
WebAssembly in Action: With examples using C++ and Emscripten

 Gerard Gallant

 [image:]

 Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Brian Sawyer
Development editor: Toni Arritola
Technical development editor: Ian Lovell
Review editor: Ivan Martinović
Production editor: Anthony Calcara
Copy editor: Rebecca Deuel-Gallegos
Proofreader: Tiffany Taylor
Technical proofreader: Arno Bastenof
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617295744

 Printed in the United States of America

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. First steps

 Chapter 1. Meet WebAssembly

 Chapter 2. A look inside WebAssembly modules

 Chapter 3. Creating your first WebAssembly module

 2. Working with modules

 Chapter 4. Reusing your existing C++ codebase

 Chapter 5. Creating a WebAssembly module that calls into JavaScript

 Chapter 6. Creating a WebAssembly module that talks to JavaScript using function pointers

 3. Advanced topics

 Chapter 7. Dynamic linking: The basics

 Chapter 8. Dynamic linking: The implementation

 Chapter 9. Threading: Web workers and pthreads

 Chapter 10. WebAssembly modules in Node.js

 4. Debugging and testing

 Chapter 11. WebAssembly text format

 Chapter 12. Debugging

 Chapter 13. Testing—and then what?

 A. Installation and tool setup

 B. ccall, cwrap, and direct function calls

 C. Emscripten macros

 D. Exercise solutions

 E. Text format extras

 WebAssembly in Action

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. First steps

 Chapter 1. Meet WebAssembly

 1.1. What is WebAssembly?

 1.1.1. Asm.js, the forerunner to WebAssembly

 1.1.2. From asm.js to MVP

 1.2. What problems does it solve?

 1.2.1. Performance improvements

 1.2.2. Faster startup times compared with JavaScript

 1.2.3. Ability to use languages other than JavaScript in the browser

 1.2.4. Opportunity for code reuse

 1.3. How does it work?

 1.3.1. Overview of how compilers work

 1.3.2. Loading, compiling, and instantiating a module

 1.4. Structure of a WebAssembly module

 1.4.1. Preamble

 1.4.2. Known sections

 1.4.3. Custom sections

 1.5. WebAssembly text format

 1.6. How is WebAssembly secure?

 1.7. What languages can I use to create a WebAssembly module?

 1.8. Where can I use my module?

 Summary

 Chapter 2. A look inside WebAssembly modules

 2.1. Known sections

 2.2. Custom sections

 Summary

 Chapter 3. Creating your first WebAssembly module

 3.1. The Emscripten toolkit

 3.2. WebAssembly modules

 3.2.1. When would you not use a WebAssembly module?

 3.3. Emscripten output options

 3.4. Compiling C or C++ with Emscripten and using the HTML template

 3.5. Having Emscripten generate the JavaScript plumbing code

 3.5.1. Compiling C or C++ with Emscripten-generated JavaScript

 3.5.2. Creating a basic HTML web page for use in browsers

 3.6. Having Emscripten generate only the WebAssembly file

 3.6.1. Compiling C or C++ as a side module with Emscripten

 3.6.2. Loading and instantiating in a browser

 3.7. Feature detection: How to test if WebAssembly is available

 Real-world use cases

 Exercises

 Summary

 2. Working with modules

 Chapter 4. Reusing your existing C++ codebase

 4.1. Using C or C++ to create a module with Emscripten plumbing

 4.1.1. Making the C++ modifications

 4.1.2. Compiling the code into a WebAssembly module

 4.1.3. Creating the web page

 4.1.4. Creating the JavaScript that will interact with the module

 4.1.5. Viewing the results

 4.2. Using C or C++ to create a module without Emscripten

 4.2.1. Making the C++ modifications

 4.2.2. Compiling the code into a WebAssembly module

 4.2.3. Creating the JavaScript that will interact with the module

 4.2.4. Viewing the results

 Real-world use cases

 Exercises

 Summary

 Chapter 5. Creating a WebAssembly module that calls into JavaScript

 5.1. Using C or C++ to create a module with Emscripten plumbing

 5.1.1. Adjusting the C++ code

 5.1.2. Creating the JavaScript that you want included in Emscripten’s generated JavaScript file

 5.1.3. Compiling the code into a WebAssembly module

 5.1.4. Adjusting the web page’s JavaScript code

 5.1.5. Viewing the results

 5.2. Using C or C++ to create a module without Emscripten plumbing

 5.2.1. Making the C++ modifications

 5.2.2. Compiling the code into a WebAssembly module

 5.2.3. Adjusting the JavaScript that will interact with the module

 5.2.4. Viewing the results

 Real-world use cases

 Exercises

 Summary

 Chapter 6. Creating a WebAssembly module that talks to JavaScript using function pointers

 6.1. Using C or C++ to create a module with Emscripten plumbing

 6.1.1. Using a function pointer given to the module by JavaScript

 6.1.2. Adjusting the C++ code

 6.1.3. Compiling the code into a WebAssembly module

 6.1.4. Adjusting the web page’s JavaScript code

 6.1.5. Viewing the results

 6.2. Using C or C++ to create a module without Emscripten plumbing

 6.2.1. Using function pointers given to the module by JavaScript

 6.2.2. Making the C++ modifications

 6.2.3. Compiling the code into a WebAssembly module

 6.2.4. Adjusting the JavaScript that will interact with the module

 6.2.5. Viewing the results

 Real-world use cases

 Exercises

 Summary

 3. Advanced topics

 Chapter 7. Dynamic linking: The basics

 7.1. Dynamic linking: Pros and cons

 7.2. Dynamic linking options

 7.2.1. Side modules and main modules

 7.2.2. Dynamic linking: dlopen

 7.2.3. Dynamic linking: dynamicLibraries

 7.2.4. Dynamic linking: WebAssembly JavaScript API

 7.3. Dynamic linking review

 Real-world use cases

 Exercises

 Summary

 Chapter 8. Dynamic linking: The implementation

 8.1. Creating the WebAssembly modules

 8.1.1. Splitting the logic in the validate.cpp file into two files

 8.1.2. Creating a new C++ file for the Place Order form’s logic

 8.1.3. Using Emscripten to generate the WebAssembly side modules

 8.1.4. Defining a JavaScript function to handle an issue with the validation

 8.1.5. Using Emscripten to generate the WebAssembly main module

 8.2. Adjusting the web page

 8.2.1. Adjusting your web page’s JavaScript

 8.2.2. Viewing the results

 Real-world use cases

 Exercises

 Summary

 Chapter 9. Threading: Web workers and pthreads

 9.1. Benefits of web workers

 9.2. Considerations for using web workers

 9.3. Prefetching a WebAssembly module using a web worker

 9.3.1. Adjusting the calculate_primes logic

 9.3.2. Using Emscripten to generate the WebAssembly files

 9.3.3. Copying files to the correct location

 9.3.4. Creating the HTML file for the web page

 9.3.5. Creating the JavaScript file for the web page

 9.3.6. Creating the web worker’s JavaScript file

 9.3.7. Viewing the results

 9.4. Using pthreads

 9.4.1. Adjusting the calculate_primes logic to create and use four pthreads

 9.4.2. Using Emscripten to generate the WebAssembly files

 9.4.3. Viewing the results

 Real-world use cases

 Exercises

 Summary

 Chapter 10. WebAssembly modules in Node.js

 10.1. Revisiting what you know

 10.2. Server-side validation

 10.3. Working with Emscripten-built modules

 10.3.1. Loading a WebAssembly module

 10.3.2. Calling functions in the WebAssembly module

 10.3.3. Calling into the JavaScript

 10.3.4. Calling JavaScript function pointers

 10.4. Using the WebAssembly JavaScript API

 10.4.1. Loading and instantiating a WebAssembly module

 10.4.2. Calling functions in the WebAssembly module

 10.4.3. The WebAssembly module calling into JavaScript

 10.4.4. The WebAssembly module calling JavaScript function pointers

 Real-world use cases

 Exercises

 Summary

 4. Debugging and testing

 Chapter 11. WebAssembly text format

 11.1. Creating the game’s core logic using WebAssembly text format

 11.1.1. The module’s sections

 11.1.2. Comments

 11.1.3. Function signatures

 11.1.4. The module node

 11.1.5. The import nodes

 11.1.6. The global nodes

 11.1.7. The export nodes

 11.1.8. The start node

 11.1.9. The code nodes

 11.1.10. The type nodes

 11.1.11. The data node

 11.2. Generating a WebAssembly module from the text format

 11.3. The Emscripten-generated module

 11.3.1. Creating the C++ file

 11.3.2. Generating a WebAssembly module

 11.4. Creating the HTML and JavaScript files

 11.4.1. Modifying the HTML file

 11.4.2. Creating the JavaScript file

 11.5. Viewing the results

 Real-world use cases

 Exercises

 Summary

 Chapter 12. Debugging

 12.1. Extending the game

 12.2. Adjusting the HTML

 12.3. Displaying the number of tries

 12.3.1. The generateCards JavaScript function

 12.3.2. Adjusting the text format

 12.3.3. Generating the Wasm file

 12.3.4. Testing the changes

 12.4. Incrementing the number of tries

 12.4.1. The updateTriesTotal JavaScript function

 12.4.2. Adjusting the text format

 12.4.3. Generating the Wasm file

 12.4.4. Testing the changes

 12.5. Updating the summary screen

 12.5.1. The levelComplete JavaScript function

 12.5.2. Adjusting the text format

 12.5.3. Generating the Wasm file

 12.5.4. Testing the changes

 Exercises

 Summary

 Chapter 13. Testing—and then what?

 13.1. Installing the JavaScript testing framework

 13.1.1. The package.json file

 13.1.2. Installing Mocha and Chai

 13.2. Creating and running tests

 13.2.1. Writing the tests

 13.2.2. Running the tests from the command line

 13.2.3. An HTML page that loads your tests

 13.2.4. Running the tests from a browser

 13.2.5. Making the tests pass

 13.3. Where do you go from here?

 Exercises

 Summary

 A. Installation and tool setup

 A.1. Python

 A.1.1. Running a local web server

 A.1.2. The WebAssembly media type

 A.2. Emscripten

 A.2.1. Downloading the Emscripten SDK

 A.2.2. If you’re using Windows

 A.2.3. If you’re using a Mac or Linux

 A.2.4. Working around installation issues

 A.3. Node.js

 A.4. WebAssembly Binary Toolkit

 A.5. Bootstrap

 B. ccall, cwrap, and direct function calls

 B.1. ccall

 B.1.1. Building a simple WebAssembly module

 B.1.2. Building the web page that will talk to the WebAssembly module

 B.2. cwrap

 B.2.1. Adjusting the JavaScript code to use cwrap

 B.3. Direct function calls

 B.4. Passing an array to a module

 C. Emscripten macros

 C.1. emscripten_run_script macros

 C.2. EM_JS macros

 C.2.1. No parameter values

 C.2.2. Passing parameter values

 C.2.3. Passing pointers as parameters

 C.2.4. Returning a string pointer

 C.3. EM_ASM macros

 C.3.1. EM_ASM

 C.3.2. EM_ASM_

 C.3.3. Passing pointers as parameters

 C.3.4. EM_ASM_INT and EM_ASM_DOUBLE

 C.3.5. Returning a string pointer

 D. Exercise solutions

 D.1. Chapter 3

 D.1.1. Exercise 1

 D.1.2. Exercise 2

 D.2. Chapter 4

 D.2.1. Exercise 1

 D.2.2. Exercise 2

 D.3. Chapter 5

 D.3.1. Exercise 1

 D.3.2. Exercise 2

 D.4. Chapter 6

 D.4.1. Exercise 1

 D.4.2. Exercise 2

 D.5. Chapter 7

 D.5.1. Exercise 1

 D.5.2. Exercise 2

 D.6. Chapter 8

 D.6.1. Exercise 1

 D.6.2. Exercise 2

 D.7. Chapter 9

 D.7.1. Exercise 1

 D.7.2. Exercise 2

 D.8. Chapter 10

 D.8.1. Exercise 1

 D.8.2. Exercise 2

 D.8.3. Exercise 3

 D.9. Chapter 11

 D.9.1. Exercise 1

 D.9.2. Exercise 2

 D.10. Chapter 12

 D.10.1. Exercise 1

 D.10.2. Exercise 2

 D.11. Chapter 13

 D.11.1. Exercise 1

 D.11.2. Exercise 2

 E. Text format extras

 E.1. Control flow statements

 E.1.1. If statements

 E.1.2. Loops

 E.2. Function pointers

 E.2.1. Test the code

 WebAssembly in Action

 Index

 List of Figures

 List of Tables

 List of Listings

 Preface

 Compared to my friends, I was a late bloomer when it came to programming. I only discovered it in high school by chance because
 I needed another computer course, and my guidance counselor suggested Computer Ed. I was expecting to learn about how computers
 work, but, much to my surprise, the course was about programming. It didn’t take long before I was hooked, and I adjusted
 my career direction from one dealing with building architecture to one in software architecture.

 In 2001, I landed a job with Dovico Software helping it maintain and improve its C++ client/server application. The winds
 of change were blowing, and in 2004, Dovico decided to switch to a software-as-a-service model, and I moved to the web application
 product. I still helped maintain the C++ applications, but my core focus became web development with C# and JavaScript. These
 days, I still do web development, but my focus has shifted to the architecture side of things—building APIs, working with
 databases, and exploring new technologies.

 I enjoy being able to give back to the developer community through blogs and public speaking. In September 2017, I was asked
 if I’d be interested in giving a presentation at a local user group. As I was browsing for ideas on what I could talk about,
 I ran across an article from PSPDFKit that talked about a technology called WebAssembly (https://pspdfkit.com/blog/2017/webassembly-a-new-hope/).

 I had read about Google’s Native Client (PNaCI) technology, in which C or C++ compiled code could run in the Chrome web browser
 at near-native speeds. I’d also read about Mozilla’s asm.js technology, where you could compile C or C++ code to a subset
 of JavaScript and have it run really fast in browsers that supported it. In browsers that didn’t support asm.js, it would
 still run, but at normal speed, because it’s just JavaScript. Somehow, this was the first I’d heard of WebAssembly.

 WebAssembly takes the improvements that asm.js brought and aims to address its shortcomings. Not only can you write code in
 a number of different languages and compile it into something that works safely in a browser, but it’s already available in
 all major desktop and mobile browsers! It’s also available outside the browser, in places like Node.js! I was blown away by
 its potential and spent every spare moment from then on digging into the technology and blogging about it.

 Late in 2017, my blog posts were noticed by Manning Publications, and I was contacted to see if I would be interested in writing
 a book about WebAssembly. At first, the book was going to cover multiple languages as well as show you how to work with the
 technology from both a backend and frontend developer perspective. By the first review, however, it became obvious that the
 book wasn’t focused enough, so we decided that it would be best to narrow the scope to the C++ programming language and focus
 more on backend developers.

 The WebAssembly community and working groups haven’t been sitting still while I’ve been working on this book. In fact, several
 advancements to the technology are in the works. Recently, the ability to use multithreaded WebAssembly modules in the desktop
 version of Google Chrome became possible without the need to turn on a developer flag! WebAssembly has the potential to help
 bring web development to a whole new level, and I’m excited to see where things go.

 Acknowledgments

 I was told that writing a book took work and time, but I wasn’t expecting it to take as much work as it did! With help from
 my editors and reviewers, and feedback from those who purchased an early copy, I believe this has turned out to be a great
 book that will help you get started with WebAssembly.

 I need to thank a lot of people who made this book possible. First and foremost, I need to thank my family for their patience
 with me as I worked long into the evenings and on weekends and holidays, and even used up some vacation time to meet deadlines.
 My wife Selena and my girls Donna and Audrey—I love you all very much!

 Next, thank you to my first editor at Manning, Kevin Harreld, who helped me get up and running with writing this book. Kevin
 later accepted a job at another company, giving me the opportunity and pleasure to work with Toni Arritola for the remainder
 of the book. Toni, thank you for your patience while working with me, your professionalism, your honesty where you didn’t
 beat around the bush and told it like it was, and your desire for quality.

 Thank you to everyone at Manning who has played a role in this book, from marketing to production. Your tireless work is appreciated.

 Thank you to all the reviewers who took time out of their busy lives to read this book at the various stages of its development
 and gave constructive feedback, including Christoffer Fink, Daniel Budden, Darko Bozhinovski, Dave Cutler, Denis Kreis, German
 Gonzalez-Morris, James Dietrich, James Haring, Jan Kroken, Jason Hales, Javier Muñoz, Jeremy Lange, Jim Karabatsos, Kate Meyer,
 Marco Massenzio, Mike Rourke, Milorad Imbra, Pavlo Hodysh, Peter Hampton, Reza Zeinali, Ronald Borman, Sam Zaydel, Sander
 Zegveld, Satej Kumar Sahu, Thomas Overby Hansen, Tiklu Ganguly, Timothy R. Kane, Tischliar Ronald, Kumar S. Unnikrishnan,
 Viktor Bek, and Wayne Mather.

 Special thanks to my technical editor, Ian Lovell, who gave lots of invaluable feedback throughout the process, and my technical
 proofreader, Arno Bastenhof, who gave the code one last review before the book went into production.

 And finally, a huge thank you to the browser makers that have worked together to bring a technology to market that will benefit
 the web for years to come. Thank you to the many people around the world continuing to work on improving WebAssembly and extend
 its reach. The possibilities are enormous for this technology, and I can’t wait to see where WebAssembly takes us.

 About this Book

 WebAssembly in Action was written to help you understand what WebAssembly is, how it works, and what you can and can’t do with it. It leads you
 through the various options for how you can build a WebAssembly module depending on your needs. It starts with simple examples
 and builds up to more advanced topics, like dynamic linking, parallel processing, and debugging.

 Who should read this book

 WebAssembly in Action is for developers with a basic understanding of C or C++, JavaScript, and HTML. While there’s WebAssembly information online,
 some of it is out-of-date and typically doesn’t go into a lot of detail or cover advanced topics. This book presents the information
 in an easy-to-follow format that will help both beginner and expert developers create and interact with WebAssembly modules.

 How this book is organized

 This book has 13 chapters that are divided into four parts.

 Part 1 explains what WebAssembly is and how it works. It also introduces you to the Emscripten toolkit, which you’ll use throughout
 this book to create WebAssembly modules:

 	Chapter 1 discusses what WebAssembly is, the problems it solves, and how it works. It also explains what makes it secure, which languages
 can be used to create WebAssembly modules, and where the modules can be used.

 	Chapter 2 explains how a WebAssembly module is structured and what each section of the module is responsible for.

 	Chapter 3 introduces you to the Emscripten toolkit and teaches you about the different output options available when creating a WebAssembly
 module. You’re also introduced to the WebAssembly JavaScript API.

 Part 2 leads you through the process of creating a WebAssembly module and interacting with it in a web browser:

 	Chapter 4 teaches you how to take an existing C or C++ codebase and adjust it so that it can also be compiled into a WebAssembly module.
 You’ll also learn how to interact with the module from your web page’s JavaScript.

 	Chapter 5 teaches you how to adjust the code you built in chapter 4 so that the WebAssembly module can now call into your web page’s JavaScript code.

 	Chapter 6 walks you through the process of modifying the WebAssembly module to work with function pointers passed to the module from
 your JavaScript code. This allows your JavaScript to specify functions on-demand and take advantage of JavaScript promises.

 Part 3 introduces advanced topics like dynamic linking, parallel processing, and working with WebAssembly modules in places other
 than a web browser:

 	Chapter 7 introduces you to the basics of dynamic linking, in which two or more WebAssembly modules can be linked together at runtime
 to act as one.

 	Chapter 8 takes what you learned in chapter 7 and expands on it, teaching you how to create multiple instances of the same WebAssembly module and have each instance dynamically
 link to another WebAssembly module on-demand.

 	Chapter 9 teaches you about web workers and pthreads. In this chapter, you’ll learn how to prefetch WebAssembly modules as needed in
 a background thread of your browser using web workers. You’ll also learn how to do parallel processing in a WebAssembly module
 using pthreads.

 	Chapter 10 demonstrates that WebAssembly isn’t limited to a web browser. In this chapter, you’ll learn how to use several of your WebAssembly
 modules in Node.js.

 Part 4 digs into debugging and testing:

 	Chapter 11 teaches you about the WebAssembly text format by having you build a card-matching game.

 	Chapter 12 extends the card-matching game to show you the various options that are available to debug a WebAssembly module.

 	Chapter 13 teaches you how to write integration tests for your modules.

 Each chapter builds on what was learned in the previous chapters, so it’s best if they’re read in order. Developers should
 read chapters 1, 2, and 3 in sequence to understand what WebAssembly is, how it works, and how to use the Emscripten toolkit. Appendix A is also important so that you can get the tooling set up properly in order to follow along with the code in this book. The
 first two parts of the book cover the core concepts. The rest—the advanced and debugging topics—can be read based on your
 needs.

 About the code

 This book contains many source code examples in both numbered listings and inline with normal text. To distinguish it from
 normal text, the code is formatted with a fixed-width font like this. Also, if code has changed from a previous example, the change is indicated in bold.

 In some cases, the code shown in the book has been reformatted with line breaks and indentation to accommodate the page space
 available. In rare cases where there still isn’t enough room, listings will use a line-continuation marker ([image:]). In the book’s text, annotations highlight important concepts rather than the use of comments.

 The source code for this book is available for download from the publisher’s website at www.manning.com/books/webassembly-in-action.

 liveBook discussion forum

 Purchase of WebAssembly in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/webassembly-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

 Other online resources

 Need additional help?

 	Emscripten has a lot of documentation available for many different tasks: https://emscripten.org.

 	The Emscripten community is very active, with frequent releases. If you find an issue with Emscripten itself, you can check
 to see if someone has filed a bug report or knows how to work around the issue you’re having: https://github.com/emscripten-core/emscripten.

 	Stack Overflow is also a great website to ask questions or help others: https://stackoverflow.com/questions.

 About the Author

 [image:]

 C. GERARD GALLANT received a Microsoft Certified Professional certificate in 2013 for completing the Programming in HTML5 with JavaScript and
 CSS3 specialist exam. He blogs regularly on Blogger.com and DZone.com.

 About the Cover Illustration

 The figure on the cover of WebAssembly in Action is captioned “Fille Lipparotte,” or a girl from the Lipparotte. The illustration is taken from a collection of dress costumes
 from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes Civils Actuels de Tous les Peuples Connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
 collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
 each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard
 to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

 Part 1. First steps

 This part of the book will introduce you to WebAssembly and the process of creating a WebAssembly module.

 In chapter 1, you’ll learn what WebAssembly is, the problems it solves, what makes it secure, and which programming languages you can
 use with it.

 In chapter 2, I’ll introduce the internal structure of a WebAssembly module, so you can see what each section’s purpose is.

 Then, in chapter 3, you’ll learn about the different output options available with the Emscripten toolkit by creating your first WebAssembly
 modules. I’ll also introduce you to the WebAssembly JavaScript API.

 Chapter 1. Meet WebAssembly

 This chapter covers

 	What WebAssembly is

 	The problems that WebAssembly solves

 	How WebAssembly works

 	What makes WebAssembly secure

 	The languages you can use to create a WebAssembly module

 When it comes to web development, one thing that’s top of mind for most web developers is performance, from how fast the web
 page loads to how responsive it is overall. A number of studies have shown that if your web page doesn’t load within three
 seconds, 40% of your visitors will leave. That percentage increases for every additional second it takes your page to load.

 How long it takes your web page to load isn’t the only issue. According to one Google article, if a web page has poor performance,
 79% of visitors say they’re less likely to purchase from that website again (Daniel An and Pat Meenan, “Why marketers should
 care about mobile page speed” [July 2016], http://mng.bz/MOlD).

 As web technologies have advanced, there’s been a push to move more and more applications to the web. This has presented developers
 with another challenge, because web browsers support only one programming language: JavaScript.

 Having a single programming language across all browsers is good in one sense—you only have to write your code once, and you
 know that it will run in every browser. You still have to test in each browser you intend to support, because vendors sometimes implement things slightly
 differently. Also, sometimes one browser vendor won’t add a new feature at the same time other vendors do. Overall, though,
 having one language to support is easier than having four or five. The downside of browsers supporting only JavaScript, however,
 is that the applications we want to move to the web aren’t written in JavaScript—rather, they’re written in languages like
 C++.

 JavaScript is a great programming language, but we’re now asking it to do more than it was originally designed to do—heavy
 computations for games, for example—and we’re asking it to run really fast.

 1.1. What is WebAssembly?

 As browser makers looked for ways to improve JavaScript’s performance, Mozilla (which makes the Firefox browser) defined a
 subset of JavaScript called asm.js.

 1.1.1. Asm.js, the forerunner to WebAssembly

 Asm.js brought the following advantages:

 	You don’t write asm.js directly. Instead, you write your logic using C or C++ and convert it into JavaScript. Converting code
 from one language to another is known as transpiling.

 	Faster code execution for high computations. When a browser’s JavaScript engine sees a special string called the asm pragma statement ("use asm";), it acts as a flag, telling the browser that it can use the low-level system operations rather than the more expensive JavaScript
 operations.

 	Faster code execution from the very first call. Type-hints are included to tell JavaScript what type of data a variable will
 hold. For example, a | 0 would be used to hint that the variable a will hold a 32-bit integer value. This works because a bitwise OR operation of zero doesn’t change the original value, so
 there are no side effects to doing this.
 These type-hints serve as a promise to the JavaScript engine indicating that, if the code declares a variable as an integer,
 it will never change to a string, for example. Consequently, the JavaScript engine doesn’t have to monitor the code to find
 out what the types are. It can simply compile the code as it’s declared.

 The following code snippet shows an example of asm.js code:

 function AsmModule() {
 "use asm"; 1
 return {
 add: function(a, b) {
 a = a | 0; 2
 b = b | 0;
 return (a + b) | 0; 3
 }
 }
}

 	1 Flag telling JavaScript that the code that follows is asm.js

 	2 Type-hint indicating that the parameter is a 32-bit integer

 	3 Type-hint indicating that the return value is a 32-bit integer

 Despite asm.js’s advantages, it still has some shortcomings:

 	All the type-hints can make the files really large.

 	The asm.js file is a JavaScript file, so it still has to be read in and parsed by the JavaScript engine. This becomes an issue
 on devices like phones because all that processing slows load time and uses battery power.

 	To add additional features, browser makers would have to modify the JavaScript language itself, which isn’t desirable.

 	JavaScript is a programming language and wasn’t intended to be a compiler target.

 1.1.2. From asm.js to MVP

 As browser makers looked at how they could improve on asm.js, they came up with a WebAssembly minimum viable product (MVP)
 that aimed to take asm.js’s positive aspects while addressing its shortcomings. In 2017, all four major browser vendors (Google,
 Microsoft, Apple, and Mozilla) updated their browsers with support for the MVP, which is sometimes referred to as Wasm:

 	WebAssembly is a low-level assembly-like language that can run at near-native speeds in all modern desktop browsers as well
 as many mobile browsers.

 	WebAssembly files are designed to be compact and, as a result, can be transmitted and downloaded fast. The files are also
 designed in such a way that they can be parsed and initialized quickly.

 	WebAssembly is designed as a compile target so that code written in languages such as C++, Rust, and others can now run on
 the web.

 Backend developers can leverage WebAssembly to improve code reuse or bring their code to the web without having to rewrite
 it. Web developers also benefit from the creation of new libraries, improvements to existing libraries, and the opportunity
 to improve performance in computationally heavy sections of their own code. Although WebAssembly’s primary use is in web browsers,
 it’s also designed with portability in mind, so you can use it outside the browser as well.

 1.2. What problems does it solve?

 The WebAssembly MVP addresses the following asm.js issues.

 1.2.1. Performance improvements

 One of the biggest issues that WebAssembly aims to solve is performance—from how long it takes to download your code to how
 quickly the code executes. With programming languages, rather than writing code in the machine language that the computer’s processor understands (1s and 0s, or native code), you usually write something that’s closer to a human language.
 While it’s easier to work with code that’s abstracted from your computer’s fine details, computer processors don’t understand
 your code, so when it comes time to run it, you have to convert what you wrote into machine code.

 JavaScript is what’s known as an interpreted programming language—that is, it reads the code you wrote as it’s executing and translates those instructions into machine code on the fly. With
 interpreted languages, there’s no need to compile the code ahead of time, which means it starts running sooner. The downside,
 however, is that the interpreter has to convert the instructions to machine code every time the code is run. If your code
 is doing a loop, for example, each line of that loop has to be interpreted every time the loop is executed. Because a lot
 of time isn’t always available during the interpretation process, optimizations aren’t always possible either.

 Other programming languages, like C++, aren’t interpreted. With these types of languages, you need to convert the instructions
 to machine code ahead of time using special programs called compilers. With compiled programming languages, it takes a bit
 of time up front to convert the instructions to machine code before you can run them, but the advantage is that there’s more
 time to run optimizations on the code; once it’s compiled to machine code, it doesn’t have to be compiled again.

 Over time, JavaScript has gone from simply being a glue language that ties components together, where it was only expected
 to be short-lived, to a language now used by many websites to do complex processing; it can easily involve hundreds to thousands
 of lines of code; and, with the rise of single-page applications, this code can often be long-lived. The internet has gone
 from websites that just displayed some text and a few pictures to very interactive websites and even sites that are called
 web applications because they’re similar to desktop applications but run in a web browser.

 As developers continued to push JavaScript’s limits, some noticeable performance issues came to light. Browser makers decided
 to try to find a middle ground in which you get the advantages of an interpreter, where the code starts running as soon as
 it gets called, but you also have code that runs faster when it’s being executed. To make the code faster, browser makers
 introduced a concept called JIT (just-in-time) compiling, in which the JavaScript engine monitors the code as it runs; if
 a section of code is used enough times, the engine will attempt to compile that section into machine code so that it can bypass
 the JavaScript engine and use the lower-level system methods instead, which are much faster.

 The JavaScript engine needs to monitor the code several times before it gets compiled to machine code because JavaScript is
 also a dynamic programming language. In JavaScript, a variable can hold any type of value. For example, a variable can hold
 an integer initially but later be assigned a string. Until the code is run a few times, a browser doesn’t know what to expect.
 Even when compiled, the code still needs to be monitored, because there’s a chance that something will change and the compiled
 code for that section will need to be thrown out and the process started again.

 1.2.2. Faster startup times compared with JavaScript

 As with asm.js, WebAssembly isn’t designed to be written by hand, and it’s not intended to be read by humans. When code is
 compiled to WebAssembly, the resulting bytecode is represented in a binary format, rather than a text format, which reduces
 the file size, allowing it to be transmitted and downloaded fast.

 The binary file is designed in such a way that module validation can be made in a single pass. The file’s structure also allows
 for different sections of the file to be compiled in parallel.

 By implementing JIT compilation, browser makers have made a lot of progress in improving JavaScript performance. But the JavaScript
 engine can compile JavaScript to machine code only after code has been monitored several times. WebAssembly code, on the other
 hand, is statically typed, which means the types of values that the variables will hold are known ahead of time. Because of
 this, WebAssembly code can be compiled to machine code from the beginning, without having to be monitored first—performance
 improvements are seen from the first time the code is run.

 Since the MVP’s initial release, browser makers have found ways to further improve WebAssembly’s performance. One such improvement
 was the introduction of something they call streaming compilation, which is the process of compiling the WebAssembly code to machine code as the file is being downloaded and received by the
 browser. Streaming compilation allows for a WebAssembly module to be initialized as soon as it finishes downloading, which
 speeds up the module’s startup time considerably.

 1.2.3. Ability to use languages other than JavaScript in the browser

 Up until this point, for a language other than JavaScript to be able to target the web, the code had to be converted to JavaScript,
 which wasn’t intended to be a compiler target. WebAssembly, on the other hand, was designed to be a compiler target from the
 beginning, so developers who want to use a particular language for web development will be able to do so without having to
 transpile their code into JavaScript.

 Because WebAssembly isn’t tied to the JavaScript language, improvements can be made to the technology more easily and without
 worrying about interfering with how JavaScript works. This independence should result in the ability to improve WebAssembly
 much faster.

 For the WebAssembly MVP, C and C++ were given focus as languages that could target WebAssembly, but Rust has since added support,
 and several other languages are also experimenting with it.

 1.2.4. Opportunity for code reuse

 Being able to take code written in languages other than JavaScript and compile it to WebAssembly gives developers more flexibility
 when it comes to code reuse. Now, something that would have had to be rewritten in JavaScript can be used on the desktop or
 server and run in the browser.

 1.3. How does it work?

 As figure 1.1 illustrates, with JavaScript, the code is included in the website and is interpreted as it runs. Because JavaScript variables
 are dynamic, looking at the add function in the illustration, it’s not obvious what type of values you’re dealing with. The variables a and b could be integers, floats, strings, or even a combination in which one variable could be a string and the other a float,
 for example.

 Figure 1.1. JavaScript compiled to machine code as it executes

 [image:]

 The only way to know what the types are for sure is to monitor the code as it executes, which is what the JavaScript engine
 does. Once the engine is satisfied that it knows the variable’s types, it can convert that section of code into machine code.

 WebAssembly isn’t interpreted but, rather, is compiled into the WebAssembly binary format by a developer ahead of time, as
 figure 1.2 shows. Because the variable types are all known ahead of time, when the browser loads the WebAssembly file, the JavaScript
 engine doesn’t need to monitor the code. It can simply compile the code’s binary format into machine code.

 Figure 1.2. C++ being turned into WebAssembly and then into machine code in the browser

 [image:]

 1.3.1. Overview of how compilers work

 In section 1.2.1, we talked briefly about how developers write code in a language that’s closer to a human language, but computer processors
 understand only machine language. As a result, the code you write has to be converted into machine code in order to execute.
 What I didn’t mention is that each type of computer processor has its own type of machine code.

 It would be inefficient to compile each programming language directly to each version of machine code. Instead, what usually
 happens is shown in figure 1.3, in which a part of the compiler, referred to as the frontend, converts the code you wrote into an intermediate representation (IR). Once the IR code has been created, the backend part of the compiler takes this IR code, optimizes it, and then turns it into the desired machine code.

 Figure 1.3. Compiler frontend and backend

 [image:]

 Because a browser can run on a number of different processors (from desktop computers to smartphones and tablets, for example),
 distributing a compiled version of the WebAssembly code for each potential processor would be tedious. Figure 1.4 shows what you do instead, which is take the IR code and run it through a special compiler that converts it into a special
 binary bytecode and places that bytecode in a file with a .wasm extension.

 Figure 1.4. Compiler frontend with a WebAssembly backend

 [image:]

 The bytecode in your Wasm file isn’t machine code yet. It’s simply a set of virtual instructions that browsers that support
 WebAssembly understand. As figure 1.5 shows, when the file is loaded into a browser that supports WebAssembly, the browser verifies that everything is valid; the
 bytecode is then compiled the rest of the way into the machine code of the device the browser is running on.

 Figure 1.5. Wasm file loaded into a browser and then compiled to machine code

 [image:]

 1.3.2. Loading, compiling, and instantiating a module

 At the time of writing, the process of downloading the Wasm file into the browser and having the browser compile it is done
 using JavaScript function calls. There’s a desire to allow WebAssembly modules to interact with ES6 modules in the future,
 which would include the ability for WebAssembly modules to be loaded though a special HTML tag (<script type="module">), but this isn’t yet available. (ES is shorthand for ECMAScript, and 6 is the version. ECMAScript is the official name for
 JavaScript.)

 Before the WebAssembly module’s binary bytecode can be compiled, it needs to be validated to make sure that the module is
 structured correctly, that the code can’t do anything that isn’t permitted, and that it can’t access memory that the module
 doesn’t have access to. Checks are also made at runtime to ensure that the code stays within the memory that it has access
 to. The Wasm file is structured so that validation can be made in a single pass to ensure that the validation process, compilation
 to machine code, and then instantiation occur as quickly as possible.

 Once a browser has compiled the WebAssembly bytecode into machine code, the compiled module can be passed to a web worker
 (we’ll dig into web workers in chapter 9, but, for now, know that web workers are a way to create threads in JavaScript) or to another browser window. The compiled
 module can even be used to create additional instances of the module.

 Once a Wasm file has been compiled, it has to be instantiated before it can be used. Instantiation is simply the process of receiving any import objects that are needed, initiating the module’s elements, calling the start
 function if a start function was defined, and then finally returning the module’s instance to the execution environment.

 	

 WebAssembly vs. JavaScript

 Up until now, the only language allowed to run within the JavaScript virtual machine (VM) was JavaScript. When other technologies
 were tried over the years, like plug-ins, they needed to create their own sandboxed VM, which increased both the attack surface
 and the use of computer resources. For the first time ever, the JavaScript VM is being opened up to allow WebAssembly code
 to also run in the same VM. This has several advantages. One of the biggest is that the VM has been heavily tested and hardened
 against security vulnerabilities over the years. If a new VM was created, it would undoubtedly have some security issues to
 iron out.

 WebAssembly is being designed as a complement to JavaScript and not as a replacement. Although we’ll likely see some developers
 try to create entire websites using only WebAssembly, this probably won’t be the norm. There will be times when JavaScript
 will still be the better choice. There will also be times when a website may need to include WebAssembly for access to faster
 calculations or for lower-level support. For example, SIMD (single instruction, multiple data)—the ability to process multiple
 data with a single instruction—was being built into the JavaScript of several browsers, but browser vendors decided to deprecate
 the JavaScript implementation and make SIMD support available only via WebAssembly modules. As a result, if your website needs
 SIMD support, you’ll need to include a WebAssembly module to communicate with.

 	

 When programming for a web browser, you basically have two main components: the JavaScript VM, which the WebAssembly module
 runs in, and Web APIs (for example, DOM, WebGL, web workers, and so on). Being an MVP, there are some things missing from
 WebAssembly. Your WebAssembly module can communicate with JavaScript but isn’t yet able to talk directly to any of the Web
 APIs. A post-MVP feature is being worked on that will give WebAssembly direct access to Web APIs. In the meantime, modules
 can interact with Web APIs indirectly by calling into JavaScript and having JavaScript perform the action needed on the module’s
 behalf.

 1.4. Structure of a WebAssembly module

 WebAssembly currently has only four available value types:

 	32-bit integers

 	64-bit integers

 	32-bit floats

 	64-bit floats

 Boolean values are represented using a 32-bit integer, where 0 is false and a nonzero value is true. All other value types, such as strings, need to be represented in the module’s linear memory.

 The main unit of a WebAssembly program is called the module, a term used for both the binary version of the code and the compiled version in the browser. A WebAssembly module isn’t
 something you’re expected to create by hand, but having a basic understanding of how the module is structured, and how it
 works under the hood, can come in handy because you interact with certain aspects of it during initialization and over the
 module’s lifetime.

 Figure 1.6 is a basic representation of a WebAssembly file’s structure. You’ll learn about a module’s structure in more detail in chapter 2, but, for now, I’ll give you a quick overview.

 Figure 1.6. A basic representation of a WebAssembly file’s structure

 [image:]

 A Wasm file starts with a section called the preamble.

 1.4.1. Preamble

 The preamble contains a magic number (0x00 0x61 0x73 0x6D, which is \0asm) that distinguishes a WebAssembly module from an ES6 module. This magic number is then followed by a version (0x01 0x00 0x00 0x00, which is 1) that indicates which version of the WebAssembly binary format was used to create the file.

 Only one version of the binary format exists at the moment. One of the goals with WebAssembly is to keep everything backward-compatible
 as new features are being added and to avoid having to increase the version number. If a feature ever arises that can’t be
 implemented without breaking things, then the version number will be increased.

 Following the preamble, a module can have several sections, but each section is optional, so you could technically have an empty module with no sections. You’ll learn about one use
 case for an empty module in chapter 3 when you implement feature detection to check if WebAssembly is supported in a web browser.

 Two types of sections are available: known sections and custom sections.

 1.4.2. Known sections

 Known sections can be included only once and must appear in a specific order. Each known section has a specific purpose, is
 well-defined, and is validated when the module is instantiated. Chapter 2 goes into more detail about known sections.

 1.4.3. Custom sections

 A custom section provides a way to include data inside the module for uses that don’t apply to the known sections. Custom
 sections can appear anywhere in the module (before, in between, or after the known sections) any number of times, and multiple
 custom sections can even reuse the same name.

 Unlike with known sections, if a custom section isn’t laid out correctly, it won’t trigger a validation error. Custom sections
 can be loaded lazily by the framework, which means the data they contain might not be available until some point after the
 module’s initialization.

 For the WebAssembly MVP, a custom section called “name” was defined. The idea with this section is that you could have a debug
 version of your WebAssembly module, and this section would hold the names of the functions and variables in text form for
 use when debugging. Unlike with other custom sections, this section should appear only once and only after the Data section.

 1.5. WebAssembly text format

 WebAssembly has been designed with the web’s openness in mind. Just because the binary format isn’t designed to be written
 or read by humans doesn’t mean that WebAssembly modules are a way for developers to try to hide their code. Actually, quite
 the opposite is true. A text format that uses s-expressions has been defined for WebAssembly that corresponds to the binary format.

 	

 Info

 Symbolic expression, or s-expression, was invented for the Lisp programming language. An s-expression can be either an atom
 or an ordered pair of s-expressions that allow you to nest s-expressions. An atom is a symbol that’s not a list: foo or 23, for example. A list is represented by parentheses, and can be empty or can hold atoms or even other lists; each item is
 space delimited: () or (foo) or (foo (bar 132)), for example.

 	

 This text format will enable View Source for the code in a browser, for example, or it can be used for debugging. You can
 even write s-expressions by hand and, by using a special compiler, compile the code into the WebAssembly binary format.

 Because the WebAssembly text format will be used by browsers when you choose to View Source and for debugging purposes, having
 a basic understanding of the text format will be useful. For example, since all sections of a module are optional, you could
 define an empty module using the following s-expression:

 (module)

 If you were to compile the (module) s-expression into the WebAssembly binary format and look at the resulting binary values, the file would contain only the
 preamble bytes :0061 736d (the magic number) and 0100 0000 (the version number).

 	

 Looking Ahead

 In chapter 11, you’ll create a WebAssembly module using only the text format so that you’ll have a better idea of what you’re looking at
 if you ever need to debug a module in a browser, for example.

 	

 1.6. How is WebAssembly secure?

 One way that WebAssembly is secure is that it’s the first language to ever share the JavaScript VM, which is sandboxed from
 the runtime and has had years of hardening and security tests to make it secure. WebAssembly modules don’t have access to
 anything that JavaScript doesn’t have access to and will also respect the same security policies, which include enforcing
 things like same-origin policy.

 Unlike a desktop application, a WebAssembly module doesn’t have direct access to a device’s memory. Instead, the runtime environment
 passes the module an Array-Buffer during initialization. The module uses this ArrayBuffer as linear memory, and the WebAssembly
 framework checks to make sure that the code is operating within the bounds of the array.

 A WebAssembly module doesn’t have direct access to items, such as function pointers, that are stored in the Table section.
 The code asks the WebAssembly framework to access an item based on its index. The framework then accesses the memory and executes
 the item on the code’s behalf.

 In C++, the execution stack is in memory along with the linear memory and, although the C++ code isn’t supposed to modify
 the execution stack, it’s possible to do so using pointers. WebAssembly’s execution stack is also separate from the linear
 memory and isn’t accessible by the code.

 	

 More Info

 If you would like more information about WebAssembly’s security model, you can visit the following website: https://webassembly.org/docs/security.

 	

 1.7. What languages can I use to create a WebAssembly module?

 To create the MVP, WebAssembly’s initial focus was on the C and C++ languages, but languages like Rust and AssemblyScript
 have since added support. It’s also possible to write code using the WebAssembly text format, which uses s-expressions, and
 compile that into WebAssembly using a special compiler.

 Right now, WebAssembly’s MVP doesn’t have garbage collection (GC), which limits what some languages can do. GC is being worked
 on as a post-MVP feature, but, until it arrives, several languages are experimenting with WebAssembly by either compiling
 their VM to WebAssembly or, in some cases, by including their own garbage collector.

 The following languages are experimenting with or have WebAssembly support:

 	C and C++.

 	Rust is aiming to be the programming language of choice for WebAssembly.

 	AssemblyScript is a new compiler that takes TypeScript and turns it into WebAssembly. Converting TypeScript makes sense, considering
 that it’s typed and already transpiles to JavaScript.

 	TeaVM is a tool that transpiles Java to JavaScript but can now also generate WebAssembly.

 	Go 1.11 added an experimental port to WebAssembly that includes a garbage collector as part of the compiled WebAssembly module.

 	Pyodide is a port of Python that includes the core packages of Python’s scientific stack: Numpy, Pandas, and matplotlib.

 	Blazor is an experimental effort from Microsoft to bring C# to WebAssembly.

 	

 More Info

 The following GitHub repository maintains a curated list of languages that compile to, or have their VMs in, WebAssembly.
 The list also indicates where the language stands in its support of WebAssembly: https://github.com/appcypher/awesome-wasm-langs.

 	

 For learning WebAssembly in this book, we’ll use C and C++.

 1.8. Where can I use my module?

 In 2017, all the modern browser makers released versions of their browsers that support WebAssembly’s MVP; these include Chrome,
 Edge, Firefox, Opera, and Safari. Several mobile web browsers also support WebAssembly, including Chrome, Firefox for Android,
 and Safari.

 As mentioned at the beginning of this chapter, WebAssembly was designed with portability in mind so that it can be used in
 multiple locations, not just in a browser. A new standard called WASI (WebAssembly Standard Interface) is being developed
 to ensure WebAssembly modules will work consistently across all supported systems. The following article gives a good overview
 of WASI: Lin Clark, “Standardizing WASI: A system interface to run WebAssembly outside the web” (March 27, 2019), http://mng.bz/gVJ8.

 	

 More Info

 If you’d like to learn more about WASI, the following GitHub repository has a curated list of related links and articles:
 https://github.com/wasmerio/awesome-wasi.

 	

 One nonbrowser location that supports WebAssembly modules is Node.js, starting with version 8. Node.js is a JavaScript runtime
 built using Chrome’s V8 JavaScript engine that allows JavaScript code to be used server-side. Similar to how many developers
 see WebAssembly as an opportunity to use code that they’re familiar with in the browser, rather than JavaScript, Node.js lets
 developers who prefer JavaScript also use it on the server side. To demonstrate using WebAssembly outside the browser, chapter 10 will show you how to work with your WebAssembly module in Node.js.

 WebAssembly isn’t a replacement for JavaScript but is rather a complement to it. There are times when using a WebAssembly
 module will be a better choice and times when using JavaScript will be better. Running in the same VM as JavaScript lets both
 technologies leverage each other.

 WebAssembly will open the door for developers who are proficient in languages other than JavaScript to make their code available
 on the web. It will also allow web developers who might not know how to code in languages like C or C++ to gain access to
 newer and faster libraries and potentially those with features not available in current JavaScript libraries. In some cases,
 WebAssembly modules might be used by libraries to speed up execution of certain aspects of the library; other than having
 faster code, the library would work the same as it always has.

 The most exciting thing about WebAssembly is that it’s already available in all major desktop browsers, in several major mobile
 browsers, and even outside the browser in Node.js.

 Summary

 As you saw in this chapter, WebAssembly brings a number of performance improvements as well as improvements in language choice
 and code reuse. Some key improvements that WebAssembly brings are the following:

 	Transmission and download times are faster because of smaller file sizes due to the use of binary encoding.

 	Due to the way Wasm files are structured, they can be parsed and validated quickly. Also because of how they’re structured,
 portions of the files can be compiled in parallel.

 	With streaming compilation, WebAssembly modules can be compiled as they’re being downloaded so that they’re ready to be instantiated
 the moment the download completes, speeding up load time considerably.

 	Code execution is faster for things like computations due to the use of machine-level calls rather than the more expensive
 JavaScript engine calls.

 	Code doesn’t need to be monitored before it’s compiled to determine how it’s going to behave. The result is that code runs
 at the same speed every time it runs.

 	Being separate from JavaScript, improvements can be made to WebAssembly faster because they won’t impact the JavaScript language.

 	You can use code written in a language other than JavaScript in a browser.

 	There’s an increased opportunity for code reuse by structuring the WebAssembly framework in such a way that it can be used
 in the browser and outside it.

 Chapter 2. A look inside WebAssembly modules

 This chapter covers

 	Descriptions of a WebAssembly module’s known and custom sections

 In this chapter, you’ll learn about the different sections of a WebAssembly module and their purposes. I’ll offer more detail
 as you proceed through this book, but it’s helpful to have a basic understanding of how modules are structured and how the
 different sections work together.

 Some benefits of a module’s different sections and how they’re designed are

 	Efficiency—The binary bytecode can be parsed, validated, and compiled in a single pass.

 	Streaming—Parsing, validation, and compilation can begin before all the data has been downloaded.

 	Parallelization—It’s possible for the parsing, validation, and compilation to be performed in parallel.

 	Security—The module doesn’t have direct access to the device memory, and items like function pointers are called on your code’s behalf.

 Figure 2.1 represents the basic structure of the WebAssembly binary bytecode. Although you’ll interact with the various sections when
 working with WebAssembly modules, the compiler is responsible for creating the sections as needed and placing them in the
 proper order based on your code.

 Figure 2.1. The basic structure of the WebAssembly binary bytecode, highlighting the known and custom sections

 [image:]

 WebAssembly modules can have several sections, but each section is optional. You could technically have an empty module with
 no sections. As introduced in chapter 1, the two types of available sections are

 	Known sections

 	Custom sections

 Known sections have a specific purpose, are well-defined, and are validated when the WebAssembly module is instantiated. Custom
 sections are used for data that doesn’t apply to the known sections and won’t trigger a validation error if the data isn’t laid out correctly.

 The WebAssembly bytecode starts with the preamble, which indicates that the module is a WebAssembly module and that it’s version
 1 of the WebAssembly binary format. After the preamble, you have the known sections, which are all optional. The figure shows
 the custom sections at the end of the module, but, in reality, they can be placed before, in between, or after the known sections.
 As with known sections, custom sections are also optional.

 Now that you’ve seen a high-level representation of a WebAssembly module’s basic structure, let’s take a closer look at each
 of the known sections.

 2.1. Known sections

 If a known section is included, it can be included at most one time, and known sections must appear in the order presented
 here.

 	
 Section

 	
 Description

 	Type
 	The Type section declares a list of all unique function signatures that will be used in the module, including those that will be imported.
 Multiple functions can share the same signature.

 Figure 2.2 is an example of a Type section holding three function signatures:

 	The first has two 32-bit integer (i32) parameters and a 32-bit integer (i32) return value.

 	The second has two 64-bit integer (i64) parameters but no return value.

 	The third doesn’t accept any parameters or return a value.

 	
 Section

 	
 Description

 	Import
 	The Import section declares all the imports that will be used in the module, which can include Function, Table, Memory, or Global imports.

Imports are designed so that modules can share code and data, but still allow for the modules to be compiled and cached separately.
 The imports are provided by the host environment when the module is instantiated.

 	Function
 	The Function section is a list of all the functions in the module. The position of the function declaration in this list represents the
 index of the function body in the Code section. The value listed in the Function section indicates the index of the function’s
 signature in the Type section.

 Figure 2.2. A Type section holding three function signatures. The signature at index 0 receives two 32-bit integer parameters and returns
 a 32-bit integer value. The signature at index 1 receives two 64-bit integer parameters but doesn’t have a return value. The
 signature at index 2 doesn’t receive any parameter values and doesn’t have a return value

 [image:]

 Figure 2.3 shows an example of how the Type, Function, and Code sections are related. If you look at the Function section in the diagram,
 the value of the second function is the index to the function signature that doesn’t have any parameters or return value.
 The index of the second function points to the matching index in the code section.

 Figure 2.3. Example of how the Type, Function, and Code sections work together

 [image:]

 Function declarations are separated from the function bodies to allow for parallel and streaming compilation of each function
 in the module.

 	
 Section

 	
 Description

 	Table
 	The Table section holds a typed array of references, like functions, that can’t be stored in the module’s linear memory as raw bytes.
 This section provides one of the core security aspects of WebAssembly by giving the WebAssembly framework a way to map objects
 in a secure way.
Your code doesn’t have direct access to the references stored in the table. Instead, when your code wants to access the data
 referenced in this section, it asks for the framework to operate on the item at a specific index in the table. The WebAssembly
 framework then reads the address stored at that index and performs the action. When dealing with functions, for example, this
 enables the use of function pointers by specifying the table index.

 Figure 2.4 shows the WebAssembly code asking for the item at index 0 in the Table section to be called. The WebAssembly framework reads
 the memory address at that index and then executes the code at that memory location.

 Figure 2.4. Example of an item in the Table section being called

 [image:]

 A table is given an initial size and, optionally, a maximum size. For tables, the size is the number of elements in the table.
 It’s possible to ask a table to grow by a specified number of elements. If a maximum number of elements is specified, the
 system will prevent the table from growing past that point. If a maximum isn’t specified, however, the table will be allowed
 to grow without restriction.

 	
 Section

 	
 Description

 	Memory
 	The Memory section holds the linear memory used by the module instance.

 The Memory section is also a core security aspect of WebAssembly because WebAssembly modules don’t have direct access to the
 device’s memory. Instead, as figure 2.5 shows, the environment that instantiates the module passes in an ArrayBuffer that a module instance uses as linear memory.
 As far as the code is concerned, this linear memory acts just like the heap in C++, but every time the code tries to access this memory, the framework verifies that the request
 is within the bounds of the array.

 Figure 2.5. ArrayBuffer is used as linear memory by WebAssembly modules

 [image:]

 A module’s memory is defined as WebAssembly pages that are 64 KB each (1 KB is 1,024 bytes, so one page holds 65,536 bytes).
 When the environment specifies how much memory the module can have, it specifies the initial number of pages and, optionally,
 the maximum number of pages. If the module needs more memory, you can request that the memory grow by a specified number of
 pages. If a maximum number of pages is specified, the framework will prevent the memory from growing past that point. If a
 maximum number of pages isn’t specified, the memory will be allowed to grow without restriction.

 Multiple instances of WebAssembly modules can share the same linear memory (ArrayBuffer), which is useful when modules are
 dynamically linked.

 In C++, the execution stack is in memory along with the linear memory; although the C++ code isn’t supposed to modify the
 execution stack, it’s possible to do so using pointers. In addition to code not having access to the device memory, WebAssembly
 has taken security a step further and has separated the execution stack from the linear memory.

 	
 Section

 	
 Description

 	Global
 	The Global section allows for the definition of global variables for the module.

 	Export
 	The Export section holds a list of all objects that will get returned to the host environment once the module has been instantiated
 (the portions of the module that the host environment can access). This can include Function, Table, Memory, or Global exports.

 	Start
 	The Start section declares the index of the function that’s to be called after the module has been initialized but before the exported
 functions are callable. The start function can be used as a way to initialize global variables or memory. If specified, the
 function can’t be imported. It must exist within the module.

 	Element
 	The Element section declares the data that gets loaded into the module’s Table section during instantiation.

 	Code
 	The Code section holds the body of each function declared in the Function section; each function body must appear in the same order
 as it was declared. (See figure 2.3 for a depiction of how Type, Function, and Code sections work together.)

 	Data
 	The Data section declares the data that gets loaded into the module’s linear memory during instantiation.

 In chapter 11, you’ll learn about the WebAssembly text format, which is the text equivalent of the module’s binary format. It’s used by
 browsers for debugging the module if source maps aren’t available. The text format can also be useful if you need to inspect
 your generated modules to see how the compiler created them to determine why something isn’t working as expected. The text
 format uses the same names for sections that you learned in this chapter, but they’re sometimes abbreviated (func instead of function, for example).

 A module can also include custom sections as a way to include data that doesn’t apply to the known sections defined in this
 chapter.

 2.2. Custom sections

 Custom sections can appear anywhere in the module (before, in between, or after the known sections), any number of times;
 multiple custom sections can even reuse the same name.

 Unlike with known sections, if a custom section isn’t laid out correctly, it won’t trigger a validation error. Custom sections
 can be loaded lazily by the framework, which means the data they contain might not be available until some point after the
 module’s initialization.

 One use case for custom sections is the “name” section that was defined for the WebAssembly MVP. The idea with this section
 is that function and variable names could be placed here in text form to aid in debugging. Unlike normal custom sections,
 however, this section should only appear once if included and must appear after the Data known section.

 Summary

 In this chapter, you learned about the known and custom sections of a WebAssembly module to gain a better understanding of
 what the sections are responsible for and how they work together. This understanding will help you as you interact with the
 WebAssembly modules and when you work with the WebAssembly text format. In particular, you learned that

 	WebAssembly module sections, and how they’re designed, are one reason for many of WebAssembly’s features and advantages.

 	A compiler handles generating the WebAssembly module’s sections and placing them in the proper order.

 	All sections are optional, so it’s possible to have an empty module.

 	If specified, known sections can appear only once and must appear in a specific order.

 	Custom sections can be placed before, in between, or after known sections and are used to specify data that doesn’t apply
 to the known sections.

 Chapter 3. Creating your first WebAssembly module

 This chapter covers

 	An overview of the Emscripten toolkit

 	Creating a module using Emscripten and Emscripten’s HTML template

 	Creating a module with Emscripten JavaScript plumbing code and letting this code handle loading the module

 	Creating a module without the Emscripten JavaScript plumbing code and then loading the module yourself

 	Feature detection to test if WebAssembly is available

 In this chapter, you’ll write some C code and then use the Emscripten toolkit to compile it into a WebAssembly module. This
 will let us look at three approaches we can use with the toolkit to create WebAssembly modules. Just to give you an idea of
 what’s possible using the toolkit, some of the items that have been ported to WebAssembly using Emscripten include the Unreal
 Engine 3, SQLite, and AutoCAD.

 3.1. The Emscripten toolkit

 The Emscripten toolkit is currently the most mature toolkit available to compile C or C++ code into WebAssembly bytecode.
 It was originally created to transpile such code into asm.js. When work started on the WebAssembly MVP, Emscripten was chosen
 because it uses the LLVM compiler, and the WebAssembly working group already had experience with LLVM from its work with Google’s
 Native Client (PNaCl). Emscripten can still be used to transpile C and C++ code into asm.js, but you’ll be using it to compile
 the code you write into WebAssembly modules.

 As described in chapter 1, compilers typically have a frontend section, which takes the source code and converts it to an intermediate representation
 (IR), and a backend to convert the IR into the desired machine code, as figure 3.1 shows.

 Figure 3.1. Compiler frontend and backend

 [image:]

 I mentioned that Emscripten uses the LLVM compiler—this compiler toolchain currently has the most WebAssembly support, and
 the nice thing with LLVM is that there are a number of frontends and backends you can plug into it. The Emscripten compiler
 uses Clang, which is similar to the GCC in C++, as the frontend compiler to convert the C or C++ code into an LLVM IR, as
 figure 3.2 shows. Emscripten then takes the LLVM IR and converts it into a binary bytecode, which is simply a virtual set of instructions
 that browsers that support WebAssembly understand. This might sound a bit intimidating at first, but, as you’ll see in this
 chapter, the process of compiling C or C++ code into a WebAssembly module is a simple command in a console window.

 Before you continue, please see appendix A to install Emscripten and ensure you have all the tools you’ll need to use in this book. Once you have the necessary tools
 installed, you can continue to the next section.

 Figure 3.2. Compiler frontend with LLVM IR

 [image:]

 3.2. WebAssembly modules

 When the WebAssembly file is loaded by a browser that supports WebAssembly, the browser will check to ensure that everything
 is valid. If everything checks out with the file, the browser will compile the bytecode the rest of the way into the device’s
 machine code, as figure 3.3 shows.

 Figure 3.3. The WebAssembly file is loaded into a browser and compiled to machine code.

 [image:]

 Both the WebAssembly binary file and the compiled object in the browser are referred to as modules. Although you can create an empty module, it won’t be of much use, so most modules will have at least one function to do
 some sort of processing. A module’s functions can be built-in, can be imported from other modules’ exports, or can even be
 imported from JavaScript.

 WebAssembly modules have several sections that Emscripten will populate based on your C or C++ code. Under the hood, sections
 start with a section ID followed by the section’s size and then the content itself. Chapter 2 provides more information about module sections. All the sections are optional, which is why you can have an empty module.

 The Start section points to the index of a function that’s part of the module (not imported). The function referenced will
 be called automatically before any of the module’s exports are callable by the JavaScript. If you include a main function in your C or C++ code, Emscripten will set it up as the module’s start function.

 A WebAssembly module receives memory to use from the host in the form of an ArrayBuffer. As far as the module is concerned,
 the buffer acts just like the heap in C or C++, but every time the module interacts with the memory, the WebAssembly framework
 verifies that the request is within the bounds of the array.

 WebAssembly modules only support four data types:

 	32-bit integers

 	64-bit integers

 	32-bit floats

 	64-bit floats

 Boolean values are represented using a 32-bit integer, where 0 is false and a nonzero value is true. All other values that are set by the host environment, such as strings, need to be
 represented in the module’s linear memory.

 WebAssembly files contain a binary bytecode designed not for humans to read but rather to be as efficient as possible so that
 it can be downloaded, compiled, and instantiated quickly. At the same time, WebAssembly modules aren’t intended to be black boxes that developers can use to hide
 their code. WebAssembly has been designed with the web’s openness in mind, so the WebAssembly binary format has an equivalent
 WebAssembly text format representation. We can see this text format by going into the browser’s developer tools.

 WebAssembly modules have several advantages:

 	They’re designed to be a compile target, which JavaScript wasn’t designed for. This will allow improvements to be made to
 WebAssembly over time without impacting JavaScript.

 	They’re designed to be portable, meaning that they can also be used in places other than web browsers. Node.js is currently
 another place you can use WebAssembly modules.

 	WebAssembly files use a binary format so that they are as compact as possible and can be transmitted and downloaded quickly.

 	Files are structured to allow validation to happen in a single pass, which speeds up startup time.

 	Using the latest WebAssembly JavaScript API functions, the file can be compiled to machine code as it’s being downloaded so
 that it’s ready to be used as soon as the download completes.

 	Because of JavaScript’s dynamic nature, code needs to be monitored several times before it gets compiled to machine code.
 WebAssembly bytecode, on the other hand, is compiled to machine code right away. The result is that the first call to a function
 is just as fast as the tenth call, for example.

 	Because it’s compiled ahead of time, the compiler can make optimizations to the code before it even reaches the browser.

 	WebAssembly code runs almost as fast as native code. Because WebAssembly has checks to make sure the code is behaving properly,
 there’s a slight performance reduction compared to running pure native code.

 3.2.1. When would you not use a WebAssembly module?

 Although WebAssembly has a lot of advantages, it’s not the right choice in every case. JavaScript will be a better choice
 under certain circumstances:

 	If the logic is simple, the extra work to set up a compiler toolchain and write something in another language might not be
 worth the effort.

 	Although this issue is being worked on and will change, at the moment, WebAssembly modules don’t have direct access to the
 DOM or any Web APIs.

 	

 Definition

 The DOM, or Document Object Model, is an interface representing the various aspects of a web page, which gives JavaScript
 code a way to interact with the page.

 	

 3.3. Emscripten output options

 You can create WebAssembly modules in several ways depending on your goals. You can instruct Emscripten to generate the WebAssembly
 module file and, depending on the options specified in the command line, Emscripten can also include a JavaScript plumbing file and an HTML file.

 	

 Definition

 A JavaScript plumbing file is a JavaScript file that Emscripten generates. The file’s contents can vary depending on the command-line
 arguments given. The file has code that will automatically download the WebAssembly file and have it compiled and instantiated
 in the browser. The JavaScript also contains numerous helper functions to make it easier for the host to talk with the module
 and vice versa.

 	

 You can use the three following approaches to create a module with Emscripten:

 	Ask Emscripten to generate the WebAssembly module, JavaScript plumbing file, and HTML template file.
 Having Emscripten generate an HTML file isn’t typical for production but is useful if you’re learning about WebAssembly and
 want to focus on the compiling of C or C++ before digging into the details of what’s involved with loading and instantiating
 a module. This method is also useful if you wish to experiment with portions of code as a way to debug or prototype things.
 With this approach, you can simply write the C or C++ code, compile it, and then open the generated HTML file in your browser
 to see the results.

 	Ask Emscripten to generate the WebAssembly module and the JavaScript plumbing file.
 This is typically the approach used for production because you can add the generated JavaScript file to a new or existing
 HTML page simply by including a reference to the file. This JavaScript file will automatically download and have the module
 instantiated when the HTML page is loaded. The JavaScript file also has several helper functions to make the interactions
 between the module and your JavaScript easier.
 Both the HTML template approach and this approach will include any standard C library items in the module if your code uses
 them. If your code doesn’t use a standard C library function, but you need it included in the module, you can use flags to
 tell Emscripten to include the functions that you need.

 	Ask that Emscripten generate only the WebAssembly module.
 This approach is meant for dynamically linking two or more modules at runtime, but it can also be used to create a minimalist module that contains no standard C library
 support or JavaScript plumbing file.

 	

 Definition

 This will be covered in more detail in chapters 7 and 8, but, for now, dynamic linking of WebAssembly modules is the process of joining two or more modules together at runtime,
 where the unresolved symbols in one module (a function, for example) resolve to symbols existing in another module.

 	

 If your code needs to pass anything more than integers or floats between the module and JavaScript, then it will need memory
 management. Unless you have a standard library equivalent to the malloc and free functions, I don’t recommend this approach for this scenario. The module’s linear memory is really an array buffer passed
 to the module during instantiation, so the memory issues won’t affect the browser or your OS but could lead to bugs that are
 difficult to track down.
 Aside from dynamic linking, this approach is useful for learning how to manually download, compile, and instantiate a module
 using the WebAssembly JavaScript API, which the Emscripten plumbing code does for you. Knowing what the WebAssembly JavaScript
 API functions do will make it easier to understand some examples you may find online.
 Because Emscripten is not the only compiler available that can create WebAssembly modules (Rust has one, for example), you
 might, in the future, want to use a third-party module that doesn’t have code to load itself. You may need to manually download
 and have a module instantiated at some point.

 3.4. Compiling C or C++ with Emscripten and using the HTML template

 Suppose you’ve been asked to write some logic that will determine what prime numbers exist in a certain number range. You
 could write the code using JavaScript, but you’ve read that one of the main areas where WebAssembly shines is with calculations,
 so you’ve decided to use WebAssembly for this project.

 You’ll need to integrate the project into an existing website, but you’ll want to create the WebAssembly module first to verify
 that everything is working as expected before moving on. You’ll create the logic using C and then compile it to a WebAssembly
 module using Emscripten. Conveniently, as figure 3.4 shows, Emscripten can generate the JavaScript needed to download and compile the WebAssembly module and can also create an
 HTML file from a template.

 Figure 3.4. Emscripten generating the WebAssembly, JavaScript, and HTML files

 [image:]

 The first thing you’ll need to do is create a folder where you’ll keep your files: WebAssembly\Chapter 3\3.4 html_template\.

 	

 Note

 This book has adopted the Windows convention for representing file separators. *Nix users will need to replace the \ characters with /.

 	

 Figure 3.5. Step 1 is to create the C or C++ code.

 [image:]

 As figure 3.5 shows, the first step of the process is to create the C or C++ code. Create a file called calculate_primes.c, and then open
 it. The first thing you’ll need to do is include a header file for the standard C library, the C standard input and output
 library, and the Emscripten library:

 #include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

 The next step is to write a helper function called IsPrime, which will accept as a parameter an integer value that you’ll check to see if it’s a prime number. If it is, the function
 will return 1. Otherwise, the function will return 0 (zero).

 A prime number is any number that can only be divided evenly by 1 and itself. Other than 2, even numbers are never prime numbers,
 so the function can skip those. Also, since checking any number higher than the number’s square root would be redundant, your
 code can skip those numbers too, which will make the logic a bit more efficient. Based on this, you can create the following
 function in the calculate_primes.c file:

 int IsPrime(int value) {
 if (value == 2) { return 1; } 1
 if (value <= 1 || value % 2 == 0) { return 0; } 2

 for (int i = 3; (i * i) <= value; i += 2) { 3
 if (value % i == 0) { return 0; } 4
 }

 return 1; 5
}

 	1 2 is a prime number.

 	2 1 or less and even numbers (other than 2) aren’t primes.

 	3 Loops from 3 to the square root of the value; only checks odd numbers

 	4 The value can be divided evenly by the loop value, so it’s not a prime number.

 	5 The number couldn’t be divided evenly by any number you checked. It’s a prime number.

 Now that you have a function that can determine if a value is a prime number or not, you need to write some code to loop through
 a range of numbers, call the IsPrime function, and output the value if it’s a prime number. The code for doing this doesn’t need any interaction from JavaScript,
 so you’ll include it in the main function. When Emscripten sees a main function in your C or C++ code, it will specify this function as the start function for the module. Once the module has been
 downloaded and compiled, the WebAssembly framework will call the start function automatically.

 You’ll use the printf function in your main function to pass strings to Emscripten’s JavaScript code. This code will then take the strings received and display them
 in the text box on the web page as well as in the console window of the browser’s developer tools. In chapter 4, you’ll write code in which the module will talk to JavaScript code, which will give you a better understanding of how the
 interaction with JavaScript works.

 Following your IsPrime function, you can write the code shown in the following listing to loop from 3 to 100,000 to find out which of those numbers
 are prime numbers.

 Listing 3.1. The main function in calculate_primes.c

 ...

int main() {
 int start = 3; 1
 int end = 100000;

 printf("Prime numbers between %d and %d:\n", start, end); 2

 for (int i = start; i <= end; i += 2) { 3
 if (IsPrime(i)) { 4
 printf("%d ", i);
 }
 }
 printf("\n");

 return 0;
}

 	1 Starts with an odd number to allow the following loop to be more efficient

 	2 Tells the JavaScript code what the range is

 	3 Loops through the range of numbers but only checks the odd numbers

 	4 If the current value is a prime number, tells the JavaScript code the value

 Figure 3.6 shows the next step of the process, in which you’ll ask the Emscripten compiler to take your C code and convert it into a
 WebAssembly module. In this case, you’ll also want Emscripten to include the JavaScript plumbing file as well as the HTML
 template file.

 Figure 3.6. Emscripten is asked to compile the C code into a WebAssembly file to generate the JavaScript plumbing file and HTML file.

 [image:]

 To compile your C code into a WebAssembly module, you need to use the console window to run the emcc command, which is the Emscripten compiler. Rather than having to specify a file path for the files you want Emscripten to
 compile, it’s easier if you navigate to the WebAssembly\Chapter 3\3.4 html_template\ folder. Open a console window, and navigate to this folder.

 The emcc command accepts a number of inputs and flags. Although their order doesn’t matter, in general, you should include the input
 files first. In this case, you should place calculate_primes.c after emcc.

 By default, if you don’t include an output file name, Emscripten won’t generate an HTML file and will instead generate a WebAssembly
 file with the name a.out.wasm and a JavaScript file with the name a.out.js. To specify an output file, you’ll need to use
 the -o flag (hyphen and lowercase o) followed by the file name you want. To have Emscripten include the HTML template, you’ll need
 to specify a file name with a .html extension.

 Run the following command to generate the WebAssembly module, JavaScript plumbing file, and HTML template. Note that this
 might take a couple of minutes if this is your first time running the Emscripten compiler because it will also be creating
 some common resources for the compiler to reuse. These resources will be cached so that subsequent compiles will be much faster:

 emcc calculate_primes.c -o html_template.html

 	

 More Info

 There are several optimization flags available on Emscripten’s website at https://emscripten.org/docs/optimizing/Optimizing-Code.html. Emscripten recommends starting out with no optimizations when you first port your code. Not specifying an optimization flag
 at the command line defaults to -O0 (capital O followed by zero). You should debug and fix any issues that might exist in your code before you start turning
 on optimizations. Depending on your needs, you would then adjust the optimization flags from -O0 to -O1, -O2, -Os, -Oz, and -O3.

 	

 If you look in the folder where you have the calculate_primes.c file, you should now see the three other files that are highlighted
 in figure 3.7.

 The html_template.wasm file is your WebAssembly module. The html_template.js file is the generated JavaScript file, and the
 third file is your HTML file, html_template .html.

 As figure 3.8 shows, the final step of the process is to view the web page to verify that the WebAssembly module is behaving as expected.

 If you’re using Python for your local web server, navigate to the WebAssembly\Chapter 3\3.4 html_template\ folder and start up the web server. Open a web browser, and type the following address into the address box
 (depending on your web server, you might not need the :8080 portion of the address):

 http://localhost:8080/html_template.html

 Figure 3.7. The newly generated HTML, JavaScript, and WebAssembly files

 [image:]

 Figure 3.8. You can now open the HTML file in a web browser to view the results.

 [image:]

 You should see the HTML page that was generated, as shown in figure 3.9.

 	

 Tip

 Python needs to be installed in order to install the Emscripten toolkit, which is convenient because Python can also run a
 local web server. If you wish to use a different web server for the examples in this book, you can, but you’ll need to ensure
 that the WebAssembly media type is present. Instructions for how to start up a local web server using Python can be found in appendix A. The media type that browsers expect when loading a WebAssembly module is also mentioned in this appendix.

 	

 Figure 3.9. The HTML page running in Google Chrome

 [image:]

 The HTML file created by Emscripten directs any printf output from the module to a text box so that you can see output on the page rather than having to open the browser’s developer
 tools. The HTML file also includes a canvas element above the text box that allows for WebGL output. WebGL is an API based
 on OpenGL ES 2.0 that enables web content to render 2D and 3D graphics to a canvas element.

 In a later chapter, you’ll learn how Emscripten takes the output from the call to printf and directs that output to the browser’s debugger console or a text box.

 3.5. Having Emscripten generate the JavaScript plumbing code

 Being able to ask Emscripten to include an HTML template file can be helpful if you want to try out code quickly or verify
 that the logic in a module is sound before moving on. When it comes to production code, however, you don’t typically use the
 HTML template file. Instead, you ask Emscripten to compile your C or C++ code into a WebAssembly module and generate the JavaScript
 plumbing file. Then, you either create a new web page or edit an existing one and include a reference to the JavaScript file.
 Once the JavaScript file reference is part of the web page, when the page loads, the file will handle downloading and instantiating
 the WebAssembly module automatically.

 3.5.1. Compiling C or C++ with Emscripten-generated JavaScript

 You’ve verified the logic for your prime numbers by having Emscripten build the WebAssembly module with the HTML template.
 Now that the WebAssembly module’s logic is ready and working as expected, you’ll want to tell Emscripten to generate only
 the WebAssembly module and the JavaScript plumbing file. As figure 3.10 shows, you’ll create your own HTML file and then reference the generated JavaScript file. The first thing you’ll need to
 do is create a folder where you’ll keep your files for this section: WebAssembly\Chapter 3\3.5 js_plumbing\.

 As figure 3.11 shows, the first step is creating the C or C++ code. Listing 3.2 shows the contents of the calculate_primes.c file that you created for use with the HTML template. Copy this file to your
 3.5 js_plumbing folder.

 Figure 3.10. Emscripten is asked to generate the WebAssembly and JavaScript plumbing files. You then create the HTML file and include a
 reference to the generated JavaScript file.

 [image:]

 Listing 3.2. Code in calculate_primes.c

 #include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

int IsPrime(int value) {
 if (value == 2) { return 1; }
 if (value <= 1 || value % 2 == 0) { return 0; }

 for (int i = 3; (i * i) <= value; i += 2) {
 if (value % i == 0) { return 0; }
 }

 return 1;
}

int main() {
 int start = 3;
 int end = 100000;

 printf("Prime numbers between %d and %d:\n", start, end);

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 printf("%d ", i);
 }
 }
 printf("\n");

 return 0;
}

 Figure 3.11. Step 1 is to create the C or C++ code.

 [image:]

 Now that you have your new C file, figure 3.12 shows the next step of the process, in which you’ll ask the Emscripten compiler to take your C code and convert it into a
 WebAssembly module. You’ll also want Emscripten to include the JavaScript plumbing file but not the HTML template file.

 Figure 3.12. Emscripten is asked to compile the C code into a WebAssembly file and to generate the JavaScript plumbing file.

 [image:]

 To compile your C code into a WebAssembly module, you’ll need to open a console window and navigate to the WebAssembly\Chapter 3\3.5 js_plumbing\ folder. The command to use here is similar to the one that you used when asking for the HTML template to be
 included. In this case, you want only the WebAssembly and JavaScript files generated. You don’t want the HTML file, so you’ll
 need to modify the output file name to have a .js extension rather than a .html extension. Run the following command to have
 Emscripten build the WebAssembly module and JavaScript file:

 emcc calculate_primes.c -o js_plumbing.js

 If you look in the folder where you copied the calculate_primes.c file, you should now see two new files, pointed out in figure 3.13.

 Figure 3.13. The newly generated JavaScript and WebAssembly files

 [image:]

 Now that you have the WebAssembly module and generated JavaScript file, figure 3.14 shows the next step, in which you’ll create an HTML file and include the generated JavaScript file. The JavaScript file that
 Emscripten generated handles the loading and instantiation of the WebAssembly module, so simply including a reference to that
 file in an HTML page is all you need to gain access to the module’s features.

 Figure 3.14. An HTML file is modified, or a new one is created, to reference the generated JavaScript file.

 [image:]

 3.5.2. Creating a basic HTML web page for use in browsers

 For developers who may be strong with languages like C or C++ but have never really worked with HTML pages, I’ll briefly introduce
 the elements of an HTML page, which you’ll build in a moment to use for your examples in this chapter. If you already understand
 the basics of HTML pages, you can skip ahead to the next section, “Creating your HTML page.”

 HTML basics

 The first thing every HTML page needs is a DocType declaration that tells the browser which version of HTML is being used. HTML 5 is the latest version and the one you’ll want
 to use, so the DocType for HTML 5 is written as <!DOCTYPE html>.

 For the most part, HTML is a series of tags similar to XML. XML is used to describe data, whereas HTML is used to describe
 presentation. HTML tags are similar to the DocType declaration just mentioned and usually consist of opening and closing tags surrounding content that can also include other
 tags.

 After the DocType declaration, an HTML page starts with an html tag, which holds all the page content. Within the html tags are the head and body tags.

 The head tag is where you can include metadata about the page, like a title or the file’s character encoding. The character encoding
 that’s typically used for HTML files is UTF-8, but you can also use other encodings. You can also include link tags in the head tag to include references to files for things like the styles to use for the look of the page content.

 The body tag is where you place all the content for the page. As with the head tag, the body tag can also include file references.

 Script tags are used to include JavaScript code by including an src attribute, which tells the browser where to find a code file. This is still in the works, but browser makers want to allow
 WebAssembly modules to be included in a web page by simply including a script tag in the page, similar to <script type="module">.

 Script tags can be placed in either the head or body tag, but, until recently, it was considered best practice to place script tags at the end of the body tag. This was because the browser would pause DOM construction until the script was downloaded, and a web page felt more
 responsive if it showed something before the pause rather than showing a white screen briefly at the beginning. Script tags can now include an async attribute, which tells the browser to continue building the DOM while downloading the script file at the same time.

 	

 More Info

 The following web page explains in more detail why script tags were recommended at the end of the body tag: Ilya Grigorik, “Adding Interactivity with JavaScript,” Google Developers, http://mng.bz/xld7.

 	

 The browser doesn’t need the whitespace in an HTML file. The indents and linefeeds in an HTML file are optional and are included
 for readability.

 Creating your HTML page

 The following HTML (listing 3.3) is a basic web page for your WebAssembly file, which you should place in the WebAssembly\Chapter 3\3.5 js_plumbing\ folder and name js_plumbing.html. The web page in this listing simply includes a reference to the JavaScript
 file that Emscripten generated. Because the JavaScript file handles the loading and instantiation of the WebAssembly module
 for you, all you have to do is include a reference to the file.

 Listing 3.3. The HTML for js_plumbing.html

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script src="js_plumbing.js"></script> 1
 </body>
</html>

 	1 The JavaScript file handles loading and instantiating the WebAssembly module for you.

 Viewing your HTML page

 If you open a web browser and type the following into the address box, you should see a page displayed similar to the one
 in figure 3.15:

 http://localhost:8080/js_plumbing.html

 Figure 3.15. The HTML page that you created, running in Google Chrome

 [image:]

 While looking at the web page in the browser, you might be asking yourself, where’s the text showing all the prime numbers
 that I saw when I used the HTML template approach in section 3.4?

 When you asked Emscripten to generate the HTML template in section 3.4, Emscripten placed all the printf output into a text box on the web page; but, by default, it directs all such output to the console of the browser’s developer
 tools. To display these tools, press F12.

 Each browser’s developer tools are a bit different, but they all have a way to view console output. As you can see in figure 3.16, the text from the printf call in your module is being output to the console window in the browser’s developer tools.

 Figure 3.16. The console window in Google Chrome’s developer tools showing the list of prime numbers

 [image:]

 3.6. Having Emscripten generate only the WebAssembly file

 Figure 3.17 shows the third scenario that we’re going to cover when creating a WebAssembly module with Emscripten. Here, you’ll ask Emscripten
 to only compile your C or C++ code to WebAssembly and to not generate any other files. In this case, you’ll not only have
 to create an HTML file, but you’ll also have to write the JavaScript code necessary to download and instantiate the module.

 Figure 3.17. Emscripten being requested to generate only the WebAssembly file. You then create the necessary HTML and JavaScript code to
 download and instantiate the module.

 [image:]

 You can create a WebAssembly module this way by telling Emscripten that you want to create a side module. A side module is
 actually intended for use with dynamic linking in which multiple modules can be downloaded and then linked together at runtime
 to work as one unit. This is similar to dependent libraries in other languages. We’ll talk about dynamic linking later in
 the book; for this scenario, we’re not asking for a side module to do dynamic linking. You’ll be asking Emscripten to create
 a side module because, when you do, Emscripten doesn’t include any of the standard C library functions with your code in the
 WebAssembly module, and it doesn’t create a JavaScript plumbing file.

 You might want to create a side module for several reasons:

 	You wish to implement dynamic linking in which multiple modules will be downloaded and linked together at runtime. In this
 case, one of your modules will be compiled as a main module and will have the standard C library functions. I explain the
 differences between main modules and side modules in chapter 7, when you’ll dig into dynamic linking, but both side modules and main modules fall into the three scenarios that you’re looking
 at in this chapter.

 	The logic in your module doesn’t need the standard C library. Be careful here because if you’re passing anything other than
 an integer or float between the JavaScript code and the module, memory management is needed, which will require some form
 of the standard C library functions malloc and free. Memory management issues will impact only your module, given that the module’s memory is only an array buffer passed to it by JavaScript, but the bugs that can arise may prove difficult to track down.

 	You wish to learn how to download the module and have it compiled and instantiated by the browser, which is a useful skill
 to have, given that Emscripten isn’t the only compiler that creates WebAssembly modules. Several examples on the internet
 show modules being loaded manually, so being able to create a module that you can load manually is helpful if you wish to
 follow along. There is also a chance that, at some point in the future, you’ll want to work with a third-party module that
 has no JavaScript plumbing file.

 3.6.1. Compiling C or C++ as a side module with Emscripten

 As figure 3.18 shows, your first step will be to create some C code. Create a folder where you’ll keep your files for this section: WebAssembly\Chapter 3\3.6 side_module\.

 Figure 3.18. Step 1 is to create the C or C++ code.

 [image:]

 Because your C code won’t have access to the printf function, you’ll need a simple C file as a replacement for the examples used so far. You’re going to build a function called
 Increment that accepts an integer, adds 1 to the value received, and then returns the result to the caller. In this case, the caller
 will be a JavaScript function. Place the following code into a file called side_module.c:

 int Increment(int value) {
 return (value + 1);
}

 Now that you have your C code, you can move on to the next step, which is to ask Emscripten to generate only the WebAssembly
 file, as figure 3.19 shows. To compile the code as a side module, you’ll need to include the -s SIDE_MODULE=2 flag as part of the emcc command line. The -s SIDE_MODULE=2 flag tells Emscripten that you don’t want things like the standard C library functions included in the module or the JavaScript
 plumbing file generated.

 Figure 3.19. Have Emscripten generate only the WebAssembly file.

 [image:]

 You’ll also need to include the -O1 optimization flag (capital letter O and the number 1). If you don’t specify an optimization flag, Emscripten will use the
 default -O0 (capital letter O and the number 0), which indicates to not do any optimizations. Not including any optimizations in this scenario will cause link errors to be thrown if you try to load your module—the module
 is expecting several functions and global variables, but your code won’t be providing them. Adding any optimization flag other
 than -O0 will fix the issue by removing the extra imports, so you go with the next optimization flag level of -O1. (The letter O is case-sensitive and must be uppercase.)

 You need to specify that you want your Increment function exported so that it can be called by JavaScript code. To indicate this to the Emscripten compiler, you can include
 the function’s name in the -s EXPORTED_FUNCTIONS command-line array. Emscripten adds an underscore character in front of the functions when it generates the WebAssembly file,
 so you’ll need to include the underscore character when including the function name in the exported array: _Increment.

 	

 Tip

 In this case, you need to specify only one function in the EXPORTED_FUNCTIONS command-line array. If you need to specify multiple functions, don’t include a space in between the comma and the next function,
 or you’ll receive a compilation error. If you do want to include a space between the function names, you need to wrap the
 command-line array in double quotes, as follows: -s "EXPORTED_FUNCTIONS=['_Increment', '_Decrement']".

 	

 Finally, the output file that you specify needs to have the .wasm extension. In your first scenario, you specified an HTML
 file, and in your second, you specified a JavaScript file. In this case, you specify a WebAssembly file. If you don’t specify
 a file name, Emscripten will create a file with the name a.out.wasm.

 You can compile your Increment code into a WebAssembly module by opening a command-line window, navigating to the folder where you saved your C file, and
 then running the following command:

 emcc side_module.c -s SIDE_MODULE=2 -O1
[image:] -s EXPORTED_FUNCTIONS=['_Increment'] -o side_module.wasm

 If you look in the folder where you have the side_module.c file, you should now see just the one new file that’s highlighted
 in figure 3.20.

 Figure 3.20. The newly generated WebAssembly file

 [image:]

 3.6.2. Loading and instantiating in a browser

 Now that you know how to create the Wasm file itself, you need to create an HTML file and write the JavaScript code to request
 this file from the server and have the module instantiated.

 Promises and arrow function expressions

 When working with many of the JavaScript functions that we’re about to cover, the functions typically operate asynchronously
 through the use of promises. When you call an asynchronous function, it will return a Promise object that will be called later when the action either is fulfilled (succeeded) or was rejected (there was an error).

 The Promise object has a then method, which accepts two parameters that are callback functions. The first parameter will be called when the action is fulfilled
 and the second if the action was rejected.

 With the following example, I include both a function to call when the request is fulfilled and one to call if there is an
 error:

 asyncFunctionCall.then(onFulfilled, onRejected); 1

 	1 Passes in callback functions to be called when the promise is fulfilled or rejected

 Both the fulfilled and rejected functions accept a single parameter. The function that calls the fulfilled function can pass
 any data it wants for the fulfillment parameter value. The rejected parameter value is a string containing the rejected reason.

 In the previous example, you passed in function pointers to be called when the then method is fulfilled or rejected. Rather than having a separate function somewhere else in the code, you can always create
 anonymous functions, as in the following example:

 asyncFunctionCall.then(function(result) { 1
 ...
}, function(reason) { 2
 ...
});.

 	1 An anonymous function for if the promise is fulfilled

 	2 An anonymous function for if the promise is rejected

 Often when working with promises, you’ll see this taken a bit further using arrow function expressions, which have a shorter
 syntax compared to normal functions, as in the following example:

 asyncFunctionCall.then((result) => { 1
 ...
}, (reason) => { 2
 ...
});

 	1 Using an arrow function expression for the fulfilled function

 	2 Using an arrow function expression for the rejected function

 When there is only the one parameter, the parentheses are optional. For example, the (result) => {} function could be written as result => {}. If there are no parameters, then parentheses are used: () => {}.

 For the body of the arrow function expression, if a return value is expected and curly braces are used, then an explicit return statement is required:

 (value1, value2) => { return value1 + value2 }

 If the body of the arrow function expression is wrapped in parentheses or nothing at all, then there is an implicit return,
 as follows:

 (value1, value2) => value1 + value2

 If you’re interested only in finding out if the action was fulfilled, you don’t have to specify the second parameter in the
 then method for the rejection.

 If, on the other hand, you have an action in which you’re interested only if there was an issue, you can specify null for the first parameter and then a callback for the rejection. Typically, however, if you’re interested only if there was
 an error, you’d use the catch method. This method accepts one parameter, a callback function that will be called if the action was rejected.

 Both the then and catch methods return promises, which allows several asynchronous operations to be chained together. This makes working with several
 asynchronous operations that are dependent on each other much easier because the next then method will be called only once the one before it is fulfilled:

 asyncFunctionCall.then(result =>
 asyncFunctionCall2() 1
).then(result => {
 2
}).catch((err) => {
 3
});

 	1 asyncFunctionCall2 also returns a promise.

 	2 asyncFunctionCall2 fulfilled

 	3 One of the calls in the chain was rejected. Log or display the error.

 JavaScript object shorthand

 Some functions that you’ll be using in upcoming examples accept objects as parameters. You can create an object in JavaScript
 using new Object(), but there is also a shorthand way of creating objects using curly braces, as in the following example, which creates an
 empty object:

 const person = {};

 Within the object, you can include name/value pairs, with each pair separated by a comma. The name/value pair itself is separated
 by a colon, and the value can be a string, number, object, array, true, false, or null. String values are wrapped in single or double quotes. The following is an example of a name/value pair:

 age: 21

 Creating objects in this manner makes things easier because the object can be declared and initialized in one step. Once you’ve
 defined the JavaScript object, you can access the properties using dot notation, as follows:

 const person = { name: "Sam Smith", age: 21 };
console.log("The person's name is: " + person.name);

 An overview of the WebAssembly JavaScript API

 Browsers that support WebAssembly have something known as the WebAssembly JavaScript API. This API is a WebAssembly namespace
 with several functions and objects that are used to compile and instantiate a module; interact with aspects of the module,
 like its memory, to pass strings back and forth between the module and JavaScript, for example; and handle error conditions.

 When using Emscripten’s generated JavaScript file, it handles the process of downloading the WebAssembly file for you. It
 then interacts with the WebAssembly JavaScript API to have the WebAssembly module compiled and instantiated.

 In this section, you’ll see how the API is used so that you can interact with it to manually load the WebAssembly module that
 you built in section 3.6.1.

 	

 Info

 Most modern desktop and mobile browsers, including Edge, Firefox, Chrome, Safari, and Opera, support WebAssembly. You can
 view a detailed list at the following website: https://caniuse.com/#search=WebAssembly.

 	

 Before you can do anything with a WebAssembly module, you need to first ask for the WebAssembly file to be downloaded. To
 request the file, you’ll use the fetch JavaScript method. This method lets JavaScript make HTTP-related calls asynchronously. If you only need to pull data, rather
 than pass data to the server, for example, then you need to specify only the first parameter, which is the URI of the file
 you want to download, and the fetch method will return a Promise object. For example, if the Wasm file is sitting in the same folder on the server where the HTML file was downloaded from,
 then you will only need to specify the file name for the URI, as follows:

 fetch("side_module.wasm")

 The fetch method accepts a JavaScript object as an optional second parameter to control numerous settings in relation to the request,
 such as the content type of the data if you’re passing data to the server. For this book, you won’t be using the optional
 second parameter, referred to as init, but if you need to know the details of the init object, they are available on the MDN Web Docs site at http://mng.bz/ANle.

 Once you’ve fetched the WebAssembly file, you need a way to compile and then instantiate it; for this, the WebAssembly.instantiateStreaming function is the recommended approach because the module gets compiled to machine code as the bytecode is being downloaded
 by the fetch method. Compiling the module as it’s being downloaded speeds up load time because the module is ready to be instantiated
 as soon as it finishes downloading.

 The instantiateStreaming function accepts two parameters. The first is a Response object, or a Promise object that will fulfill with a Response object, representing the source of a Wasm file. Because the fetch method returns a Response object, you can simply include the method call as the first parameter of instantiateStreaming. The second parameter is an optional JavaScript object, which we’ll discuss shortly, in which you pass the module any data
 that it’s expecting, such as imported functions or global variables.

 The instantiateStreaming function returns a Promise object that, if fulfilled, will hold a module property and an instance property. The module property is a WebAssembly.Module object, and the instance property is a WebAssembly.Instance object. The instance property is the object that we’re interested in because it holds an exports property, which contains all the items the module exports.

 The following is an example of using the WebAssembly.instantiateStreaming function to load the module you created in section 3.6.1:

 WebAssembly.instantiateStreaming(fetch("side_module.wasm"), 1
[image:] importObject).then(result => {
 const value = result.instance.exports._Increment(17); 2
 console.log(value.toString());
});

 	1 The Promise object from the fetch call is passed as the first parameter.

 	2 The instance object is where you can access the exported function.

 The instantiateStreaming function was added to browsers after the WebAssembly MVP was first released, so there’s a chance that some browsers that
 support WebAssembly won’t support instantiateStreaming. It’s best to use feature detection to check and see if instantiateStreaming is available before trying to use it. At the end of this chapter, section 3.7 shows you how to test to see if this function is available. If it’s not, you should use the older WebAssembly.instantiate function.

 	

 Tip

 MDN Web Docs (formerly the Mozilla Developer Network) has an article about the instantiateStreaming function and includes an up-to-date browser compatibility table toward the bottom of the page: http://mng.bz/ZeoN.

 	

 As when calling instantiateStreaming, with the instantiate function, you can also use fetch to download the contents of the WebAssembly file. But, unlike with instantiateStreaming, you can’t pass the Promise object directly into the instantiate function. Instead, you need to wait for the fetch request to be fulfilled, convert the data into an ArrayBuffer, and then pass that ArrayBuffer into the instantiate function. As with the instantiateStreaming function, the instantiate function also accepts an optional second parameter JavaScript object for the module’s imports.

 The following is an example of using the WebAssembly.instantiate function:

 fetch("side_module.wasm").then(response => 1
 response.arrayBuffer() 2
).then(bytes =>
 WebAssembly.instantiate(bytes, importObject) 3
).then(result => {
 const value = result.instance.exports._Increment(17); 4
 console.log(value.toString());
});

 	1 Asks for the WebAssembly file to be downloaded

 	2 Asks for the file’s data to be turned into an ArrayBuffer

 	3 Passes the ArrayBuffer to the instantiate function

 	4 You now have access to the instantiated module: result.instance.

 In chapter 9, you’ll work with just a compiled module (not instantiated) by passing it from a web worker. You’ll also work with the WebAssembly.compileStreaming and WebAssembly.compile functions at that time. For now, the compileStreaming and compile functions work the same as the instantiateStreaming and instantiate functions but only return the compiled module.

 Note that there is a WebAssembly.Module function that can compile a module and a WebAssembly.Instance function to instantiate a compiled module, but these two functions aren’t recommended because the calls are synchronous.
 The instantiateStreaming, instantiate, compileStreaming, and compile functions are asynchronous and are the recommended functions to use instead.

 As mentioned earlier, the optional JavaScript object (often called importObject) can be passed as a second parameter to the instantiateStreaming and instantiate functions to provide the module with anything it needs to import. This object can include memory, a table, global variables,
 or function references. You’ll work with these imports as you work with the various examples throughout this book.

 WebAssembly modules can include a Memory section that indicates how many pages of memory it would like initially and, optionally,
 the maximum number of pages it would like. Each page of memory holds 65,536 bytes or 64 KB. If the module indicates that the
 memory needs to be imported, then it’s up to your JavaScript code to provide it as part of the importObject that gets passed to the instantiateStreaming or instantiate function.

 	

 More Info

 One WebAssembly security feature is that the module can’t allocate its own memory or resize it directly. Instead, the memory
 used by WebAssembly modules is provided by the host in the form of a resizable ArrayBuffer when the module is instantiated.

 	

 To pass memory to the module, the first thing that you need to do is create an instance of the WebAssembly.Memory object to include as part of the importObject. The WebAssembly.Memory object accepts a JavaScript object as part of its constructor. The first property of the JavaScript object is initial, which indicates how many pages of memory should be initially allocated for the module. The JavaScript object can optionally include a maximum property, which indicates the maximum number of pages a WebAssembly’s memory is allowed to grow. You’ll see more details
 about growing memory later.

 The following is an example of how you create a WebAssembly.Memory object and pass it to a module:

 const importObject = {
 env: {
 memory: new WebAssembly.Memory({initial: 1, maximum: 10}) 1
 }
};

WebAssembly.instantiateStreaming(fetch("test.wasm"),
[image:] importObject).then(result => { ... });

 	1 One page of memory initially and only allowed to grow to a maximum of 10 pages

 Creating the JavaScript to fetch and instantiate the module

 You’re going to write some JavaScript code to load in the side_module.wasm file that you created in section 3.6.1, and you’ll use the WebAssembly.instantiateStreaming function. In section 3.6.1, you asked Emscripten to create the module as a side module so that Emscripten wouldn’t include any of the standard C library
 functions in the Wasm file and wouldn’t create a JavaScript plumbing file. Although we don’t intend to use it this way in
 this chapter, because the side module approach with Emscripten is really intended for dynamically linking two or more modules
 together at runtime, Emscripten adds imports to the module that you’ll need to provide when you call instantiateStreaming.

 You’ll need to define a JavaScript object, which you’ll call importObject, that has a child object called env, which in turn contains a __memory_base property that the module wants to import. This __memory_base property will simply hold a value of zero because you won’t be dynamically linking this module.

 Once you have your importObject created, you can call the instantiateStreaming function, passing in the result of the fetch method for the Wasm file as the first parameter and the importObject as the second parameter. The instantiateStreaming function returns a promise, so you’ll set up a handler for the success callback, which will be called once the module has
 been downloaded, compiled, and instantiated. At that point, you can access the exported elements of the WebAssembly module
 instance and call your _Increment function, passing in a value of 17. Your _Increment function takes the value that’s passed in, adds 1 to it, and returns the new value. The console.log call that you’ll include will output the result to the browser’s console window and display the number 18 in this case.

 The following is the JavaScript code that’s needed to load and instantiate your module.

 Listing 3.4. The JavaScript to load and instantiate side_module.wasm

 const importObject = {
 env: {
 __memory_base: 0,
 }
};

WebAssembly.instantiateStreaming(fetch("side_module.wasm"),
[image:] importObject).then(result => {
 const value = result.instance.exports._Increment(17);
 console.log(value.toString());
});

 Creating a basic HTML page

 In your Chapter 3\3.6 side_module\ folder, create a side_module.html file, and then open it with your favorite editor. As you can see in listing 3.5, the HTML that you’re going to use to load the WebAssembly file is almost identical to what you used in the js_plumbing.html
 file in section 3.5.2, except that here, rather than referencing a JavaScript file, you’re going to take the JavaScript code that you wrote in
 listing 3.4 and add it to the script block in listing 3.5.

 Listing 3.5. An HTML page for the WebAssembly module named side_module.html

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script>
 const importObject = {
 env: {
 __memory_base: 0,
 }
 };

 WebAssembly.instantiateStreaming(fetch("side_module.wasm"),
 [image:] importObject).then(result => {
 const value = result.instance.exports._Increment(17);
 console.log(value.toString());
 });
 </script>
 </body>
</html>

 Open a web browser and type http://localhost:8080/side_module.html into the address box. Then press F12 to open the browser’s developer tools to see that the HTML page that you just created
 output the number 18, as figure 3.21 shows.

 Figure 3.21. The HTML page that you created, showing the result of the call to the Increment function

 [image:]

 3.7. Feature detection: How to test if WebAssembly is available

 With new technologies, some browser vendors will sometimes implement a feature before other browser vendors. Not everybody
 upgrades their browsers to the latest version as frequently as we’d like, either, so even if the user is using a browser from
 a vendor that has implemented a feature, they might not be using a version of the browser that supports this feature. If there’s
 a chance that your users will be using a browser where a feature you need won’t exist, then it’s considered best practice
 to check for the feature before trying to use it.

 WebAssembly is a new enough technology that not all browsers—or all versions of Node.js—currently in use support it. It’s
 also possible that a browser may support WebAssembly but not allow the module you request to be loaded and instantiated due
 to security checks with things like Content Security Policy (CSP), which is an added layer of security to try to prevent things
 like cross-site scripting (XSS) and data injection attacks. Because of this, simply checking if the WebAssembly JavaScript
 object exists isn’t enough. The following function can be used to detect if the browser or Node.js supports WebAssembly.

 Listing 3.6. JavaScript to test if WebAssembly is supported

 function isWebAssemblySupported() {
 try { 1
 if (typeof WebAssembly === "object") { 2
 const module = new WebAssembly.Module(new Uint8Array([0x00, 0x61,
[image:] 0x73, 0x6D, 0x01, 0x00, 0x00, 0x00])); 3
 if (module instanceof WebAssembly.Module) { 4
 const moduleInstance = new WebAssembly.Instance(module); 5
 return (moduleInstance instanceof WebAssembly.Instance); 6
 }
 }
 } catch (err) {}

 return false; 7
}

console.log((isWebAssemblySupported() ? "WebAssembly is supported":
 "WebAssembly is not supported"));

 	1 Wraps in a try/catch just in case a CompileError or LinkError is thrown

 	2 Checks to see that the WebAssembly JavaScript API object exists

 	3 Compiles a minimal module with just the magic number (‘\0asm’) and version (1)

 	4 If the result is a WebAssembly.Module JavaScript API object

 	5 Checks whether the result is a WebAssembly.Module JavaScript API object

 	6 Supports WebAssembly if the object is a WebAssembly.Instance JavaScript API object

 	7 WebAssembly isn’t supported.

 Now that you know how to test if WebAssembly is supported, there’s still a chance that the browser or Node.js won’t support
 the latest feature. For example, WebAssembly .instantiateStreaming is a new JavaScript function that can be used instead of the WebAssembly.instantiate function, but instantiateStreaming was created after the MVP was released. As a result, the instantiateStreaming function might not exist in every browser that supports WebAssembly. To test to see if a JavaScript function exists, you
 can do the following:

 if (typeof WebAssembly.instantiateStreaming === "function") {
 console.log("You can use the WebAssembly.instantiateStreaming
[image:] function");
} else {
 console.log("The WebAssembly.instantiateStreaming function is not
[image:] available. You need to use WebAssembly.instantiate instead.");
}

 When it comes to feature detection, you generally test for the function you want to use first and fall back to alternatives
 if the function isn’t available. In our case, instantiateStreaming is preferred because it compiles the code as the module is being downloaded; but if it’s not available, then instantiate will still work. The instantiate function just doesn’t have the same performance improvements that instantiateStreaming does.

 Now: how can you use what you learned in this chapter in the real world?

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	You can use Emscripten’s HTML Template output option to quickly create proof-of-concept code or test out a WebAssembly feature
 independently of your web page. Using the printf function, you can output information to the text box on the web page and the console of the browser’s developer tools to
 verify that things are working as expected. Once you have the code working in a test environment, you can implement it in
 your main code base.

 	You can use the WebAssembly JavaScript API to do feature detection to determine if WebAssembly is supported.

 	Other examples include a calculator or a unit converter (Celsius to Fahrenheit or centimeters to inches, for example).

 Exercises

 You can find the solutions to these exercises in appendix D.

 1
Which four data types does WebAssembly support?

 2
Add a Decrement function to the side module you created in section 3.6.1.

 	The function should have an integer return value and an integer parameter. Subtract 1 from the value received, and return
 the result to the calling function.

 	Compile the side module, and then adjust the JavaScript to call the function and display the result to the console

 Summary

 As you saw in this chapter, the Emscripten toolkit uses the LLVM compiler toolchain to convert C or C++ code into an LLVM
 IR. Emscripten then converts the LLVM IR into WebAssembly bytecode. WebAssembly-supported browsers load the WebAssembly file,
 and, if everything checks out, the bytecode gets compiled the rest of the way into the device’s machine code.

 The Emscripten toolkit gives you flexibility depending on your needs, allowing you to create modules in several different
 ways:

 	You can create a module but also have the HTML and JavaScript files generated for you. This is a useful approach when someone
 wants to learn about creating WebAssembly modules before having to learn about the HTML and JavaScript side of things. It’s
 also useful when you need to test something quickly and not have to create the HTML and JavaScript as well.

 	You can create a module and also have the JavaScript file generated for you. Here, you are responsible for creating your own
 HTML file. This gives you the flexibility to either create a new custom HTML page or simply add the generated JavaScript file
 reference to an existing web page. This would be the typical method used for production code.

 	Finally, you can create only the module. Here you’re responsible for creating your own HTML file as well as the JavaScript
 needed to download and instantiate the module. This approach can be useful in learning the details surrounding the WebAssembly
 JavaScript API.

 Part 2. Working with modules

 Now that you know what WebAssembly is, and have been introduced to the Emscripten toolkit, this part of the book will guide
 you through creating WebAssembly modules that your JavaScript code can interact with and vice versa.

 In chapter 4, you’ll learn how to take an existing C or C++ codebase and adjust it so that it can also be compiled into a WebAssembly
 module. You’ll learn how to interact with your new module from your web page’s JavaScript.

 Chapter 5 teaches you how to adjust the code from chapter 4 so that the WebAssembly module can call into your web page’s JavaScript.

 Chapter 6 takes calling into the JavaScript code of your web page to another level by passing JavaScript function pointers to the WebAssembly
 module. This allows your JavaScript to specify functions on demand and take advantage of JavaScript promises.

 Chapter 4. Reusing your existing C++ codebase

 This chapter covers

 	Adjusting a C++ codebase so that it can also be compiled by Emscripten

 	Exporting WebAssembly functions so that they can be called by JavaScript

 	Calling a WebAssembly function using Emscripten helper functions

 	Passing strings and arrays to the WebAssembly module via the module’s memory

 Typically, when people talk about the advantages of WebAssembly, it’s from the standpoint of performance. But WebAssembly
 brings another advantage to the table—code reuse. Rather than writing the same logic multiple times for each target environment
 (desktop, website, and others), WebAssembly lets you reuse the same code in multiple locations.

 Imagine a scenario in which a company already has a desktop point-of-sale application written in C++ but wants to add an online
 solution. The company decides that the first part of the website it should build is the Edit Product web page shown in figure 4.1. The new website will also use Node.js for the server-side logic, but I’ll leave the discussion of working with Node.js for
 a later chapter.

 Figure 4.1. The Edit Product page that you’ll be building

 [image:]

 Because the company has existing C++ code, it would like to take advantage of WebAssembly to extend its validation code to
 both the browser and Node.js. This will ensure that all three locations are validating the data in the exact same way, all
 while using a single codebase, which makes maintainability easier. As figure 4.2 shows, the steps for building this website and incorporating the validation logic are as follows:

 	Modify the C++ code so that it can be compiled by Emscripten.

 	Ask Emscripten to generate the WebAssembly and JavaScript plumbing files.

 	Create the web page and then write the JavaScript code necessary to interact with the WebAssembly module.

 Why would you want to validate the user’s input twice? Why not skip validation in the browser and just validate the data on
 the server? You want to validate the data in the browser first, rather than just on the server, for a few reasons:

 	Mainly, the user may not be physically near the server. The farther away they are, the longer it takes for the data to reach
 the server and for a response to be returned. If the user is on the other side of the world, this delay is noticeable, so
 validating what you can in the browser makes the website more responsive for the user.

 	Validating as much as you can in the browser also reduces the amount of work the server needs to do. If the server doesn’t
 have to respond as often per user, it can handle more users at once.

 Figure 4.2. The steps needed to turn the existing C++ logic into a WebAssembly module for use in a browser and by the server-side code.
 I discuss the server aspect, Node.js, in a later chapter.

 [image:]

 As helpful as it is to validate user data in the browser, you can’t assume that the data is perfect when it reaches the server;
 there are ways to get around the browser’s validation checks. You don’t want to risk adding bad data to a database—whether
 submitted inadvertently or intentionally by the user. Regardless of how good the validation is in the browser, the server-side
 code must always validate the data it receives.

 Figure 4.3 shows how the validation will work in the web page that you’re about to build. When the user enters some information and
 then clicks the Save button, validation checks will be performed to ensure the data is as expected. If there’s an issue with
 the data, the web page will display an error message. Once the issue is corrected, the user can click the Save button again.
 If there are no issues with the data, then the information will be passed to the server.

 Figure 4.3. How validation will work in the browser

 [image:]

 4.1. Using C or C++ to create a module with Emscripten plumbing

 In this section, you’re going to build the C++ code for the validation logic; you’ll include the standard C library and Emscripten
 helper functions, which is the recommended way to build a module for use in production. This approach is recommended for a
 few reasons:

 	Emscripten provides a number of helper functions that make interactions between the module and JavaScript easier.

 	Emscripten also includes the standard C library functions in the module if your code uses them. If your code will need a standard
 C library function at runtime but doesn’t use it when the code is being compiled, the function can be included using a command-line
 flag.

 	If you need to pass anything more than integers or floats between the module and JavaScript, you’ll need to use the module’s
 linear memory. The standard C library includes the malloc and free functions, which help with memory management.

 You’ll see the approach to building a WebAssembly module that doesn’t include the standard C library or Emscripten helper
 functions later in this chapter.

 4.1.1. Making the C++ modifications

 The first thing you’ll need to do is create a folder where you’ll keep your files for this section of the chapter: WebAssembly\Chapter 4\4.1 js_plumbing\source\.

 As figure 4.4 shows, the first step toward building a website that reuses the C++ validation code is to modify the code so that it can
 also be compiled by Emscripten.

 Figure 4.4. The first step of the process in reusing C++ code is to adjust the code so that it can be compiled by Emscripten.

 [image:]

 Emscripten’s conditional compilation symbol and header file

 In many cases, when you use C or C++ code that’s part of an existing solution to create a WebAssembly module, you’ll need
 to add some things to the code for everything to work together. For example, when the code is compiled for a desktop application,
 it doesn’t need the Emscripten header file; you’ll need a way to include that header file, but only when the code is being
 compiled by Emscripten.

 Fortunately, Emscripten includes a conditional compilation symbol, __EMSCRIPTEN__, that you can use to detect whether Emscripten is compiling the solution. If needed, you can also include an else condition with the conditional compilation symbol check to include header files that are needed when
 code isn’t being compiled by Emscripten.

 Create a file called validate.cpp, and open it. Add the header files for the standard C library and the string library. Because
 this code is part of an existing solution, you’ll need to add the header file for the Emscripten library, but you’ll need
 to wrap it in a conditional compilation symbol check to make sure it gets included only if Emscripten is compiling the code:

 #include <cstdlib>
#include <cstring>

#ifdef __EMSCRIPTEN__ 1
 #include <emscripten.h> 2
#endif

 	1 Symbol is present when the code is being compiled by Emscripten

 	2 Emscripten library’s header file

 	

 Info

 Several C header files have been deprecated or are no longer supported in C++. An example is stdlib.h. You should now use
 cstdlib instead of stdlib.h. For the complete list of header file changes, you can visit https://en.cppreference.com/w/cpp/header.

 	

 The extern “C” block

 In C++, function names can be overloaded, so to make sure the name is unique when compiled, the compiler mangles it by adding
 information to it about the function’s parameters. The compiler changing function names when the code is compiled is a problem
 for external code that wants to call a specific function, because that function’s name no longer exists.

 You’ll want to tell the compiler to not modify the names of the functions that the JavaScript code will be calling. To do
 this, you need to include an extern "C" block around the functions. All the functions that you’ll be adding to this file are placed within this block. Add the following
 to the validate.cpp file:

 #ifdef __cplusplus
extern "C" { 1
#endif

 2

#ifdef __cplusplus
}
#endif

 	1 So the compiler doesn’t rename the functions within these curly braces

 	2 Your WebAssembly functions will be placed here.

 The ValidateValueProvided function

 The Edit Product web page that you’ll be building will have a product name field and category drop-down list that you’ll need
 to validate. Both the name and selected category will be passed to the module as strings, but the category ID will hold a numeric value.

 You’ll create two functions, ValidateName and ValidateCategory, to validate the product name and selected category. Because both functions need to ensure that a value was provided, you’ll
 create a helper function called ValidateValueProvided that will accept the following parameters:

 	The value that was passed to the module from the web page.

 	The appropriate error message from the module based on whether the function is being called by ValidateName or ValidateCategory. If a value isn’t provided, this error message will be placed into the third parameter’s return buffer.

 	The buffer to put the error message into if the value isn’t provided.

 Place the following code within the extern "C" curly braces of the validate.cpp file:

 int ValidateValueProvided(const char* value, 1
 const char* error_message, 2
 char* return_error_message) { 3
 if ((value == NULL) || (value[0] == '\0')) { 4
 strcpy(return_error_message, error_message); 5
 return 0; 6
 }

 return 1; 7
}

 	1 Value that was received by the module

 	2 Error message to return if there’s an issue

 	3 Buffer to put the error message into if there’s an issue

 	4 If a NULL or empty string was provided, then there is an issue.

 	5 Copies the error message into the return buffer

 	6 Tells the calling function that there was an issue

 	7 Tells the calling function that everything is ok

 The ValidateName function

 You’ll now create the ValidateName function, which receives the following parameters:

 	The user-entered product name

 	A maximum-length value for the name

 	A pointer to a buffer, to which you’ll add an error message if there’s an issue with the validation

 The function will verify two things:

 	Was a product name provided? You’ll verify this by passing the name to the ValidateValueProvided helper function.

 	You’ll also verify that the length of the name provided doesn’t exceed the maximum length value, by using the standard C library
 function strlen.

 If either validation check fails, you’ll place the appropriate error message into the return buffer and exit the function,
 returning 0 (error). If the code runs to the end of the function, there were no validation issues, so a 1 (success) message is returned.

 You’ll also add the EMSCRIPTEN_KEEPALIVE declaration to the ValidateName function and wrap it in a conditional compilation symbol check to make sure it’s included only if Emscripten is compiling
 the code. In chapter 3, you added functions from the module to an Emscripten command-line flag called EXPORTED_FUNCTIONS so that the JavaScript code could interact with those functions. The EMSCRIPTEN_KEEPALIVE declaration automatically adds the associated function to the exported functions so that you don’t have to explicitly specify
 it at the command line.

 The code in the next listing is the ValidateName function. Add it after the Validate-ValueProvided function in validate.cpp.

 Listing 4.1. ValidateName function in validate.cpp

 ...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE 1
#endif
int ValidateName(char* name, 2
 int maximum_length, 3
 char* return_error_message) { 4
 if (ValidateValueProvided(name,
 "A Product Name must be provided.",
 return_error_message) == 0) { 5
 return 0;
 }

 if (strlen(name) > maximum_length) { 6
 strcpy(return_error_message, "The Product Name is too long.");
 return 0;
 }

 return 1; 7
}

 	1 Adds the function to the list of exported functions

 	2 Product name passed to the module

 	3 Maximum length allowed for the name

 	4 Buffer in which to put the error message if there’s an issue

 	5 If the value wasn’t specified, then return an error.

 	6 If the value exceeds the maximum length, then return an error.

 	7 Tells the caller that everything was ok

 The IsCategoryIdInArray function

 Before you create the ValidateCategory function, you’ll create a helper function to simplify the function’s logic. This helper function will be called IsCategoryIdInArray and will receive the following parameters:

 	The user-selected category ID

 	A pointer to an array of integers holding the valid category IDs

 	The number of items in the array of valid category IDs

 The function will loop through the items in the array to check whether the user-selected category ID is actually in the array.
 If so, a 1 (success) code is returned. If the category ID isn’t found, a 0 (error) code is returned.

 Add the following IsCategoryIdInArray function to the validate.cpp file after the ValidateName function:

 int IsCategoryIdInArray(char* selected_category_id, 1
 int* valid_category_ids, 2
 int array_length) { 3
 int category_id = atoi(selected_category_id); 4

 for (int index = 0; index < array_length; index++) { 5
 if (valid_category_ids[index] == category_id) { 6
 return 1;
 }
 }

 return 0; 7
}

 	1 Category ID passed to the module

 	2 Pointer to an array of integers holding the valid category IDs

 	3 Number of items in the valid_category_ids array

 	4 Converts the string received into an integer

 	5 Loops through the array

 	6 If the ID is in the array, then exit the function, telling the caller that the ID was found.

 	7 Tells the caller that the category ID wasn’t found in the array

 The ValidateCategory function

 The final function that you need to create is ValidateCategory, which will receive the following parameters:

 	The user-selected category ID

 	A pointer to an array of integers holding the valid category IDs

 	The number of items in the array of valid category IDs

 	A pointer to a buffer, to which you’ll add an error message if there’s an issue with the validation

 The function will verify three things:

 	Was a category ID provided? You’ll verify this by passing the ID to the ValidateValueProvided helper function.

 	Was a pointer to the valid category IDs array provided?

 	Is the user-selected category ID in the array of valid IDs?

 If any of the validation checks fail, you’ll place the appropriate error message into the return buffer and exit the function,
 returning 0 (error). If the code runs to the end of the function, there were no validation issues, so a 1 (success) message is returned.

 Add the ValidateCategory function, shown in the following listing, below the IsCategoryIdInArray function in the validate.cpp file.

 Listing 4.2. The ValidateCategory function

 ...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateCategory(char* category_id, 1
 int* valid_category_ids, 2
 int array_length, 3
 char* return_error_message) { 4
 if (ValidateValueProvided(category_id,
 "A Product Category must be selected.",
 return_error_message) == 0) { 5
 return 0;
 }

 if ((valid_category_ids == NULL) || (array_length == 0)) { 6
 strcpy(return_error_message,
 "There are no Product Categories available.");
 return 0;
 }

 if (IsCategoryIdInArray(category_id, valid_category_ids,
 array_length) == 0) { 7
 strcpy(return_error_message,
 "The selected Product Category is not valid.");
 return 0;
 }

 return 1; 8
}

 	1 Selected category ID passed to the module

 	2 Pointer to an array of integers holding the valid category IDs

 	3 Number of items in the valid_category_ids array

 	4 Buffer to put the error message into if there’s an issue

 	5 If a value isn’t received, return an error.

 	6 If the array wasn’t specified, then return an error.

 	7 If the selected category ID isn’t found in the array, then return an error.

 	8 Tells the caller that everything was ok

 4.1.2. Compiling the code into a WebAssembly module

 Now that the C++ code has been modified so that it can also be compiled by Emscripten, you can move to the next step and have
 Emscripten compile the code into WebAssembly, as figure 4.5 shows.

 Figure 4.5. The second step of the process in reusing C++ code is to ask Emscripten to generate both the WebAssembly and JavaScript files.

 [image:]

 When you write the JavaScript code to interact with the module, you’ll use the ccall and UTF8ToString Emscripten helper functions (for details on the ccall function, see appendix B). To ensure that these functions are included in the generated JavaScript file, you’ll need to specify them when compiling
 the C++ code. To do this, you’ll use the EXTRA_EXPORTED_RUNTIME_METHODS command-line array to specify the functions.

 	

 Note

 When including functions, remember that function names are case-sensitive. The UTF8ToString function, for example, must have a capital UTF, T, and S.

 	

 To compile the code into a WebAssembly module, you need to open a command prompt, navigate to the folder where you saved the
 validate.cpp file, and then run the following command:

 emcc validate.cpp -o validate.js
[image:] -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','UTF8ToString']

 4.1.3. Creating the web page

 Now that you’ve modified the C++ code and compiled it into a WebAssembly module, you’ll need to build the Edit Product page
 for the website, shown in figure 4.6.

 	

 Tip

 Some of you may be strong with languages like C or C++ but not have ever really worked with HTML. If you’d like to familiarize
 yourself with HTML basics, the following website has some really good tutorials: www.w3schools.com/html.

 	

 For a more professional-looking web page, instead of styling everything manually, you’ll be using Bootstrap. This popular
 framework for web development includes a number of design templates to help make development easier and faster. For this book,
 you’ll simply point to the files that are hosted on the CDNs, but Bootstrap can be downloaded and included with your web page. The instructions for downloading Bootstrap are included
 in appendix A.

 Figure 4.6. The Edit Product page that you’ll be building and validating

 [image:]

 	

 Info

 A CDN, or content delivery network, is geographically distributed with a goal of serving the file or files needed as close to the device requesting them as
 possible. This distribution speeds up the process of downloading the files, which improves website load times.

 	

 In the WebAssembly\Chapter 4\4.1 js_plumbing\ folder, create a folder called frontend and then create a file in the frontend folder called editproduct.html.
 Open the editproduct.html file in your favorite text editor, and enter the HTML shown in the following listing.

 Listing 4.3. HTML of the Edit Product page (editproduct.html)

 <!DOCTYPE html>
<html>
 <head>
 <title>Edit Product</title>
 <meta charset="utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 [image:] href="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/css/W3Schools
 [image:] bootstrap.min.css">
 <script
 [image:] src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/W3Schools
 [image:] jquery.min.js"></script>
 <script
 [image:] src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.0/umd/
 [image:] W3Schools popper.min.js"></script>
 <script
 [image:] src="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/js/W3Schools
 [image:] bootstrap.min.js"></script>
 </head>
 <body onload="initializePage()">
 <div class="container">
 <h1>Edit Product</h1>

 <div id="errorMessage" class="alert alert-danger" role="alert"
 [image:] style="display:none;"></div>

 <div class="form-group">
 <label for="name">Name:</label>
 <input type="text" class="form-control" id="name">
 </div>

 <div class="form-group">
 <label for="category">Category:</label>
 <select class="custom-select" id="category">
 <option value="0"></option>
 <option value="100">Jeans</option>
 <option value="101">Dress Pants</option>
 </select>
 </div>

 <button type="button" class="btn btn-primary"
 [image:] onclick="onClickSave()">Save</button>
 </div>

 <script src="editproduct.js"></script>
 <script src="validate.js"></script>
 </body>
</html>

 4.1.4. Creating the JavaScript that will interact with the module

 Figure 4.7 shows the next step of the process, in which you’ll copy the files generated by Emscripten, validate.js and validate.wasm,
 to the folder where you have the editproduct.html file. You’ll then create an editproduct.js file that will bridge the gap
 between the user interacting with the web page and the code interacting with the module.

 Copy the validate.js and validate.wasm files from the WebAssembly\Chapter 4\4.1 js_plumbing\source\ folder to the WebAssembly\Chapter 4\4.1 js_plumbing\frontend\ folder. In the frontend folder, create a file called editproduct.js, and then open it.

 Figure 4.7. The third step of the process in reusing C++ code is to copy the generated files to where the HTML file is and build the JavaScript
 code to interact with the module.

 [image:]

 Rather than include code to talk to the server, you’ll simulate having received data from the server by creating a JavaScript
 object named initialData. This object will be used to initialize the controls when the web page is displayed. Add the JavaScript object to the editproduct.js
 file:

 const initialData = { 1
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

 	1 Simulated data received from the server

 When you call the module’s ValidateName function, it will want to know the maximum length that the product name can be. To specify this value, you’ll use the constant
 MAXIMUM_NAME_LENGTH. You’ll also have an array of valid category IDs, VALID_CATEGORY_IDS, for use when validating the user’s category ID selection. Add the following snippet after the initialData object in the editproduct.js file:

 const MAXIMUM_NAME_LENGTH = 50; 1
const VALID_CATEGORY_IDS = [100, 101]; 2

 	1 Maximum length a name is allowed to be

 	2 List of valid category IDs that can be selected

 In the HTML of the editproduct.html page, you specified that an initializePage function be called when the web page has loaded. This function call lets you populate the controls on the page with the data
 from the initialData object.

 Within the initializePage function, you first populate the product name field with the name value in the initialData object. Next, loop through the category drop-down list to find the item in the list that matches the categoryId value in the initialData object. If you find the matching category ID value, you set the selection of the desired item in the list by passing the item’s index to the selectedIndex property. Add the following initializePage function to the editproduct.js file:

 function initializePage() {
 document.getElementById("name").value = initialData.name;

 const category = document.getElementById("category");
 const count = category.length; 1
 for (let index = 0; index < count; index++) { 2
 if (category[index].value === initialData.categoryId) { 3
 category.selectedIndex = index;
 break;
 }
 }
}

 	1 Gets the count of how many items are in the drop-down

 	2 Loops through each item in the category list

 	3 If a match is found, select that item in the list and exit the loop.

 The next function you need to add to the editproduct.js file is getSelectedCategoryId. This returns the selected item’s ID from the category list and is called when the user clicks the Save button:

 function getSelectedCategoryId() {
 const category = document.getElementById("category");
 const index = category.selectedIndex;
 if (index !== -1) { return category[index].value; } 1

 return "0"; 2
}

 	1 If there is a selected item in the list, then return that item’s value.

 	2 Nothing was selected, so you return zero for the ID.

 You’ll now need to create the setErrorMessage function, which is used to present an error message to the user. You’ll do this by populating a section of the web page with
 the string received from the WebAssembly module. If an empty string is passed to the function, it’s a signal to hide the error
 section on the website. Otherwise, the error section is shown. The following snippet is the setErrorMessage function to add to the editproduct.js file:

 function setErrorMessage(error) {
 const errorMessage = document.getElementById("errorMessage");
 errorMessage.innerText = error;
 errorMessage.style.display = (error === "" ? "none" : "");
}

 The HTML for the Save button on the web page has an onclick event specified to trigger the onClickSave function when a user clicks the button. In the onClickSave function, you’ll grab the user-entered values and pass them to the validateName and validateCategory JavaScript functions. If either validation function indicates that there was an issue, the error message from the module
 is retrieved from the module’s memory and displayed to the user.

 	

 Tip

 You could give the JavaScript functions any name, but I’ve named them so that they match the function in the module that they
 call. The validateName JavaScript function, for example, calls the ValidateName module function.

 	

 As described in previous chapters, WebAssembly modules support only four basic data types (32-bit integers, 64-bit integers,
 32-bit floats, and 64-bit floats). For more complex data types like strings, you need to use the module’s memory.

 Emscripten has a ccall helper function that exists to help call a module’s functions and will help with the memory management of strings if those
 strings are expected to last only for the call’s duration. In this case, you’ll pass a string buffer to the module so that
 it can be populated with the appropriate validation error if there’s an issue with the user’s input. Because the memory for
 the string needs to last longer than just the call to the ValidateName or ValidateCategory module function, you’ll need to handle memory management manually in the onClickSave function. To do this, the Emscripten plumbing code provides access to the malloc and free standard C library functions via _malloc and _free, respectively, so that you can allocate and free the module’s memory.

 Aside from allocating and freeing the memory, you also need to be able to read the string from the module’s memory. To do
 this, you’ll use Emscripten’s UTF8ToString helper function. This function accepts a pointer and reads the string from that memory location.

 The next listing is the onClickSave function that you need to add to the editproduct .js file after the setErrorMessage function.

 Listing 4.4. The onClickSave function in editproduct.js

 ...

function onClickSave() {
 let errorMessage = "";
 const errorMessagePointer = Module._malloc(256); 1

 const name = document.getElementById("name").value; 2
 const categoryId = getSelectedCategoryId();

 if (!validateName(name, errorMessagePointer) ||
 !validateCategory(categoryId, errorMessagePointer)) { 3
 errorMessage = Module.UTF8ToString(errorMessagePointer); 4
 }

 Module._free(errorMessagePointer); 5

 setErrorMessage(errorMessage); 6
 if (errorMessage === "") {
 7
 }
}

 	1 Reserves 256 bytes of the module’s memory for an error message

 	2 Grabs the user-entered values from the web page

 	3 Checks to see if the Name and Category ID are valid

 	4 Grabs the error message from the module’s memory

 	5 Releases the memory that was locked by _malloc

 	6 Displays the error message if there was one

 	7 There were no issues. The data can be passed to the server to be saved.

 Talking to the module: ValidateName

 The first function in the WebAssembly module that you’ll want to call has the following signature in C++:

 int ValidateName(char* name,
 int maximum_length,
 char* return_error_message);

 To call the ValidateName function in the module, you’ll be using the ccall Emscripten helper function. For details on the parameters to the ccall function, see appendix B. Your ccall function will be passed the following values for the parameters:

 	'ValidateName', indicating the function name that you want to call.

 	'number', for the return type because the function returns an integer.

 	An array with the values 'string', 'number', and 'number' indicating the data types of the parameters.
 The first parameter of ValidateName is the char* pointer for the user-entered product name. In this case, the string being temporary is acceptable, so you’ll let the ccall function handle the memory management for you by specifying 'string' for that parameter.
 The second parameter is expecting an int, so you’ll simply specify a 'number' type.
 The third parameter is where things can get a little confusing. That char* pointer parameter is the return message if there’s an error. You need that pointer to be long-lived so that you can return
 it to the calling JavaScript function. Rather than letting the ccall function handle the string’s memory management in this case, you handle it in the onClickSave function. You simply want to pass the string as a pointer, and to pass a pointer, you need to specify the parameter type
 as 'number'.

 	An array holding the value that the user entered for a product name, the constant value for the maximum length the product
 name can be, and a buffer to hold any error messages that might be returned.

 The following code snippet is the validateName function that you need to add to the editproduct.js file after the onClickSave function:

 function validateName(name, errorMessagePointer) {
 const isValid = Module.ccall('ValidateName', 1
 'number', 2

 ['string', 'number', 'number'], 3
 [name, MAXIMUM_NAME_LENGTH, errorMessagePointer]); 4

 return (isValid === 1); 5
}

 	1 Name of the function you’re calling in the module

 	2 Return type of the function

 	3 Array of parameter types

 	4 Array holding the values for the parameters

 	5 Returns true if the integer is 1 and false if not

 	

 Tip

 In this case, the code to call the module’s ValidateName function is straightforward. As you’ll see in future examples, the code can be more involved. It’s recommended that the code
 for each WebAssembly function that’s called be kept in its own JavaScript function to make maintainability easier.

 	

 Talking to the module: ValidateCategory

 You’re now going to write the validateCategory JavaScript function to call the module’s ValidateCategory function. The ValidateCategory function has the following signature in C++:

 int ValidateCategory(char* category_id,
 int* valid_category_ids,
 int array_length,
 char* return_error_message);

 The ValidateCategory function is expecting an array pointer of integers, but the ccall function’s array parameter type is for only 8-bit values (see appendix B for more information about these parameters). Because the module’s function is expecting an array of 32-bit integers, you
 need to manually allocate memory for the array and free it after the call to the module returns.

 A WebAssembly module’s memory is simply a typed array buffer. Emscripten provides several views that allow you to view the
 memory in different ways so that you can work with different data types more easily. Because the module expects an array of
 integers, you’ll use the HEAP32 view.

 To allocate enough memory for the array pointer, your call to Module._malloc needs to multiply the number of items in the array by the number of bytes for each item that’s placed in the Module.HEAP32 object. For this, you’ll use the constant Module.HEAP32.BYTES_PER_ELEMENT, which holds a value of 4 for the HEAP32 object.

 Once you have the memory allocated for the array pointer, you can use the HEAP32 object’s set method to copy the array’s contents into the module’s memory:

 	The first parameter is the array, VALID_CATEGORY_IDS, to be copied to the WebAssembly module’s memory.

 	The second parameter is an index for where the set method should start writing the data in the underlying array (the module’s memory). In this case, because you’re working
 with the 32-bit view of the memory, each index refers to one of the groupings of 32 bits (4 bytes). As a result, you need
 to divide the memory address by four.

 The final JavaScript function that you need to add to the end of the editproduct.js file is the validateCategory function in the next listing.

 Listing 4.5. The validateCategory function in editproduct.js

 ...

function validateCategory(categoryId, errorMessagePointer) {
 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT; 1
 const arrayPointer = Module._malloc((arrayLength *
 bytesPerElement)); 2
 Module.HEAP32.set(VALID_CATEGORY_IDS,
 (arrayPointer / bytesPerElement)); 3

 const isValid = Module.ccall('ValidateCategory', 4
 'number',
 ['string', 'number', 'number', 'number'],
 [categoryId, arrayPointer, arrayLength, errorMessagePointer]);

 Module._free(arrayPointer); 5

 return (isValid === 1); 6
}

 	1 Gets the number of bytes per element for the HEAP32 object

 	2 Allocates enough memory for each item of the array

 	3 Copies the array’s elements into the module’s memory

 	4 Calls the ValidateCategory function in the module

 	5 Frees the memory that was allocated for the array

 	6 Returns true if the integer is 1 and false if not

 4.1.5. Viewing the results

 Now that you have the completed JavaScript code, you can open your browser and type http://localhost:8080/editproduct.html into the address box to see the web page you just built. You can test the validation by removing all the text from the Name
 field and then clicking the Save button. An error should display on the web page (figure 4.8).

 Figure 4.8. Edit Product page’s Name validation error

 [image:]

 4.2. Using C or C++ to create a module without Emscripten

 Suppose you want to have Emscripten compile the C++ code and not include any of the standard C library functions or generate
 the JavaScript plumbing file. As convenient as the Emscripten plumbing code is, it hides a lot of the details of working with
 a WebAssembly module. This approach is useful for learning because you’ll get a chance to directly work with things like the
 JavaScript WebAssembly API.

 Typically, production code uses the process discussed in section 4.1, in which Emscripten includes the standard C library functions your code uses in the generated module. In that process, Emscripten
 also generates a JavaScript plumbing file that handles loading and instantiating the module and includes helper functions
 such as ccall to make interacting with the module easier.

 As you can see in figure 4.9, the process in this section is similar to that in section 4.1, except that you’ll be asking Emscripten to generate only the WebAssembly file and not the JavaScript plumbing file.

 Figure 4.9. Steps for turning existing C++ logic into WebAssembly for use by a website and the server-side code but without any generated
 Emscripten JavaScript code. I discuss the server aspect, Node.js, in a future chapter.

 [image:]

 4.2.1. Making the C++ modifications

 Although the code in the validate.cpp file that you created in section 4.1 is fairly basic, it uses some standard C library functions, like strlen, that Emscripten won’t include when you ask it to create the module as a side module. Also, because the code needs to pass
 pointers to values placed in memory, you need a way to flag that memory as locked to prevent the C or JavaScript code from
 overwriting the values in that section of memory until the code is finished with the memory.

 Because you won’t have access to the malloc and free standard library functions, your first step (figure 4.10) will be to implement your own.

 Figure 4.10. Your first step is to create your own versions of the standard C library functions you need so that the code can be compiled
 by Emscripten.

 [image:]

 The header file for the side module’s system functions

 Create the folder WebAssembly\Chapter 4\4.2 side_module\source\. In the source folder, create a file called side_module_system_functions.h and open it with your editor.
 Add the following snippet to the file to define the function signatures for the functions that you’re about to create:

 #pragma once

#ifndef SIDE_MODULE_SYSTEM_FUNCTIONS_H_
#define SIDE_MODULE_SYSTEM_FUNCTIONS_H_

#include <stdio.h>

void InsertIntoAllocatedArray(int new_item_index, int offset_start,
 int size_needed);

int create_buffer(int size_needed);
void free_buffer(int offset);

char* strcpy(char* destination, const char* source);
size_t strlen(const char* value);

int atoi(const char* value);

#endif // SIDE_MODULE_SYSTEM_FUNCTIONS_H_

 The implementation file for the side module’s system functions

 Now create the side_module_system_functions.cpp file in the source folder, and open it with your editor. You’ll be creating
 a simple replacement for the standard C library’s malloc and free functions. The malloc function finds the first available memory location that’s big enough for the requested memory size. It then flags that block
 of memory so that it doesn’t get used by other code requests for memory. Once the code is finished with the memory block,
 it calls the standard C library’s free function to release the lock.

 You’ll use an array to handle allocating chunks of memory for 10 concurrent requests, which is more than enough for this validation
 code. You should always have at least one page of memory that is 65,536 bytes (64 KB), so the memory allocations will happen
 within this block.

 At the beginning of the side_module_system_functions.cpp file, add the includes for the C standard input and output library
 and Emscripten header file. Add the opening extern "C" block, and then add the constants for the memory size and the maximum number of concurrent memory blocks that will be allowed:

 #include <stdio.h>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

const int TOTAL_MEMORY = 65536;
const int MAXIMUM_ALLOCATED_CHUNKS = 10;

 Following the constants, add the current_allocated_count variable that will indicate how many blocks of memory are currently allocated. Add a definition for an object, MemoryAllocated, which will hold the start of the memory that’s allocated and how long the block of memory is. Then create the array that
 will hold the objects that indicate which blocks of memory are in use:

 int current_allocated_count = 0;

struct MemoryAllocated {
 int offset;
 int length;
};

struct MemoryAllocated
[image:] AllocatedMemoryChunks[MAXIMUM_ALLOCATED_CHUNKS];

 Your next step is to create a function that will accept an index for where it will insert a new memory block in the AllocatedMemoryChunks array. Any items in the array from that index to the end of the array will be moved one spot toward the end of the array.
 The function will then place the memory block’s start location (offset) and memory block size at the requested location in
 the array. Place the code in the following listing after the AllocatedMemoryChunks array in the side_module_system_functions.cpp file.

 Listing 4.6. The InsertIntoAllocatedArray function

 ...

void InsertIntoAllocatedArray(int new_item_index, int offset_start,
 int size_needed) {
 for (int i = (MAXIMUM_ALLOCATED_CHUNKS – 1); i > new_item_index; i--){
 AllocatedMemoryChunks[i] = AllocatedMemoryChunks[(i - 1)];
 }

 AllocatedMemoryChunks[new_item_index].offset = offset_start;
 AllocatedMemoryChunks[new_item_index].length = size_needed;

 current_allocated_count++;
}

 Now, create a simplified version of the malloc function called create_buffer. When you include string literals in C++ code and compile the code into a WebAssembly module, Emscripten has these string
 literals loaded into the module’s memory automatically when the module is instantiated. Because of this, the code will need
 to leave room for the strings and will only start allocating memory at byte 1,024. The code will also increase the size of
 the memory requested so that it’s a multiple of 8.

 The first thing the code will do is loop through the currently allocated memory to see if there’s room in between the allocated
 blocks to fit the requested memory size. If so, the new allocated block will be inserted into the array at that index. If
 there isn’t enough room for the requested memory size between the existing allocated memory blocks, then the code will check
 to see if there’s room following the currently allocated memory.

 The code will return the memory offset of where the memory block has been allocated if it was successful in finding a spot.
 Otherwise, it will return 0 (zero), which will indicate an error given that the code will only start allocating memory at byte 1,024.

 Add the code from the next listing to the side_module_system_functions.cpp file.

 Listing 4.7. Simplified version of the malloc function

 ...

EMSCRIPTEN_KEEPALIVE
int create_buffer(int size_needed) {
 if (current_allocated_count == MAXIMUM_ALLOCATED_CHUNKS) { return 0; }

 int offset_start = 1024;
 int current_offset = 0;
 int found_room = 0;

 int memory_size = size_needed;
 while (memory_size % 8 != 0) { memory_size++; } 1

 for (int index = 0; index < current_allocated_count; index++) { 2
 current_offset = AllocatedMemoryChunks[index].offset;
 if ((current_offset - offset_start) >= memory_size) {
 InsertIntoAllocatedArray(index, offset_start, memory_size);
 found_room = 1;
 break;
 }

 offset_start = (current_offset + AllocatedMemoryChunks[index].length);
 }

 if (found_room == 0) { 3
 if (((TOTAL_MEMORY - 1) - offset_start) >= size_needed) { 4
 AllocatedMemoryChunks[current_allocated_count].offset = offset_start;
 AllocatedMemoryChunks[current_allocated_count].length = size_needed;
 current_allocated_count++;
 found_room = 1;
 }
 }

 if (found_room == 1) { return offset_start; }
 return 0;
}

 	1 Increases the size so that the next offset is a multiple of 8

 	2 Is there room in between the currently allocated memory blocks?

 	3 Room wasn’t found between the currently allocated memory blocks.

 	4 Is there room between the last memory block and the end of the module’s memory?

 Your free function equivalent will be called free_buffer. In this function, you’ll simply loop through the array of allocated memory blocks until you find the offset that was passed
 in by the caller. Once you find that array item, you’ll shift all items after it by one position toward the beginning of the
 array. Add the code in the next listing after the create_buffer function.

 Listing 4.8. Simplified version of the free function

 ...

EMSCRIPTEN_KEEPALIVE
void free_buffer(int offset) {
 int shift_item_left = 0;

 for (int index = 0; index < current_allocated_count; index++) {
 if (AllocatedMemoryChunks[index].offset == offset) {
 shift_item_left = 1;
 }

 if (shift_item_left == 1) {
 if (index < (current_allocated_count - 1)) {
 AllocatedMemoryChunks[index] = AllocatedMemoryChunks[(index + 1)];
 }
 else {
 AllocatedMemoryChunks[index].offset = 0;
 AllocatedMemoryChunks[index].length = 0;
 }
 }
 }

 current_allocated_count--;
}

 The following snippet continues the side_module_system_functions.cpp file, in which you create a version of the system library
 functions strcpy and strlen:

 char* strcpy(char* destination, const char* source) {
 char* return_copy = destination;
 while (*source) { *destination++ = *source++; }
 *destination = 0;

 return return_copy;
}

size_t strlen(const char* value) {
 size_t length = 0;
 while (value[length] != '\0') { length++; }

 return length;
}

 The next listing continues the side_module_system_functions.cpp file to create a version of the system library function atoi.

 Listing 4.9. The version of atoi

 ...

int atoi(const char* value) {
 if ((value == NULL) || (value[0] == '\0')) { return 0; }

 int result = 0;
 int sign = 0;

 if (*value == '-') { sign = -1; ++value; } 1

 char current_value = *value;
 while (current_value != '\0') { 2
 if ((current_value >= '0') && (current_value <= '9')) { 3
 result = result * 10 + current_value - '0'; 4
 ++value; 5
 current_value = *value;
 }
 else { 6
 return 0;
 }
 }

 if (sign == -1) { result *= -1; } 7
 return result;
}

 	1 Flag if the first character is a negative sign. Move to the next byte.

 	2 Loop until you reach the null terminator.

 	3 If the current character is a number. . .

 	4 . . . convert current_value to an integer. Add it to the result.

 	5 Move the pointer to the next byte.

 	6 If you found a non-numeric character, then exit, returning zero.

 	7 If you have a negative number, then flip the value to negative.

 Finally, add the closing extern "C" curly brace at the end of your side_module_system_functions.cpp file, as shown in the following snippet:

 #ifdef __cplusplus
}
#endif

 Now that you’ve completed the side_module_system_functions.cpp file, copy the validate .cpp file from the WebAssembly\Chapter 4\4.1 js_plumbing\source\ folder and place it in the WebAssembly\Chapter 4\4.2 side_module\source\ folder.

 Open the validate.cpp file, and remove the includes for the cstdlib and cstring files. Then, add an include for the new side_module_system_functions.h
 header file before the ValidateValueProvided function and within the extern "C" block.

 	

 Warning

 The include for the header file must be placed within the extern "C" block. This is because you’ll be asking the Emscripten compiler to compile two .cpp files. Although both files’ functions
 are within extern "C" blocks, the Emscripten compiler still assumes that function calls in the validate.cpp file are being compiled to a C++ file, where
 the functions have been mangled. The compiler won’t see the mangled function names in the generated module and will assume
 that they need to be imported instead.

 	

 The following snippet shows the modifications to the validate.cpp file:

 #ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#include "side_module_system_functions.h" 1

 	1 Important: place the header file within the extern “C” block.

 4.2.2. Compiling the code into a WebAssembly module

 Now that you’ve created the C++ code, the next step is to have Emscripten compile the code into a WebAssembly module but without
 the JavaScript plumbing code, as figure 4.11 shows.

 Figure 4.11. The second step of the process is to ask Emscripten to generate only the WebAssembly file. Emscripten won’t generate the JavaScript
 plumbing file in this case.

 [image:]

 To compile the C++ code into a WebAssembly module, open a command prompt, navigate to the folder where you saved the C++ files,
 and run the following command:

 emcc side_module_system_functions.cpp validate.cpp -s SIDE_MODULE=2
[image:] -O1 -o validate.wasm

 4.2.3. Creating the JavaScript that will interact with the module

 Now that you have the WebAssembly module, you can see the next step in figure 4.12. Within the WebAssembly\Chapter 4\4.2 side_module\ folder, create a folder called frontend, and copy the editproduct.html and editproduct.js files from WebAssembly\Chapter 4\4.1 js_plumbing\frontend\into it.

 Figure 4.12. The third step of the process is to copy the generated file to where the HTML file is and build the JavaScript code to interact
 with the module.

 [image:]

 Then, copy validate.wasm from WebAssembly\Chapter 4\4.2 side_module\ source\ to the new frontend folder.

 The first thing you need to do is open the editproduct.html file and remove the validate.js JavaScript file reference at the
 bottom. The end of the editproduct.html file should now look like the following snippet:

 </div>

 <script src="editproduct.js"></script>
 </body>
</html>

 Next, make a few changes to the editproduct.js file (listing 4.10): add two global variables before the initializePage function, called moduleMemory and moduleExports. The moduleMemory variable keeps a reference to the module’s WebAssembly.Memory object so that you can read and write to memory.

 Because you don’t have access to Emscripten’s plumbing code, you also don’t have a Module object. Instead, you’ll use the global object reference, moduleExports, which you’ll receive when you instantiate the module. The moduleExports reference will allow you to call all the exported functions in the module. You’ll also add the code at the end of the initializePage function to load and instantiate the module.

 Listing 4.10. Modifications to initializePage in editproduct.js

 ...

let moduleMemory = null; 1
let moduleExports = null;

function initializePage() {
 ...

 moduleMemory = new WebAssembly.Memory({initial: 256}); 2

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 }
 };

 WebAssembly.instantiateStreaming(fetch("validate.wasm"), 3
 [image:] importObject).then(result => {
 moduleExports = result.instance.exports; 4
 });
}

...

 	1 Adds two new global variables

 	2 Places the reference to the module’s memory in the global variable

 	3 Downloads and instantiates the module

 	4 Keeps a reference to the instantiated module’s exports

 The Emscripten compiler puts an underscore character before each function in the module, which is why you’ll see the module’s
 functions, like create_buffer, prefixed with an underscore character in listing 4.11.

 The next function you need to modify is onClickSave, where you’ll replace the call to Module._malloc with moduleExports._create_buffer, the call to Module.UTF8ToString with getStringFromMemory, and the Module._free call with moduleExports ._free_buffer. The changes to the onClickSave function are indicated in bold in the following listing.

 Listing 4.11. Edit of the onClickSave function in editproduct.js

 ...

function onClickSave() {
 let errorMessage = "";
 const errorMessagePointer = moduleExports._create_buffer(256); 1

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (!validateName(name, errorMessagePointer) ||
 !validateCategory(categoryId, errorMessagePointer)) {
 errorMessage = getStringFromMemory(errorMessagePointer); 2
 }

 moduleExports._free_buffer(errorMessagePointer); 3

 setErrorMessage(errorMessage);
 if (errorMessage === "") {
 4
 }
}
...

 	1 Replaces Module._malloc with moduleExports._create_buffer

 	2 Replaces Module.UTF8ToString with a helper function to read the string from memory

 	3 Replaces Module._free with moduleExports._free_buffer

 	4 There were no issues with the validation. The data can be saved.

 The memory that you passed to the WebAssembly module during initialization was provided via a WebAssembly.Memory object that you kept a reference to in the moduleMemory variable. Under the hood, the WebAssembly.Memory object is holding an ArrayBuffer object, which serves as the bytes for the module to simulate actual machine memory. You can access the underlying ArrayBuffer object held by the moduleMemory reference by accessing the buffer property.

 As you’ll recall, the Emscripten plumbing code has objects like HEAP32 that allow you to view the module’s memory (the ArrayBuffer) in different ways so that you can work with different types
 of data more easily. Without access to Emscripten’s plumbing code, you don’t have access to objects like HEAP32, but, fortunately, those objects are simply referencing JavaScript objects like Int32Array, which you do have access to.

 You need to create a helper function called getStringFromMemory that will read the strings that the module returns to the JavaScript code from the module’s memory. Strings in C or C++ are
 placed in memory as an array of 8-bit characters, so you’ll use the Uint8Array JavaScript object to access the module’s memory starting at the offset specified by a pointer. Once you have the view, loop
 through the items in the array, reading in one character at a time until you reach the null-terminator character.

 After the onClickSave function in the editproduct.js file, you need to add the getStringFromMemory helper function, shown in the following listing.

 Listing 4.12. The getStringFromMemory function in editproduct.js

 ...

function getStringFromMemory(memoryOffset) {
 let returnValue = "";

 const size = 256;
 const bytes = new Uint8Array(moduleMemory.buffer, memoryOffset, size); 1

 let character = "";
 for (let i = 0; i < size; i++) { 2
 character = String.fromCharCode(bytes[i]); 3
 if (character === "\0") { break; } 4

 returnValue += character; 5
 }

 return returnValue;
}

 	1 Gets the section of memory starting at the offset and ending 256 characters later

 	2 Loops through the bytes one byte at a time

 	3 Converts the current byte into a character

 	4 If the current character is the null-terminator, then you’re done reading in the string.

 	5 Adds the current character to the return string before looping to the next character

 Now that you can read a string from the module’s memory, you’ll need to create a function that will let you write a string
 to the module’s memory. Similar to the getStringFrom-Memory function, the copyStringToMemory function starts by creating a Uint8Array object to manipulate the module’s memory. You’ll then use the JavaScript TextEncoder object to turn a string into an array of bytes. Once you have this array of bytes from the string, you can call the Uint8Array object’s set method, passing in the array of bytes for the first parameter and the offset for where to start writing those bytes as the
 second parameter.

 The following is the copyStringToMemory function, which you need to add to the editproduct.js file after the getStringFromMemory function:

 function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new TextEncoder().encode((value + "\0")),
 memoryOffset);
}

 Modify the validateName function to first allocate memory for the product name that the user entered. Copy the string value into the module’s memory
 at the pointer’s memory location by calling the copyStringToMemory function. Then call the module’s _ValidateName function; afterward, free the memory that was allocated for the name pointer.

 The following code snippet shows the modification to the validateName function:

 function validateName(name, errorMessagePointer) {
 const namePointer = moduleExports._create_buffer(
 (name.length + 1));
 copyStringToMemory(name, namePointer);

 const isValid = moduleExports._ValidateName(namePointer,
 MAXIMUM_NAME_LENGTH, errorMessagePointer);

 moduleExports._free_buffer(namePointer);

 return (isValid === 1);

}

 The last item that you need to modify is the validateCategory function. You’ll allocate memory for the category ID and then copy the ID to the pointer’s memory location.

 The function will allocate the memory needed for the items in the VALID_CATEGORY_IDS global array and then copy each array item into the module’s memory, similar to the approach you used with the Emscripten
 plumbing code. The difference is that you don’t have access to the Emscripten HEAP32 object—but that object is simply a reference to the Int32Array JavaScript object, which you can access.

 Once the array’s values are copied into the module’s memory, the code calls the module’s _ValidateCategory function. When the function returns, the code frees the memory that was allocated for the array and string pointers. The
 following listing shows the modified validateCategory function.

 Listing 4.13. validateCategory

 ...

function validateCategory(categoryId, errorMessagePointer) {
 const categoryIdPointer = moduleExports._create_buffer(
 [image:] (categoryId.length + 1)); 1
 copyStringToMemory(categoryId, categoryIdPointer); 2

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Int32Array.BYTES_PER_ELEMENT;
 const arrayPointer = moduleExports._create_buffer(
 [image:] (arrayLength * bytesPerElement)); 3

 const bytesForArray = new Int32Array(moduleMemory.buffer); 4
 bytesForArray.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = moduleExports._ValidateCategory(categoryIdPointer,
 [image:] arrayPointer, arrayLength, errorMessagePointer); 5

 moduleExports._free_buffer(arrayPointer); 6
 moduleExports._free_buffer(categoryIdPointer);

 return (isValid === 1);
}

 	1 Allocates memory for the category ID

 	2 Copies the ID to the module’s memory

 	3 Allocates memory for each item in the array

 	4 Gets an Int32Array view of the memory and then copies in the array’s values

 	5 Calls the _ValidateCategory function in the module

 	6 Frees the memory that was allocated

 4.2.4. Viewing the results

 Now that you’ve revised the code, you can open a web browser and type http://localhost:8080/editproduct.html into the address box to see the web page. You can test the validation by adding more than 50 characters to the Name field
 and then clicking the Save button, which should display a validation error, as figure 4.13 shows.

 Now: how can you use what you learned in this chapter in the real world?

 Figure 4.13. Edit Product page’s Name validation error when the name entered is too long

 [image:]

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	You can adjust one of your existing C++ codebases, or take a portion of the codebase, and compile it to WebAssembly so that
 it can be run in the browser.

 	If you have JavaScript code that calls the server or a third-party API and receives large amounts of text data in return,
 you could create a WebAssembly module that parses the string for the data that your web page needs.

 	If you have a website that allows users to upload a photo, you could create a WebAssembly module that accepts the file’s bytes
 in order to resize or compress the photo before uploading. This would save bandwidth, which would help the user reduce data
 usage and would reduce processing on the server.

 Exercises

 You can find the solutions to these exercises in appendix D.

 1
What two options are there to have Emscripten make your functions visible to the JavaScript code?

 2
How do you prevent function names from being mangled when compiled so that your JavaScript code can use the expected function
 name?

 Summary

 In this chapter, you dug into the code-reuse aspect of WebAssembly by creating a web page that accepted user information that
 needed to be validated:

 	By using the conditional compilation symbol __EMSCRIPTEN__ and placing functions within an extern "C" block, you can adjust existing code so that it can also be compiled by the Emscripten compiler. This allows a single C or
 C++ codebase, which might be part of a desktop application, for example, to also be available for use in a web browser or
 in Node.js.

 	By including the EMSCRIPTEN_KEEPALIVE declaration with a function, you can have the function automatically added to Emscripten’s list of functions that it will
 make visible to the JavaScript code. By using this declaration, you don’t need to include the function in the command line’s
 EXPORTED_FUNCTIONS array when compiling the module.

 	You can call the module’s functions using the ccall Emscripten helper function.

 	To pass anything other than an integer or float between the module and JavaScript code requires interactions with the module’s
 memory. The Emscripten-generated JavaScript code provides a number of functions that help with this.

 Chapter 5. Creating a WebAssembly module that calls into JavaScript

 This chapter covers

 	Calling into JavaScript directly using Emscripten’s toolkit

 	Calling into JavaScript without Emscripten’s toolkit

 In chapter 4, you created a WebAssembly module that your JavaScript code called into using Emscripten’s ccall helper function. You passed a buffer as a parameter to the module’s function so that, if there was an issue, an error message
 could be returned by placing it into the buffer. If there was an issue, your JavaScript read the string from the module’s
 memory and then displayed the message to the user, as figure 5.1 shows.

 Figure 5.1. How the JavaScript code currently interacts with the module’s functions

 [image:]

 Imagine that rather than passing a buffer to the module’s function if there’s an issue, the module can just pass the error
 message directly to your JavaScript, as figure 5.2 shows.

 Figure 5.2. The module calling a function in the JavaScript code

 [image:]

 When using the Emscripten toolkit, you can interact with JavaScript code from your module in three ways:

 	Use Emscripten macros. These include the emscripten_run_script series of macros, the EM_JS macro, and the EM_ASM series of macros.

 	Add custom JavaScript to Emscripten’s JavaScript file that you can call into directly.

 	Use function pointers in which the JavaScript code specifies a function for the module to call into. We’ll look at this approach
 in chapter 6.

 With any way of interacting with JavaScript from a module, one approach may work better than another in certain circumstances:

 	Emscripten’s macros can be quite helpful when debugging or when you need only the odd interaction with the JavaScript code.
 As the complexity of the macro code or number of interactions with JavaScript increases, you might consider separating the
 macro code out of your C or C++ code. You would do this so that both your module’s code and the web page code can be more
 easily maintained.
 Under the hood, when the EM_JS and EM_ASM series of macros are used, the Emscripten compiler creates the necessary functions and adds them to the generated Emscripten
 JavaScript file. When the WebAssembly module calls the macros, it’s really calling the generated JavaScript functions.

 	

 Info

 More about Emscripten’s macros, including how to use them, can be found in appendix C.

 	

 	As you’ll see in this chapter, calling into JavaScript directly is easy and will simplify your website’s JavaScript somewhat.
 If you plan to make function calls from the JavaScript function you place in Emscripten’s generated JavaScript, you need some
 knowledge of the main JavaScript code. If you’re supplying the module to a third party, they’ll need clear instructions on
 setting things up correctly so that there are no errors because, for example, a function doesn’t exist.

 	

 Warning

 If you plan to use this approach and also target Node.js, then the JavaScript code you add to the generated JavaScript file
 must be self-contained. You’ll work with Node.js in chapter 10 and will see this in more detail then, but, basically, because of the way Node.js loads the Emscripten JavaScript file, the
 code within the file can’t call into your main JavaScript code.

 	

 	In chapter 6, you’ll see that using function pointers gives you a lot more flexibility because the module doesn’t need to know what functions
 exist in your JavaScript code. Instead, the module will just call the JavaScript function that you provide it. The added flexibility
 of function pointers comes with a bit more complexity because it requires more code in your JavaScript to make everything
 work.

 Rather than letting Emscripten generate the JavaScript functions for you using macros, you can define your own JavaScript
 to be included in Emscripten’s JavaScript file. You’ll be looking into this approach in this chapter.

 For this scenario, you’re going to modify the validation module that you created in chapter 4 so that, if there’s an issue with the validation, you won’t pass the error message back to the calling function by using
 a parameter. What you’ll do instead is the following (figure 5.3):

 	If there’s an issue with the user’s entry, have the module call a JavaScript function that you’ll place in Emscripten’s generated
 JavaScript file.

 	The JavaScript function will accept a pointer from the module and, from that, will read the error message from the module’s
 memory.

 	It will then pass the message to your web page’s main JavaScript, which will handle updating the UI with the error received.

 Figure 5.3. How the module and JavaScript will be reworked to allow the module to call back to the JavaScript

 [image:]

 5.1. Using C or C++ to create a module with Emscripten plumbing

 Let’s revise the C++ validation logic that you created in chapter 4 so that it can talk to the JavaScript code. You’ll include the standard C library and Emscripten helper functions, which
 is the recommended way to build a module for use in production. We’ll look at the other approach to building a WebAssembly
 module that doesn’t include the standard C library or Emscripten helper functions later in this chapter.

 As figure 5.4 shows, the steps to build the module will be similar to what you saw in chapter 4:

 	Modify the C++ code so that it no longer receives a string buffer and instead calls a JavaScript function if there’s an issue
 with the validation.

 	Define the JavaScript code that you want included in Emscripten’s generated JavaScript file.

 	Ask Emscripten to generate the WebAssembly and JavaScript plumbing files.

 	Copy the generated files for use in the browser.

 	Create the web page, and then write the JavaScript code necessary to interact with the WebAssembly module.

 Figure 5.4. Steps for turning C++ logic, as well as some JavaScript that needs to be included in Emscripten’s JavaScript file, into a
 WebAssembly module for use in a browser and by the server-side code. I discuss the server aspect, Node.js, in a later chapter.

 [image:]

 5.1.1. Adjusting the C++ code

 You can see in figure 5.5 that the first step of the process is to modify the C++ code so that it no longer receives a string buffer. Instead, the
 code will call a JavaScript function, passing it the error message if there’s a problem with the validation.

 Figure 5.5. Step 1 is to modify the C++ code so that it passes the error message to a JavaScript function.

 [image:]

 In your WebAssembly folder, create a Chapter 5\5.1.1 EmJsLibrary\source\ folder for the files that you’ll use in this section. Copy the validate.cpp file from the WebAssembly\Chapter 4\4.1 js_plumbing\source\ folder to your newly created source folder. Open the validate.cpp file in your favorite editor.

 In a moment, you’ll modify the C++ code to call a function that’s defined in the JavaScript code. Because the function isn’t
 part of the C++ code, you’ll need to tell the compiler what the function signature is by including the extern keyword in front of the signature. Doing this allows the C++ code to be compiled with the expectation that the function will
 be available when the code is run. When the Emscripten compiler sees the function signature, it’ll create an import item for
 it in the WebAssembly module. When the module is instantiated, the WebAssembly framework will see the requested import and
 will expect the function to be provided.

 The JavaScript function that you’ll create will accept a const char* pointer for the parameter, which will hold the error message if there’s an issue with the validation. The function won’t
 return a value. To define your function signature, add the following line of code within the extern "C" block and before the ValidateValueProvided function in your validate.cpp file:

 extern void UpdateHostAboutError(const char* error_message);

 Because you’re not going to pass a buffer to the module anymore, you’ll need to remove the char* return_error_message parameters from the functions. Also, any location that’s making a strcpy call to copy the error message into the buffer will now need to call the UpdateHostAboutError function instead.

 Modify the ValidateValueProvided function to no longer have the return_error_message parameter and to now call the UpdateHostAboutError function rather than strcpy, as follows:

 int ValidateValueProvided(const char* value,
 const char* error_message) { 1
 if ((value == NULL) || (value[0] == '\0')) {
 UpdateHostAboutError(error_message); 2
 return 0;
 }

 return 1;
}

 	1 The return_error_message parameter has been removed.

 	2 strcpy is replaced with the call to UpdateHostAboutError.

 As with the ValidateValueProvided function, modify the ValidateName function to no longer receive the return_error_message parameter and remove it from the Validate-ValueProvided function call. Revise the code to now pass the error message to the UpdateHostAboutError function rather than use strcpy, as follows:

 int ValidateName(char* name, int maximum_length) { 1
 if (ValidateValueProvided(name,
 "A Product Name must be provided.") == 0) {
 return 0;
 }

 if (strlen(name) > maximum_length) {
 UpdateHostAboutError("The Product Name is too long."); 2
 return 0;
 }

 return 1;
}

 	1 The return_error_message parameter has been removed.

 	2 strcpy is replaced with the call to UpdateHostAboutError.

 No changes are needed for the IsCategoryIdInArray function.

 Lastly, you need to make the same changes to the ValidateCategory function that you did with the ValidateValueProvided and ValidateName functions, as the following listing shows.

 Listing 5.1. The modified ValidateCategory function in validate.cpp

 int ValidateCategory(char* category_id, int* valid_category_ids,
 int array_length) { 1
 if (ValidateValueProvided(category_id,
 "A Product Category must be selected.") == 0) { 1
 return 0;
 }

 if ((valid_category_ids == NULL) || (array_length == 0)) {
 UpdateHostAboutError("There are no Product Categories available.");
 return 0;
 }

 if (IsCategoryIdInArray(category_id, valid_category_ids,
 array_length) == 0) {
 UpdateHostAboutError("The selected Product Category is not valid.");
 return 0;
 }

 return 1;
}

 	1 The return_error_message parameter has been removed.

 5.1.2. Creating the JavaScript that you want included in Emscripten’s ge- enerated JavaScript file

 Now that you’ve revised the C++ code, the next step (figure 5.6) is to create the JavaScript code that you want included in Emscripten’s generated JavaScript file.

 Figure 5.6. Step 2 is creating the JavaScript code to include in Emscripten’s generated JavaScript file.

 [image:]

 When creating JavaScript code that will be merged into Emscripten’s generated JavaScript file, WebAssembly module creation
 is slightly different compared to how you’ve done it previously. In this case, you’ll define your UpdateHostAboutError JavaScript function before you ask Emscripten to compile the C++ code, because you need the Emscripten compiler to merge
 your JavaScript code with the rest of the Emscripten JavaScript code that gets generated.

 To have your JavaScript included in Emscripten’s generated JavaScript file, you need to add your JavaScript to Emscripten’s
 LibraryManager.library object; to do this, you can use Emscripten’s mergeInto function, which takes two parameters:

 	The object that you want to add properties to—in this case, the LibraryManager .library object

 	An object whose properties will be copied into the first object—in this case, your code

 You’ll create a JavaScript object that will hold a property with the name UpdateHostAboutError; the value will be a function that receives an error message pointer. The function will read the string from the module’s
 memory using the Emscripten helper function UTF8ToString and will then call the JavaScript function setErrorMessage that’s part of your web page’s main JavaScript code.

 In the WebAssembly\Chapter 5\5.1.1 EmJsLibrary\source\ folder, create a file called mergeinto.js, open it with your favorite editor, and add the following code
 snippet:

 mergeInto(LibraryManager.library, { 1
 UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(Module.UTF8ToString(errorMessagePointer));
 }
});

 	1 Copies the properties of the object into the LibraryManager.library object

 5.1.3. Compiling the code into a WebAssembly module

 Now that you’ve modified the C++ code and created the JavaScript function that you want included in Emscripten’s generated
 JavaScript file, you can move to the next step. As figure 5.7 shows, this step is to have Emscripten compile the code into a WebAssembly module. Emscripten will also be instructed to
 include the code from your mergeinto.js file in the generated JavaScript file.

 Figure 5.7. Step 3 is to ask Emscripten to generate both the WebAssembly and JavaScript files. In this case, you’ll also ask Emscripten
 to include the mergeInto.js file.

 [image:]

 To tell the Emscripten compiler to include your JavaScript code in the generated JavaScript file, you’ll need to use the --js-library flag followed by the path of the file to include. To ensure that the Emscripten helper functions that your JavaScript code
 needs are included in the generated JavaScript file, you’ll specify them when compiling the C++ code by including them in
 the EXTRA_EXPORTED_RUNTIME_METHODS command-line array. You’ll include two Emscripten helper functions:

 	ccall—Used by the web page’s JavaScript code to call into the module

 	UTF8ToString—Used by the JavaScript you wrote in the mergeinto.js file to read the strings from the module’s memory

 To compile the code into a WebAssembly module, open a command prompt, navigate to the folder where you saved your validate.cpp
 and mergeinto.js files, and run the following command:

 emcc validate.cpp --js-library mergeinto.js
[image:] -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','UTF8ToString']
[image:] -o validate.js

 If you open the Emscripten-generated JavaScript file, validate.js, and search for the UpdateHostAboutError function, you should see that the function you defined now is part of the generated JavaScript file:

 function _UpdateHostAboutError(errorMessagePointer) {
 setErrorMessage(Module.UTF8ToString(errorMessagePointer));
}

 One nice thing about including functions in the generated JavaScript file is that, if you have several other functions along
 with UpdateHostAboutError, only the functions that are actually called by the module’s code will be included.

 5.1.4. Adjusting the web page’s JavaScript code

 Figure 5.8 shows the next step of the process, in which you’ll copy the files generated by Emscripten to a folder along with a copy
 of the editproduct.html and editproduct.js files that you created in chapter 4. You’ll then modify some of the code in the editproduct.js file based on how you’ll now need to interact with the module.

 Figure 5.8. Step 4 is to copy the generated files to where the HTML file is and update the JavaScript code based on the new way it needs
 to interact with the module.

 [image:]

 In your WebAssembly\Chapter 5\5.1.1 EmJsLibrary\ folder, create a folder called front-end. Copy the following files into your new frontend folder:

 	The validate.js and validate.wasm files from your Chapter 5\5.1.1 EmJsLibrary\source\ folder

 	The editproduct.html and editproduct.js files from your Chapter 4\4.1 js_plumbing\frontend\ folder

 Open the editproduct.js file with your editor.

 Because the JavaScript no longer needs to create a string buffer and pass it to the module, you can simplify the onClickSave function in the editproduct.js file:

 	The errorMessage and errorMessagePointer variables are no longer needed, so you can delete these two lines of code. In their place, you’ll put a call to the setErrorMessage function and pass in an empty string so that, if there was a previous error displayed on the web page, the message will be
 hidden in the event that there are no issues with the current call to the save function.

 	Remove the errorMessagePointer parameter from the call to the validateName and validateCategory functions.

 	Remove the Module.UTF8ToString line of code within the if statement.

 	Revise the if statement so that the or (||) condition between the two checks is now an and (&&) condition, and remove the inequality check (!) from before both function calls. Now, if both function calls indicate that there were no errors, then everything’s valid,
 and the data can be passed to the server-side code.

 	You can remove the rest of the code that follows the if statement in the function.

 Your onClickSave function should now look like this:

 function onClickSave() {
 setErrorMessage(""); 1

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (validateName(name) && 2
 validateCategory(categoryId)) { 3
 4
 }
}

 	1 Clears any previous error message

 	2 The second parameter of each function call was removed.

 	3 Inequality checks removed from before the function calls. The or condition is changed to and.

 	4 There were no issues. The data can be passed to the server-side code.

 You’ll also need to modify the validateName function:

 	Remove the errorMessagePointer parameter.

 	Because the ValidateName function in the WebAssembly module now expects only two parameters, remove the last array item ('number') in the ccall function’s third parameter.

 	Remove the errorMessagePointer array item from the ccall function’s last parameter.

 The validateName function should now look like the following code snippet:

 function validateName(name) { 1
 const isValid = Module.ccall('ValidateName',
 'number',
 ['string', 'number'], 2
 [name, MAXIMUM_NAME_LENGTH]); 3

 return (isValid === 1);
}

 	1 The second parameter (errorMessagePointer) has been removed.

 	2 The third array item (number) has been removed.

 	3 The third array item (errorMessagePointer) has been removed.

 You’ll make the same changes to the validateCategory function that you did to the validateName function:

 	Remove the errorMessagePointer parameter.

 	Remove the last array item ('number') from the ccall function’s third parameter.

 	Remove the errorMessagePointer array item from the ccall function’s last parameter.

 The validateCategory function should now look like the code in the next listing.

 Listing 5.2. The modified validateCategory function in editproduct.js

 function validateCategory(categoryId) { 1
 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength * bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = Module.ccall('ValidateCategory',
 'number',
 ['string', 'number', 'number'], 2
 [categoryId, arrayPointer, arrayLength]); 3

 Module._free(arrayPointer);

 return (isValid === 1);}

 	1 The second parameter (errorMessagePointer) has been removed.

 	2 The fourth array item (number) has been removed.

 	3 The fourth array item (errorMessagePointer) has been removed.

 5.1.5. Viewing the results

 Now that you’ve finished modifying the JavaScript code, you can open your browser and type http://localhost:8080/editproduct.html into the address box to see the web page. You can test the validation by removing all the text from the Name field and then
 clicking the Save button. An error should display on the web page (figure 5.9).

 Figure 5.9. Edit Product page’s Name validation error

 [image:]

 5.2. Using C or C++ to create a module without Emscripten plumbing

 Suppose you want to have Emscripten compile the C++ code and not include any of the standard C library functions or generate
 the JavaScript plumbing file. Emscripten’s plumbing code is convenient, but it also hides a lot of the details of working
 with a WebAssembly module. The approach you’ll see here is quite helpful in learning because you’ll be working with the module
 directly.

 The process you saw in section 5.1, with Emscripten’s plumbing code, is typically what’s used for production code. Emscripten’s generated JavaScript file is
 convenient because it handles loading and instantiating the module and includes helper functions to make interacting with
 the module easier.

 In section 5.1, when you compiled your WebAssembly module and included the Emscripten plumbing code, your updateHostAboutError function was placed within Emscripten’s generated JavaScript file, as figure 5.10 shows.

 When you’re not using Emscripten’s plumbing code, your C or C++ code won’t have access to Emscripten macros or Emscripten’s
 JavaScript file, but it’s still possible to call into JavaScript directly. Because you won’t have access to Emscripten’s generated
 JavaScript file, the callback function will need to be placed in your website’s JavaScript file, as figure 5.11 shows.

 In section 5.1.1, I warned you that when including JavaScript in Emscripten’s JavaScript code, the code needs to be self-contained if you
 plan to target Node.js. In chapter 10, you’ll work with WebAssembly modules in Node.js and see this in more detail, but the warning is due to how the Emscripten-generated
 JavaScript files are loaded into Node.js.

 Figure 5.10. The module calling back to the JavaScript through a function you defined in the Emscripten-generated JavaScript file

 [image:]

 Figure 5.11. How the callback logic works without Emscripten plumbing code

 [image:]

 Modules built using this approach don’t have the self-contained code restrictions—the code your module calls into will be
 part of your main JavaScript. As you can see in figure 5.12, the process is similar to that in section 5.1, except that you’ll ask Emscripten to generate only the WebAssembly file.

 Figure 5.12. Steps in which existing C++ logic is turned into WebAssembly for use by a website and the server-side code but without any
 generated Emscripten JavaScript code. I discuss the server aspect, Node.js, in a future chapter.

 [image:]

 5.2.1. Making the C++ modifications

 The first step of the process (figure 5.13) is to modify the C++ code that you created in section 5.1 so that it uses the side_module_system_functions.h and .cpp files that you created in chapter 4. In your Chapter 5\ folder, create a 5.2.1 SideModuleCallingJS\source\ folder for your files in this section. Copy the following files into
 your new source folder:

 	The validate.cpp file from your 5.1.1 EmJsLibrary\source\ folder

 	The side_module_system_functions.h and .cpp files from your Chapter 4\4.2 side_module\source\ folder

 Figure 5.13. You need to modify the C++ code from section 5.1 to use the side_module_system_functions files that you created in chapter 4.

 [image:]

 When it comes to calling into JavaScript directly, the C++ code is identical to what you created in section 5.1, in which the extern keyword is used to define the function signature of the JavaScript function:

 extern void UpdateHostAboutError(const char* error_message);

 The only difference between the C++ code here and the code you wrote in section 5.1 is that this code won’t have access to the standard C library. You’ll need to import the code you wrote in chapter 4 that gave you functions like strcpy, strlen, and atoi.

 Open the validate.cpp file in your favorite editor, and then remove the includes for the standard system library cstdlib and
 cstring. Then, add the header for your version of the standard C library functions, side_module_system_functions.h, within
 the extern "C" block.

 	

 Warning

 The include for the header file must be placed within the extern "C" block because you’ll be asking the Emscripten compiler to compile two .cpp files. Although both files’ functions are within
 extern "C" blocks, the Emscripten compiler still assumes that function calls in the validate.cpp file are being compiled to a C++ file,
 where the functions have been mangled. The compiler won’t see the mangled function names in the generated module and will
 assume they need to be imported instead.

 	

 The following snippet shows the modifications to the validate.cpp file:

 #ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#include "side_module_system_functions.h" 1

 	1 Important: place the header file within the extern “C” block.

 5.2.2. Compiling the code into a WebAssembly module

 Now that the C++ code is modified, the next step is to have Emscripten compile it into a WebAssembly module but without the
 JavaScript plumbing code, as figure 5.14 shows.

 To compile the C++ code into a WebAssembly module, open a command prompt, navigate to the folder where you saved the C++ files,
 and run the following command:

 emcc side_module_system_functions.cpp validate.cpp
[image:] -s SIDE_MODULE=2 -O1 -o validate.wasm

 Figure 5.14. In this case, you need to ask Emscripten to generate only the WebAssembly file but not the JavaScript plumbing file.

 [image:]

 5.2.3. Adjusting the JavaScript that will interact with the module

 Once you’ve generated the WebAssembly module, figure 5.15 shows the next step, in which you’ll copy the generated Wasm file to where the HTML file is located. You’ll then modify how
 the JavaScript code interacts with the module now that it’s not passing a buffer to the module’s functions.

 Figure 5.15. You need to copy the generated Wasm file to where the HTML file is and modify how the JavaScript code interacts with the module.

 [image:]

 In your Chapter 5\5.2.1 SideModuleCallingJS\ folder, create a frontend\ folder. Copy the following files into this folder:

 	Your newly generated validate.wasm file from the 5.2.1 SideModuleCalling-JS\source\ folder

 	The editproduct.html and editproduct.js files from the Chapter 4\4.2 side_module\frontend\ folder

 In your C++ code, the extern keyword and function signature tell the Emscripten compiler that the module will be importing the _UpdateHostAboutError function (the Emscripten compiler adds an underscore before the function’s name in the generated WebAssembly module). Because
 you don’t have the Emscripten plumbing code, when your JavaScript instantiates the module, it’s up to you to pass the _UpdateHostAboutError function to the module.

 The initializePage function

 Your first step is to open the editproduct.js file in your editor and then locate the initializePage function. Revise importObject by adding a new property to the end with the name _UpdateHostAboutError and a function that receives the error-MessagePointer parameter. Within the function’s body, you’ll call the getStringFromMemory function to read the string from the module’s memory. You’ll then pass the string to the setErrorMessage function.

 The next listing shows what the importObject should now look like in the initializePage function of the editproduct.js file.

 Listing 5.3. _UpdateHostAboutError added to the importObject

 function initializePage() {
 ...

 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 _UpdateHostAboutError: function(errorMessagePointer) { 1
 setErrorMessage(getStringFromMemory(errorMessagePointer)); 2
 },
 }
 };

 ...
}

 	1 Function created to respond to calls from the module

 	2 Reads the string from the module’s memory and displays it to the user

 The rest of the changes to the editproduct.js file will be the same ones that you made in section 5.1, with the removal of the error buffer variable from the onClickSave, validateName, and validateCategory functions.

 The onClickSave function

 Locate the onClickSave function, and do the following:

 	Replace the errorMessage and errorMessagePointer lines of code with a call to setErrorMessage, passing in an empty string. If there are no validation issues, calling the setErrorMessage function with an empty string will remove any error message that might have been displayed the last time the user clicked
 the Save button.

 	Modify the if statement to no longer pass in the errorMessagePointer parameter.

 	Remove the inequality checks (!) from before the validateName and validate-Category function calls. Change the or (||) check to an and (&&) check.

 	Remove the getStringFromMemory line of code from within the if statement’s body. If everything is ok with the validation, the body of the if statement will be where you put the code to pass the information to the server side to be saved.

 	Delete the rest of the code that follows the if statement in the onClickSave function.

 The onClickSave function should now look like the following code snippet:

 function onClickSave() {
 setErrorMessage(""); 1

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (validateName(name) && 2
 validateCategory(categoryId)) { 3
 4
 }
}

 	1 Clears any previous error message

 	2 The second parameter of each function call was removed.

 	3 Inequality checks removed. The or condition is changed to and.

 	4 There were no issues. The data can be passed to the server-side code.

 The validateName and validateCategory functions

 Your next step is to modify the validateName and validateCategory functions to no longer receive an errorMessagePointer parameter or pass the value to the module’s functions. The following listing shows the modified functions.

 Listing 5.4. Modifications to the validateName and validateCategory functions

 function validateName(name) { 1
 const namePointer = moduleExports._create_buffer((name.length + 1));
 copyStringToMemory(name, namePointer);

 const isValid = moduleExports._ValidateName(namePointer,
 MAXIMUM_NAME_LENGTH); 2

 moduleExports._free_buffer(namePointer);

 return (isValid === 1);
}

function validateCategory(categoryId) { 3
 const categoryIdPointer = moduleExports._create_buffer(
[image:] (categoryId.length + 1));
 copyStringToMemory(categoryId, categoryIdPointer);

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Int32Array.BYTES_PER_ELEMENT;
 const arrayPointer = moduleExports._create_buffer((arrayLength *
[image:] bytesPerElement));

 const bytesForArray = new Int32Array(moduleMemory.buffer);
 bytesForArray.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = moduleExports._ValidateCategory(categoryIdPointer,
 arrayPointer, arrayLength); 4

 moduleExports._free_buffer(arrayPointer);
 moduleExports._free_buffer(categoryIdPointer);

 return (isValid === 1);
}

 	1 errorMessagePointer removed as the second parameter to the function

 	2 errorMessagePointer no longer passed to the module’s function

 	3 errorMessagePointer removed as the second parameter to the function

 	4 errorMessagePointer no longer passed to the module’s function

 5.2.4. Viewing the results

 Now that you have everything adjusted, you can type http://localhost:8080/editproduct.html into the address box of your browser to see the web page. You can test that the validation is working correctly by changing
 the selection of the Category drop-down so that nothing is selected and then clicking the Save button. The validation check
 should cause an error to be displayed on the web page, as figure 5.16 shows.

 Figure 5.16. The Edit Product page’s Category validation error when there’s no category selected

 [image:]

 How can you use what you learned in this chapter in the real world?

 Real-world use cases

 With the ability to call into JavaScript, your module can now interact with the web page and the browser’s Web APIs, opening
 up a lot of possibilities. Some options include:

 	Creating a WebAssembly module that performs ray-tracing computations for 3D graphics. The graphics could then be used for
 an interactive web page or a game.

 	Creating a file converter (take a photo and convert it to a PDF before including it in an email, for example).

 	Taking an existing open source C++ library—cryptography, for example—and compiling it to WebAssembly for use by your website.
 This website lists a number of open source C++ libraries: https://en.cppreference.com/w/cpp/links/libs.

 Exercises

 You can find the solutions to these exercises in appendix D.

 1
Which keyword do you need to use to define a signature in your C or C++ code so that the compiler knows the function will
 be available when the code is run?

 2
Suppose you need to include a function in Emscripten’s JavaScript code that your module will call to determine if the user’s
 device is online or not. How would you include a function called IsOnline that returns 1 for true and 0 (zero) for false?

 Summary

 In this chapter, you learned the following:

 	You can modify a WebAssembly module so it can talk to the JavaScript code directly.

 	External functions can be defined in your C or C++ code using the extern keyword.

 	You can add your own JavaScript code to Emscripten’s generated JavaScript file by adding it to the LibraryManager.library object.

 	When not using Emscripten’s plumbing code, you can include a function for the module to import by placing it in the JavaScript
 object that you pass to the WebAssembly.instantiate or WebAssembly.instantiateStreaming functions.

 Chapter 6. Creating a WebAssembly module that talks to JavaScript using function pointers

 This chapter covers

 	Adjusting C or C++ code to work with function pointers

 	Using Emscripten’s helper functions to pass JavaScript functions to the WebAssembly module

 	Calling function pointers in the WebAssembly module when not using Emscripten’s plumbing code

 In chapter 5, you modified your module so that it was no longer passing a validation error message back to the JavaScript through a parameter.
 Instead, you modified the module so that it called a JavaScript function directly, as figure 6.1 illustrates.

 Figure 6.1. The module calling a function in the JavaScript code

 [image:]

 Imagine being able to pass a JavaScript function to the module based on your JavaScript code’s needs at the time. When the
 module finishes processing, it can then call the function that was specified, as figure 6.2 shows.

 Figure 6.2. The module calling a JavaScript function pointer

 [image:]

 6.1. Using C or C++ to create a module with Emscripten plumbing

 In this section, you’re going to build the C++ code for the validation logic. You’ll include the standard C library and Emscripten
 helper functions, which is the recommended way to build a module for use in production. Later in this chapter, you’ll learn
 the other approach to building a WebAssembly module, which doesn’t include the standard C library or Emscripten helper functions.

 6.1.1. Using a function pointer given to the module by JavaScript

 As figure 6.3 shows, adjusting the module so that it uses function pointers requires the following steps:

 	Modify the C++ code so that the exported functions receive success and error function pointers.

 	Ask Emscripten to generate the WebAssembly file and JavaScript plumbing file.

 	Copy the generated files for use in the browser.

 	Revise the website’s JavaScript code to interact with the WebAssembly module now that it expects function pointers to be specified.

 Figure 6.3. Steps showing existing C++ logic modified to accept function pointers and then turned into WebAssembly for use by a website
 and the server-side code. I discuss the server aspect, Node.js, in a future chapter.

 [image:]

 6.1.2. Adjusting the C++ code

 As figure 6.4 shows, the first step is to modify the C++ code to accept function pointers.

 Figure 6.4. Step 1 is to modify the code so that it accepts function pointers.

 [image:]

 Create the following folder to hold your files for this section: WebAssembly\Chapter 6\6.1.2 EmFunctionPointers\source\. Copy the validate.cpp file from the WebAssembly\Chapter 5\5.1.1 EmJsLibrary\ source\ folder to the source folder you just created. Then open it with your favorite editor to define the function
 signatures that your code will use to call the JavaScript code to indicate either success or that there’s an issue with the
 user’s data.

 Defining the function signatures

 In C or C++, functions can accept a parameter with a function pointer’s signature. For example, the following parameter would
 be for a function pointer that doesn’t receive any parameters or return a value:

 void(*UpdateHostOnSuccess)(void)

 You may run across code examples where the function pointer is being called by first dereferencing the pointer. This isn’t
 needed because the dereferenced function pointer is immediately converted to a pointer, so you just get the same function
 pointer back. The C code can call the function pointer the same way it would call a normal function, as the following example
 shows:

 void Test(void(*UpdateHostOnSuccess)(void)) {
 UpdateHostOnSuccess();
}

 Although you can specify a function signature as the parameter in each function where it’s needed, you can also create a definition
 of that signature and use it for the parameters instead. To create a definition of a function signature, you use the typedef keyword followed by the signature.

 Using a predefined function signature rather than defining the function signature for each parameter has some advantages:

 	It simplifies the functions.

 	It improves maintainability. If you ever need to adjust a function signature, you don’t need to modify every parameter where
 it’s used. Instead, you need to update only one spot: the definition.

 You’ll be using the typedef approach to define the two function signatures the code needs in the validate.cpp file:

 	One signature will be for a success callback function that will not have any parameters or return a value.

 	The other signature will be for a validation error callback function. It will accept a const char* parameter and not return a value.

 In the validate.cpp file, replace the extern void UpdateHostAboutError line of code with the following snippet of the two signatures:

 typedef void(*OnSuccess)(void);
typedef void(*OnError)(const char*);

 Now that the module won’t be receiving a buffer parameter in order to return an error message, you’ll need to remove that
 parameter from the module’s functions, starting with the ValidateValueProvided function.

 The ValidateValueProvided function

 Revise the ValidateValueProvided function to remove the error_message parameter. Then remove the UpdateHostAboutError call from the if statement.

 The modified ValidateValueProvided function should now look like the following:

 int ValidateValueProvided(const char* value) { 1
 if ((value == NULL) || (value[0] == '\0')) { 2
 return 0;
 }

 return 1;
}

 	1 The error_message parameter has been removed.

 	2 The code no longer calls UpdateHostAboutError.

 Next, you need to modify the ValidateName and ValidateCategory functions to receive success and error function pointers to call the appropriate function based on whether there’s an issue
 with the user’s data.

 The ValidateName function

 You need to make several modifications to the ValidateName function. Start by changing the function’s return type from int to void, and then add two function pointer parameters:

 	OnSuccess UpdateHostOnSuccess

 	OnError UpdateHostOnError

 Because you removed the second parameter from the ValidateValueProvided function, you won’t be able to pass the string to it, so remove the second parameter from the function call. Replace the
 return 0 line of code within that if statement with a call to the error function pointer:

 UpdateHostOnError("A Product Name must be provided.");

 Originally, the JavaScript function that the code was calling was called UpdateHostAboutError. You’ve removed that function and now need to have the code in the string length (strlen) if statement call the error function pointer instead. Rename the UpdateHostAboutError function call as UpdateHostOnError, and then remove the return 0 line of code.

 Because the ValidateName function now returns void, you need to remove the return 1 line of code from the end of the function and replace it with an else statement at the end of the if block. The else block is triggered when there are no issues with the user’s entry, so you’ll want to tell the JavaScript code that everything
 was successful; to do this, you’ll call the success function pointer:

 UpdateHostOnSuccess();

 The ValidateName function in the validate.cpp file should now look like the code in the following listing.

 Listing 6.1. ValidateName modified to use function pointers (validate.cpp)

 ...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
void ValidateName(char* name, int maximum_length, 1
 OnSuccess UpdateHostOnSuccess, OnError UpdateHostOnError) { 2
 if (ValidateValueProvided(name) == 0) {
 UpdateHostOnError("A Product Name must be provided.");
 }
 else if (strlen(name) > maximum_length) {
 UpdateHostOnError("The Product Name is too long.");
 }
 else {
 UpdateHostOnSuccess();
 }
}
...

 	1 The function now returns void. All return statements have been removed.

 	2 OnSuccess and OnError function pointers have been added.

 No changes are needed for the IsCategoryIdInArray function.

 You’ll make the same changes to the ValidateCategory function that you made to the ValidateName function by adding the success and error function pointer parameters. You’ll then modify the code to call the appropriate
 function pointer depending on whether there’s an issue with the user’s data.

 The ValidateCategory function

 Change the return type of the ValidateCategory function to now return void and then add the function pointer parameters for success and for if there’s an issue with the user’s entry:

 	OnSuccess UpdateHostOnSuccess

 	OnError UpdateHostOnError

 Remove the second parameter from the call to the ValidateValueProvided function, and replace the return 0 line of code within that if statement with the following:

 UpdateHostOnError("A Product Category must be selected.");

 Because you’re no longer calling the original JavaScript function, UpdateHostAbout-Error, you’ll need to adjust the calls that were being made to that function to call the error function pointer. Replace the UpdateHostAboutError calls with UpdateHost-OnError, and remove the return statement line of code in the following spots:

 	In the valid_category_ids == NULL if statement

 	In the IsCategoryIdInArray if statement

 Lastly, because the ValidateCategory function now returns void, remove the return 1 line of code from the end of the function, and add an else statement to the end of the if block. The else block will be triggered if there are no issues with the user’s entry. At this point, you’ll want to tell the JavaScript code
 that the user-selected category is valid, so you’ll call the success function pointer:

 UpdateHostOnSuccess();

 The ValidateCategory function in the validate.cpp file should now look like the code in the next listing.

 Listing 6.2. ValidateCategory modified to use function pointers (validate.cpp)

 ...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
void ValidateCategory(char* category_id, int* valid_category_ids, 1
 int array_length, OnSuccess UpdateHostOnSuccess,
 OnError UpdateHostOnError) { 2
 if (ValidateValueProvided(category_id) == 0) {
 UpdateHostOnError("A Product Category must be selected.");
 }
 else if ((valid_category_ids == NULL) || (array_length == 0)) {
 UpdateHostOnError("There are no Product Categories available.");
 }
 else if (IsCategoryIdInArray(category_id, valid_category_ids,
 array_length) == 0) {
 UpdateHostOnError("The selected Product Category is not valid.");
 }
 else {
 UpdateHostOnSuccess();
 }
}
...

 	1 The function now returns void. All return statements have been removed.

 	2 OnSuccess and OnError parameters have been added.

 Now that you’ve modified the C++ code to use function pointers, you can move on to the next step in the process (figure 6.5) and have Emscripten compile the code into a WebAssembly module.

 Figure 6.5. Step 2 is to ask Emscripten to generate both the WebAssembly and JavaScript files.

 [image:]

 6.1.3. Compiling the code into a WebAssembly module

 When the Emscripten compiler sees your C++ function pointer use, it will expect functions with those signatures to be imported
 during the module’s instantiation. Once a module has been instantiated, you can only add exported WebAssembly functions from
 another module. This means the JavaScript code can’t specify a function pointer later that hasn’t already been imported.

 If you can’t import JavaScript functions after the module has been instantiated, how are you going to specify a JavaScript
 function dynamically? As it turns out, Emscripten provides the module with functions that have the necessary signatures during
 instantiation and then maintains a backing array in its JavaScript code. When the module calls the function pointer, Emscripten
 looks into the backing array to see if your JavaScript code has provided it with a function to call for that signature.

 For the function pointers, the size of Emscripten’s backing array needs to be explicitly set at compile-time by including
 the RESERVED_FUNCTION_POINTERS flag. The ValidateName and ValidateCategory functions are each expecting two function pointer parameters, and you’ll be modifying your JavaScript to call both functions
 at the same time, so the backing array will need to be able to hold four items at once. As a result, you’ll need to specify
 a value of 4 for this flag.

 To add or remove function pointers from Emscripten’s backing array, your JavaScript code will need access to Emscripten’s
 addFunction and removeFunction helper functions. To make sure these functions are included in the generated JavaScript file, you’ll include them in the
 EXTRA_EXPORTED_RUNTIME_METHODS command-line array.

 To compile the code into a WebAssembly module, open a command prompt, navigate to the folder where you saved the validate.cpp
 file, and run the following command:

 emcc validate.cpp -s RESERVED_FUNCTION_POINTERS=4
[image:] -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','UTF8ToString',
[image:]'addFunction','removeFunction'] -o validate.js

 Now that you’ve generated the WebAssembly module and the Emscripten JavaScript file, the next step (figure 6.6) is to copy the generated files to a folder where you’ll also copy the editproduct.html and editproduct.js files that you
 worked on in chapter 5. You’ll then update the editproduct.js file to pass JavaScript functions to the module.

 Figure 6.6. Step 3 is to copy the generated files to where your HTML and JavaScript files are located. You’ll then update the JavaScript
 code to pass JavaScript functions to the module.

 [image:]

 6.1.4. Adjusting the web page’s JavaScript code

 In your Chapter 6\6.1.2 EmFunctionPointers\ folder, create a frontend folder and then copy the following files into it:

 	The validate.js and validate.wasm files from your Chapter 6\6.1.2 EmFunctionPointers\source\ folder

 	The editproduct.html and editproduct.js files from your Chapter 5\5.1.1 EmJsLibrary\frontend\ folder

 Open the editproduct.js file in your favorite editor so that you can modify the code to pass function pointers to the module.

 The onClickSave function

 In the C++ code, you modified the module’s validation functions to no longer have a return value but instead call the provided
 JavaScript function pointers to indicate success or an error when the validation logic is ready to call back. Because you
 don’t know when the function pointers will be called, you’ll modify the validateName and validateCategory JavaScript functions to return a Promise object.

 Right now, the onClickSave function uses an if statement to call the validateName function first. If there are no issues with the user-entered name, the if statement then calls the validateCategory function. Because both functions will be modified to return a promise, you’ll need to replace the if statement to work with promises.

 You could call the validateName function, wait for it to succeed, and then call the validateCategory function. This would work, but the Promise.all method will call both validation functions at the same time and will simplify the code compared with doing one call at a time.

 The Promise.all method is passed an array of promises and returns a single Promise object. If all the promises succeed, the then method is called. If any promise is rejected (there was an error), the rejected reason of the first promise to reject is
 the one that gets returned. You could use the second parameter of the then method to receive the rejected reason, but you’ll use the promise’s catch statement instead because that’s the most common approach developers use to handle promise errors.

 Modify the onClickSave function in the editproduct.js file to match the code in the next listing.

 Listing 6.3. onClickSave modified to use Promise.all (editproduct.js)

 ...

function onClickSave() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 Promise.all([1
 validateName(name),
 validateCategory(categoryId)
])
 .then(() => { 2
 3
 })
 .catch((error) => { 4
 setErrorMessage(error); 5
 });
}
...

 	1 Calls both validation functions

 	2 Both validation functions return success.

 	3 There are no issues with the validation. The data can be saved.

 	4 If either validation function returns an error, then this block is triggered.

 	5 Displays the error message

 Before you move on to modify the validateName and validateCategory functions to pass a JavaScript function to the WebAssembly module, you’ll need to learn how to pass a function to Emscripten’s
 backing array.

 Calling Emscripten’s addFunction helper function

 For the JavaScript code to pass a function to the module, it needs to use the Emscripten helper function addFunction. The addFunction call will add the JavaScript function to a backing array and then return an index that you need to pass to the ccall function, as illustrated in figure 6.7. (You can find more information about ccall in appendix B.)

 Figure 6.7. A JavaScript function being passed to Emscripten’s backing array to be called later by the module

 [image:]

 The addFunction function accepts two parameters:

 	The JavaScript function that you want to pass to the module

 	A string that represents the function’s signature

 The first character in the function signature string represents the return value’s type, and the rest of the characters represent
 each parameter’s value type. The following characters are available for the value types:

 	v—Void

 	i—32-bit integer

 	j—64-bit integer

 	f—32-bit float

 	d—64-bit float

 When your code finishes with the function pointer, you need to remove it from Emscripten’s backing array. To do this, you
 pass the index you received from addFunction to removeFunction.

 For each of your module’s validation functions, you’ll need to pass in two function pointers, one for a success callback and
 one for a validation error callback. To make things easier, you’ll create a JavaScript helper function called createPointers that will help both JavaScript validation functions create the function pointers.

 The createPointers function

 The createPointers function will receive the following parameters:

 	resolve—The resolve method of the promise belonging to the validateName or validateCategory function

 	reject—The reject method of the promise belonging to the validateName or validateCategory function

 	returnPointers—An object that will be returned to the calling function and will hold the index of each function that was added to Emscripten’s
 backing array

 You’ll use anonymous functions for both function pointers that will be added to Emscripten’s backing array.

 	

 Info

 In JavaScript, anonymous functions are functions that are defined without including a name. For more information, you can
 visit this MDN Web Docs page: http://mng.bz/7zDV.

 	

 The success function pointer expected by the module has a void return type and no parameters, so the value that needs to be passed as the second parameter to addFunction is 'v'. If called, this function will call first your freePointers helper function and then the resolve method that was passed into the createPointers function.

 The error function pointer expected by the module has a void return type and a const char* parameter. In WebAssembly, pointers are represented by 32-bit integers. In this case, the function signature string needed
 for the second parameter of the addFunction is 'vi'. If called, this function will first call your freePointers helper function, will read the error message from the module’s memory, and will then call the reject method that was passed into the createPointers function.

 At the end of the createPointers function, the index of each function that you added to Emscripten’s backing array will be placed in the returnPointers object.

 After the onClickSave function in your editproduct.js file, add the createPointers function shown in the next listing.

 Listing 6.4. The new createPointers function in editproduct.js

 ...

function createPointers(resolve, reject, returnPointers) { 1
 const onSuccess = Module.addFunction(function() { 2
 freePointers(onSuccess, onError); 3
 resolve(); 4
 }, 'v'); 5

 const onError = Module.addFunction(function(errorMessage) { 6
 freePointers(onSuccess, onError);
 reject(Module.UTF8ToString(errorMessage)); 7
 }, 'vi'); 8

 returnPointers.onSuccess = onSuccess; 9
 returnPointers.onError = onError;
}
...

 	1 resolve and reject are from the promise. returnPointers holds the function indexes.

 	2 Creates the function for a success call from the module

 	3 Removes both functions from Emscripten’s backing array

 	4 Calls the resolve (success) method of the promise

 	5 Function’s signature: no return value and no parameters

 	6 Creates the function for an error call from the module

 	7 Reads the error from the module’s memory and then calls the promise’s reject method

 	8 Function signature: no return value and a 32-bit integer parameter (pointer)

 	9 Adds the function indexes to the return object

 To help remove the function pointers from Emscripten’s backing array once you’re done with them, you’ll create another helper
 function called freePointers.

 The freePointers function

 Following the createPointers function, add the following snippet of code for the freePointers function to handle removing your functions from Emscripten’s backing array:

 function freePointers(onSuccess, onError){
 Module.removeFunction(onSuccess); 1
 Module.removeFunction(onError);
}

 	1 Removes the functions from Emscripten’s backing array

 Now that you’ve created the functions to help add functions to Emscripten’s backing array and remove them when you’re finished,
 you’ll need to modify the validateName and validateCategory functions. You’ll modify these functions to return a Promise object and, with help from your new createPointers function, pass JavaScript functions to the module.

 The validateName function

 You’ll modify the validateName function to return a Promise object, and you’ll use an anonymous function within the Promise object. Within the anonymous function, the first thing you need to do is call the createPointers function to have your Success and Error functions created. The createPointers call will also return the indexes you need to pass to the module for the success and error function pointers. These indexes
 will be placed in the object, pointers, that’s passed as the third parameter to the createPointers function.

 Remove the const isValid = code that’s in front of Module.ccall, and then modify the Module.ccall function as follows:

 	Set the second parameter to null to indicate that the ValidateName function’s return value is void.

 	Add two additional 'number' types to the third parameter’s array because the module’s function now accepts two new parameters that are pointers. Pointers
 in WebAssembly are represented using 32-bit values, which is why the number type is used.

 	Because two new parameters were added to the module’s function, pass the indexes for the Success and Error functions to the ccall function’s fourth parameter. The indexes are returned in the object pointers from the createPointers call.

 	Remove the function’s return statement.

 The validateName function in the editproduct.js file should now look like the code in the following listing.

 Listing 6.5. The modified validateName function in editproduct.js

 ...

function validateName(name) {
 return new Promise(function(resolve, reject) { 1

 const pointers = { onSuccess: null, onError: null };
 createPointers(resolve, reject, pointers); 2

 Module.ccall('ValidateName', 3
 null, 4
 ['string', 'number', 'number', 'number'], 5
 [name, MAXIMUM_NAME_LENGTH, pointers.onSuccess,
 pointers.onError]); 6

 });
}
...

 	1 Returns a Promise object for the caller

 	2 Creates the function pointers for the module

 	3 const isValid = removed

 	4 Module’s function now returns void

 	5 Two number types are added for the two new pointer parameters.

 	6 Success and Error function indexes are added to the array.

 The same changes that were made to the validateName function now need to be made to the validateCategory function by returning a Promise object and using the createPointers function to create function pointers that can be passed to the module.

 The validateCategory function

 As you did for the validateName function, you’ll modify the validateCategory function to return a Promise object. Call the createPointers function to have the Success and Error functions created.

 Remove the const isValid = portion of code that’s before the Module.ccall function, and then revise this function as follows:

 	Change the second parameter to null, because the module’s function now returns void.

 	Add two new 'number' types to the array of the third parameter of ccall for the two pointer types.

 	Add the Success and Error function indexes to the array of ccall’s fourth parameter.

 	Finally, remove the return statement from the end of the function.

 Your validateCategory function should look like the code in the next listing.

 Listing 6.6. The modified validateCategory function in editproduct.js

 ...

function validateCategory(categoryId) {
 return new Promise(function(resolve, reject) { 1

 const pointers = { onSuccess: null, onError: null };
 createPointers(resolve, reject, pointers); 2

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength * bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS,

 (arrayPointer / bytesPerElement));

 Module.ccall('ValidateCategory', 3
 null, 4
 ['string', 'number', 'number', 'number', 'number'], 5
 [categoryId, arrayPointer, arrayLength,
 pointers.onSuccess, pointers.onError]); 6

 Module._free(arrayPointer);

 });
}

 	1 Returns a Promise object for the caller

 	2 Creates the function pointers for the module

 	3 const isValid = removed

 	4 Module’s function now returns void

 	5 Two number types are added for the two new pointer parameters.

 	6 Success and Error function indexes are added to the array.

 6.1.5. Viewing the results

 Now that you’ve finished modifying the JavaScript code, you can open your browser and type http://localhost:8080/editproduct.html into the address box to see the web page. You can test the validation by adding more than 50 characters to the Name field
 and then pressing the Save button. An error should display on the page (figure 6.8).

 Figure 6.8. The Edit Product page’s validation error when the name is too long

 [image:]

 6.2. Using C or C++ to create a module without Emscripten plumbing

 Suppose that you want to have Emscripten compile the C++ code but not include any of the standard C library functions or generate
 the JavaScript plumbing file. Emscripten’s plumbing code is convenient and is recommended for production use, but it also
 hides a lot of the details of working with WebAssembly modules. Not using Emscripten’s plumbing allows you to work with the
 WebAssembly module directly.

 As you can see in figure 6.9, the process in this section is similar to that in section 6.1, except you’ll be asking Emscripten to generate only the WebAssembly file and not the JavaScript plumbing file.

 6.2.1. Using function pointers given to the module by JavaScript

 When you worked with function pointers in section 6.1, you used Emscripten’s plumbing code, which hid the interactions between the module and JavaScript. It actually felt like
 the JavaScript code was passing a function pointer to the module.

 When it comes to function pointers in WebAssembly, the C or C++ code is written as if it’s calling the function pointers directly.
 When compiled into a WebAssembly module, however, the code is actually specifying an index of a function in the Table section
 of the module and asking the WebAssembly framework to call the function on its behalf.

 Figure 6.9. Steps for turning the C++ logic into WebAssembly for use by a website and the server-side code but without any generated Emscripten
 JavaScript code. I discuss the server aspect, Node.js, in a later chapter.

 [image:]

 	

 Info

 A module’s Table section is optional, but, if present, it holds a typed array of references, like function pointers, that
 can’t be stored in the module’s memory as raw bytes. A module doesn’t have direct access to the items in the Table section.
 Instead, the code asks the WebAssembly framework to access an item based on its index. The framework then accesses the memory
 and executes the item on the code’s behalf. Chapter 2 goes into more detail about the sections of a module.

 	

 Function pointers can be functions within the module or can be imported. In your case, as figure 6.10 shows, you’ll specify the functions for the OnSuccess and OnError calls so you can pass messages back to JavaScript. Similar to Emscripten’s backing array, your JavaScript code will need
 to maintain an object that holds references to the callback functions that need to be called when the module calls the OnSuccess or OnError function.

 Figure 6.10. A module that has imported the onSuccess and onError JavaScript functions at instantiation. When the ValidateName module function calls either function, it’s calling into the JavaScript code.

 [image:]

 6.2.2. Making the C++ modifications

 The first step of the process (figure 6.11) is to modify the C++ code that you created in section 6.1 so that it uses the side_module_system_functions.h and .cpp files.

 Figure 6.11. You’ll modify the C++ code from section 6.1 so that a WebAssembly module can be generated without the Emscripten plumbing code.

 [image:]

 In your Chapter 6\ folder, create a 6.2.2 SideModuleFunctionPointers\source\ folder for your files in this section. Copy the following files
 into your new source folder:

 	The validate.cpp file from your 6.1.2 EmFunctionPointers\source\ folder

 	The side_module_system_functions.h and .cpp files from your Chapter 4\4.2 side_module\source\ folder

 Open the validate.cpp file in your favorite editor.

 Because the WebAssembly module will be built as a side module, Emscripten won’t include the standard C library, so you need
 to remove the includes for the cstdlib and cstring header files. To add in your own version of the standard C library functions
 for your code to use, add an include for the side_module_system_functions.h file in the extern "C" block.

 The first part of your validate.cpp file should now look like the following snippet:

 #ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#include "side_module_system_functions.h" 1

 	1 Important: place the header file within the extern “C” block.

 That’s all that needs to be modified in the validate.cpp file. The rest of the code is fine the way it is.

 6.2.3. Compiling the code into a WebAssembly module

 Now that the C++ code is modified, the next step is to have Emscripten compile it into a WebAssembly module but without the
 JavaScript plumbing code, as figure 6.12 shows.

 Figure 6.12. Step 2 is to ask Emscripten to generate only the WebAssembly file. Emscripten won’t generate the JavaScript plumbing file
 in this case.

 [image:]

 To compile the C++ code into a WebAssembly module, open a command prompt, navigate to the folder where you saved the C++ files,
 and run the following command:

 emcc side_module_system_functions.cpp validate.cpp
[image:] -s SIDE_MODULE=2 -O1 -o validate.wasm

 6.2.4. Adjusting the JavaScript that will interact with the module

 Figure 6.13 shows the next step of the process, in which you’ll copy the generated Wasm file to where the HTML file is located. You’ll
 then modify how the JavaScript code interacts with the module now that you don’t have access to Emscripten’s plumbing code.

 Figure 6.13. Step 3 is to copy the generated Wasm file to where the HTML file is and modify how the JavaScript code interacts with the
 module.

 [image:]

 In your Chapter 6\6.2.2 SideModuleFunctionPointers\ folder, create a frontend\ folder. Copy the following files into this new folder:

 	The validate.wasm file from your 6.2.2 SideModuleFunctionPointers\source\ folder

 	The editproduct.html and editproduct.js files from the Chapter 5\5.2.1 SideModuleCallingJS\frontend\ folder

 Open the editproduct.js file in your favorite editor so that you can adjust the code to work with the WebAssembly module’s
 function pointers.

 New global variables

 You’ll need to create some variables to hold the index locations of the success and error function pointers in the module’s
 Table section. Place the following code snippet between the const VALID_CATEGORY_IDS = [100, 101]; line of code and the let moduleMemory = null; line of code in the editproduct.js file:

 let validateOnSuccessNameIndex = -1;
let validateOnSuccessCategoryIndex = -1;
let validateOnErrorNameIndex = -1;
let validateOnErrorCategoryIndex = -1;

 While waiting for the module to complete its processing, you’ll also need some way of keeping track of the resolve and reject functions of the promises from the validateName and validateCategory functions. To do this, you’ll create an object for each function, as shown in the following snippet, which you can place
 after the variables you just added in the editproduct.js file:

 let validateNameCallbacks = { resolve: null, reject: null };
let validateCategoryCallbacks = { resolve: null, reject: null };

 Even though your C++ code looks like it’s calling a function pointer directly, it’s not really. Under the hood, function pointer
 references are placed in the module’s Table section. The code calls the desired function at a specific index using call_indirect, and WebAssembly calls the function at that index on the code’s behalf. In JavaScript, the Table section is represented by
 the WebAssembly.Table object.

 You’ll also need a global variable to hold the module’s WebAssembly.Table instance, which you’ll pass to the module to hold
 its function pointer references. Place the following code after the let moduleExports = null; line in the editproduct.js file:

 let moduleTable = null;

 Now that the global variables have been created, the next step is to modify the initializePage function so that you can pass the module the objects and functions that it’s expecting.

 The initializePage function

 The first thing that you'll need to do is create a new instance of the WebAssembly .Table object for the module's function pointers. The WebAssembly.Table object expects a JavaScript object to the constructor.

 The first property of the JavaScript object is called initial, and it indicates what the table’s initial size should be. The second property is called element, and the only value that can be provided at the moment is the string funcref. There is a third optional property called maximum. If specified, the maximum property indicates the maximum size the table is allowed to grow.

 The initial number of items needed for the table will depend on the Emscripten compiler. To determine what value to use, you
 can include the -g flag at the command line when you build your WebAssembly module. The flag will tell Emscripten to also create a WebAssembly
 text format file.

 If you open the generated text format file (.wast), you can search for an import s-expression for the table object, which will look similar to the following:

 (import "env" "table" (table $table 1 funcref))

 The value you’re looking for would be 1 in this case.

 	

 Info

 The WebAssembly specification has been modified to use the word funcref rather than anyfunc for the table’s element type. When Emscripten outputs a .wast file, it uses the new name, and the WebAssembly Binary Toolkit
 can now accept text format code that uses either name. At the time of this book’s writing, developer tools in the browsers
 are still using the word anyfunc when you inspect a module. Firefox allows you to use either word when constructing a WebAssembly.Table object in your JavaScript, but, at the moment, other browsers allow only the old name, so the JavaScript used in this book
 will continue to use anyfunc.

 	

 In the initializePage function, after the moduleMemory line of code and just before the creation of the importObject, add the code in the following snippet:

 moduleTable = new WebAssembly.Table({initial: 1, element: "anyfunc"});

 Next, you'll need to add some properties to the importObject:

 	After the memory property, add a __table_base property with a 0 (zero) value. Emscripten added this import because there will be a Table section in this module, and—because side modules
 are intended for dynamic linking—there could be multiple Table sections that need to be merged. Because you’re not doing dynamic
 linking here, you can simply pass zero.

 	After the __table_base property, you’ll need to include a table object because this module is using function pointers, and function pointer references are kept in the module’s Table section.

 	The _UpdateHostAboutError function is no longer needed, so it can be removed.

 	Emscripten added an import for an abort function to inform you if there’s a problem preventing the module from loading. You’ll provide a function for it that will
 throw an error indicating that abort was called.

 Within the then function of the instantiateStreaming function, you’ll need to add calls to an addToTable function (you’ll build this in a moment) and pass in anonymous functions for the success and error function pointers that
 the module’s ValidateName and ValidateCategory functions will call. The second parameter to the addToTable function will be a string representing the signature of the function you’re adding. The first character of the string is
 the function’s return value type, and each additional character indicates the parameter types. The characters Emscripten uses
 are

 	v—Void

 	i—32-bit integer

 	j—64-bit integer

 	f—32-bit float

 	d—64-bit float

 Modify the initializePage function to look like the code in the following listing.

 Listing 6.7. Modifications to the initializePage function (editproduct.js)

 ...

let moduleMemory = null;
let moduleExports = null;
let moduleTable = null;

function initializePage() {
 ...

 moduleMemory = new WebAssembly.Memory({initial: 256});
 moduleTable = new WebAssembly.Table({initial: 1,
 element: "anyfunc"}); 1

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 __table_base: 0,
 table: moduleTable,
 abort: function(i) { throw new Error('abort'); },
 }
 };

 WebAssembly.instantiateStreaming(fetch("validate.wasm"),
 importObject).then(result => {
 moduleExports = result.instance.exports;

 validateOnSuccessNameIndex = addToTable(() => { 2
 onSuccessCallback(validateNameCallbacks);
 }, 'v');

 validateOnSuccessCategoryIndex = addToTable(() => {
 onSuccessCallback(validateCategoryCallbacks);
 }, 'v');

 validateOnErrorNameIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateNameCallbacks, errorMessagePointer);
 }, 'vi');

 validateOnErrorCategoryIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateCategoryCallbacks, errorMessagePointer);
 }, 'vi');
 });
}
...

 	1 anyfunc rather than funcref for older browsers

 	2 Anonymous functions added to the Table for the success and error function pointers

 You now need to create the addToTable function that will add the specified JavaScript function to the module’s Table section.

 The addToTable function

 The addToTable function first needs to determine the Table section’s size, because that will be the index for where the JavaScript function
 needs to be inserted. The WebAssembly.Table object’s grow method is used to increase the size of the Table section by the desired number of elements. You only need to add one function,
 so you’ll tell the Table to grow by 1.

 Next, you’ll call the WebAssembly.Table object’s set method to insert the function. Because JavaScript functions can’t be passed to the WebAssembly.Table object but exports from another WebAssembly module can, you’ll pass the JavaScript function to a special helper function
 (convertJsFunctionToWasm) that will convert the function into a WebAssembly function.

 Add the following code after the initializePage function in your editproduct.js file:

 function addToTable(jsFunction, signature) {
 const index = moduleTable.length; 1
 moduleTable.grow(1); 2
 moduleTable.set(index,
 convertJsFunctionToWasm(jsFunction, signature)); 3

 return index; 4
}

 	1 The current size will be the new function’s index.

 	2 Growa the Table to allow for the new function to be added

 	3 Converta the JavaScript function into a Wasm function, and adds it to the Table

 	4 Returns the function’s index in the Table to the caller

 Rather than create the convertJsFunctionToWasm function, you’ll copy over the one used by the Emscripten-generated JavaScript file. The function creates a very small WebAssembly
 module that imports the JavaScript function you specify. The module exports the same function, but it’s now a WebAssembly
 wrapped function that can be inserted into a WebAssembly.Table object.

 Open the validate.js file in your Chapter 6\6.1.2 EmFunctionPointers\frontend\ folder, and search for the convertJsFunctionToWasm function. Copy the function, and paste it after your addFunctionToTable function in the editproduct.js file.

 Your next task is to create a helper function for use when the module indicates that the validation was successful. This function
 will be called by both the ValidateName and ValidateCategory module functions if there are no validation issues with the user’s data.

 The onSuccessCallback function

 After the initializePage function in the editproduct.js file, define an onSuccessCallback function that accepts the following object as a parameter: validateCallbacks. The validateCallbacks parameter will be a reference to either the validateNameCallbacks or validateCategoryCallbacks global object, depending on whether this function is being called for the validateName or validateCategory function. Within the function, you’ll call the callback object’s resolve method and then remove the functions from that object.

 Add the following code snippet after the initializePage function in the editproduct.js file:

 function onSuccessCallback(validateCallbacks) {
 validateCallbacks.resolve(); 1
 validateCallbacks.resolve = null; 2
 validateCallbacks.reject = null;
}

 	1 Calls the resolve method of the promise

 	2 Removes the functions from the object

 Similar to the onSuccessCallback function that you just created, you’ll need to create a helper function for use when the module indicates that there’s a
 validation error with one of the user’s entries. This function will be called by both the ValidateName and ValidateCategory module functions.

 The onErrorCallback function

 Following the onSuccessCallback function in the editproduct.js file, you’ll create the onErrorCallback function that accepts two parameters:

 	validateCallbacks—This parameter will be a reference to either the validateNameCallbacks or validateCategoryCallbacks global object, depending on whether this function is being called for the validateName or validateCategory function.

 	errorMessagePointer—A pointer to the location in the module’s memory where the validation error message is located.

 The first thing that the function will need to do is read the string from the module’s memory by calling your getStringFromMemory helper function. You’ll then call the callback object’s reject method before removing the functions from that object.

 Add the code in the following snippet after the onSuccessCallback function in the editproduct.js file:

 function onErrorCallback(validateCallbacks, errorMessagePointer) {
 const errorMessage = getStringFromMemory(errorMessagePointer); 1

 validateCallbacks.reject(errorMessage); 2

 validateCallbacks.resolve = null; 3
 validateCallbacks.reject = null;
}

 	1 Reads in the error message from the module’s memory

 	2 Calls the reject method of the promise

 	3 Removes the functions from the object

 In a moment, you’ll modify the validateName and validateCategory JavaScript functions to return a Promise object because you won’t know when the module will call the Success and Error functions. Because the functions will return a Promise object, the onClickSave function will need to be modified to work with the promises.

 The onClickSave function

 Modify the onClickSave function to replace the if statement with the Promise.all code that you saw in section 6.1. Revise the code in the onClickSave function of the editproduct.js file so that it matches the next listing.

 Listing 6.8. The modified onClickSave function (editproduct.js)

 ...

function onClickSave() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 Promise.all([1
 validateName(name),
 validateCategory(categoryId)
])
 .then(() => { 2
 3
 })
 .catch((error) => { 4
 setErrorMessage(error); 5
 });
}
...

 	1 Calls both validation functions

 	2 Both validation functions return success.

 	3 There were no issues with the validation. The data can be saved.

 	4 If either validation function had an error...

 	5 ... displays the validation error to the user

 Because both the validateName and validateCategory functions will need to have the resolve and reject methods of their Promise placed into the global variables, you’ll create a helper function, createPointers, that both functions can use.

 The createPointers function

 Following the onClickSave function, add a createPointers function that accepts the following parameters:

 	isForName—A flag indicating whether it’s the validateName or validateCategory function calling

 	resolve—The resolve method of the calling function’s promise

 	reject—The reject method of the calling function’s promise

 	returnPointers—An object that you’ll use to return the index of the _On-Success and _OnError functions that the module’s function should call

 Based on the isForName value, you’ll place the resolve and reject methods into the proper callback object.

 The module’s function will need to know which index in the module’s Table section it needs to call for the _OnSuccess and _OnError function pointers. You’ll place the proper index in the returnPointers object.

 Place the code in the next listing after the onClickSave function in the editproduct .js file.

 Listing 6.9. The createPointers function (editproduct.js)

 ...

function createPointers(isForName, resolve, reject, returnPointers) {
 if (isForName) { 1
 validateNameCallbacks.resolve = resolve; 2
 validateNameCallbacks.reject = reject;

 returnPointers.onSuccess = validateOnSuccessNameIndex; 3
 returnPointers.onError = validateOnErrorNameIndex;
 } else { 4
 validateCategoryCallbacks.resolve = resolve; 5
 validateCategoryCallbacks.reject = reject;

 returnPointers.onSuccess = validateOnSuccessCategoryIndex; 6
 returnPointers.onError = validateOnErrorCategoryIndex;
 }
}
...

 	1 The caller is the validateName function.

 	2 Places the promise methods into validateName's callback object

 	3 Returns the indexes for validateName’s function pointers

 	4 The caller is the validateCategory function.

 	5 Places the promise methods into validateCategory’s callback object

 	6 Returns the indexes for validateCategory’s function pointers

 You’ll now need to modify the validateName and validateCategory functions to return a Promise object and, with the help of your new createPointers function, have the module’s function call the appropriate function pointer.

 The validateName function

 Modify the validateName function, which will now return a Promise object. The contents of the promise will be wrapped in an anonymous function.

 You’ll need to add a call to the createPointers function to have the promise’s resolve and reject methods placed into the validateNameCallbacks global object. The call to the createPointers object will also return the proper indexes to pass to the module’s _ValidateName function so that it will call the _OnSuccessName or _OnErrorName function pointer.

 The module’s _ValidateName function no longer returns a value, so you’ll need to remove the const isValid = portion of code as well as the return statement at the end of the function. The call to the _ValidateName function also needs to be modified to receive the two function pointer indexes.

 Revise the validateName function in the editproduct.js file to match the code in the next listing.

 Listing 6.10. Modifications to the validateName function (editproduct.js)

 ...

function validateName(name) {
 return new Promise(function(resolve, reject) { 1

 const pointers = { onSuccess: null, onError: null };
 createPointers(true, resolve, reject, pointers); 2

 const namePointer = moduleExports._create_buffer((name.length + 1));
 copyStringToMemory(name, namePointer);

 moduleExports._ValidateName(namePointer, MAXIMUM_NAME_LENGTH,
 pointers.onSuccess, pointers.onError); 3

 moduleExports._free_buffer(namePointer);
 });
}
...

 	1 Returns a Promise object to the caller

 	2 Places the resolve and reject methods into the global object and gets the function pointer indexes

 	3 Passes in indexes for the function pointers _OnSuccessName and _OnErrorName

 You’ll need to make the same adjustments to the validateCategory function that you did for the validateName function.

 The validateCategory function

 The only difference in the changes here is that you’ll specify false as the first parameter to the createPointers function so that it knows the validateCategory function is calling and not the validateName function.

 Revise the validateCategory function in the editproduct.js file to match the code in the next listing.

 Listing 6.11. Modifications to the validateCategory function (editproduct.js)

 ...

function validateCategory(categoryId) {
 return new Promise(function(resolve, reject) { 1

 const pointers = { onSuccess: null, onError: null };
 createPointers(false, resolve, reject, pointers); 2

 const categoryIdPointer =
 [image:] moduleExports._create_buffer((categoryId.length + 1));
 copyStringToMemory(categoryId, categoryIdPointer);

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Int32Array.BYTES_PER_ELEMENT;
 const arrayPointer = moduleExports._create_buffer((arrayLength *
 [image:] bytesPerElement));

 const bytesForArray = new Int32Array(moduleMemory.buffer);
 bytesForArray.set(VALID_CATEGORY_IDS,
 (arrayPointer / bytesPerElement));

 moduleExports._ValidateCategory(categoryIdPointer, arrayPointer,
 arrayLength, pointers.onSuccess, pointers.onError); 3

 moduleExports._free_buffer(arrayPointer);
 moduleExports._free_buffer(categoryIdPointer);
 });
}

 	1 Returns a Promise object to the caller

 	2 Places the resolve and reject methods into the global object and gets the function pointer indexes

 	3 Passes in indexes for the function pointers _OnSuccessCategory and _OnErrorCategory

 6.2.5. Viewing the results

 Now that you’ve adjusted the code, you can open a web browser and type http://localhost:8080/editproduct.html into the address box to see the web page. You can test the validation by changing the selection in the Category drop-down
 so that nothing is selected and then clicking the Save button. The validation should display an error on the web page as shown
 in figure 6.14.

 How can you use what you learned in this chapter in the real world?

 Figure 6.14. The Edit Product page’s Category validation error

 [image:]

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	With function pointers, you can create JavaScript functions that return a promise, allowing your module to work the same as
 other JavaScript methods like fetch. By returning a Promise object, your function can even be chained together with other promises.

 	As long as the function pointer specified has the same signature that the WebAssembly module is expecting, it can be called.
 For example, this allows the module’s code to use one signature for onSuccess in each function. The JavaScript code can specify two or more functions that match that signature and, depending on what
 JavaScript code is calling, have the module call the desired onSuccess function that matches the current action.

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
Which two functions do you use to add and remove function pointers from Emscripten’s backing array?

 2
Which instruction does WebAssembly use to call a function defined in the Table section?

 Summary

 In this chapter, you learned the following:

 	You can define a function pointer’s signature directly in a function parameter in C or C++.

 	It’s possible to define the signature using the typedef keyword and then use the defined signature name in the function parameters.

 	Under the hood, function pointers aren’t really called directly by WebAssembly code. Instead, function references are held
 in the module’s Table section, and the code asks the WebAssembly framework to call the desired function at the index specified.

 Part 3. Advanced topics

 Now that you know the basics of creating and working with WebAssembly modules, this part of the book looks at ways to help
 you reduce download sizes and improve reusability, take advantage of parallel processing, or even use your WebAssembly modules
 outside a web browser.

 Chapter 7 introduces you to the basics of dynamic linking, in which two or more WebAssembly modules can be linked together at runtime
 to use each other’s features.

 Chapter 8 expands on what you learned in chapter 7, teaching you how to create multiple instances of the same WebAssembly module and have each instance dynamically link to
 another WebAssembly module on-demand.

 In chapter 9, you’ll learn how to prefetch WebAssembly modules as needed using web workers. You’ll also learn how to perform parallel
 processing using pthreads in a WebAssembly module.

 Chapter 10 demonstrates that WebAssembly isn’t limited to a web browser. In this chapter, you’ll learn how to use several of your WebAssembly
 modules in Node.js.

 Chapter 7. Dynamic linking: The basics

 This chapter covers

 	How dynamic linking works for WebAssembly modules

 	Why you might want to use dynamic linking and why you might not

 	How to create WebAssembly modules as main or side modules

 	What the different options are for dynamic linking and how to use each approach

 When it comes to WebAssembly modules, dynamic linking is the process of joining two or more modules together at runtime, where the unresolved symbols from one module (functions,
 for example) resolve to symbols existing in another. You’ll still have the original number of WebAssembly modules, but now
 they’re linked together and able to access each other’s functionality, as figure 7.1 shows.

 Figure 7.1. At runtime, the logic from one module (Module 2, in this case) is linked to another module (Module 1), allowing the two to
 communicate and act as one.

 [image:]

 You can implement dynamic linking for WebAssembly modules in several ways, making this a large topic. You’ll learn how to
 build a website that uses dynamic linking in chapter 8, but first you’ll need to learn what your options are.

 7.1. Dynamic linking: Pros and cons

 Why would you want to use dynamic linking instead of just using the single WebAssembly module approach that you’ve used so
 far in this book? You might consider using dynamic linking for several reasons:

 	To speed up development time. Rather than compiling one big module, you compile only the modules that changed.

 	The core of your application can be separated out so that it can be shared more easily. Rather than having two or three big
 WebAssembly modules with the same logic in each, you can have a core module with several smaller modules that link to it.
 An example of this approach would be with game engines, in which the engine could be downloaded separately from the game.
 Multiple games could share the same engine.

 	The smaller something is, the faster it downloads, so downloading only what you need initially will speed up load time. As
 the web page needs additional logic, a smaller module with logic specific to that area can be downloaded.

 	If a portion of your logic is never used, it’s never downloaded because logic is downloaded only as needed. The result is
 that you won’t waste time downloading and processing something up front if it isn’t needed.

 	The browser caches the module, similar to how it caches images or JavaScript files. Only the modules that change are downloaded
 again, making subsequent page views faster because only a portion of the logic needs to be redownloaded.

 Although dynamic linking has a number of advantages, it isn’t the best choice for every situation, so it’s best to test to
 see if it’s right for your needs.

 Dynamic linking can have some performance impacts. According to Emscripten’s documentation, the performance hit could be 5
 to 10% or higher, depending on how your code is structured. Some areas where you could see a performance impact include the
 following:

 	In development, the build configuration becomes more complicated because you now need to create two or more WebAssembly modules
 rather than one.

 	Rather than having one WebAssembly module to download, you’ll have at least two modules initially, which means you’ll also
 have more network requests.

 	The modules need to be linked together, so there’s more processing involved during instantiation.

 	Browser vendors are working on improving performance for various types of calls, but, according to Emscripten, function calls
 between linked modules can be slower than calls within the module. If you have a lot of calls between the linked modules,
 you may see performance issues.

 Now that you know the pros and cons of dynamic linking, let’s look at the different ways it can be implemented with WebAssembly
 modules.

 7.2. Dynamic linking options

 There are three options available for dynamic linking when using Emscripten:

 	Your C or C++ code can manually link to a module by using the dlopen function.

 	You can instruct Emscripten that there are WebAssembly modules to link to by specifying them in the dynamicLibraries array of Emscripten’s generated JavaScript file. When Emscripten instantiates the WebAssembly module, it will automatically
 download and link modules that are specified in this array.

 	In your JavaScript, you can manually take the exports of one module and pass them in as imports to another using the WebAssembly
 JavaScript API.

 	

 Info

 You can find a brief overview of the WebAssembly JavaScript API in chapter 3. The following MDN Web Docs page also has a good overview: http://mng.bz/vln1.

 	

 Before you learn how to use each dynamic linking technique, let’s look at what the differences are between side modules and
 main modules.

 7.2.1. Side modules and main modules

 In the previous chapters of this book, you created WebAssembly modules as side modules so that the Emscripten JavaScript file
 wasn’t generated. This let you manually download and instantiate the WebAssembly modules using the WebAssembly JavaScript
 API. Although creating a side module so that you can manually use the API is a useful side effect to aid in learning how things
 work under the hood, side modules are actually intended for dynamic linking.

 With side modules, Emscripten omits the standard C library functions and the JavaScript file because the side modules will
 be linked to a main module at runtime (figure 7.2). The main module will have the Emscripten-generated JavaScript file and standard C library functions; when linked, the side
 module gains access to the main module’s features.

 Figure 7.2. Using Emscripten to generate a WebAssembly module as a side module. No standard C library functions are included in the module,
 and the Emscripten JavaScript file isn’t generated in this case.

 [image:]

 Side modules are created by including the SIDE_MODULE flag as part of the command line to instruct Emscripten to not generate the JavaScript file or include any standard C library
 functions in the module.

 Main modules are created similar to how you create a side module but using the MAIN_MODULE flag as part of the command line. This flag tells the Emscripten compiler to include system libraries and logic needed for
 dynamic linking. As figure 7.3 shows, the main module will have the Emscripten-generated JavaScript file as well as the standard C library functions.

 	

 Note

 One thing to be aware of with dynamic linking is that while multiple side modules can be linked to a main module, there can
 be only one main module. Also, being a main module has nothing to do with the main() function, which can actually be placed in any of the modules, including a side module.

 	

 Figure 7.3. Using Emscripten to generate a WebAssembly module as a main module. The standard C library functions are included in the module,
 and the Emscripten JavaScript file is also generated in this case.

 [image:]

 The first type of dynamic linking you’ll learn is the dlopen approach.

 7.2.2. Dynamic linking: dlopen

 Suppose your boss has asked you to create a WebAssembly module, and one of the things it will need to do is determine the
 prime numbers that exist in a certain number range. Thinking back, you remember that you already built this logic in chapter 3 as a normal WebAssembly module (calculate_primes.c). You’d rather not just copy and paste the logic into this new WebAssembly
 module because you don’t want to maintain two identical sets of code; if an issue was discovered in the code, you’d need to
 modify the same logic in two places, which could lead to one spot being missed if a developer isn’t aware of the second spot
 or one of the locations is modified incorrectly.

 Instead of duplicating the code, what you’d like to do is modify the existing calculate_primes code so that it can both be
 used as a normal WebAssembly module and also be callable from your new WebAssembly module. As figure 7.4 shows, the steps for this scenario are as follows:

 	Modify the calculate_primes.c file that you created in chapter 3 so that it can also be called by the main module. You’ll rename the file calculate_primes.cpp.

 	Use Emscripten to generate the WebAssembly file from the calculate_primes .cpp file as a side module.

 	Create the logic (main.cpp) that will link to the side module using a call to the dlopen function.

 	Use Emscripten to generate the WebAssembly file from the main.cpp file as a main module and to generate the HTML template
 file.

 For this scenario, you’re going to call the dlopen function from your C++ code to link to the calculate_primes side module. To open the side module, however, dlopen needs the WebAssembly file to be in Emscripten’s file system.

 The trick with a file system, however, is that a WebAssembly module is running in a VM and doesn’t have access to the device’s
 actual file system. To get around this, Emscripten provides the WebAssembly module with one of several different types of
 file system depending on where the module is running (in a browser or in Node.js, for example) and how persistent the storage
 needs to be. By default, Emscripten’s file system is in memory, and any data written to it will be lost when the web page
 is refreshed.

 Figure 7.4. Steps for modifying calculate_primes.cpp so that it can be compiled into a WebAssembly side module, and steps for creating
 a WebAssembly main module that will link to the side module by calling the dlopen function.

 [image:]

 Emscripten’s file system is accessed through the FS object in Emscripten’s generated JavaScript file, but this object is included only if your WebAssembly module’s code accesses
 files. (To learn more about Emscripten’s file system, visit https://emscripten.org/docs/api_reference/Filesystem-API.html.) In this chapter, you’ll only learn how to use the emscripten_async_wget function, which will allow you to download a WebAssembly module to Emscripten’s file system so that you can open it with
 the dlopen function.

 When using the dlopen approach to dynamic linking, your module will be able to call the main function in the calculate_primes module even if your module also has a main function. This might be useful if the module is from a third party and contains initialization logic. Being able to call
 a main function in another module is possible because dlopen returns a handle to the side module, and you then get a reference to the function you want to call based on that handle.

 	

 Tip

 This is one advantage of using the dlopen approach of dynamic linking compared with using the dynamicLibraries approach that you’ll learn about in the next section. When it comes to using the latter approach, calling a function in another
 module when you already have a function with the same name in your module won’t work. You’ll end up just calling the function
 in your module, which could result in a recursive function call.

 	

 The first step of the process for implementing dynamic linking (figure 7.5) is to modify the calculate_primes.cpp file so that it can be compiled into a side module.

 Figure 7.5. Step 1 in implementing dynamic linking using dlopen is to modify the calculate_primes.cpp file so that it can be compiled into a side module.

 [image:]

 Modifying the calculate_primes.cpp file

 In your WebAssembly\ folder, create a folder named Chapter 7\7.2.2 dlopen\source\for the files that you’ll use in this section. Copy the calculate_primes.c file from your Chapter 3\3.5 js_plumbing\source\ folder to your newly created source\ folder, and change the file extension to .cpp. Open the calculate_primes.cpp
 file with your favorite editor.

 Replace the stdlib.h header file with cstdlib and the stdio.h header file with cstdio; then add the extern "C" opening block between the emscripten.h header file and before the IsPrime function. The beginning of your calculate_primes.cpp file should now look like the code in the following snippet:

 #include <cstdlib> 1
#include <cstdio> 2
#include <emscripten.h>

#ifdef __cplusplus 3
extern "C" {
#endif

 	1 Replaces the stdlib.h header

 	2 Replaces the stdio.h header

 	3 Adds the opening extern “C” block

 In the calculate_primes.cpp file, after the IsPrime function and before the main function, create a function called FindPrimes that returns void and accepts two integer parameters (start and end) for the start and end range of the prime number search.

 Delete the start and end variable declaration lines of code from the main function and then move the remaining code—except for the return 0 line—from the main function into the FindPrimes function.

 Add the EMSCRIPTEN_KEEPALIVE declaration above the FindPrimes function so that the function is automatically added to the list of exported functions when you compile. Doing this simplifies
 things when you use Emscripten to generate the WebAssembly module because you don’t have to explicitly specify the function
 at the command line.

 Modify the main function to call the new FindPrimes function and pass in the original range of 3 and 100000. Finally, after the main function, add the closing bracket for the extern "C" block.

 Your new FindPrimes function, the modified main function, and the closing bracket for the extern "C" block should now look like the code in the following listing.

 Listing 7.1. The new FindPrimes function and the modified main function

 ...
EMSCRIPTEN_KEEPALIVE
void FindPrimes(int start, int end) { 1
 printf("Prime numbers between %d and %d:\n", start, end);

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 printf("%d ", i);
 }
 }
 printf("\n");
}

int main() {
 FindPrimes(3, 100000); 2

 return 0;
}

#ifdef __cplusplus 3
}
#endif

 	1 New function that’s now exported and callable by other modules

 	2 Displays the original range of prime numbers

 	3 Adds the closing bracket for the extern “C” block

 Now that you’ve modified the code so that other modules can call it, it’s time to move to step 2 (figure 7.6) and compile the code into a WebAssembly side module.

 Figure 7.6. Use Emscripten to generate the WebAssembly file as a side module.

 [image:]

 Using Emscripten to generate the WebAssembly file as a side modul- le from calculate_primes.cpp

 In previous chapters, when you created WebAssembly side modules, you replaced the standard C library functions with some replacement
 code that you built in chapter 4. You did this so the side module would still work, even though the standard C library functions weren’t available. You don’t need the replacement code in this case because the side module will be linked to the
 main module at runtime, and the main module will have the standard C library functions.

 To compile the modified calculate_primes.cpp file as a WebAssembly side module, open a command prompt, navigate to the Chapter 7\7.2.2 dlopen\source\ folder, and run the following command:

 emcc calculate_primes.cpp -s SIDE_MODULE=2 -O1
[image:] -o calculate_primes.wasm

 Now that you’ve created the side module, the next step (figure 7.7) is to create the main module.

 Figure 7.7. Step 3 in implementing dynamic linking using dlopen is to create the logic that will use dlopen to link to the side module.

 [image:]

 Creating the logic that will link to the side module

 In your Chapter 7\7.2.2 dlopen\source\ folder, create a file named main.cpp, and then open it in your favorite editor. The first things you need
 to add to the main.cpp file are the includes for the header files. In this case, you’ll want to include the dlfcn.h header
 file—along with cstdlib and emscripten.h—because it has declarations related to dynamic linking when using dlopen. Then, you need to add the extern "C" block.

 The code in your main.cpp file should now look like that in the next listing.

 Listing 7.2. The main.cpp file with the header file includes an extern "C" block

 #include <cstdlib>

#ifdef __EMSCRIPTEN__
 #include <dlfcn.h> 1
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

 2

#ifdef __cplusplus
}
#endif

 	1 The header file needed for dlopen-related logic

 	2 Your module’s code will be placed here.

 In the code you’re about to write, you’ll be using the dlopen function to get a handle to a WebAssembly side module. Once you have that handle, you’ll use the dlsym function to get a function pointer to the desired function in that module. To simplify the code when you call the dlsym function, the next thing you’ll need to do is define the function signature for the FindPrimes function that you’ll be calling in the side module.

 The FindPrimes function returns void and has two integer parameters. The function pointer signature for the FindPrimes function is shown in the following snippet, which you need to include in the main.cpp file within the extern "C" block:

 typedef void(*FindPrimes)(int,int);

 You’ll now add a main function to your file so that the Emscripten compiler will add the function to the WebAssembly module’s Start section. This
 will cause the main function to run automatically once the module has been instantiated.

 In your main function, you’ll add a call to the emscripten_async_wget function to download the side module to Emscripten’s file system. This call is asynchronous and will call a callback function—which
 you will specify—once the download is complete. The parameters that you’ll pass to the emscripten_async_wget function, and their order, will be as follows:

 	The file to download: "calculate_primes.wasm".

 	The name to give the file when it gets added to Emscripten’s file system. In this case, it will be given the same name it
 already has.

 	A callback function if the download is successful, CalculatePrimes.

 	You’ll leave the fourth parameter NULL in this case because you won’t specify a callback function. If you wanted to, you could specify a callback function in the
 event that there was an error downloading the file.

 Following the FindPrimes function pointer signature in your main.cpp file, and within the extern "C" block, add the following code:

 int main() {
 emscripten_async_wget("calculate_primes.wasm", 1
 "calculate_primes.wasm", 2
 CalculatePrimes, 3
 NULL); 4

 return 0;
}

 	1 File to download

 	2 Name to give to the file in Emscripten’s file system

 	3 Callback function on success

 	4 Callback function on error

 The last thing that you’ll need to add to the main.cpp file is a function that will hold the logic to open the side module,
 get a reference to the FindPrimes function, and then call that function.

 When the emscripten_async_wget function finishes downloading the calculate_primes WebAssembly module, it will call the CalculatePrimes function that you specified and pass in a parameter indicating the file name that was loaded. To open the side module, you’ll
 use the dlopen function, passing in two parameter values:

 	The file name to open from the file name parameter the CalculatePrimes function receives

 	An integer indicating the mode: RTLD_NOW

 	

 Definition

 When an executable file is brought into a process’s address space, it might have references to symbols that aren’t known until
 the file is loaded. These references need to be relocated before the symbols can be accessed. The mode value is used to tell
 dlopen when the relocation should happen. The RTLD_NOW value is asking dlopen for the relocations to happen when the file is loaded. More information about dlopen and the mode flags can be found in the Open Group Base Specifications at http://mng.bz/4eDQ.

 	

 The dlopen function call will return a handle to the file, as the following code snippet shows:

 void* handle = dlopen(file_name, RTLD_NOW);

 Once you have a handle to the side module, you’ll call the dlsym function, passing in the following parameter values to get a reference to the function you want to call:

 	The handle of the side module

 	The name of the function you want a reference to: "FindPrimes"

 The dlsym function will return a function pointer to the requested function:

 FindPrimes find_primes = (FindPrimes)dlsym(handle, "FindPrimes");

 Once you have a function pointer, you can call it the same way you would call a normal function. When you’ve finished with
 a linked module, you can release it by passing the file’s handle to the dlclose function.

 Pulling everything together, your CalculatePrimes function should look like the code in listing 7.3. Add the code in this listing to your main.cpp file between the FindPrimes function pointer signature and the main function.

 Listing 7.3. The CalculatePrimes function that calls a function in the side module

 ...
void CalculatePrimes(const char* file_name) {
 void* handle = dlopen(file_name, RTLD_NOW); 1
 if (handle == NULL) { return; }

 FindPrimes find_primes =
 (FindPrimes)dlsym(handle, "FindPrimes"); 2
 if (find_primes == NULL) { return; }

 find_primes(3, 100000); 3

 dlclose(handle); 4
}
...

 	1 Opens the side module

 	2 Gets a reference to the FindPrimes function

 	3 Calls the function in the side module

 	4 Closes the side module

 Now that you’ve created the code for your main module, you can move on to the final step (figure 7.8) and compile it into a WebAssembly module. You’ll also have Emscripten generate the HTML template file.

 Figure 7.8. Step 4 in implementing dynamic linking using dlopen is to use Emscripten to generate the WebAssembly module as a main module
 from the main.cpp file. In this case, you’ll also have Emscripten generate the HTML file.

 [image:]

 Using Emscripten to generate the WebAssembly file as a main module from main.cpp

 Rather than creating an HTML page to view the results, you’ll use Emscripten’s HTML template by specifying the output file
 with an .html extension. To compile your main.cpp file into a main module, you’ll need to include the -s MAIN_MODULE=1 flag. Unfortunately, if you were to view the generated HTML page using only the following command line, you would see the
 error shown in figure 7.9:

 emcc main.cpp -s MAIN_MODULE=1 -o main.html

 Figure 7.9. When the web page is viewed, a link error is thrown about a missing _putchar function.

 [image:]

 You can see that the WebAssembly module was loaded and dlopen linked to the side module without issue, because the text "Prime numbers between 3 and 100000" is written by the FindPrimes function in the side module. If there was an issue with the dynamic linking, your code wouldn’t have reached this point.
 None of the prime numbers have been written to the screen, which suggests that the issue is in your side module’s FindPrimes function but after the printf call to indicate the range.

 It turns out that the issue is with the calculate_primes.cpp file’s use of the printf function when passing in only one character. In this case, the linefeed character (\n) at the end of the FindPrimes function is causing the error. The printf function uses a putchar function under the hood that isn’t being included by default.

 There are three options for correcting this error:

 	Include the _putchar function in the EXPORTED_FUNCTIONS array as part of the command line when generating the WebAssembly module. When testing this as a possible fix, including
 this function alone would cause the error to go away, but, unfortunately, nothing would be displayed on the web page. If you
 use this approach, you’ll need to include the _main function of the module in the array, too.

 	You could modify the printf call in the calculate_primes.cpp file so that it outputs at least two characters to prevent the printf call from using the putchar function internally. The problem with this approach is that if a printf of one character is used anywhere else, the error will happen again. Consequently, this isn’t a recommended fix.

 	You could include the -s EXPORT_ALL=1 flag to force Emscripten to include all the symbols when it generates the WebAssembly module and JavaScript file. This will
 work, but using this approach isn’t recommended unless there are no other workarounds because, in this case, it results in
 a doubling of the generated JavaScript file’s size just to have one function exported.

 Unfortunately, all three approaches feel like a hack. The first approach appears to be the best option available, so, to correct
 the error, you’ll use the EXPORTED_FUNCTIONS command-line array to have the module export the _putchar and _main functions.

 To compile the main.cpp file into a WebAssembly main module, open a command prompt, navigate to the Chapter 7\7.2.2 dlopen\source\ folder, and run the following command:

 emcc main.cpp -s MAIN_MODULE=1
[image:] -s EXPORTED_FUNCTIONS=['_putchar','_main'] -o main.html

 Once your WebAssembly modules have been created, you can view the results.

 Viewing the results

 Open your browser and type http://localhost:8080/main.html into the address box to see the generated web page. As figure 7.10 shows, the web page should display the list of prime numbers in both the text box and in the console window of the browser’s
 developer tools. The prime numbers are determined by the side module, which calls the printf function that’s part of the main module.

 Now that you’ve learned how to do dynamic linking using dlopen, you’ll learn how to use the dynamicLibraries approach.

 7.2.3. Dynamic linking: dynamicLibraries

 Imagine that your coworkers and boss have had a chance to see your new WebAssembly modules in action. They’re quite impressed
 with what you’ve done with dlopen, but your boss read up on dynamic linking while you were building the modules and discovered that you can also implement
 it using Emscripten’s dynamicLibraries array. Your boss is curious to know how the dynamicLibraries approach compares with dlopen, so you’ve been asked to leave the calculate_primes side module as is but create a main module that links to it using dynamicLibraries.

 Figure 7.10. The prime numbers determined by the side module and displayed to the web page using the printf function that’s part of the main module

 [image:]

 As figure 7.11 shows, the steps for this scenario will be as follows:

 	Create the logic (main.cpp) that will talk to the side module.

 	Create a JavaScript file that will be included in Emscripten’s generated JavaScript file to instruct Emscripten about the
 side module you’ll want it to link to.

 	Use Emscripten to generate the WebAssembly file from the main.cpp file as a main module and to also generate the HTML template
 file.

 Figure 7.11. The steps for creating the WebAssembly main module that will instruct Emscripten’s dynamicLibraries array about which side module you want it to dynamically link to.

 [image:]

 Creating the logic that will talk to the side module

 For this scenario, the first step of the process (figure 7.12) is to create the main.cpp file that will hold the logic that talks to the side module. In your Chapter 7\ folder, create a 7.2.3 dynamicLibraries\source\ folder. In this folder,

 	Copy in the calculate_primes.wasm file from your 7.2.2 dlopen\source\ folder.

 	Create a main.cpp file and then open it with your favorite editor.

 Figure 7.12. The first step toward implementing dynamic linking using dynamicLibraries is to create the main.cpp file.

 [image:]

 Add the header files for the standard C library and Emscripten. Then add the extern "C" block. The code in your main.cpp file should now look like the code in the next listing.

 Listing 7.4. The main.cpp file with the header file including an extern "C" block

 #include <cstdlib>

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

 1

#ifdef __cplusplus
}
#endif

 	1 Your module’s code will be placed here.

 In a moment, you’ll write a main function that will call the FindPrimes function in the calculate_primes side module. Because the FindPrimes function is part of a different module, you need to include its function signature, prefixed with the extern keyword, so that the compiler knows that the function will be available when the code is run.

 Add the following function signature within the extern "C" block in the main.cpp file:

 extern void FindPrimes(int start, int end);

 The last thing you need to do in the main.cpp file is add the main function so that the code is run automatically when the WebAssembly module is instantiated. In the main function, you’ll simply call the FindPrimes function, passing in the number range of 3 to 99.

 Add the following snippet to your main.cpp file within the extern "C" block but after the FindPrimes function signature:

 int main() {
 FindPrimes(3, 99);

 return 0;
}

 Your C++ code is now ready to be turned into a WebAssembly module. Before you use Emscripten to do that, you need to create
 the JavaScript code that will instruct Emscripten to link to your side module (figure 7.13).

 Figure 7.13. Step 2 when implementing dynamic linking using dynamicLibraries is to create the JavaScript code that will instruct Emscripten to link to your side module.

 [image:]

 Creating JavaScript to instruct Emscripten about the side module - you want it to link to

 Because your boss just wants to know what the differences are between the dlopen and dynamicLibraries approaches, you’re going to create the WebAssembly module and have Emscripten generate the HTML template to run it for you,
 rather than creating an HTML web page of your own.

 To link a side module to your main module using the dynamicLibraries approach, you need to write some JavaScript to specify the side module that Emscripten needs to link to. To do this, you
 specify the side module file names in Emscripten’s dynamicLibraries array before Emscripten instantiates the module.

 When using Emscripten’s HTML template, you can include JavaScript near the beginning of the Emscripten-generated JavaScript
 file by specifying a JavaScript file in the command line using the --pre-js flag when creating the WebAssembly module. If you were building your own web page, you could specify settings, like the dynamicLibraries array, in a Module object before the HTML page’s script tag for Emscripten’s generated JavaScript file. When Emscripten’s JavaScript file loads, it creates its own Module object; but, if there’s an existing Module object, it will copy the values from that object into the new Module object.

 	

 More Info

 A number of settings can be adjusted to control the execution of Emscripten’s generated JavaScript code. The following web
 page lists some of them: https://emscripten.org/docs/api_reference/module.html.

 	

 If you’re using the Emscripten-generated HTML template, it specifies a Module object so that it can respond to certain things. For example, it handles the printf calls so that they’re displayed in the text box on the web page and in the browser’s console window, rather than just in
 the console window.

 It’s important not to specify your own Module object when using the HTML template because, if you do, you’ll remove all of the template’s settings. When using the HTML
 template, any values you want to set need to be set directly on the Module object rather than creating a new object.

 In your Chapter 7\7.2.3 dynamicLibraries\source\ folder, create a file named pre.js and then open it with your favorite editor. You’ll need to add
 an array, containing the name of the side module you want linked, to the dynamicLibraries property of the Module object. Add the following snippet to your pre.js file:

 Module['dynamicLibraries'] = ['calculate_primes.wasm'];

 Now that the JavaScript has been written, you can move to the final step of the process (figure 7.14) and have Emscripten generate the WebAssembly module.

 Figure 7.14. The last step of the process when implementing dynamic linking using dynamicLibraries is to have Emscripten generate the WebAssembly module.

 [image:]

 Using Emscripten to generate the WebAssembly file as a main module from main.cpp

 When you use Emscripten to generate your WebAssembly module, you’ll want it to include the pre.js file’s contents in the generated
 JavaScript file. To have Emscripten include the file, you’ll need to specify it using the --pre-js command-line flag.

 	

 Tip

 The pre.js file name is used here as a naming convention because it will be passed to the Emscripten compiler via the --pre-js flag. You don’t have to use this naming convention, but it makes it easier to understand the file’s purpose when you see
 it in your file system.

 	

 To generate your WebAssembly module as a main module, open a command prompt, navigate to the Chapter 7\7.2.3 dynamicLibraries\source\ folder, and run the following command:

 emcc main.cpp -s MAIN_MODULE=1 --pre-js pre.js
[image:] -s EXPORTED_FUNCTIONS=['_putchar','_main'] -o main.html

 Once your WebAssembly main module has been created, you can view the results.

 Viewing the results

 To view your new WebAssembly module in action, open your browser and type http://localhost:8080/main.html into the address box to see the generated web page, shown in figure 7.15.

 Figure 7.15. The prime numbers determined by the side module when both modules were linked together using Emscripten’s dynamicLibraries array

 [image:]

 Now, imagine that, as you were finishing up the WebAssembly module that was using the dynamicLibraries approach, you started to wonder if your boss might also want to see how manual dynamic linking might work.

 7.2.4. Dynamic linking: WebAssembly JavaScript API

 With dlopen, you need to download the side module, but, after that, the dlopen function handles linking it for you. With dynamicLibraries, Emscripten handles downloading and instantiating the modules for you. With this approach, you’ll need to write the JavaScript code to download and instantiate the modules yourself using the WebAssembly JavaScript API.

 For this scenario, you’ve decided to take the calculate_primes.c file from chapter 3 and split it in two, where one WebAssembly module will hold the IsPrime function and the other will have the FindPrimes function. Because you’ll want to use the WebAssembly JavaScript API, both WebAssembly modules will need to be compiled as
 side modules, which means neither will have access to the standard C library functions. Without the standard C library available,
 you’ll need to replace the printf calls with a call to your own JavaScript function to log the prime numbers to the browser’s console window.

 Figure 7.16. The steps for modifying the calculate_primes.c file so that it can be compiled into two WebAssembly side modules. The generated
 WebAssembly files are copied to the server, and then the HTML and JavaScript files are created to load, link, and interact
 with the two WebAssembly modules.

 [image:]

 As figure 7.16 shows, the steps for this scenario will be as follows:

 	Split the logic in calculate_primes.c into two files: is_prime.c and find_primes.c.

 	Use Emscripten to generate the WebAssembly side modules from the is_prime.c and find_primes.c files.

 	Copy the generated WebAssembly files to the server for use by the browser.

 	Create the HTML and JavaScript files needed to download, link, and interact with the two WebAssembly modules using the WebAssembly
 JavaScript API.

 Splitting the logic in the calculate_primes.c file into two files

 As figure 7.17 shows, the first thing you’ll need to do is make a copy of the calculate_primes.c file so that you can adjust the logic and
 split the file in two. In your Chapter 7\ folder, create a 7.2.4 ManualLinking\source\ folder:

 	Copy the calculate_primes.cpp file from your Chapter 7\7.2.2 dlopen\source\ folder to your new source\ folder. Rename the calculate_primes.cpp file that you just copied to is_prime.c.

 	Make a copy of the is_prime.c file, and call it find_primes.c.

 Figure 7.17. The first step toward implementing manual dynamic linking using the WebAssembly JavaScript API is to modify the calculate_primes.c
 file so that its logic is now part of two files.

 [image:]

 Open the is_prime.c file with your favorite editor, and then delete the following items:

 	The cstdlib and cstdio header files

 	The opening extern "C" block and the closing curly brace at the end of the file

 	The FindPrimes and main functions so that IsPrime is the only function left in the file

 Add the EMSCRIPTEN_KEEPALIVE declaration above the IsPrime function so that the IsPrime function is included in the module’s exported functions.

 Open the find_primes.c file with your favorite editor, and delete the following items:

 	The cstdlib and cstdio header files

 	The opening extern "C" block and the closing curly brace at the end of the file

 	The IsPrime and main functions so that FindPrimes is the only function left in the file

 The FindPrimes function will be calling the IsPrime function that’s in the is_prime module. Because the function exists in another module, you’ll need to include the function
 signature for the IsPrime function, preceded by the extern keyword, so the Emscripten compiler knows that the function will be available when the code is run.

 Add the following snippet before the FindPrimes function in your find_primes.c file:

 extern int IsPrime(int value);

 In a moment, you’ll modify the FindPrimes function to call a function in your JavaScript code called LogPrime, rather than calling the printf function. Because this function is also external to the module, you’ll need to include a function signature for it, too.
 Add the next snippet before the IsPrime function signature in your find_primes.c file:

 extern void LogPrime(int prime);

 Finally, the last thing that you need to modify in the find_primes.c file is the FindPrimes function so that it no longer calls the printf function. Delete the printf calls from the beginning and end of the function; replace the printf call that’s within the IsPrime if statement with a call to the LogPrime function, but don’t include the string. Pass in only the variable i to the LogPrime function.

 The modified FindPrimes function should look like the following snippet in your find_primes.c file:

 EMSCRIPTEN_KEEPALIVE
void FindPrimes(int start, int end) {
 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 LogPrime(i); 1
 }
 }
}

 	1 printf is replaced with a call to LogPrime.

 Now that your C code has been created, you can move on to step 2 (figure 7.18), which is to use Emscripten to compile the code into WebAssembly side modules.

 Figure 7.18. Step 2 is to use Emscripten to generate the WebAssembly side modules from your two files.

 [image:]

 Using Emscripten to generate the WebAssembly side modules

 To generate your WebAssembly module from the is_prime.c file, open a command prompt, navigate to the 7.2.4 ManualLinking\source\
 folder, and then run the following command:

 emcc is_prime.c -s SIDE_MODULE=2 -O1 -o is_prime.wasm

 To generate your WebAssembly module from the find_primes.c file, run the following command:

 emcc find_primes.c -s SIDE_MODULE=2 -O1 -o find_primes.wasm

 Once your two WebAssembly modules have been created, the next steps are to create the web page and JavaScript files that will
 load, link, and interact with the modules (figure 7.19).

 Figure 7.19. The final steps are to create the HTML and JavaScript files that will load, link, and interact with the WebAssembly modules.

 [image:]

 Creating the HTML and JavaScript files

 In your Chapter 7\7.2.4 ManualLinking\ folder, create a frontend\ folder:

 	Copy the is_prime.wasm and find_primes.wasm files from your 7.2.4 Manual-Linking\source\ folder to your new frontend\ folder.

 	Create a main.html file in your frontend\ folder, and then open it with your favorite editor.

 The HTML file will be a very basic web page. It will have some text so that you know the page has loaded and then a script tag to load in the JavaScript file (main.js) that will handle loading and linking the two side modules together.

 Add the contents of the next listing to your main.html file.

 Listing 7.5. The contents of the main.html file

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script src="main.js"></script>
 </body>
</html>

 Your next step is to create the JavaScript file that will handle downloading and linking the two WebAssembly modules together.
 In your 7.2.4 ManualLinking\frontend\ folder, create a main.js file, and then open it with your editor.

 The find_primes WebAssembly module will be expecting a function that it can call to pass the prime number to the JavaScript
 code. You’ll create a logPrime function to pass to the module during instantiation that will log the value received from the module to the console window
 of the browser’s developer tools.

 Add the following snippet to the main.js file:

 function logPrime(prime) {
 console.log(prime.toString());
}

 Because the find_primes WebAssembly module is dependent on the IsPrime function in the is_prime module, you’ll need to download and instantiate the is_prime module first. In the then method of the instantiateStreaming call for the is_prime module,

 	Create an importObject for the find_primes WebAssembly module. This importObject will be given the exported _IsPrime function from the is_prime module as well as the JavaScript logPrime function.

 	Call the instantiateStreaming function for the find_primes WebAssembly module and return the Promise.

 The next then method will be for the successful download and instantiation of the find_primes WebAssembly module. In this block, you’ll
 call the _FindPrimes function, passing in a range of values to have the prime numbers within that range logged to the browser’s console window.

 Add the code in the following listing to the main.js file after the logPrime function.

 Listing 7.6. Downloading and linking two WebAssembly modules

 ...
const isPrimeImportObject = { 1
 env: {
 __memory_base: 0,
 }
};

WebAssembly.instantiateStreaming(fetch("is_prime.wasm"), 2
 isPrimeImportObject)
.then(module => { 3

 const findPrimesImportObject = { 4
 env: {
 __memory_base: 0,
 _IsPrime: module.instance.exports._IsPrime, 5
 _LogPrime: logPrime, 6
 }
 };

 return WebAssembly.instantiateStreaming(fetch("find_primes.wasm"), 7
 findPrimesImportObject);

}) 8
.then(module => {
 module.instance.exports._FindPrimes(3, 100); 9
});

 	1 The importObject for the is_prime module

 	2 Downloads and instantiates the is_prime module

 	3 The is_prime module is ready.

 	4 The importObject for the find_primes module

 	5 The exported function is passed to the find_primes module.

 	6 The JavaScript function is passed to the find_primes module.

 	7 Downloads and instantiates the find_primes module. Returns the instantiated module.

 	8 The find_primes module is ready.

 	9 Displays the prime numbers between 3 and 100 to the console window

 Viewing the results

 Once you’ve created the HTML and JavaScript code, you can open a web browser and type http://localhost:8080/main.html into the address box to see the web page. Press F12 to view the console window of the browser’s developer tools. You should
 see the prime numbers between 3 and 100 displayed, similar to figure 7.20.

 Figure 7.20. The prime numbers between 3 and 100 logged by the find_primes WebAssembly module

 [image:]

 Now that you’ve learned how to implement dynamic linking using all three approaches, it’s time to compare them.

 7.3. Dynamic linking review

 You've learned about three approaches to dynamic linking in this chapter:

 	dlopen

 	The side module needs to be downloaded to Emscripten’s file system first.

 	Calling dlopen returns a handle to the side module file.

 	Passing the handle and the function name that you wish to call to the dlsym function will return a function pointer to the function in the side module.

 	At this point, calling the function pointer is the same as calling a normal function in your module.

 	Because you’re requesting a function name based on the side module’s handle, having a function with the same name in the main
 module won’t cause any problems.

 	Linking to a side module is performed as needed.

 	dynamicLibraries

 	You give Emscripten a list of side modules that you want it to link to by including them in the dynamicLibraries array property of the Module object. This list needs to be specified before Emscripten’s JavaScript code is initialized.

 	Emscripten handles downloading and linking the side module to the main module for you.

 	Your module’s code calls the functions in the side module the same way it calls its own functions.

 	It’s not possible to call a function in another module if you already have a function with that name in the current module.

 	All the side modules specified are linked as soon as Emscripten’s JavaScript code is initialized.

 	The WebAssembly JavaScript API

 	You handle downloading the WebAssembly module using the fetch method and use the WebAssembly JavaScript API to have that module instantiated.

 	You then download the next WebAssembly module and pass the necessary exports from the first module as the imports for the
 current module.

 	Your module’s code calls the functions in the side module the same way it calls its own functions.

 	As with the dynamicLibraries approach, it’s not possible to call a function in another module if you already have a function with that name in the current
 module.

 In summary, which approach to dynamic linking you want to use really depends on how much control you want over the process
 and if you want that control in the module or in JavaScript:

 	dlopen gives the dynamic linking control to the backend code. This is also the only approach that’s possible if you need to call
 a function in a side module when you already have a function with that name in your main module.

 	dynamicLibraries gives the dynamic linking control to the tooling, where Emscripten does the work for you.

 	The WebAssembly JavaScript API gives the dynamic linking control to the front-end code, where your JavaScript handles the
 linking.

 How can you use what you learned in this chapter in the real world?

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	A game engine is something that could benefit from dynamic linking. When you downloaded the first game, the engine would need
 to be downloaded for the first time, too, and then cached. The next time you went to play a game, the framework could check
 to see if the engine was already on the system and, if so, download only the requested game. This would save time and bandwidth.

 	You could build an image-editing module so that the core logic was downloaded initially, but the things that might not be
 used as often (certain filters, perhaps) could be downloaded on-demand.

 	You might have a web application with multiple subscription tiers. The free tier would have the fewest features, so only the
 basic module would be downloaded. For the Premium tier, additional logic could be included. For example, perhaps your web
 application’s Premium tier adds the ability to track expenses. The add-on module could be used to parse the contents of an
 Excel file and format it the way your server expects.

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
Using one of the dynamic linking approaches you’ve learned in this chapter, create the following:

 	A side module containing an Add function that accepts two integer parameters and returns the sum as an integer

 	A main module that has a main() function that calls the side module’s Add function and displays the result to the console window of the browser’s developer tools

 2
Which dynamic linking approach would you use if you needed to call a function in the side module but that function had the
 same name as a function in your main module?

 Summary

 In this chapter, you learned the following:

 	As with most things, there are pros and cons to using dynamic linking. Before pursuing this approach, you should decide if
 the advantages outweigh the disadvantages for your application.

 	Dynamic linking can be performed as needed by your WebAssembly’s code using the dlopen function.

 	It’s possible to tell the Emscripten-generated JavaScript that you want certain side modules linked to your main module. Emscripten
 will automatically link the modules together during instantiation.

 	Using the WebAssembly JavaScript API, it’s possible to manually download, instantiate, and link multiple side modules together.

 	You can control the execution of Emscripten’s generated JavaScript by creating a Module object before Emscripten’s JavaScript file is included. You can also adjust the Module object by including your own JavaScript in Emscripten’s generated JavaScript file using the --pre-js command-line flag when compiling the WebAssembly module.

 Chapter 8. Dynamic linking: The implementation

 This chapter covers

 	Using dynamic linking in a single-page application

 	Creating multiple instances of Emscripten’s JavaScript Module object, with each instance dynamically linked to a different WebAssembly side module

 	Reducing the size of the WebAssembly main module by enabling dead code elimination

 In chapter 7, you learned about the different approaches available for dynamically linking WebAssembly modules:

 	dlopen, in which your C or C++ code manually links to a module, obtaining function pointers to the specific functions as they’re
 required

 	dynamicLibraries, in which your JavaScript provides Emscripten with a list of modules to link to, and Emscripten automatically links to those
 modules during its initialization

 	Manually linking, in which your JavaScript takes the exports of one module and passes them as the imports to another module
 using the WebAssembly JavaScript API

 In this chapter, you’re going to use the dynamicLibraries approach in which Emscripten handles the dynamic linking for you based on a list of modules that you specify.

 Suppose the company that created the online version of its point-of-sale application’s Edit Product page now wants to create
 the Place Order form shown in figure 8.1. Like the Edit Product page, the Place Order form will use a WebAssembly module for validating the user’s entries.

 Figure 8.1. The new Place Order form

 [image:]

 As the company is planning how the new web page will work, it notices that it will need validation similar to that of the
 existing Edit Product page:

 	Both pages require that a valid item be selected from a drop-down list.

 	Both pages need to ensure that a value was provided.

 Rather than duplicate the logic listed in the WebAssembly module for each page, the company would like to take the common
 logic—the check for whether a value was provided and the check for whether the selected ID is in the array of valid IDs—and
 move it to its own module. Each page’s validation module would then be dynamically linked at runtime to the module with the
 common logic to gain access to the core features that it needs, as figure 8.2 shows. Even though the two modules will remain separate and simply call into each other as needed, as far as the code is concerned, it feels like you’re only working with
 one module.

 Figure 8.2. At runtime, the logic that’s specific to the page (the side module) will be linked to the common logic (the main module).
 As far as the code is concerned, the two modules will be acting as one.

 [image:]

 For this scenario, the company would like to adjust the website so that it works as an SPA (single-page application).

 	

 DEFINITION

 What’s an SPA? With a traditional website, you have one HTML file per web page. With SPAs, you have only one HTML page, and
 that page’s content is modified by the code that’s executing in the browser based on the user’s interactions.

 	

 Adjusting the web page to work as an SPA adds some interesting twists when it comes to dynamic linking with the dynamicLibraries approach; you specify all the side modules that you want Emscripten to link to before Emscripten’s JavaScript is initialized.
 Normally, Emscripten’s generated JavaScript code exists as a global object called Module and is initialized the moment the browser loads the JavaScript file. When Emscripten’s JavaScript is initialized, all the
 side modules that you specified are linked to the main module.

 One advantage of dynamic linking is only loading and linking to a module as it’s needed, to reduce the download and processing
 time when the page first loads. When working with the SPA, you’ll want to specify only the side module for the page that’s
 displayed initially. When the user navigates to the next page, how do you specify the side module for it in the SPA if Emscripten’s
 Module object has already been initialized?

 It turns out there’s a flag you can specify when compiling the main module (-s MODULARIZE=1) that will tell the Emscripten compiler to wrap the Emscripten-generated JavaScript file’s Module object in a function. This solves two problems:

 	You’re now in control of when the Module object gets initialized because you’ll now need to create an instance of the object to use it.

 	Because you can create an instance of the Module object, you’re not limited to a single instance. This will allow you to create a second instance of your WebAssembly main
 module and have that instance link to the side module specific to the second page.

 8.1. Creating the WebAssembly modules

 In chapters 3, 4 and 5, you created modules as side modules so that the Emscripten JavaScript file wasn’t generated, allowing you to manually handle
 downloading the module and instantiating it with the WebAssembly JavaScript API. Although that’s a useful side effect, side
 modules are actually intended for dynamic linking, which is what you’ll be using them for in this chapter.

 Side modules don’t have an Emscripten-generated JavaScript file or standard C library functions because they are linked to
 a main module at runtime. The main module has these features, and, when linked, the side modules gain access to them.

 	

 Reminder

 With dynamic linking, there can be multiple side modules linked to a main module, but there can be only one main module.

 	

 Figure 8.3 shows the following steps for revising the C++ code and generating the WebAssembly modules:

 	Split the logic in the validate.cpp file into two files: one file for the common logic that will be shared (validate_core.cpp)
 and one for the logic that’s specific to the Edit Product page (validate_product.cpp).

 	Create a new C++ file for the logic that will be specific to the new Place Order form (validate_order.cpp).

 	Use Emscripten to generate the WebAssembly side modules from validate_product.cpp and validate_order.cpp.

 	Define a JavaScript function for the C++ code to call if there’s an issue with the validation. The function will be placed
 in a mergeinto.js file and included in Emscripten’s generated JavaScript file during compilation of the main module.

 	Emscripten will be used to generate the WebAssembly file as a main module from validate_core.cpp.

 Figure 8.3. The steps needed to revise the C++ logic and generate the WebAssembly modules

 [image:]

 After the WebAssembly modules are created, the following steps remain for modifying the website (figure 8.4):

 	Adjust the web page to now have a navigation bar and the Place Order form’s controls. You’ll then modify the JavaScript to
 show the proper set of controls based on which navigation link is clicked.

 	Adjust your web page’s JavaScript to link the proper side module to the common shared logic module. You’ll also add the JavaScript
 code for validating the Place Order form.

 Figure 8.4. Steps for modifying the HTML to have a Place Order form and revising the JavaScript code to implement dynamic linking of the
 WebAssembly modules in a browser and by the server-side code. I discuss the server aspect, Node.js, in a later chapter.

 [image:]

 8.1.1. Splitting the logic in the validate.cpp file into two files

 As figure 8.5 shows, your first step is to revise the C++ code that you wrote in chapter 5 so that the logic, which will be shared by both the Edit Product and Place Order forms, is in its own file. The logic specific
 to the Edit Product form will be moved to a new file.

 Figure 8.5. Step 1 of the process is to move the Edit Product page’s specific logic to its own file.

 [image:]

 In your WebAssembly folder, create a Chapter 8\8.1 EmDynamicLibraries\source\ folder for the files that you’ll use in this section, and then complete the following:

 	Copy the validate.cpp file from the Chapter 5\5.1.1 EmJsLibrary\source\ folder to your newly created source folder.

 	Make a copy of the validate.cpp file, and rename it validate_product.cpp.

 	Rename your other copy of the validate.cpp file to validate_core.cpp.

 The first thing that you’ll need to do is remove the edit-product-specific logic from the valiate_core.cpp file, because this
 file will be used to generate the common WebAssembly module that will be used by both the Edit Product and Place Order forms.

 Adjusting the validate_core.cpp file

 Open the validate_core.cpp file with your favorite editor, and then remove the ValidateName and ValidateCategory functions. Remove the include for cstring because it’s no longer needed by this file.

 Because the ValidateValueProvided and IsCategoryIdInArray functions will now be called by other modules, these functions will need to be exported. Add the following code snippet above
 both the ValidateValueProvided and the IsCategoryIdInArray functions in the validate_core.cpp file:

 #ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif

 It’s possible to use the IsCategoryIdInArray function to check and see if an ID is in any array specified, but the name the function uses indicates that it’s only for
 a category ID. You’ll want to modify this function so that its name is more generic, because it will be used by both side
 modules.

 Adjust the IsCategoryIdInArray function in the validate_core.cpp file to no longer use the word category. The function should look like the code in the following listing.

 Listing 8.1. The IsCategoryIdInArray function modified to now be called IsIdInArray

 ...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE 1
#endif
int IsIdInArray(char* selected_id, int* valid_ids, int array_length) {
 int id = atoi(selected_id);
 for (int index = 0; index < array_length; index++) {
 if (valid_ids[index] == id) {
 return 1;
 }
 }

 return 0;
}
...

 	1 Automatically adds the IsIdInArray function to the module’s list of exported functions

 Now that you’ve removed the Edit Product page’s logic from the validate_core.cpp file and modified the IsCategoryIdInArray function to be more generic, you’ll need to revise the Edit Product page’s logic.

 Adjusting the validate_product.cpp file

 Open the validate_product.cpp file in your favorite editor, and remove the ValidateValueProvided and IsCategoryIdInArray functions because they’re now part of the validate_core module. With the ValidateValueProvided and IsIdInArray functions now part of a different module, you’ll have to include their function signatures, prefixed with the extern keyword, so that the compiler knows the functions will be available when the code is run.

 Add the following function signatures within the extern "C" block and before the extern UpdateHostAboutError function signature in the validate_product.cpp file:

 extern int ValidateValueProvided(const char* value,
 const char* error_message);

extern int IsIdInArray(char* selected_id, int* valid_ids,
 int array_length);

 Because you renamed IsCategoryIdInArray to IsIdInArray in the core logic, you need to revise the ValidateCategory function to call IsIdInArray instead. The ValidateCategory function in the validate_product.cpp file should look like the code in the next listing.

 Listing 8.2. The modified ValidateCategory function (validate_product.cpp)

 ...

int ValidateCategory(char* category_id, int* valid_category_ids,
 int array_length) {
 if (ValidateValueProvided(category_id,
 "A Product Category must be selected.") == 0) {
 return 0;
 }

 if ((valid_category_ids == NULL) || (array_length == 0)) {
 UpdateHostAboutError("There are no Product Categories available.");
 return 0;
 }

 if (IsIdInArray(category_id, valid_category_ids, 1
 array_length) == 0) {
 UpdateHostAboutError("The selected Product Category is not valid.");
 return 0;
 }

 return 1;
}
...

 	1 Function renamed to IsIdInArray

 Once you’ve separated the Edit Product page’s logic from the common logic, the next step (figure 8.6) is to create the Place Order form’s logic.

 Figure 8.6. Step 2 of the process is to create the logic for the Place Order form.

 [image:]

 8.1.2. Creating a new C++ file for the Place Order form’s logic

 In your Chapter 8\8.1 EmDynamicLibraries\source\ folder, create a validate_order.cpp file and open it with your favorite editor. When creating
 a side module in the previous chapters, you didn’t include the standard C library header files because the functions used
 wouldn’t be available at runtime. In this case, because the side module will be linked to the main module (validate_core),
 and the main module will have access to the standard C library, the side module will be able to access those functions.

 Add the includes for the standard C library and Emscripten header files, as well as the extern "C" block, to the validate_order.cpp file, as shown in the next listing.

 Listing 8.3. The header files and extern "C" block added to the validate_order.cpp file

 #include <cstdlib>

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

 1

#ifdef __cplusplus
}
#endif

 	1 Your WebAssembly functions will be placed here.

 You’ll need to add the function signatures for the ValidateValueProvided and IsIdInArray functions that are in the validate_core module. You’ll also add the function signature for the UpdateHostAboutError function that the module will import from the JavaScript code.

 Add the function signatures, which are shown in the following code snippet, within the extern "C" block of the validate_order.cpp file:

 extern int ValidateValueProvided(const char* value,
 const char* error_message);

extern int IsIdInArray(char* selected_id, int* valid_ids,
 int array_length);

extern void UpdateHostAboutError(const char* error_message);

 The Place Order form that you’ll be building will have a product drop-down list and a quantity field that you’ll need to validate.
 Both field values will be passed to the module as strings, but the product ID will hold a numeric value.

 To validate the user-selected product ID and the quantity that was entered, you’ll create two functions: ValidateProduct and ValidateQuantity. The first function that you’ll create is ValidateProduct to ensure a valid product ID was selected.

 The ValidateProduct function

 The ValidateProduct function will receive the following parameters:

 	The user-selected product ID

 	A pointer to an array of integers holding the valid product IDs

 	The number of items in the array of valid product IDs

 The function will verify three things:

 	Was a product ID provided?

 	Was a pointer to the valid product IDs array provided?

 	Is the user-selected product ID in the array of valid IDs?

 If any of the validation checks fail, you’ll pass an error message to the JavaScript code by calling the UpdateHostAboutError function. You’ll then exit the ValidateProduct function by returning 0 to indicate that there was an error. If the code runs to the end of the function, there were no validation issues, so a 1 (success) message is returned.

 Add the ValidateProduct function, shown in the following listing, below the UpdateHostAboutError function signature and within the extern "C" block in the validate_order.cpp file.

 Listing 8.4. The ValidateProduct function

 #ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateProduct(char* product_id, int* valid_product_ids,
 int array_length) {
 if (ValidateValueProvided(product_id,
 "A Product must be selected.") == 0) { 1
 return 0;
 }

 if ((valid_product_ids == NULL) || (array_length == 0)) { 2
 UpdateHostAboutError("There are no Products available.");
 return 0;
 }

 if (IsIdInArray(product_id, valid_product_ids,
 array_length) == 0) { 3
 UpdateHostAboutError("The selected Product is not valid.");
 return 0;
 }

 return 1; 4
}

 	1 If a value isn’t received, then returns an error

 	2 If the array wasn’t specified, then returns an error

 	3 If the selected product ID isn’t found in the array, then returns an error

 	4 Tells the caller that everything was ok

 The final function that you’ll need to create is the ValidateQuantity function to verify that the quantity entered by the user is a valid value.

 The ValidateQuantity function

 The ValidateQuantity function will accept a single parameter, the user-entered quantity, and it will verify two things:

 	Was a quantity specified?

 	Is the quantity value 1 or greater?

 If either validation check fails, you’ll pass an error message to the JavaScript code by calling the UpdateHostAboutError function and then exit the function by returning 0 (zero) to indicate that there was an error. If the code runs to the end of the function, there were no validation issues,
 so a 1 (success) message is returned.

 Add the ValidateQuantity function in the following listing below the ValidateProduct function and within the extern "C" block in the validate_order.cpp file.

 Listing 8.5. The ValidateQuantity function

 #ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateQuantity(char* quantity) {
 if (ValidateValueProvided(quantity,
 "A quantity must be provided.") == 0) { 1
 return 0;
 }

 if (atoi(quantity) <= 0) { 2
 UpdateHostAboutError("Please enter a valid quantity.");
 return 0;
 }

 return 1; 3
}

 	1 If a value isn’t received, then returns an error

 	2 If the value is less than 1, then returns an error

 	3 Tells the caller that everything was ok

 Now that you’ve finished revising the C++ code, the next part of the process (figure 8.7) is to have Emscripten compile the C++ files into WebAssembly modules.

 Figure 8.7. Step 3 is to use Emscripten to compile the C++ files into WebAssembly modules.

 [image:]

 8.1.3. Using Emscripten to generate the WebAssembly side modules

 When using dynamic linking with Emscripten, you can have at most one main module. The main module will include the standard
 C library functions and Emscripten’s generated JavaScript file. The side modules won’t include either of these features, but
 when they’re linked to the main module, they gain access to this functionality. Your validate_core.cpp file will be built
 as a main module, and the other two C++ files, validate_product.cpp and validate_order.cpp, will be built as side modules.

 By default, when you create a main module, Emscripten will include all the standard C library functions in the WebAssembly
 module because it doesn’t know which ones the side modules will need. This makes the module much larger than it needs to be,
 especially if you use only a few standard C library functions.

 To optimize the main module, there’s a way to tell Emscripten to include only specific standard C library functions. You’ll
 use this approach, but, before you can do this, you need to know which functions need to be included. To determine this, you
 could always read through the code line by line, but you could miss some that way. Another approach is commenting out the
 header files for the standard C library and then running the command line to generate the WebAssembly module. The Emscripten
 compiler will see that there are no function signatures defined for the standard C library functions that are being used and
 will display an error about them.

 You’ll use the second approach, so you’ll need to compile the side modules before you compile the main module. As figure 8.8 shows, the first WebAssembly module that you’ll generate will be the side module for the Edit Product page (validate_product.cpp).

 Figure 8.8. Emscripten is used to generate the WebAssembly module for the Edit Product page’s validation.

 [image:]

 Generating the Edit Product side module: validate_product.cpp

 In previous chapters, when you’ve created WebAssembly side modules, you replaced the standard C library headers with a header
 for some replacement code that you built in chapter 4. You don’t need the replacement code in this case because the side module will be linked to the main module at runtime, and
 the main module will have the standard C library functions.

 When you compile the main module in section 8.1.5, you’re going to provide Emscripten with a list of the standard C library functions that your side modules are using. To
 determine which functions your code is using, you’re going to comment out the standard C library header files and then try
 to compile the module. If there are any standard C library functions in use, the Emscripten compiler will throw errors about
 the missing function definitions.

 Before you try to determine which standard C library functions are in use, however, you need to compile the module normally
 to make sure there aren’t any issues. You want to know for sure that the errors you’re seeing when you comment out the header
 files are related to the missing function definitions. To compile the module normally, open a command prompt, navigate to
 the Chapter 8\8.1 EmDynamicLibraries\source\ folder, and then run the following command:

 emcc validate_product.cpp -s SIDE_MODULE=2 -O1
[image:] -o validate_product.wasm

 There shouldn’t be any errors displayed in the console window, and there should be a new validate_product.wasm file in your
 source folder.

 Next you need to determine which standard C library functions your code is using. In your Chapter 8\8.1 EmDynamicLibraries\source\ folder, open the validate_product .cpp file and then comment out the include statements for the cstdlib and cstring files. Save your file, but don’t close it because you’ll need to uncomment those lines
 of code in a moment.

 At your command prompt, run the following command, which is the same one you ran a moment ago:

 emcc validate_product.cpp -s SIDE_MODULE=2 -O1
[image:] -o validate_product.wasm

 This time, you should see an error message displayed in the console window, similar to figure 8.9, indicating that the strlen function isn’t defined. This error message also indicates that NULL isn’t defined, but you can ignore that because you don’t need to do anything to have that included. Make note of the strlen function because you’ll need to include it when you use Emscripten to generate the main module.

 Figure 8.9. Emscripten throws an error about the strlen function and NULL not being defined.

 [image:]

 In your validate_product.cpp file, remove the comments from in front of the cstdlib and cstring header files. Then save the
 file.

 Now that you have your Edit Product page’s WebAssembly module, you need to create the Place Order form’s module. As figure 8.10 shows, you’ll follow the same process as you did here.

 Figure 8.10. Emscripten used to generate the WebAssembly module for the Place Order form’s validation

 [image:]

 Generating the Place Order side module: validate_order.cpp

 As with the Edit Product page’s module, before you try to determine which standard C library functions this module is using,
 you need to make sure your code compiles without issue. Open a command prompt, navigate to the Chapter 8\8.1 EmDynamicLibraries\source\ folder, and then run the following command:

 emcc validate_order.cpp -s SIDE_MODULE=2 -O1
[image:] -o validate_order.wasm

 There shouldn’t be any errors displayed in the console window, and there should be a new validate_order.wasm file in your
 source folder.

 To determine if your code is using any standard C library functions, open the validate_order.cpp file and comment out the
 include statement for the cstdlib header file. Save the file, but don’t close it because you’ll need to uncomment that line of code in a moment.

 At the command prompt, run the same command that you ran a moment ago:

 emcc validate_order.cpp -s SIDE_MODULE=2 -O1
[image:] -o validate_order.wasm

 You should see an error message displayed in the console window, similar to that in figure 8.11, indicating that the function atoi isn’t defined. Make a note of that function because you’ll need to include it when you use Emscripten to generate the main
 module. Again, you can safely ignore the error about NULL being an undeclared identifier.

 Figure 8.11. Emscripten throws an error about the atoi function and NULL not being defined.

 [image:]

 In your validate_order.cpp file, remove the comment from in front of the cstdlib header file. Then save the file.

 Now that you’ve created both side modules, it’s time to create the JavaScript that the main module will use (figure 8.12).

 8.1.4. Defining a JavaScript function to handle an issue with the validation

 In chapter 5, you created a mergeinto.js file that holds the UpdateHostAboutError JavaScript function that the C++ functions will call into if there’s an issue with the validation. The UpdateHostAboutError function will read the message from the module’s memory and then pass the string to your web page’s main JavaScript.

 As the following code snippet shows, the UpdateHostAboutError function is part of a JavaScript object passed as the mergeInto function’s second parameter. The mergeInto function will add your function to Emscripten’s LibraryManager.library object to be included in Emscripten’s generated JavaScript file:

 mergeInto(LibraryManager.library, {
 UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(Module.UTF8ToString(errorMessagePointer));
 }
});

 Figure 8.12. Define the JavaScript function that the C++ code will call if there’s an issue with the validation. The code in this file
 will be included in Emscripten’s generated JavaScript file.

 [image:]

 Copy the mergeinto.js file from your Chapter 5\5.1.1 EmJsLibrary\source\ folder to your Chapter 8\8.1 EmDynamicLibraries\source\ folder. When you use Emscripten to generate the WebAssembly module in the next step, you’ll also
 instruct it to add the JavaScript contained in the mergeinto.js file in its generated JavaScript file. To do this, you’ll
 specify the mergeinto.js file by using the --js-library command-line option.

 Once you have the mergeinfo.js file, you can move on to the next step (figure 8.13) and generate the WebAssembly main module.

 Figure 8.13. Use Emscripten to generate the WebAssembly main module from validate_core.cpp. Have Emscripten include the contents of the
 mergeinto.js file in its generated JavaScript file.

 [image:]

 8.1.5. Using Emscripten to generate the WebAssembly main module

 To have Emscripten generate a main module, you need to include the MAIN_MODULE flag. If you specify 1 for the value (-s MAIN_MODULE=1), Emscripten disables dead code elimination.

 	

 Info

 Dead code elimination prevents functions that aren’t used by your code from being included in the resulting WebAssembly module.

 	

 Disabling dead code elimination is typically desired for a main module because it doesn’t know what the side modules are going
 to need. As a result, it keeps all the functions that are defined in your code and all the standard C library functions. For
 a large application, this approach is desired because your code will likely use quite a few of the standard C library functions.

 If your code is using only a small number of standard C library functions, as it is in this case, then all those extra functions
 that are being included just increase the module’s size and slow down the download and instantiation. In this case, you’ll
 want to enable dead code elimination for the main module; to do this, you specify 2 for the MAIN_MODULE value:

 -s MAIN_MODULE=2

 	

 Warning

 Enabling dead code elimination for a main module means that it’s up to you to make sure your side modules’ necessary functions
 are kept alive.

 	

 When you created your validate_product and validate_order WebAssembly modules, you determined that they needed the following
 standard C library functions: strlen and atoi. To tell Emscripten to include these functions in the generated module, you’ll include the functions in the command-line
 array EXPORTED_FUNCTIONS.

 Your JavaScript code will be using the ccall, stringToUTF8, and UTF8ToString Emscripten helper functions, so you’ll need to include them in the generated JavaScript file. To do this, you’ll include
 them in the EXTRA_EXPORTED_RUNTIME_METHODS command-line array when you run the Emscripten compiler.

 Normally when you create a WebAssembly module, Emscripten’s generated JavaScript code exists as a global object called Module. This works when you have only one WebAssembly module per web page, but, for this chapter’s scenario, you’ll be creating
 a second WebAssembly module instance:

 	One instance for the Edit Product form

 	One instance for the Place Order form

 You can allow for this to work by specifying the -s MODULARIZE=1 command-line flag, which will cause the Module object in Emscripten’s generated JavaScript code to be wrapped in a function.

 	

 Info

 When you don’t use the MODULARIZE flag, just including a link to Emscripten’s JavaScript file in your web page will cause the WebAssembly module to be downloaded
 and instantiated when the page loads the file. When using the MODULARIZE flag, however, you’re responsible for creating an instance of the Module object in your JavaScript code to trigger the download and instantiation of the WebAssembly module.

 	

 Open a command prompt, navigate to the Chapter 8\8.1 EmDynamicLibraries\source\ folder, and run the following command to create your validate_core WebAssembly module:

 emcc validate_core.cpp --js-library mergeinto.js -s MAIN_MODULE=2
[image:] -s MODULARIZE=1
[image:] -s EXPORTED_FUNCTIONS=['_strlen','_atoi']
[image:] -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','stringToUTF8',
[image:]'UTF8ToString'] -o validate_core.js

 Now that the WebAssembly modules have been created, you can move on to the next steps (figure 8.14), which are to copy the WebAssembly files and Emscripten’s generated JavaScript file to the location where they’ll be used
 by your website. You’ll modify the web page’s HTML to now also have a Place Order form section. You’ll then update the JavaScript
 code to implement dynamic linking of the modules.

 Figure 8.14. You’ll adjust the HTML to have a Place Order form and then revise the JavaScript code to implement dynamic linking of the
 WebAssembly modules in a browser.

 [image:]

 8.2. Adjusting the web page

 In your Chapter 8\8.1 EmDynamicLibraries\ folder, create a frontend\ folder and then copy the following files into it:

 	validate_core.js, validate_core.wasm, validate_product.wasm, and validate_order.wasm from your Chapter 8\8.1 EmDynamicLibraries\source\ folder

 	editproduct.html and editproduct.js from your Chapter 5\5.1.1 EmJsLibrary\frontend\ folder

 Because the Place Order form will be added to the same web page as the Entry Product form, you’ll rename the files to be more
 generic. Rename editproduct.html to index.html and editproduct.js to index.js.

 Open the index.html file with your favorite editor so that you can add the new navigation bar and controls for the Place Order
 form, as shown in figure 8.15. To create a navigation section on your web page for things like menus, you’ll use a Nav tag.

 Figure 8.15. The new navigation bar and Place Order form controls that you will add to the web page

 [image:]

 When creating menu systems, it’s common practice to define the menu’s items by using UL and LI tags and then using CSS to style them. The UL tag stands for Unordered List, which uses bullets. An OL tag, which stands for an Ordered List (a numbered list), can also be used but is a less common approach. Within the UL tag, you specify one or more LI (list item) tags for each menu item. If you’d like more information about building navigation bars, you can visit www.w3schools.com/css/css_navbar.asp.

 Between the <body onload="initializePage()"> tag and the first opening div tag (<div class="container">) in the index.html file, add the HTML from the following listing for the new navigation bar.

 Listing 8.6. The HTML for the new navigation bar

 ...

<nav class="navbar navbar-expand-sm bg-dark navbar-dark"> 1
 <ul class="navbar-nav">
 <li class="nav-item">
 <a id="navEditProduct" class="nav-link" href="#Edit Product"
 onclick="switchForm(true)">Edit Product 2

 <li class="nav-item">
 <a id="navPlaceOrder" class="nav-link" href="#PlaceOrder"
 onclick="switchForm(false)">Place Order 3

</nav>
...

 	1 The new navigation bar

 	2 Clicking this link will show the Edit Product form.

 	3 Clicking this link will show the Place Order form.

 Add an id attribute to the H1 tag called formTitle so the JavaScript code will be able to change the value displayed to the user that indicates which form is displayed. Remove
 the text from the tag. The tag should look like this:

 <h1 id="formTitle"></h1>

 Because you’ll need to hide the Edit Product form’s controls when the Place Order form is displayed, you’ll wrap them with
 a div that the JavaScript code can show or hide. Add an opening div tag—with an id value of productForm—before the div tag that surrounds the Name field. Because the Place Order form, rather than the Edit Product form, might be displayed when the web page first loads,
 you’ll also include a style attribute on the productForm div to have it hidden by default. Add the closing div tag after the save button tag.

 Change the onclick value of the Save button from onClickSave to onClickSaveProduct so it’s obvious that the save function is for the Edit Product form. The HTML for the Edit Product form’s controls in index.html should look like the HTML
 in the next listing.

 Listing 8.7. The modified HTML for the Edit Product form section in index.html

 ...

<div id="productForm" style="display:none;"> 1
 <div class="form-group">
 <label for="name">Name:</label>
 <input type="text" class="form-control" id="name">
 </div>
 <div class="form-group">
 <label for="category">Category:</label>
 <select class="custom-select" id="category">
 <option value="0"></option>
 <option value="100">Jeans</option>
 <option value="101">Dress Pants</option>
 </select>
 </div>

 <button type="button" class="btn btn-primary"
 onclick="onClickSaveProduct()">Save</button> 2
</div> 3
...

 	1 New opening div tag surrounding the Edit Product form’s controls

 	2 onclick value changed to onClickSaveProduct

 	3 Closing div tag for the productForm tag that was added

 You’ll now need to add the Place Order form’s controls to the HTML. As with the Edit Product controls, you’ll surround the
 Place Order form’s controls with a div having an id value of orderForm.

 The Place Order form will have three controls:

 	A drop-down list of products

 	A Quantity text box

 	An Add to Cart button

 Add the HTML from the next listing following the closing div that you added for the productForm div in the index.html file.

 Listing 8.8. The new HTML for the Place Order form

 ...

<div id="orderForm" style="display:none;">
 <div class="form-group">
 <label for="product">Product:</label>
 <select class="custom-select" id="product">
 <option value="0"></option>
 <option value="200">Women's Mid Rise Skinny Jeans</option>
 <option value="301">
 Men's Relaxed Classic Fit Flat Front Pant
 </option>
 </select>
 </div>
 <div class="form-group">
 <label for="quantity">Quantity:</label>
 <input type="text" class="form-control" id="quantity" value="0">
 </div>

 <button type="button" class="btn btn-primary"
 onclick="onClickAddToCart()">Add to Cart</button>
</div>
...

 The final edits that you’ll need to make will be the links to the JavaScript files at the end of the index.html file:

 	Because you renamed the editproduct.js file to index.js, change the src attribute value of the first script tag to index.js.

 	When you used Emscripten to create the main module, you gave it the name validate_core.js, so you’ll need to change the src attribute value of the second script tag to validate_core.js.

 The two script tags should look like this:

 <script src="index.js"></script>
<script src="validate_core.js"></script>

 Now that the HTML has been modified to contain a new navigation bar and the new Place Order form’s controls, it’s time to
 revise the JavaScript to work with the new WebAssembly modules.

 8.2.1. Adjusting your web page’s JavaScript

 Open your index.js file in your favorite editor. This file will now handle the logic for two forms: Edit Product and Place
 Order. Because of this, the first thing you’ll need to do is modify the name of the initialData object so it’s clear that the object is for the Edit Product form. Change the name from initialData to initialProductData so that it looks like the following snippet:

 const initialProductData = {
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

 The Place Order form’s product drop-down list will need to be validated to ensure the user’s selection is a valid ID. To do
 this, you’ll pass an array to the Place Order form’s WebAssembly module indicating what the valid IDs are. Add the following
 global array of valid IDs after the VALID_CATEGORY_IDS array in the index.js file:

 const VALID_PRODUCT_IDS = [200, 301];

 When you compiled the main module (validate_core.wasm), you instructed Emscripten to wrap its Module object in a function so that multiple instances of that object could be created. You did this because you’ll be creating
 two WebAssembly module instances for this web page.

 The Edit Product form will have a WebAssembly instance in which the main module is linked to the Edit Product side module:
 validate_product.wasm. The Place Order form will also have a WebAssembly instance, in which the main module is linked to the
 Place Order form’s side module: validate_order.wasm.

 To hold these two Emscripten Module instances, you need to add the global variables in the following code snippet after the VALID_PRODUCT_IDS array in the index.js file:

 let productModule = null; 1
let orderModule = null; 2

 	1 Will hold the validate_core and validate_product linked modules

 	2 Will hold the validate_core and validate_order linked modules

 That’s it for the changes for the global objects. Now you’ll need to make a few changes to the initializePage function.

 The initializePage function

 The first change that’s needed in the initializePage function is the name of the object used to populate the name field and category drop-down. The object’s name needs to be
 changed from initialData to initialProductData.

 This web page is being built as an SPA, so clicking the links in the navigation bar won’t bring you to a new page. Instead,
 a fragment identifier is placed at the end of the address in the browser’s address box, and the web page’s contents are adjusted to show the desired
 view. If you were to give someone the address to the web page, and it included the fragment identifier, the web page should
 display that section as if the user had navigated to it by clicking that navigation link.

 	

 Info

 A fragment identifier is an optional portion at the end of a URL that starts with a hash (#) symbol, as figure 8.16 shows. It’s typically used to identify a section of the web page. When you click a hyperlink that points to a fragment identifier,
 the web page jumps to that location, which is useful when navigating large documents.

 	

 Figure 8.16. The URL of your web page with “PlaceOrder” as the fragment identifier

 [image:]

 Because you’ll want the web page to show the proper view based on whether a fragment identifier was specified in the page’s
 address, you’ll add some code to the end of the initializePage function to check and see if an identifier was included. By default, the web page will show the Edit Product form; but if
 the #PlaceOrder identifier is included in the address, you’ll display the Place Order form instead. After the fragment identifier detection code, you’ll add a call to a function that will cause the proper form to be displayed.

 Revise the initializePage function in the index.js file so that it matches the code in the next listing.

 Listing 8.9. The modified initializePage function

 ...

function initializePage() {
 document.getElementById("name").value = initialProductData.name; 1

 const category = document.getElementById("category");
 const count = category.length;
 for (let index = 0; index < count; index++) {
 if (category[index].value === initialProductData.categoryId) { 1
 category.selectedIndex = index;
 break;
 }
 }

 let showEditProduct = true; 2
 if ((window.location.hash) &&
 (window.location.hash.toLowerCase() === "#placeorder")) { 3
 showEditProduct = false; 4
 }

 switchForm(showEditProduct); 5
}
...

 	1 initialData changed to initialProductData

 	2 Displays the Edit Product view by default

 	3 If a fragment identifier was included in the website’s address, and it is #placeorder...

 	4 ...the Place Order form is to be displayed.

 	5 Displays the proper form

 You’ll need to create the switchForm function to handle adjusting the web page so that it displays the requested form: the Edit Product form or the Place Order
 form.

 The switchForm function

 The switchForm function will perform the following steps:

 	Clear any error message that might be displayed.

 	Highlight the item in the navigation bar that matches the form that needs to be displayed.

 	Modify the title in the H1 tag on the web page to reflect the section that’s displayed.

 	Show the requested form and hide the other.

 Because the main module was compiled with the MODULARIZE flag, Emscripten doesn’t automatically download and instantiate the WebAssembly module for you. It’s up to you to create
 an instance of the Emscripten Module object.

 If an instance of this object hasn’t been created for the requested form yet, the switchForm function will also create one. The Emscripten Module object can accept a JavaScript object to control code execution, so your code will use it to pass in the name of the side
 module that it needs to link to via the dynamicLibraries array property.

 Add the code in the next listing after the initializePage function in your index.js file.

 Listing 8.10. The switchForm function

 ...

function switchForm(showEditProduct) {
 setErrorMessage("");
 setActiveNavLink(showEditProduct); 1
 setFormTitle(showEditProduct); 2

 if (showEditProduct) { 3
 if (productModule === null) { 4
 productModule = new Module({ 5
 dynamicLibraries: ['validate_product.wasm'] 6
 });
 }

 showElement("productForm", true); 7
 showElement("orderForm", false);
 } else { 8
 if (orderModule === null) {

 orderModule = new Module({ 9
 dynamicLibraries: ['validate_order.wasm'] 10
 });
 }

 showElement("productForm", false); 11
 showElement("orderForm", true);
 }
}
...

 	1 Highlights the navigation bar item for the view

 	2 Modifies the title for the view

 	3 The Edit Product view is to be displayed.

 	4 Only creates an instance if one hasn’t been created yet

 	5 Creates a new WebAssembly instance of the main module

 	6 Tells Emscripten that it needs to link to the Product side module

 	7 Shows the Edit Product form and hides the Order form

 	8 The Order form is to be displayed.

 	9 Creates a new WebAssembly instance of the main module

 	10 Tells Emscripten that it needs to link to the Order side module

 	11 Hides the Edit Product form and shows the Order form

 The next function that you need to create is the setActiveNavLink function, which will highlight the displayed form’s navigation bar.

 The setActiveNavLink function

 Because navigation bar items can have multiple CSS class names specified, you’ll use the DOM element’s classList object, which allows you to insert and delete individual class names. Your function will make sure both navigation bar items
 have the "active" class name removed and will then apply it to only the navigation bar item for the view that’s being displayed.

 Add the setActiveNavLink function shown in the next listing after the switchForm function in the index.js file.

 Listing 8.11. The setActiveNavLink function

 ...

function setActiveNavLink(Editproduct) {
 const navEditProduct = document.getElementById("navEditProduct");
 const navPlaceOrder = document.getElementById("navPlaceOrder");
 navEditProduct.classList.remove("active"); 1
 navPlaceOrder.classList.remove("active");

 if (editProduct) { navEditProduct.classList.add("active"); } 2
 else { navPlaceOrder.classList.add("active"); }
}
...

 	1 Makes sure both elements have the “active” class name removed

 	2 Applies the “active” class name to the item for the form being displayed

 The next function that you need to create is the setFormTitle function, which will adjust the text on the web page to indicate which form is displayed.

 The setFormTitle function

 Following the setActiveNavLink function in the index.js file, add the setFormTitle function to display the form’s title in the H1 tag on the web page:

 function setFormTitle(editProduct) {
 const title = (editProduct ? "Edit Product" : "Place Order");
 document.getElementById("formTitle").innerText = title;
}

 Originally, only the web page’s error section needed to be shown or hidden, so the code to show or hide the element was part
 of the setErrorMessage function. Now that there are additional elements of the web page that need to be shown or hidden, you’ll move that logic
 to its own function.

 The showElement function

 Add the showElement function following the setFormTitle function in your index.js file, as in the following snippet:

 function showElement(elementId, show) {
 const element = document.getElementById(elementId);
 element.style.display = (show ? "" : "none");
}

 The validation for the order form will need to get the user-selected product ID from the product drop-down list. The getSelectedCategoryId function already gets the user-selected ID from a drop-down list but is specific to the category drop-down of the Edit Product
 form. You’ll now revise that function to be more generic so that it can also be used by the Place Order form.

 The getSelectedCategoryId function

 Change the name of the getSelectedCategoryId function to getSelectedDropdownId, and add elementId as a parameter. Within the function, change the variable name from category to dropdown and replace the string "category" with elementId in the getElementById call.

 The getSelectedDropdownId function should look like the code in the following snippet:

 function getSelectedDropdownId(elementId) { 1
 const dropdown = document.getElementById(elementId); 2
 const index = dropdown.selectedIndex;
 if (index !== -1) { return dropdown[index].value; }

 return "0";
}

 	1 The function name is changed and the elementId parameter added.

 	2 The variable name is changed, and elementId is passed to getElementById.

 Now that you’ve created the showElement function to handle showing or hiding elements on the web page, you can revise the setErrorMessage function to call the new function rather than adjust the visibility of the element directly.

 The setErrorMessage function

 Modify the setErrorMessage function in your index.js file to call the showElement function rather than setting the element’s style directly. Your function should look like this:

 function setErrorMessage(error) {
 const errorMessage = document.getElementById("errorMessage");
 errorMessage.innerText = error;
 showElement("errorMessage", (error !== "")); 1
}

 	1 Shows the errorMessage element if there’s an error and hides it if not

 Because your web page will now have two sets of controls, having an onClickSave function would be confusing, so you’ll rename the function so its name indicates that it’s used by the Edit Product form.

 The onClickSave function

 Rename the onClickSave function to now be onClickSaveProduct. Because you renamed the getSelectedCategoryId function to getSelectedDropdownId, you’ll need to rename the function call. You’ll also need to pass in the drop-down’s ID ("category") as a parameter to the getSelectedDropdownId function.

 Your onClickSaveProduct function should look like the code in the next listing.

 Listing 8.12. The onClickSave function renamed to onClickSaveProduct

 ...

function onClickSaveProduct() { 1
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedDropdownId("category"); 2

 if (validateName(name) && validateCategory(categoryId)) {
 3
 }
}
...

 	1 Name changed from onClickSave

 	2 Changes the function name and specifies the drop-down’s ID

 	3 There were no issues. The data can be passed to the server-side code.

 Because the main module was compiled with the MODULARIZE flag, you needed to create an instance of Emscripten’s Module object. The validateName and validateCategory functions will need to be modified to call the Module instance that you created, productModule, rather than calling Emscripten’s Module object.

 The validateName and validateCategory functions

 You’ll need to modify each spot in the validateName and validateCategory functions that calls Emscripten’s Module object to now use the Module instance: productModule. Your validateName and validateCategory functions in index.js should look like the code in the following listing.

 Listing 8.13. The modified validateName and validateCategory functions

 ...

function validateName(name) {
 const isValid = productModule.ccall('ValidateName', 1
 'number',
 ['string', 'number'],
 [name, MAXIMUM_NAME_LENGTH]);

 return (isValid === 1);
}

function validateCategory(categoryId) {
 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = productModule.HEAP32.BYTES_PER_ELEMENT; 1
 const arrayPointer = productModule._malloc((arrayLength * 1
 bytesPerElement));
 productModule.HEAP32.set(VALID_CATEGORY_IDS, 1
 (arrayPointer / bytesPerElement));

 const isValid = productModule.ccall('ValidateCategory', 1
 'number',
 ['string', 'number', 'number'],
 [categoryId, arrayPointer, arrayLength]);

 productModule._free(arrayPointer); 1

 return (isValid === 1);
}

 	1 Module replaced with productModule

 Now that you’ve finished modifying the existing Edit Product code, it’s time to add the Place Order code. Your first step
 is to create the onClickAddToCart function.

 The onClickAddToCart function

 The onClickAddToCart function for the Place Order form will be very similar to the onClickSaveProduct function of the Edit Product form. Here, you’ll get the selected ID from the product drop-down as well as the user-entered
 quantity value. You’ll then call the validateProduct and validateQuantity JavaScript functions to call into the WebAssembly module and have the user-entered values validated. If there are no validation
 issues, the data can be saved.

 Add the code in the following listing after the validateCategory function in your index.js file.

 Listing 8.14. The onClickAddToCart function in index.js

 ...

function onClickAddToCart() {
 setErrorMessage("");

 const productId = getSelectedDropdownId("product"); 1
 const quantity = document.getElementById("quantity").value; 2

 if (validateProduct(productId) && 3
 validateQuantity(quantity)) { 4
 5
 }
}

 	1 Gets the user-selected ID from the product drop-down

 	2 Gets the user-entered quantity

 	3 Validates the product ID

 	4 Validates the quantity

 	5 There were no issues with the user-entered values. The data can be saved.

 You’ll now need to create the validateProduct function that will call into the WebAssembly module to verify that the user-selected product ID is valid.

 The validateProduct function

 The validateProduct function will call the module’s ValidateProduct function. The ValidateProduct function has the following signature in C++:

 int ValidateProduct(char* product_id,
 int* valid_product_ids,
 int array_length);

 Your validateProduct JavaScript function will pass the following parameters to the module’s function:

 	The user-selected product ID

 	An array of valid IDs

 	The length of the array

 You’ll pass the user-selected product ID to the module as a string and let Emscripten’s ccall function handle the string’s memory management for you by indicating the parameter type as a 'string'.

 Your array of valid IDs are integers (32-bit), but Emscripten’s ccall function can handle the memory management of an array for you only if you’re dealing with 8-bit integers. As a result, you’ll
 need to manually allocate some of the module’s memory to hold the array’s values and then copy the values into the memory.
 You’ll pass the memory location pointer for the valid IDs to the ValidateProduct function. In WebAssembly, pointers are represented as 32-bit integers, so you’ll indicate this parameter type as 'number'.

 Add the validateProduct function shown in the next listing to the end of the index.js file.

 Listing 8.15. The validateProduct function in index.js

 ...

function validateProduct(productId) {
 const arrayLength = VALID_PRODUCT_IDS.length;
 const bytesPerElement = orderModule.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = orderModule._malloc((arrayLength *
 bytesPerElement)); 1
 orderModule.HEAP32.set(VALID_PRODUCT_IDS,
 (arrayPointer / bytesPerElement)); 2

 const isValid = orderModule.ccall('ValidateProduct', 3
 'number',
 ['string', 'number', 'number'],
 [productId, arrayPointer, arrayLength]);

 orderModule._free(arrayPointer); 4

 return (isValid === 1);
}

 	1 Allocates enough memory for each item of the array

 	2 Copies the array’s elements into the module’s memory

 	3 Calls the ValidateProduct function in the module

 	4 Frees the memory that was allocated for the array

 The final JavaScript function that you’ll need to create is the validateQuantity function that will call into the module to validate the user-entered quantity.

 The validateQuantity function

 The validateQuantity function will call the module’s ValidateQuantity function, which has the following signature in C++:

 int ValidateQuantity(char* quantity);

 You’ll pass the user-entered quantity value to the module as a string and let Emscripten’s ccall function handle the string’s memory management for you by indicating the parameter type as a 'string'.

 Add the validateQuantity function from the following code snippet to the end of the index.js file:

 function validateQuantity(quantity) {
 const isValid = orderModule.ccall('ValidateQuantity',
 'number',
 ['string'],
 [quantity]);

 return (isValid === 1);
}

 8.2.2. Viewing the results

 Now that you’ve finished modifying the JavaScript code, open your browser and type http://localhost:8080/index.html into the address box to see the web page. You can test the navigation by clicking the navigation bar’s links. As shown in
 figure 8.17, the displayed view should switch between the Edit Product and Place Order forms, and the address box should have a matching
 fragment identifier based on the last link you clicked.

 Figure 8.17. When you click the Place Order navigation link, the Place Order form’s controls are displayed, and the fragment identifier
 is added to the address in the browser’s address box.

 [image:]

 You can test the validation by selecting an item in the Product drop-down list, leaving the Quantity at 0, and then pressing
 the Add to Cart button. An error should display on the web page, as figure 8.18 shows.

 Now, how can you use what you learned in this chapter in the real world?

 Figure 8.18. The new Place Order form’s validation error message when a quantity of 0 is specified.

 [image:]

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	If your WebAssembly module doesn’t need to be downloaded and instantiated until some point after the web page has loaded,
 you can include the -s MODULARIZE=1 flag when compiling the module. This will allow you to control when the module gets downloaded and instantiated, which will
 help speed up your website’s initial load time.

 	Another use case for the -s MODULARIZE=1 flag is that it allows you to create multiple instances of the WebAssembly module. A single-page application can potentially
 be long-running, and you might want to reduce memory use by creating an instance of the module when needed and destroying
 the instance when it’s no longer needed (because the user navigated to another portion of the application, for example).

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
Suppose you have a side module called process_fulfillment.wasm. How would you create a new instance of Emscripten’s Module object and tell it to dynamically link to this side module?

 2
What flag do you need to pass to Emscripten when compiling a WebAssembly main module in order to have the Module object wrapped in a function in Emscripten’s generated JavaScript file?

 Summary

 In this chapter, you learned how to create a simple SPA that uses a fragment identifier in the URL to indicate which form
 should be displayed.

 You also learned the following:

 	It’s possible to create multiple instances of Emscripten’s JavaScript Module object if you specify the -s MODULARIZE=1 flag when compiling the main module.

 	When a main module is compiled using the MODULARIZE flag, customizations for the Module object are passed as a JavaScript object to the Module’s constructor.

 	Dead code elimination can be enabled for a main module by using the -s MAIN_MODULE=2 flag. Doing so, however, requires you to explicitly indicate which functions to keep alive for the side modules by using
 the command-line array: EXPORTED_FUNCTIONS.

 	You can test to see which standard C library functions are in use by a side module by commenting out the header files and
 trying to compile the module. Emscripten will throw errors at the command line indicating which functions are undefined.

 Chapter 9. Threading: Web workers and pthreads

 This chapter covers

 	Using a web worker to fetch and compile a WebAssembly module

 	Instantiating a WebAssembly module on behalf of Emscripten’s JavaScript code

 	Creating a WebAssembly module that uses pthreads

 In this chapter, you’re going to learn about different options for using threads in a browser with relation to WebAssembly modules.

 	

 Definition

 A thread is a path of execution within a process, and a process can have multiple threads. A pthread, also known as a POSIX thread, is an API defined by the POSIX.1c standard for an execution module that’s independent of programming
 language (see https://en.wikipedia.org/wiki/POSIX_Threads).

 	

 By default, a web page’s UI and JavaScript all operate in a single thread. If your code does too much processing without periodically
 yielding to the UI, the UI can become unresponsive. Your animations will freeze, and the controls on the web page won’t respond
 to a user’s input, which can be frustrating for the user.

 If the web page remains unresponsive for long enough (typically around 10 seconds), a browser might even prompt the user to
 see if they want to stop the page, as figure 9.1 shows. If a user stops the script on your web page, the page may no longer function as expected unless the user refreshes
 it.

 	

 Tip

 To keep web pages as responsive as possible, whenever you interact with a Web API that has both synchronous and asynchronous
 functions, it’s a best practice to use the asynchronous functions.

 	

 Figure 9.1. A long-running process has caused Firefox to become unresponsive. The browser is prompting the user to see if they want to
 terminate the script.

 [image:]

 Being able to do some heavy processing without interfering with the UI is desirable, so browser makers created web workers.

 9.1. Benefits of web workers

 What do web workers do, and why would you want to use them? Web workers enable the creation of background threads in browsers.
 As figure 9.2 shows, they allow you to run JavaScript in a thread that’s separate from the UI thread; communication between the two is
 accomplished by passing messages.

 Figure 9.2. Your JavaScript creates a web worker and then communicates with it by passing messages.

 [image:]

 Unlike with the UI thread, using synchronous functions in a web worker is permitted, if desired, because doing so won’t block
 the UI thread. Within a worker, you can spawn additional workers, and you have access to many of the same items that you have access to in the UI thread, such as
 fetch, WebSockets, and IndexedDB. For a complete list of APIs available to web workers, you can visit this MDN Web Docs page:
 http://mng.bz/gVBG.

 Another advantage of web workers is that most devices now have multiple cores. If you’re able to split up your processing
 across several threads, the length of time it takes to complete the processing should decrease. Web workers are also supported
 in nearly all web browsers, including mobile ones.

 WebAssembly modules can use web workers in several ways:

 	As you’ll learn in section 9.3, a web worker can be used to prefetch a WebAssembly module. The web worker can download and compile the module and then pass
 that compiled module to the main thread, which can then instantiate the compiled module and use it as per normal.

 	Emscripten supports the ability to generate two WebAssembly modules, in which one sits in the main thread and the other in
 a web worker. The two modules communicate using Emscripten helper functions defined in Emscripten’s Worker API. You won’t learn about this approach in this chapter, but you’ll see the JavaScript versions of many of Emscripten’s functions.
 For more information about Emscripten’s Worker API, you can visit this page in the documentation: http://mng.bz/eD1q.

 	

 Info

 You would need to create two C or C++ files in order to compile one to run in the main thread and one to run in the web worker.
 The web worker file would need to be compiled with the -s BUILD_AS_WORKER=1 flag set.

 	

 	A post-MVP feature is being developed that creates a special kind of web worker that allows a WebAssembly module to use pthreads
 (POSIX threads). At the moment, this approach is still considered experimental, and flags need to be enabled in some browsers
 to allow the code to run. You’ll learn about this approach in section 9.4, where I’ll also explain pthreads in greater detail.

 9.2. Considerations for using web workers

 You’ll learn to use web workers shortly, but before you do, you should be aware of the following:

 	Web workers have a high startup cost and a high memory cost, so they’re not intended for use in large numbers, and they’re
 expected to be long-lived.

 	Because web workers run in a background thread, you have no direct access to the web page’s UI features or the DOM.

 	The only way to communicate with a web worker is by sending postMessage calls and responding to messages via an onmessage event handler.

 	Even though the background thread’s processing won’t block the UI thread, you still need to be mindful of needless processing
 and memory usage because you’re still using some of the device’s resources. As an analogy, if a user is using a phone, a lot
 of network requests can use up their phone’s data plan, and a lot of processing can use up the battery.

 	Web workers are available only in browsers at the moment. If your WebAssembly module needs to also support Node.js, for example,
 this is something you’ll need to keep in mind. As of version 10.5, Node.js has experimental support for worker threads, but they’re not yet supported by Emscripten. More information about Node.js worker thread support can be found here: https://nodejs.org/api/worker_threads.html.

 9.3. Prefetching a WebAssembly module using a web worker

 Suppose you have a web page that will need a WebAssembly module at some point after the page has loaded. Rather than download
 and instantiate the module as the page is loading, you decide to defer the download until after it’s loaded to keep the page
 load time as fast as possible. To keep your web page as responsive as possible, you also decide to use a web worker to handle
 downloading and compiling the WebAssembly module on a background thread.

 As figure 9.3 illustrates, in this section, you’ll learn how to

 	Create a web worker

 	Download and compile the WebAssembly module while in a web worker

 	Pass and receive messages between the main UI thread and worker

 	Override Emscripten’s default behavior, in which it usually handles downloading and instantiating a WebAssembly module, and
 use the module that’s already compiled

 Figure 9.3. Your JavaScript creates a web worker. The worker will download and compile the WebAssembly module and then pass the compiled
 module to the main UI thread. Emscripten then uses the compiled module rather than downloading the module itself.

 [image:]

 The following steps enumerate the solution for this scenario (figure 9.4):

 	Adjust the calculate_primes logic that you built in chapter 7 to determine how long it takes the calculations to complete.

 	Use Emscripten to generate the WebAssembly files from the calculate_primes logic.

 	Copy the generated WebAssembly files to the server for use by the browser.

 	Create the HTML and JavaScript for a web page that will create a web worker, and have Emscripten’s JavaScript use the compiled
 WebAssembly module received from the worker.

 	Create the web worker’s JavaScript file, which will download and compile the WebAssembly module.

 Figure 9.4. The steps for implementing the prefetch scenario. Modify calculate_primes.cpp to determine how long the computations take.
 Instruct Emscripten to generate the WebAssembly files and then create the HTML and JavaScript files. The JavaScript will create
 a web worker to download and compile the WebAssembly module. Finally, the compiled module will be passed back to the web page,
 where it will be instantiated by your code instead of Emscripten’s JavaScript.

 [image:]

 The first step, shown in figure 9.5, is to adjust the calculate_primes logic to determine how long it takes to do the calculations.

 Figure 9.5. Modify the calculate_primes logic to determine how long the calculations take.

 [image:]

 9.3.1. Adjusting the calculate_primes logic

 Let’s get started. In your WebAssembly\ folder create a Chapter 9\9.3 pre-fetch\source\ folder.

 Copy the calculate_primes.cpp file from your Chapter 7\7.2.2 dlopen\source\ folder to your newly created source\ folder. Open the calculate_primes.cpp file with your favorite editor.

 For this scenario, you’ll be using a vector class that’s defined in the vector header to hold the list of prime numbers found within the range specified. You’ll also use the high_resolution_clock class, defined in the chrono header, to time how long it takes your code to determine the prime numbers.

 Add the includes for the vector and chrono headers following the cstdio header in the calculate_primes.cpp file, as shown in the following code snippet:

 #include <vector>
#include <chrono>

 Now, remove the EMSCRIPTEN_KEEPALIVE declaration from above the FindPrimes function—this function won’t be called from outside the module.

 Rather than call printf for every prime number as it’s found, you’re going to modify the logic in the FindPrimes function to add the prime number to a vector object instead. You’ll do this so that you can determine the execution duration of the calculations themselves without the
 delay due to a call to the JavaScript code on every loop. The main function will then be modified to handle sending the prime number information to the browser’s console window.

 	

 Definition

 A vector object is a sequence container for dynamic sized arrays in which the storage is automatically increased or decreased as needed.
 More information on the vector object can be found here: https://en.cppreference.com/w/cpp/container/vector.

 	

 You’ll make the following modifications to the FindPrimes function:

 	Add a parameter to the function that accepts an std::vector<int> reference.

 	Remove all of the printf calls.

 	Within the IsPrime if statement, add the value in i to the vector reference.

 In your calculate_primes.cpp file, revise the FindPrimes function to match the code in the following snippet:

 void FindPrimes(int start, int end,
 std::vector<int>& primes_found) { 1
 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 primes_found.push_back(i); 2
 }
 }
}

 	1 A vector reference parameter has been added.

 	2 The prime number is added to the list.

 Your next step is to modify the main function to

 	Update the browser’s console window with the range of numbers that will be checked for prime numbers.

 	Determine how long the FindPrimes function takes to execute by getting the value of the clock before and after the call to the FindPrimes function and subtracting the difference.

 	Create a vector object to hold the prime numbers found, and pass it to the FindPrimes function.

 	Update the browser’s console to indicate how long it took for the FindPrimes function to execute.

 	Output each of the prime numbers that were found by looping through the vector object’s values.

 Your main function in your calculate_primes.cpp file should now look like the code in the following listing.

 Listing 9.1. The main function in calculate_primes.cpp

 ...

int main() {
 int start = 3, end = 1000000;
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
 std::chrono::high_resolution_clock::now(); 1

 std::vector<int> primes_found;
 FindPrimes(start, end, primes_found); 2

 std::chrono::high_resolution_clock::time_point duration_end =
 std::chrono::high_resolution_clock::now(); 3

 std::chrono::duration<double, std::milli> duration =
 (duration_end - duration_start); 4

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for(int n : primes_found) { 5
 printf("%d ", n);
 }
 printf("\n");

 return 0;
}

 	1 Gets the current time to mark the start of the FindPrimes execution

 	2 Creates a vector object that will hold integers, and passes it to the FindPrimes function

 	3 Gets the current time to mark the end of the FindPrimes execution

 	4 Determines the amount of time, in milliseconds, that it took FindPrimes to execute

 	5 Loops through each value in the vector object and outputs the value to the console

 Now that the calculate_primes.cpp file has been modified, the second step (figure 9.6) is where you’ll have Emscripten generate the WebAssembly files.

 Figure 9.6. Use Emscripten to generate the WebAssembly files from calculate_primes.cpp.

 [image:]

 9.3.2. Using Emscripten to generate the WebAssembly files

 Because the C++ code in calculate_primes.cpp is now using chrono, which was introduced as one of the features in the ISO C++
 2011 standard, you’ll need to tell Clang, Emscripten’s frontend compiler, to use that standard by specifying the -std=c++11 flag.

 	

 Info

 Emscripten uses Clang as the frontend compiler that takes your C++ code and compiles it to LLVM IR. By default, Clang uses
 the C++98 standard, but other standards can be enabled using the -std flag. Clang supports the C++98/C++03, C++11, C++14, and C++17 standards. If you’re interested, the following web page gives
 more details on the C++ standards Clang supports: https://clang.llvm.org/cxx_status.html.

 	

 Also, because you’ll be initializing Emscripten’s Module object after the web page has loaded, you’ll specify the -s MODULARIZE=1 flag as well. This flag will tell Emscripten to wrap the generated JavaScript file’s Module object in a function. Being wrapped in a function prevents the Module object from being initialized until you create an instance of it, allowing you to control when initialization happens.

 To compile calculate_primes.cpp into a WebAssembly module, open a command prompt, navigate to the Chapter 9\9.3 pre-fetch\source\ folder, and then run the following command:

 emcc calculate_primes.cpp -O1 -std=c++11 -s MODULARIZE=1
[image:] -o calculate_primes.js

 9.3.3. Copying files to the correct location

 Now that you’ve created your WebAssembly files, your next steps are to copy those files to a location where your website can
 use them (figure 9.7). You’ll then create the HTML and JavaScript files for the web page that will create a web worker. When the web page receives
 the compiled WebAssembly module from the worker, it will have Emscripten’s JavaScript use the compiled module rather than
 download it itself.

 Figure 9.7. Copy the WebAssembly files to the server for use by the browser. Then create the HTML and JavaScript for the web page. The
 JavaScript will create a web worker and will then have Emscripten’s JavaScript use the compiled module received from the worker.

 [image:]

 In your Chapter 9\9.3 pre-fetch\ folder, create a frontend\ folder and then copy the following into your new folder:

 	The calculate_primes.wasm and calculate_primes.js files from your source\ folder.

 	The main.html file from your Chapter 7\7.2.4 ManualLinking\frontend\ folder; rename the file to prefetch.html.

 9.3.4. Creating the HTML file for the web page

 In your Chapter 9\9.3 pre-fetch\frontend\ folder, open the prefetch.html file in your editor. Add a new script tag before the current script tag, and give its src attribute a value of prefetch.js for the JavaScript file of this web page, which you’ll create in a moment.

 You’ll also need to modify the other script tag’s src value to be calculate_primes.js to load in the Emscripten-generated JavaScript file. Your prefetch.html file’s code should now match the code in the following
 listing.

 Listing 9.2. The HTML in prefetch.html

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script src="prefetch.js"></script> 1
 <script src="calculate_primes.js"></script> 2
 </body>
</html>

 	1 Adds a new script tag for prefetch.js

 	2 Changes the src value to calculate_primes.js

 9.3.5. Creating the JavaScript file for the web page

 Now that you’ve created the HTML, you need to create the JavaScript file for the web page. In your Chapter 9\9.3 pre-fetch\frontend\ folder, create a prefetch.js file and open it with your favorite editor.

 Your JavaScript will need to perform the following tasks:

 	Create a web worker and attach an onmessage event listener:

 	When the worker calls the onmessage event listener, place the compiled module that’s received into a global variable.

 	Then create an instance of the Emscripten Module object and specify a callback function for Emscripten’s instantiateWasm function.

 	Define your callback function for Emscripten’s instantiateWasm function. When called, your function will instantiate the compiled module that’s held by your global variable and pass the
 instantiated WebAssembly module to Emscripten’s code.

 	

 Info

 The instantiateWasm function is called by Emscripten’s JavaScript code to instantiate the WebAssembly module. By default, Emscripten’s JavaScript
 will download and instantiate a WebAssembly module automatically for you, but this function allows you to handle the process
 yourself.

 	

 The first thing that your JavaScript code will need is a couple of global variables:

 	One variable will hold the compiled module that you’ll receive from the web worker.

 	The other variable will hold an instance of Emscripten’s JavaScript Module object.

 Add the variables in the following code snippet to your prefetch.js file:

 let compiledModule = null;
let emscriptenModule = null;

 You’ll now need to create a web worker and attach an onmessage event listener so that you can receive messages from that worker.

 Creating a web worker and attach an onmessage event listener

 You can create a web worker by creating an instance of a Worker object. The Worker object’s constructor expects a path to a JavaScript file that will be the worker’s code. In this case, that file will be
 prefetch.worker.js.

 Once you have an instance of a Worker object, you can pass the worker messages by calling the postMessage method of the instance. You can also receive messages by attaching to the onmessage event of the instance.

 When you create your web worker, you’ll set up an onmessage event handler to listen for a message from the worker. When the event is called, your code will place the compiled WebAssembly
 module that it receives in the global compiledModule variable.

 	

 Info

 The onmessage event handler will receive a MessageEvent object that has the data sent by the caller in the data property. The MessageEvent object is derived from an Event object to represent a message received by a target object. More information about the MessageEvent object can be found on the MDN Web Docs page at http://mng.bz/pyPw.

 	

 Your onmessage event handler will then create an instance of Emscripten’s JavaScript Module object and will specify a callback function for Emscripten’s instantiateWasm function. You’ll be specifying this callback function in order to override the normal Emscripten behavior and instantiate
 the WebAssembly module from the compiled module that you have in the global variable.

 Add the code in the following snippet to your prefetch.js file:

 const worker = new Worker("prefetch.worker.js"); 1
worker.onmessage = function(e) { 2
 compiledModule = e.data; 3

 emscriptenModule = new Module({ 4
 instantiateWasm: onInstantiateWasm 5
 });
}

 	1 Creates a web worker

 	2 Adds an event listener for messages from the worker

 	3 Places the compiled module into the global variable

 	4 Creates a new instance of Emscripten’s Module object

 	5 Specifies a callback function for instantiateWasm

 Now you’ll need to implement the onInstantiateWasm callback function that you’ve specified for Emscripten’s instantiateWasm function.

 Defining your callback function for Emscripten’s instantiateWasm function

 The instantiateWasm callback function accepts two parameters:

 	imports

 	This parameter is the importObject that you’ll need to pass to the instantiate function of the WebAssembly JavaScript API.

 	successCallback

 	Once the WebAssembly module has been instantiated, you need to pass the instantiated module back to Emscripten using this
 function.

 The return value of the instantiateWasm function depends on whether you instantiate the WebAssembly module asynchronously or synchronously:

 	If you choose to use an asynchronous function, as you will in this case, the return value needs to be an empty JavaScript
 object ({}).

 	Synchronous WebAssembly JavaScript API calls aren’t recommended if your code is running in the browser’s main thread and may
 even be blocked by some browsers. If a synchronous function is used, then the return value needs to be the module instance’s
 exports object.

 You won’t be able to use the WebAssembly.instantiateStreaming function to instantiate the WebAssembly module in this case because the instantiateStreaming function doesn’t accept a compiled module. Instead, you’ll need to use the overloaded WebAssembly.instantiate function:

 	The main overloaded WebAssembly.instantiate function accepts the WebAssembly binary’s bytecode, in the form of an ArrayBuffer, and then compiles and instantiates the
 module. When the promise resolves, you’re given an object that has both a WebAssembly.Module (the compiled module) and a WebAssembly .Instance object.

 	The other overloaded WebAssembly.instantiate function is the one that you’ll be using here. The overloaded function accepts a WebAssembly.Module object and instantiates it. When the promise resolves in this case, you’re given only the WebAssembly.Instance object.

 Add the code in the following snippet after your onmessage event handler in the prefetch.js file:

 function onInstantiateWasm(importObject, successCallback) { 1
 WebAssembly.instantiate(compiledModule,
 importObject).then(instance => 2
 successCallback(instance) 3
);

 return {}; 4
}

 	1 Callback for Emscripten’s instantiateWasm function

 	2 Instantiates the compiled module

 	3 Passes the instantiated module to Emscripten’s callback function

 	4 Because this was handled asynchronously, returns an empty JavaScript object

 Now that you’ve created the web page’s main JavaScript, your final step is to create the web worker’s JavaScript (figure 9.8). The JavaScript will fetch and compile the WebAssembly module and will then pass the compiled module to the UI thread.

 Figure 9.8. The final step is to create the JavaScript file for the web worker that will download and compile the WebAssembly module.
 Once compiled, the WebAssembly module will be passed to the UI thread.

 [image:]

 9.3.6. Creating the web worker’s JavaScript file

 In your Chapter 9\9.3 pre-fetch\frontend\ folder, create a prefetch.worker.js file and open it with your favorite editor.

 	

 Tip

 The name of the JavaScript file doesn’t matter, but this naming convention ([file name of the JavaScript that will create
 the worker].worker.js) makes it easier to distinguish between normal JavaScript files and those that are used in web workers
 when you’re browsing your file system. It also makes it easier to determine the relationship between the files, which will
 help if you need to debug or maintain the code.

 	

 The first thing your web worker’s code will do is fetch and compile the calculate_primes.wasm WebAssembly module. To compile
 the module, you’ll use the WebAssembly.compileStreaming function. Once compiled, your code will pass the module to the UI thread by calling postMessage on its global object, self.

 	

 Info

 In a web browser’s UI thread, the global object is the window object. In a web worker, the global object is self.

 	

 Add the code in the following snippet to your prefetch.worker.js file:

 WebAssembly.compileStreaming(fetch("calculate_primes.wasm")) 1
.then(module => {
 self.postMessage(module); 2
});

 	1 Downloads and compiles the WebAssembly module

 	2 Passes the compiled module to the main thread

 Now that everything has been created, you can view the results.

 9.3.7. Viewing the results

 You can open your browser and type http://localhost:8080/prefetch.html into the address box to see the generated web page. If you press the F12 key to display the browser’s developer tools (figure 9.9), the console window should show you the list of prime numbers that were found. You should also see the duration of how long
 the calculations took to execute.

 Figure 9.9. The prime numbers found by the WebAssembly module with the total duration for the calculations indicated

 [image:]

 Suppose you want to speed up the execution time needed to determine the prime numbers between 3 and 1,000,000. To do this,
 you decide that it will help to create several pthreads that will each process a smaller block of numbers in parallel.

 9.4. Using pthreads

 WebAssembly supports pthreads by using web workers and a SharedArrayBuffer.

 	

 Reminder

 A thread is a path of execution within a process, and a process can have multiple threads. A pthread, also known as a POSIX thread, is an API defined by the POSIX.1c standard for an execution module that’s independent of programming
 language (see https://en.wikipedia.org/wiki/POSIX_Threads).

 	

 A SharedArrayBuffer is similar to an ArrayBuffer, which is usually used for a WebAssembly module’s memory. The difference
 is that a SharedArrayBuffer allows the module’s memory to be shared between the main module and each of its web workers. It
 also allows for atomic operations for memory synchronization.

 Because the memory is shared between a module and its web workers, each area can read and write to that same data in memory.
 Atomic memory access operations ensure the following:

 	Predictable values are written and read.

 	The current operation is finished before the next one starts.

 	Operations aren’t interrupted.

 For more information about WebAssembly’s threads proposal, including detailed information about the various atomic memory
 access instructions available, you can visit this GitHub page: http://mng.bz/O9xa.

 	

 Warning

 The WebAssembly threading proposal for pthreads was put on hold in January 2018 because browser makers disabled support for
 the Shared-ArrayBuffer in order to prevent Spectre/Meltdown vulnerabilities from being exploited. Browser makers are working
 on solutions to prevent the Shared-ArrayBuffer from being exploited, but, for the moment, pthreads are available only in the
 desktop version of the Chrome browser or if you turn on a flag in the Firefox browser. You’ll learn how to do the latter in
 section 9.4.3.

 	

 For more information about Emscripten’s support of pthreads, you can visit https://emscripten.org/docs/porting/pthreads.html.

 The steps to the solution for this scenario (figure 9.10) are as follows:

 	Revise the calculate_primes logic from section 9.3 to create four pthreads. Each pthread will be given a block of numbers to process, looking for prime numbers.

 	Use Emscripten to generate the WebAssembly files with pthread support enabled. In this case, you’ll use Emscripten’s HTML
 template to view the results.

 Figure 9.10. The steps for this scenario modify the calculate_primes.cpp logic to create four pthreads, each of which will look for prime
 numbers in a given range. Then Emscripten will be used to generate the WebAssembly files along with the HTML template.

 [image:]

 Your first step is to modify the calculate_primes logic to create four pthreads and instruct each thread to look for prime
 numbers within a specific block of numbers.

 9.4.1. Adjusting the calculate_primes logic to create and use four pthreads

 In your Chapter9\ folder, create a 9.4 pthreads\source\ folder. Copy the calculate_primes.cpp file from your 9.3 pre-fetch\source\
 folder to your newly created source\ folder, and open the file in your favorite editor.

 Because you’ll be using pthreads, you’ll need to add the pthread.h header file to the calculate_primes.cpp file, as shown
 in this snippet:

 #include <pthread.h>

 The first function that you’ll need to modify is the FindPrimes function.

 Modifying the FindPrimes function

 The FindPrimes function needs a line of code to check and see if the start value specified is an odd number or not. If the number is even,
 you’ll increment the value so that the loop starts with an odd number.

 In the calculate_primes.cpp file, your FindPrimes function should look like the following snippet:

 void FindPrimes(int start, int end,
 std::vector<int>& primes_found) {
 if (start % 2 == 0) { start++; } 1

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 primes_found.push_back(i);
 }
 }
}

 	1 If the value is even, increment it so that it’s odd.

 Your next step is to create a function to serve as a start routine for your pthreads.

 Creating the pthread start routine

 In a moment, you’ll create a function that will be used as the start routine for each pthread. The function will in turn call
 the FindPrimes function, but it will need to know what the start and end values are. It will also need to receive a vector object to pass to FindPrimes for the prime numbers that are found.

 A pthread’s start routine accepts only one parameter, so you’ll define an object you can pass in that holds all the values
 that are needed. Add the following code after the FindPrimes function in the calculate_primes.cpp file:

 struct thread_args {
 int start;
 int end;
 std::vector<int> primes_found;
};

 Now you’ll create the start routine for your pthreads. The start routine needs to return a void* and accepts a single void* parameter for the arguments that are passed in. When you create the pthreads, you’ll pass in a thread_args object containing the values that need to be passed along to the FindPrimes function.

 Add the code in the next snippet after the thread_args struct in your calculate_primes.cpp file:

 void* thread_func(void* arg) { 1
 struct thread_args* args = (struct thread_args*)arg; 2

 FindPrimes(args->start, args->end, args->primes_found); 3

 return arg;
}

 	1 The start routine that will be called when you create the pthreads

 	2 Casts the arg value to a thread_args pointer

 	3 Calls the FindPrimes function, passing in the values received in the args pointer

 The last area that you’ll need to modify is the main function.

 Modifying the main function

 You’ll now modify the main function to create four pthreads and tell each one which range of 200,000 numbers you want it to search through. To create
 a pthread, you call the pthread_create function, passing in the following parameters:

 	A reference to a pthread_t variable that will hold the thread’s ID if the thread is created successfully.

 	The attributes for the thread being created. In this case, you’ll pass NULL to use the default attributes.

 	The start routine for the thread.

 	The value to pass to the start routine’s parameter.

 	

 Info

 The attributes object is created by calling the pthread_attr_init function, which will return a pthread_attr_t variable holding default attributes. Once you have the object, the attributes can be adjusted by calling various pthread_attr functions. When you’re finished with the attributes object, you need to call the pthread_attr_destroy function. The following web page has more information about the pthread attributes object: https://linux.die.net/man/3/pthread_attr_init.

 	

 Once you’ve created the pthreads, you’ll have the main thread also call the FindPrimes function to check for the prime numbers between 3 and 199,999.

 When the FindPrimes call completes on the main thread, you’ll want to make sure that each pthread has finished its computations before moving
 on to print out the values found. To have the main thread wait for each pthread to complete, you call the pthread_join function, passing in the thread ID of the thread you want to wait for as the first parameter. The second parameter can be
 used to get the exit status of the joined thread, but you don’t need that in this case, so you’ll pass in NULL. Both the pthread_create and pthread_join functions will return 0 (zero) if the call is successful.

 In your calculate_primes.cpp file, modify your main function so that it matches the code in the next listing.

 Listing 9.3. The main function in calculate_primes.cpp

 ...

int main() {
 int start = 3, end = 1000000;
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
 std::chrono::high_resolution_clock::now();

 pthread_t thread_ids[4]; 1
 struct thread_args args[5]; 2

 int args_index = 1; 3
 int args_start = 200000; 4

 for (int i = 0; i < 4; i++) {
 args[args_index].start = args_start; 5
 args[args_index].end = (args_start + 199999);

 if (pthread_create(&thread_ids[i], 6
 NULL, 7
 thread_func, 8
 &args[args_index])) { 9
 perror("Thread create failed");
 return 1;
 }

 args_index += 1; 10
 args_start += 200000;
 }

 FindPrimes(3, 199999, args[0].primes_found); 11
 for (int j = 0; j < 4; j++) {
 pthread_join(thread_ids[j], NULL); 12
 }

 std::chrono::high_resolution_clock::time_point duration_end =
 std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration =
 (duration_end - duration_start);

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for (int k = 0; k < 5; k++) { 13
 for(int n : args[k].primes_found) { 14
 printf("%d ", n);
 }
 }
 printf("\n");

 return 0;
}

 	1 The ID of each thread created

 	2 The arguments for each thread, including the main thread that will do processing

 	3 Skips zero so that the main thread can put its prime numbers in the first args index

 	4 The first background thread will start computations at 200,000.

 	5 Sets the start and end range for the current thread’s computations

 	6 Creates the pthread. If successful, the thread ID will be placed at this array index.

 	7 Uses the thread’s default attributes

 	8 The start routine for the thread

 	9 Arguments for the current thread

 	10 Increments the values for the next loop

 	11 Uses the main thread to also find prime numbers, and places them in the first index of args

 	12 Indicates that the main thread is to wait until all pthreads are finished

 	13 Loops through the args array

 	14 Loops through the list of prime numbers in the current args array item

 Now that the calculate_primes.cpp file has been modified, the next step is shown in figure 9.11, where you’ll have Emscripten generate the WebAssembly files and HTML file.

 Figure 9.11. The next step is to use Emscripten to generate the WebAssembly files and HTML file from calculate_primes.cpp.

 [image:]

 9.4.2. Using Emscripten to generate the WebAssembly files

 To enable pthreads in your WebAssembly module, you’ll specify the -s USE_PTHREADS=1 flag at the command line when you compile the module. You’ll also need to indicate how many threads you plan to use at once
 by using the following flag: -s PTHREAD_POOL_SIZE=4.

 	

 Warning

 When you specify a value greater than 0 (zero) for the PTHREAD_POOL_SIZE flag, all the web workers for the thread pool will be created when your module is instantiated rather than when your code
 calls pthread_create. If you request more threads than you actually need, you’ll waste processing time at startup as well as some of the browser’s
 memory for threads that aren’t doing anything. It’s also recommended that you test your WebAssembly module in all browsers that you intend to support. Firefox has indicated that it supports up to 512 concurrent
 web worker instances, but this number may vary by browser.

 	

 If you don’t specify a PTHREAD_POOL_SIZE flag, it’s the same as specifying the flag with a value of 0 (zero). This approach can be used in order to have the web workers created when pthread_create is called rather than during the module’s instantiation. With this technique, however, thread execution won’t start immediately.
 Instead, the thread must yield execution back to the browser first. One approach for this function would be as follows:

 	Define two functions in your module—one that calls pthread_create and another that calls pthread_join.

 	Your JavaScript first needs to call the function to trigger the pthread_create code.

 	Your JavaScript then calls the pthread_join function to get the results.

 To compile the module, open a command prompt, navigate to the Chapter 9\9.4 pthreads\source\ folder, and run the following command:

 emcc calculate_primes.cpp -O1 -std=c++11 -s USE_PTHREADS=1
[image:] -s PTHREAD_POOL_SIZE=4 -o pthreads.html

 Something that you might have noticed (also depicted in figure 9.12) is that there’s a file generated with a .mem extension. This file needs to be distributed with the rest of the generated
 files.

 Figure 9.12. The calculate_primes.cpp source file and the Emscripten-generated files. In this case, Emscripten has placed the data segments
 for the module’s Data known section in their own file.

 [image:]

 	

 Info

 The .mem file contains the data segments for the module’s Data known section that will be loaded into the module’s linear
 memory when instantiated. Having the data segments in their own file allows a WebAssembly module to be instantiated multiple
 times but to only load that data into memory once. The way pthreads are set up, each thread has its own instance of the module
 to communicate with, but all modules share the same memory.

 	

 Once the WebAssembly files have been generated, you can view the results.

 9.4.3. Viewing the results

 At the time of this book’s writing, WebAssembly threading support is available only in the desktop version of Chrome or if
 you turn on a flag in Firefox. Before you can view the pthreads.html file that was generated in the Firefox browser, you’ll
 need to enable the flag.

 Open your Firefox browser, and type about:config into the address box. You should see a screen similar to that in figure 9.13. Click the “I accept the risk!” button to enter the configuration view.

 Figure 9.13. Firefox’s configuration warning screen. Click the “I accept the risk!” button to enter the configuration view.

 [image:]

 You should now see a page with a long list of items. Just above the list is a search box. Type javascript.options.shared_memory into the search box, and the list should now look like figure 9.14. You can either double-click the list item, or right-click the list item and select Toggle from the context menu, to change the flag to true.

 Figure 9.14. Type javascript.options.shared_memory into the search box to filter the list. Either double-click the list item, or right-click the list item and choose Toggle
 from the context menu, to change the flag to true.

 [image:]

 	

 Warning

 This option is currently disabled in Firefox due to security concerns. Once you’ve finished testing, you should turn this
 flag back to false.

 	

 	

 Note

 There have been some reports of Python’s SimpleHTTPServer not indicating the proper Media Type for JavaScript files used by
 web workers. It should use application/javascript but, for some people, it uses text/plain instead. If you encounter errors in Chrome, try viewing your web page in Firefox.

 	

 To view the results, you can open your browser and type http://localhost: 8080/pthreads.html into the address box to see the generated web page. As figure 9.15 shows, if you press the F12 key to display the browser’s developer tools, the console window should show you how much time
 the computations took to execute and the list of prime numbers that were found.

 In section 9.3.7, the duration for the single threaded WebAssembly module to find the prime numbers between 3 and 1,000,000 was about 101
 milliseconds. Here, using four pthreads and the main thread to do the calculations has almost tripled the execution speed.

 How can you use what you learned in this chapter in the real world?

 Figure 9.15. Emscripten included a message indicating how many web workers it was creating for the pthreads. The total execution time to
 find the prime numbers between 3 and 1,000,000 was 38 milliseconds.

 [image:]

 Real-world use cases

 The ability to use web workers and pthreads opens the door to a number of possibilities, ranging from prefetching WebAssembly
 modules to parallel processing. Some of the options are as follows:

 	Although not quite the same as pthreads in WebAssembly, web workers can be used as a polyfill for parallel processing in browsers
 that don’t yet support pthreads.

 	Web workers can be used to prefetch and compile WebAssembly modules in anticipation of their need. This improves load time
 because less is downloaded and instantiated when the web page first loads, making the web page more responsive because it’s
 ready for the user’s interactions.

 	The article “WebAssembly at eBay: A Real-World Use Case,” by Pranav Jha and Senthil Padmanabhan, details how eBay used WebAssembly,
 in conjunction with web workers and a JavaScript library, to improve its barcode scanner: http://mng.bz/Ye1a.

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
If you wanted to use a C++17 feature, what flag would you use when compiling your WebAssembly module to tell Clang to use
 that standard?

 2
Test adjusting the calculate_primes logic from section 9.4 to use three threads rather than four to see how the calculation duration is impacted. Test using five threads, and place
 the main thread’s calculation into a pthread to see if moving all the calculations off the main thread impacts the calculation
 duration.

 Summary

 In this chapter, you learned the following:

 	If too much processing happens on a browser’s main UI thread without yielding periodically, the UI may become unresponsive.
 If a browser’s main UI thread is unresponsive for long enough, the browser might prompt the user to see if they want to terminate
 the script.

 	Browsers have a means of creating background threads called web workers, and communication with workers is performed by passing
 messages. Web workers have no access to the DOM or other UI aspects of the browser.

 	Web workers can be used to prefetch assets that a web page might need in the future, including WebAssembly modules.

 	It’s possible to handle fetching and instantiating a WebAssembly module on behalf of Emscripten’s JavaScript by implementing
 the instantiateWasm callback function.

 	There is experimental support for WebAssembly pthreads (POSIX threads) in Firefox, but you currently need to enable a flag
 to use them. The desktop version of Chrome supports pthreads without a flag. You also need to compile the WebAssembly module
 using the -s USE_PTHREADS and -s PTHREAD_POOL_SIZE Emscripten command-line flags.

 	WebAssembly pthreads use web workers for the threads, a SharedArrayBuffer as shared memory between the threads, and atomic
 memory access instructions to synchronize interactions with the memory.

 	All web workers for the pthreads are created when the WebAssembly module is instantiated if a PTHREAD_POOL_SIZE command-line flag value of 1 or greater is specified when compiling the module. If a value of 0 is specified, the pthread is created on demand, but execution won’t start immediately unless the thread yields execution
 back to the browser first.

 	It’s possible to tell Clang, Emscripten’s frontend compiler, to use a C++ standard other than the default C++98 standard by
 specifying the -std command-line flag.

 Chapter 10. WebAssembly modules in Node.js

 This chapter covers

 	Loading a WebAssembly module using Emscripten’s generated JavaScript code

 	Using the WebAssembly JavaScript API to load a WebAssembly module

 	Working with WebAssembly modules that call into JavaScript directly

 	Working with WebAssembly modules that use function pointers to call into JavaScript

 In this chapter, you’ll learn how to use WebAssembly modules in Node.js. Node.js has some differences compared with a browser—for example, having no GUI—but, when working with WebAssembly modules,
 there are a lot of similarities between the JavaScript needed in a browser and in Node.js. Even with these similarities, however,
 it’s recommended that you test your WebAssembly module in Node.js to verify that it works as expected on the versions that
 you want to support.

 	

 Definition

 Node.js is a JavaScript runtime built on the V8 engine—the same engine that powers the Chrome web browser. Node.js allows
 for JavaScript to be used as server-side code. It also has a large number of open source packages available to help with many
 programming needs. For a book dedicated to teaching you about Node.js, see Node.js in Action, Second Edition (Manning): www.manning.com/books/node-js-in-action-second-edition.

 	

 This chapter aims to demonstrate that WebAssembly can be used outside the web browser. The desire to use WebAssembly outside
 the browser has led to the creation of the WebAssembly Standard Interface, or WASI, to ensure that there’s consistency in
 how hosts implement their interfaces. The idea is that a WebAssembly module will work on any host that supports WASI, which
 could include edge computing, serverless, and IoT (Internet of Things) hosts, to name a few. For more information about WASI,
 the following article has a good explanation: Simon Bisson, “Mozilla Extends WebAssembly Beyond the Browser with WASI,” The
 New Stack, http://mng.bz/E19R.

 10.1. Revisiting what you know

 Let’s briefly revisit what you know. In chapters 4 through 6, you learned about the code-reuse advantages that WebAssembly brings by exploring a scenario in which a company had an existing
 desktop point-of-sale application written in C++ that it wanted to port to an online solution. Being able to reuse code in
 multiple environments reduces the chances of bugs being introduced accidently when compared with having to maintain two or
 more versions of the same code. Code reuse also leads to consistency, where the logic behaves exactly the same across all
 systems. In addition, because there’s only one code source for the logic, fewer developers need to maintain it, freeing them
 up to work on other aspects of systems, which brings higher productivity.

 As figure 10.1 shows, you learned how to adjust the C++ code so that it could be compiled into a WebAssembly module using Emscripten’s compiler.
 This allowed you to use the same code for both the desktop application and in a web browser. You then learned how to interact
 with the WebAssembly module in a web browser, but the discussion about server-side code was left until now.

 Figure 10.1. The steps for turning the existing C++ logic into a WebAssembly module for use by a browser and the server-side code. I discuss
 the server aspect in this chapter.

 [image:]

 In this chapter, you’ll learn how to load a WebAssembly module in Node.js. You’ll also learn how the module can call into
 JavaScript directly or by using function pointers.

 10.2. Server-side validation

 Suppose the company that created the online version of its point-of-sale application’s Edit Product page now wants to pass
 the validated data to the server. Because it’s not difficult to get around client-side (browser) validation, it’s critical
 that the server-side code validate the data it receives from the website before it’s used, as figure 10.2 shows.

 Figure 10.2. How validation works in Node.js

 [image:]

 The web page’s server-side logic will use Node.js and, because Node.js supports WebAssembly, you won’t need to re-create the
 validation logic. In this chapter, you’ll use the exact same WebAssembly modules that you created for use in the browser in
 the previous chapters. This allows the company to use the same C++ code in three locations: the desktop application, a web
 browser, and Node.js.

 10.3. Working with Emscripten-built modules

 Similar to when working in a browser, in Node.js, you still use Emscripten to generate the WebAssembly and Emscripten JavaScript
 files. Unlike when working in a browser, however, you don’t create an HTML file. Instead, as step 4 of figure 10.3 illustrates, you create a JavaScript file that loads the Emscripten-generated JavaScript file, which will then handle loading
 and instantiating the module for you.

 Figure 10.3. Emscripten is used to generate the WebAssembly and Emscripten JavaScript files. You then create a JavaScript file that loads
 the Emscripten-generated JavaScript file, which will in turn handle loading and instantiating the module for you.

 [image:]

 The way you let the Emscripten-generated JavaScript wire itself up is different in Node.js compared to in a browser:

 	In a browser, the Emscripten JavaScript code is wired up by including a reference to the JavaScript file as a script tag in the HTML file.

 	In Node.js, to load JavaScript files, you use the require function, passing in the path to the file that you want to load.

 Using the Emscripten-generated JavaScript file is convenient because the JavaScript code has checks that detect whether it’s
 being used in a browser or in Node.js; it loads and instantiates the module appropriately for the environment it’s being used
 in. All you need to do is have the file load, and the code will do the rest.

 Let’s take a look at how you include Emscripten’s generated JavaScript file.

 10.3.1. Loading a WebAssembly module

 In this section, you’re going to learn how to load in Emscripten’s generated JavaScript file so that it can then download
 and instantiate your WebAssembly module for you. In your WebAssembly\ folder, create a Chapter 10\10.3.1 JsPlumbingPrimes\backend\ folder for the files that you’ll use in this section. Copy the js_plumbing.wasm and js_plumbing.js
 files from your Chapter 3\3.4 js_plumbing\ folder to your newly created backend\ folder.

 In your backend\ folder, create a js_plumbing_nodejs.js file, and open it with your favorite editor. In your js_plumbing_nodejs.js
 file, you’ll add a call to Node.js’s require function, passing in the path to the Emscripten-generated JavaScript file js_plumbing.js. When loaded by Node.js, the Emscripten JavaScript code will detect that it’s being used in Node.js and will
 automatically load and instantiate the js_plumbing.wasm WebAssembly module for you.

 Add the code from the following snippet to your js_plumbing_nodejs.js file:

 require('./js_plumbing.js'); 1

 	1 Has the Emscripten plumbing code wire itself up

 Viewing the results

 To instruct Node.js to run JavaScript, you need to use the console window to run the node command, followed by the JavaScript file that you want it to execute. To run the js_plumbing_nodejs.js file that you just
 created, open a command prompt, navigate to the Chapter 10\10.3.1 JsPlumbingPrimes\backend\ folder, and then run the following command:

 node js_plumbing_nodejs.js

 As figure 10.4 shows, you can see that the module was loaded and run because the console window displays the output from the module: “Prime
 numbers between 3 and 100,000,” followed by the prime numbers that were found within that range.

 Figure 10.4. The console output from the WebAssembly module in Node.js

 [image:]

 Now that you know how to load Emscripten’s generated JavaScript file in Node.js, let’s look into how you call the functions
 in the WebAssembly module when using Node.js.

 10.3.2. Calling functions in the WebAssembly module

 In chapter 4, you went through a series of steps (figure 10.5) to extend a desktop point-of-sale system to the web. Once the web page has verified that the data the user entered is valid,
 the data is sent to the server-side code so that it can be saved to a database or processed in some way. Before the server-side
 code does anything with the data received, it needs to make sure the data is valid, because there are ways to get around browser validation. In this case, your server is Node.js, and you’ll use the same WebAssembly module that you were
 using in the browser to handle validating the data received.

 Figure 10.5. The final step of the process in reusing the C++ code is the server aspect, which is Node.js, in this case. You’ll copy the
 generated WebAssembly files to where your Node.js files are and then build the JavaScript code to interact with the module.

 [image:]

 You’re now going to implement the final step of the process for extending the desktop point-of-sale system to the web by implementing
 the server-side aspect of it. You’ll copy the generated WebAssembly files to where your Node.js files are and then create
 a JavaScript file to interact with the module.

 Implementing the server code for Node.js

 In your WebAssembly\ folder, create a Chapter 10\10.3.2 JsPlumbing\backend\ folder to hold the files that you’ll use in this section, and then complete the following:

 	Copy the validate.js, validate.wasm, and editproduct.js files from your Chapter 4\4.1 js_plumbing\frontend\ folder to your newly created backend\ folder.

 	Rename the editproduct.js file to nodejs_validate.js, and then open it with your favorite editor.

 Rather than receive data from the web page, you’ll simulate having received the data by using the InitialData object, but you’ll rename the object to clientData. In your nodejs_validate.js file, rename the InitialData object to clientData as follows:

 const clientData = { 1
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

 	1 An object to simulate having received data from a browser

 Overall, the JavaScript that Node.js needs is similar to what you had in the browser. The main difference with the Node.js
 code is that there’s no UI, so there are no input controls that need to be interacted with. Consequently, some of the helper
 functions aren’t needed. Delete the following functions from the nodejs_validate.js file:

 	initializePage

 	getSelectedCategoryId

 Because there’s no UI, there’s no element to display error messages received from the module. Instead, you output the error
 messages to the console. Adjust the setError-Message function to call console.log, as shown in the following snippet:

 function setErrorMessage(error) { console.log(error); } 1

 	1 Node.js has no UI, so you’ll output any error messages to the console instead.

 One difference between working with Emscripten’s generated JavaScript file in Node.js compared to working in the browser is
 that, in the browser, your JavaScript code has access to a global Module object, but many of the helper functions are also in the global scope. In the browser, functions like _malloc, _free, and UTF8ToString are in the global scope and can be called directly without prefixing them with Module, like Module._malloc. In Node.js, however, the return object from the require call is the Module object, and all the Emscripten helper methods are available only through this object.

 	

 Tip

 You can name the object that gets returned by the require function call anything you want. Because you’re using the same JavaScript code here that you had in the browser, it’s easier
 to use the name Module so that you don’t have to modify as much of the JavaScript. If you do choose to use a different name,
 you’ll need to modify the spots that do Module.ccall, for example, to use your object name instead of Module.

 	

 In the nodejs_validate.js file, after the setErrorMessage function, add a call to the require Node.js function to load Emscripten’s generated JavaScript file (validate.js). Name the object received from the require
 function Module. Your line of code should look like this:

 const Module = require('./validate.js'); 1

 	1 Loads Emscripten’s generated JavaScript and names the return object Module

 The instantiation of the WebAssembly module happens asynchronously, both in the browser and in Node.js. To be notified when
 Emscripten’s JavaScript code is ready for interaction, define an onRuntimeInitialized function.

 In your nodejs_validate.js file, convert the onClickSave function to be a function on the Module object’s onRuntimeInitialized property. Also, revise the code in the function to no longer try to pull the name and categoryId from the controls but rather use the clientData object. Your onClickSave function in your nodejs_validate.js file should now look like the code in the following listing.

 Listing 10.1. onClickSave adjusted to now be onRuntimeInitialized

 ...

Module['onRuntimeInitialized'] = function() { 1
 let errorMessage = "";
 const errorMessagePointer = Module._malloc(256);

 if (!validateName(clientData.name, errorMessagePointer) || 2
 !validateCategory(clientData.categoryId, 3
 errorMessagePointer)) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 setErrorMessage(errorMessage);
 if (errorMessage === "") {
 4
 }
}
...

 	1 Adjusts onClickSave to now be onRuntimeInitialized

 	2 Validates the name in the clientData object

 	3 Validates the categoryId in the clientData object

 	4 There were no issues. The data can be saved.

 No other changes are needed in the nodejs_validate.js file.

 Viewing the results

 If you run the code right now, there are no validation issues reported because all the data in your clientData object is valid. To test the validation logic, you can modify the data in the clientData object by clearing the value from the name property (name: ""), saving the file, and running the code.

 To run your JavaScript file in Node.js, open a command prompt, navigate to your Chapter 10\10.3.2 JsPlumbing\backend\ folder, and then run the following command:

 node nodejs_validate.js

 You should see the validation message shown in figure 10.6.

 Figure 10.6. The product name validation error in Node.js

 [image:]

 Now that you know how to load Emscripten’s generated JavaScript file in Node.js and call functions in the WebAssembly module,
 let’s look into how the module can call into the JavaScript file when running in Node.js.

 10.3.3. Calling into the JavaScript

 As you saw in the previous section, a function can call into the module and wait for a response. While this approach works,
 there are times when a module might want to call the JavaScript directly once it finishes doing some work—perhaps to obtain
 more information or to provide an update.

 The WebAssembly module that you’ll be using in this section included a function in Emscripten’s generated JavaScript file.
 The module will call that function if there was an error passing a pointer to the error message. The function will read the
 error message from the module’s memory and then pass the string to the setErrorMessage function in your main JavaScript.

 Implementing the server code for Node.js

 In your WebAssembly\ folder, create a Chapter 10\10.3.3 EmJsLibrary\backend\ folder to hold the files that you’ll use in this section, and then complete the following:

 	Copy the validate.js, validate.wasm, and editproduct.js files from your Chapter 5\5.1.1 EmJsLibrary\frontend\ folder to your newly created backend\ folder.

 	Rename the editproduct.js file to nodejs_validate.js, and then open it with your favorite editor.

 In your nodejs_validate.js file, rename the InitialData object to clientData, as shown in the following code snippet:

 const clientData = { 1
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

 	1 Renamed from InitialData

 Delete the following functions from the nodejs_validate.js file:

 	initializePage

 	getSelectedCategoryId

 As it turns out, this particular use case for including your own JavaScript in Emscripten’s generated JavaScript file isn’t
 ideal when using Node.js. This is because the require function that’s used to load a JavaScript file puts the code within that file into its own scope, meaning the code in Emscripten’s
 generated JavaScript file can’t access any of the functions in the scope of the parent (the code that loaded it). JavaScript
 code loaded by the require function is expected to be self-contained and to not call into the scope of the parent.

 If the module needs to call into the scope of the parent, a better approach is to use a function pointer that the parent passes
 in, which you’ll see in an upcoming section. But in this case, to get around the issue of the validate.js-generated code being
 unable to access the setErrorMessage function that it needs to call, you’ll need to create the setErrorMessage function on the global object rather than as a normal function.

 	

 More Info

 In browsers, the top-level scope is the global scope (the window object). In Node.js, however, the top-level scope isn’t the global scope but is rather the module itself. By default, all
 variables and objects are local to the module in Node.js. The global object represents the global scope in Node.js.

 	

 To make the setErrorMessage function accessible to the Emscripten-generated JavaScript, you need to adjust the function to be part of the global object, as the following code snippet shows. To output the error message to the console, replace the function’s contents
 with a call to console.log:

 global.setErrorMessage = function(error) { 1
 console.log(error); 2
}

 	1 Creates the function on the global object

 	2 Outputs the error messages to the console

 After the setErrorMessage function, add a call to the require Node.js function to load Emscripten’s generated JavaScript file (validate.js). Your line of code should look like this:

 const Module = require('./validate.js'); 1

 	1 Loads Emscripten’s generated JavaScript, and names the return object Module

 In your nodejs_validate.js file, convert the onClickSave function to be a function on the Module object’s onRuntimeInitialized property. Then, revise the code in the function to no longer call the setErrorMessage function or try to pull the name and categoryId from the controls. Finally, use the clientData object to pass the name and categoryId to the validation functions.

 Your modified onRuntimeInitialized function should look like the following snippet:

 Module['onRuntimeInitialized'] = function() { 1
 if (validateName(clientData.name) && 2
 validateCategory(clientData.categoryId)){ 3
 4
 }
}

 	1 Adjusts onClickSave to now be onRuntimeInitialized

 	2 Validates the name in the clientData object

 	3 Validates the categoryId in the clientData object

 	4 There were no issues. The data can be saved.

 No other changes are needed for the nodejs_validate.js file.

 Viewing the results

 To test the validation logic, you can adjust the data in the clientData object by changing the name or categoryId property to a value that’s invalid. For example, you could change the categoryId to hold a value that isn’t in the VALID_CATEGORY_IDS array (categoryId: "1001") and save the file.

 To run your JavaScript file in Node.js, open a command prompt, navigate to your Chapter 10\10.3.3 EmJsLibrary\backend\ folder, and run the following command:

 node nodejs_validate.js

 You should see the validation message shown in figure 10.7.

 Figure 10.7. The product category validation error in Node.js

 [image:]

 Using the Emscripten JavaScript library with code that calls into an application’s main JavaScript isn’t ideal if you plan
 on using Node.js, owing to scope issues with the require function. If you add custom JavaScript to Emscripten’s generated JavaScript file that will be used in Node.js, the best approach
 is for the code to be self-contained and not call into the parent code.

 If a WebAssembly module needs to call into the application’s main JavaScript, and you want to support Node.js, function pointers
 are the recommended approach, and you’ll learn about them next.

 10.3.4. Calling JavaScript function pointers

 Being able to call into the JavaScript directly is useful, but your JavaScript needs to provide the function during the module’s
 instantiation. Once a function has been passed to the module, you can’t swap it out. This is fine in most cases, but there
 are times when being able to pass a module the function to call on an as-needed basis is useful.

 Implementing the server code for Node.js

 In your WebAssembly\ folder, create a Chapter 10\10.3.4 EmFunctionPointers\backend\ folder to hold the files that you’ll use in this section, and then do the following:

 	Copy the validate.js, validate.wasm, and editproduct.js files from your Chapter 6\6.1.2 EmFunctionPointers\frontend\ folder to your newly created backend\ folder.

 	Rename the editproduct.js file to nodejs_validate.js, and then open it with your favorite editor.

 In your nodejs_validate.js file, rename the InitialData object to clientData, as the following code snippet shows:

 const clientData = { 1
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

 	1 An object to simulate having received data from a browser

 Delete the following functions from the nodejs_validate.js file:

 	initializePage

 	getSelectedCategoryId

 Modify the setErrorMessage function to call console.log, as shown in the following snippet:

 function setErrorMessage(error) { console.log(error); } 1

 	1 Node.js has no UI, so you’ll output any error messages to the console instead

 After the setErrorMessage function, add a call to the require Node.js function to load the validate.js file. Your line of code should look like the following snippet:

 const Module = require('./validate.js');

 	1 Loads Emscripten’s generated JavaScript and names the return object Module

 In your nodejs_validate.js file, convert the onClickSave function to be a function on the Module object’s onRuntimeInitialized property. Revise the code in the function to no longer call the setErrorMessage function or to try and pull the name and categoryId from the controls. Then, use the clientData object to pass the name and categoryId to the validation functions.

 Your modified onClickSave function should now look like the code in the following listing.

 Listing 10.2. onClickSave adjusted to now be onRuntimeInitialized

 ...

Module['onRuntimeInitialized'] = function() { 1
 Promise.all([
 validateName(clientData.name), 2
 validateCategory(clientData.categoryId) 3
])
 .then(() => {
 4
 })
 .catch((error) => {
 setErrorMessage(error);
 });
}

 	1 Adjusts onClickSave to now be onRuntimeInitialized

 	2 Validates the name in the clientData object

 	3 Validates the categoryId in the clientData object

 	4 There were no issues. The data can be saved

 No other changes are needed in the nodejs_validate.js file.

 Viewing the results

 To test the validation logic, you can adjust the data in the clientData object by changing the name property to a value that exceeds the MAXIMUM_NAME_LENGTH value of 50 characters (name: "This is a very long product name to test the validation logic.") and saving the file.

 To run your JavaScript file in Node.js, open a command prompt, navigate to your Chapter 10\10.3.4 EmFunctionPointers\backend\ folder, and run the following command:

 node nodejs_validate.js

 You should see the validation message shown in figure 10.8.

 Figure 10.8. Validation message about the product name’s length in Node.js

 [image:]

 By this point in the chapter, you’ve learned how to work with WebAssembly modules in Node.js when those modules were built
 with Emscripten’s generated JavaScript code. In the rest of this chapter, you’ll learn how to use WebAssembly modules in Node.js
 when the modules have been built without generating Emscripten’s JavaScript file.

 10.4. Using the WebAssembly JavaScript API

 When using the Emscripten compiler, production code typically includes the generated Emscripten JavaScript file. This file
 handles downloading the WebAssembly module and interacting with the WebAssembly JavaScript API for you. It also contains a
 number of helper functions to make interacting with the module easier.

 Not generating the JavaScript file is useful for learning because it gives you a chance to download the .wasm file and work
 with the WebAssembly JavaScript API directly. You create a JavaScript object holding the values and functions that the module
 is expecting to import, and then you use the API to compile and instantiate the module. Once it’s instantiated, you have access
 to the module’s exports, allowing you to interact with the module.

 As WebAssembly’s use increases, it’s likely that many third-party modules will be created to extend a browser’s abilities.
 Knowing how to work with modules that don’t use the Emscripten JavaScript code will also be useful if you ever need to use
 a third-party module that’s been built using a compiler other than Emscripten.

 In chapters 3 through 6, you used Emscripten to generate only the .wasm file by using the SIDE_MODULE flag. This created a module that didn’t include any standard C library functions and didn’t generate Emscripten’s JavaScript
 file. Because the JavaScript file wasn’t generated, it’s now up to you to create the JavaScript needed to load and instantiate
 the module by using the WebAssembly JavaScript API, as step 4 of figure 10.9 shows.

 Figure 10.9. Using Emscripten to generate only the WebAssembly file. You’ll then create the JavaScript to load and instantiate the module
 using the WebAssembly JavaScript API.

 [image:]

 10.4.1. Loading and instantiating a WebAssembly module

 To load and run your side_module.wasm file from chapter 3 in Node.js, you’ll need to load and instantiate the module using the WebAssembly JavaScript API.

 Implementing the server code for Node.js

 The first thing that you need to do is create a folder for the files you’ll use in this section. In your WebAssembly\ folder,
 create a Chapter 10\10.4.1 SideModuleIncrement\backend\ folder, and then do the following:

 	Copy the side_module.wasm file from your Chapter 3\3.5.1 side_module\ folder to your newly created backend\ folder.

 	Create a side_module_nodejs.js file in your backend\ folder, and then open it with your favorite editor.

 Because Node.js is already running on the server, you don’t need to fetch the .wasm file because it’s sitting on the hard
 drive in the same folders as the JavaScript files. Instead, you’ll use the File System module in Node.js to read in the WebAssembly file’s bytes. Then, once you have the bytes, the process of calling WebAssembly .instantiate and working with the module is the same as in a browser.

 You include the File System module by using the require function, passing in the string 'fs'. The require function returns an object that gives you access to various File System functions, such as readFile and writeFile. In this chapter, you’ll use only the readFile function, but if you’re interested in learning more about the Node.js File System object and the functions that are available, you can visit https://nodejs.org/api/fs.html.

 You’re going to use File System’s readFile function to read in the contents of the side_module.wasm file asynchronously. The readFile function accepts three parameters. The first parameter is the path of the file to read. The second is optional and allows
 you to specify options like the file’s encoding. You won’t use the second parameter in this chapter. The third parameter is
 a callback function that will receive either an error object—if there was an issue reading in the file’s contents—or, if the
 read was successful, the file’s bytes.

 	

 More Info

 If you’d like to read more about the File System module’s readFile function and the optional second parameter, you can visit http://mng.bz/rPjy.

 	

 Add the following code snippet to your side_module_nodejs.js file to load the File System object ('fs') and then call the readFile function. If an error is passed to the callback function, then throw the error. Otherwise, pass the bytes that were received
 to the instantiateWebAssembly function that you’ll create next:

 const fs = require('fs'); 1
fs.readFile('side_module.wasm', function(error, bytes) { 2
 if (error) { throw error; } 3

 instantiateWebAssembly(bytes); 4
});

 	1 Loads the File System object

 	2 Reads in the file asynchronously

 	3 If there was an error reading the file, then just rethrows the error

 	4 Passes the file’s bytes to the instantiateWebAssembly function

 Create an instantiateWebAssembly function that accepts a parameter called bytes. Within the function, create a JavaScript object called importObject with an env object holding the __memory_base property of 0 (zero). You then need to call the WebAssembly .instantiate function, passing in the bytes received as well as the importObject. Finally, within the then method, call the exported _Increment function from the WebAssembly module, passing in a value of 2. Output the result to the console.

 The instantiateWebAssembly function in your side_module_nodejs.js file should look like the code in the next listing.

 Listing 10.3. The instantiateWebAssembly function

 function instantiateWebAssembly(bytes) {
 const importObject = {
 env: {
 __memory_base: 0,
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => {
 const value = result.instance.exports._Increment(2);
 console.log(value.toString()); 1
 });
}

 	1 Logs the result to the console window

 Viewing the results

 To run your JavaScript file in Node.js, open a command prompt, navigate to your Chapter 10\10.4.1 SideModuleIncrement\backend\ folder, and run the following command:

 node side_module_nodejs.js

 You should see the result of the _Increment function call, as shown in figure 10.10.

 Figure 10.10. The console output from your call to the module’s _Increment function in Node.js

 [image:]

 10.4.2. Calling functions in the WebAssembly module

 The final step of the process, shown in figure 10.11, is to copy the WebAssembly file, validate.wasm (generated in chapter 4, section 4.2.2) to a folder where you’ll host your Node.js files. You’ll then create a JavaScript file that will bridge the gap between
 interacting with the data received from the browser and interacting with the module.

 Figure 10.11. The final step of the process is to copy the generated WebAssembly file to where your Node.js files are and build the JavaScript
 code to interact with the module.

 [image:]

 Implementing the server code for Node.js

 In your WebAssembly\ folder, create a Chapter 10\10.4.2 SideModule\backend\ folder, and then do the following:

 	Copy the editproduct.js and validate.wasm files from your Chapter 4\4.2 side_module\frontend\ folder to your newly created backend\ folder.

 	Rename the editproduct.js file to nodejs_validate.js, and open it with your favorite editor.

 The JavaScript in the nodejs_validate.js file was written to work in a web browser, so you’ll need to make a few modifications
 for it to work in Node.js.

 Your JavaScript uses the JavaScript TextEncoder object to copy strings to the module’s memory. In Node.js, the TextEncoder object is part of the util package. The first thing that you’ll need to do in your JavaScript file is add a require function for the util package at the beginning of the file, as the following snippet shows:

 const util = require('util'); 1

 	1 Loads the util package in order to have access to the TextEncoder object

 Next, rename the initialData object to clientData:

 const clientData = { 1
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

 	1 Renamed from initialData

 In your nodejs_validate.js file, just before the initializePage function, add the following code to have the bytes from the validate.wasm file read in and passed to the instantiateWebAssembly function:

 const fs = require('fs');
fs.readFile('validate.wasm', function(error, bytes) { 1
 if (error) { throw error; }

 instantiateWebAssembly(bytes); 2
});

 	1 Reads in the validate.wasm file’s bytes

 	2 Passes the bytes to this function

 Your next steps are to make the following modifications to the initializePage function:

 	Rename the function to instantiateWebAssembly, and give it a parameter called bytes.

 	Remove the line of code setting the name, as well as the category code that follows, so that the first thing in the instantiateWebAssembly function is the module-Memory line of code.

 	Replace WebAssembly.instantiateStreaming with WebAssembly.instantiate, and replace the fetch("validate.wasm") parameter with bytes.

 	Last, within the then method of the WebAssembly.instantiate call, and following the moduleExports line of code, add a call to the validateData function, which you’ll create in a moment.

 The modified initializePage function in your nodejs_validate.js file should now look like the code in the next listing.

 Listing 10.4. initializePage renamed to instantiateWebAssembly

 ...

function instantiateWebAssembly(bytes) { 1
 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => { 2
 moduleExports = result.instance.exports;
 validateData(); 3
 });
}
...

 	1 Renamed from initializePage, and bytes added as the parameter

 	2 Uses instantiate instead of instantiateStreaming and bytes passed in instead of the fetch call

 	3 Calls validateData once the module has been instantiated

 In your nodejs_validate.js file, delete the getSelectedCategoryId function. Then replace the content of the setErrorMessage function with a console.log call for the error parameter, as in the following snippet:

 function setErrorMessage(error) { console.log(error); } 1

 	1 Outputs any error messages to the console

 The next adjustment that you need to make to the nodejs_validate.js file is to rename the onClickSave function to validateData so that it will be called once the module has been instantiated. Within the validateData function, remove the two lines of code above the if statement that get the name and categoryId. In the if statement, prefix the name and categoryId variables with your clientData object.

 The validateData function in your nodejs_valdiate.js file should now look like the code in the following listing.

 Listing 10.5. onClickSave renamed to validateData

 ...

function validateData() { 1
 let errorMessage = "";
 const errorMessagePointer = moduleExports._create_buffer(256);

 if (!validateName(clientData.name, errorMessagePointer) || 2
 !validateCategory(clientData.categoryId, 3
 errorMessagePointer)) {
 errorMessage = getStringFromMemory(errorMessagePointer);
 }

 moduleExports._free_buffer(errorMessagePointer);

 setErrorMessage(errorMessage);
 if (errorMessage === "") {
 4
 }
}
...

 	1 Renamed from onClickSave

 	2 The clientData object’s name value is passed to validateName.

 	3 The clientData object’s categoryId is passed to validateCategory.

 	4 There were no issues with the validation. The data can be saved.

 The final area that you need to modify is the copyStringToMemory function. In a browser, the TextEncoder object is global; but in Node.js, the object is found in the util package. In your nodejs_validate.js file, you need to prefix the TextEncoder object with the util object that you loaded earlier, as the following code snippet shows:

 function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new util.TextEncoder().encode((value + "\0")), 1
 memoryOffset);
}

 	1 The TextEncoder object is part of the util package in Node.js.

 No other changes are needed to the JavaScript in the nodejs_validate.js file.

 Viewing the results

 To test the logic, you can adjust the data by changing the value for the categoryId property to a value that isn’t in the VALID_CATEGORY_IDS array (categoryId: "1001"). To run your JavaScript file in Node.js, open a command prompt, navigate to your Chapter 10\10.4.2 SideModule\backend\ folder, and run the following command:

 node nodejs_validate.js

 You should see the validation message shown in figure 10.12.

 In this section, you learned how to modify the JavaScript to load and instantiate a WebAssembly module that your code calls
 into. In the next section, you’ll learn how to work with a module that makes calls into your JavaScript.

 Figure 10.12. The product category validation error in Node.js

 [image:]

 10.4.3. The WebAssembly module calling into JavaScript

 As an example, a module calling into JavaScript directly would be useful if your module needs to perform a long-running operation.
 Rather than the JavaScript making a function call and waiting for the results, a module could periodically call into the JavaScript
 to get more information or provide an update on its own.

 When not using Emscripten’s generated JavaScript, which you won’t be doing here, things are a bit different because all the
 JavaScript code is in the same scope. As a result, a module can call into the JavaScript and have access to the main code,
 as figure 10.13 shows.

 Figure 10.13. How the callback logic will work when not using Emscripten’s generated JavaScript code

 [image:]

 Implementing the server code for Node.js

 In your WebAssembly\ folder, create a Chapter 10\10.4.3 SideModuleCallingJS\backend\ folder, and then do the following:

 	Copy the editproduct.js and validate.wasm files from your Chapter 5\5.2.1 SideModuleCallingJS\frontend\ folder to your newly created backend\ folder.

 	Rename the editproduct.js file to nodejs_validate.js, and then open it with your favorite editor.

 You’re going to modify the nodejs_validate.js file to work in Node.js. The code uses the TextEncoder JavaScript object in the copyStringToMemory function; in Node.js, the TextEncoder object is part of the util package. You’ll need to include a reference to the package so that your code can use the object. Add this code at the beginning
 of your nodejs_validate.js file:

 const util = require('util'); 1

 	1 Loads the util package so that you’ll have access to the TextEncoder object

 Rename the initialData object to clientData. Then, in your nodejs_validate.js file, before the initializePage function, add the code from the following snippet to read in the bytes from the validate.wasm file and pass them to the instantiateWebAssembly function:

 const fs = require('fs');
fs.readFile('validate.wasm', function(error, bytes) { 1
 if (error) { throw error; }

 instantiateWebAssembly(bytes); 2
});

 	1 Reads in the validate.wasm file’s bytes

 	2 Passes the bytes to this function

 Next, you need to modify the initializePage function by doing the following:

 	Rename the function to instantiateWebAssembly, and add a bytes parameter.

 	Remove the lines of code that appear before the moduleMemory line of code.

 	Change WebAssembly.instantiateStreaming to WebAssembly.instantiate, and replace the fetch("validate.wasm") parameter value with bytes.

 	Add a call to the validateData function after the moduleExports line of code in the then method of the WebAssembly.instantiate call.

 The modified initializePage function in your nodejs_validate.js file should now look like the code in the next listing.

 Listing 10.6. initializePage renamed to instantiateWebAssembly

 ...

function instantiateWebAssembly(bytes) { 1
 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 _UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(getStringFromMemory(errorMessagePointer));
 },
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => { 2
 moduleExports = result.instance.exports;
 validateData(); 3
 });
}
...

 	1 Renamed from initializePage, and bytes added as the parameter

 	2 Uses instantiate instead of instantiateStreaming and bytes passed in instead of the fetch call

 	3 Calls validateData once the module has been instantiated

 In your nodejs_validate.js file, delete the getSelectedCategoryId function. Then, replace the contents of the setErrorMessage function with a console.log call for the error parameter, as shown in the following snippet:

 function setErrorMessage(error) { console.log(error); } 1

 	1 Outputs any error messages to the console

 Revise the onClickSave function by completing the following steps:

 	Rename the function to validateData.

 	Remove the setErrorMessage(), const name, and const categoryId lines of code.

 	Add the clientData object prefix to the name and categoryId values in the if statements.

 The modified onClickSave function in your nodejs_validate.js file should now look like this:

 function validateData() { 1
 if (validateName(clientData.name) && 2
 validateCategory(clientData.categoryId)) { 3
 4
 }
}

 	1 Renamed from onClickSave

 	2 The clientData object’s name value is passed to validateName.

 	3 The clientData object’s categoryId is passed to validateCategory.

 	4 There were no issues with the validation. The data can be saved.

 The last item that you need to adjust is the copyStringToMemory function. You need to prefix the TextEncoder object with the util object that you loaded earlier.

 Your copyStringToMemory function in your nodejs_validate.js file should look like the code in the following snippet:

 function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new util.TextEncoder().encode((value + "\0")), 1
 memoryOffset);
}

 	1 The TextEncoder object is part of the util package in Node.js.

 No other changes are needed in the nodejs_validate.js file.

 Viewing the results

 To test the validation logic, you can adjust the data in clientData by changing the name property to a value that exceeds the MAXIMUM_NAME_LENGTH value of 50 characters (name: "This is a very long product name to test the validation logic.").

 Open a command prompt, navigate to your Chapter 10\10.4.3 SideModule-CallingJS\backend\ folder, and run the following command:

 node nodejs_validate.js

 You should see the validation message shown in figure 10.14.

 Figure 10.14. Validation message about the product name’s length from Node.js

 [image:]

 In this section, you learned how to load and work with a WebAssembly module that calls into your JavaScript code directly.
 In the next section, you’ll learn how to work with a module that calls JavaScript function pointers.

 10.4.4. The WebAssembly module calling JavaScript function pointers

 Being able to pass a module a JavaScript function pointer adds flexibility to your code compared to calling into JavaScript
 directly, because you’re not dependent on a single specific function. Instead, the module can be passed a function as needed,
 as long as the function signature matches what’s expected.

 Also, depending on how the JavaScript is set up, calling a function may require multiple function calls to reach your JavaScript.
 With a function pointer, the module is calling your function directly.

 WebAssembly modules can use function pointers that point to functions that are within the module, or the functions can be
 imported. In this case, you’ll be using the WebAssembly module that you built in section 6.2 of chapter 6, which is expecting the OnSuccess and OnError functions to be specified, as figure 10.15 shows. When the module calls either function, it’s calling into the JavaScript code.

 Figure 10.15. A module that has imported the onSuccess and onError JavaScript functions at instantiation. When the ValidateName module function calls either function, it’s calling into the JavaScript code.

 [image:]

 Implementing the server code for Node.js

 You’re now going to modify the JavaScript code that you wrote for use in the browser in chapter 6 so that it can work in Node.js. In your WebAssembly\ folder, create a Chapter 10\10.4.4 SideModuleFunctionPointers\backend\ folder, and then do the following:

 	Copy the editproduct.js and validate.wasm files from your Chapter 6\6.2.2 SideModuleFunctionPointers\frontend\ folder to your newly created backend\ folder.

 	Rename the editproduct.js file to nodejs_validate.js, and then open it with your favorite editor.

 Your JavaScript code uses the TextEncoder JavaScript object. Because the object is part of the util package in Node.js, the first thing that you’ll need to do is include a reference to the package. Add the code in the following
 snippet at the beginning of your nodejs_validate.js file:

 const util = require('util'); 1

 	1 Loads the util package so that you’ll have access to the TextEncoder object

 Rename the initialData object to clientData.

 In your nodejs_validate.js file, before the initializePage function, add the following code to read in the bytes from the validate.wasm file and pass them to the instantiateWebAssembly function:

 const fs = require('fs');
fs.readFile('validate.wasm', function(error, bytes) { 1
 if (error) { throw error; }

 instantiateWebAssembly(bytes); 2
});

 	1 Reads in the validate.wasm file’s bytes

 	2 Passes the bytes to this function

 Modify the initializePage function by doing the following:

 	Rename the function to instantiateWebAssembly, and add a bytes parameter.

 	Remove the lines of code that appear before the moduleMemory line of code.

 	Change WebAssembly.instantiateStreaming to WebAssembly.instantiate, and replace the fetch("validate.wasm") parameter value with bytes.

 	Add a call to the validateData function in the then method of the WebAssembly .instantiate call after the last addToTable function call.

 The modified initializePage function in your nodejs_validate.js file should now look like the code in the next listing.

 Listing 10.7. initializePage renamed to instantiateWebAssembly

 ...

function instantiateWebAssembly(bytes) { 1
 moduleMemory = new WebAssembly.Memory({initial: 256});

moduleTable = new WebAssembly.Table({initial: 1, element: "anyfunc"});
 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 __table_base: 0,
 table: moduleTable,
 abort: function(i) { throw new Error('abort'); },
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => { 2
 moduleExports = result.instance.exports;
 onSuccessCallback(validateNameCallbacks);
 }, 'v');

 validateOnSuccessCategoryIndex = addToTable(() => {
 onSuccessCallback(validateCategoryCallbacks);
 }, 'v');

 validateOnErrorNameIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateNameCallbacks, errorMessagePointer);
 }, 'vi');

 validateOnErrorCategoryIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateCategoryCallbacks, errorMessagePointer);
 }, 'vi'); validateData(); 3
 });
}
...

 	1 Renamed from initializePage, and bytes added as the parameter

 	2 Uses instantiate instead of instantiateStreaming, and bytes passed in instead of the fetch call

 	3 Calls validateData once the module has been instantiated

 The next change you need to make in your nodejs_validate.js file is to delete the getSelectedCategoryId function. Then replace the contents of the setErrorMessage function with a console.log call for the error parameter:

 function setErrorMessage(error) { console.log(error); } 1

 	1 Outputs any error messages to the console

 Modify the onClickSave function by completing the following steps:

 	Rename the function to validateData.

 	Remove the setErrorMessage(), const name, and const categoryId lines of code.

 	Add the clientData object prefix to the name and categoryId values that are passed to the validateName and validateCategory functions.

 The modified onClickSave function in your nodejs_validate.js file should now look like the code in the following listing.

 Listing 10.8. onClickSave renamed to validateData

 ...

function validateData() { 1
 Promise.all([
 validateName(clientData.name), 2
 validateCategory(clientData.categoryId) 3
])
 .then(() => {
 4
 })
 .catch((error) => {
 setErrorMessage(error);
 });
}
...

 	1 Renamed from onClickSave

 	2 The clientData object’s name value is passed to validateName.

 	3 The clientData object’s categoryId is passed to validateCategory.

 	4 There were no issues with the validation. The data can be saved.

 Finally, you need to modify the copyStringToMemory function to prefix the TextEncoder object with the util object. Your copyStringToMemory function in the nodejs_validate.js file should look like this:

 function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new util.TextEncoder().encode((value + "\0")), 1
 memoryOffset);
}

 	1 The TextEncoder object is part of the util package in Node.js.

 No other changes are needed in the nodejs_validate.js file.

 Viewing the results

 To test the validation logic, you can adjust the data in the clientData object by clearing the value from the name property (name: "") and saving the file. Open a command prompt, navigate to your Chapter 10\10.4.4 SideModuleFunctionPointers\backend\ folder, and run the following command:

 node nodejs_validate.js

 You should see the validation message shown in figure 10.16.

 Now: how can you use what you learned in this chapter in the real world?

 Figure 10.16. The product name validation error in Node.js

 [image:]

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	As you saw in this chapter, Node.js can be run from the command line, which means you can use your WebAssembly logic locally
 on your development machine to help you with your day-to-day tasks.

 	With web sockets, Node.js can help implement real-time collaboration in your web application.

 	You could use Node.js to add a chat component to your game.

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
Which Node.js function do you need to call in order to load Emscripten’s generated JavaScript file?

 2
What Emscripten Module property do you need to implement in order to be informed of when the WebAssembly module is ready to be interacted with?

 3
How would you modify the index.js file from chapter 8 so that the dynamic linking logic works in Node.js?

 Summary

 	WebAssembly modules in Node.js are possible, and the JavaScript needed is quite similar to what you used when working in a
 web browser.

 	Modules that include the Emscripten JavaScript code can load and instantiate themselves when you load the JavaScript using
 the require function. Unlike in the browser, however, there are no global Emscripten helper functions available. All functions within
 the Emscripten-generated JavaScript file need to be accessed through the return object from the require function.

 	Node.js doesn’t support the WebAssembly.instantiateStreaming function. Instead, you need to use the WebAssembly.instantiate function. If you’re writing a single JavaScript file to use a WebAssembly module in both a web browser and Node.js, then
 you’ll need the feature detection you learned about in chapter 3, section 3.6.

 	When loading a WebAssembly file manually in Node.js, you don’t use the fetch method because the WebAssembly file is on the same machine as the JavaScript code that’s being executed. Instead, you read
 in the WebAssembly file’s bytes from the File System, and then pass the bytes to the WebAssembly.instantiate function.

 	Due to scope issues between the code that calls the require function and the generated Emscripten JavaScript, if you add custom JavaScript to Emscripten’s JavaScript file, it should
 be self-contained and not try to call into the parent code.

 Part 4. Debugging and testing

 With most development, there comes a time when we run into an issue that needs to be tracked down. This could be as simple
 as reading over the code, but sometimes you need to dig deeper. In this part of the book, you’ll learn about the options available
 for debugging and testing a WebAssembly module.

 Chapter 11 teaches you about the WebAssembly text format by building a card-matching game. In chapter 12, you’ll extend the card-matching game to learn about the various options available to debug a WebAssembly module. And chapter 13 rounds out your WebAssembly development skills by teaching you how to write integration tests for your modules.

 Chapter 11. WebAssembly text format

 This chapter covers

 	Creating a WebAssembly text format version of a module

 	Compiling the text format code into a binary module using the WebAssembly Binary Toolkit’s online tool

 	Linking the Binary Toolkit’s generated module to an Emscripten-generated module

 	Building the HTML and JavaScript for the UI aspect of a game

 WebAssembly is designed with a binary file format so that the WebAssembly files are as small as possible, allowing for fast
 transmissions and downloads; this doesn’t mean it’s a way for developers to hide their code. In fact, quite the opposite is
 true. WebAssembly is designed with the web’s openness in mind. As a result, a text format equivalent of the binary format
 also exists.

 The text format allows browser users to inspect a web page’s WebAssembly in much the same way that they’d inspect JavaScript.
 The binary format’s text format equivalent is also presented for debugging in the browser if the WebAssembly module doesn’t
 include source maps, as highlighted in figure 11.1.

 Figure 11.1. Developer tools in Firefox, with a breakpoint placed in the _ValidateName function of the WebAssembly module you built in chapter 4, section 4.1

 [image:]

 Suppose that you’re going to build the card-matching game figure 11.2 shows. Level 1 will start with two rows of two cards, all facedown. The player will click two of the cards, and they’ll turn
 faceup as they’re clicked. If the cards are a match, they’ll disappear. If the two cards don’t match, they’ll turn facedown
 again.

 Figure 11.2. Level 1 of the card-matching game, showing two cards clicked before they turn facedown because they’re not a match

 [image:]

 The player will win the level by causing all cards to disappear. As figure 11.3 illustrates, when the player wins, the game shows a message giving them the opportunity to replay the current level or play
 the next level.

 Figure 11.3. When the player wins, they can replay the current level or play the next level.

 [image:]

 We’ll look at debugging a WebAssembly module in the next chapter, but before that, you need to have an understanding of the
 text format and how it works. In this chapter, you’ll build the core logic for the card-playing game using the WebAssembly
 text format to see how it works in more detail. You’ll then compile it into a WebAssembly module using the WebAssembly Binary
 Toolkit’s online tool. HTML, CSS, and images will be used for the game’s UI aspect.

 When building a module using only the text format, you won’t have access to the standard C library functions like malloc and free. As a workaround, you’ll build a simple Emscripten-generated module that will export the additional functions that your text
 format module needs.

 Figure 11.4 shows the following steps for creating this chapter’s game:

 	Create the game’s core logic using the WebAssembly text format.

 	Use the WebAssembly Binary Toolkit to generate a WebAssembly module from the text format (cards.wasm).

 	Create a C++ file that will allow the cards.wasm module to access certain standard C library functions.

 	Use Emscripten to generate a WebAssembly module from the C++ file.

 	Copy the generated WebAssembly files to the server for use by the browser. Then create the HTML and JavaScript that will load
 and link the two WebAssembly modules together. Also, create the JavaScript that will pass the information about the player’s
 interactions to the module.

 Figure 11.4. Steps for building the game

 [image:]

 11.1. Creating the game’s core logic using WebAssembly text format

 WebAssembly text format uses s-expression nodes, which let you represent the module’s elements in a simple way.

 	

 Reminder

 The s-expression (shorthand for symbolic expression) was invented for the Lisp programming language. An s-expression can be
 either an atom or an ordered pair of s-expressions, allowing you to nest s-expressions. An atom is a symbol that’s not a list:
 foo or 23, for example. A list is represented by parentheses and can be empty, or can hold atoms or even other lists. Each item is
 space-delimited: () or (foo) or (foo (bar 132)), for example.

 	

 In WebAssembly text format, each s-expression is surrounded by parentheses, and the first item within the parentheses is the
 label indicating the type of node it is. Following the label, the node can have a whitespace-separated list of attributes
 or even other nodes. Because the text format is meant for humans to read, child nodes are typically separated by a linefeed
 and indented to help show the parent/child relationship.

 With the text format, you can refer to most items, like a function or a parameter, by the item’s index. If you have a number
 of functions or variables, however, referring to everything by an index can sometimes get confusing. You can optionally include
 a variable name for an item when defining it, which is what you’ll do for all variables and functions in this chapter.

 Variable names in the text format start with a $ character, followed by alphanumeric characters indicating what the variable represents. Typically, the variable name represents
 the type of data it’s for, like $func for function, but you could also use a variable name like $add for an add function. Sometimes, you’ll even see the name of the variable end with a number indicating its index, like $func0.

 WebAssembly supports four value types (32-bit integers, 64-bit integers, 32-bit floats, and 64-bit floats). Booleans are represented
 using a 32-bit integer. All other value types, like strings, need to be represented in the module’s linear memory. The four
 value types represented in the text format are

 	i32 for a 32-bit integer

 	i64 for a 64-bit integer

 	f32 for a 32-bit float

 	f64 for a 64-bit float

 To make working with the four types of data easier, the text format has an object for each type with that type’s name. For
 example, to add two i32 values together, you would use i32.add. As another example, if you needed to use a float value of 10.5, you would use f32.const 10.5. A list of the memory and numeric instructions for the object types can be found here: http://webassembly.github.io/spec/core/text/instructions.html.

 11.1.1. The module’s sections

 In chapter 2, you learned about the known and custom sections of a module. Known sections each have a specific purpose, are well-defined,
 and are validated when the WebAssembly module is instantiated. Custom sections are used for data that doesn’t apply to the
 known sections, and they won’t trigger a validation error if the data isn’t laid out correctly.

 Figure 11.5 represents the binary bytecode’s basic structure. Each known section is optional but, if included, can be specified only
 once. Custom sections are also optional but, if included, can be placed before, after, or in between known sections.

 Figure 11.5. Basic structure of the WebAssembly binary bytecode, highlighting the known and custom sections

 [image:]

 As table 11.1 shows, the text format uses s-expression labels that correspond to the binary format’s known sections.

 Table 11.1. Known sections and their corresponding s-expression labels

 	
 Binary format

 	
 Text format

 	
 Binary format

 	
 Text format

 	preamble
 	module
 	Global
 	global

 	Type
 	type
 	Export
 	export

 	Import
 	import
 	Start
 	start

 	Function
 	func
 	Element
 	elem

 	Table
 	table
 	Code
 	

 	Memory
 	memory
 	Data
 	data

 You might have noticed in the table that the text format equivalent of the binary format’s Code section wasn’t specified.
 In the binary format, the function signature and the function’s body are in separate sections. With the text format, the body
 of the function is included with the function as part of the func s-expression.

 In the binary format, each known section is optional but, if included, can be included only once and must appear in the order
 shown in table 11.1. On the other hand, with the text format, the only node whose position matters is the import s-expression. If included, this s-expression must appear before the table, memory, global, and func s-expressions.

 	

 Tip

 For code maintainability, it’s recommended that all related nodes be kept together and that the sections be placed in the
 same order as you would expect to see those sections in the binary file.

 	

 11.1.2. Comments

 If you wish to include a comment in the text format code, there are two ways to write one. A double semicolon is used for
 a single-line comment, and everything to the right of the semicolons is commented out, as in the following example:

 ;; this is a single-line comment

 If you wish to comment out a section of code—either a portion of an element or several elements at once—you can begin the
 comment with an opening parenthesis and semicolon, and then close the comment later with a semicolon and closing parenthesis.
 Some tools include these types of comments within the elements to indicate which index something has, as in the following
 example:

 (; 0 ;)

 In some of the known sections that you’ll define for this game, you’ll need to include a function signature. Because function
 signatures are used by multiple sections, you’ll learn about them next.

 11.1.3. Function signatures

 A function signature is a function definition without a body. The s-expression for the function signature starts with a label
 using the word func, optionally followed by a variable name.

 If the function has parameters, a param s-expression is included that indicates the parameter’s value type. For example, the following function signature has a single
 32-bit integer parameter and doesn’t return a value:

 (func (param i32))

 If a function has multiple parameters, you can include an additional param node for each parameter. For example, the following signature would be for a function with two i32 parameters:

 (func (param i32) (param i32))

 You can also define parameters with a shorthand method that uses one param node but a space-separated list of each parameter’s type, as in the following example, which is the same as the example shown
 previously with the two param nodes:

 (func (param i32 i32))

 If the function has a return value, a result s-expression is included, indicating the return value’s type. The following is an example of a signature that has two 32-bit
 parameters and returns a 32-bit value:

 (func (param i32 i32) (result i32))

 If a function doesn’t have parameters or a return value, you don’t include param or result nodes:

 (func)

 Now that you understand some of the basics of the text format, your next step is to start building the game’s logic (figure 11.6).

 Figure 11.6. Creating the game’s core logic using the WebAssembly text format

 [image:]

 11.1.4. The module node

 In your WebAssembly\ folder, create a Chapter 11\source\ folder for the files that you’ll use in this section. Create a cards.wast file for your text format code, and then
 open it with your favorite editor.

 The root s-expression node used for the WebAssembly text format is module, and all elements of a module are represented as child nodes of this node. Because all sections of a module are optional,
 it’s possible to have an empty module, which is represented in the text format as (module).

 As figure 11.7 shows, the module node is the equivalent of the binary format’s preamble section. The version of the binary format used will be included by
 the tool that’s used to convert the text format into the binary format file.

 Your first step in building the core logic for this game is to add the module node to the cards.wast file, as shown in the following snippet:

 (module 1
 2
)

 	1 The root module node

 	2 All elements of the module will be children of the module node.

 Figure 11.7. The module node is the equivalent of the binary format’s preamble section. The version will be specified by the tool used
 to create the binary format file.

 [image:]

 With the module node created, you can now move on and add the known sections as children of the module node. The type nodes will appear as the first children of the module node, but you won’t know what function signatures your module needs until you’ve imported or built the necessary functions
 for your module’s logic. Because of this, you’ll skip the type nodes for now, but will come back and add them once you’ve written the module’s functions.

 The first section to add to the module node are the import nodes.

 11.1.5. The import nodes

 The Import known section (figure 11.8) declares all the items to be imported into the module, which can include Function, Table, Memory, or Global imports. For
 the module you’re building, you’ll import the memory needed as well as several functions.

 Figure 11.8. The Import known section declares all the items to be imported into the module.

 [image:]

 An import is defined using an s-expression that has the label import, followed by a namespace name, followed by the name of the item that will be imported, and then followed by an s-expression
 representing the data being imported. To match what you usually see with Emscripten-generated modules, the namespace name
 used will be "env". Emscripten puts an underscore character in front of the name of the item being imported, so you’ll do the same here to make
 your JavaScript code consistent.

 The following is an example of an import node defined for a function that has two i32 parameters and an i32 return value:

 (import "env" "_Add" 1
 (func $add (param i32 i32) (result i32)) 2
)

 	1 “env” is the namespace name. “_Add” is the name of the item being imported.

 	2 The import is for a function that has two i32 parameters and returns an i32 result.

 When the WebAssembly module is instantiated, a JavaScript object needs to be passed to the WebAssembly.instantiateStreaming function that’s providing the imports that the module expects. The following is an example of a JavaScript object for a module
 expecting the _Add function defined earlier:

 const importObject = {
 env: { 1
 _Add: function(value1, value2) { 2
 return value1 + value2;
 }
 }
};

 	1 The object’s name must match the namespace name (env in this case).

 	2 The name of the item is left of the colon, with the item being imported on the right.

 Now that you understand how import nodes are defined, it’s time to add them to the game.

 Adding the import nodes to the game

 The logic in this game will need to import some functions from the JavaScript so that the module can call into the JavaScript
 to update it at various stages of the game. The functions listed in table 11.2 will be imported from the JavaScript code.

 Table 11.2. JavaScript functions that need to be imported

 	
 Item name

 	
 Parameters

 	
 Purpose

 	_GenerateCards
 	rows, columns, level
 	Tells the JavaScript how many rows and columns of cards to create.
 level is for display purposes so that the player knows which level they’re playing.

 	_FlipCard
 	row, column, cardValue
 	Tells the JavaScript to flip the card at the specified row, column index.
 A cardValue of -1 indicates to flip the card facedown (the cards aren’t a match). Otherwise, flip the card faceup because
 the player just clicked on.

 	_RemoveCards
 	row1, coumn1, row2, column2
 	Tells the JavaScript to remove two cards, based on their row and column indexes, because they’re a match.

 	_LevelComplete

 	level, anotherLevel
 	Tells the JavaScript that the player completed the level and whether there’s another level. The JavaScript will show a summary
 screen and allow the player to replay the current level. If there’s another level, the player will also be given the option
 to play it.

 	_Pause
 	namePointer, milliseconds
 	Called to pause the module’s logic to allow the two cards to remain visible briefly before being flipped back facedown or
 removed, depending on whether they were a match.
 namePointer is an index in the module’s memory where the string for the function name to call is located.
 milliseconds indicates how long to wait before calling the function.

 The JavaScript code uses the item’s name (_GenerateCards, for example) to specify the requested item. Your code here in the module, however, refers to the imported item by index
 or by a variable name (if you specify one). Rather than working with indexes, which can get confusing, you’ll include a variable
 name for each of your import items.

 Within your module s-expression in your cards.wast file, add the import s-expressions in the following listing for the functions specified in table 11.2.

 Listing 11.1. The import s-expressions for items from the JavaScript code

 ...

(import "env" "_GenerateCards"
 (func $GenerateCards (param i32 i32 i32)) 1
)
(import "env" "_FlipCard"
 (func $FlipCard (param i32 i32 i32)) 2
)
(import "env" "_RemoveCards"
 (func $RemoveCards (param i32 i32 i32 i32)) 3
)
(import "env" "_LevelComplete"
 (func $LevelComplete (param i32 i32)) 4
)
(import "env" "_Pause" (func $Pause (param i32 i32))) 5
...

 	1 Tells the JavaScript how many rows and columns to display as well as which level it is

 	2 Tells the JavaScript which card to flip and its value

 	3 Tells the JavaScript to remove the two cards based on their row and column positions

 	4 Tells the JavaScript that the level is complete and whether there’s another level

 	5 Tells the JavaScript to call the function specified after the specified number of milliseconds

 Later in this chapter, you’re going to build an Emscripten-generated module that will be manually linked to this one at runtime.
 The Emscripten-generated module will provide access to functions like malloc and free to help with memory management. The module will also provide functions to help with generating random numbers.

 The items listed in table 11.3 will be imported from the Emscripten-generated module.

 Table 11.3. Items that need to be imported from the Emscripten-generated module

 	
 Item name

 	
 Type

 	
 Parameters

 	
 Purpose

 	memory
 	Memory
 	
 	The Emscripten-generated module’s linear memory that this module will share

 	_SeedRandomNumberGenerator
 	Function
 	
 	Seeds the random number generator

 	_GetRandomNumber
 	Function
 	Range
 	Returns a random number within the range specified

 	_malloc
 	Function
 	Size
 	Allocates memory for the number of bytes specified

 	_free
 	Function
 	Pointer
 	Deallocates the memory that was allocated for the specified pointer

 The function imports will be defined the same way here that you did for the JavaScript imports. The one thing that’s different
 with this set of imports is the memory import.

 Regardless of what you import, the first part of the import node is the same: the s-expression’s label import, the namespace, and the item’s name. The only thing that changes is the s-expression for the item being imported.

 The s-expression for memory starts with the label memory, followed by an optional variable name, the initial number of memory pages desired, and, optionally, the maximum number of
 memory pages desired. Each page of memory is 64 KB (1 KB is 1,024 bytes, so 1 page holds 65,536 bytes). The following example
 would define a module’s memory with 1 page of memory initially and a maximum of 10 pages:

 (memory 1 10)

 Within your module s-expression in your cards.wast file, add the import s-expressions in the next listing for the items specified in table 11.3. Place these import nodes after the _Pause import node.

 Listing 11.2. The import s-expressions for items from the Emscripten-generated module

 ...

(import "env" "memory" (memory $memory 256)) 1
(import "env" "_SeedRandomNumberGenerator"
 (func $SeedRandomNumberGenerator) 2
)
(import "env" "_GetRandomNumber"
 (func $GetRandomNumber (param i32) (result i32)) 3
)
(import "env" "_malloc" (func $malloc (param i32) (result i32)))
(import "env" "_free" (func $free (param i32)))
...

 	1 The module’s memory

 	2 Seeds the random number generator

 	3 Gets a random number from a range specified

 Now that the imports have been specified, your next step is to define some global variables to help with the game’s logic.

 11.1.6. The global nodes

 The Global known section (figure 11.9) defines all the global variables that are built into the module. Global variables can also be imported.

 Figure 11.9. The Global known section declares the module’s built-in global variables.

 [image:]

 Global variables are declared at the module level for use by all functions and can be either immutable (a constant) or mutable. They are defined with an s-expression node that starts with the label global, followed by an optional variable name, the variable’s type, and then an s-expression holding the variable’s default value.
 For example, the following global node defines an immutable (constant) variable with the name $MAX that’s a 32-bit integer and has a default value of 25:

 (global $MAX i32 (i32.const 25))

 If you need a mutable global variable, the global’s type is wrapped in an s-expression with the label mut. For example, the following global variable with the name $total is a mutable 32-bit float with a default value of 1.5:

 (global $total (mut f32) (f32.const 1.5))

 Now that you understand how global nodes are defined, it’s time to add them to the game.

 Adding the global nodes to the game

 All the global variables the game needs will be 32-bit integers with a default value of zero. Following the import s-expressions, and within the module s-expression, add the following immutable global variable to your cards.wast file to indicate that the game will support
 a maximum of three levels:

 (global $MAX_LEVEL i32 (i32.const 3))

 The rest of the global variables that you’ll create will be mutable, including the next one that you need to add, called $cards. This will be a pointer to the location in the module’s memory where the array of card values is held. Add the code in the
 following snippet after the $MAX_LEVEL variable in your cards.wast file:

 (global $cards (mut i32) (i32.const 0))

 You now need some variables to keep track of the game’s current level ($current_level) and how many matches remain before the player beats the level ($matches_remaining). You also need $rows and $columns variables to hold the number of rows and columns displayed for the current level.

 Add the code in the following snippet after the $cards variable, and within the module s-expression, in your cards.wast file:

 (global $current_level (mut i32) (i32.const 0))
(global $rows (mut i32) (i32.const 0))
(global $columns (mut i32) (i32.const 0))
(global $matches_remaining (mut i32) (i32.const 0))

 When the player clicks the first card, you need to remember what the card’s row and column positions are so that you can either
 flip it facedown if the second card isn’t a match or remove the card if it is. You also need to keep track of the card’s value
 so that you can compare the second card’s value to see if they’re a match or not.

 When the player clicks the second card, execution will be handed off to the JavaScript. This pauses the game briefly so that
 the second card remains visible long enough for the player to see it before it gets flipped facedown or removed. Because the
 executing function will exit, you also need to remember the second card’s row and column positions as well as the card value.

 In your cards.wast file, add the following code after the $matches_remaining variable and within the module s-expression:

 (global $first_card_row (mut i32) (i32.const 0))
(global $first_card_column (mut i32) (i32.const 0))
(global $first_card_value (mut i32) (i32.const 0))
(global $second_card_row (mut i32) (i32.const 0))
(global $second_card_column (mut i32) (i32.const 0))
(global $second_card_value (mut i32) (i32.const 0))

 When the module’s execution is handed off to the JavaScript to pause the logic before the cards are flipped facedown or removed,
 you don’t want the user continuing to trigger clicks by clicking the cards. The following global variable will be a flag for
 the logic to know that things are currently paused until the JavaScript calls back into the module. In your cards.wast file,
 add the code in the following snippet after the $second_card_value variable and within the module s-expression:

 (global $execution_paused (mut i32) (i32.const 0))

 With the global variables defined, the next area that you need to implement are the exports.

 11.1.7. The export nodes

 As figure 11.10 shows, the Export known section holds a list of all items that will get returned to the host environment once the module
 is instantiated. These are the portions of the module that the host environment can access. Exports can include Function,
 Table, Memory, or Global items. For this module’s logic, you only need to export functions.

 Figure 11.10. The Export known section lists all items in the module that the host environment can access.

 [image:]

 To export an item, you need an s-expression that has the label export, followed by the name that you want the caller to use, and then by an s-expression that specifies the item being exported.

 To export a function, the s-expression at the end of the export node is a func with either the zero-based index or the variable name of the function that the export is pointing to in the module. For example,
 the following would export a function that the host will see as _Add that points to a function in the module with the variable name $add:

 (export "_Add" (func $add))

 Now that you understand how export nodes are defined, it’s time to add them to the game.

 Adding the export nodes to the game

 In a moment, you’ll create the functions for the game’s logic. Of the functions that you create, you need to export the following:

 	$CardSelected—This function is called by the JavaScript code whenever the player clicks a card. The logic calls the imported $Pause JavaScript function if this function call was for a second card. The $Pause function is also told to call the $SecondCardSelectedCallback function after a brief delay.

 	$SecondCardSelectedCallback—Called by the JavaScript code from the $Pause function, this function checks to see if the two cards are a match or not and flips them facedown if they’re not a match
 or removes them if they are. If the number of matches remaining reaches zero, this function calls the $LevelComplete JavaScript function.

 	$ReplayLevel—This function is called by the JavaScript code when the player clicks the Replay button on the summary screen after completing
 the current level.

 	$PlayNextLevel—A Next Level button is displayed on the summary screen if the player hasn’t reached the final level of the game. This function
 is called by the JavaScript code when the player clicks the Next Level button.

 After the global s-expressions, and within the module s-expression, add the following export s-expressions to your cards.wast file:

 (export "_CardSelected" (func $CardSelected)) 1
(export "_SecondCardSelectedCallback"
 (func $SecondCardSelectedCallback) 2
)
(export "_ReplayLevel" (func $ReplayLevel)) 3
(export "_PlayNextLevel" (func $PlayNextLevel)) 4

 	1 Called to tell the module which card was clicked

 	2 Callback function when the Pause function’s timeout completes

 	3 Called to reset the current level

 	4 Called to set up the next level

 With the exports defined, the next area to implement is the Start section.

 11.1.8. The start node

 As figure 11.11 shows, the Start known section specifies a function that’s to be called after the module is instantiated but before the exported
 items are callable. If specified, the function can’t be imported and must exist within the module.

 Figure 11.11. The Start known section specifies the function that’s to be called after the module is instantiated.

 [image:]

 For this game, the start function is used to initialize the global variables and memory. It also starts the game’s first level.

 To define the start section, you use an s-expression with the label start, followed by either the function’s index or the variable name. Add the code in the following snippet to your cards.wast file
 after the export s-expressions and within the module s-expression to have the $main function called automatically once the module is instantiated:

 (start $main)

 The next step is to define this module’s functions and their code.

 11.1.9. The code nodes

 As figure 11.12 shows, in the binary format, the Function (definition) and Code (body) known sections are separate. In the text format, the
 function definition and body are together in one func s-expression. When looking at Emscripten’s generated text format or the browser’s code, functions are usually shown in the
 Code known section’s position, so you’ll do that here, too, for consistency.

 Figure 11.12. The Function and Code known sections in the binary format

 [image:]

 The code execution in WebAssembly is defined in terms of a stack machine, in which instructions push or pop a certain number
 of values onto and off the stack. When a function is first called, the stack for that function is empty. The WebAssembly framework
 validates the stack when the function ends to ensure that, if the function is returning an i32 value, for example, the last item on the stack when the function returns is an i32 value. If the function doesn’t return anything, then the stack must be empty when the function returns.

 	

 More Info

 Within the body of a function, the text format supports s-expression style, stack machine style, or a combination of the two.
 In this chapter, you’ll use the stack machine style because that’s the style that browsers use. For s-expression examples, see appendix E for alternative ways that you can write if statements and loops.

 	

 Before you start building the game’s functions, let’s look at how you interact with variables.

 Working with variables

 WebAssembly has two types of variables: globals and locals. Globals are accessible by all functions, whereas local variables
 are accessible only within the function that defined them.

 Local variables need to be defined before anything else in the function and are defined as an s-expression with the label
 local, followed by an optional variable name, and then by the variable’s type. The following is an example of an f32 local variable declaration with the variable name $float followed by an i32 local variable declaration without a variable name:

 (local $float f32)
(local i32)

 If you don’t specify a name for a variable, you can reference it using its zero-based index. One thing to be aware of with
 local variables is that a function’s parameters are considered locals as well, and are first in the index order.

 To assign a value to a variable, the value needs to be on the stack first. You can then use either the set_local or tee_local instruction to pop the value off the stack and set the local variable’s value. The difference between set_local and tee_local is that tee_local also returns the value that was set. For a global variable, you use the set_global instruction in the same way you use the set_local instruction.

 As an example, the following code snippet places the value 10.3 on the stack and then calls the set_local instruction for the $float variable. The set_local instruction will pop the top value off the stack and place it in the variable specified:

 f32.const 10.3
set_local $float

 To get a value from a variable and push it onto the stack, you use the get_local instruction for local variables and get_global for global variables. For example, if your function had a parameter called $param0, the following code would place its value on the stack:

 get_local $param0

 	

 Info

 The set_local, tee_local, get_local, set_global, and get_global instructions are used in this chapter because web browsers are still using this format. However, the WebAssembly specification
 has been adjusted to use local.set, local.tee, local.get, global.set, and global.get. The new format is called the exact same way as the old format. When Emscripten outputs a .wast file, it now uses the new
 format, and the WebAssembly Binary Toolkit can now accept text format code that uses either format. The new variable instructions can be found at http://mng.bz/xljX.

 	

 Now that you understand how variables work, the first func node that you’ll build for the game’s logic will be the $InitializeRowsAndColumns function.

 The $InitializeRowsAndColumns function

 The $InitializeRowsAndColumns function has a single i32 parameter with the name $level and doesn’t have a return value. This function is called to set the global $rows and $columns variables to their appropriate values based on the level parameter received.

 Because each level has a different combination of rows and columns for the cards, the function needs to determine which level
 has been requested. To check and see if the parameter value is 1 (one), you place the parameter value onto the stack and then place i32.const 1 onto the stack. To determine if the two values on the stack are equal, you call the i32.eq instruction, which pops the top two items off the stack, checks to see if they’re equal, and then pushes the result onto
 the stack (1 for true, 0 for false), as shown in the following snippet:

 get_local $level
i32.const 1
i32.eq 1

 	1 1 will be placed on the stack if $level holds the value 1. Otherwise, 0 is placed on the stack.

 Once you have the Boolean value on the stack, you’ll use an if statement to check if the Boolean value is true and, if so, to set the $rows and $column values each to an i32.const 2. An if statement will pop the top item off the stack to do its evaluation. An if statement considers a zero value as false and any nonzero value as true. The following snippet extends the logic of the previous snippet to include an if statement:

 get_local $level
i32.const 1
i32.eq
if
 1
end

 	1 If the top value on the stack is nonzero, then the code in this block will run.

 The code shown in the previous snippet will be repeated three times, once for each level being checked. The i32.const value will be changed to 2 when checking if the level specified is two and will be changed to 3 when checking if the level specified is three.

 Set the global $rows and $columns values to the following based on the level specified:

 	Level 1: both are i32.const 2

 	Level 2: $rows is i32.const 2, $columns is i32.const 3

 	Level 3: $rows is i32.const 2, $columns is i32.const 4

 The game is capable of six levels, but only the first three are defined in this function to simplify the code. Add the code
 in the next listing after the start node in your cards.wast file.

 Listing 11.3. The $InitializeRowsAndColumns function for your cards.wast file

 ...

(func $InitializeRowsAndColumns (param $level i32)
 get_local $level 1
 i32.const 1 2
 i32.eq 3
 if 4
 i32.const 2 5
 set_global $rows 6

 i32.const 2 5
 set_global $columns 7
 end

 get_local $level
 i32.const 2
 i32.eq
 if
 i32.const 2
 set_global $rows 8

 i32.const 3
 set_global $columns 9
 end

 get_local $level
 i32.const 3
 i32.eq
 if
 i32.const 2
 set_global $rows 10

 i32.const 4
 set_global $columns 11
 end
)

 	1 Pushes the parameter value onto the stack

 	2 Pushes 1 onto the stack

 	3 Pops the top two values, checks to see if they’re equal, and pushes the result onto the stack

 	4 Pops the top item off the stack; if true, then sets the global variables

 	5 Pushes 2 onto the stack

 	6 Pops the top item off the stack and puts it into the global variable $rows

 	7 Pops the top item off the stack and puts it into the global variable $columns

 	8 If level 2 was requested, sets the global variable $rows to 2

 	9 If level 2 was requested, sets the global variable $columns to 3

 	10 If level 3 was requested, sets the global variable $rows to 2

 	11 If level 3 was requested, sets the global variable $columns to 4

 The next func node that you’ll need to define is the $ResetSelectedCardValues function.

 The $ResetSelectedCardValues function

 The $ResetSelectedCardValues function has no parameters or return value. This function is called to set the global variables for the first and second
 cards that are clicked to -1. Setting these card values to -1 indicates to the rest of the game’s logic that all cards are currently facedown.

 Add the code in the following listing after the $InitializeRowsAndColumns node in your cards.wast file.

 Listing 11.4. The $ResetSelectedCardValues function for your cards.wast file

 ...

(func $ResetSelectedCardValues
 i32.const -1
 set_global $first_card_row

 i32.const -1
 set_global $first_card_column

 i32.const -1
 set_global $first_card_value

 i32.const -1
 set_global $second_card_row

 i32.const -1
 set_global $second_card_column

 i32.const -1
 set_global $second_card_value
)

 The next func node that you’ll need to define is the $InitializeCards function.

 The $InitializeCards function

 The $InitializeCards function has an i32 parameter with the name $level and doesn’t return a value. This function is called to set the global variables to their appropriate values based on the
 $level parameter received, create and populate the $cards array, and then shuffle the array.

 Local variables need to be defined in a function before any other code, so the first thing that’s needed in the function is
 an i32 local variable called $count that will be populated later in the function. The following snippet shows the local variable’s definition:

 (local $count i32)

 The next thing the function does is push the $level parameter received onto the stack and then call set_global to pop the value off the stack and place it into the global variable $current_level:

 get_local $level
set_global $current_level

 Next, the $level parameter value is pushed onto the stack again, and the $Initialize-RowsAndColumns function is called to have the $rows and $columns global variables set appropriately based on the requested level. Because the function has a single parameter, WebAssembly
 will pop the top value off the stack (the level value) and will pass it to the function, as shown in the following snippet:

 get_local $level
call $InitializeRowsAndColumns

 To have the first and second card global variables reset to -1, the code calls the $ResetSelectedCardValues function. This function has no parameters, so nothing needs to be placed on the stack for this function call:

 call $ResetSelectedCardValues

 The function then determines how many cards are needed for the current level based on the values in the $rows and $columns global variables. These global variable values are placed on the stack, and then the i32.mul instruction is called. i32.mul pops the top two items off the stack, multiplies the values together, and pushes the result back onto the stack. Once the
 result is on the stack, set_local is called to put the value into the $count variable. The set_local call will pop the top item off the stack and place it into the variable specified. The following snippet shows the code that
 determines how many cards the current level has:

 get_global $rows
get_global $columns
i32.mul
set_local $count

 The next step is to determine the $matches_remaining value by dividing the $count value by 2. The $count value and i32.const 2 are pushed onto the stack, and then the i32.div_s instruction is called. This instruction pops the top two items off the stack, divides them, and pushes the result back onto
 the stack. The set_global instruction is then called to pop the top item off the stack and put the value in the $matches_remaining global variable:

 get_local $count
i32.const 2
i32.div_s
set_global $matches_remaining

 The next thing that needs to happen in the function is for a block of memory to be allocated to hold the number of i32 values based on the value in $count. Because i32 values are 4 bytes each, the $count value needs to be multiplied by 4 to get the total number of bytes to allocate. You could use i32.mul, but it’s more efficient to use the i32.shl (shift left) instruction. A shift left of 2 is the same as multiplying by 4.

 Once the total number of bytes has been determined, the $malloc function that you imported from the Emscripten-generated module is called to have that number of bytes allocated. The $malloc function will return the memory index where the allocated memory block starts. You’ll then call the set_global instruction to place that value in the $cards variable.

 The following snippet shows the number of bytes being determined from the $count value and then being passed to the $malloc function, with the result being placed in the $cards variable:

 get_local $count
i32.const 2
i32.shl
call $malloc
set_global $cards

 Now that a block of memory has been allocated for your $cards array, you’ll call the $PopulateArray function, passing it the number of cards that the current level has, as shown in the following snippet. The function will
 add pairs of values to the $cards array based on the number of cards there are for the current level (0, 0, 1, 1, 2, 2, for example):

 get_local $count
call $PopulateArray

 Finally, the function will call the $ShuffleArray, to have the contents of the $cards array shuffled:

 get_local $count
call $ShuffleArray

 Putting it all together, add the code in the next listing after the $ResetSelectedCardValues node in your cards.wast file.

 Listing 11.5. The $InitializeCards function for your cards.wast file

 ...

(func $InitializeCards (param $level i32)
 (local $count i32)

 get_local $level
 set_global $current_level 1

 get_local $level
 call $InitializeRowsAndColumns 2

 call $ResetSelectedCardValues 3

 get_global $rows 4
 get_global $columns
 i32.mul
 set_local $count

 get_local $count 5
 i32.const 2
 i32.div_s
 set_global $matches_remaining

 get_local $count
 i32.const 2
 i32.shl 6
 call $malloc 7
 set_global $cards

 get_local $count
 call $PopulateArray 8

 get_local $count
 call $ShuffleArray 9
)

 	1 Remembers the requested level

 	2 Sets the rows and columns global variables based on the current level

 	3 Makes sure the first and second card values are reset

 	4 Determines how many cards there are for this level

 	5 Determines how many pairs of cards there are for this level

 	6 Shifts left by 2 because each item in the array represents a 32-bit integer (4 bytes each)

 	7 Allocates the memory needed by calling the malloc function

 	8 Fills the array with pairs of values

 	9 Shuffles the array

 The next func node that you’ll need to define is the $PopulateArray function.

 The $PopulateArray function

 Loop through the array, as shown in the following listing, adding pairs of values based on the number of cards there are for
 the current level (0, 0, 1, 1, 2, 2, for example).

 Listing 11.6. The $PopulateArray function for your cards.wast file

 ...

(func $PopulateArray (param $array_length i32)
 (local $index i32)
 (local $card_value i32)

 i32.const 0
 set_local $index

 i32.const 0
 set_local $card_value

 loop $while-populate
 get_local $index
 call $GetMemoryLocationFromIndex
 get_local $card_value
 i32.store 1

 get_local $index
 i32.const 1
 i32.add
 set_local $index 2

 get_local $index
 call $GetMemoryLocationFromIndex
 get_local $card_value
 i32.store 3

 get_local $card_value
 i32.const 1
 i32.add
 set_local $card_value 4

 get_local $index
 i32.const 1
 i32.add
 set_local $index 5

 get_local $index
 get_local $array_length
 i32.lt_s
 if
 br $while-populate 6
 end
 end $while-populate
)

 	1 Sets the memory value at $index to the content of

 	2 Increments the index

 	3 Sets the memory value at $index to the content of $card_value

 	4 Increments $card_value for the next loop

 	5 Increments the index for the next loop

 	6 If the index is less than $array_length, loop again.

 The next func node that you need to define is the $GetMemoryLocationFromIndex function.

 The $ GetMemoryLocationFromIndex function

 The $GetMemoryLocationFromIndex function has an i32 parameter called $index and an i32 return value. This function is called to determine the memory location of the index in the $cards array.

 The function pushes the parameter value ($index) as well as an i32.const 2 value onto the stack. It then calls the i32.shl instruction (shift left), which pops the top two values off the stack, shifts the $index value by 2 (the same as multiplying it by 4), and pushes the result back onto the stack.

 The function then calls get_global for $cards to push the start location of the $cards array in memory onto the stack. The i32.add instruction is then called; it pops the top two items off the stack, adds them together, and pushes the result back onto
 the stack. Because the function will be returning a value, the result of the i32.add operation is left on the stack to be returned to the caller.

 Add the code in the following snippet after the $PopulateArray node in your cards.wast file:

 (func $GetMemoryLocationFromIndex (param $index i32) (result i32)
 get_local $index
 i32.const 2
 i32.shl 1

 get_global $cards
 i32.add 2
)

 	1 Shifts the index value left by 2

 	2 Adds the start location of the array to the index location

 The next func node that you need to define is the $ShuffleArray function.

 The $ShuffleArray function

 The $ShuffleArray function has an i32 parameter called $array_length and no return value. This function is called to have the contents of the $cards array shuffled.

 	

 Info

 The type of shuffling that will be used for this array will be the Fisher-Yates shuffle. You can find more information at
 https://gist.github.com/sundeepblue/10501662.

 	

 This function first defines several local variables for use in the upcoming loop. It then calls the $SeedRandomNumberGenerator function that was imported from the Emscripten-generated module to seed the random number generator.

 The $index value is initialized at 1 less than the $array_length value because the loop through the cards will be from the end of the array to the beginning. A loop is then started that
 will continue while the $index value hasn’t yet reached zero.

 Within the loop, a call is made to the $GetRandomNumber function that was imported from the Emscripten-generated module to get a random number from the range specified. The range
 specified is the current index adjusted to be one-based to get a random number between 1 and $index + 1. The random number received is then placed in the local $card_to_swap variable:

 get_local $index
i32.const 1
i32.add 1
call $GetRandomNumber
set_local $card_to_swap

 	1 Adds 1 to the value in $index to get a one-based index

 Once the index of a random card to swap has been determined, the card’s memory location at the current index and card to swap
 index is determined and placed in the $memory_location1 and $memory_location2 local variables, respectively.

 After the two memory locations have been found, the value at the current index ($memory_location1) is read from memory by calling i32.load. This instruction will pop the top item—the memory location—off the stack and read the i32 value from that memory location, placing it on the stack. Your function will then place the value in the local variable $card_value so that it isn’t lost while the data from $memory_location2 is placed in $memory_location1, as shown in the following snippet:

 get_local $memory_location1
i32.load
set_local $card_value

 The next snippet can be confusing. The code pushes the value in $memory_location1 onto the stack (the current index) and then pushes the value in $memory_location2 (the card to swap index) onto the stack. It then calls i32.load, which pops the top item off the stack ($memory_location2—the card to swap index), reads the value from that memory location, and pushes that memory location’s value onto the stack.

 Because $memory_location1 (the current index) is already on the stack, and now the value from $memory_location2 is on the stack, the code can call the i32.store instruction. The i32.store call will pop the top two items off the stack and place the value in memory. The topmost item is the value to store, and
 the next item is the location in memory to store the value:

 get_local $memory_location1 1
get_local $memory_location2 2
i32.load 3
i32.store 4

 	1 Pushes the memory location for $index onto the stack

 	2 Pushes the memory location for the card to swap index onto the stack

 	3 Pops $memory_location2 off the stack; pushes the memory location value onto the stack

 	4 Stores $memory_location2’s value in $memory_location1’s memory index

 Now that the value from $memory_location2 is in $memory_location1, the code places the value that was in $memory_location1 into $memory_location2, as follows:

 get_local $memory_location2
get_local $card_value
i32.store

 The loop then decrements the $index value by 1. If the $index value is still greater than zero, the loop starts again.

 Putting it all together, add the code in the next listing after the $PopulateArray node in your cards.wast file.

 Listing 11.7. The $ShuffleArray function for your cards.wast file

 ...

(func $ShuffleArray (param $array_length i32)
 (local $index i32)
 (local $memory_location1 i32)
 (local $memory_location2 i32)
 (local $card_to_swap i32)
 (local $card_value i32)

 call $SeedRandomNumberGenerator 1

 get_local $array_length 2
 i32.const 1
 i32.sub
 set_local $index

 loop $while-shuffle
 get_local $index
 i32.const 1
 i32.add
 call $GetRandomNumber 3
 set_local $card_to_swap

 get_local $index
 call $GetMemoryLocationFromIndex 4
 set_local $memory_location1

 get_local $card_to_swap
 call $GetMemoryLocationFromIndex 5
 set_local $memory_location2

 get_local $memory_location1 6
 i32.load
 set_local $card_value

 get_local $memory_location1
 get_local $memory_location2
 i32.load 7
 i32.store 8

 get_local $memory_location2
 get_local $card_value
 i32.store 9

 get_local $index 10
 i32.const 1
 i32.sub
 set_local $index

 get_local $index 11
 i32.const 0
 i32.gt_s
 if
 br $while-shuffle
 end
 end $while-shuffle
)

 	1 Seeds the random number generator

 	2 The loop will start at the end of the array and move to the beginning.

 	3 Determines a random card to swap the item at this index with

 	4 Determines the memory location based on the index

 	5 Determines the memory location based on the card_to_swap index

 	6 Gets the card value from memory at the current index in the array

 	7 Pops $memory_location2 and pushes that memory location’s value onto the stack

 	8 Stores the value from $memory_location2 at $memory_location1

 	9 Puts the card value into the memory where card_to_swap’s value was

 	10 Decrements the index by 1 for the next loop

 	11 If the index is still greater than zero, then loop again.

 The next func node that you’ll need to define is the $PlayLevel function.

 The $PlayLevel function

 The $PlayLevel function has an i32 parameter called $level and no return value. This function is called to initialize the cards and then have them displayed for the player.

 To initialize the cards, push the $level parameter value onto the stack and then call the $InitializeCards function. Because the function expects a single parameter, the top item on the stack is popped off and passed as the parameter
 to the function.

 Next, you need to call the $GenerateCards JavaScript function so that the proper number of cards for the current level are displayed for the player. To do this, you
 push the global $rows and $columns values onto the stack and then the $level parameter value. Then call the $GenerateCards function. This function expects three parameters, so the top three items will be popped off the stack and passed to the function’s
 parameters.

 Add the code in the following snippet after the $ShuffleArray function in your cards.wast file:

 (func $PlayLevel (param $level i32)
 get_local $level 1
 call $InitializeCards 2

 get_global $rows 3
 get_global $columns 4
 get_local $level 5
 call $GenerateCards 6
)

 	1 Pushes the parameter value onto the stack

 	2 Has the cards and global variables initialized for the requested level

 	3 Pushes the $rows value onto the stack

 	4 Pushes the $columns value onto the stack

 	5 Pushes the parameter value onto the stack

 	6 Tells the JavaScript to display the cards

 The next func node that you’ll need to define is the $GetCardValue function.

 The $GetCardValue function

 The $GetCardValue function accepts two i32 parameters ($row and $column) and returns an i32 result. This function is called to get the card value associated with a card at a specific row and column position.

 The following equation is used to determine the index in the $cards array in which the requested row and column value resides:

 row * columns + column

 The next snippet shows the text format code that implements this formula. The parameter value $row is pushed onto the stack, and then the $columns global variable is pushed onto the stack. The i32.mul instruction pops the top two items off the stack, multiplies them together, and then pushes the result onto the stack.

 The $column parameter value is pushed onto the stack, and then the i32.add instruction is called, which pops the top two items off the stack, adds them together, and pushes the result onto the stack,
 giving you the index within the array to find the card value:

 get_local $row
get_global $columns
i32.mul 1
get_local $column
i32.add 2

 	1 Multiplies $row by $columns

 	2 Adds $column to the result

 Once the array index has been determined, you need to shift the index left by 2 (multiply by 4) because each index represents
 a 4-byte, 32-bit integer. Then the start location of the $cards array in memory is added to the adjusted index to get the spot in the module’s memory where that index resides. With the
 memory index now on the stack, the i32.load instruction is called, which pops the top item off the stack, reads the item from that memory location, and pushes the value
 onto the stack. Because this function returns an i32 result, you just leave the result of the i32.load call on the stack, and it will be returned to the calling function when this function ends.

 Add the code in the next listing after the $PlayLevel function in your cards.wast file.

 Listing 11.8. The $GetCardValue function for your cards.wast file

 ...

(func $GetCardValue (param $row i32) (param $column i32) (result i32)
 get_local $row
 get_global $columns
 i32.mul 1
 get_local $column
 i32.add 2

 i32.const 2
 i32.shl 3
 get_global $cards
 i32.add 4
 i32.load 5
)

 	1 Multiplies the $row and $columns values together

 	2 Adds the $column value to the result of the multiplication

 	3 Shifts the index value left by 2 (multiplies by 4) because each index represents a 32-bit integer

 	4 Adds the start position of the $cards pointer array to the index position

 	5 Reads the value from memory; leaves it on the stack to be returned to the calling function

 The next func node that you’ll need to define is the $CardSelected function.

 The $CardSelected function

 The $CardSelected function accepts two i32 parameters ($row and $column) and doesn’t return a value. This function is called by the JavaScript code when the player clicks a card.

 As the following snippet shows, before this function does anything, it checks to see if the execution is paused. Execution
 will be paused if the player just clicked a second card and the module is giving them a short delay before either flipping
 the cards facedown or removing them. If execution is paused, the function exits by calling the return statement:

 get_global $execution_paused
i32.const 1
i32.eq
if
 return
end

 If execution isn’t paused, the function will then determine what the card value is for the $row and $column specified in the parameter values by calling the $GetCardValue function. The card value determined is placed in the $card_value local variable, as shown in the following snippet:

 get_local $row
get_local $column
call $GetCardValue
set_local $card_value

 Next, the function calls the JavaScript $FlipCard function to have the card that was clicked flipped faceup:

 get_local $row
get_local $column
get_local $card_value
call $FlipCard

 The code then checks to see if the $first_card_row value is set to -1. If so, then the first card isn’t yet faceup, and the then block of the if statement executes. If the value is not -1, the first card is already faceup, so the else block of the if statement executes, as the following snippet shows:

 get_global $first_card_row
i32.const -1
i32.eq
if
 1
else
 2
end

 	1 $first_card_row’s value is -1. The first card isn’t faceup yet.

 	2 $first_card_row’s value isn’t -1. The first card is faceup.

 In the then block of the if statement, the values of $row, $column, and $card_value are placed in the global variables $first_card_row, $first_card_column, and $first_card_value, respectively.

 In the else block of the if statement, the code first checks to see if the $row and $column values belong to the first card by calling the $IsFirstCard function. If the player has clicked the same card again, the function exits, as shown in the following snippet:

 get_local $row
get_local $column
call $IsFirstCard
if
 return
end

 If the player has clicked a different card, the else branch places the values of $row, $column, and $card_value in the global variables $second_card_row, $second_card_column, and $second_card_value, respectively. The else branch code then gives the $execution_paused variable the value i32.const 1 to flag that execution is now paused and this function isn’t to respond to clicks until execution is unpaused.

 Finally, as the next snippet shows, the code in the else branch pushes the value i32.const 1024 onto the stack and then pushes i32.const 600 onto the stack. The 1024 value is the memory location of the string "SecondCardSelectedCallback" that you’ll specify when you define the Data known section later in this chapter. The 600 value is the number of milliseconds for which you want the JavaScript code to pause execution.

 Once the two values have been pushed onto the stack, the $Pause JavaScript function is called. The function expects two parameters, so the top two items on the stack are popped off and
 passed as the parameters to the function:

 i32.const 1024
i32.const 600
call $Pause

 Putting it all together, add the code in the next listing after the $GetCardValue function in your cards.wast file.

 Listing 11.9. The $CardSelected function for your cards.wast file

 ...

(func $CardSelected (param $row i32) (param $column i32)
 (local $card_value i32)

 get_global $execution_paused 1
 i32.const 1
 i32.eq
 if
 return
 end

 get_local $row
 get_local $column
 call $GetCardValue 2
 set_local $card_value

 get_local $row
 get_local $column
 get_local $card_value
 call $FlipCard 3

 get_global $first_card_row
 i32.const -1
 i32.eq
 if 4
 get_local $row 5
 set_global $first_card_row

 get_local $column
 set_global $first_card_column

 get_local $card_value
 set_global $first_card_value
 else 6
 get_local $row
 get_local $column
 call $IsFirstCard 7
 if
 return
 end

 get_local $row 8
 set_global $second_card_row

 get_local $column
 set_global $second_card_column

 get_local $card_value
 set_global $second_card_value

 i32.const 1
 set_global $execution_paused 9

 i32.const 1024 10
 i32.const 600 11
 call $Pause 12
 end
)

 	1 Ignores clicks while the game is paused

 	2 Gets the value of the card for the row and column specified

 	3 Tells the JavaScript to show this card

 	4 If no card has been clicked yet...

 	5 ...remembers the details about the card that was clicked

 	6 The first card is already shown.

 	7 If the player clicked the first card again, exit the function.

 	8 Remembers the second card’s details

 	9 Don’t respond to clicks until the Pause function calls back into this module.

 	10 Location in memory of the string “SecondCardSelectedCallback”

 	11 Duration before the $SecondCardSelectedCallback function is to be called by the JavaScript

 	12 Calls the JavaScript $Pause function

 The next func node that you’ll need to define is the $IsFirstCard function.

 The $IsFirstCard function

 The $IsFirstCard function accepts two i32 parameters ($row and $column) and returns an i32 result. This function is called to determine if the $row and $column values are for the first card that’s displayed to the user.

 The function first checks to see if the $row parameter value matches the $first_card_row global value and puts the result in the $rows_equal local variable. In the same fashion, the function checks to see if the $column parameter value matches the $first_card_column global value and puts the result in the $columns_equal local variable.

 The function next pushes the $rows_equal and $columns_equal values onto the stack and calls the i32.and instruction. This instruction pops the top two items off the stack and does a bitwise AND operation on the values to determine if they’re both equal; it then pushes the result back onto the stack. Because this function
 returns an i32 result, you leave the result of the i32.and call on the stack; it will be returned to the calling function when this function ends.

 Add the code in the next listing after the $CardSelected function in your cards.wast file.

 Listing 11.10. The $IsFirstCard function for your cards.wast file

 ...

(func $IsFirstCard (param $row i32) (param $column i32) (result i32)
 (local $rows_equal i32)
 (local $columns_equal i32)

 get_global $first_card_row
 get_local $row
 i32.eq 1
 set_local $rows_equal

 get_global $first_card_column
 get_local $column
 i32.eq 2
 set_local $columns_equal

 get_local $rows_equal
 get_local $columns_equal
 i32.and 3
)

 	1 Determines if the first card’s row matches the current row

 	2 Determines if the first card’s column matches the current column

 	3 A bitwise AND to determine if the rows and columns are both equal

 The next func node that you’ll need to define is the $SecondCardSelectedCallback function.

 The $SecondCardSelectedCallback function

 The $SecondCardSelectedCallback function doesn’t have any parameters or a return value. This function is called by the JavaScript $Pause function when the timeout completes. It checks to see if the two cards that are selected are a match. If they are, the JavaScript
 function $RemoveCards is called to have the two cards hidden, and then the $matches_remaining global variable is decremented. If the two cards aren’t a match, the JavaScript function $FlipCard is called for each card to have them flipped back facedown. The global variables indicating which cards have been clicked
 are then reset, and the $execution_paused variable is set to 0 (zero), indicating that the module isn’t paused anymore.

 The function next checks to see if the $matches_remaining value is at 0 (zero), indicating that the level is complete. If so, the memory for the $cards array is released by calling the $free function that’s imported from the Emscripten-generated module. The $LevelComplete JavaScript function is then called to inform the player that they completed the level.

 Add the code in the next listing after the $IsFirstCard function in your cards.wast file.

 Listing 11.11. The $SecondCardSelectedCallback function for your cards.wast file

 ...

(func $SecondCardSelectedCallback
 (local $is_last_level i32)

 get_global $first_card_value
 get_global $second_card_value
 i32.eq
 if 1
 get_global $first_card_row
 get_global $first_card_column
 get_global $second_card_row
 get_global $second_card_column
 call $RemoveCards 2

 get_global $matches_remaining
 i32.const 1
 i32.sub
 set_global $matches_remaining 3
 else 4
 get_global $first_card_row
 get_global $first_card_column
 i32.const -1
 call $FlipCard 5

 get_global $second_card_row
 get_global $second_card_column
 i32.const -1
 call $FlipCard 6
 end

 call $ResetSelectedCardValues 7

 i32.const 0
 set_global $execution_paused 8

 get_global $matches_remaining
 i32.const 0
 i32.eq
 if 9
 get_global $cards
 call $free 10

 get_global $current_level
 get_global $MAX_LEVEL
 i32.lt_s
 set_local $is_last_level 11

 get_global $current_level
 get_local $is_last_level
 call $LevelComplete 12
 end
)

 	1 If the two selected cards match...

 	2 ...tells the JavaScript to hide the two cards

 	3 Decrements the global variable by 1

 	4 The two cards were not a match.

 	5 Tells the JavaScript to flip the first card facedown

 	6 Tells the JavaScript to flip the second card facedown

 	7 Sets the global variables for the selected cards to -1

 	8 Turns off the flag, allowing the $CardSelected function to accept clicks again

 	9 If there are no matches remaining...

 	10 ...frees the memory used by the $cards global variable

 	11 Determines if the current level is the last one

 	12 Calls the JavaScript function to tell the player they beat the level and whether there’s another level

 The next func node that you’ll need to define is the $ReplayLevel function.

 The $ReplayLevel function

 The $ReplayLevel function has no parameters or return value and is called by the JavaScript when the player presses the Replay button. This
 function simply passes the $current_level global variable to the $PlayLevel function.

 Add the code in the following snippet after the $SecondCardSelectedCallback function in your cards.wast file:

 (func $ReplayLevel
 get_global $current_level
 call $PlayLevel
)

 The next func node that you’ll need to define is the $PlayNextLevel function.

 The $PlayNextLevel function

 The $PlayNextLevel function has no parameters or return value and is called by the JavaScript when the player presses the Next Level button.
 This function calls the $PlayLevel function, passing it a value that’s 1 greater than the $current_level global variable’s value.

 Add the code in the following snippet after the $ReplayLevel function in your cards.wast file:

 (func $PlayNextLevel
 get_global $current_level
 i32.const 1
 i32.add
 call $PlayLevel
)

 The next func node that you’ll need to define is the $main function.

 The $main function

 The $main function has no parameters or return value. This function is called automatically when the module is instantiated because
 you specify it as part of the start node. It calls the $PlayLevel function, passing it a value of 1 to start the first level of the game.

 Add the code in the following snippet after the $PlayNextLevel function in your cards.wast file:

 (func $main
 i32.const 1
 call $PlayLevel
)

 Now that you have all the functions defined for your core logic, your next step is to add in the type nodes.

 11.1.10. The type nodes

 As figure 11.13 shows, the Type known section declares a list of all unique function signatures that will be used in the module, including
 those that will be imported. When using the Binary Toolkit to generate a module, the type s-expression nodes are optional because the toolkit can determine the signatures based on the import function definitions
 and the defined functions within the module. Because you’ll see the type s-expressions defined when viewing the text format in a browser’s developer tools, you’ll define them here also for completeness.

 Figure 11.13. The Type known section declares a list of all unique function signatures that will be used in the module, including those
 that will be imported.

 [image:]

 A type is defined using an s-expression that has the label type, followed by an optional variable name, and then by the function signature. For example, the following would be a type definition
 for a function signature that has no parameters and no return value:

 (type (func))

 You can give a type any name you wish, but we’ll follow Emscripten’s naming convention, which is a variable name similar to
 $FUNCSIG$vi. The value following the second dollar sign indicates the function’s signature. The first character is the function’s return
 value type, and each additional character indicates the parameter types. The characters Emscripten uses are

 	v—Void

 	i—32-bit integer

 	j—64-bit integer

 	f—32-bit float

 	d—64-bit float

 The Type known section appears as the first section in the module, but you waited until now to implement it so that you could
 create the module’s functions first. Now you can go through your functions and imports to put together a list of all unique
 function signatures.

 Adding the type nodes to the game

 Looking over the imported functions and the function’s you’ve built for this module, you have seven unique function signatures,
 shown in table 11.4.

 Table 11.4. The seven unique function signatures this module uses

 	
 Return type

 	
 Param 1

 	
 Param 2

 	
 Param 3

 	
 Param 4

 	
 Emscripten signature

 	void
 	-
 	-
 	-
 	-
 	v

 	void
 	i32
 	-
 	-
 	-
 	vi

 	void
 	i32
 	i32
 	-
 	-
 	vii

 	void
 	i32
 	i32
 	i32
 	-
 	viii

 	void
 	i32
 	i32
 	i32
 	i32
 	viiii

 	i32
 	i32
 	-
 	-
 	-
 	ii

 	i32
 	i32
 	i32
 	-
 	-
 	iii

 With the unique function signatures determined in table 11.4, all that’s left to do is create the type nodes for each signature. Add the type s-expressions from the following snippet to your cards.wast file before the import nodes and within the module s-expression:

 (type $FUNCSIG$v (func)) 1
(type $FUNCSIG$vi (func (param i32))) 2
(type $FUNCSIG$vii (func (param i32 i32))) 3
(type $FUNCSIG$viii (func (param i32 i32 i32))) 4
(type $FUNCSIG$viiii (func (param i32 i32 i32 i32))) 5
(type $FUNCSIG$ii (func (param i32) (result i32))) 6
(type $FUNCSIG$iii (func (param i32 i32) (result i32))) 7

 	1 Signature with no return value or parameters

 	2 No return value, one 32-bit integer parameter

 	3 No return value, two 32-bit integer parameters

 	4 No return value, three 32-bit integer parameters

 	5 No return value, four 32-bit integer parameters

 	6 32-bit integer return value, one 32-bit integer parameter

 	7 32-bit integer return value, two 32-bit integer parameters

 The final section that you need to define for this game is the Data section.

 11.1.11. The data node

 As figure 11.14 shows, the Data known section declares the data to load into the module’s linear memory during instantiation.

 Figure 11.14. The Data known section declares the data to load into the module’s linear memory during instantiation.

 [image:]

 The data s-expression starts out with the label data, followed by an s-expression indicating where in the module’s memory the data should go, and then by a string containing
 the data to place in memory.

 You need to place the string "SecondCardSelectedCallback" into the module’s memory. This module will be manually linked to an Emscripten-generated module at runtime, and Emscripten-generated
 modules sometimes place data of their own in the module’s memory. As a result, you’ll place the string at memory index 1024 to leave room in case the Emscripten-generated module wants to put something in memory too.

 Add the code in the following snippet to your cards.wast file after the func s-expressions and within the module s-expression to have the string "SecondCard-SelectedCallback" placed at index 1024 in the module’s memory:

 (data (i32.const 1024) "SecondCardSelectedCallback")

 Once your text format module is complete, your next step is to convert it into a binary module (figure 11.15).

 Figure 11.15. Generating a Wasm file from the WebAssembly text format

 [image:]

 11.2. Generating a WebAssembly module from the text format

 To compile the WebAssembly text format into a WebAssembly module using the wat2wasm online tool, go to the following website:
 https://webassembly.github.io/wabt/demo/wat2wasm/. As figure 11.16 shows, in the tool’s top-left pane, you can replace the existing text with the text from your cards.wast file. The tool automatically
 creates the WebAssembly module for you. Click the Download button to download the generated WebAssembly file to your Chapter 11\source\ folder, and name it cards.wasm.

 Figure 11.16. Replace the contents of the top-left pane with the contents of your cards.wast file. Then download the WebAssembly file.

 [image:]

 Now that you’ve generated the WebAssembly module from the text format code, you can move on to the next step and create the
 Emscripten-generated module (figure 11.17).

 Figure 11.17. Creating the C++ file containing the logic needed for your cards.wasm module

 [image:]

 11.3. The Emscripten-generated module

 The Emscripten-generated module provides your cards.wasm module with the necessary standard C library functions, like malloc, free, and the random number generator functions srand and rand. The two modules will be manually linked at runtime. As shown in figure 11.18, now you’ll create the C++ file.

 Figure 11.18. Creating the C++ file containing the logic needed for your cards.wasm module

 [image:]

 11.3.1. Creating the C++ file

 In your Chapter 11\source\ folder, create a main.cpp file, and open it with your favorite editor. You need to define two functions that will
 be exported for use by the game’s logic module.

 The first function is called SeedRandomNumberGenerator and passes the srand function a seed value. The seed value will be the current time, which will be obtained by calling the time function. The time function can accept a pointer to a time_t object to populate with the time, but you don’t need that here, so you’ll just pass NULL, as follows:

 EMSCRIPTEN_KEEPALIVE
void SeedRandomNumberGenerator() { srand(time(NULL)); }

 The second function that you need to create is called GetRandomNumber; it accepts a range and returns a random number within that range. For example, if the value for the range is 10, the random
 number will be between 0 and 9. The following is the GetRandomNumber function:

 EMSCRIPTEN_KEEPALIVE
int GetRandomNumber(int range) { return (rand() % range); }

 The logic module also needs access to the malloc and free functions, but the Emscripten-generated module will include those automatically. Add the code in the next listing to your
 main.cpp file.

 Listing 11.12. The contents of the main.cpp file

 #include <cstdlib>
#include <ctime>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

EMSCRIPTEN_KEEPALIVE
void SeedRandomNumberGenerator() { srand(time(NULL)); }

EMSCRIPTEN_KEEPALIVE
int GetRandomNumber(int range) { return (rand() % range); }

#ifdef __cplusplus
}
#endif

 Now that you’ve created your main.cpp file, you’ll use Emscripten to turn it into a WebAssembly module, as figure 11.19 shows.

 Figure 11.19. Using Emscripten to generate a WebAssembly module from main.cpp

 [image:]

 11.3.2. Generating a WebAssembly module

 To compile the code into a WebAssembly module, open a command prompt, navigate to the folder where you saved the main.cpp
 file, and then run the following command:

 emcc main.cpp -o main.js

 Your next step, shown in figure 11.20, is to copy the generated files to a location for use by the browser. You’ll then create the HTML and JavaScript files needed
 for the web page to interact with the modules.

 Figure 11.20. Copying the generated files to the server for use by the browser. You’ll then create the HTML and JavaScript files needed
 for the web page to interact with the modules.

 [image:]

 11.4. Creating the HTML and JavaScript files

 In your WebAssembly\Chapter 11\ folder, create a frontend\ folder for the files that you’ll use in this section. Then copy the following files from your
 source\ folder to your frontend\ folder:

 	cards.wasm

 	main.wasm

 	main.js

 	editproduct.html from your Chapter 4\4.1 js_plumbing\frontend\ folder; rename to game.html

 You’ll start building the game’s web page by first adjusting the game.html file.

 11.4.1. Modifying the HTML file

 Open the game.html file in your favorite editor, and change the text in the title tag from Edit Product to Wasm Match, as shown in the following snippet:

 <title>Wasm Match</title>

 After the last script tag in the head tag, add the following link tag, which will load the CSS needed for styling the cards in the game:

 <link rel="stylesheet" href="game.css">

 	

 Note

 The game.css file can be found with the source code for this book, which is available for download from the publisher’s website
 at www.manning.com/books/webassembly-in-action. Add the game.css file to the same folder as your game.html file.

 	

 Modify the body tag so that it no longer has an onload="initializePage()" attribute. The body tag should now look like this:

 <body>

 Following the body tag, revise the div tag so that its class attribute value becomes root-container. Then delete the HTML within the div. The div should now look like the following snippet:

 <div class="root-container"> 1
 2
</div>

 	1 The class name is renamed to root-container from container.

 	2 The HTML within the div has been removed.

 Within the root-container div, add the HTML in the following snippet. The HTML shows the name of the game on the web page as well as the current level
 that’s being played. If the player decides to advance to the next level, the JavaScript will adjust the h3 tag to indicate the new level:

 <header class="container-fluid">
 <h1>Wasm Match</h1> 1
 <h3 id="currentLevel">Level 1</h3> 2
</header>

 	1 Shows the name of the game on the web page

 	2 Shows the current level being played

 After the header tag, and still within the root-container div, add the div tag shown in the following snippet. The game’s cards will be placed within this div by the JavaScript code:

 <div id="cardContainer" class="container-fluid"></div>

 The next thing you need to do is add some HTML that will be presented to the player when they win a level. The HTML will indicate
 which level they completed and will give them the option to either replay the current level or play the next level (if there
 is a next level). Add the following HTML after the cardContainer div, and within the root-container div:

 <div id="levelComplete" class="container-fluid summary"
[image:] style="display:none;"> 1
 <h1>Congratulations!</h1>
 <h3 id="levelSummary"></h3> 2

 <button class="btn btn-primary"
[image:] onclick="replayLevel();">Replay</Button> 3

 <button class="btn btn-primary" id="playNextLevel"
[image:] onclick="playNextLevel();">Next Level</Button> 4
</div>

 	1 Not shown by default. The JavaScript will show this div if the player wins.

 	2 Will hold details about the level that was completed

 	3 Button the player can click to replay the current level

 	4 Button the player can click to play the next level; hidden if there are no other levels

 The final changes that you need to make to the game.html file are the script tag src values at the end of the file. You’ll create a game.js file in a moment that will handle linking the two modules together
 and interacting with the module. Change the first script tag’s value to game.js and the second script tag’s value to main.js (the Emscripten-generated JavaScript code):

 <script src="game.js"></script> 1
<script src="main.js"></script> 2

 	1 Was editproduct.js

 	2 Was validate.js

 With the HTML now adjusted, the next step is to create the JavaScript that will link the two modules together and interact
 with the main logic in the cards.wasm module.

 11.4.2. Creating the JavaScript file

 In your frontend\ folder, create a game.js file, and then open it with your favorite editor. Add the global variables in the
 following code snippet to your game.js file to hold the module’s memory and exported functions:

 let moduleMemory = null;
let moduleExports = null;

 Your next step is to create a Module object so that you can handle Emscripten’s instantiateWasm function. This will allow you to control the process of downloading and instantiating the Emscripten-generated WebAssembly
 module. You’ll then be able to download and instantiate the cards.wasm file, linking it to the Emscripten-generated module.

 Within the instantiateWasm function, you need to implement the following:

 	Place a reference to the importObject’s memory object into the moduleMemory global variable for use by your JavaScript later.

 	Define a variable that will hold the instance of the main.wasm module once instantiated.

 	Then call the WebAssembly.instantiateStreaming function, fetching the main.wasm file and passing in the importObject received from Emscripten.

 	In the then method of the instantiateStreaming Promise, define the import object for the cards.wasm module, passing in functions from the main.wasm module as well as JavaScript functions from your
 own JavaScript code. Then call WebAssembly.instantiateStreaming to fetch the cards.wasm module.

 	In the then method of the cards.wasm instantiateStreaming Promise, place a reference to the module’s exports in the moduleExports global variable. Finally, pass the module instance of the main.wasm module to Emscripten.

 Add the code in the next listing to your game.js file after your global variables.

 Listing 11.13. The Module object in the game.js file

 ...

var Module = { 1
 instantiateWasm: function(importObject, successCallback) { 2
 moduleMemory = importObject.env.memory; 3
 let mainInstance = null;

 WebAssembly.instantiateStreaming(fetch("main.wasm"),
 importObject) 4
 .then(result => {
 mainInstance = result.instance; 5

 const sideImportObject = { 6
 env: {
 memory: moduleMemory, 7
 _malloc: mainInstance.exports._malloc,
 _free: mainInstance.exports._free,
 _SeedRandomNumberGenerator:
[image:] mainInstance.exports._SeedRandomNumberGenerator,
 _GetRandomNumber: mainInstance.exports._GetRandomNumber,
 _GenerateCards: generateCards,
 _FlipCard: flipCard,
 _RemoveCards: removeCards,
 _LevelComplete: levelComplete,
 _Pause: pause,
 }
 };

 return WebAssembly.instantiateStreaming(fetch("cards.wasm"),
 sideImportObject) 8

 }).then(sideInstanceResult => {
 moduleExports = sideInstanceResult.instance.exports; 9

 successCallback(mainInstance); 10
 });

 return {}; 11
 }
};

 	1 Emscripten’s JavaScript will look for this object to see if your code is overriding anything.

 	2 Allows you to control the main module’s instantiation

 	3 Keeps a reference to the memory object for use by your JavaScript

 	4 Downloads and instantiates the Emscripten-generated WebAssembly module

 	5 Keeps a reference to the main.wasm module instance

 	6 Creates the import object needed by the cards.wasm module

 	7 Uses the same memory as the main module instance

 	8 Downloads and instantiates the cards.wasm module

 	9 Keeps a reference to the cards.wasm module’s exports for use by your JavaScript

 	10 Passes the main module instance to Emscripten’s JavaScript code

 	11 Because this is done asynchronously, passes back an empty object

 When the cards.wasm module is instantiated, it will automatically start level 1 and call your JavaScript generateCards function to have the proper number of cards displayed on the screen. This function will also be called when the player chooses
 to replay the level or play the next level. Add the code in the next listing to your game.js file after the Module object.

 Listing 11.14. The generateCards function in the game.js file

 ...

function generateCards(rows, columns, level) { 1
 document.getElementById("currentLevel").innerText
 = `Level ${level}`; 2

 let html = ""; 3
 for (let row = 0; row < rows; row++) {
 html += "<div>"; 4

 for (let column = 0; column < columns; column++) {
 html += "<div id=\"" + getCardId(row, column)
 + "\" class=\"CardBack\" onclick=\"onClickCard("
 + row + "," + column + ");\"></div>"; 5
 }

 html += "</div>"; 6
 }

 document.getElementById("cardContainer").innerHTML = html; 7
}

 	1 Called by the module to have the proper number of cards displayed

 	2 Adjusts the header section to indicate the current level

 	3 Will hold the HTML for the cards

 	4 Each row’s cards will be in a div tag.

 	5 Builds the HTML for the current card

 	6 Closes the div tag for the current row

 	7 Updates the web page with the HTML

 Each card displayed is given an ID based on its row and column values. The get-CardId function will return the ID of the card specified by the row and column values. Add the function in the following code snippet
 after the generateCards function in the game.js file:

 function getCardId(row, column) {
 return ("card_" + row + "_" + column);
}

 Whenever the player clicks a card, the module will call the flipCard function to have the card’s face shown. If the player clicks a second card, and the cards don’t match, then—after a brief
 delay so that the player can see the cards they clicked—the module will call the flipCard function again for both cards to have them flipped facedown. When the module wants the card flipped facedown, it will specify
 a cardValue of -1. Add the flipCard code in the following snippet after the getCardId function in your game.js file:

 function flipCard(row, column, cardValue) { 1
 const card = getCard(row, column); 2
 card.className = "CardBack"; 3

 if (cardValue !== -1) { 4
 card.className = ("CardFace "
 + getClassForCardValue(cardValue)); 5
 }
}

 	1 Called by the module to flip the card either faceup or facedown

 	2 Gets a reference to the card in the DOM

 	3 Defaults the card to be facedown

 	4 If a value was specified, then the card needs to be faceup.

 	5 CardFace is for the card and the value from getClassForCardValue for the image.

 The getCard helper function returns the DOM object for the card requested based on the row and column value specified. Add the getCard function after the flipCard function in your game.js file:

 function getCard(row, column) {
 return document.getElementById(getCardId(row, column));
}

 When a card is faceup, it includes a second CSS class name to indicate which image to display. The card values used in the
 game are 0, 1, 2, and up depending on how many levels there are. The getClassForCardValue function will return a class name starting with Type and with the card’s value appended to the end (Type0, for example). Add the following code after the getCard function in your game.js file:

 function getClassForCardValue(cardValue) {
 return ("Type" + cardValue);
}

 When the player successfully finds two cards that match, the module will call the removeCards function to have those cards removed. Add the code in the following snippet after the getClassForCardValue function in your game.js file:

 function removeCards(firstCardRow, firstCardColumn,
 secondCardRow, secondCardColumn) {
 let card = getCard(firstCardRow, firstCardColumn); 1
 card.style.visibility = "hidden"; 2

 card = getCard(secondCardRow, secondCardColumn);
 card.style.visibility = "hidden"; 3
}

 	1 Gets a reference to the first card in the DOM

 	2 The card is hidden but still occupies the same space to prevent the cards from moving around.

 	3 Hides the second card

 Once the player has found all the matches for the current level, the module will call the levelComplete function so that the JavaScript can inform the player and offer the option to replay the current level. If the module indicates
 that there’s another level available, the player will also get the opportunity to play the next level. Add the code in the
 next listing after the removeCards function in your game.js file.

 Listing 11.15. The levelComplete function in the game.js file

 ...

function levelComplete(level, hasAnotherLevel) {
 document.getElementById("levelComplete").style.display
[image:] = ""; 1

 document.getElementById("levelSummary").innerText =
 `You've completed level ${level}!`; 2

 if (!hasAnotherLevel) { 3
 document.getElementById("playNextLevel").style.display =
[image:] "none";
 }
}

 	1 Shows the level complete section

 	2 Indicates which level the player just completed

 	3 If there are no other levels, then hide the button for playing the next level.

 When the player clicks a second card, the module will give the player a brief pause before either flipping the cards facedown
 if they don’t match or hiding them if they do match. To pause execution, the module calls the pause JavaScript function, indicating which module function it wants the JavaScript to call once the timeout completes. It also
 passes the duration that it wants the timeout to be, in milliseconds. Add the code in the following snippet to your game.js
 file after the levelComplete function:

 function pause(callbackNamePointer, milliseconds) {
 window.setTimeout(function() { 1
 const name = ("_" +
 getStringFromMemory(callbackNamePointer)); 2

 moduleExports[name](); 3
 }, milliseconds); 4
}

 	1 Creates an anonymous function that will be called when the timeout completes

 	2 Gets the function’s name from the module’s memory and prefixes it with the underscore character

 	3 Calls the function that was specified

 	4 The timeout will trigger after the specified number of milliseconds.

 The getStringFromMemory function that you’ll create next is copied from the JavaScript code used by previous chapters to read a string from the module’s
 memory. Add the code in the next listing after your pause function in the game.js file.

 Listing 11.16. The getStringFromMemory function for the game.js file

 ...

function getStringFromMemory(memoryOffset) {
 let returnValue = "";

 const size = 256;
 const bytes = new Uint8Array(moduleMemory.buffer, memoryOffset, size);

 let character = "";
 for (let i = 0; i < size; i++) {
 character = String.fromCharCode(bytes[i]);
 if (character === "\0") { break;}

 returnValue += character;
 }

 return returnValue;
}

 Whenever the player clicks a card, the card’s div tag will call the onClickCard function, passing in the card’s row and column values. Your onClickCard function needs to pass these values to the module by calling the _CardSelected function. Add the code in the following snippet after your getStringFromMemory function in your game.js file:

 function onClickCard(row, col) {
 moduleExports._CardSelected(row, col); 1
}

 	1 Tells the module that the card at this row and column position was clicked

 When the player completes the level, they’re presented with a button allowing them to replay the current level. The button
 will call your replayLevel function. In your function, you’ll need to hide the level complete section and then tell the module that the player wants
 to replay the level by calling the _ReplayLevel function. Add the following code after your onClickCard function in your game.js file:

 function replayLevel() {
 document.getElementById("levelComplete").style.display
[image:] = "none"; 1

 moduleExports._ReplayLevel(); 2
}

 	1 Hides the level complete section

 	2 Tells the module that the player wants to replay the current level

 Also, when the player completes the level, they’ll see a button letting them play the next level (if there is one). When clicked,
 the button will call your playNextLevel JavaScript function. In this function, you’ll need to hide the level complete section and then tell the module that the player
 wants to play the next level by calling the _PlayNextLevel function. Add the code in the following snippet after your replayLevel function in your game.js file:

 function playNextLevel() {
 document.getElementById("levelComplete").style.display = "none";

 moduleExports._PlayNextLevel(); 1
}

 	1 Tells the module that the player wants to play the next level

 Now that all your files have been created, you can view the results.

 11.5. Viewing the results

 To view the results, open your browser and type http://localhost:8080/game.html into the address box to see the game’s web page, shown in figure 11.21.

 Figure 11.21. The card-matching game looks like this when the player reaches level 3.

 [image:]

 How can you use what you learned in this chapter in the real world?

 Real-world use cases

 The following are some possible use cases for what you’ve learned in this chapter:

 	As you’ll see in chapter 12, the text format is used by browsers when showing the contents of a WebAssembly module if source maps are unavailable. It’s
 also possible to set a breakpoint and step through the text format code, which might be necessary to track down an issue if
 you can’t reproduce it locally.

 	As you saw in chapter 6 and will see again in chapter 12, you can include the -g flag with the emcc command to have Emscripten also output a .wast file. If you’re receiving errors when trying to instantiate a module, or you’re not sure why something isn’t working, sometimes it
 helps to take a look at the contents of this file.

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
When using the WebAssembly Binary Toolkit to create a WebAssembly module, which s-expression nodes have to appear before the
 table, memory, global, and func s-expressions?

 2
Try modifying the InitializeRowsAndColumns function in the text format code so that it now supports six levels rather than three:

 	Level 4 should have 3 rows and 4 columns.

 	Level 5 should have 4 rows and 4 columns.

 	Level 6 should have 4 rows and 5 columns.

 Summary

 In this chapter, you learned the following:

 	There is a text equivalent of the WebAssembly binary format called the WebAssembly text format. This allows you to see and
 work with a module using human-readable text, rather than having to work with the binary format directly.

 	The text format allows a browser user to inspect a WebAssembly module in much the same way they would inspect a web page’s
 JavaScript.

 	The text format isn’t intended to be written by hand, but it’s possible to do so using tools like the WebAssembly Binary Toolkit.

 	The text format uses s-expressions to represent the elements of the module in a simple way. The root element is the module s-expression, and all other s-expressions are children of this node.

 	There are s-expressions that correspond to the binary format’s known sections. Only the import node’s position matters; if it’s included, it needs to appear before the table, memory, global, and func nodes. Also, the Function and Code known sections in the binary format are represented by a single func s-expression in the text format.

 	The four value types supported by WebAssembly are represented in the text format as i32 (32-bit integer), i64 (64-bit integer), f32 (32-bit float), and f64 (64-bit float).

 	To make working with the four types of data easier, the text format has an object for each type with that type’s name (i32.add, for example).

 	The code in a function acts as a stack machine in which values are pushed onto and popped off the stack. The code within a
 function can be written using either the stack machine format or the s-expression format. Browsers display a function’s code
 using the stack machine format.

 	If a function doesn’t return a value, the stack must be empty when the function exits. Otherwise, an item of that type must
 be on the stack when the function exits.

 	You can reference items by their index or variable name.

 	A function’s parameters are considered local variables, and their indexes come before any local variables defined in the function.
 Also, local variables must be defined before anything else in the function.

 	At the moment, browsers display the get and set instructions for local and global variables in the format set_local or get_global. The WebAssembly specification was changed—the new format is local.set or global.get—but the way you make the calls remains the same as the original format.

 Chapter 12. Debugging

 This chapter covers

 	Various debugging methods for WebAssembly modules

 	Error handling during compilation and at runtime

 	Debugging with browser developer tools

 At some point during development, you’ll likely discover that your code isn’t working as expected, and you need to find a
 way to track down the issue. Sometimes tracking it down is as simple as reading over the code. Other times, you need to dig
 deeper.

 At the time of writing, WebAssembly’s debugging options are a bit limited, but this will change as browser and IDE (integrated
 development environment) tooling improve. At the moment, you have the following options for debugging a WebAssembly module:

 	You can make a small number of changes and then compile and test often so that if there’s an issue, it’s easier to track down.
 In this case, reading over your code changes might shed some light on the issue.

 	If there are compiler issues, you can tell Emscripten to include verbose output by enabling debug mode. In this mode, debug
 logs and intermediate files are output. The EMCC_DEBUG environment variable or the -v compiler flag are used to control debug mode. You can find more information about debug mode in the Emscripten documentation
 at http://mng.bz/JzdZ.

 	You could output information from your module to the browser’s console using an imported JavaScript function, one of Emscripten’s
 macros, or functions like printf. Doing this allows you to see which functions are being called and what values the variables you’re interested in hold at
 that point. With this approach, you start off by logging areas that you think may hold clues about the issue. You can add
 more logging as you narrow down the location. (Appendix C has more information about Emscripten’s macros.)

 	In some browsers, you can view the text format version of the WebAssembly module, set breakpoints, and step through the code.
 You’ll learn how to use this approach to debug a module in this chapter.

 	Emscripten has a number of -g flags (-g0, -g1, -g2, -g3, -g4) that include progressively more debug information in the compiled output. The -g flag is the same as using -g3. When using -g flags, Emscripten also generates a text format file (.wast) equivalent of the binary file that’s generated, which is helpful
 if you’re having issues with linking—for example, passing the proper items to the module during instantiation. You could check
 the text format file to see what it’s importing to make sure you’re providing the expected items. More information on -g flags can be found at http://mng.bz/wlj5.

 	The -g4 flag is interesting because it generates source maps, allowing you to view your C or C++ code in the browser’s debugger.
 This is promising as a future debugging option. But although this approach does show your C or C++ code in the debugger, and
 breakpoints are hit, the debugging doesn’t work very well at the time of writing. For example, if your function has a parameter
 variable with a specific name, you can’t do a watch on it because the text format might actually be using a variable like
 var0. Asking the debugger to step over the code might also take several tries because, under the hood, several text format steps
 are happening for that one statement, and the step-over call is happening per text format statement.

 In this chapter, you’ll put some of the debugging options to use as you add a feature to the card-matching game that you built
 in chapter 11.

 12.1. Extending the game

 Imagine that you’re going to extend the card-matching game so that it keeps track of how many tries it takes the player to
 complete the level, as figure 12.1 shows. It’s considered a try when the player clicks the second card, regardless of whether it’s a match.

 Figure 12.1. Level 2 of the card-matching game with the subtitle adjusted to include the number of tries

 [image:]

 In this chapter, to learn about available debugging options, I’ll have you make intentional mistakes so that you’ll need to
 debug the code to determine where and what the issue is. Rather than making all these changes in the WebAssembly module first
 and then adjusting the JavaScript, you’ll make changes to both the module and JavaScript one function at a time.

 Figure 12.2 graphically represents the following high-level steps you’ll use to adjust the game to include the number of tries:

 	Adjust the HTML so that the subtitle includes a section for the number of tries.

 	Adjust the text format and JavaScript code to display the number of tries on the web page when the level starts.

 	Add the code to increment the number of tries and display the new value when the player clicks the second card.

 	Pass the number of tries to the summary screen when the player completes the level.

 Your first step is to adjust the HTML so that it now includes a section for the number of tries.

 12.2. Adjusting the HTML

 Before you can adjust the HTML to include the number of tries, you’ll need to create a folder for this chapter’s files. In
 your WebAssembly\ folder, create a Chapter 12\ folder, and then copy the frontend\ and source\ folders from your Chapter 11\ folder.

 In the frontend\ folder, open the game.html file in your editor. At the moment, your JavaScript code replaces the content
 of the h3 tag—your header tag—with the word Level followed by the level’s value (Level 1, for example). You need to modify the h3 tag so that it also includes the number of tries:

 	Remove the id attribute and its value from the h3 tag.

 	Add the text Level: and then a span tag with an id attribute having the value currentLevel (id="currentLevel"). This span will now hold the current level.

 	Add the text Tries: and then a span tag with an id attribute having the value tries (id="tries"). This span will display the number of tries.

 Figure 12.2. The high-level steps that will be used to adjust the game to include the number of tries

 [image:]

 Your header tag in the game.html file should now match the code in the following snippet:

 <header class="container-fluid">
 <h1>Wasm Match</h1>
 <h3> 1
 Level: 1
 Tries:
 </h3>
</header>

 	1 Removes the id attribute

 Now that the HTML has been adjusted, your next step is to modify the WebAssembly text format and JavaScript code to display
 the value for the number of tries when the level starts.

 12.3. Displaying the number of tries

 In the next part of the process, you need to modify the code to show the number of tries when the level starts. To do this,
 you’ll use the following steps, also depicted in figure 12.3:

 	Adjust the generateCards JavaScript function to receive another parameter indicating the number of tries to display when the level starts.

 	In the text format, create the global $tries variable to hold the number of tries. Then modify the $PlayLevel function to pass the number of tries to the generateCards JavaScript function.

 	Use the WebAssembly Binary Toolkit to generate a WebAssembly module from the text format (cards.wasm).

 	Copy the generated WebAssembly file to the server for use by the browser, and then test that the changes are working as expected.

 The first item that you need to modify is the generateCards function in the game.js file.

 Figure 12.3. Adjust the JavaScript and text format code to display the number of tries when the level starts.

 [image:]

 12.3.1. The generateCards JavaScript function

 Open the game.js file and locate the generateCards function. You need to add a fourth parameter called tries to the function, after the existing parameters. This parameter will be passed to this function by the WebAssembly module
 so that it can be displayed on the web page when the level starts.

 Adjust the generateCards function in the game.js file to look like the code in the following listing.

 Listing 12.1. The generateCards function in game.js

 ...

function generateCards(rows, columns, level, tries) { 1
 document.getElementById("currentLevel").innerText = level; 2
 document.getElementById("tries").innerText = tries; 3

 let html = "";
 for (let row = 0; row < rows; row++) {
 html += "<div>";

 for (let column = 0; column < columns; column++) {
 html += "<div id=\"" + getCardId(row, column)
 + "\" class=\"CardBack\" onclick=\"onClickCard("
 + row + "," + column + ");\"></div>";
 }

 html += "</div>";
 }

 document.getElementById("cardContainer").innerHTML = html;
}
...

 	1 Adds the parameter tries

 	2 Just passes the level value itself

 	3 Add this line of code to update the number of the tries element.

 As figure 12.4 shows, the next change that you need to make is to create a $tries global variable in the text format to hold the number of tries that the player makes. You then need to pass that value to
 the generateCards JavaScript function.

 Figure 12.4. Create the $tries global variable in the text format code, and pass the value to the generateCards JavaScript function.

 [image:]

 12.3.2. Adjusting the text format

 In this section, you’ll create a $tries global variable and pass it to the generateCards JavaScript function. Open the cards.wast file, and then navigate to the Global known section.

 Add a mutable i32 global variable called $tries after the $matches_remaining global variable in your cards.wast file. The global variable should look like the following snippet:

 (global $tries (mut i32) (i32.const 0))

 Now that you’ve defined the global variable, you need to pass it as the generateCards JavaScript function’s fourth parameter. Navigate to the $PlayLevel function, and put the $tries value on the stack as the fourth parameter to the $GenerateCards function call (between the $level variable and the call $GenerateCards line of code).

 In your cards.wast file, the modified $PlayLevel function should now look like this:

 (func $PlayLevel (param $level i32)
 get_local $level
 call $InitializeCards

 get_global $rows
 get_global $columns
 get_local $level
 get_global $tries 1
 call $GenerateCards
)

 	1 The tries value is placed on the stack for generateCard’s fourth parameter.

 At the end of the $InitializeCards function, following the call $ShuffleArray line of code in your cards.wast file, add the following code to reset the $tries value every time a level is started:

 get_global 6
set_global $tries

 Once the text format code has been adjusted, figure 12.5 shows your next step, in which you’ll use the WebAssembly Binary Toolkit to turn the text format code into the cards.wasm
 file.

 Figure 12.5. Use the WebAssembly Binary Toolkit to generate the cards.wasm file from the text format.

 [image:]

 12.3.3. Generating the Wasm file

 To compile the WebAssembly text format into a WebAssembly module using the wat2wasm online tool, go to the following website
 and copy the contents of your cards.wast file into the tool’s top-left pane: https://webassembly.github.io/wabt/demo/wat2wasm/. Unfortunately, you’ll see an error displayed in the tool’s top-right pane, as figure 12.6 shows.

 Figure 12.6. A compilation error with the contents of the cards.wast file

 [image:]

 The following is the full error message:

 test.wast:329:5: error: type mismatch in function, expected [] but got [i32]
call $GenerateCards 1

 	1 The error message is complaining about the $GenerateCards call.

 Because the cards.wast file compiled without issue in chapter 11, and because the error message mentions the $GenerateCards function, the error probably has something to do with the change made in the $PlayLevel function. Look through the code for instances of the string $GenerateCards, and you’ll likely discover what went wrong. In the Import known section, you have an import node for the JavaScript _GenerateCards function, but you didn’t add the fourth i32 parameter to the function signature.

 If you look at your $PlayLevel function, shown in the following snippet, it still thinks the $GenerateCards function needs three parameters. The result is that the top three items on the stack will be popped off and passed to the
 $GenerateCards function. This will leave the $rows value on the stack. When the $GenerateCards function returns, the $PlayLevel function will end with something still on the stack. The $PlayLevel function isn’t supposed to return anything, so having something on the stack throws the error:

 (func $PlayLevel (param $level i32) 1
 get_local $level
 call $InitializeCards

 get_global $rows 2
 get_global $columns
 get_local $level
 get_global $tries
 call $GenerateCards 3
)

 	1 Doesn’t return a value. The stack must be empty when the function ends.

 	2 Pushed onto the stack first. It will remain on the stack when $GenerateCards is called.

 	3 The top three items are popped off the stack and passed to $GenerateCards.

 To fix this issue, navigate to the Import known section in your cards.wast file and add a fourth i32 parameter to the $GenerateCards function, as the following snippet shows:

 (import "env" "_GenerateCards"
 (func $GenerateCards (param i32 i32 i32 i32))
)

 Copy and paste the contents of your cards.wast file into the top-left pane of the wat2wasm tool again, and then download the
 new Wasm file to your frontend\ folder.

 Now that you have the new cards.wasm file, figure 12.7 shows your next step, in which you test the changes.

 Figure 12.7. Copy the cards.wasm file for use by the browser and then test your changes.

 [image:]

 12.3.4. Testing the changes

 When you modified the games.html file, you didn’t place a value within the tries span tag; this means that if the changes don’t work, the website will show only the text Tries: when the level starts. If the changes you made work, you’ll see the text Tries: 0 when the level starts. Open your browser and type http://localhost:8080/game.html into the address box to see the modified web page shown in figure 12.8.

 Figure 12.8. The changes you made are working because a value of 0 is shown next to the Tries label.

 [image:]

 Figure 12.9 shows the next step needed to implement the number of tries logic. When the player clicks the second card, the $tries global variable will be incremented and the web page updated with the new value.

 Figure 12.9. The number of tries is incremented when the player clicks the second card.

 [image:]

 12.4. Incrementing the number of tries

 In the next part of the process, you need to increment the number of tries when the player clicks the second card. To do this,
 you’ll use the following steps, which are also illustrated in figure 12.10:

 	Add a JavaScript function (updateTriesTotal) to the game.js file that will receive the tries value from the module and update the web page with the value.

 	Adjust the text format to import the updateTriesTotal JavaScript function. Have the text format increment the $tries value when the player clicks the second card and then pass that value to the JavaScript function.

 	Use the WebAssembly Binary Toolkit to generate a WebAssembly module from the text format (cards.wasm).

 	Copy the generated WebAssembly file to the server for use by the browser, and then test that the changes are working as expected.

 Your first step is to create the updateTriesTotal function in the game.js file.

 Figure 12.10. Incrementing the number of tries value when the player clicks the second card

 [image:]

 12.4.1. The updateTriesTotal JavaScript function

 In your game.js file, create an updateTriesTotal function that receives a tries parameter and updates the web page with the value. Place the function after the generateCards function, and then copy the document.getElementById line of code for the tries value from the generateCards function into the updateTriesTotal function.

 Your updateTriesTotal function in the game.js file should look like the following snippet:

 function updateTriesTotal(tries) {
 document.getElementById("tries").innerText = tries;
}

 In the generateCards function of your game.js file, replace the document.getElementById line of code for the tries value with a call to the updateTriesTotal function:

 updateTriesTotal(tries);

 With the JavaScript modified, you can move to the next step, shown in figure 12.11, and adjust the text format code to increment the $tries value when the player clicks the second card. The new $tries value is then passed to the new JavaScript function.

 Figure 12.11. The text format will increment the $tries value when the player clicks the second card. You’ll then pass the value to the new JavaScript function.

 [image:]

 12.4.2. Adjusting the text format

 You need to add an import node for the updateTriesTotal JavaScript function so that you can pass the updated $tries value to the JavaScript code and have it displayed on the web page. In your cards.wast file, navigate to the Import known
 section and add an import node for the $UpdateTriesTotal function that receives one i32 parameter. Place the import node after the $GenerateCards import node.

 Your import node in the cards.wast file should look like the this:

 (import "env" "_UpdateTriesTotal"
 (func $UpdateTriesTotal (param i32))
)

 Navigate to the $SecondCardSelectedCallback function. This function is called after a short pause when the player clicks the second card so that they can see the card
 before it is either removed or flipped facedown, depending on whether the cards are a match.

 After the if statement, increment the $tries global variable. Then pass the $tries value to the $UpdateTriesTotal function so that the JavaScript code updates the web page with the new value.

 The code in the next listing shows the modifications made to the $SecondCard-SelectedCallback function in the cards.wast file. Some of the code in the function has been omitted in the listing to make it easier to focus
 on the changes.

 Listing 12.2. The $SecondCardSelectedCallback function in cards.wast

 (func $SecondCardSelectedCallback
 (local $is_last_level i32)

 get_global $first_card_value
 get_global $second_card_value
 i32.eq
 if 1
 2
 else 3
 4
 end

 get_global $tries 5
 i32.const 10
 i32.add
 set_global $tries

 get_global $tries
 call $UpdateTriesTotal 6

 7
)

 	1 The cards are a match.

 	2 The JavaScript is told to remove the cards. The $matches_remaining value is decremented by 1.

 	3 The cards aren’t a match.

 	4 The JavaScript is told to flip the cards facedown.

 	5 Increments the value

 	6 Passes the value to the JavaScript so that the web page can be updated

 	7 The rest of the function

 With the text format code modified, you can now generate the WebAssembly file from the text format, as figure 12.12 shows.

 Figure 12.12. You’ll use the WebAssembly Binary Toolkit to generate the WebAssembly file.

 [image:]

 12.4.3. Generating the Wasm file

 To compile the WebAssembly text format into a WebAssembly module using the wat2wasm online tool, go to the following website:
 https://webassembly.github.io/wabt/demo/wat2wasm/. Paste the contents of your cards.wast file into the top-left pane of the tool, as shown in figure 12.13. Then click the Download button to download the WebAssembly file to your frontend\ folder, and name the file cards.wasm.

 Figure 12.13. Paste the contents of your cards.wast file into the tool’s top-left pane and then download the WebAssembly file, naming it
 cards.wasm.

 [image:]

 Once you have your new cards.wasm file, figure 12.14 shows your next step, in which you test the changes.

 Figure 12.14. Copy the cards.wasm file to the server, and test your changes.

 [image:]

 12.4.4. Testing the changes

 With the changes you’ve made to the JavaScript and text format, when you click the second card, the $tries value will be incremented by 1, and then the value will be updated on the web page. Open your browser and type http://localhost:8080/game.html into the address box to see that your changes are working as expected. Unfortunately, as figure 12.15 shows, something isn’t working properly: your game isn’t being displayed.

 Figure 12.15. Something isn’t working properly—the game isn’t being displayed.

 [image:]

 When a web page doesn’t behave as you’d expect—like not displaying properly in this case or not responding to mouse clicks,
 for example—sometimes the issue is a JavaScript error. Press F12 to open your browser’s developer tools, and then view the
 console to see if there are any errors reported. As it turns out, as figure 12.16 shows, there’s a JavaScript error about the _UpdateTriesTotal field.

 Figure 12.16 gives us two useful pieces of information, with the first being the word LinkError. A LinkError is an error that’s thrown when there’s an issue instantiating a WebAssembly module. More information about LinkErrors
 can be found on the MDN Web Docs page at http://mng.bz/qXjx.

 Figure 12.16. A JavaScript error is logged about the _UpdateTriesTotal field.

 [image:]

 The other piece of information that’s of use is that the error has something to do with the _UpdateTriesTotal field. _UpdateTriesTotal is the function name you gave to the import node to import a JavaScript function, as shown in the following snippet of the code you wrote earlier:

 (import "env" "_UpdateTriesTotal"
 (func $UpdateTriesTotal (param i32))
)

 Looking at the text format code, the import node appears to be correct. You were also able to compile the module without issue, so the problem doesn’t seem to be with
 the module itself. If the problem isn’t with the module, then you need to take a look at the JavaScript.

 Open your game.js file. The updateTriesTotal JavaScript function shown in the following snippet has the proper signature (accepts a single parameter and doesn’t return
 a value), so the function itself appears correct:

 function updateTriesTotal(tries) {
 document.getElementById("tries").innerText = tries;
}

 Because you have a LinkError, and it has to do with the cards.wasm file, take a look at the WebAssembly.instantiateStreaming section of code for cards.wasm. If you look at the sideImportObject, you’ll notice that the _UpdateTriesTotal property hasn’t been included.

 In your game.js file, adjust the sideImportObject to have an _UpdateTriesTotal property for your updateTriesTotal function. Place the property after the _GenerateCards property, as shown in the next listing.

 Listing 12.3. The sideImportObject in your game.js file

 const sideImportObject = {
 env: {
 memory: moduleMemory,
 _malloc: mainInstance.exports._malloc,
 _free: mainInstance.exports._free,
 _SeedRandomNumberGenerator:
 mainInstance.exports._SeedRandomNumberGenerator,
 _GetRandomNumber: mainInstance.exports._GetRandomNumber,
 _GenerateCards: generateCards,
 _UpdateTriesTotal: updateTriesTotal, 1
 _FlipCard: flipCard,
 _RemoveCards: removeCards,
 _LevelComplete: levelComplete,
 _Pause: pause,
 }
};

 	1 Passes the updateTriesTotal function to the module

 Save the game.js file and then refresh the web page, and you should see that the JavaScript error is gone, and the page is
 displayed as expected.

 When you click two cards, after the cards are flipped facedown or removed, you see the Tries value updated on the web page.
 Unfortunately, as figure 12.17 shows, something’s not right because Tries is increasing in increments of 10.

 Figure 12.17. The Tries value shows that something's not right.

 [image:]

 To debug this issue, you’ll step through the running text format code in the browser. If you’re using the Firefox web browser,
 you can skip the following section and view the “Debugging in Firefox” section.

 Debugging in Chrome

 As figure 12.18 shows, to view the content of your WebAssembly modules in Chrome, you need to press F12 to view the developer tools and then
 click the Sources tab. Under the wasm section in the left pane, the modules are displayed in the order that they were loaded.
 In this case, the first module is main.wasm and the second is cards.wasm.

 	

 Tip

 Sometimes when you first open the developer tools, the wasm section isn’t visible. Refresh the web page, and it should load.

 	

 When you expand the WebAssembly module, you’ll see a list of each of the module’s built-in functions, identified by their
 zero-based index. The imported functions aren’t shown, but their indexes are before the built-in functions’ indexes, which
 is why the indexes shown in figure 12.18 start at 10 and not 0.

 Figure 12.18. The areas of Chrome’s developer tools for debugging a WebAssembly module

 [image:]

 When you click a function, you see its text format version in the right-hand pane. You can then click one of the line numbers
 in the right-hand pane to set a breakpoint. Once you have a breakpoint set, you just need to cause the web page to run that
 section of code, and the code will pause at that breakpoint, allowing you to step through the code to see what’s happening.

 With the text format, you can call functions and variables by their index, or you can use a variable name. Chrome’s developer
 tools use indexes rather than variable names. This can make things confusing, so it’s helpful to have the original code or text format open at the same time so that
 you can compare what you’re looking at.

 If you’re using the Chrome web browser, you can skip the following section, which shows the areas of the Firefox developer
 tools when debugging a WebAssembly module.

 Debugging in Firefox

 As figure 12.19 shows, to view the content of your WebAssembly modules in Firefox, you need to press F12 to view the developer tools and
 then click the Debugger tab. In the left-hand pane, click the WebAssembly file that you’re interested in; the text format
 version of that file will be displayed in the right-hand pane.

 Figure 12.19. The areas of Firefox’s developer tools for debugging a WebAssembly module

 [image:]

 You can then click one of the line numbers in the right-hand pane to set a breakpoint. Once you have a breakpoint set, you
 just need to cause the web page to run that section of code, and the code will pause at the breakpoint, letting you step through
 the code to see what’s happening.

 When looking at the function in figure 12.19, the variable names given aren’t very helpful. If the code is referencing a local variable, that variable is either a parameter
 or defined at the beginning of the function, so it’s not that hard to determine what the value represents. Global variables,
 on the other hand, are defined at the beginning of the file, so variables like $global7 and $global12 are more difficult to understand. To make things easier, it’s helpful to have the original code or text format open at the
 same time so that you can compare what you’re looking at.

 To determine the issue with the $tries value incrementing in values of 10 rather than 1, you’ll debug the $SecondCardSelectedCallback function.

 Debugging the $SecondCardSelectedCallback function

 Before you start debugging the $SecondCardSelectedCallback function, it’s helpful to know what each global variable index represents, because both Firefox and Chrome reference the
 global variables by their index in the function’s code. Looking at your cards.wast file’s Global known section, your global
 variables and their indexes are listed in table 12.1.

 Table 12.1. Global variables and their corresponding indexes

 	
 Global variable

 	
 index

 	$MAX_LEVEL
 	0

 	$cards
 	1

 	$current_level
 	2

 	$rows
 	3

 	$columns
 	4

 	$matches_remaining
 	5

 	$tries
 	6

 	$first_card_row
 	7

 	$first_card_column
 	8

 	$first_card_value
 	9

 	$second_card_row
 	10

 	$second_card_column
 	11

 	$second_card_value
 	12

 	$execution_paused
 	13

 In your browser’s developer tools, navigate to the $SecondCardSelectedCallback function and place a breakpoint on the first get_global line of code after the local variable declaration. For the rest of this section, we’ll use the Firefox developer tools.

 To trigger the breakpoint, click two cards. As figure 12.20 shows, one of the panes in the Debugger window is Scopes. If you expand the Block sections, you’ll find that one of them
 shows you the values of the global variables for this function’s scope. The first two get_global calls in the function are for global9 and global12, which, according to table 12.1, hold the first and second card values, respectively. The values for the global variables might differ from what you see
 in your browser’s developer tools because the cards are randomly sorted. Here, the values for global9 and global12 hold 1 and 0, respectively.

 	

 Info

 In Chrome’s developer tools, the Scopes pane doesn’t show the value of global variables. If you expand the local item in the Scopes pane, there’s a stack item that shows you the values that are currently on the stack. Firefox doesn’t show you what’s on the stack. Depending on
 your debugging needs, you may need to use one browser’s debugging tools in some cases and another browser’s debugger in other
 cases.

 	

 Figure 12.20. The Scopes section in Firefox showing the global variables in this function’s scope

 [image:]

 The values in global9 (1, in this case) and global12 (0, in this case) are placed on the stack, and then i32.eq is called. The i32.eq call pops the top two values off the stack, compares them, and then puts a value on the stack indicating if they were equal.
 The if statement then pops the top item off the stack and enters the if block if the value was true. If the value was false, and if there’s an else condition, the code will enter the else condition. In this case, the two global values aren’t equal, so the code enters the else condition.

 The code in the else condition puts the values from global7 and global8 (the first selected card’s row and column values, respectively) on the stack along with a -1 value. It then calls the FlipCards JavaScript function. The -1 tells the FlipCards function to turn the card facedown. FlipCards is called again with the values from global10 and global11 to have the second card flipped facedown.

 After the if statement, global6 (the $tries counter) is placed on the stack along with the i32.const value of 10. The value in global6 and the i32.const 10 are popped off the stack by the i32.add call, the two values are summed, and then the result is pushed back onto the stack, where it’s then placed in the global6 variable.

 It turns out that the issue with the Tries value incrementing by 10 rather than by 1 is a typo in which i32.const 10 was used rather than i32.const 1. In your cards.wast file, locate the $SecondCardSelectedCallback function. Adjust the code that increments the $tries value so that it uses i32.const 1 rather than 10, as shown in the following code snippet:

 get_global $tries
i32.const 1 1
i32.add
set_global $tries

 	1 Change from 10 to 1.

 Regenerating the Wasm file

 To compile the WebAssembly text format into a WebAssembly module, paste the contents of your cards.wast file into the top-left
 pane of the wat2wasm online tool: https://webassembly.github.io/wabt/demo/wat2wasm/. Click the Download button to download the WebAssembly file to your frontend\ folder, and name the file cards.wasm. Refresh
 the web page to verify that clicking two cards now increments the Tries value by 1 rather than by 10.

 Now that the number of tries is updated every time the player clicks the second card, it’s time to implement the last step.
 As figure 12.21 shows, you’ll pass the number of tries to the summary screen when a level is completed.

 Figure 12.21. The number of tries will be passed to the summary screen when the player completes the level.

 [image:]

 12.5. Updating the summary screen

 For the next part of the process, you need to update the congratulatory message to include the number of tries. To accomplish
 this, you’ll use the following steps, also depicted in figure 12.22:

 	Update the levelComplete JavaScript function to accept another parameter for the number of tries. Then adjust the summary screen’s text to include
 the number of tries.

 	Adjust the text format to pass the $tries value to the levelComplete JavaScript function.

 	Use the WebAssembly Binary Toolkit to generate a WebAssembly module from the text format (cards.wasm).

 	Copy the generated WebAssembly file to the server for use by the browser, and then test that the changes are working as expected.

 Your first step is to modify the levelComplete function in the game.js file.

 Figure 12.22. The steps for including the number of tries in the summary screen’s congratulatory message

 [image:]

 12.5.1. The levelComplete JavaScript function

 In your game.js file, adjust the levelComplete function so that there’s a tries parameter as the second parameter between the level and hasAnotherLevel parameters. Then adjust the text passed to the levelSummary DOM element so that it includes the number of tries. The levelComplete function in your game.js file should match the code in the next listing.

 Listing 12.4. The levelComplete function in your game.js file

 function levelComplete(level, tries, hasAnotherLevel) { 1
 document.getElementById("levelComplete").style.display = "";
 document.getElementById("levelSummary").innerText = `Good job!
[image:] You've completed level ${level} with ${tries} tries.`; 2

 if (!hasAnotherLevel) {
 document.getElementById("playNextLevel").style.display = "none";
 }
}

 	1 Tries parameter added

 	2 Text adjusted to include the number of tries

 With the JavaScript adjusted, figure 12.23 shows your next step, in which you adjust the text format to pass the $tries value to levelComplete.

 Figure 12.23. Pass the $tries value to the levelComplete JavaScript function.

 [image:]

 12.5.2. Adjusting the text format

 In your text format code, you need to adjust the logic so that it passes the $tries value to the levelComplete JavaScript function. Before you adjust the call to level-Complete, however, you need to adjust the import node signature for that function so that it has three i32 parameters.

 In your cards.wast file, locate the import node for the levelComplete JavaScript function and add a third i32 parameter. The modified import node should now look like the code in the following snippet:

 (import "env" "_LevelComplete"
 (func $LevelComplete (param i32 i32 i32))
)

 The $LevelComplete function is called at the end of the $SecondCardSelected-Callback function, so navigate to that function in your cards.wast file. The $tries value is expected as the second parameter to levelComplete, so place a get_global call for the $tries value between the get_global call for the $current_level and the get_local call for the $is_last_level values.

 In your cards.wast file, the call to the $LevelComplete function should now look like this:

 get_global $current_level
get_global $tries 1
get_local $is_last_level
call $LevelComplete

 	1 Pushes the value from $tries onto the stack

 Once the text format code has been adjusted, you can generate the WebAssembly file from the text format, as figure 12.24 shows.

 Figure 12.24. Generate the WebAssembly file from the text format.

 [image:]

 12.5.3. Generating the Wasm file

 To compile the contents of your cards.wast file into a WebAssembly module using the wat2wasm online tool, go to the following
 website: https://webassembly.github.io/wabt/demo/wat2wasm/. Paste the contents of your cards.wast file into the top-left pane of the tool, as shown in figure 12.25. Click the Download button, and download the WebAssembly file to your frontend\ folder. Give the downloaded file the name
 cards.wasm.

 Figure 12.25. Paste the contents of your cards.wast file into the top-left pane, and then download the WebAssembly file. Give the downloaded
 file the name cards.wasm.

 [image:]

 With your new cards.wasm file, you can move on to the next step, shown in figure 12.26, in which you test the changes.

 Figure 12.26. Copy the cards.wasm file to the server, and then test your changes.

 [image:]

 12.5.4. Testing the changes

 To test that the changes you made are working properly, open your browser and type http://localhost:8080/game.html into the address box. When you win the level, the summary screen will display the number of tries, as figure 12.27 shows.

 Figure 12.27. The summary screen with the number of tries included

 [image:]

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
In what two ways can you access a variable or call a function?

 2
Something you might have noticed is that the Tries value doesn’t reset when you replay the level or play the next level. Use
 the logging approach to locate the source of the issue.

 Summary

 In this chapter, you learned the following:

 	Emscripten offers the EMCC_DEBUG environment variable and the -v flag to control debug mode. When enabled, debug mode causes logs and intermediate files to be output.

 	Emscripten also has several -g flags to provide progressively more debug information in the compiled output. In addition to the increased debug information,
 Emscripten also outputs a text format equivalent version (.wast) of the generated binary file that can be helpful in tracking
 down issues.

 	Logging information to the browser’s console is one way to debug what’s happening in your module.

 	The -g4 flag can be used to instruct Emscripten to generate source maps so that your C or C++ code can be viewed in the browser.
 At the time of this book’s writing, this feature still needs some work in the browsers.

 	In some browsers, you can view the text format version of the binary file that was loaded. You can set breakpoints, step through
 the code, and, depending on the browser, either view the variable’s value or view the values that are on the stack.

 	At the moment, browser debugging features aren’t uniform across browsers, so you might need to switch between browsers based
 on your debugging needs.

 Chapter 13. Testing—and then what?

 This chapter covers

 	Creating automated tests using Mocha

 	Running your tests at the command line in Node.js

 	Running your tests in the browsers you intend to support

 There comes a point during project development when you need to test things to be sure they’re working as expected. Doing
 manual tests at the beginning of the project might seem like it would suffice, but, as the code gets more and more involved,
 the testing steps need to become more detailed to ensure that there are no bugs. The problem with this is that testing becomes
 tedious—as focused as you try to be, it’s easy to miss something, and a bug can slip through.

 With manual testing, you’re also dependent on your tester because tests can only be performed based on their availability.
 At times, testers can test only one thing at a time, and they can go only so fast before they start making mistakes.

 When working with a product that needs to support multiple platforms, testing becomes even more involved because every time
 you make a change to your code, you need to repeat the exact same tests on every platform that you support.

 Automated testing takes a bit of work up front to create the tests; but once you have them written, they have the following
 advantages:

 	Depending on the type of test, they can run quickly.

 	They can be run as often as you’d like. For example, you can run them before you check in your code to be confident that the
 change you just made didn’t break something else in the system.

 	You can run them at any time you’d like. For example, you can schedule longer-running tests to execute during the night and
 view the results in the morning when you return to work.

 	They’ll run exactly the same way every time.

 	You can run the same tests on different platforms. This is helpful when writing WebAssembly modules for web browsers because
 you need to verify that the modules work as expected across several browsers.

 Automated tests don’t remove the need for manual testing but can handle the monotonous items, allowing you to focus on other
 areas.

 You can implement several different types of testing when developing:

 	Unit tests are written by the developer to test individual units (a function, for example) to ensure the logic is working as expected.
 Unit tests are designed to be fast because you write the test in such a way that the code under test doesn’t depend on things
 like the file system, a database, or web requests.
 Unit tests are highly recommended as they help you catch bugs early in the development process. They also help you catch regression
 issues quickly if you make a change that impacts other areas.

 	Integration tests verify that two or more areas are working together as expected. In this case, the tests might take longer to run because
 they may have external dependencies on things like a database or file system.

 	There are many other types of testing, like acceptance tests to ensure the system satisfies the business requirements and performance tests to verify that the system performs adequately under a heavy load. The following website has more information on the different
 types of software testing available: https://en.wikipedia.org/wiki/Software_testing.

 Suppose you’ve written a WebAssembly module, and now you’d like to create some tests to verify that the functions work as
 expected. You want to use a JavaScript framework that lets you run the tests from the command line so that you can verify
 that things are working as you write your code. But what works in one browser might not work exactly the same in another.
 In some cases, a feature in one browser won’t exist in another, so you also want a JavaScript framework that will allow you
 to run your tests in a browser.

 In this chapter, you’ll learn how to write automated integration tests so that you can quickly and easily verify that your
 WebAssembly modules are working as expected. You’ll also learn how to run those tests in the browsers you intend to support.
 This chapter gives you an overview of how you can test WebAssembly modules, but won’t be a review of the different frameworks
 available or a deep dive of the chosen framework.

 	

 Info

 There are many JavaScript testing frameworks available, with some of the more popular being Jest, Mocha, and Puppeteer, to
 name a few. Several frameworks are listed in the Medium article “Top Javascript Testing Frameworks in Demand for 2019” by
 Nwose Lotanna at http://mng.bz/py1w. For teaching purposes, we’ll use Mocha in this book.

 	

 The first thing that you need to do is install the JavaScript testing framework.

 13.1. Installing the JavaScript testing framework

 For this chapter, you have two requirements for a testing framework:

 	The tests need to run from your IDE, or command line, so that you can quickly test that everything is working as expected
 before you check in your code.

 	The tests also need to run in a browser so that you can confirm that everything is working as expected in the browsers you
 intend to support.

 Based on these two requirements, the framework I’ve chosen for this chapter is Mocha, which runs on Node.js when run from
 the command line and can also run in the browser. (If you’d like to learn more about Mocha, you can visit https://mochajs.org.)

 If you’re planning to use Mocha in only a Node.js environment, you can use the built-in Node.js assert module as your assertion library. An assertion library is a tool that verifies that the test result meets the expectation. For example, the following code
 snippet shows the code under test called and then the assertion library used to verify that the result is equal to 2:

 const result = codeUnderTest.increment(1);
expect(result).to.equal(2);

 The assertion library also does the verification in a way that’s easier to read and maintain compared to a bunch of if statements throwing exceptions, as in the following example:

 const result = codeUnderTest.increment(1);
if (result !== 2) {
 throw new Error(`expected 2 but received ${result}`);
}

 In this chapter, because you’ll be running the tests in both Node.js and in the browser, I chose Chai for consistency because
 it can be used in both locations. Chai also has several assertion styles, letting you use a style that you’re most comfortable
 with. In this chapter, you’ll use the Expect style, but you could also use the Assert style because it’s also browser-compatible and very similar to the Node.js assert module. More information on the assertion styles available with Chai can be found at www.chaijs.com/api.

 	

 Info

 Although Chai was chosen as the assertion library for this chapter, with Mocha, you can use any assertion library. A list
 of several available libraries can be found at https://mochajs.org/#assertions.

 	

 As mentioned, the Mocha framework runs on Node.js, which is convenient because Node.js was installed when you installed the
 Emscripten SDK. Node.js comes with a tool called npm (Node Package Manager), which is a package manager for the JavaScript language. It has a huge number of packages available
 (more than 350,000), including Mocha and Chai. (For more information, you can search npm’s packages at www.npmjs.com).

 In order to install Mocha locally for use with your project, you’ll need a package .json file first.

 13.1.1. The package.json file

 To create a package.json file, you can use the npm init command. This command will prompt you with several questions about your project. If there’s a default value for the question,
 the value will be indicated in parentheses. You can either enter your own value for the questions or press the Enter key to
 accept the default.

 In your WebAssembly folder, create a Chapter 13\13.2 tests\ folder. Open a command prompt, navigate to your 13.2 tests\ folder, and then run the npm init command. Specify the following values:

 	For package name, enter tests.

 	For test command, enter mocha.

 	For the rest of the questions, you can accept the defaults.

 A package.json file will now exist in your 13.2 tests\ folder, with the contents shown in listing 13.1. The test property, under scripts, indicates which tool to run when you run the command npm test in your 13.2 tests\ folder. In this case, the test command will run Mocha.

 Listing 13.1. Contents of the package.json file that was created

 {
 "name": "tests",
 "version": "1.0.0",
 "description": "",
 "main": "tests.js",
 "scripts": {
 "test": "mocha" 1
 },
 "author": "",
 "license": "ISC"
}

 	1 Mocha will be run when you use the command npm test.

 Now that you have your package.json file, you can install Mocha and Chai.

 13.1.2. Installing Mocha and Chai

 To install Mocha and Chai for use with your current project, open a command prompt, navigate to your Chapter 13\13.2 tests\ folder, and then run the following command to add them as dependencies to your package.json file:

 npm install --save-dev mocha chai

 Once you have Mocha and Chai installed, you can move on to learning how to write and run tests.

 13.2. Creating and running tests

 Figure 13.1 graphically represents the following high-level steps you’ll use to create and run tests for your WebAssembly modules:

 	Write the tests.

 	Run the tests from the command line.

 	Create an HTML page that loads your tests.

 	Run your tests in the browsers you intend to support.

 Figure 13.1. The steps for creating your tests and then running them at the command line and in the browsers you intend to support

 [image:]

 13.2.1. Writing the tests

 For this chapter, you’ll write some tests for the WebAssembly module that you created in chapter 4, which validated the product name and category that were entered. In your 13.2 tests\ folder,

 	Copy the validate.js and validate.wasm files from your Chapter 4\4.1 js_plumbing\frontend\ folder.

 	Create a tests.js file, and then open it with your editor.

 Rather than creating two sets of tests, one for the command line and one for the browser, you’ll create one set. This saves
 time and effort because you won’t need to maintain two sets that test the exact same thing.

 There are some differences between running the tests at the command line and in the browser, because Mocha uses Node.js for
 the former. The first thing that you need to do is write a line of code to test if Node.js is where the test is running. Add
 the following code snippet to your tests.js file:

 const IS_NODE = (typeof process === 'object' &&
 typeof require === 'function');

 Your tests need access to the Chai assertion library as well as the Module object created by Emscripten’s JavaScript code. When running in Node.js, your tests will need to load these libraries using
 the require method within Mocha’s before method (the before method will be explained in a moment). For now, you need to define the variables so that they’re available to your code later.

 Add the code in the following snippet after the const IS_NODE line in your tests.js file. You’ll add code to the else condition in a moment:

 if (IS_NODE) { 1
 let chai = null;
 let Module = null;
}
else { 2
}

 	1 Your tests are running in Node.js.

 	2 Your tests are running in a browser.

 When you’re running in a browser, the chai and Module objects will be created for you when you include those JavaScript libraries using the Script tag in your HTML. The Module object might not be ready to be interacted with if you include Emscripten’s JavaScript file on the web page and then immediately
 tell Mocha to run. To ensure that the Module object is ready for use, you need to create a Module object that the Emscripten JavaScript will see as it’s being initialized. Within the object, you define the onRuntimeInitialized function, which—when called by Emscripten’s JavaScript—will tell the Mocha framework to run the tests.

 Add the code in the following snippet within the else condition of the if statement you just created in your tests.js file:

 var Module = {
 onRuntimeInitialized: () => { mocha.run(); } 1
};

 	1 When Emscripten indicates the module is ready to be interacted with, start the tests.

 Now that your tests know if they’re running in Node.js or not, and the necessary global variables have been declared, it’s
 time to start creating the tests.

 The describe function

 Mocha uses a describe function to hold a collection of tests. The first parameter to the function is a meaningful name, and the second parameter
 is the function that executes one or more tests.

 If you wish, you can have nested describe functions. For example, you might decide to use a nested describe function to group multiple tests for one of your module’s functions.

 Add the following describe function to your tests.js file after your if statement:

 describe('Testing the validate.wasm module from chapter 4', () => {
});

 With the describe function created to hold your collection of tests, you now need to set up a function to make sure your tests have everything
 they need when they run.

 Pre- and Post-Hook Functions

 Mocha has the following pre- and post-hook functions that your tests can use to set preconditions so that they have what they
 need when they run, or to clean up after the tests have run:

 	before—Runs before all the tests in the describe function

 	beforeEach—Runs before each test

 	afterEach—Runs after each test

 	after—Runs after all the tests in the describe function

 For your tests, you need to implement the before function to load in the Chai library and WebAssembly module if the tests are running in Node.js. Because the WebAssembly
 module’s instantiation happens asynchronously, you need to define the onRuntimeInitialized function so that you’re notified by the Emscripten JavaScript code when the module is ready for interaction.

 	

 Info

 If you return a Promise object from a Mocha function (the before function, for example), Mocha will wait until the promise completes before proceeding.

 	

 In your tests.js file, add the code in the following listing within your describe function.

 Listing 13.2. before function

 ...

before(() => { 1
 if (IS_NODE) { 2
 chai = require('chai'); 3

 return new Promise((resolve) => { 4
 Module = require('./validate.js'); 5
 Module['onRuntimeInitialized'] = () => { 6
 resolve(); 7
 }
 });
 }
});

 	1 Will be run before all the tests in this describe function

 	2 Only do the following if this is Node.js.

 	3 Loads the Chai assertion library

 	4 Returns a promise

 	5 Loads in Emscripten’s generated JavaScript

 	6 Listens for Emscripten’s notification that the module is ready

 	7 Indicates that the promise has completed successfully

 Now that everything is set up for the test, it’s time to write the test itself.

 The it function

 Mocha uses an it function for the tests themselves. The first parameter to the function is the name of the test, and the second parameter
 is a function that executes the code for the test.

 The first test that you’ll create will verify that the ValidateName function in the module returns the proper error message when an empty string is provided for the name. You’ll use the Chai
 assertion library to verify that the message returned is the one you’re expecting.

 With test-driven development (TDD), you write the test before writing the code under test and watch the test fail because
 the feature hasn’t been implemented yet. You then refactor the code so that the test passes, create the next test, and repeat
 the process. The test failures serve as a guide as you build out the feature.

 In this case, because this is a book, the process is reversed, and implementation is performed before the tests. As a result,
 you want your tests to fail as a sanity check to ensure that they’re testing the expected behavior when they pass. Once you
 run the test and verify that it fails, you can then correct the issue so that it passes. To cause this test to fail, you’ll
 use the word "something" as the expected error message, but you can use any string you’d like as long as it doesn’t match the one that gets returned.

 Add the code in the next listing within your describe function and after your before function.

 Listing 13.3. Testing the ValidateName function with an empty string for the name

 ...

it("Pass an empty string", () => { 1
 const errorMessagePointer = Module._malloc(256);
 const name = ""; 2
 const expectedMessage = "something"; 3

 const isValid = Module.ccall('ValidateName', 4
 'number',
 ['string', 'number', 'number'],
 [name, 50, errorMessagePointer]);

 let errorMessage = "";
 if (isValid === 0) { 5
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 chai.expect(errorMessage).to.equal(expectedMessage); 6
});

 	1 Defines the test itself

 	2 Sets the name to an empty string

 	3 The error message you’re expecting; intentionally wrong so the test fails

 	4 Calls the ValidateName function in the module

 	5 If there was an error, reads the error message from the module’s memory

 	6 Checks to make sure the message returned matches the one you’re expecting

 The second test that you’ll create will verify that the ValidateName function returns the correct error message when the name is too long. To create this test, do the following:

 	Make a copy of your first test, and paste this copy below the first one.

 	Change the name of the it function to "Pass a string that's too long".

 	Set the name variable’s value to "Longer than 5 characters".

 	Adjust the value passed for the second parameter of the ValidateName function from 50 to 5.

 Your new test should now look like the code in the following listing.

 Listing 13.4. Testing the ValidateName function with a name that’s too long

 ...

it("Pass a string that's too long", () => { 1
 const errorMessagePointer = Module._malloc(256);
 const name = "Longer than 5 characters"; 2
 const expectedMessage = "something";

 const isValid = Module.ccall('ValidateName',
 'number',
 ['string', 'number', 'number'],
 [name, 5, errorMessagePointer]); 3

 let errorMessage = "";
 if (isValid === 0) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 chai.expect(errorMessage).to.equal(expectedMessage);
});

 	1 Adjust the name of the test to reflect what you’re testing for.

 	2 Provides a name that’s longer than 5 characters

 	3 Tells the function that the maximum length the string can be is 5 characters

 Congratulations! You’ve now written your first set of WebAssembly tests. Your next step is to run them.

 13.2.2. Running the tests from the command line

 Your next step is to run the tests from the command line. To run your tests, open a command prompt, navigate to your Chapter 13\13.2 tests\ folder, and then run the following command:

 npm test tests.js

 Figure 13.2 shows the results of the tests, which are listed with a number if they fail and a check mark if they pass. The tests that
 fail are also listed below the summary section showing details about why they didn’t pass. In this case, all the tests failed
 because you intentionally provided the wrong values for the expected result.

 Before you correct the tests so that they pass, you’ll create an HTML page so that you can run them in a browser, too.

 Figure 13.2. The results of the tests at the command line. Both tests failed because you intentionally provided the wrong expected string
 of 'something'.

 [image:]

 13.2.3. An HTML page that loads your tests

 As figure 13.3 shows, in this section, you’ll create an HTML page that will allow you to run your tests in a browser. You’ll use the same
 tests in the browser that you used at the command line. Being able to use the same tests in both places saves effort because
 you don’t need to maintain two sets of tests for the same thing.

 Figure 13.3. Your next step is to create an HTML page so that you can also run your tests in a browser.

 [image:]

 In your 13.2 tests\ folder, create a tests.html file and open it with your editor.

 	

 Info

 The HTML file that you’re about to create was copied from Mocha’s website and modified slightly. The original file can be
 found at https://mochajs.org/#running-mocha-in-the-browser.

 	

 When running in the browser, the Chai assertion library and WebAssembly module are loaded by including them in Script tags. When run in Node.js, they’re loaded by using the require method. The areas that are changed from the Mocha HTML template are after the Script tag with the class "mocha-init". The Script tags for test.array.js, test.object.js, and test.xhr.js and the class "mocha-exec" have been replaced with the Script tag for your test file tests.js and Emscripten’s generated JavaScript file validate.js.

 One thing to note is that your tests.js file needs to be included in the HTML before Emscripten’s generated JavaScript file
 (validate.js). This is because you included code in your tests.js file to tell Emscripten to call the onRuntimeInitialized function when the module is ready. When that function is called, your code will have Mocha run the tests.

 Add the code in the next listing to your tests.html file.

 Listing 13.5. The HTML for your tests.html file

 <!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Mocha Tests</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0" />
 <link rel="stylesheet" href="https://unpkg.com/mocha/mocha.css" />
 </head>
 <body>
 <div id="mocha"></div>

 <script src="https://unpkg.com/chai/chai.js"></script>
 <script src="https://unpkg.com/mocha/mocha.js"></script>

 <script class="mocha-init">
 mocha.setup('bdd');
 mocha.checkLeaks();
 </script>

 <script src="tests.js"></script> 1
 <script src="validate.js"></script> 2
 </body>
</html>

 	1 Your tests (must be included before Emscripten’s generated JavaScript file)

 	2 Emscripten’s generated JavaScript file

 Now that you have your HTML file, it’s time to run your tests in a browser.

 13.2.4. Running the tests from a browser

 As figure 13.4 shows, you’ll now run the same tests that you ran at the command line but this time in a browser. You can now open your browser
 and type http://localhost:8080/tests.html into the address box to see the results of your tests, as shown in figure 13.5.

 With your tests now running at the command line and in browsers, you can adjust them so that they pass.

 Figure 13.4. Your next step is to run your tests in a browser.

 [image:]

 Figure 13.5. The results of your tests running in a browser

 [image:]

 13.2.5. Making the tests pass

 Once you’ve verified that your tests run, you can adjust them so that they pass. Open your tests.js file, and make the following
 adjustments:

 	In the "Pass an empty string" test, set the expectedMessage value to "A Product Name must be provided."

 	In the "Pass a string that's too long" test, set the expectedMessage value to an empty string (""), and change the value passed as the second parameter to the ValidateName module function from 5 to 50.

 Now you need to verify that your tests are passing. At the command prompt, navigate to your Chapter 13\13.2 tests\ folder, and then run the following command:

 npm test tests.js

 The tests should pass, as figure 13.6 shows.

 Figure 13.6. Both of your tests now pass when run at the command line.

 [image:]

 You can verify that your tests are passing in the browser, too, by typing http://localhost:8080/tests.html into the address box to see the results, as shown in figure 13.7.

 Figure 13.7. The results of your tests running in a browser show that the tests pass.

 [image:]

 13.3. Where do you go from here?

 WebAssembly hasn’t been sitting still since it entered MVP status in 2017. Since the MVP, the introduction of the WebAssembly.instantiateStreaming function brought faster compilation and instantiation, the ability to import or export mutable globals was added, the desktop
 version of the Chrome browser went live with pthread support, and improvements to the browsers continue to be made.

 The WebAssembly Community Group is hard at work on features that will be added to WebAssembly to allow other programming languages
 to use it more easily and to open even more use cases. For a list of WebAssembly feature proposals and their current status,
 you can visit https://github.com/WebAssembly/proposals.

 Work has also begun on a WASI specification to standardize how WebAssembly will work outside the browser. Mozilla has a good
 article introducing WASI: “Standardizing WASI: A system interface to run WebAssembly outside the web” by Lin Clark, at http://mng.bz/O9Pa.

 Because WebAssembly will continue to improve and expand, the following are some options you can pursue to find help if you
 have an issue:

 	Emscripten’s documentation is at https://emscripten.org.

 	If you find an issue with Emscripten itself, you can check to see if someone filed a bug report or knows how to work around
 the issue you’re having at https://github.com/emscripten-core/emscripten.

 	Emscripten has a very active community, with frequent releases. If there’s a newer version of Emscripten available, you could
 try upgrading to the latest version to see if that corrects your issue. Upgrade instructions are found in appendix A.

 	The Mozilla Developer Network has good documentation on WebAssembly at https://developer.mozilla.org/en-US/docs/WebAssembly.

 	Feel free to leave a comment in this book’s liveBook at https://livebook.manning.com/#!/book/webassembly-in-action/welcome.

 	Follow me on twitter (@Gerard_Gallant) and my blog as I continue to explore all that WebAssembly has to offer: https://cggallant.blogspot.com.

 Exercises

 You can find the solutions to the exercises in appendix D.

 1
Which Mocha function would you use if you wanted to group several related tests together?

 2
Write a test to verify that the proper error message is returned when you pass an empty string for the categoryId value of the ValidateCategory function.

 Summary

 In this chapter, you learned the following:

 	Automated tests take a bit of time up front to write, but, once they’re written, they can run fast, can be run as often as
 you’d like and at any time you’d like, will run exactly the same way every time, and can be run on different platforms.

 	Automated tests don’t remove the need for manual testing but can handle the monotonous items, letting you focus on other areas.

 	Mocha is one of several JavaScript testing frameworks available and supports any assertion library. It can also run tests
 both at the command line and in the browser. When run from the command line, Mocha uses Node.js to run the tests.

 	With Mocha, tests are grouped using a describe function, and the tests themselves use an it function.

 	Mocha has several pre- and post-hook functions available (before, beforeEach, afterEach, and after) that you can use to set preconditions before the tests are run and to clean up afterward.

 	When a promise is returned from Mocha’s functions, Mocha waits for the promise to complete before continuing. This is helpful
 when you have asynchronous operations.

 	If a test fails, details are given as to why it didn’t pass.

 	If a test passes, a check mark is shown in the output.

 Appendix A. Installation and tool setup

 This appendix covers

 	Installing Python

 	Starting a local web server using Python

 	Checking to see if the WebAssembly media type is configured for Python and, if not, learning how to configure it

 	Downloading and installing the Emscripten SDK

 	An overview of the WebAssembly Binary Toolkit

 In this appendix, you’ll install and set up all tools needed to follow along with the examples in this book. The main tool
 that you’ll need is Emscripten. Originally created to transpile C and C++ code into asm.js, it has since been modified to
 also compile code into WebAssembly modules.

 A.1. Python

 You’ll need to have Python installed on your system to run the Emscripten SDK installation. The minimum version of Python
 that’s needed is 2.7.12. You can check to see if Python is already installed and what version it is by running the following command in a console window:

 python -V

 Figure A.1. Verifying that Python is installed

 [image:]

 If Python is installed, you should see a message similar to the one shown in figure A.1.

 If Python isn’t installed, you can download the installation from www.python.org/downloads/. If you’re using a version of Linux that has APT (Advanced Package Tool), Python can also be installed by running the following
 command in a terminal window:

 sudo apt install python-minimal

 A.1.1. Running a local web server

 Most of the examples in this book will require you to use a local web server because some browsers won’t allow access to the file system to load other files by default. This will prevent some of the
 WebAssembly JavaScript API functions from working in certain browsers if the HTML file is run directly from the file system.

 	

 Definition

 A web server is a special program that uses HTTP to pass files used by web pages to the caller (the browser, in our case).

 	

 Conveniently, Python can run a local web server, and there are two ways to start it, depending on the version of Python installed.
 For both approaches, you open a console window, navigate to the folder where the HTML file is located, and then run a command.

 If you’re using Python 2.x, the following command starts the local web server:

 python -m SimpleHTTPServer 8080

 For Python 3.x, the command is

 python3 -m http.server 8080

 You’ll see a message indicating that HTTP is being served on port 8080, as figure A.2 shows.

 Figure A.2. Python 2.x’s local web server running on port 8080

 [image:]

 At this point, all you have to do is open a browser and set the address to http://localhost:8080/, followed by the HTML file name you wish to view.

 The other option that’s available is to use a tool called emrun that comes with Emscripten. Emrun starts Python’s local web
 server and then launches the file specified in your default browser. The following is an example of using the emrun command to launch a test.html file:

 emrun --port 8080 test.html

 	

 Note

 For all three commands, the path where the files are served will be based on the directory that you’re in when you start the
 local web server.

 	

 A.1.2. The WebAssembly media type

 A media type was originally known as a MIME type. MIME stands for Multipurpose Internet Mail Extensions and is used to indicate the type
 of an email message’s content and attachment. Browsers also use a file’s media type to determine how to process the file.

 Originally, WebAssembly files were passed to browsers using the application/octet-stream media type because a .wasm file is binary data. This has since been changed to a more formal media type: application/wasm.

 Unfortunately, it takes time for new media types to be registered with IANA (the Internet Assigned Numbers Authority), which
 is responsible for standardizing media types. Because of this, not all web servers include the WebAssembly media type, so
 you’ll need to make sure that it’s defined for your web server in order for the browser to know what to do with the WebAssembly
 modules.

 Python doesn’t need to be used as the local web server if you prefer to use something else. Since it was installed for the
 Emscripten SDK, it’s convenient if you don’t have any other web servers installed on your computer. On a Mac or Linux, before
 trying to add the WebAssembly media type to Python’s media types list, you can check and see if it already exists by running
 the following command:

 grep 'wasm' /etc/mime.types

 If the wasm extension hasn’t yet been added to Python, nothing will be displayed. If the extension was already added, you
 should see something similar to the screenshot in figure A.3.

 Figure A.3. The WebAssembly media type is part of Python’s list of media types on Ubuntu Linux.

 [image:]

 On a Mac or Linux, if the media type hasn’t yet been added to Python, you can manually add it by editing the mime.types file.
 The following command uses gedit as the editor, but, if it’s unavailable, most other editors can be substituted for gedit in the following command:

 sudo gedit /etc/mime.types

 Add the following to the list of media types and then save and close the file:

 application/wasm wasm

 On Windows, to check if Python has the media type configured, you need to check the mimetypes.py file. If you open a console
 window and navigate to the Lib folder where Python is installed, you can check to see if the WebAssembly media type is in
 the file by running the following command:

 type mimetypes.py | find "wasm"

 If the wasm extension hasn’t yet been added to Python, nothing will be displayed. If the extension was already added, you
 should see something similar to figure A.4.

 Figure A.4. The WebAssembly media type is also in Python’s list of media types on Windows.

 [image:]

 If the media type isn’t in the file, then you’ll need to edit the file. Open it in the editor of your choice. A search for
 the text types_map = { should bring you to the section of the file where you need to add the media type, as figure A.5 shows.

 Add the following to the list in the types_map section and then save and close the file:

 '.wasm' : 'application/wasm',

 Figure A.5. The types_map section in the mimetypes.py file, opened with Visual Studio Code

 [image:]

 A.2. Emscripten

 At the time of this book’s writing, 1.38.45 was the latest version of the Emscripten SDK. The toolkit is updated regularly,
 so you may have a newer version.

 Before you go through the process of downloading and installing the SDK, you should check and see if it’s already installed.
 To do this, you can run the following command in a console window to view the list of tools that were installed with the SDK:

 emsdk list

 If the SDK is installed, you should see a list similar to that in figure A.6. If the SDK is installed and is the version you need for this book (or higher), you can skip to section A.3.

 Figure A.6. The Emscripten SDK, version 1.38.16, is installed.

 [image:]

 If the SDK is installed but isn’t at the version you need for this book, run the following command to instruct the SDK to
 get the latest list of available tools:

 emsdk update

 You can skip the next section and jump to section A.2.2 if you’re using Windows or section A.2.3 if you’re using a Mac or Linux.

 If the SDK isn’t installed, your next step is to download the Emscripten SDK.

 A.2.1. Downloading the Emscripten SDK

 Navigate to the following website: https://github.com/emscripten-core/emsdk. Click the green “Clone or Download” button located on the right side of the screen, and then click the Download ZIP link
 from the pop up, as figure A.7 shows.

 Extract the files to the desired location. Then, open a console window and navigate to the extracted emsdk-master folder.

 Figure A.7. Click the “Clone or Download” button and then click the Download ZIP button to download the Emscripten SDK.

 [image:]

 A.2.2. If you’re using Windows

 The following command will download the SDK’s latest tools:

 emsdk install latest

 Run the following command to make the latest SDK active for the current user. You may need to open the console window as an
 Administrator because the console will need to access the Windows registry when using the --global flag:

 emsdk activate latest --global

 	

 Info

 The --global flag is optional but is recommended so that the environment variables are also placed in the Windows registry. If the flag
 isn’t used, the emsdk_env.bat file will need to be run every time a new console window is opened, to initialize the environment
 variables.

 	

 A.2.3. If you’re using a Mac or Linux

 Run the following command to download the SDK’s latest tools:

 ./emsdk install latest

 Run the following command to activate the latest SDK:

 ./emsdk activate latest

 You’ll need to run the following command so that the current terminal window knows the environment variables:

 source ./emsdk_env.sh

 The nice thing about running this command is that you no longer have to prefix the commands, like emsdk, with the ./ characters. Unfortunately, the environment variables are not cached, so you’ll need to run the command every time you open
 a new terminal window. Alternatively, you can put the command into your .bash_profile or equivalent file. When adding the
 command to your .bash_profile or equivalent file, you’ll need to adjust the path based on where the emsdk-master folder was
 placed.

 A.2.4. Working around installation issues

 If you run into installation issues, the following website has platform-specific instructions for installing Emscripten on
 Windows, Mac, and Linux that might be of some help: https://emscripten.org/docs/getting_started/downloads.html.

 In some cases, downloading and installing the Emscripten SDK might not work due to conflicts with existing system libraries
 on your machine. In this case, you might need to build Emscripten from source. You can find the instructions for this at https://emscripten.org/docs/building_from_source/index.html.

 A.3. Node.js

 When you installed the Emscripten SDK, it installed several tools in addition to Emscripten, one of which was Node.js. Node.js
 is a JavaScript runtime built on the V8 engine, which is the engine that also powers the Chrome web browser. Node.js allows
 for JavaScript to be used as server-side code, and it also has a large number of open source packages available to help with
 many programming needs. It’s possible to use WebAssembly modules in Node.js, so we’ll include some examples for Node.js in
 this book.

 WebAssembly support was added to Node.js in version 8, so that’s the minimum version needed. Run the following command to
 see the list of tools that were installed when you installed the Emscripten SDK. You should see something similar to figure A.8, where the installed version of Node.js is pointed out:

 emsdk list

 Figure A.8. Node.js version 8.9.1 was installed with the Emscripten SDK.

 [image:]

 If the version of Node.js that was installed with the SDK isn’t version 8 or higher, then you’ll need to uninstall it from
 the SDK. To do this, at the command line, type emsdk uninstall, followed by the full name of the version of Node.js that’s installed:

 emsdk uninstall node-4.1.1-64bit

 Once Node.js 4 has been uninstalled, you can use the emsdk install command to install Node.js version 8.9, which was listed as available for download when you ran emsdk list:

 emsdk install node-8.9.1-64bit

 A.4. WebAssembly Binary Toolkit

 The WebAssembly Binary Toolkit contains the tools that will allow you to convert between the WebAssembly binary format and
 the text format. The wasm2wat tool converts from the binary format to the text format, and the wat2wasm tool does the opposite,
 converting from the text format to the binary format. There’s even a wasm-interp tool, which allows the WebAssembly binary
 file to run stand-alone outside the browser, which can be useful for automated testing of the WebAssembly module.

 Because browsers will use the WebAssembly text format if the user does a View Source, or for debugging if the WebAssembly
 module doesn’t have source maps included, having a basic understanding of the text format is important. So, you’ll work with
 the text format to build a game in chapter 11.

 Source maps are files that map the current code—which may have been modified and renamed during the compilation process—to
 the original code so that debuggers can reconstruct the code being debugged to something closer to the original and make debugging
 easier.

 There’s no download of the WebAssembly Binary Toolkit executables. To get a copy, you need to clone the repository that’s
 on GitHub and then build them. If you aren’t comfortable using git, the toolkit’s GitHub repository has some demos that you
 can work with using your web browser:

 	The wat2wasm demo allows you to enter the text format and download the Wasm file: https://webassembly.github.io/wabt/demo/wat2wasm.

 	The wasm2wat demo allows you to upload a Wasm file and view the text format: https://webassembly.github.io/wabt/demo/wasm2wat.

 For the examples in this book, you’ll simply use the wat2wasm-online demo, but you can download the source code for the toolkit
 and build the Wasm files locally if you wish. The instructions for cloning and building the toolkit can be found at https://github.com/WebAssembly/wabt.

 A.5. Bootstrap

 For a more professional-looking web page, instead of styling everything manually, you’ll be using Bootstrap. Bootstrap is
 a popular framework for web development that includes a number of design templates to help make web development easier and
 faster. The examples in this book will simply point to files that are hosted on CDNs, but Bootstrap can be downloaded from
 the following location if you’d prefer to use a local copy: https://getbootstrap.com.

 	

 Info

 A CDN, or content delivery network, is geographically distributed with a goal of serving the files needed as close to the
 device requesting them as possible. This distribution speeds up the process of downloading the files, which improves website
 load times.

 	

 Bootstrap depends on the jQuery and Popper.js libraries. jQuery is a JavaScript library that makes working with the DOM, events,
 animations, and Ajax simpler. Popper.js is a positioning engine that helps with the positioning of elements on a web page.

 Popper.js is included with the bootstrap.bundle.js and bootstrap.bundle.min.js files, but jQuery isn’t. You’ll have to download
 jQuery, too, if you don’t want to use the CDNs. You can do so from the following location: https://jquery.com/download.

 Appendix B. ccall, cwrap, and direct function calls

 	

 This appendix covers

 	Calling a module’s function from JavaScript using the Emscripten helper functions ccall and cwrap

 	Calling a module’s function directly from JavaScript without using the Emscripten helper functions

 	Passing arrays to a function

 	

 When working with Emscripten’s generated JavaScript plumbing code, you have a few options for calling into a module. The most
 common approach is to use the ccall and cwrap functions, which help with memory management when passing and returning strings, for example. You can also call a module
 function directly.

 B.1. ccall

 The ccall function allows you to call a function in the WebAssembly module and receive the results. This function accepts four parameters:

 	A string indicating the name of the function in the module that you want to call. When Emscripten creates a WebAssembly module, it will add an underscore character before
 the function name. Don’t include the leading underscore character, as the ccall function will include that for you.

 	The function’s return type. The following values can be specified:

 	null if the function returns void.

 	'number' if the function returns an integer, float, or pointer.

 	'string' if the function returns a char*. This is optional and is here for convenience. If used, the ccall function will handle the memory management of the returned string for you.

 	An array indicating the data types of the parameters. This array needs to have the same number of items as there are parameters to the function, and they needed to be in the
 same order. The values that can be specified are

 	'number' if the parameter is an integer, float, or pointer.

 	'string' can be used for a char* parameter. If used, the ccall function will handle the string’s memory management for you. When using this approach, the value is considered temporary
 because the memory will be freed the moment the function returns.

 	'array' can be used, but only for 8-bit array values.

 	An array of values to pass to the function. Each array item corresponds to the parameters of the function and must be in the same order.

 The third parameter’s string and array data types are there for convenience, by handling the work of creating a pointer, copying the value into memory, and then
 freeing that memory once the function call has completed. These values are considered temporary and will be there only while
 the function is executing. If the WebAssembly module code saves the pointer for future use, it might point to invalid data.

 If you want objects to live longer, then you need to allocate and deallocate the memory manually using the Emscripten functions
 _malloc and _free. In this case, you won’t use string or array for the parameter type but rather number, because you’ll be passing a pointer directly and not using Emscripten’s memory management help.

 If you need to pass an array that has values greater than 8-bit—for example, 32-bit integers—then you’ll need to pass a pointer
 rather than the array type. Section B.3 shows how to pass an array to a module manually.

 B.1.1. Building a simple WebAssembly module

 To demonstrate the ccall function, you’ll need a WebAssembly module. Create an Appendix B\B.1 ccall\ folder for your files. Create the file add.c in the folder, and then open it with your favorite editor. The following
 C code for an Add function will accept two values, add them together, and then return a result. Place this code snippet in the add.c file:

 #include <stdlib.h>
#include <emscripten.h>

EMSCRIPTEN_KEEPALIVE
int Add(int value1, int value2) {
 return (value1 + value2);
}

 You’ll reuse this module for the cwrap and direct call sections that follow. Because you’ll want the ccall and cwrap functions available in the Module object of Emscripten’s generated JavaScript, you’ll need to include them as part of the EXTRA_EXPORTED_RUNTIME_METHODS command-line array. To compile the code into a WebAssembly module, open a command prompt, navigate to the folder where you
 saved the add.c file, and then run the following command:

 emcc add.c -o js_plumbing.js
[image:] -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','cwrap']

 B.1.2. Building the web page that will talk to the WebAssembly module

 You’ll now need to create a simple HTML web page, and you’ll also include the JavaScript to call the Add function in the web page rather than in a separate file. In your B.1 ccall folder, create an add.html file, and then open
 it with your editor. The web page will simply have a button that, when clicked, calls a JavaScript function that you’ll create
 called callAdd. The JavaScript function will call the Add function in the module using the ccall Emscripten helper function and then display the result of the addition to the console window of the browser’s developer tools.
 Add the code in the following listing to the add.html file.

 Listing B.1. HTML for the add.html file

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 <input type="button" value="Add" onclick="callAdd()" />

 <script>
 function callAdd() {
 const result = Module.ccall('Add', 1
 'number', 2
 ['number', 'number'], 3
 [1, 2]); 4

 console.log(`Result: ${result}`); 5
 }
 </script>
 <script src="js_plumbing.js"></script> 6
 </body>
</html>

 	1 First parameter is the name of the function

 	2 Return type is an integer in the module

 	3 Parameter types are both integers in the module

 	4 Passes the values for the parameters

 	5 Displays the result

 	6 The Emscripten-generated JavaScript file

 Now that you have the completed JavaScript code, you can open your browser and type http://localhost:8080/add.html into the address box to see the web page you just built. Open the browser’s developer tools (press F12) to view the console
 and, then click the Add button to see the result of the call to the module’s Add function, as figure B.1 shows.

 Figure B.1. The result of calling the module’s Add function using ccall and passing in the parameter values 1 and 2

 [image:]

 B.2. cwrap

 The cwrap function is similar to the ccall function. With the cwrap function, you only specify the first three parameters, which are identical to those of ccall:

 	The function name

 	The function’s return type

 	An array indicating the function’s parameter types

 Unlike with ccall, which executes the function right away, when you call the cwrap function, you’re given a JavaScript function. In JavaScript, functions are first-class citizens and can be passed around
 like you would a variable, which is one of JavaScript’s most powerful features. The JavaScript function can then be used to
 call the module’s function, similar to how you’d call a normal function in which you specify the parameter values directly
 rather than using an array.

 B.2.1. Adjusting the JavaScript code to use cwrap

 To demonstrate using the cwrap function, create an Appendix B\B.2 cwrap\ folder for your files. Copy the add.html, js_plumbing.js, and js_plumbing.wasm files from Appendix B\B.1 ccall\ to Appendix B\B.2 cwrap\. Open the add.html file with your favorite editor so that you can adjust the callAdd function to now use the Emscripten cwrap helper function.

 Because cwrap will be returning a function rather than the result of the module’s Add function, the first change you’ll want to make is change the const result variable to be const add. Also change Module.ccall to be Module.cwrap. Finally, remove the fourth parameter, in which you specified the values for the parameters, because the cwrap function only accepts three parameters.

 Now that you’ve defined a function that can call the module’s Add function, you need to actually call the function. To do this, you can simply call the add function that was returned from the cwrap call the same way you would any other function (you don’t use an array). Replace the code in the callAdd function with the code from the following snippet:

 function callAdd() {
 const add = Module.cwrap('Add', 1
 'number',
 ['number', 'number']);

 const result = add(4, 5); 2
 console.log(`Result: ${result}`);
}

 	1 Return value of cwrap is a JavaScript function.

 	2 Calls the JavaScript function, passing in the values directly

 With the changes to the callAdd function, you can open your browser and type http://localhost:8080/add.html into the address box to see the web page you just adjusted. If you click the Add button, you should see the result of the
 Add call in the console window of the browser’s developer tools, as figure B.2 shows.

 Figure B.2. The result of calling the module’s Add function using cwrap and passing in the parameter values 4 and 5

 [image:]

 B.3. Direct function calls

 The Emscripten ccall and cwrap functions are typically the ones used when calling a function in a module because they help with things like memory management
 of strings when it’s not necessary for the string to be long-lived.

 It’s possible to call the module’s function directly, but doing so means your code will need to handle all the necessary memory
 management. If your code is already doing all the necessary memory management, or the calls involve only floats and integers,
 which don’t require memory management, then this might be an approach for you to consider.

 When the Emscripten compiler creates the WebAssembly module, it puts an underscore character in front of the function names.
 It’s important to remember the following differences:

 	When calling ccall or cwrap, you don’t include the underscore character.

 	When you call the function directly, you need to include the underscore character.

 The following code snippet shows how to call the Add function in the module directly:

 function callAdd() {
 const result = Module._Add(2, 5); 1
 console.log(`Result: ${result}`);
}

 	1 Calling the Add function directly. Don’t forget the leading underscore character.

 B.4. Passing an array to a module

 The ccall and cwrap functions accept an 'array' type, but the automatic memory management is only for 8-bit values. If your function is expecting an array with integers,
 for example, you’ll need to handle the memory management yourself by allocating enough memory for each element in the array,
 copying the contents of the array to the module’s memory, and then freeing the memory after the call returns.

 A WebAssembly module’s memory is simply a typed array buffer. Emscripten provides several views that allow you to view the
 memory in different ways so that you can work with different data types more easily:

 	HEAP8—8-bit signed memory using the JavaScript Int8Array object

 	HEAP16—16-bit signed memory using the JavaScript Int16Array object

 	HEAP32—32-bit signed memory using the JavaScript Int32Array object

 	HEAPU8—8-bit unsigned memory using the JavaScript Uint8Array object

 	HEAPU16—16-bit unsigned memory using the JavaScript Uint16Array object

 	HEAPU32—32-bit unsigned memory using the JavaScript Uint32Array object

 	HEAPF32—32-bit float memory using the JavaScript Float32Array object

 	HEAPF64—64-bit float memory using the JavaScript Float64Array object

 If you have an array of integers, for example, you’d use the HEAP32 view, which is really an Int32Array JavaScript object. To allocate enough memory for the array pointer, you’d call Module._malloc, passing in a value that’s the result of multiplying the number of items in the array by the number of bytes for each item.
 The Module. HEAP32 object is the object for 32-bit integers, so you’d use the constant Module.HEAP32 .BYTES_PER_ELEMENT, which holds a value of 4. Each heap object has a BYTES_PER_ELEMENT constant.

 Once you have the memory allocated for the array pointer, you can use the HEAP32 object’s set function. The first parameter of the set function is the array that’s to be copied into the WebAssembly module’s memory. The second parameter is an index for where
 the set function should start writing the data in the underlying array (the module’s memory). In this case, because you’re working
 with the memory’s 32-bit view, each index refers to one of the groupings of 32 bits (4 bytes). As a result, you need to divide
 the memory address by 4. You can use standard division, but you may also see the use of the bitwise right-shift operator in
 some code, like the Emscripten JavaScript plumbing code. The following would be the same as a divide-by-four operation, but
 uses the bitwise right-shift operator arrayPointer >> 2.

 The next listing shows how your JavaScript would pass an array of integers to a module.

 Listing B.2. JavaScript passing an array of integers to a module

 const items = [1, 2, 3, 4]; 1
const arrayLength = items.length;
const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT; 2

const arrayPointer = Module._malloc((arrayLength * bytesPerElement)); 3

Module.HEAP32.set(items, (arrayPointer / bytesPerElement)); 4

Module.ccall('Test', 5
 null, 6
 ['number', 'number'], 7
 [arrayPointer, arrayLength]); 8

Module._free(arrayPointer); 9

 	1 The array to pass to the module

 	2 The number of bytes per element for the HEAP32 object

 	3 Allocates enough memory for each item of the array

 	4 Copies the array’s elements into the module’s memory

 	5 Calls the ‘Test’ function in the module

 	6 The module’s return type is void.

 	7 A pointer uses the number type.

 	8 Passes in the array pointer and the array’s length

 	9 Frees the memory that was allocated for the array

 Appendix C. Emscripten macros

 	

 This appendix covers

 	An overview of the emscripten_run_script series of macros

 	The EM_JS Emscripten macro

 	The EM_ASM series of Emscripten macros

 	

 Emscripten provides three types of macros that can help you talk to the host and can be quite helpful when you need to do
 things like debug issues with your code. Emscripten macros come in two flavors. The first type of macro is the emscripten_run_script series, and the other types are the EM_JS and EM_ASM series of macros.

 C.1. emscripten_run_script macros

 The emscripten_run_script series of macros executes JavaScript code directly using the JavaScript eval function. This function is a special JavaScript function that takes a string and turns it into JavaScript code. Using evals in JavaScript is generally frowned upon—it’s slower compared to the alternatives, but, more importantly, if the string you
 pass in contains user-supplied data, that data is turned into code that can do anything, which poses a serious security risk. Another disadvantage of using the eval function is that, depending on the browser’s security settings, a browser may prevent eval from working altogether, and your code might not work as expected.

 It’s recommended that the emscripten_run_script series of macros never be used in production code and especially never with user-supplied data. The macros, however, could
 be of use for things like debugging. For example, as figure C.1 shows, if the WebAssembly module isn’t working as expected, and a review of the code doesn’t help narrow down the cause,
 you could drop in macros at specific points in your code. Perhaps you’d start by adding one macro per function to try to narrow
 down the source of the issue by displaying an alert or console message. You could add additional macros to further narrow
 down the source of the issue and then, once the issue has been identified and fixed, remove the macros.

 Figure C.1. Debugging a WebAssembly module using macros

 [image:]

 The emscripten_run_script macro accepts a const char* pointer and return void. The following is an example of using emscripten_ run_script to write a string to the console:

 emscripten_run_script("console.log('The Test function')");

 The emscripten_run_script_int and emscripten_run_script_string macros also accept a const char* pointer, but the difference between these two is their return types:

 	emscripten_run_script_int returns an integer.

 	emscripten_run_script_string returns a char* pointer.

 C.2. EM_JS macros

 The second type of Emscripten macro available to WebAssembly modules is the EM_JS and EM_ASM series. The EM_JS macro offers a way of declaring JavaScript functions right in your C or C++ code, whereas the EM_ASM macros allow for the use of inline JavaScript.

 Although the JavaScript code for all these macros is within your C or C++ code, the Emscripten compiler actually creates the
 necessary JavaScript functions and calls those functions behind the scenes when the module is running. For this section, you’re
 going to focus on the EM_JS macro; you’ll see the EM_ASM macros in the next section.

 The EM_JS macro accepts four parameters:

 	The function’s return type.

 	The function’s name.

 	The arguments for the function surrounded by parentheses. If there are no arguments to pass to the function, empty opening
 and closing parentheses are still needed.

 	The code for the body of the function.

 	

 Warning

 One thing to keep in mind with this macro is that the first three parameters are written using C++ syntax. The fourth parameter,
 the body of the function, is JavaScript code.

 	

 C.2.1. No parameter values

 The first EM_JS macro that you’ll define is a JavaScript function that doesn’t have a return value or parameters. To begin, you need to create
 an Appendix C\C.2.1 EM_JS\ folder for your files. Then create the file em_js.c in the folder, and open it with your favorite editor.

 For the macro, you don’t want a value returned from the function, so you’ll specify void for the first parameter. The name of the macro will be NoReturnValueWithNo-Parameters, and because there won’t be any parameters, the third parameter to the macro will simply be opening and closing parentheses.
 The JavaScript code itself will be a console.log call to send a message to the console window of the browser’s developer tools indicating that the macro was called.

 Once the macro is defined, calling the function is the same as a normal C or C++ function. You’ll place the call to the function
 in a main function so that the code will run automatically when the module is downloaded and instantiated. Add the following code snippet
 to your em_js.c file:

 #include <emscripten.h>

EM_JS(void, NoReturnValueWithNoParameters, (), { 1
 console.log("NoReturnValueWithNoParameters called"); 2
});

int main() {
 NoReturnValueWithNoParameters(); 3
 return 0;
}

 	1 Declares the macro

 	2 Logs a message to the browser’s developer tools console

 	3 Calls the JavaScript function that you defined with the EM_JS macro

 There’s no need to go through the process of creating a simple HTML page just to see the results of the macros in this appendix.
 Instead, you’ll compile the code you create into WebAssembly modules and use the Emscripten HTML template.

 To compile the code you just wrote, open a command prompt, navigate to the folder where you saved the em_js.c file, and run
 the following command:

 emcc em_js.c -o em_js.html

 	

 Info

 You may see a warning message that there were no arguments provided for the macro’s function. You can ignore this warning.

 	

 Now that you’ve generated the WebAssembly file, you can open your browser and type http://localhost:8080/em_js.html into the address box to see the web page. If you open the browser’s developer tools by pressing the F12 key, you should see
 the text NoReturnValueWithNoParameters called written to the console window, as figure C.2 shows.

 Figure C.2. The console window’s output from the NoReturnValueWithNoParameters EM_JS macro

 [image:]

 C.2.2. Passing parameter values

 In this example, you’ll look into how to pass values to the EM_JS macro and how the JavaScript code inside interacts with the parameters. In the Appendix C\ folder, create a new folder called C.2.2 EM_JS\, and then create a file named em_js.c in the folder. Open the file with your favorite editor.

 Your macro won’t return a value, so you’ll set the first parameter to void. You’ll give the macro the name NoReturnValueWithIntegerAndDoubleParameters because the function will receive an int and a double for the parameters. The JavaScript code will simply call console.log to display a message in the console window indicating that the function was called and what values were passed in.

 You’ll create a main function that will be called automatically when the module is instantiated. In the main function, you’ll call your macro, passing in the integer and double the same way you would call a normal function.

 Add the following code snippet to em_js.c:

 #include <emscripten.h>

EM_JS(void, NoReturnValueWithIntegerAndDoubleParameters,
 (int integer_value, double double_value), { 1
 console.log("NoReturnValueWithIntegerAndDoubleParameters
 [image:] called...integer_value: " +
 integer_value.toString() + " double_value: " +
 double_value.toString());
});

int main() {
 NoReturnValueWithIntegerAndDoubleParameters(1, 5.49);
 return 0;
}

 	1 The macro has two parameters, an int and a double.

 To compile the code, open a command prompt, navigate to the folder where you saved the em_js.c file, and then run the following
 command:

 emcc em_js.c -o em_js.html

 Now that you’ve generated the WebAssembly file, you can open your browser and type http://localhost:8080/em_js.html into the address box to see the web page. In the browser’s console window, you should see the text indicating that the NoReturn-ValueWithIntegerAndDoubleParameters function was called, as figure C.3 shows.

 Figure C.3. The console window’s output from the NoReturnValueWithIntegerAndDoubleParameters macro

 [image:]

 C.2.3. Passing pointers as parameters

 Pointers can also be passed as parameters to the EM_JS macro. The thing to be aware of with this, however, is that WebAssembly code works only with integer and float data types.
 All other types, like strings, are placed in the module’s linear memory. Although in your C or C++ code, it will feel like
 you’re passing a string literal to the function, when the module is compiled, the WebAssembly code will now be pointing to
 a memory location and will be passing that to the function.

 In the Appendix C\ folder, create a new folder called C.2.3 EM_JS\ and then create a file named em_js.c. Open the file with your favorite editor.

 The macro won’t return a value, will have the name NoReturnValueWithString-Parameter, and will accept const char* for the parameter. You’ll use the console .log function to send a message to the browser’s console window indicating that the macro was called and the string value that
 was received. Because the string will be in the module’s memory, you’ll use the Emscripten helper function UTF8ToString to read the string from memory. Add the following code snippet to your em_js.c file:

 #include <emscripten.h>

EM_JS(void, NoReturnValueWithStringParameter,
 (const char* string_pointer), { 1
 console.log("NoReturnValueWithStringParameter called: " +
 Module.UTF8ToString(string_pointer)); 2
});

int main() {
 NoReturnValueWithStringParameter("Hello from WebAssembly");
 return 0;
}

 	1 The macro accepts a const char* for the parameter.

 	2 Reads the string from the module’s memory

 Because the JavaScript code will need the UTF8ToString Emscripten helper function, you’ll need to include that function in the EXTRA_EXPORTED_RUNTIME_METHODS array command-line flag when you build the WebAssembly module. The following is the command line to compile your code:

 emcc em_js.c -s EXTRA_EXPORTED_RUNTIME_METHODS=['UTF8ToString']
[image:] -o em_js.html

 You can view the web page in your browser by typing http://localhost:8080/em_js.html into the address box. In the browser’s console window, you should see the text indicating that the NoReturnValueWithStringParameter function was called and that it received the text Hello from WebAssembly, as figure C.4 shows.

 Figure C.4. The console window’s output indicating that the NoReturnValueWithStringParameter macro was called

 [image:]

 C.2.4. Returning a string pointer

 None of the EM_JS examples that you’ve created so far have returned a value. You can return values from the EM_JS functions, but, as with the parameters, you need to be mindful that WebAssembly code works only with integer and float data
 types. All other types, like strings, need to be placed in the module’s linear memory.

 In the Appendix C\ folder, create a new folder called C.2.4 EM_JS\, and then create a file named em_js.c in the folder. Open the file with your editor.

 For this example, you’ll define a function called StringReturnValueWithNo-Parameters that will have no parameters and will return a char* pointer. In the JavaScript code, you’ll define a string variable with a message to return to the module’s code.

 To pass the string to the module, you’ll need to determine how many bytes it contains; to do this, you’ll use the Emscripten
 helper function lengthBytesUTF8. Once you know how many bytes are in the string, you’ll ask the module to allocate some of its memory for the string by using
 the standard C library function malloc. You’ll then copy the string into the module’s memory using the Emscripten helper function stringToUTF8. Finally, the JavaScript code will return the pointer to the string.

 In the module’s main function, you’ll call the macro and receive the returned string pointer. You’ll then pass the string pointer to the printf function so that the Emscripten plumbing code will log the message to the console window of the browser’s developer tools,
 as well as to the text box on the web page.

 	

 Note

 The main thing to be mindful of is that, if you use malloc, you need to make sure to free the memory, or you’ll end up with a memory leak. To release the memory, you use the standard
 C library function free.

 	

 Place the contents of the following listing into your em_js.c file.

 Listing C.1. EM_JS macro that returns a string (em_js.c)

 #include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

EM_JS(char*, StringReturnValueWithNoParameters, (), { 1
 const greetings = "Hello from StringReturnValueWithNoParameters"; 2
 const byteCount = (Module.lengthBytesUTF8(greetings) + 1); 3

 const greetingsPointer = Module._malloc(byteCount); 4
 Module.stringToUTF8(greetings, greetingsPointer, byteCount); 5

 return greetingsPointer; 6
});

int main() {
 char* greetingsPointer = StringReturnValueWithNoParameters(); 7

 printf("StringReturnValueWithNoParameters was called and it returned the
 [image:] following result: %s\n", greetingsPointer); 8

 free(greetingsPointer); 9

 return 0;
}

 	1 Defines a macro that returns char*

 	2 The string to return to the module

 	3 Determines how many bytes are in the string; adds a byte for the null terminator

 	4 Allocates a section of the module’s memory for the string

 	5 Copies the string into the module’s memory

 	6 Returns the pointer to the string’s location in the module’s memory

 	7 Calls the JavaScript function and receives the string pointer

 	8 Has the string displayed in the browser’s console window on the web page

 	9 Frees the memory that was allocated for the string pointer

 Because the JavaScript code will be using the lengthBytesUTF8 and stringToUTF8 functions, you need to include them in the EXTRA_EXPORTED_RUNTIME_METHODS array command-line flag. The following is the command line to compile your code into a WebAssembly module:

 emcc em_js.c -s EXTRA_EXPORTED_RUNTIME_METHODS=['lengthBytesUTF8',
[image:]'stringToUTF8'] -o em_js.html

 	

 Info

 You may see a warning message that there were no arguments provided for the macro’s function. You can ignore this warning.

 	

 To view the web page in your browser, type http://localhost:8080/em_js.html into the address box. You should see the text indicating that the StringReturnValueWithNoParameters function was called and that it received the text Hello from String-ReturnValueWithNoParameters, as figure C.5 shows.

 Figure C.5. The console window’s output indicating that the StringReturnValueWithNoParameters macro was called

 [image:]

 C.3. EM_ASM macros

 As mentioned in the previous section, the EM_JS macro offers a way of declaring JavaScript functions right in your C or C++ code. With the EM_ASM macros, you don’t declare a JavaScript function explicitly. Instead, you write inline JavaScript in your C code. With both
 the EM_JS and EM_ASM macros, the JavaScript code isn’t really within the C code. The Emscripten compiler actually creates the necessary JavaScript
 functions and calls them behind the scenes when the module is running.

 There are several variations of the EM_ASM macro available:

 	EM_ASM

 	EM_ASM_

 	EM_ASM_INT

 	EM_ASM_DOUBLE

 The EM_ASM and EM_ASM_ macros don’t return a value. The EM_ASM_INT macro returns an integer, and the EM_ASM_DOUBLE macro returns a double.

 C.3.1. EM_ASM

 The EM_ASM macros are used to execute JavaScript that’s specified within the macro’s opening and closing parentheses. To demonstrate
 this, in your Appendix C\ folder, create a C.3.1 EM_ASM\ folder, and then create a file named em_asm.c in the folder. Open the file with your editor.

 You’ll create a main function and add a call to the EM_ASM macro to simply write a string to the console of the browser’s developer tools. Add the following code snippet to your em_asm.c
 file:

 #include <emscripten.h>

int main() {
 EM_ASM(console.log('EM_ASM macro calling'));
}

 You can have Emscripten compile the code into a WebAssembly module and generate the HTML template by opening a command prompt,
 navigating to where you saved your em_asm.c file, and then running the following command:

 emcc em_asm.c -o em_asm.html

 You can view the web page in your browser by typing http://localhost:8080/em_asm.html into the address box. In the browser’s console window, you should see the text EM_ASM macro calling written to the console, as figure C.6 shows.

 Figure C.6. The console window’s output from the EM_ASM function call

 [image:]

 C.3.2. EM_ASM_

 The EM_ASM_ macro is used to pass one or more values from the C or C++ code to the JavaScript code defined within the macro. Although
 the EM_ASM macro shown previously can also be used to pass values to the JavaScript code it contains, it’s recommended that you use
 the EM_ASM_ macro instead. The advantage is that if the developer forgets to pass a value, the compiler will throw an error.

 The first parameter of the EM_ASM and EM_ASM_ macros contains the JavaScript code, while any additional parameters are the values to pass from the C or C++ code to the
 JavaScript code within the macro:

 	Each parameter passed in will be seen by the JavaScript code as $0, $1, $2, and so on.

 	Each parameter passed into the macro can be only an int32_t or double, but pointers are 32-bit integers in WebAssembly, so they can be passed in as well.

 Having curly braces around the JavaScript code in the EM_ASM macros isn’t required, but it helps distinguish between the JavaScript code and the C or C++ values being passed in.

 In your Appendix C\ folder, create a C.3.2 EM_ASM_\ folder, and then create a file named em_asm_.c. Open the file with your editor.

 You’ll now create a main function, and, within the function, you’ll call the EM_ASM_ macro, passing in an integer value of 10. The JavaScript within the macro will simply write a message to the browser’s console indicating the value that was received.
 Add the following code snippet to your em_asm_.c file:

 #include <emscripten.h>

int main() {
 EM_ASM_({
 console.log('EM_ASM_ macro received the value: ' + $0); 1
 }, 10); 2
}

 	1 Values are received as the variables $0, $1, $2, and so on.

 	2 Only int32_t or double C/C++ values can be passed to the JavaScript code.

 To create the WebAssembly module, open a console window, navigate to the folder where your em_asm_.c file is located, and
 then run the following command:

 emcc em_asm_.c -o em_asm_.html

 As figure C.7 shows, if you type http://localhost:8080/em_asm_.html into your browser’s address box, you should see the text indicating that the EM_ASM_ macro received a value of 10.

 Figure C.7. The console window’s output from the EM_ASM_ function call

 [image:]

 C.3.3. Passing pointers as parameters

 In this example, you’re going to pass a string to the JavaScript code of the EM_ASM_ macro. The only data types that WebAssembly modules support are integers and floats. Any other type of data, like strings,
 needs to be represented in the module’s linear memory.

 Before you start, you’ll need to create a C.3.3 EM_ASM_\ folder in your Appendix C\ folder and then create a file named em_asm_.c. Open the file with your editor.

 You’re going to create a main function. Within the main function, you’ll call the EM_ASM_ macro, passing in the string literal "world!". Because WebAssembly modules support only integers and floats, when the code is compiled into a WebAssembly module, the string
 "world!" will actually be placed in the module’s linear memory. A pointer will be passed to the JavaScript code within the macro,
 so you’ll need to use the Emscripten helper function UTF8ToString to read the string from the module’s memory before you can write the string to the console window of the browser’s developer
 tools. Add the following code snippet to the em_asm_.c file:

 #include <emscripten.h>

int main() {
 EM_ASM_({
 console.log('hello ' + Module.UTF8ToString($0)); 1
 }, "world!"); 2
}

 	1 Reads the string from the module’s memory

 	2 The string is being passed as a pointer to the JavaScript code.

 Because the JavaScript code will be using the UTF8ToString Emscripten helper function, you’ll need to include that function in the EXTRA_EXPORTED_RUNTIME_METHODS array command-line flag when you build the WebAssembly module. The following is the command line to compile your code:

 emcc em_asm_.c -s EXTRA_EXPORTED_RUNTIME_METHODS=['UTF8ToString']
[image:] -o em_asm_.html

 Type http://localhost:8080/em_asm_.html into the address box of your browser to see your web page. As figure C.8 shows, in the browser’s developer tools console window, you should see the text hello world!

 Figure C.8. The console window’s output from the EM_ASM_ function call

 [image:]

 C.3.4. EM_ASM_INT and EM_ASM_DOUBLE

 There might be times when you need to call into JavaScript to request a value. To do this, you will use either the EM_ASM_INT macro, which returns an integer, or the EM_ASM_DOUBLE macro, which returns a double.

 As with the EM_ASM_ macro, optional values can be passed from the C or C++ code to the JavaScript code. For this example, you’ll call the EM_ASM_DOUBLE macro, passing in two double values as parameters. The JavaScript will sum the two values and return the result. You’ll place the code in the main function and pass the result from the macro and Emscripten’s JavaScript using the printf function.

 In your Appendix C\ folder, create a C.3.4 EM_ASM_DOUBLE\ folder. Create a file named em_asm_double.c, and open it with your editor. Add the following code snippet
 to your file:

 #include <stdio.h>
#include <emscripten.h>

int main() {
 double sum = EM_ASM_DOUBLE({
 return $0 + $1;
 }, 10.5, 20.1);

 printf("EM_ASM_DOUBLE result: %.2f\n", sum);
}

 Open a command prompt, navigate to the folder where you saved the em_asm_double .c file, and then run the following command
 to create the WebAssembly module:

 emcc em_asm_double.c -o em_asm_double.html

 You can open your browser and type http://localhost:8080/em_asm_double.html into the address box to see the web page you just generated. In the browser’s developer tools console window, and in the
 text box on the web page, you should see the text EM_ASM_DOUBLE result: 30.60 (figure C.9).

 Figure C.9. The result of 30.60 from the call to the EM_ASM_DOUBLE macro

 [image:]

 C.3.5. Returning a string pointer

 It’s possible to return a string pointer from the EM_ASM_INT macro because pointers are represented as 32-bit integers in WebAssembly. Memory management is required, however. To pass
 a string from the JavaScript code to the module, the string needs to be copied into the module’s memory; then the pointer
 is returned to the module. When the module is finished with the pointer, it needs to free the memory that was allocated.

 In your Appendix C\ folder, create a C.3.5 EM_ASM_INT\ folder. Create a file named em_asm_int.c, and open it with your editor.

 In the EM_ASM_INT macro’s JavaScript, you’ll define a string and then use Emscripten’s lengthBytesUTF8 helper function to determine how many bytes are in the string. Once you know this, you can ask the module to allocate the
 necessary amount of its linear memory to hold the string. To allocate the memory, you’ll use the standard C library’s malloc function. The final step is to copy the string into the module’s memory using the stringToUTF8 Emscripten helper function and then return the pointer to the C code.

 The code will be placed within the main function, and the result of the EM_ASM_INT macro call will be cast from an integer into a char*. The code will then pass the pointer to the printf function so that the Emscripten plumbing code will log the message to the console window of the browser’s developer tools,
 as well as to the web page’s text box. Before the main function ends, the memory that was allocated will be freed using the standard C library’s free function:

 #include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

int main() {
 char* message = (char*)EM_ASM_INT({ 1
 const greetings = "Hello from EM_ASM_INT!";
 const byteCount = (Module.lengthBytesUTF8(greetings) + 1);

 const greetingsPointer = Module._malloc(byteCount);
 Module.stringToUTF8(greetings, greetingsPointer, byteCount);

 return greetingsPointer;
 });

 printf("%s\n", message); 2
 free(message); 3
}

 	1 Casts the integer return value to char*

 	2 Displays the message in the browser’s console window

 	3 Frees the memory that was allocated for the pointer

 Because the JavaScript code will be using the lengthBytesUTF8 and stringToUTF8 functions, you’ll need to include them in the EXTRA_EXPORTED_RUNTIME_METHODS array command-line flag. The following is the command line needed to compile your code into a WebAssembly module:

 emcc em_asm_int.c
[image:] -s EXTRA_EXPORTED_RUNTIME_METHODS=['lengthBytesUTF8',
[image:]'stringToUTF8'] -o em_asm_int.html

 If you open your browser and type http://localhost:8080/em_asm_int.html into the address box, you’ll see the web page you just generated. In the browser’s console window, and in the text box on the web page, you should see the text Hello from EM_ASM_INT! (figure C.10).

 Figure C.10. The message from the EM_ASM_INT macro written to the console window of the browser’s developer tools, as well as in the text box on the web page

 [image:]

 Appendix D. Exercise solutions

 	

 This appendix covers

 	Solutions for the chapter exercises

 	

 D.1. Chapter 3

 Chapter 3 has two exercises.

 D.1.1. Exercise 1

 Which four data types does WebAssembly support?

 Solution

 32-bit integers, 64-bit integers, 32-bit floats, and 64-bit floats

 D.1.2. Exercise 2

 Add a Decrement function to the side module you created in section 3.6.1.

 	The function should have an integer return value and an integer parameter. Subtract 1 from the value received, and return
 the result to the calling function.

 	Compile the side module, and then adjust the JavaScript to call the function and display the result to the console.

 Solution

 In your WebAssembly\ folder, create an Appendix D\D.1.2\source\ folder. Copy your side_module.c file from your Chapter 3\3.6 side_module\ folder into your new source\ folder.

 Open the side_module.c file, and add the function shown in the following code snippet after your Increment function:

 int Decrement(int value) {
 return (value - 1);
}

 To compile your code into a WebAssembly module, navigate to your Appendix D\D.1.2\source\ folder and then run the following command:

 emcc side_module.c -s SIDE_MODULE=2 -O1
[image:] -s EXPORTED_FUNCTIONS=['_Increment','_Decrement']
[image:] -o side_module.wasm

 In your Appendix D\D.1.2\ folder, create a frontend\ folder and copy the following files into it:

 	side_module.wasm from your source\ folder

 	side_module.html from your Chapter 3\3.6 side_module\ folder

 Open the side_module.html file in your editor. In the then method of the WebAssembly.instantiateStreaming call, change the variable value from const to let. After the console.log call, add a call to the _Decrement function, passing in a value of 4 and logging the result to the console. The then method’s code should now look like the following snippet:

 .then(result => {
 let value = result.instance.exports._Increment(17);
 console.log(value.toString());

 value = result.instance.exports._Decrement(4);
 console.log(value.toString());
});

 D.2. Chapter 4

 Chapter 4 has two exercises.

 D.2.1. Exercise 1

 What two options are there to have Emscripten make your functions visible to the JavaScript code?

 Solution

 The two options are

 	Include the EMSCRIPTEN_KEEPALIVE declaration with the function.

 	Include the function names in the command line’s EXPORTED_FUNCTIONS array when compiling the module.

 D.2.2. Exercise 2

 How do you prevent function names from being mangled when compiled so that your JavaScript code can use the expected function
 name?

 Solution

 By using extern "C"

 D.3. Chapter 5

 Chapter 5 has two exercises.

 D.3.1. Exercise 1

 Which keyword do you need to use to define a signature in your C or C++ code so that the compiler knows the function will
 be available when the code is run?

 Solution

 extern

 D.3.2. Exercise 2

 Suppose you need to include a function in Emscripten’s JavaScript code that your module will call to determine if the user’s
 device is online or not. How would you include a function called IsOnline that returns 1 for true and 0 (zero) for false?

 Solution

 In your C code, you’d define the function as shown in the following snippet:

 extern int IsOnline();

 When needed, your C code calls the IsOnline function as it would any other function. For example,

 if (IsOnline() == 1) { /* request data from the server perhaps */ }

 To include your JavaScript function in Emscripten’s generated JavaScript code, you use the mergeInto function. Web browsers have a navigator object that you can access to determine if the browser online or not by using the
 navigator.onLine method. If you’d like to know more about this method, you can visit the following MDN Web Docs page: http://mng.bz/yzZe.

 In the JavaScript file that you’ll specify at the command line (mergeinto.js), you’d have a function similar to the following:

 mergeInto(LibraryManager.library, {
 IsOnline: function() {
 return (navigator.onLine ? 1 : 0);
 }
});

 At the command line, you tell Emscripten to include your function in its generated JavaScript file by specifying the --js-library flag, followed by your JavaScript file with the mergeInto code, as the following example shows:

 emcc test.cpp --js-library mergeinto.js -o test.html

 D.4. Chapter 6

 Chapter 6 has two exercises.

 D.4.1. Exercise 1

 Which two functions do you use to add and remove function pointers from Emscripten’s backing array?

 Solution

 addFunction and removeFunction

 D.4.2. Exercise 2

 Which instruction does WebAssembly use to call a function defined in the Table section?

 Solution

 call_indirect

 D.5. Chapter 7

 Chapter 7 has two exercises.

 D.5.1. Exercise 1

 Using one of the dynamic linking approaches you’ve learned in this chapter, create the following:

 	A side module containing an Add function that accepts two integer parameters and returns the sum as an integer

 	A main module that has a main() function that calls the side module’s Add function and displays the result to the console window of the browser’s developer tools

 Solution for the side module

 In your WebAssembly\ folder, create an Appendix D\D.5.1\source\ folder. In your new source\ folder, create an add.c file, and then open it with your favorite editor.

 Place the header file for Emscripten and the Add function shown in the following snippet in the add.c file:

 #include <emscripten.h>

EMSCRIPTEN_KEEPALIVE 1
int Add(int value1, int value2) {
 return (value1 + value2);
}

 	1 Alternatively, you could use the EXPORTED_FUNCTIONS command-line array.

 Next, you’ll need to compile the add.c file as a WebAssembly side module. Open a command prompt, navigate to your Appendix D\D.5.1\source\ folder, and then run the following command:

 emcc add.c -s SIDE_MODULE=2 -O1 -o add.wasm

 The second part of the exercise is to create a main module that has a main function. Although the manual approach for dynamic linking using the WebAssembly JavaScript API can be used to link two modules
 together, that approach uses two side modules. The two approaches that use main modules are dlopen and dynamicLibraries.

 In the main function, you need to call the side module’s Add function and then display the result to the console window of the browser’s developer tools. Let’s look at the dlopen approach first.

 Solution for the main module: dlopen

 In your Appendix D\D.5.1\source\ folder, create a main_dlopen.cpp file. Add the code in the following listing to the file.

 Listing D.1. The dlopen approach for the main module

 #include <cstdlib>
#include <cstdio>
#include <dlfcn.h> 1
#include <emscripten.h>

typedef int(*Add)(int,int); 2

void CallAdd(const char* file_name) { 3
 void* handle = dlopen(file_name, RTLD_NOW); 4
 if (handle == NULL) { return; }

 Add add = (Add)dlsym(handle, "Add"); 5
 if (add == NULL) { return; }

 int result = add(4, 9); 6

 dlclose(handle); 7

 printf("Result of the call to the Add function: %d\n", result); 8
}

int main() {
 emscripten_async_wget("add.wasm", 9
 "add.wasm", 10
 CallAdd, 11
 NULL); 12

 return 0;
}

 	1 Header file for dlopen and related functions

 	2 Function signature for the Add function in the side module

 	3 Callback function when the add.wasm file has finished downloading

 	4 Opens the side module

 	5 Gets a reference to the Add function

 	6 Calls the Add function using the function pointer

 	7 Closes the side module

 	8 Displays the result from the Add function to the browser’s console window

 	9 Downloads the add.wasm file to Emscripten’s file system

 	10 Names the downloaded file add.wasm

 	11 The CallAdd function will be called on a successful download.

 	12 No error callback function was provided in the event the download fails.

 Your next step is to compile the main_dlopen.cpp file as a WebAssembly main module and have Emscripten also generate the HTML
 template file. Open a command prompt, navigate to your Appendix D\D.5.1\source\ folder, and then run the following command:

 emcc main_dlopen.cpp -s MAIN_MODULE=1 -o main_dlopen.html

 If you chose to use the dynamicLibraries approach for the main module, let’s take a look at how you could accomplish that.

 Solution for the main module: dynamicLibraries

 The first step with this approach is to create the JavaScript file that will hold your JavaScript to update Emscripten’s dynamicLibraries property of the Module object. In your Appendix D\D.5.1\source\ folder, create a pre.js file and open it with your editor. Add the code in the following snippet to your pre.js file,
 to have Emscripten link to the add.wasm side module during initialization:

 Module['dynamicLibraries'] = ['add.wasm'];

 The second step is to create the C++ for your main module. In your Appendix D\D.5.1\source\ folder, create a main_dynamicLibraries.cpp file, and open it with your editor. Add the code in the following listing
 to your main_dynamicLibraries.cpp file.

 Listing D.2. The dynamicLibraries approach for the main module

 #include <cstdlib>
#include <cstdio>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

extern int Add(int value1, int value2); 1

int main() {
 int result = Add(24, 76); 2
 printf("Result of the call to the Add function: %d\n", result); 3

 return 0;
}

#ifdef __cplusplus
}
#endif

 	1 So the compiler knows the function will be available when the code is run

 	2 Calls the Add function

 	3 Displays the results in the browser’s console window

 Your final step is to compile the main_dynamicLibraries.cpp file as a WebAssembly main module and have Emscripten also generate
 the HTML template file. Open a command prompt, navigate to your Appendix D\D.5.1\source\ folder, and then run the following command:

 emcc main_dynamicLibraries.cpp -s MAIN_MODULE=1
[image:] --pre-js pre.js -o main_dynamicLibraries.html

 D.5.2. Exercise 2

 Which dynamic linking approach would you use if you needed to call a function in the side module, but that function had the
 same name as a function in your main module?

 Solution

 The dlopen approach

 D.6. Chapter 8

 Chapter 8 has two exercises.

 D.6.1. Exercise 1

 Suppose you have a side module called process_fulfillment.wasm: how would you create a new instance of Emscripten’s Module object and tell it to dynamically link to this side module?

 Solution

 const fulfillmentModule = new Module({ 1
 dynamicLibraries: ['process_fulfillment.wasm'] 2
});

 	1 Creates a new WebAssembly instance of the main module

 	2 Tells Emscripten that it needs to link to the process_fulfillment side module

 D.6.2. Exercise 2

 What flag do you need to pass to Emscripten when compiling a WebAssembly main module in order to have the Module object wrapped in a function in Emscripten’s generated JavaScript file?

 Solution

 -s MODULARIZE=1

 D.7. Chapter 9

 Chapter 9 has two exercises.

 D.7.1. Exercise 1

 If you wanted to use a C++17 feature, what flag would you use when compiling your WebAssembly module, to tell Clang to use
 that standard?

 Solution

 -std=c++17

 D.7.2. Exercise 2

 Test adjusting the calculate_primes logic from section 9.4 to use three threads rather than four to see how the calculation duration is impacted. Test using five threads, and place
 the main thread’s calculation into a pthread to see if moving all the calculations off the main thread impacts the calculation
 duration.

 Solution for three threads

 In your WebAssembly\ folder, create the Appendix D\D.7.2\source\ folder. Copy the calculate_primes.cpp file from your Chapter 9\9.4 pthreads\source\ folder to your new source\ folder, and rename it calculate_primes_three_pthreads.cpp.

 Open calculate_primes_three_pthreads.cpp with your favorite editor. Make the following modifications to the main function:

 	The thread_ids array will now hold three values.

 	The args array will now hold four values.

 	Adjust the args_start initial value to be 250000 (one quarter of the total 1,000,000 range).

 	The pthread_create loop needs to loop while i is less than 3.

 	Within the pthread_create loop, sets the args[args_index].end value to args_start + 249999. The args_start value at the end of the loop needs to be incremented by 250000.

 	Adjust the FindPrimes call for the main thread so that the end value (second parameter) is 249999.

 	The pthread_join loop now needs to loop while j is less than 3.

 	Finally, the loop that outputs the prime numbers that were found needs to loop while k is less than 4.

 Your main function should now look similar to the code in the next listing.

 Listing D.3. The main function of calculate_primes_three_pthreads.cpp

 ...

int main() {
 int start = 3, end = 1000000;
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
 std::chrono::high_resolution_clock::now();

 pthread_t thread_ids[3]; 1
 struct thread_args args[4]; 2

 int args_index = 1;
 int args_start = 250000; 3

 for (int i = 0; i < 3; i++) { 4
 args[args_index].start = args_start;
 args[args_index].end = (args_start + 249999); 5

 if (pthread_create(&thread_ids[i], NULL, thread_func,
 &args[args_index])) {
 perror("Thread create failed");
 return 1;
 }

 args_index += 1;
 args_start += 250000; 6
 }

 FindPrimes(3, 249999, args[0].primes_found); 7

 for (int j = 0; j < 3; j++) { 8
 pthread_join(thread_ids[j], NULL);
 }

 std::chrono::high_resolution_clock::time_point duration_end =
 std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration =
 (duration_end - duration_start);

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for (int k = 0; k < 4; k++) { 9
 for(int n : args[k].primes_found) {
 printf("%d ", n);
 }
 }
 printf("\n");

 return 0;
}

 	1 Reduced to 3

 	2 Reduced to 4

 	3 The first thread’s range will start at 250,000.

 	4 Reduced to 3

 	5 The end of the range is now 249,999 after the args_start value.

 	6 Increments by 250,000

 	7 Increases the end value to 249,999

 	8 Reduced to 3

 	9 Reduced to 4

 Your next step is to compile the calculate_primes_three_pthreads.cpp file and have Emscripten also generate the HTML template
 file. Open a command prompt, navigate to your Appendix D\D.7.2\source\ folder, and then run the following command:

 emcc calculate_primes_three_pthreads.cpp -O1 -std=c++11
[image:] -s USE_PTHREADS=1 -s PTHREAD_POOL_SIZE=3
[image:] -o three_pthreads.html

 A summary comparing these results with those from chapter 9 and the five threads solution is included after the five threads solution.

 Solution for five threads

 In your Appendix D\D.7.2\source\ folder, make a copy of the calculate_primes_three_pthreads.cpp file, and name it calculate_primes_five_pthreads.cpp.
 Open the file with your favorite editor, and make the following modifications to the main function:

 	The start value will now be 0.

 	The thread_ids and args array will both hold five values.

 	Delete the int args_index = 1 line of code, and then adjust the args_start initial value to be 0.

 	The pthread_create loop needs to loop while i is less than 5.

 	Within the pthread_create loop

 	Set the args[args_index].end value to args_start + 199999.

 	The args_start value at the end of the loop needs to be incremented by 200000.

 	Delete the args_index += 1 line of code at the end of the loop. In the args[args_index] lines of code in the loop, replace args_index with i.

 	Remove the FindPrimes call from the main thread (just before the pthread_join loop).

 	The pthread_join loop needs to loop while j is less than 5.

 	Finally, the loop that outputs the prime numbers that were found needs to loop while k is less than 5.

 Your main function should now look similar to the code in the next listing.

 Listing D.4. The main function of calculate_primes_five_pthreads.cpp

 ...

int main() {
 int start = 0, end = 1000000; 1
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
 std::chrono::high_resolution_clock::now();

 pthread_t thread_ids[5]; 2
 struct thread_args args[5];

 int args_start = 0; 3

 for (int i = 0; i < 5; i++) { 4
 args[i].start = args_start;
 args[i].end = (args_start + 199999); 5

 if (pthread_create(&thread_ids[i], NULL, thread_func, &args[i])) {
 perror("Thread create failed");
 return 1;
 }

 args_start += 200000; 6
 }

 for (int j = 0; j < 5; j++) { 7
 pthread_join(thread_ids[j], NULL);
 }

 std::chrono::high_resolution_clock::time_point duration_end =
 std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration =
 (duration_end - duration_start);

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for (int k = 0; k < 5; k++) { 8
 for(int n : args[k].primes_found) {
 printf("%d ", n);
 }
 }
 printf("\n");

 return 0;
}

 	1 Set this to 0.

 	2 Set this to 5.

 	3 The first thread’s range will start at 0.

 	4 Loops while less than 5

 	5 The end of the range is now 199,999 after the args_start value

 	6 Increments by 200,000

 	7 Set this to 5.

 	8 Set this to 5.

 Your next step is to compile the calculate_primes_five_pthreads.cpp file and have Emscripten also generate the HTML template
 file.

 Open a command prompt, navigate to your Appendix D\D.7.2\source\ folder, and then run the following command:

 emcc calculate_primes_five_pthreads.cpp -O1 -std=c++11
[image:] -s USE_PTHREADS=1 -s PTHREAD_POOL_SIZE=5
[image:] -o five_pthreads.html

 Summary

 The following table breaks down the results of performing the calculations using different numbers of threads. The tests were
 run 10 times each and the durations averaged out:

 	Four pthreads and calculations also being performed on the main thread (chapter 9)

 	Three pthreads and calculations also being performed on the main thread (“Solution for three threads”)

 	Five pthreads with no calculations on the main thread

 	
 Number of threads

 	
 Firefox (in milliseconds)

 	
 Chrome (in milliseconds)

 	4 pthreads + main thread
 	57.4
 	40.87

 	3 pthreads + main thread
 	61.7
 	42.11

 	5 pthreads (no processing on the main thread)
 	52.2
 	36.06

 D.8. Chapter 10

 Chapter 10 has three exercises.

 D.8.1. Exercise 1

 Which Node.js function do you need to call in order to load Emscripten’s generated JavaScript file?

 Solution

 require

 D.8.2. Exercise 2

 What Emscripten Module property do you need to implement in order to be informed of when the WebAssembly module is ready to be interacted with?

 Solution

 onRuntimeInitialized

 D.8.3. Exercise 3

 How would you modify the index.js file from chapter 8 so that the dynamic linking logic works in Node.js?

 Solution

 In your WebAssembly\ folder, create an Appendix D\D.8.3\backend\ folder, and then complete the following steps:

 	Copy all the files except index.html from your Chapter 8\8.1 EmDynamicLibraries\frontend\ folder to your newly created backend\ folder.

 	Open the index.js file with your favorite editor.

 Because index.js can be called by either the Edit Product or the Place Order web page, you’ll need to adjust the initialProductData object to have a Boolean flag (isProduct) indicating which form’s data needs to be validated. You’ll also need to add two new properties for the Place Order form’s
 values (productId and quantity). The name of the object itself will need to be changed to better reflect its purpose.

 Adjust the initialProductData in your index.js file to match the code in the following snippet:

 const clientData = { 1
 isProduct: true, 2
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
 productId: "301", 3
 quantity: "10", 4
};

 	1 Renamed from initialProductData

 	2 Flag to indicate if the validation is for the Edit Product or Place Order web page

 	3 The Place Order form’s selected product Id

 	4 The Place Order form’s quantity entered

 Because the server-side code will be called to validate only one web page at a time, you don’t need both the productModule and orderModule global variables. Rename the productModule variable to validationModule and then delete the orderModule line of code. Do a search of the code, and change all instances of productModule and orderModule to use validationModule.

 Your next step is to have the Emscripten-generated JavaScript file (validate_core.js) loaded. To do this, add the require function call shown in the following snippet before the initializePage function in your index.js file:

 const Module = require('./validate_core.js');

 The validate_core WebAssembly module has been generated using the MODULARIZE=1 command-line flag. By using this flag, the Emscripten-generated JavaScript code doesn’t run as soon as you load it. The code
 will run only once you’ve created an instance of the Module object. Because the code won’t run as soon as you load it, you can’t implement the Module['onRuntimeInitialized'] function as the starting point for your code in this case.

 What you’ll do instead is replace the contents of the initializePage function with the creation of the validationModule instance based on what the clientData object indicates needs to be validated. When you create an instance of the Module object, you’ll specify the onRuntimeInitialized function at that point.

 Adjust your initializePage function in your index.js file to match the code in the following snippet:

 function initializePage() {
 const moduleName = (clientData.isProduct ?
 'validate_product.wasm' : 'validate_order.wasm'); 1

 validationModule = new Module({ 2
 dynamicLibraries: [moduleName],
 onRuntimeInitialized: runtimeInitialized, 3
 });
}

 	1 Determines which file will need to be linked to

 	2 Creates a new Module instance linking to the module with the validation logic you need

 	3 Calls runtimeInitialized once the module has been loaded

 After your initializePage function, create the runtimeInitialized function that will call the validateName and validateCategory functions that are currently in the onClickSaveProduct function if you’re validating the Edit Product web page data. Otherwise, the function will call the validateProduct and validateQuantity functions that are currently in the onClickAddToCart function if you’re validating the Place Order form’s web page data.

 Add the code in the next listing to your index.js file after your initializePage function.

 Listing D.5. The runtimeInitialized function in your index.js file

 ...

function runtimeInitialized() {
 if (clientData.isProduct) { 1
 if (validateName(clientData.name) &&
 validateCategory(clientData.categoryId)) {
 2
 }
 }
 else { 3
 if (validateProduct(clientData.productId) &&
 validateQuantity(clientData.quantity)) {
 4
 }
 }
}
...

 	1 The Edit Product web page data needs to be validated.

 	2 There were no issues. The data can be saved.

 	3 The Place Order web page data needs to be validated.

 	4 There were no issues. The data can be saved.

 Your next step is to delete the following UI-specific functions from the index.js file:

 	switchForm

 	setActiveNavLink

 	setFormTitle

 	showElement

 	getSelectedDropdownId

 	onClickSaveProduct

 	onClickAddToCart

 When the Emscripten-generated JavaScript file was created in chapter 8, you had it include the UpdateHostAboutError function, which will read the error message from the module’s memory and then call the setErrorMessage function in this file. Because the UpdateHostAboutError function is part of the JavaScript loaded by the require function call, its scope doesn’t let it access the setErrorMessage function in this file. To let the UpdateHostAboutError function have access to the setErrorMessage function, you’ll need to adjust the setErrorMessage function so that it’s part of the global object. You also need to adjust the contents of the file to use console.log to output the error message.

 Update the setErrorMessage function in your index.js file so that it matches the code in the following snippet:

 global.setErrorMessage = function(error) { console.log(error); }

 The final modification needed to the index.js file is to add a call to the initialize-Page function at the end of the file to have the validation logic start. Add the following snippet to the end of your index.js
 file:

 initializePage();

 Viewing the results

 At the moment, the content of your clientData contains only valid data, so running the code right now won’t show any validation errors. You can test the validation logic
 for the quantity, for example, by changing the isProduct flag to false and setting the quantity to "0" (zero).

 To run your JavaScript file in Node.js, open a command prompt, navigate to your Appendix D\D.8.3\backend\ folder, and then run the following command:

 node index.js

 You should see the validation message Please enter a valid quantity.

 D.9. Chapter 11

 Chapter 11 has two exercises.

 D.9.1. Exercise 1

 When using the WebAssembly Binary Toolkit to create a WebAssembly module, which s-expression nodes have to appear before the
 table, memory, global, and func s-expressions?

 Solution

 If included, the import s-expression nodes must appear before the table, memory, global, and func s-expressions.

 D.9.2. Exercise 2

 Try adjusting the InitializeRowsAndColumns function in the text format code so that it now supports six levels rather than three:

 	Level 4 should have 3 rows and 4 columns.

 	Level 5 should have 4 rows and 4 columns.

 	Level 6 should have 4 rows and 5 columns.

 Solution

 In your WebAssembly\ folder, create an Appendix D\D.9.2\source\ folder, and then copy in the cards.wast file from your Chapter 11\source\ folder. Open the cards.wast file.

 In the $InitializeRowsAndColumns function, after the third if statement, add the code shown in the next listing.

 Listing D.6. Additional code for the $InitializeRowsAndColumns function

 ...

(func $InitializeRowsAndColumns (param $level i32)
 1

 get_local $level 2
 i32.const 4
 i32.eq
 if
 i32.const 3
 set_global $rows 3

 i32.const 4
 set_global $columns 4
 end

 get_local $level 5
 i32.const 5
 i32.eq
 if
 i32.const 4
 set_global $rows 6

 i32.const 4
 set_global $columns 7
 end

 get_local $level 8
 i32.const 6
 i32.eq
 if
 i32.const 4
 set_global $rows 9

 i32.const 5
 set_global $columns 10
 end
)
...

 	1 If statements for levels 1, 2, and 3 are here but not shown

 	2 If level 4 was requested

 	3 Sets the rows to 3

 	4 Sets the columns to 4

 	5 If level 5 was requested

 	6 Sets the rows to 4

 	7 Sets the columns to 4

 	8 If level 6 was requested

 	9 Sets the rows to 4

 	10 Sets the columns to 5

 To continue past level 3, one more change is needed. You need to adjust the $MAX_LEVEL global variable to now hold i32.const 6, as the following snippet shows:

 (global $MAX_LEVEL i32 (i32.const 6))

 To compile the WebAssembly text format into a WebAssembly module using the wat2wasm online tool, go to the following website:
 https://webassembly.github.io/wabt/demo/wat2wasm/. Replace the text in the top-left pane of the tool with the contents of your cards.wast file, and then download the WebAssembly
 module to your Appendix D\D.9.2\source\ folder. Name the file cards.wasm.

 Create an Appendix D\D.9.2\frontend\ folder, and copy the cards.wasm file that you just downloaded into this folder. Copy all the files except cards.wasm
 from your Chapter 11\frontend\ folder to your Appendix D\D.9.2\frontend\ folder.

 To view the results, you can open your browser and type http://localhost:8080/game.html into the address box to see the game’s web page. The game should now allow you to continue to level 6.

 D.10. Chapter 12

 Chapter 12 has two exercises.

 D.10.1. Exercise 1

 In what two ways can you access a variable or call a function?

 Solution

 You can access a variable or call a function by using its zero-based index. You can also use the item’s name if one was specified
 for the item.

 D.10.2. Exercise 2

 Something you might have noticed is that the Tries value doesn’t reset when you replay the level or play the next level. Use
 the logging approach to locate the source of the issue.

 Solution

 In your WebAssembly\ folder, create an Appendix D\D.10.2\source\ folder, and then copy in the cards.wast file from your Chapter 12\source\ folder. Open the cards.wast file.

 The first thing that you need to do is define an import s-expression for a logging function called _Log that takes two i32 parameters. The first parameter will be a pointer to a memory location for a string indicating which function the log value
 is coming from. The second parameter will be the $tries value.

 The JavaScript will handle the logging, so the _Log function in the following snippet is added after the _Pause function import:

 (import "env" "_Log" (func $Log (param i32 i32)))

 A search of the code for every function that interacts with the $tries value results in the following functions:

 	$InitializeCards

 	$PlayLevel

 	$SecondCardSelectedCallback

 The data node at the end of the cards.wast file already has the function name for the SecondCardSelectedCallback, so you only need to add the other two function names. Add the characters \0 (zero—a null terminator) between the function names as a separator:

 (data
 (i32.const 1024)
 "SecondCardSelectedCallback\0InitializeCards\0PlayLevel"
)

 At the top of the $InitializeCards function, after the $count local variable declaration, place the value i32.const 1051 on the stack. This is the start location of the data node in memory (1024), plus the number of characters to get to the first character of the InitializeCards string (\0 is one character).

 Add the $tries value to the stack, and then call the $Log function:

 i32.const 1051
get_global $tries
call $Log

 At the top of the $PlayLevel function, repeat what you did for the $InitializeCards function, but adjust the i32.const value to be at the start of the PlayLevel string:

 i32.const 1067
get_global $tries
call $Log

 At the top of the $SecondCardSelectedCallback function, add the $Log call, passing i32.const 1024 for the string location in memory:

 i32.const 1024
get_global $tries
call $Log

 With the text format modified, compile the WebAssembly text format into a WebAssembly module using the wat2wasm online tool
 at the following website: https://webassembly.github.io/wabt/demo/wat2wasm/. Replace the text in the top-left pane of the tool with the contents of your cards.wast file, and then download the WebAssembly
 module to your Appendix D\D.10.2\source\ folder. Name the file cards.wasm.

 Create an Appendix D\D.10.2\frontend\ folder, and copy the cards.wasm file that you just downloaded into this folder. Copy all the files except cards.wasm
 from your Chapter 12\frontend\ folder to your Appendix D\D.10.2\frontend\ folder, and then open the game.js file.

 Adjust the sideImportObject to have a _Log function after the _Pause function, as shown in the following snippet:

 const sideImportObject = {
 env: {
 1
 _Pause: pause,
 _Log: log,
 }
};

 	1 The other functions are still part of the object but aren’t shown.

 At the end of the game.js file, add the following log function that reads the string that’s specified from memory and then logs information to the browser’s console window:

 function log(functionNamePointer, triesValue) {
 const name = getStringFromMemory(functionNamePointer);
 console.log(`Function name: ${name} triesValue: ${triesValue}`);
}

 If you run the game.html file and display the console window of the browser’s developer tools, you’ll see the function calls
 being logged. To narrow down the issue further, you could call the Log function in more spots.

 Eventually, you’ll discover that the source of the issue is at the end of the $InitializeCards function. The value of a global variable with an index of 6 is placed on the stack, and then the $tries global variable is given the value that’s on the stack.

 If you look at the global variables, you’ll discover that the $tries global variable has the index of 6. Rather than a get_global 6 call, the stack should be given an i32.const 0 value to reset the $tries variable, as the following snippet shows:

 i32.const 0
set_global $tries

 With the issue tracked down, the calls to the $Log function can be removed from your cards.wast file.

 D.11. Chapter 13

 Chapter 13 has two exercises.

 D.11.1. Exercise 1

 Which Mocha function would you use if you wanted to group several related tests together?

 Solution

 The describe function

 D.11.2. Exercise 2

 Write a test to verify that the proper error message is returned when you pass an empty string for the categoryId value of the ValidateCategory function.

 Solution

 In your WebAssembly\ folder, create an Appendix D\D.11.2\tests\ folder. Do the following:

 	Copy the validate.wasm, validate.js, package.json, tests.js, and tests.html files from your Chapter 13\13.2 tests\ folder to your new D.11.2\tests\ folder.

 	Open a command prompt, and navigate to your D.11.2\tests\ folder. Because your package.json file already lists the dependencies
 for Mocha and Chai, you can simply run the following command, and npm will install the packages listed in your file:

npm install

 	Open your tests.js file in your favorite editor.

 After the "Pass a string that's too long" test, add the test in the next listing, which will intentionally fail.

 Listing D.7. Testing ValidateCategory with an empty string for categoryId

 ...

it("Pass an empty categoryId string to ValidateCategory", () => { 1
 const VALID_CATEGORY_IDS = [100, 101];
 const errorMessagePointer = Module._malloc(256);
 const categoryId = "";
 const expectedMessage = "something"; 2

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength * bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = Module.ccall('ValidateCategory',
 'number',
 ['string', 'number', 'number', 'number'],
 [categoryId, arrayPointer, arrayLength, errorMessagePointer]);

 Module._free(arrayPointer);

 let errorMessage = "";
 if (isValid === 0) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 chai.expect(errorMessage).to.equal(expectedMessage); 3
});

 	1 New test added for the categoryId test of the ValidateCategory function

 	2 The error message you’re expecting; intentionally wrong so the test fails

 	3 Checks to make sure the message returned matches the one you’re expecting

 To run the tests, open a command prompt, navigate to your D.11.2\tests\ folder, and run the following command:

 npm test tests.js

 Your new test should fail.

 Edit your test so that the expectedMessage variable now holds the value "A Product Category must be selected." If you run the tests again, they should now all pass.

 Appendix E. Text format extras

 	

 This appendix covers

 	Working with if statements

 	Working with loops

 	The WebAssembly module’s Table section and function pointers

 	

 As mentioned in chapter 11, the code execution in WebAssembly is defined in terms of a stack machine in which instructions push or pop a certain number
 of values onto and off the stack.

 When a function is first called, the stack for that function is empty. The WebAssembly framework will validate the stack when
 the function ends to ensure that, if the function is returning an i32 value, for example, the last item on the stack when the function returns is an i32 value. If the function doesn’t return anything, then the stack must be empty when the function returns. If there happens
 to be a value on the stack, you can remove the item by using the drop instruction, which will pop the top item off the stack, as in the following example:

 i32.const 1 2
i32.const 2 2
drop 3
drop 4

 	1 Adds the value 1 to the stack

 	2 Adds the value 2 to the stack

 	3 Pops value 2 off the stack

 	4 Pops value 1 off the stack

 There might be times when you need to exit a function before it reaches the end. To do this, there’s a return instruction that will pop the necessary items off the stack and then exit the function. The following example would pop two
 items off the stack if those are the only two on the stack, and the function is returning void:

 i32.const 1
i32.const 2
return 2

 	1 If the function returns void, the return instruction in this case will pop the two values off the stack.

 E.1. Control flow statements

 WebAssembly has several control flow statements available, like block, loop, and if. Blocks and loops have no effect on the values on the stack and are simply constructs that have a sequence of instructions
 and a label. A block can be used to specify a label for use with the branching pattern the code needs.

 E.1.1. If statements

 Writing if blocks is interesting because there are multiple ways that they can be structured. Both the then and else branches of the if block are optional. When using the stack machine style, the then statement is implied. In both styles—stack or nested s-expression—you can use a block statement rather than the then statement because a block statement is just a series of instructions with a label.

 If statements pop an i32 value off the stack in order to do their check. A value of 0 (zero) is considered false, and any nonzero value is considered true. Because the if statement needs to pop an i32 value off the stack, with the stack machine style, you do a check, like i32.eq, before the if statement to put a Boolean value onto the stack. The nested s-expression style can do the check either before or within the
 if statement.

 Let’s take a look at a stack machine style if statement.

 Stack machine style if statement

 The example in the following listing is a module containing a function that uses the stack machine style to check whether
 the parameter’s value is 0 (zero) or not. If a value is 0, the function will return the value 5. Otherwise, it will return 10.

 Listing E.1. Example of an if/else block written using the stack machine style

 (module
 (type $type0 (func (param i32) (result i32)))
 (export "Test" (func 0))

 (func (param $param i32) (result i32)
 (local $result i32)

 get_local $param 2
 i32.const 0
 i32.eq 2
 if 3
 i32.const 5 4
 set_local $result 5
 else 6
 i32.const 10 7
 set_local $result 8
 end

 get_local $result 9
)
)

 	1 Pushes the parameter value onto the stack

 	2 Pops the top two values off the stack, checks if they’re equal, pushes the result onto the stack

 	3 Pops the top item off the stack; if the value is 1 (true)

 	4 Pushes the value 5 onto the stack

 	5 Pops the top item off the stack and puts it into $result

 	6 The if statement check was 0 (false).

 	7 Pushes the value 10 onto the stack

 	8 Pops the top item off the stack and puts it into $result

 	9 Pushes the value in $result onto the stack so that it will be returned when the function ends

 You can test the code in listing E.1 by using the wat2wasm online tool.

 Test the code

 To test the code, go to the following website and copy the contents of listing E.1 into the top-left pane of the tool: https://webassembly.github.io/wabt/demo/wat2wasm/. As figure E.1 shows, in the tool’s bottom-left pane, you can replace the contents with the following code snippet to load the module and
 call the Test function, passing in a value of 4. The result of the call to the Test function will be displayed in the bottom-right pane:

 const wasmInstance = new WebAssembly.Instance(wasmModule, {});
console.log(wasmInstance.exports.Test(4));

 You can adjust the value passed to the Test function to verify that passing 0 (zero) does indeed return 5, while all other values return 10. Let’s take a look at a nested s-expression version of the if statement you just saw in listing E.1.

 Figure E.1. The code from listing E.1 is placed in the top-left pane, and the JavaScript is placed in the bottom-left pane. The result of the function call is
 displayed in the bottom-right pane.

 [image:]

 Nested s-expression if statement: equality check before the if statement

 With the stack machine style, the equality check needs to happen before the if statement because the Boolean value needs to already be on the stack for the if statement. With the nested s-expression style, you can place the equality check before the if statement or within it. Listing E.2 shows the same code as in listing E.1, but using the nested s-expression style instead.

 Listing E.2. Nested s-expression style with the equality check before the if statement

 ...

(func (param $param i32) (result i32)
 (local $result i32)

 (i32.eq 2
 (get_local $param)
 (i32.const 0)
)
 (if
 (then 2
 (set_local $result 3
 (i32.const 5)
)
)
 (else 4
 (set_local $result 5
 (i32.const 10)
)
)
)

 (get_local $result) 6
)
...

 	1 Checks to see if the parameter value equals 0

 	2 If the i32.eq check was 1 (true)...

 	3 ...sets the return value to 5

 	4 The if statement check was 0 (false)...

 	5 ...sets the return value to 10

 	6 Places the return value on the stack to be returned when the function ends

 You can test this code by replacing the content of the top-left pane in the wat2wasm online tool. The JavaScript you used
 in the bottom pane for listing E.1 will work for this example code too.

 Let’s take a look at an example in which the equality check is within the if statement.

 Nested s-expression if statement: equality check within the if statement

 Although the layout of the if statement in listing E.2 makes sense based on how if checks work, writing if statements this way isn’t typically how developers see them written. When using the nested s-expression style, you can modify
 the if statement to have the check within the if statement block, as the next listing shows.

 Listing E.3. Example that has the value check within the if block

 ...

(func (param $param i32) (result i32)
 (local $result i32)

 (if
 (i32.eq 2
 (get_local $param)
 (i32.const 0)
)
 (then
 (set_local $result
 (i32.const 5)
)
)
 (else
 (set_local $result
 (i32.const 10)
)
)
)

 (get_local $result)
)
...

 	1 The equality check is now within the if statement.

 You can test this code by replacing the content of the top-left pane in the wat2wasm online tool. The JavaScript you used
 in the bottom pane for listing E.1 will work for this example code too.

 If statements can use a block statement instead of a then statement.

 Nested s-expression if statement: block instead of then

 If you choose to have Emscripten output the text format equivalent of a module’s binary, you’ll notice that it uses block statements instead of then statements. To demonstrate a nested s-expression with an if statement that uses a block instead of a then statement, you’ll modify the code in listing E.3 to set a default value of 10 for the $result value at the beginning of the function. Giving the $result variable a default value of 10 allows you to remove the else condition from the if statement.

 Adjust the if statement to use the block statement instead of the then statement, as the following listing shows.

 Listing E.4. Example of an if condition using a block statement instead of then

 ...

(func (param $param i32) (result i32)
 (local $result i32)
 (set_local $result 2
 (i32.const 10)
)

 (if
 (i32.eq
 (get_local $param)
 (i32.const 0)
)
 (block 2
 (set_local $result
 (i32.const 5)
)
)
)

 (get_local $result)
)
...

 	1 Assigns a default value of 10

 	2 The then statement is replaced by a block statement.

 The stack machine style of the if statement can also use a block statement instead of a then statement.

 Stack machine if statement: block instead of then

 You can modify the code from listing E.4 to set the $result variable to a default value of 10 at the beginning of the function, allowing you to remove the else condition from the if statement. Within the if statement, you then wrap the i32.const and set_local lines of code with a block and end statement, as the next listing shows.

 Listing E.5. Stack machine style of the previous code

 ...

(func (param $param i32) (result i32)
 (local $result i32)

 i32.const 10
 set_local $result 2

 get_local $param
 i32.const 0
 i32.eq 2
 if
 block
 i32.const 5
 set_local $result
 end
 end

 get_local $result
)
...

 	1 Assigns a default value of 10

 	2 Checks to see if the parameter value is 0

 The next control flow statements that you’ll learn about are loops.

 E.1.2. Loops

 There are three types of branches available to WebAssembly code:

 	br—Branches to the label specified

 	br_if—Conditionally branches to the label specified

 	br_table—A jump table to branch to the label specified

 It’s only possible to branch to a label that’s defined by the construct that the branch is within, which means, for example,
 that you can’t branch to the middle of a loop when the branch is outside the loop.

 When in a loop, branches to a block effectively act like a break statement in high-level languages, whereas a branch to the loop acts like a continue statement. A loop is simply a type of block that’s used to form loops.

 To demonstrate how loops work, you’ll build a GetStringLength function that receives an i32 parameter indicating where in the module’s memory the string is that it needs to check. The function will return an i32 value for the string’s length.

 You’ll build the function using the branch to a block approach (acts like a break statement) first, and then, in a later section, you’ll modify the loop to branch to the loop instead (acts like a continue statement).

 Nested s-expression loop statement: branch to block

 Before you create your function, you need to define memory that the module will use. Memory is defined by using an s-expression
 with the label memory, followed by an optional variable name, the initial number of memory pages desired, and, optionally, the maximum number of
 memory pages desired. Each page of memory is 64 KB (65,536 bytes).

 For this module, one page of memory is more than enough, so your memory s-expression is shown in the following snippet:

 (memory 1)

 Once you’ve created this module, you’ll create some JavaScript code for the wat2wasm online tool that will place a string
 in the module’s memory and then call the GetStringLength function. Because the JavaScript needs access to the module’s memory, you’ll need to export it. The following snippet shows
 the export statement needed for the memory. Because a variable name wasn’t given to the memory s-expression, you’ll specify the memory by its index:

 (export "memory" (memory 0))

 The GetStringLength function needs two local variables: one to keep track of how many characters are in the string so far ($count) and one to keep track of where in memory the function is currently reading ($position). When the function starts, $count will be set to a default value of 0, and $position will be set to the parameter value received, which is the start position of the string in the module’s memory.

 A block statement will surround the loop that you’ll break out to if the character read from memory is the null terminator. The block statement will be given a variable name called $parent. Within the block statement, you’ll have a loop statement with the variable name $while.

 At the beginning of the loop, you’ll load in the current character from memory based on the $position value using the i32.load8_s instruction. The value loaded by i32.load8_s is the decimal version of the character.

 The i32.eqz instruction will then test the memory value to see if it’s equal to zero (the null terminator; the zero ASCII character is
 decimal 48). If the value is zero, the br_if statement branches to the block ($parent), which exits the loop, and the code continues on after the end of the loop.

 If the loop doesn’t exit, the $count and $position variables are each incremented by 1, and then the br statement branches to the loop in order to loop again. After the loop ends, the $count value is placed on the stack to be returned to the calling function.

 The next listing is the module containing the GetStringLength function.

 Listing E.6. GetStringLength using nested s-expressions and breaking out of the loop

 (module
 (type $type0 (func (param i32) (result i32)))

 (memory 1)

 (export "memory" (memory 0))
 (export "GetStringLength" (func 0))

 (func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 (set_local $count 2
 (i32.const 0)
)

 (set_local $position 2
 (get_local $param)
)

 (block $parent 3
 (loop $while 4
 (br_if $parent 5
 (i32.eqz 6
 (i32.load8_s
 (get_local $position)
)
)
)

 (set_local $count 7
 (i32.add
 (get_local $count)
 (i32.const 1)
)
)

 (set_local $position 8
 (i32.add
 (get_local $position)
 (i32.const 1)
)
)

 (br $while) 9
)
)

 (get_local $count) 10
)
)

 	1 Will hold the number of characters in the string to return to the caller

 	2 The current position in the module’s memory that you need to read

 	3 The parent block that you’ll use to break out of the loop when you find a null terminator

 	4 The start of your loop

 	5 Branches to the parent block, breaking out of the loop if 0 is found (the null terminator)

 	6 Loads the current byte from memory and checks if the value is equal to zero

 	7 Increments the character count

 	8 Increments the memory position for the next iteration of the loop

 	9 Branches to the top of the loop so that it loops again

 	10 Places the count on the stack to be returned to the caller

 You can test the code in listing E.6 by using the wat2wasm online tool.

 Testing the code

 To test the code, copy the contents of listing E.6 into the top-left pane of the wat2wasm online tool. In the bottom-left pane (figure E.2), replace the contents with the next code snippet, which will load the module and place a reference to the module’s memory
 in a wasmMemory variable. A copyStringToMemory function is defined that accepts a string and memory offset and writes the string, along with a null terminator, to the module’s
 memory.

 Figure E.2. The code from listing E.6 is placed in the top-left pane, and the JavaScript is placed in the bottom-left pane. The result of the function call is
 displayed in the bottom-right pane.

 [image:]

 The code calls the copyStringToMemory function, passing it a string. The module’s GetStringLength function is then called, specifying the memory position where the string was written. The result of the call to the GetStringLength function is displayed in the bottom-right pane:

 const wasmInstance = new WebAssembly.Instance(wasmModule, {});
const wasmMemory = wasmInstance.exports.memory;

function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(wasmMemory.buffer);
 bytes.set(new TextEncoder().encode((value + "\0")),
 memoryOffset);
}

copyStringToMemory("testing", 0);
console.log(wasmInstance.exports.GetStringLength(0));

 You can adjust the string passed to the copyStringToMemory function to test and see what the various string lengths are.

 Let’s take a look at a stack machine version of the loop you just built.

 Stack machine loop statement: branch to block

 The code in the next listing shows the same function as listing E.6, but written using the stack machine style.

 Listing E.7. GetStringLength using stack machine style and breaking out of the loop

 ...

(func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 i32.const 0
 set_local $count 2

 get_local $param
 set_local $position 2

 block $parent
 loop $while
 get_local $position
 i32.load8_s 3
 i32.eqz 4
 br_if $parent 5

 get_local $count 6
 i32.const 1
 i32.add
 set_local $count

 get_local $position 7
 i32.const 1
 i32.add
 set_local $position

 br $while 8
 end
 end

 get_local $count 9
)
...

 	1 Will hold the number of characters in the string

 	2 The current position in the module’s memory that you need to read

 	3 Loads the current byte from memory and pushes it onto the stack

 	4 Is the value equal to zero?

 	5 If true, then you found the null terminator. Branch to the parent block to break out of the loop.

 	6 Increments the value in $count

 	7 Increments the value in $position

 	8 Branches to the top of the loop (loop again)

 	9 Places the count on the stack to be returned to the caller

 You’ll now modify the loop to branch to the loop instead of a branch, which acts like a continue statement.

 Nested s-expression loop statement: branch to loop

 The logic within the loop will need to be modified to work using this technique, but a branch-to-loop approach doesn’t have
 the surrounding block statement. If your code doesn’t branch to the loop, then the loop ends. Your new loop will continue to loop while the current
 character isn’t the null terminator.

 Modify your listing E.6 code so that it no longer has a block s-expression around the loop s-expression. Replace the (br_if $parent statement with (if to do an if statement rather than a branch statement. Remove the closing parenthesis from the br_if statement that’s just before the (set_local $count line of code. Place a closing parenthesis for the if statement after the (br $while) statement.

 The if statement will check to see if the current character isn’t equal to zero. Change the i32.eqz (equal to zero) statement to an i32.ne (not equal) statement, and then put the following s-expression after the i32_load8 s-expression:

 (i32.const 0)

 After the closing parenthesis for the i32.ne s-expression, place a (then s-expression with the closing parenthesis after the (br $while) statement.

 The next listing shows the modified loop using the continue approach.

 Listing E.8. GetStringLength using nested s-expressions and continuing the loop

 ...

(func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 (set_local $count
 (i32.const 0)
)

 (set_local $position
 (get_local $param)
)

 (loop $while 2
 (if 2
 (i32.ne 3
 (i32.load8_s
 (get_local $position)
)
 (i32.const 0) 4
)
 (then 5
 (set_local $count 6
 (i32.add
 (get_local $count)
 (i32.const 1)
)
)

 (set_local $position 7
 (i32.add
 (get_local $position)
 (i32.const 1)
)
)

 (br $while) 8
)
)
)

 (get_local $count)
)
...

 	1 The start of the loop

 	2 Replaces the br_if statement

 	3 Replaces i32.eqz

 	4 The value from the memory will be compared to zero (null terminator).

 	5 If the value from memory is not zero

 	6 Increments $count

 	7 Increments $position

 	8 Branches to the top of the loop (loop again)

 Let’s look at a stack machine version of the loop you just built.

 Stack machine loop statement: branch to loop

 The next listing shows the same code as listing E.8, but in the stack machine style.

 Listing E.9. Stack machine style of the previous code

 ...

(func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 i32.const 0
 set_local $count

 get_local $param
 set_local $position

 loop $while
 get_local $position
 i32.load8_s

 i32.const 0 2
 i32.ne 2
 if 3
 get_local $count
 i32.const 1
 i32.add
 set_local $count

 get_local $position
 i32.const 1
 i32.add
 set_local $position

 br $while
 end
 end

 get_local $count
)
...

 	1 New for the i32.ne check

 	2 Replaces i32.eqz

 	3 Replaces br_if $parent

 The next area that you’ll learn about is how to use the module’s Table section for function pointers.

 E.2. Function pointers

 WebAssembly modules have an optional Table known section, which is a typed array of references, like functions, that can’t
 be stored in memory as raw bytes for security reasons. If the addresses were stored in the module’s memory, there would be
 a chance that a malicious module would try to modify an address to access data that it shouldn’t have access to.

 When a module’s code wants to access the data referenced in the Table section, it asks for the WebAssembly framework to operate
 on the item at a specific index in the table. The WebAssembly framework then reads the address stored at that index and performs
 the action.

 The Table section is defined with an s-expression that starts with a label using the word table, followed by an initial size, optionally followed by a maximum size, and finally followed by the type of data the table will
 hold. This is currently only functions, so funcref is the term used.

 	

 Info

 The WebAssembly specification has been adjusted to use the word funcref rather than anyfunc for the table’s element type. When Emscripten outputs a .wast file, it uses the new name, and the WebAssembly Binary Toolkit
 can accept text format code that uses either name. At the time of this book’s writing, developer tools in the browsers are
 still using the word anyfunc when you inspect a module. Firefox allows you to use either word when constructing a WebAssembly.Table object in your JavaScript, but, at the moment, other browsers allow only the old name. Right now, for production JavaScript
 code, it’s recommended that you continue to use anyfunc.

 	

 To demonstrate using the Table section, you’re going to create a module that imports two functions. The module will have a
 built-in function that accepts an i32 parameter indicating the function’s index in the Table section to call.

 The first thing your module will need are two import s-expressions for the two functions, as shown in the following snippet:

 (import "env" "Function1" (func $function1))
(import "env" "Function2" (func $function2))

 Next you need to define the table s-expression with a size of 2 for the two functions:

 (table 2 funcref)

 After the table s-expression, you’ll have your export s-expression for the function that the JavaScript will call to indicate which function needs to be called:

 (export "Test" (func $test))

 When the module is instantiated, you want the imported functions added to the Table section. To do this, you need to define
 an element s-expression. The items in this s-expression will be added to the Table section automatically when the module is instantiated.

 The element s-expression starts with the label elem, followed by the start index in the table where the object references will be placed, and then followed by the items to place
 in the Table section. The following code snippet will add the two functions to the Table section starting at table index 0
 (zero):

 (elem (i32.const 0) $function1 $function2)

 Your next step is to define your $test function, which receives an i32 parameter value and has no return value, as shown in the following snippet:

 (func $test (param $index i32)
)

 Within your $test function, you need to call the requested table item. To call an item in the Table section, you pass the index to the call_indirect instruction, but you also indicate the type (function signature) that you’re calling, as the following snippet shows:

 (call_indirect (type $FUNCSIG$v) 1
 (get_local $index)
)

 	1 $FUNCSIG$v is a variable name for a type s-expression (an index can also be used).

 Putting it all together, the module’s code is shown in the following listing.

 Listing E.10. Function pointer module using the nested s-expression style

 (module
 (type $FUNCSIG$v (func)) 2

 (import "env" "Function1" (func $function1))
 (import "env" "Function2" (func $function2))

 (table 2 funcref) 2

 (export "Test" (func $test))

 (elem (i32.const 0) $function1 $function2) 3

 (func $test (param $index i32)
 (call_indirect (type $FUNCSIG$v) 4
 (get_local $index)
)
)
)

 	1 The signature of the two functions that will be imported

 	2 Creates a table with an initial size of 2

 	3 Has the two functions placed in the table starting at index 0

 	4 Calls the item in the table using the index received in the parameter

 Now that you’ve created the module’s code, you can test it.

 E.2.1. Test the code

 To test the code, copy the contents of listing E.10 into the top-left pane of the wat2wasm online tool. In the bottom-left pane of the tool (figure E.3), replace the contents with the following code snippet, which will define an importObject object for the module containing the two functions to import. Each function will write a message to the console of the browser’s
 developer tools indicating which function was called.

 Figure E.3. The code from listing E.10 is placed in the top-left pane, and the JavaScript is placed in the bottom-left pane. The result of the function call is
 displayed in the bottom-right pane.

 [image:]

 Once you have an instance of the module, you can call the Test function, passing in either 0 or 1 to have the functions in the Table section called:

 const importObject = { 1
 env: {
 Function1: function() { console.log("Function 1"); }, 2
 Function2: function() { console.log("Function 2"); }, 3
 }
};

const wasmInstance = new WebAssembly.Instance(wasmModule,
 importObject);

wasmInstance.exports.Test(0); 4

 	1 Creates the importObject with two functions for the module

 	2 Writes to the browser’s console indicating that function 1 was called

 	3 Writes to the browser’s console indicating that function 2 was called

 	4 Calls the Test function, passing in an index of 0 or 1

 WebAssembly in Action

 A browser’s JavaScript engine monitors the code until it’s satisfied it knows the variable types before it can convert that
 section of JavaScript into machine code.

 [image:]

 With WebAssembly, your code is compiled into the WebAssembly binary format ahead of time. Because the variable types are all
 known in advance, when the browser loads the WebAssembly file, the JavaScript engine doesn’t need to monitor the code. It
 can compile the binary format straight into machine code.

 [image:]

 A representation of the basic structure of the WebAssembly binary bytecode

 [image:]

 Index

 [SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X]

 SYMBOL

 \n (linefeed character)

&& (and) condition

(hash) symbol

|| (or) condition

$ character

$add variable

$array_length parameter

$cards array, 2nd, 3rd

$cards variable, 2nd, 3rd

$CardSelected function, 2nd

$card_to_swap variable

$card_value variable

$column parameter, 2nd

$columns variable, 2nd, 3rd, 4th, 5th

$columns_equal value

$count variable, 2nd, 3rd

$current_level variable, 2nd, 3rd, 4th, 5th

$execution_paused variable, 2nd, 3rd

$first_card_column variable

$first_card_row value, 2nd

$first_card_row variable

$first_card_value variable

$FlipCard function, 2nd

$float variable

$free function

$FUNCSIG$vi variable

$GenerateCards function, 2nd

$GetCardValue function

$GetMemoryLocationFromIndex function

$GetRandomNumber function

$global12 variable

$global7 variable

$index value

$InitializeCards function, 2nd, 3rd, 4th

$InitializeRowsAndColumns function, 2nd

$IsFirstCard function, 2nd

$level parameter, 2nd, 3rd

$LevelComplete function, 2nd, 3rd

$main function, 2nd

$malloc function

$matches_remaining variable, 2nd, 3rd, 4th, 5th

$MAX variable

$MAX_LEVEL variable, 2nd, 3rd

$memory_location1 variable

$memory_location2 variable

$param0 parameter

$parent variable

$Pause function, 2nd, 3rd

$PlayLevel function, 2nd, 3rd, 4th, 5th

$PlayNextLevel function, 2nd

$PopulateArray function, 2nd

$position variable

$RemoveCards function

$ReplayLevel function, 2nd

$ResetSelectedCardValues function, 2nd

$result variable

$row parameter, 2nd

$rows variable, 2nd, 3rd, 4th, 5th, 6th

$second_card_column variable

$second_card_row variable

$SecondCardSelectedCallback function, 2nd, 3rd, 4th, 5th, 6th

$second_card_value variable, 2nd

$SeedRandomNumberGenerator function

$ShuffleArray function, 2nd, 3rd

$test function

$total variable

$tries variable, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

$UpdateTriesTotal function

$while variable

32-bit floats, 2nd

32-bit integer parameters

32-bit integers, 2nd

3D graphics

64-bit floats, 2nd

64-bit integer parameters, 2nd

64-bit integers

 A

 a variable

abort function

acceptance tests

_Add function

Add function, 2nd, 3rd, 4th

addFunction, 2nd, 3rd

Advanced Package Tool (APT)

after function

afterEach function

AllocatedMemoryChunks array

alphanumeric characters

and (&&) condition

AND operation

anotherLevel parameter

anyfunc function, 2nd

application/octet-stream media type

application/wasm media type

APT (Advanced Package Tool)

args array

args_start value

array data type

ArrayBuffer, 2nd, 3rd, 4th, 5th

asm pragma statement

asm.js

AssemblyScript

assert module

Assert style

assertion library

async attribute

atoi function, 2nd, 3rd

atomic operations

atoms

 B

 before method

beforeEach function

Blazor language

block flow statement

block s-expression

block statement, 2nd, 3rd

body tag, 2nd

Boolean values

Bootstrap, 2nd

br branch

break statement

br_if branch, 2nd

br_table branch

buffer property

BUILD_AS_WORKER=1 flag

bytes parameter, 2nd, 3rd, 4th

BYTES_PER_ELEMENT constant

 C

C or C++
 compiling with Emscripten
 as side module
 using Emscripten-generated JavaScript
 using HTML template
 creating modules that call into JavaScript with Emscripten
 adjusting C++ code
 adjusting web page code
 compiling code into module
 creating JavaScript
 viewing results
 creating modules that call into JavaScript without Emscripten
 adjusting JavaScript to interact with module
 compiling code into module
 making C++ modifications
 viewing results
 creating modules using function pointers with Emscripten
 adjusting C++ code
 adjusting web page code
 compiling code into module
 using function pointer given to module
 viewing results
 creating modules using function pointers without Emscripten
 adjusting JavaScript to interact with module
 compiling code into WebAssembly module
 making C++ modifications
 using function pointers given to module
 viewing results
 module creation with Emscripten
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 creating web pages
 making C++ modifications
 viewing results
 module creation with text format
 module creation without Emscripten
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 making C++ modifications
 viewing results

CalculatePrimes function

calculate_primes side module

calculate_primes.c file, 2nd, 3rd, 4th

calculate_primes.cpp file, 2nd, 3rd, 4th

calculate_primes.js file

calculate_primes.wasm file

callAdd function

call_indirect instruction

cardContainer div tag

cards.wasm file

cards.wast file, 2nd, 3rd, 4th, 5th

cardValue parameter

catch method

catch statement

categoryId property, 2nd, 3rd, 4th

categoryId value, 2nd, 3rd

categoryId variable

ccall function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th
 building simple module
 building web page to talk to module

CDN (content delivery network), 2nd

Chai library

char* pointer parameter, 2nd, 3rd

Chrome, debugging in

chrono header

Clang

classList object

clientData object, 2nd, 3rd, 4th, 5th, 6th, 7th

code nodes
 $CardSelected function
 $GetCardValue function
 $GetMemoryLocationFromIndex function
 $InitializeCards function
 $InitializeRowsAndColumns function
 $IsFirstCard function
 $main function
 $PlayLevel function
 $PlayNextLevel function
 $ReplayLevel function
 $ResetSelectedCardValues function
 $SecondCardSelectedCallback function
 $ShuffleArray function
 PopulateArray function
 working with variables

code reuse, 2nd
 module creation using C or C++ with Emscripten
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 creating web page
 making C++ modifications
 viewing results
 module creation using C or C++ without Emscripten
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 making C++ modifications
 viewing results

Code section

column parameter

columns parameter

comments

compile function

compilers
 compiling modules
 how compilers work

compileStreaming function

console.log function, 2nd, 3rd, 4th, 5th, 6th, 7th

const add variable

const char* parameter, 2nd

const char* pointer, 2nd

const IS_NODE

const result variable

content delivery network (CDN), 2nd

Content Security Policy (CSP)

continue statement, 2nd

control flow statements
 if statements
 nested s-expression if statement
 stack machine if statement, 2nd
 testing code
 loops

copyStringToMemory function, 2nd, 3rd, 4th, 5th

create_buffer function, 2nd

createPointers function, 2nd

cross-site scripting (XSS)

CSP (Content Security Policy)

cstdio file, 2nd

cstdlib file, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

cstring file, 2nd, 3rd, 4th, 5th

current_allocated_count variable

custom module sections, 2nd, 3rd

cwrap function

cwrap helper function

 D

 Data known module section, 2nd

data node, 2nd

data property

data types of parameters

dead code elimination

debugging
 adjusting HTML
 displaying number of tries
 adjusting text format
 generateCards function
 generating Wasm file
 testing changes
 extending game
 incrementing number of tries
 adjusting text format
 generating Wasm file
 testing changes
 updateTriesTotal function
 updating summary screen
 adjusting text format
 generating Wasm file
 levelComplete function
 testing changes

Decrement function, 2nd

describe function, 2nd

direct function calls

div tag, 2nd

divide-by-four operation

dlclose function

dlopen function, 2nd, 3rd, 4th, 5th, 6th, 7th
 creating logic that will link to side module
 modifying calculate_primes.cpp file
 using Emscripten to generate file as main module from main.cpp
 using Emscripten to generate file as side module from calculate_primes.cpp
 viewing results

dlsym function, 2nd

DocType declaration

document.getElementById

double values

dynamic linking, 2nd
 dlopen function
 creating logic that will link to side module
 modifying calculate_primes.cpp file
 using Emscripten to generate file as main module from main.cpp
 using Emscripten to generate file as side module from calculate_primes.cpp
 viewing results
 dynamicLibraries array
 creating JavaScript to instruct Emscripten about side module
 creating logic to talk to side module
 using Emscripten to generate file as main module from main.cpp
 viewing results
 module creation
 adjusting JavaScript for web page
 adjusting validate_core.cpp file
 adjusting validate_product.cpp file
 adjusting web page
 creating new C++ file for Place Order form logic
 defining JavaScript function to handle validation issues
 generating Edit Product side module
 generating Place Order side module
 getSelectedCategoryId function
 initializePage function
 onClickAddToCart function
 onClickSave function
 setActiveNavLink function
 setErrorMessage function
 showElement function
 splitting logic in validate.cpp file into two files
 switchForm function
 using Emscripten to generate main module
 using Emscripten to generate side modules
 validateName and validateCategory functions
 ValidateProduct function
 validateProduct function
 ValidateQuantity function
 validateQuantity function
 viewing results
 pros and cons of
 side modules and main modules
 WebAssembly JavaScript API
 creating HTML and JavaScript files
 splitting logic in calculate_primes.c file into two files
 using Emscripten to generate side modules
 viewing results

dynamically linking

dynamicLibraries array, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th
 creating JavaScript to instruct Emscripten about side module
 creating logic to talk to side module
 using Emscripten to generate file as main module from main.cpp
 viewing results

 E

 ECMAScript (ES)

Edit Product page

editproduct.html file, 2nd, 3rd, 4th

editproduct.js file, 2nd, 3rd, 4th, 5th, 6th, 7th

elem label

element property

Element section

element s-expression

else condition, 2nd

else statement

EM_ASM macros
 EM_ASM, 2nd
 EM_ASM_
 EM_ASM_DOUBLE, 2nd
 EM_ASM_INT, 2nd
 passing pointers as parameters
 returning string pointer

em_asm_.c file

em_asm_double.c file

emcc command, 2nd, 3rd

EMCC_DEBUG variable

EM_JS macro, 2nd
 no parameter values
 passing parameter values
 passing pointers as parameters
 returning string pointer

em_js.c file

emrun command

Emscripten
 compiling C or C++
 as side module
 using Emscripten-generated JavaScript
 using HTML template
 creating modules that call into JavaScript using C or C++
 adjusting C++ code
 adjusting web page code
 compiling code into module
 creating JavaScript
 viewing results
 creating modules to talk to JavaScript using function pointers
 adjusting C++ code
 adjusting web page code
 compiling code into module
 using function pointer given to module
 viewing results
 defining callback function for instantiateWasm function
 dynamic linking
 creating JavaScript to instruct about side module
 generating file as main module from main.cpp, 2nd
 generating file as side module from calculate_primes.cpp
 generating side modules
 installing and setting up
 downloading SDK
 Linux
 Mac
 Windows
 working around installation issues
 macros
 EM_ASM macros
 EM_JS macro
 emscripten_run_script macros
 module creation using C or C++
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 creating web pages
 making C++ modifications
 viewing results
 module creation with dynamic linking
 using to generate main module
 using to generate side modules
 module creation with text format
 creating C++ file
 generating module
 modules in Node.js
 calling functions in modules
 calling into JavaScript
 calling JavaScript function pointers
 loading modules
 output options
 SDK, 2nd, 3rd
 toolkit overview
 using to generate files
 prefetching modules using web workers
 pthreads

__EMSCRIPTEN__ conditional compilation symbol, 2nd

Emscripten HTML template

emscripten.h file, 2nd

emscripten_async_wget function, 2nd

EMSCRIPTEN_KEEPALIVE declaration, 2nd, 3rd, 4th, 5th

emscripten_run_script macros, 2nd

emscripten_run_script_int macro

emscripten_run_script_string macro

emsdk install command

emsdk install latest command

emsdk uninstall command

emsdk_env.bat file

end parameter

end statement

Error function, 2nd

error_message parameter

errorMessage variable, 2nd

errorMessagePointer parameter, 2nd, 3rd

ES (ECMAScript)

ES6 modules

eval function

Expect style

expectedMessage variable, 2nd

Export known module section, 2nd

export nodes

export s-expressions, 2nd

EXPORTED_FUNCTIONS array, 2nd, 3rd, 4th, 5th

exports object

extern, 2nd

extern keyword, 2nd, 3rd, 4th, 5th

EXTRA_EXPORTED_RUNTIME_METHODS array, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th

 F

 f32 variable

fetch method, 2nd, 3rd

File System module

FindPrimes function, 2nd, 3rd, 4th, 5th, 6th, 7th

find_primes WebAssembly module

find_primes.c file

Firefox browser
 debugging in
 turn on threading support in

_FlipCard function

flipCard function, 2nd

float parameter

Float32Array object

Float64Array object

formTitle attribute

fragment identifier

_free function, 2nd, 3rd, 4th

free function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

free_buffer function

freePointers function

FS object

func s-expression, 2nd, 3rd

funcref function, 2nd

Function import

function pointers
 creating modules to talk to JavaScript using
 using C or C++ with Emscripten
 using C or C++ without Emscripten
 testing code

Function section, 2nd

function signatures, 2nd

 G

 -g flag, 2nd, 3rd

-g4 flag

game.html file

game.js file

garbage collection (GC)

_GenerateCards function, 2nd

generateCards function, 2nd, 3rd

getCard function

getCardId function

getClassForCardValue function

getElementById function

get_global instruction, 2nd

get_local instruction

_GetRandomNumber function

GetRandomNumber function

getSelectedCategoryId function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

getSelectedDropdownId function, 2nd

getStringFromMemory function, 2nd, 3rd, 4th

GetStringLength function

--global flag

Global import

Global known module section, 2nd

global nodes

global object

global s-expression

global variables, 2nd

global12 variable

global9 variable

Go 1.11

Google’s Native Client (PNaCL)

 H

 H1 tag

h3 tag, 2nd

hash (#) symbol

head tag, 2nd

header tag, 2nd

HEAP8 view

HEAP16 view

HEAP32 object, 2nd, 3rd

HEAP32 view

HEAPF32 view

HEAPF64 view

HEAPU8 view

HEAPU16 view

HEAPU32 view

Hello from StringReturnValueWithNoParameters function

high_resolution_clock class

HTML
 adjusting
 compiling C or C++ with Emscripten
 creating web pages
 module creation with JavaScript
 prefetching modules using web workers
 that load tests
 WebAssembly file
 dynamic linking
 module creation with text format
 overview
 viewing web pages

html tag

html_template.html file

 I

 i32 parameter, 2nd, 3rd, 4th, 5th, 6th

i32 value

i32.add instruction, 2nd

i32.eq instruction

i32.eqz instruction

i32.shl instruction

IANA (Internet Assigned Numbers Authority)

id attribute, 2nd

IDE (integrated development environment)

if statements, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th
 nested s-expression if statement
 block instead of then
 equality check before if statement
 equality check within if statement
 stack machine if statement, 2nd
 testing code

immutable variables

import nodes, 2nd, 3rd, 4th, 5th

Import section

import s-expressions, 2nd, 3rd, 4th, 5th, 6th

importObject, 2nd, 3rd, 4th, 5th, 6th

_Increment function, 2nd

Increment function, 2nd, 3rd, 4th

index.js file

IndexedDB

indexes

inequality checks

initial object

InitialData object, 2nd, 3rd, 4th, 5th, 6th, 7th

initializePage function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th
 creating modules to talk to JavaScript using function pointers
 module creation and dynamic linking
 modules that call into JavaScript

InitializeRowsAndColumns function, 2nd

initialProductData object, 2nd

instance property

instantiate function, 2nd

instantiateStreaming function, 2nd, 3rd, 4th

instantiateStreaming promise

instantiateWasm function, 2nd

instantiateWebAssembly function, 2nd, 3rd, 4th

instantiation

Int16Array object

Int32Array object, 2nd, 3rd

Int8Array object

integer parameter

integrated development environment (IDE)

integration tests

intermediate representation (IR), 2nd

Internet Assigned Numbers Authority (IANA)

Internet of Things (IoT)

interpreted programming language

IR (intermediate representation), 2nd

IsCategoryIdInArray function, 2nd, 3rd, 4th

isForName

IsIdInArray function

IsOnline function, 2nd

IsPrime function, 2nd, 3rd, 4th, 5th

isProduct flag, 2nd

it function

 J

 JavaScript, 2nd
 compiling C or C++ with Emscripten-generated JavaScript
 creating HTML web pages
 creating pages
 overview
 viewing pages
 creating modules to talk to JavaScript using function pointers
 using C or C++ with Emscripten
 using C or C++ without Emscripten
 dynamic linking
 creating files
 creating JavaScript to instruct Emscripten about side module
 fetching and instantiating modules
 installing testing framework
 installing Mocha and Chai
 package.json file
 module creation using C or C++ with Emscripten
 module creation using C or C++ without Emscripten
 module creation with dynamic linking
 adjusting for web page
 defining function to handle validation issues
 module creation with text format
 modules in Node.js and WebAssembly JavaScript API
 calling into JavaScript
 calling JavaScript function pointers
 modules in Node.js built using Emscripten
 calling into JavaScript
 calling JavaScript function pointers
 modules that call into
 using C or C++ with Emscripten
 using C or C++ without Emscripten
 object creation shorthand
 prefetching modules using web workers
 creating JavaScript file for web page
 creating JavaScript file web worker

javascript.options.shared_memory

Jest

JIT (just-in-time) compiling

jQuery

--js-library command-line option

--js-library flag, 2nd

js_plumbing.html file

js_plumbing.js file

js_plumbing.wasm file

js_plumbing_nodejs.js file

just-in-time (JIT) compiling

 K

 known module sections, 2nd, 3rd

 L

 lengthBytesUTF8 function, 2nd, 3rd

level parameter

_LevelComplete function

levelComplete function, 2nd

levelSummary DOM element

LI (list item) tag

LibraryManager.library object, 2nd

linefeed character (\n)

link tags, 2nd

LinkError

Lisp programming language, 2nd

list item (LI) tag

LLVM compiler

_Log function, 2nd

log function

logPrime function, 2nd

loop flow statement

loop s-expression

loop statement

loops

 M

 main() function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th

MAIN_MODULE flag, 2nd

_malloc function, 2nd, 3rd, 4th

malloc function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

matplotlib

maximum property, 2nd

MAXIMUM_NAME_LENGTH value, 2nd, 3rd

media type, Web Assembly

Memory import

memory label

memory property

Memory section

memory s-expression

MemoryAllocated

__memory_base property, 2nd

mergeInto function, 2nd, 3rd

mergeinto.js file, 2nd

MessageEvent object

milliseconds parameter

MIME (Multipurpose Internet Mail Extensions)

mimetypes.py file

minimum viable product (MVP), 2nd, 3rd, 4th, 5th

Mocha

MODULARIZE flag, 2nd, 3rd

module creation
 dynamic linking
 adjusting JavaScript for web page
 adjusting web page
 creating new C++ file for Place Order form logic
 defining JavaScript function to handle validation issues
 splitting logic in validate.cpp file into two files
 using Emscripten to generate main module
 using Emscripten to generate side modules
 viewing results
 Emscripten
 compiling C or C++ with
 output options
 toolkit overview
 feature detection
 JavaScript
 compiling C or C++ with Emscripten-generated JavaScript
 creating HTML web pages
 modules that call into JavaScript
 using C or C++ with Emscripten
 using C or C++ without Emscripten
 modules to talk to JavaScript using function pointers
 using C or C++ with Emscripten
 using C or C++ without Emscripten
 text format
 creating HTML and JavaScript files
 Emscripten-generated modules
 using C or C++ with Emscripten, 2nd
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 creating web pages
 making C++ modifications
 viewing results
 using C or C++ without Emscripten
 compiling code into WebAssembly module
 creating JavaScript to interact with module
 making C++ modifications
 viewing results
 WebAssembly file
 compiling C or C++ as side module with Emscripten
 loading and instantiating in browser

module node

Module object, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th

module s-expression, 2nd

Module.ccall function, 2nd, 3rd

Module.cwrap function

Module.HEAP32 object

Module.HEAP32.BYTES_PER_ELEMENT, 2nd

Module._malloc function, 2nd, 3rd

Module.UTF8ToString

moduleExports variable, 2nd, 3rd

moduleMemory variable, 2nd, 3rd, 4th, 5th

modules
 compiling
 fetching and instantiating
 in Node.js
 Emscripten-built modules
 server-side validation
 WebAssembly JavaScript API
 instantiating
 loading
 passing arrays to
 prefetching using web workers
 adjusting calculate_primes logic
 copying files to correct location
 creating HTML file for web page
 creating JavaScript file for web page
 creating JavaScript file for web worker
 using Emscripten to generate files
 viewing results
 structure of, 2nd
 custom sections, 2nd
 known sections, 2nd
 preamble
 supported languages
 supported locations
 use of term
 when not to use

Multipurpose Internet Mail Extensions (MIME)

mut label

mutable variables

MVP (minimum viable product), 2nd, 3rd, 4th, 5th

 N

 name property, 2nd, 3rd

name value

name variable

namePointer parameter

Nav tag

navigator.onLine method

nested s-expression if statement
 block instead of then
 equality check before If statement
 equality check within If statement

nested s-expression style

new Object() function

node command

Node Package Manager (npm)

Node.js
 installing and setting up
 modules in
 Emscripten-built modules
 server-side validation
 WebAssembly JavaScript API

nodejs_validate.js file, 2nd, 3rd, 4th, 5th

nonzero value, 2nd, 3rd, 4th

NoReturnValueWithIntegerAndDoubleParameters macro

NoReturnValueWithNoParameters macro

NoReturnValueWithStringParameter macro

npm (Node Package Manager)

npm init command

npm test command

NULL parameter

null value

number type

Numpy

 O

 -o flag

-O0 flag

-O1 optimization flag

odejs_validate.js file

OL (Ordered List) tag

onClickAddToCart function, 2nd

onClickCard function

onClickSave function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th
 creating modules to talk to JavaScript using function pointers, 2nd
 module creation and dynamic linking
 modules that call into JavaScript

onClickSaveProduct function, 2nd, 3rd

_OnError function

OnError function, 2nd

onErrorCallBack function

onload=

onmessage event handler

onmessage event listener

onRuntimeInitialized function, 2nd, 3rd, 4th

onRuntimeInitialized property, 2nd, 3rd

_OnSuccess function

OnSuccess function, 2nd, 3rd

onSuccessCallback function

or (||) condition

OR operation

Ordered List (OL) tag

orderForm

orderModule variable

 P

 package name value

package.json file

Pandas

param node

param s-expression

_Pause function, 2nd, 3rd

pause function

_Pause import node

performance issues

performance tests

PlayLevel string

_PlayNextLevel function

playNextLevel function

plumbing file, JavaScript, 2nd, 3rd, 4th

PNaCL (Google’s Native Client)

pointer parameter

Popper.js

PopulateArray function

POSIX thread

postMessage method, 2nd

pre- and post-hook functions

preamble

--pre-js flag

printf function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th

productForm

productId value

productModule variable, 2nd

programming languages
 supported
 using languages other than JavaScript

Promise object, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

Promise.all method

promises

pthread.h header file

pthread_attr_t variable

pthread_create function, 2nd

pthread_create loop

pthread_join function, 2nd

pthread_join loop

PTHREAD_POOL_SIZE flag

pthreads
 adjusting calculate_primes logic to create and use four pthreads
 creating pthread start routine
 modifying FindPrimes function
 modifying main function
 using Emscripten to generate WebAssembly files
 viewing results

pthread_t variable

Puppeteer framework

_putchar function

putchar function

Pyodide

Python, 2nd
 running local web server
 WebAssembly media type

 Q

 quantity value

 R

 rand function

readFile function

reject method, 2nd, 3rd

_RemoveCards function

removeCards function

removeFunction, 2nd, 3rd

_ReplayLevel function

replayLevel function

require function, 2nd, 3rd, 4th, 5th, 6th, 7th

RESERVED_FUNCTION_POINTERS flag

resolve method, 2nd, 3rd

result s-expression

return instruction, 2nd

return statement, 2nd

return type

return_error_message parameter

returnPointers, 2nd

root s-expression node

root-container attribute

root-container div tag

row parameter

rows parameter

RTLD_NOW mode

runtimeInitialized function

Rust language, 2nd

 S

 -s EXPORTED_FUNCTIONS command line array

-s MODULARIZE flag

-s MODULARIZE=1 flag

-s SIDE_MODULE=2 flag

save function

Scopes section, Firefox

script tag, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th

SecondCardSelectedCallback

sections, of modules

SeedRandomNumberGenerator

_SeedRandomNumberGenerator function

selectedIndex property

server-side validation

set method, 2nd

setActiveNavLink function, 2nd

setErrorMessage function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th

setFormTitle function, 2nd

set_global instruction, 2nd

set_local instruction, 2nd

s-expression (symbolic expression), 2nd

s-expression nodes, 2nd

SharedArrayBuffer

showElement function, 2nd

sideImportObject, 2nd

SIDE_MODULE flag, 2nd

side_module.wasm file

side_module_nodejs.js file

side_module_system_functions.cpp file, 2nd

side_module_system_functions.h file, 2nd

SIMD (Single Instruction, Multiple Data)

source maps

SPA (single-page application)

span tag, 2nd

s_prime.c file

srand function

src attribute, 2nd, 3rd, 4th

stack machine if statement, 2nd

start node, 2nd

start parameter

Start section

start value

startup times

-std=c++11 flag

stdio.h header file

stdlib.h header file, 2nd

strcpy function, 2nd

string data type

StringReturnValueWithNoParameters function, 2nd

stringToUTF8 function, 2nd, 3rd

strlen function, 2nd, 3rd, 4th, 5th

Success function, 2nd

successCallback

switchForm function, 2nd

symbolic expression (s-expression), 2nd

 T

 Table import

table object

Table section, 2nd

table s-expression

__table_base property

TDD (test-driven development)

TeaVM tool

tee_local instruction

template file, HTML

test command value

Test function, 2nd

test property

test-driven development (TDD)

testing
 installing JavaScript testing framework
 installing Mocha and Chai
 package.json file
 making tests pass
 running tests from browser
 running tests from command line
 writing tests
 describe function
 it function
 pre- and post-hook functions

tests.js file

text format, 2nd
 adjusting, 2nd, 3rd
 control flow statements
 if statements
 loops
 core logic for game using
 code nodes
 comments
 data node
 export nodes
 function signatures
 global nodes
 import nodes
 module node
 sections
 start node
 type nodes
 function pointers
 testing code
 module creation
 creating HTML and JavaScript files
 Emscripten-generated modules
 viewing results

TextEncoder object, 2nd, 3rd, 4th, 5th, 6th

then method, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

then s-expression

then statement

thread_ids array

threading
 pthreads
 adjusting calculate_primes logic to create and use four pthreads
 using Emscripten to generate files
 viewing results
 web workers
 benefits of
 considerations for using
 prefetching modules using

time function

time_t object

title tag

transpiling

tries parameter

type nodes, 2nd

Type section

type s-expressions, 2nd

typedef keyword

type-hints

TypeScript

types_map section

 U

 Uint8Array object, 2nd

Uint16Array object

Uint32Array object

UL (Unordered List) tag

unit tests

Unordered List (UL) tag

_UpdateHostAboutError function, 2nd

UpdateHostAboutError function, 2nd, 3rd, 4th, 5th, 6th, 7th

UpdateHostOnError function

_UpdateTriesTotal field

updateTriesTotal function, 2nd

UTF8ToString function, 2nd, 3rd, 4th, 5th, 6th, 7th

util package, 2nd, 3rd

 V

 -v compiler flag

validate.cpp file, 2nd, 3rd, 4th, 5th, 6th, 7th

validate.js file, 2nd, 3rd, 4th

validate.wasm file, 2nd, 3rd, 4th

validateCallbacks parameter

ValidateCategory function
 calling
 creating
 creating modules to talk to JavaScript using function pointers

validateCategory function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th
 creating modules to talk to JavaScript using function pointers, 2nd
 module creation and dynamic linking
 modules that call into JavaScript

validateCategoryCallbacks

validate_core module

validate_core.cpp file, 2nd, 3rd

validate_core.js

validateData function, 2nd, 3rd

_ValidateName function

ValidateName function, 2nd, 3rd, 4th
 calling
 creating
 creating modules to talk to JavaScript using function pointers

validateName function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th
 creating modules to talk to JavaScript using function pointers, 2nd
 module creation and dynamic linking
 modules that call into JavaScript

validateNameCallbacks

validate_order.cpp file, 2nd, 3rd

ValidateProduct function

validateProduct function

validate_product.cpp file, 2nd, 3rd

validate_product.wasm file

ValidateQuantity function

validateQuantity function

ValidateValueProvided function, 2nd, 3rd, 4th, 5th, 6th
 creating
 creating modules to talk to JavaScript using function pointers

validationModule variable

VALID_CATEGORY_IDS array, 2nd, 3rd, 4th, 5th, 6th

VALID_PRODUCT_IDS array

var0 variable

vector class, 2nd

virtual machine (VM), 2nd

void* parameter

 W

 WASI (WebAssembly Standard Interface), 2nd

Wasm file
 generating, 2nd, 3rd
 regenerating

Wasm Match

wasm2wat tool

wasmMemory variable

wat2wasm tool, 2nd, 3rd, 4th, 5th, 6th

web sockets

web workers, prefetching modules using
 adjusting calculate_primes logic
 copying files to correct location
 creating HTML file for web page
 creating JavaScript file for web page
 creating JavaScript file for web worker
 using Emscripten to generate files
 viewing results

WebAssembly
 asm.js as forerunner to
 compiling to WebAssembly alone
 compiling C or C++ as side module with Emscripten
 loading and instantiating in browser
 defined
 how it works
 compilers
 loading, compiling, and instantiating modules
 module structure
 custom module sections
 known module sections
 preamble
 problems solved by
 code reuse
 languages other than JavaScript
 performance
 startup times
 security
 supported languages
 supported locations
 text format

WebAssembly Binary Toolkit, 2nd, 3rd, 4th

WebAssembly Community Group

WebAssembly JavaScript API, 2nd, 3rd
 creating HTML and JavaScript files
 modules in Node.js
 calling functions in module
 calling into JavaScript
 calling JavaScript function pointers
 loading and instantiating modules
 overview
 splitting logic in calculate_primes.c file into two files
 using Emscripten to generate side modules
 viewing results

WebAssembly Standard Interface (WASI), 2nd

WebAssembly.compile function

WebAssembly.compileStreaming function, 2nd

WebAssembly.Instance object, 2nd

WebAssembly.instantiate, 2nd, 3rd, 4th

WebAssembly.instantiate function, 2nd, 3rd

WebAssembly.instantiateStreaming function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th

WebAssembly.Memory object, 2nd

WebAssembly.Module object, 2nd

WebAssembly.Table object, 2nd

WebGL

WebSockets

window object

Worker API, Emscripten

Worker object

writeFile function

 X

 XSS (cross-site scripting)

 List of Figures

 Chapter 1. Meet WebAssembly

 Figure 1.1. JavaScript compiled to machine code as it executes

 Figure 1.2. C++ being turned into WebAssembly and then into machine code in the browser

 Figure 1.3. Compiler frontend and backend

 Figure 1.4. Compiler frontend with a WebAssembly backend

 Figure 1.5. Wasm file loaded into a browser and then compiled to machine code

 Figure 1.6. A basic representation of a WebAssembly file’s structure

 Chapter 2. A look inside WebAssembly modules

 Figure 2.1. The basic structure of the WebAssembly binary bytecode, highlighting the known and custom sections

 Figure 2.2. A Type section holding three function signatures. The signature at index 0 receives two 32-bit integer parameters
 and returns a 32-bit integer value. The signature at index 1 receives two 64-bit integer parameters but doesn’t have a return
 value. The signature at index 2 doesn’t receive any parameter values and doesn’t have a return value

 Figure 2.3. Example of how the Type, Function, and Code sections work together

 Figure 2.4. Example of an item in the Table section being called

 Figure 2.5. ArrayBuffer is used as linear memory by WebAssembly modules

 Chapter 3. Creating your first WebAssembly module

 Figure 3.1. Compiler frontend and backend

 Figure 3.2. Compiler frontend with LLVM IR

 Figure 3.3. The WebAssembly file is loaded into a browser and compiled to machine code.

 Figure 3.4. Emscripten generating the WebAssembly, JavaScript, and HTML files

 Figure 3.5. Step 1 is to create the C or C++ code.

 Figure 3.6. Emscripten is asked to compile the C code into a WebAssembly file to generate the JavaScript plumbing file and
 HTML file.

 Figure 3.7. The newly generated HTML, JavaScript, and WebAssembly files

 Figure 3.8. You can now open the HTML file in a web browser to view the results.

 Figure 3.9. The HTML page running in Google Chrome

 Figure 3.10. Emscripten is asked to generate the WebAssembly and JavaScript plumbing files. You then create the HTML file
 and include a reference to the generated JavaScript file.

 Figure 3.11. Step 1 is to create the C or C++ code.

 Figure 3.12. Emscripten is asked to compile the C code into a WebAssembly file and to generate the JavaScript plumbing file.

 Figure 3.13. The newly generated JavaScript and WebAssembly files

 Figure 3.14. An HTML file is modified, or a new one is created, to reference the generated JavaScript file.

 Figure 3.15. The HTML page that you created, running in Google Chrome

 Figure 3.16. The console window in Google Chrome’s developer tools showing the list of prime numbers

 Figure 3.17. Emscripten being requested to generate only the WebAssembly file. You then create the necessary HTML and JavaScript
 code to download and instantiate the module.

 Figure 3.18. Step 1 is to create the C or C++ code.

 Figure 3.19. Have Emscripten generate only the WebAssembly file.

 Figure 3.20. The newly generated WebAssembly file

 Figure 3.21. The HTML page that you created, showing the result of the call to the Increment function

 Chapter 4. Reusing your existing C++ codebase

 Figure 4.1. The Edit Product page that you’ll be building

 Figure 4.2. The steps needed to turn the existing C++ logic into a WebAssembly module for use in a browser and by the server-side
 code. I discuss the server aspect, Node.js, in a later chapter.

 Figure 4.3. How validation will work in the browser

 Figure 4.4. The first step of the process in reusing C++ code is to adjust the code so that it can be compiled by Emscripten.

 Figure 4.5. The second step of the process in reusing C++ code is to ask Emscripten to generate both the WebAssembly and JavaScript
 files.

 Figure 4.6. The Edit Product page that you’ll be building and validating

 Figure 4.7. The third step of the process in reusing C++ code is to copy the generated files to where the HTML file is and
 build the JavaScript code to interact with the module.

 Figure 4.8. Edit Product page’s Name validation error

 Figure 4.9. Steps for turning existing C++ logic into WebAssembly for use by a website and the server-side code but without
 any generated Emscripten JavaScript code. I discuss the server aspect, Node.js, in a future chapter.

 Figure 4.10. Your first step is to create your own versions of the standard C library functions you need so that the code
 can be compiled by Emscripten.

 Figure 4.11. The second step of the process is to ask Emscripten to generate only the WebAssembly file. Emscripten won’t generate
 the JavaScript plumbing file in this case.

 Figure 4.12. The third step of the process is to copy the generated file to where the HTML file is and build the JavaScript
 code to interact with the module.

 Figure 4.13. Edit Product page’s Name validation error when the name entered is too long

 Chapter 5. Creating a WebAssembly module that calls into JavaScript

 Figure 5.1. How the JavaScript code currently interacts with the module’s functions

 Figure 5.2. The module calling a function in the JavaScript code

 Figure 5.3. How the module and JavaScript will be reworked to allow the module to call back to the JavaScript

 Figure 5.4. Steps for turning C++ logic, as well as some JavaScript that needs to be included in Emscripten’s JavaScript file,
 into a WebAssembly module for use in a browser and by the server-side code. I discuss the server aspect, Node.js, in a later
 chapter.

 Figure 5.5. Step 1 is to modify the C++ code so that it passes the error message to a JavaScript function.

 Figure 5.6. Step 2 is creating the JavaScript code to include in Emscripten’s generated JavaScript file.

 Figure 5.7. Step 3 is to ask Emscripten to generate both the WebAssembly and JavaScript files. In this case, you’ll also ask
 Emscripten to include the mergeInto.js file.

 Figure 5.8. Step 4 is to copy the generated files to where the HTML file is and update the JavaScript code based on the new
 way it needs to interact with the module.

 Figure 5.9. Edit Product page’s Name validation error

 Figure 5.10. The module calling back to the JavaScript through a function you defined in the Emscripten-generated JavaScript
 file

 Figure 5.11. How the callback logic works without Emscripten plumbing code

 Figure 5.12. Steps in which existing C++ logic is turned into WebAssembly for use by a website and the server-side code but
 without any generated Emscripten JavaScript code. I discuss the server aspect, Node.js, in a future chapter.

 Figure 5.13. You need to modify the C++ code from section 5.1 to use the side_module_system_functions files that you created
 in chapter 4.

 Figure 5.14. In this case, you need to ask Emscripten to generate only the WebAssembly file but not the JavaScript plumbing
 file.

 Figure 5.15. You need to copy the generated Wasm file to where the HTML file is and modify how the JavaScript code interacts
 with the module.

 Figure 5.16. The Edit Product page’s Category validation error when there’s no category selected

 Chapter 6. Creating a WebAssembly module that talks to JavaScript using function pointers

 Figure 6.1. The module calling a function in the JavaScript code

 Figure 6.2. The module calling a JavaScript function pointer

 Figure 6.3. Steps showing existing C++ logic modified to accept function pointers and then turned into WebAssembly for use
 by a website and the server-side code. I discuss the server aspect, Node.js, in a future chapter.

 Figure 6.4. Step 1 is to modify the code so that it accepts function pointers.

 Figure 6.5. Step 2 is to ask Emscripten to generate both the WebAssembly and JavaScript files.

 Figure 6.6. Step 3 is to copy the generated files to where your HTML and JavaScript files are located. You’ll then update
 the JavaScript code to pass JavaScript functions to the module.

 Figure 6.7. A JavaScript function being passed to Emscripten’s backing array to be called later by the module

 Figure 6.8. The Edit Product page’s validation error when the name is too long

 Figure 6.9. Steps for turning the C++ logic into WebAssembly for use by a website and the server-side code but without any
 generated Emscripten JavaScript code. I discuss the server aspect, Node.js, in a later chapter.

 Figure 6.10. A module that has imported the onSuccess and onError JavaScript functions at instantiation. When the ValidateName
 module function calls either function, it’s calling into the JavaScript code.

 Figure 6.11. You’ll modify the C++ code from section 6.1 so that a WebAssembly module can be generated without the Emscripten
 plumbing code.

 Figure 6.12. Step 2 is to ask Emscripten to generate only the WebAssembly file. Emscripten won’t generate the JavaScript plumbing
 file in this case.

 Figure 6.13. Step 3 is to copy the generated Wasm file to where the HTML file is and modify how the JavaScript code interacts
 with the module.

 Figure 6.14. The Edit Product page’s Category validation error

 Chapter 7. Dynamic linking: The basics

 Figure 7.1. At runtime, the logic from one module (Module 2, in this case) is linked to another module (Module 1), allowing
 the two to communicate and act as one.

 Figure 7.2. Using Emscripten to generate a WebAssembly module as a side module. No standard C library functions are included
 in the module, and the Emscripten JavaScript file isn’t generated in this case.

 Figure 7.3. Using Emscripten to generate a WebAssembly module as a main module. The standard C library functions are included
 in the module, and the Emscripten JavaScript file is also generated in this case.

 Figure 7.4. Steps for modifying calculate_primes.cpp so that it can be compiled into a WebAssembly side module, and steps
 for creating a WebAssembly main module that will link to the side module by calling the dlopen function.

 Figure 7.5. Step 1 in implementing dynamic linking using dlopen is to modify the calculate_primes.cpp file so that it can
 be compiled into a side module.

 Figure 7.6. Use Emscripten to generate the WebAssembly file as a side module.

 Figure 7.7. Step 3 in implementing dynamic linking using dlopen is to create the logic that will use dlopen to link to the
 side module.

 Figure 7.8. Step 4 in implementing dynamic linking using dlopen is to use Emscripten to generate the WebAssembly module as
 a main module from the main.cpp file. In this case, you’ll also have Emscripten generate the HTML file.

 Figure 7.9. When the web page is viewed, a link error is thrown about a missing _putchar function.

 Figure 7.10. The prime numbers determined by the side module and displayed to the web page using the printf function that’s
 part of the main module

 Figure 7.11. The steps for creating the WebAssembly main module that will instruct Emscripten’s dynamicLibraries array about
 which side module you want it to dynamically link to.

 Figure 7.12. The first step toward implementing dynamic linking using dynamicLibraries is to create the main.cpp file.

 Figure 7.13. Step 2 when implementing dynamic linking using dynamicLibraries is to create the JavaScript code that will instruct
 Emscripten to link to your side module.

 Figure 7.14. The last step of the process when implementing dynamic linking using dynamicLibraries is to have Emscripten generate
 the WebAssembly module.

 Figure 7.15. The prime numbers determined by the side module when both modules were linked together using Emscripten’s dynamicLibraries
 array

 Figure 7.16. The steps for modifying the calculate_primes.c file so that it can be compiled into two WebAssembly side modules.
 The generated WebAssembly files are copied to the server, and then the HTML and JavaScript files are created to load, link,
 and interact with the two WebAssembly modules.

 Figure 7.17. The first step toward implementing manual dynamic linking using the WebAssembly JavaScript API is to modify the
 calculate_primes.c file so that its logic is now part of two files.

 Figure 7.18. Step 2 is to use Emscripten to generate the WebAssembly side modules from your two files.

 Figure 7.19. The final steps are to create the HTML and JavaScript files that will load, link, and interact with the WebAssembly
 modules.

 Figure 7.20. The prime numbers between 3 and 100 logged by the find_primes WebAssembly module

 Chapter 8. Dynamic linking: The implementation

 Figure 8.1. The new Place Order form

 Figure 8.2. At runtime, the logic that’s specific to the page (the side module) will be linked to the common logic (the main
 module). As far as the code is concerned, the two modules will be acting as one.

 Figure 8.3. The steps needed to revise the C++ logic and generate the WebAssembly modules

 Figure 8.4. Steps for modifying the HTML to have a Place Order form and revising the JavaScript code to implement dynamic
 linking of the WebAssembly modules in a browser and by the server-side code. I discuss the server aspect, Node.js, in a later
 chapter.

 Figure 8.5. Step 1 of the process is to move the Edit Product page’s specific logic to its own file.

 Figure 8.6. Step 2 of the process is to create the logic for the Place Order form.

 Figure 8.7. Step 3 is to use Emscripten to compile the C++ files into WebAssembly modules.

 Figure 8.8. Emscripten is used to generate the WebAssembly module for the Edit Product page’s validation.

 Figure 8.9. Emscripten throws an error about the strlen function and NULL not being defined.

 Figure 8.10. Emscripten used to generate the WebAssembly module for the Place Order form’s validation

 Figure 8.11. Emscripten throws an error about the atoi function and NULL not being defined.

 Figure 8.12. Define the JavaScript function that the C++ code will call if there’s an issue with the validation. The code
 in this file will be included in Emscripten’s generated JavaScript file.

 Figure 8.13. Use Emscripten to generate the WebAssembly main module from validate_core.cpp. Have Emscripten include the contents
 of the mergeinto.js file in its generated JavaScript file.

 Figure 8.14. You’ll adjust the HTML to have a Place Order form and then revise the JavaScript code to implement dynamic linking
 of the WebAssembly modules in a browser.

 Figure 8.15. The new navigation bar and Place Order form controls that you will add to the web page

 Figure 8.16. The URL of your web page with “PlaceOrder” as the fragment identifier

 Figure 8.17. When you click the Place Order navigation link, the Place Order form’s controls are displayed, and the fragment
 identifier is added to the address in the browser’s address box.

 Figure 8.18. The new Place Order form’s validation error message when a quantity of 0 is specified.

 Chapter 9. Threading: Web workers and pthreads

 Figure 9.1. A long-running process has caused Firefox to become unresponsive. The browser is prompting the user to see if
 they want to terminate the script.

 Figure 9.2. Your JavaScript creates a web worker and then communicates with it by passing messages.

 Figure 9.3. Your JavaScript creates a web worker. The worker will download and compile the WebAssembly module and then pass
 the compiled module to the main UI thread. Emscripten then uses the compiled module rather than downloading the module itself.

 Figure 9.4. The steps for implementing the prefetch scenario. Modify calculate_primes.cpp to determine how long the computations
 take. Instruct Emscripten to generate the WebAssembly files and then create the HTML and JavaScript files. The JavaScript
 will create a web worker to download and compile the WebAssembly module. Finally, the compiled module will be passed back
 to the web page, where it will be instantiated by your code instead of Emscripten’s JavaScript.

 Figure 9.5. Modify the calculate_primes logic to determine how long the calculations take.

 Figure 9.6. Use Emscripten to generate the WebAssembly files from calculate_primes.cpp.

 Figure 9.7. Copy the WebAssembly files to the server for use by the browser. Then create the HTML and JavaScript for the web
 page. The JavaScript will create a web worker and will then have Emscripten’s JavaScript use the compiled module received
 from the worker.

 Figure 9.8. The final step is to create the JavaScript file for the web worker that will download and compile the WebAssembly
 module. Once compiled, the WebAssembly module will be passed to the UI thread.

 Figure 9.9. The prime numbers found by the WebAssembly module with the total duration for the calculations indicated

 Figure 9.10. The steps for this scenario modify the calculate_primes.cpp logic to create four pthreads, each of which will
 look for prime numbers in a given range. Then Emscripten will be used to generate the WebAssembly files along with the HTML
 template.

 Figure 9.11. The next step is to use Emscripten to generate the WebAssembly files and HTML file from calculate_primes.cpp.

 Figure 9.12. The calculate_primes.cpp source file and the Emscripten-generated files. In this case, Emscripten has placed
 the data segments for the module’s Data known section in their own file.

 Figure 9.13. Firefox’s configuration warning screen. Click the “I accept the risk!” button to enter the configuration view.

 Figure 9.14. Type javascript.options.shared_memory into the search box to filter the list. Either double-click the list item,
 or right-click the list item and choose Toggle from the context menu, to change the flag to true.

 Figure 9.15. Emscripten included a message indicating how many web workers it was creating for the pthreads. The total execution
 time to find the prime numbers between 3 and 1,000,000 was 38 milliseconds.

 Chapter 10. WebAssembly modules in Node.js

 Figure 10.1. The steps for turning the existing C++ logic into a WebAssembly module for use by a browser and the server-side
 code. I discuss the server aspect in this chapter.

 Figure 10.2. How validation works in Node.js

 Figure 10.3. Emscripten is used to generate the WebAssembly and Emscripten JavaScript files. You then create a JavaScript
 file that loads the Emscripten-generated JavaScript file, which will in turn handle loading and instantiating the module for
 you.

 Figure 10.4. The console output from the WebAssembly module in Node.js

 Figure 10.5. The final step of the process in reusing the C++ code is the server aspect, which is Node.js, in this case. You’ll
 copy the generated WebAssembly files to where your Node.js files are and then build the JavaScript code to interact with the
 module.

 Figure 10.6. The product name validation error in Node.js

 Figure 10.7. The product category validation error in Node.js

 Figure 10.8. Validation message about the product name’s length in Node.js

 Figure 10.9. Using Emscripten to generate only the WebAssembly file. You’ll then create the JavaScript to load and instantiate
 the module using the WebAssembly JavaScript API.

 Figure 10.10. The console output from your call to the module’s _Increment function in Node.js

 Figure 10.11. The final step of the process is to copy the generated WebAssembly file to where your Node.js files are and
 build the JavaScript code to interact with the module.

 Figure 10.12. The product category validation error in Node.js

 Figure 10.13. How the callback logic will work when not using Emscripten’s generated JavaScript code

 Figure 10.14. Validation message about the product name’s length from Node.js

 Figure 10.15. A module that has imported the onSuccess and onError JavaScript functions at instantiation. When the ValidateName
 module function calls either function, it’s calling into the JavaScript code.

 Figure 10.16. The product name validation error in Node.js

 Chapter 11. WebAssembly text format

 Figure 11.1. Developer tools in Firefox, with a breakpoint placed in the _ValidateName function of the WebAssembly module
 you built in chapter 4, section 4.1

 Figure 11.2. Level 1 of the card-matching game, showing two cards clicked before they turn facedown because they’re not a
 match

 Figure 11.3. When the player wins, they can replay the current level or play the next level.

 Figure 11.4. Steps for building the game

 Figure 11.5. Basic structure of the WebAssembly binary bytecode, highlighting the known and custom sections

 Figure 11.6. Creating the game’s core logic using the WebAssembly text format

 Figure 11.7. The module node is the equivalent of the binary format’s preamble section. The version will be specified by the
 tool used to create the binary format file.

 Figure 11.8. The Import known section declares all the items to be imported into the module.

 Figure 11.9. The Global known section declares the module’s built-in global variables.

 Figure 11.10. The Export known section lists all items in the module that the host environment can access.

 Figure 11.11. The Start known section specifies the function that’s to be called after the module is instantiated.

 Figure 11.12. The Function and Code known sections in the binary format

 Figure 11.13. The Type known section declares a list of all unique function signatures that will be used in the module, including
 those that will be imported.

 Figure 11.14. The Data known section declares the data to load into the module’s linear memory during instantiation.

 Figure 11.15. Generating a Wasm file from the WebAssembly text format

 Figure 11.16. Replace the contents of the top-left pane with the contents of your cards.wast file. Then download the WebAssembly
 file.

 Figure 11.17. Creating the C++ file containing the logic needed for your cards.wasm module

 Figure 11.18. Creating the C++ file containing the logic needed for your cards.wasm module

 Figure 11.19. Using Emscripten to generate a WebAssembly module from main.cpp

 Figure 11.20. Copying the generated files to the server for use by the browser. You’ll then create the HTML and JavaScript
 files needed for the web page to interact with the modules.

 Figure 11.21. The card-matching game looks like this when the player reaches level 3.

 Chapter 12. Debugging

 Figure 12.1. Level 2 of the card-matching game with the subtitle adjusted to include the number of tries

 Figure 12.2. The high-level steps that will be used to adjust the game to include the number of tries

 Figure 12.3. Adjust the JavaScript and text format code to display the number of tries when the level starts.

 Figure 12.4. Create the $tries global variable in the text format code, and pass the value to the generateCards JavaScript
 function.

 Figure 12.5. Use the WebAssembly Binary Toolkit to generate the cards.wasm file from the text format.

 Figure 12.6. A compilation error with the contents of the cards.wast file

 Figure 12.7. Copy the cards.wasm file for use by the browser and then test your changes.

 Figure 12.8. The changes you made are working because a value of 0 is shown next to the Tries label.

 Figure 12.9. The number of tries is incremented when the player clicks the second card.

 Figure 12.10. Incrementing the number of tries value when the player clicks the second card

 Figure 12.11. The text format will increment the $tries value when the player clicks the second card. You’ll then pass the
 value to the new JavaScript function.

 Figure 12.12. You’ll use the WebAssembly Binary Toolkit to generate the WebAssembly file.

 Figure 12.13. Paste the contents of your cards.wast file into the tool’s top-left pane and then download the WebAssembly file,
 naming it cards.wasm.

 Figure 12.14. Copy the cards.wasm file to the server, and test your changes.

 Figure 12.15. Something isn’t working properly—the game isn’t being displayed.

 Figure 12.16. A JavaScript error is logged about the _UpdateTriesTotal field.

 Figure 12.17. The Tries value shows that something's not right.

 Figure 12.18. The areas of Chrome’s developer tools for debugging a WebAssembly module

 Figure 12.19. The areas of Firefox’s developer tools for debugging a WebAssembly module

 Figure 12.20. The Scopes section in Firefox showing the global variables in this function’s scope

 Figure 12.21. The number of tries will be passed to the summary screen when the player completes the level.

 Figure 12.22. The steps for including the number of tries in the summary screen’s congratulatory message

 Figure 12.23. Pass the $tries value to the levelComplete JavaScript function.

 Figure 12.24. Generate the WebAssembly file from the text format.

 Figure 12.25. Paste the contents of your cards.wast file into the top-left pane, and then download the WebAssembly file. Give
 the downloaded file the name cards.wasm.

 Figure 12.26. Copy the cards.wasm file to the server, and then test your changes.

 Figure 12.27. The summary screen with the number of tries included

 Chapter 13. Testing—and then what?

 Figure 13.1. The steps for creating your tests and then running them at the command line and in the browsers you intend to
 support

 Figure 13.2. The results of the tests at the command line. Both tests failed because you intentionally provided the wrong
 expected string of 'something'.

 Figure 13.3. Your next step is to create an HTML page so that you can also run your tests in a browser.

 Figure 13.4. Your next step is to run your tests in a browser.

 Figure 13.5. The results of your tests running in a browser

 Figure 13.6. Both of your tests now pass when run at the command line.

 Figure 13.7. The results of your tests running in a browser show that the tests pass.

 Appendix A. Installation and tool setup

 Figure A.1. Verifying that Python is installed

 Figure A.2. Python 2.x’s local web server running on port 8080

 Figure A.3. The WebAssembly media type is part of Python’s list of media types on Ubuntu Linux.

 Figure A.4. The WebAssembly media type is also in Python’s list of media types on Windows.

 Figure A.5. The types_map section in the mimetypes.py file, opened with Visual Studio Code

 Figure A.6. The Emscripten SDK, version 1.38.16, is installed.

 Figure A.7. Click the “Clone or Download” button and then click the Download ZIP button to download the Emscripten SDK.

 Figure A.8. Node.js version 8.9.1 was installed with the Emscripten SDK.

 Appendix B. ccall, cwrap, and direct function calls

 Figure B.1. The result of calling the module’s Add function using ccall and passing in the parameter values 1 and 2

 Figure B.2. The result of calling the module’s Add function using cwrap and passing in the parameter values 4 and 5

 Appendix C. Emscripten macros

 Figure C.1. Debugging a WebAssembly module using macros

 Figure C.2. The console window’s output from the NoReturnValueWithNoParameters EM_JS macro

 Figure C.3. The console window’s output from the NoReturnValueWithIntegerAndDoubleParameters macro

 Figure C.4. The console window’s output indicating that the NoReturnValueWithStringParameter macro was called

 Figure C.5. The console window’s output indicating that the StringReturnValueWithNoParameters macro was called

 Figure C.6. The console window’s output from the EM_ASM function call

 Figure C.7. The console window’s output from the EM_ASM_ function call

 Figure C.8. The console window’s output from the EM_ASM_ function call

 Figure C.9. The result of 30.60 from the call to the EM_ASM_DOUBLE macro

 Figure C.10. The message from the EM_ASM_INT macro written to the console window of the browser’s developer tools, as well
 as in the text box on the web page

 Appendix E. Text format extras

 Figure E.1. The code from listing E.1 is placed in the top-left pane, and the JavaScript is placed in the bottom-left pane.
 The result of the function call is displayed in the bottom-right pane.

 Figure E.2. The code from listing E.6 is placed in the top-left pane, and the JavaScript is placed in the bottom-left pane.
 The result of the function call is displayed in the bottom-right pane.

 Figure E.3. The code from listing E.10 is placed in the top-left pane, and the JavaScript is placed in the bottom-left pane.
 The result of the function call is displayed in the bottom-right pane.

 List of Tables

 Chapter 11. WebAssembly text format

 Table 11.1. Known sections and their corresponding s-expression labels

 Table 11.2. JavaScript functions that need to be imported

 Table 11.3. Items that need to be imported from the Emscripten-generated module

 Table 11.4. The seven unique function signatures this module uses

 Chapter 12. Debugging

 Table 12.1. Global variables and their corresponding indexes

 List of Listings

 Chapter 3. Creating your first WebAssembly module

 Listing 3.1. The main function in calculate_primes.c

 Listing 3.2. Code in calculate_primes.c

 Listing 3.3. The HTML for js_plumbing.html

 Listing 3.4. The JavaScript to load and instantiate side_module.wasm

 Listing 3.5. An HTML page for the WebAssembly module named side_module.html

 Listing 3.6. JavaScript to test if WebAssembly is supported

 Chapter 4. Reusing your existing C++ codebase

 Listing 4.1. ValidateName function in validate.cpp

 Listing 4.2. The ValidateCategory function

 Listing 4.3. HTML of the Edit Product page (editproduct.html)

 Listing 4.4. The onClickSave function in editproduct.js

 Listing 4.5. The validateCategory function in editproduct.js

 Listing 4.6. The InsertIntoAllocatedArray function

 Listing 4.7. Simplified version of the malloc function

 Listing 4.8. Simplified version of the free function

 Listing 4.9. The version of atoi

 Listing 4.10. Modifications to initializePage in editproduct.js

 Listing 4.11. Edit of the onClickSave function in editproduct.js

 Listing 4.12. The getStringFromMemory function in editproduct.js

 Listing 4.13. validateCategory

 Chapter 5. Creating a WebAssembly module that calls into JavaScript

 Listing 5.1. The modified ValidateCategory function in validate.cpp

 Listing 5.2. The modified validateCategory function in editproduct.js

 Listing 5.3. _UpdateHostAboutError added to the importObject

 Listing 5.4. Modifications to the validateName and validateCategory functions

 Chapter 6. Creating a WebAssembly module that talks to JavaScript using function pointers

 Listing 6.1. ValidateName modified to use function pointers (validate.cpp)

 Listing 6.2. ValidateCategory modified to use function pointers (validate.cpp)

 Listing 6.3. onClickSave modified to use Promise.all (editproduct.js)

 Listing 6.4. The new createPointers function in editproduct.js

 Listing 6.5. The modified validateName function in editproduct.js

 Listing 6.6. The modified validateCategory function in editproduct.js

 Listing 6.7. Modifications to the initializePage function (editproduct.js)

 Listing 6.8. The modified onClickSave function (editproduct.js)

 Listing 6.9. The createPointers function (editproduct.js)

 Listing 6.10. Modifications to the validateName function (editproduct.js)

 Listing 6.11. Modifications to the validateCategory function (editproduct.js)

 Chapter 7. Dynamic linking: The basics

 Listing 7.1. The new FindPrimes function and the modified main function

 Listing 7.2. The main.cpp file with the header file includes an extern "C" block

 Listing 7.3. The CalculatePrimes function that calls a function in the side module

 Listing 7.4. The main.cpp file with the header file including an extern "C" block

 Listing 7.5. The contents of the main.html file

 Listing 7.6. Downloading and linking two WebAssembly modules

 Chapter 8. Dynamic linking: The implementation

 Listing 8.1. The IsCategoryIdInArray function modified to now be called IsIdInArray

 Listing 8.2. The modified ValidateCategory function (validate_product.cpp)

 Listing 8.3. The header files and extern "C" block added to the validate_order.cpp file

 Listing 8.4. The ValidateProduct function

 Listing 8.5. The ValidateQuantity function

 Listing 8.6. The HTML for the new navigation bar

 Listing 8.7. The modified HTML for the Edit Product form section in index.html

 Listing 8.8. The new HTML for the Place Order form

 Listing 8.9. The modified initializePage function

 Listing 8.10. The switchForm function

 Listing 8.11. The setActiveNavLink function

 Listing 8.12. The onClickSave function renamed to onClickSaveProduct

 Listing 8.13. The modified validateName and validateCategory functions

 Listing 8.14. The onClickAddToCart function in index.js

 Listing 8.15. The validateProduct function in index.js

 Chapter 9. Threading: Web workers and pthreads

 Listing 9.1. The main function in calculate_primes.cpp

 Listing 9.2. The HTML in prefetch.html

 Listing 9.3. The main function in calculate_primes.cpp

 Chapter 10. WebAssembly modules in Node.js

 Listing 10.1. onClickSave adjusted to now be onRuntimeInitialized

 Listing 10.2. onClickSave adjusted to now be onRuntimeInitialized

 Listing 10.3. The instantiateWebAssembly function

 Listing 10.4. initializePage renamed to instantiateWebAssembly

 Listing 10.5. onClickSave renamed to validateData

 Listing 10.6. initializePage renamed to instantiateWebAssembly

 Listing 10.7. initializePage renamed to instantiateWebAssembly

 Listing 10.8. onClickSave renamed to validateData

 Chapter 11. WebAssembly text format

 Listing 11.1. The import s-expressions for items from the JavaScript code

 Listing 11.2. The import s-expressions for items from the Emscripten-generated module

 Listing 11.3. The $InitializeRowsAndColumns function for your cards.wast file

 Listing 11.4. The $ResetSelectedCardValues function for your cards.wast file

 Listing 11.5. The $InitializeCards function for your cards.wast file

 Listing 11.6. The $PopulateArray function for your cards.wast file

 Listing 11.7. The $ShuffleArray function for your cards.wast file

 Listing 11.8. The $GetCardValue function for your cards.wast file

 Listing 11.9. The $CardSelected function for your cards.wast file

 Listing 11.10. The $IsFirstCard function for your cards.wast file

 Listing 11.11. The $SecondCardSelectedCallback function for your cards.wast file

 Listing 11.12. The contents of the main.cpp file

 Listing 11.13. The Module object in the game.js file

 Listing 11.14. The generateCards function in the game.js file

 Listing 11.15. The levelComplete function in the game.js file

 Listing 11.16. The getStringFromMemory function for the game.js file

 Chapter 12. Debugging

 Listing 12.1. The generateCards function in game.js

 Listing 12.2. The $SecondCardSelectedCallback function in cards.wast

 Listing 12.3. The sideImportObject in your game.js file

 Listing 12.4. The levelComplete function in your game.js file

 Chapter 13. Testing—and then what?

 Listing 13.1. Contents of the package.json file that was created

 Listing 13.2. before function

 Listing 13.3. Testing the ValidateName function with an empty string for the name

 Listing 13.4. Testing the ValidateName function with a name that’s too long

 Listing 13.5. The HTML for your tests.html file

 Appendix B. ccall, cwrap, and direct function calls

 Listing B.1. HTML for the add.html file

 Listing B.2. JavaScript passing an array of integers to a module

 Appendix C. Emscripten macros

 Listing C.1. EM_JS macro that returns a string (em_js.c)

 Appendix D. Exercise solutions

 Listing D.1. The dlopen approach for the main module

 Listing D.2. The dynamicLibraries approach for the main module

 Listing D.3. The main function of calculate_primes_three_pthreads.cpp

 Listing D.4. The main function of calculate_primes_five_pthreads.cpp

 Listing D.5. The runtimeInitialized function in your index.js file

 Listing D.6. Additional code for the $InitializeRowsAndColumns function

 Listing D.7. Testing ValidateCategory with an empty string for categoryId

 Appendix E. Text format extras

 Listing E.1. Example of an if/else block written using the stack machine style

 Listing E.2. Nested s-expression style with the equality check before the if statement

 Listing E.3. Example that has the value check within the if block

 Listing E.4. Example of an if condition using a block statement instead of then

 Listing E.5. Stack machine style of the previous code

 Listing E.6. GetStringLength using nested s-expressions and breaking out of the loop

 Listing E.7. GetStringLength using stack machine style and breaking out of the loop

 Listing E.8. GetStringLength using nested s-expressions and continuing the loop

 Listing E.9. Stack machine style of the previous code

 Listing E.10. Function pointer module using the nested s-expression style

 OEBPS/Images/13fig02_alt.jpg
The tests that were

run. There would be —_ |
a check mark if the

test passed.

Details about the first
test that failed —__|

The actual result —_|

The expected result —— |

& Command Prompt - o x

:\WebAssembly\Chapter 13\13.2 tests>npm test tests.js

b testsgl.e.0 test
b mocha "tests.js”

+\WebAssenbly\Chapter 13\13.2 tests

Testing the validate.wasm module from chapter 4
1) Pass an empty string
2) Pass a string that's too long

© passing (62ms)
2 failing

{» 1) Testing the validate.
Pass an empty string

sm module from chapter 4

AssertionError: expected A Product Name must be p
lrovided." to equal 'something’
+ expected - actual

[——» -A Product Name must be provided.
|_—» +something

at Context.it (tests.js:5e:34)

OEBPS/Images/f00xx-01.jpg

OEBPS/Images/09fig04_alt.jpg
3. VebAssembly files are

1. Adjust the logic to determine 2. Emscripten generates the copled to the server for
how long it takes the ‘WebAssembly files from use by the browser.
caleulations to complete. calculate_primes.cpp. \

S
/ v B
T [vasn | |sasaor| |

2

Web worker
(prefetch workerjs)

4. Create the HTML and JavaScript for the
‘web page that will create a web worker, —__
and have Emscripten's JavaScript use the
compiled module received from the worker.

Ul thread
prefetch.htmi

(prefeteh js)

Browser

c
5. Create the JavaScript for the web.
worker that will download and
comuils the Walitastash i ssodle.

OEBPS/Images/03fig14_alt.jpg
3. Create an HIML file and
include the generated
JavaScript file.

v

JavaScript

Wasm

—— HTML

OEBPS/Images/07fig01_alt.jpg
1. WebAssembly module Z. WebAssembly module with
with core logic logic for the current need.

\ Module 1 \4 Module 2

Method 1 Method 2
Module 1 Module 2
Method 1 Method 2 3. The two modules

. arelinked and
act as one.

Method 2

OEBPS/Images/10fig01_alt.jpg
Emscripten is asked to generate Files are copled to the server

the WebAssembly and JavaScript for use by the browser
files from validate.cpp. and server code.
]
Deskiop applicaton writen in C++ /

I
Validation | |
P Emscripten | —+| valdate]s || vaidate.wasm |

—— m—

OEBPS/Images/app03fig05_alt.jpg
B Baccrpinians n
co G

powered by ,
- emscripten Resize canvas @ Lockihide mouse pointer | Fulscreen

StringReturnvaluewithwoparaseters was calied and 1t returned the following resulc: Hello from
U nvaTuesith

OEBPS/Images/12fig04_alt.jpg
£. Create a Stries global variable in the
text format, and pass its value to the
generateCards JavaScript function.

WebAssembly.

cards wast

Binary Toolkit

cardswasm

OEBPS/Images/12fig16_alt.jpg
p8o/gar * @ | Qemmunpe | =
R O nspector B Console 6 e X
BV Freroutput

Opersist Logs
There's a JavaScript error about —__

| @ tinrrors smport angect sieta * pasterrissotar 52
the _UpdateTriesTotal field. not a Function

OEBPS/Images/10fig13_alt.jpg
1. Your code calls the
ValidateName function.

Your JavaScript

validateName

4. If there's an issue with the user's
entry, an error message is passed
to a function you've defined in
your JavaScript.

Module

validateName

UpdateHostAboutError

error \

setErrorMessage

errorPointer

3. The messags
memory and the

read from the module’s
en displayed to the user.

OEBPS/Images/09fig08_alt.jpg
Ul thread
prefetch htmi
(prefetchs)

Web worker 5. Create the JavaScript for the web
(prefetch workerjs) worker that will download and
compile the WebAssembly module.

[ra—

OEBPS/Images/app01fig02_alt.jpg
&8 Command Prompt - python -m SimpleHTTPServer 8080 — a

C:\WebAssembly>python -m SimpleHTTPServer 8080
Serving HTTP on 0.0.0.0 port 8080 ...

OEBPS/Images/03fig10_alt.jpg
4. Emscripten generates

3. Create HIML file and

1.C/C++ code WebAssembly and include the generated
s written. JavaScript files. JavaScript file.
v v
D
cice Emscripten JavaScrpt || Wasm HTML

OEBPS/Images/07fig05_alt.jpg
1. Modify the logic to
work as a side module.

/

calculate_primes.cpp.

Emscripten

Wasm side
module

Java

ptile

OEBPS/Images/05fig13_alt.jpg
Desktop application written in C++

1. Modify to use
side_module_system_functions.h. ~ Validation logic
(validate.cpp)

OEBPS/Images/03fig06_alt.jpg
4. Emscripten generates
WebAssembly, HTML,
and JavaScript files.

/

Cic++

Emscripten

HTML

JavaScript

Wasm

OEBPS/Images/05fig02_alt.jpg
& WTROTE'S B HoNe WER (he weer's
entry, an error message is passed
1. Emscripten s asked to call 0 a function you've defined in
the ValidateName function. Emscripten's JavaScript.

Your Javascript Emscripten JavaScript

soterrorh paatetiostaboutrror [+
o error | errorrotnter
\
4.The message is 3. The message is read from the
displayed to the user. ‘module’s memory and passed

t0 2 method in your main
‘EiaSeriat fodls.

OEBPS/Images/09fig12_alt.jpg
T 1M ¥ =1 source i [m} X

Home Share View v @

<« v A 1 « 92pthre.. > source v & | Searchsource P
Name Type Size

€] calculate_primes.cpp C++ Source 4KB

) pthreads.html HTML File 107KB

pthreads.html.mem MEM File 5K8

) pthreadsjs JavaScript File 134KB

] pthreads.wasm WASM File 39K8

%) pthreads.workerjs JavaScript File 10KB
6items ELE

This generated file holds the data segments for the module’s
Data known section. The contents of this file will be loaded
into the module’s linear memory during instantiation.

OEBPS/Images/10fig08_alt.jpg
B Command Prompt - o X

C:\WebAssembly\Chapter 16\10.3.4 EmFunctionPointers
idate.js

The validation —_ G\2"0 0 duct Name is too long.

error message
C:\liebAssembly\Chapter 16\16.3.4 EmFunctionPointers

OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/Images/08fig06.jpg
2. Create the Place
Order form’s logi

>

Place Order
(validate_order.cpp)

OEBPS/Images/08fig18_alt.jpg
x o+

€ 5 C 0 O o

Pla

Place Order

> Please enter a valid quantity.

Validation error
because a quantity
of O was specified

Product:

Men's Relaxed Classic it Flat Front Pant

Quantity:

0

Add to Cart

OEBPS/Images/05fig09_alt.jpg
| Demae xx

€ 5 C O O ocahostaosediproducthimi

wisionemsr | Ediit Product

when the name

e provided T AT e e
Narme
Category:

Jeans

OEBPS/Images/06fig03_alt.jpg
1. Modily to receive function pointers L. Emscripten is asked to generate the

for success and error callbacks. Webfssembly and JavaSeript fles. 3, Files are copied to the
/ server for use by the
/ browser and server code.

Desitop application wrien in G+

o
westion o comeon || vt | it

Vaiiation ogic
(validate was vaidate) o dotes)

K

Browser

[
4. Adjust how the JavaScript The server aspect is
cade lituracis withthe modile. -ilscamad be u itir chigte

OEBPS/Images/12fig20_alt.jpg
et b oo oo il ol pone.d

Sources Outline @ cardswasm x
v \0s) "
R
0 game.ntmi o :ct 1800l Mol
D
e EE R
e =2 mpmam
— 00000370 lﬂjm: mu
Lo LEE RS
O s Goas ol snemvearos .
I -
» € maxcdnbootstrapcdncom v 90960378 € >
[c]
o
1. Expand the
g
globalo:3 - 2. Expand the Block
B globalt: 246888 Sections until you
| e i
e B
ey
o
T

lobald: ~—— The value held
) | bygobay

OEBPS/Images/11fig14_alt.jpg
Code

Code for Function 0

Code for Function 1

Code for Function 2

Data

Initialization data for memory

Custom sections

Any kind of data

Data to load into the
| — linear memory during
instantiation

OEBPS/Images/app05fig01_alt.jpg
1. Flace the contents
of listing E.1 here.

£
Wa7/ eampe [simpl][Downiona

\fm.u.
(type Stypeo (func (paras 132) (result 132)))
(expore Tese (func ©))

T
5| (func (paran sparam 132) (result 132)
5 (local sresult 132)
s

get_local sparan

5 ot o - -
10 4 » ,
s
I const wassInstance = new Vebhssenbly. Instance Gasarodute, || 10
2 console. log(wasmlnstance. exports. Test(4)); \
2
2. Place your JavaSecript 3. The return value
in this pane. Adjust the from the Test call

wila piseed o Tk, To placed heve.

OEBPS/Images/app01fig05_alt.jpg
The list of media types
A) File Edit Selection View/ Go mimetypespy-Vi.. — o X
@ mimetypespy X m
ava 0 Tnese, please Keep Tnem SOrTe
206 *application/octet-stream',
407 .a "application/postscript’,
408 ‘.aif' : ‘audio/x-aiff’,
409 ‘.aifc’ @ 'audio/x-aiff’,
a10 ‘.aiff' : audio/x-aiff’,
a1 tau' : ‘audio/basic’,
412 ‘.avi' : 'video/x-msvideo', i
13 ‘.bat* : 'text/plain’,
414 '.bepio’ : 'application/x-bcpio’,
215 ‘.bin* : ‘application/octet-stream’,

416 .bmp' : "image/x-ms-bmp',

OEBPS/Images/08fig11_alt.jpg
Ervors about NULL being
undefined can be ignored.

88 Command Prompt \ - o x

IF Civati, product s o «uu) 1 (aruy Tength == &)

~

i 7
alidate_order.cpp:59:9: error: use of undeclared identifier("atoi
e

if (atoi(quantity) <= @) N -\

2 errors ienmnd

\WebAssembly\Chapter 8\8.1 EmDynamicLibraries\source>a

Astandard C library
function used by the code

OEBPS/Images/04fig07_alt.jpg
Files are copied to the server
for use in the browser.

Browser

validate js

AN

Validation logic

lidate. -
aldatewasm (validate.wasm validate.js)

OEBPS/Images/07fig16_alt.jpg
VAT UL PR S N

modules

JavaScript files aren't generated,

aren't included with side modules

/

| wpimec
calculate_primes.c
Ll fna primes.c
. Emscripten generates two
WebAssembly files as
from is_prime.c and find_primes.c.
s pime.c
e Emsorpten

3. WebAssembly fles are
copied to the server for
use by the browser.

Wasm

1 Browser

JavaSy(pt fie

4. HTML and JavaScript files
are created to load, link,

and interact with the modules.

/

is_primewasm

find_primes wasm

OEBPS/Images/03fig17_alt.jpg
1. CA++ code Z. Emscripten generates only 3. Create HIML hile and write

is written. the WebAssembly file. JavaScript to load Wasm file.
\ |)
/

v re
N f N

cioes Emscripten Wasm HTML || Javaseript

OEBPS/Images/03fig09_alt.jpg
€5 C O O wno %

emscripten i R e e (S

rine nusbers between 3 and 1000007
719,23 20 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
1511157 163 167173 179 181191 193 197 199 213 223 227 229 233 239 241 251 257 263
281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409

433 430 443 49 457 461 463 do7 470 487 491 499 303 300 571 523 341 547 357 363 369
593 599 601 607 613 617 619 631 641 643 659 661 673 677 683 691 701 709 719
743 753 757 761 769 773 787 797 805 11 827 829 830 853 857 859 863 877 881
911 925 920 937 941 947 953 967 O71 977 957 20091013 1019 1022 1031 1033

OEBPS/Images/app03fig09_alt.jpg
emscripten Resize canvas Lockiide mouse poiner | Fulscieen

OEBPS/Images/09fig01_alt.jpg
€ X | @ localhost:8080/unresponsive.html R

The browser is prompting the user to see P
if they want to terminate the script because —
il b tss e s reRoRiN.:

OEBPS/Images/13fig06_alt.jpg
188 Command Prompt

:\HebAssembly\Chapter 13\13.2 tests>npm test tests.js

tests@l1.0.0 test C:\HebAssembly\Chapter 13\13.2 tests
mocha "tests.js"

Testing the validate.wasm module from chapter 4
Both tests passed. V Pass an empty string

V Pass a string that's too long

2 passing (46ms)

OEBPS/Images/06fig11_alt.jpg
Desktop application written in C++

1. Adjust the header files so
that the code can be Validation logic
compiled as a side module. (validate.cpp)

OEBPS/Images/05fig06_alt.jpg
Validation logic
(validate.cpp)

JavaScript

for
Emscripten’s
library

Emscripten

2. Define a JavaScript function
for the C++ code to call. Wil
be included in Emscripten’s
generated JavaScript file.

OEBPS/Images/02fig01_alt.jpg
. List of

unique function
signatures used
in the module

Ttems to be —
imported

Listof all
functions in
the module

. An array

of references
to items like
functions

. The module’s —

inear memory

5 & YYRRRSSATNINY IMOGULS and s bulit
according to version 1 of the WebAssembly binary format.

- mmm

o

e
1, Type
e
e =
0-0 (|
= =
== =
| E—
e
i =
= "
e
L L ‘Code for Function 2
=
s Custom sections
e

6. The module’s
global variables

7. Items that will be
exposed to the host

8. Anindex to a function
in the module that il
be called automatically
once the modle has
been nitialized

9. Data to load into the
Table section during
instantiation

10. The body of each
function defined
the Function se

~~11. Data to load into the
linear memory during
instantiation

OEBPS/Images/10fig05_alt.jpg
Desktop application witen in C++

Valdation ogic
(valdate.cpp)

Flles are copled to the server
for use by the browser
and server code.

Emscriplen [—={ validatejs || vaidate.wasm
Validation ogic. Vaidation logic
(validate.wasm validate s) (validate.wasm validate s)

Py

OEBPS/Images/11fig10_alt.jpg
Global

Global variables

Export

"add", Function 0

Items that will be
exposed to the host

OEBPS/Images/07fig12_alt.jpg
1. Create the logic that will
talk to the side module.

/

Emscripten

Wasm
main module
(main.wasm)

mainjs.

main bt

OEBPS/Images/f0425-01_alt.jpg
e

Vi preambu

5 & VYRRRSSAINRNY MoGuUle and &

according to version 1 of the WebAssembly binary format.

1. List of
unique function —
signatures used
in the module

2. Items to be -
imported

3. List of all
functions in
the module

4. An array
of references —
toitems like
functions

. The module’s ~
inear memory

Modue

vesen[1]

ey

e
1, Type
wm
e =
0-0 [_easFunctono__|
= =
Function Element
| E—
T
o =
- e
.
Ll ‘Code for Function 2
=
4] Custom sections
e
; =

6.The module’s
" global variables

7. Items that will be
exposed to the host

8. Anindex to a function
in the module that will
be called automaticall
once the module has
been initialized

9. Data to load into the
Table section during
instantiation

10. The body of each
function defined
the Function se

~~11. Data to load into the
linear memory during
instantiation

OEBPS/Images/11fig06_alt.jpg
1. Create the game’s core logic
using the WebAssembly
text format.

\

‘WebAssembly

cards.wast

Binary Toolkit

cards.wasm

OEBPS/Images/04fig03_alt.jpg
Browser

Website asks for information

Y

User enters some information
and presses the Save button

The data is passed
to the server

No

An error message is displayed

OEBPS/Images/08fig15_alt.jpg
[Place Order x +

<« C 0t @ locathosts0:

e o <

Place Order

Product:

Men's Relaxed Classic Fit Flat Front Pant ¢

The new Place Order form
Quantity:

1

OEBPS/Images/07fig08_alt.jpg
. Emscripten generates the

WebHssembly file as a main
module and also generates
the HTML fle.
3
v

main.cpp.

The standard

Clibrary functions
will be included.

J

¥

Emscripten

Wasm
main module
(main wasm)

mainis.

main bt

OEBPS/Images/12fig07_alt.jpg
cards.wasm

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes. T I

cards.wasm

main.wasm

Browser

OEBPS/Images/08fig02_alt.jpg
1. A module logic that's 4. A module
specific to the web page common logic
\
P \. s
Validatevalue
Validatenane
Totatnarray

— =

Side module Main module

validateNane Validatevalue 3. At runt

e, Emscripten
ll link the side module
to the main module. Both
Istatnarray will act as one.

OEBPS/Images/10fig16_alt.jpg
&8 Command Prompt - o X

:\ebAssembly\Chapter 16\10.4.4 SideModule
lejs_validate.js
Product Name must be provided.

The validation
error message

:\lebAssembly\Chapter 10\10.4.4 SideModule

OEBPS/Images/05fig10_alt.jpg
& ITERIS'S B Fowe With the Weer's
entry, an error message is passed

1. Emscripten s asked to call o a function you've defined in
the ValidateName function. Emscripten's JavaScript.
|
YourJavaSeript Emscipien JavaSaript
validatetane ccant

sotErrorHossage

Updateiostaboutrror [+

[ereor exrorpointer
4.The message is 3.The message i read from the
displayed to the user. ‘module's memory and passed

t0 2 method in your main
Dilcrit-code.

OEBPS/Images/app03fig02_alt.jpg
nouse pointer | Fulkcresn

emscripten —

OEBPS/Images/06fig07_alt.jpg
1. Pass a callback function
to Emscripten.

4. Ask Emscripten to call the
ValidateName function.

Module

Validatetame

Your JavaSeript Emscripten JavaScript
~
ongrror
validateNane addpunction
ccall
onerror onBrror
| errorpointer

\
4. The message is read from
the module’s memory and
then displayed to the user.

3. If there’s an issue with the user’s
entry, an error message is passed
1 the Banction yeu've speciiell.

OEBPS/Images/12fig24_alt.jpg
3. Use the WebAssembly Binary
Toolkit to generate the Wasm
file from the text format.

)

cards.wast

‘WebAssembly
Binary Toolkit

cards.wasm

OEBPS/Images/09fig05_alt.jpg
1. Adjust the logic to determine
how long it takes the
calculations to complete.

/

calculate_primes.cpp

Emscripten

Wasm
file

JavaScript
fie

OEBPS/Images/10fig02_alt.jpg
Noade.Js

Data is received An error message is
from the browser returned to the browser

I

No

Yes

Process the data (save
to a database, for example)

OEBPS/Images/08fig17_alt.jpg
[Fragment identifier

@ Edit Product x |+ x

€ 5> C O O loclosta0soindexh rder) LK)

Place Order

Product;

Men's Relaxed Classic it Flat Front Pant

Quantity:

0

Add

OEBPS/Images/04fig01_alt.jpg
D it Product x4

€ 2 C (0 O localhost8080/editproducthtml

Edit Product

Name:

Women's Mid Rise Skinny Jeans

Category:

Jeans

o

OEBPS/Images/03fig21_alt.jpg
B locahost80BDside mocuiehtml X | + B

€ > C 0 O localhost8080/side modulehtml % 0

HTML page I created for my WebAssembly module.

(R] | Eements Comsole Souces Network

Memoy Audts » =
E oo v ®| Fiter Defautevets)
1 ide module.ntal:28
%

The result of passing 17 to the

o s b

OEBPS/Images/01fig02_alt.jpg
ot o b
D o
C++ = Wasm Wasm [——=| 01110001001...
i T
C++ compiled to WebAssembly binary

WebAssembly binary

compiled to machine code

OEBPS/Images/13fig03_alt.jpg
tests.js

Use the same tests
for both the command —
line and browsers. e

e
tests.html

3. Create an HTML page
that loads your tests.

OEBPS/Images/08fig09_alt.jpg
Astandard L [rary
function used by the code

{

- 0 x

B Command Prompt \
Webassenbly\Chapter 8\8.1 EndynamicLibraries\sourcesencc\validate_produc

t.cpp -5 SIDE_MODULE=2 -O1 -o validate_product.uasm

validate_prodict.cppi31:9: error: use of undeclared identifier((
if (strlen(nane) > maxinun_length)

validate product.cpp:53:32: error: use of undeclared identifie(”
NULL) || (array_length == @)) -

1f ((valid_category_ids
2 errors iangrnmd
\WebAssembly\Chapter 8\8.1 EmDynamicLibraries\source>e

Errors about NULL being
undefined can be ignored.

OEBPS/Images/12fig21_alt.jpg
Congratulations!

Good job! You've completed
level 1 wi @ *7— 4. Pass the number of tries to

the summary screen when the
C e

OEBPS/Images/06fig04_alt.jpg
Desktop application written in C++

1. Modify to receive function
pointers for success and . Validation logic
error callbacks. (validate.cpp)

OEBPS/Images/07fig20_alt.jpg
| D ooronomomne X
€ 2> C 00 O localhost:8080/main.htmi

HTML page I created for my WebAssembly module.

The prime numbers }G @] | Elements Console Sources Network Memory

that have been found | [© | op v| ® | Fiter
between 3 and 100 s

u
3
7
)
3
2
B
37
a
a3
a7
53
B
&
67

OEBPS/Images/06fig14_alt.jpg
D errodr x o+

C O O loclnosts080/edtproducthim

Validation error Edit Product

when a category
jan't selected | |~ | The selected Procut Category is not valid.

Ner

Women's

id Rise Skinny Jeans.

Category:

OEBPS/Images/05fig16_alt.jpg
Validation error
when a category —_|
isn't selected

D eaposc x o+

€ 5 C 0 O lchostasdediproducthim

Edit Product

[+ The selected Product Category is not valid.

Name:

Women's Mid Rise Skinny Jeans

Category:

OEBPS/Images/app01fig01_alt.jpg
Python 2.7.13
is installed. e

File Edit View Search

wasm> python -V
Python 2.7.13
wasm>

Terminal

Help

OEBPS/Images/app03fig04_alt.jpg
co

use pointer | Fulkcreen

emscripten Resize canvas @ Lockhid

OEBPS/Images/07fig02_alt.jpg
Emscripten generates a YvebAssembily
side module that will be linked to a
main module at runtime.

‘The generated javadcript file and standard C library
functions in the module aren’t included because
they'll be included with the main module.

i

CorGrfile Emscripten

Was file

JavaSypt fie

OEBPS/Images/03fig13_alt.jpg
€ 4 [l«Chapter3s 35jsplumbing v O Seach35js plumbing

Name Tipe Size
@ caeuteprimes Csource 216
3 — Ivascrit e s
[. plambingsnasm WaSM e P

Jitems.

OEBPS/Images/12fig03_alt.jpg
1. Adjust the generatelards javadcript
function to receive the number of tries
to display when the level starts.

2. Create a Stris

\

v

game s

es global variable in the 3. Use the WebAssembly Binary

text format, and pass its value to the Toolkit to generate the Wasm
generateCards JavaScript function. le from the text format.
\ /
v ‘
‘WebAssembly
SRRV Binary Toolkit ‘coRds i
4. Copy the WebAssembly file to
the server for use by the browser, — T
and then test the changes.

cards wasm
mainwasm

S

OEBPS/Images/09fig11_alt.jpg
4. Emscripten generates the
‘WebAssembly files and also
generates the HTML file.

X

calculate_primes.cp.

Emscripten

Wasm
fle

JavaScript
fle

HTML
fle

OEBPS/Images/03fig07_alt.jpg
11 1171 34 htmi template.
Home he view
€ o e Chop s danmiempate v O
Hame - e
9 cleuste primes.c. CSource
the vty JJhimitempisterint ML Fie
generated { (] hem tempistejs Iavcript File
les [b template wasm WaSM File

Aivems.

Search 3.4 htm_template
Size

218
10268
103%8

21

OEBPS/Images/04fig13_alt.jpg
D tonmodict PR
€5 C 0 O cmossetpodnm P
Validation error Edit Product
when the name —_|
is too long. [~ The Product Name s too long.
Name:

thisis 2 very long product name to test the validation logic which sh

Category

Jeans

OEBPS/Images/app03fig10_alt.jpg
emscripten Resize canvas Lockiide mouse poiner | Fulscieen

OEBPS/Images/11fig15_alt.jpg
2. The WebAssembly Binary loolkit generates

the Wasm file from the text format.

\

cards.wast

WebAssembly

Binary Toolkit

cards.wasm

OEBPS/Images/08fig05_alt.jpg
1. Move edit-product-specific
Togic to its own file.

T

Validation logic
(validate.cpp)

Common logic:
(validate_core.cpp)

€t Product
(validate_product.cpp)

OEBPS/Images/12fig15_alt.jpg
e R

< C | @ lochos =+ @ | »

Wasm Match

~ Something isn’t working properly,
T g g properly

so your game isn’t being displaye

Level: 1 Tries:

OEBPS/Images/07fig17_alt.jpg
1. 3plit the logic into two files.

calculate_primes.c

I

—

is_prime.c

find_primes.c

OEBPS/Images/10fig12_alt.jpg
Li ‘Command Prompt = o X

:\WebAssembly\Chapter 16\16.4.2 SideModule\backend

The validation

mﬂmmm\ !The selected Product Category is not valid.

F :\WebAssembly\Chapter 10\10.4.2 SideModule\backend

OEBPS/Images/02fig05.jpg
ArrayBuffer

Linear memory

OEBPS/Images/05fig01_alt.jpg
4. Emscripten Is asked to call
the ValidateName function.

1. A buffer is allocated in The buffer is included as
the module’s memory. a parameter.
|)
Your JavaScript Emscripten JavaScript /
] o
/
\ [
4. The error is read from the 3. If there’s an issue with the
‘module’s memory and user's entry, an error message

dsnbaad i the msir: [rageradeary sy ey

OEBPS/Images/13fig07_alt.jpg
@ MochaTests x|+
€ > C 00 O localhost8080/testshtm!

- o X

* @ i

passes: 2 faiures: 0 duration: 0.01s | 100%

Testing the validate.wasm module from chapter 4

/ Pass an empty sting
/ / Pass astring thats too long.

{

Sadli ot e .

OEBPS/Images/08fig12_alt.jpg
4
—

mergeinto s

Define a Javadcript function for the
C++ code to call. It will be included

Emscripten’s generated JavaScript file.

Common logic

(valdate_core.cpp)

Emscripten

Wasm
validate_core

JavaScript
validate_core

OEBPS/Images/01fig06_alt.jpg
Indicates that this is a VVebAssembly module
| and which version of the WebAssembly binary
format was used
Type
Import
Function
Table
Memory
e Known sections
che (all are optional)
Export
Start
Element
Code
Data
Aoy Kind ot dets Custom sections
(optional)

OEBPS/Images/pub.jpg

OEBPS/Images/app03fig08_alt.jpg
a n-Gener x4

€5 C O Ooa

P
"2 emscripten Roszo canvas @ Lockid mouso poter [Fuisen

OEBPS/Images/12fig19_alt.jpg
1. Click t

DEbugong & WRDASESMILY IMOGLES Using TINNTOCS OQper foces

tab to view the files that

have been loaded for the web page.

2. The WebMissembly
file of interest —_,

@ Developer Tooks - Wasm Matoh
R O ispector 63 Console O Debugger () Soekitor (D beror (]

» 3 moz-extension://89426ech-1 00000361

» @ rsourcesire —
3. Click the line. / \oo0se3r
number to set S—

abreakpoint.

Buttons to step
through the code
when a breakpoint
is hit

localhost900/gamentml — O

)
(func szsrirstcard (;15;) (param svarel

x

(local svarz £32) (local Svar3 $32)

get_global Sglobals
getTlocal svare.
i327eg

set local svar2
getCglobal sglobals.
getlocal svard
e

set local svars
getTlocal svar2
getTlocal svars
Dz

Sources. Outline @ cordswasm x
~ €9 localhost:8080 00000348
w5
=
=
0 gamentm L]
e —
oo =
1) main.wasm Sas.
=
» €9 sjax.googleapis.com ‘ee00e3s3.
ol ==
) e, |
€3 maxcdn.bootstrapcdn. |

)
(func ssecondcardselectedcallback
(local sware 132)
get_global. Sglobals.
et gloval sglovaliz
ey
i
et global sglovaly
get_globol sglobals
et globol sglovalie
get_global sglobalit
T snemovecards.
get_global sglobals
Samlonst 1
ey

set global sglobals

Gae,

B

OEBPS/Images/05fig11_alt.jpg
1. Your code calls the
ValidateName function.

3. The message is read
from the module’s —_
‘memory and then
displayed to the user.

Your JavaSeript

validateName

4. W there's an [ssue with the
user's entry, an error message
is passed to a function you've
defined in your JavaScript.

Updatetostabouterror

setBrroressage

errorpointer

OEBPS/Images/02fig04_alt.jpg
Table section

Ask for the item at

dex 0 to be called. 2 00000100

‘WebAssembly calls the
2 «— item at this address on
the code’s behalf.

Index

Device memory
0 1234567891011

OEBPS/Images/07fig07_alt.jpg
3. Lreate the logic for the main module.
This will call d1open to link to the

side module.

main.cpp

Emscripten

Wasm
‘main module
(mainwasm)

mainjs

main htmi

OEBPS/Images/12fig10_alt.jpg
1. Add a Javascript function to receive the
tries value from the module and then
update the web page with the value.

gamejs.

2. Adjust the text format to increment
the $txries value when the player clicks 3. Use the WebAssembly Binary

the second card. Pass the value o the Toolkitto generate the Wasm
new JavaScript function. file from the text format.
\ ~
V
WebAssemtly
cards.wast Binary Tookit cards.wasm

4. Copy the WebAssembly file to

the server for use by the browser, — W—’
and then test the changes.

cards.wasm
main.wasm

- R———

OEBPS/Images/app01fig06_alt.jpg
~/Desktop/emsdk-master

wasm> emsdk list

The following precompiled tool packages are available for download:
clang-upstrean-37625-64bit
enscripten-upstrean-37025-64bit
binaryen-upstrean-37025-64bit
clang-e1.37.1-64bit
clang-e1.38.15-64bit

* clang-e1.38.16-64bit INSTALLED
node-4.1.1-32bit
node-4.1.1-64bit
node-8.9.1-32bit
* node-8.9.1-64bit INSTALLED
emscripten-1.30.0
enscripten-1.34.1
enscripten-1.35.0
emscripten-1.37.1
enscripten-1.38.15
ipten-1.38.16

OEBPS/Images/10fig06_alt.jpg
B Command Prompt - o x

C:\WebAssembly\Chapter 10\10.3.2 JsPlumbing\backend>t

The validation

A Product Name must be provided.
error message

C:\WebAssembly\Chapter 10\10.3.2 IsPlumbing\backend>

OEBPS/Images/09fig09_alt.jpg
The total duration —____

of the calculations

The prime numbers that
were found between
3 and 1,000,000

2 localhost8080/prefetchhtml X | 4

€ > C 0 O localhostB080/prefetchhtmi

HTML page I created for my WebAssembly module.

R A | Elements
[O | top
Prire nusp

The values foun

Console Sources Network Performance
v | @ | Fiter

De

Primes took 101.770001 milliseconds to execute

357111317 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
53 59 97 101 103 107 109 113 127 131 137 139 149 151 157 163

197 199 211 223 227
317 331 337 347 389
249 257 251 463 367
593 599 601 607 613
727 733 739 743 751
853 877 881 883 887
1019 1021 1031 1033
1123 1129 1151 1153
1259 1277 1279 1283
1399 1409 1423 1427

229 233 239 201 251 257
353 359 367 373 379 383
479 87 491 499 503 509
617 619 631 641 643 647
757 761 769 773 787 797
967 911 919 929 937 941
1039 1049 1051 1061 1063
1163 1171 1181 1187 1193
1289 1291 1297 1301 1303
1420 1433 1439 1447 1451

263 269 271 277
389 397 401 209
521 523 541 547
653 659 661 673
809 811 821 823
947 953 967 971
1069 1087 1091
1201 1213 1217
1307 1319 1321
1453 1859 1471

OEBPS/Images/09fig10_alt.jpg
1. Adjust the logic to create four
pthreads to look for prime
numbers in a given range.

/

4. Emscripten generates the
‘WebAssembly files and also
generates the HTML file.

/

calculate_primes.cpp

Emscipten

Wasm
fle

Javascript
fle

HTML
fle

OEBPS/Images/11fig11_alt.jpg
Global

Global variables

Export

"add", Function 0

Start

Function 1

A function in the
module that will be
called automatically
once the module has
been instantiated

OEBPS/Images/11fig08.jpg
Module

Version

Type

(i32, i32) — (i32)

(i64, 164) — ()

0—0

Items to be
BN Import

imported ha

"mathlib", "multiply", Type 0

OEBPS/Images/11fig09.jpg
Global

Global variables

The module’s
global variables

OEBPS/Images/04fig06_alt.jpg
[it Product x [

€ > C 3 O localhost8080/editproducthtml

Edit Product

Name:

Women's Mid Rise Skinny Jeans

Category:

Jeans

o

OEBPS/Images/12fig08_alt.jpg
<«

C' | ® localho: @ »| =

WaSm M atch Because a value is shown,

_— you know that the changes
Level: 1 Tries: 0 «— | you made are working.

OEBPS/Images/08fig01_alt.jpg
D) Place Order x |+

%

C 3 @ localhost:8080/index.ht

ler

Place Order

Product:

Men's Relaxed Classic Fit Flat Front Pant

Quantity:

.

OEBPS/Images/06fig08_alt.jpg
D errrodt x o+

€5 C O O locahostsos/ediproducthtm %

Validation error Edit Product

when the name —_|
is too long. [~ The Product Name s too long.

Name:

s a very long product name to test the validation logic. we shoul

Category:

Jeans

OEBPS/Images/01fig04.jpg
C++

Rust

Frontend WebAssembly backend

OEBPS/Images/06fig10_alt.jpg
1. Your code calls the 2. The appropriate callback function is
ValidateName called depending on whether there

function.

was an issue with the user’s entry.

Your JavaScript Module
validateName

OEBPS/Images/01fig03.jpg
[o] 1 x86

C++ |—

il

Rust ARM

Frontend Backend

OEBPS/Images/01fig05.jpg

OEBPS/Images/09fig15_alt.jpg
- 2 Emscripten-Generated Code l-

C' | ® localhost:8080/pthread 2

25889
25951
26029
26119

“@203

)
LErro L warnings [Logs Linto [Debuo BEECIREINER Y

Prine nusbers between 3 and 1000000

The total duration

of the calculations » S Findprines took 35.000900 milliseconds to execute

he values found

59 61 67 71 pthread

The prime numbers that —
o

were found between
3 and 1,000,000

OEBPS/Images/12fig25_alt.jpg
1. Faste the contents of

4. Click the Download button, and

Your cards.wast file. save the file as cards.wasm.

!

o —

BUILDLOG

NG o oo

a
7 (rune sotopextievel

St ger_glonsd scurrenc_level
G fmcome s

90 2

1 anl e

)

526 (o seatn

95 tnconst 1

S ol solsyiever

wl [l

s p— >

s

OEBPS/Images/11fig05_alt.jpg
100 (PR S 19 & STRSURNST SHORSE A o -
according to version 1 o the WebAssembly binary format.
\ | ot
(1] - 6 Mmoo
e Flobal variables
EED
¢ 7. Items thatwill be
(64,800 D exposed to the host
0-0 [runciono]

8. An index to a functi
in the module that will
be called automatically
once the module has

vt been initialzed
themodule 4 Type 0 ntazabon i o T
Type2
4. array Tpe 1 coto ™ 9. Data to load into the
ofreferences —_ Codetis Rayano Table section during
toitems ke Tate e instantiation
functions elorFuncien
SO0 Codo forFuncion 2
10. The bady of each
oaa

“ function defined in

N [istzaton da ormemor] the Function section
linear memory "/
ar memory Custom sactons ~11. Data to load into the

oy i of Gt ear memory during

=

OEBPS/Images/03fig20_alt.jpg
View

« © 4 [« Chapte.. > 36side_module v O] | Search 36 side.module

Name -

ety | B temodiec
The
ﬁfmw"f gl T
e

2items.

Type Size
CSource 18
WASM File 18

OEBPS/Images/07fig13_alt.jpg
Emscripten

"2, Define the JavaSript to tell
Emscripten to dynamically
ke ot dlie asibile

Wasm
main module
(main.wasm)

mainjs.

main htmi

OEBPS/Images/common1.jpg

OEBPS/Images/05fig05_alt.jpg
Desktop application written in C++

1. Modify to no longer receive a buffer.
Instead, call a JavaScript function if Validation logic
there’s an issue with the validation. (validate.cpp)

OEBPS/Images/app03fig01.jpg
WebAssembly code isn’t
working as expected

v

Code review doesn’t
yield any answers

v

Emscripten macros added to
write data to the browser’s
console or display an alert

Code is fixed and
macros removed

OEBPS/Images/12fig22_alt.jpg
1. Update the levelComplete function to accept
atries parameter. Then adjust the summary
screen’s text to include the number of tries.

gamejs
Adjust the text format to pass the 3. Use the WebAssembly Binary
stries value to the levelComplete Toolkit to generate the Wasm
JavaSeript function. file from the text format.
WebAssembly
cards.wast st cardswasm
4. Copy the WebAssembly file to
the server for use by the browser, —_ ﬁr‘
and then test the changes.

cards.wasm
main.wasm

[

OEBPS/Images/06fig05_alt.jpg
Validation log
(validate.cpp)

4. Emscripten is asked to generate

the WebAssembly and
JavaSeript files.

Emscripten ——>

validate js

validate wasm

OEBPS/Images/04fig02_alt.jpg
Emscripten is asked to generate es are copled to the
the WebAssembly and JavaScript server for use by the
files from validate.cpp. browser and server code.

Deskiop applicaton witen n C++ /

Valdation logic

Emscriplen [~ validatejs || validatewasm

(validate.wasm validate s) aldate wasm valdats

Valdation logc l Veldation fog

[

OEBPS/Images/06fig13_alt.jpg
3. File is copied to the
server for usein —__
the browser.

Validation logic

(validate.wasm)

Browser

OEBPS/Images/08fig16_alt.jpg
Fragment identifier

tProduct x

< C 0 ©® localhost:3080,

Place Order

Place Order

Product:

Men’s Relaxed Classic Fit Flat Front Pant

Quantity:

0

OEBPS/Images/12fig06_alt.jpg
The contents of your

cards.wast file A compilation error
)
(WaTexample: simple +][Download | BULDLOG 4
31 (fenc SPlaytevel (param Slevel §32) &
S e st ety o s i,
323 call Sinfeializecands. S ———
s s
e atont st
et st
g seres
| ek st "
el
B2 (e st (areesrox) e
33| 5 o s el for s card i e o
a5 ascion o conm + ot
- Miperl
336 | I % >
s

OEBPS/Images/10fig11_alt.jpg
Emscripten generates Flle Is copied to the server
only the WebAssembly for use by the browser

)) file from validate.cpp. and server code.
Deskiop applicaton writen in C++ /

Validation logic. i o
(vlideio:cpp) Emscripten alidate was

Validation logic. Validation logic
(validate wasm) (validate wasm)

Wiikian v

OEBPS/Images/app03fig03_alt.jpg
€->cao

I T e

OEBPS/Images/12fig14_alt.jpg
cards.wasm

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes. T I

cards.wasm

main.wasm

Browser

OEBPS/Images/03fig12_alt.jpg
2. Emscripten generates
WebAssembly, and
JavaScript files.

/

CIC++

[

——= Emscripten

JavaScript

Wasm

OEBPS/Images/07fig03_alt.jpg
Emscripten generates a WebAssembly
main module that can link to side
modules at runtime.

X,

CorCu+file

Emscripten

‘The standard C library
functions will be included.

\

Wasm file

JavaScript file

OEBPS/Images/05fig07_alt.jpg
Validation logic
(validate.cpp)

JavaScript
for
Emscripten’s
library

3. Emscripten is asked to generate

the WebAssembly and
JavaScript files.

Emscripten

| validatejs

validate wasm

OEBPS/Images/07fig11_alt.jpg
1. Create the logic that will

3. Emscripten generates the
‘WebAssembly file as a main

module and also generates

talk to lh‘e side module. the HTML file.
! /
P JE—
N
weis

"2, Define the Javascript to tell

Emscripten to dynamically
Bl sk i otk

Wasm
main module
(mainwasm)

mainjs.

main.himi

OEBPS/Images/09fig06_alt.jpg
4. Emscripten generates the
WebAssembly files from
calculate_primes.cpp.

/

calculate_primes.cpp

Emscripten

Wasm
file

JavaScript
file

OEBPS/Images/03fig04_alt.jpg
4. Emscripten generates

1. C/C++ code WebAssembly, HTML, 3. Open HTML file in a
is written, and JavaScript files. browser to view results.
¥ 4
r O

e Emscripten HTML || Javascrpt || Wasm

OEBPS/Images/01fig01_alt.jpg
Browser

JavaScript

function add(a, b){
return (a + b); 01110001001.. .

¥

|
JavaScript compiled
¥ nsackray aids.

OEBPS/Images/09fig14_alt.jpg
1. Enter the search value |

to filter the list.

&) > C | ©Fi.ox aboutconfig o »

=

Search: | © jovascriptoptions shared

®

Preference Name a | stats | pe | Vae |m)

ipt.options.shared_ memory default _boolean _false

2. Double-click the list item, or right-click
the list item and choose Togle from the
kbt mw. S oaablo/ihe s,

OEBPS/Images/08fig08_alt.jpg
Emscripten generates a WebAssembly file
as a side module from validate_product.cpp.

Edit Product
(validate_product.cpp)

‘The generated javadcript file and
standard C library functions aren't
included with side modules.

N

Wasm

Emscripten

Javaséiipt

OEBPS/Images/11fig16_alt.jpg
1. Replace the contents of this pane with 4. Download the
the contents of your cards.wast fil

/

WebAssembly file.

wn e (sl <]

(module

Types

N3, 3 signatures of fnctions both defined in th
(type SFUNCSIGSY (func))
7 (type SFUNCSIGSVL (func (param 132)))

3 (type SFUNCSIGSvii (func (param 132 132)))

9 (type SFUNCSIGSviii (func (param 132 132 132);
10 (type SFUNCSIGSViii (func (param 132 132 i32
11 (type SFUNCSIGSii (func (param 132) (result i:
12 (type SFUNCSIGSiii (func (parem 132 132) (rest
13

1
2
3
.
s
7

|« — 3
Js JSLO
1 const wasalnstance = B
2 new ebAssembly. Instance (vasmodule, {)); | 2
3 const { addTwo } = wasmInstance.exports; s
A »He

OEBPS/Images/04fig09_alt.jpg
Emscripten is asked to generate

only the WebAssembly file
from validate.cpp.
Desiop applicaion wilen n C++ /
File s copied to the server
Validation I for use by the browser

Validation logic:
(validate wasm) (valdate.wasm

[R—— Server

OEBPS/Images/07fig18_alt.jpg
2. Emscripten generates two
WebAssembly files as side modules
from is_prime.c and find_primes.c.

\
v

s_prime.c
find_primes.c

Javascript files aren't generated,
and standard C library functions
aren'tincluded with side modules.

/

Emscripten

Wasm

JavaSi(pt ie

OEBPS/Images/05fig15_alt.jpg
3. File is copied to the
server for usein —
the browser.

Validation logic

(validate.wasm)

Browser

OEBPS/Images/app01fig04_alt.jpg
& Command Prompt L o

:\Python27\Lib>type

ind "wasm'
e Ceptiaton)

WebAssembly’s media
type is defined.

C:\Python27\Lib>,

OEBPS/Images/12fig02_alt.jpg
1. Adjust the HIML to include a
section for me number of tries.

Wasm Match

Wasm Match
Level <«

2. Adjust the code to display the number
of tries when the level starts.

3. Add code to increment the number of tries

|~ when the player clcks the second card.

4. Pass the number of tries to
the summary screen when the
player completes the level.

e

Congratulations!

Good job! You've completed.
level 1 wit]

OEBPS/Images/03fig19_alt.jpg
2. Emscripten generates
only the WebAssembly file.

/

CIC++

/

——| Emscripten [——

Wasm

OEBPS/Images/app03fig07_alt.jpg
<]

powersddy
£ emscripten

OEBPS/Images/13fig04_alt.jpg
Use the same tests

tests js

for both the command —__

line and browsers.

Y

tests.html

4. Run your tests in
the browsers you
intend to support.

OEBPS/Images/11fig01_alt.jpg
The WebAssembly
file selected e

A breakpoint placed in

the _validateName —|

Eactnn:

@ Developer Tools - Edit Product - http://localhost:8080/editproduct html
@ O inspector () Console [Debugger {} Style Editor (D

Sources. Outline [validatewasm x
ooooeste return

~ € localhost:5080

oooees12 (func sfuncis (param svare|

B 0000312 (local $var3 132) (local
11

15 validatejs

09000419
0000418
00000410
00000417
ooveoaze set_global Sglobalis

» €8 ajaxgoogleapis.com
» € cdnjs.cloudflare.com

» 6 micanbootmapeancon|| SO0 Lo spimie
onnansrn <
< > O 4540

OEBPS/Images/10fig07_alt.jpg
B8 Command Prompt - o X

(C:\WebAssembly\Chapter 10\16.3.3 EmJsLibrary\backend>

The validation

s
2k mssm\» The selected Product Category is not valid.

C:\WebAssenbly\Chapter 16\10.3.3 EmJsLibrary\backends,

OEBPS/Images/11fig12_alt.jpg
List of all functions
in the module

—

p—
=
Type
s =
0—-0 "add", Function 0

St

Functon 1

Iniialzation data for Tablo
cote |

00000100

God for Functon 0
Gode for Functon 1

Godofor Functon 2.

Data

Mamory.

niialzation data for Momory
Custom sections

Any kind of cata

Py

Szo

The body of each
function defined
the Function section

OEBPS/Images/03fig05.jpg
1. C/C+ + code
is written.

CIC++

OEBPS/Images/app05fig02_alt.jpg
1. Fince the contents
of listing E.6 here.

/
T/ example.[simpls v Download | BULDLOG

;\:mmu ‘ocacose: ces1 7354 3
2% (type stypee (func (parae £32) (result 132))) [oocoons: 200 snoo a
3 5 section “Type” (1)
4 (memory 1) eceens: o1
s P
& (expors “nesory” (senory 0)) oseen: o1
7| (expore “GetseringLengeh® (func 0)) s eype e
s oageon: 6o
9| (e (paran Sparam 132) (resule $32) P -
16 (local scount 132) ~ 1 « I
Js JSLOG
T Funciion copyString oReRery(vaioe, semaryOrteen) (X 7
5 const bytes = new UintsArray(vasmHesory.buffer
& bytes.set(new Textencoder() encode((value + "\6)),
7 memoryotfsen);
5y

o compivingraimi-sasting, o
11 conateLgtuminstand npare Gatingiangeh (1)

|

Place your JavaScript 3. The return value from
in this pane. Adjust the GetStringLength
prosapens iy ol s siicad e,

OEBPS/Images/02fig03_alt.jpg
List of unique

function signatures — Type section
in the I
used in the module o 2] o 022
(64,164 — ()
0=0 [—
Indiex The value in the
«— Function section
List o al functions ———_|__ Functon secion matches the index
in the module B Toed in the Type section.
1 Type 2
2 Type 1
The index in the
Indi
Function section — o ‘The body of each
matches the index o _—— function defined in
in the Code section. e | the Function section
0 [_Code for Function 0
=1 [Code for Function 1
2 Code for Function 2
Index

OEBPS/Images/03fig03.jpg
e |

L=

OEBPS/Images/03fig08.jpg
3. Open HIMLfileina
browser to view results.

I’

HTML JavaScript Wasm

OEBPS/Images/11fig21_alt.jpg
= @ @ O wane o =

Wasm Match

Level 3

Level 3 of the
card-matching —__
game i

OEBPS/Images/12fig18_alt.jpg
DElUgENg & YWLASSMIY MOMEN UHNG LOIME'S COVDPr DOk

1. Click this tab to view the files that
have been loaded for the web page.

4. Clck the line number
t0 set a breakpoint.

@ Devloois - localhost8080/game htm! - o x|
R) | Bemens Comole _Sources Network Wemory Audts » | i |
Page Fleoytem Overides [961220 % _waimss0eTc |
=) + [\ unc sseconaCaraselectescatloack ~
< 42 (oot 153) ‘
Py —— ST
W gamehtml 4 get_gloval 12
g s B
i game; HIl-
T mainis 7 et gionar 7
2. WebAssembly B camecss 8 getgional 8
A 5 gegio 1o
Todulisare it B ogosons 1 G 11
in the order they |, sy soogiespizcom n i
were loaded. + & ciconitresom B ens
FE ey
\ » & maxcsnbootsirapcdncom 1 i3l
. e i segio s
mainasm 7> C 16 etse

> B vasm 00015726
e e vasm 96T
I wasm-969871c2-10
i wasm-96a87i2-11
[wasm-96087ic2-12
s 9608TH2-13

cards.wasm

B vosm 96871214
B vasm 96871215

3. Built-in functions

7 getgloval 7
8 getglona 8
19 Sconst -1
» ez

2 gegional 10
2 getTgional 11
2 D2lconst -1
% cn2

5 ena

26 get_glooal 6

27 Dalconst 10

are listed based — e 3 De
on their index. 3 sergloom 6
30 getglonl 6
Bl
5. Buttons to 32 eumn el
step through — 0 ne4,Column's 5]
the code when a

Bewalacint fo hit ¥ o

Scope Watch

OEBPS/Images/05fig04_alt.jpg
V. Modily to o tonger receive £, befine a Javadcript unction

a buffer. Instead, call a for the C++ code to call. Will
JavaScript function if there’s be included in Emscripten’s
an issue with the validation. generated JavaScript file.
\ /et steda g
Deskiop applcation witen n G+ the WebAssembly and
L] JavaScript fies.

4. Files are copied to the

ey soaset / Leedoiacerkzin
(vaicate.cop) Eecuars browser and server code.

orary

Emscrpten || vaidate vasm

5. Create the web page, and
write the JavaScript code
o interact with the module.

.

Validation logic Valdatio
(validate wasm validato) aida

Browser X semer

The server aspect is
provdarctib gy ekl

OEBPS/Images/07fig14_alt.jpg
ipten generates the YebAssembly fite as
amain module and also generates the HTML file.

\

main.cpp.

Wasm

Emscripten

prejs

main module
(mainwasm)

mainis.

main html

x
|
The standard C library

functions will be included.

OEBPS/Images/03fig02.jpg
L
ft'

C++

Clang frontend Emscripten backend

OEBPS/Images/03fig01.jpg
Cc 1 x86

C++]

Rust f

ARM

Frontend Backend

OEBPS/Images/11fig04_alt.jpg
1. Create the game's core logic
using the WebAssembly

£ The yvebAssembiy Ginary
Toolkit generates the Wasm

text format. file from the text format.
\ / ™
WebAssembly
cards wast s cards wasm
The standard
4. Emscripten generates C ,"bl';"y ’r"d‘::"'s
3. Create the logic needed ‘the WebAssembly files / eincluded..
by the cards.wasm module. from main.cpp.
\ / ™
main.cpp Emscripten mainwasm || mainjs
5. WebAssembly fles are copied to

the server for use by the browser.

N
—

Browser

cards wasm
main.wasm
main s,

cards wasm

mainwasm

HTML and JavaScript are
__— created to load, link, and
interact with the modules.

OEBPS/Images/08fig13_alt.jpg
mergeintojs.

5. Emscripten generates the WebAssembly
files for validate_core.cpp
as a main modufe.

Common logic.
(validate_core.cpp)

/

Emscripten

-

Wasm
validate_core

JavaScript
validate_core

The standard C library
functions will be included.

OEBPS/Images/10fig14_alt.jpg
The validation
error message

8 Command Prompt - o X

C:\WebAssembly\Chapter 10\10.4.3 SideModuleCallingls
lidate.js
The Product Name is too long.

C:\WebAssembly\Chapter 10\10.4.3 SideModuleCallingls

OEBPS/Images/12fig09_alt.jpg
Wasm Match

B ace ~3. Add code to increment the
Level: 1 Tries: 1+ number of tries when the player

j . clicks the second card.

OEBPS/Images/07fig06_alt.jpg
2. Emscripten generates
the WebAssembly file
‘module.

v

calculate_primes.cpp.

The generated Javadcript Tile
and standard C library functions
aren't included with side modules.

/

Emscripten

Wasm side
‘module

JavaSyfpt ie

OEBPS/Images/08fig04_alt.jpg
iles are copied to the Wasm JavaScript

server for use by the

browser and server

code. \

1
Validation logic Validation logic
(Wasm and JavaScript) 2sm and JavaScript)
/v Browser (. Server
7. Adjust how the JavaScript The server aspect is

code interacts with the modules. discussed in a later chapter.

OEBPS/Images/12fig26_alt.jpg
4. Copy the WebAssembly file to

the server for use by the browser, —

and then test the changes.

cards.wasm

cards.wasm
main.wasm

Browser

OEBPS/Images/05fig12_alt.jpg
TH OO . i bt osd, ko
side_module_system_functions.h. only the WebAssembly fle.

/
ontop picionwitonin e+ /

{ 3.File is copied to the server

for use by the browser

Vaidaton logic
(validate wasm)

7 Browser 7 s

(
4. Adjust how the JavaScript code The server aspect is
Tatarncie will i molels. Womieei s i ki chanine

OEBPS/Images/06fig09_alt.jpg
1. Adjust the header files 50 that the code
can be compiled as a side module.

/

Deskiop appication witen n G+

4. Emscripten is asked o generate

Validation
(validate.cpp)

oy the WebAssembly fle.
‘ 3. File i copied to the server
for use by the browser
Emscrpten [valdate wasm and server code.

Validation ogic:
(valdate wasm)

=

(

4. Adjust how the JavaScript
o Ietariists wikh tow soiels:

Browser 7 serer

The server aspect is
iiamsel larn Tabis chisdiis

OEBPS/Images/app01fig07_alt.jpg
©) Gitub - jo/emsdlc Emscripten - X g

€ C O @ GitHub, Inc.[L| https//github.com.. % @

Signin ' Signup [

@Watch 40 desar 522 YRok 126

Insights

ases 42 22 contributors. s View license
_— =

1. Click this
g

Clone with HTTPS @

Use Git or checkout with SVN using the web URL
te the Windows envif * e o

hetps:/ /github. con/Ju3/emsdk. g1t [

Open in Desktop Download ZIP

https//githubicom/jujfemstk/archivefmastery

2 Then click
this button.

OEBPS/Images/cover.jpg
Gerard Gallant

OEBPS/Images/04fig05_alt.jpg
Emscripten is asked to generate
the WebAssembly and JavaScript
files from validate.cpp.

Desktop application written in C++

Validation logic
(validate.cpp)

Emscripten

validate js

validate. wasm

OEBPS/Images/11fig19_alt.jpg
The standard C library

4. Emscripten generates functions will be included.
the WebAssembly files
from main.cpp. f

main.cpp Emscripten mainwasm | | mainjs

OEBPS/Images/10fig03_alt.jpg
1. C/C++ code
is written.

cicer

£ Emscripten generates
WebAssembly and
JavaScript files.

3. Copy fles to

4. Create a Javadcript e
that loads the generated

Emscripten

the website. JavaScript file.
/ /
Javascript || Wasm JavaScript

OEBPS/Images/app02fig01_alt.jpg
2 localhost8080/sddhtmi x o+

€ > C 0 O localhost8080/add.html * O

(R (| Eements Console Soures » Pox
B O |wp Y| @ | Fier Defout | %

Result: 3 agd.ntml:16

OEBPS/Images/03fig15_alt.jpg
[fcshoseansdjs shumtioghint X |+
€ 5> C O O localostsoss plumbing him
HTML page L created for my WebAssembly module.

OEBPS/Images/12fig11_alt.jpg
£. Rdjust the text format t
value when the player clicks the second card.
Pass the value to the new JavaScript function.

increment the Stries

WebAssembly

cardswast

Binary Toolkit

cards.wasm

OEBPS/Images/09fig03_alt.jpg
‘The steps to prefetch a WebAssembly module using a web worker

Browser Web worker
(main Ul thread) (background thread)

2. Download and compile the:
WebAssembly module.

1. Create a web worker.

4. Emscripten uses the =- -- 3. Pass the compiled module
ccompiled module. to the main Ul thread.

Communication between the worker
and Ul thread is by passing messages.

OEBPS/Images/11fig17_alt.jpg
The standard C library

4. Emscripten generates functions will be included.
. Create the logic needed by the WebMssembly files
the cards.wasm module. from main.cpp. ./
\ /
v v

main.cpp. Emscripten mainwasm | | mainjs

OEBPS/Images/07fig10_alt.jpg
The prime numbers that
were found between -
~_

3 and 100,000 >

6943 76949

1019 10 1039 1049 1051 1061
1193 1201 1213 1217 1223
1319 1321 1327 1361 1367 1373 1381 13¢

OEBPS/Images/05fig08_alt.jpg
validate js validate.wasm

4. Files are copied to
the server for use \%/—/

in the browser.

v

Validation logic
(validate.wasm validate js)

Browser

OEBPS/Images/12fig05_alt.jpg
3. Use the WebAssembly Binary
Toolkit to generate the Wasm
file from the text format.

/

cards.wast

WebAssembly

Binary Toolkit

cards.wasm

OEBPS/Images/09fig13_alt.jpg
I s x

<« C | ©Fi.ox aboutconfig Pd
This might void your warrant

Changing these advanced settings can be harmful to the
stability, security, and performance of this application. You
should only continue if you are sure of what you are doing.

/| Show this warning next time

OEBPS/Images/12fig23_alt.jpg
Z. Rdjust the text format to pass the Stries value
to the levelComplete JavaScript function.

cards.wast

WebAssembly
Binary Toolkit

cards.wasm

OEBPS/Images/08fig07_alt.jpg
The generated Javacript files and
standard C library functions aren't
included with side modules.

3. Emscripten generates two WebAssembly files

as side modules from validate_product.cpp /
and validate_order.cpp. N

validate_productcpp
validate_order.cpp

Javdséript

Emscripten Wasm

OEBPS/Images/04fig11_alt.jpg
Emscripten is asked to generate
only the WebAssembly file
from validate.cpp.

Validation logic , .
(validate.cpp) Emscripten validate.wasm

OEBPS/Images/13fig01_alt.jpg
Use the same tests

line and browsers.

Z. Run the tests from
1. Write the tests. the command line.

\

tests js

for both the command —_ @

e
tests.html

3. Create an HTML page
that loads your tests.

/

4. Run your tests in
the browsers you
intend to support.

OEBPS/Images/07fig19_alt.jpg
3. WebAssembly files are 4. HIML and javadcript files
copied to the server for are created to load, link,
use by the browser. and interact with the modules.

\4 Browser

is_prime.wasm

Wasm find_primes.wasm

OEBPS/Images/12fig13_alt.jpg
1. Paste the contents of 4. Llick the Downioad button, and
your cards.wast file. save the file as cards.wasm.

/

WATexample: simple 7| - BULDLOG

2] set_siobnd searrent_tewed avseuee: voss 7308
D il simtee aovoace: c100 o000

s) § saccson “Type” (1)

as @

[T —— o

27 get_slobad seurrens_leved o

e salcoms 1

o n2.ee w

0 ol st o

)) “

sz

s (nc smain w

4 tcomst 1 o

5 o sl "

e) w0

s27| « E— > —

s

OEBPS/Images/11fig07_alt.jpg
The preamble: this is a WebAssembly module and is built
according to version 1 of the WebAssembly binary format.

Module

OEBPS/Images/10fig10_alt.jpg
B Command Prompt - o x

:\ebAssembly\Chapter 10\10.4.1 SideModuleIncrement

e_nodejs.js
The result from the —_ 16-"09€1s-J
_Increment call

:\WebAssembly\Chapter 10\10.4.1 SideModuleIncrement

OEBPS/Images/app03fig06_alt.jpg
emscripten s <o son (sies

OEBPS/Images/07fig04_alt.jpg
‘The generated Javadcript file
and standard C library functions

2 Emscripten generates aren'tincluded with side modules.

1. Modify the logic to the WebAssembly file
worlas a side module. as a side module. J
/ /
v v
st es o [—— Wasm e | joduurie
3. Create the logic for the 4. Emscripten generates the The standard
‘main module. This will WebAssembly fle as a main Clibrary functions
call dlopen to link to module and also generates will be included.
the side module. the HTML file.)
7 7
{ {
Wasm
main.cop. Emscripten main module || mainjs main himi
(main.wasm)

OEBPS/Images/06fig02_alt.jpg
4 M there’s an issue with the user’s

1. Emseripten s asked to call entry, an error message is passed
the ValidateName function. to a function you've specified.
|
Your Javascript Emscrpten Javascrpt
validatenane cearl

onBrror i onBrror

- errorpointer

3. The message is read from the
module’s memory and then
displayed to the user.

OEBPS/Images/03fig18.jpg
1. C/C+ + code
is written.

C/C++

OEBPS/Images/11fig02_alt.jpg
Wasm Match

Level 1

Level 1 of the card-matching
game with two cards selected —__| |
just before they’re turned . .

facedown because they
don’t match

OEBPS/Images/10fig09_alt.jpg
4. Create a Javadcript file that
1.C/C++ code 2. Emscripten generates only 3. Copy the file to loads and instantiates the

is written. tthe WebAssembly file. the website. ‘WebAssembly file.
\] 7 /
D ‘ AN

cies Emscripten Wasm JavaScript

OEBPS/Images/03fig11.jpg
1.C/C++ code
is written.

C/C++

OEBPS/Images/f000i-01_alt.jpg
Browser

JavaScript

function add(a, b){
return (a + b); 01110001001...

}

[

JavaScript compiled
 Sogmie o SONESE Y

OEBPS/Images/13fig05_alt.jpg
@ MochaTens x +

€ 2 C {t O localhost8080/testshtml

passes: 0 faiures: 2 uration 0035 (1008

Testing the validate.wasm module from chapter 4

X Pass an emply sting

xpected "A Product ese Fust be provided.” to equal "something’

Assertionérror:
nonymous> (tests. §5:50:34)

ot Context

X Pass a sting hafs o long

U I ————
i 2

nonymous> (tests. s

Details about why

The tests will have an xifthey
the test falled

fillow ichnk bk U iy mass

OEBPS/Images/arrow.jpg

OEBPS/Images/11fig13_alt.jpg
Module

Version

List of unique
function signatures
used in the module

Type

(132, 132) — (i32)
(164, 164) — ()
0-0

OEBPS/Images/08fig10_alt.jpg
Emscripten generates a WebAssembly file
as a side module from validate_order.cpp.

Y

Place Order
(validate_order.cpp)

‘The generated javadcript file and
standard C library functions aren'
included with side modules.

\

Emscripten

Wasm

Javdg&ipt

OEBPS/Images/09fig07_alt.jpg
3. WebAssembly files are copied ——_
to the server for use by

Wasm
fle

JavaScript

file

\
the browser.

4. Create the HTML and JavaScript
for the web page that will create —
2 web worker, and have Emscripten’s
JavaScript use the compiled module
Tocalval rans the warkar

Ul thread
prefetch. i
(prefetchjs)

Web worker

(prefetch.workerjs)

[

OEBPS/Images/app01fig03_alt.jpg
Desktop/emsdk-master

WebAssembly’s media —_

type is defined. *> | application/s

OEBPS/Images/04fig08_alt.jpg
Validation error
when the name —_|
isn't provided

D tatproduct x +
€ 5> C O O ocamostaosoediproducthimi

Edit Product

[~ AProduct Name must be provided.

Name:

OEBPS/Images/05fig14_alt.jpg
2. Emscripten is asked to generate
only the WebAssembly file.

Validation logic)
| validate.
(valdate.cop) Emscripten validate.wasm

OEBPS/Images/12fig27_alt.jpg
R .

C | @ ke =8 Al i =

Wasm Match

Level: 1 Tries: 3

Congratulations!

D F The summary screen’s
Good job! You've completed message now includes

level 1 with 3 tries.) < the number of tries.

Next Level

Repl

OEBPS/Images/app02fig02_alt.jpg
- o X%

2 localhost8080/add html x |+
€ > C O localhost3080/add.html * O
(R (0 | Eements Comole Sources » 55

M O | top v | © | Fiter Defaut | £

Result: 9 2dd.nem) 16

OEBPS/Images/04fig10.jpg
Desktop application written in C++

Validation logic

(validate.cpp)

OEBPS/Images/08fig03_alt.jpg
1. Spiit the logic into two files.

3 Fr—
Validation logic {yelldete,_ oore.cpp)
(validate.cpp) Edit Product
(validate_product.cpp)

2. Create the Place Order form’s logi

\

Place Order
(validate_order.cpp)

The generated JavaScript files and
standard C library functions aren't
included with side modules.

3. Emscripten generates two WebAssembly files)

as side modules from validate_product.cpp P4

and validate_order.cpp. N
v

Valldate_productcpp. . T
validate_order cpp Emscripten Wasm

4. Define a JavaScript function for the

[\ C++ code to call. It will be included in
%" Emscripten's generated JavaScript file.
mergeintojs
Y
Commonioge s wasm || Javascrit
(validate_core.cpp) sisiel Aol validate_core || validate_core

/
5. Emscripten generates the WebAssembly
Wien-for vallibuts Covaicom s milky moile:

OEBPS/Images/10fig15_alt.jpg
1. Your code calls the
ValidateName function.

Your JavaScript

validateName

Z. The appropriate callback function
is called depending on whether
there was an issue with the
user’s entry.

Module

onsuccess

ValidateName

onError

onSuccess

onError

OEBPS/Images/04fig12.jpg
d to the server
for use in the browser.

Browser

validate.wasm

Validation logic
(validate.wasm)

OEBPS/Images/12fig01_alt.jpg
Adjust the subtitle Wasm Match

to include the number —_

of tries. T Level: 2 Tries: 1

OEBPS/Images/02fig02_alt.jpg
Type section

(32, 32) — (132)

(164,164) - ()

00

Index.

- Signature of a function with two 32-bit integer parameters
returns a 32-bit integer

~ Signature of a function with two 64-bit integer parameters;
10 return value

~ Signature of a function with no parameters
and no return value

OEBPS/Images/app05fig03_alt.jpg
1. Fiace the contents
of listing E.10 here.

/

WAT, example: simple v
:Qmm &
2% (oype sruncsicsy (func))
s
4 (dmport “env" "Functionl® (func $functionl))
5| (impore “env” Funceionz” (fune sfunceion2))
.
7 (eabe 2 anyfunc)
9 (expors Tese* (func $test))
s
T =
3 unctiont: function() { console. log("Function 1°
4 Funceionz: funceion() { console. log("Furnction 2
s}
i
& conse sasnlnstance = new uebAsserbly. Instance (wasshods]
10 waseinstance. exports. Test(1); =

lace your Javaseript in
ol tiny st L

3. The return value from
the Test call is placed here.

OEBPS/Images/12fig17_alt.jpg
¢ | ® lockho - @ g »

1]

Wasm Match
Level: 1 Tries: 20 «—

___—— The Tries value is increasing in
increments of 10 rather than 1.

OEBPS/Images/06fig01_alt.jpg
&. WS an Rsue With the user's
entry, an error message is passed

1. Emseripten is asked to call to 2 function you've defined

the ValidateName function. Emscripten's JavaScript.
| |
Your Javascrpt Emscripien JavaScrpt \ Modue
validatenane ccant
sotErrortessage UpdatatiostAbout erox [
o ereor | errorrotnter
|
4. The message is 3. The message i read from the

displayed to the user. ‘module’s memory and passed

t0 2 method in your main
o mew iy

OEBPS/Images/11fig20_alt.jpg
2. YebAssembly files are copied to

the server for use by the browser.

cards.wasm
main.wasm
mainjs

\

Browser

cards.wasm

main.wasm

1/

HTML and JavaScript files
are created to load, link,
and interact with the modules.

OEBPS/Images/05fig03_alt.jpg
ST S SN . —
entry,an error message is passed

Emscripten s asked to call t0 2 function you've defined in

e meoname oion. i ok
\ ‘
— [——
|
3. The melsage s . The messge i resd o he
T e s s ey pused

to 2 method in your main
Tavalcrint cade,

OEBPS/Images/11fig03_alt.jpg
GOk - @ L » =

Wasm Match

Level 1

The summary screen when the Congratulations!

player wins. They're given the You've completed level 1!
opportunity to replay the current \

level or play the next level.

OEBPS/Images/f000i-02_alt.jpg
bsotcionie, e Browser

AN 2N
C+ ——= Wasm Wasm ——(01110001001...
1 1
C++ compiled to WebAssembly binary

WebAssembly binary compiled to machine code

OEBPS/Images/07fig15_alt.jpg
'rime numbers between 3 and 99:
37577 11713 171923 20 3137 4143 47 53 59 61 67 7173 79 83 89 97

OEBPS/Images/07fig09_alt.jpg
€5 C 0 O * 0

KR Crothipten Eometvon e

Rosize canvas # Lockiids mouse poiter | Fulscresn

"WiSsing Tirked function _puccha

a missing
" eabolinrintiion

OEBPS/Images/08fig14_alt.jpg
6. Files are copied to the

Wasm JavaScript

server for use by the
browser and server code\

7. Adjust how the JavaScript
code interacts with —
the modules.

Validation logic

(Wasm and JavaScript)

Browser

OEBPS/Images/app01fig08_alt.jpg
8 Command Prompt - o

node-4.1.1-32bit
node-4.1.1-64bit

Node js 89.1 node-8.9.1-32bit
s installed. * node-8.9.1-64bit INSTALLED
python-2.7.13.1-32bit
¥ python-2.7.13.1-64bit INSTALLED

python-3.5.4-32bit
python-3.5.4-64bit
java-7.45-32bit
java-7.45-64bit
java-8.152-32bit
£ java-8.152-64bit INSTALLED
spidermonkey-37.8.1-64bit
spidermonkey-nightly-2015-84-12-64bit

OEBPS/Images/10fig04_alt.jpg
The output from—__

the module

B Command Prompt

C:\WebAssembly\Chapter 1\10.3.1 JsPlumbingPrimes\ba
nodejs.js

Prime numbers between 3 and 100600:

3571113 17 19 23 29 31 37 41 43 47 53 59 61 67 7
B 167 109 113 127 131 137 139 149 151 157 163 167 17
99 211 223 227 229 233 239 241 251 257 263 260 271 2
313 317 331 337 347 349 353 359 367 373 379 383 389
433 439 443 449 457 461 463 467 479 487 491 499 503
7 563 560 571 577 587 593 509 61 667 613 617 619 63
61 673 677 683 691 701 709 719 727 733 739 743 751 7
|809 811 821 823 827 829 839 853 857 850 863 8§77 881
937 941 947 953 967 971 977 983 991 997 109 1613 1

OEBPS/Images/04fig04.jpg
Desktop application written in C++

Validation logic

(validate.cpp)

OEBPS/Images/12fig12_alt.jpg
3. Use the WebAssembly Binary lToolkit to

generate the Wasm file from the text format.

\

cards.wast

WebAssembly

Binary Toolkit

cards.wasm

OEBPS/Images/03fig16_alt.jpg
@ DerTonts - localhest 30305 plumbing il - o
R f]| Mewok Memoy Ghmeos _Conle Souces _Autts _Promance_Agpcaion_ Seony
B ® o v | Fitter Defoultlevels ¥ @ Group similar

Prise nusbers betesen 3 ang 100000: 32 almion,f2u1e

35710131719 23 20 31 37 4143 47 53 59 61 67 71 73 79 83 59 97 101 109 107 109 133 3z plumvine.zamin
127 191 137 139 145 151 187 163 167 173 175 181 191 199 157 199 713 223 227 229 233 38 241 51 357 263 369
31277 261 283 293 307 311 343 317 391 337 347 348 393 330 367 973 370 303 369 397 401 408 419 431 431 433
39 423 449 57 a6t 463 467 479 467 451 499 503 509 571 523 34 547 557 363 569 N 577 587 593 550 N 607
613 17 619 631 641 643 47 653 559 S61 &73 877 663 e91 701 709 713 727 739 799 743 751 757 761 760 773 787
583 591 567 1009 1013 1019 1021 1031 1033 1039 1045 1051 1061 1063 1069 1087 1051 1093 1057 1103 1109 1117
12371028 1151 1153 163 1170 1181 1187 1193 1201 1213 1207 1223 1228 1231 1237 1248 1288 1277 1278 1283 1289
1251 1267 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1609 1423 1627 1429 1433 1439 1447 1451 1653
1459 1471 1481 1483 1487 1485 1493 1439 1511 1s73 1591 1543 1509 1583 1569 1567 1571 1579 1583 1397 Lead 1607
178 1767 1789 1801 1811 1873 1831 1847 1861 1867 1871 1673 1677 1679 1689 1901 1907 191 1931 1993 1045 1981
1973 1978 1987 1993 1997 1988 2003 2011 2017 2027 1029 2039 1053 2063 2069 2081 2683 2087 2689 2098 2111 213
2257 305 D11 D03 139 Dal 147 DS1 1387 1971 1377 D901 1389 1389 2393 1399 2411 2417 242> 2437 241 2047
5433 2067 2473 2477 2503 2331 2531 2938 2543 2545 2551 2357 2579 2591 2593 2608 2617 2624 2633 2647 2657 2650
2683 2671 2677 2683 2687 2680 2693 2699 207 711 71> 2719 729 2791 781 279 2783 2767 2777 2789 23R 2997
3801 3003 2815 2033 2837 1043 T851 2057 2661 2978 2687 2097 2903 2909 2917 2927 2930 2993 2967 269 2968 297

OEBPS/Images/09fig02_alt.jpg
Communication is
accomplished by —_|
passing messages.

Your Javadcript creates

a web worker.
Ul thread \‘ Web worker
Create web worker
postMessage onmessage
onmessage postMessage

OEBPS/Images/06fig12_alt.jpg
2. Emscripten is asked to generate
only the WebAssembly file.

/

Emscripten [——] validate.wasm

OEBPS/Images/06fig06_alt.jpg
3. Files are copied to
the server for use — |
in the browser.

Validation logic

(validate.wasm validate.js)

Browser

OEBPS/Images/11fig18_alt.jpg
3. Lreate the logic needed by
the cards.wasm module.

\

main.cpp.

Emsoripten

mainwasm

mainjs

