
MySQL and JSON
A Practical Programming Guide

David Stokes

ISBN: 978-1-26-013545-9
MHID: 1-26-013545-4

Copyright © 2018 by McGraw-Hill Education.

print version of this title:
ISBN: 978-1-26-013544-2
MHID: 1-26-013544-6.

http://www.mhprofessional.com

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / FM

CONTENTS

 1 Introduction . 1
JSON. 2

MySQL . 3

The Example Database . 4

How to Use This Book . 5

 2 JSON as String Data vs. JSON as a Data Type 7
JSON String Data . 8

The JSON Data Type . 10

 3 Finding the Path. 13
Examining the world_x Data . 14

Seeing the Keys. 16

Path. 17

Digging Deeper. 17

 4 Finding and Getting Data . 19
All Keys . 20

Searching for a Key . 20

Searching for a Path . 21

Searching for a Value . 22

 5 Changing Data . 25
Using Arrays . 26

Appending Arrays . 26

Inserting into an Array . 28

Using TRUNCATE Before Adding New Data 29

Using JSON_INSERT . 30

Using JSON_REPLACE . 31

JSON_REMOVE . 32

JSON_SET . 33

00-FM.indd 7 13/04/18 4:15 PM

JSON_UNQUOTE . 34

The Three JSON_MERGE Functions . 35

JSON_MERGE. 36

JSON_MERGE_PRESERVE. 38

JSON_DEPTH . 38

JSON_LENGTH . 38

JSON_TYPE. 39

JSON_VALID. 40

JSON_STORAGE_SIZE . 40

JSON_STORAGE_FREE . 41

 6 JSON and Non-JSON Output. 43
JSON-Formatted Data . 44

JSON_OBJECT . 44

JSON_ARRAY . 45

Casting . 46

Non-JSON Output . 48

Missing Data . 49

Nested Data. 50

 7 Generated Columns. 53
Using Generated Columns . 54

Columns Generated from JSON. 55

Generated Columns: Common Errors. 57

 8 GeoJSON . 59
ST_GeomFromGeoJSON . 60

ST_AsGeoJSON . 61

 9 PHP’s JSON Functions . 63
JSON_DECODE . 64

JSON_ENCODE . 65

 10 Loading JSON Data . 67
From Download to Database . 68

Step 1: Examine the Data . 68

Step 2: Create the Table . 68

Step 3: Load the Data Using a Wrapper. 69

Step 4: Double-Check the Data . 70

00-FM.indd 8 13/04/18 4:15 PM

jq: JSON CLI Parser . 71

With No Arguments . 71

Select Certain Fields . 72

The Restaurant Collection. 73

 11 The MySQL Document Store . 77
The X DevAPI . 78

mysqlsh. 78

Connections. 80

Session Types . 80

Collections and Documents . 81

CRUD: Create, Replace, Update, Delete . 83

Filtering Find. 86

Sorting . 88

Binding. 89

Indexing Collections . 90

Dropping a Collection . 92

 12 Programming with the MySQL Document Store 93
Programming Examples . 94

Python Example . 94

Node.JS Example. 95

PHP Example. 96

Traditional SQL vs. MySQL Document Store. 97

The MySQL Shell and JavaScript . 98

Relational Tables. 99

Both Relational and Document . 100

Document as Relational . 101

 A Additional Resources . 103

 Index . 105

00-FM.indd 9 13/04/18 4:15 PM

1
Introduction

Once upon a time, there was one computer. With the creation of a second
computer, we experienced problems moving and sharing data between sys-
tems. It took decades of hard work, arguments, negotiations, and proposed
standards, and a great deal of frustration, to get to the point where data trans-
fer between systems is almost trivial. For many years, many very smart people
argued over ASCII or EBCDIC character encoding, endianness of computer
memory, and various standards such as the Standard Generalized Markup
Language (SGML) and the Extensible Markup Language (XML). Today,
JavaScript Object Notation, or JSON, has become the favorite way to encode
data for moving between various systems. JSON-encoded data has several ad-
vantages over previous efforts in that it is very human-readable, easy to parse
with programs, and not overly complicated.

01-ch01.indd 1 13/04/18 4:16 PM

2 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 1

Considering the vast increase in the volume of data being shared every
year, it is imperative that the information be shared in an easy-to-digest
format. Having an easy-to-produce format provides benefits like ease of
programming, ease of proofreading or debugging, and low cost of entry.
JSON provides these benefits beautifully.

MySQL had more than 20 years of life before it received a native JSON data
type. So as with an INTEGER, a DECIMAL, or a DATE data type, we can store
an entire JSON document in a column of a row of a schema. MySQL 5.7 arrived
with the ability to store roughly a gigabyte of data in a column in a row in a
table. Before the native JSON data type, there were special schemas or user-
defined functions with limited JSON support. This new data type has proven
to be very popular and has probably encouraged many site administrators to
upgrade from much earlier versions of MySQL to gain access to it.

JSON
JavaScript Object Notation (JSON) is a text-based, language-independent data
interchange format for the serialization of data. It is derived from the object
literals of JavaScript as defined in the third edition of the ECMAScript Lan-
guage Specification. There are actually two standards for JSON: Internet Engi-
neering Task Force (IETF) Request For Comment (RFC) 7159 (https://tools
.ietf.org/html/rfc7159) and the European Computer Manufacturers Associa-
tion (ECMA) Standard 404 (https://www.ecma-international.org/publica-
tions/standards/Ecma-404.htm). The IETF’s document is about 16 pages
long, while ECMA’s is 5. This is a relatively short set of standards compared
to the IETF RFC 5321 for the Simple Mail Transfer Protocol (SMTP) at 95 pages.
But the two standards for JSON are fairly explicit.

JSON has a grammar, and it is simple. JSON is a series of tokens: six
structural characters ([,], {, }, :, and ,), strings, numbers, and three literal
names (false, null, or true). Objects begin and end with curly brackets, { and },
respectively; arrays begin and end with square brackets, [and], respectively.
A colon (:) is used to separate a name and a value. Multiple objects or arrays
are separated by commas (,). Like toy building blocks, simple components
can be combined to create much more complex structures.

Although I have described the attributes, it may be easier to think of JSON
data being structured as objects with name/value pairs or as ordered lists of
values, also known as arrays. Most programming languages and their

01-ch01.indd 2 13/04/18 4:16 PM

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.ecma-international.org/publications/standards/Ecma-404.htm

 Introduction 3

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 1

programmers use objects and/or arrays on a regular basis. The simple design
of JSON enables it to be independent of the computer language used to
generate or read the data.

So what does JSON look like? Here’s a simple example:

Example 1-1 Example of a JSON document

{
 "name" : "Bond",
 "first": "James",
 "ID" : "007"
 }

The data is enclosed within curly braces, which tells us it is a JSON
object, rather than an array, which would have the data within square
brackets. Inside this object are three key/value pairs: name/Bond, first/
James, and ID/007. Although all of the data could have been placed on one
line and would still be a valid JSON document, it is formatted as multiple
lines for ease of reading. For now, you can consider all the keys and their
values as strings.

UTF8MB4 Character Set
The JSON specifications mandate the use of the UTF8MB4 character set.
This character set allows the encoding of many languages, graphics, and
emoji. Note that UTF8MB4 is a 4-bit character set, which means this data
will take up four times as much space as data in a simpler character set
such as Latin-1. In some cases, this inefficiency may preclude the use of
the JSON data type, despite its rich ability to store a wide variety of data.

MySQL
This is not a book on administrating, programming, or using MySQL. To use
the information in this book, however, you will need access to a server run-
ning MySQL 5.7.5 or later, on a local system or system available over a net-
work. The Community Edition of the MySQL server is free and available for
Microsoft Windows, Linux, and Mac OS; or it’s available as source code.
There is a paid Enterprise Edition for customers with support contracts, and
the examples included herein will also work with this edition.

01-ch01.indd 3 13/04/18 4:16 PM

4 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 1

If you need to install MySQL, follow the directions at the MySQL
Documentation site: https://dev.mysql.com/doc/. Follow the instructions
appropriate for your operating system platform. You can also install MySQL
within a virtualized server or container for the purposes of this book. Remember
that you need at least MySQL 5.7 or 8.0 to have access to the MySQL functions.

Be aware that Oracle engineers who create and maintain the MySQL
software have evolved the way JSON and the JSON functions work as the
standards have changed, as users have given feedback on the product, and as
part of general improvements in the product. Hopefully, all these changes
are noted in the text, but be aware that the version of MySQL you are running
may behave slightly differently from previous or later versions.

The Example Database
The examples in this book will mainly use the world_x example dataset or
are short enough to easily be retyped by the reader. The predecessor, world
database, has been used for many years by MySQL in documentation, train-
ing, examples, and blogs. After installing the latest and greatest MySQL ver-
sion, you can install the world_x database after downloading it from https://
dev.mysql.com/doc/index-other.html.

You can perform the installation in several ways, but the most popular
two ways are from a command line and from within the MySQL shell. There
are other methods as well, but these two are very reliable and simple.
Following are examples.

Example 1-2 Installing the world_x database from the Linux shell

shell> mysqlsh -u root --sql --recreate-schema world_x < /tmp/world_x-db/
world_x.sql

Example 1-3 Installing the world_x database from the MySQL shell

 Connect to MySQL:
 shell> mysql -u root -p
 Load the file:
 mysql> SOURCE /tmp/world_x-db/world_x.sql;

01-ch01.indd 4 13/04/18 4:16 PM

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

 Introduction 5

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 1

NOTE In some cases, the schema may not be created already, and it will report
an error. This is easy to fix, and you can re-create the schema with
mysqlsh -u root --sql --recreate-schema --schema=world_x < world_x.sql

How to Use This Book
This book was designed for readers to enter the examples on their own
installations of MySQL. Some people can learn very efficiently by just read-
ing, but many more gain additional insight by typing the examples into their
own MySQL instance. The simple examples that follow can easily be deleted
later when no longer needed.

The official MySQL software documentation is the definitive reference on
the various features of MySQL. However, the examples in the documentation
are often hard to grasp for novices at the start of the learning curve or for the
experienced but not in a certain facet. So use this book to backfill areas where
the manual is nebulous, confusing, or just not at your level.

Some points, such as array numbering starting at zero and document
pathing, are restated over and over again and may seem tiresome and
pedantic for those reading from the first page through to the last. But many
readers will use this book by referring only to the part of a section that
concerns them at the moment. Those folks may be oblivious to warnings
presented a page or more earlier, and being dogmatic on these points will
save those people grief.

One of the problems in learning computer technologies is learning to
understand mistakes. This includes learning to understand error messages
and warnings. If you make a mistake in entering one of the examples,
examine any messages for clues and then compare what has been entered
with what is in this text. It’s quite common to miss a single or double quote
and transpose keywords when entering SQL, but the server will not simply
tell you that you fat-fingered a code entry. So you must learn to comprehend
the error messages to find out where you have goofed. Do not be afraid to make
mistakes! Mistakes are part of learning, and learning to fix mistakes is part of
the process. Many martial arts experts stress that the difference between a
novice and a master is that a master knows when a mistake is starting and

01-ch01.indd 5 13/04/18 4:16 PM

6 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 1

can rectify it before it becomes a problem. Rectifying fat-fingered commands
is a regular occurrence and a great way for you to learn to understand what
error messages are trying to tell you.

It is very hard for a static item, like this book, to keep current with ever-
changing software. Some of the functions discussed herein have evolved
over time, and some are in an experimental, evolving stage. Please use this
book as an addendum to the official MySQL software documentation. I have
tried to make this book as useful as possible, but as time marches on, the
details inside may not reflect the actual software—and that is actually a
good thing.

This book starts with “once upon a time,” and I would like to have it end
with “they lived happily ever after.” The engineers at MySQL and contributors
from the MySQL Community have put a lot of effort into the JSON data type
and the supporting functions. New uses such as the MySQL Document Store
will hopefully bring new changes. JSON and MySQL combine to make a lot
of things very convenient for developers, and the future should only improve,
thus allowing all involved to live happily ever after.

Finally, any errors or omissions are my own, and I take full responsibility
for them.

01-ch01.indd 6 13/04/18 4:16 PM

2
JSON as String Data vs.

JSON as a Data Type

Developers were using JSON in MySQL long before there was a MySQL
JSON data type in version 5.7. There is nothing special about JSON that keeps
it from being used in earlier versions of MySQL, and there are cases where not
using the MySQL data type is preferred. This may seem confusing or contradic-
tory but all will be explained later in this chapter.

02-ch02.indd 7 13/04/18 4:18 PM

8 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 2

JSON String Data
In versions of MySQL released before version 5.7, developers were storing
JSON in MySQL in text fields (such as CHAR, VARCHAR, TEXT, or BLOB). And
this remains a viable option for developers running versions of MySQL prior
to version 5.7.

Example 2-1 JSON stored as a string

mysql> CREATE TABLE foo (oldJson char(250));
Query OK, 0 rows affected (0.32 sec)

mysql> INSERT INTO foo VALUES ('{ "name" : "Bond", "first" : "James", "ID" :
 "007" }');
Query OK, 1 row affected (0.04 sec)

mysql> SELECT * FROM foo;
+--+
| oldJson |
+--+
| { "name" : "Bond", "first" : "James", "ID" : "007" } |
+--+
1 row in set (0.00 sec)

mysql>

This method enables JSON data to be stored. Basically, MySQL stores a
string, and nothing is done to validate that it is a valid JSON document.
Nothing is done to enforce rigor on the data to ensure that the correct type of
data or value range is being inserted. There is no way to ensure that the tags
are consistent, and it can be painful to search. For instance, a field for e-mail
may be labeled email, eMail, electronic-mail, or one of dozens of other
variations. The ability to examine textual JSON information lies with various
string functions in MySQL or other programming languages, which are often
cumbersome to search.

One benefit of keeping JSON data in a string, however, is that the data will
come out as it was put in—this is known as impotency. Later in this chapter,
you’ll see that the native MySQL JSON data type “optimizes” the data and
sorts the keys in the key/value pairs so that the native JSON data type does
not ensure impotency. If exact regurgitation of the data is needed, then the
JSON data type should not be used.

02-ch02.indd 8 13/04/18 4:18 PM

 JSON as String Data vs. JSON as a Data Type 9

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 2

Searching can be done using regular expressions (REGEX). Regular expres-
sions are often messy, hard to document, and even harder to understand.
Many developers avoid them at all costs, but that is a bit extreme. It is not
uncommon to fail to comprehend your own REGEX code written weeks or
months before. Here’s an example of REGEX code used in a SELECT query:

Example 2-2 Using a REGEX in a SELECT query

mysql> SELECT * FROM foo WHERE oldJson REGEXP 'Bond';
+--+
| oldJson |
+--+
| { "name" : "Bond", "first" : "James", "ID" : "007" } |
+--+
1 row in set (0.00 sec)

mysql>

Many developers are very good at writing regular expressions, but many
more are not. Often regular expressions are easy to overcomplicate and
painful to debug. Take the following example, in which the entire first name
of the person to search for is not exactly known, so the search is written to
look for a Jim, Jam, or James using a wildcard character (*):

Example 2-3 For an experiment, change ‘j*m’ to ‘Fred’ to observe the message for no
matches.

mysql> SELECT * FROM foo WHERE oldJson REGEXP 'J*m';
+--+
| oldJson |
+--+
| { "name" : "Bond", "first" : "James", "ID" : "007" } |
+--+
1 row in set (0.00 sec)

This example worked because a record was found. But suppose the
searcher could not remember whether the name was Jim, James, Robert, or
Lynn. The regular expression could be rewritten to search for these variables,
but it gets much more difficult to interpret. And it’s more difficult to maintain.

02-ch02.indd 9 13/04/18 4:18 PM

10 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 2

Indexing columns to speed searches is common, popular, and highly
encouraged under the right circumstances. Indexing an entire text column
(but not BLOBs) can be done in most circumstances, but, once again, REGEX
has to be used for searching. And the indexes could end up bigger than the
data, which would remove any speed advantage to having an index. So do
not index blobs including JSON data type columns.

Any changes in the data require that you completely rewrite the string
into the database, instead of writing only the changes, which is far more
efficient. Early editions of the MySQL 5.7 functions did complete rewrites of
JSON data type fields, but the engineers quickly sought to go the more
efficient route.

The JSON Data Type
MySQL 5.7 introduced a JSON data type. This means that JSON is a data
type, just like INT, REAL, CHAR, VARCHAR, or BLOB. The JSON data type is
designed to hold valid JSON documents. Here’s an example:

Example 2-4 Using the JSON data type

mysql> CREATE TABLE bar (our_data JSON);
Query OK, 0 rows affected (0.40 sec)
mysql> INSERT INTO bar VALUE ('{ "name" : "Bond",
"first" : "James", "ID" :
 "007" }');

The insertion string is the same as the one used in the first example in the
chapter, where the data was stored in a CHAR(250) column.

Example 2-5 Selecting JSON data from a JSON data type column

mysql> SELECT * FROM bar;
+---+
| our_data |
+---+
| {"ID": "007", "name": "Bond", "first": "James"} |
+---+
1 row in set (0.00 sec)

mysql>

02-ch02.indd 10 13/04/18 4:18 PM

 JSON as String Data vs. JSON as a Data Type 11

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 2

Notice the order of the returned data. The ID column is now first instead of
last, as it was in the preceding example. The MySQL server stores JSON data
in a binary format optimized for quick searches, which may cause the keys to
be returned in an order different from how they were entered. Why is this?

The server first checks to ensure that the document is in a valid JSON
format. (If it’s not, the server will return an error.) Then the data is stored in
a special internal format optimized for quick lookup by keys or array index
position. Think of it as similar to a B-tree or B+-tree, as used by MySQL for
indexes within a binary search, when the keys have to be set up in alphabetical
order to allow for fast binary-style searches to retrieve the data. The order of
the keys may change when the data is stored.

02-ch02.indd 11 13/04/18 4:18 PM

3
Finding the Path

The server checks to make sure this data bound for the JSON data type
column is in a valid JSON format and organizes the data for faster searching.
The document is divided up into keys and values, and values can also comprise
a deeper set of keys and values. These various keys and values are divided into
the component parts and provide the way, or path, to navigate through the
document. Much of MySQL’s JSON path expression work was heavily influ-
enced by Facebook’s DocStore project.

The JSON document is made up of key/value pairs, arrays, and/or
possibly combinations of the previous. These items that make up the
document need a path to get to the value. This can be a named key or a

03-ch03.indd 13 13/04/18 4:41 PM

14 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 3

positional representation ($[1]). Some documents can get quite complicated,
but this chapter will use a fairly simple dataset and its JSON formatted data.

Several of the MySQL-supplied JSON functions require a path expression
in order to specify unique elements in a JSON document. A path consists of
the scope of the path (the outer curly or square brackets), followed by one or
more path legs made up of the key/value pairs. The MySQL JSON functions
are built with the idea that the scope is always the document being searched
or otherwise operated on, represented by a leading $ character. Path legs are
separated using period characters (.). Cells in arrays are represented by [N],
where N is a non-negative integer (so N must be zero or larger). The names
of keys must be strings enclosed in double quotes.

Examining the world_x Data
MySQL documentation, instructional materials, and other materials have
used the world database for a long time. The world_x database was created
from the data in the world database for use with the document store and X
DevAPI materials for the same purpose. It also offers a very good set of data
for showing the use of MySQL’s JSON functions. The city, country, and coun-
trylanguages tables are the same in both databases, but world_x has a new
table named countryinfo. Chapter 11 provides an introduction to the MySQL
document store, which is built on the MySQL JSON data type, and the coun-
tryinfo table is an example of a document collection used to teach the MySQL
document store.

The countryinfo table has two columns, with one being of data type JSON.
I’ll discuss the second column in Chapter 7, which covers generated columns.
(These two columns will make a little more sense later in Chapters 11 and 12.
For now, please concentrate on the JSON column named doc. Note that this
name will be used over and over again for JSON columns and hopefully this
will not cause confusion—and you can name JSON columns something else
at your discretion.)

Examining one record, in the following example, the record with the _id
field equal to USA returns one example record. Since it is all enclosed in curly
brackets, it is obvious that the output is a JSON object.

03-ch03.indd 14 13/04/18 4:41 PM

 Finding the Path 15

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 3

Example 3-1 Selecting one record from the countryinfo collections, using the _id of
USA

mysql> SELECT doc FROM countryinfo WHERE _id='USA';
| doc
| {"GNP": 8510700, "_id": "USA", "Name": "United States", "IndepYear": 1776,
 "geography": {"Region": "North America", "Continent": "North America",
 "SurfaceArea": 9363520}, "government": {"HeadOfState": "George W. Bush",
 "GovernmentForm": "Federal Republic"}, "demographics": {"Population":
 278357000, "LifeExpectancy": 77.0999984741211}} |

1 row in set (0.00 sec)

mysql>

You can read the various items in Example 3-1, but it is difficult to see the
levels and relationships. Luckily, there is a function to improve readability:

Example 3-2 Using the JSON_PRETTY function

mysql> SELECT JSON_PRETTY(doc) FROM countryinfo WHERE _id='USA';
| {
 "GNP": 8510700,
 "_id": "USA",
 "Name": "United States",
 "IndepYear": 1776,
 "geography": {
 "Region": "North America",
 "Continent": "North America",
 "SurfaceArea": 9363520
 },
 "government": {
 "HeadOfState": "George W. Bush",
 "GovernmentForm": "Federal Republic"
 },
 "demographics": {
 "Population": 278357000,
 "LifeExpectancy": 77.0999984741211
 }
} |

The JSON_PRETTY() function was introduced with MySQL 8 (and back-
ported into MySQL 5.7.22) and is used to improve readability of the output.
It is similar to pretty printing used in PHP and other programming languages.
It displays each element on its own line and indents it in an additional level
from the parent. Two spaces are prepended for each level of indentation, and
note that a comma is printed before a newline separating elements.

03-ch03.indd 15 13/04/18 4:41 PM

16 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 3

In addition to cleaning up the output, JSON_PRETTY() provides the
casual observer an easier-to-understand view of the data. It becomes easier
to examine the data—objects and arrays—and see the structure, and it’s
much easier to see the keys, values, and path and how they are arranged.

NOTE You may have noticed who is listed as HeadOfState in the previous
examples. Although the data in the dataset is notoriously out of date, the
examples remain valid!

Seeing the Keys
You can use another function, JSON_KEYS(), to display the individual keys:

Example 3-3 Using the JSON_KEYS function

mysql> SELECT JSON_KEYS(doc) FROM countryinfo WHERE _id='USA';
+--+
| JSON_KEYS(doc)
|
+--+
| ["GNP", "_id", "Name", "IndepYear", "geography", "government", "demographics"] |
+--+
1 row in set (0.00 sec)

mysql>

If you are using MySQL8, you can also wrap JSON_PRETTY() around
JSON_KEYS() to improve readability. Generally, you can wrap one function
within other functions, but it is advisable that you double-check your work to
ensure that the combination makes logical sense—that is, that you are not trying
to aggregate arrays of objects—and produces the desired results correctly.

In the following example, note that only the top-level keys are being
displayed. So geography is displayed, but not the subitems of Region,
Continent, and SurfaceArea:

Example 3-4 Using JSON_PRETTY and JSON_KEYS together

mysql> SELECT JSON_PRETTY(JSON_KEYS(doc)) FROM countryinfo WHERE _id='USA';
| JSON_PRETTY(JSON_KEYS(doc))
|
| [
 "GNP",

03-ch03.indd 16 13/04/18 4:41 PM

 Finding the Path 17

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 3

 "_id",
 "Name",
 "IndepYear",
 "geography",
 "government",
 "demographics"
] |
1 row in set (0.00 sec)

Path
To get the geography information, we need to specify the path. After nam-
ing the column, a second argument for the path to search is under the top
level. Using the dollar sign ($) to represent the current document (remember
the JSON column is a JSON document), you can specify the keys under the
geography key:

Example 3-5 Selecting second-level keys

mysql> SELECT JSON_KEYS(doc,"$.geography") FROM countryinfo WHERE _id='USA';
+--+
| JSON_KEYS(doc,"$.geography") |
+--+
| ["Region", "Continent", "SurfaceArea"] |
+--+
1 row in set (0.00 sec)

mysql>

Note that JSON_KEYS(doc,"$") returns the top-level keys. The second
through nth level keys must be post-pended to the $.

Digging Deeper
How can you dig down further in the document to get more information?
First, the scope of what the function is acting on is the current document, also
known as $. The path is made up of one or more legs in the document. These
legs can comprise arrays and objects, the keys and values. To get all the infor-
mation stored with the geography key, then, you need to specify "$.geog-
raphy". This will provide all the key/value pairs under the geography
subpath for this document.

03-ch03.indd 17 13/04/18 4:41 PM

18 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 3

Example 3-6 Digging into second-level keys

mysql> SELECT JSON_EXTRACT(doc,"$.geography") FROM countryinfo WHERE _id='USA';

+---+

| JSON_EXTRACT(doc,"$.geography")

|

+---+

| {"Region": "North America", "Continent": "North America", "SurfaceArea": 9363520} |

+---+

But what if you needed to go further down the geography subpath? For
instance, what if the Region section of the subpath is the desired information?
Then you’d need to specify the subpath and the key of the desired pair. In
Example 3-7, the full path $.geography.Region is provided to retrieve
the desired information. And, yes, it is case-sensitive.

Example 3-7 Digging deeper using the keys to explore the geography.Region values

mysql> SELECT JSON_EXTRACT(doc,"$.geography.Region") FROM countryinfo WHERE _id='USA';

+--+

| JSON_EXTRACT(doc,"$.geography.Region") |

+--+

| "North America" |

+--+

1 row in set (0.00 sec)

When the final subpath is a certain value but the other high-level keys are
unknown, you can use a wildcard. You can use an asterisk (*) as a wildcard,
but note that it will pick up all final keys with the name Region:

Example 3-8 Using a wildcard to find Region data but without having to specify the
other keys in the document path

mysql> SELECT JSON_EXTRACT(doc,"$.*.Region") FROM countryinfo WHERE _id='USA';
+--------------------------------+
| JSON_EXTRACT(doc,"$.*.Region") |
+--------------------------------+
| ["North America"] |
+--------------------------------+
1 row in set (0.00 sec)

03-ch03.indd 18 13/04/18 4:41 PM

4
Finding and Getting Data

Simply having data in a MySQL JSON data type column is not much good
by itself. Thankfully the engineers at MySQL have provided many extremely
useful functions to get into the data, and this chapter delves into the functions
for finding and retrieving that data.

04-ch04.indd 19 13/04/18 4:19 PM

20 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 4

All Keys
In Chapter 3, the JSON_KEYS() function was introduced. This function
returns the top level of a JSON object as an array. Without the optional path,
the function provides the top-level keys. With the optional path, it provides
the top-level keys from that particular path.

Format: JSON_KEYS(json_doc[, path])

Example 4-1 JSON_KEYS with top level of JSON document

mysql> SELECT JSON_KEYS(doc) FROM countryinfo WHERE _id = 'USA';

+--+

| JSON_KEYS(doc)

|

+--+

| ["GNP", "_id", "Name", "IndepYear", "geography", "government", "demographics"] |

+--+

1 row in set (0.00 sec)

Example 4-2 JSON_KEYS with optional key to use as top level for reporting

mysql> SELECT JSON_KEYS(doc,"$.geography") FROM countryinfo WHERE _id = 'USA';
+--+
| JSON_KEYS(doc,"$.geography") |
+--+
| ["Region", "Continent", "SurfaceArea"] |
+--+
1 row in set (0.00 sec)

mysql>

NOTE Refer to Examples 3-7 and 3-8 in Chapter 3 for specifying deeper-level
keys and wildcard characters with a document.

Searching for a Key
Suppose you have a valid JSON document in a column or row in a table and
you need to search for a certain key in that data. Or you need to search for
every instance of a certain key in the data (such as a second phone number,
additional e-mail addresses, and the like). JSON_CONTAINS_PATH uses the
second argument, either ONE or ALL, to determine whether the key will be
returned after finding only the first occurrence or finding all of the keys from

04-ch04.indd 20 13/04/18 4:19 PM

 Finding and Getting Data 21

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 4

the path provided as the third (and later) argument. In the next example,
there is a match in the specific document to the geography key.
JSON_CONTAINS_PATH() returns 1 (true) if the desired key is located in the
document. In Example 4-3, the geography key is located, so 1 is returned. A 0
would be returned if the document/columns did not have the desired key.

Format: JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] ...)

Example 4-3 JSON_CONTAINS_PATH used to search for key geography

mysql> SELECT JSON_CONTAINS_PATH(doc,"ONE","$.geography") FROM countryinfo WHERE _id='USA';

+---+

| JSON_CONTAINS_PATH(doc,"ONE","$.geography") |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

mysql>

Searching for a Path
The various items in a JSON document have keys that are like stepping
stones across a stream that let you navigate a path through the document.
The key part of the key/value pair is a stepping stone to data. You can also
search for multiple keys using a single JSON_CONTAINS_PATH statement.
The following example is looking for both the geography and government
keys. Both keys must be present for the server to return 1.

Format: JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] ...)

Example 4-4 Searching for geography and government keys in the data

mysql> SELECT JSON_CONTAINS_PATH(doc,"ONE","$.geography","$.government") FROM
countryinfo WHERE _id='USA';
+--+
| JSON_CONTAINS_PATH(doc,"ONE","$.geography","$.government") |
+--+
| 1 |
+--+
1 row in set (0.00 sec)

mysql>

04-ch04.indd 21 13/04/18 4:19 PM

22 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 4

The second argument in this function is either ONE or ALL. Use ONE when
one key exists at least once in the path; use ALL when you want to find all
keys present. In this example, a 0 is returned, which indicates that there is a
geography key in the document/column but not a governmentx key. So
the server reports no match.

Example 4-5 Failure using JSON_CONTAINS_PATH, indicated by the 0 because there
is no governmentx key within the data

mysql> SELECT JSON_CONTAINS_PATH(doc,"ALL","$.geography","$.governmentx") FROM
countryinfo WHERE _id='USA';
+---+
| JSON_CONTAINS_PATH(doc,"ALL","$.geography","$.governmentx") |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

mysql>

Searching for a Value
Use JSON_CONTAINS() to determine whether the value of specified key
matches a specified value. This is an equivalency function: Does A equal B?
In this example, the IndepYear does match the value 1776 for the document
with the _id value equal to USA.

Format: JSON_CONTAINS(json_doc, val[, path])

Example 4-6 Using JSON_CONTAINS to determine whether the value of IndepYear of
this record equals 1776

mysql> SELECT JSON_CONTAINS(doc,"1776","$.IndepYear") FROM countryinfo WHERE _id='USA';

+---+

| JSON_CONTAINS(doc,"1776","$.IndepYear") |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

mysql>

JSON_SEARCH() returns the position or key of a value. The preceding
functions provided the value of given a key.

04-ch04.indd 22 13/04/18 4:19 PM

 Finding and Getting Data 23

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 4

Example 4-7 Where is the United States in the path of this data?

mysql> SELECT JSON_SEARCH(doc,"ONE", "United States") FROM countryinfo WHERE _id='usa';

+---+

| JSON_SEARCH(doc,"ONE", "United States") |

+---+

| "$.Name" |

+---+

1 row in set (0.00 sec)

mysql>

This function will also check the full path and return matching keys. Note
that this is searching on the value to return the key. The preceding examples
were looking for the values given a key, while JSON_SEARCH returns
keys given values. This function will provide the full path of the key for the
given value.

Example 4-8 Where is North America in this JSON document? JSON_SEARCH provides
a way to find the key given a value.

mysql> SELECT JSON_SEARCH(doc,"ONE", "North America") FROM countryinfo WHERE _id='usa';

+---+

| JSON_SEARCH(doc,"ONE", "North America") |

+---+

| "$.geography.Region" |

+---+

1 row in set (0.00 sec)

mysql>

04-ch04.indd 23 13/04/18 4:19 PM

5
Changing Data

MySQL provides many functions for the creation and modification of
data. JSON documents can contain objects, arrays, and combinations thereof
that can be confusing at first glance. But these functions are powerful and
easy to master.

05-ch05.indd 25 13/04/18 4:20 PM

26 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

Using Arrays
The JSON standard proclaims that array values shall be of type string,
number, object, Boolean, or null. Arrays are very handy for storing multiple
values and, unlike objects, they do not need to be in pairs. Remember that
arrays are bound by square brackets, [and], but objects are bound by
curly brackets, { and }.

Because it would be messy to adulterate the countryinfo table, a new
database schema and table need to be created. Example 5-1 creates a new sche-
ma named testjson, creates a table named y, and inserts some sample data.

Format: JSON_ARRAY([val[, val] ...])

Example 5-1 Creating a new database and table using the JSON data type

mysql> CREATE DATABASE testjson; USE testjson;
Database changed
mysql> CREATE TABLE y (x JSON);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO y VALUES (JSON_ARRAY('A','B','C'));
Query OK, 1 row affected (0.01 sec)

mysql>

This new array has three items: $[0] is set to "A", $[1] is set to "B", and
$[2] is set to "C". Those accustomed to programming languages that start
counting from 1 need to make a mental note because array elements in JSON
documents start with 0.

Example 5-2 Data from the new table

mysql> SELECT * FROM y;
+-----------------+
| x |
+-----------------+
| ["A", "B", "C"] |
+-----------------+
1 row in set (0.00 sec)

Appending Arrays
Arrays may need to be augmented. You can use JSON_ARRAY_APPEND to
append values to the end of the designated arrays within a JSON document
and then return the result. It will return a NULL if any argument is NULL.

05-ch05.indd 26 13/04/18 4:20 PM

 Changing Data 27

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

The server will report an error if the json_doc argument is not a valid JSON
document, any path argument is not a valid path expression, or the expres-
sion contains a * or ** wildcard. Note that the path/value pairs are evalu-
ated from the left to the right. The document that is produced by evaluating
one pair becomes the new value against which the next pair is evaluated;
every new evaluation starts fresh on the latest version of the document that
is being processed. And remember that the first element in an array is at
$[0], the second is at $[1], and so on. It is easy to append a wildcard (*) to
$[0], as shown in Example 5-3.

Format: JSON_ARRAY_APPEND(json_doc, path, val[, path, val] ...)

Example 5-3 Appending the $[0] value

mysql> UPDATE y SET x=JSON_ARRAY_APPEND(x,"$[0]","*");
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+------------------------+
| x |
+------------------------+
| [["A", "*"], "B", "C"] |
+------------------------+
1 row in set (0.00 sec)

Now $[0] is set to "A", "*". Another way to think about the change made
in Example 5-3 is that $[0] is itself a new array within the previous array.

Note that the data has to exist before it can be appended or it will be post-
pended.

Example 5-4 Appending data

mysql> UPDATE y SET x=JSON_ARRAY_APPEND(x,"$","#");
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+-----------------------------+
| x |
+-----------------------------+
| [["A", "*"], "B", "C", "#"] |
+-----------------------------+
1 row in set (0.01 sec)

05-ch05.indd 27 13/04/18 4:20 PM

28 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

It is also possible to insert multiple values at once. This is more efficient
than sending multiple queries, because each query has to have the user
authenticated, syntax checked, query plan generated, and then the query is
executed. If possible, you’ll find that it pays to do as much as possible in “one
trip” to the server.

Example 5-5 Updating data

mysql> UPDATE y SET x=JSON_ARRAY_APPEND(x,"$[1]","@","$[3]","+");
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+---+
| x |
+---+
| [["A", "*"], ["B", "@"], "C", ["#", "+"]] |
+---+
1 row in set (0.00 sec)

mysql>

Inserting into an Array
JSON_ARRAY_INSERT() is very similar to JSON_ARRAY_APPEND(), but,
as the name of the function states, a new value is inserted, instead of
appended, at the desired location. It will return a NULL if any argument is
NULL. The server will report an error if the json_doc argument is not a
valid JSON document, any path argument is not a valid path expression, or
the expression contains a * or ** wildcard. Note that the path/value pairs
are evaluated from the left to the right. The document that is produced by
evaluating one pair becomes the new value against which the next pair is
evaluated; every new evaluation starts fresh on the latest version of the docu-
ment that is being processed.

Format: JSON_ARRAY_INSERT(json_doc, path, val[, path, val] ...)

Example 5-6 Inserting data

mysql> UPDATE y SET x=JSON_ARRAY_INSERT(x,"$[0]","&");
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

05-ch05.indd 28 13/04/18 4:20 PM

 Changing Data 29

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

mysql> SELECT * FROM y;
+--+
| x |
+--+
| ["&", ["A", "*"], ["B", "@"], "C", ["#", "+"]] |
+--+
1 row in set (0.00 sec)
mysql>

The array changes, with $[0] now set to the new value ("&") and the
others values shifted down. In addition, multiple inserts can be done at the
same time.

Example 5-7 Multiple changes simultaneously made by JSON_ARRAY_INSERT

mysql> UPDATE y SET x=JSON_ARRAY_INSERT(x,"$[1]","777","$[3]","999");
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+--+
| x |
+--+
| ["&", "777", ["A", "*"], "999", ["B", "@"], "C", ["#", "+"]] |
+--+
1 row in set (0.00 sec)

mysql>

Again, in general practice, it is best with relational databases to make
multiple changes with one query rather than make many small changes with
multiple queries.

Using TRUNCATE Before Adding New Data
For the next few examples, is it best that you “wipe the slate clean” and
remove the old data by using the TRUNCATE command and then adding new
data. For those unfamiliar with the TRUNCATE command, it removes the data
but preserves the underlying table structure.

Example 5-8 Cleaning the slate of the old array data and starting fresh with an object

mysql> TRUNCATE y;
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO y VALUES('{ "key1" : "value1" }');
Query OK, 1 row affected (0.01 sec)

05-ch05.indd 29 13/04/18 4:20 PM

30 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

mysql> SELECT * FROM y;
+--------------------+
| x |
+--------------------+
| {"key1": "value1"} |
+--------------------+
1 row in set (0.00 sec)

mysql>

Using JSON_INSERT
You can use JSON_INSERT to insert values into a JSON document. Although
it is similar to JSON_SET, JSON_SET is used with keys and values already
existing in the document, while JSON_INSERT adds new data. A path/value
pair for an already existing path in the document is ignored, and it does not
overwrite the existing document value. If a path/value pair does not match
a path in the document, it is ignored and has no effect. The server will report
an error if the json_doc argument is not a valid JSON document, any path
argument is not a valid path expression, or the expression contains a * or **
wildcard. Again note that the path/value pairs are evaluated from the left to
the right.

Format: JSON_INSERT(json_doc, path, val[, path, val] ...)

Example 5-9 Using JSON_INSERT

mysql> UPDATE y SET x = JSON_INSERT(x,'$.key2','value2');
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+--------------------------------------+
| x |
+--------------------------------------+
| {"key1": "value1", "key2": "value2"} |
+--------------------------------------+
1 row in set (0.00 sec)

mysql>

Again, multiple items can be inserted into one statement. The line is read
left to right, and after each insert, the next step occurs with the line reexamined
including the new element.

05-ch05.indd 30 13/04/18 4:20 PM

 Changing Data 31

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

Example 5-10 Multiple inserts with JSON_INSERT

mysql> UPDATE y SET x = JSON_INSERT(x,'$.key1','value1x',"$.key3","value3");
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+--+
| x |
+--+
| {"key1": "value1", "key2": "value2", "key3": "value3"} |
+--+
1 row in set (0.00 sec)

mysql>

Note that in Example 5-10, the query wanted to reset the values for key1
but failed. Why? Because insert is not the same as replace, and JSON_INSERT
does not replace an existing value. However the $.key3 information was
processed by the server. Although half the query worked as desired, there
was no warning or error issued on the half that was not performed. If you use
this function, you need to be very careful, because this could lead to major
problems later. It would be very easy to presume that key1 has the value of
value1x in this case, when it does not—thus database administrators and
developers gather gray hairs. Refer to the next section for a possible alternative.

Using JSON_REPLACE
Use JSON_REPLACE for updating existing values in a JSON document. The
path/value pair for an existing path in the document overwrites the existing
value in the document with the new value. The path/value pair for a path that
is nonexistent in the document is ignored and has no effect. The server will
report an error if the json_doc argument is not a valid JSON document, any
path argument is not a valid path expression, or the expression contains a * or
** wildcard. The path/value pairs are evaluated from the left to the right.

Format: JSON_REPLACE(json_doc, path, val[, path, val] ...)

Example 5-11 Using JSON_REPLACE to update values

mysql> SELECT * FROM y;
+--+
| x |
+--+
| {"key1": "value1", "key2": "value2", "key3": "value3"} |
+--+
1 row in set (0.00 sec)

05-ch05.indd 31 13/04/18 4:20 PM

32 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

mysql> UPDATE y SET x = JSON_REPLACE(x,"$.key1","Value1A","$.key3","VALUE-3");
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+---+
| x |
+---+
| {"key1": "Value 1A", "key2": "value2", "key3": "VALUE-3"} |
+---+
1 row in set (0.00 sec)

mysql>

Note that JSON_REPLACE will not insert a new value:

Example 5-12 JSON_REPLACE will not insert a new value; use JSON_INSERT instead.

mysql> UPDATE y SET x = JSON_REPLACE(x,"$.key1","Value1A","$.key3","VALUE-3","$.key4","value4");
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1 Changed: 0 Warnings: 0

mysql> select * from y;
+--+
| x |
+--+
| {"key1": "Value1A", "key2": "value2", "key3": "VALUE-3"} |
+--+
1 row in set (0.00 sec)

JSON_REMOVE
The counterpart to JSON_SET, which is discussed next, is JSON_REMOVE,
which is used to delete data from the JSON document. If the element to be
removed does not exist in the document, the server does not denote it as an
error and it does not affect the document. The server will report an error,
however, if the json_doc argument is not a valid JSON document, any path
argument is not a valid path expression, or the expression contains a * or **
wildcard. The path/value pairs are evaluated from the left to the right.

Format: JSON_REMOVE(json_doc, path[, path] ...)

Example 5-13 Using JSON_REMOVE to change a document

mysql> SELECT * FROM y;
+---+
| x |
+---+
| {"key1": "Value 1A", "key2": "value2", "key3": "VALUE-3"} |
+---+
1 row in set (0.00 sec)

05-ch05.indd 32 13/04/18 4:20 PM

 Changing Data 33

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

mysql> UPDATE y SET x = JSON_REMOVE(x,"$.key2");
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+---+
| x |
+---+
| {"key1": "Value 1A", "key3": "VALUE-3"} |
+---+
`1 row in set (0.00 sec)

mysql>

JSON_REMOVE will remove one or more key/value pairs. When all the
key/value pairs need to be removed, it may be easier to use JSON_SET and
set the document to a blank or NULL rather than specify each key for the
given document.

JSON_SET
The JSON_SET function inserts or updates data in a JSON document and
returns the result. If the path/value pair for an existing path is found in the
document, the new value will overwrite the old value. But if the path/value
pair is nonexistent in the path of the document, it will be added to the docu-
ment or the member will be added to the object and associated with the new
value. If a position value is past the end of an existing array, it will be extended
with the new value. The server will report an error if the json_doc argu-
ment is not a valid JSON document, any path argument is not a valid path
expression, or the expression contains a * or ** wildcard. The path/value
pairs are evaluated from the left to the right.

Format: JSON_SET(json_doc, path, val[, path, val] ...)

Example 5-14 Using JSON_SET to replace the value of “$.key1” and to add a
new value for “$.key99”

mysql> SELECT * FROM y;
+---+
| x |
+---+
| {"key1": "Value 1A", "key3": "VALUE-3"} |
+---+
1 row in set (0.00 sec)

05-ch05.indd 33 13/04/18 4:20 PM

34 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

mysql> UPDATE y SET x = JSON_SET(x,"$.key1","Value 1X","$.key99","Value-99");
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM y;
+--+
| x |
+--+
| {"key1": "Value 1X", "key3": "VALUE-3", "key99": "Value-99"} |
+--+
1 row in set (0.00 sec)

mysql>

JSON_SET will set values for an already defined key (the value of "key1"
was changed from "Value 1A" to "Value 1X"). Nonexistent key/values
are inserted as directed. Existing keys that are not changed by JSON_SET
remain unchanged.

JSON_UNQUOTE
The JSON standards describe how keys and values can be quoted to improve
their integrity as they are transferred about. Unfortunately, this protection
may not be needed by the downstream function or application and should be
stripped. Although the function or application can be engineered to do this,
it is often much simpler to have the database do this work. And it can be
aliased with the ->> operator.

Format: JSON_UNQUOTE(json_val)

Example 5-15 JSON_UNQUOTE with JSON_EXTRACT, and aliased with the
->> operator

mysql> SELECT * FROM y;
+--+
| x |
+--+
| {"key1": "Value 1X", "key3": "VALUE-3", "key99": "Value-99"} |
+--+
1 row in set (0.00 sec)

mysql> SELECT JSON_EXTRACT(x,"$.key1") FROM y;
+--------------------------+
| JSON_EXTRACT(x,"$.key1") |
+--------------------------+
| "Value 1X" |
+--------------------------+
1 row in set (0.00 sec)

05-ch05.indd 34 13/04/18 4:20 PM

 Changing Data 35

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

mysql> SELECT JSON_UNQUOTE(JSON_EXTRACT(x,"$.key1")) FROM y;
+--+
| JSON_UNQUOTE(JSON_EXTRACT(x,"$.key1")) |
+--+
| Value 1X |
+--+
1 row in set (0.00 sec)

mysql> SELECT x->>"$.key1" FROM y;
+--------------+
| x->>"$.key1" |
+--------------+
| Value 1X |
+--------------+
1 row in set (0.00 sec)

mysql>

Whether you use the ->> operator instead of JSON_UNQUOTE with JSON_
EXTRACT is a matter of choice, readability, and style. But older versions of
MySQL do not have the ->> operator (MySQL 5.7.13 was its introduction).

The Three JSON_MERGE Functions
There are three JSON MERGE functions: JSON_MERGE, JSON_MERGE_
PRESERVE, and JSON_MERGE_PATCH. These are very easy to mistake for
one another, but they produce a different effect on the data. To add to any
possible confusion, JSON_MERGE is actually a synonym for JSON_MERGE_
PRESERVE, which means there are two functions with three names—that is,
before JSON_MERGE was deprecated in MySQL version 8.0.3. It will likely be
removed in some future release. JSON_MERGE_PRESERVE was introduced
in MySQL 5.7.22, and you need to be careful in dealing with earlier versions
to avoid confusion and frustration.

So why three separate merge functions? The original JSON_MERGE did
not act like similar functions used in programming languages like Python.
Feedback from early users was mixed, with some loving the original while
others wanted it to match JSON merge functions in their favorite language.

So what does the standard say? Well, not so much in this case. RFC 7159
states that object names should be unique. The implications are that duplicates
are not supposed to happen, and the implementation is left up to the
developer. So JSON_MERGE_PATCH was created to pair with the original
function, now renamed MYSQL_JSON_PRESERVE.

05-ch05.indd 35 13/04/18 4:20 PM

36 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

So what are the differences between JSON_MERGE/JSON_MERGE_
PRESERVE and JSON_MERGE_PATCH? JSON_MERGE/JSON_MERGE_
PRESERVE merges two or more JSON documents and returns the merged
result. JSON_MERGE_PATCH merges two or more JSON documents, returns
the merged result without preserving members having duplicate keys, and
drops any member in the first object whose key is matched in the second object.

Example 5-16 clearly shows the JSON_MERGE/JSON_MERGE_PRESERVE
cleaning and merging the two JSON objects while preserving all the values
but JSON_MERGE_PATCH, keeping only the latest versions of the key/value
pairs after the merge.

Example 5-16 How the various JSON_MERGE functions operate. Be sure to check
your version of MySQL to ensure that your query works as desired.

mysql> SELECT JSON_MERGE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }');

+--+

| JSON_MERGE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }') |

+--+

| {"odds": [1, 3], "evens": [2, 4]} |

+--+

1 row in set, 1 warning (0.00 sec)

mysql> SELECT JSON_MERGE_PRESERVE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }');

+---+

| JSON_MERGE_PRESERVE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }') |

+---+

| {"odds": [1, 3], "evens": [2, 4]} |

+---+

1 row in set (0.00 sec)

mysql> select JSON_MERGE_PATCH('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }');

+--+

| JSON_MERGE_PATCH('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }') |

+--+

| {"odds": 3, "evens": 4} |

+--+

1 row in set (0.00 sec)

JSON_MERGE
The JSON_MERGE function has undergone a lot of changes since the first ver-
sion came to light. The original intent was fairly simple, as can be seen in
Example 5-17.

Format: JSON_MERGE(json_doc, json_doc[, json_doc] ...)

05-ch05.indd 36 13/04/18 4:20 PM

 Changing Data 37

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

Example 5-17 Merging two JSON documents (prior to MySQL 5.7.20)

mysql> select JSON_MERGE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }');

+--+

| JSON_MERGE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }') |

+--+

| {"odds": [1, 3], "evens": [2, 4]} |

+--+

1 row in set (0.00 sec)

mysql>

The two documents had their adjacent keys matched and then their values
merged. Depending on the data type, the array or object was combined into
one of its data types. A scalar is auto-wrapped as an array and merged as an
array. And an adjacent array and object were merged by auto-wrapping the
object as an array and merging them as two arrays.

Example 5-18 Using JSON_MERGE to combine data

mysql> SELECT * from y;
+--+
| x |
+--+
| {"key1": "Value 1X", "key3": "VALUE-3", "key99": "Value-99"} |
+--+
1 row in set (0.00 sec)

mysql> SELECT JSON_MERGE(x->"$",'{ "key2" : "Buzz" }') FROM y;
+--+
| JSON_MERGE(x->"$",'{ "key2" : "Buzz" }') |
+--+
| {"key1": "Value 1X", "key2": "Buzz", "key3": "VALUE-3", "key99": "Value-99"} |
+--+
1 row in set (0.00 sec)

mysql>

Notice in Example 5-18 that the keys are sorted!
There was an issue, however, with the “last version wins” order of precedence,

which is common in most scripting languages such as PHP’s json_merge
function. And this approach would be more consistent with other MySQL JSON
functions. So JSON_MERGE will change with the latest release of MySQL.
Example 5-18 shows two arrays in the SQL statement SELECT JSON_MERGE('{
"odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }');
and with last version wins, Example 5-19 shows the output.

05-ch05.indd 37 13/04/18 4:20 PM

38 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

Example 5-19 JSON_MERGE and last version wins precedence (MySQL 8.0.3 and later)

mysql> SELECT JSON_MERGE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }');

+--+

| JSON_MERGE('{ "odds" : 1, "evens" : 2 }','{ "odds": 3, "evens" : 4 }') |

+--+

| {"odds": [3], "evens": [4]} |

+--+

1 row in set (0.00 sec)

JSON_MERGE_PRESERVE
The JSON_MERGE_PRESERVE function was created to provide the function-
ality of the original JSON_MERGE where last version wins was not consid-
ered. Example 5-17 in the preceding section shows how the JSON_MERGE
function performs for MySQL 5.7.

Format: JSON_MERGE_PRESERVE(json_doc, json_doc[, json_doc] ...)

JSON_DEPTH
JSON_DEPTH reports the JSON document’s maximum depth, or a NULL if
there is no document. Empty arrays, objects, and scalars will have a depth
of 1. An array containing only elements of depth 1 or a nonempty object
containing only member values of depth 1 has a depth of 2. Past that, the
depth is greater than 2.

Format: JSON_DEPTH(json_doc)

Example 5-20 Using JSON_DEPTH

mysql> SELECT JSON_DEPTH(doc), JSON_KEYS(doc) FROM countryinfo WHERE _id = 'USA';

+-----------------+---+

| JSON_DEPTH(doc) | JSON_KEYS(doc) |

+-----------------+---+

| 3 | ["GNP", "_id", "Name", "IndepYear", "geography", "government", "demographics"] |

+-----------------+---+

1 row in set (0.00 sec)

JSON_LENGTH
JSON_LENGTH reports the length of a JSON document or the length of a path
if one is provided. It is easy to see where the information comes from when
used with the JSON_KEYS function.

Format: JSON_LENGTH(json_doc[, path])

05-ch05.indd 38 13/04/18 4:20 PM

 Changing Data 39

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

Example 5-21 Using JSON_LENGTH

mysql> SELECT JSON_KEYS(doc), JSON_LENGTH(doc) FROM countryinfo LIMIT 1;

+--+------------------+

| JSON_KEYS(doc) | JSON_LENGTH(doc) |

+--+------------------+

| ["GNP", "_id", "Name", "IndepYear", "geography", "government", "demographics"] | 7 |

+--+------------------+

1 row in set (0.00 sec)

The length of a document is determined as follows: Scalars have a length
of 1. Array length is the number of items in the array, and objects are the
number of objects in the array. Nested arrays or objects are not counted. In
Example 5-22, you can see that the output of JSON_KEYS is the corresponding
length of the JSON document.

Example 5-22 Using JSON_LENGTH to investigate a second-level document path

mysql> SELECT JSON_KEYS(doc,'$.geography'),
 JSON_LENGTH(doc,'$.geography')
 FROM countryinfo LIMIT 1;
+--+--------------------------------+
| json_keys(doc,'$.geography') | json_length(doc,'$.geography') |
+--+--------------------------------+
| ["Region", "Continent", "SurfaceArea"] | 3 |
+--+--------------------------------+
1 row in set (0.00 sec)

JSON_TYPE
The JSON_TYPE function returns a UTF8MB4 string reporting on the con-
tents of a JSON value—array, object, integer, double, and null.

Format: JSON_TYPE(json_val)

Example 5-23 Using JSON_TYPE to determine the data type

mysql> SELECT JSON_TYPE('[1,2,3]'),
 JSON_TYPE('{ "x":"y"}'),
 JSON_TYPE('123'),
 JSON_TYPE(NULL)\G
*************************** 1. row ***************************
 JSON_TYPE('[1,2,3]'): ARRAY
JSON_TYPE('{ "x" : "y" }'): OBJECT
 JSON_TYPE('123'): INTEGER
 JSON_TYPE(NULL): NULL
1 row in set (0.00 sec)

mysql>

05-ch05.indd 39 13/04/18 4:20 PM

40 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

JSON_VALID
Use JSON_VALID on a JSON document to test for validity before attempting
an insertion into the database; this can save you a great deal of time.

Format: JSON_VALID(val)

Example 5-24 Using JSON_VALID to ensure validity of JSON documents

mysql> SELECT JSON_VALID('{ "A" : 1}'),
 JSON_VALID('A'),
 JSON_VALID('"A"')\G
************************* 1. row ***************************
JSON_VALID('{ "A" : 1}'): 1
 JSON_VALID('A'): 0
 JSON_VALID('"A"'): 1
1 row in set (0.00 sec)

mysql>

Remember that the MySQL server will reject invalid JSON documents.
In Example 5-24 all the expressions are not valid JSON, so the server returns
a 0. The first test is a valid JSON object and the third is a valid JSON document.
But the second test fails because it is an invalid JSON document.

JSON_STORAGE_SIZE
The JSON_STORAGE_SIZE function reports the size in bytes needed to store
the binary representation of the JSON document when it was inserted. This
function was introduced in MySQL 5.7.22 and is not found in earlier versions.

Format: JSON_STORAGE_SIZE(json_val)

Example 5-25 Determining document storage size with JSON_STORAGE_SIZE.
The size of a document on disk is roughly 1 gigabyte, but it can be larger while being
manipulated in memory.

mysql> SELECT JSON_EXTRACT(doc,'$.Name'),
 JSON_STORAGE_SIZE(doc)
 FROM countryinfo
 WHERE _id IN ("USA","BRA");
+----------------------------+------------------------+
| JSON_EXTRACT(doc,'$.Name') | JSON_STORAGE_SIZE(doc) |
+----------------------------+------------------------+
| "Brazil" | 342 |
| "United States" | 338 |
+----------------------------+------------------------+
2 rows in set (0.01 sec)

05-ch05.indd 40 13/04/18 4:20 PM

 Changing Data 41

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 5

JSON_STORAGE_FREE
The JSON_STORAGE_FREE function reports the amount of storage space
that was freed in bytes in its binary representation after it was updated. The
updates need to be in place (not a rewrite of the entire document) using
JSON_SET, JSON_REMOVE, or JSON_REPLACE. It will return a 0 if the argu-
ment is a JSON document in a string.

Format: JSON_STORAGE_FREE(json_val)

Example 5-26 Using JSON_STORAGE_FREE by changing “This is a string”, which is
16 characters, to “a”, which is 1 character, or a net change of 15 bytes

mysql> CREATE DATABASE IF NOT EXISTS test; USE test;
mysql>CREATE TABLE x (id INT UNSIGNED, doc JSON);
mysql>INSERT INTO x VALUES (1,’{“a” : “1”}’);
mysql> UPDATE x SET doc = JSON_SET(doc,'$[0]','{ "a" : "This is a string" }');
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE x SET doc = JSON_SET(doc,'$[0]','{ "a" : "a" }');
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT JSON_STORAGE_FREE(doc) FROM x;
+------------------------+
| JSON_STORAGE_FREE(doc) |
+------------------------+
| 15 |
+------------------------+
1 row in set (0.00 sec)

05-ch05.indd 41 13/04/18 4:20 PM

6
JSON and

Non-JSON Output

The advantages of traditional relational data and schemaless data are both
large. But in some cases, data in a schema needs to be schemaless, or schema-
less data needs to be in a schema. Making such changes is easy to do.

06-ch06.indd 43 13/04/18 4:21 PM

44 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

JSON-Formatted Data
The various JSON functions supplied by MySQL can also be used to create
JSON-formatted output from non-JSON data. Example 6-1 shows non-JSON
data output in a non-JSON format, which has been the standard for MySQL
for much of its existence.

Example 6-1 Non-JSON data and output from a relational table

mysql> SELECT city.Name,
 country.Name
 FROM city
 JOIN country ON (city.CountryCode=country.Code)
 LIMIT 5;
+----------------+-------------+
| Name | Name |
+----------------+-------------+
Kabul	Afghanistan
Qandahar	Afghanistan
Herat	Afghanistan
Mazar-e-Sharif	Afghanistan
Amsterdam	Netherlands
+----------------+-------------+
5 rows in set (0.00 sec)

This is a fairly typical example of MySQL output for a regular query—
good-old MySQL at its finest. But it’s not very useful if that data is needed by
something that consumes data in a JSON format.

JSON_OBJECT
The query from Example 6-1 can quickly be adapted to output non-JSON data
in a JSON format. JSON objects can easily be created with JSON_OBJECT, but
remember that JSON objects contain pairs (key/value pairs), so there cannot
be an odd number of arguments.

In Example 6-2, strings are added to the preceding query to create keys for
the values. Neither "City" nor "Country" are table row names; both rows
are named Name, which can be confusing for casual readers and for the server.

Format: JSON_OBJECT([key, val[, key, val] ...])

06-ch06.indd 44 13/04/18 4:21 PM

 JSON and Non-JSON Output 45

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

Example 6-2 Using JSON_OBJECT with non-JSON data

mysql> SELECT
 JSON_OBJECT("City", city.Name, "Country", country.Name)
 FROM city
 JOIN country ON (city.CountryCode=country.Code)
 LIMIT 5;
+---+
| JSON_OBJECT("City", city.Name, "Country", country.Name) |
+---+
| {"City": "Kabul", "Country": "Afghanistan"} |
| {"City": "Qandahar", "Country": "Afghanistan"} |
| {"City": "Herat", "Country": "Afghanistan"} |
| {"City": "Mazar-e-Sharif", "Country": "Afghanistan"} |
| {"City": "Amsterdam", "Country": "Netherlands"} |
+---+
5 rows in set (0.00 sec)

Now the non-JSON data is in a JSON format. You can use both non-JSON
and JSON columns as arguments to this function.

JSON_ARRAY
In a similar fashion to using JSON_OBJECT, you can use JSON_ARRAY to
create arrays from non-JSON data.

Format: JSON_ARRAY([val[, val] ...])

Example 6-3 Using JSON_ARRAY with non-JSON data

mysql> SELECT JSON_ARRAY(Code, Name, Capital) FROM country LIMIT 1;
+---------------------------------+
| json_array(Code, Name, Capital) |
+---------------------------------+
| ["ABW", "Aruba", 129] |
+---------------------------------+
1 row in set (0.00 sec)

mysql>

Examples 6-2 and 6-3 show how traditional MySQL data can be formatted
as JSON objects or arrays. And, of course, you can mix and match JSON and
non-JSON columns into arrays or objects.

06-ch06.indd 45 13/04/18 4:21 PM

46 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

Casting
MySQL enables you to cast one data type as another. This includes JSON.
Casting from within MySQL has been around for decades before the JSON
data type.

Example 6-4 Casting data as JSON

mysql> SELECT JSON_TYPE(CAST('[1,2]' AS JSON));
+----------------------------------+
| JSON_TYPE(CAST('[1,2]' AS JSON)) |
+----------------------------------+
| ARRAY |
+----------------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_TYPE(CAST('1' AS JSON));
+------------------------------+
| JSON_TYPE(CAST('1' AS JSON)) |
+------------------------------+
| INTEGER |
+------------------------------+
1 row in set (0.00 sec)

mysql>

Conversely, JSON data can be cast as other data types:

Example 6-5 Casting a JSON DOUBLE as unsigned

mysql> SELECT
 CAST(JSON_EXTRACT(doc,"$.demographics.LifeExpectancy") AS unsigned)
 FROM countryinfo
 WHERE _id = 'USA';
+---+
| CAST(JSON_EXTRACT(doc,"$.demographics.LifeExpectancy") AS unsigned) |
+---+
| 77 |
+---+
1 row in set (0.00 sec)

Make sure that you provide the full path of the JSON key you are searching,
or the server will return NULL. It would also be wise to choose a style and
stick with it. Example 6-5 is much easier to read than

SELECT CAST(doc->>"$.demographics.LifeExpectancy" AS unsigned) FROM countryinfo
WHERE _id = 'USA';

using the shortcuts for JSON_UNQUOTE wrapped around JSON_EXTRACT,
but older versions of MySQL will not be able to handle that query. Wildcards
will also cause problems, as shown in Example 6-6.

06-ch06.indd 46 13/04/18 4:21 PM

 JSON and Non-JSON Output 47

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

Example 6-6 How wildcards can affect casting

mysql> SELECT json_extract(doc,"$.demographics.LifeExpectancy")
 FROM countryinfo
 WHERE _id = 'USA';
+---+
| json_extract(doc,"$.demographics.LifeExpectancy") |
+---+
| 77.0999984741211 |
+---+
1 row in set (0.00 sec)

mysql> SELECT CAST(doc->>"$.demographics.LifeExpectancy" AS unsigned) FROM countryinfo WHERE _id = 'USA';
+---+
| CAST(doc->>"$.demographics.LifeExpectancy" AS unsigned) |
+---+
| 77 |
+---+
1 row in set, 1 warning (0.00 sec)

mysql> SELECT CAST(doc->>"$.*.LifeExpectancy" AS unsigned) FROM countryinfo WHERE _id = 'USA';
+--+
| CAST(doc->>"$.*.LifeExpectancy" AS unsigned) |
+--+
| 0 |
+--+
1 row in set, 1 warning (0.00 sec)

mysql> show warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect INTEGER value: '[77.0999984741211]' |
+---------+------+---+
1 row in set (0.00 sec)

mysql>

Example 6-6 illustrates how using a wildcard in the path in JSON_
EXTRACT will return an array, while without the data, it is a double. In the
first query, where the path $.demographics.LifeExpectancy is fully
provided, it generates a warning: “Truncated incorrect INTEGER value:
'[77.0999984741211]'” (use SHOW WARNINGS; to display the warnings). This
can usually be ignored. But when the path includes a wildcard, such as
$.*.LifeExpectancy, the server cannot cast the value returned to
unsigned, because it is an array (note the square brackets around the
INTEGER value). It may be intuitive to some that the two queries in
Example 6-6 are pretty much equivalent, but they are not seen that way by
the server.

When in doubt, cast your values to what you need. This is especially
important when you’re matching data values with indexes, because it provides
the query optimizer with valuable information for building query plans.

06-ch06.indd 47 13/04/18 4:21 PM

48 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

Non-JSON Output
Transforming JSON data into temporary relational tables is done with the
JSON_TABLE function, which, as of this writing, is available only as a
Developer Milestone Release of MySQL 8.0.3, from http://labs.mysql.com;
hopefully, it will become part of the generally available release of MySQL 8.

The power to map JSON data into temporary relational tables and then
query from those tables opens up the power of relational data processing
without having to establish generated columns, using hard-to-debug stored
procedures, or creating views. Once we have the relational table, it is easy to
use like any other relational table, and we can winnow down the results with
the WHERE clause. In Example 6-7, two JSON key/value pairs are extracted,
formatted, and then returned in a table.

Format: JSON_TABLE(doc, path, columns (name type PATH path),...)
AS Temptable-name

Example 6-7 Using JSON_TABLE to convert JSON data into a relational table

mysql> SELECT country_name, IndyYear
 FROM countryinfo,
 JSON_TABLE(doc, "$" COLUMNS (
 country_name CHAR(20) PATH "$.Name",
 IndyYear INT PATH "$.IndepYear")) as stuff
 WHERE IndyYear > 1992;
+----------------+----------+
| country_name | IndyYear |
+----------------+----------+
Czech Republic	1993
Eritrea	1993
Palau	1994
Slovakia	1993
+----------------+----------+
4 rows in set, 67 warnings (0.08 sec)

mysql>

Note that the two columns—country_name and IndyYear—are named
only within the JSON_TABLE. The first argument to the function is the JSON
column in the table to be used and then the path is specified. The $ path can
be used to specify the entire document, or a subpath can be specified.

This query also generated 67 warnings! Twenty of those can be easily
removed by upping the CHAR(20) field for country_name to something
longer, such as CHAR(50). Truncating data can be dangerous, and it would
take some work to check all the documents to find the longest Name and then
adjust the query to match. The other 47 warnings are invalid castings of a

06-ch06.indd 48 13/04/18 4:21 PM

http://labs.mysql.com

 JSON and Non-JSON Output 49

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

NULL to an integer. For this particular query, the desired result was for
countries with years of independence since 1993; it does not matter. But it
would matter if the desired result was, for example, independence years before
1515 as they would not collect the records with NULL in the IndyYear column.

Missing Data
An interesting feature of JSON_TABLE is that it offers you the ability to spec-
ify what to do when data is missing. Unlike a relational column, where miss-
ing or NULL values can be stored, the JSON document has no guarantee that
all desired key/value pairs exist.

Example 6-8 Sample data for JSON_TABLE

mysql> SELECT * FROM t1;
+-----+--------------------------+
| _id | doc |
+-----+--------------------------+
1	{"x": 0, "name": "Bill"}
2	{"x": 1, "name": "Mary"}
3	{"name": "Pete"}
+-----+--------------------------+
3 rows in set (0.00 sec)

mysql>

Example 6-8 has a small dataset, where all the columns have a name key/
value pair and the third record is missing an x key/value pair. The DEFAULT
ON EMPTY qualifier can be used to provide data for the missing x key/value
pair. Example 6-9 shows how to deal with a missing value.

Example 6-9 JSON_TABLE used with a DEFAULT value for missing data and EXISTS
to determine whether the data is available

mysql> SELECT * FROM t1,
 JSON_TABLE(doc,"$" COLUMNS (
 xHasValue INT PATH "$.x" DEFAULT '999' ON EMPTY,
 hasname CHAR(10) EXISTS PATH "$.name",
 mojo CHAR(5) EXISTS PATH "$.mojo"))
 AS t2;
+-----+--------------------------+-----------+---------+------+
| _id | doc | xHasValue | hasname | mojo |
+-----+--------------------------+-----------+---------+------+
1	{"x": 0, "name": "Bill"}	0	1	0
2	{"x": 1, "name": "Mary"}	1	1	0
3	{"name": "Pete"}	999	1	0
+-----+--------------------------+-----------+---------+------+
3 rows in set (0.00 sec)

mysql>

06-ch06.indd 49 13/04/18 4:21 PM

50 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

When we specify DEFAULT '999' ON EMPTY, the server will return the
default value when the desired key/value pair is missing. The third record is
missing a value for x, and the value 999 is inserted into the table.

The EXISTS keyword returns a Boolean answer if the referenced key/
value pair exists. Because all the records have a name key/value pair, the
hasname column shows a 1. But not one of the records has a mojo key/
value pair, so a 0 is returned in that column. Example 6-10 shows how to use
the Boolean data from JSON_TABLE in a SQL query.

Example 6-10 Using the Boolean data from JSON_TABLE’s EXIST keyword as part of
a query

mysql> SELECT * FROM t1,
 JSON_TABLE(doc,"$" COLUMNS (
 xHasValue INT PATH "$.x" DEFAULT '999' ON EMPTY,
 hasname CHAR(10) EXISTS PATH "$.name",
 mojo CHAR(5) EXISTS PATH "$.mojo"))
 AS t2
 WHERE hasname = 1 and xHasValue = 1;
+-----+--------------------------+-----------+---------+------+
| _id | doc | xHasValue | hasname | mojo |
+-----+--------------------------+-----------+---------+------+
| 2 | {"x": 1, "name": "Mary"} | 1 | 1 | 0 |
+-----+--------------------------+-----------+---------+------+
1 row in set (0.01 sec)

In this example, the desired data has the hasname column equal to 1 and the
xHasValue column equal to 1. By using such queries, you can easily determine
whether documents do indeed have certain key/value pairs.

Nested Data
JSON_TABLE also has the ability to walk down the JSON document path and
retrieve nested data. In Example 6-11, there are several values of z for each
record’s y key. The ability to extract each individual value comes from the
NESTED PATH option.

Example 6-11 This name has nested values of key z within the key y.
mysql> SELECT * FROM t2;
+-----+--+
| _id | doc |
+-----+--+
10	{"x": 1, "y": [{"z": 1}, {"z": 3}]}
20	{"x": 2, "y": [{"z": 2}, {"z": 4}]}
30	{"x": 33, "y": [{"z": 2}, {"z": 3}, {"z": 4}]}
+-----+--+
3 rows in set (0.02 sec)

mysql>

06-ch06.indd 50 13/04/18 4:21 PM

 JSON and Non-JSON Output 51

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 6

Extracting all values of z from the y can be done with string-handling
functions or some very nasty regular expression code. However, JSON_
TABLE allows walking down paths with nested values. And JSON_TABLE
can also provide an ordinal number for returned data.

Example 6-12 Using the NESTED PATH option with JSON_TABLE to extract all values
of z from the y key/value pair

mysql> SELECT * FROM t2,
 JSON_TABLE(doc, "$" COLUMNS (
 myX INT PATH "$.x",
 NESTED PATH "$.y[*]" COLUMNS (
 myID FOR ORDINALITY,
 myZ CHAR(10) PATH "$.z")))
 AS tt;
+-----+--+-----+------+------+
| _id | doc | myX | myID | myZ |
+-----+--+-----+------+------+
10	{"x": 1, "y": [{"z": 1}, {"z": 3}]}	1	1	1
10	{"x": 1, "y": [{"z": 1}, {"z": 3}]}	1	2	3
20	{"x": 2, "y": [{"z": 2}, {"z": 4}]}	2	1	2
20	{"x": 2, "y": [{"z": 2}, {"z": 4}]}	2	2	4
30	{"x": 33, "y": [{"z": 2}, {"z": 3}, {"z": 4}]}	33	1	2
30	{"x": 33, "y": [{"z": 2}, {"z": 3}, {"z": 4}]}	33	2	3
30	{"x": 33, "y": [{"z": 2}, {"z": 3}, {"z": 4}]}	33	3	4
+-----+--+------+------+-----+
7 rows in set (0.00 sec)

mysql>

This may seem more confusing than it really is. It can often be helpful to
read the SQL statements aloud to aid in comprehension. In Example 6-12, the
NESTED PATH of $.y[*] (which also could have been $.y) is searched for
any values of z in that path. Or, y becomes its own document and the server
searched within it for any values of z.

The FOR ORDINALITY operator allows a running total for each of the
values that is broken out in the NESTED PATH operation. The document with
the _id of 10 has two ordinal values because there were two z values in that
document’s y key/value pair. And the document with the _id of 30 has
three because its document has three values for z under the y key/value pair.

06-ch06.indd 51 13/04/18 4:21 PM

7
Generated Columns

The MySQL server cannot index JSON columns. Generally, you want
indexes to be as small as practicable for speed, and trying to use up to a
gigabyte of unstructured data would not be efficient. This situation is similar
to that of other data BLOBs. Data from the JSON column, however, can be
extracted into a generated column, and that column can be indexed.

There are two types of generated columns. The virtual generated column
is evaluated when the column is read but before any existing triggers are
fired for that column. The stored generated column is evaluated and stored
when data is either inserted or updated. The default is virtual generated, but
both types can be used together in a table.

07-ch07.indd 53 13/04/18 4:22 PM

54 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 7

Virtual generated columns cannot contain subqueries, parameters,
variables, stored functions, or user-defined functions. You cannot use the
AUTO_INCREMENT attribute in a virtual generated column or base a virtual
generated column on a column that uses AUTO_INCREMENT. Foreign-key
constraints on a stored generated column cannot use ON UPDATE CASCADE,
ON DELETE SET NULL, ON UPDATE SET NULL, ON DELETE SET DEFAULT,
or ON UPDATE SET DEFAULT. Also, foreign-key constraints cannot reference
a virtual generated column. Several other constraints are detailed in the
MySQL user manual that are worth reading at a later time but do not fit in
this book.

Using Generated Columns
The keyword AS denotes a generated column. Example 7-1 calculates the tax-
able amount of an item given the item price and multiplies it by the tax rate.
The taxRate is the percentage of the itemPrice to be taxed. The server calcu-
lates the taxAmount.

Example 7-1 Using generated columns to calculate values

mysql> CREATE TABLE taxCalc (itemPrice DECIMAL(10,3),
 taxRate DECIMAL(10,3),
 taxAmount DECIMAL(10,3) AS (itemPrice * taxRate));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO taxCalc (itemPrice, taxRate) VALUES (10.0,0.08), (100.0,0.25);
Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM taxCalc;
+-----------+---------+-----------+
| itemPrice | taxRate | taxAmount |
+-----------+---------+-----------+
| 10.000 | 0.080 | 0.800 |
| 100.000 | 0.250 | 25.000 |
+-----------+---------+-----------+
2 rows in set (0.00 sec)

mysql>

Note that only the itemPrice and taxRate are entered into the table and the
server calculates the taxAmount column.

07-ch07.indd 54 13/04/18 4:22 PM

 Generated Columns 55

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 7

Columns Generated from JSON
The world_x countryinfo table has a generated column and is a prime
example of the MySQL document store table format. The InnoDB storage
engine requires a PRIMARY KEY and will pick one, often a poor one, if it’s not
specified. MySQL will create a column named _id when a collection is created
and denote it as the primary key. If there is no _id data in the JSON document
column named doc, the column will hold a NULL.

Example 7-2 How the MySQL document store creates collections

mysql> DESC countryinfo;
+-------+-------------+------+-----+---------+------------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+------------------+
| doc | json | YES | | NULL | |
| _id | varchar(32) | NO | PRI | NULL | STORED GENERATED |
+-------+-------------+------+-----+---------+------------------+
2 rows in set (0.00 sec)

mysql>

A simple DESCRIBE table will show the layout of the table and that there
is a stored generated column, but it won’t show the actual code for the
generation. More details on the Document Store’s table are available from
SHOW CREATE TABLE than from the DESCRIBE table.

Example 7-3 In this case, the workings of the GENERATED column are shown.

mysql> SHOW CREATE TABLE countryinfo;

+-------------+---+

| Table | Create Table |

+-------------+---+

| countryinfo | CREATE TABLE 'countryinfo' (

 'doc' json DEFAULT NULL,

 '_id' varchar(32) GENERATED ALWAYS AS (json_unquote(json_extract('doc',_utf8'$._id'))) STORED NOT NULL,

 PRIMARY KEY ('_id')

) ENGINE=InnoDB DEFAULT CHARSET=utf8 |

+-------------+---+

1 row in set (0.00 sec)

A SHOW CREATE TABLE provides the details on the generation of the
created table. It is easy to see that the _id column is created from JSON
column doc’s key/value pair of _id. Note the UTF8 casting of this field.

07-ch07.indd 55 13/04/18 4:22 PM

56 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 7

Any other JSON key (or keys in combination; consult the MySQL manual
regarding composite indexes) can be used in a generated column. If you are
regularly extracting one key/value pair, it may be faster to use a generated
column and index than a generated column to search via SQL.

Example 7-4 Using ALTER TABLE to add a generated column for PopulationCountry

 mysql> ALTER TABLE countryinfo
 -> ADD COLUMN PopulationCountry INT AS
 -> (JSON_UNQUOTE(doc->"$.demographics.Population"));
Query OK, 0 rows affected (0.25 sec)
Records: 0 Duplicates: 0 Warnings: 0

It is better to use the STORED GENERATED column option for building
indexes. The VIRTUAL GENERATED type is not stored and must be computed
at access time, which is a lot of work. With a STORED GENERATED column,
the value is materialized in a column that is stored when the data is written.
If the structure of the countryinfo table is examined after Example 7-3, you
can see that the new column is virtual generated and not stored generated.

Example 7-5 The description of countryinfo shows the PopulationCountry column
setup from Example 7-4, which is a VIRTUAL GENERATED column, which is not desired.

mysql> DESC countryinfo;
+-------------------+-------------+------+-----+---------+-------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+-------------+------+-----+---------+-------------------+
doc	json	YES		NULL	
_id	varchar(32)	NO	PRI	NULL	STORED GENERATED
PopulationCountry	int(11)	YES		NULL	VIRTUAL GENERATED
+-------------------+-------------+------+-----+---------+-------------------+
3 rows in set (0.06 sec)

mysql>

Luckily, it is easy to remove the new columns using ALTER TABLE

countryinfo DROP COLUMN PopulationCountry and then reissue the
command to create the generated column, but this time with the keyword
STORED appended. Checking the description shows that the new
PopulationCountry column is indeed a STORED GENERATED column.

07-ch07.indd 56 13/04/18 4:22 PM

 Generated Columns 57

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 7

Example 7-6 The description of countryinfo now shows the desired STORED
GENERATED PopulationCountry column.

mysql> ALTER TABLE countryinfo ADD COLUMN
 PopulationCountry INT AS
 (doc->>"$.demographics.Population") STORED;
Query OK, 239 rows affected (0.17 sec)
Records: 239 Duplicates: 0 Warnings: 0

mysql> desc countryinfo;
+-------------------+-------------+------+-----+---------+------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+-------------+------+-----+---------+------------------+
doc	json	YES		NULL	
_id	varchar(32)	NO	PRI	NULL	STORED GENERATED
PopulationCountry	int(11)	YES		NULL	STORED GENERATED
+-------------------+-------------+------+-----+---------+------------------+
3 rows in set (0.00 sec)

mysql>

One more step is needed to have a SQL usable index on the new column,
which will be something along the lines of CREATE INDEX Population_
Index on countryinfo (PopulationCountry); following an index
naming convention of your choosing.

Generated Columns: Common Errors
When adding a generated column, the type definition is important. Under-
sizing the length for a type can lead to some issues.

Example 7-7 The VARCHAR(20) column was too small for the data when trying to set
up a STORED column. The VIRTUAL column, however, was able to be created.

mysql> ALTER TABLE countryinfo ADD COLUMN GovernmentForm VARCHAR(20) GENERATED
ALWAYS AS (doc->>"$.government.GovernmentForm") STORED;
ERROR 1406 (22001): Data too long for column 'GovernmentForm' at row 1
mysql> ALTER TABLE countryinfo ADD COLUMN GovernmentForm VARCHAR(20) GENERATED
ALWAYS AS (doc->>"$.government.GovernmentForm") VIRTUAL;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

The data will need to be studied to see if the virtual generated column has
enough useful data after truncation to be useful. It would be useful to
examine the raw data to determine exactly how wide the column needs to be
to fit all of it in. But on the other hand, only the first several characters may
be of interest.

07-ch07.indd 57 13/04/18 4:22 PM

58 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 7

Example 7-8 Examining the data for the generated column to make sure it is of
adequate length. And for this record, it is.

mysql> SELECT * FROM countryinfo WHERE _id = "USA"\G
*************************** 1. row ***************************
 doc: {"GNP": 8510700, "_id": "USA", "Name": "United States", IndepYear":
1776, "geography": {"Region": "North America", "Continent": "North America", "SurfaceArea":
9363520}, "government": {"HeadOfState": "George W. Bush", "GovernmentForm": "Federal
Republic"}, "demographics": {"Population": 278357000, "LifeExpectancy": 77.0999984741211}}
 _id: USA
PopulationCountry: 278357000
 GovernmentForm: Federal Republic
1 row in set (0.00 sec)

The next step would be to use CREATE INDEX. But there is another
problem—or an old problem has returned.

Example 7-9 Attempting to create an index on the virtual generated column returns us
to the data that’s too long for the column issue.

mysql> ALTER TABLE countryinfo ADD INDEX govrmtform_
idx(GovernmentForm);
ERROR 1406 (22001): Data too long for column 'GovernmentForm' at row 1

MySQL 5.7 introduced the WITH VALIDATION clause to ALTER TABLE.
It is used to make sure the calculated data is not out of range for the desired
column. Using this, combined with trimming the data down to the desired
width, provides a way to generate the column into something that can be
indexed.

Example 7-10 Using WITH VALIDATION in the ALTER TABLE statement provides a way
to create an easy-to-index column.

mysql> ALTER TABLE countryinfo ADD COLUMN GovernmentForm VARCHAR(20) GENERATED
ALWAYS AS (LEFT(doc->>"$.government.GovernmentForm",20)) VIRTUAL, WITH VALIDATION;
Query OK, 239 rows affected (0.20 sec)
Records: 239 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE countryinfo ADD index govform_idx(GovernmentForm);
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql>

07-ch07.indd 58 13/04/18 4:22 PM

8
GeoJSON

MySQL 5.7 offered several new features in addition to the JSON data type,
including a vast improvement in geographic information system (GIS) sup-
port. MySQL follows the Open Geospatial Consortium (OGC) OpenGIS Imple-
mentation Specification for Geographic information - Simple feature access - Part 2:
SQL option, which proposes extending the SQL RDBMS to support spatial data.
MySQL also features functions for converting between spatial values and
JSON and follows the GeoJSON specification (RFC 7946) located at http://
geojson.org. GeoJSON supports the same geometric and geographic data types
as MySQL.

08-ch08.indd 59 13/04/18 4:22 PM

http://geojson.org
http://geojson.org

60 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 8

ST_GeomFromGeoJSON
The ST_GeomFromGeoJSON function processes as a GeoJSON-formatted
string and returns a geometry. A second optional argument regarding how
to handle GeoJSON documents contains geometries with coordinate dimen-
sions higher than a 2; this option can have the value of 1 (default), reject the
JSON formatted document and produce an error message; and 2, 3, or 4,
accept the document and strip off the coordinates for higher coordinate
dimensions. And there is a third and final argument: the Spatial Reference
System Identifier (SRID) argument, if given, must be a 32-bit unsigned inte-
ger. If not given, the geometry return value has an SRID of 4326. Table 8-1
lists GeoJSON options that are bitmasks, and also lists the permitted values.
They can be combined so that a value of 7 is made up of 1, 2, and 4 from the
table. The bitmasks for the GeoJSON function are combined to provide more
detail or change the style of output.

Example 8-1 Using ST_GeomFromGeoJSON

mysql> SELECT ST_AsText(ST_GeomFromGeoJSON('{ "type" : "Point", "coordinates" : [99.1, 1.1]}'));

+---+

| ST_AsText(ST_GeomFromGeoJSON('{ "type" : "Point", "coordinates" : [99.1, 1.1]}')) |

+---+

| POINT(1.1 99.1) |

+---+

1 row in set (0.01 sec)

mysql>

The ST_AsGeomFromGeoJSON function takes a JSON-formatted string
and turns it into a geometry. Note that you can wrap this function with

Flag
Value Meaning
0 No options. This is the default.
1 A bounding box is added to the output.
2 A short-format Coordinate Reference System (CRS) Uniform Resource Name

(URN) is added to the output. The default format is the short format (EPSG:srid).
4 A long-format CRS URN (urn:ogc:def:crs:EPSG::srid) is added to

the output. This flag overrides flag 2. Option values of 5 and 7 mean the same
(a bounding box and a long-format CRS URN).

Table 8-1 Options for GeoJSON

08-ch08.indd 60 13/04/18 4:22 PM

 GeoJSON 61

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 8

ST_AsText to format the output to something more readable. The following,
without the ST_AsText, displays the function’s usefulness.

Example 8-2 Not exactly what we wanted from ST_GeomFromGeoJSON

mysql> SELECT ST_GeomFromGeoJSON('{ "type" : "Point", "coordinates" : [99.1, 1.1]}',4);

+--+

| ST_GeomFromGeoJSON('{ "type" : "Point", "coordinates" : [99.1, 1.1]}',4) |

+--+

| fffff X@ ? |

+--+

1 row in set (0.00 sec)

mysql>

ST_AsGeoJSON
The ST_AsGeoJSON function is the opposite of ST_GeomFromGeoJSON in
that takes a geometry and produces a GeoJSON object. Its first option is the
number of decimal digits for coordinates, and options can be added, as
shown in Example 8-3, to modify the output.

Example 8-3 Using ST_GeomFromText

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2);
+---+
| ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2) |
+---+
| {"type": "Point", "coordinates": [12.35, 23.46]} |
+---+
1 row in set (0.00 sec)

The ST_GeomFromText options are bitmasks, which means they can be
combined. Table 8-2 shows the values of the bitmask options. With no option
specified, the output is shown in Example 8-3.

Option
Value Meaning
1 Reject the document and produce an error. This is the default.
2, 3, 4 Accept the document, stripping off the coordinates at higher coordinate

dimensions.

Table 8-2 Options for ST_GeomFromText

08-ch08.indd 61 13/04/18 4:22 PM

62 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 8

Example 8-4 ST_GeomFromText without options

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2,1);

+---+

| ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2,1) |

+---+

| {"bbox": [12.35, 23.46, 12.35, 23.46], "type": "Point", "coordinates": [12.35, 23.46]}|

+---+

1 row in set (0.00 sec)

Option 1 adds a bounding box (bbox), as you can see in Example 8-4.
Option 2 adds a short-format CRS URN to the output with the default format
being a short format (EPSG:srid). Option 4 adds a long-format CRS URN
(urn:ogc:def:crs:EPSG::srid) and overrides option 2. Since the
option field is a bitmask, the various options can be combined. Option 3, for
example, is option 1 plus option 2.

Example 8-5 Other options for the ST_GeoJSON function

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2,4);

+---+

| ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2,4) |

+---+

| {"type": "Point", "coordinates": [12.35, 23.46]} |

+---+

1 row in set (0.00 sec)

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2,5);

+---+

| ST_AsGeoJSON(ST_GeomFromText('POINT(12.3456 23.4567)'),2,5) |

+---+

| {"bbox": [12.35, 23.46, 12.35, 23.46], "type": "Point", "coordinates": [12.35, 23.46]}|

+---+

1 row in set (0.00 sec)

08-ch08.indd 62 13/04/18 4:22 PM

9
PHP’s JSON Functions

PHP, a recursive acronym for PHP: Hypertext Preprocessor, is a very popular
programming language that is the core of up to 80 percent of the Internet and
has its own JSON functions. The question for developers is how to take advan-
tage of what PHP offers for JSON and how best to use it with MySQL. PHP’s
JSON functions require UTF8MB4-encoded strings.

09-ch09.indd 63 13/04/18 4:23 PM

64 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 9

JSON_DECODE
The JSON_DECODE function is used to convert a JSON string into a PHP vari-
able. The MySQL JSON functions have no analog.

Format: mixed json_decode (string $json [, bool $assoc = false
[, int $depth = 512 [, int $options = 0]]])

The first argument is the JSON-formatted string to be decoded. The second
is a Boolean value (true or false) to set the returned data into an associative
array. The third argument is a recursive depth limit set to 1 or greater. The
fourth and final argument has two settable options: JSON_OBJECT_AS_
ARRAY, which has the same effect as setting $assoc to true, and JSON_
BIGINT_AS_STRING, which casts big integers to strings instead of the
default floats.

Example 9-1 Simple PHP program to explore the PHP function JSON_DECODE

<?php

$json_string='{"name":"Dave","height":1.95,"c":[1,2,3]}';

var_dump(json_decode($json_string)); // Object output
var_dump(json_decode($json_string,true)); // Associative array
?>

Example 9-2 Output of sample PHP program from Example 9-1

php j1.php
object(stdClass)#1 (3) {
 ["name"]=>
 string(4) "Dave"
 ["height"]=>
 float(1.95)
 ["c"]=>
 array(3) {
 [0]=>
 int(1)
 [1]=>
 int(2)
 [2]=>
 int(3)
 }
}

09-ch09.indd 64 13/04/18 4:23 PM

 PHP’s JSON Functions 65

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 9

array(3) {
 ["name"]=>
 string(4) "Dave"
 ["height"]=>
 float(1.95)
 ["c"]=>
 array(3) {
 [0]=>
 int(1)
 [1]=>
 int(2)
 [2]=>
 int(3)
 }
}

JSON_ENCODE
The JSON_ENCODE function turns values of variables into JSON strings:

string json_encode (mixed $value [, int $options = 0 [, int $depth = 512]])

09-ch09.indd 65 13/04/18 4:23 PM

10
Loading JSON Data

Although many JSON datasets are available, sometimes they are problem-
atic to feed into a database. Often, at the start of a new programming project, a
developer will be provided with some sample data that needs to be shoe-
horned onto the server, usually with little guidance other than “just get it on
the server.” This chapter offers some examples of how to do just that.

10-ch10.indd 67 13/04/18 4:24 PM

68 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

From Download to Database
Our first example involves a list of US postal, or ZIP, codes. It can be down-
loaded from http://jsonstudio.com/resources/ and it is free. (There are other
similar datasets available that could use the same steps.) Taking the data from
a download and converting it into a useful database requires several steps
that will be detailed in the pages to follow.

Step 1: Examine the Data
The data for this example is supplied in a file named zips.zip. To unpack it,
use unzip zips.zip. This will produce a file named zips.json. Example
10-1 shows the first rows of the file.

Example 10-1 Examining the first rows of the zips.json datafile

$ head zips.json

{ "city" : "AGAWAM", "loc" : [-72.622739, 42.070206], "pop" : 15338, "state" : "MA", "_id" : "01001" }

{ "city" : "CUSHMAN", "loc" : [-72.51564999999999, 42.377017], "pop" : 36963, "state" : "MA", "_id" : "01002" }

{ "city" : "BARRE", "loc" : [-72.10835400000001, 42.409698], "pop" : 4546, "state" : "MA", "_id" : "01005" }

{ "city" : "BELCHERTOWN", "loc" : [-72.41095300000001, 42.275103], "pop" : 10579, "state" : "MA", "_id" : "01007" }

{ "city" : "BLANDFORD", "loc" : [-72.936114, 42.182949], "pop" : 1240, "state" : "MA", "_id" : "01008" }

{ "city" : "BRIMFIELD", "loc" : [-72.188455, 42.116543], "pop" : 3706, "state" : "MA", "_id" : "01010" }

{ "city" : "CHESTER", "loc" : [-72.988761, 42.279421], "pop" : 1688, "state" : "MA", "_id" : "01011" }

{ "city" : "CHESTERFIELD", "loc" : [-72.833309, 42.38167], "pop" : 177, "state" : "MA", "_id" : "01012" }

{ "city" : "CHICOPEE", "loc" : [-72.607962, 42.162046], "pop" : 23396, "state" : "MA", "_id" : "01013" }

{ "city" : "CHICOPEE", "loc" : [-72.576142, 42.176443], "pop" : 31495, "state" : "MA", "_id" : "01020" }

The file contains almost 30,000 lines, with one record per line. Before you
load all those lines into the server, it helps to determine some of the uses of
that information. For illustration purposes, suppose we need to create a
datafile in which a user entering a five-digit ZIP code would have city and
state values returned. Or a user could enter a city and state set of values and
receive the ZIP code.

But what does the data provide to us? It includes fields for city, loc,
pop, state, and _id (which is the ZIP code itself). It makes sense to use _id
as a primary key.

Step 2: Create the Table
ZIP codes require five numbers in length and some have a leading zero.
MySQL’s INT fields will drop any leading zeros, but CHAR fields will not. In
this case, the leading zeros need to be retained because they are important, so
a CHAR field will be used.

10-ch10.indd 68 13/04/18 4:24 PM

http://jsonstudio.com/resources/

 Loading JSON Data 69

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

Example 10-2 Creating a table for the JSON data

mysql> use test;

Database changed

mysql> create table zipcode (doc JSON,

 _id char(5) GENERATED ALWAYS AS (JSON_UNQUOTE(JSON_EXTRACT(doc,'$._id')))

STORED NOT NULL,

 PRIMARY KEY (_id));

Query OK, 0 rows affected (0.03 sec)

mysql>

Step 3: Load the Data Using a Wrapper
Data often needs some tinkering to enable it to be imported into a database—
even a schemaless database. We need a way to wrap each line of data into a
SQL INSERT statement. This can be done with a very simple BASH script, as
shown in Example 10-3.

Example 10-3 BASH script file to wrap the individual lines of zips.json with
a SQL statement

#!/bin/bash
file="/home/dstokes/Downloads/zips.json"
while IFS= read line
do
 echo "INSERT INTO zipcode (doc) VALUES ('$line');"
done <"$file"

This script reads the data from the zips.json file, line by line, and then
echoes the content wrapped in a SQL statement. This script can have its
output piped to a MySQL session or sent to a file, as shown in Example 10-4.

Example 10-4 Using the script from Example 10-3 to create a file with the generated
SQL statements

./loader.sh > foo

You can see in Example 10-5 that the data is now in a proper format for
inserting into the database.

Example 10-5 The first several lines of the output of the shell script, after transformation

$head foo

INSERT INTO zipcode (doc) VALUES ('{ "city" : "AGAWAM", "loc" : [-72.622739, 42.070206], "pop" : 15338,

"state" : "MA", "_id" : "01001" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "CUSHMAN", "loc" : [-72.51564999999999, 42.377017], "pop" :

36963, "state" : "MA", "_id" : "01002" }');

10-ch10.indd 69 13/04/18 4:24 PM

70 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

INSERT INTO zipcode (doc) VALUES ('{ "city" : "BARRE", "loc" : [-72.10835400000001, 42.409698], "pop" : 4546,

"state" : "MA", "_id" : "01005" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "BELCHERTOWN", "loc" : [-72.41095300000001, 42.275103], "pop" :

10579, "state" : "MA", "_id" : "01007" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "BLANDFORD", "loc" : [-72.936114, 42.182949], "pop" : 1240,

"state" : "MA", "_id" : "01008" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "BRIMFIELD", "loc" : [-72.188455, 42.116543], "pop" : 3706,

"state" : "MA", "_id" : "01010" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "CHESTER", "loc" : [-72.988761, 42.279421], "pop" : 1688,

"state" : "MA", "_id" : "01011" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "CHESTERFIELD", "loc" : [-72.833309, 42.38167], "pop" : 177,

"state" : "MA", "_id" : "01012" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "CHICOPEE", "loc" : [-72.607962, 42.162046], "pop" : 23396,

"state" : "MA", "_id" : "01013" }');

INSERT INTO zipcode (doc) VALUES ('{ "city" : "CHICOPEE", "loc" : [-72.576142, 42.176443], "pop" : 31495,

"state" : "MA", "_id" : "01020" }');

Finally, we can load the data with a simple mysql -u root -p test <
foo command.

Step 4: Double-Check the Data
At this point, the data needs to be checked for quality. A good place to start is
with the first record in the datafile to determine whether the data is complete.
For ZIP codes, leading zeros are important and must be retained, so checking
for an example with a leading zero assures that this was completed correctly.

Example 10-6 Examining a known good example from the database

mysql> select * from zipcode where _id = '01001';

+---+-------+

| doc | _id |

+---+-------+

| {"_id": "01001", "loc": [-72.622739, 42.070206], "pop": 15338, "city": "AGAWAM", "state": "MA"} | 01001 |

+---+-------+

1 row in set (0.00 sec)

Compare the first line in both the raw data and the foo file to ensure that
they contain the same data. Then check the data in the database table. This
also provides a way for you to check that the leading zero for the _id field
has not been stripped (which would have occurred if an INT been used
instead of a CHAR data type).

But what about looking up a ZIP code of a given a city and a state?

10-ch10.indd 70 13/04/18 4:24 PM

 Loading JSON Data 71

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

Example 10-7 Finding the ZIP code given the city and state fields

mysql> SELECT _id FROM zipcode
 -> WHERE JSON_EXTRACT(doc,"$.city") = "LEMON GROVE" AND
 -> JSON_EXTRACT(doc,"$.state") = "CA";
+-------+
| _id |
+-------+
| 91945 |
+-------+
1 row in set (0.02 sec)

Many other validations can be performed on the data to spot-check the
validity of the information, but the first tests are a good idea. From this point,
you could take other steps to ease access of the data, such as using generated
columns, views, stored procedures, or indexes on the data for future queries
that are known to be desired at this point in development.

jq: JSON CLI Parser
Another option is the jq, a lightweight and flexible command-line JSON
processor. This processor acts much like sed in that it enables you to slice,
filter, map, and transform data from one format to another. For instance, it
can be used to convert JSON data into CSV (comma-separated values) for
loading into a non-JSON–columned MySQL database. You can download it
from https://stedolan.github.io/jq/, and there is an online version at
https://jqplay.org/ for experimentation. Plus, jq uses the Perl Compatible
Regular Expressions (PCRE) parser, like many other languages. (This won-
derful tool deserves to have much more written about it than the simple
examples here, and reading the manual is a quick way to become acquaint-
ed with the many features of this tool.)

With No Arguments
With no arguments to jq, it will “pretty print” the JSON document. This is
very handy for extremely complex documents with many layers of embed-
ded objects and arrays that are hard to view on a single flat line.

10-ch10.indd 71 13/04/18 4:24 PM

https://stedolan.github.io/jq/
https://jqplay.org/

72 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

Example 10-8 Using jq without arguments will “pretty print” the JSON document.

$ head -2 zips.json | jq
{
 "city": "AGAWAM",
 "loc": [
 -72.622739,
 42.070206
],
 "pop": 15338,
 "state": "MA",
 "_id": "01001"
}
{
 "city": "CUSHMAN",
 "loc": [
 -72.51565,
 42.377017
],
 "pop": 36963,
 "state": "MA",
 "_id": "01002"
}

Select Certain Fields
On some occasions, not all the data in a JSON document will be of interest,
and you can use jq to reform the data and provide only selected parts.

Example 10-9 Using jq to output only some of the data from the source JSON
document

$ head -2 zips.json | jq '{city, state, _id}'
{
 "city": "AGAWAM",
 "state": "MA",
 "_id": "01001"
}
{
 "city": "CUSHMAN",
 "state": "MA",
 "_id": "01002"
}

In Example 10-10, the value of the city key is converted into a value.
Then that new key is given the value of the state key/value pair. The
flexibility of jq can be a great asset.

10-ch10.indd 72 13/04/18 4:24 PM

 Loading JSON Data 73

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

Example 10-10 Modifying the data to convert a key into a value

$ head -2 zips.json | jq '{(.city): .state, _id}'
{
 "AGAWAM": "MA",
 "_id": "01001"
}
{
 "CUSHMAN": "MA",
 "_id": "01002"
}

The Restaurant Collection
MongoDB proved to be a popular NoSQL document store, and one of its
example datasets is known as the restaurant collection. It is 25,359 lines of
restaurant data that provides a good example for showing how to load data
into MySQL. The entire collection can be downloaded from the URL listed
in the appendix of this book.

First, notice that there is no _id key/value pair, unlike the ZIP code
example. There is, however, a restaurant_id key/value pair that is
unique for all the records. With working with InnoDB tables, it helps for you
to have a primary key index of your choice. So the restaurant_id is an
easy choice for use as a primary key.

Each line of this collection is a JSON object, bounded by curly brackets.
Using a script similar to Example 10-3 to load the data seems like a good idea;
however, this creates a problem in the data. Many of the records include
apostrophes in the restaurant name, which will cause those records to fail with
a SQL error—anything after the second apostrophe fails the syntax checker. To
fix this, we need to change the single quote (') to a double single quote (''),
which the server interprets as a properly escaped single quote in the middle of
a literal. There are many ways of doing this, including using a favorite text
editor. But large source files may be beyond the size that a text editor can
handle. Linux users can use a stream editor such as sed. Once the single quotes
are turned into double single quotes, the data can be fed into the server.

In Example 10-11, the data highlighted in bold italics shows what the
MySQL syntax checker will actually check. The apostrophe in Kenny's will
cause the checker to stop checking the SQL query. To fix this, we’d need to
change Kenny's to Kenny''s so that the MySQL server would correctly
escape the apostrophe in the name.

10-ch10.indd 73 13/04/18 4:24 PM

74 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

Example 10-11 The syntax checker will check data up to the apostrophe in the word
“Kenny’s,” but the apostrophe will stop the checker in its tracks.

INSERT INTO restaurant (doc) values ('{"address": {"building": "1924", "coord":
[-73.9483236, 40.6387106], "street": "Nostrand Avenue", "zipcode": "11226"},
"borough": "Brooklyn", "cuisine": "Chinese", "grades": [{"date": {"$date":
1414368000000}, "grade": "A", "score": 7}, {"date": {"$date": 1384732800000},
"grade": "A", "score": 7}, {"date": {"$date": 1362528000000}, "grade": "B",
"score": 16}, {"date": {"$date": 1340668800000}, "grade": "A", "score": 9},
{"date": {"$date": 1326153600000}, "grade": "A", "score": 10}], "name": "Kenny's
Restaurant", "restaurant_id": "40919894"}');

One of the many commands that we could use is sed. The sed utility is a
stream editor from the early days of the UNIX operating system. It is easy to
tell it to search for single, single quotes and turn them into two single quotes.

Example 10-12 Here, sed is used to convert single, single quotes into double
single quotes.

sed "s/'/''/g" primer-dataset.json > updated.json

Then we can use updated data with the loader script to create a table to
feed to the database. This type of data cleaning is typical of what is needed to
load third-party data into a database server.

Example 10-13 The example record after the data has been cleaned up and then fed
into the server

mysql> SELECT _id, JSON_PRETTY(doc) FROM restaurant LIMIT 1\G
*************************** 1. row ***************************
 _id: 30075445
JSON_PRETTY(doc): {
 "name": "Morris Park Bake Shop",
 "grades": [
 {
 "date": {
 "$date": 1393804800000
 },
 "grade": "A",
 "score": 2
 },
 {
 "date": {
 "$date": 1378857600000
 },
 "grade": "A",
 "score": 6
 },

10-ch10.indd 74 13/04/18 4:24 PM

 Loading JSON Data 75

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 10

 {
 "date": {
 "$date": 1358985600000
 },
 "grade": "A",
 "score": 10
 },
 {
 "date": {
 "$date": 1322006400000
 },
 "grade": "A",
 "score": 9
 },
 {
 "date": {
 "$date": 1299715200000
 },
 "grade": "B",
 "score": 14
 }
],
 "address": {
 "coord": [
 -73.856077,
 40.848447
],
 "street": "Morris Park Ave",
 "zipcode": "10462",
 "building": "1007"
 },
 "borough": "Bronx",
 "cuisine": "Bakery",
 "restaurant_id": "30075445"
}
1 row in set (0.00 sec)

mysql>

10-ch10.indd 75 13/04/18 4:24 PM

11
The MySQL

Document Store

The MySQL JSON data type is extremely flexible. It may be a temptation for
some to use the MySQL JSON data type by itself to provide an easy-to-use,
schemaless data storage option. Simply having a table with one column, and
that column being of type JSON, would be a very simple solution. Each row
could have up to 1GB of JSON data. This idea is very close to the premise of the
MySQL Document Store.

11-ch11.indd 77 17/04/18 11:10 AM

78 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

The MySQL JSON data type is the foundation of the MySQL Document
Store. Relational databases need schemas and columns defined in tables
before they can be used. But a document database enables developers to start
saving and using data without having predefined data structures. As the
data needed evolves for a given application, there is no need to call in a
database administrator to redefine tables.

JSON provides for embedded arrays and objects and is a viable solution
when the data does not fit into the relational model. There is also no need for
an object relational mapping layer to map objects in a modern programming
language to a column in a table. And this eliminates the need to embed a
string with a Structured Query Language query in a program.

Having the document store built on the JSON data type enables you to use
the same data as a document database or as a relational database—at the
same time. And you can access collections and tables.

This chapter provides a general introduction to the MySQL Document
Store, though this subject is deserving of its own book (or several). Refer to
the MySQL documentation for full details.

By default, the MySQL Document Store creates two columns, doc and _id,
as per most of the examples in this book. The InnoDB storage engine requires
a primary key, and the _id field provides it. You can, of course, create your
own collections with your own primary key.

The X DevAPI
MySQL engineers created the new X Protocol to provide functionality that
the old MySQL protocol lacks. But what are some of the differences? The first
is the network connection. Where the traditional protocol listened to TCP/IP
port 3306, the new X Protocol listens to port 33060. The X Protocol has a new
session model that enables code to scale from a single server to multiple
servers. And the new protocol requires the use of a new shell—mysqlsh.

mysqlsh
The new mysqlsh shell is in some ways similar to the old mysql shell (better
known as the MySQL Command Line Interface [CLI]), but in other ways it is
a major leap forward. The interface is very similar and familiar, but it offers
so much more. It is built upon the new X DevAPI, has multiple modes, and
includes built-in language interpreters for JavaScript and Python. And it can

11-ch11.indd 78 17/04/18 11:10 AM

 The MySQL Document Store 79

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

also process Structured Query Language. The new API enables applications
to scale easily from single to multiple server environments, and it provides
nonblocking asynchronous calls common to many common host languages.
The new shell was also designed for server administration for services such
as InnoDB Cluster. To invoke this program, enter mysqlsh.

The X DevAPI session is a higher-level database session idea than the
traditional lower-level MySQL connections. With X DevAPI, sessions can
have several MySQL connections and can use either the classic MySQL
protocol or the new X Protocol. The ClassicSession class provides a low-
level MySQL connection to a single MySQL server instance. Applications
taking advantage of the new features in the X DevAPI NodeSession class
can be run against one server or a group of MySQL servers without code
changes. The NodeSession class provides full support of X DevAPI but
limited support of SQL.

After you’ve installed the new shell, enter mysqlsh to start—actually, enter
mysqlsh user@host/world_x, using the actual username and hostname. In
Example 11-1, the document with the _id equal to USA is specifically request-
ed. Compare the example’s syntax to the SQL equivalent SELECT doc FROM
countryinfo WHERE doc->"$._id" = 'USA';.

Example 11-1 Using the mysqlsh shell to access the MySQL Document Store to find a
record in the countryinfo collection from the world_x sample database

MySQL [localhost+/world_x] JS> db.countryinfo.find('_id = "USA"');
[
 {
 "GNP": 8510700,
 "IndepYear": 1776,
 "Name": "United States",
 "_id": "USA",
 "demographics": {
 "LifeExpectancy": 77.0999984741211,
 "Population": 278357000
 },
 "geography": {
 "Continent": "North America",
 "Region": "North America",
 "SurfaceArea": 9363520
 },
 "government": {
 "GovernmentForm": "Federal Republic",
 "HeadOfState": "George W. Bush"
 }
 }
]
1 document in set (0.00 sec)
MySQL [localhost+/world_x] JS>

11-ch11.indd 79 17/04/18 11:10 AM

80 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

The new shell has three modes—Python, JavaScript, and SQL—and acts
very similarly to the old shell, especially when in SQL mode. In the example,
JavaScript mode is in use, as indicated by the JS> prompt. In some of the
following examples, the mode is switched to SQL mode.

Connections
The MySQL mysqlsh shell features the ability to connect using the classic
MySQL protocol and the new X DevAPI protocol. Specifics for the connec-
tions use a Uniform Resource Identifier (URI). X protocol connections are
TCP only, while the classic protocol tries to default to UNIX sockets.

The URI can be specified on the line starting the shell, such as mysqlsh
–uri user:password@host:33060/schema, or you can simply start the
shell and then connect with \connect user@host/schema (assuming
you want to be prompted for the password and the MySQL server is listening
to port 33060).

Session Types
There are two types of sessions under the new MySQL mysqlsh shell.
NodeSession is designed for new applications with MySQL servers that
support the X DevAPI protocol (MySQL 5.7.12 or more recent), and the
ClassicSession is for servers without the X Protocol. All the exciting
CRUD (Create, Replace, Update, Delete) and newer features are available
only with the NodeSession. At shell invocation, entering –sqln creates a
NodeSession, while entering –sqlc creates a ClassicSession.

After the shell has been started, connections will attempt by default to use
the X DevAPI protocol. In Example 11-2, user dstokes connects to the
localhost to access the world_x schema.

Example 11-2 Connecting after the MySQL mysqlsh shell has been started.

MySQL Shell 8.0.3-labs
Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type '\help' or '\?' for help; '\quit' to exit.

11-ch11.indd 80 17/04/18 11:10 AM

 The MySQL Document Store 81

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

MySQL JS> \connect dstokes@localhost/world_x
Creating a session to 'dstokes@localhost/world_x'
Enter password: ******
Your MySQL connection id is 5 (X protocol)
Server version: 5.7.20-log MySQL Community Server (GPL)
Default schema 'world_x' accessible through db.
Fetching schema names for auto-completion... Press ^C to stop.
MySQL [localhost+/world_x] JS> session
<Session:dstokes@localhost/world_x>
MySQL [localhost+/world_x] JS>

$ mysqlsh root@localhost/world_x
Creating a session to 'root@localhost/world_x'
Enter password: ******
Your MySQL connection id is 8 (X protocol)
Server version: 8.0.3-rc-log MySQL Community Server (GPL)
Default schema 'world_x' accessible through db.
Fetching schema names for auto-completion... Press ^C to stop.

Example 11-3 Connecting with the connection specifics on the command line

MySQL Shell 8.0.3-labs
Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl world_x JS >

Once you have invoked the shell and logged in, you are ready to get to work.

Collections and Documents
Documents are stored in collections. Collections are containers for docu-
ments that hopefully share a purpose. It is easy to create a new collection.
Ignoring the details of the new mysqlsh shell commands for the moment,
Example 11-4 uses the schema test as the working document. The session
has already been created (the user already logged in to the server). And the
object named db is a global variable assigned to the current active schema.
The third bolded command, db.createCollection('demo'), does the
actual creation of a new document collection named demo. Lastly, the get-
Collections() function shows the available collections.

Example 11-4 This example shows connecting to the test schema, referenced as the
object db, and then creating a collection named demo.

MySQL [localhost+/world_x] JS> \use test
Default schema 'test' accessible through db.

11-ch11.indd 81 17/04/18 11:10 AM

82 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

MySQL [localhost+/test] JS> db
<Schema:test>
MySQL [localhost+/test] JS> db.createCollection('demo')
<Collection:demo>
MySQL [localhost+/test] JS> db.getCollections();
[
 <Collection:demo>,
 <Collection:foo>
]
MySQL [localhost+/test] JS>

In Example 11-4, \use test tells the server which schema to use. The
server uses db as a pointer object to point to the chosen schema, and issuing db
by itself confirms it is the selected schema. Next is a collection with the name
of demo. And, finally, the getCollections() function reports any available
collections in the test schema. This is using MySQL without the SQL.

Behind the scenes, the MySQL server has created the desired collection. To
see the work performed is a very simple matter; at the mysqlsh prompt, you
enter the SQL mode by entering \sql. Note the prompt will change to
mysql-sh>. From here on, until the shell is exited or the mode is changed
again, traditional SQL commands are accepted.

Example 11-5 Collection created by db.createCollection(‘demo’) as viewed from the
SQL side of the server

MySQL [localhost+/test] JS> \sql
Switching to SQL mode... Commands end with ;
MySQL [localhost+/test] SQL> DESC demo;
+-------+-------------+------+-----+---------+------------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+------------------+
| doc | json | YES | | NULL | |
| _id | varchar(32) | NO | PRI | NULL | STORED GENERATED |
+-------+-------------+------+-----+---------+------------------+
2 rows in set (0.01 sec)
MySQL [localhost+/test] SQL>

A JSON column named doc and a VARCHAR column named _id were
automatically generated when the collection was created. A table named
demo has been created with two columns. The first column is named doc and
is in the JSON data type. The second column is a varchar named _id that is a
stored generated column. You can see more details by using the SHOW
CREATE TABLE demo command.

11-ch11.indd 82 17/04/18 11:10 AM

 The MySQL Document Store 83

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Example 11-6 More details of the demo collection providing details on how the _id
column was created by the use of a generated column

MySQL [localhost+/test] SQL> SHOW CREATE TABLE demo;
+-------+---+
| Table | Create Table |
+-------+---+
| demo | CREATE TABLE 'demo' (
 'doc' json DEFAULT NULL,
 '_id' varchar(32) GENERATED ALWAYS AS
 (json_unquote(json_extract('doc','$._id'))) STORED NOT NULL,
 PRIMARY KEY ('_id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 |
+-------+---+
1 row in set (0.00 sec)
MySQL [localhost+/test] SQL>

The _id column is generated by extracting and unquoting the _id key
(with the use of JSON_EXTRACT and JSON_UNQUOTE) from the JSON
document and placing that data in the column. This should be very familiar
if you read Chapter 7 on generated columns. Note that the document store
will generate a value for the _id value if one is not specified; specifying your
own _id will require a string, not a number—that is, "10" not 10. And
having _id designated as the primary key fulfills the need of the InnoDB
storage engine to have a primary key.

CRUD: Create, Replace, Update, Delete
The MySQL Document Store provides functions for CRUD operations
(Create, Replace, Update, and Delete) for documents in a collection: add(),
modify(), and remove(). These three functions, when combined with
find(), are the core basic operations most developers need on an ongoing
basis to take advantage of the document database.

In Example 11-7, note that _id is defined as a VARCHAR(32) and the
number "101" has to be a string in quotes. Note the use of \js to switch to
JavaScript mode from SQL mode.

Example 11-7 Adding a document to a collection

MySQL [localhost+/test] SQL> \js
Switching to JavaScript mode...
MySQL [localhost+/test] JS> db.demo.add({"_id" : "101"})
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.find()

11-ch11.indd 83 17/04/18 11:10 AM

84 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

[
 {
 "_id": "101"
 }
]
1 document in set (0.00 sec)
MySQL [localhost+/test] JS>

The documents in a collection can be acted upon very easily and by a
number of functions. These functions have various ways to improve queries.
In Example 11-8, the top or root object is extended with the key/value pair of
shoe and 50. Besides objects, arrays can be added to the document.

Example 11-8 Using set to modify a document by adding another key/value pair

MySQL [localhost+/test] JS> db.demo.modify("_id='101'").set("shoe",50)
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.find("_id='101'")
[
 {
 "_id": "101",
 "shoe": 50
 }
]
1 document in set (0.00 sec)

You can also add an array value to a document.

Example 11-9 Adding an array value to a document

MySQL [localhost+/test] JS> db.demo.modify("_id='101'").
set("feet","[left,right]
")
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.find("_id='101'")
[
 {
 "_id": "101",
 "feet": "[left,right]",
 "shoe": 50
 }
]
1 document in set (0.00 sec)
MySQL [localhost+/test] JS>

Arrays can also be added to a document with set. Note that the particular
_id to be modified has been specified in Example 11-10. Without denoting
the exact record to be modified, all the documents in the collection would be
modified.

11-ch11.indd 84 17/04/18 11:10 AM

 The MySQL Document Store 85

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Example 11-10 Removing a key/value pair from a document

MySQL [localhost+/test] JS> db.demo.modify("_id='101'").unset("feet")
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.find("_id='101'")
[
 {
 "_id": "101",
 "shoe": 50
 }
]
1 document in set (0.00 sec)
MySQL [localhost+/test] JS>

The unset() function requires only the name of the key of the key/value
pair to be deleted. Note in Example 11-10 the use of the "_id='101'"
qualifier in the modify() function to specify the exact document to be
modified; omission of a way to find the exact document to be modified will
result in all the records in the collection being affected.

NOTE Be sure to back up your critical data. Retyping documents is laborious,
boring, and unproductive.

Arrays can be appended very easily with arrayAppend, and it will
append to the end of the array at the key. In Example 11-11, the key feet
now has two arrays for values associated with it. To append the array
[toes,arch,heel,ankle] to the first array, modify the path from $.feet
to $.feet[0] and the result will be [left,right,toe,arch,

heel,ankle] if you want both combined.

Example 11-11 Adding and then appending an array to a document

MySQL [localhost+/test] JS> db.demo.modify("_id='101'").set("feet","[left,right]
")
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.modify("_id='101'").arrayAppend('$.feet',
"[toe,arch,heel,ankle]")
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.find("_id='101'")
[
 {
 "_id": "101",
 "feet": [
 "[left,right]",
 "[toe,arch,heel,ankle]"
],
 "shoe": 50
 }
]
1 document in set (0.00 sec)
MySQL [localhost+/test] JS>

11-ch11.indd 85 17/04/18 11:10 AM

86 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Finally, documents can be removed with the remove() function.
Remember to specify the record or records desired for deletion, or all the
documents in the collection will head for the bit bucket.

Example 11-12 Removing one record that matches

MySQL [localhost+/test] JS> db.demo.remove("_id='101'")
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.find()
Empty set (0.00 sec)
MySQL [localhost+/test] JS>

The add() function can accept valid JSON-formatted documents on a
single or on multiple lines. Example 11-13 shows the entry of two records on
multiple lines.

Example 11-13 Adding records

MySQL [localhost+/test] JS> db.demo.add(
 -> {
 -> _id : "101",
 -> first : "Moe",
 -> last : "Howard"
 -> }
 ->)
 ->
Query OK, 1 item affected (0.01 sec)
MySQL [localhost+/test] JS> db.demo.add(
 -> {
 -> _id : "201",
 -> first : "Shemp",
 -> last : "Howard"
 -> }
 ->)
 ->
Query OK, 1 item affected (0.00 sec)
MySQL [localhost+/test] JS>

Filtering Find
The find() function can be tuned to narrow searches or select only certain
fields.

11-ch11.indd 86 17/04/18 11:10 AM

 The MySQL Document Store 87

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Example 11-14 The find() function can be modified to narrow down searches and to
specify only certain parts of the document are in the returned data.

MySQL [localhost+/test] JS> db.demo.find("last = 'Fine' OR _id = '41'")
[
 {
 "_id": "33",
 "first": "Larry",
 "last": "Fine"
 },
 {
 "_id": "41",
 "first": "Curly",
 "last": "Howard"
 }
]
2 documents in set (0.00 sec)
MySQL [localhost+/test] JS> db.demo.find().fields(["first","last"])
[
 {
 "first": "Moe",
 "last": "Howard"
 },
 {
 "first": "Shemp",
 "last": "Howard"
 },
 {
 "first": "Larry",
 "last": "Fine"
 },
 {
 "first": "Curly",
 "last": "Howard"
 }
]
4 documents in set (0.00 sec)
MySQL [localhost+/test] JS>

The limit() and skip() functions can also help winnow down
returned data.

Example 11-15 Using the limit() and skip() functions to winnow down returned data

MySQL [localhost+/test] JS> db.demo.find().limit(2)
[
 {
 "_id": "101",
 "first": "Moe",
 "last": "Howard"
 },

11-ch11.indd 87 17/04/18 11:10 AM

88 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

 {
 "_id": "201",
 "first": "Shemp",
 "last": "Howard"
 }
]
2 documents in set (0.00 sec)
MySQL [localhost+/test] JS> db.demo.find().limit(2).skip(1)
[
 {
 "_id": "201",
 "first": "Shemp",
 "last": "Howard"
 },
 {
 "_id": "33",
 "first": "Larry",
 "last": "Fine"
 }
]
2 documents in set (0.00 sec)
MySQL [localhost+/test] JS>

Sorting
The sort() function can be postpended to find() to order the returned
document. But sort() requires that one or more fields in the document be
named as a key. With a key named to sort upon, the server will send back an
“Invalid number of arguments in CollectionFind.sort, expected at least 1 but
got 0 (ArgumentError)” error message. If you also use the fields() func-
tion, you need to specify one or more of the returned document keys as the
field on which to sort. Omitting the field name to be sorted will result in an
“Illegal number of arguments” error message.

Example 11-16 Sorting can be done, but the fields need to be specified to be passed
to the sort() function.

MySQL [localhost+/test] JS> db.demo.find().fields(["last","first"]).
sort("first")
[
 {
 "first": "Curly",
 "last": "Howard"
 },
 {
 "first": "Larry",
 "last": "Fine"

11-ch11.indd 88 17/04/18 11:10 AM

 The MySQL Document Store 89

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

 },
 {
 "first": "Moe",
 "last": "Howard"
 },
 {
 "first": "Shemp",
 "last": "Howard"
 }
]
4 documents in set (0.00 sec)
MySQL [localhost+/test] JS>

If fields are not specified, you can use any key in the document for the
sort key.

Example 11-17 Using any key in the document for the sort key

MySQL [localhost+/test] JS> db.demo.find().sort("_id")
[
 {
 "_id": "101",
 "first": "Moe",
 "last": "Howard"
 },
 {
 "_id": "201",
 "first": "Shemp",
 "last": "Howard"
 },
 {
 "_id": "33",
 "first": "Larry",
 "last": "Fine"
 },
 {
 "_id": "41",
 "first": "Curly",
 "last": "Howard"
 }
]
4 documents in set (0.00 sec)

Binding
Binding values to variables is also possible and highly desirable in scripts
when iterating over values. In Example 11-18, a variable is declared by pre-
pending a colon (:) to the name of the variable. The bind() function then
replaces the variable with the value before executing the command.

11-ch11.indd 89 17/04/18 11:10 AM

90 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Example 11-18 Passing bound parameters

MySQL [localhost+/test] JS> db.demo.find("last = :lastname").bind("lastname","Fine")
[
 {
 "_id": "33",
 "first": "Larry",
 "last": "Fine"
 }
]
1 document in set (0.00 sec)
MySQL [localhost+/test] JS>

Indexing Collections
Indexes may be added to speed up the process of finding specific docu-
ments in a MySQL Document Store, just like in the “regular old MySQL
relational server.” Indexes enable the server to go directly to the record or
records desired without having to process every record in the collection.
Processing every record is better known as a full table scan, and database
administrators work hard to eliminate full scans. Sometimes your applica-
tion does need to read through all the records in a collection—for processing
all the accounts payables, for example—but generally full scans are to be
avoided. Generally, we don’t need to read the entire computer manual to
find an answer to a single question when the manual has an index that we
can use to look up the answer.

Indexes are not a panacea for databases, however. Indexes are a separate
table that needs to be read, maintained as records change or are removed,
and managed. It is often tempting to novice database developers to index all
columns, but the overhead of doing this can greatly slow operations.

Indexes are generally unique or not. Unique indexes will have a pointer to
one record in the collection. Nonunique indexes can have multiple entries.
Consider a billing system where each customer will have its own unique
identification number, but the order collection will hold the identification
number of multiple customers.

Example 11-19 Creating indexes

MySQL [localhost+/test] JS> db.demo.createIndex("id_idx").
 -> field("_id", "INTEGER", false).execute()
 ->
Query OK, 0 items affected (0.10 sec)
MySQL [localhost+/test] JS> \sql

11-ch11.indd 90 17/04/18 11:10 AM

 The MySQL Document Store 91

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Switching to SQL mode... Commands end with ;
MySQL [localhost+/test] SQL> DESC demo;
+--+-------------+------+-----+---
------+-------------------+
| Field | Type | Null | Key | Default | Extra |
+--+-------------+------+-----+---
------+-------------------+
| doc | json | YES | | NULL |
| _id | varchar(32) | NO | PRI | NULL |
STORED GENERATED |
| $ix_i_ED8EA5BF0D44065A674B92033FC24920B41C5F42 | int(11) | YES | MUL | NULL |
VIRTUAL GENERATED |
+--+-------------+------+-----+---
------+-------------------+
3 rows in set (0.00 sec)
MySQL [localhost+/test] SQL> \js
Switching to JavaScript mode...
MySQL [localhost+/test] JS> db.demo.dropIndex("id_idx").execute()
Query OK, 0 rows affected (0.05 sec)
MySQL [localhost+/test] JS>

Note that the EXPLAIN command can be used in SQL mode, but not in
Python or JavaScript.

Example 11-20 shows how to create a nonunique index, and Example 11-21
creates a unique index.

Example 11-20 Creating a nonunique index

mysql-js> db.demo.createIndex("last_idx").
field("last","TEXT(30)",false).execute()
Query OK (0.09 sec)
mysql-js>

Example 11-21 Unique indexes can also be created, but the field values need to
be unique.

mysql-js> db.demo.createIndex("last_idx2",mysqlx.IndexType.UNIQUE).
field("last"
"TEXT(30)",true).execute()
Duplicate entry 'Howard' for key 'last_idx2' (MySQL Error 1062)
mysql-js>

If a unique index is created, any attempt at inserting a duplicate value will
produce an error, as shown in Example 11-22. Sometimes this is caused when
you try to add to a document that instead should be modified; other times
this can result from carelessness. Often you will see MySQL relational tables
use an AUTO_INCREMENT definer on a column to have unique values
supplied for unique identifiers.

11-ch11.indd 91 17/04/18 11:10 AM

92 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 11

Example 11-22 An error occurs if you attempt to insert a duplicate value.

mysql-js> db.demo.createIndex("first_idx",mysqlx.IndexType.UNIQUE).field("first"
,"TEXT(30)",true).execute()
Query OK (0.20 sec)
mysql-js> db.demo.add(
 ... {
 ... _id : "401",
 ... first : "Moe",
 ... last : "Jones"
 ... }
 ...)
 ...
ERROR: 5116: Document contains a field value that is not unique but required to
be
mysql-js>

The MySQL Document Store will automatically add a unique _id key if
you do not specify a value and use a generated column to build an index. The
automatically generated _ids will look something like this:
3019886f8e6fd311640d4851b70943c6 or ac5a657d8e6fd311640d4851b70943c6.
You can specify your own _id values (remember they are strings and need
quotes around them) and use your own scheme for values.

Dropping a Collection
Data has a lifespan, and it is fairly simple to remove or drop a collection. The
name of the schema and the name of the collection must be specified. Once
data is dropped, you can recover the data only from a backup or by re-entering
the data if you have a very good memory.

Example 11-23 Removing the demo collection from the test schema

mysql-js> db.getCollections()
[
 <Collection:demo>,
 <Collection:foo>
]
mysql-js> session.dropCollection("test","demo")
Query OK (0.03 sec)
mysql-js> db.getCollections()
[
 <Collection:foo>
]
mysql-js>

11-ch11.indd 92 17/04/18 11:10 AM

12
Programming with the

MySQL Document Store

For decades, developers have needed to embed SQL as strings in their code
or use object-relational mapping (ORM) to be able to use a database. The SQL
strings are often esthetically objectionable, sitting in the middle of a beautifully
constructed modern program written in a modern programming language.
ORMs are often another complexity that can be avoided if developers would
learn to write SQL properly. However, there is very little training in SQL, the
relational model, or even set theory for most programmers. SQL is a powerful
computer language, but very few attempt to master it, even if they seek high-
performing queries.

12-ch12.indd 93 13/04/18 4:29 PM

94 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Developers can use the MySQL Document Store from many programming
languages without requiring embedded SQL strings, ORMs, or intensive
study in relational databases. It takes away the esthetic complaints and
enables those without SQL skills to use the power of MySQL.

The X DevAPI includes connectors for most languages. The big change
that programmers will quickly notice is that there are no messy strings of
SQL queries in the code. Much of the approach is the same as the traditional
programming methodology—authentication to server, designating a
schema, issuing a query, and returning the results—but the code looks
much cleaner.

As of this writing, MySQL provides connectors for Java (Connector/J),
C++, Node.JS, .Net, and Python. A PHP Extension Community Library
(PECL) extension for PHP is available. The MySQL connectors are available
from the MySQL web site, and the PHP PECL extension is available from the
PECL.PHP.Net web site. More connectors may be available at a later date.

Programming Examples
Learning to program has a steep learning curve. Learning to program with a
new paradigm can be as difficult. The MySQL Document Store is a big shift
for those who are used to embedding SQL queries in strings in their code.
Those who are starting to work with MySQL who never used embedded
strings could find the steps in working with a database—connecting, authori-
zation, linking up to a schema, query execution, and the return of the data—a
strange new phenomena. To help ease both groups into working with the
MySQL Document Store, the following simple programs are provided for the
reader to copy and hopefully enhance.

Python Example
Example 12-1 is in Python but is a typical example of the coding style when
using the X DevAPI.

12-ch12.indd 94 13/04/18 4:29 PM

http://PECL.PHP.Net

 Programming with the MySQL Document Store 95

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Example 12-1 Using the MySQL Document Store with the MySQL X DevAPI
Python Connector

import mysqlx

Connect to server on localhost
session = mysqlx.get_session({
 'host': 'localhost',
 'port': 33060,
 'user': 'dave',
 'password': 'S3cR3T!',
 'ssl-mode' : mysqlx.SSLMode.DISABLED #Remove this line if SSL enabled
})

schema = session.get_schema('world_x')

Use the collection 'countryinfo'
collection = schema.get_collection('countryinfo')

Specify which document to find with Collection.find()
result = collection.find('_id like :param').bind('param', 'USA').execute()

Print document
docs = result.fetch_all()
print('id: {0}'.format(docs[0]['Name']))

Node.JS Example
Similar code in Node.JS will also seem very familiar to you after reading
Chapter 11. The language differences between Node.JS and Python are still
evident, but the X DevAPI code—getCollection(), find()—remains
the same.

Example 12-2 The equivalent code in Node.JS retains the familiar X DevAPI function
calls and is very similar to the code written in Python in Example 12-1.

// Simple example to grab one record and print it
const mysqlx = require('@mysql/xdevapi');
const options = {
 host: 'localhost',
 port: 33060,
 dbUser: 'dave',
 dbPassword: 'S3cR3t!!'
};

mysqlx
 .getSession(options)
 .then (session => {
 var schema = session.getSchema('world_x');

12-ch12.indd 95 13/04/18 4:29 PM

96 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

//equivalent of SELECT doc FROM countryinfo where _id = 'USA'
 var coll = schema.getCollection('countryinfo');
 var query = "$._id == 'USA'";

 // Print doc
 return Promise.all([
 coll.find(query).execute(function (doc) {
 console.log(doc);
 }),
 session.close()
]);
 })
 .catch(err => {
 console.log(err.message);
 console.log(err.stack);
 });

PHP Example
PHP is a very popular web programming language, and once again the code
looks similar to previous examples.

Example 12-3 The X DevAPI calls retain a familiar format despite the code now being
in PHP.

#!/usr/bin/php
<?PHP
// Connection parameters
 $user = 'dave';
 $passwd = 'S3cR3t!';
 $host = 'localhost';
 $port = '33060';
 $connection_uri = 'mysqlx://'.$user.':'.$passwd.'@'.$host.':'.$port;
 echo $connection_uri . "\n";

// Connect as a Node Session
 $nodeSession = mysql_xdevapi\getNodeSession($connection_uri);
// "USE world_x"
 $schema = $nodeSession->getSchema("world_x");
// Specify collection to use
 $collection = $schema->getCollection("countryinfo");

// Query the Document Store
 $result = $collection->find('_id = "USA"')->fields(['Name as
Country','geography as Geo','geography.Region'])->execute();

// Fetch/Display data
 $data = $result->fetchAll();
 var_dump($data);
?>

12-ch12.indd 96 13/04/18 4:29 PM

 Programming with the MySQL Document Store 97

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Traditional SQL vs. MySQL Document Store
The MySQL Document Store also enables developers to choose between
the traditional SQL approach and the MySQL Document Store approach.
Example 12-4 shows the same PHP code in both formats.

Example 12-4 The same program written in PHP with traditional SQL and MySQL
Document Store

Traditional SQL:

<?PHP
// Connection parameters
$host='127.0.0.1';
$user='dave';
$pass='S3cR3t!';
$db = 'world_x';

// connect to database server
$mysqli = mysqli_connect('localhost','root','hidave');

// Choose schema
$mysqli->select_db('world_x');

// send SQL query

if ($result = $mysqli->query("SELECT doc FROM countryinfo WHERE _id='USA'")) {
 $row = mysqli_fetch_row($result);
 var_dump($row);
}
?>

Document Store:

<?PHP
// Connection parameters
 $user = 'dave';
 $passwd = 'S3cR3t!';
 $host = 'localhost';
 $port = '33060';

 $connection_uri = 'mysqlx://'.$user.':'.$passwd.'@'.$host.':'.$port;

// Connect as a Node Session
 $nodeSession = mysql_xdevapi\getNodeSession($connection_uri);

// Choose schema
 $schema = $nodeSession->getSchema("world_x");

// Specify collection to use
 $collection = $schema->getCollection("countryinfo");
 $result = $collection->find('_id = "USA"')->execute();
 $data = $result->fetchAll();
 var_dump($data);
?>

12-ch12.indd 97 13/04/18 4:29 PM

98 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Developers can use the traditional SQL, the MySQL Document Store, or
both. It would not be a good programming practice to combine both.

The MySQL Shell and JavaScript
The new MySQL Shell (mysqlsh) also has modes for JavaScript and Python.
It is very easy to start up the shell and simply enter code. It is also very sim-
ple to use the built-in JavaScript or Python interpreters with the MySQL shell
to store JSON documents or programmatically access data.

Example 12-5 An example of using the JavaScript interpreter built into the MySQL
shell programmatically

MySQL Shell 1.0.11
Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its Affiliates.
Other names may be trademarks of their respective owners.
Type '\help' or '\?' for help; '\quit' to exit.
Currently in JavaScript mode. Use \sql to switch to SQL mode and execute queries.

mysql-js> var mysqlx = require('mysqlx');
mysql-js> var mySession = mysqlx.getNodeSession({
 ... host: 'localhost', port: 33060, dbUser : 'root', dbPassword : 'hidave'
});
 ...
mysql-js> var db = mySession.getSchema('test');
mysql-js> var foo = db.createCollection('foobarx');
mysql-js> foo.add({name : "Dave", location : "Texas"}).execute();
Query OK, 1 item affected (0.01 sec)
mysql-js>
mysql-js> var document = foo.find().execute();
mysql-js> print(document.fetchOne());
{
 "_id": "27190ac58976d31184064851b70943c6",
 "location": "Texas",
 "name": "Dave"
}
mysql-js>

12-ch12.indd 98 13/04/18 4:29 PM

 Programming with the MySQL Document Store 99

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Relational Tables
The MySQL Document Store can also be used to access relational tables or to
treat collections as tables. The following examples use the world_x database
and assume the user has connected successfully to the MySQL Server. The db
object still refers to the schema selected.

Example 12-6 Similar in fashion to addressing a collection, relational tables can be
accessed from the MySQL Document Store.

MySQL [localhost+/world_x] JS> db.city.select().limit(4);
+----+----------------+-------------+----------+-------------------------+
| ID | Name | CountryCode | District | Info |
+----+----------------+-------------+----------+-------------------------+
1	Kabul	AFG	Kabol	{"Population": 1780000}
2	Qandahar	AFG	Qandahar	{"Population": 237500}
3	Herat	AFG	Herat	{"Population": 186800}
4	Mazar-e-Sharif	AFG	Balkh	{"Population": 127800}
+----+----------------+-------------+----------+-------------------------+
4 rows in set (0.00 sec)
MySQL [localhost+/world_x] JS>

But collections and relational tables are not the same. Relational tables
have their own set of functions.

Example 12-7 The getTables() function is used to find relational tables, while
getCollections() is used to find collections.

MySQL [localhost+/world_x] JS> db.getTables();
[
 <Table:city>,
 <Table:country>,
 <Table:countrylanguage>
]
MySQL [localhost+/world_x] JS> db.getCollections();
[
 <Collection:countryinfo>
]
MySQL [localhost+/world_x] JS>

The relational functions for CRUD (Create, Replace, Update, and Delete)
are named insert(), select(), update(), and delete(). These are analogous to their
SQL commands.

12-ch12.indd 99 13/04/18 4:29 PM

100 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Filtering commands are similar to the SQL commands.

Example 12-8 Filtering queries for relational tables are similar to other MySQL
Document Store features but look more like their SQL variants.

MySQL [localhost+/world_x] JS> db.city.select("Name","District").
where("CountryCode = 'USA'").limit(4);
+-------------+------------+
| Name | District |
+-------------+------------+
New York	New York
Los Angeles	California
Chicago	Illinois
Houston	Texas
+-------------+------------+
4 rows in set (0.01 sec)
MySQL [localhost+/world_x] JS>

Both Relational and Document
It is possible to use the MySQL Document Store to access document data in
relational tables. This is done very easily with the -> operator or
JSON_EXTRACT().

Example 12-9 This query shows how to extract JSON document data from a
relational table.

MySQL [localhost+/world_x] JS> db.city.select(["Name", "CountryCode", "District"
, "Info"]). where("CountryCode = :country and Info->'$.Population' > 1000000")
. bind('country', 'USA') ;
+--------------+-------------+--------------+-------------------------+
| Name | CountryCode | District | Info |
+--------------+-------------+--------------+-------------------------+
New York	USA	New York	{"Population": 8008278}
Los Angeles	USA	California	{"Population": 3694820}
Chicago	USA	Illinois	{"Population": 2896016}
Houston	USA	Texas	{"Population": 1953631}
Philadelphia	USA	Pennsylvania	{"Population": 1517550}
Phoenix	USA	Arizona	{"Population": 1321045}
San Diego	USA	California	{"Population": 1223400}
Dallas	USA	Texas	{"Population": 1188580}
San Antonio	USA	Texas	{"Population": 1144646}
+--------------+-------------+--------------+-------------------------+
9 rows in set (0.01 sec)
MySQL [localhost+/world_x] JS>

12-ch12.indd 100 13/04/18 4:29 PM

 Programming with the MySQL Document Store 101

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Chapter 12

Document as Relational
To complete the treating of document data as relational data, the MySQL
Document Store also provides the ability to cast documents as tables.

Example 12-10 The countryinfo collection has been cast as a relational table, and the
query treats the data as a relational table with JSON data inside.

MySQL JS> var ci = db.getCollectionAsTable('countryinfo');

MySQL JS> var result = ci.select(["doc->'$.Name'"]).where("doc->'$._id' = 'USA'").execute();

MySQL JS> var data = result.fetchOne();

MySQL JS> print ("Name : " + data[0]);

Name : "United States"MySQL [localhost+/world_x] JS>

12-ch12.indd 101 13/04/18 4:29 PM

Additional Resources

Many developer resources are available to help you write code and
experiment with MySQL and JSON. Google’s Protocol Buffers, the world_x
database, MySQL Labs software, JSON datasets, and more are available.

https://developers.google.com/protocol-buffers/ The MySQL X
DevAPI relies on Google’s Protocol Buffers, which are language- and
platform-neutral methods you can use to define the storage of data. You
can define the ways in which you can pass data, and the Protocol Buffer
Compiler builds classes for use within programming languages. You can
also make additions to the methods you use for passing data without losing
backward-compatibility.

13-Appendix.indd 103 13/04/18 4:29 PM

https://developers.google.com/protocol-buffers/

104 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Appendix

When compiling the X DevAPI code from source code, you will need to
download and build the Google Protocol Buffer software. You may also need
to build this code when using repackaged connectors. Prebuilt Google
Protocol Buffer software may exist for the operating system of your choice.
Refer to the web site for more information.

https://dev.mysql.com/doc/index-other.html The world_x database
is an evolution of the world database used by MySQL for decades in
documentation, classes, and blogs.

https://labs.mysql.com/ From time to time, MySQL Labs offers an early
glimpse into possible future software releases. This software is for testing
purposes only and is not recommended for production. Treat it as a proof of
concept and provide any feedback you can; the experimental code may not
make it into production.

https://jsonstudio.com/resources/ You’ll find many great example
datasets in JSON to experiment with to help develop proficiency. The ZIP
code data and other great sets are available here.

https://stedolan.github.io/jq/ The jq command-line JSON parser can be
found here.

https://raw.githubusercontent.com/mongo/docs-assets/primer-dataset/
primer-dataset.json Download the example MongoDB dataset here.

13-Appendix.indd 104 13/04/18 4:29 PM

https://dev.mysql.com/doc/index-other.html
https://labs.mysql.com/
https://jsonstudio.com/resources/
https://stedolan.github.io/jq/
https://raw.githubusercontent.com/mongo/docs-assets/primer-dataset/primer-dataset.json
https://raw.githubusercontent.com/mongo/docs-assets/primer-dataset/primer-dataset.json

Index

: (colon), 2
, (comma), 2
* (wildcards), 9, 18, 27, 46–47
* (asterisk), 9, 18, 27, 46–47
. (period), 14
$ (dollar sign), 17
' (single quote), 73, 74
'' (double single quote), 73, 74
: (colon), 89
{ } (curly brackets), 2, 3, 26, 73
$ character, 14
* wildcard, 27
** wildcard, 27
[] (square brackets), 2, 3, 26
-> operator, 100
->> operator, 34–35

A
add() function, 83, 86
ALTER TABLE statement, 56–58

apostrophe ('), 73–74
arguments, 71–72
arrayAppend, 85
arrays

adding, 84
appending, 26–28, 85
associative, 64
cells, 14
creating from non-JSON data,

45–46
inserting into, 28–29
length of, 39
nested, 39
vs. objects, 26
overview, 2–3
using, 26
values, 26

AS keyword, 54
asterisk (*), 9, 18, 27, 46–47
AUTO_INCREMENT attribute, 54

14-Index.indd 105 13/04/18 4:30 PM

106 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Index

B
backups, 85, 92
BASH scripts, 69
bind() function, 89–90
binding, 89–90
bitmasks, 60, 61–62
Boolean data, 50

C
C++ language, 94
casting, 46–47
cells, 14
CLI (Command Line Interface), 78
collections, 81–83

considerations, 78
creating, 55, 81–82
dropping, 92
finding, 82, 99
indexing, 90–92
overview, 81–82
removing, 92
restaurant collection, 73–74
vs. tables, 99–100

colon (:), 2, 89
columns, 53–59, 78
comma (,), 2
Command Line Interface (CLI), 78
comma-separated values (CSV), 71
connections, 79, 80–81, 96, 97
CRUD (Create, Replace, Update, and Delete),

80, 83–86, 99
CSV (comma-separated values), 71
curly brackets { }, 2, 3, 26, 73

D
data, 25–41. See also JSON data; non-JSON data

adding new data, 30–31
backups, 85, 92
benefits of JSON-encloded data, 1–2
Boolean, 50
converting to relational tables, 48–49
creating from non-JSON data, 44
deleting from documents, 32–33
dropping/removing, 92
examining, 68, 70–71
extracting from tables, 100
finding/getting, 19–23
impotency, 8
improving readability of, 15–16
inserting, 33–34

lifespan, 92
loading, 67–75
mapping to temporary relational

tables, 48
merging, 35–38
missing, 49–50
nested, 50–51
non-JSON. See non-JSON data
removing, 29–30
replacing in documents, 31–32
spatial, 59
stored as strings, 8–10
stored in text fields, 8
updating, 28, 33–34
validating, 70–71

data types. See also JSON data type
arrays/objects and, 37
casting, 46–47
determining, 39
geometric/geographic, 59

databases
creating with JSON data type, 26
document. See MySQL Document Store
example, 4–6
MySQL, 71
relational, 29, 78
world, 4
world_x, 4–5, 14–16, 99, 104

datasets, 16, 49, 67–75, 104
Developer Milestone Release, 48
doc column, 78
document database. See MySQL

Document Store
documents

adding arrays to, 84
adding key/value pairs, 84
appending arrays to, 85
casting as tables, 100
collections, 81–83
deleting data from, 32–33
determining storage size of, 40
inserting data into, 33–34
inserting values into, 30–31
length of, 38–39
maximum depth, 38
merging, 35–38
nested data, 50–51
pretty printing, 15–16, 71–72
removing, 86
removing key/value pairs, 85
reporting freed storage space, 41

14-Index.indd 106 13/04/18 4:30 PM

 Index 107

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Index

sorting, 88–89
updating/replacing data in, 33–34
updating/replacing values in, 31–32
validating, 40

dollar sign ($), 17
double single quote (''), 73, 74
dropping collections, 92

E
ECMA (European Computer Manufacturers

Association) Standard 404, 2
ECMAScript Language Specification, 2
European Computer Manufacturers

Association. See ECMA entries
example database, 4–6
EXISTS keyword, 49, 50
EXPLAIN command, 91

F
fields

selecting, 72–73
sorting, 88–89

fields() function, 88–89
find() function, 83, 86–88
FOR ORDINALITY operator, 51
foreign-key constraints, 54
full table scan, 90

G
generated columns, 53–59
geographic information system (GIS), 59
geography key, 17
GeoJSON, 59–62
geometries, 59–62
getCollections() function, 81–82
getTables() function, 99
GIS (geographic information system), 59
Google Protocol Buffers, 103–104

I
_id column, 78
_id values, 92
IETF RFC 7159, 2
impotency (data), 8
indexes, 90–92

collections, 90–92
considerations, 10, 53
creating, 90–92
generated columns and, 53, 56–58

speeding searches with, 10
unique/nonunique, 90–92

InnoDB storage engine, 78, 83
InnoDB tables, 73
INTEGER value, 47
Internet Engineering Task Force. See IETF

J
Java, 94
JavaScript, 78, 98
JavaScript interpreter, 78, 98
JavaScript mode, 80, 98
JavaScript Object Notation. See JSON entries
jq (JSON CLI parser), 71–73, 104
JSON (JavaScript Object Notation)

arrays, 2–3
attributes, 2
benefits of, 1–2
GeoJSON, 59–62
grammar, 2
MySQL support for, 2, 4
overview, 2–3
standards, 2

JSON_ BIGINT_AS_STRING option, 64
JSON CLI parser (jq), 71–73, 104
JSON data type. See also data types

casting data as, 46–47
considerations, 7, 8, 10–11, 77
creating databases with, 26
creating tables with, 26
overview, 2, 77–78
using, 10–11

JSON datasets, 16, 49, 67–75, 104
JSON documents

adding arrays to, 84
adding key/value pairs, 84
appending arrays to, 85
casting as tables, 100
collections, 81–83
deleting data from, 32–33
determining storage size of, 40
inserting data into, 33–34
inserting values into, 30–31
length of, 38–39
maximum depth, 38
merging, 35–38
nested data, 50–51
pretty printing, 15–16, 71–72
removing, 86
removing key/value pairs, 85
reporting freed storage space, 41

14-Index.indd 107 13/04/18 4:30 PM

108 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Index

JSON documents (cont.)
sorting, 88–89
updating/replacing data in, 33–34
updating/replacing values in, 31–32
validating, 40

JSON MERGE functions, 35–38
JSON processor, 71–73
JSON string data, 8–10
JSON strings

converting to PHP variables, 64–65
converting variable values into, 65
returning geometries, 60–61

JSON_ARRAY() function, 45–46
JSON_ARRAY_APPEND() function, 26–28
JSON_ARRAY_INSERT() function, 28–29
JSON_CONTAINS_PATH() function, 20–22
JSON_DECODE() function, 64–65
JSON_DEPTH() function, 38
JSON_ENCODE() function, 65
JSON_EXTRACT() function, 35, 47, 100
JSON_INSERT() function, 30–31
JSON_KEYS() function, 16–17, 20
JSON_LENGTH() function, 38–39
JSON_MERGE() function, 35–38
JSON_MERGE_PRESERVE() function,

35–36, 38
JSON_OBJECT() function, 44–45
JSON_OBJECT_AS_ ARRAY option, 64
JSON_PATCH() function, 35–36
JSON_PRETTY() function, 15–16
JSON_REMOVE() function, 32–33
JSON_REPLACE() function, 31–32
JSON_SEARCH() function, 22–23
JSON_SET() function, 30, 33–34
JSON_STORAGE_FREE() function, 41
JSON_STORAGE_SIZE() function, 40
JSON_TABLE() function, 49–51
JSON_TYPE() function, 39
JSON_UNQUOTE() function, 34–35
JSON_VALID() function, 40

K
keys

casting and, 46
considerations, 13
displaying, 16–17
JSON objects and, 44–45
levels, 17, 18
named, 13–14
paths, 21–22, 23
primary, 55, 73, 78, 83

quoting/unquoting, 34–35
searching for, 20–21
sorting and, 88–89
top-level, 20

key/value pairs
adding, 84
extracting values from, 51
JSON objects and, 44–45
listing, 17
missing, 49–50
paths and, 14
removing, 85

L
limit() function, 87–88
Linux systems, 3, 4, 73
loading JSON data, 67–75

M
MAC OS–based systems, 3
modify() function, 83, 85
MongoDB dataset, 104
MongoDB document store, 73
MySQL

casting from, 46–47
connections, 79
considerations, 3–4
Developer Milestone Release, 48
documentation on, 5, 6
installation of, 4
JSON support, 2, 4
language connectors, 94
use of examples, 5–6
versions, 2, 3, 4
vs. X Protocol, 78–79

MySQL data type, 7. See also data types
MySQL databases, 71
MySQL Document Store, 6, 77–101

bind() function, 89–90
collections/documents, 81–83
connections, 79, 80–81, 96–97
CRUD operations, 80, 83–86, 99
dropping collections, 92
find() function, 86–88
indexing collections, 90–92
JavaScript interpreter, 98
MySQL Shell, 78–82, 98
overview, 6, 77–78
programming examples, 94–96
programming with, 93–101

14-Index.indd 108 13/04/18 4:30 PM

 Index 109

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Index

relational tables, 99–101
sort() function, 88–89
vs. traditional SQL, 97–98
X DevAPI, 78–80

MySQL Documentation site, 4
MySQL Labs, 104
MySQL Shell (mysqlsh), 78–82, 98
MySQL syntax checker, 73
MySQL X DevAPI. See X DevAPI
mysqlsh (MySQL Shell), 78–82, 98

N
nested arrays, 39
nested data, 50–51
nested objects, 39
NESTED PATH option, 50–51
.Net language, 94
Node.JS coding example, 95–96
Node.JS language, 94
non-JSON data. See also data

creating arrays from, 45–46
creating JSON-formatted data from, 44
output of, 48–49
using JSON_OBJECT with, 44–45

NoSQL document store, 73
NULL values, 46, 48–49

O
object-relational mapping (ORM), 93
objects

vs. arrays, 26
creating, 44–45
embedded, 78
GeoJSON, 61–62, 64
mapping, 78
merging, 36–38
names, 35–38
nested, 39
overview, 2–3
returning as arrays, 20
using with non-JSON data, 45

ORM (object-relational mapping), 93

P
path legs, 14, 17
paths, 13–18

casting and, 46
considerations, 14
keys, 21–22, 23
length of, 38–39

nested data and, 50–51
overview, 13–14
searching for, 21–22
specifying, 17
subpaths, 17, 18, 48

PCRE (Perl Compatible Regular Expressions)
parser, 71

PECL (PHP Extension Community Library), 94
period (.), 14
Perl Compatible Regular Expressions (PCRE)

parser, 71
PHP, 63–65, 94
PHP coding example, 96, 97–98
PHP Extension Community Library (PECL), 94
primary key, 55, 73, 78, 83
printing, 15–16, 71–72
programming

examples, 94–96
JavaScript, 98
with MySQL Document Store, 93–101
PHP. See PHP entries
Python. See Python entries

programming examples, 94–96
Python, 78, 94–95
Python interpreter, 78, 98
Python language, 94
Python mode, 80, 98

Q
quotes, double (''), 73, 74
quotes, single ('), 73, 74

R
records

adding/removing, 86
considerations, 73
examining, 14–15
indexes and, 90
key/value pairs, 50
selecting, 14–15

REGEX (regular expressions), 9
regular expressions (REGEX), 9
relational databases, 29, 78
relational tables, 48–49, 99–101
remove() function, 83, 86
Request For Comment. See RFC entries
resources, 103–104
restaurant collection, 73–74
RFC 7159, 2, 35
RFC 7946, 59

14-Index.indd 109 13/04/18 4:30 PM

110 MySQL and JSON

Oracle_Flash / MySQL and JSON / Stokes / 013544-6 / Index

S
scalars, 37, 38, 39
schemas, 81–82
scope, 14, 17
searches

considerations, 8–9
filtering, 86–88
find() function, 86–88
keys, 20–21
paths, 21–22
REGEX and, 10
speeding, 10
values, 22–23

sed utility, 73, 74
servers

collections and, 82
considerations, 73, 79
indexes and, 90
JSON data and, 11
loading data into, 74
multiple, 78, 79
session types, 80
virtual, 4

session types, 80–81
SHOW CREATE TABLE, 55
single quote ('), 73, 74
skip() function, 87–88
sort() function, 88–89
sort key, 88–89
sorting, 88–89
spatial data, 59
Spatial Reference System Identifier (SRID)

argument, 60–61
SQL

coding example, 97–98
considerations, 78–79, 93
vs. MySQL Document Store, 97–98

SQL mode, 80
SQL queries, 78
SQL RDBMS, 59
square brackets ([]), 2, 3, 26
SRID (Spatial Reference System Identifier)

argument, 60–61
ST_AsGeoJSON function, 61–62
ST_GeomFromGeoJSON function, 60–61
ST_GeomFromText options, 61–62
stream editors, 73
string data, 8–10
strings, 3
Structured Query Language. See SQL

T
tables

casting documents as, 100
vs. collections, 99–100
creating, 26, 68–69
extracting data from, 100
InnoDB, 73
relational, 48–49, 99–101

text fields, 8
tokens, 2
TRUNCATE command, 29–30

U
Uniform Resource Identifier (URI), 80
unique_id key, 92
unset() function, 85
URI (Uniform Resource Identifier), 80
UTF8MB4 character set, 3
UTF8MB4 strings, 39, 65

V
values

considerations, 13
NULL, 46, 48–49
quoting/unquoting, 34–35
reporting contents of, 39
searching for, 22–23

variables, 89–90
virtual servers, 4

W
wildcards (*), 9, 18, 27, 46–47
Windows systems, 3
WITH VALIDATION clause, 58
world database, 4
world_x database, 4–5, 14–16, 99, 104
wrappers, 69–70

X
X DevAPI, 78–80

Google Protocol Buffers, 103–104
language connectors, 94
mysqlsh shell, 78–80
overview, 78

X Protocol, 78–80

Z
ZIP code dataset, 68–71

14-Index.indd 110 13/04/18 4:30 PM

	Contents
	Introduction
	JSON
	MySQL
	The Example Database
	How to Use This Book

	JSON as String Data vs Data Type
	JSON String Data
	The JSON Data Type

	Finding the Path
	Examining the world_x Data
	Seeing the Keys
	Path
	Digging Deeper

	Finding & getting Data
	All Keys
	Searching for a Key
	Searching for a Path
	Searching for a Value

	Changing Data
	Using Arrays
	Appending Arrays
	Inserting into an Array
	Using TRUNCATE Before Adding New Data
	Using JSON_INSERT
	Using JSON_REPLACE
	JSON_REMOVE
	JSON_SET
	JSON_UNQUOTE
	The Three JSON_MERGE Functions
	JSON_MERGE
	JSON_MERGE_PRESERVE
	JSON_DEPTH
	JSON_LENGTH
	JSON_TYPE
	JSON_VALID
	JSON_STORAGE_SIZE
	JSON_STORAGE_FREE

	JSON & Non-JSON Output
	JSON-Formatted Data
	JSON_OBJECT
	JSON_ARRAY
	Casting
	Non-JSON Output
	Missing Data
	Nested Data

	Generated Columns
	Using Generated Columns
	Columns Generated from JSON
	Generated Columns: Common Errors

	GeoJSON
	ST_GeomFromGeoJSON
	ST_AsGeoJSON

	PHP's JSON Functions
	JSON_DECODE
	JSON_ENCODE

	Loading JSON Data
	From Download to Database
	jq: JSON CLI Parser
	The Restaurant Collection

	MySQL Document Store
	The X DevAPI
	Connections
	Collections and Documents
	CRUD: Create, Replace, Update, Delete
	Filtering Find
	Sorting
	Binding
	Indexing Collections
	Dropping a Collection

	Programming with MySQL Document Store
	Programming Examples
	Traditional SQL vs. MySQL Document Store
	The MySQL Shell and JavaScript
	Relational Tables

	Additional Resources
	Index

