
Scala for the Impatient

Third Edition

Cay S. Horstmann

[image: images]

Table of Contents

	Foreword to the First Edition

	Preface

	About the Author

	Chapter 1 The Basics

	Chapter 2 Control Structures and Functions

	Chapter 3 Working with Arrays

	Chapter 4 Maps, Options, and Tuples

	Chapter 5 Classes

	Chapter 6 Objects and Enumerations

	Chapter 7 Packages, Imports, and Exports

	Chapter 8 Inheritance

	Chapter 9 Files and Regular Expressions

	Chapter 10 Traits

	Chapter 11 Operators

	Chapter 12 Higher-Order Functions

	Chapter 13 Collections

	Chapter 14 Pattern Matching

	Chapter 15 Annotations

	Chapter 16 Futures

	Chapter 17 Type Parameters

	Chapter 18 Advanced Types

	Chapter 19 Contextual Abstractions

	Chapter 20 Type Level Programming

Contents

	Foreword to the First Edition

	Preface

	About the Author

	1 The Basics A1

	1.1 The Scala Interpreter

	1.2 Declaring Values and Variables

	1.3 Commonly Used Types

	1.4 Arithmetic and Operator Overloading

	1.5 More about Calling Methods

	1.6 The apply Method

	1.7 Scaladoc

	Exercises

	2 Control Structures and Functions A1

	2.1 Conditional Expressions

	2.2 Statement Termination

	2.3 Block Expressions and Assignments

	2.4 Input and Output

	2.5 Loops

	2.6 More about the for Loop

	2.7 Functions

	2.8 Default and Named Arguments L1

	2.9 Variable Arguments L1

	2.10 The Main Function

	2.11 Functions without Parameters

	2.12 Lazy Values L1

	2.13 Exceptions

	Exercises

	3 Working with Arrays A1

	3.1 Fixed-Length Arrays

	3.2 Variable-Length Arrays: Array Buffers

	3.3 Traversing Arrays and Array Buffers

	3.4 Transforming Arrays

	3.5 Common Algorithms

	3.6 Deciphering Scaladoc

	3.7 Multidimensional Arrays

	3.8 Interoperating with Java

	Exercises

	4 Maps, Options, and Tuples A1

	4.1 Constructing a Map

	4.2 Accessing Map Values

	4.3 Updating Map Values

	4.4 Iterating over Maps

	4.5 Linked and Sorted Maps

	4.6 Interoperating with Java

	4.7 The Option Type

	4.8 Tuples

	4.9 Zipping

	Exercises

	5 Classes A1

	5.1 Simple Classes and Parameterless Methods

	5.2 Properties with Getters and Setters

	5.3 Properties with Only Getters

	5.4 Private Fields

	5.5 Auxiliary Constructors

	5.6 The Primary Constructor

	5.7 Nested Classes L1

	Exercises

	6 Objects and Enumerations A1

	6.1 Singletons

	6.2 Companion Objects

	6.3 Objects Extending a Class or Trait

	6.4 The apply Method

	6.5 Application Objects

	6.6 Enumerations

	Exercises

	7 Packages, Imports, and Exports A1

	7.1 Packages

	7.2 Package Scope Nesting

	7.3 Chained Package Clauses

	7.4 Top-of-File Notation

	7.5 Package-Level Functions and Variables

	7.6 Package Visibility

	7.7 Imports

	7.8 Imports Can Be Anywhere

	7.9 Renaming and Hiding Members

	7.10 Implicit Imports

	7.11 Exports

	Exercises

	8 Inheritance A1

	8.1 Extending a Class

	8.2 Overriding Methods

	8.3 Type Checks and Casts

	8.4 Superclass Construction

	8.5 Anonymous Subclasses

	8.6 Abstract Classes

	8.7 Abstract Fields

	8.8 Overriding Fields

	8.9 Open and Sealed Classes

	8.10 Protected Fields and Methods

	8.11 Construction Order

	8.12 The Scala Inheritance Hierarchy

	8.13 Object Equality L1

	8.14 Multiversal Equality L2

	8.15 Value Classes L2

	Exercises

	9 Files and Regular Expressions A1

	9.1 Reading Lines

	9.2 Reading Characters

	9.3 Reading Tokens and Numbers

	9.4 Reading from URLs and Other Sources

	9.5 Writing Files

	9.6 Visiting Directories

	9.7 Serialization

	9.8 Process Control A2

	9.9 Regular Expressions

	9.10 Regular Expression Groups

	Exercises

	10 Traits L1

	10.1 Why No Multiple Inheritance?

	10.2 Traits as Interfaces

	10.3 Traits with Concrete Methods

	10.4 Traits for Rich Interfaces

	10.5 Objects with Traits

	10.6 Layered Traits

	10.7 Overriding Abstract Methods in Traits

	10.8 Concrete Fields in Traits

	10.9 Abstract Fields in Traits

	10.10 Trait Construction Order

	10.11 Trait Constructors with Parameters

	10.12 Traits Extending Classes

	10.13 What Happens under the Hood

	10.14 Transparent Traits L2

	10.15 Self Types L2

	Exercises

	11 Operators L1

	11.1 Identifiers

	11.2 Infix Operators

	11.3 Unary Operators

	11.4 Assignment Operators

	11.5 Precedence

	11.6 Associativity

	11.7 The apply and update Methods

	11.8 The unapply Method L2

	11.9 The unapplySeq Method L2

	11.10 Alternative Forms of the unapply and unapplySeq Methods L3

	11.11 Dynamic Invocation L2

	11.12 Typesafe Selection and Application L2

	Exercises

	12 Higher-Order Functions L1

	12.1 Functions as Values

	12.2 Anonymous Functions

	12.3 Parameters That Are Functions

	12.4 Parameter Inference

	12.5 Useful Higher-Order Functions

	12.6 Closures

	12.7 Interoperability with Lambda Expressions

	12.8 Currying

	12.9 Methods for Composing, Currying, and Tupling

	12.10 Control Abstractions

	12.11 The return Expression

	Exercises

	13 Collections A2

	13.1 The Main Collections Traits

	13.2 Mutable and Immutable Collections

	13.3 Sequences

	13.4 Lists

	13.5 Sets

	13.6 Operators for Adding or Removing Elements

	13.7 Common Methods

	13.8 Mapping a Function

	13.9 Reducing, Folding, and Scanning A3

	13.10 Zipping

	13.11 Iterators

	13.12 Lazy Lists A3

	13.13 Interoperability with Java Collections

	Exercises

	14 Pattern Matching A2

	14.1 A Better Switch

	14.2 Guards

	14.3 Variables in Patterns

	14.4 Type Patterns

	14.5 The Matchable Trait

	14.6 Matching Arrays, Lists, and Tuples

	14.7 Extractors

	14.8 Patterns in Variable Declarations

	14.9 Patterns in for Expressions

	14.10 Case Classes

	14.11 Matching Nested Structures

	14.12 Sealed Classes

	14.13 Parameterized Enumerations

	14.14 Partial Functions A3

	14.15 Infix Notation in case Clauses L2

	Exercises

	15 Annotations A2

	15.1 What Are Annotations?

	15.2 Annotation Placement

	15.3 Annotation Arguments

	15.4 Annotations for Java Features

	15.4.1 Bean Properties

	15.4.2 Serialization

	15.4.3 Checked Exceptions

	15.4.4 Variable Arguments

	15.4.5 Java Modifiers

	15.5 Annotations for Optimizations

	15.5.1 Tail Recursion

	15.5.2 Lazy Values

	15.6 Annotations for Errors and Warnings

	15.7 Annotation Declarations

	Exercises

	16 Futures A2

	16.1 Running Tasks in the Future

	16.2 Waiting for Results

	16.3 The Try Class

	16.4 Callbacks

	16.5 Composing Future Tasks

	16.6 Other Future Transformations

	16.7 Methods in the Future Object

	16.8 Promises

	16.9 Execution Contexts

	Exercises

	17 Type Parameters L2

	17.1 Generic Classes

	17.2 Generic Functions

	17.3 Bounds for Type Variables

	17.4 Context Bounds

	17.5 The ClassTag Context Bound

	17.6 Multiple Bounds

	17.7 Type Constraints L3

	17.8 Variance

	17.9 Co- and Contravariant Positions

	17.10 Objects Can’t Be Generic

	17.11 Wildcards

	17.12 Polymorphic Functions

	Exercises

	18 Advanced Types L2

	18.1 Union Types

	18.2 Intersection Types

	18.3 Type Aliases

	18.4 Structural Types

	18.5 Literal Types

	18.6 The Singleton Type Operator

	18.7 Abstract Types

	18.8 Dependent Types

	18.9 Abstract Type Bounds

	Exercises

	19 Contextual Abstractions L3

	19.1 Context Parameters

	19.2 More about Context Parameters

	19.3 Declaring Given Instances

	19.4 Givens in for and match expressions

	19.5 Importing Givens

	19.6 Extension Methods

	19.7 Where Extension Methods Are Found

	19.8 Implicit Conversions

	19.9 Rules for Implicit Conversions

	19.10 Importing Implicit Conversions

	19.11 Context Functions

	19.12 Evidence

	19.13 The @implicitNotFound Annotation

	Exercises

	20 Type Level Programming L3

	20.1 Match Types

	20.2 Heterogeneous Lists

	20.3 Literal Type Arithmetic

	20.4 Inline Code

	20.5 Type Classes

	20.6 Mirrors

	20.7 Type Class Derivation

	20.8 Higher-Kinded Types

	20.9 Type Lambdas

	20.10 A Brief Introduction into Macros

	Exercises

Foreword to the First Edition

When I met Cay Horstmann some years ago he told me that Scala needed a better introductory book. My own book had come out a little bit earlier, so of course I had to ask him what he thought was wrong with it. He responded that it was great but too long; his students would not have the patience to read through the eight hundred pages of Programming in Scala. I conceded that he had a point. And he set out to correct the situation by writing Scala for the Impatient.

I am very happy that his book has finally arrived because it really delivers on what the title says. It gives an eminently practical introduction to Scala, explains what’s particular about it, how it differs from Java, how to overcome some common hurdles to learning it, and how to write good Scala code.

Scala is a highly expressive and flexible language. It lets library writers use highly sophisticated abstractions, so that library users can express themselves simply and intuitively. Therefore, depending on what kind of code you look at, it might seem very simple or very complex.

A year ago, I tried to provide some clarification by defining a set of levels for Scala and its standard library. There were three levels each for application programmers and for library designers. The junior levels could be learned quickly and would be sufficient to program productively. Intermediate levels would make programs more concise and more functional and would make libraries more flexible to use. The highest levels were for experts solving specialized tasks. At the time I wrote:

I hope this will help newcomers to the language decide in what order to pick subjects to learn, and that it will give some advice to teachers and book authors in what order to present the material.

Cay’s book is the first to have systematically applied this idea. Every chapter is tagged with a level that tells you how easy or hard it is and whether it’s oriented towards library writers or application programmers.

As you would expect, the first chapters give a fast-paced introduction to the basic Scala capabilities. But the book does not stop there. It also covers many of the more “senior” concepts and finally progresses to very advanced material which is not commonly covered in a language introduction, such as how to write parser combinators or make use of delimited continuations. The level tags serve as a guideline for what to pick up when. And Cay manages admirably to make even the most advanced concepts simple to understand.

I liked the concept of Scala for the Impatient so much that I asked Cay and his editor, Greg Doench, whether we could get the first part of the book as a free download on the Typesafe web site. They have gracefully agreed to my request, and I would like to thank them for that. That way, everybody can quickly access what I believe is currently the best compact introduction to Scala.

Martin Odersky

January 2012

Preface

The evolution of traditional languages has slowed down considerably, and programmers who are eager to use more modern language features are looking elsewhere. Scala is an attractive choice; in fact, I think it is by far the most attractive choice for programmers who want to improve their productivity. Scala has a concise syntax that is refreshing after the Java boilerplate. It runs on the Java virtual machine (JVM), providing access to a huge set of libraries and tools. And Scala doesn’t just target the JVM. The ScalaJS project emits JavaScript code, enabling you to write both the server-side and client-side parts of a web application in a language that isn’t JavaScript. Scala embraces the functional programming style without abandoning object orientation, giving you an incremental learning path to a new paradigm. The Scala REPL lets you run quick experiments, which makes learning Scala very enjoyable. Last but not least, Scala is statically typed, enabling the compiler to find errors, so that you don’t waste time finding them—or not—later in the running program. The compiler also helps you write error-free code, inferring types whenever possible so that you don’t have to write (or read) them.

The first edition of this book was written when Java, C#, and C++ were mired in a malaise of ever-increasing complexity with little gain in expressive power. At the time, Scala was a welcome blast of fresh air. In the meantime, Java and other JVM languages such as Kotlin have embraced parts of the feature set of Scala. However, Scala has been blazing new trails in type-level programming, which make powerful libraries possible that you could simply not envision in a language such as Java or Kotlin.

I wrote this book for impatient readers who want to start programming in Scala right away. I assume you know Java, C#, JavaScript, Python, or C++, and I don’t bore you with explaining variables, loops, or classes. I don’t exhaustively list all the features of the language, I don’t lecture you about the superiority of one paradigm over another, and I don’t make you suffer through long and contrived examples. Instead, you will get the information that you need in compact chunks that you can read and review as needed.

Scala has gained a reputation for being difficult to read, and this can certainly be true when library providers pay little attention to usability or assume that programmers are fluent in category theory. I assume that you are comfortable with object-oriented programming. I cover what you need for basic functional programming, similar in complexity to Java streams, but there are no monads to be seen. My goal is to teach you to write Scala code that is delightful rather than inscrutable.

Scala is a big language, but you can use it effectively without knowing all of its details intimately. Martin Odersky, the creator of Scala, has identified levels of expertise for application programmers and library designers—as shown in the following table.

[image: Images]

For each chapter (and occasionally for individual sections), I indicate the experience level required. The chapters progress through levels A1, L1, A2, L2, A3, L3. Even if you don’t want to design your own libraries, knowing about the tools that Scala provides for library designers can make you a more effective library user.

This is the third edition of this book, and I updated it thoroughly for Scala 3. Scala 3 brings major changes to the language. Classic features have been made more regular by removing awkward corner cases. Advanced features are now easier to learn. Even more powerful features have been added that were previously only available via macros. A “quiet syntax”, similar to that of Python, is easy on the eyes and is now the preferred way to write Scala 3 code.

I cover Scala 3 as it is and will be, and do not get into an elaborate evolutionary history of the past. If you need to work with Scala 2, get the second edition of this book.

I hope you enjoy learning Scala with this book. If you find errors or have suggestions for improvement, please visit http://horstmann.com/scala and leave a comment. On that page, you will also find up-to-date installation instructions, and an archive file containing all code examples from the book as executable programs or worksheets.

I am very grateful to Dmitry Kirsanov and Alina Kirsanova who turned my manuscript from XHTML into a beautiful book, allowing me to concentrate on the content instead of fussing with the format. Every author should have it so good!

Reviewers of this and prior editions include Adrian Cumiskey, Mike Davis, Rob Dickens, Steve Haines, Wei Hu, Susan Potter, Daniel Sobral, Craig Tataryn, David Walend, and William Wheeler. Thanks so much for your comments and suggestions!

Finally, as always, my gratitude goes to my editor, Greg Doench, for encouraging me to write this book, and for his insights during the development process.

Cay Horstmann

Berlin, 2022

About the Author

This content is currently in development.

Chapter 1

The Basics

Topics in This Chapter A1

[image: Images] 1.1 The Scala Interpreter

[image: Images] 1.2 Declaring Values and Variables

[image: Images] 1.3 Commonly Used Types

[image: Images] 1.4 Arithmetic and Operator Overloading

[image: Images] 1.5 More about Calling Methods

[image: Images] 1.6 The apply Method

[image: Images] 1.7 Scaladoc

[image: Images] Exercises

In this chapter, you will learn how to use Scala as an industrial-strength pocket calculator, working interactively with numbers and arithmetic operations. We introduce a number of important Scala concepts and idioms along the way. You will also learn how to browse the Scaladoc documentation at a beginner’s level.

Highlights of this introduction are:

• Using the Scala interpreter

• Defining variables with var and val

• Numeric types

• Using operators and functions

• Navigating Scaladoc

1.1 The Scala Interpreter

Depending on how you installed Scala, you can run the Scala intepreter from the command-line or from your integrated development environment. Since the installation instructions change ever so often, I put a set of instructions on the site http://horstmann.com/scala.

Start the interpreter and type commands followed by Enter. Each time, the interpreter displays the answer, as shown in Figure 1–1. For example, if you type 8 * 5 + 2 (as shown in boldface below), you get 42.

scala> 8 * 5 + 2

val res0: Int = 42

The answer is given the name res0. You can use that name in subsequent computations:

scala> 0.5 * res0

val res1: Double = 21.0 scala>

"Hello, " + res0

val res2: java.lang.String = Hello, 42

As you can see, the interpreter also displays the type of the result—in our examples, Int, Double, and java.lang.String.

[image: Images]

Figure 1–1 The Scala Interpreter

[image: Images] Tip

Don’t like the command shell? Several integrated development environments that support Scala have a “worksheet” feature for entering expressions and displaying their result whenever the sheet is saved. Figure 1–2 shows a worksheet in Visual Studio Code. An online version is at !!!!!!!! .

[image: Images]

Figure 1–2 A Scala Worksheet

When calling methods, try using tab completion for method names. Type res2.to and then hit the Tab key. If the interpreter offers choices such as

toCharArray toLowerCase toString toUpperCase

this means tab completion works in your environment. Type a U and hit the Tab key again. You now get a single completion:

res2.toUpperCase

Hit the Enter key, and the answer is displayed. (If you can’t use tab completion in your environment, you’ll have to type the complete method name yourself.)

Also try hitting the and arrow keys. In most implementations, you will see the previously issued commands, and you can edit them. Use the , , and Del keys to change the last command to

res2.toLowerCase

As you can see, the Scala interpreter reads an expression, evaluates it, prints it, and reads the next expression. This is called the read-eval-print loop, or REPL.

Technically speaking, the scala program is not an interpreter. Behind the scenes, your input is quickly compiled into bytecode, and the bytecode is executed by the Java virtual machine. For that reason, most Scala programmers prefer to call it “the REPL”.

[image: Images] Tip

The REPL is your friend. Instant feedback encourages experimenting, and you will feel good whenever something works.

It is a good idea to keep an editor window open at the same time, so you can copy and paste successful code snippets for later use. Also, as you try more complex examples, you may want to compose them in the editor and then paste them into the REPL.

[image: Images] Tip

In the REPL, type :help to see a list of commands. All commands start with a colon. For example, the :type command gives the type of an expression. You only have to enter the unique prefix of each command. For example, :t is the same as :type—at least for now, since there isn’t currently another command starting with t.

1.2 Declaring Values and Variables

Instead of using res0, res1, and so on, you can define your own names:

scala> val answer = 8 * 5 + 2

answer: Int = 42

You can use these names in subsequent expressions:

scala> 0.5 * answer

res3: Double = 21.0

A value declared with val is actually a constant—you can’t change its contents:

scala> answer = 0

-- Error:

1 |answer = 0

 |^^^^^^^^^^

 |Reassignment to val answer

To declare a variable whose contents can vary, use a var:

var counter = 0

counter = 1 // OK, can change a var

In Scala, you are encouraged to use a val unless you really need to change the contents. Perhaps surprisingly for Java, Python, or C++ programmers, most programs don’t need many var variables.

Note that you need not specify the type of a value or variable. It is inferred from the type of the expression with which you initialize it. (It is an error to declare a value or variable without initializing it.)

However, you can specify the type if necessary. For example,

val message: String = null

val greeting: Any = "Hello"

[image: Images] Note

In Scala, the type of a variable or function is written after the name of the variable or function.This makes it easier to read declarations with complex types.

I frequently move back and forth between Scala and Java. I find that my fingers write Java declarations such as String greeting on autopilot, so I have to rewrite them as greeting: String. This is a bit annoying, but when I work with complex Scala programs, I really appreciate that I don’t have to decrypt C-style type declarations.

[image: Images] Note

You may have noticed that there were no semicolons after variable declarations or assignments. In Scala, semicolons are only required if you have multiple statements on the same line.

You can declare multiple values or variables together:

val xmax, ymax = 100 // Sets xmax and ymax to 100

var prefix, suffix: String = null

 // prefix and suffix are both strings, initialized with null

[image: Images] Note

In Scala, integer hexadecimal literals start with 0x, such as 0xCAFEBABE. There are no octal or binary literals. Long integer literals end in an L. Number literals can have underscores for the benefit of the human reader, such as 10_000_000_000L.

1.3 Commonly Used Types

You have already seen some of the data types of Scala, such as Int and Double. Scala has seven numeric types: Byte, Char, Short, Int, Long, Float, and Double, and a Boolean type. In Scala, these types are classes. There is no distinction between primitive types and class types in Scala. You can invoke methods on numbers, for example:

1.toString() // Yields the string "1"

or, more excitingly,

1.to(10) // Yields Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(We will discuss the Range class in Chapter 13. For now, just view it as a collection of numbers.)

In Scala, there is no need for wrapper types. It is the job of the Scala compiler to convert between primitive types and wrappers. For example, if you make an array of Int, you get an int[] array in the virtual machine.

As you saw in Section 1.1, “The Scala Interpreter,” on page 1, Scala relies on the underlying java.lang.String class for strings. However, it augments that class with well over a hundred operations in the StringOps class. For example, the intersect method yields the characters that are common to two strings:

"Hello".intersect("World") // Yields "lo"

In this expression, the java.lang.String object "Hello" is implicitly converted to a StringOps object, and then the intersect method of the StringOps class is applied, as if you had written

scala.collection.StringOps("Hello").intersect("World")

So, remember to look into the StringOps class when you use the Scala documentation (see Section 1.7, “Scaladoc,” on page 10).

Similarly, there are classes RichInt, RichDouble, RichChar, and so on. Each of them has a small set of convenience methods for acting on their poor cousins—Int, Double, or Char. The to method that you saw above is actually a method of the RichInt class. The expression

1.to(10)

is equivalent to

scala.runtime.RichInt(1).to(10)

The Int value 1 is first converted to a RichInt, and the to method is applied to that value.

Finally, there are classes BigInt and BigDecimal for computations with an arbitrary (but finite) number of digits. These are backed by the java.math.BigInteger and java.math.BigDecimal classes, but, as you will see in the next section, they are much more convenient because you can use them with the usual mathematical operators.

[image: Images] Note

In Scala, you use methods, not casts, to convert between numeric types. For example, 99.44.toInt is 99, and 99.toChar is 'c'.The toString method converts any object to a string.

To convert a string containing a number into the number, use toInt or toDouble. For example, "99.44".toDouble is 99.44.

1.4 Arithmetic and Operator Overloading

Arithmetic operators in Scala work just as you would expect:

val answer = 8 * 5 + 2

The + - * / % operators do their usual job, as do the bit operators & | ^ << >> >>>. There is just one surprising aspect: These operators are actually methods. For example,

a + b

is a shorthand for

a.+(b)

Here, + is the name of the method. Scala has no silly prejudice against non-alphanumeric characters in method names. You can define methods with just about any symbols for names. For example, the BigInt class defines a method called /% that returns a pair containing the quotient and remainder of a division.

In general, you can write

a method b

as a shorthand for

a.method(b)

where method is a method with two arguments: the “receiver” a and the explicit argument b. For example, instead of

1.to(10)

you can write

1 to 10

Use whatever you think is easier to read. Beginning Scala programmers tend to stick to the dot notation, and that’s fine. Of course, just about everyone seems to prefer a + b over a.+(b).

Unlike Java, JavaScript, or C++. Scala does not have ++ or -- operators. Instead, simply use +=1 or -=1:

counter+=1 // Increments counter—Scala has no ++

Some people wonder if there is any deep reason for Scala’s refusal to provide a ++ operator. (Note that you can’t simply implement a method called ++. Since the Int class is immutable, such a method cannot change an integer value.) The Scala designers decided it wasn’t worth having yet another special rule just to save one keystroke.

You can use the usual mathematical operators with BigInt and BigDecimal objects:

val x: BigInt = 1234567890

x * x * x // Yields 1881676371789154860897069000

That’s much better than Java, where you would have had to call x.multiply(x).multiply(x).

[image: Images] Note

In Java, you cannot overload operators, and the Java designers claimed this is a good thing because it stops you from inventing crazy operators like !@$&* that would make your program impossible to read. Of course, that’s silly; you can make your programs just as unreadable by using crazy method names like qxywz. Scala allows you to define operators, leaving it up to you to use this feature with restraint and good taste.

1.5 More about Calling Methods

You have already seen how to call methods on objects, such as

"Hello".intersect("World")

Methods without parameters are often invoked without parentheses. For example, the API of the scala.collection.StringOps class shows a method sorted, without (), which yields a new string with the letters in sorted order. Call it as

"Bonjour".sorted // Yields the string "Bjnooru"

The rule of thumb is that a parameterless method that doesn’t modify the object has no parentheses. We discuss this further in Chapter 5.

In Java, mathematical functions such as sqrt are defined as static methods of the Math class. In Scala, you define such methods in singleton objects, which we will discuss in detail in Chapter 6. A package can have a package object. In that case, you can import the package and use the methods of the package object without any prefix:

import scala.math.*

sqrt(2) // Yields 1.4142135623730951

pow(2, 4) // Yields 16.0

min(3, Pi) // Yields 3.0

If you don’t import the scala.math package, add the package name:

scala.math.sqrt(2)

[image: Images] Note

If a package name starts with scala., you can omit the scala prefix. For example, import math.* is equivalent to import scala.math.*, and math.sqrt(2) is the same as scala.math.sqrt(2). However, in this book, I always use the scala prefix for clarity.

You can find more information about the import statement in Chapter 7. For now, just use import packageName.* whenever you need to import a particular package.

Often, a class has a companion object providing methods that don’t operate on instances. For example, the BigInt companion object to the scala.math.BigInt class declares probablePrime, which does not operate on a BigInt. Instead, it generates a random prime BigInt with a given number of bits:

BigInt.probablePrime(100, scala.util.Random)

Here, Random is a singleton random number generator object, defined in the scala.util package. Try this in the REPL; you’ll get a number such as 1039447980491200275486540240713.

1.6 The apply Method

In Scala, it is common to use a syntax that looks like a function call. For example, if s is a string, then s(i) is the ith character of the string. (In C++, JavaScript, and Python, you would write s[i]; in Java, s.charAt(i).) Try it out in the REPL:

val s = "Hello"

s(4) // Yields 'o'

You can think of this as an overloaded form of the () operator. It is implemented as a method with the name apply. For example, in the documentation of the StringOps class, you will find a method

def apply(i: Int): Char

That is, s(4) is a shortcut for

s.apply(4)

Why not use the [] operator? You can think of a sequence s of element type T as a function from { 0, 1, . . . , n – 1 } to T that maps i to s(i), the ith element of the sequence.

This argument is even more convincing for maps. As you will see in Chapter 4, you look up a map value for a given key as map(key). Conceptually, a map is a function from keys to values, and it makes sense to use the function notation.

[image: Images] Caution

Occasionally, the () notation conflicts with another Scala feature: “contextual” parameters. For example, the expression

"Bonjour".sorted(3)

yields an error because the sorted method can optionally be called with an ordering, but 3 is not a valid ordering. You can use another variable:

val result = "Bonjour".sorted

result(3)

or call apply explicitly:

"Bonjour".sorted.apply(3)

When you look at the documentation for the BigInt companion object, you will see apply methods that let you convert strings or numbers to BigInt objects. For example, the call

BigInt("1234567890")

is a shortcut for

BigInt.apply("1234567890")

It yields a new BigInt object, without having to use new. For example:

BigInt("1234567890") * BigInt("112358111321")

Using the apply method of a companion object is a common Scala idiom for constructing objects. For example, Array(1, 4, 9, 16) returns an array, thanks to the apply method of the Array companion object.

[image: Images] Note

All through this chapter, we have assumed that Scala code is executed on the Java virtual machine. That is in fact true for the standard Scala distribution. However, the Scala.js project (https://www.scala-js.org) provides tools to translate Scala to JavaScript. If you take advantage of that project, you can write both the client-side and the server-side code of web applications in Scala.

1.7 Scaladoc

You use Scaladoc to navigate the Scala API (see Figure 1–3).

[image: Images]

Figure 1–3 The entry page for Scaladoc

Using Scaladoc can be a bit overwhelming. Scala classes tend to have many convenience methods. Some methods use advanced features that are more meaningful to library implementors than to library users.

Here are some tips for navigating Scaladoc as a newcomer to the language.

You can browse Scaladoc online at https://scala-lang.org/api/3.x/, but it is a good idea to download a copy and install it locally.

Scaladoc is organized by packages. However, if you know a class or method name, don’t bother navigating to the package. Simply use the search bar on the top of the entry page (see Figure 1–4).

[image: Images]

Figure 1–4 The search bar in Scaladoc

Then click on a matching class or method (Figure 1–5).

[image: Images]

Figure 1–5 Class documentation in Scaladoc

Note the C and O symbols next to the class name. They let you navigate to the class (C) or the companion object (O). For traits (which are similar to Java interfaces and described in Chapter 10), you see t and O symbols instead.

Keep these tips in mind:

• Remember to look into RichInt, RichDouble, and so on, if you want to know how to work with numeric types. Similarly, to work with strings, look into StringOps.

• The mathematical functions are in the package scala.math, not in any class.

• Sometimes, you’ll see methods with funny names. For example, BigInt has a method unary_-. As you will see in Chapter 11, this is how you define the prefix negation operator -x.

• Methods can have functions as parameters. For example, the count method in StringOps requires a function that returns true or false for a Char, specifying which characters should be counted:

def count(p: (Char) => Boolean) : Int

You supply a function, often in a very compact notation, when you call the method. As an example, the call s.count(_.isUpper) counts the number of up-percase characters. We will discuss this style of programming in much more detail in Chapter 12.

• You’ll occasionally run into classes such as Range or Seq[Char]. They mean what your intuition tells you—a range of numbers, a sequence of characters. You will learn all about these classes as you delve more deeply into Scala.

• In Scala, you use square brackets for type parameters. A Seq[Char] is a sequence of elements of type Char, and Seq[A] is a sequence of elements of some type A.

• There are several slightly different types for sequential data structures such as Iterable, IterableOnce, IndexedSeq, LinearSeq, and so on. The differences between them are not very important for beginners. When you see such a construct, just think “sequence.” For example, the StringOps class defines a method

def concat(suffix: IterableOnce[Char]): String

The suffix can be just about any character sequence, since the ability to produce the elements once is very basic. For example, the characters could come from a file or socket. We won’t see for a while how to do that, but here is another example, where the characters come from a range:

"bob".concat('c'.to('z')) // Yields "bobcdefghijklmnopqrstuvwxyz"

• Don’t get discouraged that there are so many methods. It’s the Scala way to provide lots of methods for every conceivable use case. When you need to solve a particular problem, just look for a method that is useful. More often than not, there is one that addresses your task, which means you don’t have to write so much code yourself.

• Some methods have an “implicit” or “using” parameter. For example, the sorted method of StringOps is declared as

def sorted[B >: Char](implicit ord: scala.math.Ordering[B]): String

That means that an ordering is supplied “implicitly,” using a mechanism that we will discuss in detail in Chapter 19. You can ignore implicit and using parameters for now.

• Finally, don’t worry if you run into the occasional indecipherable incantation, such as the [B >: Char] in the declaration of sorted. The expression B >: Char means “any supertype of Char,” but for now, ignore that generality.

• Whenever you are confused what a method does, just try it out in the REPL:

"Scala".sorted // Yields "Saacl"

Now you can clearly see that the method returns a new string that consists of the characters in sorted order.

• Scaladoc has a query language for finding methods by their argument and return types, separated by =>. For example, searching for List[String] => List[String] yields methods that transform a list of strings into another, such as distinct, reversed, sorted, and tail.

Exercises

1. In the Scala REPL, type 3. followed by the Tab key. What methods can be applied?

2. In the Scala REPL, compute the square root of 3, and then square that value. By how much does the result differ from 3? (Hint: The res variables are your friend.)

3. What happens if you define a variable res99 in the REPL?

4. Scala lets you multiply a string with a number—try out "crazy" * 3 in the REPL. What does this operation do? Where can you find it in Scaladoc?

5. What does 10 max 2 mean? In which class is the max method defined?

6. Using BigInt, compute 21024.

7. What do you need to import so that you can get a random prime as probablePrime(100, Random), without any qualifiers before probablePrime and Random?

8. One way to create random file or directory names is to produce a random BigInt and convert it to base 36, yielding a string such as "qsnvbevtomcj38o06kul". Poke around Scaladoc to find a way of doing this in Scala.

9. How do you get the first character of a string in Scala? The last character?

10. What do the take, drop, takeRight, and dropRight string methods do? What advantage or disadvantage do they have over using substring?

Chapter 2

Control Structures and Functions

Topics in This Chapter A1

[image: Images] 2.1 Conditional Expressions

[image: Images] 2.2 Statement Termination

[image: Images] 2.3 Block Expressions and Assignments

[image: Images] 2.4 Input and Output

[image: Images] 2.5 Loops

[image: Images] 2.6 More about the for Loop

[image: Images] 2.7 Functions

[image: Images] 2.8 Default and Named Arguments L1

[image: Images] 2.9 Variable Arguments L1

[image: Images] 2.10 The Main Function

[image: Images] 2.11 Functions without Parameters

[image: Images] 2.12 Lazy Values L1

[image: Images] 2.13 Exceptions

[image: Images] Exercises

In this chapter, you will learn how to implement conditions, loops, and functions in Scala. You will encounter a fundamental difference between Scala and other programming languages. In Java or C++, we differentiate between expressions (such as 3 + 4) and statements (for example, an if statement). An expression has a value; a statement carries out an action. In Scala, almost all constructs have values. This feature can make programs more concise and easier to read.

Here are the highlights of this chapter:

• An if expression has a value.

• A block has a value—the value of its last expression.

• The Scala for loop is like an “enhanced” Java for loop.

• Semicolons are (mostly) optional.

• In Scala 3, indentation is preferred over braces.

• The void type is Unit.

• Avoid using return in a function.

• Scala functions can have default, named, and variable arguments.

• The program entrypoint is the function annotated with @main.

• Exceptions work just like in Java or C++, but you use a “pattern matching” syntax for catch.

• Scala has no checked exceptions.

2.1 Conditional Expressions

Like most programming languages, Scala has an if/else construct. In programming languages such as Java and C++, if/else is a statement. It carries out one action or another. However, in Scala, an if/else is an expression. It has a value, namely the value of the expression that follows the if or else. For example,

if x > 0 then 1 else -1

has a value of 1 or -1, depending on the value of x. You can put that value in a variable:

val s = if x > 0 then 1 else -1

Contrast this with

var t = 0

if x > 0 then t = 1 else t = -1

The first form is better because it can be used to initialize a val. In the second form, t needs to be a var.

As already mentioned, semicolons are mostly optional in Scala—see Section 2.2, “Statement Termination,” on page 20.

[image: Images] Note

Scala also supports the C-style syntax if (condition) ..., but this book uses the if condition then ... syntax that was introduced in Scala 3.

Java and C++ have a ?: operator for conditionally selecting among two expressions:

x > 0 ? 1 : -1 // Java or C++

In Python, you write

1 if x > 0 else -1 // Python

Both are equivalent to the Scala expression if x > 0 then 1 else -1. In Scala, you don’t need separate forms for conditional expressions and statements.

In Scala, every expression has a type. For example, the expression if x > 0 then 1 else -1 has the type Int because both branches have the type Int. The type of a mixed-type expression, such as

if x > 0 then "positive" else -1

is the common supertype of both branches. In this example, one branch is a java.lang.String, and the other an Int. As it happens, these two types have a common supertype Matchable. In the most extreme case, the expression has as its type the most general of all types, called Any.

If the else part is omitted, for example in

if x > 0 then "positive"

it is possible that the if expression yields no value. However, in Scala, every expression is supposed to have some value. This is finessed by introducing a class Unit that has one value, written as (). The if without an else is considered a statement and always has value ().

Think of () as a placeholder for “no useful value,” and of Unit as an analog of void in Java or C++.

(Technically speaking, void has no value whereas Unit has one value that signifies “no value.” If you are so inclined, you can ponder the difference between an empty wallet and a wallet with a bill labeled “no dollars.”)

The Scala REPL does not display the () value. To see the value in the REPL, print it:

println(if x > 0 then "positive")

You will get a warning when you use an if expression without an else. It is usually an error.

However, if the body of the if has type Unit, there is no problem:

if x < 0 then println("negative")

The println method is only called for its side effect—to display a string on the console. It has return type Unit and always returns (). Therefore, the value of the if expression is always (). This usage is correct, and no warning is displayed.

[image: Images] Note

Scala has no switch statement, but it has a much more powerful pattern matching mechanism that we will discuss in Chapter 14. For now, just use a sequence of if statements.

[image: Images] Caution

The REPL is more nearsighted than the compiler—it only sees one line of code at a time. For example, consider typing the following code into the REPL, one character at a time:

if x > 0 then 1

else if x == 0 then 0 else -1

As soon as you hit the Enter key at the end of the first line, the REPL executes if x > 0 then 1 and shows the answer. (The answer is (), which confusingly is not displayed, followed by a warning that an if without else is a statement.) Then an error is reported when you hit Enter after the second line since an else without an if is illegal.

To avoid this issue, put the else on the same line so that the REPL knows that more code is coming:

if x > 0 then 1 else

if x == 0 then 0 else -1

This is only a concern in the REPL. In a compiled program, the parser will find the else on the next line.

[image: Images] Note

If you copy a block of code from a text editor or a web page and paste it into the REPL, then this problem doesn’t occur.The REPL analyzes a pasted code snippet in its entirety.

2.2 Statement Termination

In Java and C++, every statement ends with a semicolon. In Scala—like in JavaScript and other scripting languages—a semicolon is never required if it falls just before the end of the line. A semicolon is also optional before an }, an else, and similar locations where it is clear from context that the end of a statement has been reached.

However, if you want to have more than one statement on a single line, you need to separate them with semicolons. For example,

if n > 0 then { r = r * n; n -= 1 }

A semicolon is needed to separate r = r * n and n -= 1. Because of the }, no semicolon is needed after the second statement.

If you want to continue a long statement over two lines, make sure that the first line ends in a symbol that cannot be the end of a statement. An operator is often a good choice:

s = s + v * t + // The + tells the parser that this is not the end

 0.5 * a * t * t

In practice, long expressions usually involve function or method calls, and then you don’t need to worry much—after an opening (, the compiler won’t infer the end of a statement until it has seen the matching).

Many programmers coming from Java or C++ are initially uncomfortable about omitting semicolons. If you prefer to put them in, feel free to—they do no harm.

2.3 Block Expressions and Assignments

In Java, JavaScript, or C++, a block statement is a sequence of statements enclosed in { }. You use a block statement whenever you need to put multiple actions in the body of a branch or loop statement.

In Scala, a { } block contains a sequence of expressions, and the result is also an expression. The value of the block is the value of the last expression.

This feature can be useful if the initialization of a val takes more than one step. For example,

var distance =

 { val dx = x - x0; val dy = y - y0; scala.math.sqrt(dx * dx + dy * dy) }

The value of the { } block is the last expression, shown here in bold. The variables dx and dy, which were only needed as intermediate values in the computation, are neatly hidden from the rest of the program.

If you write the block on multiple lines, you can use indentation instead of braces:

distance =

 val dx = x - x0

 val dy = y - y0

 scala.math.sqrt(dx * dx + dy * dy)

Block indentation is common with branches and loops:

if n % 2 == 0 then

 a = a * a

 n = n / 2

else

 r = r * a

 n -= 1

You can use braces, but in Scala 3, the “quiet” indentation style is preferred. Python programmers will rejoice.

In Scala, assignments have no value—or, strictly speaking, they have a value of type Unit. Recall that the Unit type is the equivalent of the void type in Java and C++, with a single value written as ().

A block that ends with an assignment, such as

{ r = r * a; n -= 1 }

has a Unit value. This is not a problem, just something to be aware of when defining functions—see Section 2.7, “Functions,” on page 27.

Since assignments have Unit value, don’t chain them together.

i = j = 1 // Does not set i to 1

The value of j = 1 is (), and it’s highly unlikely that you wanted to assign a Unit to x. (In fact, it is not easy to do—the variable i would need to have type Unit or Any.) In contrast, in Java, C++, and Python, the value of an assignment is the value that is being assigned. In those languages, chained assignments are useful. In Scala, make two assignments:

j = 1

i = j

2.4 Input and Output

To print a value, use the print or println function. The latter adds a newline character after the printout. For example,

print("Answer: ")

println(42)

yields the same output as

println("Answer: " + 42)

Use string interpolation for formatted output:

println(f"Hello, $name! In six months, you'll be ${age + 0.5}%7.2f years old.")

A formatted string is prefixed with the letter f. It contains expressions that are prefixed with $ and optionally followed by C-style format strings. The expression $name is replaced with the value of the variable name. The expression ${age + 0.5}%7.2f is replaced with the value of age + 0.5, formatted as a floating-point number of width 7 and precision 2. You need {...} around expressions that are not variable names.

Using the f interpolator is better than using the printf method because it is typesafe. If you accidentally use %f with an expression that isn’t a number, the compiler reports an error.

[image: Images] Note

Formatted strings are one of three predefined string interpolators in the Scala library. With a prefix of s, strings can contain delimited expressions with a $ prefix, but not format directives. With a prefix of raw, escape sequences in a string are not evaluated. For example, raw"\n is a newline" starts with a backslash and the letter n, not a newline character.

To include $ and % characters in a formatted string, double them. For example, f"$$$price: a 50%% discount" yields a dollar sign followed by the value of price and “a 50% discount”.

You can also define your own interpolators—see Exercise 12 on page 37. However, interpolators that produce compile-time errors (such as the f interpolator) need to be implemented as “macros,” an advanced technique that is briefly introduced in Chapter 20.

You can read a line of input from the console with the readLine method of the scala.io.StdIn class. To read a numeric, Boolean, or character value, use readInt, readDouble, readByte, readShort, readLong, readFloat, readBoolean, or readChar. The readLine method, but not the other ones, takes a prompt string:

import scala.io.*

val name = StdIn.readLine("Your name: ")

print("Your age: ")

val age = StdIn.readInt()

println(s"Hello, ${name}! Next year, you will be ${age + 1}.")

[image: Images] Caution

Some worksheet implementations do not handle console input. To make use of console input, compile and run a program, as shown in Section 2.10, “The Main Function,” on page 31.

2.5 Loops

Scala has the same while loop as Java, JavaScript, C++, and Python. For example,

while n > 0 do

 r = r * n

 n -= 1

This is the “quiet” braceless syntax that is favored in Scala 3. However, you can use braces if you prefer:

while (n > 0) {

 r = r * n

 n -= 1

}

[image: Images] Tip

If the body of a while loop gets long, and you use the braceless syntax, you can add end while at the end to more clearly show the end of the loop:

while n > 0 do

 r = r * n

 // Many more lines

 n -= 1

end while

Scala 3 does not have a do/while loop. In Java, JavaScript, or C++, one might use a loop such as the following for approximating a square root:

estimate = 1; // Initial estimate

do { // This is Java

 previous = estimate; // Save previous estimate

 estimate = (estimate + a / estimate) / 2; // Better estimate

} while (scala.math.abs(estimate - previous) > EPSILON)

 // Keep going while consecutive estimates are too far apart

The do/while loop is used because one must enter the loop at least once.

In Scala, you can instead use a while loop whose condition is a block:

while

 val previous = estimate // Work done in the block

 estimate = (estimate + a / estimate) / 2 // More work done

 scala.math.abs(estimate - previous) > EPSILON

 // This is the value of the block and the loop condition

do () // All work was done in the condition block

This may not be very pretty, but do/while loops are not common.

Scala has no direct analog of the for (initialize; test; update) loop either. If you need such a loop, you have two choices. You can use a while loop. Or, you can use a for statement like this:

for i <- 1 to n do

 r = r * i

You saw the to method of the RichInt class in Chapter 1. The call 1 to n returns a Range of the numbers from 1 to n (inclusive).

The construct

for i <- expr do

makes the variable i traverse all values of the expression to the right of the <-. Exactly how that traversal works depends on the type of the expression. For a Scala collection, such as a Range, the loop makes i assume each value in turn.

[image: Images] Note

There is no val or var before the variable in the for loop. The type of the variable is the element type of the collection.The scope of the loop variable extends until the end of the loop.

When traversing a string, you can loop over the index values:

val s = "Hello"

var sum = 0

for i <- 0 to s.length - 1 do

 sum += s(i)

In this example, there is actually no need to use indexes. You can directly loop over the characters:

sum = 0

for ch <- "Hello" do sum += ch

In Scala, loops are not used as often as in other languages. As you will see in Chapter 12, you can often process the values in a sequence by applying a function to all of them, which can be done with a single method call.

[image: Images] Note

Scala has no break or continue statements to break out of a loop. What to do if you need a break?

You can always replace break statements with additional Boolean control variables. Alternatively, you can use the break method in the Breaks object:

import scala.util.control.Breaks.*

breakable {

 for c <- "Hello, World!" do

 if c == ',' then break // Exits the breakable block

 else println(c)

}

Here, the control transfer is done by throwing and catching an exception, so you should avoid this mechanism when time is of essence.

[image: Images] Note

In Java, you cannot have two local variables with the same name and overlapping scope. In Scala, there is no such prohibition, and the normal shadowing rule applies. For example, the following is perfectly legal:

val k = 42

for k <- 1 to 10 do

 println(k) // Here k refers to the loop variable

2.6 More about the for Loop

In the preceding section, you saw the basic form of the for loop. However, this construct is much richer in Scala than in Java, JavaScript, or C++. This section covers the advanced features.

You can have multiple generators of the form variable <- expression. For example,

for

 i <- 1 to 3

 j <- 1 to 3

do

 print(f"${10 * i + j}%3d")

 // Prints 11 12 13 21 22 23 31 32 33

A guard is a Boolean condition preceded by if:

for

 i <- 1 to 3

 j <- 1 to 3

 if i != j

do

 print(f"${10 * i + j}%3d")

 // Prints 12 13 21 23 31 32

You can have any number of definitions, introducing variables that can be used inside the loop:

for

 i <- 1 to 3

 from = 4 - i

 j <- from to 3

do

 print(f"${10 * i + j}%3d")

 // Prints 13 22 23 31 32 33

[image: Images] Note

If you prefer, you can use semicolons instead of newlines to separate generators and definitions of a for loop. Semicolons before an if guard are optional.

for i <- 1 to 3; from = 4 - i; j <- from to 3 if i != j

 do println(i * 10 + j)

The classic syntax uses parentheses instead of the do keyword:

for (i <- 1 to 3; from = 4 - i; j <- from to 3 if i != j)

 println(i * 10 + j)

Braces are ok too:

for { i <- 1 to 3; from = 4 - i; j <- from to 3 if i != j }

 println(i * 10 + j)

When the body of the for loop starts with yield, the loop constructs a collection of values, one for each iteration:

val result = for i <- 1 to 10 yield i % 3

 // Yields Vector(1, 2, 0, 1, 2, 0, 1, 2, 0, 1)

This type of loop is called a for comprehension.

The generated collection is compatible with the generator.

for c <- "Hello" yield (c + 1).toChar

 // Yields the string "Ifmmp"

2.7 Functions

Scala has functions in addition to methods. A method operates on an object, but a function doesn’t. C++ has functions as well, but in Java, you have to imitate them with static methods.

To define a function, specify the function’s name, parameters, and body. Then declare it outside a class or inside a block, like this:

def abs(x: Double) = if x >= 0 then x else -x

You must specify the types of all parameters. However, as long as the function is not recursive, you need not specify the return type. The Scala compiler determines the return type from the type of the expression to the right of the = symbol.

[image: Images] Caution

There is some disagreement about the terminology of methods and functions in Scala. I follow the classic terminology where, unlike a function, a method has a special “receiver” or this parameter.

For example, pow in the scala.math package is a function, but substring is a method of the String class.

When calling the pow function, you supply all arguments in parentheses: pow(2, 4). When calling the substring method, you supply a String argument with the dot notation, and additional arguments in parentheses: "Hello".substring(2, 4). The "Hello" argument is the “receiver” of the method invocation.

You declare methods with def inside a class, trait, or object. But you can also use def to declare “top-level” functions outside a class, and “nested” functions inside a block. They too will be compiled into methods in the Java virtual machine. Perhaps for that reason, some people call anything declared with def a method. But in this book, a method only refers to a member of a class, trait, or object.

Everyone agrees that the “lambda expressions” that you will see in Chapter 12 are functions.

If the body of a function requires more than one expression, use a block. The last expression of the block becomes the value that the function returns. For example, the following function returns the value of r after the for loop.

def fac(n: Int) =

 var r = 1

 for i <- 1 to n do r = r * i

 r

You can optionally add an end statement to denote the end of a function definition:

def fac(n: Int) =

 var r = 1

 for i <- 1 to n do r = r * i

 r

end fac

This makes sense when the function body spans many lines. You can also use braces:

def fac(n: Int) = {

 var r = 1

 for i <- 1 to n do r = r * i

 r

}

Note that there is no return keyword. You should not use the return statement in Scala. Instead, organize your code so that the last expression of the function body yields the value to be returned.

[image: Images] Caution

The Scala return statement is implemented by throwing and catching an exception. This is inefficient and brittle. Code that catches exceptions can interfere with the mechanism.

In an anonymous function, return doesn’t return a value to its caller but to the caller of the enclosing named function. This behavior is dangerous and has been deprecated in Scala 3.

With a recursive function, you must specify the return type. For example,

def fac(n: Int): Int = if n <= 0 then 1 else n * fac(n - 1)

Without the return type, the Scala compiler couldn’t verify that the type of n * fac(n - 1) is an Int.

[image: Images] Note

Some programming languages (such as ML and Haskell) can infer the type of a recursive function, using the Hindley-Milner algorithm. However, this doesn’t work well in an object-oriented language. Extending the Hindley-Milner algorithm so it can handle subtypes is still a research problem.

A function need not return any value. Consider this example:

def log(sb: StringBuilder, message: String) =

 sb.append(java.time.Instant.now())

 sb.append(": ")

 sb.append(message)

 sb.append("\n")

The function appends a message with a time stamp.

Technically, the function returns a value, namely the value returned by the last call to append. We aren’t interested in that value, whatever it may be. To clarify that the function is only called for its side effect, declare the return type as Unit:

def log(sb: StringBuilder, message: String) : Unit = ...

2.8 Default and Named Arguments L1

You can provide default arguments for functions that are used when you don’t specify explicit values. For example,

def decorate(str: String, left: String = "[", right: String = "]") =

 left + str + right

This function has two parameters, left and right, with default arguments "[" and "]".

If you call decorate("Hello"), you get "[Hello]". If you don’t like the defaults, supply your own: decorate("Hello", "<<<", ">>>").

If you supply fewer arguments than there are parameters, the defaults are applied from the end. For example, decorate("Hello", ">>>[") uses the default value of the right parameter, yielding ">>>[Hello]".

You can also specify the parameter names when you supply the arguments. For example,

decorate(left = "<<<", str = "Hello", right = ">>>")

The result is "<<<Hello>>>". Note that the named arguments need not be in the same order as the parameters.

Named arguments can make a function call more readable. They are also useful if a function has many default parameters.

You can mix unnamed and named arguments, provided the unnamed ones come first:

decorate("Hello", right = "]<<<") // Calls decorate("Hello", "[", "]<<<")

2.9 Variable Arguments L1

Sometimes, it is convenient to implement a function that can take a variable number of arguments. The following example shows the syntax:

def sum(args: Int*) =

 var result = 0

 for arg <- args do result += arg

 result

You can call this function with as many arguments as you like.

sum(1, 4, 9, 16, 25)

The function receives a single parameter of type Seq, which we will discuss in Chapter 13. For now, all you need to know is that you can use a for loop to visit each element.

If you already have a sequence of values, you cannot pass it directly to such a function. For example, the following is not correct:

sum(1 to 5) // Error

If the sum function is called with one argument, that must be a single integer, not a range of integers. The remedy is to tell the compiler that you want the parameter to be considered an argument sequence. Use a postfix *, like this:

sum((1 to 5)*) // Consider 1 to 5 as an argument sequence

This call syntax is needed in a recursive definition:

def recursiveSum(args: Int*) : Int =

 if args.length == 0 then 0

 else args.head + recursiveSum(args.tail*)

Here, the head of a sequence is its initial element, and tail is a sequence of all other elements. That’s again a Seq object, and we have to use a postfix * to convert it to an argument sequence.

2.10 The Main Function

Every program must start somewhere. When running a compiled executable, the entrypoint is the function defined with the @main annotation:

@main def hello() =

 println("Hello, World!")

It does not matter what the main function is called.

To process command-line arguments, provide a parameter of type String*:

@main def hello2(args: String*) =

 println(s"Hello, ${args(1)}!")

You can also specify types for the command-line arguments:

@main def hello3(repetition: Int, name: String) =

 println("Hello " * repetition + name)

Then the first command-line argument must be an integer (or, more accurately, a string containing an integer).

Parsers for the types Boolean, Byte, Short, Int, Long, Float, and Double are supplied. You can parse other types—see Exercise 13 on page 37.

[image: Images] Note

When compiling a program with a @main annotated function, the compiler produces a class file whose name is the name of that function, not the name of the source file. For example, if the hello function is in a file Main.scala, compiling that file yields hello.class.

2.11 Functions without Parameters

You can declare a function without any parameters:

def words = scala.io.Source.fromFile("/usr/share/dict/words").mkString

You call the function as

words

without parentheses.

In contrast, if you define the function with an empty parameter list

def words() = scala.io.Source.fromFile("/usr/share/dict/words").mkString

the function is invoked with parentheses:

words()

Why would you ever want to omit the parentheses? In Scala, the convention is to drop parentheses if the function is “idempotent”—that is, if it always returns the same value.

For example, if you assume that the contents of the file /usr/share/dict/words does not change, then the function without parentheses is the right choice.

Why wouldn’t you just use a variable?

val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString

The value is set whether or not you use it. With a function, the computation is deferred until you invoke it.

[image: Images] Note

Scala 3 is stricter about the use of parentheses than prior versions. If you define a function with parentheses, you must invoke it with parentheses. Conversely, a function that was defined without parentheses must be called without them. For compatibility, this rule does not apply to legacy functions. The scala.math.random function is definitely not idempotent. You expect each invocation scala.math.random() to return a different value. Nevertheless, it can also be called without parentheses.

[image: Images] Note

@main def hello4 =

 println("Hello, World!")

2.12 Lazy Values L1

When a val is declared as lazy, its initialization is deferred until it is accessed for the first time. For example,

lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString

(We will discuss file operations in Chapter 9. For now, just take it for granted that this call reads all characters from a file into a string.)

If the program never accesses words, the file is never opened. To verify this, try it out in the REPL, but misspell the file name. There will be no error when the initialization statement is executed. However, if you access words, you will get an error message that the file is not found.

Lazy values are useful to delay costly initialization statements. They can also deal with other initialization issues, such as circular dependencies. Moreover, they are essential for developing lazy data structures—see Chapter 13.

You can think of lazy values as halfway between val and def. Compare

val words1 =

 println("words1: Reading file")

 scala.io.Source.fromFile("/usr/share/dict/words").mkString

 // Evaluated as soon as words1 is defined

lazy val words2 =

 println("words2: Reading file")

 scala.io.Source.fromFile("/usr/share/dict/words").mkString

 // Evaluated the first time words2 is used

def words3 =

 println("words3: Reading file")

 scala.io.Source.fromFile("/usr/share/dict/words").mkString

 // Evaluated every time words3 is used

[image: Images] Note

Laziness is not cost-free. Every time a lazy value is accessed, a method is called that checks, in a threadsafe manner, whether the value has already been initialized.

2.13 Exceptions

Scala exceptions work the same way as in Java, JavaScript, C++, or Python. When you throw an exception, for example

throw IllegalArgumentException("x should not be negative")

the current computation is aborted, and the runtime system looks for an exception handler that can accept an IllegalArgumentException. Control resumes with the innermost such handler. If no such handler exists, the program terminates.

As in Java, the objects that you throw need to belong to a subclass of java.lang.Throwable. However, unlike Java, Scala has no “checked” exceptions—you never have to declare that a function or method might throw an exception.

[image: Images] Note

In Java, “checked” exceptions are checked at compile time. If your method might throw an IOException, you must declare it. This forces programmers to think where those exceptions should be handled, which is a laudable goal. Unfortunately, it can also give rise to monstrous method signatures such as void doSomething() throws IOException, InterruptedException, ClassNotFoundException. Many Java programmers detest this feature and end up defeating it by either catching exceptions too early or using excessively general exception classes. The Scala designers decided against checked exceptions, recognizing that thorough compile-time checking isn’t always a good thing.

A throw expression has the special type Nothing. That is useful in if/else expressions. If one branch has type Nothing, the type of the if/else expression is the type of the other branch. For example, consider

if x >= 0 then scala.math.sqrt(x)

else throw IllegalArgumentException("x should not be negative")

The first branch has type Double, the second has type Nothing. Therefore, the if/else expression also has type Double.

The syntax for catching exceptions is modeled after the pattern matching syntax (see Chapter 14).

val url = URL("http://horstmann.com/fred.gif")

try

 process(url)

catch

 case _: MalformedURLException => println(s"Bad URL: $url")

 case ex: IOException => println(ex)

The more general exception types must come after the more specific ones.

Note that you can use _ for the variable name if you don’t need it.

The try/finally statement lets you dispose of a resource whether or not an exception has occurred. For example:

val in = URL("http://horstmann.com/cay-tiny.gif").openStream()

try

 process(in)

finally

 println("Closing input stream")

 in.close()

The finally clause is executed whether or not the process function throws an exception. The input stream is always closed.

This code is a bit subtle, and it raises several issues.

• What if the URL constructor or the openStream method throws an exception? Then the try block is never entered, and neither is the finally clause. That’s just as well—in was never initialized, so it makes no sense to invoke close on it.

• Why isn’t val in = URL(...).openStream() inside the try block? Then the scope of in would not extend to the finally clause.

• What if in.close() throws an exception? Then that exception is thrown out of the statement, superseding any earlier one. (This is just like in Java, and it isn’t very nice. Ideally, the old exception would stay attached to the new one.)

Note that try/catch and try/finally have complementary goals. The try/catch statement handles exceptions, and the try/finally statement takes some action (usually cleanup) when an exception is not handled. You can combine them into a single try/catch/finally statement:

try

 ...

catch

 ...

finally

 ...

This is the same as

try

 try

 ...

 catch

 ...

finally

 ...

In practice, that combination is not often used because exceptions are usually caught far from where they are thrown, whereas cleanup is needed close to the point where exceptions can occur.

[image: Images] Note

The Try class is designed to work with computations that may fail with exceptions. We will look at it more closely in Chapter 16. Here is a simple example:

import scala.io.*

import scala.util.*

val result =

 for

 a <- Try { StdIn.readLine("a: ").toInt }

 b <- Try { StdIn.readLine("b: ").toInt }

 yield a / b

If an exception occurs in either of the calls to toInt, or because of division by zero, then result is a Failure object, containing the exception that caused the computation to fail. Otherwise, result is a Success object holding the result of the computation.

[image: Images] Note

Scala does not have an analog to the Java try-with-resources statement. In Java, you can write

// Java

try (Reader in = openReader(inPath); Writer out = openWriter(outPath)) {

 // Read from in, write to out

 process(in, out)

} // No matter what, in and out correctly closed

This statement calls the close method on all variables declared inside try (...), handling all tricky cases. For example, if in was successfully initialized but the newBufferedWriter method throws an exception, in is closed but out is not.

In Scala, the Using helper handles this situation:

import scala.util.*

Using.Manager { use =>

 val in = use(openReader(inPath))

 val out = use(openWriter(outPath))

 // Read from in, write to out

 process(in, out)

} // The reader and writer are closed

Exercises

1. What does println(println("Hello")) print, and why?

2. What is the value of an empty block expression {}? What is its type?

3. Come up with one situation where the assignment x = y = 1 is valid in Scala. (Hint: Pick a suitable type for x.)

4. Write a Scala equivalent for this loop in Java/JavaScript/C++ syntax:

for (int i = 10; i >= 0; i--) System.out.println(i);

5. The signum of a number is 1 if the number is positive, –1 if it is negative, and 0 if it is zero. Write a function that computes this value.

6. Write a procedure countdown(n: Int) that prints the numbers from n to 0.

7. Write a for loop for computing the product of the Unicode codes of all letters in a string. For example, the product of the characters in "Hello" is 9415087488L.

8. Solve the preceding exercise without writing a loop. (Hint: Look at the StringOps Scaladoc.)

9. Write a function product(s: String) that computes the product, as described in the preceding exercises.

10. Make the function of the preceding exercise a recursive function.

11. Write a function that computes xn, where n is an integer. Use the following recursive definition:

• xn = y · y if n is even and positive, where y = xn / 2.

• xn = x · xn – 1 if n is odd and positive.

• x0 = 1.

• xn = 1 / x–n if n is negative.

Don’t use a return statement.

12. Define a string interpolator date so that you can define a java.time.LocalDate as date"$year-$month-$day". You need to define an “extension method”, like this:

extension (sc: StringContext)

 def date(args: Any*): LocalDate = ...

args(i) is the value of the ith expression. Convert each to a string and then to an integer, and pass them to the LocalDate.of method. If you already know some Scala, add error handling. Throw an exception if there aren’t three arguments, or if they aren’t integers, or if they aren’t separated by dashes. (You get the strings in between the expressions as sc.parts.)

13. To parse a command-line argument into an arbitrary type, you need to provide a “given instance”. For example, to parse a LocalDate:

import java.time.*

import scala.util.*

given CommandLineParser.FromString[LocalDate] with

 def fromString(s: String) = LocalDate.parse(s)

Write a Scala program that receives two dates on the command line and prints the number of days between them. Your main function should have two parameters of type LocalDate.

Chapter 3

Working with Arrays

Topics in This Chapter A1

[image: Images] 3.1 Fixed-Length Arrays

[image: Images] 3.2 Variable-Length Arrays: Array Buffers

[image: Images] 3.3 Traversing Arrays and Array Buffers

[image: Images] 3.4 Transforming Arrays

[image: Images] 3.5 Common Algorithms

[image: Images] 3.6 Deciphering Scaladoc

[image: Images] 3.7 Multidimensional Arrays

[image: Images] 3.8 Interoperating with Java

[image: Images] Exercises

In this chapter, you will learn how to work with arrays in Scala. Java, JavaScript, Python, and C++ programmers usually choose an array or its close relation (such as lists or vectors) when they need to collect a bunch of elements. In Scala, there are other choices (see Chapter 13), but for now, I’ll assume you are impatient and just want to get going with arrays.

Key points of this chapter:

• Use an Array if the length is fixed, and an ArrayBuffer if the length can vary.

• Use () to access elements.

• Use for elem <- arr do ... to traverse the elements.

• Use for elem <- arr yield ... to transform into a new array.

• Scala and Java arrays are interoperable; with ArrayBuffer, use scala.jdk.CollectionConverters.

3.1 Fixed-Length Arrays

If you need an array whose length doesn’t change, use the Array type in Scala. For example,

val strings = Array("Hello", "World")

 // An Array[String] of length 2—the type is inferred

val moreStrings = Array.ofDim[String](5) //

 A string array with five elements, all initialized with null

val nums = Array.ofDim[Int](10)

 // An array of ten integers, all initialized with zero

[image: Images] Note

In Java, arrays are created with the new operator. However, in Scala 3, the use of the new operator is discouraged, as you will see in Chapter 5. It is possible to call new Array[Int](10) to create an array of ten integers. But it is also a bit confusing since Array[Int](10) (without the new) is an array of length 1, containing the integer 10.

You use the () operator to access or modify the elements of an array:

strings(0) = "Goodbye"

// strings is now Array("Goodbye", "World")

Why not [] as in Java, JavaScript, C++, or Python? Scala takes the point of view that an array is like a function, mapping the index values to the elements.

Inside the JVM, a Scala Array is implemented as a Java array. The arrays in the preceding example have the type java.lang.String[] inside the JVM. An array of Int, Double, or another equivalent of the Java primitive types is a primitive type array. For example, Array(2,3,5,7,11) is an int[] in the JVM.

3.2 Variable-Length Arrays: Array Buffers

Java has ArrayList, Python has list, and C++ has vector for arrays that grow and shrink on demand. The equivalent in Scala is the ArrayBuffer.

import scala.collection.mutable.ArrayBuffer

val b = ArrayBuffer[Int]()

 // An empty array buffer, ready to hold integers

b += 1

 // ArrayBuffer(1)

 // Add an element at the end with +=

b ++= Array(1, 2, 3, 5, 8)

 // ArrayBuffer(1, 1, 2, 3, 5, 8)

 // You can append any collection with the ++= operator

b.dropRightInPlace(3)

 // ArrayBuffer(1, 1, 2)

 // Removes the last three elements

Adding or removing elements at the end of an array buffer is an efficient (“amortized constant time”) operation.

You can also insert and remove elements at an arbitrary location, but those operations are not as efficient—all elements after that location must be shifted. For example:

b.insert(2, 6)

 // ArrayBuffer(1, 1, 6, 2)

 // Inserts before index 2

b.insertAll(2, Array(7, 8, 9))

 // ArrayBuffer(1, 1, 7, 8, 9, 6, 2)

 // Inserts the elements from another collection

b.remove(2)

 // ArrayBuffer(1, 1, 8, 9, 6, 2)

b.remove(2, 3)

 // ArrayBuffer(1, 1, 2)

 // The second parameter tells how many elements to remove

Sometimes, you want to build up an Array, but you don’t yet know how many elements you will need. In that case, first make an array buffer, then call

b.toArray

 // Array(1, 1, 2)

Conversely, call a.toBuffer to convert the array a to an array buffer.

3.3 Traversing Arrays and Array Buffers

In Java and C++, there are several syntactical differences between arrays and array lists/vectors. Scala is much more uniform. Most of the time, you can use the same code for both.

Here is how you traverse an array or array buffer with a for loop:

for i <- 0 until a.length do

 println(s"$i: ${a(i)}")

The until method is similar to the to method, except that it excludes the last value. Therefore, the variable i goes from 0 to a.length - 1.

In general, the construct

for i <- range do

makes the variable i traverse all values of the range. In our case, the loop variable i assumes the values 0, 1, and so on until (but not including) a.length.

To visit every second element, let i traverse

0 until a.length by 2

 // Range(0, 2, 4, ...)

To visit the elements starting from the end of the array, traverse

a.length -1 to 0 by -1

 // Range(..., 2, 1, 0)

[image: Images] Tip

Instead of 0 until a.length or a.length -1 to 0 by -1, you can use a.indices or a.indices.reverse.

If you don’t need the array index in the loop body, visit the array elements directly:

for elem <- a do

 println(elem)

This is similar to the “enhanced” for loop in Java, the “for in” loop in JavaScript or Python, or the “range-based” for loop in C++. The variable elem is set to a(0), then a(1), and so on.

3.4 Transforming Arrays

In the preceding sections, you saw how to work with arrays just like you would in other programming languages. But in Scala, you can go further. It is easy to take an array (or array buffer) and transform it in some way. Such transformations don’t modify the original array but yield a new one.

Use a for comprehension like this:

val a = Array(2, 3, 5, 7, 11)

val result = for elem <- a yield 2 * elem

 // result is Array(4, 6, 10, 14, 22)

The for/yield loop creates a new collection of the same type as the original collection. If you started with an array, you get another array. If you started with an array buffer, that’s what you get from for/yield.

The result contains the expressions after the yield, one for each iteration of the loop.

Oftentimes, when you traverse a collection, you only want to process the elements that match a particular condition. This is achieved with a guard: an if inside the for. Here we double every even element, dropping the odd ones:

for elem <- a if elem % 2 == 0 yield elem / 2

Keep in mind that the result is a new collection—the original collection is not affected.

[image: Images] Note

Some programmers with experience in functional programming prefer map and filter to for/yield and guards:

a.filter(_ % 2 == 0).map(_ / 2)

That’s just a matter of style—the for/yield loop does exactly the same work. Use whichever you find easier.

Suppose we want to remove all negative elements from an array buffer of integers. A traditional sequential solution might traverse the array buffer and remove unwanted elements as they are encountered.

var n = b.length

var i = 0

while i < n do

 if b(i) >= 0 then i += 1

 else

 b.remove(i)

 n -= 1

That’s a bit fussy—you have to remember not to increment i when you remove the element, and to decrement n instead. It is also not efficient to remove elements from the middle of the array buffer. This loop unnecessarily moves elements that will later be removed.

In Scala, the obvious solution is to use a for/yield loop and keep all non-negative elements:

val nonNegative = for elem <- b if elem >= 0 yield elem

The result is a new array buffer. Suppose that we want to modify the original array buffer instead, removing the unwanted elements. Then we can collect their positions:

val positionsToRemove = for i <- b.indices if b(i) < 0 yield i

Now remove the elements at those positions, starting from the back:

for i <- positionsToRemove.reverse do b.remove(i)

Alternatively, remember the positions to keep, copy them over, and then shorten the buffer:

val positionsToKeep = for i <- b.indices if b(i) >= 0 yield i

for j <- positionsToKeep.indices do b(j) = b(positionsToKeep(j))

b.dropRightInPlace(b.length - positionsToKeep.length)

The key observation is that it is better to have all index values together instead of seeing them one by one.

3.5 Common Algorithms

It is often said that a large percentage of business computations are nothing but computing sums and sorting. Fortunately, Scala has built-in functions for these tasks.

Array(1, 7, 2, 9).sum

 // 19

 // Works for ArrayBuffer too

In order to use the sum method, the element type must be a numeric type: either an integral or floating-point type or BigInteger/BigDecimal.

Similarly, the min and max methods yield the smallest and largest element in an array or array buffer.

ArrayBuffer("Mary", "had", "a", "little", "lamb").max

 // "little"

The sorted method sorts an array or array buffer and returns the sorted array or array buffer, without modifying the original:

val b = ArrayBuffer(1, 7, 2, 9)

val bSorted = b.sorted

 // b is unchanged; bSorted is ArrayBuffer(1, 2, 7, 9)

You can also supply a comparison function, but then you should use the sortWith method:

val bDescending = b.sortWith(_ > _) // ArrayBuffer(9, 7, 2, 1)

See Chapter 12 for the function syntax.

You can sort an array or array buffer in place:

val a = Array(1, 7, 2, 9)

a.sortInPlace()

 // a is now Array(1, 2, 7, 9)

For the min, max, and sortInPlace methods, the element type must have a comparison operation. This is the case for numbers, strings, and other types with a “given” Ordering object.

Finally, if you want to display the contents of an array or array buffer, the mkString method lets you specify the separator between elements. A second variant has parameters for the prefix and suffix. For example,

a.mkString(" and ")

 // "1 and 2 and 7 and 9"

a.mkString("<", ",", ">")

 // "<1,2,7,9>"

Contrast with toString:

a.toString

 // "[I@b73e5"

 // This is the useless toString method for arrays, straight from Java

b.toString

 // "ArrayBuffer(1, 7, 2, 9)"

3.6 Deciphering Scaladoc

There are lots of useful methods on arrays and array buffers, and it is a good idea to browse the Scala documentation to get an idea of what’s there.

Because the Array class compiles directly to a Java array, most of the useful array methods are found in the ArrayOps and ArraySeq classes.

Scala has a rich type system, so you may encounter some strange-looking syntax as you browse the Scala documentation. Fortunately, you don’t have to understand all nuances of the type system to do useful work. Use Table 3–1 as a “decoder ring.”

For now, you’ll have to skip methods that use types such as Option or PartialFunction that we haven’t discussed yet.

Table 3–1 Scaladoc Decoder Ring

[image: Images]

3.7 Multidimensional Arrays

Like in Java, JavaScript, or Python, multidimensional arrays are implemented as arrays of arrays. For example, a two-dimensional array of Double values has the type Array[Array[Double]]. To construct such an array, use the ofDim method:

val matrix = Array.ofDim[Double](3, 4) // Three rows, four columns

To access an element, use two pairs of parentheses:

matrix(row)(column) = 42

You can make ragged arrays, with varying row lengths:

val triangle = Array.ofDim[Array[Int]](10)

for i <- triangle.indices do

 triangle(i) = Array.ofDim[Int](i + 1)

3.8 Interoperating with Java

Since Scala arrays are implemented as Java arrays, you can pass them back and forth between Java and Scala.

This works in almost all cases, except if the array element type isn’t an exact match. In Java, an array of a given type is automatically converted to an array of a supertype. For example, a Java String[] array can be passed to a method that expects a Java Object[] array. Scala does not permit this automatic conversion because it is unsafe. (See Chapter 17 for a detailed explanation.)

Suppose you want to invoke a Java method with an Object[] parameter, such as java.util.Arrays.binarySearch(Object[] a, Object key):

val a = Array("Mary", "a", "had", "lamb", "little")

java.util.Arrays.binarySearch(a, "beef") // Does not work

This does not work because Scala will not convert an Array[String] into an Array[Object]. You can force the conversion like this:

java.util.Arrays.binarySearch(a.asInstanceOf[Array[Object]], "beef")

[image: Images] Note

This is just an example to show how to overcome element type differences. If you want to carry out binary search in Scala, do it like this:

import scala.collection.Searching.*

val result = a.search("beef")

The result is Found(n) if the element was found at position n or InsertionPoint(n) if the element was not found but should be inserted before position n.

If you call a Java method that receives or returns a java.util.List, you could, of course, use a Java ArrayList in your Scala code—but that is unattractive. Instead, import the conversion methods in scala.jdk.CollectionConverters. Then you can call the asJava method to convert any sequence (such as a Scala buffer) into a Java list.

For example, the java.lang.ProcessBuilder class has a constructor with a List<String> parameter. Here is how you can call it from Scala:

import scala.jdk.CollectionConverters.*

import scala.collection.mutable.ArrayBuffer

val command = ArrayBuffer("ls", "-al", "/usr/bin")

val pb = ProcessBuilder(command.asJava) // Scala to Java

The Scala buffer is wrapped into an object of a Java class that implements the java.util.List interface.

Conversely, when a Java method returns a java.util.List, you can convert it into a Buffer:

import scala.jdk.CollectionConverters.*

import scala.collection.mutable.Buffer

val cmd: Buffer[String] = pb.command().asScala // Java to Scala

 // You can’t use ArrayBuffer—the wrapped object is only guaranteed to be a Buffer

If the Java method returns a wrapped Scala buffer, then the implicit conversion unwraps the original object. In our example, cmd == command.

Exercises

1. Write a code snippet that sets a to an array of n random integers between 0 (inclusive) and n (exclusive).

2. Write a loop that swaps adjacent elements of an array of integers. For example, Array(1, 2, 3, 4, 5) becomes Array(2, 1, 4, 3, 5).

3. Repeat the preceding assignment, but produce a new array with the swapped values. Use for/yield.

4. Given an array of integers, produce a new array that contains all positive values of the original array, in their original order, followed by all values that are zero or negative, in their original order.

5. How do you compute the average of an Array[Double]?

6. How do you rearrange the elements of an Array[Int] so that they appear in reverse sorted order? How do you do the same with an ArrayBuffer[Int]?

7. Write a code snippet that produces all values from an array with duplicates removed. (Hint: Look at Scaladoc.)

8. Suppose you are given an array buffer of integers and want to remove all but the first negative number. Here is a sequential solution that sets a flag when the first negative number is called, then removes all elements beyond.

var first = true

var n = a.length

var i = 0

while i < n do

 if a(i) >= 0 then i += 1

 else

 if first then

 first = false

 i += 1

 else

 a.remove(i)

 n -= 1

This is a complex and inefficient solution. Rewrite it in Scala by collecting positions of the negative elements, dropping the first element, reversing the sequence, and calling a.remove(i) for each index.

9. Improve the solution of the preceding exercise by collecting the positions that should be moved and their target positions. Make those moves and truncate the buffer. Don’t copy any elements before the first unwanted element.

10. Make a collection of all time zones returned by java.util.TimeZone.getAvailableIDs that are in America. Strip off the "America/" prefix and sort the result.

11. Import java.awt.datatransfer.* and make an object of type SystemFlavorMap with the call

val flavors = SystemFlavorMap.getDefaultFlavorMap().asInstanceOf[SystemFlavorMap]

Then call the getNativesForFlavor method with parameter DataFlavor.imageFlavor and get the return value as a Scala buffer. (Why this obscure class? It’s hard to find uses of java.util.List in the standard Java library.)

Chapter 4

Maps, Options, and Tuples

Topics in This Chapter A1

[image: Images] 4.1 Constructing a Map

[image: Images] 4.2 Accessing Map Values

[image: Images] 4.3 Updating Map Values

[image: Images] 4.4 Iterating over Maps

[image: Images] 4.5 Linked and Sorted Maps

[image: Images] 4.6 Interoperating with Java

[image: Images] 4.7 The Option Type

[image: Images] 4.8 Tuples

[image: Images] 4.9 Zipping

[image: Images] Exercises

A classic programmer’s saying is, “If you can only have one data structure, make it a hash table.” Hash tables—or, more generally, maps—are among the most versatile data structures. As you will see in this chapter, Scala makes it particularly easy to use them.

When looking up a key in a map, there may not be a matching value. An option is perfect for describing that situation. An option is used in Scala whenever a value may be present or absent.

Maps are collections of key/value pairs. Scala has a general notion of tuples—aggregates of n objects, not necessarily of the same type. A pair is simply a tuple with n = 2. Tuples are useful whenever you need to aggregate two or more values together.

Highlights of the chapter are:

• Scala has a pleasant syntax for creating, querying, and traversing maps.

• You need to choose between mutable and immutable maps.

• By default, you get a hash map, but you can also get a tree map.

• You can easily convert between Scala and Java maps.

• Use the Option type for values that may or may not be present—it is safer than using null.

• Tuples are useful for aggregating values.

4.1 Constructing a Map

You can construct a map as

val scores = Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

This constructs an immutable Map[String, Int] whose contents can’t be changed. See the next section for mutable maps.

If you want to start out with a blank map, you have to supply type parameters:

val scores = scala.collection.mutable.Map[String, Int]()

In Scala, a map is a collection of pairs. A pair is simply a grouping of two values, not necessarily of the same type, such as ("Alice", 10).

The -> operator makes a pair. The value of

"Alice" -> 10

is

("Alice", 10)

You could have equally well defined the map as

Map(("Alice", 10), ("Bob", 3), ("Cindy", 8))

The -> operator is just a little easier on the eyes than the parentheses. It also supports the intuition that a map data structure is a kind of function that maps keys to values. The difference is that a function computes values, and a map just looks them up.

4.2 Accessing Map Values

In Scala, the analogy between functions and maps is particularly close because you use the () notation to look up key values.

scores("Bob")

 // Like scores.get("Bob") in Java or scores["Bob"] in JavaScript, Python, or C++

If the map doesn’t contain a value for the requested key, an exception is thrown.

To check whether there is a key with the given value, call the contains method:

if (scores.contains("Donald")) scores("Donald") else 0

Since this call combination is so common, there is a shortcut:

scores.getOrElse("Donald", 0)

// If the map contains the key "Bob", return the value; otherwise, return 0.

Finally, the call map.get(key) returns an Option object that is either Some(value for key) or None. We discuss the Option class in Section 4.7, “The Option Type,” on page 57.

[image: Images] Note

Given an immutable map, you can turn it into a map with a fixed default value for keys that are not present, or a function to compute such values.

val scores2 = scores.withDefaultValue(0)

scores2("Zelda")

 // Yields 0 since "Zelda" is not present

val scores3 = scores.withDefault(_.length)

scores3("Zelda")

 // Yields 5, applying the length function to the key that is not present

4.3 Updating Map Values

In this section, we discuss mutable maps. Here is how to construct one:

val scores = scala.collection.mutable.Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

In a mutable map, you can update a map value, or add a new one, with a () to the left of an = sign:

scores("Bob") = 10

 // Updates the existing value for the key "Bob" (assuming scores is mutable)

scores("Fred") = 7

 // Adds a new key/value pair to scores (assuming it is mutable)

Alternatively, you can use the ++= operator to add multiple associations:

scores ++= Map("Bob" -> 10, "Fred" -> 7)

To remove a key and its associated value, use the -= operator:

scores -= "Alice"

You can’t update an immutable map, but you can do something that’s just as useful—obtain a new map that has the desired update:

val someScores = Map("Alice" -> 10, "Bob" -> 3)

val moreScores = someScores + ("Cindy" -> 7) // Yields a new immutable map

The moreScores map contains the same associations as someScores, as well as a new association for the key "Cindy".

Instead of saving the result as a new value, you can update a var:

var currentScores = moreScores

currentScores = currentScores + ("Fred" -> 0)

You can even use the += operator:

currentScores += "Donald" -> 5

Similarly, to remove a key from an immutable map, use the - operator to obtain a new map without the key:

currentScores = currentScores - "Alice"

or

currentScores -= "Alice"

You might think that it is inefficient to keep constructing new maps, but that is not the case. The old and new maps share most of their structure. (This is possible because they are immutable.)

4.4 Iterating over Maps

The following amazingly simple loop iterates over all key/value pairs of a map:

for ((k, v) <- map) process(k, v)

The magic here is that you can use pattern matching in a Scala for loop. (Chapter 14 has all the details.) That way, you get the key and value of each pair in the map without tedious method calls.

If for some reason you want to visit only the keys or values, use the keySet and values methods. The values method returns an Iterable that you can use in a for loop.

val scores = Map("Alice" -> 10, "Bob" -> 7, "Fred" -> 8, "Cindy" -> 7)

scores.keySet // Yields a set with elements "Alice", "Bob", "Fred", and "Cindy"

for (v <- scores.values) println(v) // Prints 10 7 8 7

[image: Images] Note

For a mutable map, the collections returned by keySet and values are “live”—they are updated as the contents of the map changes.

To invert a map—that is, switch keys and values—use

for ((k, v) <- map) yield (v, k)

4.5 Linked and Sorted Maps

There are two common implementation strategies for maps: hash tables and binary trees. Hash tables use the hash codes of the keys to scramble entries. Tree maps use the sort order of the keys to build a balanced tree. By default, Scala gives you a map based on a hash table because it is usually more efficient.

Immutable hash maps are traversed in insertion order. This is achieved by additional links in the hash table. For example, when iterating over

Map("Fred" -> 1, "Alice" -> 2, "Bob" -> 3)

the keys are visited in the order "Fred", "Alice", "Bob", no matter what the hash codes of these strings are.

However, in a mutable map, insertion order is not maintained. Iterating over the elements yields them in unpredictable order, depending on the hash codes of the keys.

scala.collection.mutable.Map("Fred" -> 1, "Alice" -> 2, "Bob" -> 3)

// Printed as HashMap(Fred -> 1, Bob -> 3, Alice -> 2)

If you want to visit the keys in insertion order, use a LinkedHashMap:

scala.collection.mutable.LinkedHashMap("Fred" -> 1, "Alice" -> 2, "Bob" -> 3)

// Printed as LinkedHashMap(Fred -> 1, Alice -> 2, Bob -> 3)

To visit the keys in sorted order, use a SortedMap instead.

scala.collection.SortedMap("Fred" -> 1, "Alice" -> 2, "Bob" -> 3)

scala.collection.mutable.SortedMap("Fred" -> 1, "Alice" -> 2, "Bob" -> 3)

 // Printed as TreeMap(Alice -> 2, Bob -> 3, Fred -> 1)

4.6 Interoperating with Java

If you get a Java map from calling a Java method, you may want to convert it to a Scala map so that you can use the pleasant Scala map API.

Simply add an import statement:

import scala.jdk.CollectionConverters.*

Then use the asScala method to turn the Java map into a Scala map:

val ids = java.time.ZoneId.SHORT_IDS.asScala

 // Yields a scala.collection.mutable.Map[String, String]

In addition, you can get a conversion from java.util.Properties to a Map[String, String]:

val props = System.getProperties.asScala

 // Yields a Map[String, String], not a Map[Object, Object]

Conversely, to pass a Scala map to a method that expects a Java map, provide the opposite conversion. For example:

import java.awt.font.TextAttribute.* // Import keys for map below

val attrs = Map(FAMILY -> "Serif", SIZE -> 12) // A Scala map

val font = java.awt.Font(attrs.asJava) // Expects a Java map

4.7 The Option Type

The Option class in the standard library expresses values that might or might not be present. The subclass Some wraps a value. The object None indicates that there is no value.

var friend: Option[String] = Some("Fred")

friend = None // No friend

This is less ambiguous than using an empty string and safer than using null for a missing value.

Option is a generic type. For example, Some("Fred") is an Option[String].

The get method of the Map class returns an Option. If there is no value for a given key, get returns None. Otherwise, it wraps the value inside Some.

val scores = Map("Alice" -> 10, "Bob" -> 7, "Cindy" -> 8)

val alicesScore = scores.get("Alice") // Some(10)

val dansScore = scores.get("Dan") // None

To find out what is inside an Option instance, you can use the isEmpty and get methods:

if alicesScore.isEmpty

 then println("No score")

 else println(alicesScore.get)

That’s tedious, though. It is better to use the getOrElse method:

println(alicesScore.getOrElse("No score"))

If alicesScore is None, then getOrElse returns "No score".

[image: Images] Note

The argument of the getOrElse method is executed lazily. For example, in the call

alicesScore.getOrElse(System.getProperty("DEFAULT_SCORE"))

the call to System.getProperty only happens when alicesScore is empty.

This delayed evaluation is achieved with a “by name” parameter. See Chapter 12 for details.

A more powerful way of working with options is to consider them as collections that have zero or one element. You can visit the element with a for loop:

for score <- alicesScore do println(score)

If alicesScore is None, nothing happens. If it is a Some, then the loop executes once, with score bound to the contents of the option.

You can also use methods such as map, filter, or foreach. For example,

val biggerScore = alicesScore.map(_ + 1) // Some(score + 1) or None

val acceptableScore = alicesScore.filter(_ > 5) // Some(score) if score > 5 or None

alicesScore.foreach(println) // Prints the score if it exists

[image: Images] Tip

When you create an Option from a value that may be null, you can simply use Option(value). The result is None if value is null and Some(value) otherwise.

4.8 Tuples

Maps are collections of key/value pairs. Pairs are the simplest case of tuples—aggregates of values of different types.

A tuple value is formed by enclosing individual values in parentheses. For example,

(1, 3.14, "Fred")

is a tuple of type

(Int, Double, String)

If you have a tuple, say,

val t = (1, 3.14, "Fred")

then you can access its components as t(0), t(1), and t(2).

As long as the index value is an integer constant, the types of these expressions are the component types:

val second = t(1) // second has type Double

[image: Images] Note

Alternatively, you can access components with the methods _1, _2, _3, for example:

val third = t._3 // Sets third to "Fred"

Note that these component accessors start with _1. There is no _0.

If the index is variable, the type of t(n) is the common supertype of the elements:

var n = 1

val component = t(n) // component has type Any

[image: Images] Caution

If the tuple index is a val, you get a complex “match type” that is no more useful than Any:

val m = 0

val first = t(m) /* first has type

 m.type match {

 case 0 => Int

 case scala.compiletime.ops.int.S[n1] =>

 scala.Tuple.Elem[(Double, String), n1]

 } */

Often, it is simplest to use the “destructuring” syntax to get at the components of a tuple:

val (first, second, third) = t // Sets first to 1, second to 3.14, third to "Fred"

You can use a _ if you don’t need all components:

val (first, second, _) = t

You can concatenate tuples with the ++ operator:

("x", 3) ++ ("y", 4) // Yields ("x", 3, "y", 4)

Tuples are useful for functions that return more than one value. For example, the partition method of the StringOps class returns a pair of strings, containing the characters that fulfill a condition and those that don’t:

"New York".partition(_.isUpper) // Yields the pair ("NY", "ew ork")

[image: Images] Caution

Sometimes, the Scala compiler wants to “help out” to convert between tuples and function argument lists. This can lead to surprises. Here is a typical example:

val destination = "world"

val b = StringBuilder()

b.append("Hello") // b holds "Hello"

b.append(" ", destination) // Oops, b holds “Hello(,world)”

There is no append method with multiple arguments. Therefore, Scala turns the arguments into a tuple and passes that as the single argument of type Any.

This “auto tupling” behavior can be surprising, and it may be restricted or removed in future versions of Scala.

4.9 Zipping

One reason for using tuples is to bundle together values so that they can be processed together. This is commonly done with the zip method. For example, the code

val symbols = Array("<", "-", ">")

val counts = Array(2, 10, 2)

val pairs = symbols.zip(counts)

yields an array of pairs

Array(("<", 2), ("-", 10), (">", 2))

The pairs can then be processed together:

for ((s, n) <- pairs) print(s * n) // Prints <<---------->>

[image: Images] Tip

The toMap method turns a collection of pairs into a map.

If you have a collection of keys and a parallel collection of values, zip them up and turn them into a map like this:

keys.zip(values).toMap

Exercises

1. Set up a map of prices for a number of gizmos that you covet. Then produce a second map with the same keys and the prices at a 10 percent discount.

2. Write a program that reads words from a file. Use a mutable map to count how often each word appears. To read the words, simply use a java.util.Scanner:

val in = java.util.Scanner(new java.io.File("myfile.txt"))

while (in.hasNext()) process in.next()

Or look at Chapter 9 for a Scalaesque way.

At the end, print out all words and their counts.

3. Repeat the preceding exercise with an immutable map.

4. Repeat the preceding exercise with a sorted map, so that the words are printed in sorted order.

5. Repeat the preceding exercise with a java.util.TreeMap that you adapt to the Scala API.

6. Define a linked hash map that maps "Monday" to java.util.Calendar.MONDAY, and similarly for the other weekdays. Demonstrate that the elements are visited in insertion order.

7. Print a table of all Java properties reported by the getProperties method of the java.lang.System class, like this:

java.runtime.name | Java(TM) SE Runtime Environment

sun.boot.library.path | /home/apps/jdk1.6.0_21/jre/lib/i386

java.vm.version | 17.0-b16

java.vm.vendor | Sun Microsystems Inc.

java.vendor.url | http://java.sun.com/

path.separator | :

java.vm.name | Java HotSpot(TM) Server VM

You need to find the length of the longest key before you can print the table.

8. Write a function minmax(values: Array[Int]) that returns a pair containing the smallest and the largest values in the (nonempty) array.

9. Reimplement the function from the preceding exercise to return an Option that is None if the array happens to be empty.

10. Write a program that prompts the user for a first and last letter and then prints a matching word from scala.io.Source.fromFile("/usr/share/dict/words").mkString.split("\n"). Use find. What alternatives do you have for dealing with the returned Option?

11. Write a program that demonstrates that the argument of the getOrElse method in the Option class is evaluated lazily.

12. Write a function lteqgt(values: Array[Int], v: Int) that returns a triple containing the counts of values less than v, equal to v, and greater than v.

13. What happens when you zip together two strings, such as "Hello".zip("World")? Come up with a plausible use case.

Chapter 5

Classes

Topics in This Chapter A1

[image: Images] 5.1 Simple Classes and Parameterless Methods

[image: Images] 5.2 Properties with Getters and Setters

[image: Images] 5.3 Properties with Only Getters

[image: Images] 5.4 Private Fields

[image: Images] 5.5 Auxiliary Constructors

[image: Images] 5.6 The Primary Constructor

[image: Images] 5.7 Nested Classes L1

[image: Images] Exercises

In this chapter, you will learn how to implement classes in Scala. If you know classes in Java, Python, or C++, you won’t find this difficult, and you will enjoy the much more concise notation of Scala.

The key points of this chapter are:

• An accessor method with no parameters does not need parentheses.

• Fields in classes automatically come with getters and setters.

• You can replace a field with a custom getter/setter without changing the client of a class—that is the “uniform access principle.”

• Every class has a primary constructor that is “interwoven” with the class definition. Its parameters turn into the fields of the class. The primary constructor executes all statements in the body of the class.

• Auxiliary constructors are optional. They are called this.

• Classes can be nested. Each outer class object has its own version of the inner class.

5.1 Simple Classes and Parameterless Methods

In its simplest form, a Scala class looks very much like its equivalent in Java or C++:

class Counter :

 private var value = 0 // You must initialize the field

 def increment() = // Methods are public by default

 value += 1

 def current = value

Note the colon after the class name. For greater clarity, I always add a space before such a colon, but that is not a requirement.

[image: Images] Note

If the name of a class consists of symbolic characters, enclose them in backticks to avoid a compiler warning:

class ` ` :

 def now() = java.time.LocalTime.now()

 ...

When you use the class, no backticks are necessary: ().now().

You can also use the traditional syntax with braces:

class Counter {

 private var value = 0

 def increment() = {

 value += 1

 }

 def current = value

}

[image: Images] Note

You can initialize a field with the special value uninitialized, defined in the scala.compiletime package. This causes initialization in the Java virtual machine with the default value (zero, false, or null). For clarity and brevity, I will always provide an explicit initial value.

In Scala, a class is not declared as public. A Scala source file can contain multiple top-level classes, and all of them have public visibility unless they are explicitly declared private.

To use this class, you construct objects and invoke methods in the usual way:

val myCounter = Counter() // Or new Counter()

myCounter.increment()

println(myCounter.current)

Note that the increment method has been defined with an empty parameter list, and current has been defined without parentheses. The methods must be called in the way that they were declared.

Which form should you use? It is considered good style to declare parameterless methods that change the object state with (). Parameterless methods that do not change the object state should be declared without (). Some programmers refer to the former as mutator methods, and the latter as accessor methods.

That’s what we did in our example.

myCounter.increment() // A mutator method

println(myCounter.current) // An accessor method

5.2 Properties with Getters and Setters

When writing a Java class, we don’t like to use public fields:

public class Person { // This is Java

 public int age; // Frowned upon in Java

}

With a public field, anyone could write to fred.age, making Fred younger or older. That’s why we prefer to use getter and setter methods:

public class Person { // This is Java

 private int age;

 public int getAge() { return age; }

 public void setAge(int age) { this.age = age; }

}

A getter/setter pair such as this one is often called a property. We say that the class Person has an age property.

Why is this any better? By itself, it isn’t. Anyone can call fred.setAge(21), keeping him forever twenty-one.

But if that becomes a problem, we can guard against it:

public void setAge(int newValue) { // This is Java

 if (newValue > age) age = newValue;

 // Can’t get younger

}

Getters and setters are better than public fields because they let you start with simple get/set semantics and evolve them as needed.

[image: Images] Note

Just because getters and setters are better than public fields doesn’t mean they are always good. Often, it is plainly bad if every client can get or set bits and pieces of an object’s state. In this section, I show you how to implement properties in Scala. It is up to you to choose wisely when a gettable/settable property is an appropriate design.

Scala provides getter and setter methods for every public field. Consider this example:

class Person :

 var age = 0

Scala generates a class for the JVM with a private age field and getter and public setter methods.

In Scala, the getter and setter methods are called age and age_=. For example,

val fred = Person()

fred.age = 21 // Calls fred.age_=(21)

println(fred.age) // Calls the method fred.age()

In Scala, the getters and setters are not named getXxx and setXxx, but they fulfill the same purpose. If you need getXxx and setXxx methods for interoperability with Java, use the @BeanProperty annotation. See Chapter 15 for details.

[image: Images] Note

To see these methods with your own eyes, compile the file containing the Person class and then look at the bytecode with javap:

$ scala3-compiler Person.scala

$ javap -private Person

Compiled from "Person.scala"

public class Person {

 private int age;

 public Person();

 public int age();

 public void age_$eq(int);

}

As you can see, the compiler created methods age and age_$eq. (The = symbol is translated to $eq because the JVM does not allow an = in a method name.)

You can redefine the getter and setter methods yourself. For example,

class Person :

 private var privateAge = 0 // Make private and rename

 def age = privateAge

 def age_=(newValue: Int) =

 if newValue > privateAge then privateAge = newValue // Can’t get younger

The user of your class still accesses fred.age, but now Fred can’t get younger:

val fred = Person()

fred.age = 30

fred.age = 21

println(fred.age) // Prints 30

[image: Images] Note

Bertrand Meyer, the inventor of the influential Eiffel language, formulated the Uniform Access Principle that states: “All services offered by a module should be available through a uniform notation, which does not betray whether they are implemented through storage or through computation.” In Scala, the caller of fred.age doesn’t know whether age is implemented through a field or a method. (Of course, in the JVM, the service is always implemented through a method, either synthesized or programmer-supplied.)

5.3 Properties with Only Getters

Sometimes you want a read-only property with a getter but no setter. If the value of the property never changes after the object has been constructed, use a val field:

class Message :

 val timeStamp = java.time.Instant.now

 ...

The Scala compiler produces a Java class with a private final field and a public getter method, but no setter.

Sometimes, however, you want a property that a client can’t set at will, but that is mutated in some other way. The Counter class from Section 5.1, “Simple Classes and Parameterless Methods,” on page 65 is a good example. Conceptually, the counter has a current property that is updated when the increment method is called, but there is no setter for the property.

You can’t implement such a property with a val—a val never changes. Instead, provide a private field and a property getter. That is what you saw in the Counter example:

class Counter :

 private var value = 0

 def increment() = value += 1

 def current = value // No () in declaration

Note that there are no () in the definition of the getter method. Therefore, you must call the method without parentheses:

val n = myCounter.current // Calling myCounter.current() is a syntax error

To summarize, you have four choices for implementing properties:

1. var foo: Scala synthesizes a getter and a setter.

2. val foo: Scala synthesizes a getter.

3. You define methods foo and foo_=.

4. You define a method foo.

[image: Images] Note

In some programming languages, you can declare write-only properties. Such a property has a setter but no getter. That is not possible in Scala.

[image: Images] Tip

When you see a public field in a Scala class, remember that it is not the same as a field in Java or C++. It is a private field together with a public getter (for a val field) or a getter and a setter (for a var field).

5.4 Private Fields

If you define a private field, Scala does not normally produce getters and setters. But there are two exceptions.

A method can access the private fields of all objects of its class. For example,

class Counter :

 private var value = 0

 def increment() = value += 1

 def isLess(other: Counter) = value < other.value

 // Can access private field of other object

Accessing other.value is legal because other is also a Counter object.

When a private field is accessed through an object other than this, then private getters and setters are generated.

Moreover, there is a (rarely used) syntax for granting access rights to specific classes or packages. The private[name] qualifier states that only methods of the given enclosing class or package can access the given field.

The compiler will generate auxiliary getter and setter methods that allow the enclosing class or package to access the field. These methods will be public because the JVM does not have a fine-grained access control system, and they will have implementation-dependent names.

Table 5–1 lists all field declarations that we discussed, and shows which methods are generated.

Table 5–1 Generated Methods for Fields

[image: Images]

5.5 Auxiliary Constructors

A Scala class can have as many constructors as you like. However, one constructor is more important than all the others, called the primary constructor. In addition, a class may have any number of auxiliary constructors.

We discuss auxiliary constructors first because they are similar to constructors in Java, C++, or Python.

The auxiliary constructors are called this. (In Java or C++, constructors have the same name as the class—which is not so convenient if you rename the class.)

Each auxiliary constructor must start with a call to another auxiliary constructor or the primary constructor.

Here is a class with two auxiliary constructors:

class Person :

 private var name = ""

 private var age = 0

 def this(name: String) = // An auxiliary constructor

 this() // Calls primary constructor

 this.name = name

 def this(name: String, age: Int) = // Another auxiliary constructor

 this(name) // Calls previous auxiliary constructor

 this.age = age

We will look at the primary constructor in the next section. For now, it is sufficient to know that a class for which you don’t define a primary constructor has a primary constructor with no arguments.

You can construct objects of this class in three ways:

val p1 = Person() // Primary constructor

val p2 = Person("Fred") // First auxiliary constructor

val p3 = Person("Fred", 42) // Second auxiliary constructor

You can optionally use the new keyword to invoke a constructor, but you don’t have to.

5.6 The Primary Constructor

In Scala, every class has a primary constructor. The primary constructor is not defined with a this method. Instead, it is interwoven with the class definition.

The parameters of the primary constructor are placed immediately after the class name.

class Person(val name: String, val age: Int) :

 // Parameters of primary constructor in parentheses after class name

 ...

If a primary constructor parameter is declared with val or var, it turns into a field that is initialized with the construction parameter. In our example, name and age become fields of the Person class. A constructor call such as Person("Fred", 42) sets the name and age fields.

Half a line of Scala is the equivalent of seven lines of Java:

public class Person { // This is Java

 private String name;

 private int age;

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String name() { return this.name; }

 public int age() { return this.age; }

 ...

}

The primary constructor executes all statements in the class definition. For example, in the following class

class Person(val name: String, val age: Int) :

 println("Just constructed another person")

 def description = s"$name is $age years old"

the println statement is a part of the primary constructor. It is executed whenever an object is constructed.

This is useful when you need to configure a field during construction. For example:

class MyProg :

 private val props = java.util.Properties()

 props.load(new FileReader("myprog.properties"))

 // The statement above is a part of the primary constructor

 ...

[image: Images] Note

If there are no parameters after the class name, then the class has a primary constructor with no parameters. That constructor simply executes all statements in the body of the class.

[image: Images] Tip

You can often eliminate auxiliary constructors by using default arguments in the primary constructor. For example:

class Person(val name: String = "", val age: Int = 0) :

 ...

Primary constructor parameters can have any of the forms in Table 5–1. For example,

class Person(val name: String, private var age: Int)

declares and initializes fields

val name: String

private var age: Int

Construction parameters can also be regular method parameters, without val or var. They don’t give rise to getters. How these parameters are processed depends on their usage inside the class.

class Person(firstName: String, lastName: String, age: Int) :

 val name = firstName + " " + lastName

 def description = s"$name is $age years old"

Since the age parameter is used inside a method, it becomes an object-private field.

However, the firstName and lastName parameters are not used in any method. After the primary constructor has completed, they are no longer required. Therefore, there is no need to turn them into fields

Table 5–2 summarizes the fields and methods that are generated for different kinds of primary constructor parameters.

Table 5–2 Fields and Methods Generated for Primary Constructor Parameters

[image: Images]

If you find the primary constructor notation confusing, you don’t need to use it. Just provide one or more auxiliary constructors in the usual way, but remember to call this() if you don’t chain to another auxiliary constructor.

However, many programmers like the concise syntax. Martin Odersky suggests to think about it this way: In Scala, classes take parameters, just like methods do.

[image: Images] Note

When you think of the primary constructor’s parameters as class parameters, parameters without val or var become easier to understand. The scope of such a parameter is the entire class. Therefore, you can use the parameter in methods. If you do, it is the compiler’s job to save it in a field.

[image: Images] Tip

The Scala designers think that every keystroke is precious, so they let you combine a class with its primary constructor. When reading a Scala class, you need to disentangle the two. For example, when you see

class Person(val name: String) :

 var age = 0

 def description = s"$name is $age years old"

mentally take this definition apart into a class definition:

class Person(val name: String) :

 var age = 0

 def description = s"$name is $age years old"

and a constructor definition:

class Person(val name: String) :

 var age = 0

 def description = s"$name is $age years old"

[image: Images] Note

To make the primary constructor private, place the keyword private like this:

class Person private(val id: Int) :

 ...

A class user must then use an auxiliary constructor to construct a Person object.

5.7 Nested Classes L1

In Scala, you can nest just about anything inside anything. You can define functions inside other functions, and classes inside other classes. Here is a simple example of the latter:

class Network :

 class Member(val name: String) :

 val contacts = ArrayBuffer[Member]()

 private val members = ArrayBuffer[Member]()

 def join(name: String) =

 val m = Member(name)

 members += m

 m

Consider two networks:

val chatter = Network()

val myFace = Network()

In Scala, each instance has its own class Member, just like each instance has its own field members. That is, chatter.Member and myFace.Member are different classes. To construct a new inner object, you simply use the type name: chatter.Member("Fred").

[image: Images] Note

This is different from Java, where an inner class belongs to the outer class.

In Java, the objects chatter.new Member("Fred") and myFace.new Member("Wilma") are both instances of a single class Network$Member.

In our network example, you can add a member within its own network:

val fred = chatter.join("Fred")

val wilma = chatter.join("Wilma")

fred.contacts += wilma // OK

val barney = myFace.join("Barney") // Has type myFace.Member

However, trying to add across networks is a compile-time error:

fred.contacts += barney

 // No—can’t add a myFace.Member to a buffer of chatter.Member elements

For networks of people, this behavior can be plausible. And it is certainly interesting to have types that depend on objects.

If you want to express the type “Member of any Network”, use a type projection Network#Member. For example,

class Network :

 class Member(val name: String) :

 val contacts = ArrayBuffer[Network#Member]()

 ...

The type Network#Member corresponds to an inner class in Java.

But then again, perhaps you just want to nest the classes to limit their scope, as one commonly does with static inner classes in Java or nested classes in C++. Then you can move the Member class to the Network companion object. (Companion objects are described in Chapter 6.)

object Network :

 class Member(val name: String) :

 val contacts = ArrayBuffer[Member]()

class Network :

 private val members = ArrayBuffer[Network.Member]()

 ...

[image: Images] Note

In a method of a nested class, you can access the this reference of the enclosing class as EnclosingClass.this:

class Network(val name: String) :

 class Member(val name: String) :

 val contacts = ArrayBuffer[Member]()

 def description = s"$name inside ${Network.this.name}"

Exercises

1. Improve the Counter class in Section 5.1, “Simple Classes and Parameterless Methods,” on page 65 so that it doesn’t turn negative at Int.MaxValue.

2. Write a class BankAccount with methods deposit and withdraw, and a read-only property balance.

3. Write a class Time with read-only properties hours and minutes and a method before(other: Time): Boolean that checks whether this time comes before the other. A Time object should be constructed as Time(hrs, min), where hrs is in military time format (between 0 and 23).

4. Reimplement the Time class from the preceding exercise so that the internal representation is the number of minutes since midnight (between 0 and 24 × 60 – 1). Do not change the public interface. That is, client code should be unaffected by your change.

5. In the Person class of Section 5.2, “Properties with Getters and Setters,” on page 67, provide a primary constructor that turns negative ages to 0.

6. Write a class Person with a primary constructor that accepts a string containing a first name, a space, and a last name, such as Person("Fred Smith"). Supply read-only properties firstName and lastName. Should the primary constructor parameter be a var, a val, or a plain parameter? Why?

7. Make a class Car with read-only properties for manufacturer, model name, and model year, and a read-write property for the license plate. Supply four constructors. All require the manufacturer and model name. Optionally, model year and license plate can also be specified in the constructor. If not, the model year is set to -1 and the license plate to the empty string. Which constructor are you choosing as the primary constructor? Why?

8. Reimplement the class of the preceding exercise in Java, JavaScript, Python, C#, or C++ (your choice). How much shorter is the Scala class?

9. Consider the class

class Employee(val name: String, var salary: Double) {

 def this() { this("John Q. Public", 0.0) }

}

Rewrite it to use explicit fields and a default primary constructor. Which form do you prefer? Why?

10. Implement the equals method for the Member class that is nested inside the Network class in Section 5.7, “Nested Classes,” on page 75. For two members to be equal, they need to be in the same network.

Chapter 6

Objects and Enumerations

Topics in This Chapter A1

[image: Images] 6.1 Singletons

[image: Images] 6.2 Companion Objects

[image: Images] 6.3 Objects Extending a Class or Trait

[image: Images] 6.4 The apply Method

[image: Images] 6.5 Application Objects

[image: Images] 6.6 Enumerations

[image: Images] Exercises

In this short chapter, you will learn when to use the object construct in Scala. Use it when you need a class with a single instance, or when you want to find a home for miscellaneous values or functions. This chapter also covers enumerated types.

The key points of this chapter are:

• Use objects for singletons and utility methods.

• A class can have a companion object with the same name.

• Objects can extend classes or traits.

• The apply method of an object is usually used for constructing new instances of the companion class.

• If you don’t provide your own apply method in the companion object, an apply method is provided for all constructors of a class.

• Instead of a @main annotated method, you can provide a main(Array[String]): Unit method in an object as a program starting point.

• The enum construct defines an enumeration. Enumeration objects can have state and methods.

6.1 Singletons

Scala has no static methods or fields. Instead, you use the object construct. An object defines a single instance of a class with the features that you want. For example,

object Accounts :

 private var lastNumber = 0

 def newUniqueNumber() =

 lastNumber += 1

 lastNumber

When you need a new unique account number in your application, call Accounts.newUniqueNumber().

The constructor of an object is executed when the object is first used. In our example, the Accounts constructor is executed with the first call to Accounts.newUniqueNumber(). If an object is never used, its constructor is not executed.

An object can have essentially all the features of a class—it can even extend other classes or traits (see Section 6.3, “Objects Extending a Class or Trait,” on page 83). There is just one exception: You cannot provide constructor parameters.

Use an object in Scala whenever you would have used a singleton object in another programming language:

• As a home for utility functions or constants

• When a single immutable instance can be shared efficiently

• When a single instance is required to coordinate some service (the singleton design pattern)

[image: Images] Note

Many people view the singleton design pattern with disdain. Scala gives you the tools for both good and bad design, and it is up to you to use them wisely.

6.2 Companion Objects

In Java, JavaScript, or C++, you often have a class with both instance methods and static methods. In Scala, you can achieve this by having a class and a “companion” object of the same name. For example,

class Account :

 val id = Account.newUniqueNumber()

 private var balance = 0.0

 def deposit(amount: Double) =

 balance += amount

 ...

object Account : // The companion object

 private var lastNumber = 0

 private def newUniqueNumber() =

 lastNumber += 1

 lastNumber

The class and its companion object can access each other’s private features. They must be located in the same source file.

Note that the companion object’s features are not in the scope of the class. For example, the Account class has to use Account.newUniqueNumber() and not just newUniqueNumber() to invoke the method of the companion object.

[image: Images] Tip

To define a companion object in the REPL, write both the class and the object in a text editor, and then paste both of them together into the REPL. If you define them separately, you will get an error message.

6.3 Objects Extending a Class or Trait

An object can extend a class and/or one or more traits. The result is an object of a class that extends the given class and/or traits, and in addition has all of the features specified in the object definition.

One useful application is to specify default objects that can be shared. For example, consider a class for undoable actions in a program.

abstract class UndoableAction(val description: String) :

 def undo(): Unit

 def redo(): Unit

A useful default is the “do nothing” action. Of course, we only need one of them.

object DoNothingAction extends UndoableAction("Do nothing") :

 override def undo() = ()

 override def redo() = ()

The DoNothingAction object can be shared across all places that need this default.

val actions = Map("open" -> DoNothingAction, "save" -> DoNothingAction)

 // Open and save not yet implemented

6.4 The apply Method

The apply method is called for expressions of the form

Object(arg1, ..., argN)

Typically, such an apply method returns an object of the companion class.

For example, the Array object defines apply methods that allow array creation with expressions such as

Array("Mary", "had", "a", "little", "lamb")

This call actually means:

Array.apply("Mary", "had", "a", "little", "lamb")

Whenever you define a Scala class, a companion object is automatically provided, with an apply method for every constructor. This is what enables construction without using the new operator.

For example, given the class

class Person(val name: String, val age: Int)

there is automatically a companion object Person and a method Person.apply so that you can call

val p = Person("Fred", 42)

val q = Person.apply("Wilma", 39)

These methods are called constructor proxy methods.

There is only one exception. If the class already has a companion object with at least one apply method, then no constructor proxy methods are provided.

You might want to declare your own apply method if you don’t want to invoke a fixed constructor. The most common reason is to produce instances of a sub-type. For example, Map.apply produces maps of different classes:

val seasons = Map("Spring" -> 1, "Summer" -> 2, "Fall" -> 3, "Winter" -> 4)

seasons.getClass // Yields class scala.collection.immutable.Map$Map4 val directions =

 Map("Center" -> 0, "North" -> 1, "East" -> 2, "South" -> 3, "West" -> 4)

directions.getClass // Yields class scala.collection.immutable.HashMap

6.5 Application Objects

If an object declares a method with name main and type Array[String] => Unit, then you can invoke that method from the command line. Consider the classic example, a file Hello.scala with this contents:

object Hello :

 def main(args: Array[String]) =

 println(s"Hello, ${args.mkString(" ")}!")

Now you can compile and run the class. The command line arguments are placed in the args parameter.

$ scalac Hello.scala

$ scala Hello cruel world

Hello, cruel world!

This mechanism is a little different than the one you saw in Chapter 2, where the program entry point was a function with the @main annotation. Consider a file Greeter.scala with this contents:

@main def hello(args: String*) =

 println(s"Hello, ${args.mkString(" ")}!")

The annotation produces an object named hello with a public static void main(Array[String]) method. That method parses the command line arguments and calls the hello method, which is located in another class Hello\$package\$.

To invoke the program, you run the hello class:

$ scalac Greeter.scala

$ scala hello cruel world

Hello, cruel world!

6.6 Enumerations

An object has a single instance. An enumerated type has a finite number of instances:

enum TrafficLightColor :

 case Red, Yellow, Green

Here we define a type TrafficLightColor with three instances, TrafficLightColor.Red, TrafficLightColor.Yellow, and TrafficLightColorGreen.

Every enum automatically has an ordinal method that yields an integer for each instance, numbering them in the order in which they were defined, starting at 0.

TrafficLightColor.Yellow.ordinal // Yields 1

The inverse is the fromOrdinal method of the companion object:

TrafficLightColor.fromOrdinal(1) // Yields TrafficLightColor.Yellow

The values method of the companion object yields an array of all enumerated values in the same order:

TrafficLightColor.values // Yields Array(Red, Yellow, Green)

The companion object has a valueOf method that obtains an instance by name:

TrafficLightColor.valueOf("Yellow")

This is the inverse of the toString method, which maps instances to their names:

TrafficLightColor.Yellow.toString // Yields "Yellow"

You can define your own methods:

enum TrafficLightColor :

 case Red, Yellow, Green

 def next = TrafficLightColor.fromOrdinal((ordinal + 2) % 3)

You can also add methods to the companion object:

object TrafficLightColor :

 def random() = TrafficLightColor.fromOrdinal(scala.util.Random.nextInt(3))

Instances can have state. Provide a constructor with the enumeration type, and then construct instances as follows:

enum TrafficLightColor(val description: String) :

 case Red extends TrafficLightColor("Stop")

 case Yellow extends TrafficLightColor("Hurry up")

 case Green extends TrafficLightColor("Go")

The extends syntax reflects the fact that the enumeration instances are objects extending the enumeration type—see Section 6.3, “Objects Extending a Class or Trait,” on page 83.

You can deprecate an instance:

enum TrafficLightColor :

 case Red, Yellow, Green

 @deprecated("""https://99percentinvisible.org/article/stop-at-red-go-on-grue-\

how-language-turned-traffic-lights-bleen-in-japan/""") case Blue

If you need to make an enumerated type compatible with Java enumerations, extend the java.lang.Enum class, as follows:

enum TrafficLightColor extends Enum[TrafficLightColor] :

 case Red, Yellow, Green

[image: Images] Note

In Chapter 14, you will see “parameterized” enum that define class hierarchies, such as:

enum Amount :

 case Nothing

 case Dollar(value: Double)

 case Currency(value: Double, unit: String)

This is equivalent to an abstract class Amount that is extended by an object Nothing and classes Dollar and Currency

The enum types covered in this chapter are a special case, with only objects.

Exercises

1. Write an object Conversions with methods inchesToCentimeters, gallonsToLiters, and milesToKilometers.

2. The preceding problem wasn’t very object-oriented. Provide a general superclass UnitConversion and define objects InchesToCentimeters, GallonsToLiters, and MilesToKilometers that extend it.

3. Define an Origin object that extends java.awt.Point. Why is this not actually a good idea? (Have a close look at the methods of the Point class.)

4. Define a Point class with a companion object so that you can construct Point instances as Point(3, 4), without using new.

5. Write a Scala application, using the App trait, that prints its command-line arguments in reverse order, separated by spaces. For example, scala Reverse Hello World should print World Hello.

6. Write an enumeration describing the four playing card suits so that the toString method returns , , , or .

7. Implement a function that checks whether a card suit value from the preceding exercise is red.

8. Write an enumeration describing the eight corners of the RGB color cube. As IDs, use the color values (for example, 0xff0000 for Red).

Chapter 7

Packages, Imports, and Exports

Topics in This Chapter A1

[image: Images] 7.1 Packages

[image: Images] 7.2 Package Scope Nesting

[image: Images] 7.3 Chained Package Clauses

[image: Images] 7.4 Top-of-File Notation

[image: Images] 7.5 Package-Level Functions and Variables

[image: Images] 7.6 Package Visibility

[image: Images] 7.7 Imports

[image: Images] 7.8 Imports Can Be Anywhere

[image: Images] 7.9 Renaming and Hiding Members

[image: Images] 7.10 Implicit Imports

[image: Images] 7.11 Exports

[image: Images] Exercises

A package contains features with a common purpose. Large programs and libraries are typically organized into a multitude of packages.

Package names are unique but long. Using import statements, you can access the features of a package with a shorter name.

This chapter ends with a discussion of the export syntax, which is syntactically similar to import statements, but is used for delegation.

The key points of this chapter are:

• Packages nest just like inner classes.

• Package paths are not absolute.

• A chain x.y.z in a package clause leaves the intermediate packages x and x.y invisible.

• Package statements without braces at the top of the file extend to the entire file.

• A package can have functions and variables.

• Import statements can import packages, classes, and objects.

• Import statements can be anywhere.

• Import statements can rename and hide members.

• java.lang, scala, and Predef are always imported.

• Export statements provide a concise mechanism for declaring delegations, using the same syntax as import statements.

7.1 Packages

Packages in Scala fulfill the same purpose as packages in Java, modules in Python, or namespaces in C++: to manage names in a large program. For example, the name Map can occur in the packages scala.collection.immutable and scala.collection.mutable without conflict. To access either name, you can use the fully qualified scala.collection.immutable.Map or scala.collection.mutable.Map. Alternatively, use an import statement to provide a shorter alias—see Section 7.7, “Imports,” on page 94.

To add items to a package, you can include them in nested package statements, such as:

package com :

 package horstmann :

 package people :

 class Employee(name: String, var salary: Double) :

 ...

Then the class name Employee can be accessed anywhere as com.horstmann.people.Employee.

Unlike an object or a class, a package can be defined in multiple files. The preceding code might be in a file Employee.scala, and a file Manager.scala might define another class Manager in the com.horstmann.people package.

[image: Images] Note

There is no enforced relationship between the directory of the source file and the package. You don’t have to put Employee.scala and Manager.scala into a com/horstmann/people directory.

Conversely, you can contribute to more than one package in a single file. The file People.scala may contain

package com :

 package horstmann :

 package people :

 class Person(val name: String) :

 ...

 package users :

 class User(val username: String, password: String) :

 ...

7.2 Package Scope Nesting

Scala packages nest just like all other scopes. You can access names from the enclosing scope. For example,

package com :

 package horstmann :

 package people :

 class Employee(name: String, var salary: Double) :

 ...

 def giveRaise(rate: Double) =

 salary += Math.percentOf(salary, rate)

 object Math :

 def percentOf(value: Double, rate: Double) = value * rate / 100

 ...

Note the Math.percentOf qualifier. The Math class was defined in the parent package. Everything in the parent package is in scope, and it is not necessary to use com.horstmann.Math.percentOf. (You could, though, if you prefer—after all, com is also in scope.)

This is more regular than Java, where packages cannot be nested.

There is a fly in the ointment, however. Some programmers like to take advantage of the fact that the scala package is always imported (see Section 7.10, “Implicit Imports,” on page 95). Therefore, it is possible to use collection instead of scala.collection:

package com :

 package horstmann :

 package people :

 class Manager(name: String) :

 val subordinates = collection.mutable.ArrayBuffer[Employee]()

 ...

However, suppose someone introduces a com.horstmann.collection package, perhaps later, and in a different file.

Then the Manager class no longer compiles. It looks for a mutable member inside the com.horstmann.collection package and doesn’t find it. The Manager class intends the collection package in the top-level scala package, not whatever collection subpackage happened to be in some accessible scope.

In Java, this problem can’t occur because package names are always absolute, starting at the root of the package hierarchy. But in Scala, package names are relative, just like inner class names. With inner classes, one doesn’t usually run into problems because all the code is in one file, under control of whoever is in charge of that file. But packages are open-ended. Anyone can contribute to a package by adding a new file with the same package declaration.

The safest solution is to use absolute package names. They must start with the special identifier _root_, such as:

val subordinates = _root_.scala.collection.mutable.ArrayBuffer[Employee]()

[image: Images] Tip

Most Scala programmers use complete paths for package names, without the _root_ prefix. This is safe as long as everyone avoids names scala, java, javax, and top-level domains (com, net, and so on), for nested packages.

7.3 Chained Package Clauses

A package clause can contain a “chain,” or path segment, for example:

package com :

 package horstmann.people :

 // Members of com.horstmann are not visible here

 class Executive :

 val subordinates = collection.mutable.ArrayBuffer[Manager]()

Such a clause limits the visible members. Now the com.horstmann.collection package is no longer accessible as collection.

7.4 Top-of-File Notation

Instead of the nested notation that we have used up to now, you can have a package clause at the top of the file, without a colon or braces. For example:

package com.horstmann.collection // No colon

class Group :

 ...

Everything in this file is inside the com.horstmann.collection package. This is the exact equivalent of the Java package statement.

[image: Images] Tip

The top-of-file notation is commonly used whenever all the code in the file belongs to the same package. It saves you from having to indent the package contents.

7.5 Package-Level Functions and Variables

You have seen that a package can contain classes. A package can also contain other type declarations such as traits, enumerations, and objects. For example, the following is valid:

package com.horstmann.people

val defaultName = "John Q. Public"

def employ(p: Person) = Employee(p.name, 0)

Behind the scenes, the package object gets compiled into a Java virtual machine class with static methods and fields, called filename$package.class, inside the given package. If the example code is stored in People.scala, that would be a class com.horstmann.people.People$package.

Normally, the names of the Scala source files have no influence on the class files that the compiler generates. Each class, enumeration, object, or trait is compiled into a Java class file with the given package and class name. There may be helper classes (such as the classes for companion objects), but their names are derived from the name of the main feature.

But in the case of package-level functions and variables, the Scala compiler must construct a Java class to hold them. There can be multiple files with top-level definitions for the same package, and it would be too complex to merge them all into a single class file. Therefore, each source file gives rise to a separate class file. And those class files contain the source file name.

If you rename a source file, the name of the class file holding the package-level definitions changes, and you must recompile all files depending on them.

Therefore, it is a good idea to keep all top-level definitions of a package in a single file with a fixed name. The traditional choice is package.scala, placed in the subdirectory that matches the package name, such as com/horstmann/people/package.scala.

7.6 Package Visibility

In Java, a class member that isn’t declared as public, private, or protected is visible in the package containing the class. In Scala, you can achieve the same effect with qualifiers enclosed in brackets. The following method is visible in its own package:

package com.horstmann.users

class User(username: String, password: String) :

 private[users] def longDescription = s"A user with name $username and password $password"

 ...

You can extend the visibility to an enclosing package:

private[horstmann] def safeDescription = s"A user with name $username and password ${"*" * password

In the package com.horstmann.users, both methods are accessible. However, in the package com.horstmann, the first method is inaccessible.

7.7 Imports

Imports let you use short names instead of long ones. With the clause

import java.awt.Color

you can write Color in your code instead of java.awt.Color.

That is the sole purpose of imports. If you don’t mind long names, you’ll never need them.

You can import all members of a package as

import java.awt.*

[image: Images] Caution

In Scala, * is a valid character for an identifier. You could define a package com.horstmann.*.people. Please don’t. If someone else did, use ‘*‘ to import it.

You can also import all members of a class or object.

import java.awt.Color.*

val c1 = RED // Color.RED

val c2 = decode("#ff0000") // Color.decode

This is like import static in Java. Java programmers seem to live in fear of this variant, but in Scala it is commonly used.

Once you import a package, you can access its subpackages with shorter names. For example:

import java.awt.*

val transform = geom.AffineTransform.getScaleInstance(0.5, 0.5)

 // java.awt.geom.AffineTransform

The geom package is a member of java.awt, and the import brings it into scope.

7.8 Imports Can Be Anywhere

In Scala, an import statement can be anywhere, not just at the top of a file. The scope of the import statement extends until the end of the enclosing block. For example,

class Group :

 // Imports restricted to this class

 import scala.collection.mutable.*

 import com.horstmann.users.*

 val members = ArrayBuffer[User]()

 ...

Imports with restricted scope are very useful, particularly with wildcard imports. It is always a bit worrisome to import lots of names from different sources. In fact, some programmers dislike wildcard imports so much that they never use them but let their IDE generate long lists of imported classes.

By restricting the imports to the scopes where they are needed, you can greatly reduce the potential for conflicts.

7.9 Renaming and Hiding Members

If you want to import more than one member from a package, use the selector syntax like this:

import java.awt.{Color, Font}

Use the as keyword to rename members:

import java.util.HashMap as JavaHashMap

import scala.collection.mutable.*

Now JavaHashMap is a java.util.HashMap and plain HashMap is a scala.collection.mutable.HashMap.

The syntaxHashMap as _ hides a member instead of renaming it. This is useful if you import other members with the same name:

import java.util.{HashMap as _, *}

import scala.collection.mutable.*

Now HashMap unambiguously refers to scala.collection.mutable.HashMap since java.util.HashMap is hidden.

7.10 Implicit Imports

Every Scala program implicitly starts with

import java.lang.*

import scala.*

import Predef.*

The java.lang package is always imported. Next, the scala package is imported, but in a special way. Unlike all other imports, this one is allowed to override the preceding import. For example, scala.StringBuilder overrides java.lang.StringBuilder instead of conflicting with it.

Finally, the Predef object is imported. It contains commonly used types, implicit conversions, and utility methods. (The methods could equally well have been placed into the scala package, but Predef was introduced long before Scala had package-level functions.)

Since the scala package is imported by default, you never need to write package names that start with scala. For example,

collection.mutable.HashMap

is just as good as

scala.collection.mutable.HashMap

7.11 Exports

This chapter ends with the export statement, which, somewhat similar to import, provides aliases for certain features. However, import can be used with packages, classes, or objects, whereas export is only used with objects.

Let’s move to a concrete example. A ColoredPoint has a color and a point. Now we’d like to get the color components and the point coordinates. Of course, we can delegate to the color methods and point fields:

import java.awt.*

class ColoredPoint(val color: Color, val point: Point) :

 def red = color.getRed()

 def green = color.getRed()

 def blue = color.getBlue()

 val x = point.x

 val y = point.y

That delegation can get tedious, and it sometimes encourages programmers to reach for inheritance. Then you automatically inherit everything and don’t have to implement delegations.

But of course, that inheritance may not be appropriate. Is a ColoredPoint a special kind of Color? A special kind of Point? There are philosophical and practical reasons why the answer might be “no”.

A general software engineering principle is to favor composition over inheritance. The export feature helps to follow this guidance. Instead of manually delegating features, you declare which ones you want:

class ColoredPoint(val color: Color, val point: Point) :

 export color.{getRed as red, getGreen as green, getBlue as blue}

 export point.{x, y}

The syntax is just like with import statements. You enclose the selected features in braces and use arrows for renaming.

As with imports, you can export all but a subset of features:

export point.{

setLocation as _, translate as _, toString as _, hashCode as _, equals as _, clone as _, *}

Exercises

1. Write an example program to demonstrate that

package com.horstmann.impatient

is not the same as

package com

package horstmann

package impatient

2. Write a puzzler that baffles your Scala friends, using a package com that isn’t at the top level.

3. Write a package random with functions nextInt(): Int, nextDouble(): Double, and setSeed(seed: Int): Unit. To generate random numbers, use the linear congruential generator

next = (previous × a + b) mod 2n,

where a = 1664525, b = 1013904223, n = 32, and the initial value of previous is seed.

4. Make two source files, each contributing two classes and a top-level function to a given package. What class files are generated? In which directories? What happens if you move the source files to different directories? What happens if you rename the source files?

5. What is the meaning of private[com] def giveRaise(rate: Double)? Is it useful?

6. Write a program that copies all elements from a Java hash map into a Scala hash map. Use imports to rename both classes.

7. In the preceding exercise, move all imports into the innermost scope possible.

8. What is the effect of

import java.*

import javax.*

Is this a good idea?

9. Write a program that imports the java.lang.System class, reads the user name from the user.name system property, reads a password from the StdIn object, and prints a message to the standard error stream if the password is not "secret". Otherwise, print a greeting to the standard output stream. Do not use any other imports, and do not use any qualified names (with dots).

10. Apart from StringBuilder, what other members of java.lang does the scala package override?

11. One common example of improper inheritance is a stack class that inherits from an ArrayBuffer. This is bad because the stack then inherits many methods that are not permitted on stacks. Use composition and export statements to define a Stack class that stores strings.

12. Pick an example where composition is preferred over inheritance and implement it in Scala, using the export syntax for method delegations.

13. An export statement can appear inside a class, object, or trait, or at the top-level. If it appears in a class, how does it differ from an import? What if it appears at the top-level?

Chapter 8

Inheritance

Topics in This Chapter A1

[image: Images] 8.1 Extending a Class

[image: Images] 8.2 Overriding Methods

[image: Images] 8.3 Type Checks and Casts

[image: Images] 8.4 Superclass Construction

[image: Images] 8.5 Anonymous Subclasses

[image: Images] 8.6 Abstract Classes

[image: Images] 8.7 Abstract Fields

[image: Images] 8.8 Overriding Fields

[image: Images] 8.9 Open and Sealed Classes

[image: Images] 8.10 Protected Fields and Methods

[image: Images] 8.11 Construction Order

[image: Images] 8.12 The Scala Inheritance Hierarchy

[image: Images] 8.13 Object Equality L1

[image: Images] 8.14 Multiversal Equality L2

[image: Images] 8.15 Value Classes L2

[image: Images] Exercises

In this chapter, you will learn the most important ways in which inheritance in Scala differs from inheritance in other programming languages. (I assume that you are familiar with the general concept of inheritance.) The highlights are:

• The extends keyword denotes inheritance.

• You must use override when you override a method.

• A final class cannot be extended. A final method cannot be overridden.

• An open class is explicitly designed for being extended.

• Only the primary constructor can call the primary superclass constructor.

• You can override fields.

• You can define classes whose instances can only be compared with each other, or other suitable types.

• A value class wraps a single value without the overhead of a separate object.

In this chapter, we only discuss the case in which a class inherits from another class. See Chapter 10 for inheriting traits—the Scala concept that generalizes Java interfaces.

8.1 Extending a Class

You form a subclass in Scala with the extends keyword:

class Employee extends Person :

 var salary = 0.0

 ...

In the body of the subclass, you specify fields and methods that are new to the subclass or that override methods in the superclass.

You can declare a class final so that it cannot be extended. You can also declare individual methods or fields final so that they cannot be overridden. (See Section 8.8, “Overriding Fields,” on page 106 for overriding fields.) Note that this is different from Java, where a final field is immutable, similar to val in Scala.

8.2 Overriding Methods

In Scala, you must use the override modifier when you override a method that isn’t abstract. (See Section 8.6, “Abstract Classes,” on page 105 for abstract methods.) For example,

class Person :

 ...

 override def toString = s"${getClass.getName}[name=$name]"

The override modifier can give useful error messages in a number of common situations, such as:

• When you misspell the name of the method that you are overriding

• When you accidentally provide a wrong parameter type in the overriding method

• When you introduce a new method in a superclass that clashes with a subclass method

[image: Images] Note

The last case is an instance of the fragile base class problem where a change in the superclass cannot be verified without looking at all the subclasses. Suppose programmer Alice defines a Person class, and, unbeknownst to Alice, programmer Bob defines a subclass Student with a method id yielding the student ID. Later, Alice also defines a method id that holds the person’s national ID. When Bob picks up that change, something may break in Bob’s program (but not in Alice’s test cases) since Student objects now return unexpected IDs.

In Java, one is often advised to “solve” this problem by declaring all methods as final unless they are explicitly designed to be overridden. That sounds good in theory, but programmers hate it when they can’t make even the most innocuous changes to a method (such as adding a logging call). That’s why Java eventually introduced an optional @Overrides annotation.

To invoke a superclass method in Scala, you use the keyword super:

class Employee extends Person :

 ...

 override def toString = s"${super.toString}[salary=$salary]"

The call super.toString invokes the toString method of the superclass—that is, the Person.toString method.

8.3 Type Checks and Casts

To test whether an object belongs to a given class, use the isInstanceOf method. If the test succeeds, you can use the asInstanceOf method to convert a reference to a subclass reference:

if p.isInstanceOf[Employee] then

 val s = p.asInstanceOf[Employee] // s has type Employee

 ...

The p.isInstanceOf[Employee] test succeeds if p refers to an object of class Employee or its subclass (such as Manager).

If p is null, then p.isInstanceOf[Employee] returns false and p.asInstanceOf[Employee] returns null.

If p is not an Employee, then p.asInstanceOf[Employee] throws an exception.

If you want to test whether p refers to an Employee object, but not a subclass, use

if p.getClass == classOf[Employee] then ...

The classOf method is defined in the scala.Predef object that is always imported.

Table 8–1 shows the correspondence between Scala and Java type checks and casts.

Table 8–1 Type Checks and Casts in Scala and Java

[image: Images]

However, pattern matching is usually a better alternative to using type checks and casts. For example,

p match

 case s: Employee => ... // Process s as an Employee

 case _ => ... // p wasn’t an Employee

See Chapter 14 for more information.

8.4 Superclass Construction

Recall from Chapter 5 that a class has one primary constructor and any number of auxiliary constructors, and that all auxiliary constructors must start with a call to a preceding auxiliary constructor or the primary constructor.

As a consequence, an auxiliary constructor can never invoke a superclass constructor directly.

The auxiliary constructors of the subclass eventually call the primary constructor of the subclass. Only the primary constructor can call a superclass constructor.

Recall that the primary constructor is intertwined with the class definition. The call to the superclass constructor is similarly intertwined. Here is an example:

class Employee(name: String, age: Int, var salary : Double) extends

 Person(name, age) :

 ...

This defines a subclass

class Employee(name: String, age: Int, var salary : Double) extends

 Person(name, age)

and a primary constructor that calls the superclass constructor

class Employee(name: String, age: Int, var salary : Double) extends

 Person(name, age)

Intertwining the class and the constructor makes for very concise code. You may find it helpful to think of the primary constructor parameters as parameters of the class. Here, the Employee class has three parameters: name, age, and salary, two of which it “passes” to the superclass.

In Java, the equivalent code is quite a bit more verbose:

public class Employee extends Person { // Java

 private double salary;

 public Employee(String name, int age, double salary) {

 super(name, age);

 this.salary = salary;

 }

}

[image: Images] Note

In a Scala constructor, you can never call super(params), as you would in Java, to call the superclass constructor.

A Scala class can extend a Java class. Its primary constructor must invoke one of the constructors of the Java superclass. For example,

class ModernPrintWriter(p: Path, cs: Charset = StandardCharsets.UTF_8) extends

 java.io.PrintWriter(Files.newBufferedWriter(p, cs))

8.5 Anonymous Subclasses

You construct an instance of an anonymous subclass by providing construction arguments and a block with overrides. For example, suppose we have the following superclass:

class Person(val name: String) :

 def greeting = s"Hello, my name is $name"

Here, we construct an object that belongs to an anonymous subclass of Person, overriding the greeting method:

val alien = new Person("Tweel") :

 override def greeting = "Greetings, Earthling!"

[image: Images] Caution

The new keyword is required to construct an instance of an anonymous class.

8.6 Abstract Classes

A class declared as abstract cannot be instantiated. This is usually done because one or more of its methods are not defined. For example,

abstract class Person(val name: String) :

 def id: Int // No method body—this is an abstract method

Here we say that every person has an ID, but we don’t know how to compute it. Each concrete subclass of Person needs to specify an id method. Note that you do not use the abstract keyword for an abstract method. You simply omit its body. A class with at least one abstract method must be declared abstract.

In a subclass, you need not use the override keyword when you define a method that was abstract in the superclass.

class Employee(name: String) extends Person(name) :

 def id = name.hashCode // override keyword not required

8.7 Abstract Fields

In addition to abstract methods, a class can also have abstract fields. An abstract field is simply a field without an initial value. For example,

abstract class Person :

 val id: Int

 // No initializer—this is an abstract field with an abstract getter method

 var name: String

 // Another abstract field, with abstract getter and setter methods

This class defines abstract getter methods for the id and name fields, and an abstract setter for the name field. The generated Java class has no fields.

Concrete subclasses must provide concrete fields, for example:

class Employee(val id: Int) extends Person : // Subclass has concrete id property

 var name = "" // and concrete name property

As with methods, no override keyword is required in the subclass when you define a field that was abstract in the superclass.

You can always customize an abstract field by using an anonymous type:

val fred = new Person() {

 val id = 1729

 var name = "Fred"

}

8.8 Overriding Fields

Recall from Chapter 5 that a field in Scala consists of a private field and accessor/mutator methods. You can override a val (or a parameterless def) with another val field of the same name. The subclass has a private field and a public getter, and the getter overrides the superclass getter (or method).

For example,

class Person(val name: String) :

 override def toString = s"${getClass.getName}[name=$name]"

 class SecretAgent(codename: String) extends Person(codename) :

 override val name = "secret" // Don’t want to reveal name . . .

 override val toString = "secret" // . . . or class name

This example shows the mechanics, but it is rather artificial. A more common case is to override an abstract def with a val, like this:

abstract class User :

 def id: Int // Each user has an ID that is computed in some way

class Student(override val id: Int) extends User

 // A student ID is simply provided in the constructor

Note the following restrictions (see also Table 8–2):

• A def can only override another def.

• A val can only override another val or a parameterless def.

• A var can only override an abstract var.

Table 8–2 Overriding val, def, and var

[image: Images]

[image: Images] Caution

In Chapter 5, I said that it’s OK to use a var because you can always change your mind and reimplement it as a getter/setter pair. However, the programmers extending your class do not have that choice. They cannot override a var with a getter/setter pair. In other words, if you provide a var, all subclasses are stuck with it.

8.9 Open and Sealed Classes

Inheritance is a powerful feature, and it can be abused. Sometimes, programmers extend a class just because it is convenient to pick up some methods. Chapter 7 discussed the exports feature that helps Scala programmers avoid this trap by making it easy to use composition and delegation instead of inheritance.

However, many classes are explicitly designed for inheritance. In Scala, you use the open keyword to mark those classes:

open class Person :

 ...

Starting with Scala 3.1, there will be a warning if you extend a non-open class outside the source file in which it is declared. To avoid the warning, the file containing the extending class must contain the following import statement:

import scala.language.adhocExtensions

This mechanism is a very modest nudge away from inheritance overuse.

Within a single file, there are no restrictions. Presumably the author of the file understands the superclass well enough to extend it.

If you extend a non-open class from another file and get a compiler warning, consider whether inheritance is appropriate in your situation. If you decide that it is, include the adhocExtensions import. It will signal to others that you either made a conscious choice, or you just wanted to shut up the compiler.

[image: Images] Note

It is a syntax error to declare a final class as open. Conversely, an abstract class (Section 8.6, “Abstract Classes,” on page 105) is automatically open.

A related concept is that of a sealed class. A sealed class has a fixed number of direct subclasses. They must all be declared in the same file.

// PostalRates.scala

sealed abstract class PostalRate :

 ...

class DomesticRate extends PostalRate :

 ...

class InternationalRate extends PostalRate :

 ...

Trying to extend a sealed class in another file is an error, not a warning.

Sealed classes are intended for pattern matching. If the compiler knows all subclasses of a class, it can verify that a match against subclasses is exhaustive. See Chapter 14 for the details.

8.10 Protected Fields and Methods

As in Java or C++, you can declare a field or method as protected. Such a member is accessible from any subclass.

class Employee(name: String, age: Int, protected var salary: Double) :

 ...

class Manager(name: String, age: Int, salary: Double)

 extends Employee(name, age, salary) :

 def setSalary(newSalary: Double) = // A manager’s salary can never decrease

 if (newSalary > salary) salary = newSalary

 def outranks(other: Manager) =

 salary > other.salary

Note that a Manager method can access the salary field in any Manager object.

Unlike in Java, a protected member is not visible throughout the package to which the class belongs. (If you want this visibility, you can use a package modifier—see Chapter 7.)

8.11 Construction Order

When you override a val in a subclass and use the value in a superclass constructor, the resulting behavior is unintuitive.

Here is an example. A creature can sense a part of its environment. For simplicity, we assume the creature lives in a one-dimensional world, and the sensory data are represented as integers. A default creature can see ten units ahead.

class Creature :

 val range: Int = 10

 val env: Array[Int] = Array[Int](range)

Ants, however, are near-sighted:

class Ant extends Creature :

 override val range = 2

Unfortunately, we now have a problem. The range value is used in the superclass constructor, and the superclass constructor runs before the subclass constructor. Specifically, here is what happens:

1. The Ant constructor calls the Creature constructor before doing its own construction.

2. The Creature constructor sets its range field to 10.

3. The Creature constructor, in order to initialize the env array, calls the range() getter.

4. That method is overridden to yield the (as yet uninitialized) range field of the Ant class.

5. The range method returns 0. (That is the initial value of all integer fields when an object is allocated.)

6. env is set to an array of length 0.

7. The Ant constructor continues, setting its range field to 2.

Even though it appears as if range is either 10 or 2, env has been set to an array of length 0. The moral is that you should not rely on the value of a val in the body of a constructor.

As a remedy, you can make range into a lazy val (see Chapter 2).

[image: Images] Note

At the root of the construction order problem lies a design decision of the Java language—namely, to allow the invocation of subclass methods in a superclass constructor. In C++, an object’s virtual function table pointer is set to the table of the superclass when the superclass constructor executes. Afterwards, the pointer is set to the subclass table. Therefore, in C++, it is not possible to modify constructor behavior through overriding.The Java designers felt that this subtlety was unnecessary, and the Java virtual machine does not adjust the virtual function table during construction.

[image: Images] Tip

You can have the compiler check for initialization errors such as the one in this section by compiling with the experimental -Ysafe-init flag.

8.12 The Scala Inheritance Hierarchy

Figure 8–1 shows the inheritance hierarchy of Scala classes. The classes that correspond to the primitive types in the Java virtual machine, as well as the type Unit, extend AnyVal. You can also define your own value classes—see Section 8.15, “Value Classes,” on page 115.

All other classes are subclasses of the AnyRef class. When compiling to the Java virtual machine, this is a synonym for the java.lang.Object class.

Both AnyVal and AnyRef extend the Any class, the root of the hierarchy.

[image: Images]

Figure 8–1 The inheritance hierarchy of Scala classes

The Any class defines methods isInstanceOf, asInstanceOf, and the methods for equality and hash codes that we will look at in Section 8.13, “Object Equality,” on page 113.

AnyVal does not add any methods. It is just a marker for value types.

The AnyRef class adds the monitor methods wait and notify/notifyAll from the Object class. It also provides a synchronized method with a function parameter. That method is the equivalent of a synchronized block in Java. For example,

account.synchronized { account.balance += amount }

[image: Images] Note

Just like in Java, I suggest you stay away from wait, notify, and synchronized unless you have a good reason to use them instead of higher-level concurrency constructs.

At the other end of the hierarchy are the Nothing and Null types.

Null is the type whose sole instance is the value null. You can assign null to any reference, but not to one of the value types. For example, setting an Int to null is not possible. This is better than in Java, where it would be possible to set an Integer wrapper to null.

[image: Images] Note

With the experimental “explicit nulls” feature, the type hierarchy changes, and Null is no longer a subtype of the types extending AnyRef. Object references cannot be Null. If you want nullable values, you need to declare a union type T | Null. To opt in to this feature, compile with the -Yexplicit-nulls flag.

The Nothing type has no instances. It is occasionally useful for generic constructs. For example, the empty list Nil has type List[Nothing], which is a subtype of List[T] for any T.

The ??? method is declared with return type Nothing. It never returns but instead throws a NotImplementedError when invoked. You can use it for methods that you still need to implement:

class Person(val name: String) :

 def description: String = ???

The Person class compiles since Nothing is a subtype of every type. You can start using the class, so long as you don’t call the description method.

The Nothing type is not at all the same as void in Java or C++. In Scala, void is represented by the Unit type, the type with the sole value ().

[image: Images] Caution

Unit is not a supertype of any other type. However, a value of any type can be replaced by a (). Consider this example:

def showAny(o: Any) = println(s"${o.getClass.getName}: $o")

def showUnit(o: Unit) = println(s"${o.getClass.getName}: $o")

showAny("Hello") // Yields "java.lang.String: Hello"

showUnit("Hello") // Yields "void: ()"

 // "Hello" is replaced with () (with a warning)

[image: Images] Caution

When a method has a parameter of type Any or AnyRef, and it is called with multiple arguments, then the arguments are placed in a tuple:

showAny(3) // Prints class java.lang.Integer: 3

showAny(3, 4, 5) // Prints class scala.Tuple3: (3,4,5)

8.13 Object Equality L1

You can override the equals method to provide a natural notion of equality for the objects of your classes.

Consider the class

class Item(val description: String, val price: Double) :

 ...

You might want to consider two items equal if they have the same description and price. Here is an appropriate equals method:

final override def equals(other: Any) =

 other.isInstanceOf[Item] && {

 val that = other.asInstanceOf[Item]

 description == that.description && price == that.price

 }

Or better, use pattern matching:

final override def equals(other: Any) = other match

 case that: Item => description == that.description && price == that.price

 case _ => false

[image: Images] Tip

Generally, it is very difficult to correctly extend equality in a subclass. The problem is symmetry. You want a.equals(b) to have the same result as b.equals(a), even when b belongs to a subclass. Therefore, an equals method should usually be declared as final.

[image: Images] Caution

Be sure to define the equals method with parameter type Any. The following would be wrong:

final def equals(other: Item) = ... // Don’t!

This is a different method which does not override the equals method of Any.

When you define equals, remember to define hashCode as well. The hash code should be computed only from the fields that you use in the equality check, so that equal objects have the same hash code. In the Item example, combine the hash codes of the fields.

final override def hashCode = (description, price).##

The ## method is a null-safe version of the hashCode method that yields 0 for null instead of throwing an exception.

[image: Images] Caution

Do not supply your own == method instead of equals. You can’t override the == method defined in Any, but you can supply a different one with an Item argument:

final def ==(other: Item) = // Don’t supply == instead of equals!

 description == other.description && price == other.price

This method will be invoked when you compare two Item objects with ==. But other classes, such as scala.collection.mutable.HashSet, use equals to compare elements, for compatibility with Java objects.Your == method will not get called!

[image: Images] Tip

You are not compelled to override equals and hashCode. For many classes, it is appropriate to consider distinct objects unequal. For example, if you have two distinct input streams or radio buttons, you will never consider them equal.

Unlike in Java, don’t call the equals method directly. Simply use the == operator. For reference types, it calls equals after doing the appropriate check for null operands.

8.14 Multiversal Equality L2

In Java, the equals method is universal. It can be invoked to compare objects of any class.

That sounds nice, but it limits the ability of the compiler to find errors. In Scala, the == operator can be made to fail at compile-time when its arguments could not possibly be comparable.

There are two mechanisms for opting into this multiversal equality.

If you want to ensure that all equality checks use multiversal equality, add the import:

import scala.language.strictEquality

Alternatively, you can activate multiversal equality selectively. A class can declare that it wants to disallow comparison with instances of other classes:

class Item(val description: String, val price: Double) derives CanEqual :

 ...

The derives keyword is a general mechanism that you will see in Chapter 20.

Now it is impossible to compare Item instances with unrelated objects:

Item("Blackwell toaster", 29.95) == Product("Blackwell toaster") // Compile-time error

Even with multiversal equality, you can implement equality checks between different classes. This is not something that you should attempt in general, but it happens with a number of classes in the Scala library. You can check for equality betweeen any two sequences or sets (subtypes of scala.collection.Seq and scala.collection.Set), provided the element types can also be equal.

You can test for equality between any numeric primitive types, or between any primitive types and their wrapper types. Finally, any reference type can be compared for equality with null.

For backwards compatibility, mixed equality checks are still permitted when neither operand opts in to multiversal equality.

8.15 Value Classes L2

Some classes have a single field, such as the wrapper classes for primitive types, and the “rich” or “ops” wrappers that Scala uses to add methods to existing types. It is inefficient to allocate a new object that holds just one value. Value classes allow you to define classes that are “inlined,” so that the single field is used directly.

A value class has these properties:

1. The class extends AnyVal.

2. Its primary constructor has exactly one parameter, which is a val, and no body.

3. The class has no other fields or constructors.

4. The automatically provided equals and hashCode methods compare and hash the underlying value.

As an example, let us define a value class that wraps a “military time” value:

class MilTime(val time: Int) extends AnyVal :

 def minutes = time % 100

 def hours = time / 100

 override def toString = f"$time%04d"

When you construct a MilTime(1230), the compiler doesn’t allocate a new object. Instead, it uses the underlying value, the integer 1230. You can invoke the minutes and hours methods on the value:

val lunch = MilTime(1230)

println(lunch.hours) // OK

Just as importantly, you cannot invoke Int methods:

println(lunch * 2) // Error

To guarantee proper initialization, make the primary constructor private and provide a factory method in the companion object:

class MilTime private(val time: Int) extends AnyVal :

 ...

object MilTime :

 def apply(t: Int) =

 if 0 <= t && t < 2400 && t % 100 < 60 then MilTime(t)

 else throw IllegalArgumentException()

[image: Images] Caution

In some programming languages, value types are any types that are allocated on the runtime stack, including structured types with multiple fields. In Scala, a value class can only have one field.

[image: Images] Note

If you want a value class to implement a trait (see Chapter 10), the trait must explicitly extend Any, and it may not have fields. Such traits are called universal traits.

Opaque types are an alternative to value types. An opaque type alias lets you give a name to an existing type, so that the original type cannot be used. For example, MilTime can be an opaque type alias to Int. In Chapter 18, you will see how to declare opaque types and define their behavior with “extension methods”.

In the not too distant future, the Java virtual machine will support native value types that can have multiple fields. It is expected that Scala value will evolve to align with JVM value types.

Exercises

1. Extend the following BankAccount class to a CheckingAccount class that charges $1 for every deposit and withdrawal.

class BankAccount(initialBalance: Double) :

 private var balance = initialBalance

 def currentBalance = balance

 def deposit(amount: Double) = { balance += amount; balance }

 def withdraw(amount: Double) = { balance -= amount; balance }

2. Extend the BankAccount class of the preceding exercise into a class SavingsAccount that earns interest every month (when a method earnMonthlyInterest is called) and has three free deposits or withdrawals every month. Reset the transaction count in the earnMonthlyInterest method.

3. Consult your favorite Java, Python, or C++ textbook which is sure to have an example of a toy inheritance hierarchy, perhaps involving employees, pets, graphical shapes, or the like. Implement the example in Scala.

4. Define an abstract class Item with methods price and description. A SimpleItem is an item whose price and description are specified in the constructor. Take advantage of the fact that a val can override a def. A Bundle is an item that contains other items. Its price is the sum of the prices in the bundle. Also provide a mechanism for adding items to the bundle and a suitable description method.

5. Design a class Point whose x and y coordinate values can be provided in a constructor. Provide a subclass LabeledPoint whose constructor takes a label value and x and y coordinates, such as

LabeledPoint("Black Thursday", 1929, 230.07)

6. Define an abstract class Shape with an abstract method centerPoint and subclasses Rectangle and Circle. Provide appropriate constructors for the subclasses and override the centerPoint method in each subclass.

7. Provide a class Square that extends java.awt.Rectangle and has three constructors: one that constructs a square with a given corner point and width, one that constructs a square with corner (0, 0) and a given width, and one that constructs a square with corner (0, 0) and width 0.

8. Compile the Person and SecretAgent classes in Section 8.8, “Overriding Fields,” on page 106 and analyze the class files with javap. How many name fields are there? How many name getter methods are there? What do they get? (Hint: Use the -c and -private options.)

9. In the Creature class of Section 8.11, “Construction Order,” on page 109, replace val range with a def. What happens when you also use a def in the Ant subclass? What happens when you use a val in the subclass? Why?

10. The file scala/collection/immutable/Stack.scala contains the definition

class Stack[A] protected (protected val elems: List[A])

Explain the meanings of the protected keywords. (Hint: Review the discussion of private constructors in Chapter 5.)

11. Write a class Circle with a center and a radius. Add equals and hashCode methods. Activate multiversal equality.

12. Define a value class Point that packs integer x and y coordinates into a Long (which you should make private).

Chapter 9

Files and Regular Expressions

Topics in This Chapter A1

[image: Images] 9.1 Reading Lines

[image: Images] 9.2 Reading Characters

[image: Images] 9.3 Reading Tokens and Numbers

[image: Images] 9.4 Reading from URLs and Other Sources

[image: Images] 9.5 Writing Files

[image: Images] 9.6 Visiting Directories

[image: Images] 9.7 Serialization

[image: Images] 9.8 Process Control A2

[image: Images] 9.9 Regular Expressions

[image: Images] 9.10 Regular Expression Groups

[image: Images] Exercises

This chapter interrupts the treatment of the Scala language to give you some tools from the Scala libraries. You will learn how to carry out common file processing tasks, such as reading all lines or words from a file, and to work with regular expressions.

This interlude has useful information for projects that you can embark on with your current knowledge of Scala. Of course, if you prefer, skip the chapter until you need it and move on to more information about the Scala language.

Chapter highlights:

• Source.fromFile(...).getLines.toArray yields all lines of a file.

• Source.fromFile(...).mkString yields the file contents as a string.

• To convert a string into a number, use the toInt or toDouble method.

• Use the Java PrintWriter to write text files.

• "regex".r is a Regex object.

• Use """...""" if your regular expression contains backslashes or quotes.

• If a regex pattern has groups, you can extract their contents using the syntax for regex(var1, ...,varn) <- string.

9.1 Reading Lines

To read all lines from a file, call the getLines method on a scala.io.Source object:

import scala.io.Source

val filename = "/usr/share/dict/words"

var source = Source.fromFile(filename, "UTF-8")

 // You can omit the encoding if you know that the file uses

 // the default platform encoding

var lineIterator = source.getLines

The result is an iterator (see Chapter 13). You can use it to process the lines one at a time:

for l <- lineIterator do

 process(l)

Or you can put the lines into an array or array buffer by applying the toArray or toBuffer method to the iterator:

val lines = source.getLines.toArray

Sometimes, you just want to read an entire file into a string. That’s even simpler:

var contents = source.mkString

[image: Images] Caution

Call close when you are done using the Source object.

When the Source class was created, the Java API for file processing was very limited. Java has caught up, and you may want to use the java.nio.file.Files class instead:

import java.nio.file.{Files,Path}

import java.nio.charset.StandardCharsets.UTF_8

contents = Files.readString(Path.of(filename), UTF_8)

To read all lines with the Files.lines method, convert the Java stream to Scala:

import scala.jdk.StreamConverters.*

val lineBuffer = Files.lines(Path.of(filename), UTF_8).toScala(Buffer)

lineIterator = Files.lines(Path.of(filename), UTF_8).toScala(Iterator)

9.2 Reading Characters

To read individual characters from a file, you can use a Source object directly as an iterator since the Source class extends Iterator[Char]:

for c <- source do process(c)

If you want to be able to peek at a character without consuming it (like istream::peek in C++ or a PushbackInputStreamReader in Java), call the buffered method on the source object. Then you can peek at the next input character with the head method without consuming it.

source = Source.fromFile("myfile.txt", "UTF-8")

val iter = source.buffered

while iter.hasNext do

 if isNice(iter.head) then

 process(iter)

 else

 iter.next

source.close()

9.3 Reading Tokens and Numbers

Here is a quick-and-dirty way of reading all whitespace-separated tokens in a source:

val tokens = source.mkString.split("\\s+")

To convert a string into a number, use the toInt or toDouble method. For example, if you have a file containing floating-point numbers, you can read them all into an array by

val numbers = for w <- tokens yield w.toDouble

[image: Images] Tip

Remember—you can always use the java.util.Scanner class to process a file that contains a mixture of text and numbers.

Finally, note that you can read numbers from scala.io.StdIn:

print("How old are you? ")

val age = StdIn.readInt()

 // Or use readDouble or readLong

[image: Images] Caution

These methods assume that the next input line contains a single number, without leading or trailing whitespace. Otherwise, a NumberFormatException occurs.

9.4 Reading from URLs and Other Sources

The Source object has methods to read from sources other than files:

val source1 = Source.fromURL("https://horstmann.com/index.html", "UTF-8")

val source2 = Source.fromString("Hello, World!")

 // Reads from the given string—useful for debugging

val source3 = Source.stdin

// Reads from standard input

[image: Images] Caution

When you read from a URL, you need to know the character set in advance, perhaps from an HTTP header. See www.w3.org/International/Ocharset for more information.

Scala has no provision for reading binary files. You’ll need to use the Java library. Here is how you can read a file into a byte array:

val bytes = Files.readAllBytes(Path.of(filename)); // An Array[Byte]

9.5 Writing Files

Scala has no built-in support for writing files. To write a text file, use a java.io.PrintWriter, for example:

val out = PrintWriter(filename)

for i <- 1 to 100 do out.println(i)

You can also write formatted output:

val quantity = 10

val price = 29.95

out.printf("%6d %10.2f%n", quantity, price)

Remember to close the writer:

out.close()

9.6 Visiting Directories

There are no “official” Scala classes for visiting all files in a directory, or for recursively traversing directories.

The simplest approach is to use the Files.list and Files.walk methods of the java.nio.file package. The list method only visits the children of a directory, and the walk method visits all descendants. These methods yield Java streams of Path objects. You can visit them as follows:

import java.nio.file.*

import scala.jdk.StreamConverters.*

val dirname = "/home"

val entries = Files.list(Paths.get(dirname)) // or Files.walk

try

 for p <- entries.toScala(Iterator) do

 process(p)

finally

 entries.close()

9.7 Serialization

In Java, serialization is used to transmit objects to other virtual machines or for short-term storage. (For long-term storage, serialization can be awkward—it is tedious to deal with different object versions as classes evolve over time.)

Here is how you declare a serializable class in Java and Scala.

Java:

public class Person implements java.io.Serializable { // This is Java

 private static final long serialVersionUID = 42L;

 private String name;

 ...

}

Scala:

@SerialVersionUID(42L) class Person(val name: String) extends Serializable

The Serializable trait is defined in the scala package and does not require an import.

[image: Images] Note

You can omit the @SerialVersionUID annotation if you are OK with the default ID.

Serialize and deserialize objects in the usual way:

val fred = Person("Fred")

val out = ObjectOutputStream(FileOutputStream("/tmp/test.ser"))

out.writeObject(fred)

out.close()

val in = ObjectInputStream(FileInputStream("/tmp/test.ser"))

val savedFred = in.readObject().asInstanceOf[Person]

The Scala collections are serializable, so you can have them as members of your serializable classes:

class Person extends Serializable :

 private val friends = ArrayBuffer[Person]() // OK—ArrayBuffer is serializable

 ...

9.8 Process Control A2

Traditionally, programmers use shell scripts to carry out mundane processing tasks, such as moving files from one place to another, or combining a set of files. The shell language makes it easy to specify subsets of files and to pipe the output of one program into the input of another. However, as programming languages, most shell languages leave much to be desired.

Scala was designed to scale from humble scripting tasks to massive programs. The scala.sys.process package provides utilities to interact with shell programs. You can write your shell scripts in Scala, with all the power that the Scala language puts at your disposal.

Here is a simple example:

import scala.sys.process.*

"ls -al ..".!

As a result, the ls -al .. command is executed, showing all files in the parent directory. The result is printed to standard output.

The scala.sys.process package contains an implicit conversion from strings to ProcessBuilder objects. The ! method executes the ProcessBuilder object.

The result of the ! method is the exit code of the executed program: 0 if the program was successful, or a nonzero failure indicator otherwise.

If you use !! instead of !, the output is returned as a string:

val result = "ls -al /".!!

[image: Images] Note

The ! and !! operators were originally intended to be used as postfix operators without the method invocation syntax:

"ls -al /" !!

However, as you will see in Chapter 11, the postfix syntax is being deprecated since it can lead to parsing errors.

You can pipe the output of one program into the input of another, using the #| method:

("ls -al /" #| "grep u").!

[image: Images] Note

As you can see, the process library uses the commands of the underlying operating system. Here, I use bash commands because bash is available on Linux, Mac OS X, and Windows.

To redirect the output to a file, use the #> method:

("ls -al /" #> File("/tmp/filelist.txt")).!

To append to a file, use #>> instead:

("ls -al /etc" #>> File("/tmp/filelist.txt")).!

To redirect input from a file, use #<:

("grep u" #< File("/tmp/filelist.txt")).!

You can also redirect input from a URL:

("grep Scala" #< URL("http://horstmann.com/index.html")).!

You can combine processes with p #&& q (execute q if p was successful) and p #|| q (execute q if p was unsuccessful). But frankly, Scala is better at control flow than the shell, so why not implement the control flow in Scala?

[image: Images] Note

The process library uses the familiar shell operators | > >> < && ||, but it prefixes them with a # so that they all have the same precedence.

If you need to run a process in a different directory, or with different environment variables, construct a ProcessBuilder with the apply method of the Process object. Supply the command, the starting directory, and a sequence of (name, value) pairs for environment settings:

val p = Process(cmd, File(dirName), ("LC_ALL", myLocale))

Then execute it with the ! method:

("echo 42" #| p).!

When executing a process command that generates a large amount of output, you can read the output lazily:

val result = "ls -al /".lazyLines // Yields a LazyList[String]

See Chapter 13 how to process a lazy list.

[image: Images] Note

If you want to use Scala for shell scripts in a UNIX/Linux/MacOS environment, start your script files like this:

#!/bin/sh exec

scala "$0" "$@"

!#

Scala commands

[image: Images] Note

You can also run Scala scripts from Java programs with the scripting integration of the javax.script package. To get a script engine, call

ScriptEngine engine =

 new ScriptEngineManager().getEngineByName("scala") // This is Java

You need the Scala compiler on the class path. If you use Coursier, you can get the class path as

coursier fetch -p org.scala-lang:scala3-compiler_3:3.2.0

9.9 Regular Expressions

When you process input, you often want to use regular expressions to analyze it. The scala.util.matching.Regex class makes this simple. To construct a Regex object, use the r method of the String class:

val numPattern = "[0-9]+".r

If the regular expression contains backslashes or quotation marks, then it is a good idea to use the “raw” string syntax, """...""". For example:

val wsnumwsPattern = """\s+[0-9]+\s+""".r

 // A bit easier to read than "\\s+[0-9]+\\s+".r

The matches method tests whether a regular expression matches a string:

if numPattern.matches(input) then

 val n = input.toInt

 ...

The entire input must match. To find out whether the string contains a match, you turn the regular expression into unanchored mode:

if numPattern.unanchored.matches(input) then

 println("There is a number here somewhere")

The findAllIn method returns an Iterator[String] through all matches. Since you are unlikely to have many matches, you can simply collect the results:

input = "99 bottles, 98 bottles"

numPattern.findAllIn(input).toArray // Yields Array(99, 98)

Note that you don’t need to call unanchored.

To get more information about the matches, call findAllMatchIn to get an Iterator[Match]. Each Match object describes the current match. Use the following methods for the match details:

• start, end: The starting and ending index of the matching substring

• matched: The matched substring

• before, after: The substrings before or after the match

For example:

for m <- numPattern.findAllMatchIn(input) do

 println(s"${m.start} ${m.end}")

To find the first match in a string, use findFirstIn or findFirstMatchIn. You get an Option[String] or Option[Match].

val firstMatch = wsnumwsPattern.findFirstIn("99 bottles, 98 bottles")

 // Some(" 98 ")

You can replace the first match, all matches, or some matches. In the latter case, supply a function Match => Option[String]. If the function returns Some(str), the match is replaced with str.

numPattern.replaceFirstIn("99 bottles, 98 bottles", "XX")

 // "XX bottles, 98 bottles"

numPattern.replaceAllIn("99 bottles, 98 bottles", "XX")

 // "XX bottles, XX bottles"

numPattern.replaceSomeIn("99 bottles, 98 bottles",

 m => if m.matched.toInt % 2 == 0 then Some("XX") else None)

 // "99 bottles, XX bottles"

Here is a more useful application of the replaceSomeIn method. We want to replace placeholders $0, $1, and so on, in a message string with values from an argument sequence. Make a pattern for the variable with a group for the index, and then map the group to the sequence element.

val varPattern = """\$[0-9]+""".r

def format(message: String, vars: String*) =

 varPattern.replaceSomeIn(message, m => vars.lift(

 m.matched.tail.toInt))

format("At $1, there was $2 on $0.",

 "planet 7", "12:30 pm", "a disturbance of the force")

 // At 12:30 pm, there was a disturbance of the force on planet 7.

The lift method turns a Seq[String] into a function. The expression vars.lift(i) is Some(vars(i)) if i is a valid index or None if it is not.

9.10 Regular Expression Groups

Groups are useful to get subexpressions of regular expressions. Add parentheses around the subexpressions that you want to extract, for example:

val numitemPattern = "([0-9]+)([a-z]+)".r

You can get the group contents from a Match object. If m is a Match object, then m.group(i) is the ith group. The start and end positions of these substrings in the original string are m.start(i), and m.end(i).

for m <- numitemPattern.findAllMatchIn("99 bottles, 98 bottles") do

 println(m.group(1)) // Prints 99 and 98

[image: Images] Caution

The Match class has methods for retrieving groups by name. However, this does not work with group names inside regular expressions, such as "(?<num>[0-9]+) (?<item>[a-z]+)".r. Instead, one needs to supply names to the r method: "([0-9]+) ([a-z]+)".r("num", "item")

There is another convenient way of extracting group matches. Use a regular expression variable as an “extractor” (see Chapter 14), like this:

val numitemPattern(num, item) = "99 bottles"

 // Sets num to "99", item to "bottles"

When you use a pattern as an extractor, it must match the string from which you extract the matches, and there must be a group for each variable.

If you are not sure whether there is a match, use

str match

 case numitemPattern(num, item) => ...

To extract groups from multiple matches, you can use a for statement like this:

for numitemPattern(num, item) <- numitemPattern.findAllIn("99 bottles, 98 bottles") do

 process(num, item)

Exercises

1. Write a Scala code snippet that reverses the lines in a file (making the last line the first one, and so on).

2. Write a Scala program that reads a file with tabs, replaces each tab with spaces so that tab stops are at n-column boundaries, and writes the result to the same file.

3. Write a Scala code snippet that reads a file and prints all words with more than 12 characters to the console. Extra credit if you can do this in a single line.

4. Write a Scala program that reads a text file containing only floating-point numbers. Print the sum, average, maximum, and minimum of the numbers in the file.

5. Write a Scala program that writes the powers of 2 and their reciprocals to a file, with the exponent ranging from 0 to 20. Line up the columns:

 1 1

 2 0.5

 4 0.25

... ...

6. Make a regular expression searching for quoted strings "like this, maybe with \" or \\" in a source file. Write a Scala program that prints out all such strings.

7. Write a Scala program that reads a text file and prints all tokens in the file that are not floating-point numbers. Use a regular expression.

8. Write a Scala program that prints the src attributes of all img tags of a web page. Use regular expressions and groups.

9. Write a Scala program that counts how many files with .class extension are in a given directory and its subdirectories.

10. Expand the example in Section 9.7, “Serialization,” on page 123. Construct a few Person objects, make some of them friends of others, and save an Array[Person] to a file. Read the array back in and verify that the friend relations are intact.

Chapter 10

Traits

Topics in This Chapter L1

[image: Images] 10.1 Why No Multiple Inheritance?

[image: Images] 10.2 Traits as Interfaces

[image: Images] 10.3 Traits with Concrete Methods

[image: Images] 10.4 Traits for Rich Interfaces

[image: Images] 10.5 Objects with Traits

[image: Images] 10.6 Layered Traits

[image: Images] 10.7 Overriding Abstract Methods in Traits

[image: Images] 10.8 Concrete Fields in Traits

[image: Images] 10.9 Abstract Fields in Traits

[image: Images] 10.10 Trait Construction Order

[image: Images] 10.11 Trait Constructors with Parameters

[image: Images] 10.12 Traits Extending Classes

[image: Images] 10.13 What Happens under the Hood

[image: Images] 10.14 Transparent Traits L2

[image: Images] 10.15 Self Types L2

[image: Images] Exercises

In this chapter, you will learn how to work with traits. A class extends one or more traits in order to take advantage of the services that the traits provide. A trait may require implementing classes to support certain features. However, unlike Java interfaces, Scala traits can supply state and behavior for these features, which makes them far more useful.

Key points of this chapter:

• A class can implement any number of traits.

• Traits can require implementing classes to have certain fields, methods, or superclasses.

• Unlike Java interfaces, a Scala trait can provide implementations of methods and fields.

• When you layer multiple traits, the order matters—the trait whose methods execute first goes to the back.

• Traits are compiled into Java interfaces. A class implementing traits is compiled into a Java class with all the methods and fields of its traits.

• Use a self type declaration to indicate that a trait requires another type.

10.1 Why No Multiple Inheritance?

Scala, like Java, does not allow a class to inherit from multiple superclasses. At first, this seems like an unfortunate restriction. Why shouldn’t a class extend multiple classes? Some programming languages, in particular C++, allow multiple inheritance—but at a surprisingly high cost.

Multiple inheritance works fine when you combine classes that have nothing in common. But if these classes have common methods or fields, thorny issues come up. Here is a typical example. A teaching assistant is a student and also an employee:

class Student :

 def id: String = ...

 ...

class Employee :

 def id: String = ...

 ...

Suppose we could have

class TeachingAssistant extends Student, Employee // Not actual Scala code

Unfortunately, this TeachingAssistant class inherits two id methods. What should myTA.id return? The student ID? The employee ID? Both? (In C++, you need to redefine the id method to clarify what you want.)

Next, suppose that both Student and Employee extend a common superclass Person:

class Person :

 var name: String = null

class Student extends Person :

 ...

class Employee extends Person :

 ...

This leads to the diamond inheritance problem (see Figure 10–1). We only want one name field inside a TeachingAssistant, not two. How do the fields get merged? How does the field get constructed? In C++, you use “virtual base classes,” a complex and brittle feature, to address this issue.

[image: Images]

Figure 10–1 Diamond inheritance must merge common fields.

Java designers were so concerned about these complexities that they took a very restrictive approach. A class can extend only one superclass; it can implement any number of interfaces, but interfaces can have only abstract, static, or default methods, and no fields.

Java default methods are very limited. They can call other interface methods, but they cannot make use of object state. It is therefore common in Java to provide both an interface and an abstract base class, but that just kicks the can down the road. What if you need to extend two of those abstract base classes?

Scala has traits instead of interfaces. A trait can have abstract and concrete methods, as well as state. In fact, a trait can do everything a class does. There are just three differences between classes and traits:

• You cannot instantiate a trait.

• In trait methods, calls of the form super.someMethod are dynamically resolved.

• Traits cannot have auxiliary constructors.

You will see in the following sections how Scala deals with the perils of conflicting features from multiple traits.

10.2 Traits as Interfaces

Let’s start with the simplest case. A Scala trait can work exactly like a Java interface, declaring one or more abstract methods. For example:

trait Logger :

 def log(msg: String) : Unit // An abstract method

Note that you need not declare the method as abstract—an unimplemented method in a trait is automatically abstract.

A subclass can provide an implementation:

class ConsoleLogger extends Logger : // Use extends, not implements

 def log(msg: String) = println(msg) // No override needed

You need not supply the override keyword when overriding an abstract method of a trait.

[image: Images] Note

Scala doesn’t have a special keyword for implementing a trait. You use the same keyword extends for forming a subtype of a class or a trait.

If you need more than one trait, add the others using commas:

class FileLogger extends Logger, AutoCloseable, Appendable :

 ...

Note the AutoCloseable and Appendable interfaces from the Java library. All Java interfaces can be used as Scala traits.

As in Java, a Scala class can have only one superclass but any number of traits.

[image: Images] Note

You can use the with keyword instead of commas:

class FileLogger extends Logger with AutoCloseable with Appendable

10.3 Traits with Concrete Methods

In Scala, the methods of a trait need not be abstract. For example, we can make our ConsoleLogger into a trait:

trait ConsoleLogger extends Logger :

 def log(msg: String) = println(msg)

The ConsoleLogger trait provides a method with an implementation—in this case, one that prints the logging message on the console.

Here is an example of using this trait:

class Account :

 protected var balance = 0.0

class ConsoleLoggedAccount extends Account, ConsoleLogger :

 def withdraw(amount: Double) =

 if amount > balance then log("Insufficient funds")

 else balance -= amount

 ...

Note how the ConsoleLoggedAccount picks up a concrete implementation from the ConsoleLogger trait. In Java, this is also possible by using default methods in interfaces.

In Scala (and other programming languages that allow this), we say that the ConsoleLogger functionality is “mixed in” with the ConsoleLoggedAccount class.

[image: Images] Note

Supposedly, the “mix in” term comes from the world of ice cream. In the ice cream parlor parlance, a “mix in” is an additive that is kneaded into a scoop of ice cream before dispensing it to the customer—a practice that may be delicious or disgusting depending on your point of view.

10.4 Traits for Rich Interfaces

A trait can have many utility methods that depend on a few abstract ones. One example is the Scala Iterator trait that defines dozens of methods in terms of the abstract next and hasNext methods.

Let us enrich our rather anemic logging API. Usually, a logging API lets you specify a level for each log message to distinguish informational messages from warnings or errors. We can easily add this capability without forcing any policy for the destination of logging messages.

trait Logger :

 def log(msg: String) : Unit

 def info(msg: String) = log(s"INFO: $msg")

 def warn(msg: String) = log(s"WARN: $msg")

 def severe(msg: String) = log(s"SEVERE: $msg")

Note the combination of abstract and concrete methods.

A class that uses the Logger trait can now call any of these logging messages. For example, this class uses the severe method:

class ConsoleLoggedAccount extends Account, ConsoleLogger :

 def withdraw(amount: Double) =

 if amount > balance then severe("Insufficient funds")

 else balance -= amount

 ...

This use of concrete and abstract methods in a trait is very common in Scala. In Java, you can achieve the same with default methods.

10.5 Objects with Traits

You can add a trait to an individual object when you construct it. Let’s first define this class:

abstract class LoggedAccount extends Account, Logger :

 def withdraw(amount: Double) =

 if amount > balance then log("Insufficient funds")

 else balance -= amount

This class is abstract since it can’t yet do any logging, which might seem pointless. But you can “mix in” a concrete logger trait when constructing an object.

Let’s assume the following concrete trait:

trait ConsoleLogger extends Logger :

 def log(msg: String) = println(msg)

Here is how you can construct an object:

val acct = new LoggedAccount() with ConsoleLogger

[image: Images] Caution

Note that you need the new keyword to construct an object that mixes in a trait. (With new, you don’t need empty parentheses to invoke the no-argument constructor of the class, but I am adding them for consistency.)

You also need to use the with keyword, not a comma, before each trait.

When calling log on the acct object, the log method of the ConsoleLogger trait executes.

Of course, another object can add in a different concrete trait:

val acct2 = new LoggedAccount() with FileLogger

10.6 Layered Traits

You can add, to a class or an object, multiple traits that invoke each other starting with the last one. This is useful when you need to transform a value in stages.

Here is a simple example. We may want to add a timestamp to all logging messages.

trait TimestampLogger extends ConsoleLogger :

 override def log(msg: String) =

 super.log(s"${java.time.Instant.now()} $msg")

Also, suppose we want to truncate overly chatty log messages like this:

trait ShortLogger extends ConsoleLogger :

 override def log(msg: String) =

 super.log(

 if msg.length <= 15 then msg

 else s"${msg.substring(0, 14)}...")

Note that each of the log methods passes a modified message to super.log.

With traits, super.log does not have the same meaning as it does with classes. Instead, super.log calls the log method of another trait, which depends on the order in which the traits are added.

To see how the order matters, compare the following two examples:

val acct1 = new LoggedAccount() with TimestampLogger with ShortLogger

val acct2 = new LoggedAccount() with ShortLogger with TimestampLogger

If we overdraw acct1, we get a message

2021-09-30T10:32:46.309584537Z Insufficient f…

As you can see, the ShortLogger’s log method was called first, and its call to super.log called the TimestampLogger.

However, overdrawing acct2 yields

2021-09-30T10:…

Here, the TimestampLogger appeared last in the list of traits. Its log message was called first, and the result was subsequently shortened.

For simple mixin sequences, the “back to front” rule will give you the right intuition. See Section 10.10, “Trait Construction Order,” on page 140 for the gory details that arise when the traits form a more complex graph.

[image: Images] Note

With traits, you cannot tell from the source code which method is invoked by super.someMethod. The exact method depends on the ordering of the traits in the object or class that uses them. This makes super far more flexible than in plain old inheritance.

[image: Images] Note

If you want to control which trait’s method is invoked, you can specify it in brackets: super[ConsoleLogger].log(...). The specified type must be an immediate supertype; you can’t access traits or classes that are further away in the inheritance hierarchy.

10.7 Overriding Abstract Methods in Traits

In the preceding section, the TimestampLogger and ShortLogger traits extended ConsoleLogger. Let’s make them extend our Logger trait instead, where we provide no implementation to the log method.

trait Logger :

 def log(msg: String) : Unit // This method is abstract

Then, the TimestampLogger class no longer compiles.

trait TimestampLogger extends Logger :

 override def log(msg: String) = // Overrides an abstract method

 super.log(s"${java.time.Instant.now()} $msg") // Is super.log defined?

The compiler flags the call to super.log as an error.

Under normal inheritance rules, this call could never be correct—the Logger.log method has no implementation. But actually, as you saw in the preceding section, there is no way of knowing which log method is actually being called—it depends on the order in which traits are mixed in.

Scala takes the position that TimestampLogger.log is still abstract—it requires a concrete log method to be mixed in. You therefore need to tag the method with the abstract keyword and the override keyword, like this:

abstract override def log(msg: String) =

 super.log(s"${java.time.Instant.now()} $msg")

10.8 Concrete Fields in Traits

A field in a trait can be concrete or abstract. If you supply an initial value, the field is concrete.

trait ShortLogger extends Logger :

 val maxLength = 15 // A concrete field

 abstract override def log(msg: String) =

 super.log(

 if msg.length <= maxLength then msg

 else s"${msg.substring(0, maxLength - 1)}...")

A class that mixes in this trait acquires a maxLength field. In general, a class gets a field for each concrete field in one of its traits. These fields are not inherited; they are simply added to the subclass. Let us look at the process more closely, with a SavingsAccount class that has a field to store the interest rate:

class SavingsAccount extends Account, ConsoleLogger, ShortLogger :

 var interest = 0.0

 ...

The superclass has a field:

class Account :

 protected var balance = 0.0

 ...

A SavingsAccount object is made up of the fields of its superclasses, together with the fields in the subclass. In Figure 10–2, you can see that the balance field is contributed by the Account superclass, and the interest field by the subclass.

[image: Images]

Figure 10–2 Fields from a trait are placed in the subclass.

In the JVM, a class can only extend one superclass, so the trait fields can’t be picked up in the same way. Instead, the Scala compiler adds the maxLength field to the SavingsAccount class, together with the interest field.

[image: Images] Caution

When you extend a class and then change the superclass, the subclass doesn’t have to be recompiled because the virtual machine understands inheritance. But when a trait changes, all classes that mix in that trait must be recompiled.

You can think of concrete trait fields as “assembly instructions” for the classes that use the trait. Any such fields become fields of the class.

10.9 Abstract Fields in Traits

An uninitialized field in a trait is abstract and must be overridden in a concrete subclass.

For example, the following maxLength field is abstract:

trait ShortLogger extends Logger :

 val maxLength: Int // An abstract field

 abstract override def log(msg: String) =

 super.log(

 if msg.length <= maxLength then msg

 else s"${msg.substring(0, maxLength - 1)}…")

 // The maxLength field is used in the implementation

When you use this trait in a concrete class, you must supply the maxLength field:

class ShortLoggedAccount extends LoggedAccount, ConsoleLogger, ShortLogger :

 val maxLength = 20 // No override necessary

Now all logging messages are truncated after 20 characters.

This way of supplying values for trait parameters is particularly handy when you construct objects on the fly. You can truncate the messages in an instance as follows:

val acct = new LoggedAccount() with ConsoleLogger with ShortLogger :

 val maxLength = 15

10.10 Trait Construction Order

Just like classes, traits can have primary constructors. Let’s defer constructor parameters until the next section. In the absence of parameters, the primiary constructor consists of field initializations and other statements in the trait’s body. For example,

trait FileLogger extends Logger :

 println("Constructing FileLogger") // Constructor code

 private val out = PrintWriter("/tmp/log.txt") // Constructor code

 def log(msg: String) =

 out.println(msg)

 out.flush()

The trait’s primary constructor is executed during construction of any object incorporating the trait.

Constructors execute in the following order:

1. The superclass constructor is called first.

2. Trait constructors are executed after the superclass constructor but before the class constructor.

3. Traits are constructed left-to-right.

4. Within each trait, the parents get constructed first.

5. If multiple traits share a common parent, and that parent has already been constructed, it is not constructed again.

6. After all traits are constructed, the subclass is constructed.

For example, consider this class:

class FileLoggedAccount extends Account, FileLogger, TimestampLogger

The constructors execute in the following order:

1. Account (the superclass).

2. Logger (the parent of the first trait).

3. FileLogger (the first trait).

4. TimestampLogger (the second trait). Note that its Logger parent has already been constructed.

5. FileLoggedAccount (the class).

[image: Images] Note

The constructor ordering is the reverse of the linearization of the class. The linearization is a technical specification of all supertypes of a type. It is defined by the rule:

If C extends C1, C2, ... , Cn, then lin(C) = C » lin(Cn) » ... » lin(C2) » lin(C1)

Here, » means “concatenate and remove duplicates, with the right winning out.” For example,

lin(FileLoggedAccount)

= FileLoggedAccount » lin(TimestampLogger) » lin(FileLogger) » lin(Account)

= FileLoggedAccount » (TimestampLogger » Logger) » (FileLogger » Logger) »

lin(Account)

= FileLoggedAccount » TimestampLogger » FileLogger » Logger » Account.

(For simplicity, I omitted the types AnyRef, and Any that are at the end of any linearization.)

The linearization gives the order in which super is resolved in a trait. For example, calling super in a TimestampLogger invokes the FileLogger method.

10.11 Trait Constructors with Parameters

In the preceding section, we looked at trait constructors without parameters. You saw how a given trait is constructed exactly once. Let’s turn to trait constructors with parameters. For a file logger, one would like to specify the log file:

trait FileLogger(filename: String) extends Logger :

 private val out = PrintWriter(filename)

 def log(msg: String) =

 out.println(msg)

 out.flush()

Then you pass the file name when mixing in the file logger:

val acct = new LoggedAccount() with FileLogger("/tmp/log.txt")

Of course, it must be guaranteed that the trait is initialized exactly once. To ensure this, there are three simple rules:

1. A class must initialize any uninitialized trait that it extends.

2. A class cannot initialize a trait that a superclass already initialized.

3. A trait cannot initialize another trait.

Let us go through these rules with some examples. First, consider a class extending a parameterized trait. It must provide an argument. For example, the following would be illegal:

class FileLoggedAccount extends LoggedAccount, FileLogger

 // Error—no arguments for FileLogger constructor

The remedy is to provide an argument:

class FileLoggedAccount(filename: String) extends LoggedAccount, FileLogger(filename)

You cannot initalize a trait that was already initialized by a superclass. This isn’t a common issue, so here is a contrived example:

class TmpLoggedAccount extends Account, FileLogger("/tmp/log.txt")

class FileLoggedAccount(filename) extends TmpLoggedAccount, FileLogger(filename)

 // Error—FileLogger already initialized

Finally, a trait extending a parameterized trait cannot pass initialization arguments.

trait TimestampFileLogger extends FileLogger("/tmp/log.txt") :

 // Error—a trait cannot call the constructor of another trait

Instead, drop the constructor parameter:

trait TimestampFileLogger extends FileLogger :

 override def log(msg: String) = super.log(s"${java.time.Instant.now()} $msg")

The initialization must happen in each class using a TimestampFileLogger:

val acct2 = new LoggedAccount() with TimestampFileLogger with FileLogger("/tmp/log.txt")

10.12 Traits Extending Classes

As you have seen, a trait can extend another trait, and it is common to have a hierarchy of traits. Less commonly, a trait can also extend a class. That class becomes a superclass of any class mixing in the trait.

Here is an example. The LoggedException trait extends the Exception class:

trait LoggedException extends Exception, ConsoleLogger :

 override def log(msg: String) = super.log(s"${getMessage()} $msg")

A LoggedException has a log method to log the exception’s message. Note that the log method calls the getMessage method that is inherited from the Exception superclass.

Now let’s form a class that mixes in this trait:

class UnhappyException extends LoggedException : // This class extends a trait

 override def getMessage() = "arggh!"

The superclass of the trait becomes the superclass of our class (see Figure 10–3).

[image: Images]

Figure 10–3 The superclass of a trait becomes the superclass of any class mixing in the trait.

What if our class already extends another class? That’s OK, as long as it’s a subclass of the trait’s superclass. For example,

class UnhappyIOException extends IOException, LoggedException

Here UnhappyIOException extends IOException, which already extends Exception. When mixing in the trait, its superclass is already present, and there is no need to add it.

However, if our class extends an unrelated class, then it is not possible to mix in the trait. For example, you cannot form the following class:

class UnhappyFrame extends javax.swing.JFrame, LoggedException

 // Error: Unrelated superclasses

It would be impossible to add both JFrame and Exception as superclasses.

10.13 What Happens under the Hood

Scala translates traits into interfaces of the JVM. You are not required to know how this is done, but you may find it helpful for understanding how traits work.

A trait that has only abstract methods is simply turned into a Java interface. For example,

trait Logger :

 def log(msg: String) : Unit

turns into

public interface Logger { // Generated Java interface

 void log(String msg);

}

Trait methods become default methods. For example,

trait ConsoleLogger :

 def log(msg: String) = println(msg)

becomes

public interface ConsoleLogger {

 default void log(String msg) { ... }

}

If the trait has fields, the Java interface has getter and setter methods.

trait ShortLogger extends ConsoleLogger :

 val maxLength = 15 // A concrete field

 ...

is translated to

public interface ShortLogger extends Logger {

 int maxLength();

 void some_prefix$maxLength_$eq(int);

 default void log(String msg) { ... } // Calls maxLength()

 default void $init$() { some_prefix$maxLength_$eq(15); }

}

Of course, the interface can’t have any fields, and the getter and setter methods are unimplemented. The getter is called when the field value is needed.

The setter is needed to initialize the field. This happens in the $init$ method.

When the trait is mixed into a class, the class gets a maxLength field, and the getter and setter are defined to get and set that field. The constructors of the class invokes the $init$ method of the trait. For example,

class ShortLoggedAccount extends Account, ShortLogger

turns into

public class ShortLoggedAccount extends Account implements ShortLogger {

 private int maxLength;

 public int maxLength() { return maxLength; }

 public void some_prefix$maxLength_$eq(int arg) { maxLength = arg; }

 public ShortLoggedAccount() {

 super();

 ShortLogger.$init$();

 }

 ...

}

If a trait extends a superclass, the trait still turns into an interface. Of course, a class mixing in the trait extends the superclass.

As an example, consider the following trait:

trait LoggedException extends Exception, ConsoleLogger :

 override def log(msg: String) = super.log(s"${getMessage()} $msg")

It becomes a Java interface. The superclass is nowhere to be seen.

public interface LoggedException extends ConsoleLogger {

 public void log();

}

When the trait is mixed into a class, then the class extends the trait’s superclass. For example,

class UnhappyException extends LoggedException :

 override def getMessage() = "arggh!"

becomes

public class UnhappyException extends Exception implements LoggedException

10.14 Transparent Traits L2

Consider this inheritance hierarchy:

class Person

class Employee extends Person, Serializable, Cloneable

class Contractor extends Person, Serializable, Cloneable

When you declare

val p = if scala.math.random() < 0.5 then Employee() else Contractor()

you probably expect p to have type Person. Actually, the type is Person & Cloneable. That actually makes sense: both Employee and Contractor are subtypes of Cloneable.

Why isn’t the inferred type Person & Serializable & Cloneable? The Serializable trait is marked as transparent so that it is not used for type inference. Other transparent traits include Product and Comparable.

In the unlikely situation that you want to declare another trait as transparent, here is how to do it:

transparent trait Logged

10.15 Self Types L2

A trait can require that it is mixed into a class that extends another type. You achieve this with a self type declaration, which has the following unlovable syntax:

this: Type =>

In the following example, the LoggedException trait can only be mixed into a class that extends Exception:

trait LoggedException extends Logger :

 this: Exception =>

 def log(): Unit = log(getMessage())

 // OK to call getMessage because this is an Exception

If you try to mix the trait into a class that doesn’t conform to the self type, an error occurs:

val f = new Account() with LoggedException

 // Error: Account isn’t a subtype of Exception, the self type of LoggedException

A trait with a self type is similar to a trait with a supertype. In both cases, it is ensured that a type is present in a class that mixes in the trait. However, self types can handle circular dependencies between traits. This can happen if you have two traits that need each other.

[image: Images] Caution

Self types do not automatically inherit. If you define

trait MonitoredException extends LoggedException

you get an error that MonitoredException doesn’t supply Exception. In this situation, you need to repeat the self type:

trait MonitoredException extends LoggedException {

 this: Exception =>

To require multiple types, use an intersection type:

this: T & U & ... =>

[image: Images] Note

If you give a name other than this to the variable in the self type declaration, then it can be used in subtypes by that name. For example,

trait Group :

 outer: Network =>

 class Member :

 ...

Inside Member, you can refer to the this reference of Group as outer. By itself, that is not an important benefit since you could introduce the name as follows:

trait Group :

 val self: this.type = this

 class Member :

 ...

Exercises

1. The java.awt.Rectangle class has useful methods translate and grow that are unfortunately absent from classes such as java.awt.geom.Ellipse2D. In Scala, you can fix this problem. Define a trait RectangleLike with concrete methods translate and grow. Provide any abstract methods that you need for the implementation, so that you can mix in the trait like this:

val egg = java.awt.geom.Ellipse2D.Double(5, 10, 20, 30) with RectangleLike

egg.translate(10, -10)

egg.grow(10, 20)

2. Define a class OrderedPoint by mixing scala.math.Ordered[Point] into java.awt.Point. Use lexicographic ordering, i.e. (x, y) < (x’, y’) if x < x’ or x = x’ and y < y’.

3. Look at the BitSet class, and make a diagram of all its superclasses and traits. Ignore the type parameters (everything inside the [...]). Then give the linearization of the traits.

4. Provide a CryptoLogger trait that encrypts the log messages with the Caesar cipher. The key should be 3 by default, but it should be overridable by the user. Provide usage examples with the default key and a key of –3.

5. The JavaBeans specification has the notion of a property change listener, a standardized way for beans to communicate changes in their properties. The PropertyChangeSupport class is provided as a convenience superclass for any bean that wishes to support property change listeners. Unfortunately, a class that already has another superclass—such as JComponent—must reimplement the methods. Reimplement PropertyChangeSupport as a trait, and mix it into the java.awt.Point class.

6. In the Java AWT library, we have a class Container, a subclass of Component that collects multiple components. For example, a Button is a Component, but a Panel is a Container. That’s the composite pattern at work. Swing has JComponent and JButton, but if you look closely, you will notice something strange. JComponent extends Container, even though it makes no sense to add other components to, say, a JButton. Ideally, the Swing designers would have preferred the design in Figure 10–4.

[image: Images]

Figure 10–4 A better design for Swing containers

But that’s not possible in Java. Explain why not. How could the design be executed in Scala with traits?

7. Construct an example where a class needs to be recompiled when one of the mixins changes. Start with class ConsoleLoggedAccount extends Account, ConsoleLogger. Put each class and trait in a separate source file. Add a field to Account. In your main method (also in a separate source file), construct a ConsoleLoggedAccount and access the new field. Recompile all files except for ConsoleLoggedAccount and verify that the program works. Now add a field to ConsoleLogger and access it in your main method. Again, recompile all files except for ConsoleLoggedAccount. What happens? Why?

8. There are dozens of Scala trait tutorials with silly examples of barking dogs or philosophizing frogs. Reading through contrived hierarchies can be tedious and not very helpful, but designing your own is very illuminating. Make your own silly trait hierarchy example that demonstrates layered traits, concrete and abstract methods, concrete and abstract fields, and trait parameters.

9. In the java.io library, you add buffering to an input stream with a BufferedInputStream decorator. Reimplement buffering as a trait. For simplicity, override the read method.

10. Using the logger traits from this chapter, add logging to the solution of the preceding problem that demonstrates buffering.

11. Implement a class IterableInputStream that extends java.io.InputStream with the trait Iterable[Byte].

12. Using javap -c -private, analyze how the call super.log(msg) is translated to Java byte codes. How does the same call invoke two different methods, depending on the mixin order?

13. Consider this trait that models a physical dimension:

trait Dim[T](val value: Double, val name: String) :

 protected def create(v: Double): T

 def +(other: Dim[T]) = create(value + other.value)

 override def toString() = s"$value $name"

Here is a concrete subclass:

class Seconds(v: Double) extends Dim[Seconds](v, "s") :

override def create(v: Double) = new Seconds(v)

But now a knucklehead could define

class Meters(v: Double) extends Dim[Seconds](v, "m") :

 override def create(v: Double) = new Seconds(v)

allowing meters and seconds to be added. Use a self type to prevent that.

14. Look for an example using Scala self types on the web. Can you eliminate the self type by extending from a supertype, like in the LoggingException example in Section 10.15, “Self Types,” on page 146? If the self type is actually required, is it used to break circular dependencies?

Chapter 11

Operators

Topics in This Chapter L1

[image: Images] 11.1 Identifiers

[image: Images] 11.2 Infix Operators

[image: Images] 11.3 Unary Operators

[image: Images] 11.4 Assignment Operators

[image: Images] 11.5 Precedence

[image: Images] 11.6 Associativity

[image: Images] 11.7 The apply and update Methods

[image: Images] 11.8 The unapply Method L2

[image: Images] 11.9 The unapplySeq Method L2

[image: Images] 11.10 Alternative Forms of the unapply and unapplySeq Methods L3

[image: Images] 11.11 Dynamic Invocation L2

[image: Images] 11.12 Typesafe Selection and Application L2

[image: Images] Exercises

This chapter covers in detail implementing your own operators—methods with the same syntax as the familiar mathematical operators. Operators are often used to build domain-specific languages—minilanguages embedded inside Scala. Implicit conversions (type conversion functions that are applied automatically) are another tool facilitating the creation of domain-specific languages. This chapter also discusses the special methods apply, update, and unapply. We end the chapter with a discussion of dynamic invocations—method calls that can be intercepted at runtime, so that arbitrary actions can occur depending on the method names and arguments.

The key points of this chapter are:

• Identifiers contain either alphanumeric or operator characters.

• Unary and binary operators are method calls.

• Operator precedence depends on the first character, associativity on the last.

• The apply and update methods are called when evaluating expr(args).

• Extractors extract tuples or sequences of values from an input.

• Types extending the Dynamic trait can inspect the names of methods and arguments at runtime. L2

11.1 Identifiers

The names of variables, functions, classes, and so on are collectively called identifiers. In Scala, you have more choices for forming identifiers than in most other programming languages. Of course, you can follow the time-honored pattern: sequences of alphanumeric characters, starting with an alphabetic character or an underscore, such as input1 or next_token.

Unicode characters are allowed. For example, quantité or ποσό are valid identifiers.

In addition, you can use operator characters in identifiers:

• The ASCII characters ! # % & * + - / : < = > ? @ \ ^ | ~ that are not letters, digits, underscore, the .,; punctuation marks, parentheses () [] {}, or quotation marks ' ` ".

• Unicode mathematical symbols or other symbols from the Unicode categories Sm and So.

For example, ** and √ are valid identifiers. With the definition

val √ = scala.math.sqrt

you can write √(2) to compute a square root. This may be a good idea, provided one’s programming environment makes it easy to type the symbol.

[image: Images] Note

The identifiers @ # : = _ => <- <: <% >: ⇒ ← are reserved in the specification, and you cannot redefine them.

You can also form identifiers from alphanumerical characters, followed by an underscore, and then a sequence of operator characters, such as

val happy_birthday_!!! = "Bonne anniversaire!!!"

This is probably not a good idea.

Finally, you can include just about any sequence of characters in backquotes. For example,

val `val` = 42

That example is silly, but backquotes can sometimes be an “escape hatch.” For example, in Scala, yield is a reserved word, but you may need to access a Java method of the same name. Backquotes to the rescue: Thread.`yield`().

11.2 Infix Operators

You can write

a identifier b

where identifier denotes a method with two parameters (one implicit, one explicit). For example, the expression

1 to 10

is actually a method call

1.to(10)

This is called an infix expression because the operator is between the arguments. The operator can contain letters, as in to, or it can contain operator characters—for example,

1 -> 10

is a method call

1 .->(10)

To define an operator in your own class, simply define a method whose name is that of the desired operator. For example, here is a Fraction class that multiplies two fractions according to the law

(n1 / d1) × (n2 / d2) = (n1n2 / d1d2)

class Fraction(n: Int, d: Int) :

 private val num = ...

 private val den = ...

 ...

 def *(other: Fraction) = Fraction(num * other.num, den * other.den)

If you want to call a symbolic operator from Java, use the @targetName annotation to give it an alphanumeric name:

@targetName("multiply") def *(other: Fraction) =

 Fraction(num * other.num, den * other.den)

In Scala code, you use f * g, but in Java, you use f.multiply(g).

In order to use a method with an alphanumeric name as an infix operator, use the infix modifier:

infix def times(other: Fraction) = Fraction(num * other.num, den * other.den)

Now you can call f times g in Scala.

[image: Images] Note

You can use a method with an alphanumeric name with infix syntax whenever it is followed by an opening brace.

f repeat { "Hello" }

The method need not be declared as infix.

[image: Images] Caution

It is possible to declare an infix operator with multiple arguments. The += operator for mutable collections has such a form:

val smallPrimes = ArrayBuffer[Int]()

smallPrimes += 2 // binary infix operator, invokes +=(Int)

smallPrimes += (3, 5) multiple arguments, invokes +=(Int, Int, Int*)

This sounded a good idea at the time, but it gives grief with tuples. Consider:

val twinPrimes = ArrayBuffer[(Int, Int)]()

twinPrimes += (11, 13) // Error

Surely this should add the tuple (11, 13) to the buffer of tuples, but it triggers the multi-argument infix syntax and fails, since 11 and 13 are not tuples.

At some point, infix operators with multiple arguments may be removed. In the meantime, you have to call

twinPrimes += ((11, 13))

11.3 Unary Operators

Infix operators are binary operators—they have two parameters. An operator with one parameter is called a unary operator.

The four operators +, -, !, ~ are allowed as prefix operators, appearing before their arguments. They are converted into calls to methods with the name unary_operator. For example,

-a

means the same as a.unary_-.

If a unary operator follows its argument, it is a postfix operator. For example, the expression 42 toString is the same as 42.toString.

However, postfix operators can lead to parsing errors. For example, the code

val result = 42 toString

println(result)

yields the error message “Recursive value result needs type”. Since parsing precedes type inference and overload resolution, the compiler does not yet know that toString is a unary method. Instead, the code is parsed as val result = 42.toString(println(result)).

For that reason, Scala now discourages the use of postfix operators. If you really want to use them, you must use the compiler option -language:postfixOps or add the clause

import scala.language.postfixOps

11.4 Assignment Operators

An assignment operator has the form operator=, and the expression

a operator= b

means the same as

a = a operator b

For example, a += b is equivalent to a = a + b.

There are a few technical details.

• <=, >=, and != are not assignment operators.

• An operator starting with an = is never an assignment operator (==, ===, =/=, and so on).

• If a has a method called operator=, then that method is called directly.

11.5 Precedence

When you have two or more operators in a row without parentheses, the ones with higher precedence are executed first. For example, in the expression

1 + 2 * 3

the * operator is evaluated first.

In most languages, there is a fixed set of operators, and the language standard decrees which have precedence over which. Scala can have arbitrary operators, so it uses a scheme that works for all operators, while also giving the familiar precedence order to the standard ones.

Except for assignment operators, the precedence is determined by the first character of the operator.

Highest precedence: An operator character other than those below

* / %

+ - :

< >

! =

&

^

|

A character that is not an operator character

Lowest precedence: Assignment operators

Characters in the same row yield operators with the same precedence. For example, + and -> have the same precedence.

Postfix operators have lower precedence than infix operators:

a infixOp bpostfixOp

is the same as

(a infixOp b)postfixOp

11.6 Associativity

When you have a sequence of operators of the same precedence, the associativity determines whether they are evaluated left-to-right or right-to-left. For example, in the expression 17 – 2 – 9, one computes (17 – 2) – 9. The – operator is left-associative.

In Scala, all operators are left-associative except for

• operators that end in a colon (:)

• assignment operators

In particular, the :: operator for constructing lists is right-associative. For example,

1 :: 2 :: Nil

means

1 :: (2 :: Nil)

This is as it should be—we first need to form the list containing 2, and that list becomes the tail of the list whose head is 1.

A right-associative binary operator is a method of its second argument. For example,

2 :: Nil

means

Nil.::(2)

11.7 The apply and update Methods

Scala lets you extend the function call syntax

f(arg1, arg2, ...)

to values other than functions. If f is not a function or method, then this expression is equivalent to the call

f.apply(arg1, arg2, ...)

unless it occurs to the left of an assignment. The expression

f(arg1, arg2, ...) = value

corresponds to the call

f.update(arg1, arg2, ..., value)

This mechanism is used in arrays and maps. For example,

val scores = scala.collection.mutable.HashMap[String, Int]()

scores("Bob") = 100 // Calls scores.update("Bob", 100)

val bobsScore = scores("Bob") // Calls scores.apply("Bob")

[image: Images] Note

As you have already seen in Chapter 5, the companion object of every class has an apply method that calls the primary constructor. For example, Fraction(3, 4) calls the Fraction.apply method, which returns new Fraction(3, 4).

11.8 The unapply Method L2

An apply method takes construction parameters and turns them into an object. An unapply method does the opposite. It takes an object and extracts values from it—usually the values from which the object was, or could be, constructed.

Consider the Fraction class from Section 11.2, “Infix Operators,” on page 152. A call such as Fraction(3, 4) calls the Fraction.apply method which makes a fraction from a numerator and denominator. An unapply method does the opposite and extracts the numerator and denominator from a fraction.

One way to invoke an extractor is in a variable declaration. Here is an example:

val Fraction(n, d) = Fraction(3, 4) * Fraction(2, 5)

 // n, d are initialized with the numerator and denominator of the result

This statement declares two variables n and d, both of type Int, and not a Fraction. The variables are initialized with the values that are extracted from the right hand side.

More commonly, extractors are invoked in pattern matches such as the following:

val value = f match

 case Fraction(a, b) => a.toDouble / b // a, b are bound to the numerator and denominator

 case _ => Double.NaN

The details of implementing unapply are somewhat tedious. You may want to skip them until after reading Chapter 14.

Since a pattern match can fail. the unapply method returns an Option. Upon success, the Option contains a tuple holding the extracted values. In our case, we return an Option[(Int, Int)].

object Fraction :

 def unapply(input: Fraction) =

 if input.den == 0 then None else Some((input.num, input.den))

This method returns None when the fraction is malformed (with a zero denominator), indicating no match.

A statement

val Fraction(a, b) = f

leads to the method call

Fraction.unapply(f)

If the method returns None, a MatchError is thrown. Otherwise, the variables a and b are set to the components of the returned tuple.

Note that neither the Fraction.apply method nor the Fraction constructor are called. However, the intent is to initialize a and b so that they would yield f if they were passed to Fraction.apply. This is sometimes called destructuring. In that sense, unapply is the inverse of apply.

It is not a requirement for the apply and unapply methods to be inverses of one another. However, that is not a requirement. You can use extractors to extract information from an object of any type.

For example, suppose you want to extract first and last names from a string:

val author = "Cay Horstmann"

val Name(first, last) = author // Calls Name.unapply(author)

Provide an object Name with an unapply method that returns an Option[(String, String)]. If the match succeeds, return a pair with the first and last name. Otherwise, return None.

object Name :

 def unapply(input: String) =

 val pos = input.indexOf(" ")

 if pos >= 0 then Some((input.substring(0, pos), input.substring(pos + 1)))

 else None

[image: Images] Note

In this example, there is no Name class. The Name object is an extractor for String objects.

[image: Images] Note

The unapply methods in this section return an Option of a tuple. It is possible to return other types. See Chapter 14 for the details.

11.9 The unapplySeq Method L2

The unapply method extracts a fixed number of values. To extract an arbitrary number of values, the method needs to be called unapplySeq. In the simplest case, the method returns an Option[Seq[T]], where T is the type of the extracted values. For example, a Name extractor can produce a sequence of the name’s components:

object Name :

 def unapplySeq(input: String): Option[Seq[String]] =

 if input.strip == "" then None else Some(input.strip.split(",?\\s+").toSeq)

Now you can extract any number name components:

val Name(first, middle, last, rest*) = "John D. Rockefeller IV, B.A."

The rest variable is set to a Seq[String].

[image: Images] Caution

Do not supply both an unapply and an unapplySeq method with the same argument types.

11.10 Alternative Forms of the unapply and unapplySeq Methods L3

In Section 11.8, “The unapplyMethod,” on page 157, you saw how to implement an unapply method that returns an Option of a tuple:

object Fraction :

 def unapply(input: Fraction) =

 if input.den == 0 then None else Some((input.num, input.den))

But the return type of unapply is quite a bit more flexible.

• You don’t need an Option if the match never fails.

• Instead of an Option, you can use any type with methods isEmpty and get.

• Instead of a tuple, you can use any subtype of Product with methods _1, _2, . . . , _n.

• To extract a single value, you don’t need a tuple or Product.

• Return a Boolean to have the match succeed or fail without extracting a value.

In the preceding example, the Fraction.unapply method has return type Option[(Int, Int)]. Fractions with zero denominators return None. To have the match succeed in all cases, simply return a tuple without wrapping it into an Option:

object Fraction :

 def unapply(input: Fraction) = (input.num, input.den)

Here is an example of an extractor that produces a single value:

object Number :

 def unapply(input: String): Option[Int] =

 try

 Some(input.strip.toInt)

 catch

 case ex: NumberFormatException => None

With this extractor, you can extract a number from a string:

val Number(n) = "1729"

An extractor returning Boolean tests its input without extracting any value. Here is such a test extactor:

object IsCompound :

 def unapply(input: String) = input.contains(" ")

You can use this extractor to add a test to a pattern:

author match

 case Name(first, last @ IsCompound()) => ...

 // Matches if the last name is compound, such as van der Linden

 case Name(first, last) => ...

Finally, the return type of unapplySeq can be more general than an Option[Seq[T]]:

• An Option isn’t needed if the match never fails.

• Any type with methods isEmpty and get can be used instead of Option

• Any type with methods apply, drop, toSeq, and either length or lengthCompare can be used instead of Seq

11.11 Dynamic Invocation L2

Scala is a strongly typed language that reports type errors at compile time rather than at runtime. If you have an expression x.f(args), and your program compiles, then you know for sure that x has a method f that can accept the given arguments. However, there are situations where it is desirable to define methods in a running program. This is common with object-relational mappers in dynamic languages such as Ruby or JavaScript. Objects that represent database tables have methods findByName, findById, and so on, with the method names matching the table columns. For database entities, the column names can be used to get and set fields, such as person.lastName = "Doe".

In Scala, you can do this too. If a type extends the trait scala.Dynamic, then method calls, getters, and setters are rewritten as calls to special methods that can inspect the name of the original call and the parameters, and then take arbitrary actions.

[image: Images] Note

Dynamic types are an “exotic” feature, and the compiler wants your explicit consent when you implement such a type. You do that by adding the import statement

import scala.language.dynamics

Users of such types do not need to provide the import statement.

Here are the details of the rewriting. Consider obj.name, where obj belongs to a class that’s a subtype of Dynamic. Here is what the Scala compiler does with it.

1. If name is a known method or field of obj, it is processed in the usual way.

2. If obj.name is followed by (arg1, arg2, ...),

a. If none of the arguments are named (of the form name=arg), pass the arguments on to applyDynamic:

obj.applyDynamic("name")(arg1, arg2, ...)

b. If at least one of the arguments is named, pass the name/value pairs on to applyDynamicNamed:

obj.applyDynamicNamed("name")((name1, arg1), (name2, arg2), ...)

Here, name1, name2, and so on are strings with the argument names, or "" for unnamed arguments.

3. If obj.name is to the left of an =, call

obj.updateDynamic("name")(rightHandSide)

4. Otherwise call

obj.selectDynamic("sel")

[image: Images] Note

The calls to updateDynamic, applyDynamic, and applyDynamicNamed are “curried”—they have two sets of parentheses, one for the selector name and one for the arguments. This construct is explained in Chapter 12.

Let’s look at a few examples. Suppose person is an instance of a type extending Dynamic. A statement

person.lastName = "Doe"

is replaced with a call

person.updateDynamic("lastName")("Doe")

The Person class must have such a method:

class Person :

 ...

 def updateDynamic(field: String)(newValue: String) = ...

It is then up to you to implement the updateDynamic method. For example, if you are implementing an object-relational mapper, you might update the cached entity and mark it as changed, so that it can be persisted in the database.

Conversely, a statement

val name = person.lastName

turns into

val name = name.selectDynamic("lastName")

The selectDynamic method would simply look up the field value.

Method calls are translated to calls of the applyDynamic or applyDynamicNamed method. The latter is used for calls with named parameters. For example,

val does = people.findByLastName("Doe")

becomes

val does = people.applyDynamic("findByLastName")("Doe")

and

val johnDoes = people.find(lastName = "Doe", firstName = "John")

becomes

val johnDoes = people.applyDynamicNamed("find")(("lastName", "Doe"),

 ("firstName", "John"))

It is then up to you to implement applyDynamic and applyDynamicNamed as calls that retrieve the matching objects.

Here is a concrete example. Suppose we want to be able to dynamically look up and set elements of a java.util.Properties instance, using the dot notation:

val sysProps = DynamicProps(System.getProperties)

sysProps.username = "Fred" // Sets the "username" property to "Fred"

val home = sysProps.java_home // Gets the "java.home" property

For simplicity, we replace periods in the property name with underscores. (Exercise 13 on page 166 shows how to keep the periods.)

The DynamicProps class extends the Dynamic trait and implements the updateDynamic and selectDynamic methods:

class DynamicProps(val props: java.util.Properties) extends Dynamic :

 def updateDynamic(name: String)(value: String) =

 props.setProperty(name.replaceAll("_", "."), value)

 def selectDynamic(name: String) =

 props.getProperty(name.replaceAll("_", "."))

As an additional enhancement, let us use the add method to add key/value pairs in bulk, using named arguments:

sysProps.add(username="Fred", password="Secret")

Then we need to supply the applyDynamicNamed method in the DynamicProps class. Note that the name of the method is fixed. We are only interested in arbitrary parameter names.

def applyDynamicNamed(name: String)(args: (String, String)*) =

 if name != "add" then throw IllegalArgumentException()

 for ((k, v) <- args)

 props.setProperty(k.replaceAll("_", "."), v)

These examples are only meant to illustrate the mechanism. Is it really that useful to use the dot notation for map access? Like operator overloading, dynamic invocation is a feature that is best used with restraint.

11.12 Typesafe Selection and Application L2

In the preceding section, you saw how to resolve selections obj.selector and method calls obj.method(args) dynamically. However, that approach is not typesafe. If selector or method are not appropriate, a run time error occurs. In this section, you will learn how to detect invalid selections and invocations at compile time.

Instead of the Dynamic trait, you use the Selectable trait. It has methods

def selectDynamic(name: String): Any

def applyDynamic(name: String)(args: Any*): Any

The key difference is that you specify the selectors and methods that can be applied.

Let us first look at selection. Suppose we have objects with properties from a cache of database records, or JSON values, or, to keep the example simple, from a map. Then we can select a property with this class:

class Props(props: Map[String, Any]) extends Selectable :

 def selectDynamic(name: String) = props(name)

Now let’s move on to the typesafe part. Suppose we want to work with invoice items. Define a type with the valid properties, like this:

type Item = Props {

 val description: String

 val price: Double

}

This is an example of a structural type—see Chapter 18 for details.

Construct instances as follows:

val toaster = Props(Map("description" -> "Blackwell Toaster", "price" -> 29.95)).asInstanceOf[Item]

When you call

toaster.price

the selectDynamic method is invoked. This is no different than in the preceding section.

However, a call toaster.brand is a compile-time error since brand is not one of the listed selectors in the Item type.

Next, let’s turn to methods. We want to write a library for making REST calls with Scala syntax. Calls such as

val buyer = myShoppingService.customer(id)

shoppingCart += myShoppingService.item(id)

should, behind the scenes, invoke REST requests http://myserver.com/customer/id and http://myserver.com/item/id, yielding the JSON responses.

And we want this to be typesafe. A call to a nonexistent REST service should fail at compile time.

First, make a generic class

class Request(baseURL: String) extends Selectable :

 def applyDynamic(name: String)(args: Any*): Any =

 val url = s"$baseURL/$name/${args(0)}"

 scala.io.Source.fromURL(url).mkString

Then constrain to the services that you know to be actually supported.

I don’t have access to a shopping service, but I have a service that produces random nouns and adjectives:

type RandomService = Request {

 def nouns(qty: Int) : String

 def adjectives(qty: Int) : String

}

Construct an instance:

val myRandomService = new Request("https://horstmann.com/random").asInstanceOf[RandomService]

Now a call

myRandomService.nouns(5)

is translated to a call

myRandomService.applyDynamic("nouns")(5)

However, if the method name is neither nouns nor adjectives, a compiler error occurs.

Exercises

1. According to the precedence rules, how are 3 + 4 -> 5 and 3 -> 4 + 5 evaluated?

2. The BigInt class has a pow method, not an operator. Why didn’t the Scala library designers choose ** (as in Fortran) or ^ (as in Pascal) for a power operator?

3. Implement the Fraction class with operations + - * /. Normalize fractions, for example, turning 15/–6 into –5/2. Divide by the greatest common divisor, like this:

class Fraction(n: Int, d: Int) :

 private val num: Int = if d == 0 then 1 else n * sign(d) / gcd(n, d);

 private val den: Int = if d == 0 then 0 else d * sign(d) / gcd(n, d);

 override def toString = s"$num/$den"

 def sign(a: Int) = if a > 0 then 1 else if a < 0 then -1 else 0

 def gcd(a: Int, b: Int): Int = if b == 0 then abs(a) else gcd(b, a % b)

 ...

4. Implement a class Money with fields for dollars and cents. Supply +, - operators as well as comparison operators == and <. For example, Money(1, 75) + Money(0, 50) == Money(2, 25) should be true. Should you also supply * and / operators? Why or why not?

5. Provide operators that construct an HTML table. For example,

Table() | "Java" | "Scala" || "Gosling" | "Odersky" || "JVM" | "JVM, .NET"

should produce

<table><tr><td>Java</td><td>Scala</td></tr><tr><td>Gosling...

6. Provide a class ASCIIArt whose objects contain figures such as

 /_/\

(' ')

(-)

 | | |

(__|__)

Supply operators for combining two ASCIIArt figures horizontally

 /_/\ -----

(' ') / Hello \

(-) < Scala |

 | | | \ Coder /

(__|__) -----

or vertically. Choose operators with appropriate precedence.

7. Implement a class BitSequence that stores a sequence of 64 bits packed in a Long value. Supply apply and update operators to get and set an individual bit.

8. Provide a class Matrix. Choose whether you want to implement 2 × 2 matrices, square matrices of any size, or m × n matrices. Supply operations + and *. The latter should also work with scalars, for example, mat * 2. A single element should be accessible as mat(row, col).

9. Define an object PathComponents with an unapply operation class that extracts the directory path and file name from an java.nio.file.Path. For example, the file /home/cay/readme.txt has directory path /home/cay and file name readme.txt.

10. Modify the PathComponents object of the preceding exercise to instead define an unapplySeq operation that extracts all path segments. For example, for the file /home/cay/readme.txt, you should produce a sequence of three segments: home, cay, and readme.txt.

11. Show that the return type of unapply can be an arbitrary subtype of Product. Make your own concrete type MyProduct that extends Product and defines methods _1, _2. Then define an unapply method returning a MyProduct instance. What happens if you don’t define _1?

12. Provide an extractor for strings where the first component is a title from an appropriate enumeration, and the remainder is a sequence of name components. For example, when called with "Dr. Peter van der Linden", the result would be Some(Title.DR, Seq("Peter", "van", "der", "Linden"). Show how the values can be obtained through destructuring or in a match expression.

13. Improve the dynamic property selector in Section 11.11, “Dynamic Invocation,” on page 160 so that one doesn’t have to use underscores. For example, sysProps.java.home should select the property with key "java.home". Use a helper class, also extending Dynamic, that contains partially completed paths.

14. Define a class XMLElement that models an XML element with a name, attributes, and child elements. Using dynamic selection and method calls, make it possible to select paths such as rootElement.html.body.ul(id="42").li, which should return all li elements inside ul with id attribute 42 inside body inside html.

15. Provide an XMLBuilder class for dynamically building XML elements, as builder.ul(id="42", style="list-style: lower-alpha;"), where the method name becomes the element name and the named arguments become the attributes. Come up with a convenient way of building nested elements.

16. Section 11.12, “Typesafe Selection and Application,” on page 163 describes a Request class that makes requests to https://$server/$name/$arg. However, the URLs of real REST APIs aren’t always that regular. Consider https://www.thecocktaildb.com/api.php. Change the Request class so that it receives a map from method names to template strings, where the $ character is replaced with the argument value.

For this service, the following should work:

val cocktailServiceTemplate = Map(

 "cocktail" -> "https://www.thecocktaildb.com/api/json/v1/1/search.php?s=$",

 "ingredient" -> "https://www.thecocktaildb.com/api/json/v1/1/search.php?i=$")

val cocktailService = Request(cocktailServiceTemplate).asInstanceOf[CocktailService]

Now the call

cocktailService.cocktail("Negroni")

should invoke

https://www.thecocktaildb.com/api/json/v1/1/search.php?s=Negroni

Chapter 12

Higher-Order Functions

Topics in This Chapter L1

[image: Images] 12.1 Functions as Values

[image: Images] 12.2 Anonymous Functions

[image: Images] 12.3 Parameters That Are Functions

[image: Images] 12.4 Parameter Inference

[image: Images] 12.5 Useful Higher-Order Functions

[image: Images] 12.6 Closures

[image: Images] 12.7 Interoperability with Lambda Expressions

[image: Images] 12.8 Currying

[image: Images] 12.9 Methods for Composing, Currying, and Tupling

[image: Images] 12.10 Control Abstractions

[image: Images] 12.11 The return Expression

[image: Images] Exercises

Scala mixes object orientation with functional features. In a functional programming language, functions are first-class citizens that can be passed around and manipulated just like any other data types. This is very useful whenever you want to pass some action detail to an algorithm. In a functional language, you just wrap that detail into a function that you pass as a parameter. In this chapter, you will see how to be productive with functions that use or return functions.

Highlights of the chapter include:

• Functions are “first-class citizens” in Scala, just like numbers.

• You can create anonymous functions, usually to give them to other functions.

• A function argument specifies behavior that should be executed later.

• Many collection methods take function parameters, applying a function to the values of the collection.

• There are syntax shortcuts that allow you to express function parameters in a way that is short and easy to read.

• You can create functions that operate on blocks of code and look much like the built-in control statements.

12.1 Functions as Values

In Scala, a function is a first-class citizen, just like a number. You can store a function in a variable:

import scala.math.*

val num = 3.14

val fun = ceil

This code sets num to 3.14 and fun to the ceil function.

When you try this code in the REPL, the type of num is, not surprisingly, Double. The type of fun is reported as (Double) => Double—that is, a function receiving and returning a Double.

What can you do with a function? Two things:

• Call it.

• Pass it around, by storing it in a variable or giving it to a function as a parameter.

Here is how to call the function stored in fun:

fun(num) // 4.0

As you can see, the normal function call syntax is used. The only difference is that fun is a variable containing a function, not a fixed function.

Here is how you can give fun to another function:

Array(3.14, 1.42, 2.0).map(fun) // Array(4.0, 2.0, 2.0)

The map method accepts a function, applies it to all values in an array, and returns an array with the function values. In this chapter, you will see many other methods that accept functions as parameters.

12.2 Anonymous Functions

In Scala, you don’t have to give a name to each function, just like you don’t have to give a name to each number. Here is an anonymous function:

(x: Double) => 3 * x

This function multiplies its argument by 3.

Of course, you can store this function in a variable:

val triple = (x: Double) => 3 * x

That’s just as if you had used a def:

def triple(x: Double) = 3 * x

But you don’t have to name the function. You can just pass it to another function:

Array(3.14, 1.42, 2.0).map((x: Double) => 3 * x)

 // Array(9.42, 4.26, 6.0)

Here, we tell the map method: “Multiply each element by 3.”

[image: Images] Note

If you prefer, you can enclose the function argument in braces instead of parentheses, for example:

Array(3.14, 1.42, 2.0).map{ (x: Double) => 3 * x }

This is more common when a method is used in infix notation (without the dot).

Array(3.14, 1.42, 2.0) map { (x: Double) => 3 * x }

[image: Images] Note

As noted in Chapter 2, some people consider anything that is declared with def to be a method. However, in this book, we use a conceptually cleaner mental model. Methods are invoked with a this argument. They are members of classes, traits, or objects. Top-level and block-level def statements declare functions.

In those cases, you cannot tell whether def declares anything other than a function. The expression triple is indistinguishable from the function (x: Double) => 3 * x. (This conversion is called eta expansion, using terminology from the lambda calculus.)

[image: Images] Caution

There is only one exception to eta expansion—when there are no parameters:

def heads() = scala.math.random() < 0.5

For arcane reasons, heads is a syntax error. The function is heads _, and it is invoked as heads().

12.3 Parameters That Are Functions

In this section, you will see how to implement a function that takes another function as a parameter. Here is an example:

def valueAtOneQuarter(f: (Double) => Double) = f(0.25)

Note that the parameter can be any function receiving and returning a Double. The valueAtOneQuarter function computes the value of that function at 0.25.

For example,

valueAtOneQuarter(ceil) // 1.0

valueAtOneQuarter(sqrt) // 0.5 (because 0.5 × 0.5 = 0.25)

What is the type of valueAtOneQuarter? It is a function with one parameter, so its type is written as

(parameterType) => resultType

The resultType is clearly Double, and the parameterType is already given in the function header as (Double) => Double. Therefore, the type of valueAtOneQuarter is

((Double) => Double) => Double

Since valueAtOneQuarter is a function that receives a function, it is called a higher-order function.

A higher-order function can also produce a function. Here is a simple example:

def mulBy(factor : Double) = (x : Double) => factor * x

For example, mulBy(3) returns the function (x : Double) => 3 * x which you have seen in the preceding section. The power of mulBy is that it can deliver functions that multiply by any amount:

val quintuple = mulBy(5)

quintuple(20) // 100

The mulBy function has a parameter of type Double, and it returns a function of type (Double) => Double. Therefore, its type is

(Double) => ((Double) => Double)

12.4 Parameter Inference

When you pass an anonymous function to another function or method, Scala helps you out by deducing types when possible. For example, you don’t have to write

valueAtOneQuarter((x: Double) => 3 * x) // 0.75

Since the valueAtOneQuarter method knows that you will pass in a (Double) => Double function, you can just write

valueAtOneQuarter((x) => 3 * x)

As a special bonus, for a function that has just one parameter, you can omit the () around the parameter:

valueAtOneQuarter(x => 3 * x)

It gets better. If a parameter occurs only once on the right-hand side of the =>, you can replace it with an underscore:

valueAtOneQuarter(3 * _)

This is the ultimate in comfort, and it is also pretty easy to read: a function that multiplies something by 3.

Keep in mind that these shortcuts only work when the parameter types are known.

val fun = 3 * _ // Error: Can’t infer types

You can specify a type for the anonymous parameter or for the variable:

3 * (_: Double) // OK

val fun: (Double) => Double = 3 * _ // OK because we specified the type for fun

Of course, the last definition is contrived. But it shows what happens when a function is passed to a parameter (which has just such a type).

[image: Images] Tip

Specifying the type of _ is useful for turning methods into functions. For example, (_: String).length is a function String => Int, and (_: String).substring(_:Int, _: Int) is a function (String, Int, Int) => String.

12.5 Useful Higher-Order Functions

A good way of becoming comfortable with higher-order functions is to practice with some common (and obviously useful) methods in the Scala collections library that take function parameters.

You have seen map, which applies a function to all elements of a collection and returns the result. Here is a quick way of producing a collection containing 0.1, 0.2, . . . , 0.9:

(1 to 9).map(0.1 * _)

[image: Images] Note

There is a general principle at work. If you want a sequence of values, see if you can transform it from a simpler one.

Try this to print a triangle:

(1 to 9).map("*" * _).foreach(println _)

The result is

*

**

Here, we also use foreach, which is like map except that its function doesn’t return a value. The foreach method simply applies the function to each argument.

The filter method yields all elements that match a particular condition. For example, here’s how to get only the even numbers in a sequence:

(1 to 9).filter(_ % 2 == 0) // 2, 4, 6, 8

Of course, that’s not the most efficient way of getting this result [image: Images].

The reduceLeft method takes a binary function—that is, a function with two parameters—and applies it to all elements of a sequence, going from left to right. For example,

(1 to 9).reduceLeft(_ * _)

is

1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9

or, strictly speaking,

(...((1 * 2) * 3) * ... * 9)

Note the compact form of the multiplication function: _ * _. Each underscore denotes a separate parameter.

You also need a binary function for sorting. For example,

"Mary had a little lamb".split(" ").sortWith(_.length < _.length)

yields an array that is sorted by increasing length: Array("a", "had", "Mary", "lamb", "little").

12.6 Closures

In Scala, you can define a function inside any scope: in a package, in a class, or even inside another function or method. In the body of a function, you can access any variables from an enclosing scope. That may not sound so remarkable, but note that your function may be called when the variable is no longer in scope.

Here is an example: the mulBy function from Section 12.3, “Parameters That Are Functions,” on page 171.

def mulBy(factor : Double) = (x : Double) => factor * x

Consider these calls:

val triple = mulBy(3)

val half = mulBy(0.5)

println(s"${triple(14)} ${half(14)}") // Prints 42 7

Let’s look at them in slow motion.

1. The first call to mulBy sets the parameter variable factor to 3. That variable is referenced in the body of the function (x : Double) => factor * x, which is stored in triple. Then the parameter variable factor is popped off the runtime stack.

2. Next, mulBy is called again, now with factor set to 0.5. That variable is referenced in the body of the function (x : Double) => factor * x, which is stored in half.

Each of the returned functions has its own setting for factor.

Such a function is called a closure. A closure consists of code together with the definitions of any nonlocal variables that the code uses.

These functions are actually implemented as objects of a class, with an instance variable factor and an apply method that contains the body of the function.

It doesn’t really matter how a closure is implemented. It is the job of the Scala compiler to ensure that your functions can access nonlocal variables.

[image: Images] Note

Closures aren’t difficult or surprising if they are a natural part of the language. Many modern languages, such as JavaScript, Ruby, and Python, support closures. Java, as of version 8, has closures in the form of lambda expressions.

12.7 Interoperability with Lambda Expressions

In Scala, you pass a function as a parameter whenever you want to tell another function what action to carry out. In Java, you use a lambda expression:

var button = new JButton("Increment"); // This is Java

button.addActionListener(event -> counter++);

In order to pass a lambda expression, the parameter type must be a “functional interface”—that is, any Java interface with a single abstract method.

You can pass a Scala function to a Java functional interface:

val button = JButton("Increment")

button.addActionListener(event => counter += 1)

Note that the conversion from a Scala function to a Java functional interface only works for function literals, not for variables holding functions. The following does not work:

val listener = (event: ActionEvent) => println(counter)

button.addActionListener(listener)

 // Cannot convert a nonliteral function to a Java functional interface

The simplest remedy is to declare the variable holding the function as a Java functional interface:

val listener: ActionListener = event => println(counter)

button.addActionListener(listener) // Ok

Alternatively, you can turn a function variable into a literal expression:

val exit = (event: ActionEvent) => if counter > 9 then System.exit(0)

button.addActionListener(exit(_))

12.8 Currying

Currying (named after logician Haskell Brooks Curry) is the process of turning a function that takes two arguments into a function that takes one argument. That function returns a function that consumes the second argument.

Huh? Let’s look at an example. This function takes two arguments:

val mul = (x: Int, y: Int) => x * y

This function takes one argument, yielding a function that takes one argument:

val mulOneAtATime = (x: Int) => ((y: Int) => x * y)

To multiply two numbers, you call

mulOneAtATime(6)(7)

Strictly speaking, the result of mulOneAtATime(6) is the function (y: Int) => 6 * y. That function is applied to 7, yielding 42.

When you use def, there is a shortcut for defining such curried methods in Scala:

def divOneAtATime(x: Int)(y: Int) = x / y

As you can see, multiple parameters are just a frill, not an essential feature of a programming language. That’s an amusing theoretical insight, but it has one practical use in Scala. Sometimes, you can use currying for a method parameter so that the type inferencer has more information.

Here is a typical example. The corresponds method can compare whether two sequences are the same under some comparison criterion. For example,

val a = Array("Mary", "had", "a", "little", "lamb")

val b = Array(4, 3, 1, 6, 5)

a.corresponds(b)(_.length == _)

Note that the function _.length == _ is passed as a curried parameter, in a separate set of (...). When you look into the Scaladoc, you will see that corresponds is declared as

def corresponds[B](that: Seq[B])(p: (A, B) => Boolean): Boolean

The that sequence and the predicate function p are separate curried parameters. The type inferencer can figure out what B is from the type of that, and then it can use that information when analyzing the function that is passed for p.

In our example, that is an Int sequence. Therefore, the predicate is expected to have type (String, Int) => Boolean. With that information, the compiler can accept _.length == _ as a shortcut for (a: String, b: Int) => a.length == b.

12.9 Methods for Composing, Currying, and Tupling

A unary function is a function with one parameter. All unary functions are instances of the Function1 trait. That trait defines a method for composing two unary functions; that is, executing one and then passing the result to the other.

Suppose we want to be sure that we don’t compute square roots of negative values. Then we can compose the square root function with the absolute value function:

val sqrt = scala.math.sqrt

val fabs: Double => Double = scala.math.abs

 // Need the type because abs is overloaded

val f = sqrt compose fabs // Infix notation; could also write sqrt.compose(fabs)

f(-9) // Yields sqrt(fabs(-9)) or 3

Note that the second function is executed first, because functions are applied right to left. If you find that unnatural, use the andThen method instead:

val g = fabs andThen sqrt // The same as sqrt compose fabs

Functions with more than one parameter have a curried method, producing the curried version of a function.

val fmax : (Double, Double) => Double = scala.math.max

 // Need the type because max is overloaded

fmax.curried // Has type Double => Double => Double

val h = fmax.curried(0)

The function h has one parameter, and h(x) = fmax.curried(0)(x) = fmax(0, x). Positive arguments are returned, and negative arguments yield zero.

The tupled method turns a function with more than one parameter into a unary function receiving a tuple.

val k = mul.tupled // Has type ((Int, Int)) => Int

When calling k, you supply a pair, whose components are passed to mul. For example, k((6, 7)) is 42.

This sounds abstract, but here is a practical use. Let’s say you have two arrays, holding the first and second arguments.

val xs = Array(1, 7, 2, 9)

val ys = Array(1000, 100, 10, 1)

Now we want to pass corresponding elements to a binary function such as mul. An elegant solution is to zip the arrays, and then apply the tupled function to the pairs:

xs.zip(ys).map(mul.tupled) // Yields Array(1000, 700, 20, 9)

[image: Images] Note

If you pass a function literal, then you don’t need to call tupled. The elements of the zipped array are untupled, and the components are passed to the function:

xs.zip(ys).map(_ * _) // The tuple components are passed to the function

12.10 Control Abstractions

In Scala, one can model a sequence of statements as a function with no parameters or return value. For example, here is a function that runs some code in a thread:

def runInThread(block: () => Unit) =

 (new Thread :

 override def run() = block()

).start()

The code is given as a function of type () => Unit. However, when you call this function, you need to supply an unsightly () =>:

runInThread { () => println("Hi"); Thread.sleep(10000); println("Bye") }

To avoid the () => in the call, use the call by name notation: Omit the (), but not the =>, in the parameter declaration and in the call to the parameter function:

def runInThread(block: => Unit) =

 (new Thread :

 override def run() = block

).start()

Then the call becomes simply

runInThread { println("Hi"); Thread.sleep(10000); println("Bye") }

This looks pretty nice. Scala programmers can build control abstractions: functions that look like language keywords. For example, we can implement a function that is used exactly as a while statement. Or, we can innovate a bit and define an until statement that works like while, but with an inverted condition:

def until(condition: => Boolean)(block: => Unit): Unit =

 if !condition then

 block

 until(condition)(block)

Here is how you use until:

var x = 10

until (x == 0) {

 x -= 1

 println(x)

}

The technical term for such a function parameter is a call-by-name parameter. Unlike a regular (or call-by-value) parameter, the parameter expression is not evaluated when the function is called. After all, we don’t want x == 0 to evaluate to false in the call to until. Instead, the expression becomes the body of a function with no arguments. That function is passed as a parameter.

Look carefully at the until function definition. Note that it is curried: It first consumes the condition, then the block as a second parameter. Without currying, the call would look like this:

until(x == 0, { ... })

which wouldn’t be as pretty.

12.11 The return Expression

In Scala, you don’t use a return statement to return function values. The return value of a function is simply the value of the function body.

However, you can use return to return a value from an anonymous function to an enclosing named function. This is useful in control abstractions. For example, consider this function:

def indexOf(str: String, ch: Char): Int =

 var i = 0

 until (i == str.length) {

 if str(i) == ch then return i

 i += 1

 }

 -1

Here, the anonymous function { if str(i) == ch then return i; i += 1 } is passed to until. When the return expression is executed, the enclosing named function indexOf terminates and returns the given value.

If you use return inside a named function, you need to specify its return type. For example, in the indexOf function above, the compiler was not able to infer that it returns an Int.

The control flow is achieved with a special exception that is thrown by the return expression in the anonymous function, passed out of the until function, and caught in the indexOf function.

[image: Images] Caution

If the exception is caught in a try block, before it is delivered to the named function, then the value will not be returned.

Exercises

1. Write a function values(fun: (Int) => Int, low: Int, high: Int) that yields a collection of function inputs and outputs in a given range. For example, values(x => x * x, -5, 5) should produce a collection of pairs (-5, 25), (-4, 16), (-3, 9), . . . , (5, 25).

2. How do you get the largest element of an array with reduceLeft?

3. Implement the factorial function using to and reduceLeft, without a loop or recursion.

4. The previous implementation needed a special case when n < 1. Show how you can avoid this with foldLeft. (Look at the Scaladoc for foldLeft. It’s like reduceLeft, except that the first value in the chain of combined values is supplied in the call.)

5. Write a function largest(fun: (Int) => Int, inputs: Seq[Int]) that yields the largest value of a function within a given sequence of inputs. For example, largest(x => 10 * x - x * x, 1 to 10) should return 25. Don’t use a loop or recursion.

6. Modify the previous function to return the input at which the output is largest. For example, largestAt(x => 10 * x - x * x, 1 to 10) should return 5. Don’t use a loop or recursion.

7. Write a function that composes two functions of type Double => Option[Double], yielding another function of the same type. The composition should yield None if either function does. For example,

def f(x: Double) = if x != 1 then Some(1 / (x - 1)) else None

def g(x: Double) = if x >= 0 then Some(sqrt(x)) else None

val h = compose(g, f) // h(x) should be g(f(x))

Then h(2) is Some(1), and h(1) and h(0) are None.

8. Section 12.9, “Methods for Composing, Currying, and Tupling,” on page 177 coves the composing, currying, and tupling methods that all functions have. Implement these from scratch, as functions that operate on integer functions. For example, tupling(mul) returns a function ((Int, Int)) => Int, and tupling(mul)((6, 7)) is 42.

9. In Section 12.8, “Currying,” on page 176, you saw the corresponds method used with two arrays of strings. Make a call to corresponds that checks whether the elements in an array of strings have the lengths given in an array of integers.

10. Implement corresponds without currying. Then try the call from the preceding exercise. What problem do you encounter?

11. Implement an unless control abstraction that works just like if, but with an inverted condition. Does the first parameter need to be a call-by-name parameter? Do you need currying?

Chapter 13

Collections

Topics in This Chapter A2

[image: Images] 13.1 The Main Collections Traits

[image: Images] 13.2 Mutable and Immutable Collections

[image: Images] 13.3 Sequences

[image: Images] 13.4 Lists

[image: Images] 13.5 Sets

[image: Images] 13.6 Operators for Adding or Removing Elements

[image: Images] 13.7 Common Methods

[image: Images] 13.8 Mapping a Function

[image: Images] 13.9 Reducing, Folding, and Scanning A3

[image: Images] 13.10 Zipping

[image: Images] 13.11 Iterators

[image: Images] 13.12 Lazy Lists A3

[image: Images] 13.13 Interoperability with Java Collections

[image: Images] Exercises

In this chapter, you will learn about the Scala collections library from a library user’s point of view. In addition to arrays and maps, which you have already encountered, you will see other useful collection types. There are many methods that can be applied to collections, and this chapter presents them in an orderly way.

The key points of this chapter are:

• All collections extend the Iterable trait.

• The three major categories of collections are sequences, sets, and maps.

• Scala has mutable and immutable versions of most collections.

• A Scala list is either empty, or it has a head and a tail which is again a list.

• Sets are unordered collections.

• Use a LinkedHashSet to retain the insertion order or a SortedSet to iterate in sorted order.

• + adds an element to an unordered collection; +: and :+ prepend or append to a sequence; ++ concatenates two collections; - and -- remove elements.

• The Iterable and Seq traits have dozens of useful methods for common operations. Check them out before writing tedious loops.

• Mapping, folding, and zipping are useful techniques for applying a function or operation to the elements of a collection.

• You can consider an Option to be a collection of size 0 or 1.

• A lazy list is evaluated on demand and can hold an unbounded number of elements.

13.1 The Main Collections Traits

Figure 13–1 shows the most important traits that make up the Scala collections hierarchy.

[image: Images]

Figure 13–1 Key traits in the Scala collections hierarchy

An Iterable is any collection that can yield an Iterator with which you can access all elements in the collection:

val coll = ... // some Iterable

val iter = coll.iterator

while iter.hasNext do

 process(iter.next())

In a Seq, the elements are ordered, and the iterator visits the elements in order. An IndexedSeq allows fast random access through an integer index. For example, an ArrayBuffer is indexed but a linked list is not. A LinearSeq allows fast head and tail operations. A Buffer allows fast insertion and removal at the end. An ArrayBuffer is both a Buffer and, as already mentioned, an IndexedSeq.

A Set is an unordered collection of values. In a SortedSet, elements are always visited in sorted order.

A Map is a set of (key, value) pairs. A SortedMap visits the entries as sorted by the keys. See Chapter 4 for more information.

This hierarchy is similar to that in Java, with a couple of welcome improvements:

1. Maps are a part of the hierarchy and not a separate hierarchy.

2. IndexedSeq is the supertype of arrays but not of lists, allowing you to tell the two apart.

[image: Images] Note

In Java, both ArrayList and LinkedList implement a common List interface, making it difficult to write efficient code when random access is preferred, for example when searching in a sorted sequence. This was a flawed design decision in the original Java collections framework. In a later version, a marker interface RandomAccess was added to deal with this problem.

Each Scala collection trait has a companion object with an apply method for constructing an instance of the collection. For example,

Iterable(0xFF, 0xFF00, 0xFF0000)

Set(Color.RED, Color.GREEN, Color.BLUE)

Map(Color.RED -> 0xFF0000, Color.GREEN -> 0xFF00, Color.BLUE -> 0xFF)

SortedSet("Hello", "World")

This is called the “uniform creation principle.”

There are methods toSeq, toSet, toMap, and so on, as well as a generic to method, that you can use to translate between collection types.

val coll = Seq(1, 1, 2, 3, 5, 8, 13)

val set = coll.toSet

val buffer = coll.to(ArrayBuffer)

[image: Images] Note

You can use the == operator to compare any sequence, set, or map with another collection of the same kind. For example, Seq(1, 2, 3) == (1 to 3) yields true. But comparing different kinds, for example, Seq(1, 2, 3) == Set(1, 2, 3) is a compilation error. In that case, use the sameElements method.

13.2 Mutable and Immutable Collections

Scala supports both mutable and immutable collections. An immutable collection can never change, so you can safely share a reference to it, even in a multi-threaded program. For example, there is a scala.collection.mutable.Map and a scala.collection.immutable.Map. Both have a common supertype scala.collection.Map (which, of course, contains no mutation operations).

[image: Images] Note

When you have a reference to a scala.collection.immutable.Map, you know that nobody can change the map. If you have a scala.collection.Map, then you can’t change it, but someone else might.

Scala gives a preference to immutable collections. The scala package and the Predef object, which are always imported, have type aliases Seq, IndexedSeq, List, Set, and Map that refer to the immutable traits. For example, Predef.Map is the same as scala.collection.immutable.Map.

[image: Images] Tip

With the statement

import scala.collection.mutable

you can get an immutable map as Map and a mutable one as mutable.Map.

If you had no prior experience with immutable collections, you may wonder how you can do useful work with them. The key is that you can create new collections out of old ones. For example, if numbers is an immutable set, then

numbers + 9

is a new set containing the numbers together with 9. If 9 was already in the set, you just get a reference to the old set. This is particularly natural in recursive computations. For example, here we compute the set of all digits of an integer:

def digits(n: Int): Set[Int] =

 if n < 0 then digits(-n)

 else if n < 10 then Set(n)

 else digits(n / 10) + (n % 10)

This method starts out with a set containing a single digit. At each step, another digit is added. However, adding the digit doesn’t mutate a set. Instead, in each step, a new set is constructed.

[image: Images] Note

In addition to the scala.collection.immutable and scala.collection.mutable package, there is a scala.collection.concurrent package. It has a Map trait with methods for atomic processing: putIfAbsent, remove, replace, getOrElseUpdate, updateWith.A TrieMap implementation is provided. You can also adapt a Java ConcurrentHashMap to this trait—see Section 13.13, “Interoperability with Java Collections,” on page 204.

13.3 Sequences

Figure 13–2 shows the most important immutable sequences.

[image: Images]

Figure 13–2 Immutable sequences

A Vector is the immutable equivalent of an ArrayBuffer: an indexed sequence with fast random access. Vectors are implemented as trees where each node has up to 32 children. For a vector with one million elements, one needs four layers of nodes. (Since 103 » 210, 106 » 324.) Accessing an element in such a list will take 4 hops, whereas in a linked list it would take an average of 500,000.

A Range represents an integer sequence, such as 0,1,2,3,4,5,6,7,8,9 or 10,20,30. Of course a Range object doesn’t store all sequence values but only the start, end, and increment. You construct Range objects with the to and until methods, as described in Chapter 2.

We discuss lists in the next section, and lazy lists in Section 13.12, “Lazy Lists,” on page 202.

See Figure 13–3 for the most useful mutable sequences.

[image: Images]

Figure 13–3 Mutable sequences

We discussed array buffers in Chapter 3. Stacks, queues, and priority queues are standard data structures that are useful for implementing certain algorithms. If you are familiar with these structures, the Scala implementations won’t surprise you.

13.4 Lists

In Scala, a list is either Nil (that is, empty) or an object with a head element and a tail that is again a list. For example, consider the list

val digits = List(4, 2)

The value of digits.head is 4, and digits.tail is List(2). Moreover, digits.tail.head is 2 and digits.tail.tail is Nil.

The :: operator makes a new list from a given head and tail. For example,

9 :: List(4, 2)

is List(9, 4, 2). You can also write that list as

9 :: 4 :: 2 :: Nil

Note that :: is right-associative. With the :: operator, lists are constructed from the end:

9 :: (4 :: (2 :: Nil))

[image: Images] Note

There is a similar right-associative operator to build tuples:

1 *: 2.0 *: "three" *: EmptyTuple

yields the tuple (1, 2.0, "three").

In Java or C++, one uses an iterator to traverse a linked list. You can do this in Scala as well, but it is often more natural to use recursion. For example, the following function computes the sum of all elements in a linked list of integers:

def sum(lst: List[Int]): Int =

 if lst == Nil then 0 else lst.head + sum(lst.tail)

Or, if you prefer, you can use pattern matching:

def sum(lst: List[Int]): Int = lst match

 case Nil => 0

 case h :: t => h + sum(t) // h is lst.head, t is lst.tail

Note the :: operator in the second pattern. It “destructures” the list into head and tail.

[image: Images] Note

Recursion works so naturally because the tail of a list is again a list.

Of course, for this particular example, you do not need to use recursion at all. The Scala library already has a sum method:

List(9, 4, 2).sum // Yields 15

If you want to mutate list elements in place, you can use a ListBuffer, a data structure that is backed by a linked list with references to the first and last node. This makes it efficient to add or remove elements at either end of the list.

However, adding or removing elements in the middle is not efficient. For example, suppose you want to remove every second element of a mutable list. With a Java LinkedList, you use an iterator and call remove after every second call to next. There is no analogous operation on a ListBuffer. Of course, removing multiple elements by their index positions is very inefficient in a linked list. Your best bet is to generate a new list with the result (see Exercise 3 on page 205).

13.5 Sets

A set is a collection of distinct elements. Trying to add an existing element has no effect. For example,

Set(2, 0, 1) + 1

is the same as Set(2, 0, 1).

Unlike lists, sets do not retain the order in which elements are inserted. By default, sets are implemented as hash sets in which elements are organized by the value of the hashCode method. (In Scala, as in Java, every object has a hashCode method.)

For example, if you iterate over

Set(1, 2, 3, 4, 5, 6)

the elements are visited in the order

5 1 6 2 3 4

You may wonder why sets don’t retain the element order. It turns out that you can find elements much faster if you allow sets to reorder their elements. Finding an element in a hash set is much faster than in an array or list.

A linked hash set remembers the order in which elements were inserted. It keeps a linked list for this purpose. For example,

val weekdays = scala.collection.mutable.LinkedHashSet("Mo", "Tu", "We", "Th", "Fr")

If you want to iterate over elements in sorted order, use a sorted set:

val numbers = scala.collection.mutable.SortedSet(1, 2, 3, 4, 5, 6)

A bit set is an implementation of a set of non-negative integers as a sequence of bits. The ith bit is 1 if i is present in the set. This is an efficient implementation as long as the maximum element is not too large. Scala provides both mutable and immutable BitSet classes.

The contains method checks whether a set contains a given value. The subsetOf method checks whether all elements of a set are contained in another set.

val digits = Set(1, 7, 2, 9)

digits.contains(0) // false

Set(1, 2).subsetOf(digits) // true

The union, intersect, and diff methods carry out the usual set operations. If you prefer, you can write them as |, &, and &~. You can also write union as ++ and difference as --. For example, if we have the set

val primes = Set(2, 3, 5, 7)

then digits.union(primes) is Set(1, 2, 3, 5, 7, 9), digits & primes is Set(2, 7), and digits -- primes is Set(1, 9).

13.6 Operators for Adding or Removing Elements

When you want to add or remove an element, or a number of elements, the operators to use depend on the collection type. Table 13–1 provides a summary.

Table 13–1 Operators for Adding and Removing Elements

[image: Images]

Note that + is used for adding an element to an unordered immutable collection, while +: and :+ add an element to the beginning or end of an ordered collection.

Vector(1, 2, 3) :+ 5 // Yields Vector(1, 2, 3, 5)

0 +: 1 +: Vector(1, 2, 3) // Yields Vector(0, 1, 1, 2, 3)

Note that +:, like all operators ending in a colon, is right-associative, and that it is a method of the right operand.

These operators return new collections (of the same type as the original ones) without modifying the original. Mutable collections have a += operator that mutates the left-hand side. For example,

val numberBuffer = ArrayBuffer(1, 2, 3)

numberBuffer += 5 // Adds 5 to numberBuffer

With an immutable collection, you can use += or :+= with a var, like this:

var numberSet = Set(1, 2, 3)

numberSet += 5 // Sets numberSet to the immutable set numberSet + 5

var numberVector = Vector(1, 2, 3)

numberVector :+= 5 // += does not work since vectors don’t have a + operator

To remove an element, use the - operator:

Set(1, 2, 3) - 2 // Yields Set(1, 3)

You can add multiple elements with the ++ operator:

coll ++ coll2

yields a collection of the same type as coll that contains both coll and coll2. Similarly, the -- operator removes multiple elements.

[image: Images] Note

For lists, you can use +: instead of :: for consistency, with one exception: Pattern matching (case h::t) does not work with the +: operator.

[image: Images] Caution

The + and - operators are deprecated for mutable collections, as well as collections of unknown mutability (such as scala.collection.Set).They don’t mutate the collection but compute new collections with elements added or removed. If you really want to do this with a (potentially) mutable collection, use the ++ and -- operators.

[image: Images] Caution

The operators coll += (e1, e2, ...) and coll -= (e1, e2, ...) with multiple arguments are deprecated, since infix operators with more than two arguments are now discouraged.

As you can see, Scala provides many operators for adding and removing elements. Here is a cheat sheet:

1. Append (:+) or prepend (+:) to a sequence.

2. Add (+) to an unordered collection.

3. Remove with the - operator.

4. Use ++ and -- for bulk add and remove.

5. Mutations are += ++= -= --=.

6. For lists, many Scala programmers prefer the :: and ::: operators to +: and ++.

7. Stay away from deprecated += (e1, e2, ...), -= (e1, e2, ...), ++: and enigmatic +=:, ++=:.

13.7 Common Methods

Table 13–2 gives a brief overview of the most important methods of the Iterable trait, sorted by functionality.

Table 13–2 Important Methods of the Iterable Trait

[image: Images]

The Seq trait adds several methods to the Iterable trait. Table 13–3 shows the most important ones.

Table 13–3 Important Methods of the Seq Trait

[image: Images]

[image: Images] Note

These methods never mutate a collection. If their result is a collection, the type is of the same type as the original, or as close as possible to it. (With types such as Range and BitSet, it can happen that the result is a more general sequence or set.) This is sometimes called the “uniform return type” principle.

13.8 Mapping a Function

You often want to transform all elements of a collection. The map method applies a function to a collection and yields a collection of the results. For example, given a list of strings

val names = List("Peter", "Paul", "Mary")

you get a list of the uppercased strings as

names.map(_.toUpperCase) // List("PETER", "PAUL", "MARY")

This is exactly the same as

for (n <- names) yield n.toUpperCase

If the function yields a collection instead of a single value, you may want to concatenate all results. In that case, use flatMap. For example, consider

def ulcase(s: String) = Vector(s.toUpperCase, s.toLowerCase)

Then names.map(ulcase) is

List(Vector("PETER", "peter"), Vector("PAUL", "paul"), Vector("MARY", "mary"))

but names.flatMap(ulcase) is

List("PETER", "peter", "PAUL", "paul", "MARY", "mary")

[image: Images] Tip

If you use flatMap with a function that returns an Option, the resulting collection contains all values v for which the function returns Some(v).

For example, given a list of keys and a map, here is a list the matching values that are actually present:

val scores = Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

val keys = Array("Alice", "Cindy", "Eloïse")

keys.flatMap(k => scores.get(k)) // Array(10, 8)

[image: Images] Note

The map and flatMap methods are important because they are used for translating for expressions. For example, the expression

for (i <- 1 to 10) yield i * i

is translated to

(1 to 10).map(i => i * i)

and

for (i <- 1 to 10; j <- 1 to i) yield i * j

becomes

(1 to 10).flatMap(i => (1 to i).map(j => i * j))

Why flatMap? See Exercise 9 on page 206.

The mapInPlace method is the in-place equivalent of map. It applies to mutable collections, and replaces each element with the result of a function. For example, the following code changes all buffer elements to uppercase:

val buffer = ArrayBuffer("Peter", "Paul", "Mary")

buffer.mapInPlace(_.toUpperCase)

If you just want to apply a function for its side effect and don’t care about the function values, use foreach:

names.foreach(println)

The collect method works with partial functions—functions that may not be defined for all inputs. It yields a collection of all function values of the arguments on which it is defined. For example,

"-3+4".collect({ case '+' => 1 ; case '-' => -1 }) // Vector(-1, 1)

The groupBy method yields a map whose keys are the function values, and whose values are the collections of elements whose function value is the given key. For example,

val words = ...

val map = words.groupBy(_.substring(0, 1).toUpperCase)

builds a map that maps "A" to all words starting with A, and so on.

13.9 Reducing, Folding, and Scanning A3

The map method applies a unary function to all elements of a collection. The methods that we discuss in this section combine elements with a binary function. The call c.reduceLeft(op) applies op to successive elements, like this:

 .

 .

 .

 op

 / \

 op coll(3)

 / \

 op coll(2)

 / \

 coll(0) coll(1)

For example,

List(1, 7, 2, 9).reduceLeft(_ - _)

is

 -

 / \

 - 9

 / \

 - 2

 / \

 1 7

or

((1 - 7) - 2) - 9 = 1 - 7 - 2 - 9 = -17

The reduceRight method does the same, but it starts at the end of the collection. For example,

List(1, 7, 2, 9).reduceRight(_ - _)

is

1 - (7 - (2 - 9)) = 1 - 7 + 2 - 9 = -13

[image: Images] Note

Reducing assumes that the collection has at least one element. To avoid an exception for potentially empty collections, use reduceLeftOption and reduceRightOption.

Often, it is useful to start the computation with an initial element other than the initial element of a collection. The call coll.foldLeft(init)(op) computes

 .

 .

 .

 op

 / \

 op coll(2)

 / \

 op coll(1)

 / \

 init coll(0)

For example,

List(1, 7, 2, 9).foldLeft(0)(_ - _)

is

0 - 1 - 7 - 2 - 9 = -19

[image: Images] Note

The initial value and the operator are separate “curried” parameters so that Scala can use the type of the initial value for type inference in the operator. For example, in List(1, 7, 2, 9).foldLeft("")(_ + _), the initial value is a string, so the operator must be a function (String, Int) => String.

There is a foldRight variant as well, computing

 .

 .

 .

 op

 / \

coll(n-3) op

 / \

 coll(n-2) op

 / \

 coll(n-1) init

These examples don’t seem to be very useful. Of course, coll.reduceLeft(_ + _) or coll.foldLeft(0)(_ + _) computes the sum, but you can get that directly with coll.sum.

Folding is sometimes attractive as a replacement for a loop. Suppose, for example, we want to count the frequencies of the letters in a string. One way is to visit each letter and update a mutable map.

val freq = scala.collection.mutable.Map[Char, Int]()

for (c <- "Mississippi") freq(c) = freq.getOrElse(c, 0) + 1

// Now freq is Map('i' -> 4, 'M' -> 1, 's' -> 4, 'p' -> 2)

Here is another way of thinking about this process. At each step, combine the frequency map and the newly encountered letter, yielding a new frequency map. That’s a fold:

 .

 .

 .

 op

 / \

 op 's'

 / \

 op 'i'

 / \

 empty map 'M'

What is op? The left operand is the partially filled map, and the right operand is the new letter. The result is the augmented map. It becomes the input to the next call to op, and at the end, the result is a map with all counts. The code is

"Mississippi".foldLeft(Map[Char, Int]())((m, c) => m + (c -> (m.getOrElse(c, 0) + 1)))

Note that this is an immutable map. We compute a new map at each step.

[image: Images] Note

It is possible to replace any while loop with a fold. Build a data structure that combines all variables updated in the loop, and define an operation that implements one step through the loop. I am not saying that this is always a good idea, but you may find it interesting that loops and mutations can be eliminated in this way.

Finally, the scanLeft and scanRight methods combine folding and mapping. You get a collection of all intermediate results. For example,

(1 to 10).scanLeft(0)(_ + _)

yields all partial sums:

Vector(0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55)

13.10 Zipping

The methods of the preceding section apply an operation to adjacent elements in the same collection. Sometimes, you have two collections, and you want to combine corresponding elements. For example, suppose you have a list of product prices and corresponding quantities:

val prices = List(5.0, 20.0, 9.95)

val quantities = List(10, 2, 1)

The zip method lets you combine them into a list of pairs. For example,

prices.zip(quantities)

is a List[(Double, Int)]:

List[(Double, Int)] = List((5.0, 10), (20.0, 2), (9.95, 1))

The method is called “zip” because it combines the two collections like the teeth of a zipper.

Now it is easy to apply a function to each pair.

prices.zip(quantities).map(_ * _)

It is perhaps surprising that you can provide a function of type (Double, Int) => Double when the collection contains (Double, Int) pairs. Section 7, “,” on page 206 explores how this “tupling” works.

The result is a list of prices:

List(50.0, 40.0, 9.95)

The total price of all items is then

prices.zip(quantities).map(_ * _).sum

If one collection is shorter than the other, the result has as many pairs as the shorter collection. For example,

List(5.0, 20.0, 9.95).zip(List(10, 2))

is

List((5.0, 10), (20.0, 2))

The zipAll method lets you specify defaults for the shorter list:

List(5.0, 20.0, 9.95).zipAll(List(10, 2), 0.0, 1)

is

List((5.0, 10), (20.0, 2), (9.95, 1))

The zipWithIndex method returns a list of pairs where the second component is the index of each element. For example,

"Scala".zipWithIndex

is

Vector(('S', 0), ('c', 1), ('a', 2), ('l', 3), ('a', 4))

This can be useful if you want to compute the index of an element with a certain property. For example,

"Scala".zipWithIndex.max

is ('l', 3), giving you both the maximum and the position where it occurs.

13.11 Iterators

You can obtain an iterator from a collection with the iterator method. This isn’t as common as in Java or C++ because you can usually get what you need more easily with one of the methods from the preceding sections.

However, iterators are useful for collections that are expensive to construct fully. For example, Source.fromFile yields an iterator because it might not be efficient to read an entire file into memory. There are a few Iterable methods that yield an iterator, such as permutations, grouped or sliding.

When you have an iterator, you can iterate over the elements with the next and hasNext methods and stop when you have seen enough:

val iter = ... // some Iterator

var done = false

while !done && iter.hasNext do

 done = process(iter.next())

Be aware that the iterator operations move the iterator. There is no way to reset it to the start of the iteration.

If the stopping condition is simple, you can avoid the loop. The Iterator class has many methods that work identically to the methods on collections. In particular, all Iterable methods listed in Section 13.7, “Common Methods,” on page 193 are available, except for head, headOption, last, lastOption, tail, init, takeRight, and dropRight. After calling a method such as map, filter, count, sum, or even length, the iterator is at the end of the collection, and you can’t use it again. With other methods, such as find or take, the iterator is past the found element or the taken ones.

val result = iter.take(500).toList

val result2 = iter.takeWhile(isNice).toList // isNice is some function returning Boolean.

Sometimes, you want to be able to look at the next element before deciding whether to consume it. In that case, use the buffered method to turn an Iterator into a BufferedIterator. The head method yields the next element without advancing the iterator.

val iter = scala.io.Source.fromFile(filename).buffered

while iter.hasNext && iter.head == '#' do

 while iter.hasNext && iter.head != '\n' do

 iter.next

// Now iter points to the first line not starting with #

[image: Images] Tip

If you find it too tedious to work with an iterator, and it doesn’t produce a huge number of elements, just dump the elements into a collection by calling toSeq, toArray, toBuffer, toSet, or toMap to copy the values into a collection.

13.12 Lazy Lists A3

In the preceding section, you saw that an iterator is a “lazy” alternative to a collection. You get the elements as you need them. If you don’t need any more elements, you don’t pay for the expense of computing the remaining ones.

However, iterators are fragile. Each call to next mutates the iterator. Lazy lists offer an immutable alternative. A lazy list is an immutable list in which the elements are computed lazily—that is, only when you ask for them.

Here is a typical example:

def numsFrom(n: BigInt): LazyList[BigInt] = { log(n) ; n } #:: numsFrom(n + 1)

The #:: operator is like the :: operator for lists, but it constructs a lazy list.

You couldn’t do this with a regular list. You would get a stack overflow when the numsFrom function calls it self recursively. With a lazy list, the expressions to the left and right of #:: are only executed when needed.

When you call

val tenOrMore = numsFrom(10)

you get a lazy list that is displayed as

LazyList(<not computed>)

The elements are unevaluated, and the log shows nothing. If you call

tenOrMore.tail.tail.tail.head

the result is 13 and the log shows

10 11 12 13

The lazy list caches the evaluated head values. If you call

tenOrMore.tail.tail.tail.head

one more time, you get the result without another call to log.

When you apply a method to a lazy list that yields another list, such as map or filter, the result is also lazy. For example,

val squares = numsFrom(1).map(x => x * x)

yields

LazyList(<not computed>)

You have to call squares.head to force evaluation of the first entry.

If you want to get more than one answer, you can invoke take followed by force, which forces evaluation of all values. For example, squares.take(5).force

produces LazyList(1, 4, 9, 16, 25).

Of course, you don’t want to call

squares.force // No!

That call would attempt to evaluate all members of an infinite list, eventually causing an OutOfMemoryError.

You can construct a lazy list from an iterator. For example, the Source.getLines method returns an Iterator[String]. With that iterator, you can only visit the lines once. A lazy list caches the visited lines so you can revisit them:

val words = Source.fromFile("/usr/share/dict/words").getLines.to(LazyList)

You just saw that methods such as map and filter are computed on demand when applied to a lazy list. You can get a similar effect with other collections by applying the view method. For example,

val palindromicSquares = (1 to 1000000).view

 .map(x => x * x)

 .filter(x => x.toString == x.toString.reverse)

yields a collection that is unevaluated. When you call

palindromicSquares.take(10).mkString(",")

then enough squares are generated until ten palindromes have been found, and then the computation stops.

Unlike lazy lists, views do not cache any values. If you call palindromicSquares.take(10).mkString(",") again, the computation starts over.

13.13 Interoperability with Java Collections

At times you may need to use a Java collection, and you will likely miss the rich set of methods that you get with Scala collections. Conversely, you may want to build up a Scala collection and then pass it to Java code. The CollectionConverters object provides a set of conversions between Scala and Java collections.

For example,

import scala.jdk.CollectionConverters.*

Table 13–4 shows the conversions from Scala to Java collections.

Table 13–4 Conversions between Scala Collections and Java Collections

[image: Images]

Note that the conversions yield wrappers that let you use the target interface to access the original type. For example, if you use

val props = System.getProperties.asScala

then props is a wrapper whose methods call the methods of the underlying Java object. If you call

props("com.horstmann.scala") = "impatient"

then the wrapper calls put("com.horstmann.scala", "impatient") on the underlying Properties object.

To convert from a Scala collection to a Java stream (sequential or parallel), start with the statement

import scala.jdk.StreamConverters.*

Then use one of the following methods:

• asJavaSeqStream, asJavaParStream for sequences, maps, or strings

• asJavaParKeyStream, asJavaParValueStream for maps

• asJavaSeqCodePointStream, asJavaParCodePointStream, asJavaSeqCharStream, asJavaParCharStream for strings

If the element type is a primitive type, the resulting Java stream is a DoubleStream, IntStream, or LongStream.

To convert from a Java Stream to a Scala collection, use the toScala method and pass the collection type.

val lineBuffer = Files.lines(Path.of(filename)).toScala(Buffer)

Exercises

1. Write a function that, given a string, produces a map of the indexes of all characters. For example, indexes("Mississippi") should return a map associating 'M' with the set {0}, 'i' with the set {1, 4, 7, 10}, and so on. Use a mutable map of characters to mutable sets. How can you ensure that the set is sorted?

2. Repeat the preceding exercise, using an immutable map of characters to lists.

3. Write a function that removes every second element from a ListBuffer. Try it two ways. Call remove(i) for all even i starting at the end of the list. Copy every second element to a new list. Compare the performance.

4. Write a function that receives a collection of strings and a map from strings to integers. Return a collection of integers that are values of the map corresponding to one of the strings in the collection. For example, given Array("Tom", "Fred", "Harry") and Map("Tom" -> 3, "Dick" -> 4, "Harry" -> 5), return Array(3, 5). Hint: Use flatMap to combine the Option values returned by get.

5. Implement a function that works just like mkString, using reduceLeft.

6. Given a list of integers lst, what is lst.foldRight(List[Int]())(_ :: _)? lst.foldLeft(List[Int]())(_ :+ _)? How can you modify one of them to reverse the list?

7. In Section 13.10, “Zipping,” on page 200, it is not obvious why the expression prices.zip(quantities).map(_ * _) works. Shouldn’t that be prices.zip(quantities).map(t => t(0) * t(1)) After all, the parameter of map is a function that takes a single parameter. Verify this by passing a function

((Double, Int)) => Double

The Scala compiler converts the expression _ * _ to a function with a single tuple parameter. Explore in which contexts this happens. Does it work for function literals with explicit parameters (x: Double, y: Int) => x * y? Can you assign a literal to a variable of type ((Double, Int)) => Double?

Conversely, what happens when you pass a variable f of type (Double, Int) => Double, i.e. prices.zip(quantities).map(f)? How can you fix that? (Hint: tupled.) Does tupled work with function literals?

8. Write a function that turns an array of Double values into a two-dimensional array. Pass the number of columns as a parameter. For example, with Array(1, 2, 3, 4, 5, 6) and three columns, return Array(Array(1, 2, 3), Array(4, 5, 6)). Use the grouped method.

9. The Scala compiler transforms a for/yield expression

for (i <- 1 to 10; j <- 1 to i) yield i * j

to invocations of flatMap and map, like this:

(1 to 10).flatMap(i => (1 to i).map(j => i * j))

Explain the use of flatMap. Hint: What is (1 to i).map(j => i * j) when i is 1, 2, 3?

What happens when there are three generators in the for/yield expression?

10. Write a function that computes the sum of the non-None values in a List[Option[Int]]. Hint: flatten.

11. The method java.util.TimeZone.getAvailableIDs yields time zones such as Africa/Cairo and Asia/Chungking. Which continent has the most time zones? Hint: groupBy.

12. Produce a lazy list of random numbers. Hint: continually.

13. A fixed point of a function f is an argument x so that f(x) == x. Sometimes, it is possible to find fix points by starting with a value a and then computing f(a), f(f(a)), f(f(f(a))), and so on, until the sequence converges to a fix point x. I happen to know this from personal experience. Bored in math class, I kept hitting the cosine key of my calculator in radian mode, and pretty soon got a value for which cos(x) == x.

Produce a lazy list of iterated function applications and search for identical consecutive values. Hint: sliding(2).

Chapter 14

Pattern Matching

Topics in This Chapter A2

[image: Images] 14.1 A Better Switch

[image: Images] 14.2 Guards

[image: Images] 14.3 Variables in Patterns

[image: Images] 14.4 Type Patterns

[image: Images] 14.5 The Matchable Trait

[image: Images] 14.6 Matching Arrays, Lists, and Tuples

[image: Images] 14.7 Extractors

[image: Images] 14.8 Patterns in Variable Declarations

[image: Images] 14.9 Patterns in for Expressions

[image: Images] 14.10 Case Classes

[image: Images] 14.11 Matching Nested Structures

[image: Images] 14.12 Sealed Classes

[image: Images] 14.13 Parameterized Enumerations

[image: Images] 14.14 Partial Functions A3

[image: Images] 14.15 Infix Notation in case Clauses L2

[image: Images] Exercises

Pattern matching is a powerful mechanism that has a number of applications: switch statements, type inquiry, and “destructuring” (getting at the parts of complex expressions). This chapter covers the many forms of the match expression, as well as the case syntax in partial functions and for loops. You will learn about case classes that are particularly adapted for use with pattern matching.

The key points of this chapter are:

• The match expression is a better switch, without fall-through.

• If no pattern matches, a MatchError is thrown. Use the case _ pattern to avoid that.

• A pattern can include an arbitrary condition, called a guard.

• You can match on the type of an expression; prefer this over isInstanceOf/asInstanceOf.

• You can match patterns of arrays, tuples, and case classes, and bind parts of the pattern to variables.

• In a for case expression, nonmatches are silently skipped.

• A case class is a class for which the compiler automatically produces the methods that are needed for pattern matching.

• The common superclass in a case class hierarchy should be sealed.

• You can declare a sealed hierarchy of case classes as a parameterized enum.

• A sequence of case clauses gives rise to a partial function; that is, a function that is not defined for all arguments.

• When an unapply method yields a pair, you can use infix notation in the case clause.

14.1 A Better Switch

Here is the equivalent of the C-style switch statement in Scala:

val ch: Char = ...

var sign = 0

ch match

 case '+' => sign = 1

 case '-' => sign = -1

 case _ => sign = 0

The equivalent of default is the catch-all case _ pattern. It is a good idea to have such a catch-all pattern. If no pattern matches, a MatchError is thrown.

Unlike the switch statement, Scala pattern matching does not suffer from the “fall-through” problem. (In C and its derivatives, you must use explicit break statements to exit a switch at the end of each branch, or you will fall through to the next branch. This is annoying and error-prone.)

[image: Images] Note

In his entertaining book Deep C Secrets, Peter van der Linden reports a study of a large body of C code in which the fall-through behavior was unwanted in 97% of the cases.

Similar to if, match is an expression, not a statement. The preceding code can be simplified to

val sign = ch match

 case '+' => 1

 case '-' => -1

 case _ => 0

Use | to separate multiple alternatives:

prefix match

 case "0x" | "0X" => 16

 case "0" => 8

 case _ => 10

You can use the match statement with any types. For example:

color match

 case Color.RED => 0xff0000

 case Color.GREEN => 0xff00

 case Color.BLUE => 0xff

14.2 Guards

Suppose we want to extend our example to match all digits. In a C-style switch statement, you would simply add multiple case labels, for example case '0': case '1': ... case '9':. (Except that, of course, you can’t use ... but must write out all ten cases explicitly.) In Scala, you add a guard clause to a pattern, like this:

ch match

 case _ if Character.isDigit(ch) => number = 10 * number + Character.digit(ch, 10)

 case '+' => sign = 1

 case '-' => sign = -1

The guard clause can be any Boolean condition.

Patterns are always matched top-to-bottom. If the pattern with the guard clause doesn’t match, the case '+' pattern is attempted next.

14.3 Variables in Patterns

If the case keyword is followed by a variable name, then the match expression is assigned to that variable. For example:

str(i) match

 case '+' => sign = 1

 case '-' => sign = -1

 case d => number = number * 10 + Character.digit(d, 10)

You can think of case _ as a special case of this feature, where the variable name is _.

You can use the variable name in a guard:

str(i) match

 case '+' => sign = 1

 case '-' => sign = -1

 case d if Character.isDigit(d) => number = 10 * number + Character.digit(d, 10)

[image: Images] Caution

Unfortunately, variable patterns can conflict with constants, for example:

import scala.math.*

4 * a / (c * c) match

 case Pi => "a circle" // Pi equals 4 * a / (c * c)

 case q => f"not a circle, quotient $q%f" // q set to 4 * a / (c * c)

How does Scala know that Pi is a constant, not a variable? The rule is that a variable must start with a lowercase letter.

To match a name that starts with a lowercase letter, enclose it in backquotes:

import java.io.File.* // Imports java.io.File.separatorChar

ch match

 case `separatorChar` => '\\' // ch equals java.io.File.separatorChar

 case _ => ch

14.4 Type Patterns

You can match on the type of an expression, for example:

obj match

 case x: Int => x

 case s: String => Integer.parseInt(s)

 case _: BigInt => Int.MaxValue

 case _ => 0

In Scala, this form is preferred to using the isInstanceOf operator.

Note the variable names in the patterns. In the first pattern, the match is bound to x as an Int, and in the second pattern, it is bound to s as a String. No asInstanceOf casts are needed!

[image: Images] Caution

When you match against a type, you must supply a variable name. Otherwise, you match the object:

obj match

 case _: BigInt => Int.MaxValue // Matches any object of type BigInt

 case BigInt => -1 // Matches the BigInt object of type Class

Matches are attempted in the order of the case clauses. When the compiler detects that a clause is unreachable, a compile-time error results:

ex match

 case _: RuntimeException => "RTE"

 case _: NullPointerException => "NPE" // Error: unreachable case

 case _: IOException => "IOE"

 case _: Throwable => ""

Here, the second case clause is shadowed by the first one since NullPointerException is a subtype of RuntimeException.

Similarly, the following is an error:

obj match

 case s: String => Double.parseDouble(s)

 case null => Double.NaN

A null would match the first case.

In both examples, the remedy is to rearrange the cases and put the more specific ones first.

[image: Images] Caution

Matches occur at runtime, and generic types are erased in the Java virtual machine. For that reason, you cannot make a type match for a specific Map type.

case m: Map[String, Int] => ... // Don’t

You can match a generic map:

case m: Map[_, _] => ... // OK

However, arrays are not erased. You can match an Array[Int].

14.5 The Matchable Trait

Some types are not matchable. For example, the Scala library has a type IArray for immutable arrays:

val smallPrimes = IArray(2, 3, 5, 7, 11, 13, 17, 19)

The underlying type is a Java virtual machine array, so the following match, if allowed, would succeed at runtime, permitting mutation:

smallPrimes match

 case a: Array[Int] => a(1) = 4

This problem is solved as follows. Only values of types that extend the Matchable trait should participate in pattern matching. As you can see from the hierarchy diagram in Chapter 8, both AnyVal and AnyRef extend Matchable. Types such as IArray do not.

Depending on your Scala version and compiler flags, you may get a warning or error if the compiler cannot prove that the matched value is Matchable.

In such a situation, you may be able to call asInstanceOf[Matchable] to keep the compiler happy. This happens when you work with variables of type Any, since there are types extending Any but not Matchable. A typical example is this equals method:

class Bounded(var value: Int, to: Int) :

 ...

 override def equals(other: Any) =

 other match

 case that: Bounded => value == that.value && to == that.to

 case _ => false

With matchable checking enabled, the code does not compile. You need to use:

other.asInstanceOf[Matchable] match

Why the fuss? Consider these opaque types. (See Chapter 18 for more information about opaque types.)

opaque type Minute = Bounded

def Minute(m: Int) = Bounded(m, 60)

opaque type Second = Bounded

def Second(m: Int) = Bounded(m, 60)

At runtime, Minute(10) and Second(10) are both Bounded instances with the same state, so they will compare as equal.

Of course, the asInstanceOf cast won’t solve that problem, but at least one is now on alert and can search for alternate solutions, such as compiling with:

import scala.language.strictEquality

14.6 Matching Arrays, Lists, and Tuples

To match an array against its contents, use Array expressions in the patterns, like this:

arr match

 case Array(0) => "0"

 case Array(x, y) => s"$x $y"

 case Array(0, _*) => "0 ..."

 case _ => "something else"

The first pattern matches the array containing 0. The second pattern matches any array with two elements, and it binds the variables x and y to the elements. The third pattern matches any array starting with zero.

If you want to bind a _* match to a variable, add a * after the variable name:

case Array(0, rest*) => rest.min

The variable is set to a Seq containing the matched values.

You can match lists in the same way as you have just seen with arrays, with List expressions. Alternatively, you can use the :: operator:

lst match

 case 0 :: Nil => "0"

 case x :: y :: Nil => s"$x $y"

 case 0 :: tail => "0 ..."

 case _ => "something else"

With tuples, use the tuple notation in the pattern:

pair match

 case (0, _) => "0 ..."

 case (y, 0) => s"$y 0"

 case _ => "neither is 0"

You can also match against the head and tail:

longerTuple match

 case h *: t => s"head is $h, tail is $t"

 case _: EmptyTuple => "empty"

Note the EmptyTuple object. You can’t use () because that is the Unit literal.

Again, note how the variables are bound to parts of the list or tuple. Since these bindings give you easy access to parts of a complex structure, this operation is called destructuring.

[image: Images] Caution

The same warning applies as in Section 14.3, “Variables in Patterns,” on page 211. The variable names that you use in the pattern must start with a lowercase letter. In a match against case Array(X, Y), X and Y are deemed constants, not variables.

[image: Images] Note

A pattern can have alternatives:

pair match

 case (_, 0) | (0, _) => ... // OK, matches if one component is zero

However, you cannot use variables other than an underscore:

pair match

 case (x, 0) | (0, x) => ... // Error—cannot bind with alternatives

14.7 Extractors

In the preceding section, you have seen how patterns can match arrays, lists, and tuples. These capabilities are provided by extractors—objects with either an unapply or an unapplySeq method that extract values from the value that is being matched. The implementation of these methods is covered in Chapter 11. The unapply method extracts a fixed number of values, while unapplySeq extracts a sequence whose length can vary.

For example, consider the expression

arr match

 case Array(x, 0) => x

 case Array(_, rest*) => rest.min

 ...

The Array companion object is an extractor—it defines an unapplySeq method. That method is called with the expression that is being matched, not with what appear to be the parameters in the pattern. The call Array.unapplySeq(arr) results in a sequence of values, namely the values in the array. In the first case, the match succeeds if the array has length 2 and the second element is zero. In that case, the initial array element is assigned to x. No call Array(x, 0) ever happens.

Regular expressions provide a more interesting use of extractors. When a regular expression has groups, you can match each group with an extractor pattern. For example:

val pattern = "([0-9]+) ([a-z]+)".r

"99 bottles" match

 case pattern(quantity, item) => s"{ quantity: $quantity, item: $item }"

 // Sets quantity to "99", item to "bottles"

The call pattern.unapplySeq("99 bottles") yields a sequence of strings that match the groups. These are assigned to the variables quantity and item.

Note that here the extractor isn’t a companion object but a regular expression object.

The general syntax is

value match

 case extractor(pattern1, . . . , patternn) => ...

To see whether the case matches, one of the following calls is made:

extractor.unapply(value)

or

extractor.unapplySeq(value)

If the call indicates failure, the match fails.

Otherwise, the call yields extracted values that are matched against the patterns. If there aren’t enough values for the patterns, the match fails. If a pattern is a constant, it must match the corresponding value, or the match fails. If a pattern is a variable, the variable is assigned the corresponding value.

The rules for the allowed return types are a bit complex—see Chapter 11 for details. There is some latitude for indicating success and failure, and for producing the extracted values. The details are only relevant for implementors of extractors.

14.8 Patterns in Variable Declarations

In the preceding sections, you have patterns in match expressions. You can also use patterns for variable declarations. For example,

val (a, b) = (1, 2)

simultaneously defines a as 1 and b as 2. That is useful for functions that return a pair, for example:

val (q, r) = BigInt(10) /% 3

The /% method returns a pair containing the quotient and the remainder, which are captured in the variables q and r.

The same syntax works for extractor patterns. For example,

val Array(0, second, rest*) = arr

throws a MatchError if arr has fewer than two elements or if arr(0) is nonzero. Otherwise second becomes a(1) and rest is set to a Seq of the remaining elements.

[image: Images] Caution

The same warning applies as in Section 14.3, “Variables in Patterns,” on page 211. A variable pattern must start with a lowercase letter. In a declaration

val Array(Pi, x, _*) = arr

Pi is deemed a constant and x a variable. If the array has at least two elements and arr(0) == Pi, then x is set to arr(1).

[image: Images] Note

Technically,

val extractor(pattern1, ..., patternn) = value

is equivalent to

value match { extractor(pattern1, ..., patternn) => () }

As described in the preceding section, either extractor.unapply(value) or extractor.unapplySeq(value) is called. If the result indicates failure, a MatchError is thrown. Otherwise the patterns are matched against the extracted values.

You don’t even have to have variables on the left hand side. For example,

val 2 = b

is perfectly legal Scala code, provided b has been defined elsewhere. It is the same as

b match { case 2 => () }

In other words, it is equivalent to

if !(2 == b) then throw MatchError()

14.9 Patterns in for Expressions

You can use patterns with variables in for expressions. For each traversed value, the variables are bound. This makes it possible to traverse a map:

import scala.jdk.CollectionConverters.*

 // Converts Java Properties to a Scala map—just to get an interesting example

for (k, v) <- System.getProperties.asScala do

 println(s"$k -> $v")

For each pair in the map, k is bound to the key and v to the value.

If the left hand side of the <- doesn’t consist of variable patterns, the match can fail. In that situation, use for case instead of for. Then any match failures are skipped. For example, the following loop yields all keys with value "UTF-8", skipping over all others:

for case (k, "UTF-8") <- System.getProperties.asScala

 yield k

[image: Images] Note

If you use for instead of for case, future versions of Scala will throw a MatchError if a match fails.

You can also use a guard. Note the placement of the if clause:

for (k, v) <- System.getProperties.asScala if v == "UTF-8"

 yield k

14.10 Case Classes

Case classes are a special kind of classes that are optimized for use in pattern matching. In this example, we have two case classes that extend a regular (noncase) class:

abstract class Amount

case class Dollar(value: Double) extends Amount

case class Currency(value: Double, unit: String) extends Amount

You can also have case objects for singletons:

case object Nothing extends Amount

When we have an object of type Amount, we can use pattern matching to match the amount type and bind the property values to variables:

amt match

 case Dollar(v) => s"$$$v"

 case Currency(_, u) => s"Oh noes, I got $u"

 case Nothing => ""

[image: Images] Note

Use () with case class instances, no parentheses with case objects.

[image: Images] Note

The Option type has subtypes Some and None that are a case class and a case object. You can use pattern matching to analyze an Option value:

scores.get("Alice") match

 case Some(score) => println(score)

 case None => println("No score")

When you declare a case class, several things happen automatically.

• Each of the constructor parameters becomes a val unless it is explicitly declared as a var (which is not recommended).

• An apply method is provided for the companion object that lets you construct objects without new, such as Dollar(29.95) or Currency(29.95, "EUR").

• An unapply method is provided that makes pattern matching work

• Methods toString, equals, hashCode, and copy are generated unless you provide them.

Otherwise, case classes are just like any other classes. You can add methods and fields to them, extend them, and so on.

[image: Images] Caution

A case class cannot extend another case class. If you need multiple levels of inheritance to factor out common behavior of case classes, make only the leaves of the inheritance tree into case classes.

The copy method of a case class makes a new object with the same values as an existing one. For example,

val price = Currency(29.95, "EUR")

var discounted = price.copy()

By itself, that isn’t very useful—after all, a Currency object is immutable, and one can just share the object reference. However, you can use named parameters to modify some of the properties:

discounted = price.copy(value = 19.95) // Currency(19.95, "EUR")

or

discounted = price.copy(unit = "CHF") // Currency(29.95, "CHF")

[image: Images] Note

In type theory, a case class is called a product type because its value set is the “cartesian product” of the value sets of the constituent types. If the value sets are finite, the number of possible values that a case class can assume is indeed the product of the sizes of the constituent types. Consider for example:

enum Rank { case ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN,

 EIGHT, NINE, TEN, JACK, QUEEN, KING } // 13 values

enum Suit { case DIAMONDS, HEARTS, SPADES, CLUBS } // 4 values

case class Card(r: Rank, s: Suit) // 13 × 4 = 52 values

Every case class extends the Product trait and has methods _1, _2, and so on, to access the elements:

val price = Currency(100, "CHF")

price._1 // 100

price._2 // "CHF"

[image: Images] Note

The unapply method of a case class is trivial—it simply returns the argument:

Currency.unapply(price) == price

To see why this works, carefully study the advanced rules for unapply methods in Chapter 11. An unapply method doesn’t have to return an Option if the extraction always succeeds, and it can return any Product instance. The values are extracted with the methods _1, _2, and so on.

14.11 Matching Nested Structures

Case classes are often used for nested structures. Consider, for example, items that a store sells. Sometimes, we bundle items together for a discount.

abstract class Item

case class Article(description: String, price: Double) extends Item

case class Bundle(description: String, discount: Double, items: Item*) extends Item

Of course, you can specify nested objects:

val wish = Bundle("Father's day special", 20.0,

 Article("Scala for the Impatient", 39.95),

 Bundle("Anchor Distillery Sampler", 10.0,

 Article("Old Potrero Straight Rye Whiskey", 79.95),

 Article("Junípero Gin", 32.95)))

Patterns can match specific nestings, for example

case Bundle(_, _, Article(descr, _), _*) => ...

matches if the first item of the bundle is an Article and then binds descr to the description.

You can bind a nested value to a variable with the @ notation:

case Bundle(_, _, art @ Article(_, _), _*) => ...

Now art is the first article in the bundle.

As an application, here is a function that computes the price of an item:

def price(it: Item): Double = it match

 case Article(_, p) => p

 case Bundle(_, disc, its*) => its.map(price _).sum - disc

This example can enrage OO purists. Shouldn’t price be a method of the superclass? Shouldn’t each subclass override it? Isn’t polymorphism better than making a switch on each type?

In many situations, this is true. If someone comes up with another kind of Item, you’ll need to revisit all those match clauses. In such a situation, case classes are not the right solution.

On the other hand, if you know that there will be a limited number of cases, case classes work well. It is often more convenient to use match expressions than polymorphism. In the next section, you will see how to ensure that you know all cases.

14.12 Sealed Classes

When you use pattern matching with case classes, you would like the compiler to check that you exhausted all alternatives. To achieve this, declare the common superclass as sealed:

sealed abstract class Amount

case class Dollar(value: Double) extends Amount

case class Currency(value: Double, unit: String) extends Amount

All subclasses of a sealed class must be defined in the same file as the class itself. For example, if someone wants to add another class for euros,

case class Euro(value: Double) extends Amount

they must do so in the file in which Amount is declared.

When a class is sealed, all of its subclasses are known at compile time, enabling the compiler to check pattern clauses for completeness. It is a good idea for case classes to extend a sealed class or trait.

[image: Images] Note

The Option class is a sealed class with two subtypes: the case class Some and the case object None.

In a sealed class hiearchy, the compiler can check that a match is exhaustive:

scores.get("Alice") match

 case Some(score) => println(score)

 case None => println("No score")

If you omit the second case, the compiler warns you. You can suppress the warning with the @unchecked annotation:

(scores.get("Alice"): @unchecked) match

 case Some(score) => println(score)

14.13 Parameterized Enumerations

As an alternative to a sealed class hierarchy, you can use a parameterized enumeration:

enum Amount :

 case Dollar(value: Double)

 case Currency(value: Double, unit: String)

 case Nothing

This is similar to the enumerations that you saw in Chapter 6. However, the Dollar and Currency cases have parameters. They are translated into case classes. The third case becomes a case object.

Note that the case classes are nested inside the enum type. Users access them as Amount.Dollar, Amount.Currency, and Amount.None.

As with all enumerations, you can add methods to the abstract enum class, but not to the subclasses. You can also add methods to the companion object:

object Amount :

 def euros(value: Double) = if value == 0 then Nothing else Currency(value, "EUR")

Enumerations can have type parameters. For example, Option could have been defined as an enumeration:

enum Option[+T] :

 case Some(value: T)

 case None

def get = this match

 case Some(v) => v

 case None => throw NoSuchElementException()

The type parameters are automatically applied to each case class.

[image: Images] Note

In the uncommon case that the type parameter variances do not apply to all case classes, a case class can declare its own:

enum Producer[-T] :

 case Constant[U](value: U) extends Producer[U]

 case Generator[U](next: () => U) extends Producer[U]

[image: Images] Note

In type theory, the Amount type is said to be the sum of the three alternatives Currency, Dollar, and Nothing. Each of those is a product type, and Amount, being a a sum of products, is called an algebraic data type.

You don’t generally need to know about this terminology when working with case class hierarchies. However, in Chapter 20, you will see tools for analyzing sum and product types.

14.14 Partial Functions A3

A sequence of case clauses can be converted to a partial function—a function which may not be defined for all inputs. It is an instance of a class PartialFunction[P, R]. (P is the parameter type, R the return type.) That class has two methods: apply, which computes the function value from the matching pattern, and isDefinedAt, which returns true if the input matches at least one of the patterns.

For example,

val f: PartialFunction[Char, Int] =

 case '+' => 1

 case '-' => -1

f('-') // Calls f.apply('-'), returns -1

f.isDefinedAt('0') // false

f('0') // Throws MatchError

The collect method of the IterableOps trait applies a partial function to all elements where it is defined, and returns a sequence of the results.

"-3+4".collect({ case '+' => 1 ; case '-' => -1 }) // Vector(-1, 1)

The case sequence must be in a context where the compiler can infer the return type. This happens when you assign it to a typed variable or pass it as an argument.

[image: Images] Note

You can also convert a case sequence to a Function[P, R]. However, a function lacks the isDefinedAt method, so the user doesn’t know when it is safe to call. If the case clauses are exhaustive, then that is not a problem. Here, a Function[Char, Int] is passed to the map method:

"-3+4".map({ case '+' => 1 ; case '-' => -1; case _ => 0 })

// Vector(-1, 0, 1, 0)

A Seq[A] is a PartialFunction[Int, A], and a Map[K, V] is a PartialFunction[K, V]. For example, you can pass a map to collect:

val names = Array("Alice", "Bob", "Carmen")

val scores = Map("Alice" -> 10, "Carmen" -> 7)

names.collect(scores) // Yields Array(10, 7)

The lift method turns a PartialFunction[T, R] into a regular function with return type Option[R].

val f: PartialFunction[Char, Int] = { case '+' => 1 ; case '-' => -1 }

val g = f.lift // A function with type Char => Option[Int]

g('-') // Some(-1)

g('*') // None

In Chapter 9, you saw that the Regex.replaceSomeIn method requires a function String => Option[String] for the replacement. If you have a map (or some other PartialFunction), you can use lift to produce such a function:

val varPattern = """\{([0-9]+)}""".r

val message = "At {1}, there was {2} on {0}"

val vars = Map("{0}" -> "planet 7", "{1}" -> "12:30 pm",

 "{2}" -> "a disturbance of the force")

val result = varPattern.replaceSomeIn(message, m => vars.lift(m.matched))

Conversely, you can turn a function returning Option[R] into a partial function by calling Function.unlift.

[image: Images] Note

The catch clause of the try statement can be a partial function instead of a sequence of case clauses:

def tryCatch[T](block: => T, catcher: PartialFunction[Throwable, T]) =

 try

 block

 catch catcher

Then you can supply a custom catch clause like this:

val result = tryCatch(str.toInt, { case _: NumberFormatException => -1 })

14.15 Infix Notation in case Clauses L2

When an unapply method yields a pair, you can use infix notation in the case clause. In particular, you can use infix notation with a case class that has two parameters. For example:

price match

 case value Currency "CHF" => ... // Same as case Currency(value, "CHF")

Of course, that is a silly example. Here is an example from the Scala API. Every List object is either Nil or an instance of a case class cunningly named ::.

case class List[E]

As with every case class, the :: companion object automatically has an unapply method. Since there are two instance variables, unapply yields a pair and can be used in infix position. That is why you can use :: for destructuring:

lst match

 case h :: t => ... // Same as case ::(h, t), which calls ::.unapply(lst)

If an infix extractor ends in a colon, it associates right-to-left. For example,

case first :: second :: rest

means

case ::(first, ::(second, rest))

As another example, suppose you want to extract numerator and denominator from a Fraction object as case n / d. This is easily achieved. Simply define an object, cunningly named /, with an unapply method:

object Fraction :

 object / :

 def unapply(input: Fraction) = (input.num, input.den)

import Fraction./

The / object must be put inside the Fraction companion object to gain access to the private num and den instance variables.

Now you can write:

Fraction(3, 4) * Fraction(5, 6) match

 case n / d => n * 1.0 / d

Here, the first / is the Fraction./ object with the unapply method. The second / is the division operator.

Note that this example does not involve case classes. For infix extraction, the symbol between the two patterns can be any object with an unapply method.

Exercises

1. Your Java Development Kit distribution has the source code for much of the JDK in the src.zip file. Unzip and search for case labels (regular expression case [^:]+:). Then look for comments starting with // and containing [Ff]alls? thr to catch comments such as // Falls through or // just fall thru. Assuming the JDK programmers follow the Java code convention, which requires such a comment, what percentage of cases falls through?

2. Using pattern matching, write a function swap that receives a pair of integers and returns the pair with the components swapped.

3. Using pattern matching, write a function swap that swaps the first two elements of an array provided its length is at least two.

4. Add a case class Multiple that is a subclass of the Item class. For example, Multiple(10, Article("Blackwell Toaster", 29.95)) describes ten toasters. Of course, you should be able to handle any items, such as bundles or multiples, in the second argument. Extend the price function to handle this new case.

5. A List[T] is either Empty, or it is a NonEmpty with a head of type T and a tail that is again a List[T].

Implement such a list, both as case classes and as enum. In both cases, add a :: operator and length, append, and map methods.

6. One can use lists to model trees that store values only in the leaves. For example, the list ((3 8) 2 (5)) describes the tree

 /|\

 2

 / \ |

 3 8 5

However, some of the list elements are numbers and others are lists. In Scala, you cannot have heterogeneous lists, so you have to use a List[Any]. Write a leafSum function to compute the sum of all elements in the leaves, using pattern matching to differentiate between numbers and lists.

7. A better way of modeling such trees is with case classes. Let’s start with binary trees.

sealed abstract class BinaryTree

case class Leaf(value: Int) extends BinaryTree

case class Node(left: BinaryTree, right: BinaryTree) extends BinaryTree

Write a function to compute the sum of all elements in the leaves.

8. Extend the tree in the preceding exercise so that each node can have an arbitrary number of children, and reimplement the leafSum function. The tree in Exercise 5 should be expressible as

Node(Node(Leaf(3), Leaf(8)), Leaf(2), Node(Leaf(5)))

9. Extend the tree in the preceding exercise so that each nonleaf node stores an operator in addition to the child nodes. Then write a function eval that computes the value. For example, the tree

 +

 /|\

 * 2 -

 / \ |

 3 8 5

has value (3 × 8) + 2 + (–5) = 21.

Pay attention to the unary minus.

10. Complete the Producer class in Section 6.6, “Enumerations,” on page 85. Add a method get that produces another element; either a constant value or the result from invoking the generator function. Write a program that demonstrates producers of constant and random numbers. Include an example to show that Producer is contravariant. What happens if you simply declare the following, and why?

enum Producer[-T] :

 case Constant(value: T)

 case Generator(next: () => T)

Chapter 15

Annotations

Topics in This Chapter A2

[image: Images] 15.1 What Are Annotations?

[image: Images] 15.2 Annotation Placement

[image: Images] 15.3 Annotation Arguments

[image: Images] 15.4 Annotations for Java Features

[image: Images] 15.5 Annotations for Optimizations

[image: Images] Tail Recursion. Lazy Values.

[image: Images] 15.6 Annotations for Errors and Warnings

[image: Images] 15.7 Annotation Declarations

[image: Images] Exercises

Annotations let you add information to program items. This information can be processed by the compiler or by external tools. In this chapter, you will learn how to interoperate with Java annotations and how to use the annotations that are specific to Scala.

The key points of this chapter are:

• You can annotate classes, methods, fields, local variables, parameters, expressions, type parameters, and types.

• With expressions and types, the annotation follows the annotated item.

• Annotations have the form @Annotation, @Annotation(value), or @Annotation(name1 = value1, ...).

• You can use Java annotations in Scala code. They are retained in the class files.

• @volatile, @transient, and @native generate the equivalent Java modifiers.

• Use @throws to generate Java-compatible throws specifications.

• Use the @BeanProperty annotation to generate the JavaBeans getXxx/setXxx methods.

• The @tailrec annotation lets you verify that a recursive function uses tail call optimization.

• Use the @deprecated annotation to mark deprecated features.

15.1 What Are Annotations?

Annotations are tags that you insert into your source code so that some tools can process them. These tools can operate at the source level, or they can process the class files into which the compiler has placed your annotations.

Annotations are widely used in Java, for example by testing tools such as JUnit and enterprise technologies such as Jakarta EE.

Annotations start with an @. For example:

case class Person @JsonbCreator (

 @JsonbProperty val name: String,

 @JsonbProperty val age: Int)

You can use Java annotations with Scala classes. The annotations in the preceding example are from JSON-B, a Java framework for converting between JSON and Java classes. The framework has no knowledge of Scala. We will be using JSON-B for several examples, but you don’t have to be familiar with its details. If you are curious, read through the tutorial at https://javaee.github.io/jsonbspec/users-guide.html.

Scala provides its own annotations that are processed by the Scala compiler or a compiler plugin. (Implementing a compiler plugin is a nontrivial undertaking that is not covered in this book.)

You have seen the Scala @main annotation throughout the book for marking a program entry point.

Java annotations do not affect how the compiler translates source code into bytecode; they merely add data to the bytecode that can be harvested by external tools. In the example above, the constructor and its parameters are annotated in the class file.

In Scala, annotations can affect the compilation process. For example, the @main annotation causes the generation of a Java class with a public static void main(String[] args) method.

15.2 Annotation Placement

In Scala, you can place annotations before classes, methods, fields, local variables, parameters, and type parameters:

@deprecated class Sample : // Class

 @volatile var alive = true // Field

 @tailrec final def gcd(a: Int, b: Int): Int = if b == 0 then a else gcd(b, a % b) // Method

 def display(@nowarn message: String) = "" // Parameter

case class Box[@specialized T](value: T) // Type parameter

You can apply multiple annotations. The order doesn’t matter.

@BeanProperty @JsonbProperty val age: Int

When annotating the primary constructor, place the annotation after the class name:

class Person @JsonbCreator (...)

You can also annotate expressions. Add a colon followed by the annotation, for example:

(props.get(key): @unchecked) match { ... }

 // The expression props.get(key) is annotated

Annotations on a type are placed after the type, like this:

val country: String @Localized = java.util.Locale.getDefault().getDisplayCountry()

Here, the String type is annotated. The method returns a localized string.

15.3 Annotation Arguments

Annotations can have named arguments, such as

@JsonbProperty(value="p_name", nillable=true) var name: String = null

Most annotation arguments have defaults. For example, the nillable argument of the @JsonbProperty annotation has a default value of false, and the value attribute has a default of "".

When you provide only the argument named value, then value= is optional. For example:

@JsonbProperty("p_age") var age : Int = 0

 // The value argument is "p_age"

If the annotation has no arguments, the parentheses can be omitted:

@JsonbTransient val nice: Boolean = true

Arguments of Java annotations are restricted to the following types:

• Numeric or Boolean literals

• Strings

• Class literals

• Java enumerations

• Other annotations

• Arrays of the above (but not arrays of arrays)

Arguments of Scala annotations can be of arbitrary types.

15.4 Annotations for Java Features

The Scala library provides annotations for interoperating with Java. They are presented in the following sections.

15.4.1 Bean Properties

When you declare a public field in a class, Scala provides a getter and (for a var) a setter method. However, the names of these methods are not what Java tools expect. The JavaBeans specification (www.oracle.com/technetwork/articles/javaee/spec-136004.html) defines a Java property as a pair of getFoo/setFoo methods (or just a getFoo method for a read-only property). Many Java tools rely on this naming convention.

When you annotate a Scala field with @BeanProperty, then such methods are automatically generated. For example,

import scala.beans.BeanProperty

class Person :

@BeanProperty var name = ""

generates four methods:

1. name: String

2. name_=(newValue: String): Unit

3. getName(): String

4. setName(newValue: String): Unit

However, the getName and setName methods are only for the benefit of Java. The Scala compiler will refuse to invoke them. In Scala, read or write the name property.

The @BooleanBeanProperty annotation generates a getter with an is prefix for a Boolean method.

[image: Images] Note

If you define a field as a primary constructor parameter, and you want JavaBeans getters and setters, annotate the constructor parameter like this:

class Person(@BeanProperty var name: String)

15.4.2 Serialization

With serializable classes, you can use the @SerialVersionUID annotation to specify the serial version:

@SerialVersionUID(6157032470129070425L)

class Employee extends Person, Serializable :

The @transient annotation marks a field as transient:

@transient var lastLogin: ZonedDateTime = null

 // Becomes a transient field in the JVM

A transient field is not serialized.

[image: Images] Note

For more information about Java concepts such as volatile fields or serialization, see C. Horstmann, Core Java®,Twelfth Edition (Prentice Hall, 2022).

15.4.3 Checked Exceptions

Unlike Scala, the Java compiler tracks checked exceptions. If you call a Scala method from Java code, its signature should include the checked exceptions that can be thrown. Use the @throws annotation to generate the correct signature. For example,

@throws(classOf[IOException]) def save(filename: String) = ...

The Java signature is

void save(String filename) throws IOException

Without the @throws annotation, the Java code would not be able to catch the exception.

try { // This is Java

 fred.save("/etc/fred.ser");

} catch (IOException ex) {

 System.out.println("Error saving: " + ex.getMessage());

}

The Java compiler needs to know that the save method can throw an IOException, or it will refuse to catch it.

15.4.4 Variable Arguments

The @varargs annotation lets you call a Scala variable-argument method from Java. By default, if you supply a method such as

def process(args: String*) = ...

the Scala compiler turns the variable argument into a sequence parameter:

def process(args: Seq[String])

That method would be very cumbersome to call in Java. If you add @varargs,

@varargs def process(args: String*) = ...

then a Java method

void process(String... args) // Java bridge method

is generated that wraps the args array into a Seq and calls the Scala method.

15.4.5 Java Modifiers

Scala uses annotations instead of modifier keywords for some of the less commonly used Java features.

The @volatile annotation marks a field as volatile:

@volatile var done = false // Becomes a volatile field in the JVM

A volatile field can be updated in multiple threads.

The @native annotation marks methods that are implemented in C or C++ code. It is the analog of the native modifier in Java.

@native def win32RegKeys(root: Int, path: String): Array[String]

15.5 Annotations for Optimizations

Several annotations in the Scala library let you control compiler optimizations. They are discussed in the following sections.

15.5.1 Tail Recursion

A recursive call can sometimes be turned into a loop, which conserves stack space. This is important in functional programming where it is common to write recursive methods for traversing collections.

Consider this method that computes the sum of a sequence of integers using recursion:

object Util :

 def sum(xs: Seq[Int]): BigInt =

 if (xs.isEmpty) BigInt(0) else xs.head + sum(xs.tail)

 ...

This method cannot be optimized because the last step of the computation is addition, not the recursive call. But a slight transformation can be optimized:

def sum2(xs: Seq[Int], partial: BigInt): BigInt =

 if (xs.isEmpty) partial else sum2(xs.tail, xs.head + partial)

The partial sum is passed as a parameter; call this method as sum2(xs, 0). Since the last step of the computation is a recursive call to the same method, it can be transformed into a loop to the top of the method. The Scala compiler auto-matically applies the “tail recursion” optimization to the second method. If you try

Util.sum(1 to 1000000)

you will get a stack overflow error (at least with the default stack size of the JVM), but

Util.sum2(1 to 1000000, 0)

returns the sum 500000500000.

Even though the Scala compiler will try to use tail recursion optimization, it is sometimes blocked from doing so for nonobvious reasons. If you rely on the compiler to remove the recursion, you should annotate your method with @tailrec. Then, if the compiler cannot apply the optimization, it will report an error.

For example, suppose the method is in a class instead of an object:

class Util :

 @tailrec def sum3(xs: Seq[Int], partial: BigInt): BigInt =

 if (xs.isEmpty) partial else sum3(xs.tail, xs.head + partial)

 ...

Now the program fails with an error message "could not optimize @tailrec annotated method sum2: it is neither private nor final so can be overridden". In this situation, you can move the method into an object, or you can declare it as private or final.

[image: Images] Note

A more general mechanism for recursion elimination is “trampolining”. A trampoline implementation runs a loop that keeps calling functions. Each function returns the next function to be called. Tail recursion is a special case where each function returns itself. The more general mechanism allows for mutual calls—see the example that follows.

Scala has a utility object called TailCalls that makes it easy to implement a trampoline. The mutually recursive functions have return type TailRec[A] and return either done(result) or tailcall(expr) where expr is the next expression to be evaluatued. The expression returns a TailRec[A]. Here is a simple example:

import scala.util.control.TailCalls.*

def evenLength(xs: Seq[Int]): TailRec[Boolean] =

 if (xs.isEmpty) done(true) else tailcall(oddLength(xs.tail))

def oddLength(xs: Seq[Int]): TailRec[Boolean] =

 if (xs.isEmpty) done(false) else tailcall(evenLength(xs.tail))

To obtain the final result from the TailRec object, use the result method:

evenLength(1 to 1000000).result

15.5.2 Lazy Values

A lazy value is initialized when it is first accessed:

lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString.split("\n")

If you never use words, the file is not read in at all. If you use it multiple times, the file is only read with the first use.

Since it is possible for that first use to occur concurrently in multiple threads, each access of a lazy val invokes a method that acquires a lock.

If you know that you never have such a concurrent access, you can avoid the locking with the @threadUnsafe annotation:

@threadUnsafe lazy val words =

 scala.io.Source.fromFile("/usr/share/dict/words").mkString.split("\n")

15.6 Annotations for Errors and Warnings

If you mark a feature with the @deprecated annotation, the compiler generates a warning whenever the feature is used. The annotation has two optional arguments, message and since.

@deprecated(message = "Use factorial(n: BigInt) instead")

def factorial(n: Int): Int = ...

The @deprecatedName is applied to a parameter, and it specifies a former name for the parameter.

def display(message: String, @deprecatedName("sz") size: Int,

 font: String = "Sans") = ...

You can still call draw(sz = 12) but you will get a deprecation warning.

The @deprecatedInheritance and @deprecatedOverriding annotations generate warnings that inheriting from a class or overriding a method is now deprecated.

Some Scala features are deemed experimental. To access them, you need to enter “experimental scope” with an @experimental annotation:

@experimental @newMain def main(name: String, age: Int) =

 println(s"Hello $name, next year you'll be ${age + 1}")

The @unchecked annotation suppresses a warning that a match is not exhaustive. For example, suppose we know that a given list is never empty:

(lst: @unchecked) match

 case head :: tail => ...

The compiler won’t complain that there is no Nil case. Of course, if lst is Nil, an exception is thrown at runtime.

The @uncheckedVariance annotation suppresses a variance error message. For example, it would make sense for java.util.Comparator to be contravariant. If Student is a subtype of Person, then a Comparator[Person] can be used when a Comparator[Student] is required. However, Java generics have no variance. We can fix this with the @uncheckedVariance annotation:

trait Comparator[-T] extends

 java.util.Comparator[T @uncheckedVariance]

Finally, you can selectively hide warnings with the @nowarn annotation. For example, the stop method of the Java Thread class is deprecated. When you call

myThread.stop()

the compiler generates a deprecation warning. You can turn it off like this:

myThread.stop() : @nowarn

or

myThread.stop() : @nowarn("cat=deprecation") // Silences the deprecation category

[image: Images] Note

The optional argument of the @nowarn annotation can be any valid filter for the -Wconf compiler flag. Run the Scala command-line compiler with the -Wconf:help flag to get a summary of the filter syntax.

[image: Images] Tip

If you use the compiler flag -Wunused:nowarn, the compiler checks that each @nowarn annotation actually suppresses a warning message.

15.7 Annotation Declarations

I don’t expect that many readers of this book will feel the urge to implement their own Scala annotations. The main point of this section is to be able to decipher the declarations of the existing annotation classes.

An annotation must extend the Annotation trait. For example, the unchecked annotation is defined as follows:

final class unchecked extends scala.annotation.Annotation

An annotation extending StaticAnnotation persists in class files:

class deprecatedName(name: String, since: String) extends StaticAnnotation

A ConstantAnnotation can only be constructed with numbers, Boolean values, strings, enumerations, class literals, and arrays thereof. Here is an example:

class SerialVersionUID(value: Long) extends ConstantAnnotation

[image: Images] Caution

The annotations that Scala places in class files are in a different format than Java annotations and cannot be read by the Java virtual machine. If you want to implement a new Java annotation, you need to write the annotation class in Java.

Generally, an annotation belongs only to the expression, variable, field, method, class, or type to which it is applied. For example, the annotation

def display(@nowarn message: String) = ""

applies only to one element: the parameter variable message.

However, field definitions in Scala can give rise to multiple features in Java, all of which can potentially be annotated. For example, consider

class Person(@JsonbProperty @BeanProperty var name: String)

Here, there are six items that can be targets for the @JsonbProperty annotation:

• The constructor parameter

• The private instance field

• The accessor method name

• The mutator method name_=

• The bean accessor getName

• The bean mutator setName

By default, constructor parameter annotations are only applied to the parameter itself, and field annotations are only applied to the field. The meta-annotations @param, @field, @getter, @setter, @beanGetter, and @beanSetter cause an annotation to be attached elsewhere. For example, the @deprecated annotation is defined as:

@getter @setter @beanGetter @beanSetter

class deprecated(message: String = "", since: String = "")

 extends ConstantAnnotation

You can also apply these annotations in an ad-hoc fashion:

@(JsonbProperty @beanGetter @beanSetter) @BeanProperty var name: String = null

In this situation, the @JsonbProperty annotation is applied to the Java getName method.

Exercises

1. Using the Java JUnit library, write a class with test cases in Scala. Use the @Test annotation and a couple of other annotations of your choice.

2. Make an example class that shows every possible position of an annotation. Use @deprecated as your sample annotation.

3. Which annotations from the Scala library use one of the meta-annotations @param, @field, @getter, @setter, @beanGetter, or @beanSetter?

4. Write a Scala method sum with variable integer arguments that returns the sum of its arguments. Call it from Java.

5. Write a Scala method that returns a string containing all lines of a file. Call it from Java.

6. Write a Scala object with a volatile Boolean field. Have one thread sleep for some time, then set the field to true, print a message, and exit. Another thread will keep checking whether the field is true. If so, it prints a message and exits. If not, it sleeps for a short time and tries again. What happens if the variable is not volatile?

7. Make a class Student with read-write JavaBeans properties name (of type String) and id (of type Long). What methods are generated? (Use javap to check.) Can you call the JavaBeans getters and setters in Scala? Should you?

8. Consider these recursive functions for repeatedly applying a function to an initial value until a fix point is found (that is, a value x such that f(x) == x).

def fix(f: Double => Double)(x: Double): Double = val y = f(x)

 if (x == y) x

 else fix(f)(y)

def fixpath(f: Double => Double)(x: Double): List[Double] =

 val y = f(x)

 if (x == y) List()

 else y :: fixpath(f)(y)

The first function yields the fix point, the second the sequence of all intermediate values. For example, try out

fix(Math.cos)(0)

fixpath(Math.cos)(0)

Which is tail recursive? When not, can you provide an implementation that is?

9. Give an example to show that the tail recursion optimization is not valid when a method can be overridden.

10. Try finding an experimental feature in your Scala release and use it with the @experimental annotation.

11. In Scala 3.2, the @newMain experimental feature substantially improved on the command line parsing of its @main predecessor. Perhaps it is no longer experimental by the time you read this, and hopefully it has a nicer name. Use it to write a grep-like application that accepts on the command line a regular expression to search for, a file name, and flags for case sensitivity and inverting the match (that is, only printing non-matching lines).

12. Experiment with the @nowarn annotation and the filter syntax. Write some code that produces warnings and then turn them off with @nowarn and appropriate filters. What happens if you add @nowarn to an expression that doesn’t produce a warning and use the -Wunused:nowarn flag? Can you turn that warning off with another @nowarn?

Can you apply @nowarn to something other than expressions?

Chapter 16

Futures

Topics in This Chapter A2

[image: Images] 16.1 Running Tasks in the Future

[image: Images] 16.2 Waiting for Results

[image: Images] 16.3 The Try Class

[image: Images] 16.4 Callbacks

[image: Images] 16.5 Composing Future Tasks

[image: Images] 16.6 Other Future Transformations

[image: Images] 16.7 Methods in the Future Object

[image: Images] 16.8 Promises

[image: Images] 16.9 Execution Contexts

[image: Images] Exercises

Writing concurrent applications that work correctly and with high performance is very challenging. The traditional approach, in which concurrent tasks have side effects that mutate shared data, is tedious and error-prone. Scala encourages you to think of a computation in a functional way. A computation yields a value, sometime in the future. As long as the computations don’t have side effects, you can let them run concurrently and combine the results when they become available. In this chapter, you will see how to use the Future and Promise traits to organize such computations.

The key points of this chapter are:

• A block of code wrapped in a Future { ... } executes concurrently.

• A future succeeds with a result or fails with an exception.

• You can wait for a future to complete, but you don’t usually want to.

• You can use callbacks to get notified when a future completes, but that gets tedious when chaining callbacks.

• Use methods such as map/flatMap, or the equivalent for expressions, to compose futures.

• A promise has a future whose value can be set once.

• Pick an execution context that is suitable for the concurrent workload of your computation.

16.1 Running Tasks in the Future

The scala.concurrent.Future object can execute a block of code “in the future.”

import java.time.*

import scala.concurrent.*

given ExecutionContext = ExecutionContext.global

Future {

 Thread.sleep(10000)

 println(s"This is the future at ${LocalTime.now}")

}

println(s"This is the present at ${LocalTime.now}")

When running this code, a line similar to the following is printed:

This is the present at 13:01:19.400

About ten seconds later, a second line appears:

This is the future at 13:01:29.140

When you create a Future, its code is run on some thread. One could of course create a new thread for each task, but thread creation is not free. It is better to keep some pre-created threads around and use them to execute tasks as needed. A data structure that assigns tasks to threads is usually called a thread pool. In Java, the Executor interface describes such a data structure. Scala uses the ExecutionContext trait instead.

Each Future must be constructed with a reference to an ExecutionContext. The simplest way is to use this statement, which uses syntax from Chapter 19:

given ExecutionContext = ExecutionContext.global

Then the tasks execute on a global thread pool. This is fine for demos, but in a real program, you should make another choice if your tasks block. See Section 16.9, “Execution Contexts,” on page 258 for more information.

When you construct multiple futures, they can execute concurrently. For example, try running

Future { for (i <- 1 to 100) { print("A"); Thread.sleep(10) } }

Future { for (i <- 1 to 100) { print("B"); Thread.sleep(10) } }

You will get an output that looks somewhat like

ABABABABABABABABABABABABABABA...AABABBBABABABABABABABABBBBBBBBBBBBBBBBB

A future can—and normally will—have a result:

val f = Future {

 Thread.sleep(10000)

 42

}

When you evaluate f in the REPL immediately after the definition, you will get this output:

res12: scala.concurrent.Future[Int] = Future(<not completed>)

Wait ten seconds and try again:

res13: scala.concurrent.Future[Int] = Future(Success(42))

Alternatively, something bad may happen in the future:

val f2 = Future {

 if LocalTime.now.getMinute != 42 then

 throw Exception("not a good time")

 42

}

Unless the minute happens to be 42, the task terminates with an exception. In the REPL, you will see

res14: scala.concurrent.Future[Int] =

 Future(Failure(java.lang.Exception: not a good time))

Now you know what a Future is. It is an object that will give you a result (or failure) at some point in the future. In the next section, you will see one way of harvesting the result of a Future.

[image: Images] Note

The java.util.concurrent package has a Future interface that is much more limited than the Scala Future trait. A Scala future is equivalent to the CompletionStage interface in Java.

[image: Images] Tip

The Scala language imposes no restrictions on what you can do in concurrent tasks. However, you should stay away from computations with side effects. It is best if you don’t increment shared counters—even atomic ones. Don’t populate shared maps—even threadsafe ones. Instead, have each future compute a value. Then you can combine the computed values after all contributing futures have completed. That way, each value is only owned by one task at a time, and it is easy to reason about the correctness of the computation.

16.2 Waiting for Results

When you have a Future, you can use the isCompleted method to check whether it is completed. But of course you don’t want to wait for completion in a loop.

You can make a blocking call that waits for the result.

import scala.concurrent.duration.*

val f = Future { Thread.sleep(10000); 42 }

val result = Await.result(f, 10.seconds)

The call to Await.result blocks for ten seconds and then yields the result of the future.

The second argument of the Await.result method is a Duration object. Importing scala.concurrent.duration.* enables conversion methods from integers to Duration objects, called seconds, millis, and so on.

If the task is not ready by the allotted time, the Await.ready method throws a TimeoutException.

If the task throws an exception, it is rethrown in the call to Await.result. To avoid exceptions, you can call Await.ready and then get the result.

val f2 = Future {

 Thread.sleep((10000 * scala.math.random()).toLong)

 if scala.math.random() < 0.5 then throw Exception("Not your lucky day")

 42

}

val result2 = Await.ready(f2, 5.seconds).value

The Await.ready method yields its first parameter, and the value method of the Future class returns an Option[Try[T]]. It is None when the future is not completed and Some(t) when it is is. Here, t is an object of the Try class, which holds either the result or the exception that caused the task to fail. You will see how to look inside it in the next section.

[image: Images] Note

In practice, you won’t use the Await.result or Await.ready methods much. You run tasks concurrently when they are time-consuming and your program can do something more useful than waiting for the result. Section 16.4, “Callbacks,” on page 250 shows you how you can harvest the results without blocking.

[image: Images] Caution

In this section, we used the result and ready methods of the Await object. The Future trait also has result and ready methods, but you should not call them. If the execution context uses a small number of threads (which is the case for the default fork-join pool), you don’t want them all to block. Unlike the Future methods, the Await methods notify the execution context so that it can adjust the pooled threads.

[image: Images] Note

Not all exceptions that occur during execution of the future are stored in the result. Virtual machine errors and the InterruptedException are allowed to propagate in the usual way.

16.3 The Try Class

A Try[T] instance is either a Success(v), where v is a value of type T or a Failure(ex), where ex is a Throwable. One way of processing it is with a match statement.

t match

 case Success(v) => println(s"The answer is $v")

 case Failure(ex) => println(ex.getMessage)

Alternatively, you can use the isSuccess or isFailure methods to find out whether the Try object represents success or failure. In the case of success, you can obtain the value with the get method:

if t.isSuccess then println(s"The answer is ${t.get}")

To get the exception in case of failure, first apply the failed method which turns the failed Try[T] object into a Try[Throwable] wrapping the exception. Then call get to get the exception object.

if t.isFailure then println(t.failed.get.getMessage)

You can also turn a Try object into an Option with the toOption method if you want to pass it on to a method that expects an option. This turns Success into Some and Failure into None.

To construct a Try object, call Try(block) with some block of code. For example,

val t = Try(str.toInt)

is either a Success object with the parsed integer, or a Failure wrapping a NumberFormatException.

There are several methods for composing and transforming Try objects. However, analogous methods exist for futures, where they are more commonly used. You will see how to work with multiple futures in Section 16.5, “Composing Future Tasks,” on page 250. At the end of that section, you will see how those techniques apply to Try objects.

16.4 Callbacks

As already mentioned, one does not usually use a blocking wait to get the result of a future. For better performance, the future should report its result to a callback function.

This is easy to arrange with the onComplete method.

f.onComplete(t => ...)

When the future has completed, either successfully or with a failure, it calls the given function with a Try object.

You can then react to the success or failure, for example by passing a match function to the onComplete method.

val f = Future {

 Thread.sleep(1000)

 if scala.math.random() < 0.5 then throw Exception("Not your lucky day")

 42

}

f.onComplete {

 case Success(v) => println(s"The answer is $v")

 case Failure(ex) => println(ex.getMessage)

}

By using a callback, we avoid blocking. Unfortunately, we now have another problem. In all likelihood, the long computation in one Future task will be followed by another computation, and another. It is possible to nest callbacks within callbacks, but it is profoundly unpleasant. (This technique is sometimes called “callback hell”.)

A better approach is to think of futures as entities that can be composed, similar to functions. You compose two functions by calling the first one, then passing its result to the second one. In the next section, you will see how to do the same with futures.

16.5 Composing Future Tasks

Suppose we need to get some information from two web services and then combine the two. Each task is long-running and should be executed in a Future. It is possible to link them together with callbacks:

val future1 = Future { getData1() }

val future2 = Future { getData2() }

future1 onComplete {

 case Success(n1) =>

 future2 onComplete {

 case Success(n2) => {

 val n = n1 + n2

 println(s"Sum: $n")

 }

 case Failure(ex) => ex.printStackTrace()

 }

 case Failure(ex) => ex.printStackTrace()

}

Even though the callbacks are ordered sequentially, the tasks run concurrently. Each task starts after the Future.apply method executes or soon afterwards. We don’t know which of future1 and future2 completes first, and it doesn’t matter. We can’t process the result until both tasks complete. Once future1 completes, its completion handler registers a completion handler on future2. If future2 has already completed, the second handler is called right away. Otherwise, it is called when future2 finally completes.

Even though this chaining of the futures works, it looks very messy, and it will look worse with each additional level of processing.

Instead of nesting callbacks, we will use an approach that you already know from working with Scala collections. Think of a Future as a collection with (hopefully, eventually) one element. You know how to transform the values of a collection—with map:

val future1 = Future { getData1() }

val combined = future1.map(n1 => n1 + getData2())

Here future1 is a Future[Int]—a collection of (hopefully, eventually) one value. We map a function Int => Int and get another Future[Int]—a collection of (hopefully, eventually) one integer.

But wait—that’s not quite the same as in the callback code. The call to getData2 is running after getData1, not concurrently. Let’s fix that with a second map:

val future1 = Future { getData1() }

val future2 = Future { getData2() }

val combined = future1.map(n1 => future2.map(n2 => n1 + n2))

When future1 and future2 have delivered their results, the sum is computed.

Unfortunately, now combined is a Future[Future[Int]], which isn’t so good. That’s what flatMap is for:

val combined = future1.flatMap(n1 => future2.map(n2 => n1 + n2))

This looks much nicer when you use a for expression instead of chaining flatMap and map:

val combined = for n1 <- future1; n2 <- future2 yield n1 + n2

This is exactly the same code since for expressions are translated to chains of map and flatMap.

You can also apply guards in the for expression:

val combined =

 for n1 <- future1; n2 <- future2 if n1 != n2 yield n1 + n2

If the guard fails, the computation fails with a NoSuchElementException.

What if something goes wrong? The map and flatMap implementations take care of all that. As soon as one of the tasks fails, the entire pipeline fails, and the exception is captured. In contrast, when you manually combine callbacks, you have to deal with failure at every step.

So far, you have seen how to run two tasks concurrently. Sometimes, you need one task to run after another. A Future starts execution immediately when it is created. To delay the creation, use functions.

val future1 = Future { getData1() }

def future2 = Future { getData2() } // def, not val

val combined = for (n1 <- future1; n2 <- future2) yield n1 + n2

Now future2 is only evaluated when future1 has completed.

It doesn’t matter whether you use val or def for future1. If you use def, its creation is slightly delayed to the start of the for expression.

This is particularly useful if the second step depends on the output of the first:

def future1 = Future { getData() }

def future2(arg: Int) = Future { getMoreData(arg) }

val combined = for (n1 <- future1; n2 <- future2(n1)) yield n1 + n2

[image: Images] Note

Like the Future trait, the Try class from Section 16.3, “The Try Class,” on page 249 has map and flatMap methods.A Try[T] is a collection of, hopefully, one element. It is just like a Future[T], except you don’t have to wait. You can apply map with a function that changes that one element, or flatMap if you have Try-valued function and want to flatten the result. And you can use for expressions. For example, here is how to compute the sum of two function calls that might fail:

def readInt(prompt: String) = Try(StdIn.readLine(s"$prompt: ").toInt)

val combined =

 for (n1 <- readInt("n1"); n2 <- readInt("n2")) yield n1 + n2

In this way, you can compose Try-valued computations and you don’t need to deal with the boring part of error handling.

16.6 Other Future Transformations

The map and flatMap methods that you saw in the preceding section are the most fundamental transformation of Future objects.

Table 16–1 shows several ways of applying functions to the contents of a future that differ in subtle details.

The foreach method works exactly like it does for collections, applying a method for its side effect. The method is applied to the single value in the future. It is convenient for harvesting the answer when it materializes.

val combined = for (n1 <- future1; n2 <- future2) yield n1 + n2

combined.foreach(n => println(s"Sum: $n"))

Table 16–1 Transformations on a Future[T] with success value v or exception ex

[image: Images]

The recover method accepts a partial function that can turn an exception into a successful result. Consider this call:

val f = Future { persist(data) } recover { case e: SQLException => 0 }

If a SQLException occurs, the future succeeds with result 0.

The fallbackTo method provides a different recovery mechanism. When you call f.fallbackTo(f2), then f2 is executed if f fails, and its value becomes the value of the future. However, f2 cannot inspect the reason for the failure.

The failed method turns a failed Future[T] into a successful Future[Throwable], just like the Try.failed method. You can retrieve the failure in a for expression like this:

val f = Future { persist(data) }

for v <- f do println(s"Succeeded with $v")

for ex <- f.failed do println(s"Failed with $ex")

Finally, you can zip two futures together. The call f1.zip(f2) yields a future whose result is a pair (v, w) if v was the result of f1 and w the result of f2, or an exception if either f1 or f2 failed. (If both fail, the exception of f1 is reported.)

The zipWith method is similar, but it takes a method to combine the two results instead of returning a pair. For example, here is another way of obtaining the sum of two computations:

val future1 = Future { getData1() }

val future2 = Future { getData2() }

val combined = future1.zipWith(future2)(_ + _)

16.7 Methods in the Future Object

The Future companion object contains useful methods for working on collections of futures.

Suppose that, as you are computing a result, you organize the work so that you can concurrently work on different parts. For example, each part might be a subsequence of the inputs. Make a future for each part:

val futures = parts.map(part => Future { process(part) })

Now you have a collection of futures. Often, you want to combine the results. By using the Future.sequence method, you can get a collection of all results for further processing:

val result = Future.sequence(futures);

Note that the call doesn’t block—it gives you a future to a collection. For example, assume futures is a Seq[Future[T]]. Then the result is a Future[Seq[T]]. When the results for all elements of futures are available, the result future will complete with a sequence of the results.

If any of the futures fail, then the resulting future fails as well with the exception of the leftmost failed future. If multiple futures fail, you don’t get to see the remaining failures.

The traverse method combines the map and sequence steps. Instead of

val futures = parts.map(p => Future { process(p) })

val result = Future.sequence(futures);

you can call

val result = Future.traverse(parts)(p => Future { process(p) })

The function in the second curried argument is applied to each element of parts. You get a future to a collection of all results.

There are reduceLeft and foldLeft operations on iterables of futures. You supply an operation that combines the results of all futures as they become available. For example, here is how you can compute the sum of the results:

val result = Future.reduceLeft(futures)(_ + _)

 // Yields a future to the sum of the results of all futures

So far, we have collected the results from all futures. Suppose you are willing to accept a result from any of the parts. Then call

val result = Future.firstCompletedOf(futures)

You get a future that, when it completes, has the result or failure of the first completed element of futures.

The find method is similar, but you also supply a predicate.

val result = Future.find(futures)(predicate)

 // Yields a Future[Option[T]]

You get a future that, when it completes successfully, yields Some(r), where r is the result of one of the given futures that fulfills the predicate. Failed futures are ignored. If all futures complete but none yields a result that matches the predicate, then find returns None. Note that the predicate parameter has type Option[T].

[image: Images] Caution

A potential problem with firstCompletedOf and find is that the other computations keep on going even when the result has been determined. Scala futures do not have a mechanism for cancellation.

The Future.delegate method runs a Future-producing function and flattens the result:

def future1 = Future { getData() } // Note def, not val

val result = Future.delegate(future1) // A Future[T], not a Future[Future[T]]

Finally, the Future object provides convenience methods for generating simple futures:

• Future.successful(r) is an already completed future with result r.

• Future.failed(e) is an already completed future with exception e.

• Future.fromTry(t) is an already completed future with the result or exception given in the Try object t.

• Future.unit is an already completed future with Unit result.

• Future.never is a future that never completes.

16.8 Promises

A Future object is read-only. The result of the future is set implicitly when its task has completed or failed. It cannot be set explicitly.

As a consumer of a Future, you would never want to set the result. The point of a Future is to process a result once it is ready.

However, if you produce a Future for others to consume, the task mechanism only works for synchronous computations. If you use an asynchronous API, you are called back when the result is available. That’s the point where you want to set the result and complete the Future. You use a Promise to make that work.

Calling success on a promise sets the result. Alternatively, you can call failure with an exception to make the promise fail. As soon as one of these methods is called, the associated future is completed, and neither method can be called again. (An IllegalStateException is thrown otherwise.)

Here is a typical work flow:

def computeAnswer(arg: String) = {

 val p = Promise[String]()

 def onSuccess(result: String) = p.success(result)

 def onFailure(ex: Throwable) = p.failure(ex)

 startAsyncWork(arg, onSuccess, onFailure)

 p.future

}

Calling future on a promise yields the associated Future object. Note that the method returns the Future right away, immediately after starting the work that will eventually yield the result.

From the point of view of the consumer (that is, the caller of the computeAnswer method), there is no difference between a Future that was constructed with a task function and one that was produced from a Promise. Either way, the consumer gets the result when it is ready.

The producer, however, has more flexibility when using a Promise. For example, multiple tasks can work concurrently to fulfill a single promise. When one of the tasks has a result, it calls trySuccess on the promise. Unlike the success method, that method accepts the result and returns true if the promise has not yet completed; otherwise it returns false and ignores the result.

val p = Promise[String]()

Future {

 val result = workHard(arg)

 p.trySuccess(result)

}

Future {

 val result = workSmart(arg)

 p.trySuccess(result)

}

The promise is completed by the first task that manages to produce the result. With this approach, the tasks might want to periodically call p.isCompleted to check whether they should continue.

[image: Images] Note

Scala promises are equivalent to the CompletableFuture class in Java 8.

16.9 Execution Contexts

By default, Scala futures are executed on the global fork-join pool. That works well for computationally intensive tasks. However, the fork-join pool only manages a small number of threads (by default, equal to the number of cores of all processors). This is a problem when tasks have to wait, for example when communicating with a remote resource. A program could exhaust all available threads, waiting for results.

You can notify the execution context that you are about to block, by placing the blocking code inside blocking { ... }:

val f = Future {

 val url = "https://horstmann.com/index.html"

 blocking {

 val contents = Source.fromURL(url).mkString

 if contents.length < 300

 then contents

 else contents.substring(0, 300) + "…"

 }

}

The execution context may then increase the number of threads. The fork-join pool does exactly that, but it isn’t designed for perform well for many blocking threads. If you do input/output or connect to databases, you are better off using a different thread pool. The Executors class from the Java concurrency library gives you several choices. A cached thread pool works well for I/O intensive workloads. You can pass it explicitly to the Future.apply method, or you can set it as the given execution context:

val pool = Executors.newCachedThreadPool()

given ExecutionContext = ExecutionContext.fromExecutor(pool)

Now this pool is used by all futures where the given declaration is in scope. (See Chapter 19 for more information about given declarations.)

Exercises

1. Consider the expression

for

 n1 <- Future { Thread.sleep(1000) ; 2 }

 n2 <- Future { Thread.sleep(1000); 40 }

do

 println(n1 + n2)

How is the expression translated to map and flatMap calls? Are the two futures executed concurrently or one after the other? In which thread does the call to println occur?

2. Write a function doInOrder that, given two functions f: T => Future[U] and g: U => Future[V], produces a function T => Future[V] that, for a given t, eventually yields g(f(t)).

3. Repeat the preceding exercise for any sequence of functions of type T => Future[T].

4. Write a function doTogether that, given two functions f: T => Future[U] and g: U => Future[V], produces a function T => Future[(U, V)], running the two computations in parallel and, for a given t, eventually yielding (f(t), g(t)).

5. Write a function that receives a sequence of futures and returns a future that eventually yields a sequence of all results.

6. Write a method

Future[T] repeat(action: => T, until: T => Boolean)

that asynchronously repeats the action until it produces a value that is accepted by the until predicate, which should also run asynchronously. Test with a function that reads a password from the console, and a function that simulates a validity check by sleeping for a second and then checking that the password is "secret". Hint: Use recursion.

7. Write a program that counts the prime numbers between 1 and n, as reported by BigInt.isProbablePrime. Divide the interval into p parts, where p is the number of available processors. Count the primes in each part in concurrent futures and combine the results.

8. Write a program that asks the user for a URL, reads the web page at that URL, and displays all the hyperlinks. Use a separate Future for each of these three steps.

9. Write a program that asks the user for a URL, reads the web page at that URL, finds all the hyperlinks, visits each of them concurrently, and locates the Server HTTP header for each of them. Finally, print a table of which servers were found how often. The futures that visit each page should return the header.

10. Change the preceding exercise where the futures that visit each header update a shared Java ConcurrentHashMap or Scala TrieMap. This isn’t as easy as it sounds. A threadsafe data structure is safe in the sense that you cannot corrupt its implementation, but you have to make sure that sequences of reads and updates are atomic.

11. In the preceding exercise, you updated a mutable Map[URL, String]. Consider what happens when two threads concurrently query for the same key whose result is not yet present. Then both threads expend effort computing the same value. Avoid this problem by using a Map[URL, Future[String]] instead.

12. Using futures, run four tasks that each sleep for ten seconds and then print the current time. If you have a reasonably modern computer, it is very likely that it reports four available processors to the JVM, and the futures should all complete at around the same time. Now repeat with forty tasks. What happens? Why? Replace the execution context with a cached thread pool. What happens now? (Be careful to define the futures after declaring the given execution context.)

13. Using Swing or JavaFX, implement a function that returns a future for a button click. Use a promise to set the value to the button label when the button is clicked. Fail the promise when a timeout has expired.

14. Write a method that, given a URL, locates all hyperlinks, makes a promise for each of them, starts a task in which it will eventually fulfill all promises, and returns a sequence of futures for the promises. Why would it not be a good idea to return a sequence of promises?

15. Use a promise for implementing cancellation. Given a range of big integers, split the range into subranges that you concurrently search for palindromic primes. When such a prime is found, set it as the value of the future. All tasks should periodically check whether the promise is completed, in which case they should terminate.

Chapter 17

Type Parameters

Topics in This Chapter L2

[image: Images] 17.1 Generic Classes

[image: Images] 17.2 Generic Functions

[image: Images] 17.3 Bounds for Type Variables

[image: Images] 17.4 Context Bounds

[image: Images] 17.5 The ClassTag Context Bound

[image: Images] 17.6 Multiple Bounds

[image: Images] 17.7 Type Constraints L3

[image: Images] 17.8 Variance

[image: Images] 17.9 Co- and Contravariant Positions

[image: Images] 17.10 Objects Can’t Be Generic

[image: Images] 17.11 Wildcards

[image: Images] 17.12 Polymorphic Functions

[image: Images] Exercises

In Scala, you can use type parameters to implement classes and functions that work with multiple types. For example, an Array[T] stores elements of an arbitrary type T. The basic idea is very simple, but the details can get tricky. Sometimes, you need to place restrictions on the type. For example, to sort elements, T must provide an ordering. Furthermore, if the parameter type varies, what should happen with the parameterized type? For example, can you pass an Array[String] to a function that expects an Array[Any]? In Scala, you specify how your types should vary depending on their parameters.

The key points of this chapter are:

• Classes, traits, methods, and functions can have type parameters.

• Place the type parameters after the name, enclosed in square brackets.

• Type bounds have the form T <: UpperBound, T >: LowerBound, T : ContextBound.

• You can restrict a method with a type constraint such as (given ev: T <:< UpperBound).

• Use +T (covariance) to indicate that a generic type’s subtype relationship is in the same direction as the parameter T, or -T (contravariance) to indicate the reverse direction.

• Covariance is appropriate for parameters that denote outputs, such as elements in an immutable collection.

• Contravariance is appropriate for parameters that denote inputs, such as function arguments.

17.1 Generic Classes

As in Java or C++, classes and traits can have type parameters. In Scala, you use square brackets for type parameters, for example: class Pair[T, S](val first: T, val second: S)

This defines a class with two type parameters T and S. You use the type parameters in the class definition to define the types of variables, method parameters, and return values.

A class with one or more type parameters is generic. If you substitute actual types for the type parameters, you get an ordinary class, such as Pair[Int, String].

Pleasantly, Scala attempts to infer the actual types from the construction parameters:

val p = Pair(42, "String") // It’s a Pair[Int, String]

You can also specify the types yourself:

val p2 = Pair[Any, Any](42, "String")

[image: Images] Note

Of course, Scala has a pair type (T, S), so there is no actual need for a Pair[T, S] class. However, this class and its variations provide simple and convenient examples for discussing the finer points of type parameters.

[image: Images] Note

You can write any generic type with two type parameters in infix notation, such as Double Map String instead of Map[Double, String].

If you have such a type, you can annotate it as @showAsInfix to modify how it is displayed in compiler and REPL messages. For example, if you define

@showAsInfix class x[T, U](val first: T, val second: U)

then the type x[String, Int] is displayed as String x Int.

17.2 Generic Functions

Functions and methods can also have type parameters. Here is a simple example:

def getMiddle[T](a: Array[T]) = a(a.length / 2)

As with generic classes, you place the type parameter after the name.

Scala infers the actual types from the arguments in the call.

getMiddle(Array("Mary", "had", "a", "little", "lamb")) // Calls getMiddle[String]

If you need to, you can specify the type:

val f = getMiddle[String] // The function, saved in f

17.3 Bounds for Type Variables

Sometimes, you need to place restrictions on type variables. Consider a generic Pair where both components have the same type, like this:

class Pair[T](val first: T, val second: T)

Now we want to add a method that produces the smaller value:

class Pair[T](val first: T, val second: T) :

 def smaller = if first.compareTo(second) < 0 then first else second // Error

That’s wrong—we don’t know if first has a compareTo method. To solve this, we can add an upper bound T <: Comparable[T].

class Pair[T <: Comparable[T]](val first: T, val second: T) :

 def smaller = if first.compareTo(second) < 0 then first else second

This means that T must be a subtype of Comparable[T].

Now we can instantiate Pair[java.lang.String] but not Pair[java.net.URL], since String is a subtype of Comparable[String] but URL does not implement Comparable[URL]. For example:

val p = Pair("Fred", "Brooks")

p.smaller // "Brooks"

[image: Images] Note

In this chapter, I use the Comparable type from Java for several examples. In Scala, it is more common to use the Ordering trait. See the next section for details.

[image: Images] Caution

If you construct a Pair(4, 2), you will get a Pair[java.lang.Integer] since the Scala Int type does not extend the java.util.Comparable trait.

You can also specify a lower bound for a type. For example, suppose we want to define a method that replaces the first component of a pair with another value. Our pairs are immutable, so we need to return a new pair. Here is a first attempt:

class Pair[T](val first: T, val second: T) :

 def replaceFirst(newFirst: T) = Pair[T](newFirst, second)

But we can do better than that. Suppose we have a Pair[Student]. It should be possible to replace the first component with a Person. Of course, then the result must be a Pair[Person]. In general, the replacement type must be a supertype of the pair’s component type. Use the >: symbol for the supertype relationship: def replaceFirst[R >: T](newFirst: R) = Pair[R](newFirst, second)

[image: Images] Caution

The supertype relationship symbol is >:, even though :> would be more symmetrical. This is analogous to the <= and >= operators.

The example uses the type parameter in the returned pair for greater clarity. You can also write

def replaceFirst[R >: T](newFirst: R) = Pair(newFirst, second)

Then the return type is correctly inferred as Pair[R].

[image: Images] Caution

If you omit the lower bound,

def replaceFirst[R](newFirst: R) = Pair(newFirst, second)

the method will compile, but it will return a Pair[Any].

17.4 Context Bounds

A context bound has the form T : M, where M is another generic type. It requires that there is a “given value” of type M[T]. We discuss given values in detail in Chapter 19.

For example,

class Pair[T : Ordering]

requires that there is a given value of type Ordering[T]. That given value can then be used in the methods of the class. When you declare a method that uses the given value, you have to add a “using parameter.” Here is an example:

class Pair[T : Ordering](val first: T, val second: T) :

 def smaller(using ord: Ordering[T]) =

 if ord.compare(first, second) < 0 then first else second

A type parameter can have both context bounds and subtype bounds. In that case, subtype bounds come first:

class Pair[T <: Serializable : Ordering]

17.5 The ClassTag Context Bound

To instantiate a generic Array[T], one needs a ClassTag[T] object. This is required for primitive type arrays to work correctly. For example, if T is Int, you want an int[] array in the virtual machine. If you write a generic function that constructs a generic array, you need to help it out and pass that class tag object. Use a context bound, like this:

import scala.reflect.*

def makePair[T : ClassTag](first: T, second: T) =

 Array[T](first, second)

If you call makePair(4, 9), the compiler locates the given ClassTag[Int] instance and actually calls makePair(4, 9)(classTag). Then the Array constructor is translated to a call classTag.newArray, which in the case of a ClassTag[Int] constructs a primitive array of type int[].

Why all this complexity? In the virtual machine, generic types are erased. There is only a single makePair method that needs to work for all types T.

17.6 Multiple Bounds

A type variable can have both an upper and a lower bound. The syntax is this:

T >: Lower <: Upper

You can’t have multiple upper or lower bounds. However, you can still require that a type implements multiple traits, like this:

T <: Comparable[T] with Serializable with Cloneable

You can have more than one context bound:

T : Ordering : ClassTag

17.7 Type Constraints L3

Type constraints give you another way of restricting types. There are two relationships that you can use:

T <:< U

T =:= U

These constraints test whether T is a subtype of U or whether T and U are the same type. To use such a constraint, you add a “using parameter” like this:

class Pair[T](val first: T, val second: T)(using ev: T <:< Comparable[T]) :

 def smaller = if first.compareTo(second) < 0 then first else second

[image: Images] Note

See Chapter 19 for an explanation of the syntax, and for an analysis of the inner workings of the type constraints.

In the example above, there is no advantage to using a type constraint over a type bound class Pair[T <: Comparable[T]]. However, type constraints give you more control in specialized circumstances.

In particular, type constraints let you supply a method in a generic class that only makes sense for some types. Here is an example:

class Pair[T](val first: T, val second: T) :

 def smaller(using ev: T <:< Comparable[T]) =

 if first.compareTo(second) < 0 then first else second

You can form a Pair[URL], even though URL is not a subtype of Comparable[URL]. You will get an error only if you invoke the smaller method.

The orNull method in the Option class also uses a type constraint. Here is how to use the method:

val friends = Map("Fred" -> "Barney", ...)

val friendOpt = friends.get("Wilma") // An Option[String]

val friendOrNull = friendOpt.orNull // A String or null

The orNull method can be useful when working with Java code where it is common to encode missing values as null.

But now consider this code:

val numberOpt = if scala.math.random() < 0.5 then Some(42) else None

val number: Int = numberOpt.orNull // Error

The second line should not be legal. After all, the Int type doesn’t have null as a valid value. For that reason, orNull is implemented using a constraint Null <:< A. You can instantiate Option[Int], as long as you stay away from orNull for those instances.

See on page for another example with the =:= constraint.

17.8 Variance

Suppose we have a function that does something with a Pair[Person]:

def makeFriends(p: Pair[Person]) = ...

If Student is a subclass of Person, can I call makeFriend with a Pair[Student]? By default, this is an error. Even though Student is a subtype of Person, there is no relationship between Pair[Student] and Pair[Person].

If you want such a relationship, you have to indicate it when you define the Pair class:

class Pair[+T](val first: T, val second: T)

The + means that the type is covariant in T—that is, it varies in the same direction. Since Student is a subtype of Person, a Pair[Student] is now a subtype of Pair[Person].

It is also possible to have variance in the other direction. Consider a generic type Friend[T], which denotes someone who is willing to befriend anyone of type T.

trait Friend[T] :

 def befriend(someone: T): String

Now suppose you have a function

def makeFriendWith(s: Student, f: Friend[Student]) = f.befriend(s)

Can you call it with a Friend[Person]? That is, if you have

class Person(name: String) extends Friend[Person] :

 override def toString = s"Person $name"

 override def befriend(someone: Person) = s"$this and $someone are now friends"

class Student(name: String, major: String) extends Person(name) :

 override def toString = s"Student $name majoring in $major"

val susan = Student("Susan", "CS")

val fred = Person("Fred")

will the call makeFriendWith(susan, fred) succeed? It seems like it should. If Fred is willing to befriend any person, he’ll surely like to be friends with Susan.

Note that the type varies in the opposite direction of the subtype relationship. Student is a subtype of Person, but Friend[Student] needs to be a supertype of Friend[Person]. In that case, you declare the type parameter to be contravariant:

trait Friend[-T] :

 def befriend(someone: T): String

You can have both variance types in a single generic type. For example, single-argument functions have the type Function1[-A, +R]. To see why these are the appropriate variances, consider a function

def friendsOfStudents(students: Seq[Student],

 findFriend: Function1[Student, Person]) =

 // You can write the second parameter as findFriend: Student => Person

 for s <- students yield findFriend(s)

Suppose you have a function

def findStudentFriendsOfPerson(p: Person) : Student = ...

Can you call friendsOfStudents with that function? Of course you can. It’s willing to take any person, so surely it will take a Student. That’s contravariance in the first type parameter of Function1. It yields Student results, which can be put into a collection of Person objects. The second type parameter is covariant.

17.9 Co- and Contravariant Positions

In the preceding section, you saw that functions are contravariant in their arguments and covariant in their results. Generally, it makes sense to use contravariance for the values an object consumes, and covariance for the values it produces. (Aide-mémoire: contravariance consumes.)

If an object does both, then the type should be left invariant. This is generally the case for mutable data structures. For example, in Scala, arrays are invariant. You can’t convert an Array[Student] to an Array[Person] or the other way around. This would not be safe. Consider the following:

val students = Array[Student](length)

val people: Array[Person] = students // Not legal, but suppose it was . . .

people(0) = Person("Fred") // Oh no! Now students(0) isn’t a Student

Conversely,

val people = Array[Person](length)

val students: Array[Student] = people // Not legal, but suppose it was . . .

people(0) = Person("Fred") // Oh no! Now students(0) isn’t a Student

[image: Images] Note

In Java, it is possible to convert a Student[] array to a Person[] array, but if you try to add a nonstudent into such an array, an ArrayStoreException is thrown. In Scala, the compiler rejects programs that could cause type errors.

[image: Images] Note

The IArray[+T] class is a wrapper for immutable JVM arrays. Note that the element type is covariant.

Suppose we tried to declare a covariant mutable pair. This wouldn’t work. It would be like an array with two elements, and one could produce the same kind of error that you just saw.

Indeed, if you try

class Pair[+T](var first: T, var second: T) // Error

you get an error complaining that the covariant type T occurs in a contravariant position in the setter

first_=(value: T)

Parameters are contravariant positions, and return types are covariant.

However, inside a function parameter, the variance flips—its parameters are covariant. For example, look at the foldLeft method of Iterable[+A]:

foldLeft[B](z: B)(op: (B, A) => B): B

 - + + - +

Note that A is now in a covariant position.

These position rules are simple and safe, but they sometimes get in the way of doing something that would be risk-free. Consider the replaceFirst method from Section 17.3, “Bounds for Type Variables,” on page 265 in an immutable pair:

class Pair[+T](val first: T, val second: T) :

 def replaceFirst(newFirst: T) = Pair[T](newFirst, second) // Error

The compiler rejects this, because the parameter type T is in a contravariant position. Yet this method cannot damage the pair—it returns a new pair.

The remedy is to come up with a second type parameter for the method, like this:

def replaceFirst[R >: T](newFirst: R) = Pair[R](newFirst, second)

Now the method is a generic method with another type parameter R. But R is invariant, so it doesn’t matter that it appears in a contravariant position.

17.10 Objects Can’t Be Generic

It is not possible to add type parameters to objects. Consider, for example, immutable lists. A list with element type T is either empty, or it has a head of type T and a tail of type List[T]:

abstract sealed class List[+T] :

 def isEmpty: Boolean

 def head: T

 def tail: List[T]

 def toString = if isEmpty then "" else s"$head $tail"

case class NonEmpty[T](head: T, tail: List[T]) extends List[T] :

 def isEmpty = false

case class Empty[T] extends List[T] :

 def isEmpty = true

 def head = throw UnsupportedOperationException()

 def tail = throw UnsupportedOperationException()

[image: Images] Note

Here I use NonEmpty and Empty for clarity. They correspond to :: and Nil in Scala lists.

It seems silly to define Empty as a class. It has no state. But you can’t simply turn it into an object:

case object Empty[T] extends List[T] : // Error

You can’t add a type parameter to an object. In this case, a remedy is to inherit List[Nothing]:

case object Empty extends List[Nothing] :

Recall from Chapter 8 that the Nothing type is a subtype of all types. Thus, when we make a one-element list

val lst = NonEmpty(42, Empty)

type checking is successful. Due to covariance, a List[Nothing] is convertible into a List[Int], and the NonEmpty[Int] constructor can be invoked.

17.11 Wildcards

In Java, all generic types are invariant. However, you can vary the types where you use them, using wildcards. For example, a method

void makeFriends(List<? extends Person> people) // This is Java

can be called with a List<Student>.

You can use wildcards in Scala too. They look like this:

def makeFriends(people: java.util.List[? <: Person]) = ... // This is Scala

In Scala, you don’t need the wildcard for a covariant Pair class. But suppose Pair is invariant:

class Pair[T](var first: T, var second: T)

Then you can define

def makeFriends(p: Pair[? <: Person]) = ... // OK to call with a Pair[Student]

You can also use wildcards for contravariance:

import java.util.Comparator

def min[T](p: Pair[T], comp: Comparator[? >: T]) =

 if comp.compare(p.first, p.second) < 0 then p.first else p.second

If necessary, you can have both variances. Here T must be a subtype of Comparable[U], where U (the parameter of the compare method) must be a supertype of T, so that it can accept a value of type T:

def min[T <: Comparable[? >: T]](p: Pair[T]) =

 if p.first.compareTo(p.second) < 0 then p.first else p.second

17.12 Polymorphic Functions

Consider this top-level function declaration:

def firstLast[T](a: Array[T]) = (a(0), a(a.length - 1))

In Chapter 12, you saw how to rewrite a def into a val and a lambda expression:

val firstLast = (a: Array[T]) => ...

But that can’t be quite right. You need to put the type parameter somewhere. You can’t put it with firstLast—there are no generic val:

val firstLast[T] = (a: Array[T]) => (a(0), a(a.length - 1)) // Error

Instead, you should think of firstLast to have two curried parameters: the type T and the array a. Here is the correct syntax:

val firstLast = [T] => (a: Array[T]) => (a(0), a(a.length - 1))

The type of firstLast is

[T] => Array[T] => (T, T)

Such a type is called a polymorphic function type.

Note that firstLast[String] is an ordinary function with type Array[String] => (String, String). The type parameter has been “curried”.

Polymorphic functions are useful when you need a lambda that must work with different types. Suppose you want to wrap all elements of a tuple in Some, transforming (1, 3.14, "Fred") into (Some(1), Some(3.14), Some("Fred")).

There is a Tuple.map method for just this purpose. The function to be mapped requires a type parameter since each element can have a different type. Here is how to do it:

val tuple = (1, 3.14, "Fred")

tuple.map([T] => (x: T) => Some(x))

The type of that lambda expression is [T] => T => Some[T].

[image: Images] Caution

In Chapter 20, you will encounter type lambdas such as [X] =>> Some[X].They look similar but are completely different.A type lambda is a type-level function. It consumes a type and produces another. In contrast, a polymorphic function type is a type.

Exercises

1. Define an immutable class Pair[T, S] with a method swap that returns a new pair with the components swapped.

2. Define a mutable class Pair[T] with a method swap that swaps the components of the pair.

3. Given a class Pair[T, S], write a generic method swap that takes a pair as its argument and returns a new pair with the components swapped.

4. Why don’t we need a lower bound for the replaceFirst method in Section 17.3, “Bounds for Type Variables,” on page 265 if we want to replace the first component of a Pair[Person] with a Student?

5. Why does RichInt implement Comparable[Int] and not Comparable[RichInt]?

6. Write a generic method middle that returns the middle element from any Iterable[T]. For example, middle("World") is 'r'.

7. Add a method zip to the Pair[T] class that zips a pair of pairs:

val p = Pair(Pair(1, 2), Pair(3, 4))

p.zip // Pair(Pair(1, 3), Pair(2, 4))

Of course, this method can only be applied if T is itself a Pair type. Use a type constraint.

8. Write a class Pair[T, S] that implements a mutable pair. Using the =:= type constraint, provide a swap method that swaps the components in place, provided that S and T are the same type. Demonstrate that you can invoke swap on Pair("Fred", "Brooks") and that you can construct Pair("Fred", 42) but you cannot invoke swap on it.

9. Look through the methods of the Iterable[+A] trait. Which methods use the type parameter A? Why is it in a covariant position in these methods?

10. In Section 17.9, “Co- and Contravariant Positions,” on page 270, the replaceFirst method has a type bound. Why can’t you define an equivalent method on a mutable Pair[T]?

def replaceFirst[R >: T](newFirst: R) =

 first = newFirst // Error

11. It may seem strange to restrict method parameters in an immutable class Pair[+T]. However, suppose you could define

def replaceFirst(newFirst: T)

in a Pair[+T]. The problem is that this method can be overridden in an unsound way. Construct an example of the problem. Define a subclass NastyDoublePair of Pair[Double] that overrides replaceFirst so that it makes a pair with the square root of newFirst. Then construct the call replaceFirst("Hello") on a Pair[Any] that is actually a NastyDoublePair.

Chapter 18

Advanced Types

Topics in This Chapter L2

[image: Images] 18.1 Union Types

[image: Images] 18.2 Intersection Types

[image: Images] 18.3 Type Aliases

[image: Images] 18.4 Structural Types

[image: Images] 18.5 Literal Types

[image: Images] 18.6 The Singleton Type Operator

[image: Images] 18.7 Abstract Types

[image: Images] 18.8 Dependent Types

[image: Images] 18.9 Abstract Type Bounds

[image: Images] Exercises

In this chapter, you will see all the types that Scala has to offer, including some of the more technical ones.

The key points of this chapter are:

• A value belongs to a union or intersection type if it belongs to any or all of the constituent types.

• Structural types are similar to “duck typing” but are checked at compile-time

• Singleton types are useful for method chaining and methods with object parameters.

• A type alias gives a short name for a type.

• An opaque type alias hides a representation type from the public.

• An abstract type must be made concrete in a subclass.

• A dependent type is a type that depends on a value.

18.1 Union Types

If T1 and T2 are types, then the union type T1 | T2 is the type whose instances belong either to T1 or T2. Here is a concrete example. Response choices could be indicated by a string, separated by white space such as "Yes Maybe No" or an array Array("yes", "maybe", "no"). This function accepts either:

def isValid(choice: String, choices: String | Array[String]) =

 choices match

 case str: String => str.split("\\s+").contains(choice)

 case Array(elems*) => elems.contains(choice)

In general, to process a union type, you use a type match.

Union types can be suitable for “ad hoc” alternatives. Of course, you can follow a more object-oriented approach with a trait Choices and subclasses StringChoices and ArrayChoices:

enum Choices :

 case StringChoices(str: String)

 case ArrayChoices(elems: String*)

This is sometimes called a “discriminated union”. It is equivalent to a union type, but the types have names. Generally, we prefer named types in Scala, and union types are uncommon.

[image: Images] Caution

When you produce a value that can be one type or another, and you want the result to be considered a union type, you need to specify the union type explicitly. Consider this example:

def inverse(x: Double):

 Double | String = if x == 0 then "Divide by zero" else 1 / x

Without the Double | String return type, the compiler infers the type Matchable, which is not very useful.

Note that type union is commutative: The types T1 | T2 and T2 | T1 are the same type.

18.2 Intersection Types

An intersection type has the form

T1 & T2 & T3 ...

where T1, T2, T3, and so on are types. In order to belong to the intersection type, a value must belong to all of the individual types.

You use an intersection type to describe values that must provide multiple traits. For example,

val img = ArrayBuffer[java.awt.Shape & java.io.Serializable]

You can draw the img object as for (s <- img) graphics.draw(s). You can serialize the image object because you know that all elements are serializable.

Of course, you can only add elements that are both shapes and serializable objects:

val rect = Rectangle(5, 10, 20, 30)

img += rect // OK—java.awt.Rectangle is a Shape and Serializable

But this does not work:

img += Area(rect) // Error—java.awt.Area is a Shape but not Serializable

[image: Images] Note

When you have a declaration

trait ImageShape extends Shape, Serializable

this means that ImageShape extends the intersection type Shape & Serializable.

In Scala, you are more likely to use such traits than raw intersection types. But you will sometimes see the intersection types of traits in compiler messages.

Like type union, type intersection is commutative: T1 & T2 and T2 & T1 are the same type.

???????:

!!!!! It may seem surprising that type intersection is commutative since order matters when using multiple traits. For example, in Chapter 10, you saw this example:

val acct1 = new LoggedAccount() with TimestampLogger with ShortLogger

val acct2 = new LoggedAccount() with ShortLogger with TimestampLogger

The log methods of the two objects act differently. Nevertheless, both objects have type

LoggedAccount & TimestampLogger & ShortLogger

which is the same as

LoggedAccount & ShortLogger & TimestampLogger

The type describes objects that have a log method, but it doesn’t say how it is implemented.

18.3 Type Aliases

You can create a simple alias for a complicated type with the type keyword, like this:

object Book :

 type Index = scala.collection.mutable.HashMap[String, (Int, Int)]

 ...

Then you can refer to Book.Index instead of the cumbersome name scala.collection.mutable.HashMap[String, (Int, Int)].

[image: Images] Caution

To instantiate instantiate Book.Index, you need new:

val idx = new Book.Index()

The expression Book.Index() does not work since Index is a type, not a value with an apply method. If you really want to avoid new, add a value for the companion object:

val Index = scala.collection.mutable.HashMap

A type alias is particularly useful for a type that doesn’t have a name by itself:

type Pair[T] = (T, T)

type Choices = String | Array[String]

A type alias can be opaque, indicating that the actual type is only known in the scope of the declaration. For example:

object Doc :

 opaque type HTML = String

 def format(text: String): HTML = ...

 class Chapter :

 private val paragraphs = ArrayBuffer[String]()

 def paragraph(index: Int): HTML = paragraphs(index)

 def append(paragraph: HTML) = paragraphs += paragraph

Inside the scope of the Doc object, it is known that HTML is an alias for String. But elsewhere, calling the append method with a String is an error. One can only pass instances of the type Doc.HTML. The features of the Doc object are responsible for the integrity of the HTML formatting.

Note that the opacity is not achieved by “boxing” the value inside another object. A value of type Doc.HTML is simply a String reference, but you cannot invoke String methods on it.

You can reveal some methods of an opaque type by giving a type bound:

opaque type HTML <: CharSequence = String

Now you can invoke any methods of the CharSequence interface.

[image: Images] Note

By using extension methods (see Chapter 19), you can create opaque types with methods of your choice. This allows you to define types that are as efficient as value classes (see Chapter 5).

[image: Images] Caution

Note that in the example, the opaque type was defined in an object. It is legal to define an opaque type in a class, but then each instance has its own type. Had the declaration of the opaque HTML type beein the Chapter class, then ch1.HTML and ch2.HTML would be different types, and you could not copy paragraphs between chapters.

[image: Images] Note

The type keyword is also used for abstract types that are made concrete in a subclass, for example:

abstract class Reader :

 type Contents // an abstract type

 def read(filename: String): Contents

We will discuss abstract types in Section 18.7, “Abstract Types,” on page 286.

18.4 Structural Types

A “structural type” is a specification of abstract methods, fields, and types that a conforming type should possess. Here we declare a structural type and assign it to a type alias:

type Appendable = { def append(str: String): Any }

A structural type is more flexible than defining a Appendable trait, because you might not always be able to add that trait to the classes you are using. For example, there is a java.lang.Appendable interface with an append method. The javax.swing.JTextArea class also has an append method, but it doesn’t implement the java.lang.Appendable interface. Yet instances of any java.lang.Appendable (which includes StringBuilder and Writer), as well as JTextArea, belong to the Appendable type that was just declared.

What can you do with this type? Here is a function that almost works:

def appendLines(target: Appendable, lines: Iterable[String]) =

 for l <- lines do

 target.append(l); // Error

 target.append("\n") // Error

However, the compiler rejects the invocations of the append method, even though it knows that the method exists.

The problem is that compiler doesn’t know how to invoke the method.

That sounds a bit strange. Why would the compiler not know how to invoke a method? But consider what happens in the situation where Appendable was a trait. In that case, the compiler generates a virtual machine instruction for dynamic invocation. The virtual machine has an efficient mechanism for invoking methods, using a run-time data structure called a virtual method table. That only works when the virtual machine knows the class or interface in which the method is defined.

There is another way of invoking a method: through the reflection API. In our example, that is a reasonable approach. Still, reflection is expensive, and the Scala compiler wants us to confirm that’s what we want. You achieve this with a special import:

def appendLines(target: Appendable, lines: Iterable[String]) =

 import reflect.Selectable.reflectiveSelectable

 for l <- lines do

 target.append(l); // OK

 target.append("\n") // OK

Note that this approach is typesafe. You can call the appendLines method with an instance of any class that has a suitable append method. The compiler reports an error if you call the appendLines function with an instance of a class without such an append method.

[image: Images] Note

In Chapter 11, you saw how to use the Selectable interface for typesafe selection and method application. Importing

reflect.Selectable.reflectiveSelectable introduces a conversion from any type

to a Selectable instance that uses reflection.

You can also create instances of a structural type on the fly, like this:

val appender: Appendable = new :

 def append(str: String): Any = println(str)

[image: Images] Note

Instead of the type intersection T & { def append(str: String): Any }, you can write T { def append(str: String): Any }. In the latter case, the expression in braces is called a type refinement.

[image: Images] Note

Calling structural types with reflection is similar to “duck typing” in dynamically typed programming languages such as JavaScript or Ruby. In those languages, variables have no type. When you write obj.quack(), the runtime figures out whether the particular object to which obj refers at this point has a quack method. In other words, you don’t have to declare obj as a Duck as long as it walks and quacks like one. In contrast, Scala checks at compile-time that the call will succeed.

18.5 Literal Types

You can define a type with exactly one value, which must be a literal constant: a number, string, character, or Boolean literal (but not null).

type Zero = 0

A variable of this type can hold a single value:

val z: Zero = 0

That doesn’t sound useful, but you can define meaningful union types:

type Bit = 0 | 1

var b: Bit = 0

b = 1 // OK

The following is an error:

b = -1 // Error

Here is a more interesting example. We use language tags to ensure at compile-time that only messages of the same language are combined.

class Message[L <: String](val text: String)

val m1 = Message["de"]("Achtung") // m1 has type Message["de"]

class Messages[L <: String] :

 private val sb = StringBuilder()

 def append(message: Message[L]) = sb.append(message.text).append("\n")

 def text = sb.toString

val germanNews = Messages["de"]()

germanNews.append(m1) // OK to add message with the same language

But the following does not compile:

val m2 = Message["en"]("Hello")

germanNews.append(m2) // Error

[image: Images] Tip

By default, literal types are widened in type inference. For example, consider this function for constructing a string in a given language

def message[L <: String](language: L, text: String) = Message[L](text)

The type of message("en", "hello") is Message[String], not Message["en"]. To avoid this widening, add the upper bound Singleton:

def message[L <: String & Singleton](language: L, text: String) =

 Message[L](text)

[image: Images] Caution

Every literal type is a subtype of Singleton, but not every subtype of Singleton is a singleton. By general principles, since "en" <: Singleton and "fr" <: Singleton, it also holds that "en" | "fr" <: Singleton.

In Chapter 20, you will see other uses of literal types. For example, we will define a parameterized vector type. The dimension is a type parameter, which prevents you from adding a Vec[3] and a Vec[4]. Note the 3 and 4 inside the square brackets. They are literal types, not values!

18.6 The Singleton Type Operator

Given a value v, you can form the singleton type v.type which contains the value v. This sounds like the literal types from the preceding section, but there are a couple of differences.

Literal types are defined with literals. Here, the value is given as a variable or path, for example, e.name.type. (Of course, the value must be immutable. If a variable v is declared as var, you cannot form a singleton type v.type since it might have more than one value.)

The type is tied to the path, not its value. If v and w have the same value, then v.type and w.type are nevertheless different:

val v = 1

val w = 1

val x: v.type = v // OK

val y: v.type = w // Error

val z: v.type = 1 // Error

[image: Images] Caution

If v is a reference type, then v.type is not actually a singleton type. It has two values—v and null:

val v = "Hello"

val x: v.type = null // OK

The same is true for literal string types:

val v: "Hello" = null // OK

This is perhaps unfortunate but unavoidable. The Null type (with the single value null) is a subtype of every reference type.

At first glance, singleton types don’t appear to be very useful. But they have several practical applications.

Consider a method that returns this so you can chain method calls:

class Document :

 def setTitle(title: String) = { ...; this }

 def setAuthor(author: String) = { ...; this }

 ...

You can then call

article.setTitle("Whatever Floats Your Boat").setAuthor("Cay Horstmann")

However, if you have a subclass, there is a problem. Consider this subclass:

class Book extends Document :

 def addChapter(chapter: String) = { ...; this }

 ...

The following call fails:

val book = Book()

book.setTitle("Scala for the Impatient").addChapter("Advanced Types") // Error

Since the setTitle method returns this, Scala infers the return type as Document. But Document doesn’t have an addChapter method.

The remedy is to declare the return type of setTitle as this.type:

def setTitle(title: String): this.type = { ...; this }

Now the return type of book.setTitle("...") is book.type, and since book has an addChapter method, the chaining works.

[image: Images] Tip

Sometimes, you need to convince the compiler that an object extends a particular trait. You could cast it, for example:

v.asInstanceOf[Matchable]

but that may not be good enough. The result is Matchable, but it has lost whatever type v had before. The remedy is to add the type of v:

v.asInstanceOf[v.type & Matchable]

Another use of singleton types are methods that take an object instance as parameter. You may wonder why you would ever want to do that. After all, if there is just one instance, the method could simply use it instead of making the caller pass it.

However, some people like to construct “fluent interfaces” that read like English, for example:

book set Title to "Scala for the Impatient"

This is parsed as

book.set(Title).to("Scala for the Impatient")

For this to work, set is a method whose argument is the singleton Title:

object Title // This object is used an an argument for a fluent interface

class Document :

 private var title = ""

 private var useNextArgAs: Any = null

 def set(obj: Title.type): this.type = { useNextArgAs = obj; this }

 def to(arg: String) = if (useNextArgAs == Title) title = arg // else ...

 ...

Note the Title.type parameter. You can’t use

def set(obj: Title) ... // Error

since Title denotes the singleton object, not a type.

18.7 Abstract Types

A class or trait can define an abstract type that is made concrete in a subclass. For example:

trait Reader :

 type Contents

 def read(url: String): Contents

Here, the type Contents is abstract. A concrete subclass needs to specify the type:

class StringReader extends Reader :

 type Contents = String

 def read(url: String) = String(URL(url).openStream.readAllBytes)

class ImageReader extends Reader :

 type Contents = BufferedImage

 def read(url: String) = ImageIO.read(URL(url))

The same effect could be achieved with a type parameter:

trait Reader[C] :

 def read(url: String): C

class StringReader extends Reader[String] :

 def read(url: String) = String(URL(url).openStream.readAllBytes)

class ImageReader extends Reader[BufferedImage] :

 def read(url: String) = ImageIO.read(URL(url))

Which is better? In Scala, the rule of thumb is:

• Use type parameters when the parameter types should be supplied with each instance of the type. For example, when declaring a map as a Map[String, Int], you specify the types at the declaration site.

• Use abstract types when the types are supplied in subclasses. That is the case in our Reader example. You can’t simply instantiate a Reader[JSONObject]. You need form a subclass and declare the read method to produce JSON.

18.8 Dependent Types

Let’s put the readers from the preceding section to work for making user interface components:

val ir = ImageReader()

val imageLabel =

 makeComponent(ir, "https://horstmann.com/cay-tiny.gif", b => JLabel(ImageIcon(b)))

The makeComponent function takes a reader, a URL, and a function that transforms the reader’s contents into a component. What should be the parameter type of that function? It can’t just be Contents. That’s an abstract type. Instead, you need the Contents type of the specific reader:

def makeComponent(r: Reader, url: String, transform: r.Contents => JComponent) =

 val contents = r.read(url)

 transform(contents)

The type r.Contents is called a dependent type since it depends on the value r. For example, ir.Contents is the type BufferedImage.

[image: Images] Caution

You cannot make a dependent type with a mutable variable. If you declare var r: Reader, then the compiler cannot tell what r.Contents is. It would depend on the current value of r.

In Scala, dependent types belong to instances, not classes. For example, there is no type ImageReader.Contents.

In general, if you have a type p.q.r.T, then the components p, q, r must be package components, object names, or immutable variables (which includes this and super). Such a construct is called a path—you may come across that term in compiler messages.

If you need to refer to the Contents of all ImageReader instances, use a type projection ImageReader#Contents—see Chapter 5.

[image: Images] Note

Internally, the compiler translates type expressions p.q.r.T to type projections p.q.r.type#T. For example, r.Contents becomes r.type#Contents—any Contents inside the singleton r.type. That is not something you generally need to worry about. However, sometimes you may see an error message with a type of the form p.q.r.type#T. Just translate it back to p.q.r.T.

You have just seen that the return type of the read method is a dependent type. Now let’s turn that into a function:

val readContents = (r: Reader, url: String) => r.read(url)

What is the type of the function? It can’t be (Reader, String) => Reader.Contents because there is no type Reader.Contents.

In order to refer to the proper type r.Contents, you need to add variable names, like this:

(r: Reader, url: String) => r.Contents

It doesn’t matter what names you choose. You have to supply them for all parameters, even if you don’t need them (like url above). Such a type is called a dependent function type.

18.9 Abstract Type Bounds

Abstract types can have type bounds, just like type parameters. For example:

class Event

class EventSource :

 type E <: Event

 ...

A subclass must provide a compatible type, for example:

class Button(val text: String) extends EventSource :

 class ButtonEvent(val source: Button) extends Event

 type E = ButtonEvent // OK, it’s a subtype of Event

 ...

Note that this example could not have been done with type parameters since the bound is an inner class.

Let us continue this example to demonstrate how abstract types can describe subtle interdependencies between types.

Generally, it is a challenge to model families of types that vary together, share common code, and preserve type safety. In our event handling scenario, we want different event sources to fire events of different types, and manage listeners that receive notifications with the appropriate types.

Let us add functionality for managing listeners and firing events to the EventSource class:

type L <: Listener

trait Listener :

 def occurred(e: E): Unit

private val listeners = ArrayBuffer[L]()

def add(l: L) = listeners += l

def remove(l: L) = listeners -= l

def fire(e: E) =

 for (l <- listeners) l.occurred(e)

Note the type variables E and L for the event and listener types. The occurred listener method requires a parameter of the specific type E, not just any event. You can only add listeners of the specific type L.

In the Button class, we already set E to ButtonEvent. We still need to specify the L type. The click method simulates a button click:

trait ButtonListener extends Listener

type L = ButtonListener

def click() = fire(ButtonEvent(this))

What is the point? Now you can add a listener that receives button events:

val b = Button("Click me!")

val listener = new b.ButtonListener :

 override def occurred(e: b.ButtonEvent) =

 println(s"Clicked the ${e.source.text} button")

b.add(listener)

b.click()

But trying to add any other kind of listener will fail (see Exercise 11 on page 291). This type safety is achieved even though the code for managing listeners is entirely contained in the EventSource superclass.

[image: Images] Note

In the examples for abstract types, I used single-letter names for the abstract types, to show the analogy with the version that uses type parameters. It is common in Scala to use more descriptive type names, which leads to more self-documenting code:

class EventSource :

 type EventType <: Event

 type ListenerType <: Listener

 ...

class Button extends EventSource :

 type EventType = ButtonEvent

 type ListenerType = ButtonListener

 ...

Exercises

1. Instead of using the Try[T] type, you could use a union type T | Throwable. Give advantages and disadvantages of that approach.

2. This type models a list of strings:

enum List :

 case Empty

 case NonEmpty(head: String, tail: List)

Can you use a union type instead? If so, how? If not, why is it not possible?

3. Show that the types (T | U) => R and (T => R) & (U => R) are equivalent.

4. Write a function printValues with three parameters f, from, to that prints all values of f with inputs from the given range. Here, f should be any object with an apply method that consumes and yields an Int. For example,

printValues(Array(1, 1, 2, 3, 5, 8, 13, 21, 34, 55), 3, 6) // Prints 3 5 8 13

printValues((x: Int) => x * x, 3, 6) // Prints 9 16 25 36

Hint: In the Scala 3.2 implementation, function literals such as (x: Int) => x * x do not have a method apply(n: Int): Int that can be called by reflection. Use a union type to accept either Function1[Int, Int] instances or objects with a apply(n: Int): Int method.

5. Using a structural type instance, Scala lets you define objects as flexibly as JavaScript:

val fred = new :

 val id = 1729

 var name = "Fred"

Unfortunately, you can’t access the fields. Describe two distinct modifications of this declaration that allow field access (without defining a Person class).

6. Implement a method that receives an object of any class that has a method

def close(): Unit

together with a function that processes that object. Call the function and invoke the close method upon completion, or when any exception occurs.

7. Implement a Bug class modeling a bug that moves along a horizontal line. The move method moves in the current direction, the turn method makes the bug turn around, and the show method prints the current position. Make these methods chainable. For example,

bugsy.move(4).show().move(6).show().turn().move(5).show()

should display 4 10 5.

8. Provide a fluent interface for the Bug class of the preceding exercise, so that one can write

bugsy move 4 and show and then move 6 and show turn around move 5 and show

9. Complete the fluent interface in Section 18.6, “The Singleton Type Operator,” on page 284 so that one can call

book set Title to "Scala for the Impatient" set Author to "Cay Horstmann"

10. The cast v.asInstanceOf[v.type & Matchable] looks a little unsightly. Define a generic method as so that you can add an arbitrary trait to a value by calling as[Matchable](v).

11. Try defining a ButtonListener whose occurred method accepts an event other than a ButtonEvent. Try adding a listener other than a ButtonListener to a Button. What happens in each case?

12. Rewrite the EventSource class using parameterized types instead of abstract types. Is it still guaranteed that a ButtonListener only accepts ButtonEvent values, and that you can only add a ButtonListener to a Button?

13. Given the following trait

trait UnitFactory :

 type U <: Unit

 def create(x: Double): U

 trait Unit :

 val value: Double

 def name: String

 override def toString = s"$value $name"

 def + (that: U): U =

 of(this.value + that.value)

create objects

object MeterFactory extends UnitFactory

and

object LiterFactory extends UnitFactory

whose create methods yield instances of classes Meter and Liter. Demonstrate that you can only add units of the same type.

14. Improve the code from the preceding exercises so that you also support units such as kilometers and milliliters, where the compiler checks that you only add units of like types.

15. Can you implement Exercise 13 on page 291 with parameterized types instead of abstract types? If not, why not?

16. Try writing a dependent function type for the makeComponent function in Section 18.8, “Dependent Types,” on page 287. What happens? Fix it by currying the function. What is the type now?

Chapter 19

Contextual Abstractions

Topics in This Chapter L3

[image: Images] 19.1 Context Parameters

[image: Images] 19.2 More about Context Parameters

[image: Images] 19.3 Declaring Given Instances

[image: Images] 19.4 Givens in for and match expressions

[image: Images] 19.5 Importing Givens

[image: Images] 19.6 Extension Methods

[image: Images] 19.7 Where Extension Methods Are Found

[image: Images] 19.8 Implicit Conversions

[image: Images] 19.9 Rules for Implicit Conversions

[image: Images] 19.10 Importing Implicit Conversions

[image: Images] 19.11 Context Functions

[image: Images] 19.12 Evidence

[image: Images] 19.13 The @implicitNotFound Annotation

[image: Images] Exercises

The Scala language provides a number of power tools for carrying out work that depends on a context—settings that are configured depending on current needs. In this chapter, you will learn how to build capabilities that can be added in an ad-hoc fashion to class hierarchies, how to enrich existing classes, and to carry out automatic conversions. With contextual abstractions, you can provide elegant mechanisms that hide tedious details from users of your code.

The key points of this chapter are:

• An context parameter requests a given object of a specific type. You can define suitable given objects for different contexts.

• The summon[T] function summons the current given object for type T.

• They can be obtained from implicit objects that are in scope, or from the companion object of the desired type.

• There is special syntax for declaring given objects that extend a trait and define methods.

• You can build complex given objects, using type parameters and context bounds

• If an implicit parameter is a single-argument function, it is also used as an implicit conversion.

• Typically, you use import statements to supply the given instances that you need.

• Using extension methods, you can add methods to existing classes.

• Implicit conversions are used to convert between types.

• You control which extensions and implicit conversions are available at a particular point.

• A context function type describes a function with context parameters.

19.1 Context Parameters

Typically, systems have certain settings that are needed by many functions, such as a database connection, or a logger, or a locale. Passing those settings as arguments is impractical, because every function would need to pass them to the functions that it calls. You can use globally visible objects, but that is inflexible. Scala has a powerful mechanism to make values available to functions without explicitly passing them, through context parameters. Let’s first understand how a function receives those parameters.

A function or method can have one or more parameter lists marked with the using keyword. For those parameters, the compiler will look for appropriate values to supply with the function call, using a mechanism that we will study later. Here is a simple example:

case class QuoteDelimiters(left: String, right: String)

def quote(what: String)(using delims: QuoteDelimiters) =

 delims.left + what + delims.right

You can call the quote method with an explicit QuoteDelimiters object, like this:

quote("Bonjour le monde")(using QuoteDelimiters("«", "»"))

// Returns «Bonjour le monde»

Note that there are two argument lists. This function is “curried”—see Chapter 12.

However, the point of context parameters is that you don’t want to provide an explicit using parameter. You simply want to call:

quote("Bonjour le monde")

Now the compiler will look for a suitable value of type QuoteDelimiters. This must be a value that is declared as given:

given englishQuoteDelims : QuoteDelimiters = QuoteDelimiters("“", "”")

Now the delimiters are supplied implicitly to the quote function.

[image: Images] Note

As you will see soon, there are more compact ways of declaring given values. Right now, I am using a form that is easy to understand.

However, you typically don’t want to declare global given values. In order to switch between contexts, you can declare objects such as the following:

object French :

 given quoteDelims: QuoteDelimiters = QuoteDelimiters("«", "»")

 ...

object German :

 given quoteDelims: QuoteDelimiters = QuoteDelimiters("„", "“")

 ...

Then import the given values from one such object, using the following syntax:

import German.given

[image: Images] Note

For each type, there can only be one given value. Thus, it is not a good idea to have using parameters of common types. For example,

def quote(what: String)(using left: String, right: String) // No!

would not work—there could not be two different given values of type String.

You have now seen the essence of context parameters. In the next three sections, you will learn about the finer points of using clauses, the syntax of given declarations, and the ways to import them.

19.2 More about Context Parameters

In the preceding section, you saw a function with a using parameter:

def quote(what: String)(using delims: QuoteDelimiters) = ...

If the function body doesn’t refer to the using parameter, you don’t have to give it a name:

def attributedQuote(who: String, what: String)(using QuoteDelimiters) =

 s"$who said: ${quote(what)}"

The using parameter still gets passed to the functions that need it—in this case, the quote function.

You can always obtain a given value by calling summon:

def quote(what: String)(using QuoteDelimiters) =

 summon[QuoteDelimiters].left + what + summon[QuoteDelimiters].right

By the way, here is the definition of summon:

def summon[T](using x: T): x.type = x

[image: Images] Note

Just as Shakespeare’s “vasty deep” is filled with spirits that any man can summon, the Scala nether world is populated with given objects, at most one for each type. Any programmer can summon them. Will they come? That depends on whether the compiler can locate a unique given object of the summoned type.

A function can have more than one using parameter. For example, we may want to localize messages in addition to quotes. Each language maps keys to MessageFormat templates:

case class Messages(templates: Map[String, String])

object French :

 ...

 given msgs: Messages =

 Messages(Map("greeting" -> "Bonjour {0}!",

 "attributedQuote" -> "{0} a dit {1}{2}{3}"))

This method receives the quote delimiters and message map through using parameters:

def attributedQuote(who: String, what: String)(

 using delims: QuoteDelimiters, msgs: Messages) =

 MessageFormat.format(msgs.templates("attributedQuote"),

 who, delims.left, what, delims.right)

You can curry the using parameters:

def attributedQuote(who: String, what: String)(

 using delims: QuoteDelimiters)(using msgs: Messages) = ...

With this example, there is no need to use currying. But there can be situations where currying helps with type inference.

A primary constructor can have context parameters:

class Quoter(using delims: QuoteDelimiters) :

 def quote(what: String) = ...

 def attributedQuote(who: String, what: String) = ...

 ...

The delims variable is initialized from the context parameter when the object is constructed. Afterwards, there is nothing special about it. Its value is accessible in all methods.

A using parameter can be declared by-name (using ev: => T), to delay its production until it is needed. This can be useful if the given value is expensive to produce, or to break cycles. This is not common.

19.3 Declaring Given Instances

In this section, we go over the various ways of declaring given instances. You have already seen the explicit form with a name, a type, and a value.

given englishQuoteDelims : QuoteDelimiters = QuoteDelimiters("“", "”")

The right-hand side doesn’t have to be a constructor—it can be any expression of type QuoteDelimiters.

[image: Images] Caution

There is no type inference for given instances. The following is an error:

given englishQuoteDelims = QuoteDelimiters("“", "”")

 // Error—no type inference

If you use a constructor, you can omit the type and the = operator:

given englishQuoteDelims : QuoteDelimiters("“", "”")

You can also omit the name, since you don’t normally need it:

given QuoteDelimiters("“", "”")

Inside an abstract class or trait, you can define an abstract given, with a name and type but with no value. The value must be supplied in a subclass.

abstract class Service :

 given logger: Logger

It is common to declare given instances that override abstract methods. For example, when declaring a given instance of type Comparator[Int], you must provide an implementation of the compare method:

given intComp: Comparator[Int] =

 new Comparator[Int]() :

 def compare(x: Int, y: Int) = Integer.compare(x, y)

There is a convenient shortcut for this common case:

given intComp: Comparator[Int] with

 def compare(x: Int, y: Int) = Integer.compare(x, y)

Presumably, the with keyword was chosen to avoid having two colons in a row.

The name is optional:

given Comparator[Int] with

 def compare(x: Int, y: Int) = Integer.compare(x, y)

You can create parameterized given instances. For example:

given comparableComp[T <: Comparable[T]] : Comparator[T] with

 def compare(x: T, y: T) = x.compareTo(y)

The instance name is optional, but the colon before the instance type is required.

Let us use this example to introduce one more concept: given instances with using parameters. Consider the comparison of two List[T]. If neither are empty, we compare the heads.

How do we do that? We need to know that values of type T can be compared. That is, we need a given of type Comparator[T]. As always, this need can be expressed with a using clause:

given listComp[T](using tcomp: Comparator[T]) : Comparator[List[T]] =

 new Comparator[List[T]]() :

 def compare(xs: List[T], ys: List[T]) =

 if xs.isEmpty && ys.isEmpty then 0

 else if xs.isEmpty then -1

 else if ys.isEmpty then 1

 else

 val diff = tcomp.compare(xs.head, ys.head)

 if diff != 0 then diff

 else compare(xs.tail, ys.tail)

As before, you can omit the name and take advantage of the with syntax:

given [T](using tcomp: Comparator[T]) : Comparator[List[T]] with

 def compare(xs: List[T], ys: List[T]) =

[image: Images] Note

Instead of an explicit using parameter, you can use a context bound for the type parameter:

given [T : Comparator] : Comparator[List[T]] with ...

As you saw in Chapter 17, there must be a given Comparator[T] instance. That is equivalent to a using clause. However, there is one difference: you don’t have a parameter for the given instance. Instead, you summon it from the “nether world”:

val ev = summon[Comparator[T]]

val diff = ev.compare(xs.head, ys.head)

It is common to use the variable name ev for such summoned objects. It is shorthand for “evidence”. The fact that a given value can be summoned is evidence for their existence.

Let us reflect on the strategy that underlies the example. We declare ad-hoc given instances for Comparator[Int], Comparator[Double], and so on. Using a parameterized rule, we obtain Comparator[T] for all types T that extend Comparable[T]. This includes String and a large number of Java types such as LocalDate or Path. Next, we have Comparator[List[T]] instances lists of any type T that itself has a Comparator[T] instance. That process can be carried out for other collections, and, with more technical effort, for tuples and case classes. Note that this happens without cooperation from individual classes. For example, we did not have to modify the List class in any way.

What is the benefit of this effort? It allows us to write generic functions that require an ordering. They will work with all types T with a given Comparator[T] instance. Here is a typical example:

def max[T](a: Array[T])(using comp: Comparator[T]) =

 if a.length == 0 then None

 else

 var m = a(0)

 for i <- 1 until a.length do

 if comp.compare(a(i), m) > 0 then m = a(i)

 Some(m)

The Scala library does just that, except with the Ordering trait that extends Comparator.

19.4 Givens in for and match expressions

You can declare a given in a for loop:

val delims = List(QuoteDelimiters("“", "”"), QuoteDelimiters("«", "»"),

 QuoteDelimiters("„", "“"))

for given QuoteDelimiters <- delims yield

 quote(text)

In each iteration of the loop, the given QuoteDelimiters instance changes, and the quote function uses different delimiters.

In general, a for loop for (x <- a) yield f(x) is equivalent to a.map(f), in which the values of a become arguments of f. In the given form for (given T <- a) yield f(), the values of a become using arguments of f.

A pattern a match expression can be declared as given:

val p = (text, QuoteDelimiters("«", "»"))

p match

 case (t, given QuoteDelimiters) => quote(t)

The given value is introduced in the right hand side of the matched case.

Note that in both situations, you specify the type of the given value, not the name of a variable. If you need a name, use the @ syntax:

for d @ given QuoteDelimiters <- delims yield

 quote(d.left + d.right)

p match

 case (t, d @ given QuoteDelimiters) => quote(d.left + d.right)

19.5 Importing Givens

Usually, you define given values in an object:

object French :

 given quoteDelims: QuoteDelimiters = QuoteDelimiters("«", "»")

 given NumberFormat = NumberFormat.getNumberInstance(Locale.FRANCE)

You import them as needed, either by name or by type:

import French.quoteDelims // imported by name

import French.given NumberFormat // imported by type

You can import multiple given values. Imports by name come before imports by type.

import French.{quoteDelims, given NumberFormat}

If the type is parameterized, you can import all given instances by using a wildcard. For example,

import Comparators.given Comparator[?]

imports all given Comparator instances from

object Comparators :

 def ≤[T : Comparator](x: T, y: T) = summon[Comparator[T]].compare(x, y) <= 0

 given Comparator[Int] with

 ...

 given [T <: Comparable[T]] : Comparator[T] with

 ...

 given [T : Comparator] : Comparator[List[T]] with

 ...

To import all given values, use

import Comparators.given

Note that the wildcard import

import Comparators.*

does not import any given values. To import everything, you need to use:

import Comparators.{*, given}

You can also export given values:

object CanadianFrench :

 given NumberFormat = NumberFormat.getNumberInstance(Locale.CANADA)

 export French.given QuoteDelimiters

19.6 Extension Methods

Did you ever wish that a class had a method its creator failed to provide? For example, wouldn’t it be nice if the java.io.File class had a read method for reading a file:

val contents = File("/usr/share/dict/words").read

As a Java programmer, your only recourse is to petition Oracle Corporation to add that method. Good luck!

In Scala, you can define an extension method that provides what you want:

extension (f: File)

 def read = Files.readString(f.toPath)

Now it is possible to call read on a File object.

An extension method can be an operator:

extension (s: String)

 def -(t: String) = s.replace(t, "")

Now you can subtract strings:

"units" - "u"

Extensions can be parameterized:

extension [T <: Comparable[? >: T]](x: T)

def <(y: T) = x.compareTo(y) < 0

Note that this extension is selective: It adds a < method only to types extending Comparable.

You can add multiple extension methods to the same type:

extension (f: File)

 def read = Files.readString(f.toPath)

 def write(contents: String) = Files.writeString(f.toPath, contents)

An export clause can add multiple methods:

extension (f: File)

 def path = f.toPath

 export path.*

Now all Path methods are applicable to File objects:

val home = File("")

home.toAbsolutePath() // On my computer, that is Path("/home/cay")

19.7 Where Extension Methods Are Found

Consider a method call

obj.m(args)

where m is not defined for obj. Then the Scala compiler needs to look for an extension method named m that can be applied to obj.

There are four places where the compiler looks for extension methods:

1. In the scope of the call—that is, in enclosing blocks and types, in supertypes, and in imports

2. In the companion objects of all types that make up the type T of obj. For historical reasons, this is called the “implicit scope” of the type T. For example, the implicit scope of Pair[Person] consists of the members of the Pair and Person objects.

3. In all given instances that are available at the point of the call

4. In all given instances in the implicit scope of the type of obj

Let us look at examples of each of these situations.

You can place extension methods in an object or package, and then import it:

object FileOps : // or package

 extension(f: File)

 def read = Files.readString(f.toPath)

import FileOps.* // or import FileOps.read

File("/usr/share/dict/words").read

You can put extension methods in a trait or class and extend it

trait FileOps :

 extension(f: File)

 def read = Files.readString(f.toPath)

class Task extends FileOps :

 def call() =

 File("/usr/share/dict/words").read

Here is an example of an extension method in a companion object:

case class Pair[T](first: T, second: T)

object Pair :

 extension [T](pp: Pair[Pair[T]])

 def zip = Pair(Pair(pp.first.first, pp.second.first),

 Pair(pp.first.second, pp.second.second))

val obj = Pair(Pair(1, 2), Pair(3, 4))

obj.zip // Pair(Pair(1, 3), Pair(2, 4))

The zip method can’t be a method of the Pair class. It doesn’t work for arbitrary pairs, but only for pairs of pairs. Since the zip method is invoked on an instance of Pair[Pair[Int]], both the Pair and Int companion objects are searched for an extension method.

Now let us look at extension methods in given values. Consider a stringify method that formats numbers, strings, arrays, and objects using JSON. It has to be an extension method since there is not currently such a method for numbers, strings, pairs, or arrays.

Moreover, we need a way of expressing the requirement that the elements of pairs or arrays can be formatted. As with the Comparator example in Section 19.3, “Declaring Given Instances,” on page 299, we will use a context bound.

The following JSON trait requires the existence of stringify as an extension method. A companion object declares given values JSON[Double] and JSON[String]:

trait JSON[T] :

 extension (t: T) def stringify: String

object JSON :

 given JSON[Double] with

 extension (x: Double)

 def stringify = x.toString

 def escape(s: String) = s.flatMap(

 Map('\\' -> "\\\\", '"' -> "\\\"", '\n' -> "\\n", '\r' -> "\\r").withDefault(

 _.toString))

given JSON[String] with

 extension (s: String)

 def stringify = s""""${escape(s)}""""

Now let’s define a suitable extension method for Pair[T], provided that T can be formatted:

object Pair :

 given [T : JSON] : JSON[Pair[T]] with

 extension (p: Pair[T])

 def stringify: String =

 s"""{"first": ${p.first.stringify}, "second": ${p.second.stringify}}"""

Have a close look at the expression p.first.stringify. How does the compiler know that p.first has a stringify method? The type of p.first is T. Because of the context bound, there is a given object of type JSON[T]. That given object defines an extension method for the type T with name stringify. You have just seen an example of rule #3 for locating extension methods.

Finally, for rule #4, consider the call Pair(1.7, 2.9).stringify. The extension method is not declared in the Pair companion object but in a given value that is declared in Pair.

19.8 Implicit Conversions

An implicit conversion is a function with a single parameter that is a given instance of Conversion[S, T] (which extends the type S => T). As the name suggests, such a function is automatically applied to convert values from the source type S to the target type T.

Consider the Fraction class from Chapter 11. We want to convert integers n to fractions n / 1.

given int2Fraction: Conversion[Int, Fraction] = n => Fraction(n, 1)

Now we can evaluate

val result = 3 * Fraction(4, 5) // Calls int2Fraction(3)

The implicit conversion turns the integer 3 into a Fraction object. That object is then multiplied by Fraction(4, 5).

You can give any name, or no name at all, to the conversion function. Since you don’t call it explicitly, you may be tempted to drop the name. But, as you will see in Section 19.10, “Importing Implicit Conversions,” on page 308, sometimes it is useful to import a conversion function. I suggest that you stick with the source2target convention.

Scala is not the first language that allows the programmer to provide automatic conversions. However, Scala gives programmers a great deal of control over when to apply these conversions. In the following sections, we will discuss exactly when the conversions happen, and how you can fine-tune the process.

[image: Images] Note

Even though Scala gives you tools to fine-tune implicit conversions, the language designers realize that implicit conversions are potentially problematic. To avoid a warning when using implicit functions, add the statement import scala.language.implicitConversions or the compiler option -language:implicitConversions.

[image: Images] Note

In C++, you specify implicit conversions as one-argument constructors or member functions with the name operator Type(). However, in C++, you cannot selectively allow or disallow these functions, and it is common to run into unwanted conversions.

19.9 Rules for Implicit Conversions

Implicit conversions are considered in two distinct situations:

1. If the type of an argument differs from the expected type:

Fraction(3, 4) * 5 // Calls int2Fraction(5)

The * method of Fraction doesn’t accept an Int but it accepts a Fraction.

2. If an object accesses a nonexistent member:

3 * Fraction(4, 5) // Calls int2Fraction(3)

The Int class doesn’t have an *(Fraction) member but the Fraction class does.

On the other hand, there are some situations when an implicit conversion is not attempted:

1. No implicit conversion is used if the code compiles without it. For example, if a * b compiles, the compiler won’t try a * convert(b) or convert(a) * b.

2. The compiler will never attempt multiple conversions, such as convert1(convert2(a)) * b.

3. Ambiguous conversions are an error. For example, if both convert1(a) * b and convert2(a) * b are valid, the compiler will report an error.

[image: Images] Caution

Suppose we also have a conversion

given fraction2Double: Conversion[Fraction, Double] = f => f.num * 1.0 / f.den

It is not an ambiguity that

3 * Fraction(4, 5)

could be either

3 * fraction2Double(Fraction(4, 5))

or

int2Fraction(3) * Fraction(4, 5)

The first conversion wins over the second, since it does not require modification of the object to which the * method is applied.

[image: Images] Tip

If you want to find out which using parameters, extension methods, and implicit conversions the compiler uses, compile your program as

scalac -Xprint:typer MyProg.scala

You will see the source after these contextual mechanisms have been added.

19.10 Importing Implicit Conversions

Scala will consider the following implicit conversion functions:

1. Implicit functions or classes in the companion object of the source or target type

2. Implicit functions or classes that are in scope

For example, consider the int2Fraction and fraction2Double conversions. We can place them into the Fraction companion object, and they will be available for conversions involving fractions.

Alternatively, let’s suppose we put the conversions inside a FractionConversions object, which we define in the com.horstmann.impatient package. If you want to use the conversions, import the FractionConversions object, like this:

import com.horstmann.impatient.FractionConversions.given

You can localize the import to minimize unintended conversions. For example,

@main def demo =

 import com.horstmann.impatient.FractionConversions.given

 val result = 3 * Fraction(4, 5) // Uses imported conversion fraction2Double

 println(result)

You can even select the specific conversions that you want. If you prefer int2Fraction over fraction2Double, you can import it specifically:

import com.horstmann.impatient.FractionConversions.int2Fraction

val result = 3 * Fraction(4, 5) // result is Fraction(12, 5)

You can also exclude a specific conversion if it causes you trouble:

import com.horstmann.impatient.FractionConversions.{fraction2Double as _, given}

 // Imports everything but fraction2Double

[image: Images] Tip

If you want to find out why the compiler doesn’t use an implicit conversion that you think it should use, try adding it explicitly, for example by calling fraction2Double(3) * Fraction(4, 5).You may get an error message that shows the problem.

19.11 Context Functions

Consider our first example of a function with a context parameter:

def quote(what: String)(using delims: QuoteDelimiters) =

 delims.left + what + delims.right

What is the type of quote? It can’t be

String => String

because there is that second parameter list. But clearly it’s not

String => QuoteDelimiters => String

either, because then we would call it as

quote(text)(englishQuoteDelims)

and not

quote(text)(using englishQuoteDelims)

There has to be some way of writing that type, and this is what the Scala designers came up with:

String => QuoteDelimiters ?=> String

[image: Images] Note

Perhaps you are surprised that the ? is with the second arrow. Recall that a curried function type T => S => R is really T => (S => R). When you fix the first parameter, you get a function S => R. In our case, fixing the text to a particular value, we have a function with one using parameter, whose type is denoted as QuoteDelimiters ?=> String.

[image: Images] Note

If a method takes only using parameters, such as

def randomQuote(using delims: QuoteDelimiters) = delims.left

 + scala.io.Source.fromURL(

 "https://horstmann.com/random/quote").mkString.split(" - ")(0)

 + delims.right

then its type has the form QuoteDelims ?=> String

Now that you have seen this curious syntax, let us put it to practical use. Suppose you develop a library where you work with the Future trait. In Chapter 16, we used the global ExecutionContext, but in practice, you will need to tag all your methods with (using ExecutionContext):

def GET(String url)(using ExecutionContext): Future[String] =

 Future {

 blocking {

 Source.fromURL(url).mkString

 }

 }

You can do slightly better than that by defining a type alias

type ContextualFuture[T] = ExecutionContext ?=> Future[T]

Then the method becomes

def GET(url: String): ContextualFuture[String] = ...

Here is a more interesting technique for implementing “magic identifiers”. I want to design an API for web requests where I can say:

GET("https://horstmann.com") { println(res) }

The first parameter of the GET method is a URL. The second is a handler—a block of code that is executed when the response is available. Note the magic identifier res that denotes the response string. Here is how the magic will unfold:

• The GET method makes the HTTP request and obtains the response

• The GET method calls the handler, with the (wrapped) response as a using parameter

• res is a method that summons the response from the “vasty depth” of given objects

We put everything into a Requests object and use a wrapper class for the given response, so that we don’t pollute the givens with an API class.

object Requests :

 class ResponseWrapper(val response: String)

 def res(using wrapper: ResponseWrapper): String = wrapper.response

The GET method has two curried parameters: the URL and the handler. The handler is a context function—note the ?=> arrow:

def GET(url: String)(handler: ResponseWrapper ?=> Unit) =

 Future {

 blocking {

 val response = Source.fromURL(url).mkString

 handler(using ResponseWrapper(response))

 }

 }

Note that the response is wrapped and passed to the handler as a using parameter. Then the handler code executes, and the res function retrieves and unwraps the response object.

This is not meant to be an exemplary design for an HTTP request library. It would be better to work with the Future API. The point of the example is that res is used as a “magic variable” that is available in the scope of the handler function.

See Exercise 12 on page 313 for another example of using context functions.

19.12 Evidence

In Chapter 17, you saw the type constraints

T =:= U

T <:< U

The constraints test whether T equals U or is a subtype of U. To use such a type constraint, you supply a using parameter, such as

def firstLast[A, C](it: C)(using ev: C <:< Iterable[A]) : (A, A) =

 (it.head, it.last)

firstLast(0 until 10) // the pair (0, 9)

The =:= and <:< are classes that produce given values, defined in the Predef object. For example, <:< is essentially

abstract class <:<[-From, +To] extends Conversion[From, To]

object `<:<` :

 given conforms[A]: (A <:< A) with

 def apply(x: A) = x

Suppose the compiler processes a constraint using ev: Range <:< Iterable[Int]. It looks in the companion object for a given object of type Range <:< Iterable[Int]. Note that <:< is contravariant in From and covariant in To. Therefore the object

<:<.conforms[Range]

is usable as a Range <:< Iterable[Int] instance. (The <:<.conforms[Iterable[Int]] object is also usable, but it is less specific and therefore not considered.)

We call ev an “evidence object”—its existence is evidence of the fact that, in this case, Range is a subtype of Iterable[Int].

Here, the evidence object is the identity function. To see why the identity function is required, have a closer look at

def firstLast[A, C](it: C)(using ev: C <:< Iterable[A]) : (A, A) =

 (it.head, it.last)

The compiler doesn’t actually know that C is an Iterable[A]—recall that <:< is not a feature of the language, but just a class. So, the calls it.head and it.last are not valid. But ev is a Conversion[C, Iterable[A]], and therefore the compiler applies it, computing ev(it).head and ev(it).last.

[image: Images] Tip

To test whether a given evidence object exists, you can call the summon function in the REPL. For example, type summon[Range <:< Iterable[Int]] in the REPL, and you get a result (which you now know to be a function). But summon[Iterable[Int] <:< Range] fails with an error message.

[image: Images] Note

If you need to check whether a given value does not exist, use the scala.util.NotGiven type:

given ts[T](using T <:< Comparable[? >: T]): java.util.Set[T] =

 java.util.TreeSet[T]()

given hs[T](using NotGiven[T <:< Comparable[? >: T]]): java.util.Set[T] =

 java.util.HashSet[T]()

19.13 The @implicitNotFound Annotation

The @implicitNotFound annotation raises an error message when the compiler cannot construct a given value of the annotated type. The intent is to give a useful error message to the programmer. For example, the <:< class is annotated as

@implicitNotFound(msg = "Cannot prove that ${From} <:< ${To}.")

abstract class <:<[-From, +To] extends Function1[From, To]

For example, if you call

firstLast[String, List[Int]](List(1, 2, 3))

then the error message is

Cannot prove that List[Int] <:< Iterable[String]

That is more likely to give the programmer a hint than the default

Could not find implicit value for parameter ev: <:<[List[Int],Iterable[String]]

Note that ${From} and ${To} in the error message are replaced with the type parameters From and To of the annotated class.

Exercises

1. Call summon in the REPL to obtain the given values described in Section 19.3, “Declaring Given Instances,” on page 299.

2. What is the difference between the following primary constructor context parameters?

class Quoter(using delims: QuoteDelimiters) : ...

class Quoter(val using delims: QuoteDelimiters) : ...

class Quoter(var using delims: QuoteDelimiters) : ...

3. In Section 19.3, “Declaring Given Instances,” on page 299, declare max with a context bound instead of a using parameter.

4. Show how a given instance of a Logger class can be used in a body of code, without having to pass it along in method calls. Compare with the usual practice of retrieving logger instances with calls such as Logger.getLogger(id).

5. Provide a given instance of Comparator that compares objects of the class java.awt.Point by lexicographic comparison. 6. Continue the previous exercise, comparing two points according to their distance to the origin. How can you switch between the two orderings?

7. Produce a given Ordering for Array[T] instances, provided that there is a given Ordering[T].

8. Produce a given JSON for Iterable[T] instances, provided that there is a given JSON[T]. Stringify as a JSON array.

9. Improve the GET method in Section 19.11, “Context Functions,” on page 309 so that it can retrieve bodies of type other than String. Use the Java HttpClient instead of scala.io.Source. Use a context bound that recognizes the (few) types for which there are body handlers.

10. Did you ever wonder how "Hello" -> 42 and 42 -> "Hello" can be pairs ("Hello", 42) and (42, "Hello")? Define your own operator that achieves this.

11. Define a ! operator that computes the factorial of an integer. For example, 5.! is 120.

12. Consider these function invocations for making an HTML table:

table {

 tr {

 td("Hello")

 td("Bongiorno")

 }

 tr {

 td("Goodbye")

 td("Arrividerci")

 }

 }

A Table class stores rows:

class Table:

 val rows = new ArrayBuffer[Row]

 def add(r: Row) = rows += r

 override def toString = rows.mkString("<table>\n", "\n", "</table>")

Similarly, a Row stores data cells.

How do the Row instances get added to the correct Table? The trick is for the table method to introduce a given instance of type Table, and for the tr method to have a using parameter of type Table. Pass along a Row in the same way from the tr to the td method.

There is one technical complexity. The table and tr functions consume functions with no parameter, except that they need to pass along the using parameter. Their types are Table ?=> Any and Row ?=> Any (see Section 19.11, “Context Functions,” on page 309).

Complete the Table and Row classes and the table, tr, and td functions.

13. Improve the functions of the preceding exercise so that you can’t nest a table inside another table or a tr inside another tr. Hint: NotGiven.

14. Look up the =:= object in Predef.scala. Explain how it works.

Chapter 20

Type Level Programming

Topics in This Chapter L3

[image: Images] 20.1 Match Types

[image: Images] 20.2 Heterogeneous Lists

[image: Images] 20.3 Literal Type Arithmetic

[image: Images] 20.4 Inline Code

[image: Images] 20.5 Type Classes

[image: Images] 20.6 Mirrors

[image: Images] 20.7 Type Class Derivation

[image: Images] 20.8 Higher-Kinded Types

[image: Images] 20.9 Type Lambdas

[image: Images] 20.10 A Brief Introduction into Macros

[image: Images] Exercises

Why use Scala instead of Java on the JVM? Sure, the Scala syntax is more concise and more regular than Java, bu in the end, it is all about the types. Types help us to express what we expect our programs to do. Type mismatches help detect programming errors early, when they are cheap to fix. You have already seen many instances where the Scala type system is richer than Java. This chapter introduces you to advanced techniques of “programming with types”—analyzing and generating types at compile time. These type manipulations are the foundation of some of the most powerful Scala libraries. The details are undeinably complex, and only of interest for advanced library creators. This overview should enable you to understand how those libraries work, and what is involved in their implementation.

The key points of this chapter are:

• Match types express types that vary with another type.

• A heterogeneous list has elements of different types.

• You can make compile-time computations with literal integer types.

• With inline functions, you can conditionally inject code at compile time.

• A type class defines behavior that classes can declare to support in an adhoc fashion.

• The mirror API provides support for analyzing types at compile time. An important application is the automatic derivation of type class instances.

• A higher-kinded type has a type parameter that is itself a parameterized type.

• A type lambda denotes a transformation of a type into another type.

• Macros programmatically generate and transform code at compile time.

20.1 Match Types

At times, it can be useful to perform pattern matching on the type level. Scala has match types for this purpose. Here is the canonical introductory example:

type Elem[C] = C match

 case String => Char

 case Iterable[t] => t

 case Any => C

The type Elem[String] is Char, but Elem[List[Int]] is Int. Note that the type variables, like any variables in a match expression, are lowercase.

Given this type, we can now define a function yielding the initial element of different types:

def initial[C <: Matchable](c: C): Elem[C] =

 c match

 case s: String => s(0)

 case i: Iterable[t] => i.head

 case _: Any => c

[image: Images] Caution

The match clause must have the exact same shape as the match type.The clauses must come in the same order.You cannot add other clauses. In our example, it might be tempting to add a clause such as case "" => '\u0000', but that is a compile-time error.

Match types can be recursive. Given a list of lists, we may want the initial element of the initial list:

type FlatElem[C] = C match

 case String => Char

 case Iterable[t] => FlatElem[t] // Recursion

 case Any => C

Now FlatElem[List[List[Int]]] is Int.

There is a wrinkle when working with this match type. The compiler cannot tell whether the element type t is Matchable. You finesse that with a cast:

def flatInitial[C](c: C): FlatElem[C] =

 c.asInstanceOf[c.type & Matchable] match

 case s: String => s(0)

 case i: Iterable[t] => flatInitial(i.head)

 case x: Any => x

The Scala API has a slightly prettier mechanism for the same purpose. With the statement

import compiletime.asMatchable

you can call asMatchable on any object to add the Matchable trait:

def flatInitial[C](c: C): FlatElem[C] =

 c.asMatchable match

 case s: String => s(0)

 case i: Iterable[t] => flatInitial(i.head)

 case x: Any => x

Now you can call

flatInitial(List(List(1, 7), List(2, 9))) // 1

20.2 Heterogeneous Lists

A List[T] collects elements of type T. What if we want to collect elements of different types? Of course, we can use a List[Any], but then we lose all type information. In this section, we will build a heterogeneous list class that holds elements of different types.

A list is either empty, or it has a head of type H and a tail that is again a HList:

abstract sealed class HList :

 def ::[H, T >: this.type <: HList](head: H): HNonEmpty[H, T] = HNonEmpty(head, this)

case object HEmpty extends HList

case class HNonEmpty[H, T <: HList](head: H, tail: T) extends HList

With the :: operator, you can build up heterogeneous lists:

val lst = "Fred" :: 42 :: HEmpty // Type is HNonEmpty[String, HNonEmpty[Int, HEmpty.type]]

[image: Images] Caution

There is a subtlety in the type parameters of the :: method. If you define

def ::[H](head: H): HNonEmpty[H, this.type] = HNonEmpty(head, this)

then the type of lst has an unwanted wildcard: HNonEmpty[String, ? <: HNonEmpty[Int, HEmpty.type]].

The problem is that this.type is not the type of the right hand side (i.e. not HNonEmpty[Int, HEmpty.type]]. Instead, it is the singleton type consisting only of the right hand side object. You need an additional type variable to obtain the list type.

The Scala compiler can determine the type of each list element. Try evaluating the following expressions:

lst.head // Type is String

lst.tail.head // Type is Int

lst.tail.tail // Type is HEmpty

Consider the following function that concatenates two heterogeneous lists:

def append(a: HList, b: HList): HList =

 a match

 case HEmpty => b

 case ne: HNonEmpty[?, ?] => HNonEmpty(ne.head, append(ne.tail, b))

Unfortunately, the function is not very useful because it doesn’t have a precise return type:

val lst2 = append(lst, lst) // Type is HList

You can’t even ask for lst2.head because a HList doesn’t have a head method. Only HNonEmpty does, but the compiler has no way of knowing that lst2 is nonempty.

[image: Images] Note

If you try these instructions in the REPL, you will find that lst2 has the value

HNonEmpty(Fred,HNonEmpty(42,HNonEmpty(Fred,HNonEmpty(42,HEmpty))))

However, that is only known at runtime.

To accurately determine the return type at compile time, use a match type:

type Append[A <: HList, B <: HList] <: HList = A match

 case HEmpty.type => B

 case HNonEmpty[h, t] => HNonEmpty[h, Append[t, B]]

This match type recursively computes the type of the concatenation. Let’s look at the example of the computation append(lst, lst). Both A and B are HNonEmpty[String, HNonEmpty[Int, HEmpty]]. Then you can work out Append[A, B]. After a couple of recursive steps, it is

HNonEmpty[String, HNonEmpty[Int, B]]

which is

HNonEmpty[String, HNonEmpty[Int, HNonEmpty[String, HNonEmpty[Int, HEmpty]]]]

That is the type that we need to use for the return type of append. Here is the correct function:

def append[A <: HList, B <: HList](a: A, b: B): Append[A, B] =

 a match

 case _: HEmpty.type => b

 case ne: HNonEmpty[?, ?] => HNonEmpty(ne.head, append(ne.tail, b))

Since the types of a and b can vary, the append function needs type parameters A and B, both subtypes of HList. The return type is accurately computed as Append[A, B].

Now the compiler can determine the types of expressions such as

lst2.head // Type is String

lst2.tail.tail.tail.tail // Type is HEmpty

[image: Images] Caution

The match clause must exactly mirror the match type. You must write

case _: HEmpty.type => b

in the function since the type has

case HEmpty.type => B

It would be an error to write

case HEmpty => b

[image: Images] Note

The HList example shows you how to carry out type-level programming. If you want to use heterogeneous lists in your Scala code, you don’t need to implement your own HList class. Just use tuples. They are implemented with the same techniques that this chapter covers. For example, the Scala compiler knows that the type of ("Fred", 42) ++ ("Fred", 42) is (String, Int, String, Int).

20.3 Literal Type Arithmetic

Chapter 18 introduced literal types, such as the type 3 that holds a single value, namely the integer 3.

Why have values at the type level? It allows for checks and computations at compile time. For example, we can define a Vec[N] as a vector with N components, where N is a compile-time constant integer. Then we can check at compile time that a Vec[3] can be added to another Vec[3] but not a Vec[4]:

class Vec[N <: Int] :

 private val xs: Array[Double] = ...

 def +(other: Vec[N]) = ... // Must have the same size

Note that the type parameters must be compile-time constants. You can declare a Vec[3] but not a Vec[n], where n is a variable of type n.

The bound N <: Int is not enough to guarantee that N is a singleton type. To fix that, add a using parameter of type ValueOf[N], like this:

class Vec[N <: Int] (using n: ValueOf[N]) :

 private val xs: Array[Double] = Array.ofDim[Double](n.value)

 def +(other: Vec[N]) = // Must have the same size

 val result = Vec[N]()

 for i <- 0 until xs.length do

 result.xs(i) = xs(i) + other.xs(i)

 result

 ...

A given instance of ValueOf[S] exists for all singleton types whose single occupant is known to the compiler. It has a method value that produces the single value, forming a bridge from the world of types to the world of values. In the code snippet above, the value is used to construct the array of vector coordinates.

[image: Images] Caution

The using parameter is required. It is not enough to constrain the type of N to Int & Singleton. The following does not work:

class Vec[N <: Int & Singleton] :

 private val xs: Array[Double] = Array.ofDim[Double](summon[ValueOf[N]].value)

Here, the compiler has insufficient information to infer the single value of N.

Now consider the operation of concatenating a Vec[N] with a Vec[M]. The result is a vector with N + M components. Of course, N and M are types. Can you add two types?

If you import scala.compiletime.ops.int.*, you can. That package defines types with names +, -, and so on, which carry out arithmetic at the type level. If N and M are singleton integer types, the type N + M is the type whose sole inhabitant is the sum of the inhabitants of N and M.

Here is how to define the concatenation:

def ++[M <: Int](other: Vec[M])(using ValueOf[N + M]) =

 val result = Vec[N + M]()

 for i <- 0 until xs.length do

 result.xs(i) = xs(i)

 for i <- 0 until other.xs.length do

 result.xs(i + xs.length) = other.xs(i)

 result

[image: Images] Caution

In Scala 3.2, the singleton type inference is rather fragile. If the using parameter has type ValueOf[M], the Scala compiler does not infer that both N and M are singletons that can be combined with +.

As a final use of type-level arithmetic, let us provide a middle method that yields the middle component of a vector, provided the number of components is odd.

The scala.compiletime.ops.any package defines == and != type operators. The type N % 2 != 0 is the literal type true when N is inhabited by an odd integer.

def middle(using N % 2 != 0 =:= true) = xs(n.value / 2)

A call v.middle yields a compile-time error if v has an even number of components. In that case, N % 2 != 0 is false, and it is impossible to summon a given false =:= true instance.

20.4 Inline Code

In the preceding section, you saw how to carry out computations at the type level, to ensure that two integer type parameters match, or to form their sum, or to ensure that one is odd. These computations happen when the program is compiled.

For more complex compile-time computations, you can use the Scala facilities for generating inline code. In this section, you will see basic examples that don’t involve type-level programming. Section 20.6, “Mirrors,” on page 328 puts the features to work for automatically generating code for case classes.

Even more complex compile-time transformations are possible with macros—see Section 20.10, “A Brief Introduction into Macros,” on page 335. However, programming with macros is quite a bit more complex. The inline code generation was designed to avoid that complexity in common use cases.

This example nicely shows off the mechanics of inline code generation:

inline def run[T](inline task: => T, profile: Boolean) =

 var start: Long = 0

 inline if profile then start = System.nanoTime()

 val result = task

 inline if profile then

 val end = System.nanoTime()

 println(f"Duration of ${codeOf(task)}: ${(end - start) * 1E-9}%.3f")

 result

The function runs some task, and if the profile flag is true, the running time is printed. Read the code, skipping over the inline keywords. You see that there is a by-name parameter task that is executed. The result, of type T, is returned. A typical call would be:

println(run(Thread.sleep(1000), true))

The output is something like

Duration of Thread.sleep(1000L): 1.001 ()

Note the message that is generated by the println statement inside the run function, indicating the time that elapsed. The () that follows is from the println around the call to run, printing the Unit return value.

The call

println(run(Thread.sleep(1000), false))

simply prints

()

That is not remarkable by itself. To see what is special about the inline code generation, look at the generated bytecodes—see Exercise 4 on page 339. There is no separate run function. Instead, the code of run is placed inside the fuction that calls run. The first copy of the code, when profile is true, contains the calls to System.nanoTime and the string formatter, in addition to the Thread.sleep call. The second copy of the code only calls Thread.sleep.

Note the three uses of the inline keyword:

• The inline function causes the function code to be placed into the location of the function call.

• The inline parameter causes the call expression to be placed inside the function code.

• inline if discards the code in non-matching branches.

[image: Images] Caution

Each use of an inline parameter is expanded.The implementation

inline def run[T](inline task: => T, profile: Boolean) =

 var start: Long = 0

 if profile then

 start = System.nanoTime()

 val result = task

 val end = System.nanoTime()

 println(f"Duration of ${codeOf(task)}: ${(end - start) * 1E-9}%.3f")

 result

 else

 task

would inline the code for task twice.

Finally, note the nifty codeOf(task) that yields a string representing the inline expression. The string comes from the parse tree for the expression, not the source code. Carefully look at the output Thread.sleep(1000L), whereas the source code is Thread.sleep(1000), without the L. The codeOf function is in the scala.compiletime package.

An inline match, similar to an inline if, generates code only for the matching branch:

inline def sizeof[T <: Matchable] =

 inline erasedValue[T] match

 case _: Boolean => 1

 case _: Byte => 1

 case _: Char => 2

 case _: Short => 2

 case _: Int => 4

 case _: Float => 4

 case _: Long => 8

 case _: Double => 8

 case _ => error("Not a primitive type")

For example, sizeof[Int] is replaced with 4.

The scala.compiletime.erasedValue method is needed because T is a type, but the selector of a match expression needs to be a value. It pretends to produce a value of the given type, that then is matched against one of the case branches. Actually, the compiler just matches the types, but this way, no new syntax for type matching had to be invented.

The scala.compiletime.error method reports a compile-time error with the given message.

When each branch of an inline match returns a different type, you may want to declare the function as transparent inline. Then the compiler doesn’t use the common supertype as the return type. Here is an example:

transparent inline def defaultValue[T <: Matchable] =

 inline erasedValue[T] match

 case _: Boolean => false

 case _: Byte => 0.asInstanceOf[Byte]

 case _: Char => '\u0000'

 case _: Short => 0.asInstanceOf[Short]

 case _: Int => 0

 case _: Float => 0.0f

 case _: Long => 0L

 case _: Double => 0.0

 case _ => error("Not a primitive type")

Now the type of defaultValue[Int] is Int. Without the transparent keyword, it would be AnyVal.

There are no inline loops, but inline functions can be recursive. This function concatenates the elements of a tuple:

inline def mkString[T <: Tuple](inline args: T, separator: String): String =

 inline args match

 case EmptyTuple => ""

 case t1: (? *: EmptyTuple) => t1.head.toString

 case t2: NonEmptyTuple => t2.head.toString + separator + mkString(t2.tail, separator)

For example, mkString(("Fred", 42), ", ") is first reduced to "Fred".toString + ", " + mkString((42), ", ") and then to "Fred".toString + ", " + 42.toString.

20.5 Type Classes

If a class wants to compare its elements in a standard fashion, it can extend the Comparable trait. Dozens of Java classes do just that. Inheritance is the object-oriented way of acquiring a capability.

But that mechanism is inflexible. Consider a List[T] type. It can’t extend Comparable because the element type might not be comparable. That’s a shame because there is a natural comparison for lists with comparable element types.

In Chapter 19, you saw a different approach. We provided given Comparator instances for numbers, strings, and any class extending Comparable. Then we synthesized Comparator instances for those lists whose element types have a given Comparator. Algorithms such as sorting make use of the comparison with a using parameter.

This selective synthesis is much more flexible than the object-oriented approach. In order to compare instances, it is not necessary to modify the class at all. Instead, one provides a given instance.

A trait such as Comparator is called a type class. A type class defines some behavior, and a type can join the class by providing that behavior. The term comes from Haskell, and “class” is not used in the same way as in object-oriented programming. Think of “class” as in a “class action”—types banding together for a common purpose.

To see how a type joins a type class, let us look at a simple example. We want to compute averages, (x1 + . . . + xn) / n. To do that, we need to be able to add two values and divide a value by an integer. There is a type class Numeric in the Scala library, which requires that values can be added, multiplied, and compared. But it doesn’t have any requirement that values can be divided by an integer. Therefore, let’s define our own:

trait Averageable[T] :

 def add(x: T, y: T): T

 def divideBy(x: T, n: Int): T

Next, to make sure that the type class is useful out of the gate, let’s include some common types. That’s easy to do by providing given objects in the companion object:

object Averageable :

 given Averageable[Double] with

 def add(x: Double, y: Double) = x + y

 def divideBy(x: Double, n: Int) = x / n

 given Averageable[BigDecimal] with

 def add(x: BigDecimal, y: BigDecimal) = x + y

 def divideBy(x: BigDecimal, n: Int) = x / n

Now we are ready to put the type class to use. In the average method, we need an instance of the type class so that we can call add and divideBy. (Note that these are methods of the type class, not the argument type.)

Here, we’ll just compute the average of two values. The general case is left as an exercise. There are two ways in which we can supply the type class instance: as a using parameter, or with a context bound. Let’s do the latter:

def average[T : Averageable](x: T, y: T) =

 val ev = summon[Averageable[T]]

 ev.divideBy(ev.add(x, y), 2)

Finally, let’s see what a type needs to do to join the Averageable type class. It must provide a given object, just like the given instances for Double and BigDecimal that we provided out of the gate. Here is how Point can join:

case class Point(x: Double, y: Double)

object Point :

 given Averageable[Point] with

 def add(p: Point, q: Point) = Point(p.x + q.x, p.y + q.y)

 def divideBy(p: Point, n: Int) = Point(p.x / n, p.y / n)

Here we added the given object to the companion object of Point. If you can’t modify the Point class, you can put the given object elsewhere and import it as needed.

The standard Scala library provides useful type classes, such as Equiv, Ordering, Numeric, Fractional, Hashing, IsIterableOnce, IsIterable, IsSeq, IsMap, FromString. As you have seen, it is easy to provide your own.

The important point about type classes is that they provide an “ad-hoc” way of providing polymorphism that is less rigid than inheritance.

20.6 Mirrors

In this section, we will use a type class that provides a JSON representation for any object:

trait JSON[A] :

 def stringify(a: A): String

Here are given instances for common types:

object JSON :

 given jsonDouble: JSON[Double] with

 def stringify(x: Double) = x.toString

 given jsonString: JSON[String] with

 def escape(s: String) = s.flatMap(

 Map('\\' -> "\\\\", '"' -> "\\\"", '\n' -> "\\n", '\r' -> "\\r").withDefault(

 _.toString))

 def stringify(s: String): String = s"\"${escape(s)}\""

Given any case class, we can define a given instance that stringifies the fields:

case class Person(name: String, age: Int)

given jsonPerson: JSON[Person] with

 def stringify(p: Person) =

 val name = summon[JSON[String]].stringify(p.name)

 s"""{"name": $name, "age": $p.age}"""

But that is clearly tedious. In Java, one could use reflection to automatically stringify arbitrary instances at runtime. In Scala, we can do better, and generate the converter code at compile time.

To analyze types at compile time, we need to use mirrors. Every case class T gives rise to a type Mirror.Product[T]. (Recall from Chapter 14.10 that case classes extend the Product trait.) The mirror describes the following features of the class:

• MirroredElemTypes, a tuple of the field types

• MirroredElemLabels, a tuple of the field names

• MirroredLabel, the name of the class

Note that all of these are types. For example, if m is the given Mirror.Product[Person], then m.MirroredElemTypes is the tuple type (String, Int), m.MirroredElemLabels is a tuple type of two singleton types ("name", "age"), and m.mirroredLabel is the singleton type Person.

In the JSON representation, we need to use the field names. But we need them as string objects, not singleton types.

The scala.compiletime package has three methods for turning singleton types into values:

• constValue[T] yields the sole value of the singleton type T

• constValueOpt[T] yields an Option with the sole value if T is a singleton type, None otherwise

• constValueTuple[T] yields a tuple of singleton values, where T is a tuple type of singleton types.

You can move from types to objects as follows:

val fieldNames = constValueTuple[m.MirroredElemLabels] // A tuple of strings

For JSON formatting, we don’t need the class name, but if you need it, it is

val className = constValue[m.MirroredLabel]

We need to obtain the given JSON instances for each of the field types. There are three methods for summoning given instances in an inline function:

• summonInline[T] summons the given instance of type T

• summonAll[T], where T is a tuple type, summons a tuple of all given instances of the element types of T

• summonFrom attempts to summon instances given in a case clause; for example

summonFrom { case given Ordering[T] => TreeSet[T](); case _ => HashSet[T]() }

Here is one way to summon the given JSON instances:

inline def summonGivenJSON[T <: Tuple]: Tuple =

 inline erasedValue[T] match

 case _: EmptyTuple => EmptyTuple

 case _: (t *: ts) => summonInline[JSON[t]] *: summonGivenJSON[ts]

The result is a tuple of JSON instances, such as JSON[String] and JSON[Int] if T is Person. Note that again we go from a tuple of types to a tuple of values.

You will see more elegant ways of collecting such type class instances in Section 20.8, “Higher-Kinded Types,” on page 332 and Section 20.9, “Type Lambdas,” on page 334.

At this point, we have all the tools to produce a JSON instance for an arbitrary Product. Every case class is a subclass of Product.

inline given jsonProduct[T](using m: Mirror.ProductOf[T]): JSON[T] =

 new JSON[T] :

 def stringify(t: T): String =

 val fieldNames = constValueTuple[m.MirroredElemLabels]

 val jsons = summonGivenJSON[m.MirroredElemTypes]

 "{ " + fieldNames.productIterator.zip(jsons.productIterator)

 .zip(t.asInstanceOf[Product].productIterator).map {

 case ((f, j), v) => s""""$f": ${j.asInstanceOf[JSON[Any]].stringify(v)}"""

 }.mkString(", ") + " }"

The cast j.asInstanceOf[JSON[Any]] is necessary since jsons is only known to be a Tuple.

[image: Images] Caution

With Scala 3.2, you cannot use the with syntax with inline given.

Now any case class instance can be formatted as JSON:

case class Item(description: String, price: Double)

summon[JSON[Item]].stringify(Item("Blackwell Toaster", 19.95))

 // { "description": "Blackwell Toaster", "price": 19.95 }

20.7 Type Class Derivation

In the preceding section, you saw how to automatically obtain a JSON instance for any product type. You can do the same for sum types. Recall that a sum type is given by a sealed class or an enum class, such as

sealed abstract class Amount

case class Dollar(value: Double) extends Amount

case class Currency(value: Double, unit: String) extends Amount

or

enum BinaryTree[+A] :

 case Node(value: A, left: BinaryTree[A], right: BinaryTree[A])

 case Empty

Analogous to the process of the preceding section, here is how to produce a JSON instance for a sum type:

inline given jsonSum[T](using m: Mirror.SumOf[T]): JSON[T] =

 new JSON[T] :

 def stringify(t: T): String =

 val index = m.ordinal(t)

 val jsons = summonGivenJSON[m.MirroredElemTypes]

 jsons.productElement(index).asInstanceOf[JSON[Any]].stringify(t)

With a Mirror.SumOf, m.MirroredElemTypes is a tuple of all subtypes, and the call m.ordinal(t) yields the index of the type t in that tuple.

Summoning a JSON[Amount] will summon JSON instances of all subtypes, namely JSON[Dollar] and JSON[Currency]. These are case classes, and the instances are generated using jsonProduct.

However, if you try summon[JSON[BinaryTree[String]]], you run into a problem. The subclass BinaryTree[String].Node yields an error since the compiler doesn’t yet know how to deal with the fields of type BinaryTree.

This can be finessed through type class derivation. BinaryTree declares that it is an instance of the JSON type class, with the syntax

enum BinaryTree[+A] derives JSON :

 case Node(value: A, left: BinaryTree[A], right: BinaryTree[A])

 case Empty

The JSON companion object must provide a method or value called derived that yields the type class instance. Here is a suitable method:

inline def derived[T](using m: Mirror.Of[T]): JSON[T] =

 inline m match

 case s: Mirror.SumOf[T] => jsonSum(using s)

 case p: Mirror.ProductOf[T] => jsonProduct(using p)

Keep in mind that few programmers will implement their own type classes. Libraries for interacting with JSON, SQL, and so on, will define appropriate type classes. Users of such libraries indicate with the derives syntax that a particular class is an instance of such a type class.

20.8 Higher-Kinded Types

The generic type List has a type parameter T and produces a type. For example, given the type Int, you get the type List[Int]. For that reason, a generic type such as List is sometimes called a type constructor, denoted as List[_]. In Scala, you can go up another level and have type parameters that are type constructors.

To see why this can be useful, consider the summonGivenJSON method from Section 20.6, “Mirrors,” on page 328. If we want to collect elements of another type class, we have to write the method all over again, just with the other type class instead of JSON. It would be nice if we could pass the type class as a parameter. That is a typical use for a higher-kinded type:

inline def summonGiven[T <: Tuple, C[_]]: Tuple =

 inline erasedValue[T] match

 case _: EmptyTuple => EmptyTuple

 case _: (t *: ts) => summonInline[C[t]] *: summonGiven[ts, C]

Now the call summonGiven[m.MirroredElemTypes, JSON] gathers up all given JSON[t] instances.

We say that summonGiven is higher-kinded because it has a type parameter that itself has a type parameter. (There is a theory of kinds that describes the complexity of type parameters. The details are not important for most programmers because it is very uncommon to have situations that are more complex than the one you are seeing here.)

This example is concise, but rather specialized. For another example, let’s start with the following simplified Iterable trait:

trait Iterable[E] :

 def iterator(): Iterator[E]

 def map[F](f: E => F): Iterable[F]

Now consider a class implementing this trait:

class Buffer[E] extends Iterable[E] :

 def iterator(): Iterator[E] = ...

 def map[F](f: E => F): Buffer[F] = ...

For a buffer, we expect that map returns a Buffer, not a mere Iterable. That means we cannot implement map in the Iterable trait itself, which we would like to do. A remedy is to parameterize the Iterable with a type constructor, like this:

trait Iterable[E, C[_]] :

 def iterator(): Iterator[E]

 def build[F](): C[F]

 def map[F](f : E => F) : C[F]

Now an Iterable depends on a type constructor for the result, denoted as C[_]. This makes Iterable a higher-kinded type.

The type returned by map may or may not be the same as the type of the Iterable on which map was invoked. For example, if you invoke map on a Range, the result is not generally a range, so map must construct a different type such as a Buffer[F]. Such a Range type is declared as

class Range extends Iterable[Int, Buffer]

Note that the second parameter is the type constructor Buffer.

To implement map in Iterable, we need a bit more support. An Iterable needs to be able to produce a container that holds values of any type F. Let’s define a Container trait—it is something to which you can add values:

trait Container[E : ClassTag] :

 def +=(e: E): Unit

We require the ClassTag context bound since some containers need to be able to construct a generic Array[E].

The build method is required to yield such an object:

trait Iterable[E, C[X] <: Container[X]] :

 def build[F : ClassTag](): C[F]

 ...

The type constructor C has now been constrained to be a Container, so we know that we can add items to the object that build returns. We can no longer use a wildcard for the parameter of C since we need to indicate that C[X] is a container for the same X.

The map method can be implemented in the Iterable trait:

def map[F : ClassTag](f : E => F) : C[F] =

 val res = build[F]()

 val iter = iterator()

 while iter.hasNext do

 res += f(iter.next())

 res

Iterable classes no longer need to supply their own map. Here is the Range class:

class Range(val low: Int, val high: Int) extends Iterable[Int, Buffer] :

 def iterator() = new Iterator[Int] :

 private var i = low

 def hasNext = i <= high

 def next() = { i += 1; i - 1 }

 def build[F : ClassTag]() = Buffer[F]

Note that a Range is an Iterable: You can iterate over its contents. But it is not a Container: You can’t add values to it.

A Buffer, on the other hand, is both:

class Buffer[E : ClassTag] extends Iterable[E, Buffer] with Container[E] :

 private var capacity = 10

 private var length = 0

 private var elems = Array[E](capacity) // See note

 def iterator() = new Iterator[E] :

 private var i = 0

 def hasNext = i < length

 def next() = { i += 1; elems(i - 1) }

 def build[F : ClassTag]() = Buffer[F]

 def +=(e: E) =

 if length == capacity then

 capacity = 2 * capacity

 val nelems = Array[E](capacity) // See note

 for (i <- 0 until length) nelems(i) = elems(i)

 elems = nelems

 elems(length) = e

 length += 1

This example showed a typical use of higher-kinded types. An Iterable depends on Container, but Container isn’t a type—it is a mechanism for making types.

20.9 Type Lambdas

We can think of a type constructor such as List[_] as a type-level function, mapping a type X to the type List[X]. This can be expressed with a special syntax, called a type lambda:

[X] =>> List[X]

In this simple case, the type lambda syntax is not necessary, but it is useful for expressing more complex type-level mappings.

[image: Images] Caution

The [] are required around the type arguments. For example, X =>> List[X] is not a valid type lambda.

Here is another example. Recall the integer type arithmetic from Section 20.3, “Literal Type Arithmetic,” on page 322. Now we want a general mechanism to check for conditions such as “a compile-time constant is even”. Here it is:

def validate[V <: Int, P[_ <: Int] <: Boolean](

 using ev: P[V] =:= true, v: ValueOf[V]) = v.value

V is a singleton integer type and P a type constructor turning integers to Booleans; that is, a condition. If the condition is fulfilled at the type level, P[V] =:= true can be summoned, and the value is retrieved.

You can specify P as a type lambda. Here is how to check that a value is even:

validate[10, [V <: Int] =>> V % 2 == 0]

Note the type lambda. Without it, you would need to define a named type

type Even[V <: Int] = V % 2 == 0

and call

validate[10, Even]

Finally, let us use the concept of type lambdas to make one more simplification of the summonGivenJSON function of Section 20.6, “Mirrors,” on page 328. We handcrafted a transformation from a tuple of types to a tuple of given instances. There is a function summonAll in the scala.compiletime package that will summon the given instances from a tuple of types. But we couldn’t use it because we didn’t have a tuple of the right types. We had a tuple (String, Int) but need to summon the instances of (JSON[String], JSON[Int]). If we could just map [X] =>> JSON[X], we would be all set.

That is exactly what the Tuple.Map type does. It applies a type-level transformation to a tuple of types. The type

type ElemTypesJSON = Tuple.Map[m.MirroredElemTypes, [X] =>> JSON[X]]

is the tuple of JSON type classes of the field types.

You don’t actually need the type lambda here. Simply summon the instances as:

val jsons = summonAll[Tuple.Map[m.MirroredElemTypes, JSON]]

20.10 A Brief Introduction into Macros

In this chapter, you have seen several techniques for carrying out compile-time computations. Macros provide a far more general mechanism for arbitrary code transformation at compile time. However, writing macros is complex and requires significant insight into the compilation process. Macro programming is a very specialized skill that is only needed to implement advanced libraries with seemingly magical powers.

This section covers a couple of use cases for macros and briefly shows you the implementation. Hopefully, that will give you a flavor of what is possible with macros, so that you have a basic understanding how the implementors of those advanced libraries achieve their magical results.

Let us start with a simple example. When debugging, it is common to write print statements such as

println("someVariable = " + someVariable)

It is annoying that one has to write the variable name twice: once to print the name, and again to get the value. That problem can actually be solved with an inline function:

inline def debug1(inline expr: Any): Unit = println(codeOf(expr) + " = " + expr)

You already saw the codeOf function in Section 20.4, “Inline Code,” on page 323. It prints the code of an inline value. Here is an example:

val x = 6

val y = 7

debug1(x * y) // Prints x.*(y) = 42

But suppose we also want to see the type of the expression. There is no library function for that. Instead, we need to write a macro.

Macros permit manipulation of syntax trees. If e is a Scala expression of type T, then '{e} is the syntax tree of type Expr[T]. There are methods for analyzing and generating syntax trees.

Conversely, if you have a value s of type Expr[T], you can use the expression that it represents inside a Scala expression, using the syntax ${s}.

The ' and $ operations are called quote and splice.

In our debug1 example, we will produce a syntax tree for a call to println:

'{println(${...} + ": " + ${...} + " = " + ${...})}

In general, the idea is to do as much as possible in Scala syntax, and use the syntax tree API only when necessary. Here, we use Scala syntax for the concatenation and the invocation of println.

Here is the complete implementation:

inline def debug1[T](inline arg: T): Unit = ${debug1Impl('arg)}

private def debug1Impl[T : Type](arg: Expr[T])(using Quotes): Expr[Unit] =

 '{println(${Expr(arg.show)} + ": " + ${Expr(Type.show[T])} + " = " + $arg)}

For technical reasons, a macro must be called from an inline function; here, debug1, using a top-level splice and quoting its arguments. It is customary to use an Impl suffix for the macro function.

Note that 'arg is the same as '{arg}. No braces are required with a variable name.

The macro function receives arguments of type Expr, and it needs to use a given Quotes instance.

The call arg.show yields a string representation of the syntax tree of arg. To splice it in, we need to turn it to an Expr.

Similarly, Type.show[T], which yields a string representation of the type parameter, is turned into an Expr.

Finally, the arg variable, which is itself a syntax tree, is spliced in. Again, since it is a variable, no braces are required.

The debug1 function prints a single expression. It would be nice to print more than one:

debugN("Test description", x, y, x * y)

Now there is no easy way of printing the types, but instead, let us not print the expressions for literal values. It would look silly to print Test description = Test description.

The implementation is a bit more complex:

inline def debugN(inline args: Any*): Unit = ${debugNImpl('args)}

private def debugNImpl(args: Expr[Seq[Any]])(using q: Quotes): Expr[Unit] =

 import q.reflect.*

 val exprs: Seq[Expr[String]] = args match

 case Varargs(es) =>

 es.map { e =>

 e.asTerm match

 case Literal(c: Constant) => Expr(c.value.toString)

 case _ => '{${Expr(e.show)} + " = " + $e}

 }

'{println(${exprs.reduce((e1, e2) => '{$e1 + ", " + $e2})})}

As before, the debugN function calls the debugNImpl macro, passing the quoted arguments, now as an Expr[Seq[Any]]. And as before, we need to use a given Quotes instance.

Now some more knowledge of Scala internals is required. The args parameter is actually an instance of Varargs, which we destructure to get its elements. Each element is either a literal, or an expression for which both the description and value are printed.

In the first case, we produce an Expr with the string representation of the literal. In the second case, we concatenate the expression’s string representation e.show and the string " = " at compile time, and produce an expression to concatenate with the expression’s value at runtime.

The call to reduce concatenates the values of the expressions. Note the nested quote and splice to compute the concatenation of e1 and e2. It is a good idea to look at the generated byte codes to understand the intricacies of the macro expansion (see Exercise 27 on page 341).

As a final example, let us expand on the type checking that you saw in Section 20.3, “Literal Type Arithmetic,” on page 322. We were able to check at compile time that two vectors have the same length, or that the length is odd. Suppose we want to check strings instead. For example, we might want to verify at compile time that a string literal contains only digits before parsing it as an integer.

Such a check requires invoking a method such as String.matches at compile time, which is not possible with an inline function. Again, a macro is required.

Specifically, we will define a type StringMatching[regex] for literal strings that match a regular expression, also specified as a literal string. For example, the declaration

val decimal: StringMatching["[0-9]+"] = "1729"

will succeed, but

val octal: StringMatching["[0-7]+"] = "1729"

will not compile.

Here is the StringMatching type:

opaque type StringMatching[R <: String & Singleton] = String

In the companion object, we define an implicit conversion:

inline given string2StringMatching[S <: String & Singleton, R <: String & Singleton]:

 Conversion[S, StringMatching[R]] = str =>

 inline val regex = constValue[R]

 inline if matches(str, regex)

 then str.asInstanceOf[StringMatching[R]]

 else error(str + " does not match " + regex)

The matches call is a macro:

inline def matches(inline str: String, inline regex: String): Boolean =

 ${matchesImpl('str, 'regex)}

def matchesImpl(str: Expr[String], regex: Expr[String])(using Quotes): Expr[Boolean] =

 Expr(str.valueOrAbort.matches(regex.valueOrAbort))

It would have been nicer to use quotes and splices '{$str.matches($regex)}, but that does not inline. Therefore, the matchesImpl method manually converts the expression trees to values, invokes String.matches, and produces an Expr of the Boolean result.

This chapter has given you an overview of advanced techniques that make some of the most advanced Scala libraries possible. You have now reached the end of this book. I hope that you found it useful as a rapid introduction into all aspects of the Scala language, and that you will find it equally effective as a reference in the future.

Exercises

1. Using a recursive match type and union types, define a type Interval[MIN <: Int, MAX <: Int] <: Int that describes an interval of integers, with membership checked at compile time. For example, a variable of type Interval[1, 10] can be set to any constant integer between 1 and 10, and not to any other value.

2. Define an opaque type IntMod[N] for integers modulo N, with operators +, -, * that only combine integers with the same modulus.

3. Define a zip function that takes two HList of the same length and yields an HList of corresponding pairs. You will also need a recursive match type Zip.

4. Look at the bytecodes that are generated when you call the run function of Section 20.4, “Inline Code,” on page 323. Compile the Section5 class from the companion code with the Scala compiler, then run javap -c -private on the class file that is called from the @main method. How can you tell that the code of the run function was inlined?

5. Verify that the code in the Caution note of Section 20.4, “Inline Code,” on page 323 inlines the code for the task parameter twice.

6. How does the codeOf(task) string appear in the bytecodes that are generated when you call the run function of Section 20.4, “Inline Code,” on page 323? Try invoking run with two different tasks.

7. Explain why Ordering is a type class and why Ordered is not.

8. Generalize the average method in Section 20.5, “Type Classes,” on page 326 to a Seq[T].

9. Make String a member of the Averageable type class in Section 20.5, “Type Classes,” on page 326. The divBy method should retain every nth letter, so that average("Hello", "World") becomes "Hlool".

10. Why can’t you implement the debugN function from Section 20.10, “A Brief Introduction into Macros,” on page 335 as an inline function? Could you do it if you pass the arguments as a tuple, for example debugN((x, y + z))?

11. Write a recursive inline function that computes the sum of the elements of a Vec from Section 20.3, “Literal Type Arithmetic,” on page 322.

12. Write a recursive inline function that yields the element with index n of a HList with return type Any.

13. Improve upon the preceding exercise with an accurate return type. For example, elem(("Fred", 42), 1) should have type Int. Hint: Use a recursive match type Elem[T, N]. You may still need a cast in the implementation. If you are stuck, look into the source code of the Scala Tuple class.

14. Create a fluent API for reading integers, floating-point numbers, and strings from the console. For example: Read in aString askingFor "Your name" and anInt askingFor "Your age" and aDouble askingFor "Your weight". Return a Tuple of the appropriate type, such as (String, Int, Double) in this example.

15. Rewrite the average function in Section 20.5, “Type Classes,” on page 326 with the using syntax.

16. Rewrite the average function in Section 20.5, “Type Classes,” on page 326 to compute the average of any number of arguments.

17. Define a Fraction class and make it an instance of the standard Fractional type class.

18. Define a type class Randomized for producing a random instance of a type. Provide given instances for Int, Double, BigDecimal, and String.

19. Implement an inline function that makes a binary or a linear search through an array, depending on whether the component type admits an ordering.

20. Change the summonGivenJSON function in Section 20.6, “Mirrors,” on page 328 so that it returns a List[JSON[Any]] instead of a Tuple. Can you then avoid invoking asInstanceOf in jsonProduct?

21. The automatic derivation in Section 20.6, “Mirrors,” on page 328 does not work for the Person class. How can you fix that?

22. Extend the JSON type class in Section 20.6, “Mirrors,” on page 328 so that it can handle Boolean values and arrays.

23. Add a parse method to the JSON type class in Section 20.6, “Mirrors,” on page 328 and implement parsing for case classes.

24. Confirm that the cast asInstanceOf[Product] can be avoided in the jsonProduct function of Section 20.6, “Mirrors,” on page 328 if one adds the very sensible bound <: Product to the type parameter. What problem does that cause in Section 20.7, “Type Class Derivation,” on page 330?

25. A (potentially infinite) set of elements of type T can be modelled as a function T => Boolean that is true whenever the argument is an element of the set. Declare a type Set in two ways, with a type parameter and with a type lambda.

26. The result of "abc".map(_.toUpper) is a String, but the result of "abc".map(_.toInt) is a Vector. Find out how that is implemented in the Scala library.

27. Write a program that uses the debugN macro of Section 20.10, “A Brief Introduction into Macros,” on page 335. (You need to put the macro and the code using it into separate source files.) Use javap -c -private to analyze the class file. Can you correlate the string concatenations with the quote and splice levels? What happened to the calls to map and reduce?

OEBPS/Images/sq.jpg

OEBPS/Images/f00xx-01.jpg
Application Programmer Library Designer Overall Scala Level

Beginning X Beginning

Intermediate Junior Intermediate

Expert Senior Advanced
Expert Expert

OEBPS/Images/caution.jpg

OEBPS/Images/05tab02.jpg
Primary Constructor Parameter

Generated Field/Methods

name: String

object-private field, or no field if no method uses
nane

private val/var name: String

private field, private getter/setter

val/var name: String

private field, public getter/setter

@BeanProperty val/var name: String

private field, public Scala and JavaBeans
getters/setters

OEBPS/Images/05tab01.jpg
Scala Field

Generated Methods

When to Use

val/var nane

public nane
nane_- (var only)

To implement a property that is
publicly accessible and backed by
afield.

@BeanProperty
val/var nane

public nane
getName()

nare_= (var only)
sethane(...) (var only)

To interoperate with JavaBeans.

private val/var
nane

private getters/setters
generated if needed

To confine the field to the
methods of this class, just like in
Java. Use private unless you really
want a public property.

private[name]
val/var name

implementation-dependent

To grant access to an enclosing
class or package. Not commonly
used.

OEBPS/Images/08tab02.jpg
with val with def with var
Override * Subclass has a private field Error. Error.
val (with the same name as the
superclass field—that's OK).
* Getter overrides the
superclass getter.
Override * Subclass has a private field. Like in Avar can override a
def « Getter overrides the Java. getter/setter pair.
superclass method. Overriding just a
getter is an error.
Override Error. Error. Only if the superclass

var

var is abstract.

OEBPS/Images/16tab01.jpg
Method Result Type Description

collect (pf: Future[S] Like nap, but with a partial function.

PartialFunction[T, S]) The result fails with a
NoSuchETenentException if pf(v) is not
defined.

foreach(f: T => U) Unit Calls f(v) like nap, but only for its side
effect.

andThen(pf: Future[T] Calls pf(v) for its side effect and

PartialFunction(Try[T], U]) returns a future with v.

filter(p: T = Boolean) Future[T] Calls p(v) and returns a future with v

recover(pf:
PartialFunction[Throwable,
u

recoverliith(pf:
PartialFunction[Throwable,
Future[U]])

Future[U] (where

Uis a supertype
of T)

or a NoSuchETenentException.
A future with value v or pf(ex),
flattened in the asynchronous case.

fallbackTo(f2: Future[U])

Future[U] (where
Uis a supertype
of T)

A future with value v, or if this future
failed, with the value of f2, or if that
also failed, with exception ex.

failed

Future[Throwable]

A future with value ex.

transform(s: T => S, f:
Throwable => Throwable)
transforn(f: Try(T] =
Try[s1)

transformiith(f: Try[T] =
Future([Try[S]])

Future(S]

Transforms both the success and
failure.

zip(f2: Future[U])

Future[(T, U)]

A future with a pair holding vand the
value of 2, or ex if this future fails, or
the failure of £2

zZiphith(f2: Future[U])(f:
(T, V) =>R)

Future[R]

Zips both futures and applies f

flatten

Future[S] (where
Tis Future[s])

Flattens a Future[Future[S]] into a
Future[S]

OEBPS/Images/08tab01.jpg
Scala Java

obj.isInstance0f[C1] obj instanceof C1

obj.asInstance0f[C1] (@) obj

lassOf[C1] (.class

OEBPS/Images/13tab04.jpg
Conversion Function

Type in scala.collection

Type (generally in java.util)

aslava/asScala Tterable java.lang. Tterable
asJavaCollection/asScala Tterable Collection
aslava/asScala Iterator Iterator
asJavaEnuneration/asScala Iterator Enumeration
aslava/asScala mutable.Buffer List

aslava Seq, mutable.Seq List
asJava/asScala mutable.Set Set

aslava Set Set
aslava/asScala nutable.Hap Map

aslava Map Map
asJavaDictionary/asScala Map Dictionary

asJava/asScala

concurrent.Map

concurrent. Concurrenthap

OEBPS/Images/13tab03.jpg
Methods

Description

coll(k)
(i.e., coll.apply(k))

The kth sequence element.

contains(elen),
containsSlice(seq),

startsWith(seq), endsWith(seq)

Returns true if this sequence contains the given element
or sequence; if it starts or ends with the given sequence.

indexf (elen),
TastIndexof (elen),
indexofS1ice(seq),
TastIndex0fS1ice(seq)

Returns the index of the first or last occurrence of the
given element or element sequence.

indexthere(pred)

Returns the index of the first element fulfilling pred.

prefixLength(pred),
segrentLength(pred, n)

Returns the length of the longest sequence of elements
fulfilling pred, starting with 8 or n.

padTo(n, fi11)

Returns a copy of this sequence, with i1l appended
until the length is n.

intersect(seq), diff(seq)

Returns the “multiset” intersection or difference of the
sequences. For example, if 2 contains five 1s and b
contains two, then a intersect b contains two (the smaller
count), and a diff b contains three (the difference).

reverse

The reverse of this sequence.

sorted, sortiiith(less),
sortBy(f)

The sequence sorted using the element ordering, the
binary Tess function, or a function f that maps each
element to an ordered type.

pernutations, conbinations(n)

Returns an iterator over all permutations or
combinations (subsequences of length n).

OEBPS/Images/13tab02.jpg
Methods

Description

head, Tast, headOption, TastOption

Returns the first or last element; or, that element as
an Option.

tail, init

Returns everything but the first or last element.

Tength, {sEnpty

Returns the length, or true if the length is zero.

map(f), flatMap(f), foreach(f),
mapInPlace(f)collect(pf)

Applies a function to all elements; see Section 13.8.

reduceLeft(op), reduceRight(op),
foldLeft(init) (op),
foldRight(init) (op)

Applies a binary operation to all elements in a given
order; see Section 13.9.

reduce(op), fold(init)(op),
aggregate(init)(op, combine0p)

Applies a binary operation to all elements in arbitrary
order.

sun, product, nax, min, naxBy(f),
ninBy (), nax0ption, mindption,
naxByOption(f), minByOption(f)

Returns the sum or product (provided the element
type can be implicitly converted to the Numeric trait), or
the maximum or minimum. The nax and min functions
require that the element type has an Ordering. The naxdy
and nindy functions measure the elements by applying
the function f. The methods ending in Option return an
Option so that they can be safely applied to empty
collections.

count(pred), forall(pred),
exists(pred)

Returns the count of elements fulfilling the predicate;
true if all elements do, or at least one element does.

Filter(pred), filterhot(pred),
partition(pred)

Returns all elements fulfilling or not fulfilling the
predicate; the pair of both.

takeihile(pred), drophhile(pred),
span(pred)

Returns the first elements fulfilling pred; all but those
elements; the pair of both.

‘take(n), drop(n), splitAt(n)

Returns the first n elements; everything but the first n
elements; the pair of both.

takeRight(n), dropRight (n)

Returns the last n elements; everything but the last n
elements.

sTice(from, to), view(fro, to)

Returns the elements in the range fron until to, or a
view thereto.

OEBPS/Images/13tab01.jpg
Operator Description Collection Type

coll :+ elen A collection of the same type as coll to which Seq

elen +: coll ¢len has been appended or prepended.

coll + elen A collection of the same type as coll with the Immutable

coll - elen given element added or removed. Set, Map

coll + coll2 A collection of the same type as coll, Tterable
containing the elements of both collections.

cll -- coll2 A collection of the same type as coll from Immutable
which the elements of col12 have been Set, Map
removed. (For sequences, use diff.)

elen :: Ist Alist with the element or given list List

Tst2 1:: st prepended to Ist. Same as +: and ++:.

set | set2 Set union, intersection, difference. | is the Set

set & set? same as ++, and & is the same as --.

set & set2

coll 4+= elen Modifies coll by adding or removing the Mutable

ol += coll2 given elements. collections
Modifies coll by prepending the given Buffer

element or coliection, alias for prepend.

OEBPS/Images/08fig01.jpg
‘w" HEEREREE

OEBPS/Images/13fig01.jpg
«trait»
Iterable
«trait» «trait» «trait»
Seq Set Map
«trait» «trait» «trait» «trait» «trait»
IndexedSeq LinearSeq Buffer SortedSet SortedMap

OEBPS/Images/13fig03.jpg
«trait»

Seq
«trait» «trait» Priority
IndexedSeq Stack LinearSeq Queue
ArrayBuffer Queue

OEBPS/Images/10fig02.jpg
balance

interest
maxLength

Superclass object

Subolass fields

OEBPS/Images/13fig02.jpg
«trait»
seq

f

«trait»
IndexedSeq

Range

List

Queue

OEBPS/Images/10fig01.jpg
Person

nane

T

Student

Enployee

nane

nane

.

Teaching
Assistant

OEBPS/Images/10fig04.jpg
Component.

N

1 Container
onpanent
T Container
JButton

[

Ipanel

OEBPS/Images/10fig03.jpg
Exception «interface»
i LoggedException
Unhappy
Exception

OEBPS/Images/pub.jpg
vvAddison-Wesley

OEBPS/Images/tip.jpg

OEBPS/Images/03tab01.jpg
Explanation

Scaladoc

def count(p: (A) => Boolean): Int

This method takes a predicate, a function from A
to Boolean. It counts for how many elements the
function is true. For example, a.count(_ >) counts
how many elements of 2 are positive.

def
insert(@deprecatedName("n’,
“2.13.0") index: Int, elem: A):
Unit

Ignore the édeprecatediane annotation. At one point,
the index parameter was called n. You don't care.

def appendAl (xs: Iterablebnce[A]):
Unit

The xs parameter can be any collection with the
Iterablednce trait, a trait in the Scala collections
hierarchy. Other common traits that you may
encounter in Scaladoc are Iterable and Seq. All
Scala collections implement these traits, and the
difference between them is academic for library
users. Simply think “any collection” when you
see one of these.

def combinations(n: Int):
Tterator[ArrayBuffer[A]]

This method computes a potentially large result
and therefore returns it as an iterator instead of
a collection, so that you can visit the elements
one by one instead of placing them in a
collection. For now, just call torray or tobuffer on
the result.

def copyTohrray[B >: A] (xs: Array[B]):
Unit

Note that the function copies an ArrayBuffer[A] into
an Array[8]. Here, 8 is allowed to be a supertype of
A. For example, you can copy from an
ArrayBuffer[Int] to an Array[Any].

Atfirst reading, just ignore the [8 >: A and
mentally replace 8 with A.

def sorted[8 >: A] (inplicit ord:
Ordering[8]): ArrayBuffer(A]

The element type A must have a supertype B for
which an “implicit” or “given” object of type
Ordering[8] exists. Such an ordering exists for
numbers and strings, as well as for classes that
implement the Java Comparable interface. We will
discuss the mechanism in detail in Chapter 19.
With other implicit types such as Numeric in sun[8
>: Al(implicit nun: Numeric[8]): B, follow your
intuition. To form a sum, there must be some
way of adding the values.

def ++[B >: AJ(xs: Array[_ <:
B])(implicit evidences23: ClassTag[B]):
Array[B]

This method concatenates two arrays. The
second array can be a subtype of the first. The
“implicit’ of type ClassTag is a formality that is
required to construct the resulting array in the
JVM. You can safely ignore any such ClassTag
parameters.

def stepper(S <: Stepper[_]](inplicit
shape: StepperShape[A, S]): S with
EfficientSplit

Here, you just have to admit defeat. This method
is required for a technical reason that is only of
interest to the Scala library implementors.

OEBPS/Images/01fig02.jpg
ExpLoRER . myworksheetsc X & Mainscala]

scala > = myworkshee

~ open eprroRs src > main

X - myworksheet.sc st :
5 Manscala srcmanisc.. 1 val answer =6 ¢ 7 // : Int =42

2 answer * 0.5 // : Double = 21.0 E

* SCALA-3-PROJECTTEMPLATE
3 ("Hello * + answer).toLowerCase| // : String = hello 42

> bloop

> metals

> wscode

> project

v sc

v main/scala
> metals
3 Mainscala

myworksheet.sc

> test

> target

€ build sbt

@ README.md

> outLine

OEBPS/Images/01fig01.jpg
E Terminal ~$

~$ scala

scala> 8 * 5 + 2
val res0: Int = 42

scala> 0.5 * res@
val resl: Double = 21.0

scala> "Hello, " + res0
val res2: String = Hello, 42

scala> I

OEBPS/Images/01fig04.jpg
Gottyepf.chio

StringQ|
S 90|

5730 NGHTLY

object stringops scala/colLectio
Thi
Class Stringops(s: String) extends Anyvai . e s

Pz type stringops « stringops ol

val stringops: stringops scala/eolle
The
Stringordering extends ordering(string]
No math/c $sstrin
der stringof(arg: Any): String ru atar

def stringof(arg: Ary, maxElements string u

def replstringdf(arg: Any, maxElenents: Tnt): String

dottytools.

ala
- def romstringoption(s: String): option(T)
scalaannotationmeta stasut nepa

3.collection. concurrent - Mutable, concurrent data-structures such as

Brekto S @) g S s TN

top by AMP/EPFL

OEBPS/Images/01fig03.jpg
epilch

Scala 3/API

Scala3

“This is the documentation for the Scala standard library.

Package structure

“The scala package contains core types like Int, FLoat, Arzay or 0ptian which are accessible
inall Scala compilation units without explicit qualification or imports.

Internals

Notable packages include:

Resource

Scala3 o scala.co 1 andits sub-packages contain Scala's collections framework

. a etio sble - Immutable, sequential data-structures such as

a ction.nutable - Mutable, sequential datarstructures such as

o ction. concurrent - Mutable, concurrent datarstructures such as

yright (c) 2002-2021

LAMP/EPFL

Thackto Social @y g Cenerated Py goggec

top links

OEBPS/Images/01fig05.jpg
Blog
Usage

e

dotty.tools tasty

dottytools astyutil

ationmeta
ation.ncher
slabeans

Scala JAPUscalacollecton/stringOps I

StringOps

final class stringops(s: string) extends Anyval

Provides extension methods forstrings.

Some of these methods treat strings as a plain collection of Chars without any regard for
Unicode handling. Unless the user takes Unicode handling in to account or makes sure the
strings don't require such handiing, these methods may resultin unpaired o invalidly

paired surrogate code units.

Companion object

Graph Supertypes

Valiia mamhare

T ony % Scaladdoc

OEBPS/Images/9780138033613.jpg
Covers Scala 3.x

JCAl

for the

i
Foreword by Martin Odersky \\j/l//’/h angh W
® ;‘\\\$ i

Nz, :
FSRON /é’}g‘ff:?ﬂ,

L

OEBPS/Images/common.jpg

OEBPS/Images/note.jpg

