppp_data['CurrentApprovalAmount'].mean()
median=ppp_data['CurrentApprovalAmount'].median()

we provide our pandas dataframe and the name of the data column that we want
to use to the seaborn library's `histplot` method
approved_loan_plot = sns.histplot(data=ppp_data, x="CurrentApprovalAmount")

we then add vertical lines our histogram where the mean and the median
are located

to determine how tall the lines should be, we use the `get_ylim` method,
which returns the lowest and highest y-axis value as a list
y_axis_range = approved_loan_plot.get_ylim()

now we'll actually add the vertical lines at the correct locations,
specifying x position, y starting point, y ending point, color and linestyle
approved_loan_plot.vlines(mean, 0, y_axis_range[1], color='crimson', ls=':')
approved_loan_plot.vlines(median, 0, y_axis_range[1], color='green', ls='-')

the matplotlib `show()` method will pop up an interactive view of our
chart, allowing us to zoom, pan and otherwise explore our histogram
plt.show()

Most likely, you’re looking at the chart that displayed as a result of running this script and thinking, “Now what?” Admittedly, the output from this initial visualization effort feels a bit lackluster — if not downright confusing. But fear not! If anything, take this as your first case study in why visualization for analysis and visualization for communication are not one and the same. Analytical visualizations like this one, for example, require far more effort to read, understand and refine than any visualization we would want to use for general communications. For generating insight about our data, however, this is actually just the right place to start.

[image: PPP loan histogram]
Figure 9-2. PPP loan histogram

Before we dive into analyzing our data, let’s take a moment to appreciate the distinctly old-school, but incredibly useful, interface for this chart that Python has given us. Rather than just a static chart of data, you can see in Figure 9-2 that our Python script has also given us an entire toolbar that we can use to interact with it — to zoom, pan, modify and even save the output. While of course we can (and eventually will) modify the output in these ways via code, the fact that we don’t have to constantly modify and re-run our code in order to explore our visualized data is a huge advantage. While you should definitely take a few minutes to play with the controls yourself, when you’re ready to take a more methodical approach, just click the “home” icon in the upper left to return the chart to its initial view and follow along below.

What’s Our Data’s Shape? Understanding Histograms

When we were working with our data in a table-type format, we tended to think of its “shape” as describing the number of rows and columns it had (for example, this is precisely what the pandas.shape property of a DataFrame returns). Here, when we think about the shape of our data, we’re actually interested in the literal shape of the histogram, so that we can identify potentially interesting or important patterns or anomalies. Some of the first things we’ll look for in these instances are:

	
symmetry: Is our data vertically symmetrical? That is, could we draw a vertical line somewhere over our visualized data such that the pattern of bars on one side looks (roughly) like a reflection of those on the other?

	
density: Where are most of our data values clustered (if anywhere)? Are there multiple clusters, or just one?

Unsurprisingly, these questions are about more than aesthetics. The shape of a data set’s histogram illustrates what is typically described as its distribution, and understanding specific properties about that distribution can help us identify what is typical, what is unusual, and what deserves further scrutiny.

The Significance of Symmetry

In the natural world, symmetry is a common occurrence. Plants and animals tend to be symmetrical in many ways — for example, a dog’s face and an oak leaf both exhibit what’s known as bilateral symmetry — what most of us think of as one side of something being a “mirror image” of the other side. Across whole populations of living things, however, there’s another type of symmetry that often emerges, one that’s captured in the measure of physical characteristics like height or wing length. This symmetry presents itself in the distribution of values we find in our histogram, which illustrates how many members of the population have a particular height or wing length. A classic example of this is shown in Figure 9-3, which shows the length of housefly wings as measured by a team of biologists in the mid-20th century.3

[image: Length of Housefly Wings]
Figure 9-3. Length of Housefly Wings

This symmetrical “bell curve” is also sometimes described as the “normal”, “standard” or “Gaussian” distribution. If you’ve ever had a grade “curved,” this was the distribution that the grades in your cohort were being transformed to fit: one with very few scores at the top or bottom, and most of them lumped in the middle.

The power of the Gaussian distribution is not just in its pretty shape, however; it’s in what that shape means we can do. These distributions can be both described and compared to one another in ways that non-symmetrical distributions cannot because for Gaussian distributions we can calculate special values: the standard deviation, which quantifies the numerical range within which we will find most of our data values, as well as each value’s z-score, which describes its distance from the mean in terms of standard deviations. These characterstics make it possible for us to compare two sets of functionally similar data that use different scales — for example, to compare student achievement across instructors who use different grading rubrics. Even if most student grades for one instructor are in the 90s and for the other they are in the 70s, if student achievement truly follows a Gaussian distribution in both cases, we can still determine which students are doing the best or need the most help across cohorts — something the absolute grades could never tell us.

These characteristics also inform how we will think about measuring central tendency and outliers. For example, in a “perfect” Gaussian distribution, the mean and the median will have the same value. What’s more, a value’s z-score gives us a quick of identifying how typical or unusual that particular value is, because the percentage of values that certain ranges of z-score is well-defined. Confused yet? Just like other complex data relationships, this all makes much more sense if we visualize it.

[image: The Gaussian distribution, showing what percentage of values exist within 1, 2 and 3 standard deviations (σ) from the mean.]
Figure 9-4. The Gaussian distribution, showing what percentage of values exist within 1, 2 and 3 standard deviations (σ) from the mean.

As you can see in Figure 9-44, if our data’s distribution is Gaussian, more than two-thirds of the data values (34.1% + 34.1% = 68.2%) can be found within one standard deviation (often designated as it is here, by the Greek letter σ) of the mean. Another 27.2% can be found between one and two standard deviations from the mean, and with a final 4.2% found between two and three standard deviations from the mean. This means that for a Gaussian distribution, 99.7% of all values can be found within 3 standard deviations of the mean.

So what? Well, remember that one of our fundamental objectives in data analysis is to understand what values are typical for our data set, and which ones are truly extreme. While the mean and the median offer a quick shorthand for a data set’s “typical” value, we need measures like the standard deviation — and the z-scores we can calculate from it — in order to understand what is, or might be, truly unusual.

Unsuprisingly, calculating these values using Python is quite straightforward. Using either pandas or the statistics library, we can quickly find the value of the standard deviation for our data set (σ), and then use it to plot the appropriate lines over our histogram. For this example, we’ll build on the data used to generate Figure 9-3, as shown in Example 9-2

Example 9-2. wing_length_with_sd.py

we'll use pandas to read in our data
import pandas as pd
the seaborn library offers us some nice built-in themes and chart types
import seaborn as sns
matplotlib is the foundational library for Python visualization
import matplotlib.pyplot as plt
the statistics library has built-in functions for many statistical measures
import statistics

read in our data
wing_data = pd.read_csv('wing_length - s057.csv')

set a basic color theme for our visualization
sns.set_theme(style="white")

create the histogram, allowing seaborn to choose default bin values
the `kde` parameter let's us add a smoothed line to our visualization,
which approximates the pattern we would expect if we had infinite data points
wing_plot = sns.histplot(data=wing_data, x="wing_length (0.1mm)", kde="True")

here we use the statistics library's `stdev` method, though we could also use
pandas: pd_value = wing_data['wing_length (0.1mm)'].std()
sd = statistics.stdev(wing_data['wing_length (0.1mm)'])

time to plot some lines!

get the max y value, to assign the line height
y_axis_range = wing_plot.get_ylim()

plot the mean as a solid line
mean=wing_data['wing_length (0.1mm)'].mean()
wing_plot.vlines(mean, 0, y_axis_range[1], color='gray', ls='-')

plot the three standard deviation boundary lines on either side of the mean
recall that the loop stops *before* the higher value in `range()`
starting with a negative number means we actually subtract from the mean
at first
for i in range(-3,4):
 # find the current boundary value
 boundary_value = mean + (i*sd)
 # don't draw a second line over the mean line
 if boundary_value != mean:
 # plot a dotted gray line at each boundary value
 wing_plot.vlines(boundary_value, 0, y_axis_range[1], color='gray', ls=':')

show the plot!
plt.show()

Right now you may be thinking, “Great, but how does this help us real data?” As you probably noticed, our PPP loan data looks nothing like the classic Gaussian bell curve — and very often, your data will not.

At this point, we’ve already identified how to find the “middle” of an asymmetrical distribution like the one in Example 9-1, by working with the median, rather than the mean. But what about identifying extreme values? Since asymmetric (sometimes called skewed) distributions aren’t, well, symmetric, we can’t calculate a single “standard” deviation or calculate meaningful z-scores for our data values. At the same time, there are still useful ways we can subdivide an asymmetrical data set in order to generate insight about which values might be unusual or extreme.

The process, in fact, is quite simple. First, we find the middle value of our sorted data set — the median that, by definition, has the same number of data values above it as below (however high or low they might be). Now we just find the median of the lower and upper halves of our data — usually labeled Q1 and Q3, respectively — and we’ve split our data set into four parts, or quartiles, each of which contains an equal number of data values.

What does this get us? Well, remember that a big part of what z-scores tell us is the percentage of data points that have similar values. Looking at Figure 9-4, for example, we can see that a data point with a z-score of 0.75 is less than one standard deviation from the mean — along with 68.2% of all the data values in the set as a whole. When we create our quartiles, we have started along a similar path, because we know that any value in our dataset that is numerically less than the value of Q1 is, by definition, smaller than at least 75% of all the data values we have.

While this is helpful, however, it doesn’t give us quite as much detail as working with z-scores — which is a problem only because what we’re really looking for is ways to identify potentially unusual values. Being smaller — or larger — than 75% of all data values is something, but it’s hardly extreme. So working with quartiles alone isn’t quite enough.

Fortunately, we can use our Q1 and Q3 values to calculate the lower bound and upper bound of our data set — values that, if our data’s distribution was secretly Gaussian, would almost perfectly match those found at 3 standard deviations below and above the mean. While we’re turning to them precisely because we don’t think our data is Gaussian, these bounds still give us a better starting point for evaluating potentially extreme data values that our Q1 and Q3 values alone.

Like finding the median, calculating the upper and lower bounds is actually quite straightforward. We start by finding a value called the interquartile range — a fancy-sounding name for the difference between Q3 and Q1. We then multiple that value by 1.5, and subtract it from Q1 to get the lower bound, and add it to Q3 to get the upper bound. That’s it!

IQR (interquartile range) = Q3 - Q1
lower bound = Q1 - (1.5*IQR)
upper bound = Q3 + (1.5*IQR)

To see how the upper and lower bounds compare to z-scores for a Gaussian distribution, take a look at Figure 9-55.

[image: Positions of upper and lower bounds on a Gaussian distribution.]
Figure 9-5. Positions of upper and lower bounds on a Gaussian distribution.

Does this mean that every value beyond our upper and lower bounds is automatically an outlier? No. But finding these boundaries does give us a way to narrow down where we might start looking for outliers. And just as importantly, these measures help us understand what values are not outliers — even if they might seem, numerically, to be pretty different from the “typical” or “expected” value provided by the median or mean.

As an example, let’s return to our PPP loan data. A $1 million loan seems like a lot, even if — as we are — you’re only looking at loans that were over $150,000 to begin with. But is a $1 million loan truly unusual? This is where our measures of central tendency and spread — in this case, the median, quartiles, and lower and upper bound values — can really help us out. Let’s take a look at what our histogram looks like with these values added to the histogram, as shown in Example 9-3, and see what we think.

Example 9-3. ppp_loan_central_and_dist.py

we'll use pandas to read in our data
import pandas as pd
the seaborn library offers us some nice built-in themes and chart types
import seaborn as sns
matplotlib is the foundational library for Python visualization
import matplotlib.pyplot as plt

read in our data
ppp_data = pd.read_csv('public_150k_plus_221.csv')

set a basic color theme for our visualization
sns.set_theme(style="whitegrid")

the `CurrentApprovalAmount` column in our PPP data tells us the dollar amount
of each loan that is currently approved (whether or not it has been disbursed)

use pandas' built-in `median()` & `mean()` methods
median = ppp_data['CurrentApprovalAmount'].median()
mean = ppp_data['CurrentApprovalAmount'].mean()

Q1 is the value at the position in our data set that has 25% of data readings
to its left
Q1 = ppp_data['CurrentApprovalAmount'].quantile(0.25)

Q3 is the value at the position in our data set that has 75% of data readings
to its left
Q3 = ppp_data['CurrentApprovalAmount'].quantile(0.75)

IQR is the difference between the Q3 and Q1 values
IQR = Q3-Q1

and now we calculate our lower and upper bounds
lower_bound = Q1 - (1.5*IQR)
upper_bound = Q3 + (1.5*IQR)

now we'll use seaborn to plot the histogram
approved_loan_plot = sns.histplot(data=ppp_data, x="CurrentApprovalAmount")

use `get_ylim()` to find the current height of the chart
y_axis_range = approved_loan_plot.get_ylim()

add the vertical lines - including the mean to see how its position
compares to our median & quartile-based values

mean line in gray
approved_loan_plot.vlines(mean, 0, y_axis_range[1], color='gray', ls='-')

other lines in black (median solid, others dotted)
approved_loan_plot.vlines(median, 0, y_axis_range[1], color='black', ls='-')
approved_loan_plot.vlines(lower_bound, 0, y_axis_range[1], color='black', ls=':')
approved_loan_plot.vlines(Q1, 0, y_axis_range[1], color='black', ls=':')
approved_loan_plot.vlines(Q3, 0, y_axis_range[1], color='black', ls=':')
approved_loan_plot.vlines(upper_bound, 0, y_axis_range[1], color='black', ls=':')

the matplotlib `show()` method will pop up an interactive view of our
chart, allowing us to zoom, pan and otherwise explore our histogram
plt.show()

As you can see from the zoom-in view of the resulting graph shown in Figure 9-6, there’s really no support for the claim that a loan of $1 million is out of the ordinary, since that figure falls well below the upper bound for this data set. Even though a loan of that amount is larger than three-quarters of all loans approved so far (because the $1 million mark — currently labeled as 1.0 1e6 on the graph’s x-axis — is to the right of our Q3 line), it’s still not so much that any loan of $1 million is likely to be worth investigating further. At least, that’s probably not where we’d want to start.

[image: PPP Current Loan Amount histogram with median, quartiles and bounds in black, and mean plotted in gray.]
Figure 9-6. PPP Current Loan Amount histogram with median, quartiles and bounds in black, and mean plotted in gray.

So where should we look next? Right in front of us, at the graph we already have. Because while we could start looking for more complex statistical measures to calculate and evaluate, even this basic visualization is showing some patterns worth investigating. The first one worth noting — if only to reassure ourselves about our choice of statistical measures — is that the mean of this data set is at nearly the same position in the distribution as our Q3 value. If we had any concern about selecting the median over the mean as a measure of central tendency for this data set, that fact should set it to rest. The other thing that we can see — both in Figure 9-6 and if we were to scroll farther to the right — is that there are curious little spikes in our data, indicating a particular loan amount that is especially popular. Since these stand out so clearly from typical pattern in our data, we should probably look at those next.

Counting “Clusters”

Imagine you’re walking down a crowded street and you notice a group of people gathered on the corner across from you. What do you do? On a busy avenue where most pedestrians are concerned with getting from one place to another, more than one or two people stopped in the same place at the same time is enough to signal that something is going on. Whether “something” turns out to be a busker playing music, a vendor offering especially popular snacks, or a box full of kittens (it happens), the fact remains that our visual system is drawn to anomalies precisely because a break in trend indicates that something at least slightly out of the ordinary is going on.

This is precisely why visualizing data is such a valuable for analyzing it — our eyes and brain are wired both to quickly perceive patterns and just as quickly notice deviations from them. Sometimes the reason for a pattern is easy to guess, sometimes less so. But in any predictable pattern — whether it’s the flow of people on a street, a bell-shaped data distribution or one that forms a smoothly-sloping curve — something that breaks that pattern is worth investigating.

In the case of Figure 9-6, there are a range of such pattern violations that are worth investigating. The first is the sharp line at the left-hand side of the graph, which serves as a good reminder that in all our work on this data, we have only been looking at approved loans of $150,000 or more — not all of the loans that have been handed out. In case we had lost sight of that as we were thinking about our data set, that hard cutoff is a good reminder.

However, we also see another set of pattern violations — little spikes in our histogram around particular data values, like $2 million along the x-axis. Where are these coming from? While we can’t say for sure, if we look at other data values, we can see that similar spikes appear at roughly $500,000 intervals, especially as the loan amounts increase. Probably these are the result of an understandable tendency towards round numbers — if you’re going to ask for $1,978,562.34, why not just “round it up” to $2 million? Of course, that’s still $21,437.66 than maybe you need. Given that PPP loans are intended to support specific costs, it does seem a little strange that so many loans — nearly 2,000 of them, based on our graph — would happen to work out to precisely $2 million.

So what’s going on? There are a couple routes of potential exploration. Personally, the first thing I would look for is something in the rules about PPP loans that would indicate why $2 million is such a popular amount to request. For example, $2 million a minimum or maximum allowed amount based on certain characteristics of the business or what they’re requesting support for?

A little bit of searching around the Small Business Administration’s (SBA) website indicates at least part of the answer6:

For most borrowers, the maximum loan amount of a Second Draw PPP loan is 2.5x the average monthly 2019 or 2020 payroll costs up to $2 million. For borrowers in the Accommodation and Food Services sector (use NAICS 72 to confirm), the maximum loan amount for a Second Draw PPP loan is 3.5x the average monthly 2019 or 2020 payroll costs up to $2 million.

Since $2 million is a ceiling for essentially all types of businesses applying for so-called “second draw” PPP loans — including those who might have initially qualified for more money — it makes sense that the cluster of loans approved for precisely $2 million is so large.

Still, does having this explanation mean that there’s nothing left to investigate about our data set? Hardly. First of all, $2 million was the upper limit for second draw PPP loans; first draw loans could be up to $10 million. If so many businesses were requesting the upper limit for second-draw loans, it suggests that many of them have a) already received a first-draw loan and b) their first-draw loan may have been even larger than $2 million, since they would have had to round down to $2 million even if they qualified for more in the first round. All of this suggests that it might be worth looking into the organizations that requested precisely this amount, just to see if there are any other interesting characterstics they might share.

The $2 Million Question

In order to understand what (if any) characteristics are shared by companies who requested $2 million for their second-round PPP loans, we first have to isolate those companies within our dataset. What do we know about them? Well, we know we’re interested in companies that received more than one loan, which means that their BorrowerName should appear more than once in our data. We also know that no second-round loans were issued before January 13, 2021. By combining these two pieces of information, we can probably do a reasonable job of identifying those companies that requested precisely $2 million for their second-round loan.

In order to accomplish this, we’ll need to do a few transformations on our data set:

	
Create a new column for each loan, in which labels it as first_round, or maybe_second, based on whether it was issued before January 13, 2021. While we can’t be sure that all loans after that date were “second round,” we can be sure that all loans before that date were.

	
Look for duplicate entries in our data set. Each approved loan creates a separate record, so if the same business was approved for two loans, that means its information would appear twice in the records.

As usual, we’re going to call in the help of some Python libraries to get this work done. We’ll need to use pandas, as usual, but we’re also going to use another library called numpy that has lots of useful array/list functions (pandas actually relies heavily on numpy under the hood). I’m also going to pull in seaborn and matplotlib (again, seaborn relies on matplotlib pretty extensively), so that we have the option of generating visualizations to help us evaluate our evolving data set as we go along.

Although what we’re trying to do with this data is conceptually pretty straightforward, the wrangling involved in performing this analysis takes a fair number of steps, as you can see in Example 9-4.

Example 9-4. who_got_2_loans_by_date.py

import pandas for data loading/transformations
import pandas as pd
import seaborn for visualization
import seaborn as sns
import matplotlib for visualization support
import matplotlib.pyplot as plt
import numpy for manipulating arrays/lists
import numpy as np

load our data
ppp_data = pd.read_csv('public_150k_plus_borrower_fingerprint_a.csv')

we know that second-round loans were only available after January 13, 2021
so we're going to create a new column from the date, labeling loans as
`first_round` or `maybe_second`

convert the `DateApproved` column to an actual datetime data type
ppp_data['DateApproved'] = pd.to_datetime(ppp_data['DateApproved'])

the pandas `cut()` function let's us define the boundaries and labels
of our new column based on values in the originating column
first boundary will be 1/13/21, since we know all loans before that date
must be first-round loans
second_round_start = pd.to_datetime('2021-01-13')

get today's date to use as the "upper" limit on possible second-round loans
todays_date = pd.to_datetime('today')

use 1/1/2020 as the "lower" limit, since the PPP wasn't announced until spring
program_start = pd.to_datetime('2020-01-01')

pass our boundaries and category labels to the pandas `cut()` function
loan_round = pd.cut(ppp_data.DateApproved, bins=[program_start,second_round_start, todays_date], labels=['first_round', 'maybe_second'])

now insert the new row we created at the position we specify
ppp_data.insert(2,'Loan Round',loan_round)

of course, it was still possible to get a first round loan after 1/13/2021 -
as long as you hadn't gotten one before. So we need to know how many loans
a business has been approved for in order to draw conclusions about
the volume of their first and second loans

this is a basic pivot table, which will return a Series showing the number
of times a particular 'BorrowerNameFingerprint' appears in the data set
loan_count = ppp_data.pivot_table(index=['BorrowerNameFingerprint'], aggfunc='size')

we need to convert our Series to a DataFrame and give it a name...
loan_count_df = loan_count.to_frame('Loan Count')

use the `describe()` method to generate summary statistics in a single step
the key thing here is we would expect the maximum number of loans to be 2
print("Description of duplicate borrower table:")
print(loan_count_df.describe())

If you run the above code and nothing happens for a minute, don’t despair. On my Chromebook, this script takes about 40 - 90 seconds to execute (depending on how many other Linux apps I’m running alongside7). When it’s finished, however, you output something like this:

Description of duplicate borrower table:
 Loan Count
count 694279.000000
mean 1.104022
std 0.306489
min 1.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 12.000000

From this first effort something seems…off. The output from our .describe() command gives us a quick way of getting almost all the summary statistics we’re interested in (the Q1, median, and Q3 are labled here according to the percentage of values that would appear to their left on a histogram — so 25%, 50%, and 75%, respectively). These values suggest that fewer than 25% of all businesses have received more than one loan (otherwise the 75% value would be greater than 1), which makes sense. But the max value is troubling, since the PPP rules don’t seem to allow a single business to receive more than two loans, much less 12! Let’s take a closer look and see what we find:

Whoops! Let's look at the businesses that have more(?) than two loans?
sorted_loan_counts = loan_count_df.sort_values(by=['Loan Count'], ascending=False)
more_than_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] > 2]

print the 'unique' businesses
print("Businesses that seem to have gotten more than 2 loans:")
print(more_than_two.shape)

print("Number of businesses that appear to have gotten precisely 2 loans:")
precisely_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] == 2]
print(precisely_two.shape)

Now we get the additional output shown below:

Businesses that seem to have gotten more than 2 loans:
(58, 1)
Number of businesses that appear to have gotten precisely 2 loans:
(72060, 1)

This suggests that there are only a (relative) handful of businesses that may have been approved for more than two loans, and we can probably attribute those cases to a combination of our chosen fingerprinting approach (a combination of BorrowerName, BorrowerCity and BorrowerState), and the possibility that there are multiple instances of a single franchise in the same city that applied for PPP funds8. In any case, there are few enough of them that they are unlikely to change the outcome of our analysis considerably, so we won’t focus on tracking down their particular situations right now. At least the second piece of output showing that 72,060 individual businesses got exactly two loans seems reasonable so far, since this is definitely less than 25% of our total dataset, and therefore aligns with the summary statistics we got from our Loan Count DataFrame.

Of course, this is still just an estimate; it would be much better if we had a more official count of second-round loans to work with. As noted at the end of Chapter 6, the Small Business Administration did actually release an official data dictionary, and while it doesn’t contain all of the information we might hope, it does indicate that the ProcessingMethod field distinguishes between first-round (PPP) and second-round (PPS) loans. Let’s look at our data this way and compare it to our name-matching based estimate:

let's use the `ProcessingMethod` value to identify definitively which
were first and which were second round loans!
https://data.sba.gov/dataset/ppp-foia/resource/aab8e9f9-36d1-42e1-b3ba-e59c79f1d7f0
pps_loans = ppp_data[ppp_data['ProcessingMethod'] == 'PPS']

print out the `shape` of this DataFrame to see how many businesses we have
print("Number of loans labeled as second draw:")
print(pps_loans.shape)

Adding this to our original script adds the following output:

Number of loans labeled as second draw:
(103949, 52)

Wow! Even with our possibly-too-lax fingerprinting method, we still failed to more than 30,0000 businesses with both of their loans. What do we do?

First of all, recognize that this isn’t even an unusual situation. We’re dealing with around 750,000 data records, each one of which is a combination of data entry done by multiple individuals — including the borrower, the lender, and possibly the SBA. The fact that there are still so many discrepancies is not really surprising (I illustrate some of them in Example 9-5), but all is not lost. Remember that our original interest was in those businesses that got precisely $2 million for their second-draw loan, which is likely to be just a fraction of all the businesses that got two loans. We can still move ahead with that part of the analysis to test a) how effective our date-based estimate of second-round loans was, and b) what we can learn about that specific subset of businesses that got exactly $2 million in the second round.

Example 9-5. Finding a Fingerprint

Since we have already covered how to use the fingerprints library in previous chapters, I skipped over the exact process used to prepare the data we’re looking at here9. As always, however, the quality of matching process depends not just on the fingerprinting algorithm itself, but the data it’s applied to. While the combination of BorrowerName, BorrowerCity, and BorrowerState is clearly far from perfect, I settled on it only after having first tried to match up loans based on BorrowerName directly, and then on a combination of the fingerprinted BorrowerName and BorowerZip. In both instances, I could find matches for less than half of the second-draw loans.

Wondering what the data discrepancies look like? Here’s one example:

LoanNumber 3323817108 9231548302
DateApproved 04/11/2020 01/30/2021
SBAOfficeCode 1084 1084
ProcessingMethod PPP PPS
BorrowerName COPPER RIVER SEAFOODS, INC. COPPER RIVER SEAFOODS INC.
BorrowerNameFingerprint copper inc river seafoods anchorage AK copper inc river seafoods anchorage AK
BorrowerAddress 1118 5TH AVE 1118 E 5th Ave
BorrowerCity ANCHORAGE Anchorage
BorrowerState AK AK
BorrowerZip 99501-2759 99501-2759
LoanStatusDate NaN 01/30/2021
LoanStatus Exemption 4 Active Un-Disbursed
Term 24 24
SBAGuarantyPercentage 100 100
InitialApprovalAmount 3009400.0 2000000.0
CurrentApprovalAmount 6382400.0 2000000.0
UndisbursedAmount 0.0 2000000.0
FranchiseName NaN NaN
ServicingLenderLocationID 119918 119918
ServicingLenderName East West Bank East West Bank
ServicingLenderAddress 135 N Los Robles Ave, 7th Fl 135 N Los Robles Ave, 7th Fl
ServicingLenderCity PASADENA PASADENA
ServicingLenderState CA CA
ServicingLenderZip 91101-4525 91101-4525
RuralUrbanIndicator U U
HubzoneIndicator N N
LMIIndicator NaN Y
BusinessAgeDescription Existing or more than 2 years old Existing or more than 2 years old
ProjectCity ANCHORAGE Anchorage
ProjectCountyName ANCHORAGE ANCHORAGE
ProjectState AK AK
ProjectZip 99501-2759 99501-2759
CD AK- AK-
JobsReported 303.0 236.0
NAICSCode 311710.0 311710.0
RaceEthnicity Unanswered Unanswered
UTILITIES_PROCEED NaN 1.0
PAYROLL_PROCEED 6382400.0 1999998.0
MORTGAGE_INTEREST_PROCEED NaN NaN
RENT_PROCEED NaN NaN
REFINANCE_EIDL_PROCEED NaN NaN
HEALTH_CARE_PROCEED NaN NaN
DEBT_INTEREST_PROCEED NaN NaN
BusinessType Corporation Corporation
OriginatingLenderLocationID 119918 119918
OriginatingLender East West Bank East West Bank
OriginatingLenderCity PASADENA PASADENA
OriginatingLenderState CA CA
Gender Male Owned Unanswered
Veteran Non-Veteran Unanswered
NonProfit NaN NaN

To see how well we’ve done using our name-matching and date-based loan round estimates, we’re going to merge our Loan Count DataFrame back onto our original data set. Then we’ll select only the $2M loans that we estimate, based on their date, were second-draw loans. Finally, we’ll compare that number of loans with the number of $2M loans we know were second-draw, based on their LoanProcessing value of PPS:

how many loans in our derived data frame were approved for precisely $2M
during the (possibly) second draw timeframe?

first, merge our "Loan Count" DataFrame back onto our original data set,
so we can pull all loans that have a Loan Count of 2
ppp_data_w_lc = pd.merge(ppp_data, loan_count_df, on=['BorrowerNameFingerprint'], how='left')

now get *all* the loans that have a Loan Count of 2
matched_two_loans = ppp_data_w_lc[(ppp_data_w_lc['Loan Count'] == 2)]

select those loans that we think are second round and have a value of $2M
maybe_round2_2M = matched_two_loans[(matched_two_loans['CurrentApprovalAmount'] == 2000000.00) & (matched_two_loans['Loan Round'] == 'maybe_second')]
print("Derived $2M second-round loans:")
print(maybe_round2_2M.shape)

select those loans that we *know* are second round and have a value of $2M
pps_got_2M = pps_loans[pps_loans['CurrentApprovalAmount'] == 2000000.00]
print("Actual $2M second-round loans:")
print(pps_got_2M.shape)

This will add a few more lines of output:

Derived $2M second-round loans:
(1175, 53)
Actual $2M second-round loans:
(1459, 52)

If we compare these results to previous ones, it looks like we’re doing a bit better. Across all loans, we appear to have matched up 72,060 out of 103,949 actual second-round loans, or about 70%. For those organizations approved for $2M in second-draw loans, we’ve found 1,115 out of 1,459, or about 80%.

So what can we say about businesses that got $2M in the second round? We can’t say anything with 100% confidence unless and until we find matches for those 284 companies whose BorrowerNameFingerprint isn’t the same between their first- and second-draw loans. But we can still look at our 80% sample and see what we discover. To do this, I’m going to take the following steps10:

	
Find all the unique BorrowerNameFingerprint values for businesses that definitely got $2M second-draw loans.

	
Create a DataFrame (biz_names_df) based on this list and fill it out with the flag value 2Mil2ndRnd.

	
Merge that DataFrame back onto my data set and use the flag value to pull all (that is, both first- and second-draw loans) for those businesses.

	
Do some basic analyses of how much money those businesses were approved for across both rounds, and visualize those amounts across both rounds, comparing the official second-round designation (that is, ProcessingMethod == 'PPS') with our derived, date-based category.

And of course, now that I’ve written out in a list the steps my script should take (this is exactly the kind of thing that you’d want to put in your data diary and/or program outline), it’s just a matter of coding it up below our existing work — the complete script for which is shown in Example 9-6.

Example 9-6. who_got_2M_with_viz.py

import pandas for data loading/transformations
import pandas as pd
import seaborn for visualization
import seaborn as sns
import matplotlib for visualization support
import matplotlib.pyplot as plt
import numpy for manipulating arrays/lists
import numpy as np

load our data
ppp_data = pd.read_csv('public_150k_plus_borrower_fingerprint_a.csv')

we know that second-round loans were only available after January 13, 2021
so we're going to create a new column from the date, labeling loans as
`first_round` or `maybe_second`

convert the `DateApproved` column to an actual datetime data type
ppp_data['DateApproved'] = pd.to_datetime(ppp_data['DateApproved'])

the pandas `cut()` function let's us define the boundaries and labels
of our new column based on values in the originating column
first boundary will be 1/13/21, since we know all loans before that date
must be first-round loans
second_round_start = pd.to_datetime('2021-01-13')

get today's date to use as the "upper" limit on possible second-round loans
todays_date = pd.to_datetime('today')

use 1/1/2020 as the "lower" limit, since the PPP wasn't announced until spring
program_start = pd.to_datetime('2020-01-01')

pass our boundaries and category labels to the pandas `cut()` function
loan_round = pd.cut(ppp_data.DateApproved, bins=[program_start,second_round_start, todays_date], labels=['first_round', 'maybe_second'])

now insert the new row we created at the position we specify
ppp_data.insert(2,'Loan Round',loan_round)

of course, it was still possible to get a first round loan after 1/13/2021 -
as long as you hadn't gotten one before. So we need to know how many loans
a business has been approved for in order to draw conclusions about
the volume of their first and second loans

this is a basic pivot table, which will return a Series showing the number
of times a particular 'BorrowerNameFingerprint' appears in the data set
loan_count = ppp_data.pivot_table(index=['BorrowerNameFingerprint'], aggfunc='size')

we need to convert our Series to a DataFrame and give it a name...
loan_count_df = loan_count.to_frame('Loan Count')

use the `describe()` method to generate summary statistics in a single step
the key thing here is we would expect the maximum number of loans to be 2
print("Description of duplicate borrower table:")
print(loan_count_df.describe())

Whoops! Let's look at the businesses that have more(?) than two loans?
sorted_loan_counts = loan_count_df.sort_values(by=['Loan Count'], ascending=False)
more_than_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] > 2]

print the 'unique' businesses
print("Businesses that seem to have gotten more than 2 loans:")
print(more_than_two.shape)

print("Number of businesses that appear to have gotten precisely 2 loans:")
precisely_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] == 2]
print(precisely_two.shape)

let's use the `ProcessingMethod` value to identify definitively which
were first and which were second round loans!
https://data.sba.gov/dataset/ppp-foia/resource/aab8e9f9-36d1-42e1-b3ba-e59c79f1d7f0
pps_loans = ppp_data[ppp_data['ProcessingMethod'] == 'PPS']

print out the `shape` of this DataFrame to see how many businesses we have
print("Number of loans labeled as second draw:")
print(pps_loans.shape)

how many loans in our derived data frame were approved for precisely $2M
during the (possibly) second draw timeframe?

first, merge our "Loan Count" DataFrame back onto our original data set,
so we can pull all loans that have a Loan Count of 2
ppp_data_w_lc = pd.merge(ppp_data, loan_count_df, on=['BorrowerNameFingerprint'], how='left')

now get *all* the loans that have a Loan Count of 2
matched_two_loans = ppp_data_w_lc[(ppp_data_w_lc['Loan Count'] == 2)]

select those loans that we think are second round and have a value of $2M
maybe_round2_2M = matched_two_loans[(matched_two_loans['CurrentApprovalAmount'] == 2000000.00) & (matched_two_loans['Loan Round'] == 'maybe_second')]
maybe_round2_2M = matched_two_loans[(matched_two_loans['CurrentApprovalAmount'] == 2000000.00) & (matched_two_loans['Loan Round'] == 'maybe_second')]
print("Derived $2M second-round loans:")
print(maybe_round2_2M.shape)

select those loans that we *know* are second round and have a value of $2M
pps_got_2M = pps_loans[pps_loans['CurrentApprovalAmount'] == 2000000.00]
print("Actual $2M second-round loans:")
print(pps_got_2M.shape)

isolate the fingerprints of businesses that got $2M second-draw loans approved
biz_names = pd.unique(pps_got_2M['BorrowerNameFingerprint'])

convert that list to a DataFrame
biz_names_df = pd.DataFrame(biz_names, columns=['BorrowerNameFingerprint'])

create a new array of the same length as our biz_names_df and fill with
a flag value
fill_column = np.full((len(biz_names),1), '2Mil2ndRnd')
biz_names_df['GotSecond'] = fill_column

now merge this new, two-column DataFrame back onto our full_data list,
so that we (hopefully) find their first-round loans as well
second_round_max = pd.merge(ppp_data_w_lc, biz_names_df, on='BorrowerNameFingerprint')

now all the loans that share fingerprints with the ones that got the max
amount in the second round should have the flag value '2Mil2ndRnd' in the
'GotSecond' column
second_max_all_loans = second_round_max[second_round_max['GotSecond'] == '2Mil2ndRnd']

we expect this to be twice the number of businesses that received $2M
second-round loans
print('Total # of loans approved for most orgs that got $2M for second draw:')
print(second_max_all_loans.shape)

how much money were these businesses approved to get from the PPP, total?
total_funds = second_max_all_loans['CurrentApprovalAmount'].sum()
print("Total funds approved for identified orgs that could have second-draw max:")
print(total_funds)

finally, let's plot these results to compare how our date-based `Loan Round`
variable compares to the actual `ProcessingMethod`. Do we get the same results?
We can also confirm numerically, but let's see if the distributions *look*
the same:

set the seaborn theme
sns.set_theme(style="whitegrid")

to create charts side-by-side, we'll use the matplotlib `subplots()` method
use tuples to access the different subplots later
fig, ((row1col1, row1col2)) = plt.subplots(nrows=1, ncols=2)

plot the histogram of our date-based analysis
date_based = sns.histplot(data=second_max_all_loans, x='CurrentApprovalAmount', hue='Loan Round', ax=row1col1)

plot the histogram of our data-based analysis
data_based = sns.histplot(data=second_max_all_loans, x='CurrentApprovalAmount', hue='ProcessingMethod', ax=row1col2)

plt.show()

Running this script will yield a few more lines of additional output:

Total # of loans approved for most orgs that got $2M for second draw:
(2634, 54)
Total funds approved for identified orgs that could have second-draw max:
6250357574.44

At first, it looks like something’s off, because we might have expected our total number of loans to be 2*1,175 = 2,350. But remember that we matched up loans based on whether they got approved for $2M in round two, but we failed to match 284 loans on BorrowerNameFingerprint. This means we have all second round loans, but are missing 284 first-round loans in these numbers. So we have (2*1,175) + 284 = 2,634. Good! It’s always nice when something matches up. This means that our “total” figure, while still not 100% accurate, is a somewhat reasonable estimate of the minimum total amount this group of businesses were approved for in PPP funds: around $6 billion dollars.

Finally, if we take a look at the visualization shown in Figure 9-7, we can compare how our Loan Round classification matches up against the designated PPS loans — and the results look pretty good!11

[image: Dollar amount of most approved loans for businesses that received two PPP loans, by loan round.]
Figure 9-7. Dollar amount of most approved loans for businesses that received two PPP loans, by loan round.

Looking more closely at Figure 9-7, however, it seems that a fair number of those businesses violate our earlier hypothesis: that companies who were approved for $2M in second-draw loans would have been approved for more in their first-draw loans, when the limits were higher. As usual, in answering one question, we’ve generated another — and could use the work we’ve already done to go down the road to answering it. Before we let loose on our next round of question-and-answer, though, we need to talk about one more essential component of data analysis and interpretation: proportionality.

Proportional Response

Imagine you go out to eat with some friends. You’ve eaten recently, so you just order a drink, but your three friends missed their snack today and each order a full meal. How do you decide who owes what when the check arrives? Most of us would agree that the most sensible thing to do would be to calculate — or at least estimate — what proportion of the total bill each person’s order accounted for, and then have each person pay that, along with that same proportion of, say, the tax and tip.

The same sort of logic applies when we’re analyzing data. In “The $2 Million Question”, we looked at the total funds that had been approved for a certain subset of businesses through the PPP — and while $6B sounds like a lot, we should arguably be more interested in how those businesses used that money, rather than the absolute number of dollars they got. Since the PPP was designed to keep people on the payroll, one thing we might want to know is how much money those businesses received in relation to how many jobs they preserved, a process I think of as rationalizing the data12.

Fortunately, the process of rationalizing our data is extremely simple: we just have to calculate a ratio by dividing one number by the other. For example, if we want to know how many dollars per job the companies identified in “The $2 Million Question” spent, we can (after some sanity-checking) use the PAYROLL_PROCEED and JobsReported column to find out, as shown in Example 9-7.

Example 9-7. dollars_per_job_2M_rnd2.py

import pandas for data loading/transformations
import pandas as pd
import seaborn for visualization
import seaborn as sns
import matplotlib for visualization support
import matplotlib.pyplot as plt
import numpy for manipulating arrays/lists
import numpy as np

load our data
ppp_data = pd.read_csv('public_150k_plus_borrower_fingerprint_a.csv')

first, sanity-check our data
print(ppp_data[ppp_data['JobsReported'] <= 0])

what do you know? a couple of businesses didn't report *any* jobs
let's ditch those two for now (remember: axis 0 is rows), and the "labels"
in this case are the ones assigned by pandas, shown all the way to the left
in our output
ppp_data.drop(labels=[437083,765398], axis=0)

now, calculate the dollars per job
dollars_per_job = ppp_data['CurrentApprovalAmount']/ppp_data['JobsReported']

add the new column back into our original data set
ppp_data.insert(3, 'Dollars per Job', dollars_per_job)

let's use the `ProcessingMethod` value to identify definitively which
were second round loans
pps_loans = ppp_data[ppp_data['ProcessingMethod'] == 'PPS']

select those loans that we *know* are second round and have a value of $2M
pps_got_2M = pps_loans[pps_loans['CurrentApprovalAmount'] == 2000000.00]
print("Actual $2M second-round loans:")
print(pps_got_2M.shape)

isolate the fingerprints of businesses that got $2M second-draw loans approved
biz_names = pd.unique(pps_got_2M['BorrowerNameFingerprint'])

convert that list to a DataFrame
biz_names_df = pd.DataFrame(biz_names, columns=['BorrowerNameFingerprint'])

create a new array of the same length as our biz_names_df and fill with
a flag value
fill_column = np.full((len(biz_names),1), '2Mil2ndRnd')
biz_names_df['GotSecond'] = fill_column

now merge this new, two-column DataFrame back onto our full_data list,
so that we (hopefully) find their first-round loans as well
second_round_max = pd.merge(ppp_data, biz_names_df, on='BorrowerNameFingerprint')

now all the loans that share fingerprints with the ones that got the max
amount in the second round should have the flag value '2Mil2ndRnd' in the
'GotSecond' column
second_max_all_loans = second_round_max[second_round_max['GotSecond'] == '2Mil2ndRnd']

we expect this to be twice the number of businesses that received $2M
second-round loans
print('Total # of loans approved for most orgs that got $2M for second draw:')
print(second_max_all_loans.shape)

how much money were these businesses approved to get from the PPP, total?
total_funds = second_max_all_loans['CurrentApprovalAmount'].sum()
print("Total funds approved for identified orgs that could have second-draw max:")
print(total_funds)

now, let's plot that new column on our selected data set

set the seaborn theme
sns.set_theme(style="whitegrid")

to create charts side-by-side, we'll use the matplotlib `subplots()` method
use tuples to access the different subplots later
fig, ((row1col1)) = plt.subplots(nrows=1, ncols=1)

plot the histogram of our date-based analysis
date_based = sns.histplot(data=second_max_all_loans, x='Dollars per Job', hue='ProcessingMethod', ax=row1col1)

plt.show()

While the text output here confirms that we’re looking at the same set of loans that we examined in “The $2 Million Question”, our rationalized data also highlights what appear to be some anomalies in some of the first-round loans, were a handful of companies appear to have had loans approved that allocated more for payroll than they should have (since the limit per job was $100,000), based on the number of jobs they reported, as shown in Figure 9-8.

[image: Dollars per job of companies approved for $2M in second-draw loans.]
Figure 9-8. Dollars per job of companies approved for $2M in second-draw loans.

Conclusion

So what can we make of these findings so far? After all our analysis, we know a few things, some of it specific to this data set, but much of it far more general:

	
A relatively small number of companies filed for the maximum allowable second-draw amount. While many of them had filed for much more than that $2M max for their first-draw loan, some did not.

	
A handful companies that were approved for a $2M second-draw loan claimed more than $100,000 per reported job in their first-draw loan.

	
Human-entered data is always a mess. That’s why data cleaning is an ongoing, iterative process. Make sure to document your work, or you’ll never be able to defend your results!

In other words, our more in-depth analysis left us with far more questions than answers, and there’s only one way we’re going to find out more: talking to people. Sure, some of these patterns look questionable, but there are still a lot of unknowns. For example, many of the $2M second-round loans had yet to be disbursed when this data was released, meaning that companies might have actually used far less. And since the rules allow forgiveness of the loan as long as a certain percentage was spent on payroll, the companies that seem to have gotten too much may have simply used the balance on different allowable expenses, like mortgage interest or health care costs. In other words, while we can learn a little bit from this type of numerical data analysis, it will never be enough to tell us the whole story — the how, or the why. That is something that we need people for.

Once we’ve done that work, we can finally start to think about the most effective way to share what we’ve learned with others, which will almost always involve a combination of words and visualizations. As we’ll see in the next chapter, however, it’s essential that we choose the components of each type of communication carefully, in order to make sure that our message truly gets heard.

1 https://www.nytimes.com/2008/03/19/health/19iht-ariel.1.11252785.html
2 You can technically also sort from highest to lowest, but starting with lower values is conventional, and will make things easier in the long run.
3 https://doi.org/10.1093/aesa/48.6.499
4 M. W. Toews, CC BY 2.5 https://creativecommons.org/licenses/by/2.5, via Wikimedia Commons
5 https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg
6 https://www.sba.gov/funding-programs/loans/covid-19-relief-options/paycheck-protection-program/second-draw-ppp-loan
7 If it’s too many, the output will say Killed. This is a sign you either need to close some apps, or maybe move into the cloud.
8 See: https://www.sba.gov/document/support-faq-ppp-borrowers-lenders and https://www.sba.gov/document/support-sba-franchise-directory
9 Though you can find it in the file ppp_fingerprint_borrowers.py
10 Note that I’m intentionally doing this is a slightly roundabout way in order to demonstrate a few more data-wrangling and visualization strategies, but feel free to rework this code to be more efficient as an exercise!
11 If we compare the results numerically, we’ll find they’re identical, at least for our subset of companies approved for $2M in the second-draw.
12 This term has more specific meanings in the business and statistics/data-science worlds, but “proportionalizing” just sounds kind of awkward. Plus, it better matches the actual calculation process!

 About the Author

 Susan McGregor is the Assistant Director of the Tow Center for Digital Journalism, and has been teaching journalists and other non-programmers to code for more than a decade. With a background in computer science, journalism and information visualization, McGregor loves solving problems that help people achieve greater agency. Following several years as the Senior Programmer of the Online News Graphics team at The Wall Street Journal, McGregor spent nearly a decade at Columbia University, where she taught classes on everything from introductory data journalism to advanced algorithmic investigation and analysis.

OEBPS/Images/LenderLocationID.png
U.S. Small Business Administration

e —
Step 1 - Request GLS User ID/Password

Apply on-line at https://eweb.sba.gov/gls

Tips:
* User ID — make up your own must be between 8 and 15 characters long
« Contact info — start with zip code and select “lookup zip”
« Location ID — this will be for the main bank location not by branch

« Logins should NOT be shared; each user should set up their own User ID &
Password

Once you have a user ID and Password, request Access ...

www.sba.gov/for-lenders

OEBPS/Images/KeysAndTokens.png
Docs Community

S

Here are your keys & tokens

For security, this will be the last time we'll display these. If something happens,
you can always regenerate them.

APIkey

WT7e8mYSYoj0Yu6ockC7pipyd [

API secret key

WgNK]XbNWyW20hg22Wx3sexQaOPEJBmYUKTORMWAFFHbIuMhwa [

Bearer token

AAAAAAAAAAAAAAAAAAAAAHZIMQEAAAAAeMU2SMXEG%2BbgY07KC%
2FYzPsPBH%2Bc%3DGJjcxO0rRtxesEaMItt98p9pajhd1zam9iczvFDFOdmy [LE3
wj3ufz

Updates

Support

OEBPS/Images/TwitterIntendedUses.png
Docs Community Updates Support

w Developer
Portal

Basic info

#IlmportantStuff The specifics

This part of the application helps us make
sure that our data will be handled in
ccordance with Twitter's Developer Policies

Please answer each of the following with as much detail and accuracy as possible. Failure to do so could result in
delays to your access to Twitter developer platform or rejected applications

Our ultimate goal is to keep Twitter a safe
and healthy space for public conversation.

Are you planning to analyze Twitter data? No
What's not allowed
Some activities (like surveillance) are never wil T R Like, Foll Direct M No
llowed on Twitter. Take a look at our ill your app use Tweet, Retweet, Like, Follow, or Direct Message

restricted page. Double-check that your functionality?
intended use is policy compliant.

Automation guidelines Do you plan to display Tweets or aggregate data about Twitter No

content outside Twitter?
If you plan on enabling an:

utomated activity on the platform (like a
bot), be sure to review our automation rules.

Will your product, service, or analysis make Twitter content or derived No
Provide thorough answers information available to a government entity?

OEBPS/Images/InspectionWindowHighlighted.png
Key/Resources (% @] | Elements Console Sources Network Performance Memory
<TTEnter Tontent Here -->
<h1>Turnstile Data</hi:

« Field Description: w<div class="container’
o Prior to 10/18/14 b
<h2-Key/Resources</h2>
o Current s
- " 1oy, Station Name Ke "
div.span-84.last 1458.53x 10497.2 Y. /P
o »<ul class="arrow’>.
<pr</p>
w<div class-"span-84 last'>
. <h2-Data Files</h2- $0
br-

a href="data/nyct/turnstile/turnstile 210206.txt">Saturday,
February 06, 2021

Saturday,
January 30, 2021</a

a href="data/nyct/turnstile/turnstile 210123
January 23, 2021</a

-saturday,

... ‘mainbox div#contentbox.roundCorners.clearfix ~ div.container div.span-84.last h2

* rrrorde Wt Mew w

OEBPS/Images/commit_readme_changes.png
Attach files by dragging & dropping, selecting or pasting them.

o Commit changes

|| Added description of repo contents.

Add an optional extended description...

@ -o- Commit directly to the main branch.

O 11 Create a new branch for this commit and start a pull request. Learn more about pull requests.

Commit changes [}

OEBPS/Images/FREDAPIScreen.png
& research.stlouisfed.org/useraccount/apikeys

~=\p~ ECONOMIC RESEARCH

FEDERAL RESERVE BANK ST.LOUIS

Economists v Research and Publications v The Research Division v

econlowdown FRASER FRED | My Account¥
API Keys

+ Request API Key

About API Keys

= API keys are needed to develop programs & applications using FRED data.
= All St. Louis Fed web services require an API key.

= Developers should request a distinct AP key for each application they build.
= All users of an application may use the same API key.

OEBPS/Images/atom_welcome_screen.png
File Edit View Selection Find Packages Help

Project

Your project is currently empty

Reopen a project

Welcome

& ATOM

A hackable text editor for the 215t Century

For help, please visit

« The Atom docs for Guides and the API reference.

« The Atom forum at discuss.atom.io

« The Atom org. This is where all GitHub-created Atom packages
can be found.

Show Welcome Guide when opening Atom

atom.io x &

untitled

OEBPS/Images/TwitterAppName.png
Docs Community

Last step, name your App

Apps are where you get your access keys and tokens and set permissions.
They are encompassed within your Projects.

PythonAPIExperiment

Complete

Back

Updates

Support

OEBPS/Images/202009CitibikeTripdataExample-top.png
Find. 202009CitibikeTripdataExample.csv — X

tripduration, starttime, stoptime,start station id,start station name,start station latitude,start station longitude,end station id,end station

name,end station latitude,end station longitude,bikeid,usertype,birth year,gender
4225,2020-09-01 00:00:01.0430,2020-09-01 01:10:26.6350,3508,St Nicholas Ave & Manhattan Ave,40.809725,-73.953149,116,W 17 St & 8

Ave, 40.74177603, -74.00149746, 44317, Customer , 1979, 1
1868, 2020-09-01 00:00:04.8320,2020-09-01 00:31:13.7650,3621,27 Ave & 9 St,40.7739825, -73.9309134,3094, Graham Ave & Withers

St,40.7169811, -73.94485918, 37793, Customer, 1991, 1
1097,2020-09-01 00:00:06.8990, 2020-09-01 00:18:24.2260,3492,E 118 St & Park Ave,40.8005385, -73.9419949, 3959, Edgecombe Ave & W 145

St, 40.823498, -73.94386, 41438, Subscriber, 1984, 1

5 1473,2020-09-01 00:00:07.7440,2020-09-01 00:24:41.1800,3946,St Nicholas Ave & W 137 St,40.818477,-73.947568,4002,W 144 St & Adam Clayton

Baac1l Blud 48 BARETT 79 AAASAR AEDRE P ictaccs 1008 o

OEBPS/Images/ppp_center_and_spread.png
7000

6000

5000

4000

Count

3000

2000

1000

0.5 1.0 15

CurrentApprovalAmount

20

25

3.0
le6

OEBPS/Images/ppp_histogram1.png
- 0O X

x=4.03e+06 y=2.57e+04

A€ Q=

40000

35000

30000

25000

20000

Count

15000

10000

5000

0.4 0.6 0.8 10
CurrentApprovalAmount 1le7

OEBPS/Images/PPP_preview_recent.png
Find. public_150k_plus.csv — X

LoanNumber , DateApproved, SBAOfficeCode, ProcessingMethod, BorrowerName, BorrowerAddress, BorrowerCity, BorrowerState, BorrowerZip, LoanStatusbate, Loa
nstatus, Term, SBAGuarantyPercentage, InitialApprovalAmount, CurrentApprovalAmount, UndisbursedAmount, FranchiseName, ServiicingLenderLocationID, Serv
icingLenderName, ServicingLenderAddress, ServicingLenderCity, ServicingLenderState, ServicingLenderzip, RuralurbanIndicator, HubzoneIndicator, LMIIn
dicator, BusinessAgeDescription, ProjectCity, ProjectCountyName, ProjectState, ProjectZip, CD, JobsReported, NALCSCode, RaceEthnicity, UTILITIES_PROCEE
D, PAYROLL_PROCEED, MORTGAGE_INTEREST_PROCEED, RENT_PROCEED, REFINANCE_EIDL_PROCEED, HEALTH_CARE_PROCEED, DEBT_INTEREST_PROCEED, BusinessType, Origin
atingLenderLocationID, OriginatingLender,OriginatingLenderCity,OriginatingLenderState,Gender,Veteran, NonProfit

9547507704, 05/01/2020, 0464, PPP, "SUMTER COATINGS, INC.",2410 Highway 15 South,Sumter,,29150-9662,12/18/2020,Paid in

Full, 24,100, 769358.78, 769358.78, 0, , 19248, Synovus Bank,1148 Broadway, COLUMBUS, GA, 31901-2429, U, N, , Existing or more than 2 years

old, Sumter , SUMTER, SC, 201509662, SC-05, 62, 325510, Unanswered, , 769358.78, , , , , , Corporation, 19248, Synovus Bank, COLUMBUS, GA, Unanswered, Unanswered
9777677704, 05/01/2020, 0464, PPP, "PLEASANT PLACES, INC.",7684 Southrail Road,North Charleston,,29420-9000, ,Exemption
4,24,100,736927.79,736927.79,0,, 19248, Synovus Bank, 1148 Broadway, COLUMBUS, GA, 31901-2429, U, Y, ,Existing or more than 2 years old,North
Charleston, CHARLESTON, SC, 29420-9000, SC-06, 73, 561730, Unanswered, , 736927.79, ,,,,,Sole Proprietorship,19248,Synovus Bank, COLUMBUS, GA, Male

Owned, Non-Veteran

5791407702, 05/01/2020, 1013, PPP, BOYER CHILDREN'S CLINIC,1850 BOYER AVE E,SEATTLE,,98112-2922,,Exemption 4,24,100,691355,691355,0, 9551, "Bank
of America, National Association","100 N Tryon St, Ste 170", CHARLOTTE,NC, 28202-4024,U,N,,New Business or 2 years or

less, SEATTLE, KING, WA, 98112-2922, WA-07, 75, , Unanswered, , 691355, , , ,,,Non-Profit Organization,9551,"Bank of America, National
Association", CHARLOTTE, NC, Unanswered, Unanswered, Y

6223567700, 05/01/2020, 0920, PPP, KIRTLEY CONSTRUCTION INC,1661 MARTIN RANCH RD,SAN BERNARDINO,,92407-1740, ,Exemption
4,24,100,499871,499871,0, 9551, "Bank of America, National Association","100 N Tryon St, Ste 170", CHARLOTTE,NC,28202-4024,U,N, ,New Business or
2 years or less,SAN BERNARDINO,SAN BERNARDINO,CA,92407-1740,CA-08, 21,236115, Unanswered, 499871, ,,,,,Corporation, 9551, "Bank of America
National Association",CHARLOTTE,NC,Unanswered,Unanswered

9662437702, 05/01/2020, 0101, PP, AERO BOX LLC,N/A,N/A, , ,, Exemption 4,24,100,367437,367437,0,,57328, The Huntington National Bank,17 S High

St, COLUMBUS, OH, 43215-3413, U, N, , Unanswered, N/A, , NA, N/A, , 25, 484210, Unanswered, , 367437, ,,,, ,, 57328, The Huntington National

Bank, COLUMBUS, OH, Unanswered, Unanswered

9774337701, 05/01/2020, 0101, PPP, HUDSON EXTRUSIONS INC.,N/A,N/A,,, Exemption 4,24,100,328840,328840,0,,57328, The Huntington National Bank,17 S
High St,COLUMBUS, OH, 43215-3413,U,N, , Unanswered, N/A, ,NA, N/A, , 22, 326199, Unanswered, , 328840, , , , , ,, 57328, The Huntington National

Bank, COLUMBUS , OH, Unanswered Unanswered

OEBPS/Images/colab_overlay.png
Examples Google Drive

Filter notebooks

Title Lastopened 4 Firstopened +

Welcome To Colaboratory

New notebook Cancel

OEBPS/Images/simple_histogram.png
Count

200

175

150

125

100

075

050

025

000

100

OEBPS/Images/FREDObservationsEndpointDocs.png
@ fred.stlouisfed.org/docs/api/fred/

U EIESE SUU LS B LIS SUUILES 11 G SRS Ul SLUuI I e
= fred/release/tags - Get the tags for a release.

= fred/release/related_tags - Get the related tags for a release.

» fred/release/tables - Get the release tables for a given release.

Series

fred/series - Get an economic data series.
fred/series/categories - Get the categories for an economic data series.

fred/series/observations - Get the observations or data values for an economic data series.

fred/series/release - Get the release for an economic data series.

fred/series/search - Get economic data series that match keywords.

fred/series/search/tags - Get the tags for a series search.

fred/series/search/related_tags - Get the related tags for a series search.

fred/series/tags - Get the tags for an economic data series.

fred/series/updates - Get economic data series sorted by when observations were updated on the FRED® server.
fred/series/vintagedates - Get the dates in history when a series' data values were revised or new data values were released.

OEBPS/Images/readme_commit_history.png
<> Code (© lIssues 1% Pull requests (® Actions [Projects @ security |~ Insights 2 Settings

¥ main ~
-o- Commits on Jul 23, 2021

Added description of repo contents.

Verified (/) | bdccdee <o
' susanemcg committed 4 minutes ago.

Initial commit Verified) | carbec <>

. susanemcg committed 6 minutes ago.

Newer Older

OEBPS/Images/FREDOptionsDropdown.png
F ED ECONOMIC RESEARCH MY ACCOUNT ¥ |

EcoNomIc DATA | 57.LOUIS FED FEDERAL RESERVE BANK OF ST. LOUIS Search FRED

Q search My Content

FREDs Economic Data
My Content

22 Dashboards @)
Graphs @

Data Lists @
Download, graph, and track 786,000 US and international time series fr(g maps

Your trusted data source since 1991.

©® FREDcast

Search FRED data e.g., gdp, inflation, unemployment = Notifications
Browse data by Tag, Category, Release, Source, Release Calendar or Ge 4 APLKeys
Settings

& Sign out

OEBPS/Images/SBA_Box_Stephen_Morris.png
Updated 02-01-21 EIDL, EIDL Advance, and PPP Data » 02-01-21 Paycheck Protection Program Data

Name H Updated H Size
public_up_to_150k_6.csv Feb 1, 2021 by Stephen Morris 300.6 MB
public_up_to_150k_4.csv Feb 1, 2021 by Stephen Morris 351.7 MB
public_up_to_150k_3.csv Feb 1, 2021 by Stephen Morris 351 MB
public_up_to_150k_1.csv Feb 1, 2021 by Stephen Morris 355.6 MB
public_up_to_150k_5.csv Feb 1, 2021 by Stephen Morris 351.5MB
public_up_to_150k_2.csv Feb 1, 2021 by Stephen Morris 352.3MB
public_150k_plus.csv Feb 1, 2021 by Stephen Morris 307.5MB

OEBPS/Images/FredHomepage.png
MY ACCOUNT |

@ fred stlouisfed.org
oo

St. Louis Fed Home

FRED Y%
FEDERAL RESERVE BANK OF ST. LOUIS.

FREDg Economic Data Information Services Publications Working Papers Economists About

Your trusted data source since 1991.

OEBPS/Images/search_results.png
€ 5 C @ gooplecomsesrchrsource-hpkel-QaoZYMyDaiSNoP MevsAUSITig- AINFCEYAAAAAYBMALYF€TSQhLNaN GHE7YQUIXC ombi&q-westhersebstopolfon-westhersebasto.

Google weaner sepasiopol x 4

QN B Osupi OMms D iNae Setigs Toos

About 530000 el (030 sconds)

Sebastopol, CA

Tuesday 1100 AM

Party cloudy
e Precipation: 2%
2 59 Humidiy: 63%
Wind: & mph
Temgeure precpton i

OEBPS/Images/QueryStringDiagram.png
Question mark (?) Ampersand (8)

separates the separates
‘endpoint from the key/value pairs
query string from one another

https: //www.google . com/search?q=weather+sebastopol&nun=5
e A SN | L

The endpoint is the first part of the URL, up. \ /
until the question mark (?) Keylvalue pairs,
with key separated from

value by an equals sign (=).
Acceptable keys and values
are determined by the API
provider.

OEBPS/Images/TwitterUseCases.png
C @ developer.twitter.com/en/portal/petition/use-case

w Developer
Portal

#UseCases

First things first, let's get you the right
application

Pick the use case that most closely relates
to the type of work you intend to do while
using the Twitter developer platform

There's some overlap between these so
focus on the specifics of your main
objective.

9

Making a bot

Docs

Hobbyist

©)

Building tools for
Twitter users

Community

Updates

Exploring the API

Support

OEBPS/Images/ForLoopDiagram.png
Signals that you'll be “looping” through every Name of already-defined Programmer-selected
item in a list “list-ke object’ (e.g. properly variable name used to refer
| transformed cs file) toan individual list-tem

’—’ ‘ within the *loop”

for a number in page counts:
it _

1
total pages = total pages + a number
- _ _

Any code that is
part of the ‘loop”
needs to be
indented one tab

OEBPS/Images/wing_length_kde.png
20.0

17.5

15.0

5.0

25

0.0 °

37.5 40.0

25 450 475 500
wing_length (0.1mm)

525 55.0

OEBPS/Images/SSH_GPG_page.png
Account settings
Profile

Account
Appearance
Account security
Billing & plans
Security log

Security & analysis
Emails

Notifications
Scheduled reminders
SSH and GPG keys

Repositories

SSH keys

There are no SSH keys associated with your account.

Check out our guide to generating SSH keys or troubleshoot common SSH problems.

GPG keys

There are no GPG keys associated with your account.

Lear how to generate a GPG key and add it to your account

Vigilant mode

[Flag unsigned commits as unverified
This will include any commit attributed to your account but not signed with your GPG or SIMIME key.
Note that this will include your existing unsigned commits.

Learn about vigilant mode.

New GPG key

OEBPS/Images/add_ssh_key.png
Account settings SSH keys / Add new

Profile
Title
Account
Appearance
PP Key

Account securi
ceount security Begins with 'ssh-rsa’, ‘ecdsa-sha2-nistp256', ‘ecdsa-sha2-nistp384', ‘ecdsa-sha2-nistp521', ‘ssh-ed25519', ‘sk-

Billing & plans. ecdsa-sha2-nistp256 @openssh.com’, or 'sk-ssh-ed25519@openssh.com’

Security log
Security & analysis
Emails
Notifications

Scheduled reminders

SSH and GPG keys

Repositories

OEBPS/Images/empty_jupyter_folder.png
Z Jupyter Quit | Logout

Files Running Clusters
Select items to perform actions on them. Upload New~ £
oo ~- = Name ¥ Last Modified File size

The notebook list is empty.

OEBPS/Images/august_data_sample.png
A
LoanRange
d $350,000-1 million
d $350,000-1 million
d $350,000-1 million

d $350,000-1 million

d $350,000-1 million

B
BusinessName
AERO BOX LLC

BOYER CHILDREN'S CLINIC
KIRTLEY CONSTRUCTION
INC

PLEASANT PLACES, INC.

SUMTER COATINGS, INC.

c
Address

1850 BOYER AVE
E

1661 MARTIN
RANCH RD
7684 Southrail
Road

2410 Highway
15 South

City State

SEATTLE

SAN
BERNARDINO
North
Charleston
Sumter

F G H
Zip NAICSC Businest
484210

Non-Prc
98112 Organizi

236115 Corpora
92407
561730 Sole
Propriet
325510 Corpora
29150

29420

I J K

M N o P

RaceEth Gender Veteran NonProf JobsRep DateApj Lender D

Unansw Unansw Unansw

Unansw Unansw Unansw Y

Unansw Unansw Unansw

Unansw Male Non-

Owned Veteran
Unansw Unansw Unansw

05/03/2 The Huntington
National Bank

75 05/03/2 Bank of America, WA-07
National Association
05/03/2 Bank of America, CA-31
21 National Association
05/03/2 Synovus Bank SC-01
73
05/03/2 Synovus Bank SC-05

62

OEBPS/Images/2.png

OEBPS/Images/edit_readme.png
rch or jump to. Pull requests Issues Marketplace Explore

& susanemcg/data_wranging_exercises Private @Unwatch ~ 1 ¢y Star 0 %@ Fok 0
<> Code Issues Pull requests Actions Projects Security Insights Settings
data_wranging_exercises/ README.md in main Cancel changes
<> Editfile Preview Spaces & 2 4 Softwap %

data wranging exercises

This is the repo where I'1l keep my data wrangling code exercises!

OEBPS/Images/3.png

OEBPS/Images/1.png

OEBPS/Images/CustomFunctionDiagram.png
Signals that a Custom function Parameter names are how

custom function name. variable ‘ingredients” can
name follows be accessed from within the
function

def greet_me(a_name):

print("Hello "+a_name)
—

Any code that is
part of the function
needs to be
indented one tab

OEBPS/Images/TwitterCreateProjectDashboard.png
n/portal/dashboard

Docs

Dashboard

Create a Project to use Early Access v2 endpoints.

+ Create Project

OEBPS/Images/dollars_per_job.png
25

0.0

ProcessingMethod
o PPP

s PPS

100000

200000

300000
Dollars per Job

1400000

500000 600000

OEBPS/Images/MTATurnstilePageLocal.png
°

Performance

Indicators

o Press
Releases
and News

o Pul

Hearings

Transportation

Reinvention

Commission

°

Turnstile Data

Key/Resources

« Field Description:
o Prior to 10/18/14
o Current
« Remote Unit/Control Area/Station Name Key

Data Files

February 06, 2021

Catrdav Neavemhbar 22 9090

OEBPS/Images/git_new_repo.png
Create a new repository

Arepository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Repository template
Start your repository with a template repository's contents.

No template ~

Owner * Repository name *

@ susanemcg -/ data_wranging_exercises v

Great repository names are short and memorable. Need inspiration? How about friendly.

Description (optional)

o [: Public
Anyone on the internet can see this repository. You choose who can commit.
® ﬁ Private
You choose who can see and commit o this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

Add a README file
This is where you can write a long description for your project. Learn more.

OEBPS/Images/TwitterDashboardWithApp.png
Dashboard

6%& Projects

OREILLY >

MONTHLY TWEET CAP USAGE (D

0 Tweets pulled of 500,000

PROJECT APP.

PythonAPIExperiment) [O

OEBPS/Images/win10_cmd_search.png
£ cmd|

OEBPS/Images/TwitterProjectPurpose.png
Docs Community

Which best describes you?

Below you will find options on how you intend to use the Twitter Developer
Platform.

Exploring the API v

Back

Updates

Support

OEBPS/Images/PPP_data_landing_page.png
<« C @ sbagov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program/ppp-data

Download all Paycheck Protection Program data. Download a summary of key data aspects.

OEBPS/Images/recent_data_sample.png
1

A
LoanNumber
9547507704

9777677704

5791407702

6223567700

9662437702

B

DateApproved
05/01/2020

05/01/2020

05/01/2020

05/01/2020

05/01/2020

C] D

E

SBAOffic Processi BorrowerName

464 PPP

464 PPP

1013 PPP

920 PPP

101 PPP

SUMTER COATINGS, INC.

PLEASANT PLACES, INC.

BOVYER CHILDREN'S CLINIC

KIRTLEY CONSTRUCTION INC

AERO BOX LLC

F G

Borrowe Borrowe Borrowe Borrowe LoanSta LoanSta Term

2410 Sumter
Highway
15 Soutl

7684 North
Southra Charlest
Road

1850 SEATTLE
BOYER
AVEE

1661 SAN
MARTIN BERNAR
RANCH

RD

H

29150~
9662

29420~
9000

98112-
2922

92407-
1740

J K

12/18/2 Paid in

Full

Exempti

Exempti

Exempti

Exempti

L

24

24

24

24

24

M N o

P

Q

R =

SBAGua InitialAp Current, Undisbu Franchis Servicin Servicin

100 9358.78 9358.78

100 6927.79 6927.79

100 691355 691355

100 499871 499871

100 367437 367437

0

0

Synovus
Bank

19248

Synovus

Bank

19248

Bank of

Americe
Nationa

A

Associal

9551

Bank of

Americe
Nationa

A

Associal

9551
The
Hunting
Nationa
57328 Bank

OEBPS/Images/LoopVennDiagram.png
for a_number in page_counts:

total_pages = total_pages + a_number

if a_number > 30:

= over_30 + 1

under_30 = under_30 + 1

print(total_pages)

print("Number of chapters over 3@ pages:")
print(over_30)

print("Number of chapters under 30 pages:")
print(under_30)

OEBPS/Images/MTAContextClick.png
« Field Description:
o Prior to 10/18/14
o Current
« Remote Unit/Control Area/Station Name Key

Data Files
Back AltsLeft Arrow
Forward Alt+Right Arrow
Saturday, .
Reload Ctr+R
Save as. Ctri+s
Print. Ctri+P
Cast.
View page source ctrl+U

Inspect Ctrlshift+!

OEBPS/Images/NestedFunctionCallsDiagram.png
print (add_question (make_greeting (editor)))

print()

add_question(")
return(a_greetings", how are you?")

make_greeting()

return(“Hello "+a_nane)

editor

OEBPS/Images/PPP_preview_august.png
Find. public_150k_plus_080820.csv — X

|LoanRange, BusinessName, Address, City, State, Zip, NALCSCode, BusinessType, RaceEthnicity, Gender, Veteran, NonProfit, JobsReported, DateApproved, Lender,
D

"d $350,000-1 million",AERO BOX LLC,N/A,N/A,,,484210,,Unanswered, Unanswered, Unanswered, , ,05/03/2020, The Huntington National Bank

"d $350,000-1 million",BOYER CHILDREN'S CLINIC,1850 BOYER AVE E,SEATTLE,,98112,,Non-Profit

Organization, Unanswered, Unanswered, Unanswered, Y, 75, 05/03/2020, "Bank of America, National Association",WA-07

"d $350,000-1 million",KIRTLEY CONSTRUCTION INC,1661 MARTIN RANCH RD, SAN

BERNARDINO, , 92407, 236115, Corporation, Unanswered, Unanswered, Unanswered, , 21, 05/03/2020, "Bank of America, National Association",CA-31

"d $350,000-1 million", "PLEASANT PLACES, INC.",7684 Southrail Road,North Charleston,,29420,561730,Sole Proprietorship,Unanswered, Male

Owned, Non-Veteran, , 73, 05/03/2020, Synovus Bank, SC-01

"d $350,000-1 million", "SUMTER COATINGS, INC.",2410 Highway 15

South, Sumter, , 29150, 325510, Corporation, Unanswered, Unanswered, Unanswered, , 62, 05/03/2020, Synovus Bank, SC-05

"e $150,000-350,000", CHURCH SQUARE PHARMACY INC,N/A,N/A,,,424210,Corporation,Unanswered, Unanswered, Unanswered, ,,05/03/2020, The Huntington
National Bank,

"e $150,000-350, 000", FERNANDINA BEACH HOTEL GROUP LLC,N/A,N/A,,, 721110, ,Unanswered, Unanswered, Unanswered, ,,05/03/2020, The Huntington National
Bank,

"e $150,000-350,000", FRUIT COVE BAPTIST CHURCH OF JACKSONVILLE FL INC,501 State Road 13,Saint Johns,,32259,813110,Non-Profit

oOrganization, Unanswered, Unanswered, Unanswered, Y, 89, 95/03/2020, Synovus Bank, FL-04

"e $150,000-350, 000", HUDSON EXTRUSIONS INC.,N/A,N/A,,,326199,,Unanswered, Unanswered, Unanswered, , ,05/03/2020, The Huntington National Bank,

"e $150,000-350,000", MIAMITOWN AUTO PARTS AND RECYCLING INC,N/A,N/A,,,423140,Corporation,Unanswered,Unanswered, Unanswered, ,,05/03/2020, The
Huntington National Bank,

"e $150,000-350,000", "MILFAST INDUSTRIAL SUPPLY, INC",N/A,N/A,, 6423840, Unanswered, Female Owned,Non-Veteran,,18,05/03/2020, The Huntington
National Rank

OEBPS/Images/TwitterProjectDescription.png
Docs Community ~ Updates ~ Support

Describe your new Project

This info is just for us, here at Twitter. Itll help us create better developer
experiences down the road.

Creating an app to get practice using the Twitter APl with
Python|

Back

OEBPS/Images/clone_via_ssh.png
8 susanemcg/ data_wranging_exercises Privae @Unwatch ~ 1 ¢y Star 0 %@ Fok 0

<> Code (© lIssues 1% Pull requests (® Actions [Projects @ security |~ Insights 2 Settings

main ~ ¥ 1branch © 0tags Go to file Add file ~ About)

No description, website, or topics

@ susanemcg Added description of repo contents. >} Clone @ provided.
HTTPS SSH GitHub CLI
T I Readme
[README.md Added descripton of €90 CONIS ;5 thup con: susanenco/data wranging | [F]
Use a password-protected SSH key.
README.md Releases

[Download zIP No releases published

Create anew release

data_wranging_exercises

This is the repo where I'll keep my data wrangling code exercises! Packages

No packages published
Publish your first package

OEBPS/Images/chrome_terminal_search.png
Text Terminal

OEBPS/Images/cover.png
O'REILLY"

Practical Python
Data Wrangling
& Data Quality

Getting Started with Reading, Cleaning,
and Analyzing Data

Early
Release

RAW &
UNEDITED

Susan E. McGregor

OEBPS/Images/PPP_data_aspects.png
@ sba.gov/sites/default/files/2020-08/PPP%20Loan%20Data%20-%20Key%20Aspects%2008212020-508.pdf

ieck Protection Program (PPP) Loan Data — Key Aspects - Update..

—
S A U.S. Small Business
) Administration

PPP Loan Data Is Not Indicative of Loan Forgiveness or Program
Compliance

A small business or non-profit organization that is listed in the publicly released data has been approved for a
PPP loan by a delegated lender. The loan range or actual listed amount reflects the current loan approval
amount. However, the lender’s approval does not reflect a determination by SBA that the borrower is eligible
for a PPP loan or entitled to loan forgiveness. All PPP loans are subject to SBA review and all loans over $2
million will automatically be reviewed. Eligibility and compliance will be reviewed during the loan forgiveness
process. Further, a small business’s receipt of a PPP loan should not be interpreted as an endorsement of the
small business’ commercial activity or business model.

Cancelled Loans Do Not Appear in the PPP Loan Data

The public PP data includes only active loans. Loans that were cancelled for any reason are not included in
the public data release. Including only active loans provides a more accurate picture of the businesses being
supported by PPP, as cancelled loans did not receive any PPP funds.

OEBPS/Images/LMI_search_results.png
www1.nyc.gov > nycbusiness > article > nyc-Imi-storefr... ~ #

NYC LMI Storefront Loan - NYC Business - NYC.gov

Due to overwhelming interest and limited funds, we are no longer accepting applications for the
NYC LM Storefront Loan. To be notified of updates to this ...

People also ask

Can LMI be included in loan? v
What is LMI in banking? v
Which banks waive LMI? v
What makes a loan CRA reportable? v

Feedback

en.wikipedia.org » wiki > Lenders_mortgage_insurance

Lenders mortgage insurance - Wikipedia

Lenders mortgage insurance (LMI), also known as private mortgage insurance (PMI) in the US, ...
LMI premiums are calculated using a sliding scale based on the loan amount and LVR. ... 2011-
11-13. Retrieved from "https://en.wikipedia.org/w/index.php?
title=Lenders_mortgage_insurance&oldid=971016555". Categories:.

Missing: #adieater | Must include: Indicator

OEBPS/Images/ChromeOSVersion.png
@ Google Chrome 0S

® Your Chromebook is up to date
Version 86.0.4240.112 (Official Build) (64-bit)

OEBPS/Images/loan_round_vs_pps.png
Count.

1400

1200

1000

800

600

400

200

Loan Round
first_round
maybe_second

Count.

1400

1200

1000

800

600

400

200

ProcessingMethod
PPP
PPS

3 4 5
CurrentApprovalAmount

1e6

3 4 5 6 7 8
CurrentApprovalAmount 1e6

OEBPS/Images/TwitterProjectName.png
Docs Community

0

Name your Project

Your Project helps you organize your work and monitor your usage with the
Twitter API.

Updates

Support

OEBPS/Images/FREDAPIDocsMain.png
@ fred.stlouisfed.org/docs/api/fred/ Y

FREDL ECONOMIC &ESEARCH —

FREDo Economic Data

API Keys | Terms of Use
FRED® API
General Documentation | API | Toolkits

The FRED® API is a web service that allows developers to write programs and build applications that retrieve economic data from the FRED® and ALFRED®
websites hosted by the Economic Research Division of the Federal Reserve Bank of St. Louis. Requests can be customized according to data source, release,
category, series, and other preferences.

General Documentation

Overview

What is FRED®?

What is ALFRED®?
FRED® versus ALFRED®
Real-Time Periods

Errors

API
Categories

= fred/category - Get a category.

= fred/category/children - Get the child categories for a specified parent category.
= fred/category/related - Get the related categories for a category.

= fred/category/series - Get the series in a category.

= fred/category/tags - Get the tags for a category.

= fred/category/related_tags - Get the related tags for a category.

