

 [image: Cover image]
 Book cover of CI/CD Pipeline Using Jenkins Unleashed

 Pranoday Pramod Dingare

CI/CD Pipeline Using Jenkins Unleashed
Solutions While Setting Up CI/CD Processes

[image:]The Apress logo.

Pranoday Pramod DingarePune, Maharashtra, India

				ISBN 978-1-4842-7507-8e-ISBN 978-1-4842-7508-5
https://doi.org/10.1007/978-1-4842-7508-5
© Pranoday Pramod Dingare 2022
Standard Apress
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

I would like to dedicate this book to my parents, to my lovely son, to my wife, and to my role models from the Dingare family, for being my eternal sources of inspiration

Introduction
This book will help readers understand continuous integration (CI), continuous delivery, and continuous deployment (CD) with Jenkins. These processes allow users as well as administrators to catch problems as soon as they are injected into software systems.
This book starts with an introduction to Jenkins and covers its architecture and role in CI/CD. The basics are covered, including installing and configuring Jenkins. Tool configuration and plugins are discussed as well as available security measures such as credentials. Readers will learn what is meant by jobs in Jenkins, including their types, sections, and much more. The book explains Java API: projects, jobs, and configuration. The chapters take you through creating pipelines, their role in managing web apps, and distributed pipelines. There are lot of examples and scenarios included to explain the workings of the distributed version control system called Git and working with it using different authentication techniques like SSH. The book also covers unit testing with TestNG as well as end-to-end testing using Selenium Python as part of building a lifecycle and setting up Jenkins on different physical and Docker environments. It also explains Jenkins integration with cloud environments such as AWS. This book covers how to create reusable libraries for use in Jenkins pipelines and how to control Jenkins servers using Jenkins CLI and REST APIs.
The book helps you understand CI/CD implementation using Jenkins from scratch in your projects and prepares you for end-to-end DevOps practices.
What You Will Learn	Apply Jenkins to create end-to-end pipelines

	Integrate Jenkins with AWS, Docker, Git, and many more tools

	Use Selenium automation for end-to-end testing

	Create distributed pipelines

Who Is This Book For
This book is best suited for developers and test automation professionals who are involved in creating CI/CD pipelines as well as prospective DevOps aspirants who want to make their way as professionals.

Acknowledgments
It has been one of my oldest dreams to write a book of my own. First of all, I would like to thank Apress in helping me find the author inside and helping me achieve this dream. I would like to extend a sincere thanks to my acquisition editor, Spandana Chatterjee, for such a nice proposal and for being the first person to trust my writing skills. We had countless discussions about the content to be presented in the book and Spandana made this an excellent book. I am sure their suggestions and feedback will help me become a much better author. Thank you also to Laura Berendson for being such a nice mentor and giving me the confidence when I needed it. I would like to thank Mark Powers for tolerating my writing mistakes and helping me make this book better with his expertise and suggestions. Thanks to Divya Modi for guiding me through this process and making me comfortable.
I am thankful to the HR department, the executive management, the team leaders, and all my colleagues from Magic Software Enterprises for encouraging me throughout this journey.
A special thanks to my father Pramod Dingare and mother Rajani Dingare for always encouraging me to take different paths in life and for supporting me when I was trying to make my way as an actor, software professional, trainer, and now as an author. Thanks to my wife Aruna Dingare for tolerating my busy writing schedule and helping with her MS Word skills when necessary. Thanks to my lovely son Rugved Dingare for being my source of energy, which I needed dearly throughout this writing journey.
I would like to thank the entire Dingare family for leading by example and inspiring me throughout my life since childhood.
I would like to thank countless authors who unknowingly inspired me to pursue this dream of being author one day!
Last but definitely not the least thanks to all my students for helping me grow as a constant learner.

Table of Contents

Chapter 1:​ Understanding CI/​CD1
The Development Workflow2
Running Unit Tests Locally2

Pushing and Merging Code to the Central Repository3

Compiling Code after the Merge3

Running Tests on the Merged Code3

Deploying an Artifact3

Continuous Delivery/​Continuous Deployment3

CI/​CD Workflow Case Study4
Pulling the Application’s Latest Code4

Developing and Running Unit Test Cases4

Code Development5

Rerunning the Unit Test Case6

Pushing and Merging the Code to the Central Repository6

Compiling the Code after the Merge6

Running Tests on the Merged Code6

Deploying an Artifact6

Run e-e Tests on a Deployed Application7

Summary7

Chapter 2:​ Introducing Jenkins9
What Is Jenkins?​10
A History of Jenkins10

Implementing CI/​CD Using Jenkins11

The Jenkins Architecture12

Summary14

Chapter 3:​ Installing Jenkins15
Installing Jenkins on Windows15
Hardware/​Software Requirements15

Different Ways to Install Jenkins on Windows16

Understanding the Configuration Files and Directory Structure of Jenkins17

Understanding Important Settings in Jenkins.​xml18

Summary20

Chapter 4:​ Configuring Jenkins21
Configuring Global Settings and Paths21
Signing into Jenkins21

Understanding the Configure System Options24

Resetting the Username and Password in Jenkins27

Adding a New User31

Summary32

Chapter 5:​ Managing Plugins in Jenkins33
What Are Plugins33
Commonly Used Jenkins Plugins34

Installing the Plugins in Jenkins35

Understanding the Plugin Manager36

Troubleshooting Installation Problems40
Problem 140

Problem 242

Summary44

Chapter 6:​ Understanding the Global Tool Configuration Page45
Global Tool Configuration Settings45
Understanding the Global Tool Configuration Settings47

Summary54

Chapter 7:​ Managing Security with Jenkins55
Configuring Global Security in Jenkins55
Configuring LDAP with Jenkins64

Why We Need to Configure LDAP with Jenkins64

How to Configure LDAP with Jenkins66

Summary67

Chapter 8:​ Managing Credentials69
Understanding Credentials in Jenkins69

Creating Credential Entries in Jenkins70
Understanding Scope and Domains71

Creating Credential Entries in Jenkins72

Creating a Credentials Entry in a Global Domain (Default Domain) and a Global Scope72

Updating a Credentials Entry76

Creating a Credentials Entry in a Particular Domain79

Configuring a Credentials Provider84

Summary89

Chapter 9:​ Managing Users91
Creating Users in Jenkins91

Assigning Roles to Users in Jenkins93
Installing the Role-Based Authorization Strategy Plugin93

Enabling Role-Based Strategy in Jenkins96

Creating User Roles in Jenkins97

Assigning Roles to Users in Jenkins99

Checking the Assignment of a Role to a User101

Creating Project-Based Roles in Jenkins101
Assigning Project-Based Roles to Users102

Verifying the Assignment of the Project-Based Role to the User104

Understanding Matrix-Based Security in Jenkins106

Understanding the Project-Based Matrix Authorization Strategy in Jenkins109

Summary113

Chapter 10:​ Understanding Jobs in Jenkins115
What Is a Job in Jenkins?​115

What Is a Build in Jenkins?​116

What Is a Free-Style Job in Jenkins?​116

How to Create a Job in Jenkins117

How to Configure a Job in Jenkins118
This Project Is Parameterized120

Disabling a Project122

Executing Concurrent Builds122

Quiet Period123

Block Build When Upstream Project Is Building124

Block Build When Downstream Project Is Building125

Use Custom Workspace125

Display Name125

Keep the Build Logs of Dependencies126

Source Code Management127

Branches to Build133

Build Triggers133

How to Run a Job in Jenkins and Check Its Output138

How to Edit a Job in Jenkins141

How to View a Job’s Workspace143

How to Clear a Job’s Workspace144

How to Delete a Job145

Summary145

Chapter 11:​ Preparing a Java API Project Using Maven147
Understanding the Maven Build Tool148
Typical Development Flow of a Java API Project148

How the Build Tool Helps Developers150

How to Use the Maven Build Tool to Build a Java API Project150

Understanding the Maven Project Directory Structure159

Understanding Java API Project Code Files160

Understanding the pom.​xml File in the Java API Project161

How to Use Maven from the CLI166

Understanding Maven’s settings.​xml File174

Summary175

Chapter 12:​ Integrating Maven with the Nexus Repository and Creating Free-Style Jobs to Release the Java API on the Nexus Repository177
Understanding Git178

Installing Git180

Understanding GitHub/​GitLab180

Understanding End-End Use of Git for the API Project180
Step 1:​ Creating a Local Repository181

Step 2:​ Creating a Central Repository on GitLab183

Step 3:​ Committing Code to the Local Repository185

Step 4:​ Pushing the Code from the Local Repository to the Central Repository on GitLab188

Step 5:​ Creating a Master Branch in the Central Repository on GitLab189

Understanding the Nexus Repository191
What is an Artifact?​191

What is the Nexus Repository?​191

Installing the Nexus Repository191

How to Start the Nexus Repository System192

Installing Nexus as a Service193

Accessing the Nexus Repository Manager194

Creating a Hosted Repository to Release the Artifacts195

Integrating Maven and the Nexus Repository195
Releasing the CalculatorAPI.​jar File in the Nexus Repository197

Creating a Jenkins Free-style Job to Release the CalculatorAPI.​jar in the Nexus Repository198
Step 1:​ Setting Up Maven in Jenkins198

Step 2:​ Adding Git Repository Credentials to Jenkins199

Step 3:​ Creating a Free-Style Job from the Jenkins Dashboard199

Step 4:​ Add a Subtraction Function and Unit Test Cases to the API Project200

Step 5:​ Commit Changes in the Local Repository and Push them to the Central GitLab Repository202

Step 6:​ Merge the SubtractionFunct​ion Branch with the Master Branch on the Central GitLab Repository203

Running a Jenkins Free-Style Job to Perform a Release of the CalculatorAPI.​jar in the Nexus Repository204

Summary206

Chapter 13:​ Creating an Auto-Trigger Free-Style Job to Manage Java API Releases207
How to Add a New Code Contributor to a Private GitLab Repository208
How to Invite a Team Member to the Code Repository208

Understanding SSH Authentication211
Why You Need SSH Authentication211

How SSH Authentication Works with GitLab212

Applying SSH Authentication to the Java API Code Repository212
Step 1:​ Generating the Public and Private Keys212

Step 2:​ Adding the Public Key to the JenkinsBookCalcu​latorAPI GitLab Repository215

Accessing the JenkinsBookCalcu​latorAPI Repository Using SSH URL and Adding new Arithmetic Functions to the CalculatorAPI216
Step 1:​ Cloning the JenkinsBookCalcu​latorAPI Repository217

Step 2:​ Adding a Multiplication Function to the Calculator Class221

Step 3:​ Adding Unit Test Cases for the Multiplication Function221

Step 4:​ Changing the Version Number to 3.​0 in pom.​xml224

Step 5:​ Unit Testing the Recent Multiplication Function and Regression Testing for the New Functionalities224

Step 6:​ Committing New Functionality Changes in a Branch Named Multiplication Function in the Local Repository225

Step 7:​ Pushing the MultiplicationFu​nction Branch to the Remote Repository225

Step 8:​ Creating a Merge Request for this New Branch226

Creating an Auto-Trigger Jenkins Job with Email Notification227
Step 1:​ Creating a Free-Style Job from Jenkins Dashboard:​ Click the New Item link on Jenkins Dashboard227

Setting Up Jenkins to Send Email Notifications229

Triggering the New Jenkins Job231

Understanding the Execution of Jobs with SCM Set233

Failing the Build to See the Email Notification234

Summary235

Chapter 14:​ Understanding the Jenkins Pipeline237
What Is a Jenkins Pipeline?​237

Why Use a Jenkins Pipeline?​238

Understanding Different Pipeline Concepts239

Pipeline Syntax Overview239
Fundamentals of Declarative Pipelines240

Fundamentals of Scripted Pipelines241

Defining a Simple Pipeline in Jenkins UI243
Pipeline Speed/​Durability Override244

Resolving java.​lang.​IllegalArgumentE​xception:​ Unsupported Class File Major Version Error248

Understanding String Interpolation in the in Jenkins Pipeline248
String Interpolation Example249

Creating a Pipeline Job to Release the Java API250

Running a Pipeline Job and Release the Calculator API257

Summary259

Chapter 15:​ Creating Jenkins Jobs to Manage a Web Application Project261
Understanding the Calculator Web Application Source Code262

Building the Calculator Web Application266

Deploying the Calculator Web Application266

Accessing the Calculator Web Application267

Understanding E-E Testing the Calculator Web Application Using the Selenium WebDriver268
What Is UI Automation Testing268

How UI Automation Tools Work268

What Is a Selenium WebDriver269

Understanding the Selenium Tests Written in Python269

Software Setup to Run these Test Cases272

Running Selenium Python Tests274

Pushing the WebApplication and Automation Project to the GitHub Repository276
Step 1:​ Sign up on Github.​com277

Step 2:​ Creating a New Repository277

Step 3:​ Creating a New SSH Key Pair for the GitHub Repository278

Step 4:​ Include the SSH Private Key File Path in the $(user.​name)\.​ssh\config File278

Step 5:​ Adding an SSH Public Key to the GitHub Repository279

Step 6:​ Committing the Calculator Web Application to the Master Branch in the Local Repository282

Step 7:​ Pushing the Master Branch to the Remote Repository282

Pushing the Selenium Python Automation Project to GitHub283

Creating Parameterized Auto-Trigger Free-Style Jenkins Jobs283
Step 1:​ Installing the Parameterized Trigger Plugin284

Step 2:​ Creating a BuildAndDeployCa​lculator WebApplication Job285

Step 3:​ Creating the TestCalculatorWe​b Application Job288

Configuring an Extended Email Notification291
Step 1:​ Installing the Email Extension Plugin292

Step 2:​ Configuring Extended Email Extension settings292

Step 3:​ Adding an Email Notification Step in the Post-Build Section of the TestCalculatorWe​b Application Job293

Running a Parameterized Free-Style Job Manually295

Auto-Triggering a Parameterized Free-Style Job296

Creating a Parameterized Pipeline Job298

Creating a Build and Deploying the Calculator Web Application Parameterized Pipeline Job299

Creating a TestCalculatorWe​bApplicationPipe​line Job301

Running the Parameterized Pipeline Job Manually305

Automatically Triggering the Parameterized Pipeline Job305

Summary306

Chapter 16:​ Understanding Pipeline as Code307
What Is API Authentication307

How to Apply API Authentication to GitHub Repositories308

How to Use an API Token to Access a Private GitHub Repository310

Creating an API Access Token in GitLab313

How to Use the API Token to Access a Private GitLab Repository313

How to Access a GitHub/​GitLab Repository Using an API Token in Jenkins315
Step 1:​ Setting Up Maven in Jenkins316

Step 2:​ Creating a Free-Style Job from the Jenkins Dashboard316

Step 3:​ Change the Version in pom.​xml of the Cloned API Project318

Step 4:​ Commit Changes in the Local Repository and Push them to the Central GitLab Repository318

Running Free-Style Jobs Accessing the GitLab Repository with the API Token319
Understanding Pipeline as Code (Jenkinsfile)320

Writing a Pipeline in a Jenkinsfile321

Triggering a Jenkins Job Using a GitLab Webhook331

Creating a Pipeline Job to Trigger Using GitHub Webhooks335

Triggering Pipeline Jobs Using GitHub Webhook337

Summary338

Chapter 17:​ Jenkins Distributed Builds339
Jenkins Distributed Architecture340

Ways to Connect the Master and Slaves341

Understanding the Configuration to Connect the Master to the Agent Using SSH342
Step 1:​ Install the SSH Build Agent's Plugin342

Step 2:​ Install Java on the Slave Node342

Step 3:​ Create an SSH Public-Private Key Pair343

Step 4:​ Add a Credentials Entry with a Private Key to the Master Machine343

Step 5:​ Add a Node Entry to the Jenkins Master344

Step 6:​ Add a Public Key to the authorized_​keys File on the Slave Machine350

Step 7:​ Change the Permissions of the authorized_​keys File on the Slave Machine351

Step 8:​ Restart the sshd Service353

Step 9:​ Check the Connection to the Agent Machine from the Master353

Step 10:​ Launch the New Node from the Master Machine353

Creating a Free-Style Job to Run on the Node1 Agent354

Running the New Free-Style Job on the Node1 Agent354

Understanding the Configuration to Connect the Agent to the Master Using JNLP354
Step 1:​ Configure the Jenkins Master to Receive JNLP Agent Connection Requests354

Step 2:​ Set the Jenkins URL355

Step 3:​ Create a New Node Entry from the Agent (Slave) Machine355

Creating a Job to Run on the JNLP Node357

Summary357

Chapter 18:​ Integrating Jenkins with AWS359
Understanding an EC2 Instance on AWS359

Creating an EC2 Instance on AWS360
Step 1:​ Sign Up on AWS360

Step 2:​ Sign in to AWS360

Step 3:​ Create an EC2 Instance361

Step 4:​ Start an EC2 Instance362

Configuring the EC2 Instance to Deploy the Calculator Web Application363
Step 1:​ Install the IIS Web Server363

Step 2:​ Configure the IIS Web Server364

Step 3:​ Configure the SSH Connection Between the Local Computer and the EC2 Instance365

Copying the Calculator.​html File to the EC2 Instance370

Accessing Calculator.​html Copied to the EC2 Instance from a Browser on a Local Computer371

Creating a Jenkins Job to Deploy the Calculator Web Application on an EC2 instance372

Changing the Calculator Application URL in Selenium Framework372

Running the BuildAndDeployCa​lculator WebApplication OnEC2Instance Job373

Summary373

Chapter 19:​ Miscellaneous Topics Part 1375
Understanding the Jenkins CLI375

How to Interact with Jenkins Using its CLI376

How to Create a Job Using the Jenkins CLI377
Authenticating Users Using Basic Authentication (Username-Password/​API Token)378

Authenticating Users Through SSH While Using CLI Commands380

How to Build Jobs with the Jenkins CLI Using SSH Authentication382

How to Export All Jobs387

How to Import All Jobs388

Summary389

Chapter 20:​ Miscellaneous Topics Part 2391
Understanding Jenkins Remote Access API392

Using Jenkins Remote Access API393
Getting the Configuration of Existing Jenkins Jobs Using Jenkins Remote API394

Creating New Jenkins Jobs Using Jenkins Remote API395

Triggering Parameterized Jenkins Job Using Jenkins Remote API396

Triggering Normal (Non-Parameterized) Jenkins Job Using Jenkins Remote API398

Working with the Jenkins Server Using Python-Jenkins400
Using Python-Jenkins Package Libraries401

How to Use Shared Libraries in the Jenkins Pipeline405
Step 1:​ Creating a Shared Library in the .​Groovy File405

Step 2:​ Push the Created Shared Library File to the GitLab Repository407

Step 3:​ Configure the Shared Library in Jenkins407

Step 4:​ Create a Pipeline Job to Use the Shared Library408

Step 5:​ Running the Pipeline Job409

Summary409

Index411

About the Author

Pranoday Pramod Dingare[image:]A photo of Pranoday Pramod Dingare.

is a certified software testing professional with more than 15 years of experience in software testing, including more than 10 years in automation testing. Pranoday has been leading test automation of mobile applications for the last eight years and has been involved in test automation tools evangelism, R&D, proof of concept, and pilot projects. He has worked as a freelance test automation consultant for various startups and mid-sized IT companies from India and abroad. Pranoday's open-source test automation tools have successfully replaced licensed automation tools, leading to major savings. He is responsible for incorporating DevOps practices into test automation processes of organizations by implementing DevOps tools such as Jenkins, Gitlab, Nexus, Docker, etc. He has recently shifted into full-time DevOps profile and has been working as a Lead DevOps professional since last 1 year. He has implemented various DevOps tools like Dockers, Maven, Kubernetese, Git, Nexus, Azure DevOps, AWS, SonarQube, Jenkins etc. and has been instrumental in automating various applications’ build and deployment processes.
Pranoday is a tutor who has been involved in software testing and DevOps training for more than nine years, including conducting more than 200 retail and corporate trainings on the latest test automation and DevOps tools. He is a blogger on the latest test automation tools and technologies. Pranoday is passionate about working as a test automation architect, teaching and sharing knowledge about the latest tools and technologies, and helping professionals achieve their dreams.

About the Technical Reviewer

Prasanth Sahoo[image:]A photo of Prasanth Sahoo.

is a thought leader, an adjunct professor, a technical speaker, and a full-time practitioner in Blockchain, DevOps, Cloud, and Agile working for PDI Software. He was awarded the “Blockchain and Cloud Expert of the Year” award in 2019 from the TCS Global Community for his knowledge share within the academic services to the community. He is passionate about driving digital technology initiatives and handling various community initiatives through coaching, mentoring, and grooming techniques.
Prasanth has a patent under his name and to date, he has interacted with over 50,000 professionals, mostly within the technical domain. He is a working group member of the Blockchain Council, CryptoCurrency Certification Consortium, Scrum Alliance, Scrum Organization, and International Institute of Business Analysis.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_1

1. Understanding CI/CD

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

This chapter explains what CI/CD is in practice and how it has influenced software development in general. In modern-day application development processes, where the Agile development lifecycle is used, it’s common to have frequent changes to the application code.
Note
Agile is a development lifecycle model in which each member of the development team (i.e., the developers, testers, business analysts, etc.) works on the same set of requirements at the same time. In other development lifecycle models, such as Rapid Application Development (RAD), different people work on different requirements. For example, the software testers work on a piece of functionality that the developers have finished working on, and the developers might be developing requirements that the business analysts have completed.

In the Agile development lifecycle model, application requirements are divided into multiple sets of prioritized requirements, which are taken up for implementation as part of the application development process. A sprint is a timeframe within which a single set of requirements is worked on, from the phase of requirements review until their final implementation in an application.
In Agile, the application evolves with every sprint. A sprint, which usually spans one to three weeks, adds a considerable amount of functionality in a short period. In a single day, multiple developers working on an application will complete development of assigned functionalities and will commit their changes to the main branch. (The code from this branch is used to create a build; it’s usually a master branch in the case of GitLab and a main branch in the case of GitHub.) This practice of merging all the changes at once can introduce problems, like regression defects, integration defects, and merge conflicts, and these problems can take hours to find and resolve.
To avoid these problems, Continuous Integration (CI) is practiced in Agile methodology. In CI, work completed by the developers is merged frequently into the main branch, rather than waiting until the end of the day or until the end of the sprint. This practice of merging fewer changes at a time allows developers to resolve merge conflicts earlier and address regression defects more efficiently and quickly.
The Development Workflow
Running Unit Tests Locally
The developer obtains their own copy of the latest code from the central repository and implements the required changes. These changes are usually implemented using test-driven development practices. The development and changes to the code continue until all written unit test cases pass.
Note
Test-driven development (TDD) is a practice in which test cases are written before developing the code. Written test cases are executed, which will fail as there is no code written as per the expectations prescribed in the test case. Then the code is developed to fulfill the test cases’ expectations.

Pushing and Merging Code to the Central Repository
Once the developers finish the development work in the local copy, they push this code to the central repository to be merged into the main branch.
Compiling Code after the Merge
Once the developer’s code is merged with the main branch, this merged code must be compiled. This reveals any new compilation errors that were introduced due to merging the newly developed code with the existing code.
Running Tests on the Merged Code
After a successful merger, the unit and integration tests are executed to reveal any regression defects. In addition to these, a few CI processes encourage static analysis to be executed on the code to check for adherence to the coding standards, existence of dead code, and so on.
Deploying an Artifact
Once the merged code is checked against the various quality attributes, an artifact is built and deployed to the deployment server. All stable code is packed and deployed to the server for the end users to use. These artifacts take the form of .WAR or.JAR files, for example.
Continuous Delivery/Continuous Deployment
In Continuous Integration, incremental changes to the application are tested in a development environment, which reveals any failures. Once the changes are tested and confirmed in the development environment, including these changes in periodic builds is very important.
It may happen that the application is working fine in the development environment, but having problems in the production environment. These problems could be because a new change is not compatible with the hardware/software in the production environment. If the application is not frequently deployed in the production environment, then debugging and resolving such problems could turn out to be a nightmare.
CI/CD Workflow Case Study
For this case study, you’ll develop a Calculator Web application that includes addition, subtraction, multiplication, and division functionalities.
Pulling the Application’s Latest Code
You’ll pull the latest application code on the local machine from a central code repository to start developing the addition functionality. It will add two numbers and return the result.
Developing and Running Unit Test Cases
You will develop unit test cases before you start writing the code. You will execute the written unit test cases, which will fail, as there is no code written to satisfy the expectations mentioned in the test cases.
For example, calling Addition(10,20) and comparing the return value with 30 to confirm the addition functionality works fine. See Listing 1-1.{
 Result=Addition(10,20);
Assert.assertEquals(Result,30,"Addition functionality does not work fine with positive numbers");
}

Listing 1-1Unit Test Case for the Addition Functionality

This test code calls an Addition function with two positive numbers, 10 and 20. It receives the result in the Result variable and compares the value in the Result variable with 30. If the Result variable contains the value 30, the test case will be marked as Passed. Otherwise, it is marked as Failed.
This test case fails with the error Addition(10,20) function does not exist (we do not have a function called Addition() yet). In test-driven development, the test cases should fail first until the developer develops the functionality with the intention of making the failed tests pass.
Note
We don’t assume the use of any particular language or unit testing tool here. For now, concentrate on understanding the concept and flow of CI/CD instead of getting into the details of language and specific tools

Code Development
To make the failed test case pass, you must implement the Addition function, as shown in Listing 1-2.Addition(a,b)
{
 Result=a+b;
 return Result;
}

Listing 1-2Code for the Addition Functionality

Along with this backend code, component changes would also be made to the frontend code. For example, an Addition pushbutton would be added to the UI to trigger this function.
Rerunning the Unit Test Case
If you rerun the unit test case, it will now pass.
Pushing and Merging the Code to the Central Repository
You can now push the Addition function code to the central repository to be merged with rest of the application’s code.
Compiling the Code after the Merge
After the Addition() function code is merged, the whole application will be compiled.
Running Tests on the Merged Code
A few integration tests and tests related to other functionalities like subtraction, multiplication, and so on, will be executed to confirm that this newly added Addition functionality has not broken any previous functionalities.
Deploying an Artifact
Now you build the web application and deploy it in the production environment on an application server (e.g., tomcat).
Run e-e Tests on a Deployed Application
Finally, you need to run e-e tests using UI automation tools like Selenium and confirm that the application’s end-end flows are working fine.
Summary
This chapter explained the problems of following traditional development processes in a fast-paced development model like Agile. This chapter also explained how you can benefit from adopting CI/CD processes that are quite in line with the requirements of the Agile methodology. The next chapter introduces Jenkins, a widely used automation server that helps in establishing CI/CD processes.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_2

2. Introducing Jenkins

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

In the previous chapter, you learned about the importance of using Continuous Integration, Continuous Delivery, and Continuous Deployment as a practice. This chapter introduces the widely used automation server called Jenkins, which helps to automate CI/CD processes and leverages their benefits. In CI/CD practice, you continuously integrate a smaller number of changes frequently, test them, and provide feedback on each increment you introduce into the build. Managing this process manually would be labor intensive, tedious, cumbersome, and prone to errors.
The Agile methodology also supports releasing a workable product after introducing incremental changes to the software. Teams should not only see the features working, but they should also see the additional value to the software due to the introduction of the new feature. Due to their philosophical similarities, CI/CD works very well with the Agile methodologies.
The CI/CD process executes the workflow on any application, beginning by taking the latest copy of the source code from a source code management system such as Git or SVN. It then compiles the code, which requires the execution of a compiler, and executes the unit tests, again interacting with a different set of tools. Executing a workflow that spans across multiple tools/technologies multiple times a day would put pressure on developers, QAs, support engineers, right?
Using Jenkins, you can build an application on different platforms. It also allows you to automate pull-request integration processes along with artifact publishing on artifact repositories such as Nexus.
Different unit and integration testing frameworks and testing containers are not sufficient to release a quality build if you do not complement them by using Jenkins. These tools need to be orchestrated to produce a quality product and Jenkins is the tool to do this.
Jenkins interacts with different sets of tools and executes an end-end workflow on the application at a specified frequency, without putting any unnecessary pressure on the teams building the application.
What Is Jenkins?
Jenkins helps automate different phases of the software development process, including pulling the latest copy of the source code from the centralized source code management repository, compiling the source code, running any unit tests, packaging the implementation in the form of different types of artifacts, and then deploying these artifacts on different kinds of environments. It is a free and open-source server.
Jenkins is a server system that runs inside the servlet containers such as Apache Tomcat. It is written in Java and supports a different family of tools that take part in software development.
A History of Jenkins
Jenkins’ history begins in 2004. Kohsuke Kawaguchi, the developer of Jenkins, was working at Sun Microsystems as a Java developer. At that time, Kawaguchi was involved in several development projects. He didn’t like breaking the builds due to code failure. This made him look for something that would help him know whether the code would work before it was committed to the repository.
This curiosity led the way to the development of an automation server named Hudson. In 2011, there was an infamous dispute between the independent Hudson open-source community and Oracle, which now has Sun Microsystems under its umbrella.
This dispute led to a fork, which was named Jenkins. Both Jenkins and Hudson continued to exist for a long time; however, Jenkins was the preferred choice. The Hudson project was shut down in January 2020. Jenkins is still active.
Implementing CI/CD Using Jenkins
CI/CD is a process that tests every change (even a smallest one) to application code at the code level, through an end-end build lifecycle until the change is built in the form of an executable or library and deployed on the production environment.
CI/CD consists of different dependent lifecycle phases which, if followed in a specified order, will convert the bare source code into a workable application by taking it through all the required sub-processes.
Jenkins as an automation server supports implementing these build lifecycle phases with the help of DSL (the Domain Specific Language). While taking any application through different build phases, we need to use different categories of tools like build tools, static analysis tools, different source code management tools, etc.
Jenkins provides a huge collection of plugins so we can implement end-end build lifecycle phases for any application.
We can write a Jenkins script, called a pipeline, which defines a sequence of tasks and subtasks that Jenkins will perform as part of each build phase. These build phases will be implemented sequentially and in such a way that each phase takes the output of its previous phase, does the required processing that it is supposed to do as part of the end-end build process, and passes the output to the next phase.
When these sequential and dependent phases are executed from start to end, a workable build is created that end users can use.
If any phase fails during the build process, the subsequent phase (which depends on the output of the failed phase) is not executed and the entire build process fails.
For example, say after pulling the latest merged code from an SCM (a source code management tool like Git), the compilation fails. There is no point in going ahead with the next phase of unit testing, as it requires successfully compiled code in order to run the unit tests.
The Jenkins Architecture
This section discusses how Jenkins can be used by developers as well as testers. The following is the flow of a typical Jenkins CI/CD process:	1.
Multiple developers push their individual branches containing their changes to the central repository. After the code is reviewed, these branches are merged into another branch (usually a developer branch).

	2.
Jenkins gets a notification about the change to the branch.

	3.
As a result of the notification, Jenkins triggers a job.

A job is set of tasks/subtasks implemented as a sequential process to perform different phases of the build release lifecycle. It will typically include the following steps:	1.
Pulling a change from the repository using a plugin, which will integrate with the given source code management system (e.g., a Git plugin).

	2.
Compiling a change by using a build tool like Maven and the Jenkins plugin (e.g., a Maven plugin).

	3.
Running unit/integration testing on the compiled code using the build tool again.

	4.
Running static analysis to check the code against coding standards and for dead code. This is done using a tool like SonarQube, which again is triggered using the Jenkins plugin.

	5.
Bundling the compiled and tested files in the form of library files, like .JAR or .WAR files. This also can be done by using a build tool that’s triggered using the Jenkins plugin.

	6.
Deploying this built library file on the production/test environment.

	7.
Running end-end tests on this deployed application using end-end test automation tools (e.g., UI automation tools like Selenium, Protractor, etc.).

	8.
Sending an email notification to the concerned team members regarding the status of this newly created application build. Includes the report of the end-end tests.

Before Jenkins came into an existence, integration testing was done when all the developers’ changes were accepted and merged into the branch and the build was created. Also, integration and end-end testing was done on the whole application code, which was to be considered for creating an artifact. When bugs were found during regression testing, finding their root causes was not easy. Even locating and fixing build errors was a time-consuming tasks and used to delay the delivery of the software application.
With Jenkins, all changes implemented in the application are unit tested and merged into the branch as and when they are implemented and unit tested successfully. Once the changes are merged into the branch, they are tested for any integration defects. If errors are found during the deployment phase, only the files added by all developers since the last successful build are checked. Similarly, if the integration tests find bugs in the new build, the changes implemented and merged in the current build are looked at as the culprit. Due to Jenkins’ frequent execution of build lifecycle phases like testing, compilation, and deployment, these incremental changes have been formalized.
Summary
This chapter explained the steps required in order to implement successful CI/CD processes. It also explained the widely used automation server, Jenkins. Prior to the advent of Jenkins, performing frequent testing and deploying an application was very effort intensive. The next chapter dives deep into Jenkins’ features, which allow us to implement successful CI/CD processes.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_3

3. Installing Jenkins

Pranoday Dingare1
(1)Pune, Maharashtra, India

Now that you understand the importance of the CI/CD process and the role Jenkins plays in implementing CI/CD, let’s get started using Jenkins. This chapter covers the Jenkins installation process on different environments like Windows and Dockers and discusses the hardware/software requirements. It also discusses the different ways Jenkins can be installed, such as through .WAR (Web Application Archive) files, using the .MSI file, and installing Jenkins as a Windows service. We cover different problems/errors we might encounter during the installation process and see how to troubleshoot them.
Installing Jenkins on Windows
This section covers the hardware and software requirements for installing Jenkins. Make sure you have the required version of Java and the other software installed as specified in this section, so you can follow along with rest of the chapters in this book.
Hardware/Software Requirements
Let’s first cover the hardware requirements and then the software requirements we need to install Jenkins on a machine.
The minimum hardware requirements are as follows:	256MB of RAM

	1GB hard disk space (If you are running Jenkins as a Docker container, 10GB is recommended.)

Software requirements:	Java: Jenkins supports only JDK 8 and JDK 11. JDK 11 is supported since Jenkins version 2.164 and 2.164.1. Older versions of Java are not supported.

Different Ways to Install Jenkins on Windows
We can install Jenkins on Windows in three different ways:	Installing using the MSI Installer:

Download the Jenkins MSI installer file from www.jenkins.io/download/thank-you-downloading-windows-installer
Run the MSI installer file to start installing Jenkins and follow the steps mentioned in this link:
www.jenkins.io/doc/book/installing/windows/	Installing using a .WAR file:

Jenkins is written in the Java language. Web applications developed using Java are bundled in .WAR files. We can install and run the Jenkins server through its .WAR file bundle.
Download the Jenkins .WAR file from https://get.jenkins.io/war/2.290/jenkins.war
Follow the steps mentioned from the following link to install Jenkins through its .WAR file.
www.jenkins.io/doc/book/installing/war-file/	Installing Jenkins as a Docker Image:

Understanding the entire Docker concept is outside the scope of this book. In layman terms, Docker is an application build and deployment tool. It is based on the idea that we can package our code with dependencies into a deployable unit called a container. We usually replace physical machines with virtual systems that emulate operating systems with the help of software. Dockers are very lightweight concepts. We can even code configurations for our application (Infrastructure as a Code).
To install Jenkins server using Docker, follow the steps from this link:
www.jenkins.io/doc/book/installing/docker/
Understanding the Configuration Files and Directory Structure of Jenkins
Jenkins by default is installed in the $user.home directory (i.e., the current user directory), inside the .jenkins folder. If you installed Jenkins through .msifile, it will be installed inside the folder you chose as the installation directory.
The Jenkins installation directory is also called JENKINS_HOME. Its directory structure is shown in Listing 3-1.JENKINS_HOME
 +- config.xml (jenkins root configuration)
 +- *.xml (other site-wide configuration files)
 +- userContent (files in this directory will be served under your http://server/userContent/)
 +- fingerprints (stores fingerprint records)
 +- nodes (slave configurations)
 +- plugins (stores plugins)
 +- secrets (secrets needed when migrating credentials to other servers)
 +- workspace (working directory for the version control system)
 +- [JOBNAME] (sub-directory for each job)
 +- jobs
 +- [JOBNAME] (sub-directory for each job)
 +- config.xml (job configuration file)
 +- latest (symbolic link to the last successful build)
 +- builds
 +- [BUILD_ID] (for each build)
 +- build.xml (build result summary)
 +- log (log file)
 +- changelog.xml (change log)

Listing 3-1Diagrammatic Representation of the JENKINS_HOME Directory Structure

Understanding Important Settings in Jenkins.xml
The Jenkins.xml file exists inside the JENKINS_HOME directory. Find the <Service> tag in this file. This tag contains important settings, like the Java.exe location, which is used by Jenkins. By default, Jenkins takes the Java mentioned in the PATH environment variable, as shown in Figure 3-1.[image:]A window box titled Edit environment variable. Below are lists of different variables in 11 rows. The chosen row is percent JAVA underscore HOME percent slash bin. On the right side are buttons arranged vertically, which are New, Edit, Browse, Delete, Move Up, Move Down, and Edit text. On the bottom right part are buttons O K and Cancel.

Figure 3-1The Edit Environment Variable window showing Java added to the PATH environment variable

If we want to change the version of Java that Jenkins should use, we can mention the full path of the Java.exe from the desired Java installation directory in an <executable> tag, which is inside a <service> tag, as shown in Figure 3-2.[image:]A series of codes in a notepad. The highlighted code reads left angle bracket executable right angle bracket C colon backslash Java Installation backslash J D K 11 backslash bin backslash java dot exe left angle bracket forward slash executable right angle bracket.

Figure 3-2The <executable> tag used to indicate the path of Java we want Jenkins to use

Summary
This chapter explained how to install Jenkins using its installation wizard by running the .MSI file. You also saw how to start Jenkins as a Windows service as well as by using Jenkins.war. After starting the Jenkins server, we can configure a Jenkins instance using the Jenkins setup wizard. At the end of the chapter, you saw the directory structure of the Jenkins installation folder, along with an important configuration file called Jenkins.xml. In the next chapter, we discuss how to set different settings to configure a Jenkins instance.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_4

4. Configuring Jenkins

Pranoday Dingare1
(1)Pune, Maharashtra, India

The last chapter covered installing Jenkins on different platforms and discussed important configuration files and directory structure, so now it’s time to configure Jenkins for actual use.
This chapter discusses starting Jenkins using the .WAR file as well as through Windows services (if Jenkins is installed as a service). You learn how to sign into Jenkins and configure the global settings and paths of different tools you’ll use with Jenkins as a part of Jenkin’s jobs and pipelines.
Configuring Global Settings and Paths
This section explains how to configure the different tools/software you’ll use with Jenkins, such as Maven and the JDK.
Signing into Jenkins
Before you start configuring Jenkins, we explain how to start the Jenkins server and sign into Jenkins.
Starting the Jenkins Server
You can start the Jenkins server by using the .WAR file or, if you installed Jenkins as a service, you have to start the Jenkins service. Let’s look at both the ways of starting a Jenkins server on a Windows machine.	To start the Jenkins server using the .WAR file (version 2.289 is used throughout this book), run the following command in the command prompt:

Java –jar <Path of .war file> -- httpListenAddress=<Ip address of machine> --httpPort=<port not used by any other running process on your machine>

After running this command, you must wait until the Jenkins server is fully up and running.	To start the Jenkins server by starting a service, go to start menu and type Services.
Select the Services option, which will open Services window.
Right-click the Jenkins service entry and click Start. (If the Start options are disabled, that means the Jenkins service is already running on your machine.)
After clicking Start, the Jenkins service will start.

Once you click the Start menu, the Jenkins service will start the server on localhost:8080. If you want to start the server on an IP address and a different port other than 8080, open $JENKINS_HOME\jenkins.xml. JENKINS_HOME refers to the Jenkins installation directory, which by default is created inside the CurrentUser directory present on SystemDrive. On my machine, the Jenkins installation path is C:\magicuser\.jenkins.Add –httpListenAddress=<IP address of your machine> and –httpPort=<Desired port number> in <arguments> tag, as shown in Figure 4-1.[image:]A code that reads dash dash h t t p, Port equals 8 8 8 1, dash dash h t t p Listen Address equals 192 dot 168 dot 43 dot 10.

Figure 4-1httpPort and httpListenAddress changed in Jenkins.xml

Restart the service by right-clicking the Jenkins service in the Services list and clicking the Restart menu.	To start the Jenkins server as a Docker container, run the following command from your Windows command prompt. It will start the Jenkins server using the Jenkins Docker image available on the Docker hub.

docker run –p 8080:8080 –name=Jenkins-server Jenkins/jenkins

In this command, –p 8080:8080 is port forwarding. Port forwarding means that all requests targeted to the 8080 port (the left side of :) on the Docker container will be forwarded to the 8080 port (the right side of :) on a machine running a Jenkins server as a Docker container.
Starting the Jenkins Service on Linux
You need to install Jenkins as a service before you can start it with the following command:sudosystemctl start Jenkins

Note
If the Jenkins server fails to start due to port 8080 being in use, edit the /etc/default/Jenkins file and replace the –HTTP_PORT=8080 line with –HTTP_PORT=<your desired port number>. For example, if you want to start the Jenkins server on port number 8081, use HTTP_PORT=8081 in this file, save the changes in the file, and restart Jenkins.

You can check the status of the Jenkins service using the following command:sudosystemctl status Jenkins

Note
Starting Jenkins using the .WAR file on Linux is no different than starting it using the .WAR file on a Windows machine, so it is not explained explicitly here.

Opening the Browser and Signing In
Open a browser and enter the URL containing the IP address and port you used to start the Jenkins server. Enter the username and password you entered while performing the initial setup process and then then click the Sign In button.
Note
If you started the Jenkins server as a Docker container, then use the port mentioned to the right of : in the port forwarding option when starting the container. For example, if your command to start the Jenkins Docker container is docker run –p 8080:8081 –name=Jenkins-server Jenkins/Jenkins, then you should access Jenkins using port 8081 in the Jenkins URL.

Understanding the Configure System Options
This section explains the Jenkins system settings. Let’s start with the settings page. After you log into the system, you will see the Jenkins dashboard.
Click the Manage Jenkins link, which will take you to the Manage Jenkins page. Then click the Configure System link.
This will take you to the System Configuration page, as shown in Figure 4-2.[image:]A user interface image of the Jenkins webpage. The menu options are New Item, People, Build History, Manage Jenkins, My Views, and New View. And the window that is opened is for the Home directory. Save and Apply buttons are below.

Figure 4-2The System Configuration page

Let’s look at a few important and widely used settings on this page one by one:	Home directory:
This setting is not editable from the Jenkins UI. This is where you find all the Jenkins related files and folders, like Jenkins jobs, configuration files, etc. You can change the location of JENKINS_HOME. You may need to do this if you don’t have enough space or the required directory access, for example. If you change the location, make sure to clean up all the files left behind in the old location.
There are a few ways to change the Jenkins home directory:	Edit the JENKINS_HOME variable in your Jenkins configuration file (e.g., /etc/sysconfig/jenkins on Red Hat Linux).

	Use your web container’s admin tool to set the JENKINS_HOME environment variable.

	Set the JENKINS_HOME environment variable in the operating system environment variables (in the System Environment variable) before launching Jenkins directly from the .WAR file.

	Set the JENKINS_HOME Java system property when launching your web container, or when launching Jenkins directly from the .WAR file.

	Modify web.xml in jenkins.war (or its expanded image in your web container). This is not recommended.

	Jenkins URL:
This is the URL on which the Jenkins server is accessible. This contains the IP address and port used to start the Jenkins server. If you start the Jenkins server on localhost and the default port, this field will be http://localhost:8080. You can change this URL to your machine IP address if you want to connect to this Jenkins instance from different machines.

	System admin email address:
This is where you configure an email address in the from header of an email that’s sent from Jenkins as notification of the execution of Jenkins jobs. (We cover configuring email notifications in upcoming chapters.)

Resetting the Username and Password in Jenkins
If you forget the username and password, you have to restore them before you can log into Jenkins. Follow these steps to reset the username and password when Jenkins server is running on a Windows machine:	1.
Stop the Jenkins server if it is already running.
To stop the Jenkins server, close the command prompt you are using to run the Jenkins server using the Jenkins .WAR file. If you are using Jenkins as a service, go to Services, right-click the Jenkins service, and choose Stop menu option to stop the service.

	2.
Edit the CONFIG.XML file from $(JENKINS_HOME).
Go to the $(JENKINS_HOME) directory (i.e., the Jenkins installation directory) and open the config.xml file. Find the </useSecurity> tag in the file. The value of this tag is set by default to true. Change it to false and save the change, as shown in Figure 4-3.

[image:]A user interface of the Note Pad. With the use of security code is input. The boxed code reads, open bracket, useSecurity, close bracket, false, open bracket slash, useSecurity, close bracket.

Figure 4-3The <useSecurity> tag value changed to false in config.xml

Note
If you installed Jenkins using the .MSI file, then the $(JENKINS_HOME) directory is in C:\System32\Config\SystemProfile\AppData\Local\Jenkins\.jenkins.

	3.
Restart the Jenkins server.
Once changes in config.xml are saved, restart the Jenkins server, either by running the .WAR file from the command prompt or by starting the Jenkins service if Jenkins is installed as a Windows service.

	4.
Open the Jenkins server URL in a browser.
Open your browser and enter the Jenkins server’s URL. Jenkins will not ask you for a username and password and will take you directly inside the Jenkins dashboard.
If you are not opening the URL the first time, you may see a few Jenkins jobs in the dashboard.

	5.
Click Manage Jenkins to open the Manage Jenkins page.

	6.
Click the Configure Global Security link. This will open the Configure Global Security page.

	7.
Select the Anyone Can Do Anything radio button, which is present in the Authorization section.

	8.
Click the Save button.

	9.
Delete the user whose username and password you forgot.
Click the People link on the left side (highlighted in Figure 4-4).

[image:]A Jenkins dashboard. The menus on the left are new item, people, build history, manage Jenkins, my views, and new view. People menu is highlighted. The panel on the right reads Welcome to Jenkins. Entry boxes are provided for start building your software project and set up a distributed build.

Figure 4-4The people link highlighted with box

	10.
Click the user entry in the table. The user ID is pranodayd in this case, as highlighted in Figure 4-5.

[image:]A user interface image of the Jenkins webpage. The menu options are New Item, People, chosen, Build History, Manage Jenkins, My Views, and New View. The selection tool is in the People section, which reveals the headers, User I D, Name, Last Commit Activity, and On. Row 1 is boxed. Pranoadyd, Pranoday Dingare, and N slash A.

Figure 4-5User entry to be clicked

	11.
Click the Delete link on the left, as shown in Figure 4-6.

[image:]A user interface image of the Jenkins webpage. The menu options are People, Status, chosen, Builds, Configure, My Views, and Delete, boxed with a button to Delete. It reveals the Jenkin's User I D, Pranoday Dingare, that is ought to be deleted.

Figure 4-6The Delete link

	12.
Click the Yes button to confirm the delete operation.

Adding a New User
To add a new user, click the Manage Jenkins link. Then click the Configure Global Security link. Select the Jenkins’ Own User Database option under the Security Realm section. Then follow these steps:	1.
Select the Logged-in Users Can Do Anything option in the Authorization section and uncheck the Allow Anonymous Read Access checkbox, as shown in Figure 4-7.

[image:]The Jenkins webpage. The Configure Global Security section reveals the following, Authentication, Security Realm, Authorization, and Markup Formatter. In Security Realm, Jerkin's own user database is chosen. In Authorization, logged-in users can do anything is boxed with checkbox for allow anonymous read access. Save and Apply as option buttons.

Figure 4-7The options selected from the Authorization section

	2.
Click the Save button.

	3.
Fill in the details of the admin user on the Create First Admin User screen and then click the Create First Admin User button.

You have successfully created a new Admin user.
Summary
This chapter explained how to start Jenkins as a server as well as use it as a service. You also learned how to restore a forgotten username and password, which is a very common problem Jenkins users need to handle. You also learned about the different Jenkins configuration options available. In next chapter we are going to learn about Jenkins Plugin Manager to install/uninstall/update different Jenkins plugins.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_5

5. Managing Plugins in Jenkins

Pranoday Dingare1
(1)Pune, Maharashtra, India

The software build lifecycle usually includes phases like pulling the source code from a source code management tool, compiling the source code, unit and integration testing, and then building the library and releasing it. To perform those phases, you need to use different categories of tools, including source code management (SCM) tools, unit/integration testing tools, build tools, etc. Jenkins needs to interface with those tools as part of executing the end-end build lifecycle. Jenkins uses plugins to interface with these tools.
This chapter explains what a plugin is, covers the plugins commonly used with Jenkins, and explains how to install plugins using the Jenkins Plugin Manager. During the installation process, you may face issues, so the last section of this chapter discusses how to resolve some of these common issues.
What Are Plugins
A plugin is a software component that adds a specific feature to an existing computer program. There are various plugins developed by the Jenkins team to customize the usage of Jenkins.
Commonly Used Jenkins Plugins
The following list includes some commonly used Jenkins plugins along with the tools they integrate into:	Git:

The Git plugin is used to integrate with the Git version controlling system.
Git is a distributed version controlling system that allows developers to work collaboratively with software application code. We talk about Git in more detail in Chapters 10 and 12.	Maven Integration:

The Maven Integration plugin integrates with the Maven build tool. Maven is a build tool that helps you automate important build phases like compilation, packaging, testing, etc.
We cover Maven in more detail in upcoming chapters.	Email Extension:

In Jenkins you can configure email notifications that will notify the team about the status of the current build. Using the Email Extension plugin, you can customize the email notifications and add more details to the email sent as an notification. You’ll see this in action in upcoming chapters.
Installing the Plugins in Jenkins
Now that you know what a plugin is and know how they are going to help you, this section explains the process of installing plugins in Jenkins.
Use the following steps to go to the Manage Plugins page and begin installing the required plugins.	1.
Log into Jenkins. Once you are logged in, you will see the Jenkins dashboard.

	2.
Go to the Manage Jenkins page. Click the Manage Jenkins link available on the Jenkins dashboard to open the Manage Jenkins page.

	3.
Go to the Manage Plugins page.

	4.
Click the Manage Plugins link. Clicking this link will open the Plugin Manager page, as shown in Figure 5-1.

[image:]An image of the user interface of Jenkins Plugin Manager. The link in the address bar reads localhost colon 8080 slash plugin Manager slash. A filter box is above. A tabular column lists updates, chosen, available, installed, and advanced. Under updates, the column headers are install, name, version, released, and installed.

Figure 5-1The Jenkins Plugin Manager

Understanding the Plugin Manager
The Plugin Manager page updates and installs the different Jenkins plugins. There are four tabs on the Plugin Manager configuration page. They are Updates, Available, Installed, and Advanced. We are going to look at each one.
The Updates Tab
This tab lists the installed plugins when updated versions of them are available to download and install. You can install updated versions of plugins by checking the checkboxes of desired plugin updates and clicking the Download Now and Install After Restart button, as shown in Figure 5-2.[image:]Plugin Manager configuration page has tabs, Updates, Available, Installed, and Advanced. A tabular-like format is presented under the opened Updates tab. It has 1 row and 4 columns. The column headers are Install, Name with a downward arrow, Version, and Installed. The row has the marked Blue Ocean beta plugin entry. Download now and install after restart button is below. Check now button is at the right.

Figure 5-2Plugin entry to be updated

The Available Tab
This tab shows a list of Jenkins plugins available to download and install.
To install a new plugin, go to the Available tab and type the name of the plugin in the Search field. For example, if you want to install the JUnit plugin then you would enter Junit into the search field. You will see the JUnit plugin entry at the top of the plugins list. Then you simply check the Junit plugin entry’s checkbox. See Figure 5-3.[image:]The Jenkins Plugin Manager exhibiting the checked J Unit plugin entry under the Available tab. The mentioned plugin entry appears in the list as one of the search results of the search query J Unit. Its functions to Build Reports and to allow J Unit-format test results to be published are observed. Install without restart and Download now and install after restart button is below. Check now button is on the right.

Figure 5-3The Junit plugin entry is selected to start the installation

After checking the checkbox, you can click either the Install Without Restart or the Download Now and Install After Restart button.	If you click the Install Without Restart button, the plugin download will start. Once it’s downloaded, the plugin will be installed immediately.
You have to wait until the JUnit plugin installation status is shown as Success in green. It will first download the plugin and then immediately install it.
This may take a while depending on the speed of your Internet connection. Once you see Success as the JUnit plugin installation status, the plugin is ready to be used.

	If you click the Download Now and Install After Restart button, the plugin will be downloaded but not installed. The plugin will be installed after you restart the Jenkins server.

The Installed Tab
This tab shows the list of all installed Jenkins plugins in your Jenkins server along with each plugin’s installed version.
To uninstall an existing plugin, from the Installed tab, search for the plugin to be uninstalled by typing its name in the Search field. Check the checkbox available for the plugin and then click the Uninstall button.
Plugins can also be uninstalled by removing the corresponding .HPI file from the JENKINS_HOME/plugins directory.
Disabling a plugin is a way to retire a plugin. Jenkins will consider the plugin as installed, but it will not start it and any extensions contributed by plugin will not be visible.
To disable a plugin, uncheck the checkbox on the Installed tab of Manage Jenkins page.
The Advanced Tab
Internet access typically goes through and is controlled by proxy servers. Machines cannot make any direct Internet requests when a proxy server is configured. Internet requests should go to the proxy server and then reach the Internet.
If your organization has such proxy server, Jenkins cannot access the Internet while running any job. For example, accessing gitlab.com to pull the source code will not be allowed to the Jenkins instance. You will learn about Jenkins jobs in upcoming chapters. Jenkins cannot access the Update Center to download Jenkins plugins either. You need to configure proxy settings in Jenkins in order to work with Jenkins running behind the proxy.
You have to ask for details of the proxy server from your IT department and then configure those details in the HTTP Proxy Configuration section (see Figure 5-4).[image:]An image of the Jenkins Plugin Manager exhibiting the H T T P Proxy Configuration section under the Advanced tab. The Server, Port, User Name, Password, and No Proxy Host sub-sections have input boxes underneath. Each, except for Password, has a circle with a question mark symbol on the right side. The Submit and Advanced buttons are observed below.

Figure 5-4HTTP Proxy Configuration page

Let’s look at the different fields from this section one by one:	Server: Enter the IP address of your proxy server in the Server field.

	Port: Enter the port of the proxy server machine.

	Username: If the proxy’s server has authentication set, enter the username of those credentials in the Username field. If authentication is not set, keep this field blank.

	Password: If the proxy’s server has authentication set, enter the password of those credentials in the Password field. If authentication is not set, keep this field blank.

	No Proxy Host: Specify the IP address or hostname patterns that should not go through the proxy. This setting is used to mention servers that can be accessed directly (without going through a proxy server).

After specifying all the required details, click the Submit button.
The Update Center only allows you to install the latest released version of a plugin. If you need a specific version of the plugin, you can download the .HPI archive of the plugin and install it manually by using the Upload Plugin section. Follow these steps:	1.
Download the .HPI file of the required plugin version.

	2.
Browse the downloaded .HPI file by clicking the Choose File button.

	3.
Click the Upload button.

Jenkins plugins are downloaded from the Update Center URL, which is shown in the URL section.
Troubleshooting Installation Problems
There are some common problems encountered during the Jenkins plugin installation. This section discusses such common problems encountered, their reasons, and their solutions.
Problem 1
Jenkins Plugin Installation Failed: Downloaded file /var/lib/jenkins/plugins/ does not match expected SHA-
Error: While installing Jenkins plugins, it fails with the following SHA -1 error:java.io.IOException: Downloaded file /var/lib/jenkins/plugins/*.tmp does not match expected SHA-1, expected 'f2ncNlydUUSPrk6SoG255v+2kQU=', actual 'lZRJco4Ouv1j0AG4Aet7HadHg/Q='

Reason: The Jenkins Update Center is not synced with Jenkins. You are running Jenkins on a machine which operates behind the proxy.
Solution for “Jenkins Update Center is not synced with Jenkins”:	1.
Choose Manage Jenkins ➤ Manage Plugins and click the Advanced tab. Scroll down the page to find the Update Site section. Click the Check Now button. This will sync your Jenkins server with the Update Center.

	2.
Restart the Jenkins server and try to install the plugin again.

Solution for “You are running Jenkins on a machine which operates behind the proxy”:	1.
If you are running Jenkins on a machine that operates behind the proxy, you have to configure the proxy machine settings by choosing Manage Jenkins ➤Manage Plugins. On the Plugin Manager page, go to the Advanced tab.

If the proxy machine does not have authentication set, leave the username and password fields blank.	2.
Click the Advanced button, enter the Jenkins Update Center’s URL in the Test URL field, and then click the Validate Proxy button.

	3.
After a successful proxy validation, click the Submit button.

	4.
Try to install the plugin again. If it fails, then restart the Jenkins server and try again.

Problem 2
javax.net.ssl.SSLHandshakeException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
While installing plugins, you get this error:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
Reason: The Jenkins Update Center URL in Manage Jenkins ➤ Manage Plugins is set to an HTTPS URL by default, which must be accessed with additional security measures, like security certificates for example.
JDK, which we are using to run the Jenkins server, is bundled with lots of trusted Certificate Authority (CA) certificates. These certificates are in a file called cacerts, which is present in the lib\security folder inside the Java installation directory. This cacerts file does not have a certificate, which will trust the Jenkins Update Center website URL due to nonavailability of latest security certificates. This could be due to old version of Java being used to start the Jenkins server.
Solutions: There are various solutions to this problem.
Solution 1: Change the Update Center URL to use http:// instead of https://:	1.
Choose Manage Jenkins ➤Manage Plugins.

	2.
Go to the Advanced tab.

	3.
Scroll down the page to the end, where you will see the Update Site section.

	4.
Change the URL from https://updates.jenkins.io/update-center.json to http://updates.jenkins.io/update-center.json and click the Submit button.

	5.
Try to install the plugin again.

Solution 2: Update Java to the latest version:	1.
Download and install the latest Java version available.

	2.
Add a path to the bin folder from the latest installed Java in the PATH environment variable.

	3.
Save this environment change and restart the Jenkins server.

	4.
Try to install the plugin again.

Note
If you are updating Java to versions other than Java 1.8 or Java 1.11 then, when starting the Jenkins server using the .WAR file, you need to mention the --enable-future-java flag. For example, the command to start Jenkins.war is java –jar D:\Jenkins\Jenkins.war --enable-future-java.

Solution 3: Start the Jenkins server using the .WAR file from the lib\security folder in the latest Java installation folder.	1.
Install the latest version of Java.

	2.
Start the command prompt and change the working directory to the Java Installation dir\lib\security folder.

If you have the latest JDK 15 installed on your machine at D:\JDK15\jdk-15.0.2, open the command prompt and change the working directory to D:\JDK15\jdk-15.0.2\lib\security.	3.
Run the Jenkins.war file from D:\JDK15\jdk-15.0.2\lib\security.

	4.
Try to install the plugin again.

Use Solution 3 if other applications on your machine need a specific version of Java other than the latest one and hence you cannot update the PATH environment variable to point to the latest version of Java.
Note If you are using the latest version of Java to start the Jenkins server in order to resolve Problem 2, make sure you revert to the Jenkins supported Java versions (JDK 1.8 or JDK 1.11) after the plugin installation is done. If you continue using unsupported versions, you will encounter errors when running Jenkins pipeline jobs. (We cover pipeline jobs in upcoming chapters.)
Summary
This chapter discussed how the Jenkins Plugin Manager helps you install/update/uninstall different Jenkins plugins. You also learned about errors that you might come across when installing Jenkins plugins, as well as the different solutions to resolve them. The next chapter discusses how to configure some commonly used tools like Maven, Git, and Java from the Global Tools Configuration page.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_6

6. Understanding the Global Tool Configuration Page

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

When working with Jenkins, you may need to use different tools/technologies like Java, Maven, etc. This chapter explains how to configure JDK and Maven from the Global Tool Configuration page.
Global Tool Configuration Settings
Follow these steps to go to the Global Tool Configuration Settings page.	1.
First, log in to Jenkins. Once you are logged in, you will see the Jenkins dashboard.

	2.
Click the Manage Jenkins link available on the Jenkins dashboard to open the Manage Jenkins page.

	3.
Go to the Global Tool Configuration page by clicking the Global Tool Configuration link highlighted in Figure 6-1.

[image:]The user interface of the Manage Jenkins section from the Jenkins dashboard. System Configuration, Security, and Status Information are some of the functions under the Manage Jenkins section with their sub-functions, except for Status Information, observable. Global Tool Configuration under System Configuration is marked by a rectangle.

Figure 6-1The Manage Jenkins page

Clicking the Global Tool Configuration link will open the Global Tool Configuration page shown in Figure 6-2.[image:]The Global Tool Configuration page after clicking the Global Tool Configuration link under the System Configuration. The default settings provider and default global settings provider are set to default under the Maven Configuration section. Add J D K and Maven installation functions are observed in their respective section.

Figure 6-2The Global Tool Configuration page

If you have plugins related to other third-party tools such as Gradle or Git installed in Jenkins, you will see settings related to these tools on this page.
Understanding the Global Tool Configuration Settings
Let’s look at the settings related to a build tool called Maven. Maven helps you automate different build phases of a Java application like compilation, packaging, and deploying. Maven is a command-line interface build tool that performs its tasks with the help of different plugins. Maven can be configured using the following two configuration files:	The Maven install (called the global settings): The default location of this file is ${maven.home}\conf and the file is called settings.xml file. maven.home refers to the Maven installation directory.

	A user’s install (called the user settings): The default location of this file is {user.home}/.m2 and this file is also called settings.xml. The {user.home} part refers to the current user directory. We cover Maven in detail in Chapter 11.

These files contain settings required to execute Maven in order to build different Java projects. If different users working on the same machine want to keep their specific Maven settings, they keep these settings in the user settings file, whereas all common Maven settings that will be shared by all user profiles go in the global settings file.
You don’t have to have the Maven settings.xml in the user’s install, i.e., ${user.home}/.m2/settings.xml. If this file is not present, the required settings are taken from the Maven install’s settings.xml file. If the same setting is present in both settings.xml files, the setting in the ${user.home}/.m2/settings.xml gets preference.
While configuring Maven inside Jenkins, Jenkins needs to know the locations of the user and global settings.xml files. If these files are present at their default locations, keep the Use Default Maven Settings option selected in the Default Settings Provider field and the Use Default Maven Global Settings option selected in the Default Global Setting Provider field, as shown in Figure 6-3.[image:]A zoomed portion of the Maven Configuration section under the Global Tool Configuration page. Default settings provider and Default global settings provider sub-sections have their picklist menu where the observed inputs of choice are the default Maven-related settings.

Figure 6-3The Maven Configuration section

Maven Configuration
If these files are present in different locations, select the Settings File in Filesystem option from the Default Settings Provider dropdown and the Global Settings File on Filesystem option from the Default Global Settings Provider dropdown. Then specify the path of these files, as shown in Figure 6-4.[image:]A zoomed portion of the Maven Configuration section exhibiting the file path settings for the Default settings provider and Default global settings provider. D colon backslash User Settings dot x m l and E colon backslash Common Settings dot x m l are their respective file path from the Settings file and Global settings file in filesystems inputs.

Figure 6-4Maven Configuration section with settings.xml paths

The second part that you need to understand related to Maven is its installation. Let’s look at how you configure the Maven installations.
Click the Add Maven button. This will open the Maven Installations section. In the Name field, give the Maven configuration a name. Do not use numbers, whitespace, or special characters in the name, as Jenkins Pipelines wanting to use Maven refer this Maven configuration. (More on Jenkins Pipelines in Chapter 14.) If a machine running a Jenkins job already has Maven installed, then uncheck the Install Automatically checkbox, as highlighted in Figure 6-5.[image:]The marked Install automatically checkbox in the Maven Installations sub-section under the Maven main section. The fields with input boxes are Name and Maven underscore Home, in which both return Error results probably due to their empty input boxes. The options to Add or Delete Maven are observed as well as the Save and Apply buttons.

Figure 6-5Install Automatically checkbox from the advanced settings related to the Maven Installation section

In the MAVEN_HOME field, provide the location of the Maven installation directory, as shown in Figure 6-6.[image:]The required fields under the Maven Installations sub-section of the Maven main section. The Name and Maven underscore Home fields have their inputs set to My Maven Configuration and D colon backslash apache dash maven dash 3.6.3, respectively. The Maven underscore Home field is boxed.

Figure 6-6The Required fields filled in inside the Maven Installation section

Click the Save button to save the configuration.
If the machine running the Jenkins job does not have Maven installed and you want Jenkins to install it automatically while running a job, you have to check the Install Automatically checkbox and configure the installer. Jenkins will do this only the first time it runs a job on a machine where Maven isn’t installed.
Let’s see how to configure a Maven installation whereby a Maven .ZIP/.TAR file is extracted.
Click the Add Installer dropdown and select the Extract *.zip/*.tar.gz option, as shown in Figure 6-7.[image:]The installer configuration options under the Maven Installations sub-section. The checkbox for the Install automatically option is checked. The Install from Apache with 3.8.1 Version is observed underneath. The Add Installer button exhibits a list to choose from. The chosen option is Extract asterisk zip slash asterisk dot tar dot g z.

Figure 6-7Configuring the Maven Installer

In the Download URL for Binary Archive field, enter the apache-maven-3.8.1-bin.zip URL from the Maven website, as shown in Figure 6-8. For example: https://dlcdn.apache.org/maven/maven-3/3.8.2/binaries/apache-maven-3.8.2-bin.zip.[image:]The installers under the Maven Installations sub-section. The Install automatically checkbox is checked, while Install from Apache with 3.8.1 Version and Extract asterisk p dot zip slash asterisk dot tar dot g z are exhibited underneath. The Download U R L for binary archive field under the latter is boxed.

Figure 6-8Maven download URL configured in Maven Installer

In the Subdirectory of Extracted Archive field, provide the name of the directory that will contain the Maven installation after unzipping the folder.
When Jenkins performs the Maven installation while running a Jenkins job that needs it, it will unzip the folder downloaded from the URL mentioned in the Download URL for Binary Archive field. Then Jenkins will unzip this .ZIP to provide the Maven build tool to the directory structure shown in Figure 6-9.[image:]The File Explorer exhibits the contents inside the apache-maven-3.8.1 file. The bin, boot, c o n f, and l i b folders, the License and Notice files, and Read Me text document are the observed content. The address bar exhibits the access flow from This PC, Data D open and close parentheses D colon, New Folder, and apache-maven-3.8.1.

Figure 6-9The directory structure of Maven

As shown in Figure 6-9, the Maven tool is inside a directory named apache-maven-3.8.1. So apache-maven-3.8.1 should be the value in the Subdirectory of Extracted Archive field. That way, Jenkins will consider this directory the Maven installation location and can access Maven using the mvn command present in the bin folder.
Click the Save button on the page to save the configuration.
Java Configuration
Click the Add JDK button
If you already have Java on your machine, uncheck the Installed Automatically checkbox, provide a suitable name in the Name field, and include the absolute path of the Java installation directory in the JAVA_HOME field, as shown in Figure 6-10.[image:]A zoomed portion of the J D K Configuration section exhibiting the required Name, and Jave Home fields in the J D K Installations sub-section. Both have the inputs J D K 11 and D colon backslash open j d k dash 11 underscore windows dash x 64 underscore bin backslash j d k dash 11, respectively. Add J D K and Delete J D K buttons are given.

Figure 6-10The Name and JAVA_HOME fields configured in the JDK Configuration section

If you do not have JDK installed and want Jenkins to install it on demand, then check the Installed Automatically checkbox and configure the installer as explained in the previous Maven configuration section.
Summary
This chapter explained how to set up important tools like Maven and JDK. If any Jenkins job needs these tools and job execution machine does not have them, those jobs will fail. Jenkins installs these tools using configured installers, which is considered a very important feature of Jenkins. The next chapter talks about how to manage security in Jenkins using its different security related features to implement authentication and authorization in Jenkins.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_7

7. Managing Security with Jenkins

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

In the previous chapter, you learned how to set up Maven and JDK and integrate them with Jenkins.
This chapter talks about different security-related settings that help you configure the authentication and authorization features in Jenkins.
Note
In simple terms, authentication means valid users can log into the Jenkins system and invalid users cannot. Authorization defines different kinds of accesses granted to the different types of users, such as admin/non-admin.

Configuring Global Security in Jenkins
In this section, you work with the different settings on the Configure Global Security page. Log into Jenkins; you will see the Jenkins dashboard. Then use the following steps to go to the Configure Global Security page.
Click the Configure Global Security link available inside the Security section on the Jenkins dashboard to open the Configure Global Security page shown in Figure 7-1.[image:]A user interface image of the Manage Jenkins webpage, System Configuration, Security, and Status Information. The System Configuration menu page has selections that are Configure System, Global Tool Configuration, Manage Plugins, Manage Nodes, and Clouds, and Install as Windows Service. Under Security are Configure Global Security, Manage Users, Manage Credentials, and Configure Credential Provider.

Figure 7-1The System Configuration page

Figure 7-2 shows the Configure Global Security page.[image:]A user interface image of the Manage Jenkins webpage, Configure Global Security. The Configure Global Security has headers that are Authentication, Security Realm, Authorization, and Markup Formatter. With Save and Apply option buttons.

Figure 7-2The Configure Global Security Page

Let’s look at each of the settings from this page one by one:	Disable remember me: This checkbox will be unchecked by default.
When you open the Login screen, it shows the Keep Me Signed In checkbox. If you keep this checked, Jenkins will not ask you to log in again when you exit without logging out.
You can check the Disable Remember Me checkbox. If this checkbox is checked, the Login page will not show the Keep Me Signed In checkbox.

	Delegate to servlet container: Jenkins is a automation server that runs inside a Java servlet container like Jetty (which is the default servlet container used to run Jenkins server), tomcat, etc. If you want Jenkins to use users configured in these containers, then select this option.

	Jenkins’ own user database: Jenkins allows you to create users and then maintains them in its own database. So if you don’t want to rely on a third-party entity to give the list of users allowed to use Jenkins, you can create users and ask Jenkins to use it.

To create a new user, follow these steps:
	1.
Go to the Dashboard.

	2.
Choose Manage Jenkins ➤ Manage Users

	3.
Click the Create User link.

	4.
Enter all the details like username, password, confirm password, full name, and email address on the Create User page and click the Create User button. Now this user can be used to log in to Jenkins.

	Allow users to sign up: On the Configure Global Security page (see Figure 7-2), this checkbox is available under the Jenkin’s Own User Database option. This checkbox is unchecked by default. If you check this checkbox, then the Create an Account link will be available on the Jenkins welcome page, as shown in Figure 7-3.

[image:]A user interface image of the login webpage for Jenkins to create an account. You may click the create an account link for you tp provide your personal information.

Figure 7-3Jenkins login screen with the Create an Account link

Click on this link and fill in the required details on the Create an Account page to create an authenticated user.
It’s not recommended that you keep the Allow Users to Sign Up checkbox checked, as anyone from your Jenkins server domain could then create a user account and become an authenticated user.	None: On the Configure Global Security page (see Figure 7-2), if you select the None radio button from the Security Realms section, it will not ask for any authentication and the user will be treated as anonymous.
If you set this option and try to access Jenkins, you will get the following error in the Jenkins server logs:

anonymous is missing the Overall/Read permission

To allow anonymous user access, follow these steps:	1.
Go to the $Jenkins_Home\config.xml file.

	2.
Change the value of the <denyAnonymousReadAccess> tag from true to false, as shown in Figure 7-4.

[image:]A user interface image of the Notepad for configuring the code for the Anonymous Read Access setting.

Figure 7-4The denyAnonymousReadAccess setting in the config file

	3.
Restart the server and access the Jenkins URL.

Now you will not be asked for authentication and will be taken to the Jenkins dashboard directly. But your access will be read only.	Anyone can do anything: On the Configure Global Security page (see Figure 7-2), this option is present in the Authorization section.
If this option is selected, then everyone, including anonymous users who have not signed in, will get full control of Jenkins.
You may use this setting when you are using Jenkins through your company’s intranet, which is a trusted environment. That way, users don’t have to sign into the Jenkins system every time and this will allow for quick changes. Using this setting is generally not recommended.

	Legacy mode: In this mode, if the user has an Admin role, they will be granted full control over the system. Other users (not having the admin role), including anonymous users, will have read only access. Jenkins behaves by default before release 1.164. This option is not recommended.

	Logged in user can do anything: If this option is selected, every user must log into Jenkins. Logged in users will have full control whereas anonymous users will get read only access

	Allow anonymous read access: This checkbox is available under the Logged In Users Can Do Anything option. If this checkbox is checked, users who are not logged in (called anonymous users) will have read only access.

If this checkbox is unchecked, then anonymous users will not be able to access Jenkins. If they try to access Jenkins, they will see the screen shown in Figure 7-5.[image:]A user interface image of the webpage of Jenkins for a problem that occurred while processing the request where in an unidentified account is trying to access the webpage.

Figure 7-5The anonymous user is not able to access Jenkins

	TCP port for inbound agents: On the Configure Global Security page (see Figure 7-2), this option is available in the Agents section.

In the case of distributed builds (we are going to talk about distributed build in Chapter 17), you need to configure different Jenkins agent machines. Jenkins uses the port number mentioned in this setting to communicate with the Jenkins node (agent) machines.	If you select the Random option, a random port number not being used by any other process is chosen dynamically.

	If you select the Fixed option, you need to check the available port number on your machine and provide it in the text box.

Usually people prefer the Fixed option over the Random option because a machine’s firewall settings need to include the port number in the Inbound Rules, in order to allow the incoming communication requests through the specific port.
You are going to see the steps for creating inbound rules in the Windows firewall in the Jenkins Distributed Builds chapter (Chapter 17).
It’s easy to create inbound rules if you use a Fixed port. Creating inbound rules for random ports is not possible, as Jenkins keeps on changing the port it will use to communicate with Jenkins agents. If you do not have any firewall restrictions, you can use the Random option, as you will not have to create a firewall rule in that case.
If you are not using distributed builds, select the Disable radio button.	CSRF protection: CSRF (Cross-Site Request Forgery) protection uses a token that Jenkins creates based on user information and sends it to the user. If any form submission or any action results in any kind of modifications like changing build configurations, that token (called a crumb in Jenkins) must be provided. This token contains information identifying a particular user it was created for. So submissions done with another user’s token would be rejected.

A crumb is a unique hash that gets created based on the following user-specific information:	Username

	Web session ID

	IP address of the user’s machine

	A salt unique to this Jenkins instance

Once the crumb is created, the user can use it to authenticate.	API Token: This section of the configuration is used to configure the access to Jenkins when access is done through REST APIs exposed by Jenkins, CLI commands of Jenkins, or different applications. (We talk about this in more detail in Chapters 19 and 20.) Jenkins exposes various REST API endpoints as well as provides different CLI commands to perform things like triggering new builds, creating/copying existing jobs, etc.

If you check the Generate a Legacy API Token for Each Newly Created User checkbox, then Jenkins will create an API token for every user, which would be created in Jenkins database or using LDAP. When the Jenkins server is accessed through REST APIs, this token is used to authenticate the user.
If you check the Allow Users to Manually Create a Legacy API Token checkbox, the users can create their own legacy API token manually.
Both options are deprecated in Jenkins versions 2.129 and above. Jenkins recommends users create their own new API tokens which we discuss in Chapters 19 and 20.	Agent ➤ Controller security: We will discuss this in Chapter 17.

	SSH Server: Jenkins has built-in commands that you can use to access Jenkins through shell programs. You can create batch files in the Windows environment and Shell scripts in the Linux environment to perform tasks like creating jobs, triggering builds, etc. using Jenkins CLI commands. We discuss Jenkins CLI in Chapter 20. During this kind of access, Jenkins can act as an SSH server, which will allow CLI access to the program wanting to access Jenkins server using its commands.

If you select the Random option, a random port number not being used by any other process is chosen dynamically. The server will use this port to listen to the incoming connections from the SSH client.
If you select the Fixed option, you need to check the available port number on your machine and provide it in the text box. Jenkins will use that port number to listen to incoming connection requests from SSH clients.
People typically prefer the Fixed option over the Random one, as configuring inbound rules on a Windows firewall for specific fixed port number is easy. Random numbers require you to open all the ports in the firewall, which is quite difficult. You learn the steps for creating inbound rules in a Windows firewall in Chapter 17.
If you are not going to access Jenkins server using Jenkins CLI commands, then it’s better to select the Disable radio button.
Configuring LDAP with Jenkins
LDAP (Lightweight Directory Access Protocol) is a software protocol that allows anyone to locate data about organizations, individuals, and other resources such as files, whether on the Internet or an intranet.
Common uses of LDAP include providing a central place of authentication, i.e., it stores usernames and passwords. LDAP can be used to validate usernames and passwords with Docker, Jenkins, etc.
Why We Need to Configure LDAP with Jenkins
The Jenkins and LDAP integration is explained in this section. Usually in organizations, read/write access to directories/files or access to particular servers is given to a few domain users. Consider one practical scenario here. I am an employee of company named ABC and my company domain username is Pranodayd. The Pranodayd user has access to a server where builds are developed. Now say Jenkins is installed on a machine with a user called adminuser. This user does not have access to that build server. A Jenkins job (a task that you ask Jenkins to do, discussed in Chapter 10) wanting to deploy an application on the build server will not be able to do so.
Note that Jenkins runs the jobs using the operating system’s logged-in user and our logged-in user does not have access to the build server. We need to run the Jenkins job as a different user, Pranodayd. If we configure LDAP with the information of all domain users’ usernames and passwords, we can log into Jenkins using our own domain username and password. Once we log into Jenkins using the domain’s username and password, we can ask Jenkins to access a user who has triggered a build. We do this using an authorized project plugin. We would then be able to handle this case. Figure 7-6 shows the required setting in the Authorize Project plugin.[image:]A user interface image of the window for Access Control for Builds. The Configure Build Authorizations in Project Configuration menu that has selections with a tick box, these are Run as Specific User, Run as User who Triggered Build, and Run as anonymous. With Delete and Add option buttons.

Figure 7-6The settings for the Authorize Project plugin

We don’t discuss using this plugin in this book. I just wanted to make a point here that sometimes you may need Jenkins to access users from the Active Directory (LDAP) rather than from Jenkin’s own user database.
How to Configure LDAP with Jenkins
To configure LDAP with Jenkins, you need to install the LDAP plugin in Jenkins first. Choose Dashboard ➤ Manage Jenkins ➤ Manage Plugins. Then go to the Available tab and type LDAP in the Search field.
Select the checkbox for the LDAP plugin and click the Install Without Restart button. The LDAP plugin installation will start. Wait until the installation status shows success. Go back to the Dashboard by clicking the Back to Dashboard link.
To configure the LDAP plugin, choose Manage Jenkins ➤ Configure Global Security. You will see LDAP radio button under the Security Realm section. Select the LDAP radio control, as shown in Figure 7-7.[image:]A user interface of the Manage Jenkins webpage, Configure Global Security. Under the Security Realm, the selections with tick boxes are Delegate to the servlet container, Jenkin's own user database, and L D A P. L D AP is encircled. A message reads Syntax of server field is SERVER or SERVER colon PORT or ldaps colon slash slash SERVER colon PORT. With Save and Apply option buttons.

Figure 7-7The LDAP configuration setting on the Configure Global Security page

Contact your IT department to complete the LDAP setup in Jenkins.
Summary
This chapter explained the different settings found on the Configure Global Security page. You also learned about the need to integrate Jenkins with LDAP. With knowledge of the topics discussed in this chapter, you can configure the required security settings in Jenkins.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_8

8. Managing Credentials

Pranoday Dingare1
(1)Pune, Maharashtra, India

Jenkins, as a CI/CD automation server, needs to access different third-party tools—like Nexus artifact repository, Git code repository, etc.—to perform its CI/CD tasks. These artifact and code repositories implement different kinds of authentications, including basic authentication, where users are authenticated using their usernames and passwords, SSH authentication, where users are authenticated by matching private and public keys, and API token-based authentication, where users are authenticated based on an API token sent along with the access request. Jenkins needs to provide the required authentication information when accessing these tools. If a tool that Jenkins is trying to access has basic authentication, Jenkins needs to provide a username and password. If the tool’s authentication is set to SSH, then Jenkins needs to provide a private key, and so on.
Information required for authentication is called the credentials in Jenkins. You can save this information in a Jenkins instance by creating credential entries. This chapter explains how to create different kinds of credentials in Jenkins.
Understanding Credentials in Jenkins
Credentials are composed of authentication information that’s stored in Jenkins. You can use this information to connect to different third-party tools through Jenkins.
By creating different credential entries in Jenkins, you can store authentication information in a more secure way. Information stored in Jenkins in the form of credentials can be shared among different Jenkins jobs as well. You do not need to specify username-passwords or private keys in the pipeline code in the human readable text. Each credential entry must have a unique Credentials ID. With this Credentials ID, you can use the stored authentication information in your Jenkins jobs.
Creating Credential Entries in Jenkins
There are different kinds of authentication techniques used by tools, such as Git, Nexus etc., to authenticate the user. The following authentication techniques are mainly used:	Basic authentication

	SSH authentication

	API token

	Certificate

The Jenkins Credentials plugin allows you to create credentials of different types in order to store the required authentication information. Once the credential entry has been created, you can refer to it by using the Credentials ID in the Jenkins job/pipeline with the help of the Credentials Binding plugin. (You learn about the Credentials Binding plugin in Chapter 14.) In this section, you see how to create different types of credential entries to store different kinds of authentication information.
Understanding Scope and Domains
Before we look at the steps needed to create credential entries in Jenkins, we have to understand the following two important concepts which play an important role in credentials management in Jenkins.	Scope: When you create a credentials entry, you have to mention the scope. Scope defines where a particular credentials entry is available for usage. There are two types of scope:	Global: A credential defined with Global scope is available for use in all Jenkins jobs created, as well as to the Jenkins server that works as a system.

	System: A credential defined with System scope is available only to the Jenkins instance to perform system administration functions like email authentication, agent connections, etc. This credential is not available for use in Jenkins jobs. Jenkins jobs are series of steps implemented to automate a build lifecycle. You learn about Jenkins jobs in Chapter 10.

	Domain: Domain is a way to group credentials used to access similar systems. By default, credential entries are created in the default domain. Say that you have ten credential entries, three of which are used to access GitLab code repositories. The other seven credential entries are to access other systems like AWS. When you are configuring access to your GitLab code repositories in your Jenkins job, all ten credential entries are shown in the credentials list. It could be difficult to choose the correct credential entry from the available ones. To solve this problem, you can create a domain called “GitLab Credentials” and place the three credential entries under that domain. Now when you will configure access to your code repository from GitLab, you will only see the three credential entries instead of all ten. Choosing the right one would be easy in that case.

Creating Credential Entries in Jenkins
This section shows you how to create different types of credential entries in the default domain, in a different domain, and in two different scopes: global and system.
We are also going to discuss the implications of the availability of the credential entries after creating them in different domains and different scopes, by looking into the configuration of a Jenkins Job. Jenkins jobs and the steps to create them are discussed in the next few chapters.
Creating a Credentials Entry in a Global Domain (Default Domain) and a Global Scope
	1.
Go to the Manage Jenkins page by clicking the Manage Jenkins link from the Jenkins dashboard.

	2.
Click the Manage Credentials link.

This will open the Credentials page shown in Figure 8-1.[image:]A webpage. On the left, New Item, People, Build History, Manage Jenkins, My Views, Build Queue, and Build Executor options are given. Under Credentials, a table has headers, T, P Store, Domain, I D, and Name, with a row entry, Icon, S M L. Below, Stores scoped to Jenkins, under which is, P, Store, and Domains, with row entries, Jenkins and global.

Figure 8-1The Credentials page

	3.
Click the (global) link in the Domain column inside the Stores Scoped to Jenkins section. This will open the Global Credentials (Unrestricted) page.

	4.
Click the Add Credentials link shown on the left side to open the page shown in Figure 8-2.

[image:]A page. A menu bar has Dashboard, Credentials, System, and Global credentials, unrestricted given. On the left panel Back to credential domains, and below it, Add credentials is highlighted. On the right are, Kind, with a username with password typed in, Scope, Global is typed in, Username, Password, I D, and Description. An O K button is below.

Figure 8-2The Credentials Creation page

	5.
In the Kind field dropdown, select a type of a credential entry you want to create, such as Username with Password, which is used for Basic Authentication, SSH Username with private key for SSH Authentication, and so on.

Let’s create a credential entry for Basic Authentication by keeping the username with the password option selected.	6.
In the Scope field, there are two options available—Global (Jenkins, nodes, items, all child items, etc.) and System (Jenkins and nodes only).

Keep the Global option (Jenkins, nodes, items, all child items, etc.) selected	7.
In the Username field, enter the username used to authenticate the user on a tool/platform you want to connect to. For example, if you are creating a credentials entry to connect to a Gitlab.com from Jenkins, you would enter the username of your GitLab account.

	8.
In the Password field, enter the password used to authenticate the user on a tool/platform you want to connect to. For example, if you are creating a credentials entry to connect to Gitlab.com from Jenkins, then you would enter the password of your GitLab account.

	9.
Enter any string in the ID field. This is how the credential is referenced in the Jenkins jobs. You may keep it blank in which case a random unique ID will be generated by Jenkins.

	10.
Enter any string in the Description field. You may keep this field blank as well.

	11.
Click the OK button to save the credentials entry.

Once the credentials entry is saved, it is shown on the Global Credentials (Unrestricted) page, as shown in Figure 8-3.[image:]A page has a menu bar with, Dashboard, Credentials, System, and Global credentials, unrestricted given. On the left panel, Back to credential domains, and below it, Add credentials. On the right is Global Credentials, unrestricted, below it is a table with headers, I D, Name, Kind, and Description, and entries from the left, My credentials, Pranod Ayd, Username with a password, and This credential is used to access Gitlab repository.

Figure 8-3The Global Credentials (Unrestricted) page

This credentials entry you just created in the global scope and global domain will be shown in the Credentials list available page, which you can use to configure a Jenkins job. Chapter 10 explains how to get to this page to configure jobs.
Note
You are going to learn how to create different types of jobs in upcoming chapters.

Updating a Credentials Entry
This section explains how to update a credential entry. As an example, you will see how to update the scope of the entry you just created from global to system.	1.
Go to the Manage Jenkins page by clicking the Manage Jenkins link on the Jenkins dashboard.

	2.
Click the Manage Credentials link.
This will open the Credentials page showing the entries (see Figure 8-4).

[image:]A webpage. On the left panel, New Item, People, Build History, Manage Jenkins, My Views, Build Queue, and Build Executor options are given. On the page, under Credentials is a table with headers, T, P Store, Domain, I D, and Name, with the row entries beginning from Store, Jenkins, global, My credentials, and Pranodayd. Below it is a table named, Stores scoped to Jenkins, with headers, P, Store, and Domains.

Figure 8-4The created credentials entry on the Credentials page

	3.
Click the name of the credentials entry shown in the Name column. In this case, the name of the credentials entry is Pranodayd/****** (This credential is used to access the GitLab repository).

	4.
Click the Update link shown on the left.

	5.
Select the System (Jenkins and nodes only) option in the Scope field (Figure 8-5).

[image:]A page has a menu bar with, Dashboard, Credentials, System, Global credentials, unrestricted, and Pranoday given. On the left panel, Back to credential domains, and below it, Update is highlighted. On the right are, Scope, with System, Jenkins, and nodes only highlighted, Pranoday, Password with concealed, I D with my credentials, and Description with This credential is used to access Gitlab repository. A Save button is below.

Figure 8-5The Scope field selection

	6.
Click the Save button.

This entry’s scope has been changed from global to system.
Figure 8-6 shows the effect of this change on the credential list in the Jenkins job.[image:]A webpage. The menu bar has Dashboard, A B C D given. On the right are, checkboxes before, Disable this project, and Execute concurrent builds if necessary. Below it is Source Code Management with 2 options, None and Git. Next is, Repositories, Repository U R L, with the GitLab U R L typed in, then Credentials, on the dropdown, none is chosen to its right is and Add tab. At the lower right are buttons for Advanced, and Add Repository.

Figure 8-6The credential entry is not shown inside the Jenkins job any longer

The reason that this credential entry is not shown in the dropdown is that the credential scope has been set to system, so it now will be available for use only by the Jenkins system and its nodes.
Creating a Credentials Entry in a Particular Domain
Use the following steps to create a credentials entry in a different domain (that is, a non-default domain).	1.
Go to the Manage Jenkins page by clicking the Manage Jenkins link on the Jenkins Dashboard.

	2.
Click the Manage Credentials link.
This will open Credentials page.
Note that if you are creating credentials entry for the first time, you will not see any entries on this page.

	3.
Click Add Domain from the Jenkins dropdown in the Store column shown under the Stores Scoped to Jenkins section. This will open the Domain page (see Figure 8-7).

[image:]A page has a menu bar with, Dashboard, Credentials, and System given. On the left panel, Build Queue, and Build Executor Status are highlighted. On the right are, System, with Domain Name below it with an entry bar, below the bar is, You must provide a name for the domain, below it is Description, with an empty entry box under which is Specification. An add tab is at the bottom.

Figure 8-7The Domain page

	4.
In the Domain Name field, enter a short name to identify the domain of the credentials you are creating.

	5.
In the Description field, enter a short description on what this domain is going to contain. This field is optional.

	6.
The Specification field allows you to configure the parameters based on which Jenkins would filter the Credential entries.

Let’s look at this with an example. Say you want to create a domain to hold credential entries that would only be available to Jenkins jobs that want to connect to Gitlab.com.
To configure this, select the Hostname option in the Specification dropdown. Then enter gitlab.com in the Include field (see Figure 8-8).[image:]A System page. On the left, Build Queue, and Build Executor Status are highlighted. On the right is System, with Domain Name, and GitLab Credentials Domain typed in, below it is Description, with an entry box with This Domain contains GitLab credentials which are used to access Gitlab code repositories typed in, under it is Specification, Hostname, and Include which has an entry bar with gitlab.com typed in. Exclude is below with an entry bar. At the lower right is a Delete tab.

Figure 8-8The hostname is configured for Gitlab.com

Click the OK button. The new domain will be shown when the page opens after clicking the OK button.
Let’s now add the credentials to the new domain:	1.
Click the Add Credentials link shown on the left.

	2.
We’ll create an SSH credentials entry this time. Select the SSH Username with private key option in the Kind field.

	3.
Keep the Global (Jenkins, nodes, items, all child items etc.) option selected.

	4.
Enter any string in the ID field. There is no need to enter anything in the Description field.

	5.
In the Username field, enter the username, which is set as part of the authentication in the system you want to connect to—for example, your GitLab username.

	6.
Select the Enter Directly radio button and paste the private key that was created.

	7.
Enter a passphrase if any in the Passphrase field (see Figure 8-9).

[image:]A GitLab Credentials Domain page. On the left, Add Credentials is highlighted. On the right, an entry bar has S S H Username with the private key, typed in. Below is, Scope, with Global, Jenkins, nodes, items, and all child items, typed in. I D, My S S H Credentials typed in, Description, Username, Pranodayd typed in, Private Key with the Enter directly option is chosen, Key, with My private key typed in, Passphrase, with a series of asterisks type in, and below, an O K button.

Figure 8-9Creating a credential entry of type SSH Username with Private Key

	8.
Click the OK button.

Note
Creating SSH authentication credentials in Jenkins first requires you to create public and private keys using the ssh key gen command. We cover creating public and private keys in upcoming chapters. The focus here is mainly on understanding how to create a key in a specific domain.

After you click the OK button, the credentials entry is created in the GitlabCredentialsDomain.
Figure 8-10 shows how to use this new credentials entry from GitlabCredentialsDomain in a Jenkins Job.[image:]An A B C D page. On the right, This project is parameterized, Disable this project and Execute concurrent builds if necessary. Below is Source Code Management with Git highlighted. Next is, Repositories, Repository U R L, with the GitLab U R L typed in, then Credentials, on the dropdown, none is chosen to its right is and Add tab. At the lower right are the Advanced, and Add Repository tabs. At the bottom, Branches to build, and the Save, and Apply buttons.

Figure 8-10Using the credential entry in a Jenkins job

In my Jenkins job, I mentioned the URL from Gitlab.com and the Credentials dropdown is showing the credentials entry we just created in the GitLab Credentials domain.
Recall that when you created the GitLab Credentials domain, you specified gitlab.com as the hostname for the Specification field. Now consider this interesting point. If you change the URL in the Repository URL field to have Github.com instead of Gitlab.com, something amazing happens (see Figure 8-11).[image:]An A B C D page. On the right is Source Code Management with Git highlighted. Below is Repository U R L, with the GitLab U R L typed in, under it is a warning that reads, Failed to connect to repository, Command, git dot exe is dash remote dash h dash dash h t t p s slash slash GitHub dot com slash Pranodayd slash access automation project dot git. HEAD, returned status code 128 colon, s t d out colon, s t d e r r colon fatal, colon.

Figure 8-11The credential entry is not listed in the Credentials dropdown

Ignore the error for now, as we are going to talk about it when we discuss integrating Jenkins and Git in upcoming chapters. Note that the new credentials entry is not listed in the Credentials dropdown. That’s because it is part of a domain created for the Gitlab.com hostname and not Github.com.
Superb feature, isn’t it?
Configuring a Credentials Provider
In Jenkins you can configure different types of credentials.	1.
Click the Manage Jenkins ➤Configure Credential Providers link.
This will open the Configure Credentials Provider page.

	2.
It will show two dropdowns—Providers and Types—with the default selected value as All available (see Figure 8-12).

[image:]A page. On the left panel, Build Queue and Build Executor Status are highlighted. On the right are, Configure Credential Providers, with Providers below, and Only selected typed in. Below are checkboxes highlighted before Jenkins Credentials Provider, and User Credentials Provider. Below, are Types, with All available typed in, and Restrictions, under which is an Add tab. At the bottom of the page are the Save and Apply buttons.

Figure 8-12The Configure Credential Providers page

Let’s look closer at these two settings.	Provider: Select the Only Selected option in the Providers dropdown, which will show two options—Jenkins Credentials Provider and User Credentials Provider. See Figure 8-12.

	Jenkins Credentials Provider: This provider will provide credentials from the Jenkins root and will allow you to create Global and System types of credentials in Jenkins (default domain), as well as specific domains (non-default).
Global types of credentials are provided to all jobs from all users.

	User Credentials Provider: Credentials created in the User Credentials Provider are only available to the jobs created and triggered by the user who created the credential.

Follow these steps to create credentials in the User Credentials Provider:	1.
Click the <UserName> ➤ Credentials link (see Figure 8-13).

[image:]A segment from a page. At the top are, a bell icon with the number 1 next to it, an exclamation mark with the number 1 next to it, an icon of a human figure with the name Pranoday Dingare next to it, and a logout icon. Below Pranoday Dingare is a column that includes, Builds, Configure, My Views, Credentials, and their corresponding icons. The Credentials option is chosen.

Figure 8-13The Credentials link in the menu opens after clicking the username

In my case, I click the PranodayDingare ➤ Credentials link.	2.
Click the link provided in the Store column in in the Stores Scoped to <UserName> table (see Figure 8-14).

[image:]A segment from a page. At the top is Stores scoped to User colon Pranoday Dingare. Below it is a table with the headers, P, Store, and Domains. The row entries from the left are, an icon of a person, User colon Pranoday Dingare, and open parenthesis global close parenthesis.

Figure 8-14The credential entry in stores scoped to User: Pranoday Dingare

I will click the User:PranodayDingare link and this will open the user page shown in Figure 8-14.	3.
Click the Global Credentials (Unrestricted) link to open the Global Credentials (Unrestricted) page shown in Figure 8-15.

[image:]A page has a menu bar with Dashboard, Credentials, System, and Global credentials, unrestricted given. On the left panel are Back to credential domains, and Add credentials. On the right is Global credentials, unrestricted. Below is a table with the headers, I D, Name, Kind, and Description. On the row is an entry that goes, This credential domain is empty. How about adding some credentials.

Figure 8-15The Global Credentials (Unrestricted) page

	4.
Click the Add Credentials link.

After this, the rest of the steps are the same as in the previous sections. I created a new credentials entry by following the steps already discussed.
If I log out and back in as a different user, I will not see the credentials I just created, but I can see the credentials we created in the previous sections (which were from the Jenkins Credentials Provider). See Figure 8-16.[image:]A page. The left panel has Build Queue and Build Executor Status highlighted. On the right is Credentials, with headers, T, P, Store, Domain, I D, and Name. The first row entries, Jenkins, global, My credentials, and Pranodayd, This credential is used to access the GitLab repository. In the second row, Jenkins, Gitlab Credential, My S S H Credentials, and Pranodayd. Below, Stores scoped to Jenkins are P, Store Domains, with entries, Jenkins, global, and GitLab Credentials Domain.

Figure 8-16The credential entries created in the Jenkins Credentials Provider

	Types: Select the Only Selected option in the Types dropdown, which will show the options in Figure 8-17.

[image:]A segment from a page. At the top is Types, below it is an entry tab with, Only selected typed in. Below are three checkboxes highlighted. The entries after the boxes from top to bottom are, Username with a password, S S H Username with the private key, and Certificate.

Figure 8-17The only options that are selected

Here you can configure which types of credential entries you want to be able to create. If you uncheck the Username with Password checkbox and click the Save button, this option is not shown in the Kind dropdown. The Username with Password option is not available either.
Summary
This chapter covered how to create credentials with different scopes and different domains. You also saw how to configure the Credentials Provider to create different types of credential entries. Understanding the concepts in this chapter will help you create Jenkins jobs that need access to third-party tools. The next chapter explains how to manage users and their access rights in Jenkins.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_9

9. Managing Users

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

Jenkins is used by the different members of a team. A few team members will work as system administrators so they will have all rights and privileges required to manage the whole system, whereas others will have the least possible access to the system and can only view Jenkins jobs and execute them. This chapter explains how to create different users in Jenkins and how to assign them different rights based on their roles.
Creating Users in Jenkins
Follow these steps to create users in Jenkins.	1.
Go to the Manage Jenkins page on the Jenkins dashboard and then click the Manage Users link

I already have two users created.	2.
Click the Create User link shown on the left side of page.

	3.
Enter the details in the Username, Password, Confirm Password, Full Name, and E-mail Address fields, as shown in Figure 9-1.

[image:]A window box of a browser, with a Create User tab, followed by an address bar, then a Jenkins menu bar. On the left side is a navigation pane, where Create user is selected. On the right side details to fill out are username, password, confirm password, full name, and email address, and a button labeled Create User.

Figure 9-1The Create User screen with the required fields filled in

	4.
Click the Create User button.

The new user will be seen in the list of users (see Figure 9-2).[image:]A window box of a browser, with a Users tab, followed by an address bar, then a Jenkins menu bar. On the left side is a navigation pane of labels Back to Dashboard, Manage Jenkins, and Create User. On the right side is the Users page, listed with 3 users I D, with their respective names.

Figure 9-2All users available in Jenkins

Assigning Roles to Users in Jenkins
Before you can assign roles to your users, you have to create roles and then assign different rights (i.e., accesses) to these roles. To create different roles, you need to install the Role-Based Authorization Strategy plugin.
Installing the Role-Based Authorization Strategy Plugin
Let’s first install Role-Based Authorization Stratergy Plugin in the Jenkins instance. Follow these steps to install this plugin.	1.
Log into Jenkins: Log in with the credentials of your Jenkins administrator. Once you are logged in, you will see the Jenkins dashboard.

	2.
Go to the Plugin Installation Manager: Click the Manage Jenkins link on the Jenkins dashboard and then click the Manage Plugins link to go to the Plugin Installation Manager (Figure 9-3).

[image:]A window box of a browser, with an Update Center tab from an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane of labels Back to Dashboard and Manage Jenkins. On the right side is the Update Section, with no history of update, followed by a button of Check now.

Figure 9-3The Plugin Installation Manager

	3.
Install the plugin: Go to the Available tab and type Role-based Authorization Strategy plugin into the Search field. This will filter out other options from the list of plugins and will show the Role-Based Authorization Strategy plugin at the top of the plugins list.

	4.
Click the checkbox to select the plugin, as shown in Figure 9-4.

[image:]A window box of a browser, with an Available Plugins tab from an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane of labels Back to Dashboard and Manage Jenkins. On the right side is the Available section, with a checkbox for Role-based Authorization Strategy, ticked, and a button labeled Install without restart.

Figure 9-4The Role-based Authentication Strategy plugin entry is selected

	5.
Select the plugin and click the Install without Restart button, which will start the plugin installation.

	6.
Wait until Jenkins finishes installing the plugin and shows the Success status, as shown in Figure 9-5.

[image:]A window box of a browser, with an Update Center tab from an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane of labels Back to Dashboard, Manage Jenkins, and Manage Plugins. On the right side is the Installing Plugins or Upgrades with preparations and details.

Figure 9-5The plugin has been successfully installed

Enabling Role-Based Strategy in Jenkins
After installing the plugin, go to the Manage Jenkins ➤ Configure Global Security link. This will open the Configure Global Security page. You will see the Role-Based Strategy option under the Authorization section (see Figure 9-6).[image:]A dialog box under the Authorization section, with 3 buttons, where Logged in users can do anything option is selected, followed by a checkbox, ticked. On the bottom part is another set of buttons, where the Role-Based Strategy option is boxed.

Figure 9-6The Role-Based Strategy option

Click the Role-Based Strategy option. Then click the Save button.
Creating User Roles in Jenkins
	1.
Go to the Manage and Assign Roles page.

	2.
Click the Manage Jenkins link. You will see the new Manage and Assign Roles link under the Security section.

	3.
Click the Manage and Assign Roles link highlighted in Figure 9-7.

[image:]A window box of a browser, with a Manage Jenkins tab, followed by an address bar, and a row labeled Dashboard. Below is the Setting, with generalized options. Under security, the Manage and Assign Roles option under Security is boxed.

Figure 9-7The Manage and Assign Roles link on the Jenkins dashboard

This will open the Manage and Assign Roles page.	4.
To create the role, click the Manage Roles link on the Manage and Assign Roles screen, as highlighted in Figure 9-8.

[image:]A window box of a browser, with a Jenkins tab on an account under the name of Pranoday Dingare. On the left side is a navigation pane, arranged vertically, and beside it is the Manage and Assign Roles section, which has 3 main functions, which are Manage Roles Assign Roles, and Role Strategy Macros. Manage Roles is boxed.

Figure 9-8The Manage and Assign Roles screen

This will open the Manage Roles page, as shown in Figure 9-9.[image:]A window box of a browser, with Manage Roles tab on an account under the name of Pranoday Dingare. On the left side is a navigation pane, arranged vertically, and beside it is the Manage Roles section, which has different roles. First is a global role with all checkboxes ticked for the role of an admin. Followed by item roles, with no input.

Figure 9-9The Manage Roles screen

	5.
Enter a name for the role in the Role to Add field and click the Add button.

This will create a new role entry with the name specified in the Global Roles table. I used the name View for the role name.	6.
Click the appropriate checkboxes under each section to assign the required rights to the role.

I select all the checkboxes under the View section (see Figure 9-10), as I want to create a view-only user.[image:]A table that has 7 columns, and 2 rows. Column 1 titled Overall has subheaders, which are administer and read, 2 titled Credentials has create, delete, manage domains, update, and view. 3 titled Agent has build, configure, connect, create, delete, disconnect, and provision. 4 titled Job has build, cancel, configure, create, delete, discover, read, and workspace. 5 titled Run has delete and update. 6 titled View has configure, create, delete, and read. 7 titled S C M has tag. The row labels are admin and view.

Figure 9-10All checkboxes are checked under the view section

	7.
Scroll down the page to find the Save button and click it.

Assigning Roles to Users in Jenkins
Once the role is created, you need to assign the role to the respective user. Follow these steps to assign a role to a user.	1.
Go to the Assign Roles page.

	2.
Click the Assign Roles link on the Manage and Assign Roles page.

This will open the Assign Roles page (see Figure 9-11).[image:]A window box of a browser, with the Assign Roles tab of an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane, arranged vertically. Beside it is the Assign Roles page, with a table where columns 2 and 3 have checkboxes for inputs under column 1, then 2 boxes to fill out are labeled User or group to add.

Figure 9-11The Assign Roles screen

	3.
Enter the user’s ID into the User/Group to Add field and click the Add button.

My users in my Jenkins system are shown in Figure 9-12.[image:]A window box of a browser, with the Users tab of an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane, and beside it is the Users page, with 3 User I D, with their respective names.

Figure 9-12Three users currently available in my Jenkins system

Out of these three, I want to assign a newly created role to the pd user.
I will enter pd into the User/Group to Add field from and click the Add button. This will create a user entry in the Global Roles table.	4.
To assign a View role, click the checkbox in the View column, from the pd user row.

	5.
Page down to find to the Save button and click it.

Checking the Assignment of a Role to a User
To see if the role was successfully assigned to the user, you can log in with the credentials of the user to whom the View role was assigned.
I tried to log in with the credentials of the pd user, which shows an Access Denied message.
Creating Project-Based Roles in Jenkins
In Jenkins, you can create different jobs to perform different CI/CD operations in your application. If you want to restrict the access of a particular user to only few jobs, you can create a project-based role and assign it to that user.
Follow these steps to a create project-based role:	1.
Go to the Manage Roles page. Click the Manage Jenkins ➤ Manage and Assign Roles ➤Manage Roles link to open the Manage Roles page.

	2.
Create a new role to access specific jobs. Say you want to create a role that will allow access only to testing jobs that run unit testing and e-e testing.

	3.
Under the Item Roles section, enter a name for the role in the Role to Add field and .*Testing in the Pattern field (see Figure 9-13). This will allow access to the jobs that have the word testing in them, such as unittesting, e-e testing, etc.

[image:]A dialog box, with 2 roles, first is Global roles with a table of 3 columns and 3 rows, where columns 2 and 3 consist of checklists, followed by a box filled out with dingarepranoday. On the bottom part is another table of 2 columns and 2 rows, where column 2 has checkboxes.

Figure 9-13The value entered in the Pattern field

	4.
Click the Add button.

This will add an entry to the Item Roles table.	5.
Give all rights to the job by checking all the checkboxes in the Job column for newly created role.

	6.
Scroll down the page to the Save button and click it to save the changes.

Assigning Project-Based Roles to Users
Let’s assign this project-based role to the user now:	1.
Go to Assign Roles page. Click the Manage Jenkins ➤ Manage and Assign Roles ➤ Assign Roles link, which will open the Assign Roles page.

	2.
Under the Item Roles section, In the User/Group to Add field, enter the user ID of the user. Click the Add button.

	3.
Let’s assign the TestingOnlyRole to the dingarepranoday user. I have entered dingarepranoday in the User/Group to Add field and clicked the Add button.

This will create a dingarepranoday user entry in the Item Roles table.	4.
Click the TestingOnlyRole checkbox in the dingarepranoday user’s row.

	5.
Under the Global Roles section, in the User/Group to Add field, enter dingarepranoday and click the Add button.

	6.
Assign the view role to this user, as this role contains an Overall type of access in its definition.

	7.
The dingarepranoday user now has two roles assigned— the View role from Global roles and the TestingOnlyRole from the Item Roles section (see Figure 9-14). Note that if users do not have overall access, then they will not be able to see anything on the dashboard.

[image:]A dialog box, with 2 roles, first is Global roles with a table of 3 columns and 3 rows, where columns 2 and 3 consist of checklists, followed by a box filled out with dingarepranoday. On the bottom part is another table of 2 columns and 2 rows, where column 2 has checkboxes.

Figure 9-14The dingarepranoday user is assigned two roles

	8.
Scroll down the page and click the the Save button.

Verifying the Assignment of the Project-Based Role to the User
In this section, you see how this project-based role works. I have created a few Jenkins jobs (see Figure 9-15).[image:]A window box of a browser, with a Dashboard tab of an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane, and beside it is the dashboard, with a table of 7 columns and 3 rows.

Figure 9-15Jenkins showing the list of jobs created

There are three jobs—called CreateAPIJar, E-E Testing, and UnitTesting and I am currently logged in as user PranodayDingare. Let’s log in with the credentials of the dingarepranoday user.
If you log in as this user, you can see that dingarepranoday is able to see only the jobs that end with the word testing (see Figure 9-16).[image:]A window box of a browser, with 2 tabs, opened is the Dashboard tab of an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane, and beside it is the dashboard, with a table of 7 columns and 2 rows.

Figure 9-16Showing only jobs ending with the word “testing”

Understanding Matrix-Based Security in Jenkins
The previous section discussed how to create different roles and manage access at the job level, node level, etc.
This section discusses the matrix-based security option, which is available under the Authorization section on the Configure Global Security page (see Figure 9-17).[image:]A segment of a dialog box, under matrix-based security, is a table that has 7 columns with subheaders and 2 rows. The row header is user or group. Below is a button labeled Add user or group, and 2 select buttons.

Figure 9-17The matrix-based security option in the Authorization section on the Configure Global Security page

There are two main groups in this section—Anonymous Users and Authenticated Users.	Anonymous users: A special type of user who is not authenticated.

	Authenticated users: All authenticated users from the Jenkins system.

To assign permissions, you have to add a user or group by clicking the Add User or Group button, which will open a window in the browser (see Figure 9-18). Enter the user ID.[image:]A window box of a browser, with Configure Global Security tab, followed by the address bar, and a boxed notice at the center top, with a box to put details. Then the configure global security section of the site, starting with a selected button followed by a table of 7 columns and 2 rows, a button labeled Add user or group, 2 select buttons, a box to fill out, 3 select buttons, and buttons Save and Apply.

Figure 9-18The browser prompt after clicking the Add User or Group button

Click the OK button from the prompt. Select the checkboxes for the user from the available sections to set the access rights.
I want to give DingarePranoday user rights to the Jobs section. So I checked all the checkboxes in the Job section and the Read checkbox from the Overall section (see Figure 9-19).[image:]A segment of a dialog box, under matrix-based security, is a table that has 7 columns and 3 rows. Column 1 titled Overall have subheaders read and administer, 2 titled Credentials has to create, delete, manage domains, update, and view. 3 titled Agent has to build, configure, connect, create, delete, and disconnect. 4 titled Job has to build, cancel, configure, create, delete, discover, read, and workspace. 5 has update and delete. The view has configure, create, delete, and read. 6 titled S C M has tag. The row header is user or group.

Figure 9-19The DingarePranoday user has been assigned all rights from the Job section

Scroll down the page and click the Save button.
Now log in with DingarePranoday’s credentials. Once I log in with this user’s credentials, I can see only a few menu options on the left side.
Other menu options, such as Manage Jenkins, are not available to this user.
Understanding the Project-Based Matrix Authorization Strategy in Jenkins
This mode is an extension to matrix-based security, which allows additional matrixes to be defined for each project.
You can see the Project-based Matrix Authorization Strategy option in the Authorization section of the Configure Global Security page.
To add a user to this setting, click the Add User or Group button. It will open the browser prompt dialog box. Enter the user ID (see Figure 9-20). I added the DingarePranoday user to this setting by listing its name in the prompt dialog.[image:]A window box of a browser, with Configure Global Security tab, followed by the address bar, and a boxed notice at the center top, with a box to put details. Then the configure global security section of the site, starting with a selected button followed by a table of 7 columns and 2 rows, a button labeled Add user or group, a select button, a box to fill out, and buttons Save and Apply.

Figure 9-20The browser prompt opens after clicking the Add User or Group button

Clicking the OK button will add the user entry. You can see that the DingarePranoday user entry was added.
Select the checboxes from the available sections to set the access rights.
I want to give the DingarePranoday user rights to Build jobs, so I checked the Build checkbox from the Job section and the Read checkbox from the Overall section (see Figure 9-21).[image:]A segment of a dialog box has a table that has 7 columns and 3 rows. Column 1 titled Overall has subheaders read and administer, 2 titled Credentials has to create, delete, manage domains, update, and view. 3 titled Agent has to build, configure, connect, create, delete, and disconnect. 4 titled Job has to build, cancel, configure, create, delete, discover, read, and workspace. 5 has update and delete. The view has configure, create, delete, and read. 6 titled S C M has tag. The row header is user or group.

Figure 9-21The DingarePranoday user now has Build and Read rights

Click the Save button on the page.
Let’s now configure the security settings for a particular job. Go to the Jenkins dashboard to see the list of jobs. Click the Configure option in dropdown shown in Figure 9-22.[image:]A window box of a browser, with a Dashboard tab of an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane, and beside it is the dashboard, with a table of 7 columns and 1 row. Below column 3 is a right-click menu, where configure is boxed.

Figure 9-22The Configure menu option for a job

We will enable project-based security settings.
This setting is shown to all the jobs only if the Project-based Matrix Authorization Strategy option in the Authorization section of the Configure Global Security page is turned on.
Enable this setting by clicking the checkbox.
To add a user to this setting, click the Add User or Group button. It will open the browser prompt dialog box. Enter the user ID.
I added the DingarePranoday user to this setting by listing this name in the prompt dialog and clicking the OK button.
In the Inheritance Strategy dropdown, select the Do Not Inherit Permission Grants from Other ACLs option. Permissions set here will be granted to the user for this job (see Figure 9-23).[image:]A window box of a browser, with My Job Config tab, followed by the address bar, and general section of the site, starting with a ticked checkbox, followed by a dropdown, with row 3 selected, then a table of 5 columns and 3 rows, a button labeled Add user or group, 4 unticked checkboxes, and buttons Save and Apply.

Figure 9-23The Do Not Inherit Permission Grants from Other ACLs option in the Inheritance Strategy dropdown

I want to give only Build and Read permissions to the DingarePranoday user, so I selected these checkboxes.
Let’s log in with the DingarePranoday user credentials now.
The DingarePranoday user has only Read and Build access. They can build the job by clicking the clock sign but cannot edit/view the job configuration and cannot delete it. The Configure and Delete Project options are not available in the dropdown shown in Figure 9-24.[image:]A window box of a browser, with a Dashboard tab of an account under the name of Pranoday Dingare, followed by an address bar, then Jenkins menu bar. On the left side is a navigation pane, and beside it is the dashboard, with a table of 7 columns and 1 row. Below column 3 is a right-click menu, where the changes option is boxed.

Figure 9-24The Configure and Delete Project menu options are not available

Summary
This chapter explained how to create multiple users and assign them different rights according to the role they play on a team. You also learned about the project-based matrix authorization and matrix-based strategies, which allow Jenkins to establish good access control over a Jenkins system. The next chapter introduces the Jenkins job. Stay tuned!!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_10

10. Understanding Jobs in Jenkins

Pranoday Dingare1
(1)Pune, Maharashtra, India

In previous chapters, we learned about all the concepts necessary to start leveraging the benefits of this CI/CD tool in real-time projects. In subsequent chapters, we are going to focus on using Jenkins in real-time projects. This chapter is your first step towards that new journey.
Recall that Jenkins, as an automation server, can perform different tasks to automate end-end build lifecycles. These tasks are configured in the form of jobs. This chapter introduces this very important and integral concept. There are different kinds of jobs you can configure in Jenkins. This chapter talks about jobs in general. Specific types of jobs are discussed in detail in subsequent chapters.
What Is a Job in Jenkins?
A Jenkins job is a set of instructions that tell Jenkins what to do and when to do it. A job is also called a Jenkins Project. While configuring any type of a job, you can configure the following three types of instructions:	1.
When to do certain task:

You can tell Jenkins when you want it to start doing the task mentioned in the job. In Jenkins’ terminology, this set of instructions is called a trigger.	2.
What to do as part of the task:

You can configure the steps to be performed as part of a task to achieve a particular objective. In Jenkins’ terminology, this set of instructions is called a build step. For example, a build step could be running a simple batch command.	3.
What to do once the task is finished:

You can configure what you want Jenkins to do once it is done with a given task. In Jenkins’ terminology, this set of instructions is called the post build actions. For example, it could notify users about the success or failure of the task. Or if a Jenkins task is to compile Java code, then the post build action could be to copy the generated class files to a desired location.
What Is a Build in Jenkins?
A build in Jenkins is a particular execution of a Jenkins job. You can run a Jenkins jobs multiple times, and each execution gets a unique build number. All the details pertaining to a particular execution, like artifacts created, console logs, and so on, are stored with that build number.
What Is a Free-Style Job in Jenkins?
Jenkins allows you to create different types of jobs, like pipeline jobs and free-style jobs, according to your needs. Free-style jobs are typical build jobs or tasks. They can be as simple as running tests, building or packaging an application, or sending a report. Free-style jobs are suitable for simple build tasks. I introduced the free-style job concept in this chapter because you are going to look at different job configurations by creating one. More information on free-style jobs and their use are mentioned in subsequent chapters.
How to Create a Job in Jenkins
Now that you have a basic understanding of the concept of a job in Jenkins, you’re ready to create one. Follow these steps:	1.
Log into the Jenkins system and go to the dashboard.

	2.
Create a job by clicking the Create a Job or New Item link.

	3.
If you do not have any current jobs, you will get the Create a Job link on a blank Jenkins dashboard.

If you have one or more Jenkins jobs, you will not see this link on your dashboard. In this case, you can click the New Item link provided on the left side of the dashboard.	4.
Clicking either of these links will take you to the page shown in Figure 10-1.

[image:]A user interface of Jenkins job. With primary selections, Dashboard and All. Enter an item name, Freestyle project, and an OK button to select.

Figure 10-1The field to enter the name of a Jenkins job

	5.
Enter a suitable name for your job and select the Freestyle Project option. Click the OK button, which will take you to the Job configuration page shown in Figure 10-2.

[image:]A user interface of Jenkins job. With primary selections, General, Source Code Management, Build Triggers, Build, and Post-build Actions. Where the steps are after giving your project an appropriate name, select the Freestyle Project option from the drop-down menu. Simply clicking the OK button will bring you to the screen where you may configure the Job.

Figure 10-2The Job Configuration page

How to Configure a Job in Jenkins
On the Job Configuration page, you have different sections to configure settings. Let’s look at each section and its settings one by one.
The General section has the following options:	Description: In this field you can describe the purpose of this Jenkins job (such as compiling a Java library project).

	Discard old builds: Build represents data related to the specific execution of a job, like console output, artifacts created after the execution of a job, etc.

There are two options to decide when to delete build history data:	Build Age: Discard the builds that are older than seven days for example.

	Build Count: Discard the oldest build when a certain number of builds exist.

By default, you can keep a build for a maximum of 14 days, but only up to a limit of 50 builds. If either of these limits are exceeded, the oldest build will be deleted. Selecting this option and the configuring options is very important to save on disk space.
Once you select this checkbox, you will see the settings to configure these two options, as shown in Figure 10-3.[image:]A user interface of the job configuration discards old builds for the Jenkins job. Where after selecting this checkbox, you will be presented with the options and settings necessary to customize these two choices, the days to keep builds, and the maximum number of builds to keep.

Figure 10-3The settings related to Discard Old Builds

You can configure how many days builds of this job are to be kept by adding a number to the Days to Keep Builds field. If you add 5 here, then this job’s builds will be kept for a maximum of 5 days.
You can specify a maximum number of builds to be kept as well, by using the Max# of Builds to Keep field. If you specify 10 here, once the build number reaches 11, the oldest builds will be deleted.
Clicking the Advanced button will reveal two more fields—Days to Keep Artifacts and Max # of Builds to Keep with Artifacts—as shown in Figure 10-4.[image:]A user interface of the advanced settings related to the discard old build option for the Jenkins job. The days to keep builds, if not empty artifacts from builds older than this number of days, will be deleted, but the logs, history and reports, etcetera for the build will be kept. The maximum number of builds to keep with artifacts, if not empty, only up to this number of builds have their artifacts retained.

Figure 10-4The advanced settings related to the Discard Old Build option

An artifact of a build is any output that is generated after running that job. For example, if the job creates a .JAR file after compiling a Java application, then this .JAR file is an artifact of that job.
You can configure how many days artifacts from a build are kept by using the Days to Keep Artifacts field. If you specify 3 in this field, artifacts of that build will be deleted after three days, but the build’s other details, like the console log, won’t be deleted until this build becomes older than the number of days in the Days to Keep Build field.
If you specify 5 in the Max # of Builds to Keep with Artifacts field, then artifacts of the five latest builds will be kept.
This Project Is Parameterized
If this job needs any external inputs, you have to check this checkbox and select them from the available dropdown options. You’ll need to indicate which type of external input you need, such as Boolean, string, etc. See Figure 10-5.[image:]A user interface of the list of job parameters. The main selection with a tick box in this project is parameterized. The Add Parameter, with options, Boolean Parameter, Choice Parameter, Credentials Parameter, File Parameter, Multiline Sting Parameter, Password Parameter, Run Parameter, and String Parameter.

Figure 10-5The list of job parameters

For example, if you want to send a string value as the input, then select the String Parameter option. Once you select this option, you will see the String Parameter section.
You can enter the name of a parameter in the Parameter Name field, the default value of the parameter in the Default Value field, and a description about the purpose of the parameter in the Description field.
Say I want to send my firstname to a job as a parameter and get it printed on the console. I add those details to these fields, as shown in Figure 10-6.[image:]A user interface of this project is parameterized. The selection is String Parameter under it are Name, Default Value, and Description.

Figure 10-6The String Parameter with values in the Name, Default Value, and Description fields

I can access this parameter value in the build step of a job and print it on the console. Subsequent chapters cover how to access values of a parameter in the build step of a job and the real-time use of parameters.
Disabling a Project
If this option is selected, this job will not be executed and no new builds will be created. This is a useful settings if you do not want to use a particular job for a temporary period, maybe because the required infrastructure is not available.
Executing Concurrent Builds
By default, you can execute only a single build of a job at any one time. If you try to execute a job multiple times, then subsequent build executions will be kept in the queue until the previous execution completes.
This default option is important if your job needs exclusive permissions of directories/files to fulfill its task.
But if you want to start parallel executions of a build, you have to check the concurrent builds option. This option is useful when you have a lengthy build process to execute that’s divided into a number of phases and each phase is not dependent on the other. The time of lengthy job can be substantially reduced if different stages of a build process are started in parallel. You learn about real-time use in Chapter 17.
Click the Advanced button to see the advanced options. The options shown in Figure 10-7 are then available.[image:]A user interface of the advanced option button. The selections with a tick box are Quiet period, Retry count, Block build when upstream project is building, Block build when downstream project is building, and Use custom workspace.

Figure 10-7The additional options shown after clicking the Advanced button

Quiet Period
When this option is selected, a new build will not be triggered immediately. It will be added to the build queue and will wait for a specified time before it starts.
This option is useful when you want your build to take multiple code commits at approximately the same time. For example, if this option is not checked and multiple developers commit code at approximately the same time in the code repository, your build will be triggered immediately on arrival of the first commit and the rest of the commits will not be taken for this build. When you check this option, your build waits in the build queue for a specific time and takes all the commits happening at approximately the same time.
After checking this setting, you will get a field to set the time in seconds for the build to wait in the queue until it starts—this is called the quiet period.
If the Quiet Period field is set to 5 seconds, the build will wait in the build queue for 5 seconds before it starts its execution.
When the Retry Count option is not selected, and your job is configured to use a Source Code Management System (SCM) like a Git repository, Jenkins marks the job as failed if the first attempt of checking out SCM fails.
Using this option, you can set the number of times Jenkins should try to check out SCM before the job is marked as failed.
If you specify a 3 in the SCM Checkout Retry Count field, then Jenkins will try to check out SCM three times by waiting for ten seconds between each retry.
In Jenkins, a tasks can be configured in two different jobs such that an artifact generated by Job A would be used by Job B to complete its tasks. We can configure Job B to be dependent on Job A. For example, Job A is compiling a Java application and generating .CLASS files, and Job B is using these class files to create a .JAR file.
Here, Job A is called an upstream job of Job B. Job B is called a downstream job of Job A.
Block Build When Upstream Project Is Building
When this option is selected, Jenkins will not execute this project/job when the dependency project (a project on which this job depends) is in the build queue.
Jenkins will not start Job B if Job A is in the build queue.
Block Build When Downstream Project Is Building
When this option is selected, Jenkins will not execute this project/job when its children or dependent job is in the build queue.
Jenkins will not start Job A if Job B is in the build queue.
Use Custom Workspace
Before we talk about this setting, you need to understand what a workspace is in Jenkins. A workspace is a directory in which builds are executed. If the Jenkins job is checking out a Source Code Repository then it checks out in this directory. When any build starts executing, a workspace directory with the name of the job being executed is created by default in the ${JENKINS_HOME}\workspace folder. You will find ${JENKINS_HOME} usually at ${CurrentUser}\.Jenkins. You can change the workspace directory location by specifying the path in this field. Changing this location is helpful if another job is using the artifacts of this job and the paths of artifacts to be used are hard-coded into that job, for example.
My workspace location is D:\MyFirstJenkinsJob. Now when I run this job, a directory called MyFirstJenkinsJob will be created on D:\ and will be used as the workspace.
Display Name
A name set here will be shown for the project throughout the Jenkins WebUI. I set the Display Name to MyJob. On the dashboard, the job’s name is shown as MyJob, as shown in Figure 10-8.[image:]A user interface of the My Job on the Jenkins dashboard. The primary selections under the Dashboard section are New Item, People, Build History, Manage Jenkins, My Views, New View, Build Queue, and Build Executor Status.

Figure 10-8The job is called MyJob on the Jenkins dashboard

Note that the display name is only shown in the WebUI. The workspace folder will still be created with the project name, and not with the display name.
My job’s name is MyFirstJenkinsJob and the display name is MyJob. So in my case, the workspace folder is created with MyFirstJenkinsJob and not with MyJob.
Keep the Build Logs of Dependencies
This setting is available in the Display Name option, from the Advanced settings page. If this setting is enabled, all builds referenced here are protected from log rotation. Log rotation is the process of automatic compression, deletion, and mailing of the Jenkins build’s logs.
Source Code Management
Let’s now move to the next section of the General tab on the Job Configuration page, called Source Code Management.
In this section, you will see the Git option only if the Git plugin is installed. For detailed steps on how to install this plugin, see Chapter 6. Usually the Jenkins job responsible for creating new software build works on the latest committed code on the central repository and downloads it first. You need to add the URL of the Git code repository to this field, so that your Jenkins build will download the latest available code.
Here I have added my Git repository URL. When I run my job, it will first download the latest code.
The repository in the Repository URL field is my public repository. A public Git repository does not need authentication.
If your Git repository is a private repository, which usually would be the case, you need to provide the required authentication information, such as username/password, SSH private key, or API token, depending on the authentication configured in your Git repository. If you don’t provide the required authentication information, you will see the error in Figure 10-9.[image:]A user interface of the Git. Under the Git are Repositories, the repository U R L, and Credentials with button options None and Add. A warning reads, Failed to connect to repository, Command, git dot exe is dash remote dash h dash dash h t t p s slash slash GitHub dot com slash Pranodayd slash access automation project dot git. HEAD, returned status code 128 colon, s t d out colon, s t d e r r colon fatal, colon, Cannot prompt because user interactivity has been disabled. Remote colon H T T P Basic colon Access denied. Fatal colon Authentication failed for https colon slash slash gitlab.com slash Pranoday slash mywebapplication.git slash.

Figure 10-9The authentication error when Jenkins tries to access a private repository without the required credentials

To resolve this error, you need to create a Credentials entry of type Global, which will have the required authentication information. We need to select that entry in the Credentials dropdown and click the Apply button available on this job’s configuration page. For more details on credentials and the steps to create a credentials entry, see Chapter 8.
I created a credentials entry of type Global, selected it in the Credentials dropdown, and clicked the Apply button. The error is not shown now; see Figure 10-10.[image:]A user interface of the My Job Config Jerkins. The headers are Dashboard and My Job. The subsequent headers under Dashboard are General, Source Code Management, Build Triggers, Build, and Post-build Actions. Under Source Code Management are None, Git, Repositories, the repository U R L, Credentials, Branches to build, and Brach Specifier. With buttons to Save and Apply.

Figure 10-10Jenkins can successfully access the private repository

If you want to create a credentials entry from this page, you can do so by clicking the Jenkins option available in the dropdown, as shown in Figure 10-11.[image:]A user interface of the My Job Config Jerkins. The headers are Dashboard and My Job. The subsequent headers under Dashboard are General, Source Code Management, Build Triggers, Build, and Post-build Actions. Under Source Code Management are None, Git, Repositories, the repository U R L, Credentials then Add Jenkins button is highlighted, Branches to build, and Brach Specifier. With buttons to Save and Apply.

Figure 10-11The Jenkins option is available in the Credentials dropdown

Once you click this dropdown, you will see the Jenkins Credentials Provider: Jenkins window.
Enter the required details in this window, as shown in Figure 10-12, and click the Add button, which you will see after scrolling down a bit. (All these fields are explained in detail in Chapter 8.)[image:]A user interface of the Jenkins Credential Provider, Jenkins. The Add Credentials window is selected. Under Add Credentials section are the Domain, Kind, Scope, Username, Password, and I D, MyGitCredentials.

Figure 10-12The credentials details filled while creating a new credential

Once you click the Add button, the newly created entry will appear in the Credentials dropdown, as shown in Figure 10-13.[image:]A user interface of the My Job Config Jerkins. The headers are Dashboard, and My Job. The subsequent headers under Dashboard are General, Source Code Management, Build Triggers, Build, and Post build Actions. Under Source Code Management are the repository U R L, Credentials that option button is opened, Branches to build, Repository browser, and Additional Behaviors. With buttons to Save and Apply.

Figure 10-13The newly created credential entry in the Credentials dropdown

There is one very important point related to accessing private repositories from Jenkins and the Windows Credentials Manager, which usually proves to be difficult to debug.
You may already have your Git username/password stored in Windows Credentials (choose Control Panel ➤ All Control Panel Items ➤ Credential Manager). The Credentials Manager is shown in Figure 10-14.[image:]A user interface of the Credential Manager. The Control Panel Home section is selected. Under it are selections, Manage your credentials, Web Credentials, and Windows Credentials. The Windows Credentials area is selected. Under Windows Credentials are Window Credentials, Certificate Based Credentials, and Generic Credentials.

Figure 10-14The Windows Credentials Manager with all saved credentials

In Figure 10-15, you can see that my Git credentials are saved in Windows credentials. I created these using the Add a Windows Credential link shown in Figure 10-14.[image:]A user interface option of the git colon h h t p s colon slash slash gitlab dot com. Under it are the selections, Internet or network address, User name, Password, and Persistence. With Edit and Remove options.

Figure 10-15The GitLab credentials stored in the Windows Credentials Manager

Now you can see that I am not getting an authentication error in the Repository URL field (the error is shown in Figure 10-9), even though the Credentials entry is not selected in the Credentials dropdown, because Jenkins now has my credentials from the Windows Credentials.
If I remove my credentials from Windows credentials, which were saved with URL:https://gitlab.com, you can see my Credentials entry is not present in the Windows Credentials, as shown in Figure 10-16.[image:]A user interface option of Generic Credentials. Under it is a list of generic credentials with the modified date of the input.

Figure 10-16My GitLab credentials are no longer present in the Windows Credentials Manager

I get an authentication error (Error 128) in Jenkins, as I have not selected the Credentials entry in the Credentials dropdown and my Git credentials are also not present in the Windows Credentials Manager.
Branches to Build
By default, Jenkins jobs look for changes in the master branch and will download code from that branch from a remote repository. If you want Jenkins to look for changes in a different branch and download the code from it, you must specify the name of the new branch in this field.
Build Triggers
Using settings available in this section, you can configure when Jenkins should start running your jobs. Let’s look at these settings one by one now.
Trigger Build Remotely (e.g. from Scripts)
You can trigger a Jenkins job from an external entity like a Git repository. Consider a scenario where you want to trigger a Jenkins job when the code is to be merged into a master code branch by your developers. You have the following two options to trigger the job in this case.	Polling Source Code Repository: In this option, you can configure Jenkins to check for a change in the Source Code Repository after a specific time interval (called the polling time). Jenkins will trigger the job as soon as there’s a change in the code repository. This option is described in detail later in this chapter.

	Triggering Jenkins Job from SCM on a specific event: In this option, instead of making Jenkins poll a SCM to look for a change, you can configure SCM to trigger a job on a specific event that occurred on the SCM side, such as a merge event that occurs when code is merged into a specific branch in SCM.

If you to trigger the job using the second option, you need to check the Trigger Build Remotely (e.g. From Scripts) option. Every Jenkins job has an URL from which you can trigger it remotely.
The format of this URL is: JENKINS_URL/job/<Job Name>/build?token=TOKEN_NAME.	JENKINS_URL: This represents the URL used to access the Jenkins instance (e.g., http://localhost:8080).

	JobName: The name of a Jenkins job. Note that this should be Job Name and not Display Name.

	TOKEN_NAME: This is an access token used to trigger this job. I added my authentication token.

My URL to access this Job is http://localhost:8080/job/MyFirstJenkinsJob/build?token= abcd123456890.
You are going to see a practical example of this in upcoming chapters.
Build After Other Projects Are Built
You can check this option if you want to trigger this job after the execution of another one. We have discussed dependency in jobs, where one job uses artifacts created by another job. So if this job uses artifacts created by another Job called CompileJavaApplication, then you should check this option and add the name CompileJavaApplication to the Projects to Watch field so that this job is triggered once the CompileJavaApplication completes its execution and gives the required artifacts to this job to process them.
You can configure when to trigger this job and when not to depending on the status of dependency job using the following three options:	Trigger only if build is stable: If this option is selected then the job is triggered only if the job it depends on is stable. Stable means that the build executed successfully.

	Trigger even if the build is unstable: If this option is selected, the job is triggered even when the dependent job build is unstable. An unstable build means it could complete its task successfully but there are a few publishers who report it as unstable. For example, if a build is compiling an application and the Junit publisher is configured to publish a report of unit testing, and compilation is successful but the unit test fails, then the Junit publisher will mark this build as unstable.

	Trigger even if build fails: If this option is selected, the job is triggered even when the dependent job build fails or is broken.

A failed/broken build means one or more of the build steps failed and the build could not complete its task.
Build Periodically
This option allows you to trigger a build at a particular time and interval, like daily, monthly, weekly, etc. It provides a feature like a job scheduler in Windows or a chron job on UNIX systems. In my opinion, triggering jobs periodically does not follow the CI/CD principles, as CI/CD expects feedback on a software build as soon changes happen in the code and not in a week or month.
An example where this can be useful is when you want to trigger a daily job running e-e tests once the application is built and deployed to the testing environment. You can select this option and write a chron expression representing the schedule in the Schedule field.
Chron expressions are written in the following format:MINUTE HOUR DOM MONTH DOW

This command has the following five fields separated by tabs or whitespace:	MINUTE: Minutes in the hour (0-59)

	HOUR: Hour of the day (0-24)

	DOM: The day of the month (1-31)

	MONTH: The month in the year (1-12)

	DOW: The day of the week (0-7), where 0 and 7 represents Sunday

If I want to trigger a job every day, every month, and on all days in a week at 8:45 AM, then I would write the chron expression as follows:45 8 * * *

I added this to the Schedule field shown in Figure 10-17.[image:]A user interface option of Build periodically. Under it is Schedule that its input is 45, 8, asterisk asterisk asterisk.

Figure 10-17The chron expression specified in the Schedule field

More information about chron expressions can be found at https://en.wikipedia.org/wiki/Cron.
Poll SCM
Using this setting, you can configure a time interval (called the polling time) after which Jenkins will keep checking for a change in the code present in the SCM (the URL of which is mentioned in the Source Code Management section).
If I want Jenkins to poll my SCM every five minutes every day, every month, and all days of the week, I add the following chron expression to the Schedule field:H/5 * * * *

[image:]A user interface option of Poll S C M. Under it is Schedule that its input is H over 5, asterisk asterisk asterisk.

My Jenkins job will keep polling my SCM every five minutes and will trigger the build if SCM has changed since the last poll.
Build Step
This job performs the assigned task by executing the steps configured in this section. A step could be running a batch file or running any build tool’s goal. To add a step to execute the Windows DOS command for example, click the Add Build Step dropdown and select the Execute Windows batch command option.
Add the DOS command to the Command field. To remove a step, click the Red Cross sign next to the step.
We can add more than one step to a single job, which would be executed sequentially from the top, as shown in Figure 10-18.[image:]A user interface option of Build. Under it is Execute Windows batch command, the command is echo quotation mark Hi there quotation mark, and another Execute Windows batch command, the command is echo quotation mark Bye quotation mark.

Figure 10-18Multiple build steps added to a job

Post-Build Actions
In this section, you can configure actions that you want the Jenkins job to perform once its allotted task is done. For example, you can send an email notification.
To add actions, click the Add Post-Build Action option and select the required option. You can add multiple actions in this section. You will see a practical use of configuring this section in upcoming chapters.
How to Run a Job in Jenkins and Check Its Output
Once a Jenkins job has been created, configured, and saved, its entry is shown on the dashboard
To run a specific job manually, click the clock sign for that job entry.
Once a job starts—either manually or it was triggered according to the triggers mentioned in the job’s configuration—its execution status can be seen in the Build Executor Status section. You can see the progress bar in Figure 10-19.[image:]A user interface of the My Job on the Jenkins dashboard. The primary selections under the Dashboard section are New Item, People, Build History, Manage Jenkins, My Views, New View, Build Queue, and Build Executor Status.

Figure 10-19The progress bar indicates that the job is being executed

Once a job is completed, you can see the history of the build executions by clicking the Build History link shown on left side of the Dashboard page.
Clicking the Build History link will open the Build History of Jenkins page, as shown in Figure 10-20. Note that you may see different build histories depending on the number of times you executed this job. I have executed this job eight times, hence this build history shows build entries from Build #1 to Build #8.[image:]A page displays the Jenkins dashboard. The selection tool is in the Build History section, which reveals the following, Build History of Jenkins with a timeline from June 19 to June 24 in a box below, and a table at the bottom with the headers, Build, Time Since up, and Status.

Figure 10-20The build history for an executed job

To check the detail build log, click Console Output for a particular build entry from the table. This is highlighted in Figure 10-20.
For example, to see a detail console log of Build #8, you would click the Console Output icon of this build entry. It will show the detail console output of Build #8, as shown in Figure 10-21.[image:]A user interface of the My Job on the Jenkins dashboard. The selection tool is in the Console Output section, which reveals that the Console Output went through or is approved.

Figure 10-21The detail console output of Build #8

How to Edit a Job in Jenkins
If you want to edit an existing Jenkins job, click the job’s dropdown on the Jenkins dashboard. Click the Configure option from this dropdown. This option is highlighted in Figure 10-22.[image:]A user interface of the My Job on the Jenkins dashboard. The primary selections under the Dashboard section are New Item, People, Build History, Manage Jenkins, My Views, New View, Build Queue, and Build Executor Status. The selection tool is in the Configure option.

Figure 10-22The Configure option in the dropdown menu available for a job

This will take you to the job’s configuration page, which is shown in Figure 10-23.[image:]A user interface of the My Job Config Jerkins. The headers are Dashboard and My Job. The subsequent headers under Dashboard are General, Source Code Management, Build Triggers, Build, and Post-build Actions. Under General are the Description, Options with a tick box, Source Code Manage the tick box is in None, and Build Triggers. With Save and Apply buttons.

Figure 10-23The Job Configuration page for the CompileJavaApplication job

Do the required modifications and then click the Save button.
How to View a Job’s Workspace
To view a workspace of a particular job, click the job entry on the dashboard. You will go inside the job page, as shown in Figure 10-24.[image:]A user interface of the My Job on the Jenkins dashboard. The selection tool is in the Status section, which reveals the Project My Job and Permalinks. Add description and disable project button options.

Figure 10-24The job page for MyJob

Click the Workspace link shown on the left side of the page, which will open the workspace, as shown in Figure 10-25.[image:]A user interface of the Workspace of My Job on master. Under it are subfolders for dot git, dot settings, src slash main slash webapp, target, document dot classpath, document dot project, document Jenkinsfile dot txt, and document pom dot xml. And all the files are on zip.

Figure 10-25The workspace for MyJob

How to Clear a Job’s Workspace
To clear a workspace of a particular job, click the job entry on the dashboard. You will go inside the job page, as shown in Figure 10-24.
Click the Workspace link shown on the left side of the page. Then click the Wipe Out Current Workspace link, shown in Figure 10-26.[image:]A user interface of the Folder Workspace and Folder Wipe Out Current Workspace.

Figure 10-26The Wipe Out Current Workspace menu option under the Workspace menu

How to Delete a Job
If you want to delete an existing Jenkins job, click the dropdown available for the job entry on the Jenkins dashboard. Then click the Delete Project option from this dropdown, as shown in Figure 10-27.[image:]A user interface of the My Job on the Jenkins dashboard. The primary selections under the Dashboard section are New Item, People, Build History, Manage Jenkins, My Views, New View, Build Queue, and Build Executor Status. The selection tool is in the Delete Project option.

Figure 10-27The Delete Project menu in the dropdown opened for a job

Click the OK button in the Confirmation alert window.
Summary
This chapter marked a very important step in your learning journey by introducing an integral concept called jobs. You looked at different job configurations by creating a free-style job. You also learned the steps needed to run Jenkins jobs and to view execution logs of a Jenkins build. Subsequent chapters carry this knowledge forward and you will learn real-time implementation of Jenkins jobs to build different kinds of applications, like Java APIs and web applications.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_11

11. Preparing a Java API Project Using Maven

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

After a thorough explanation of configuring the jobs in Jenkins in the last chapter, this chapter starts looking at Jenkin’s real-time use in managing the end-end build lifecycle of different kinds of applications. You see how to configure different kinds of jobs and trigger them in different ways in upcoming chapters.
Different kinds of applications, such as reusable libraries called Application Programming Interfaces (APIs), web applications, RESTful API services, and so on, have their own processes for building and deploying. For example, a Java API project could be bundled in the form of a .JAR file and will be released to an artifact repository, whereas a web application developed in Java could be bundled in a .WAR file and would be deployed in server like Tomcat. To implement end-end build lifecycles of any of these applications in Jenkins, you need to first understand the different build lifecycle phases these applications need to go through, along with the tools that will help you take these applications through those different phases until they reach their final destinations.
This chapter develops a simple Java API project and the different build lifecycle phases it has to go through, along with tools like TestNg and Maven. In subsequent chapters, you’ll see how to build different kinds of Jenkins jobs to automate the release of this Java API project.
Understanding the Maven Build Tool
This section looks at how a very popular build tool called Maven can be used to build a Java API project. Maven’s primary goal is to allow a developer to comprehend the complete state of a development effort in the shortest period of time.
Before we dive deeply into Maven, you need to understand the typical workflow of the development lifecycle of a Java API and how a build tool helps developers perform them.
Typical Development Flow of a Java API Project
This section explains the typical tasks a developer needs to perform when developing a Java API project. The actual tasks may vary from project to project.
Downloading Third-Party Libraries
While developing any application, developers uses binaries, which are bundled API classes available with the development kit. In this case, it’s the JDK (Java Development Kit), as we are talking about Java API projects. Along with these native libraries, developers may need libraries developed by the API developers. These are called third-party libraries. These libraries are usually available on different web platforms called artifact or package registries. For example, https://mvnrepository.com/ is a central repository where Java API developers deploy packaged files (.JAR files) and developers wanting to use them can download them. https://www.npmjs.com/ is a package registry to release reusable node packages built using JavaScript. The Java API developer in this book needs to download these library files from the mvn repository.
Adding Downloaded Libraries to the Project Build Path
These downloaded libraries must be added to the reference libraries the project developer is working on. In the context of a Java API project, these libraries are added to the CLASSPATH of the project.
Coding and Writing Unit Test Cases
Once the required third-party and native libraries are present in the build path of the project, developers can write different API functions. Once the development of a particular unit/function is done, unit test cases are written. If developers are using a test-driven development approach (TDD), they write test cases before implementing a functionality piece.
Compiling the Application and Unit Test Cases Code
After the code is written, the developer needs to compile the API source code as well as the unit test cases code.
Running Unit Test Cases
After compiling the application’s source code and the unit test cases, developers need to run unit test cases using unit testing tools like TestNG, Pytest, NUnit, etc. These tools depend on the development environment they are using.
Bundling/Packaging the Application
After the unit testing is done and the code has been merged, the implementation is packaged into a library (.JAR) file.
Releasing it on the Artifact Repository
Once a particular library version is created, it will be released on the artifact repository so that users can download and use it.
How the Build Tool Helps Developers
You just saw a typical workflow of a Java API project. In this flow, you saw that developers have to perform a lot of tasks, including downloading the required compile-time libraries (libraries that the developer needs to compile the implementation) and testing libraries (libraries that the developer needs while testing the implementation) and runtime libraries. Then the code is compiled, there is unit testing, packaging, and deployment of the created lib package, and so on. Performing these tasks manually is cumbersome and sometimes error-prone. Hence, developers need a tool to perform these tasks. Tools that developers use to automate these tasks are called build tools. There are various build tools available, such as Apache Ant, Maven, Gradle, etc.
How to Use the Maven Build Tool to Build a Java API Project
This section explains how you can use the Maven build tool to build a Java API project. You are going to use Eclipse to build the Java API project.
You need to install the following prerequisites before you can move on with this section:	Java Development Kit (JDK)

	Eclipse (the latest version)

Step 1: Creating a Workspace in Eclipse
An Eclipse workspace is a directory, a working location where all the projects created in Eclipse are stored. Start Eclipse. It will ask you for a workspace location (see Figure 11-1). You can provide the path of any folder; then click the Launch button.[image:]An Eclipse I D E Launcher page. Below is, Select a directory as workspace, under which is, Eclipse I D E uses the workspace directory to store its preferences and development artifacts. Below it, Workspace, with D colon, backslash Jenkins Book Examples backslash typed in. A browse tab is next to it. Below is a checkbox before, Use this as the default and do not ask again. Recent Workspaces, and at the lower right, the Launch and Cancel tabs.

Figure 11-1The window to select Eclipse Workspace location

Once you click the Launch button, the Eclipse welcome page will appear.
Step 2: Creating a Maven Project
Follow these steps to create a Maven project:	1.
Installing the Maven Eclipse plugin: Maven has a command-line interface (CLI). You can use Maven by running its commands using a shell program. If you want to use Maven from within Eclipse, the Eclipse Maven plugin must be installed inside the Eclipse environment. In the latest versions of Eclipse, the Maven plugin is already installed. If you are using an older version of Eclipse, you may need to install the Maven plugin explicitly.

	2.
If Maven is already installed, you can see it in the Preferences window (see Figure 11-2), which opens after you choose the Window ➤ Preferences menu option.

[image:]A page on which in the left panel is a filter tab with the Maven option highlighted below it. On the right is Maven. Below, Do not automatically update dependencies from remote repositories, and Download Artifact Sources, are chosen from a list of options. At the bottom of the list is, Global Checksum Policy, with Default, typed in. Below it, to the right are the Restore defaults and Apply tabs. At the bottom right, are the tabs, Apply and Close, and Cancel.

Figure 11-2Maven in Preferences in Eclipse

Note
To download the required plugins and project dependencies for Maven, you need Internet access. If you are working from a network that has a proxy installed, then you need to create a settings.xml file in the ${use.homer}\.m2 folder and include the proxy details in that file. Refer to the “Understanding Maven’s settings.xml File” section in this chapter for more information.

	3.
Creating a Maven project: Choose the File ➤ New ➤ Other menu option.

This will open the Select a Wizard window.
You will see a Maven section there. Open its subsections.	4.
Select the Maven Project option and click the Next button (see Figure 11-3).

[image:]A Select a Wizard page. Below is, Select a Wizard, under which is, Create a Maven Project. Below it is Wizards, with a filter entry box. Below are the options, Java, Maven, under which are Check out Maven Projects from S C M, Maven Module, and Maven Project, Oomph, and Plug-in Development. Maven Project is highlighted. At the bottom, the Next tab is highlighted.

Figure 11-3The Maven Project option

This will open the New Maven Project window (see Figure 11-4).[image:]A window contains New Maven Project, under which is, Select project name and location. Below it is Create a simple project, skip archetype selection, and Use the default Workspace location with a checked box beside it. Below is an entry box for Location, Add project or projects to working set, an entry box, and Advanced. At the lower right are tabs for, Back, Next, Finish, and Cancel. The Next tab is highlighted, and the Finish tab is grayed out.

Figure 11-4The New Maven Project window

	5.
Click the Next button, which will open the Select an Archetype window.

Maven performs each of these tasks using plugins. Different types of applications have their own unique requirements of directory structures. For example, a webapp has a WEB-INF folder and an index.html file and an EJB application has its own requirements of directory structure. Maven provides different archetype plugins which create the appropriate directory structure. If you are developing a web application, you need the maven-archetype-webapp, which will create a required directory structure for your application. We are creating a simple Java API project, so we use the maven-archetype-quickstart plugin in this example.	6.
Enter maven-archetype-quickstart into the Filter field and click the Next button.

	7.
After clicking the Next button, Maven will start downloading the artifact plugins (see Figure 11-5), which may take some time.

[image:]A window contains New Maven Project, under which is, Select project name and location. Below it is, Create a simple project, skip archetype selection, and Use the default Workspace location with a checked box beside it. Below is an entry box for Location, Add project or projects to working set, an entry box, and Advanced. At the lower right are tabs for, Back, Next, Finish, and Cancel. The Next tab is highlighted, and the Finish tab is grayed out.

Figure 11-5Downloading the artifact plugins

Once the artifacts are downloaded, you will see the New Maven Project window.
Here you’ll see GroupId, ArtifactId, and Version. A Maven project is identified uniquely using these three parameters on any artifact repository, such as a MvnRepository or Nexus repository.	GroupId: Indicates the owner of the project or group under which similar kinds of projects are created.

	ArtifactId: The name of a project.

	Version: A specific release of a project available to download on the artifact repository.

For example, I used a GroupId of Pranodayd, an ArtifactId of CalculatorAPI, and a Version set to 1.0 (see Figure 11-6).[image:]A window contains New Maven Project, under which is, Specify Archetype parameters. Below it is, Group I d, with Pranodayd typed in, Artifact I d, Calculator A P I is typed in, Version, 1.0 is typed in, and Package, Pranodayd dot Calculator A P I is typed in and highlighted. Below is an empty table titled, Properties available from an archetype, with headers Name, and Value. Next to it are the Add and Remove tabs. Below are tabs for, Back, Next, Finish, and Cancel.

Figure 11-6The New Maven Project window with the Group ID, Artifact ID, and Version details filled in

	8.
Click the Finish button, which will start creating the Maven project.

Understanding the Maven Project Directory Structure
The Maven project directory is created with the name you specify in the ArtifactId field when creating the project. Let’s look at the directories and files created in the project.
src/main/java
src/main/java is the default application source code directory in which you are supposed to create your Java package directory structure. It holds the source code files. In this folder, a package directory structure with the GroupId and ArtifactId will be created.
I created a project with the GroupId set to Pranodayd and the ArtifactId set to CalculatorAPI. You can see in the src/main/java directory that a directory called Pranodayd has been created. Inside this directory there is a directory called CalculatorAPI. Inside that directory, you will see a file named App.java, which is a template demo file that I deleted.
src/test/java
This directory contains the unit test cases. It also has a package directory structure that’s created using the GroupId and ArtifactId.
Inside this directory structure, you will see Test.java, which is a template Java file for unit test cases.
Inside the project directory, you will see the pom.xml file (see Figure 11-7), which we talk about later in this chapter.[image:]A Calculator A P I folder. On the menu bar, File, Home, Share, and View are given. The file is highlighted. Below is a taskbar that contains, Pin to quick access, Copy, Paste, and Move to, among others. On the left panel, DATA D is highlighted. On the right is a table with headers, Name, Date Modified, Type, and Size. The entry, pom, 15, 05, 2021 10, 41, X M L Document, and 3 K B are highlighted.

Figure 11-7The file contents of the Maven project

Understanding Java API Project Code Files
API source code: Under src/main/java, inside the package directory structure, I created a file named Calculator.java. This file has basic arithmetic operations like addition, subtraction, multiplication, and division.
API unit test code: Under src/test/java, inside the package directory structure, I created Java files containing unit test cases for all arithmetic functions implemented in the API. For example TestAdditionFunctionality.java contains unit test cases for the addition function written in the API, TestSubtractionFunctionality.java contains test cases for the subtraction function, and so on.
These test cases are executed using a popular unit testing tool in the Java environment, called TestNG.
TestNG is a unit testing tool that controls the flow of unit test cases using different methods annotated with TestNG annotations, including @BeforeClass, @AfterClass, @Test, @BeforeMethod, etc. It also generates a test report.
Understanding the pom.xml File in the Java API Project
POM stands for Project Object Model. A Maven pom.xml file is the heart of any Maven project and it defines different kinds of details of a particular project. Project information is contained in the <project></project> tags.
The information shown in Listing 11-1 defines the identification of the project. <groupId>Pranodayd</groupId>
 <artifactId>CalculatorAPI</artifactId>
 <version>1.0</version>

Listing 11-1Maven Project Identification Information from pom.xml

The properties section shown in Listing 11-2 defines properties such as which Java version to use to compile the project and which text encoding to use, such as ANSI, UTF8, and so on, when compiling .JAVA files.<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.7</maven.compiler.source>
 <maven.compiler.target>1.7</maven.compiler.target>
</properties>

Listing 11-2Maven Project Properties Section from pom.xml

The <dependencies></dependencies> section (see Listing 11-3) defines the third-party libraries and at which stage those libraries are required (i.e., at the stage of compilation, unit testing, or when running the app).<dependencies>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>7.4.0</version>
 <scope>test</scope>
 </dependency>

</dependencies>

Listing 11-3Maven Project Dependencies Section from pom.xml

This API project only needs the TestNg dependencies and <scope>test</scope> defines that Maven should put TestNg JARs in the project CLASSPATH only when you run unit test cases. Once the unit test cases are done, the TestNg JARs should be removed from the project CLASSPATH. The scope defines at which stage of the lifecycle a particular dependency is required so that it can be downloaded from the central repository inside the local repository and will be added to the project’s CLASSPATH.
Maven maintains a local repository where it downloads all required plugins and dependencies mentioned in this section.
This local repository Maven creates by default is found at ${use.homer}\.m2\repository.
While running particular build phases, Maven checks if the required dependency is available in the local repository. If it is available, it will be added to the project’s CLASSPATH. If it is not available, it will be downloaded from the central repository into the local repository and will be added to the project’s CLASSPATH.
When Maven downloads any dependency in the local repository it creates a directory structure inside the local repository, according to the GroupId, ArtifactId, and Version of the dependency. For this API project, the TestNg dependency has the following settings: GroupId:org.testng, ArtifactId:testing, and Version:7.4.0.
When downloading this dependency, Maven will create the directory structure shown in Figure 11-8 in the local repository.[image:]A diagram has boxes and arrows. From the top, diagonally to the bottom, Org, arrow, test n g, arrow, test n g, arrow, and 7.4.0.

Figure 11-8The directory structure created by Maven in the local repository

Inside this, the testng-7.4.0.jar file will be downloaded. You can change the default location of the local repository from ${use.homer}\.m2\repository to another location by creating a settings.xml file inside ${use.homer}\.m2. The settings.xml file should specify a desired local repository location using the <localRepository> tag:<settings>
 <localRepository>D:\MavenRepo</localRepository>
</settings>

 <build>
 <pluginManagement><!-- lock down plugins versions to avoid using Maven defaults (may be moved to parent pom) -->
 <plugins>
 <!-- clean lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#clean_Lifecycle -->
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>3.1.0</version>
 </plugin>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>3.0.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.0</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.22.1</version>

 </plugin>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>3.0.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-install-plugin</artifactId>
 <version>2.5.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.8.2</version>
 </plugin>

 </plugins>
 </pluginManagement>
 </build>

Listing 11-4Maven Project Build Section from pom.xml

The build tag in pom.xml (see Listing 11-4) defines the end-end build lifecycle of an application, along with the Maven plugins used to execute each phase.
Build Lifecycle Phases and Their Order
Clean: Maven uses the maven-clean-plugin, which cleans all previously generated compiled files as well as package files and runs a fresh build lifecycle.
Download resources: In this phase, all the project’s dependencies are downloaded from the artifact repository, like mvnrepository.com.
The Maven plugin downloads project dependencies along with their circular dependencies.
Compilation of application source code: Maven uses the maven-compiler-plugin, which internally uses javac (a Java compiler) to compile the source code of the application. The compiler plugin compiles all the .JAVA files from src/main/java, which is the default location, to find the sources of an application.
This compiler plugin takes the Java files as input and produces .CLASS files as output of this compilation phase. The compilation phase creates .CLASS files for application inside the $(ProjectDIR)/target/classes folder.
Unit Testing: First mvn compile:test-compile phase compiles unit test code from src/test/java and puts the class files inside the $(ProjectDIR)/target/test-classes folder.
Maven uses the Maven-surefire plugin, which triggers unit test cases by invoking JUnit or TestNg frameworks.
Package: Maven-jar-plugin bundles application’s compiled files (i.e. .CLASS files created inside the $(ProjectDIR)/target/classes folder) in a .JAR file. This JAR file is created in the $(ProjectDIR)/target folder.
Release Phase: Maven has an install phase in which it installs the JAR file into Maven’s local repository using maven-install-plugin.
If users of this JAR file are remote, this JAR file should be deployed to a central repository available on the web, such as Mvnrepository.com.
This can be achieved by running deploy goal, whereby Maven uses the maven-deploy-plugin to deploy a JAR file on the central repository so that it can be downloaded and used by developers.
How to Use Maven from the CLI
The previous section explained how to use Maven from Eclipse. As previously mentioned, Maven is a command-line tool so it provides different commands to interact with it. Now you learn how to use Maven using CLI in this section.
Setting Up Maven
Download Maven from the following link given on the Apache Maven website:
https://apachemirror.wuchna.com/maven/maven-3/3.8.1/binaries/apache-maven-3.8.1-bin.zip
Unzip the downloaded ZIP file at your desired location. I unzipped my file to D:\MavenInstallation.
Inside the apache-maven-3.8.1\bin, we have the mvn command file. This is the Maven CLI, which you can use from the command prompt. Add this mvn command to the PATH environment variable and create JAVA_HOME and M2_HOME variables in the Environment Variables section.	1.
Go to the Environment Variables section: Type Edit System Environment Variables in the Start menu.

	2.
Select the Edit the System Environment Variables option, which will open the System Properties window.

	3.
Click the Environment Variables button, which will open the Environment Variables window.

	4.
Create a M2_HOME environment variable: Click the New button from the System Variables section (see Figure 11-9).

[image:]A window has the following, User variables for magic-user, and below it is a table with headers, Variable, and Value. The entries, Name, and Pranoday are highlighted. Below the table, at the right are the tabs, New, Edit, and Delete. Below, a System Variables table is boxed. The entry CLASSPATH, D colon backslash Java Selenium Batch backslash Java Programs, is highlighted. Below it is the tabs, New, which are highlighted, Edit, and Delete. The OK, and Cancel tabs are at the bottom.

Figure 11-9The Environment Variables window with System Variables section highlighted

The New System Variable window will open.	5.
Enter M2_HOME into the Variable Name field and the location of Maven in the Variable Value field (see Figure 11-10).

[image:]A New System Variable window. Below is, Variable Name, with M 2 underscore HOME typed in, and Variable Value, with D colon backslash Maven Installation backslash apache dash maven dash 3.8.1 typed in. At the bottom, at left, are the Browse Directory, and Browse File tabs. And at right, The O K and Cancel tabs.

Figure 11-10The Variable Name and Variable Value fields are filled in when creating the M2_HOME environment variable

	6.
Click the OK button, which will add the M2_HOME entry to the System Variables section in Environment Variables (see Figure 11-11).

[image:]A window has the following, User variables for magic-user, and below it is a table with headers, Variable, and Value. The entries, Name, and Pranoday are highlighted. Below the table, at the right are the tabs, New, Edit, and Delete. Below is a System Variables table in which the entry, M 2 underscore HOME, D colon backslash Maven Installation Backslash apache dash Maven dash 3.8.1 is highlighted and boxed. Below, the OK button is highlighted.

Figure 11-11The M2_HOME environment variable

	7.
Add a bin folder to the Maven folder in the PATH environment variable: Locate the PATH environment variable entry in the Environment Variables list under the System Variables section (see Figure 11-12).

[image:]A window has the following, User variables for magic-user, and below it is a table with headers, Variable, and Value. The entries, Name, and Pranoday are highlighted. Below the table, at the right are the tabs, New, Edit, and Delete. Below is a System Variables table in which the entry, Path C colon backslash Windows backslash system 32, C colon backslash Windows, C colon backslash Windows backslash System 32 backslash W b is highlighted. Below, the OK tab is highlighted.

Figure 11-12The PATH environment variable in the System Variables section

	8.
Click the Edit button. Then click the New button and enter %M2_HOME%\bin in the newly created entry inside the Edit Environment Variable list (see Figure 11-13).

[image:]An Edit environment variable window. Below is a table with multiple entries. The entry at the bottom, percentage sign M 2 underscore HOME percentage sign backslash bin is boxed, and the space beside it is colored in. An OK button below is highlighted.

Figure 11-13The bin folder entry added to the PATH environment variable

	9.
Click the OK button.

	10.
Create the JAVA_HOME environment variable: Click the New button from the System Variables section.

The New System Variable window will open.	11.
Enter JAVA_HOME in the Variable Name field and the location of the Java Development Kit (JDK) in the Variable Value field (see Figure 11-14).

[image:]A New System Variable window. Below are the Variable name, with JAVA underscore HOME typed in, and the Variable value, with D colon backslash j d k dash 9.0.4 backslash j d k dash 9.0.4, typed in. Below left is the Browse Directory, and Browse File tabs. And at the right are the OK and Cancel buttons.

Figure 11-14The Variable Name and Variable Value fields are filled in when creating the JAVA_HOME environment variable

	12.
Once all the required configurations are done, check if Maven is configured successfully by running the mvn -version command from the command prompt.

Using Maven CLI Commands
Once Maven is set up to be used from the command prompt, you can run different Maven commands to control different build lifecycle phases on the API project.
Open the command prompt and change the working directory to the project directory in the command prompt using the cd DOS command (see Figure 11-15).[image:]A command prompt window with, Microsoft Windows open bracket Version 10.0.19041.1052 close bracket, open parenthesis c close parenthesis backslash Microsoft Corporation. All rights reserved. Below is a code, C colon Users backslash magicuser greater than c d space D colon backslash Jenkins Book Examples backslash Calculator A P I, C colon backslash Users backslash magicuser greater than D colon, D colon backslash Jenkins Book Examples backslash.

Figure 11-15The working directory has changed to the project directory

Note
In order to run Maven commands, you need to be in the Maven Project directory, which contains the pom.xml file.

To run a particular build phase, run the mvn <Goal Name> command. Let’s create a .JAR file of this API project by running the package phase.
Run the mvn package command from the command prompt.
Once you run any Maven goal, it runs all its previous goals as well, For example, when you run the mvn package, it runs the following goals as well:	1.
Downloads project dependencies using the maven-resources plugin.

	2.
Compiles API source code.

	3.
Compiles unit test cases code.

	4.
Runs unit test cases using the maven-surefire-plugin.

	5.
Creates a JAR file using the maven-jar-plugin.

This section explained how to use the Maven build tool to automate a build lifecycle of a simple Java API project. The next section explains how to customize default Maven settings using the settings.xml file.
Understanding Maven’s settings.xml File
A Maven build tool works with default settings. For example, the local repository’s default location is ${use.homer}\.m2\repository. If you want to change this location to some other folder or change the central repository URL, you can do that using settings.xml.
For example, say you want to change the local repository location and include proxy server settings. To do this, you must create a settings.xml file, as shown in the Listing 11-5, and save it in the ${use.homer}\.m2 directory.<settings>
 <localRepository>D:\MavenRepo</localRepository>
 <proxies>
 <proxy>
 <protocol>http</protocol>
 <host>10.9.1.1</host>
 <port>80</port>
 </proxy>
 </proxies>
</settings>

Listing 11-5Maven settings xml with Customized Local Repository and Proxy Settings

Summary
This chapter explained the typical build lifecycle phases of a Java API project and described how these build lifecycle phases can be automated using Maven. You configured a Maven project in Eclipse and executed Maven commands to perform all build lifecycle phases and create an artifact (.JAR) file. You also learned how default Maven settings can be customized using settings.xml. The next chapter explains how to release this artifact on an artifactory called Nexus by integrating Maven and Nexus. Stay tuned!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_12

12. Integrating Maven with the Nexus Repository and Creating Free-Style Jobs to Release the Java API on the Nexus Repository

Pranoday Dingare1
(1)Pune, Maharashtra, India

In the previous chapter, you created a Java API project and learned how Maven, a build tool, can be used to manage different lifecycle phases during the build process of a typical Java API project. This chapter introduces the use of other CI/CD tools, like Git (a code repository) and Nexus (an artifact repository). You are going to build a Jenkins job to create a release of the Java API project on the Nexus repository.
This chapter discusses how Jenkins can manage to take the raw source code of a Java API project from its source code repository and how, using a build tool, you can take it through all of its build lifecycle phases until the artifact can be deployed to its final destination, which is the Nexus repository.
Understanding Git
Git is a version control system. Using a version control system, developers can keep different versions of their code and track the changes. They can see how their application evolves by adding new code functions, removing old ones, updating existing ones to fix code defects, and so on. Version control systems also help developers work collaboratively. While working collaboratively, the source code of an application is kept at some central location accessible to all developers, which is called the central repository. The code on the central repository is constantly updated with newly developed, tested, and working code. While working in this collaborative environment, developers have to manage a few activities, like merging completed, tested, and working code changes of all the developers into a code kept on the central repository. Every developer needs to sync their copy of the code with the latest changes on the central repository.
We discuss this flow in detail in the next section of this chapter.
There are three types of version control systems:	1.
Centralized Version Control Systems:
In this type of a system, the code repository is maintained on some server machine and the developers must always connected to that central code repository in order to manage code versioning. If you are not connected to the network, you cannot do version controlling of your source code on a local system. An example of centralized version controlling systems is Tortoise SVN.

	2.
Local Version Control Systems:
In these types of systems, version control happens in a code repository available on the local system. This approach is very common and simple, but at the same time, it is error prone because chances of writing changes into the wrong files are greater.

	3.
Distributed Version Control Systems:
In this type of system there are two types of code repositories:	i)
Local Repository:
Every developer has their own repository on their local system where they can track code changes and maintain different versions of the code.

	ii)
Central Repository:
A version of the application code kept on some network location that all developers can access. This is the version of the code to which all developers ultimately contribute by merging their code changes.

In a Distributed Version Control system, developers manage different versions of their code files and keep track of their changes locally on their system when their change is in progress. Once their code changes are completed and tested, they send them to be merged into the ultimate centralized version of the application, which is where the application’s build is created.
The advantage of Distributed Version Control systems is that you have version control capabilities when you are not connected to the network.
An example of a Distributed Version Control system is Git, discussed next.
Installing Git
Download the suitable version of Git according to your computer system from https://git-scm.com/downloads. Install Git by running its setup wizard. Once Git is installed, make sure that the Git installation path is present in the PATH environment variable. The Git version control system has a CLI (command-line interface), which includes a bunch of commands.
Understanding GitHub/GitLab
Many people have confusion around Git and GitLab/GitHub. This section explains GitLab/GitHub and how they are related to Git. Git is a version control system that provides you with ecosystem to leverage benefits of the Distributed Version Control system. Git provides a set of commands to create a local repository, create a code branch, commit code changes, and so on. GitHub/GitLab provides you with central repository, which is created on the web and can be accessed by developers.
Understanding End-End Use of Git for the API Project
Now that you have Git installed on your system, this section goes step by step through the Git system to perform version control of the API project.
Step 1: Creating a Local Repository
You first need to create a local repository in your project directory. Open the command prompt and go inside the project directory using the cd command.
Run the git init command to create a blank local code repository.
Note
If you get the “git is not recognized as an internal or external command” command when you run the git init command, it means the windows command prompt cannot find Git on your system. Go to the System Environment Variables and add the path of the folder where you installed Git in the PATH environment variable. Save the environment variable and restart the command prompt to try again. Don’t forget to restart the command prompt after adding the entry to the PATH environment variable; otherwise, you will receive the same error. After making changes to the system environment variables, you must always restart the software.

Once the local repository has been created, you will see a .git folder in the project directory. Note that by default, the .git folder has its Hidden property set to True (see Figure 12-1).[image:]A window has a Menu tab with, General, Sharing, Security, Previous Versions, and Customize given. Below is an entry box with, dot git, typed in. Below, are Type, Location, Size, Size on disk, Contains, Created, and Attributes. In attributes, the Read-only entry bar is boxed, and below it, the checkbox before Hidden is ticked, and both are boxed. At the bottom, the OK button is highlighted.

Figure 12-1The Hidden checkbox is selected in the .git properties window

Make sure that Show Hidden Files, Folders, and Drives option in the Folder Options window (see Figure 12-2) is selected to see the .git folder.[image:]Under Folder Options, the View window is open. Below, Apply to Folders is highlighted. A box below is labeled, Advanced settings, and inside, the option, Show hidden files, folders, and drives is highlighted, and the checkbox for it is ticked.

Figure 12-2The Show Hidden Files, Folders, and Drives option must be selected

Step 2: Creating a Central Repository on GitLab
Go to https://gitlab.com/users/sign_up if you do not have a GitLab account. Sign up by providing the required information on the form.
Once you register on GitLab, you can sign in using https://gitlab.com/users/sign_in.
Provide a username and password and click the SignIn button. You will end up on the Dashboard page. Click the New Project button.
This will open the Create New Project page.
Click the Create Blank Project/Repository link to create a blank repository.
This will open a Create Blank Project/Repository page. Enter the project name in the Project Name field and set the Visibility Level to Private (see Figure 12-3).[image:]A page is open. On the menu bar, New project, and create a blank, a repository is given. Below Project Name, Jenkins Book Calculator A P I is typed in, under Project U R L, Panoday is typed in, and under Project slug, jenkins book calculator a p i is typed in. An entry box titled, Project Description, optional is below. Under it is Visibility Level, and the checkbox before the option Private is ticked. At the bottom of the page, Create Project button is highlighted.

Figure 12-3The project details entered in the Create Blank Project/Repository page

Click the Create Project button. It will create a blank project, as shown in Figure 12-4.[image:]A page is open. On the left panel, the options Project View, Details, and Activity are highlighted. On the right panel, Project, Jenkins Book Club Calculator A P I, successfully created, is highlighted. Below Invite your team, Invite members button is highlighted. Under The repository for this project is empty, the Clone button is chosen.

Figure 12-4The project created with no source files

Step 3: Committing Code to the Local Repository
Let’s create a branch and commit the code to the local repository.
Open the command prompt and go to the project’s directory using the cd command.
A copy of the code is created and you can make your changes to the branch copy without affecting the main copy. When you create a blank repository, you do not have any branches, which you can check by running the git branch command.
Let’s create the first branch by running the git checkout –b <BranchName> command.
I created a code branch called FirstBranch by running the following command:git checkout –b FirstBranch

Let’s create a file called .gitignore in the project directory, with settings shown in Listing 12-1..settings
Target
.classpath
.project

Listing 12-1Settings in the .gitignore File

The .gitignore file contains the names of directories and file changes inside which you do not want to track in the Git branches. You want to track changes done only in the src folder and the pom.xml file, so you have to add the names of other files/directories to this .gitignore file.
The Git system has the following three areas:	Working directory: Code that has not been taken up for version control yet and the Git system is unaware of its changes.

	Staging area: If you want the Git system to look for changes and keep track of them in the code files, then these files need to be added to the staging area.

	Commit area: Once you put your changes in this area, they become permanent parts of the code branch.

Let’s add the API’s code to the staging area before it can be committed in the branch.
Run the git add command, which will add all the directories and files except those added to the .gitignore file in the staging area. Whenever you make any changes in such files, Git will notify you about committing them in the branch so as to not lose those changes.
Let’s set a username/email for the code commits using the following commands:git config--global user.name <UserName>

I want to configure Pranodayd as my username for commits, so I execute the following commandgit config--global user.name Pranodayd

I set my email ID using the following command:Git config--global user.email pranoday.dingare@gmail.com

Let’s commit changes in a FirstBranch using the commit command. The format of the command is Git commit--m <Commit Message>.
I committed my project with the message using the following command:Git commit --m "First commit in Java API project"

Figure 12-5 shows that only the .java files and pom.xml are committed to the branch. The rest were not part of the staging area and so are not part of the branch, as they are listed in .gitignore.[image:]A Command Prompt window has the following, D colon backslash Jenkins Book Examples backslash, Calculator A P I greater than git checkout dash b First Branch Switched to a new branch, First Branch, D colon backslash Jenkins Book Examples backslash, Calculator A P I greater than git add space dot D colon backslash Jenkins Book Examples backslash, Calculator A P I greater than git commit dash dash m, First, commit in Java A P I project.

Figure 12-5The .java files and pom.xml files have been committed

Step 4: Pushing the Code from the Local Repository to the Central Repository on GitLab
Let’s push the code in the central GitLab repository now. To push the branch from the local repository to the central repository, run the following command:git push –u <URL of Gitlab repository> <Branch Name>

You will get the GitLab repository URL from GitLab, as shown in the following steps:
Click the Clone button present on the code repository in Gitlab.com. Click the Copy URL button from the Clone With HTTPS section, as shown in Figure 12-6.[image:]A partial screenshot displays the highlighted clone with H T T P S section. The U R L reads h t t p s colon double forward slash gitlab dot com forward slash Pranoday forwards slash jenkin. The copy U R L button is exhibited on the right and the text below reads Open in your I D E.

Figure 12-6The HTTPS URL of the repository

Use the URL that was copied in the git push command:git push –u https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git FirstBranch

After running this command, you will get a Git Credentials Manager prompt. Enter your Git username and password and click the OK button.
Once the username and password are verified, the code will get pushed to the GitLab repository.
Let’s go to the GitLab repository, refresh the page, and verify that the code is there.
Step 5: Creating a Master Branch in the Central Repository on GitLab
Now you’ll create a new branch called Master, which you are going to use as a main branch, which is where all changes from the individual developer branches will be merged after review.
Click the New Branch menu option. It will open the New Branch page.
Enter Master in the Branch Name field. Click the Create Branch button, which will create a master branch from the code in the FirstBranch branch.
You now have two branches, as shown in Figure 12-7.[image:]A window is open. An entry box on top has the word Master, typed in. Next to it are jenkins book calculator a p i slash, and a Plus sign. Below are, the Switch branch slash tag, a search bar, and the Branches option in which a checkmark is indicated on the left of Master.

Figure 12-7The two new branches

Let’s change the default branch to Master from FirstBranch, as you are going to create a release from the code merged into the Master branch.
Go to Settings ➤Repository, as shown in Figure 12-8.[image:]A window is open. On the left panel, Settings is highlighted, and the Repository option is chosen. On right, the Jenkins Book Calculator is open, and its project I D indicated. Below, Auto Dev OPs, is indicated.

Figure 12-8The Settings➤Repository menu

Click the Expand button in the Default Branch section. Select Master in the Default Branch dropdown. Click the Save Changes button.
You can now observe that the master has become the default branch. Let’s delete the FirstBranch now. Click the Branches link. Click the Delete Protected Branch link of the FirstBranch. This will open the Delete Protected Branch ’FirstBranch’ ? window. Enter FirstBranch into the Input field and click the Delete Protected Branch button.
Now you have only one branch (the Master), which is the default branch and main branch of your application.
Understanding the Nexus Repository
In the previous section, you learned about the Source Code Repository called Git. Now it’s time to look at the Artifact Repository called Nexus.
What is an Artifact?
An artifact is any output created from the build process. For example, if you are working on a web application and you package this application in the form of a .WAR file that you use to deploy the web application, this .WAR file is an artifact. In the case of the Java API project, you are going to bundle the implementation in a .JAR file, which is an artifact generated as part of the build process.
What is the Nexus Repository?
When you add functionality to the CalculatorAPI, Git will keep different versions of the source code, but along with keeping source code versions, you need a system—an artifact repository—which will keep different versions of artifacts as you create different versions of the CalculatorAPI.jar file. The Nexus repository is such a system; it gives you a platform where you can release the artifacts and your users can download them from this repository as needed. You can deploy the artifacts to the mvnrepository.com available on web as well, but artifacts deployed here can be downloaded and used by anyone. If you want to create an artifact repository that’s accessible only by the people in your organization, you should set up a Sonatype Nexus repository in your organization’s network.
Installing the Nexus Repository
Download the Nexus repository .ZIP from this link:
https://www.sonatype.com/products/repository-oss-download.
Unzip this folder to some location on your system. I unzipped this folder to D:\NexusRepository on my machine.
It has the following folders:	nexus-3.30.1-01: This folder contains files related to the Nexus system. For example, Nexus.exe is present in the bin folder and you can use it to start the Nexus system.

	sonatype-work: This folder contains data of different artifact repositories you create to manage different versions of the artifacts.

How to Start the Nexus Repository System
The Nexus repository system provides a server that you use to start on the system at the IP address of the machine and a particular port. You can set up the IP address and port where you want to start the Nexus repository server in the nexus-default.properties file present in the etc folder inside the Nexus Installation folder.
On my system, this file is at D:\NexusRepository\nexus-3.30.1-01\etc\nexus-default.properties.
Let’s open this file and set the application-port to the port on which we want the Nexus server to start. You can also set application-host to the IP address of the machine you want to start Nexus server on. Save the changes in the file.
I set the application-port to 8081 and the application-host to 192.168.43.10, which is the IP address of my machine. You need to find the IP address of your machine by running the ipconfig DOS command.
Once these changes are done, start the Nexus server by running the Nexus.exe /run command in the command prompt. Nexus.exe is present in the bin folder inside the Nexus Installation folder.
Open the command prompt and change the working directory to the bin folder present in the Nexus Installation directory.
Run the Nexus.exe /run command and wait until the Sonatype Nexus server starts. It may take a few minutes if you are setting up the Nexus repository the first time. During the setup process, a default admin user (UserName: admin) will be created and the password will be stored in the ${NexusInstallationDir}\sonatype-work\nexus3\admin.password file.
Click the Allow Access button on the Windows Security Alert window. The server will start successfully.
Installing Nexus as a Service
You can install Nexus as a Windows service using the following command:Nexus.exe /install <ServiceName>

ServiceName is optional in this command.
Open the command prompt and make ${NexusInstallationDir}\bin the working directory. Run the Nexus.exe /install MyNexusService command.
You can verify in the Services area that the service is installed, as shown in Figure 12-9.[image:]A Services window is open. In the menu bar, File, Action, View, and Help are given. On the left Panel, Services, local is highlighted. On the right, below Services, local is My Nexus Service. Next to it is a table with headers, Name, Description, Status, Startup Type, and Log on as. A row entry, My Nexus Service, Automatic, is Highlighted.

Figure 12-9The Nexus service is installed with the name MyNexusService

Start the service by clicking the Start Service button.
Accessing the Nexus Repository Manager
Open a browser and access the server by using http://<IPAddress>:<Port>.
I accessed my server with http://192.168.43.10:8081. Use your own IP address when accessing Nexus from your browser.
Click the Signin button shown in the top-right corner of the page. This will open Sign In window, shown in Figure 12-10.[image:]A window is open. A pop-out box titled, Sign In is located at the center. The box has the following, Your admin user password is located in D colon backslash Nexus Repository backslash sona type work backslash nexus 3 backslash admin dot password on the server, 2 entry boxes for Username and Password, and buttons for Sign in and Cancel.

Figure 12-10The Sign In window in Nexus

Enter admin into the UserName field. Then enter the password generated in the admin.password file present in the ${NexusInstallationDir}\sonatype-work\nexus3\ directory.
On my machine, this file is in D:\NexusRepository\sonatype-work\nexus3.
I copied the password from the admin.password file and entered the Password field in the SignIn page. Click the Signin button.
Click the Next button on the setup wizard. Enter the new admin password and click the Next button.
Select Disable Anonymous Access to allow access only by providing valid credentials. Click the Next button. Click the Finish button to complete the setup.
Creating a Hosted Repository to Release the Artifacts
Let’s create a hosted repository in the Nexus repository. Click the Server Administration and Configuration button. Click the Repositories link. Then click the Create Repository button. This will open the Repositories/Select Recipe page. Select Maven2 (hosted) from the list.
Name the repository in the Name field on the Create Repository:maven2 (hosted) page. I named my repository JenkinsBookCalculatorAPI_Release.
Scroll down the page and click the Create Repository button. You created the repository and it’s shown in the Repositories list on the Repositories Manage Repositories page.
Integrating Maven and the Nexus Repository
You have configured the Nexus repository that you want to use as the central artifact repository to release the Java API Calculator.jar file. The Maven build tool by default uses https://repo.maven.apache.org/maven2 as a central repository, which is where the project’s artifact (.JAR) file gets deployed. Now you need to tell Maven to use the newly-created Nexus repository to deploy the artifacts instead of using https://repo.maven.apache.org/maven2.
You need to list the Nexus repository URL in the project’s pom.xml file. You can get the repository URL by clicking the repository link present in the repositories list on the Repositories Manage Repositories page.
Copy the URL in the URL field.
Open pom.xml and add this URL under the <distributionManagement></distributionManagement> tag, as shown in Listing 12-2.<distributionManagement>
 <!-- Publish the versioned releases here -->
 <repository>
 <id>PranodaydNexusRepo</id>
 <name>PranodaydNexusRepo</name>
 <url>http://192.168.43.10:8081/repository/JenkinsBookCalculatorAPI_Release/</url>
 </repository>

</distributionManagement>

Listing 12-2Configured URL of the Repository in pom.xml in the <distributionManagement> Tag

The Nexus repository does not allow anonymous access, so you have to provide the username and password of the Nexus repository in the settings.xml file (see Listing 12-3). Create a settings.xml file if one is not already present in ${use.homer}\.m2 and list the Nexus repository username and password in it.<servers>
 <server>
 <!-- this id should match the id of the repo server mentioned in pom.xml -->
 <id>PranodaydNexusRepo</id>
 <username>admin</username>
 <password>admin123</password>
 </server>
</servers>

Listing 12-3Configured Nexus Username and Password in settings.xml

Note
The <id> listed in the <Repository></Repository> tag in pom.xml should be same as the one listed in <id> in settings.xml in the <server></server> tag.

Releasing the CalculatorAPI.jar File in the Nexus Repository
You have configured the Nexus Repository URL and the credentials in Maven. Now you are all set to release the CalculatorAPI.jar in Nexus repository.
Open the command prompt and change the working directory to the Java API project directory using the cd command.
Run the mvn deploy command.
This command will run all the build lifecycle phases like downloading resources, compiling source code, compiling unit test code, running unit test cases, and packaging class files in CalculatorAPI1.0.jar. As a final phase this created CalculatorAPI1.0.jar will be deployed to the Nexus repository.
Let’s go to the Nexus repository and see the release there. Go to the Nexus Repository dashboard. Click the Browse link available on left side of the dashboard repository created in the Repositories list on the Repositories Manage Repositories page.
Click the repository entry shown in the list on the Browse Assets and Components page.
Hurray! We released the CalculatorAPI1.0.jar file to the Nexus repository.
Creating a Jenkins Free-style Job to Release the CalculatorAPI.jar in the Nexus Repository
In this section, you learn how to set up Jenkins and create a free-style job to release a new version of the calculator (CalculatorAPI2.0.jar) in the Nexus repository.
Step 1: Setting Up Maven in Jenkins
Start the Jenkins server and sign into Jenkins. Go to the Jenkins dashboard. Choose Manage Jenkins ➤ Global Tool Configuration. This will take you to the Global Tool Configuration page.
The Default Settings Provider field has a field called Use Default Maven Settings, which is the default settings.xml file in ${use.homer}\.m2. This is the file where you set the Nexus repository credentials. So no need to change anything here.
Scroll down the page and click the Add Maven button. This will expand the Maven section.
Enter a name in the Name field, uncheck Install Automatically, and specify the Maven installation directory path in the MAVEN_HOME field. Click the Save button.
Step 2: Adding Git Repository Credentials to Jenkins
Go to the Credentials Manager and create a credentials entry with the Git username and password. Refer to Chapter 8 for detailed steps for creating a credentials entry. I created a credentials entry in the Jenkins Credentials Manager.
Step 3: Creating a Free-Style Job from the Jenkins Dashboard
Click the New Item link on the Jenkins dashboard. Enter a job name in the Enter an Item Name field and select the Free-style Project option. Click the OK button.
I called my job ReleaseCalculatorAPI and selected the Free-style Project option.
Select the Git radio button in the Source Code Management section and enter the Git code repository HTTPS URL in the Repository URL field. Refer to the “Push the Code from Local Repository to Central Repository on GitLab” section in this chapter to learn the steps required to get the repository URL from the GitLab repository.
Select the credentials entry with the GitLab username/password from the Credentials dropdown and the enter branch name as Master in the Branch Specifier field. This example uses Master for the main Git repository branch.
Scroll down the page to add a build step. Click the Add Build Step dropdown and select the Invoke Top-Level Maven Targets option.
Select the MyMaven option in the Maven Version dropdown. Enter Deploy in the Goals field. Click the Save button.
Step 4: Add a Subtraction Function and Unit Test Cases to the API Project
Listing 12-4 shows the Subtraction function added to Calculator.java.public int Subtraction(int num1,Int num2)
{
 int Res=num1-num2;
 return Res;
}

Listing 12-4Subtraction Function from Calculator.java

I created a file named TestSubtractionFunctionality.java under the Pranodayd.CalculatorAPI package in the src/test/java folder and added a few unit test cases for the subtraction functionality to it. Refer to Listing 12-5.package Pranodayd.CalculatorAPI;

import org.testng.Assert;
import org.testng.annotations.AfterClass;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;
import org.testng.annotations.BeforeMethod;
public class TestSubtractionFunctionality
{
 Calculator Cal;
 int Result;
 @BeforeClass
 public void Init()
 {
 Cal=new Calculator();

 }

 @BeforeMethod
 public void ReInitialise()
 {
 Result=0;
 }

 @Test(priority=1,groups= {"RegressionTest"})
 public void TestSubtractionWithPositiveNumbers()
 {

 Result=Cal.Subtraction(50, 10);
 Assert.assertEquals(Result, 40,"Subtraction does not work with Positive Numbers");
 }

 @Test(priority=2)
 public void TestSubtractionWith1Positive1NegativeNumbers()
 {

 Result=Cal.Subtraction(50, -10);
 Assert.assertEquals(Result, 60,"Subtraction does not work with 1 Positive and 1 Negative Numbers");
 }

 @AfterClass
 public void Teardown()
 {
 Cal=null;
 }
}

Listing 12-5Unit Test Cases Implemented in TestSubtractionFunctionality.java

Let’s change the version from 1.0 to 2.0 in the project’s pom.xml, as we added new functionality to the API and are now planning to release version 2.0 of CalculatorAPI.jar. I changed the version to 2.0, as shown in Listing 12-6.<groupId>Pranodayd</groupId>
 <artifactId>CalculatorAPI</artifactId>
 <version>2.0</version>

Listing 12-6GroupId, ArtifactId, and Version Tags from pom.xml

Save the changes in pom.xml as well as the .java files you just created. The developer will run Unit test cases and see them pass before they move ahead with committing and pushing the change.
Step 5: Commit Changes in the Local Repository and Push them to the Central GitLab Repository
Open the command prompt and enter into the project directory using the cd command.
Let’s create a new branch to keep track of this new change, using the following command:Git checkout –b "SubtractionFunction"

Let’s add the changes in the staging area by running the git add command. Let’s commit changes in the newly created branch by running this command:git commit --m "Adding subtraction function in Java API project"

Now we’ll push the branch in the Git central repository using this command:git push -u https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git SubtractionFunction

Note
Git may not ask for credentials this time because last time, when you pushed the code to the GitLab repository, you provided the Git credentials. They can be saved in the Windows Credentials Manager from the Control Panel. If Git asks for credentials, enter the Git username and password, just the way you did in the previous occasion.

Step 6: Merge the SubtractionFunction Branch with the Master Branch on the Central GitLab Repository
As soon as you refresh the GitLab repository page in the browser, you will see a notification at the top of the page that the SubtractionFunction branch has been pushed.
Click the Create Merge Request button. It will open New Merge Request page.
Enter a description about the new change implemented in the Description field. It is an optional field. Click the Assign to Me link available from the Assignee field to assign this merge request to yourself.
Scroll down the page to see the Create Merge Request button.
Keep the Delete Source Branch When Merge Request Is Accepted checkbox checked. Once the SubtractionFunction branch merges with the Master branch, the SubtractionFunction branch will be deleted from the central repository.
Click the Create Merge Request button. Click the Merge button to merge changes in the Master branch
Figure 12-11 shows that the changes were merged successfully in the Master branch, because the Subtraction function can be seen in the Calculator class.[image:]A window is open with the following part of a code highlighted, public i n t Subtraction open parenthesis i n t num 1 dot i n t num 2. close parenthesis, angle bracket, i n t Resi num 1 dash num 2 semicolon, return Res semicolon, slash slash slash return 0 semicolon, angle bracket.

Figure 12-11The Subtraction function in Calculator.java in the GitLab repository

Running a Jenkins Free-Style Job to Perform a Release of the CalculatorAPI.jar in the Nexus Repository
Click the clock sign next to the job entry on the dashboard. You can see the progress in the Build Executor Status section on left side of dashboard.
Once the job has executed, you can see its console output (see Figure 12-12).[image:]A window is open with the following entries from the top, Started by user Pranoday Dingare, Running as System, and Building in workspace C colon backslash Users backslash magicuser backslash dot jenkins backslash workspace backslash Release Calculator A P I. Below is, The recommended git tool is colon NONE using credential My Git Credentials, and Cloning the remote Git repository. And a code follows with functions, greater than git dot exe.

Figure 12-12The console output of the executed job

Go to the Nexus repository to confirm successful release of the CalculatorAPI2.0.jar file. Figure 12-13 shows that the CalculatorAPI 2.0.jar file was released successfully in the Nexus repository.[image:]A window is open at a folder icon named, 2.0. Below are the options, Calculator A P I dash 2.0 dot jar, Calculator A P I dash 2.0 dot jar dot m d5, Calculator A P I dash 2.0 dot jar dot sha1, Calculator A P I dash 2.0 dot pom, Calculator A P I dash 2.0 dot pom dot m d5, Calculator A P I dash 2.0 dot pom dot sha1, maven dash metadata dot x m l, maven dash metadata dot x m l dot m d5, and maven dash metadata dot x m l dot sha1.

Figure 12-13The CalculatorAPI 2.0 released in the Nexus repository

Summary
This chapter explained the distributed version control system called Git. You also looked at different Git commands, like git init, git add, git commit, and git push. Then you created a central repository on GitLab and pushed the source code of the Java API code. You learned about the concept of branching and saw how to merge two branches once the developer is finished developing the feature and unit testing it. You also learned about the popular Artifact repository called Nexus. At the end of the chapter, you integrated Maven with Nexus and released a new version of the Calculator API on Nexus by running a Jenkins job. The next chapter explains how to create auto-triggered Jenkins jobs.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_13

13. Creating an Auto-Trigger Free-Style Job to Manage Java API Releases

Pranoday Pramod Dingare1
(1)Pune, Maharashtra, India

In the last chapter, you learned about Git, GitLab, the Nexus repository, and how to integrate the Maven build tool with the Nexus repository. You also created a free-style Jenkins job to release the CalculatorAPI2.0 JAR on the Nexus repository. Now that you have the required knowledge, it’s time to look at a few more interesting, real-time scenarios.
This chapter explains how to add a new user as a contributor to a private GitLab repository, what SSH authentication is, how to apply SSH authentication to a GitLab repository, how to connect to an SSH authenticated GitLab repository from Jenkins, and how to create a Jenkins job that will poll SCM and trigger the automatic build execution.
How to Add a New Code Contributor to a Private GitLab Repository
In the last chapter, when you worked with the GitLab repository, you were using the GitLab credentials of a GitLab user who created a GitLab repository. Such a person has administrator privileges on the GitLab code repository. This person could be a developer working on an application. In a development team, multiple developers seldom work with the application. In order to allow these other developers to work with the GitLab repository, the administrator needs to add them as contributors. The administrator can give different roles to different people working with the application, based on the kind of contribution they are going to make. For example, a few team members will only report bugs on an application, so they might need reporter privileges. Other team members are going to work as developers so they need more privileges than the previous ones. A GitLab administrator can add team members to the Code repository and assign them different roles.
How to Invite a Team Member to the Code Repository
Only the administrator of a repository can invite a new team member. The person who is the administrator wants to invite should have a valid GitLab account.
Here’s the step-by-step process for this:	1.
Log into the GitLab repository with administrator credentials: Log into the GitLab with the credentials of the GitLab user who created the Code repository. The JenkinsBookCalculatorAPI GitLab repository was created by the dpranoday@gmail.com user. I am logging in with the credentials of this user in GitLab.

After logging in, you will land up on the GitLab dashboard.	2.
Go to the code repository: Find the required code repository on the GitLab dashboard. The required code repository is called JenkinsBookCalculatorAPI.

	3.
Click the GitLab repository link to enter into a repository, which will take you to the repository main page.

	4.
Go to the Project Members page: Choose Project information ➤ Members on the left side of the page (see Figure 13-1).

[image:]A user interface of Gitlab. The menu options are Project Information, Repository, Issues, Merge request, C V C D, Security and Compliance, Deployments, Monitor, Infrastructure, Packages and Registries, Analytics, Wikis, Snippets, and Settings.

Figure 13-1The Members menu option under the Project Information menu

This will take you to the Project Members page.	5.
Add a new member to the Invite Member tab: Type the GitLab user ID of a member you want to invite to the GitLab Member or Email Address field.

	6.
Select the desired member from the dropdown. I want to invite Pranoday Dingare (@Pranodayd), so I clicked that entry.

	7.
Set a role to this user now by selecting the role from the dropdown in the Select a Role field. Click the Select a Role field, which will open a list of roles.

I want to invite this member as a developer, so I selected the Developer option from the dropdown.	8.
Click the Invite button. The person who has been invited will get an invitation email from their GitLab account email address.

Now this member can contribute their changes to the Java API code repository.
Understanding SSH Authentication
You can authenticate access to the GitLab code repository using various techniques, like basic authentication, SSH authentication, API Key, etc. In basic authentication, you authenticate the user based on their GitLab username and password, which you saw in the previous chapter. In the previous chapter, you learned how to push the code to the GitLab repository. You also learned how to authenticate Jenkins access to the GitLab repository by creating a credentials entry. In this section, you learn about SSH authentication, which is where the user is authenticated using a public and private key pair.
Why You Need SSH Authentication
If you authenticated the developer on the GitLab repository using their username/password (i.e., basic authentication), they can access the code repository on any machine (even their personal computers) by sending their valid username and password. But if you want to restrict access to the code repository only from a particular machine (such as an office workstation), you can do so by applying SSH authentication to your GitLab code repository.
How SSH Authentication Works with GitLab
This technique of access works in the following way:	1.
In this technique a developer wanting to access your code repository needs to generate a private key and public key on their machine.

They need to send that generated public key to the administrator of the GitLab code repository.	2.
The administrator will then add this public key to the repository they want to grant an access to.

	3.
When the developer accesses the code repository, a private key stored on their machine will be sent to GitLab. It will check for a public key that matches the private key. If the keys match, access is granted; otherwise, it will be rejected.

Applying SSH Authentication to the Java API Code Repository
Let’s apply SSH authentication to your Java API Code repository. Follow these steps given:
Step 1: Generating the Public and Private Keys
You need to generate a public and private key pair for the machine that holds the code repository. To generate a key pair, you need to use ssh-keygen tool from the ssh-keygen command.
You need to make sure that OpenSSH is installed on your machine, which you will find installed if you are using Windows 10 (10 April 2018 Update and above). If you are using an older version of Windows, you need to install OpenSSH first.
Launch the Settings app and click the Apps & Features category (see Figure 13-2).[image:]A user interface of the Apps and Features windows operating system. Manage optional features is highlighted.

Figure 13-2The Apps & Features window

Click the Manage Optional Features link. If you don’t see OpenSSH client in the list, click the Add a Feature button and install it. You might need to reboot the machine after installation. Once the OpenSSH client is installed, you are all set to generate the SSH key pair.
Open the command prompt and run the ssh-keygen command.
It will ask for the path of the file where key pair is to be generated. If you press Enter without entering anything, the key pair will be generated in the default path, i.e., $(user.home)\.ssh\is_rsa.
I want to generate the SSH key pair in D:\SSHKey\MyGitlabKeys so I enter this path: D:\SSHKey\MyGitlabKeys (see Figure 13-3).[image:]A user interface of the code window for achieving the s s h, keygen command. The code has generating public or private rsa key pair. Enter file in which to save the key with a file location in C and D folder location.

Figure 13-3Executing the ssh-keygen command

It will ask you to enter the passphrase, which is a password you need to provide whenever you use this SSH key.[image:]A source code for the public private key pair S S H authentication. The code has generating public or private rsa key pair. Enter file in which to save the key. Enter passphrase. Enter same passphrase again. The key fingerprint is. The key randomart image is.

Figure 13-4The public-private key pair was successfully generated

Figure 13-4 shows that the key pair was successfully created inside D:\SSHKeys. The first file contains the private key and the second file contains the public key.
Step 2: Adding the Public Key to the JenkinsBookCalculatorAPI GitLab Repository
The developer generated this key pair to send a public key to the GitLab repository manager so that they can add it in GitLab. I am adding this public key in GitLab where the JenkinsBookCalculatorAPI repository is.
To add the SSH key, click the User Avtar seen on the top-right side of the page. Click the Preferences menu option shown in Figure 13-5.[image:]A user interface of Gitlab. The menu options are Set status, Start an ultimate trial, Edit profile, preferences, sign out.

Figure 13-5The Preferences menu

This will open the Preferences page. Click the SSH Keys menu option available on the left side of the page. This will open the SSH Keys page. Copy the contents of the MyGitLabKeys.pub file and paste it into the Key field.
You can use the title and this key entry will be stored in the Title field. I used Pranodayd@LPTSEPT12 in this field. Figure 13-6 shows all the details filled in.[image:]A user interface of the User Settings in Gitlab. Under the User, Settings are Profile, Account, Billing, Applications, Chat, Access Tokens, Email, Password, Notifications, S S H Keys, G P G Keys, Preferences, Active Sessions, Authentication Log, and Usage Quotas. The selection tool is in the S S H Keys section that has Title input and Expires at. With an add key button.

Figure 13-6The details filled in the Key and Title fields

Click the Add Key button. This will add the key to GitLab successfully.
Accessing the JenkinsBookCalculatorAPI Repository Using SSH URL and Adding new Arithmetic Functions to the CalculatorAPI
Now the new developer member who has been invited to contribute to the JenkinsBookCalculatorAPI is all set to implement new arithmetic functions in the CalculatorAPI project with their SSH key added to the repository.
Step 1: Cloning the JenkinsBookCalculatorAPI Repository
This new developer is contributing for the first time to this repository so they have to get the whole remote repository on their machine through the clone operation.
A clone operation downloads the whole repository (commit history etc.) along with the contents like source code files etc. on a machine. But before you can clone a repository, you have to do the following settings.
Do you remember that while generating an SSH key pair using the ssh keygen command, that you added a file path to generate a key pair at a different location? If the private key is present in the default location i.e. $(user.name)\.ssh, you can run the git clone command directly.
The private key is in D:\SSHKeys\MyGitlabKeys. Your need to perform any of these settings:	Option 1: Register the private key file against a domain for which you want to use it in the known_hosts file in the $(user.name)\.ssh folder, so that when you try to connect to the Gitlab.com, the ssh client will send a private key from this known_hosts file and access would be granted.
Run the following command to register the PRIVATE KEY in known_hosts:

ssh –I D:\SSHKeys\MyGitlabKeys git@gitlab.com

This will ask for confirmation, Are you sure you want to continue connecting (yes/no/[fingerprint])?
Type yes and press Enter.	This will ask for a passphrase. Enter yours.

[image:]A code of the private key for GitLab. The code is C colon slash Users slash magicuser angle bracket ssh dash iD colon slash S S H Key slash My GitlabKeys git at the rate of gitlab.com. Are you sure you want to continue connecting is chosen as yes. Warning colon permanently added gitlab.com, 2606 colon 4700 colon 90 colon 0 colon f22e colon fbec colon 5bed colon a9 b9 to the list of known hosts.

Figure 13-7The GitLab has successfully authenticated the user based on the private key

Figure 13-7 shows that the private key was registered successfully.	Go to the $(user.name)\.ssh folder. You will see a file named known_hosts there.
Open this file to see that the private key from the file is registered against the git@gitlab.com domain.
Now you can clone the repository.

	Option 2: You have to create a config file in the $(user.name)\.ssh folder and add the private key file entry to it. Let’s look at this process.

	Go to the .ssh folder. On my machine, I have the .ssh folder in C:\Users\magicuser\.ssh.

	Right-click and select Git Bash Here to open Git bash.

	Run the touch config command (see Figure 13-8), which will create a config file in the .ssh folder.

[image:]A code of the private key for the touch config command GitLab. The code is magicuser at the rate of L P T S E P T 12 M I N G W 64 approximately slash dot ssh. Dollar touch config. magicuser at the rate of L P T S E P T 12 M I N G W 64 approximately slash dot ssh.

Figure 13-8The touch config command executed in git bash

You can see that the config file is created in C:\Users\magicuser\.ssh.	Open the file in the notepad editor and enter the following details in it. Save the file:

GITLAB
Host gitlab.com
 HostName gitlab.com
 PreferredAuthentications publickey
 IdentityFile D:\SSHKey\MyGitlabKeys

	Option 3: Open the command prompt and run the following command, which will set the private key file in the git global config file:

git config --global core.sshCommand "ssh -i D:\\SSHKey\\MyGitlabKeys -F /dev/null"

	Now get the SSH URL of the repository.

	Click the Clone button available on the repository page on GitLab.

	Click the Copy URL button available in the Clone with SSH section.
I created a new blank folder named NewDeveloper on D: to clone the repository and start coding by opening a project.

	Open the command prompt and make D:\NewDeveloper a working directory in the command prompt using the cd command.

	Run the git clone git@gitlab.com:Pranoday/jenkinsbookcalculatorapi.git command.
This will ask for confirmation, as the SSH client will not consider Gitlab.com as a known host.

	Type yes and press Enter. Gitlab.com will now be added to the known_hosts file in the ($user.name)\.ssh folder.
Note If you chose Option 1, then while cloning a repository, it will not ask for confirmation, as Gitlab.com must have added in known_hosts while applying settings mentioned in Option 1.

	Enter the passphrase that you entered while creating the SSH key pair.

The project has been successfully cloned.
Step 2: Adding a Multiplication Function to the Calculator Class
Let’s open the cloned project in Eclipse and add a Multiplication function to the Calculator.java file.
I created a blank workspace and now I am importing a cloned Maven project into it. Select the File ➤ Import menu option in Eclipse.
Select the Existing Maven Projects option under the Maven section and click the Next button. Add the path of the cloned project to the Root Directory field and click the Finish button. This will import the project into Eclipse.
Let’s open the Calculator.java file and add the following code:public int Multiplication(int num1,int num2)
 {
 int Res=num1*num2;
 return Res;

 }

Step 3: Adding Unit Test Cases for the Multiplication Function
I added a few unit test cases (see Listing 13-1) for the Multiplication function to the TestMultiplicationFunctionality.java file under Pranodayd.CalculatorAPI package in src/test/java.package Pranodayd.CalculatorAPI;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.nio.file.StandardCopyOption;

import org.testng.Assert;
import org.testng.annotations.*;
public class TestMultiplicationFunctionality
{
 Calculator Cal;
 int Result;
 @BeforeClass
 public void Init()
 {

 Cal=new Calculator();

 }

 @BeforeMethod
 public void ReinitialisingResult()
 {
 Result=0;

 }
 @Test(priority=1,dataProvider="ProvidePositiveIntegerValues",groups= {"RegressionTest"})
 public void TestMultiplicationWithPositiveValues(int Number1,int Number2,int ExpectedResult)
 {

 Result=Cal.Multiplication(Number1, Number2);
 Assert.assertEquals(Result, ExpectedResult,"Multiplication does not work with positive numbers");
 }

 @DataProvider
 public Object[][] ProvidePositiveIntegerValues()
 {
 /*We want to test functionality with 3 SETs
 *
 * SET1 :1,2,2
 * SET2 :10,20,200
 * SET3 :1000,2000,2000000
 SET4 :100,200,20000
 */

 Object [][] SetOfValues=new Object[4][3];
 //This is SET 1: 1,2,2

 SetOfValues[0][0]=1;
 SetOfValues[0][1]=2;
 SetOfValues[0][2]=2;

 //This is SET 2: 10,20,200
 SetOfValues[1][0]=10;
 SetOfValues[1][1]=20;
 SetOfValues[1][2]=200;

 //This is SET 3: 1000,2000,2000000
 SetOfValues[2][0]=1000;
 SetOfValues[2][1]=2000;
 SetOfValues[2][2]=2000000;

 //This is SET 4: 1000,2000,2000000
 SetOfValues[3][0]=100;
 SetOfValues[3][1]=200;
 SetOfValues[3][2]=20000;

 return SetOfValues;
 }

}

Listing 13-1Unit Test Cases Written in TestMultiplicationFunctionality.java

Step 4: Changing the Version Number to 3.0 in pom.xml
Say you are planning to release Version 3.0 of the CalcualtorAPI.jar with this new Multiplication functionality. You need to go to pom.xml and change the version from 2.0 to 3.0, as shown in Listing 13-2.<groupId>Pranodayd</groupId>
<artifactId>CalculatorAPI</artifactId>
<version>3.0</version>

Listing 13-2Shows the Version Changed to 3.0 in pom.xml

Step 5: Unit Testing the Recent Multiplication Function and Regression Testing for the New Functionalities
Let’s run the mvn test command and execute all the unit test cases. This will confirm the newly added Multiplication function is working and has not broken the previously implemented Addition and Subtraction functions.
Open the command prompt and change the working directory to the project directory using the cd command. Then run the mvn test command.
Verify that all the test cases passed.
Step 6: Committing New Functionality Changes in a Branch Named Multiplication Function in the Local Repository
As you have confirmed that the newly developed function is working along with the old functionalities of the API, you can commit the changes to the new branch.
Let’s create a branch named Multiplication Function by running the following command:Git checkout –b "MultiplicationFunction"

Add the changes to the staging area with the following command, which will add all the changed files from the current directory as well as any subdirectories to the current directory in the Staging area:git add.

Commit the changes to the newly created branch with this command:git commit --m "Multiplication function is added in Calculator API"

Step 7: Pushing the MultiplicationFunction Branch to the Remote Repository
Push this branch to the remote repository using this command:git push –u git@gitlab.com:Pranoday/jenkinsbookcalculatorapi.git MultiplicationFunction

Note that you are using SSH URL while pushing this branch as well.
Enter the passphrase for the SSH key.
This branch will successfully be pushed to the remote repository (see Figure 13-9).[image:]A code for the pushed to the remote repository. The Remote line reads, to create a merge request for multiplication function, visit specified url.

Figure 13-9The code is successfully pushed to the remote repository

Now refresh the GitLab repository page. You will see that the new branch called MultiplicationFunction has been pushed and is ready to be merged.
Step 8: Creating a Merge Request for this New Branch
Now create a merge request by clicking the Create Merge Request button. This will take you to the New Merge Request page.
Add details to the Title and Description fields and click the Create Merge Request button.
Now you have to simply click the Merge button to merge changes in the master branch. But you have to do this after creating the Jenkins job because you need to trigger a Jenkins job as soon as you merge the code in the master branch and create a CalculatorAPI.jar file’s new version and deploy it on the Nexus repository.
Creating an Auto-Trigger Jenkins Job with Email Notification
Let’s create a free-style job that you are going to trigger automatically to release a new version to the Nexus repository.
Step 1: Creating a Free-Style Job from Jenkins Dashboard: Click the New Item link on Jenkins Dashboard
Enter a job name in the Enter an Item Name field and select the Free-style project option. Click the OK button.
I named my job ReleaseCalculatorAPIAutoTrigger.
Click the OK button.
Select the Git radio button in the Source Code Management section and enter the Git code repository SSH URL in the Repository URL field.
Now create the SSH credentials entry. Click the Add button in the Credentials field.
Click the Jenkins option. This will open the Jenkins Credentials Provider: Jenkins page.
Keep the Global Credentials (Unrestricted) option selected in the Domain field. Select the SSH Username with Private Key option in the Kind field dropdown. Enter a value in the ID field. I entered MyGitSSHCredentials.
Select the Enter Directly radio button in the Private Key section. Click the Add button in the Private Key section. Copy the private key from the private key file. Paste the private key in the field. Enter a passphrase of the key in the Passphrase field.
All the required details are shown in Figure 13-10. Click the Add button.[image:]A user interface of the Dashboard under Source Code Management, are I D, Description, Username, Private Key, tick button on Enter directly, Key, and Passphrase. With add and cancel option buttons.

Figure 13-10All mentioned details filled in while creating Credentials entry

Let’s select the created SSH credentials entry in the Credentials field dropdown to resolve the “Permission denied” error shown in the Repository URL field. This error is because you have not mentioned the SSH private key to authenticate access.
Click the Apply button. You can see that the error is gone now.
Enter the branch name “Master” in the Branch Specifier field, as you are using master as the main Git repository branch.
Scroll down the page to the Build Triggers section. Select the Poll SCM checkbox.
Choose the polling schedule “After every 5 minutes, every hour, every Day Of Month, every Month, every Day Of Week”.
This setting will make Jenkins check the repository’s master branch every five minutes for changes. When Jenkins detects changes, it will trigger a build.
Scroll down the page to add a build step. Click the Add Build Step dropdown and select the Invoke Top-Level Maven Targets option.
Select the MyMaven option in the Maven Version dropdown. Enter deploy into the Goals field. See Figure 13-11.[image:]A user interface of the Build window. With selections, Invoke top level Maven targets, Maven Version, and Goals. With an advanced option button selection.

Figure 13-11The Maven Version and Goals option in the Build section

Let’s configure Email Notification in the post-build step. Click the Add Post-Build Action button. Select the Email Notification option.
Enter your email ID where you want to receive an email notification. Keep the Send Email for Every Unstable Build checkbox checked to receive email notifications if the build fails.
Click the Save button.
Setting Up Jenkins to Send Email Notifications
You created a Jenkins job with email notification, but before you execute that job and see the notification, you need to adjust a few settings in Jenkins.
Choose the Manage Jenkins menu on the Jenkins dashboard, which will open the Manage Jenkins page. Click the Configure System option.
This will take you to the System Configuration page. Scroll down to the Jenkins Location section.
Enter an email address in the System Admin Email Address field. Once you receive email notification from Jenkins, you will see this email address in the From column in your inbox. I entered pranoday.dingare@gmail.com in this field.
Scroll down to the Email Notification section.
Configure the SMTP Server first. The SMTP server provides a SMTP service required to send emails. If your organization has an SMTP server setup, you can add its IP address to the SMTP Server field.
I use Gmail’s SMTP server, so I entered smtp.gmail.com into the SMTP Server field.
Click the Advanced button, which will open more settings, as shown in Figure 13-12.[image:]A user interface of the Email Notification window. With selections S T M P server, Default user email suffix, S M T P Port, Reply to Address, and Charset.

Figure 13-12More settings related to the SMTP server

Select the Use SMTP Authentication checkbox and enter a valid Gmail account username in the User Name field and a Gmail account password in the Password field. By using this UserName and Password, Gmail’s SMTP server will authenticate access.
Note
If you added the IP address of an SMTP server from your organization’s domain into the SMTP Server field, you have to enter the user credentials into these User Name and Password fields.

I provided my Gmail account’s username and password. Check the Use SSL checkbox and enter 465 into the SMTP Port field.
Let’s test this configuration. Click the Test Configuration by Sending Test Email checkbox. Enter a valid email and click the Test Configuration button.
I get an error, javax.mail.AuthenticationFailedException: UserName and Password not accepted. If you get this error, you have to allow less secure apps to send you an email.
I am using dpranoday@gmail.com to send an email, so let’s go to Gmail and click the Manage Your Google Account option.
Click the Security option available on the left side of the page. This will open the Security page.
Scroll down to the Less Secure App Access section.
Click the Turn On Access (Not Recommended) link from this section, which will open the Less Secure App Access page. Click the Allow Less Secure Apps:OFF radio button to turn it on.
Now go back to Jenkins and test the configuration again by clicking the Test Configuration button. The email was sent successfully.
Triggering the New Jenkins Job
You have created the Jenkins job that will poll the master every five minutes and trigger a build as soon as it detects a change.
Now let’s go to GitLab and merge the MultiplicationFunction branch with the master branch.
Let’s go to the GitLab repository page. Click the Merge Requests menu shown on the left side. This will take you to the Merge Requests page.
Click the Multiplication Function is Added in Calculator API link. Click the Merge button to merge the changes in the MultiplicationFunction branch with the master branch.
Now let’s go to the Jenkins dashboard. Wait until Jenkins polls the repository at the next polling schedule time. The build is shown in the Build Queue. Wait until the build starts executing. The entry will be shown in the Build Executor status section.
Now go to the console output of this build. Observe at the top of the console log that a job has been triggered due to an SCM change.
Scroll down to see that CalculatorAPI3.0.jar was successfully deployed on the Nexus repository.
Let’s go to the Nexus repository and confirm the release (see Figure 13-13).[image:]A user interface of the Browse window. With upload component option, and H T M L View. That has sub folders for each function.

Figure 13-13The 3.0 version of CalulatorAPI.jar has been successfully deployed to Nexus

Understanding the Execution of Jobs with SCM Set
When a build triggers for a job with SCM set, the workspace directory is created in the $(Jenkins.home) location, the directory with the job name is created inside this workspace directory, and the configured branch is checked out in this directory.
On my machine, the repository master branch is checked out in this location:
C:\Users\magicuser\.jenkins\workspace\ReleaseCalculatorAPIAutoTrigger
This directory is considered the working directory. In this case, the mvn deploy build step is executed from this directory and all Maven build phases are executed and all JAR files are deployed on the Nexus repository.
Failing the Build to See the Email Notification
You have configured the job to send an email notification on failure of a build by setting the Send Email for Every Unstable Build option in the Post-Build Actions section.
Now I am deliberately changing the expected result of one of the unit test cases in TestAdditionFunctionality.java file to make it fail. I am testing the Addition() function by sending two values as arguments and comparing the result, which is going to fail. See Figure 13-14.[image:]A source code for the Test Addition Functionality dot java file. The code has open bracket system.out.printIn I am in first TestCase, Result equals object Addition of 10,20. Assert dot assertEquals of Result, 300, open quotation Addition does not work with positive numbers close quotation close bracket.

Figure 13-14The code of the TestAdditionWithPositiveNumbers function in the TestAdditionFunctionality.java file

I committed the change in a branch in the local repository and pushed this branch to merge with the remote repository. Then I subsequently merged this branch with the master branch to trigger the build. Triggered Build #6 failed due to the failure of the test case.
You should have seen an email notification about this failure of Build #6. Click the email to see the console output log of the build that failed.
Summary
This chapter explained how to add a new code contributor to the GitLab repository. You also learned what SSH is, how it works, and how to create public and private key pair and configure it in the GitLab repository. Then you saw how to use the private key to clone the repository/push the code to the remote repository. Then you created a credentials entry in Jenkins with the SSH private key and configured an auto-trigger Jenkins job. You also learned how email notification can be configured and set the Jenkins job to send an email on build failure. You learned how to automate a build process using a Jenkins free-style job. The next chapter explains the Jenkins pipeline and how you can achieve more control over your build processes using it.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_14

14. Understanding the Jenkins Pipeline

Pranoday Dingare1
(1)Pune, Maharashtra, India

In the previous chapter, you learned how to create a Jenkins job that will be triggered automatically. You automated a process of the Java Calculator API release using a free-style job. This job starts by pulling the latest code from the master branch and performs different build lifecycle phases on it, like compiling, unit testing, packaging, and deploying to the artifact repository. This chapter explains an important Jenkins concept—the pipeline.
What Is a Jenkins Pipeline?
A Jenkins pipeline is a script suite of different Jenkins plugins that supports implementation and integration of continuous delivery pipelines into Jenkins.
A continuous delivery pipeline is an automated set of expressions written in the form of code statements that execute the process of getting your application code from the version control system through to the customers and users. Every change you carry out in your application goes through a complex build process on its way to being released.
When you write code, you need an Application Programming Interface (API), which provides a set of functions that you call in your code. For example, say you want to write code to read data from an Excel file using Java. You need a set of functions to interact with the Excel application from your Java code.
In this same manner, to interact with Jenkins plugins from your code, you need a scripting reference. Using these scripting references, you can instruct the Jenkins plugin to perform a task as part of the end-end build process written in the form of code, a Jenkins pipeline.
Why Use a Jenkins Pipeline?
The following are the advantages of automating a CI/CD process using Jenkins pipelines over Jenkins jobs:	Code: Pipeline allows you to write CI/CD processes of your application in the form of code, which you can check into your source code repository along with the application’s source code. If you have build process code in the central repository, it allows you to share it with the rest of the team members more effectively. Say a developer implementing a change in the application code requires a change in a build process. That same developer can implement that change in the build process if it is written and shared as a pipeline code.

	Durable: Pipelines can survive both planned and unplanned restarts of the Jenkins controller.

	Pausable: Pipeline execution can optionally stop and wait for human input or approval before it continues its execution.

	Versatile: Pipeline supports complex CI/CD requirements like forking, looping, and parallelism.

	Extensible: Pipeline plugin supports multiple options for integration with other plugins.

Understanding Different Pipeline Concepts
	Pipeline: A pipeline is code that defines your entire build process, which includes different stages of building an application, testing, and delivering.

	Node: A node is a machine capable of executing a pipeline.

	Stage: There are different stages that software goes through as part of the build process, such as build, test, deploy, etc. A stage block in a pipeline defines different tasks to be performed as part of a particular stage. For example, the Build stage block includes tasks like compiling the source code, packaging a library, and so on.

	Step: A step is a single task that a pipeline performs as part of a particular stage. A stage block is nothing but a collection of multiple steps. For example, a step could execute a batch command, execute a particular Maven goal, and so on.

Pipeline Syntax Overview
Jenkins supports two types of pipelines—declarative pipelines and scripted pipelines. Let’s discuss these two types one by one.
Fundamentals of Declarative Pipelines
Declarative pipelines contain a pipeline block that defines the entire build process.pipeline
{
 agent any 1
 stages
 {
 stage('Build') 2
 {
 steps
 {
 // 3
 }
 }

 stage('Test') 4
 {
 steps
 {
 // 5
 }
 }
 stage('Deploy') 6
 {

 steps
 {
 // 7
 }
 }
 }//Close of Stages
} //Close of Pipeline

I numbered important statements in the pipeline code and use these numbers to explain these statements:	1: This statement instructs Jenkins to execute this pipeline on any available agent, i.e. machine.

	2: This block defines a build stage.

	3: This defines a particular step (i.e., task) related to the build stage.

	4: This defines the test stage.

	5: This defines a particular step (i.e., task) related to the test stage.

	6: This defines the deploy stage.

	7: This defines a particular step (i.e., task) related to the deploy stage.

Fundamentals of Scripted Pipelines
In a scripted pipeline, the entire build process is defined inside a node block. Although it is not mandatory to enclose your code inside a node block, it does following things if code is enclosed within it:	1: Schedules the steps contained in a node block to run by adding an item to the Jenkins queue. As soon as the executor is free on the node, the steps will execute.

	2: Creates a workspace directory in which files from Source Control Management (SCM) are checked out and worked on.

node
{ 1

 stage('Build') 2
 {
 // 3
 }
 stage('Test') 4
 {
 // 5
 }
 stage('Deploy') 6
 {
 // 7
 }
}

I have numbered important statements in the pipeline code and use these numbers to explain these statements:	1: This statement instructs Jenkins to execute this pipeline on any available agent, i.e. machine.

	2: This block defines a build stage. Stage blocks are optional but implementing them in a scripted pipeline provides clearer visualization of each stage’s tasks/steps in the Jenkins UI.

	3: This defines a particular step (i.e., task) related to the build stage.

	4: This defines the test stage.

	5: This defines a particular step (i.e., task) related to the test stage.

	6: This defines the deploy stage.

	7: This defines a particular step (i.e., task) related to the deploy stage.

Defining a Simple Pipeline in Jenkins UI
This section explains how to create a simple pipeline in the Jenkins UI.	1.
Log into Jenkins.

	2.
Install the Pipeline: Job and Pipeline plugins: Refer to Chapter 5 for detailed steps to install this plugin.

	3.
Go to the Jenkins dashboard.

	4.
Create a pipeline job. Click the New Item link provided on the left side of the Jenkins dashboard.

This will open the page shown in Figure 14-1.	5.
Enter the job name and select the Pipeline option, as shown in Figure 14-1.

[image:]A window box of a Jenkins account under a user named Pranoday Dingare. From the top, it has the menu bar, then a dialog box at the center that consists of a box to fill out, 2 selections, which are Freestyle project and Pipeline, another box to fill out, and a button labeled OK.

Figure 14-1The name for the Pipeline job

	6.
Click the OK button, which will take you to the Job Configuration page.

Consider the following settings specific to the Pipeline job:
Do not allow the pipeline to resume if the controller restarts:
If you check this checkbox, it does not resume the execution of the pipeline after the Jenkins controller restarts.
Pipeline Speed/Durability Override
By default, a running pipeline job writes a lot of data on disk so that the written data pipeline execution can be resumed once Jenkins restarts after failure. But this slows down the execution of the pipeline. Using this setting, you can change this default behavior. Clicking this dropdown field will reveal the options in Figure 14-2.[image:]A window box of a browser, with the Sample Pipeline Job Config tab open. Arranged vertically, it starts with the address bar, then under the General section, there are 5 checkboxes, where the fifth one is ticked, a box of 3 options, with the first one selected, 6 unticked checkboxes, and 3 buttons on the same row, save and apply on the left side, and advanced on the right side.

Figure 14-2The options in the Custom Pipeline Speed/Durability Level dropdown

	Performance-optimized: Much faster (requires clean shutdown to save running pipelines): If this option is selected then Jenkins pipelines write only the required data. This option allows faster pipeline execution.

	Less durability, a bit faster (specialty use only): If this option is selected then Jenkins pipeline does not write much data hence it suffers from less durability.

	Maximum durability but slowest: This was the only available option previously. If you select this option, it writes the maximum possible data and provides good durability in case of Jenkins failure as compared to other options. But it makes pipeline execution very slow.

For this example pipeline job, we are not going to select this option. scroll down to the Pipeline section. You have to write pipeline code in the editor. I wrote a simple declarative pipeline in the code editor, as shown in Figure 14-3.[image:]A window box of a browser, with the Sample Pipeline Job Config tab open. Arranged vertically, it starts with the address bar, then under the Pipeline section, it has a box filled out, a code of 12 rows, a checkbox ticked, and 2 buttons on the same row labeled save and apply on the left side.

Figure 14-3The a simple declarative pipeline written in the code editor

Click the Save button.	7.
Run a pipeline job. Let’s go back to the dashboard using the Back to Dashboard link.

Click the clock sign of the SamplePipelineJob. This will run the pipeline job.
Let’s view the console output of this job. Click the Console Output menu to do so (see Figure 14-4).[image:]A window box of a browser, with the Dashboard tab, opens on a Jenkins account under a user named Pranoday Dingare. Arranged vertically, it has a menu bar, navigation pane on the left side, a table of 6 columns and 4 rows beside, and a right menu click with console output selected.

Figure 14-4The Console Output menu option

This prints "Hello World" on the console (see Figure 14-5).[image:]A window box of a browser, with the Dashboard tab, opens on a Jenkins account under a user named Pranoday Dingare. Arranged vertically, it has a menu bar, navigation pane on the left side with Console Output selected, and code for console output beside.

Figure 14-5The console output after running a pipeline job

Resolving java.lang.IllegalArgumentException: Unsupported Class File Major Version Error
You will typically encounter the following error after running a pipeline job:java.lang.IllegalArgumentException: Unsupported class file major version

	Reason: You get this error when you use a Java version that’s not supported with Jenkins, i.e., Java 1.11 or 1.8.

	Solution: Make sure that PATH system environment variable on your machine is pointing to Java version 1.11 or 1.8.

My JAVA_HOME environment variable is pointing to JDK 11. Don’t forget to restart the Jenkins Server after setting the required Java version in Environment Variables.
Otherwise, you can set JDK 11 or JDK 1.8 in the Global Tool Configuration in Jenkins (see Figure 6-10).
Understanding String Interpolation in the in Jenkins Pipeline
String interpolation is the process of replacing variable values with variables present in a string. In the following example, one variable is defined with the name username and has the value Pranoday. I want to replace this value with a string. This process is called string interpolation.
For example:def Username = 'Pranoday'
echo 'Hello Mr. ${Username}'
echo "How are you ? Mr. ${Username}"

This will result in the following:Hello Mr. $(Username)
How are you ? Mr. Pranoday

If the string is in double quotes, ${VariableName} is the syntax to perform the string interpolation. If string is in single quotes, then $VariableName is the syntax to perform the string interpolation.echo 'Hello Mr. $Username' would results in
Hello Mr. Pranoday

String Interpolation Example
The Jenkins pipeline exposes different environment variables via global variables, including BUILD_ID, BUILD_NUMBER, JENKINS_URL, JOB_NAME, etc.
To see a full list of the environment variables that are accessible from the Jenkins pipeline, enter the following URL in your browser:${YOUR_JENKINS_URL}/pipeline-syntax/globals#env

	${YOUR_JENKINS_URL} is the Jenkins hostIPAddress:Port.

My Jenkins starts at localhost:8080 so this URL to see all environment variables is http://localhost:8080/pipeline-syntax/globals#env.
Say you want to print the BUILD_ID and JENKINS_URL variables to the console using an echo statement in the Jenkins pipeline. This is where you need to use string interpolation.pipeline
{
 agent any
 stages
 {
 stage('Example')
 {
 steps
 {
 echo "Running ${env.BUILD_ID} on ${env.JENKINS_URL}"
 }
 }
 }
}

Creating a Pipeline Job to Release the Java API
You previously created a free-style job to release the CalculatorAPI JAR in the Nexus Repository. Now you’ll see how to create a pipeline job that will perform the same tasks as the free-style job to release a new version of CalculatorAPI.jar to the Nexus repository.	1.
Go to the Jenkins dashboard.

	2.
Create a pipeline job. Click the New Item link.

Name the job and select the Pipeline option.	3.
Click the OK button.

	4.
Scroll down to find the Pipeline section.

	5.
Click the Scripted Pipeline option (see Figure 14-6) to generate a basic template of the pipeline script in the editor.

[image:]A window box of a browser, with the Pipeline Job to Release Calculator tab open. Arranged vertically, it has a menu bar, then under Advanced Project Options, are 2 boxes, a ticked checkbox, and 2 buttons on the same row, which are Save and Apply.

Figure 14-6The options available in the Try Sample Pipeline dropdown

After clicking this option, you will get a template scripted pipeline script, as shown in Figure 14-7.[image:]A window box of a browser, with the Pipeline Job to Release Calculator tab open. Arranged vertically, it has a menu bar, then under the Pipeline section, are 2 boxes both filled out. A ticked checkbox and 2 buttons on the same row, which is Save and Apply.

Figure 14-7The sample scripted pipeline code

You are going to delete the code from this template and write your own.
Instead of writing each code step manually, you can use the Pipeline Syntax:Snippet Generator provided by Jenkins. Click the Pipeline Syntax link available below the code editor to open the Pipeline Syntax:Snippet Generator, as shown in Figure 14-8.[image:]A window box of a browser, with the Pipeline Syntax tab open. Arranged vertically, it has a menu bar, and a navigation pane in a column on the left side, where the Snippet generator is selected. The navigation pane is an overview with 2 boxes to fill out, a button labeled Advanced on the right side, a button labeled Generate Pipeline Script on the left, and an empty box.

Figure 14-8The Snippet Generator

Click the Sample Step dropdown, which will show a list of pipeline steps you can use in the pipeline according to your requirements.
First check out the master branch from the GitLab repository, so select the Git step from the list (see Figure 14-9).[image:]A window box of a browser, with the Pipeline Syntax tab open. Arranged vertically, it has a menu bar, and a navigation pane in a column on the left side, where the Snippet generator is selected. The navigation pane has options under git, where git, Git is selected, followed by 3 boxes to fill out, and 2 ticked checkboxes.

Figure 14-9The git:Git option in Sample Step dropdown and other Git-related fields

After selecting the Git option, you can see fields to enter details of your Git repository, a branch to checkout, the credentials entry with the authentication information, and so on. I added the Git repository SSH URL to the Repository URL field, the master branch to the Branch field, and the SSH credentials entry to the Credentials field (see Figure 14-10).[image:]A window box of a browser, with the Pipeline Syntax tab open. Arranged vertically, it has a menu bar and a navigation pane in a column on the left side. The navigation pane has details to fill out under the Steps section, which are Sample step, Repository U R L, Branch, Credentials, then 2 ticked checkboxes, a button labeled General Pipeline Script and an empty box.

Figure 14-10All Git repository settings in the Snippet Genrator

Click the Generate Pipeline Script button. Clicking this button generates a pipeline script statement based on the details you provided.
Copy the generated line and then go back to the pipeline job and do the changes in the generated template pipeline script.
I deleted the unwanted code from this template and added Stage: Checking out Code in pipeline code. I pasted the Git step inside it. I also added a comment describing what this stage does to the pipeline, using double slashes (//).Multiline comments need to be enclosed within /**/.
In this pipeline, the first stage is to pull code from the repository’s master branch using the Git step:git branch: 'Master', credentialsId: 'MyGitSSHCredentials', url: 'git@gitlab.com:Pranoday/jenkinsbookcalculatorapi.git'

git step has 3 arguments branch: <NameOfBranch>, credentialsId:<ID of our Credentials entry>, url: <Git repository URL>

Now add the next stage, “Deploying the CalculatorAPI on the Nexus Repository” (see Figure 14-11).[image:]A window box of a browser, with the Pipeline Job to Release Calculator tab open. Arranged vertically, it has a menu bar, then under the Pipeline section, are 2 boxes both filled out, with the second box filled out with a code, a ticked checkbox, and 2 buttons on the same row, which is Save and Apply.

Figure 14-11The Checking Out Code and Deploying CalculatorAPI on Nexus Repository stages added to the code

In this stage, you want batch command to run Maven deploy goal. Go to Pipeline Syntax: Snippet Generator again to generate this step.
Now select bat step from the list. I wrote %MVN_HOME%\bin\mvn deploy to the Batch Script edit field. Click the Generate Pipeline Script button, which will generate the script step.
Copy this step and paste it inside the newly added stage. I added a few more lines to the pipeline. Look at the code in Listing 14-1.node
{
 def mvnHome
 stage('Checking out Code') { // for display purposes
 // Get code from a GitLab repository
 git branch: 'Master', credentialsId: 'MyGitSSHCredentials', url: 'git@gitlab.com:Pranoday/jenkinsbookcalculatorapi.git'

 }

 stage('Deploying CalculatorAPI on Nexus Repository')
 {
 mvnHome = tool 'MyMaven'
 withEnv(["MVN_HOME=$mvnHome"])
 {
 bat '%MVN_HOME%\\bin\\mvn deploy'
 }
 }
}

Listing 14-1Pipeline Code

def mvnHome: This statement defines a variable called mvnHome.
stage('Checking out Code'): This Git step from this stage pulls code from the repository.
mvnHome = tool 'MyMaven': This statement sets the value of mvnHome to the PATH of the Maven installation, which you added to the Global Tools Configuration and called it MyMaven (see Figure 14-12).[image:]A dialog box of installation details of Maven. From the top, on the left, going down is a button labeled Add Maven, 2 boxes filled out, and an unticked box.

Figure 14-12The Maven configuration created in the Global Tools and Configuration

So the mvnHome variable is set to D:\MavenInstallation\apache-maven-3.8.1.
A following block sets the value of mvnHome to a system variable MVN_HOME and the bat step inside the withEnv block uses this environment variable to get to the mvn command inside the bin folder of the Maven installation to run deploy goal.withEnv(["MVN_HOME=$mvnHome"])
 {
 bat '%MVN_HOME%\\bin\\mvn deploy'
 }

Click the Save button.
Running a Pipeline Job and Release the Calculator API
You created a pipeline job. Let’s run it now to release a new version of the CalculatorAPI. I am not adding anything new to the code, just correcting the expected result of the TestAdditionWithPositiveNumbers() test case, which I changed to the wrong value in the last chapter to demonstrate job failure. the code after this correction is shown in Listing 14-2.@Test(priority=1)
public void TestAdditionWithPositiveNumbers()
{
 System.out.println("I am in 1st TestCase");
 Result=Obj.Addition(10,20);
 Assert.assertEquals(Result,30,"Addition does not work with positive numbers");
}

Listing 14-2The TestAdditionWithPositiveNumbers() Test Case Method Code with Correct Expected Result Value

I also changed the version of the API to 7.0 in pom.xml, as shown in Listing 14-3.<groupId>Pranodayd</groupId>
<artifactId>CalculatorAPI</artifactId>
<version>7.0</version>

Listing 14-3The Version Changed to 7.0 in pom.xml

I committed a change in a new local branch and pushed this branch to the remote repository where I merged this into the master branch.
Now run PipelineJobToReleaseCalculatorAPI manually by clicking the clock sign. The progress of the build is shown in the Build Execution Status section present on the left side of the page.
Let’s check the console output. Scroll down to see the successful release of the CalculatorAPI 7.0.jar.
Now go to the Nexus Repository to confirm the successful release (see Figure 14-13). Yes, you got it![image:]A window box of a browser. A Nexus Browse tab is open in an admin account. From the top, arranged vertically, it has an address bar, a menu bar of Nexus, and a navigation pane on a column, with the option, Browse selected, beside is another navigation pane, where folder 7.0 is selected. On the right side are the properties or summary of Folder 7.0.

Figure 14-13The CalculatorAPI 7.0.jar released in the Nexus repository

Summary
This chapter explained what Jenkins pipelines are and their advantages over Jenkins free-style jobs. You also learned what declarative and scripted pipelines are. You learned how to generate the pipeline steps using the Snippet Generator. At the end of the chapter, you created a pipeline to run all the build lifecycle phases on your Java API and released a new version of it in the Nexus repository. After learning how Jenkins can be used to automate the end-end build lifecycle of an API project, you are all set to see how Jenkins can automate a build lifecycle of a web application, which is the topic of the next chapter.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_15

15. Creating Jenkins Jobs to Manage a Web Application Project

Pranoday Dingare1
(1)Pune, Maharashtra, India

In the previous chapter, you learned how to use Jenkins jobs to manage the release of an API project developed using Java. You created free-style as well as pipeline jobs, which pull the latest application code from the remote GitLab repository, and then run the different phases of the build lifecycle, like compilation, unit testing using TestNG, packaging tested implementation in the form of .JAR files, and finally deploying the .JAR file to the Nexus repository.
This chapter shows you how to manage the release lifecycle of a simple calculator web application using Jenkins jobs. This web application is developed in the Maven project and consists of a single .HTML file. You are going to implement an end-end build process that will consists of operations such as pulling source code from the repository, deploying the app in an IIS web server, running automated E-E tests developed in Python, and using the UI automation library called Selenium WebDriver.
Understanding the Calculator Web Application Source Code
After loading this application in a browser, it looks Figure 15-1.[image:]A window box, with a local host tab open. Below is an open Jenkin Book Calculator Application. On row 1 are a display and a clear sign. On row 2 are buttons 1, 2, 3, and the division sign. On row 3 are buttons 4, 5, 6, and minus signs. On row 4 are buttons 7, 8, 9, plus signs. On row 5 are 0, equal sign, and multiplication sign.

Figure 15-1The Calculator web application running inside a browser

It performs simple arithmetic operations like addition, subtraction, multiplication, and division. Users can perform any of these operations by interacting with this application using the button controls and the result of the operation will be shown on the Input control
The UI interface of this application is designed using simple .HTML and CSS. The logic of this application is written using JavaScript embedded inside the .HTML file. The project source code directory structure is shown in Figure 15-2.[image:]A page of navigation pane of Calculator Web Application that includes J R E System Library and s r c, and target that includes a file named pom dot x m l.

Figure 15-2The directory structure of the Calculator web application project

The Calculator.html file contains the application code, as shown in Listing 15-1.<html>
<head>
<script>
 //function that display value
 function dis(val)
 {
 document.getElementById("result").value+=val
 }

 //function that evaluates the digit and return result
 function solve()
 {
 let X = document.getElementById("result").value
 let z = eval(X)
 document.getElementById("result").value = z
 }

 //function that clear the display
 function clr()
 {
 document.getElementById("result").value = ""
 }
</script>
<!-- for styling -->
<style>
 .title{
 margin-bottom: 10px;
 text-align:center;
 width: 210px;
 color:green;
 border: solid black 2px;
 }

 input[type="button"]
 {
 background-color:green;
 color: black;
 border: solid black 2px;
 width:100%
 }

 input[type="text"]
 {
 background-color:white;
 border: solid black 2px;
 width:100%
 }
</style>
</head>
<!-- create table -->
<body>
<div class = title >JenkinsBook Calculator Application</div>
<table border="1">
<tr>
<td colspan="3"><input type="text" id="result"/></td>
<!-- clr() function will call clr to clear all value -->
<td><input type="button" value="c" onclick="clr()"/></td>
</tr>
<tr>
<!-- create button and assign value to each button -->
<!-- dis("1") will call function dis to display value -->
<td><input type="button" value="1" onclick="dis('1')"/></td>
<td><input type="button" value="2" onclick="dis('2')"/></td>
<td><input type="button" value="3" onclick="dis('3')"/></td>
<td><input type="button" value="/" onclick="dis('/')"/></td>
</tr>
<tr>
<td><input type="button" value="4" onclick="dis('4')"/></td>
<td><input type="button" value="5" onclick="dis('5')"/></td>
<td><input type="button" value="6" onclick="dis('6')"/></td>
<td><input type="button" value="-" onclick="dis('-')"/></td>
</tr>
<tr>
<td><input type="button" value="7" onclick="dis('7')"/></td>
<td><input type="button" value="8" onclick="dis('8')"/></td>
<td><input type="button" value="9" onclick="dis('9')"/></td>
<td><input type="button" value="+" onclick="dis('+')"/></td>
</tr>
<tr>
<td><input type="button" value="." onclick="dis('.')"/></td>
<td><input type="button" value="0" onclick="dis('0')"/></td>
<!-- solve function call function solve to evaluate value -->
<td><input type="button" value="=" onclick="solve()"/></td>
<td><input type="button" value="*" onclick="dis('*')"/></td>
</tr>
</table>
</body>
</html>

Listing 15-1Calculator.html Source Code File from the Calculator Web Application

Building the Calculator Web Application
This web application contains only an .HTML file, so building this application does not require compilation or packaging phases that other applications usually need. I want to keep the example simple so that you can concentrate on the Jenkins features instead of the technical details of the application.
Deploying the Calculator Web Application
To deploy this application, you simply need to copy the Calculator.html file to the directory being pointed to by the web alias created in the IIS web server.
I created an alias in the IIS web server called CalculatorWebApp and it points to the D:\JenkinsBookExamples\DeployedCalculatorWebApp directory on my machine.
You can add the alias configuration in the Edit Virtual Directory window, as shown in Figure 15-3.[image:]A dialog box titled Edit Virtual Directory. It has 2 inputs to fill out, which are Alias and Physical path. Below, on the left side are 2 boxed buttons, which are Connect as and Test Settings. On the bottom right corner are boxed buttons, which are OK and Cancel.

Figure 15-3The Edit Virtual Directory window from IIS

The deployment process includes one step to copy Calculator.html from the project’s webapp directory to D:\JenkinsBookExamples\DeployedCalculatorWebApp so that it can be accessed using a web alias.
Accessing the Calculator Web Application
I have my default website running on port 8082 in the IIS web server. If this is true for you, you can access the Calculator web application using the following URL:
http://localhost:8082/CalculatorWebApp/Calculator.html
Understanding E-E Testing the Calculator Web Application Using the Selenium WebDriver
E-E testing consists of testing the business flows of an application. It is about running end-end positive as well as negative business flows from the user’s perspective and checking if the application behaves correctly. These flows test the functionality of all the components, such as the interaction between the components along with interaction of the application components with third-party software like databases, web servers, application servers, and so on.
What Is UI Automation Testing
UI automation testing is a type of testing in which an automation tool simulates end-user interactions with applications by interacting with its UI elements and tests in different end-end business scenarios. These kinds of end-end flows are usually automated using different licensed UI automation tools like UFT, TestComplete, Ranorex, etc. There are various open source UI automation tools available as well, like Selenium, Protractor, WebDriver IO, etc. This chapter uses Selenium to perform UI automation testing on the web application.
How UI Automation Tools Work
These tools come with a set of libraries for UI interactions like typing, clicking, selecting options from dropdowns, and so on. You can give instructions to the UI automation tool using supported scripting languages. The tool needs the following two instructions to be able to interact with the application’s UI control/element:	Identifying the UI element: Before the tool can perform an interaction on the UI control/element, it needs to identify the UI element from the rest of the elements available on the application page/screen. This can be done with the help of unique attributes set to the UI control, like ID, name, class, etc. UI automation libraries support sets of APIs that will identify the UI controls based on the attribute values provided.

	Performing interactions with the UI element: Once the element is identified, you can instruct a tool to perform required interactions, like typing, clicking, etc., with the help of a set of APIs available in the tool libraries.

What Is a Selenium WebDriver
A Selenium WebDriver is an UI automation tool that has libraries available in different programming languages, like Java, C#, JavaScript, Python, etc.
I developed UI tests for the CalculatorWebApplication using Selenium WebDriver’s Python library.
Understanding the Selenium Tests Written in Python
TestCalculatorWebApplicationUsingSeleniumPython is a Python project created in the D:\JenkinsBookExamples directory in which I have implemented UI tests. This section explains a few important files from this project in brief.
EnvVars.csv
This file contains all the environment variables settings like paths, application URLs, etc. This file is located inside the automation test project directory. It contains a path of chromedriver.exe, which the Selenium tool uses to open in the Chrome browser. Chromedriver.exe is present in Drivers directory, which is inside the project directory. EnvVars.csv contains a path of ObjectRepositories folder along with the web application URL. You need to change this file according to paths and URL that you use.
CalculatorPage.csv
This file is in the ObjectRepositories folder in the project directory. This file contains all the identification data of the elements you interact with in the UI tests.
AutomationFramework Package
This package contains the automation framework code with the functions that will read the environment variables from EnvVars.csv, read the identification data from CalculatorPage.csv, and will interact with the browser and UI elements from the application.
Utils.py has a function called InitializeEnvVars() (see Listing 15-2) that reads the EnvVars.csv. You need to change the path (D:\\JenkinsBookExamples\\TestCalculatorWebApplicationUsingSeleniumPython\\EnvVars.csv) accordingly if you do not keep the project in the D:\ JenkinsBookExamples folder.@classmethod
 def InitialiseEnvVars(cls):
 #Opening a csv file in Readmode using open function
 with open('D:\\JenkinsBookExamples\\TestCalculatorWebApplicationUsingSeleniumPython\\EnvVars.csv') as csv_file:
 csv_reader=csv.reader(csv_file,delimiter=',')
 #Using this for loop we are reading the contents of EnvVars file row by row
 for row in csv_reader:
 #for the 1st iteraation of loop:row=ChromeDriverPath,D:\\XoriantPythonSeleniumPostmanTraining\\Drivers\\chromedriver.exe
 #row(ChromeDriverPath,D:\\XoriantPythonSeleniumPostmanTraining\\Drivers\\chromedriver.exe)
 Utils.EnvVars[row[0]]=row[1]

Listing 15-2The InitializeEnvVars Function from the Utils.py File

CalculatorWebApp_Pages Package
This contains BasePage.py, which has a BasePage class implemented and CalculatorPage.py, which has a CalculatorPage class implemented.
The CalculatorPage class has different functions, like DoAddition() and DoSubtraction(), that are implemented and automate the flows of different calculator web application functionalities.
CalculatorWebApp_TestCases Package
This package contains Python files with different test cases of the Calculator web application. Test cases of every functionality to be tested are implemented in separate files. The test_AdditionFunctionality.py file has test cases to test the addition functionality of the web application.
Test cases are grouped into different groups based on the scope of testing they handle, such as like RegressionTest, SmokeTest, etc.
Note
Smoke testing is a type of testing done when testers receive a new build from developers, to check if the build has the required minimum characteristics and is eligible for more rigorous testing.
Regression testing is a type of testing done to confirm that none of the existing application functionalities have been adversely impacted by the changes implemented in an application.

Software Setup to Run these Test Cases
Python: You need to install Python and add it to the PATH environment variable in the environment variables.
Pip: Pip is a Python package manager that installs Python packages from the pip registry. The Pip registry is a Python package registry available on the web, and it holds reusable Python packages. It’s like mvnrepository.com for Java. You need pip to install the Python Selenium library. Pip also needs to be in the PATH environment variable. Pip gets installed along with Python in the Scripts folder inside the Python installation directory.
Both Python and pip have been added to the PATH environment variable in Figure 15-4.[image:]A dialog box titled, Edit environment variable. On the left side, are lists of commands where the one that reads C, Users, magic user, App Data, Programs, Python, Python 39, Scripts, is selected. On the right side are vertically arranged buttons, which are New, Edit, Browse, Delete, Move Up, Move Down, and Edit text.

Figure 15-4The Edit environment variable window showing the PATH environment variable

Chrome browser: You need the Chrome browser installed on your machine.
Chrome Driver: Chrome Driver is a Selenium WebDriver implementation for the Chrome browser that converts Selenium API calls in Chrome native UI Automation APIs and gets the UI interactions from the test performed on applications running inside the Chrome browser. You can download the Chrome Driver version that’s compatible with your Chrome browser using this link:
https://chromedriver.chromium.org/downloads
Selenium WebDriver Python libraries: You can install Selenium Python libraries by running the following command using the terminal:pip install selenium

Pytest (unit testing framework): Pytest runs the Selenium test cases and generates an HTML report of the test execution.
You can install Pytest by running the following command using the terminal:pip install pytest

Running Selenium Python Tests
Step 1: Open the Command Prompt and go to the TestCalculatorWebApplicationUsingSeleniumPython Project Directory
You need to open the command prompt and use the cd command to go inside the automation project directory.
Step 2: Create a Virtual Python Environment and Activate It
You have to install the virtualenv Python package, which helps in creating the Python virtual environment, using this command:pip install virtualenv

The Python virtual environment means that you create your own environment for the project instead of using the Python available globally on the system.
This will allow you to install the required version of Selenium libraries, pytest, and other required libraries without disturbing other projects that are using these libraries from the global Python path.
Also you don’t need to carry the Python libraries required for the automation tests on different machines. Once you pull the automation code from the repository, the Jenkins job will run commands to create a virtual environment, and you can install the required libraries and invoke tests without manual intervention.
The command to create the virtual environment is:virtualenv<NameOfVirtualEnvironment>.

I want to create a virtual environment called “TestCalculatorWebApplication”
I executed this command:virtualenvTestCalculatorWebApplication

To activate this environment, use this command:TestCalculatorWebApplication\Scripts\activate

Step 3: Install the Required Python Packages
Let’s install pytest, the Python Selenium library, and pytest-html (an HTML report generator) in this virtual environment using the following pip commands:pip install pytest

You need to be inside the following directory to run this pip command:TestCalculatorWebApplicationUsingSeleniumPython

Install the Python selenium library by running the following command from the same directory:pip install selenium

Install the pytest-html reporter by running the following command from the same folder.pip install pytest-html

Now that everything is set, you can run the tests using the following command:pytest --html=TestsResult.html

This command will run functions whose names start with "test" in all Python files having names starting with "test_" and will create a report of execution in the TestsResult.html file in the current directory.
Test execution will clear the browser caches first. Then it will run tests by opening a browser and interacting with the calculator web application as shown in Figure 15-1. Let’s see the result by opening a TestsResult.html file.
Pushing the WebApplication and Automation Project to the GitHub Repository
You learned in previous chapters how to work with the GitLab repository. Now we are going to look at how to work with the GitHub repository. Commands and Git concepts you learned about while working with the GitLab repository are applicable with GitHub.
Github.com provides you with the web platform to create remote repositories like Gitlab.com.
Step 1: Sign up on Github.com
If you do not have a GitHub account, you need to sign up and create one.
Go to https://github.com/ and complete the signup process. It’s a simple process where you need to provide your desired username and password and other required information.
Step 2: Creating a New Repository
Sign into your GitHub account using your credentials. You will land on the GitHub dashboard page. Click the + sign available in top-left corner and select the New Repository menu option, as shown in Figure 15-5.[image:]A window box of a browser, with Get started with Git Hub tab. From the top, it has the address bar, followed by the search and menu bar of the site, and the start page of Git Hub, divided into 3, which are named Start a new project, Collaborate with your team, and learn how to use Git Hub. On the upper right corner is a dropdown menu, where a New repository is selected.

Figure 15-5The New Repository menu option on the GitHub dashboard

It will open the Create a New Repository page. Enter the name of the repository in the Repository Name field. Select the Private radio button to create a Private GitHub repository, as shown in Figure 15-6.[image:]A window box of a browser, with Create a New Repository tab. From the top, it has the address bar, followed by the search and menu bar of the site, followed by details to fill out, which are Owner and Repository names on the first row, followed by Description, and 2 buttons to select named Public and Private, and 3 checklists, and a button labeled Create repository.

Figure 15-6The Create a New Repository page from GitHub after entering the required details

Scroll down page to find the Create Repository button and click it.
This will create a blank repository.
Step 3: Creating a New SSH Key Pair for the GitHub Repository
You need to create a SSH key pair using the ssh-keygen command. Refer to Chapter 13 for details on creating SSH key pairs.
Step 4: Include the SSH Private Key File Path in the $(user.name)\.ssh\config File
You need to include the path of the private key file in the config file present in $(user.name)\.ssh\, where you included the GitLab private key path. Refer to the highlighted part of Figure 15-7.[image:]A window box of a text file named config. From the top, it has a menu bar, followed by a selected code that reads Host Hub, Host git hub dot com, Host name git hub dot com, Preferred Authentications public key, Identity File, S S H Key, My git hub keys, which is selected.

Figure 15-7The $(user.name)/.ssh/config file after adding the GitHub private key file path

Step 5: Adding an SSH Public Key to the GitHub Repository
Click the Avtar shown in the upper-right corner of Github.com and select the Settings menu, as shown in Figure 15-8.[image:]A partial screenshot of the navigation pane under the user profile on GitHub. The profile is signed in as Pranodayd. The menus are your profile, your repositories, your codespaces, your organizations, your projects, your stars, your gists, upgrade, feature preview, help, settings, and sign out. The settings menu is highlighted.

Figure 15-8The Settings menu on GitHub

Click the SSH and GPG key menu option (highlighted in Figure 15-9) available on the left side of the Public Profile page.[image:]A window box of a browser, with the user profile tab open. From the top, it has the address bar, followed by account settings of the site, arranged vertically on the left side, where S S G and G P G keys option is boxed. Next to the settings are the public profile details to fill out, which are name, public email, bio, U R L, Twitter username, and company.

Figure 15-9The Public Profile page from GitHub

This will open the page that includes the New SSH Key button to add a key. Click the button to get the page shown in Figure 15-10.[image:]A window box of a browser, with S S H keys tab open. From the top, it has the address bar, followed by the search and menu bar of the site, followed by account settings, arranged vertically on the left side. Next to the settings are the S S H key details to fill out, which are title and Key, and a button labeled Add S S H key.

Figure 15-10The page from GitHub where you add the public key

Paste the public key into the Key field and click the Add SSH Key button.
Step 6: Committing the Calculator Web Application to the Master Branch in the Local Repository
You need to enter into the project directory using the cd command and execute all the commands from the project directory. Create a blank Git repository using the gitinit command.
Add the whole current directory in the staging area using the git add command.
Commit the project to the master branch in the local repository using the command:git commit --m "<commit message>"

I executed the following command to commit changes:git commit --m "Committing CalculatorWebApp project"

When you do not specify the branch, the changes are committed to the master branch by default.
Step 7: Pushing the Master Branch to the Remote Repository
Run the git push <SSH URL of our repository> command. To get the URL of the repository, go to the repository page on Github.com. Click the SSH button available on the repository page. Click the Copy button to copy the URL.
Now go back to the command prompt to run the git push command:git push git@github.com:dpranoday/JenkinsBookCalculatorWebApplication.git master

Enter your key passphrase. You should be able to push your code successfully.
Now go to the GitHub repository, refresh the page, and see if the code has been pushed successfully.
Note
If, after entering the GitHub private key file path in the (user.name)\.ssh\config file, you get an error while trying to run the git push command using the SSH URL (such as Permission denied), go to (user.name)\.gitconfig and delete the [core] sshCommand = ssh -i $HOME/.config/ssh/id_rsa -F /dev/null statement if it exists. The path mentioned after –i could be different in your case.

Pushing the Selenium Python Automation Project to GitHub
Let’s create a new private repository on GitHub and push your automation project by following the same process as for the WebApplication project.
I created a repository called TestWebApplicationWithSeleniumPythonTests and pushed the automation project.
Creating Parameterized Auto-Trigger Free-Style Jenkins Jobs
In this section you are going to create the following two parameterized Jenkins Freestyle jobs:	BuildAndDeployCalculatorWebApplication (upstream job)
This job will be triggered when a change is pushed to the master branch of the JenkinsBookCalculatorWebApplication repository.
It will pull the latest change and copy Calculator.html in the IIS web server to deploy the latest web application and then it will call another parameterized job TestCalculatorWebApplication by sending it a parameter that defines which UI tests are to be executed.

	TestCalculatorWebApplication (downstream Job):
This job will be called by the first job called BuildAndDeployCalculatorWebApplication. It will pull the latest automation code from the master branch of the GitHub repository called TestWebApplicationWithSeleniumTests, run a specific group of Selenium tests based on the value received from the upstream job, and will email the test execution report .HTML file.

Step 1: Installing the Parameterized Trigger Plugin
As you need to send parameter values from one job to another, you need to install the plugin called Parameterized Trigger. Before installing this, install the Maven Integration plugin, which is a dependency plugin for the Parameterized Trigger plugin.
Step 2: Creating a BuildAndDeployCalculatorWebApplication Job
I entered the name of the first free-style job and clicked the OK button.
This is a parameterized job, so you have to check the This project is Parameterized checkbox.
This job is going to copy Calculator.html to a folder pointed to by web alias named CalculatorWebApp from the IIS web server. Instead of hard-coding this folder path, we create a parameter to hold this path so that if in future you want to copy the Calculator.html to some different folder then you won’t need to modify the build step.
To create a parameter, click the Add Parameter button.
You want to save a path of directory, so you need the String Parameter.
Click the String Parameter option and enter the required parameter details.
I entered CalculatorWebApplicationDeploymentDirectory in the Name field and D:\JenkinsBookExamples\DeployedCalculatorWebApp in the Default Value field.
Whenever you want to change the directory, you need to make the corresponding change in the Default Value field.
In this job, we want to have a choice parameter called TypeOfTestsToRun with three values: RegressionTest, SmokeTest, and AllTests. Based on value selected, this job will ask the downstream job to run a particular set of tests. The default value would be AllTests. If you want to run only RegressionTests or SmokeTests, select the values accordingly.
Let’s create the choice parameter by following the steps you executed while creating String parameter. This time you need to select the Choice Parameter from the Add Parameter dropdown.
I have included three choices in Figure 15-11. The All Tests option is mentioned on the first line as it’s the default value.[image:]A dialog box in the General section, where there are details to fill, which are name, choices, and description under the choice parameter, with buttons, Save and Apply on the bottom left side.

Figure 15-11The values set for the TypeOfTestsToRun choice parameter

Scroll down and select the Git radio button, enter the SSH URL of the JenkinsBookCalculatorWebApplication GitHub repository, and select the SSH credentials entry created for GitHub in the Credentials dropdown. Keep the master in the Branch field.
Now scroll down and check the Poll SCM checkbox and set the polling schedule to H/5 * * * *.
Scroll down and add a build step. Click the Add Build Step button and select the Execute Windows Batch Command option.
I added three Windows batch commands in the Edit field shown in Figure 15-12.[image:]A dialog box of Build menu, with a detail-filled out with a command that has a function of Calculator Web Application Deployment Directory, under Execute Windows batch command.

Figure 15-12The batch commands written to deploy the Calculator web application

	The first command removes the existing directory.

	The second command creates a new directory.

	The third command copies Calculator.html from src\main\webapp in the newly created directory.

As discussed in the last chapter, when you run a job having SCM set, the remote repository gets cloned in the workspace directory and this workspace directory is considered the working directory for job execution. Hence, you access Calculator.html using the relative path in the third command.
Note that, to access the value of the CalculatorWebApplicationDeploymentDirectory parameter, you must enclosed it in %% signs in all three batch commands.
Add a post-build step to call the downstream job. Click the Add Post-Build Action button and select the Trigger Parameterized Build On Other Projects option.
Add the name of the downstream job to the Projects to Build field. It will give an error near this field as you have not created the downstream project, and you can ignore it for now.
Select the Stable or Unstable But Not Failed value in the Trigger When Build Is field, as you want to run tests if the build is successful, irrespective of its stability.
Now add a parameter that will send a value to the parameterized job.
Click the Add Parameters button and select the Predefined Parameters option. This will show you the Predefined Parameters section.
I created a variable named TestType=$(TypeOfTestsToRun) which will be the selected value from the Choice parameter and will pass it to the downstream job.
Step 3: Creating the TestCalculatorWebApplication Job
On the dashboard I entered the name of the second freestyle Job and clicked the OK button. This is a parameterized job so you have to check the This Project Is Parameterized checkbox
Click the Add Parameter button and select the String Parameter option.
Set the name of parameter to TestType. It has to have the same name as the parameter to which we are setting value to be sent in the Upstream job. Set AllTests in the Default Value field.
Scroll down and select the Git radio button, enter the SSH URL of the TestWebApplicationWIthSeleniumPythonTest GitHub repository, and select the SSH credentials entry created for GitHub in the Credentials dropdown. Let’s keep the master in the Branch field.
Note even though we used the SCM repository, we are not checking the Poll SCM checkbox because we do not want to trigger this job when there’s a merge in the master branch. This job is going to be called from our Upstream job
Scroll down and add the build step. Click the Add Build Step button and select the Execute Windows Batch Command option.
I created multiple batch command steps by clicking the Add Build Step button and selecting Execute Windows Batch Command multiple times.
The first batch command marked with No.1 in Figure 15-13 installs the virtualenv Python package.[image:]A window box of a browser, with the Test Calculator Web Application tab open. Under the build section, there are details to fill, which are 2 boxes, command under Execute Windows batch command. On the bottom part are 2 buttons labeled save and apply.

Figure 15-13The first three commands required to run Selenium tests

The second batch command marked with No.2 in Figure 15-13 creates a virtual environment called TestCalculatorWebApplication.
The third batch command marked with No.3 in Figure 15-13 activates the created virtual environment.
The fourth batch command (marked with No.4 in Figure 15-14) installs the Selenium Python library.[image:]A window box of a browser, with the Test Calculator Web Application tab open. Under the build section, there are details to fill, which are 3 boxes of command, with boxed number labels of 4, 5, and 6 on each. These are under Execute Windows batch command. On the bottom part are 2 buttons labeled save and apply.

Figure 15-14The next three commands required to run Selenium tests

The fifth batch command marked with No.5 in Figure 15-14 installs the Pytest framework library.
The sixth batch command (marked with No.6 in Figure 15-14) installs the pytest-html library.
The seventh batch command shown in Figure 15-15 checks the value of the TestType variable. If the value is AllTests then it runs all tests and saves the report in a file named as AllTests.html. If the value is something other than AllTests then it runs tests by using the pytest –m command and saves the result in a file with the corresponding name.[image:]A dialog box of a Command filled out, that reads echo Running Selenium tests, if, Test Type, All Tests, pytest, h t m l, Test Type Result dot h t m l, else, pytest, m, Test Type, h t m l, Test Type Result dot h t m l.

Figure 15-15The batch code that will trigger different suites of Selenium tests

Note
The (bracket after the if statement and else statement should be on the same line as the if or else. One blank space ‘ ’ is also mandatory between the condition statement and (‘ . No spaces ‘ ’ should be present between the else word and ‘)’ of the if block.

Click the Save button.
Configuring an Extended Email Notification
In this section, you learn how to send a test execution report of the Selenium E-E tests through email. In the last chapter, you learned how to configure Jenkins to send email notifications through default email settings provided by the Mailer plugin. Using that plugin, you cannot send customize email messages or send email attachments. In order to send detailed customized email messages along with email attachments, you need to use the Email Extension Jenkins plugin and then configure the Extended Email-notification settings.
Step 1: Installing the Email Extension Plugin
You need to install the Email Extension plugin in Jenkins. For detailed steps on how to install plugins, refer to Chapter 5.
Step 2: Configuring Extended Email Extension settings
Click the ManageJenkins ➤ Configure System menu option. Scroll down the page to the Extended E-mail Notification section, which is available only when you have the Email Extension plugin installed.
You are going to configure the same Gmail settings that you configured for the basic email notification in last chapter. Figure 15-16 shows these settings again for your quick reference.[image:]A dialog box under Extended Email Notification. The details to fill out below are S M T P server, port, username, and password. On the bottom part are 2 checklists, which are Use S S L, ticked, and Use T L S.

Figure 15-16The email settings

Let’s look at a few more frequently used settings from this section. You can configure a default list of email IDs that you want to send email notification using the Default Recipients field. I configured my two email IDs in this field.
If you have email IDs configured in the Default Recipients list but do not want to send email notifications to a few of them, you can add those email IDs to the Excluded Recipients list.
The Default Subject field lists the Jenkins Environment Variables PROJECT_NAME (which returns the job name), BUILD_NUMBER (the build number of the current build being executed), and BUILD_STATUS (the status of build like success or failure).
The Default Content field allows you to configure a default message in an email.
Click the Save button.
Note
Settings we configure in this section are global settings so are applied to all jobs having email notifications. Do not configure any job-specific details or details of an application you are building in any of your Jenkins jobs.

Step 3: Adding an Email Notification Step in the Post-Build Section of the TestCalculatorWebApplication Job
Go inside the TestCalculatorWebApplication job by clicking the Configure menu. This will take you inside settings of the job.
Scroll down to the Post-Build Actions section (see Figure 15-17). Click the Add Post-Build Action button and select Editable Email Notification.[image:]A window box of a browser, with the Test Calculator Web Application tab open. Under the Post-build Actions section, there are details to fill, which are Project Recipient List, Project Reply to List, Content-Type, Default Subject, and Default Content. On the bottom part are 2 buttons labeled save and apply.

Figure 15-17The Project Recipient List, Default Subject, and Default Content fields with customized values

Here you can configure Jenkins job-specific details to be sent in the email notification.
I configured my email ID to receive email notification from this job in the Project Recipient List field. Note that if you set a list of email IDs here it will override the global Default Recipient setting you configured previously.
Include the name of the calculator application concatenated with the default subject mentioned in the global settings in the Default Subject field.
I set the message to be displayed in the email body using the Default Content field. The default content field contains: "Please find E-E Selenium scripts report file: $(TestType)Result.html attached with this email"
Note that the parameter variable is referred to as ${TestType} to include its value in message displayed in the email body.
In the attachments field you have to mention the path of files to be sent as an email attachment. This path should be relative to the Workspace directory. I used "**/$(TestType)Result.html" in the attachments field.
I added the Selenium test execution report HTML file using the following pattern.
In the pattern, **/ means look for the file in the current directory (the Workspace directory) as well as its subdirectories. The name of our result file contains the TestType parameter instead of hard-coding the name of the file.
Click the Advanced Settings button.
Now click the Add Trigger button in the Triggers section to configure the email notification trigger. To send an email notification regardless of success or failure, select the Always option. Click the Save button.
Running a Parameterized Free-Style Job Manually
Go to the dashboard and run BuildAndDeployCalculatorWebApplication by clicking the clock sign.
This will take you to the next page where the job will ask you to select a parameter value from the dropdown.
The job is waiting for the user to put values in the parameters. Select RegressionTest from the TypeOffTestsToRun dropdown. Click the Build button. This will start this job execution.
After completion, it will trigger the downstream job. It will run UI automation tests. After completion of the downstream job, it will send you an email notification.
Click it to see the email and the RegressionTestResult.html attached to the email.
Auto-Triggering a Parameterized Free-Style Job
Let’s make one change to the Calculator.html and then push it to GitHub master branch, which will trigger the upstream job followed by the downstream Job.
I changed the title color to red (it was previously green). Refer to the highlighted portion of Figure 15-18.[image:]A window box of a text file named Calculator. From the top, it has a menu bar, followed by a selected code that reads style, dot title, open bracket, margin, bottom, 10 p x, text-align center, width 210 p x, color, red, border, solid black 2 p x, close bracket, input, open bracket type, button, close bracket.

Figure 15-18The part of Calculator.html where you need to change the title color

The button background color has changed to red too, which was also green previously. Refer to the highlighted portion of Figure 15-19.[image:]A window box of a text file named Calculator. From the top, it has a menu bar, followed by a selected code that reads input, open bracket, type, button, close bracket, background color, red, color, black, border, solid black 2 p x, width, 100 percent, close bracket.

Figure 15-19The part of Calculator.html where you need to change the button color

Let’s commit the change in the master branch in the local repository and then push it to the remote GitHub repository in the master branch.
Once you push the code to the remote repository, it will trigger the upstream job with the default values.
Once it’s done with the upstream job, it will trigger the downstream job.
This will run the UITests on the updated application. You can see the title’s foreground color and buttons’ background color have changed to red, as shown in Figure 15-20.[image:]A window box, with a local host tab open. Below is an open Jenkin Book Calculator Application. On row 1 is a display, which has 100 entered and clear signs. On row 2 are buttons 1, 2, 3, and the division sign. On row 3 are buttons 4, 5, 6, and minus signs. On row 4 are buttons 7, 8, 9, plus signs. On row 5 are 0, equal sign, and multiplication sign.

Figure 15-20The changed Calculator web application opened by the Selenium test

After completing the downstream job, you will get an email with the AllTestsResult.html file attached.
Creating a Parameterized Pipeline Job
This section explains how to build a parameterized pipeline job. This section creates the following two parameterized pipeline jobs:	BuildAndDeployCalculatorWebApplicationPipeline (upstream job): This pipeline job will be triggered on a push of change in the master branch of the JenkinsBookCalculatorWebApplication repository.
It will pull the latest change and copy Calculator.html in the IIS web server to deploy the latest web application and then it will call another parameterized pipeline job TestCalculatorWebApplicationPipeline and send it to the type of tests to be executed as an argument.

	TestCalculatorWebApplicationPipeline (downstream job): This pipeline job will be called by the first job called BuildAndDeployCalculatorWebApplicationPipeline. It will pull the latest automation code from the master branch of the GitHub repository called TestWebApplicationWithSeleniumTests, run the Selenium tests based on the values received from the upstream job, and will email the test execution report .HTML file to the recipients.

Creating a Build and Deploying the Calculator Web Application Parameterized Pipeline Job
Step 1: Creating a pipeline job from the dashboard: Go to the dashboard and click the New Item menu.
Enter BuildAndDeployCalculatorWebApplicationPipeline for the job name and select the Pipeline option. Click the OK button.
Select the This Project Is Parameterized checkbox and create two parameters—a string parameter to hold the directory path where Calculator.html file is copied and a choice parameter, which will define which group of Selenium tests are executed once the application is deployed.
Select the Poll SCM checkbox and configure the schedule as you did for the free-style job in previous chapters. In the Pipeline editor, write your pipeline script with the help of the Snippet Generator.
Place the generated script line in the Pipeline script editor inside the Checking Out Calculator Web Application Repository stage. Listing 15-3 shows that stage implemented in the pipeline script.node{
 def mvnHome
 stage('Checking out Calculator Web Application repository.')
 {
 git credentialsId : 'MyGithubCredentials' , url: 'git@github.com:dpranoday/JenkinsBookCapculatorWebApplication.git'
 }
}

Listing 15-3The Pipeline Script with the Checking out Calculator Web Application Repository Stage

Once the application code is pulled, you need to copy Caluclator.html from $(Workspace)\src\main\webapp\ to the path present in the PathOfCalcualtorAppDeploymentDirectory parameter.
Now create a Windows batch step using the Snippet Generator. Copy the generated script code and put it inside the Pipeline script editor, inside the Deploying Web Application stage block, as shown in Listing 15-4.stage('Deploying Web Application')
{
 bat
 '"
 RMDIR %PathOfCalculatorAppDeploymentDirectory%
 MKDIR %PathOfCalculatorAppDeploymentDirectory%
 copy /y src\\webapp\\Calculator.html %PathOfCalculatorAppDeploymentDirectory%
 '"
}

Listing 15-4The Pipeline Script with the Deploying Web Application Stage

Note that I replaced the hard-coded directory path with %PathOfCalcualtorAppDeploymentDirectory%.
Once you deploy your application by copying Calculator.html, you are going to call the second pipeline job, called TestCalculatorWebApplicationPipeline.
Let’s create the build: build a job step using the Snippet Generator. You’ll see the error below the Project to Build field because you have not yet created the second job.
Let’s create the third stage block, the Testing Calculator Web Application stage, and paste the generated step into it. Add the parameters argument to this build step.
This stage contains the following build step:build job:'TestCalculatorWebApplicationPipeline',parameters:[$class: 'StringParameterValue', name: 'TestType', value: params.TypeOfTests]

We are calling the TestCalculatorWebApplicationPipeline job and sending it a parameter of class: StringParameterValue and name: TestType. The value of this parameter would be the one selected in the Choice parameter. Observe this build job step in Listing 15-5 to see how a job parameter is referenced using params.TypeOfTests in order to evaluate it and then send the evaluated value through the parameter.stage('Testing Calculator Web Application')
{
build job:'TestCalculatorWebApplicationPipeline',parameters:[$class: 'StringParameterValue', name: 'TestType', value: params.TypeOfTests]
}

Listing 15-5The Pipeline Script with the Testing Calculator Web Application Stage

Click the Save button.
Creating a TestCalculatorWebApplicationPipeline Job
Go to the dashboard and click the New Item menu. Enter TestCalculatorWebApplicationPipeline for the job name and select the Pipeline option. Click the OK button.
Select the This Project Is Parameterized checkbox.
You need to create a parameter of type String with the same name as the one used to send a value to the upstream job. In the upstream job, you created parameter called TestType in the Build step.
Using the following steps, you can call this job from the UPSTREAM job.build job:'TestCalculatorWebApplicationPipeline',parameters:[$class: 'StringParameterValue', name: 'TestType', value: params.TypeOfTests]

Observe that the name of the parameter is TestType, so you need to create a parameter called TestType in this downstream job.
Let’s write the pipeline script in this job. Listing 15-6 shows the script added to the Pipeline editor.try
 {
stage('Pulling Test automation code')
 {
 gitcredentialsId: 'MyGithubCredentials', url: 'git@github.com:dpranoday/TestWebApplicationWithSeleniumPythonTests.git'
 }
stage('Running tests')
 {
 if(params.TestType.equals("AllTests"))
 {
 bat "pytest --html ${params.TestType}Result.html"
 }
 else
 {
 bat "pytest -m ${params.TestType} --html ${params.TestType}Result.html"
 }

 }

 }
 finally
 {

emailextattachmentsPattern: '**/'+params.TestType+'Result.html', body: 'Please find E-E Selenium scripts report file:'+params.TestType+'Result.html attached with this email', subject: 'Calculator Web Application details:$DEFAULT_SUBJECT', to: 'pranoday.dingare@gmail.com'

 }

Listing 15-6Pipeline Testing Calculator Web Application

Let’s look at the different blocks of this script in detail.
In the previous block, all the stages are enclosed between try blocks so that even if a stage fails and you get an exception, the script code should send you an email notification.
stage('Pulling Test automation code'): Checks out the master branch from the GitHub repository.
stage('Running Tests'): At this stage, you are checking the value of the pipeline parameter. If it is AllTests then you are calling the bat step which will run all pytesttests. Otherwise, it will run a particular group of tests like RegressionTest or SmokeTest, etc., by using –m.
Observe how we referred to the parameter in the script code. If the block reference is params.TestType, you need to refer to the pipeline script parameters using params.
In bat step, the entire batch command is enclosed between double quotes (“) and the script parameter is interpolated using ${params.TestType}.
finally block: In the finally block, you are sending an email notification using the email text step.emailextattachmentsPattern: '**/'+params.TestType+'Result.html', body: 'Please find E-E Selenium scripts report file:'+params.TestType+'Result.html attached with this email', subject: 'Calculator Web Application details:$DEFAULT_SUBJECT', to: 'pranoday.dingare@gmail.com'

The first argument of this step includes the relative path of the .HTML file in first argument.
It also includes the script parameter using params. But this reference is without curly braces (‘{‘). Here, you are not interpolating but are concatenating the variable value using +.
The '**/'+params.TestType+'Result.html' statement evaluates the variable and concatenates its value with **/ and Result.html.
The second argument is body which displays a message in an email body. It concatenates the value of the pipeline parameter using the + sign.
The third argument displays the subject.
Note the reference of the DefaultSubject variable. It is interpolated using the $ sign but no curly brace is used. If you want to interpolate any variable, whether environment variable or pipeline parameter in a string enclosed within single quotes (‘), you need to use $ without the curly braces. Click the Save button to save the configuration of the pipeline job.
Running the Parameterized Pipeline Job Manually
Click the clock image shown for the BuildAndDeployCalculatorWebApplicationPipeline job.
Then select the SmokeTest option from the dropdown and click the Build button.
This will trigger the upstream pipeline, which will deploy the application and call the downstream pipeline, which will run the tests and send an email notification containing the test report.
Automatically Triggering the Parameterized Pipeline Job
Let’s make a change to the Calculator web application and push it to the central GitHub repository. I changed the Title color and button controls background color to Green in Calculator.html.
Commit the master branch in the local repository and then push it to the remote GitHub branch. Now push it to the GitHub repository.
Once you push the code to the remote repository, it will trigger the upstream pipeline with the default values. It will call the downstream job and start the test execution.
The tests will be executed on the updated application, in which the color has changed to green, and it will send the test results via email.
Summary
This chapter showed you how to set up the UI automation tool called Selenium using Python libraries. You automated an end-end build lifecycle of the CalculatorWeb application using upstream and downstream free-style jobs. You also learned how to send parameters from an upstream job to a downstream one and execute the parameterized jobs manually by triggering them automatically. In the closing sections of the chapter, you implemented the same upstream and downstream parameterized pipeline jobs and executed them manually by triggering them automatically. You also configured customized email notifications in the jobs. The next chapter discusses pipelines as code.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_16

16. Understanding Pipeline as Code

Pranoday Dingare1
(1)Pune, Maharashtra, India

In the last chapter you learned about GitHub and integrating Jenkins with GitHub. You also learned about parameterized free-style and pipeline jobs. You learned about E-E testing using the UI automation tool called Selenium and managed the web application’s release using upstream and downstream jobs. You also saw how to set up customized email notifications that will send UI automation test reports.
In this chapter, you learn about API authentication, how to set up API authentication in the GitHub repositories, and how to integrate them with GitHub repositories having API authentication set from Jenkins. You are also going to learn about pipeline as code and how to trigger this pipeline from GitHub using Webhooks, when an event occurs on the GitHub side like a merge, push, etc.
What Is API Authentication
In earlier chapters of this book, you learned how to set up basic authentication (username/password) and SSH authentication (public key-private key pair) in the GitLab/GitHub repositories and how to interact with these repositories using authentication credentials.
Along with basic and SSH authentication, there is another popular authentication technique called API authentication. In this technique, you have to create a secret text called an API access token that you can use in place of a password to access the Git remote repositories. This technique of authentication is mostly used when accessing the Git remote repositories, either through API endpoints or the command-line.
How to Apply API Authentication to GitHub Repositories
In order to apply an API authentication technique to the GitHub repositories, you need to create an API token in GitHub. Here are the steps to create an API access token in GitHub.
Step 1: Logging into GitHub: Log into your GitHub account using the GitHub username and password. After logging in, you will see the GitHub dashboard.
Step 2: Creating an API access token: Click the User Avtar shown in top-right corner of the dashboard and select the Settings menu.
This will take you to the Public Profile page. Click the Developer Settings link provided on the left side of the page.
This will take you to the GitHub Apps page. Click the Personal access Tokens link.
It will take you to the Personal Access Tokens page. Click the Generate New Token button.
This will open the New Personal Access Token page. Enter a string in the Note field that will indicate the purpose of the access token and then select the Repo checkbox inside the Select Scopes section to get full control of the private repositories (see Figure 16-1).[image:]A screenshot displays the New personal access token. The sections are Note, Expiration, and Select scopes. Note has the following text entered without spaces, access token to access private repositories. Expiration has an entry of 30 days. The options for select scopes are repo and workflow. The checkbox for repo is checked.

Figure 16-1The repo checkbox selected to select all permissions

Scroll down the page and click the Generate Token button, which will take you to the next page. Click the Generate Token button.
Click the copy button highlighted in Figure 16-2 to copy the token and then paste it into a file to use it in the future, whenever required.[image:]A copy button highlighted for the produced token code.

Figure 16-2The copy button highlighted along with the generated token

Once you navigate away from this page, for security reasons this generated API token will not be shown again. So make sure to copy this token and keep it in a file before you leave this page.
How to Use an API Token to Access a Private GitHub Repository
Now that you have your API token, you can use this it to access the JenkinsBookCalculatorWebApplication repository. You will clone the repository, make a few changes, and push these changes to the remote repository by accessing it using the API token you just generated.
Step 1: Cloning the JenkinsBookCalcualtorWebApplication repository: Create a blank folder to clone the repository.
I created a blank folder named CloningRepoUsingAPIToken on D:.
Open the command prompt and go inside this newly created directory using the cd command. Enter the git clone command using the HTTPS URL of the repository
I entered the following command:git clone https://github.com/dpranoday/JenkinsBookCalculatorWebApplication.git

After pressing the Enter key it will appear in the Sign In window of GitHub. Enter your access token into the Personal Access Token field.
Click the Sign in button. It will clone the repository.
Note
Once you access your repository using the username and password/access token, these credentials are stored in the Windows Credentials section on your system.

Got to the Windows Credentials section in the Control Panel. Type Windows Credentials in the Start menu.
Select the Manage Windows Credentials menu, which will open the Manage Your Credentials window. You can see that my credentials are saved under the Generic Credentials section (see Figure 16-3).[image:]A user interface of the Generic Credentials. That has details of Internet or network address, User name, Password, and Persistance. With Edit and Remove option buttons.

Figure 16-3The credentials entry with the GitHub username and access token

In subsequent access attempts to any of the GitHub private repositories, the credentials saved here will be used and the GitHub SignIn window will not be shown.
Step 2: Make code changes and push them to the GitHub remote repository: Open the Calculator.html file from the src/main/webapp directory from the cloned repository.
Let’s change the title and button background colors from green to red (the lines to be changed are shown in bold in Listing 16-1). <style>
 .title{
 margin-bottom: 10px;
 text-align:center;
 width: 210px;
 color:green;
 border: solid black 2px;
 }

 input[type="button"]
 {
 background-color:green;
 color: black;
 border: solid black 2px;
 width:100%
 }

Listing 16-1CSS Code from Calculator.html from Calculator Web Application

Now save the changes and commit them to the local repository using the following two commands:git add .
git commit –m "Changing title color and button control background color to red"

The changes will be committed to the default branch, which is master.
Push the changes to the remote repository using the git push command:git push https://github.com/dpranoday/JenkinsBookCalculatorWebApplication.git master

As discussed, it will not prompt you to enter the access token again and will push your changes to GitHub repository.
After refreshing the GitHub repository page, you can see your change in the remote repository.
Creating an API Access Token in GitLab
This section explains how to create an API access token in the GitLab repository.
Step 1: Log into GitLab: Log into your GitLab account using your GitLab username and password. After logging in, you will see the GitLab dashboard.
Step 2: Create an API access token: Click the User Avtar shown in the top-right corner of the dashboard and select the Preferences menu.
This will take you to the Preferences page. Click the Access Tokens link provided on the left side of the page.
Clicking the Access Tokens link will take you to the Personal Access Tokens page.
Enter a string that will indicate the purpose of access token in the Token Name field and select the Write_Repository checkbox in the Select scopes section to get full control over the private repositories.
Scroll down the page to the Create Personal Access Token button. Clicking it will take you to the Access Token page.
Click the Copy Personal Access Token button to copy the token. Paste it into a file to use it in the future whenever required.
Once you navigate away from this page, for security reasons this generated API token will not be shown again. So make sure you copy this token and keep it in a file before you leave this page.
How to Use the API Token to Access a Private GitLab Repository
Now you have the API token. Let’s see how to use it to access the JenkinsBookCalculatorAPI repository. You will clone your repository, make a few changes, and push these changes to the remote repository by accessing the API token you just generated.
Step 1: Cloning the JenkinsBookCalculatorAPI repository: Create a blank folder to clone the repository.
I created a blank folder named CloningCalculatorAPIRepoUsingAPIToken on D:.
Open the command prompt and go inside this newly created directory using the cd command. If you have credentials stored in the Windows Credentials Manager, delete them before cloning the repository. Let’s go to the Windows Credentials in the Manage Your Credentials window.
You can see the GitLab credentials (Username-Password.API access token). Click the Remove button for the GitLab credentials entry.
Click the Yes button on the Delete Generic Credential confirmation.
Enter the git clone command using Https URL of the GitLab repository. I entered the following command:git clone https://gitlab.com/Pranoday/Jenkinsbookcalculatorapi.git

After pressing Enter, you get the Git Credential Manager dialog.
Enter the GitLab account’s username in the User Name field and the GitLab access token in the Password field then click the OK button.
After clicking the OK button, the repository will be cloned.
Step 2: Making code changes and pushing them to a GitLab remote repository: Open the Calculator.java file from src/main/java/Pranodayd/CalculatorAPI from the cloned repository.
Change name of the variable from Res to R in the Addition function. (See this change in Listing 16-2.)public int Addition(int num1,int num2)
{
 int R=num1+num2;
 return R;
 ///return 0;
}

Listing 16-2The Name of the Res Variable Is Changed to R in the Addition Function from Calculator.java

Save the changes and commit them to the local repository. These changes will be committed to the default branch, master. I committed changes using the following two commands:git add .
git commit –m "Changed variable name in Addition function"

Push the changes to the remote repository using the git push command:git push https://gitlab.com/Pranoday/Jenkinsbookcalculatorapi.git master

As discussed, it will not prompt you to enter the access token again and will push your changes to the GitLab repository.
After refreshing the GitLab repository page, you can see the change in the remote repository.
How to Access a GitHub/GitLab Repository Using an API Token in Jenkins
In this section, you create a Jenkins free-style job to release the CalculatorAPI.jar file by accessing the JenkinsBookCalculatorAPI repository from GitLab.
Let’s first set up Jenkins and create a free-style job to release a new version of the CalculatorAPI in the Nexus repository.
Step 1: Setting Up Maven in Jenkins
Refer to the Understanding Global Tool Configuration Settings: section in Chapter 6. You can skip this step if you have been following this book from start and have already configured Maven in Jenkins.
Step 2: Creating a Free-Style Job from the Jenkins Dashboard
Click the New Item link on the Jenkins dashboard. Enter the job name in the Enter an Item Name field and select the Free-style project option.
I called the job ReleaseCalculatorAPI_APIToken and selected the Free-style Project option then clicked the OK button.
Click the OK button to open the next page.
Select the Git radio button in the Source Code Management section and enter the Git code repository https URL in the Repository URL field. Refer to the “Push the Code from Local Repository to Central Repository on GitLab” section in Chapter 12 for these steps.
Click the Add button displayed in the Credentials field and click the Jenkins option. This will open the Jenkins Credentials Provider: Jenkins window. Select the Username with Password option in the Kind dropdown.
Enter your GitLab username in the Username field and the GitLab API token in the Password field. Enter a unique string as a credentials entry ID in the ID field.
Note
To access GitLab/GitHub repositories using API authentication from Jenkins, you need to create a credentials entry of type Username with Password and not of type Secret Text. Secret Text is used when you are not required to provide a username. But to access GitLab/GitHub repositories, you need to provide a username. If you want to access using API token, you need to use the username and API token in place of your login password.

Click the Add button to add this credentials entry. Click the Credentials field dropdown to select the entry.
Enter the branch name master in the Branch Specifier field, as you are using master as the main Git repository branch.
Figure 16-4 shows all these fields from the Source Code Management section filled with the details we just explained.[image:]A user interface of the Manage Jenkins webpage, Source Code Management. The Source Code Management section has headers that are None, Git, Repositories, Repository U R L, Credentials, Branches to build, and Branch Specifier. With Save and Apply option buttons.

Figure 16-4The Repository URL, Credentials, and Branches to builds fields filled

Scroll down the page to add a build step. Click the Add Build Step dropdown and select the Invoke top-level Maven targets option.
Select the MyMaven option in the Maven Version dropdown. You will see a name that you configured the Maven settings with in Global Tools Configuration page. I have my Maven configured with the MyMaven name. Enter Deploy in the Goals field. Click the Save button.
Step 3: Change the Version in pom.xml of the Cloned API Project
Listing 16-3 shows this change in pom.xml. I changed the version to 8.0.<groupId>Pranodayd</groupId>
<artifactId>CalculatorAPI</artifactId>
<version>8.0</version>

Listing 16-3Version Changed to 8.0 in pom.xml

Step 4: Commit Changes in the Local Repository and Push them to the Central GitLab Repository
Open the command prompt and enter into the project directory using the cd command. Now add changes to the staging area by running the git add command.
Commit the changes in the master branch by running this command:git commit --m"Changing version in pom.xml"

Push the change in the Git central repository using the following command:git push https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git master

Running Free-Style Jobs Accessing the GitLab Repository with the API Token
There are no changes to the way you run a Jenkins job, which accessed the Git repository using the API token. To run a job, go to the dashboard and click the clock sign, which will start build. You will get the console output of this job. Figure 16-5 shows that the CalculatorAPI8.0 JAR file has been released to the Nexus repository.[image:]A user interface of Browse. That has selections to upload components and H T M L View with folders and sub folders that make up the Calculator A P I, 8 point 0 dot jar.

Figure 16-5The CalculatorAPI-8.0.jar has been released to the Nexus repository

Understanding Pipeline as Code (Jenkinsfile)
Now that you are familiar with the Jenkins pipeline concept, you are going to learn how a pipeline is written outside the Jenkins UI in a file called a Jenkinsfile. This is called as pipeline as code.
What Is a Jenkinsfile
A Jenkinsfile is a text file that contains the pipeline script code. It gets checked into the source code repository of an application along with the application’s source code. This file can be implemented using scripted syntax (Groovy script) or descriptive syntax (DSL).
Advantages of Pipeline as Code
There are several advantages of writing pipelines in Jenkinsfiles and overwriting it in the Jenkins UI:	You can create pipelines for all branches and execute pull requests with just one Jenkinsfile.

	You can review your code in a Jenkinsfile the way you exercise code review of your application’s source code.

	Writing pipeline code in a separate file and checking it in a version control system like SVN, Git etc. will allow you to keep track of periodic changes done in the build process.

	Jenkinsfile serves as a single source of pipeline code that can be shared among multiple developers.

	If an application developer has carried out a change in application source code which needs to be implemented in the build process, that same developer can implement this build process change in the Jenkinsfile.

Writing a Pipeline in a Jenkinsfile
In this section you are going to learn how to write a pipeline in a Jenkinsfile. The pipeline in a Jenkinsfile can be written with both scripted or declarative syntax. You learned in the previous chapters how to write Jenkins pipeline using scripted syntax, you this chapter implements a Jenkinsfile using declarative syntax.
Scripted vs Declarative Syntax
Before you start implementing a pipeline in declarative syntax, let’s look at differences between scripted and declarative syntax:	Declarative syntax is a relatively new feature in Jenkins.

	A scripted pipeline is a traditional way of writing pipeline code.

	Scripted pipeline uses stricter Groovy based syntaxes.

	Declarative pipelines are introduced to offer a simpler and more optioned Groovy syntax.

	Scripted pipelines are defined in a block called a node.

	Declarative pipelines are defined in a block called a pipeline.

The structure of scripted and declarative syntaxes are discussed in Chapter 14.
Creating a Jenkins Job to Run a Jenkinsfile
Let’s create a pipeline job that will run the build process of the CalculatorAPI. The difference between this job and the jobs you created previously for the same purpose is that you are going to write a pipeline in declarative syntax. The pipeline is going to be written in a Jenkinsfile and not in the Jenkins UI. You need to install the Pipeline plugin.
Step 1: Creating a pipeline job: Click the New Item link from the Jenkins dashboard to create a pipeline job.
I called mine DeployCalculatorAPIUsingPipelineAsACode and selected the Pipeline option. Click the OK button.
Scroll down page to find the Pipeline section. You can create the pipeline script using a Script Editor which you can copy in Jenkinsfile afterward.
The pipeline you are now going to build requires interaction with Git and Maven, so start by getting the corresponding script template by selecting the GitHub+Maven option from the dropdown.
Selecting this option will give you a declarative script template which you can edit according to your requirements.
I defined an environment block (see Listing 16-4) that’s used to define variables which you want to share in all stages of this pipeline.pipeline
{
 environment
 {
 FAILED_Stage="
 }
}

Listing 16-4Environment Section from the Pipeline

The first step is to clone the CalculatorAPI repository. Let’s get the step generated from Snippet Generator. This process is explained in detail in Chapter 14.
I changed the template to add the Cloning Calculator API repository stage (see Listing 16-5) and pasted the Git step generated using the Snippet Generator.
This stage also includes a script block which assigns the pipeline environment variable FAILED_Stage with the name of the current stage. The current stage name is returned by the Jenkins environment variable STAGE_NAME.Stage('Cloning Calculator API repository')
{
 steps
 {
 script
 {
 FAILED_Stage=env.STAGE_NAME
 }
 git branch : 'Master', credentialsId: 'MyGitlabAPIToken', url: 'https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git'
 }

}

Listing 16-5The Cloning Calculator API repository Stage in the Pipeline

Add another stage (called Deploying CalculatorAPI) (see Listing 16-6) with the batch command mvn deploy. This stage also saves its name in the Pipeline environment variable.Stage('Deploying CalculatorAPI')
{
 steps
 {
 script
 {
 FAILED_Stage=env.STAGE_NAME
 }
 bat 'mvn deploy'
 }

}

Listing 16-6The Deploying CalculatorAPI Stage in the Pipeline

The requirement is to send email notification at the end if the process fails. If process is successful, then you want to archive the artifact.
This can be achieved using a post-block in a declarative pipeline. Let’s look at the post-block before you use it in the pipeline.
A post-block contains the steps to be performed after the completion of all stages or of a particular stage depending on its position in the pipeline script. A post-block contains different condition blocks, such as success, failure, and always. These condition blocks allow the execution of steps inside each condition, depending on the completion status of the entire pipeline or of a particular stage.
The following code includes a post-block written after the stage block.stage('Display message on console')
{
 bat 'echo Hi'
}
post
{
 success
 {
 bat 'echo Display message stage is successful'

 }
 failure
 {
 bat 'echo Display message stage is successful'
 }
}

In this example, you have the Display Message on Console stage, which displays “Hi” on the console. After completion of this stage, the success block or the failure block will be executed based on the completion status of the stage. If no error occurred, it completes successfully and the success block is executed; otherwise, the failure block is executed.
The following example shows where a post-block is mentioned after all stages.stages
{
 stage('Display welcome message on console')
 {
 bat 'echo Hi'
 }
 stage('Display good bye message on console')
 {
 bat 'echo Good Bye'
 }

 }
 post
 {
 success
 {
 bat 'echo Both stages are successful'
 }
 failure
 {
 bat 'echo some stage is not successful'
 }
}

In this example, you have two stages mentioned inside the stages block and the post-block is mentioned after that. This post-block will be executed after completion of the last stage mentioned inside the stages block. If both the stages are successful, the success block will be executed. If one of the stages fails, the failure block will be executed.stages
{
 stage('Display welcome message on console')
 {
 bat 'echo Hi'
 }
 stage(‘Display good bye message on console’)
 {
 bat 'echo Good Bye'
 }
}
post
{
 always
 {
 bat 'echo It will always get executed'
 }
}

If the post-block uses the always block, it executes irrespective of the completion status of the stages.
Now that you understand the purpose of the post-block, you can resume implementation of the pipeline. In the pipeline, you want to archive an artifact generated if both stages pass. Otherwise, you want to send a failure notification through email with the name of the failed stage and the console log of the build attached.
Let’s implement this using a post-block:post
 {
 success
 {

 archiveArtifacts 'target/*.jar'
 }

 failure
 {
 emailext attachLog: true,body: 'Stage: '+FAILED_Stage+' from Build : $BUILD_NUMBER of $JOB_NAME failed.Hence release of new build could not be done on Nexus repository.Please find detailed console log attached with this email.', subject: 'CalculatorAPI details:$DEFAULT_SUBJECT', to: 'pranoday.dingare@gmail.com'
 }

 }

I added this post-block after the stages block of the pipeline so that it would be executed after the Deploying Calculator API stage completed.
In the emailext step, you are setting attachLog: true to send the console log an email. The rest of the parameters of the emailext step you are already familiar with. Note how we used the pipeline environment variable in the body parameter to include the failed stage name in the email body. This would be executed if one of the stages failed to complete.
In the success condition block is the archiveArtifacts step. Let’s look at this step in more detail.
Build artifacts are usually created inside the workspace, which might get deleted once you execute subsequent builds. But if you want to preserve artifacts of the build, these need to be copied outside the workspace. The archiveArtifacts step saves these build artifacts in the ${JENKINS_HOME} directory. The second stage has an mvn deploy batch step, which creates a .JAR file that you want to preserve outside the workspace directory.
Saving the Pipeline Code in a Jenkinsfile and Pushing it to the GitLab Repository
You have created the pipeline script in the Jenkins UI, but you want this to be part of the GitLab repository. Let’s create a file named Jenkinsfile and paste this script inside it. I created a Jenkinsfile.txt file inside a directory where I cloned the remote repository.
Inside this file, I pasted the pipeline script we created using the Jenkins UI. See Listing 16-7.Pipeline
{
 environment
 {
 FAILED_Stage=''

 }
 agent any

 stages
 {

 stage('Cloning Calculator API repository')
 {

 steps
 {
 script
 {
 FAILED_Stage=env.STAGE_NAME
 }

 // Get the code from Gitlab repository
 git branch: 'Master', credentialsId: 'MyGitlabAPIToken', url: 'https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git'
 }
 }

 stage('Deploying Calculator API')
 {

 steps
 {

 script
 {
 FAILED_Stage=env.STAGE_NAME
 }
 bat 'mvn deploy'

 }
 }
 }
 post
 {
 success
 {

 archiveArtifacts 'target/*.jar'
 }

 failure
 {

 emailext attachLog: true,body: 'Stage: '+FAILED_Stage+' from Build : $BUILD_NUMBER of $JOB_NAME failed.Hence release of new build could not be done on Nexus repository.Please find detailed console log attached with this email.', subject: 'CalculatorAPI details:$DEFAULT_SUBJECT', to: 'pranoday.dingare@gmail.com'

 }

 }

}

Listing 16-7The Entire Pipeline Code Created Using the Jenkins UI

I committed this file to the local repository using the following commands:git add .
git commit --m "Adding Jenkinsfile"

and then pushed it to the GitLab repository using the following command:git push https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git

You can see the Jenkinsfile.txt inside your GitLab repository now.
Let’s go inside the Jenkins job.
Click the Configure link. Scroll down to the Pipeline section. Open the Definition dropdown. Click the Pipeline Script from SCM option. Open the SCM dropdown and select the Git option. Enter the URL of the JenkinsBookCalculatorAPI repository in the Repository URL field and select the credentials entry in the Credentials dropdown. Add master to the Branch Specifier field.
In the Script Path field, you need to add the relative path of the pipeline file. In this case, the pipeline is written in a file named Jenkinsfile.txt and it is present inside the repository’s root folder, so you only have to include Jenkinsfile.txt in the Script Path field. Click the Save button.
Triggering a Jenkins Job Using a GitLab Webhook
You have learned how to trigger jobs using different types of triggers like Chron expressions and polling SCMs. In this section, you are going to learn about a new mechanism to trigger a Jenkins job. When you configure a Jenkins job to poll SCM, then Jenkins checks for a new change in the corresponding Git repository and triggers the build. In this case, the build trigger comes from the Jenkins side and it only gives a trigger when there is a new change pushed to the remote repository.
Whenever you interact with the Git remote repository by adding new comments, pushing code branches, or opening/closing an issue, it triggers different events. If you want to trigger the Jenkins job as a result of such events, you need to use a concept called Webhooks.
Webhooks are nothing but configurations that contain URLs to send a POST request to as a result of some event. If you create Webhook configuration with a URL of your Jenkins job, you can trigger a build based on an event that occurred on the GitLab repository. To get your Jenkins job triggered using Webhooks, you need to create a Webhook in the GitLab repository and configure Jenkins to get a build trigger from GitLab. Before you configure a Webhook in GitLab, let’s go over two important concepts:	Public IP: A machine connected to a network has two types of IPs. A Local IP is used in a local network (LAN) to communicate with a machine. A public IP is used by machines outside of the local network to communicate with a machine. Gitlab.com is not inside a LAN so it needs a public IP of the Jenkins machine to trigger a job.

A public IP of a machine can be determined using this website: https://www.whatismyip.com/what-is-my-public-ip-address/
You can go to this website and it will show you public IPv4 address of your machine. Go to this website from the machine that has the Jenkins server.
You have to use this IP while configuring a Webhook URL in GitLab.	Port forwarding (opening ports): In this scenario, the Jenkins server is going to be started on the local (LAN) IP address and going to be listening to some port,. You have started Jenkins on port 8080. Gitlab.com is going to send a request to the Jenkins machine using an URL with a public IP of your machine, right? This request should be forwarded to a local IP address where Jenkins is started. This concept of forwarding requests sent to a public IP to a LAN IP addresses is called port forwarding or opening a port.

The following steps explain how to configure port forwarding using a DLINK router. In your case, navigation to the pages will be different, but conceptually the process is the same.	1.
Go to the D-link router configuration page: Open http://192.168.0.1.

	2.
Enter admin for the username and password. Click the OK button, which will open the D-link configuration page.

	3.
Click the Advanced button, which will open the next page.

	4.
Click the FIREWALL button shown on the top horizontal bar, which will open the next page.

	5.
Click the PORT FORWARDING link shown on the left side.

Local IP Address: Enter your machine’s local IP address (which you get after running Ipconfig command) in the Local IP Address field. In my case, it is 192.168.0.100.
Local Port Range: You need to specify a port range on which you have started the Jenkins server. If you want to start Jenkins on any port between 8080 to 8090, you can add this port range. As I started my Jenkins server on 8080, I enter 8080 in both fields.
Protocol: Keep the Both value selected in this dropdown.
Remote IP Address: In this field, enter your machine’s public IPv4 address, which you have determine from whatismyip.com website. My machine’s public IP is 1.23.253.174.
Remote Port Range: You can add a range of ports here as well. But I am entering 8080 in both the fields.	6.
Click the Save& Apply button to save the configuration.

Once you are done with the settings mentioned here, you’re ready to create a Jenkins job to be triggered using a GitLab Webhook URL.
Step 1: Start the Jenkins Server on a local IP address: You need to start the Jenkins server on your local IP.
Step 2: Configure the Jenkins URL in the Jenkins configuration: Go to Manage Jenkins ➤ Configure System and set the machine’s public URL in the Jenkins URL field.
Click the Save button.
Step 3: Install the GitLab plugin in Jenkins: You need to install the GitLab plugin in Jenkins. Refer to Chapter 5 for detailed steps on how to do that.
Step 4: Configure the Jenkins job to get a trigger from GitLab: Before you go to the GitLab repository to create a Webhook, go inside the DeployCalcualtorAPIUsingPipelineAsACode Jenkins job from the dashboard and configure it to receive a trigger from GitLab.
Scroll down to the Build Triggers section. After installing the GitLab plugin, you will see the Build When a Change Is Pushed to GitLab option.
Copy the GitLab Webhook URL from the Build When Change Is Pushed to GitLab option. Check the Build When Change Is Pushed To GitLab checkbox.
Check the Push Events checkbox and uncheck the others, as you want to trigger this job once. You will push changes to the remote repository. Click the Advanced button. This will open other settings related to this option. Scroll down to get to the Secret Token field.
Click the Generate button. This will generate a secret token for this job which will authenticate the access of this job from GitLab when it triggers it.
Copy this token and paste it in a file before you save the configurations. Click the Save button.
Step 5: Creating a Webhook in GitLab: Go to GitLab repository you want to trigger the Jenkins job from, to create a Webhook.
In this example, you trigger it on push of the code inside the JenkinsBookCalculatorAPI repository.
Got to the JenkinsBookCalculatorAPI repository. Choose the Menu ➤ Settings ➤ Webhooks menu. It will take you to the Webhooks page.
Enter the project URL in the URL field and the project secret token into the Secret token field.
Since you want to trigger a job on push to the “master” branch, check the Push Events checkbox in the Trigger section and enter master in the Edit field shown below the Push Events checkbox.
Scroll down the page and click the Add Webhook button. This will save the Webhook.
Step 6: Changing the pom.xml of the CalculatorAPI project and pushing the change: I changed the version to 9.0 (see Listing 16-8).<groupId>Pranodayd</groupId>
<artifactId>CalculatorAPI</artifactId>
<version>9.0</version>

Listing 16-8The Version Changed to 9.0 in pom.xml

Use git add and git commit and then push the changes to the master branch using the git push command. If you do all this, you’ll see that the build has been triggered.
Creating a Pipeline Job to Trigger Using GitHub Webhooks
In this section, you are going to create a Webhook in GitHub the way you created it in GitLab. You are going to work with different settings to trigger a Jenkins job using a GitHub Webhook. Let’s get started by following these steps.
Step 1: Creating the JenkinsBookCalculatorAPI repository on GitHub: I created a private repository on GitHub called JenkinsBookCalculatorAPI and pushed the CalculatorAPI project to it.
This is the same CalculatorAPI project you have been using throughout this book. In the previous section, you created the Jenkinsfile.txt file in the project directory and pushed it to the GitLab repository. I made only one change before pushing it to the GitHub repository; instead of keeping the pipeline script in the Jenkinsfile.txt file, inside project root directory, I named the Pipeline script file BuildCalculatorAPI.txt and shifted it inside the BuildScript directory.
Step 2: Installing the GitHub plugin in Jenkins: You need to install the GitHub plugin to get the configuration options in the Jenkins JOB. Refer to Chapter 5 for detailed steps on how to install plugins in Jenkins.
Step 3: Setting a Hook URL in the Jenkins configuration: Go to Manage Jenkins ➤ Configure System. Click the Advanced button under the GitHub section.
Check the Specify Another Hook URL for GitHub Configuration checkbox and add the public IP of the machine.
Click the Save button.
Step 4: Creating a pipeline job: Click the New Item link from the Jenkins dashboard to create a pipeline job.
I called it DeployCalculatorAPIUsingPipelineAsACodeFromGitHub and selected the Pipeline option. Click the OK button
Go to the Build Triggers section and check GitHub Hook Trigger for GITScm Polling. This option is only available when you have the GitHub plugin installed.
In the Pipeline section, select the Pipeline Script from SCM option in the Definition field. Select the Git option in the SCM dropdown. Enter the HTTP URL of your recently created GitHub repository in the Repository URL field. I created a new credentials entry of type UserName with Password with the GitHub API token. Select this credentials entry in the Credentials dropdown. Enter the master in the Branch Specifier field.
In the Script Path field, add BuildScript/BuildCalculatorAPI.txt as the pipeline is written in a file named BuildCalculatorAPI.txt which is inside the BuildScript folder from the project’s root directory. Click the Save button.
Step 5: Creating a Webhook in the GitHub repository: Go to the JenkinsBookCalculatorAPI repository page. Click the Settings tab. Click the Webhooks menu on the left side, which will open the Webhooks page.
Click the Add Webhook button. Enter this URL in the following format inside the Payload URL field:
http://<Public IP of Jenkins server machine>:<port>/github-webhook/
My Jenkins is started on the 8080 port on the public IP machine with an 1.23.253.174 public address, so I entered http://1.23.253.174:8080/github-webhook/.
Select the Just the Push Event radio control and then click the Add Webhook button.
Triggering Pipeline Jobs Using GitHub Webhook
Let’s change the version to 10.0 in the pom.xml file (see Listing 16-9).<groupId>Pranodayd</groupId>
<artifactId>CalculatorAPI</artifactId>
<version>9.0</version>

Listing 16-9The Version Changed to 10.0 in pom.xml

Commit the change in the local repository using the git add and git commit commands. Once these changes are committed, push the changes to the master branch in the GitHub repository using the git push command, which will trigger the build on a push event by the GitHub Webhook.
Summary
In this chapter, you learned about API authentication and its advantages over using a password when logging into the GitHub/GitLab repositories. You also learned how to generate these API tokens in GitHub and GitLab platforms. You used these generated tokens while working with GitHub/GitLab repositories using git commands. You also saw how to generate a credentials entry containing these API tokens in Jenkins. After a detailed understanding of API tokens, you learned how to write pipeline in a code file (not in the Jenkins UI) and execute these pipelines which are pushed into the SCM along with source code of your application. At the end of the chapter, you learned about Webhooks and learned how to trigger Jenkins jobs on a push event using Webhooks configured in GitHub and GitLab. The next chapter covers the Jenkins distributed builds.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_17

17. Jenkins Distributed Builds

Pranoday Dingare1
(1)Pune, Maharashtra, India

You have learned how to implement various Jenkins jobs as free-style jobs and as pipeline jobs throughout this book. You have seen execution of these jobs by triggering builds, either manually or through some external trigger like Webhooks, SCM polling, etc. To execute these jobs, you used one Jenkins machine that had all the necessary hardware/software requirements. This kind of setup does not help in building a huge application with multiple time-consuming phases. Sequential execution of huge build phases will take a lot of time and ultimately will delay the release of the build. Frequent releases of such time-consuming builds are difficult to trigger and manage too. Another important problem is that you need to have all the necessary software installed on that single machine, which may not be possible due to hardware constraints. If that build machine breaks down, then replicating all the installations on a new build server would be a huge task. Modern applications demand testing to be done on different hardware/software combinations, which will not be possible if you have only one machine taking care of the entire build process.
To solve all these problems, Jenkins comes with a great feature called distributed builds. This chapter explains how Jenkins distributed builds work. It discusses how to set up Jenkins to run distributed builds and how to set up free-style and pipeline jobs to run distributed builds.
Jenkins Distributed Architecture
Jenkins uses a master-slave architecture to manage distributed builds. Let’s look at the master-slave concept:	Jenkins master: This is a machine with Jenkins installed on it. This Jenkins instance sends different phases of the build to different machines for execution. This distribution will seldom be based on hardware/software requirements that a particular build phase needs.

	Jenkins slave: Also called a Jenkins agent, this is another machine with network access to the Jenkins Master. This machine has the Jenkins agent installed and is responsible for executing the build phases assigned by the Jenkins Master. One or more Jenkins slaves can be responsible for executing multiple build phases in parallel and complete the entire build process. An architectural diagram of a Jenkins master-slave is shown in Figure 17-1.

[image:]A diagram of 2 T P C Connection of Jenkins Master, which has the windows slave node, and Linux slave node, both boxed.

Figure 17-1The Jenkins master-slave architecture

Ways to Connect the Master and Slaves
In order to execute the distributed build, the master and slaves need to be connected. There are two ways to do this:	Master to agent: In this way, the agents (slaves) are configured to get connection requests from the master. In this configuration, the slave machines need to be minimally configured. They just need to have JDK/JRE installed. The master will connect with the agent machine through a SSH port, copy the remoting.jar on the agent machine, and will start running it using the JDK/JRE available on that machine. Through this remoting.jar agent, the machine will run the Jenkins job. In this case, the master should be able to send requests to the slave machine.

	Agent to master: If the master does not have access to the agent machines, it will not be able to start the agent process. In this case we need to use a different type of agent configuration, called JNLP (Java Network Launch Protocol). With this approach, you need to set the Fixed or Random radio control for the TCP Port for Inbound Agents option on the Manage Jenkins ➤Global Security page on the Jenkins master machine.

If you select the Fixed option, you need to set a port in the field. This is the port that agents use to connect to the master through JNLP. I am setting this port to 7070. Click the Save button.
Once this is set, you need to open an agent page inside a browser on the agent machine. This will show a JNLP Launch icon. Click that icon to install the JNLP agent and start the slave machine.
Once the JNLP agent is installed, you can install it as a Windows service so that you do not need to start the agent interactively again.
This is convenient when the master cannot connect to the agents because it's outside of the firewall, for example.
Understanding the Configuration to Connect the Master to the Agent Using SSH
This section goes through the step-by-step process to configure the master-slave machines to start the Jenkins agent using an SSH connection. I use two different machines to explain this configuration.	Master: the IP address of this machine is 192.168.43.10. This machine has a full Jenkins installation.

	Slave: the IP address of this machine is 192.168.43.185. This machine does not need a Jenkins installation. It has JDK11 installed.

Step 1: Install the SSH Build Agent's Plugin
Log into Jenkins on the master machine and install the SSH Build Agents plugin using the Plugin Manager.
Step 2: Install Java on the Slave Node
Install Java on the slave machine if it is not already installed. The Java installation steps are outside the scope of this book.
Step 3: Create an SSH Public-Private Key Pair
On the master machine, create a public-private key pair using the ssh-keygen command.
I created a key pair in the default path ${CURRENT_USER}\.ssh. I did not specify a passphrase for the key. You can create a key pair at a different location and may provide a passphrase too.
Step 4: Add a Credentials Entry with a Private Key to the Master Machine
Go to the Jenkins dashboard on the master machine. Then go to the Manage Jenkins ➤Manage Credentials menu. The Credentials page will appear.
Click the Jenkins link shown in the Stores Scoped to Jenkins section, which will open the System page.
Click the Global Credentials (Unrestricted) link to open the Global Credentials (Unrestricted) page. Click the Add Credentials menu shown on the left side.
Select the SSH Username with Private Key option from dropdown. Enter the username in the Username field
Note that the Username field should have a username of a authenticated user from the slave machine. The Jenkins master will connect to the slave using the username mentioned in this field. The ID and Description fields can have any value.
Click the Enter Directly radio button. I entered ADMIN into the Username field here. (Remember this name, as you need in future steps.)
Click the Add button and paste the created Private Key value copied from the ${CURRENT_USER}\.ssh\id_rsa file inside the field.
I keep the Passphrase field blank, as I did not specify a passphrase when creating the key pair. If you added a passphrase when you created the key pair, you need to include it here too.
Click the OK button.
Step 5: Add a Node Entry to the Jenkins Master
On the Jenkins master, click the Manage Jenkins menu. Click the Manage Nodes and Clouds link. This will open a page on which you can create new nodes.
Click the New Node link available on the left side. The next page will open, which is where you add the node details.
Enter a name in the Node Name field; I entered Node1. Click the Permanent Agent radio button.
Click the OK button. This will open page on which you can specify other details of the node.
Let’s review all the parameters on this page before you fill them in:	Name: The name of the slave, which should be unique.

	Description: This field is optional, but if mentioned, it can be helpful for other team members.

	# of executors: The maximum number of concurrent builds that Jenkins may perform on this agent. I used one executor for testing purposes. You can check the server stat and then define the number of executors.

	Remote root directory: An agent needs to have a directory dedicated to Jenkins. Specify the path to this directory on the agent. It is best to use an absolute path, such as c:\jenkins\node1. This should be a path local to the agent machine. There is no need for this path to be visible from the master. The Jenkins agent will create a workspace in the directory mentioned in this field.

	Labels: Labels (or tags) are used to group multiple agents into one logical group. Multiple labels must be separated by a space.
For example, the linux docker would assign two labels to the agents linux and docker.

	Usage: This controls how Jenkins schedules builds on this node. Utilize this node as much as possible. This is the default and normal setting. In this mode, Jenkins uses this node freely.

	Launch method: This controls how Jenkins starts this agent. The following three options are available in this dropdown:	Launch agent by connecting to the master

	Launch agent via execution of the command on the controller

	Launch agents via SSH

	Launch agent via Java Web Start: This allows the slave to be launched using Java Web Start. In this case, a JNLP file must be opened on the agent machine, which will establish a TCP connection to the Jenkins master. This means that the agent need not be reachable from the master; the agent just needs to be able to reach the master. If you have enabled security via the Configure Global Security page, you can customize the port on which the Jenkins master will listen for incoming JNLP agent connections.
By default, the JNLP agent will launch a GUI, but it's also possible to run a JNLP agent without a GUI, e.g., as a Window service. The next section of this chapter includes an example and detailed steps.

	Launch the agent via execution of the command on the master: This starts the slave by having Jenkins execute a command from the master. Use this when the master is capable of remotely executing a process on another machine, e.g. via SSH or RSH. Usually, a utility like Psexec.exe can be used to start the agent on a remote machine.

	Launch the slave agents via SSH: This starts a slave by sending commands over a secure SSH connection. The slave needs to be reachable from the master, and you have to supply an account that can log into the target machine. For this, no root privileges are required. This is the one that I am using for my slave configuration.
If you select this option in the Launch Method dropdown, you get two additional fields on the form—Credentials and Host Key Verification Strategy.	Credentials: In the Credentials dropdown, you need to select the credentials entry with the authentication information to be used to authenticate the user on the agent node.

	Host Key Verification Strategy: This controls how Jenkins verifies the SSH key presented by the remote host while connecting. This dropdown has the following options:

	Known hosts file verification strategy

	Manually provided key verification strategy

	Manually trusted key verification strategy

	Non verifying verification strategy

	Known hosts file verification strategy: Checks the known_hosts file (~/.ssh/known_hosts) for the user Jenkins is executing, to see if an entry exists that matches the current connection. If you get a SSH Host Key Verification error as shown here:

No entry currently exists in the Known Hosts file for this host. Connections will be denied until this new host and its associated key is added to the Known Hosts file.
Key exchange was not finished, connection is closed.
java.io.IOException: There was a problem while connecting to node2.scmquest.com

It could be a problem with the SSH lib used by Jenkins, which does not support newer ciphers like ecdsa-sha2-nistp256. Just delete the known_hosts entry and create a new one using the following command:ssh -o HostKeyAlgorithms=ssh-rsa node2.scmquest.com (where node2.scmquest.com is the hostname of the slave server)

This will solve your problem.	Manually provided key verification strategy: This ensures that the key provided by the remote host matches the key set by the user who configured this connection.

	Manually trusted key verification strategy: Requires a user with Computer.CONFIGURE permission to authorize the key presented during the first connection to this host before the connection is allowed to be established.

	Non verifying verification strategy: Does not perform a verification of the SSH key presented by the remote host, allowing all connections regardless of the key they present. It’s not advisable to select this, as it may open the path for attackers.

	Let Jenkins control this Windows slave as a Windows service: This starts a Windows slave by a remote management facility built into Windows. This is suitable for managing Windows slaves. Slaves need to be IP reachable from the master.

	Availability: Controls when Jenkins starts and stops this agent.

	Keep this slave online as much as possible: This is the default setting. In this mode, Jenkins tries to keep the slave online as much as possible. If Jenkins can start the slave without user assistance, it will periodically attempt to restart the slave if it is unavailable. Jenkins will not take the slave offline.

	Take this slave online when in demand and offline when idle: In this mode, if Jenkins can launch the slave without user assistance, it will periodically attempt to do so while there are unexecuted jobs; otherwise, the slave will be taken offline by Jenkins.

You can now fill in these fields to create the node entry:	1.
In the Name field, I entered Node1.

	2.
In the Number Of executors field, I have used value 1 as I do not want to run more than one builds on a single agent.

	3.
In the Remote Root Directory, I have used C:\JenkinsJobExecution. Once you run the job in this directory, the workspace of the job will be created. I used the directory from C: because this is my SystemRoot and once the master connects to the slave it will enter the user directory from SystemRoot (C: in my case). If you include a directory from a different root, such as D:\, Jenkin will throw an error while running the job.

	4.
In the Labels field, I entered CalculatorAPI_Node.

	5.
In the Usage field, I kept the Use This Node As Much As Possible value selected.

	6.
In the Launch method, I selected the Launch Agents via SSH value.

	7.
In the Host field, I used 192.168.43.185, which is the IPv4 address of my slave node.

	8.
In the Credentials field, I selected the credentials entry we created in this chapter.

	9.
In the Host Key Verification Strategy field, I selected the Known Hosts File Verification Strategy value.

	10.
I selected the Environment Variables checkbox under the Node Properties section and created the JAVA_HOME environment variable by entering JAVA_HOME into the Name field. The Value field contains the path of the JDK on the slave machine. You need this because the job you are going to run on the slave runs mvn commands and Maven needs the JAVA_HOME environment variable pointing to the JDK (see Figure 17-2).

[image:]A window box of a browser, with Node 1 Configuration tab open. In vertical arrangement, going downward, it has an address bar, 2 filled boxes, a ticked checkbox, details to fill out, which are name and value, a button labeled Add, an unticked checkbox, and a button labeled Save.

Figure 17-2The JAVA_HOME environment variable in Node Properties

	11.
Click the Save button to save the node configuration.

After you perform these steps on the master machine, you can move to the slave/agent machine for further steps.
Step 6: Add a Public Key to the authorized_keys File on the Slave Machine
Let’s go to the {CURRENT_USER} directory on the agent machine. In my case, this directory is C:\Users\ADMIN. Create a directory called .ssh. Right-click to get the context menu. Click the Git Bash Here menu option, which will open the Git bash window
Create a file named authorized_keys by running the following bash command in Git bash:touch authorized_keys

This command will create a file named authorized_keys in the .ssh folder under the ${CURRENT_USER} directory. Open this file and paste the public key from the key pair you generated on the master machine.
Step 7: Change the Permissions of the authorized_keys File on the Slave Machine
Right-click the authorized_keys file. Select the Properties menu option, which will open the Properties window.
Click the Security tab. Then click the Advanced button. This will open the Advanced Security Settings for authorized_keys window (see Figure 17-3).[image:]A dialog box titled Advanced Security Settings for authorized keys. Under permissions, in a vertical arrangement, going down on the left side, there are 3 principal entries in a box, 3 buttons in a horizontal arrangement, which have to add, remove, and view, a button labeled Disable inheritance, and 3 buttons in horizontal arrangement on the right side.

Figure 17-3The advanced security settings of the authorized_keys file

Click the Disable Inheritance button. Then select the Convert Inherited Permissions into Explicit Permissions on this Object option (i.e., the first option).
Keep only the system and your current user in the list; delete any other users by clicking the Remove button while being parked on the user entry you want to delete.
Figure 17-4 shows that I have kept only two users: ADMIN (which is my current user and the one for which you created the credentials entry in Step 4) and SYSTEM. See Figure 17-4.[image:]A dialog box titled Advanced Security Settings for authorized keys. Under permissions, in a vertical arrangement, going down on the left side, there are 2 principal entries in a box, 3 buttons in a horizontal arrangement, which have to add, remove, and view, a button labeled Enable inheritance, and 3 buttons in horizontal arrangement on the right side.

Figure 17-4Only the ADMIN and SYSTEM user entries are left

Click the OK button on this window and the OK button on the authorized_keys properties window.
Step 8: Restart the sshd Service
Go to the services window and restart the service named OpenSSH SSH Server.
Step 9: Check the Connection to the Agent Machine from the Master
Open the command prompt on master machine and run the following command:ssh UserName@IPAddress of Slave

I executed the following command:ssh ADMIN@192.168.43.185

After pressing the Enter key, you will get the prompt, Are you sure you want to continue connecting(yes/no/[fingerprint])?
Type yes and press Enter, after which the SSH connection will be successful. A file called known_hosts will be created inside the ${CurrentUser}\.ssh folder. Open this file; it will have a key entry added for your agent machine.
Step 10: Launch the New Node from the Master Machine
Click the Manage Jenkins ➤Manage Nodes and Clouds menu option. Click the Node1 entry and then click the Relaunch Agent button. You can see that the master was successfully connected to the agent.
During this connection process, the master copies remoting.jar to the agent machine inside the folder that's set as the remote root directory.
Creating a Free-Style Job to Run on the Node1 Agent
After successful configuration of the master and the agent using SSH, it's time to create a job to run on the node you just configured.
I created a free-style job that will deploy the CalculatorAPI JAR on the Nexus repository.
I checked the Restrict Where This Project Can Be Run checkbox and entered Node1 in the Label Expression field. This setting is responsible for running the job on a specified node. It has Git URL set in the Source Code Management section. The build step is set to mvn deploy. Click the Save button.
Running the New Free-Style Job on the Node1 Agent
Before running a job on an agent connected using SSH, you need to launch an agent which you have already created. Run the job; it will be executed on the agent machine.
Understanding the Configuration to Connect the Agent to the Master Using JNLP
Step 1: Configure the Jenkins Master to Receive JNLP Agent Connection Requests
On the master machine, click the Manage Jenkins menu. Scroll down the page and click the Configure Global Security menu.
Scroll down the page again and, under the Agents section, select the Fixed radio button available for TCP Port for Inbound Agents option and enter 7070 as the port number.
You can use any available port number in this field. I use 7070 as it is available on my machine. Scroll down the page and check the Enable Agent ➤ Control Access Agent checkbox under the Agent ➤ Controller Security section. Click the Save button.
Step 2: Set the Jenkins URL
Click the Manage Jenkins menu. Click the Configure System menu. Scroll down the page to see the Jenkins Location section.
Enter http://<IP Address of Master machine:port> in the Jenkins URL field. My Jenkins master starts on the IP address 192.168.43.10 and port 8080 so I entered http://192.168.43.10:8080 here.
Note: Do not use http://localhost as you will not be able to access this master machine from the agent machine when the localhost is used.
Click the Save button.
Step 3: Create a New Node Entry from the Agent (Slave) Machine
Open Jenkins on the slave machine using the Jenkins Master URL. Click the Manage Jenkins➤Manage Nodes and Clouds menu. Click the New Node menu entry available on the left side. Enter the name of the node in the Node Name field. I entered Node3. Click the OK button.
Here are the other fields and their entries:	Name: Node3

	Number of executors: 1

	Remote root directory: C:\JNLPNode

	Labels: JNLPNode

	Usage: Use this node as much as possible

In the Launch Method dropdown, keep the Launch Agent by Connecting to Master option selected. See the Node Properties section in Figure 17-2. Click the Save button. Then click the agent.jar link highlighted in Figure 17-5 to download the agent.jar file.[image:]A window box of a Jenkins account under a user named Pranoday Dingare. From the top, it has the menu bar, then on the left side is a navigation pane, with options laid vertically. Status is selected that leads to Agent Node 3 section, with a hyperlink and command.

Figure 17-5The agent.jar hyperlink

After downloading the agent.jar file, keep it at your desired location. I have kept it in the D:\Agentjar folder.
Select the command below the Run from Agent Command Line section. My command is as follows:Java -jar agent.jar -jnlpUrl http://192.168.43.10:8080/computer/node3/jenkins-agent.jnlp -secret 76f01ce9855280b9b743b9afc1ccef4af908675f5a6ed229efd8fb4909aa74b -workdir "C:\JNLPNode"

Copy it. Modify the path of the agent.jar accordingly. I kept my agent.jar file in the D:\AgentJar folder. The following is the command, modified for me:Java -jar D:\AgentJar\agent.jar -jnlpUrl http://192.168.43.10:8080/computer/node3/jenkins-agent.jnlp -secret 76f01ce9855280b9b743b9afc1ccef4af908675f5a6ed229efd8fb4909aa74b-workdir "C:\JNLPNode"

After modifying the agent.jar path in the command, execute it from the command prompt.
Note that the value of the workdir parameter in this command has been taken from the Remote root Directory, field which you configured when configuring a node instance. The value of the secret parameter will be different for each node.
Creating a Job to Run on the JNLP Node
I created a job called JNLPNodeJob, which will pull the code from the CalculatorAPI repository and will build the Jar file and deploy it on Nexus (same as the other job you created in this chapter). The only difference is that the Label Expression field has the Node3 value.
Run the job by clicking the clock sign from the dashboard. You can see that the job is getting executed on Node3.
Summary
In this chapter, you learned what distributed builds are and their advantages. You also learned about the different ways to connect the Jenkins master and the Jenkins slave nodes. You learned detailed steps to connect master-slave using SSH and using JNLP. You also configured your Jenkins jobs to run on the slave nodes. The next chapter explains how to create an EC2 instance on the AWS platform and deploy the web application on it through the Jenkins pipeline.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_18

18. Integrating Jenkins with AWS

Pranoday Dingare1
(1)Pune, Maharashtra, India

Nowadays applications are deployed on machines available on the cloud instead of from in-premise machines. An understanding of cloud platforms like AWS (Amazon Web Services) and Azure is vital to the success of the DevOps professional.
This chapter talks about using Jenkins to deploy a web application on a machine (EC2 Instance) available on an AWS cloud and then run the Selenium tests on this web application.
Understanding an EC2 Instance on AWS
An EC2 instance is a virtual server in Amazon Web Services terminology. EC2 stands for Elastic Compute Cloud. It is a web service where an AWS subscriber can request and provision a compute server in the AWS cloud. Users can rent virtual server use per hour and use it to deploy software applications.
The instance will be charged per hour with different rates based on the type of instance chosen. You can create instances based on your CPU and memory requirements and use them as long as you need them. You can terminate the instance when it is no longer used and save on costs.
Creating an EC2 Instance on AWS
Before you can involve Jenkins in deploying web applications on an EC2 instance, you need to create one EC2 instance on AWS. Use the steps in the following sections to do just that.
Step 1: Sign Up on AWS
Go to the https://aws.amazon.com/account/sign-up link and click the Create a Free Account button, which will show the Sign Up for AWS page.
Fill in the required details and click the Continue (step 1 of 5) button.
Fill in the required details again. Click the Continue (step 2 of 5) button, which will show the Billing Information page. Enter the required payment details on the Billing Information page.
Select the Text Message radio button, enter your mobile number, and click Continue (step 4 of 5). After clicking this button, you will receive an SMS text on your mobile. Enter this code on the appropriate page.
Click the Continue (step 5 of 5) button, which will open the Select a Support Plan page. Click the Complete Sign Up button. Click the Go to AWS Management Console button. Select the Role and Interest dropdowns.
Finally, click the Submit button.
Step 2: Sign in to AWS
Click the Sign in to the Console button. Enter an email address in the Root User Email Address field and click the Next button.
Enter the CAPTCHA in the field and click the Submit button.
Enter the password you selected during the signup process in the Password field.
Click the Sign in button. Click the All Services link to open all available services. Then click the EC2 link, which is the first option in the Compute section.
Step 3: Create an EC2 Instance
Scroll down the page and click the Launch Instance dropdown; then click the Launch Instance option.
To create an EC2 instance with Windows OS, type Windows and press the Enter key, which will show the available EC2 instances with Windows OS.
While creating an EC2 instance, you have options like t2micro, t2medium, t2 large, etc., which differ in the kind of diskspace, processor speed, and RAM they offer. You need to select a type based on your diskspace, RAM, and processor speed requirements. Note that a few types of EC2 instances are free, like t2micro, but others are paid. In this chapter, select the first entry, which is free.
Click the Review and Launch button. Next, click the Launch button.
You will see the Select an Existing Key Pair or Create a New Key Pair page. From this page, you can create an authentication key pair to access the EC2 instance.
From the Choose an Existing Key Pair dropdown, select the Create a New Key Pair option. Enter a name in the Key Pair Name field. I entered MyEC2Instance in this field.
Click the Download Key pair button. The MyEC2Instance.pem file will be downloaded. Click the Launch Instances button. Then scroll down the page to find the View Instances button; click it.
After clicking that button, the Instances page will open.
Step 4: Start an EC2 Instance
Click the checkbox shown in the first column for instance entry and click the Actions button to open the dropdown. Click the Connect dropdown option. Click the RDP Client tab. Click the Get Password link.
Click the Browse button and select the private key (MyEC2Instance.pem) file.
After you click the Open button from the File dialog, the private key contents will be shown in the text field. Click the Decrypt Password button. It will generate a password below the Password: label. Copy the password by clicking the button provided to the right of the generated password.
Click the Download Remote Desktop File button. Double-click the downloaded remote desktop file and click the Connect button.
Paste the password you copied inside the Password field and click the OK button.
Click the Yes button, which will open the RDP to EC2 instance you launched, shown in Figure 18-1.[image:]A desktop page with Recycle Bin, and shortcuts of E C 2 Feedback and E C 2 Microsoft Windows Guide. On the bottom part, laid horizontal is the taskbar, with Internet Explorer and File Explorer pinned.

Figure 18-1Desktop of an EC2 instance

Configuring the EC2 Instance to Deploy the Calculator Web Application
Step 1: Install the IIS Web Server
You need to install the IIS web server so that you can deploy the Calculator web application in it. Follow these steps to install the IIS web server on server-type Windows machines.
Use the Window key to open the Windows menu search and type Server Manager. Select the Server Manager menu entry, which will open the Server Manager Dashboard.
Click the Add Roles and Features link and then click the Next button.
Keep the Role-Based or Feature-Based Installation radio button selected and click the Next button, which will open the Select Destination server window. Click the Next button.
Select the Web Server IIS checkbox, which will open the Add Features That Are Required for Web Server (IIS) window.
Click the Add Features button, which will open the Select Server Roles window.
Click the Next button to open the Select Features window.
Click the Next button to open the Web Server Role (IIS) window.
Click the Next button again, which will open the Select Role Services window.
Click the Next button a final time to open the Confirm Installation Selections window.
Click the Install button. Wait until the installation completes. Once installation is completed, click the Close button.
Step 2: Configure the IIS Web Server
Create a blank directory named DeployedCalculatorApp on C:\.
Now you’ll create a web alias (a virtual directory) in IIS which will point to this directory. Go to the Windows menu and select the Internet Information Services (IIS) Manager option, which will open the Internet Information Services (IIS) Manager window.
Open the tree shown in the IIS console and right-click Default Web Site as shown in Figure 18-2.[image:]A desktop page with an open folder titled, Internet Information Services Manager, is maximized. It starts with a menu bar, a navigation pane on both the left and right sides and a right-click menu on the left. On the center page is the Default Web Site Home of available files and programs. And on the bottom is a taskbar with multiple programs open.

Figure 18-2The menu opens after clicking the Default Web Site

Select the Add Virtual Directory menu option to open the Add Virtual Directory window. Fill in the alias name as CalculatorWebApp in the Alias field and enter C:\DeployedCalculatorApp in the Physical Path field, as shown in Figure 18-3. Click the OK button to create a virtual directory inside the default website.[image:]A dialog box titled Add Virtual Directory. It has 2 inputs to fill out, which are Alias and Physical path. Below are 2 boxed buttons, which are Connect as and Test settings. On the bottom right corner are boxed buttons OK and cancel.

Figure 18-3The details filled in to create an alias in the default website

Step 3: Configure the SSH Connection Between the Local Computer and the EC2 Instance
As part of the Calculator web application’s deployment process, you need to copy Calculator.html from your local computer to the EC2 instance inside the directory C:\DeployedCalculatorApp (to which your virtual directory in IIS is pointing). To copy this file from your local computer to an EC2 instance, you need to establish an SSH connection with the EC2 instance. Follow these steps to configure the required settings:	1.
Generate an SSH key pair on a local computer: Use the ssh-keygen -t rsa command to generate an SSH public-private key pair.

This will generate public and private key files on the local computer in the ${CURRENT_USER}\.ssh folder.	2.
Install the OpenSSH Server on an EC2 instance: On the EC2 instance, choose the Windows Start ➤ Settings menu to open the Settings page.

	3.
Click the Apps option, which will open the Apps & Features window.

	4.
Click the Manage Optional Features link.

	5.
Click the Add a Feature button.

	6.
Locate the OpenSSH Server option in the list.

	7.
Click the Install button.

	8.
Create an authorized_keys file on the EC2 instance and paste the public key into it: Go to the EC2 instance, open the command prompt from the C:\users\administrator directory, and run the mkdir .ssh command to create the .ssh folder.

	9.
From the command prompt, enter into the .ssh folder using the cd command and create a blank file named authorized_keys. Do this by running the following command:

fsutil file createnew authorized_keys 0

This will create the authorized_keys file in the .ssh folder.	10.
Open this file and paste the public key you generated from the key pair.

	11.
Save the changes.

	12.
Set the permissions of the authorized_keys file to the Administrator user: Right-click the authorized_keys file and click the Properties menu.

	13.
Click the Security tab.

	14.
Click the Advanced button.

	15.
Click the Disable Inheritance button.

	16.
Select the Convert Inherited Permissions Into Explicit Permissions on this Object option.

	17.
Click the OK button.

	18.
Click the OK button from the authorized_keys Properties window.

	19.
Modify the sshd_config file on the EC2 instance: Go to C:\ProgramData\ssh.
Note If the ProgramData folder is not shown, make hidden files/folders visible from the View menu.

	20.
Open the sshd_config file, scroll down, and comment out the last two lines by adding # to the start of these lines, as shown in Figure 18-4.

[image:]A desktop page with an open folder of a Remote Desktop Connection is maximized. It starts with a menu bar and a navigation pane on the left side. On the center is a text file named s s h d config, consisting of codes, with a boxed one at the bottom part for Match Group administrators.

Figure 18-4The last two lines commented out from the sshd_config file

	21.
Save the file. Go to the Services window by choosing the Windows Start ➤ Services menu and restarting the Open SSH Server service.

	22.
Allow the SSH connection between the local computer and the EC2 instance: Before you can connect to the EC2 instance using SSH, you need to allow this connection by creating an inbound rule in the EC2 instance settings on AWS.

	23.
Go to the AWS console and click the Instances link inside the Instances section on the left side.

This will open the Instances page.	24.
Click the checkbox shown for the running instance

	25.
Click the Security tab.

	26.
Click the link shown under the security groups label inside the Security tab.

	27.
Click the Edit Inbound Rules button.

	28.
After clicking this button, you will see the Edit Inbound Rules page.

	29.
Click the Add Rule button.

	30.
Select SSH in the Type column dropdown for the newly created entry.

	31.
Specify 0.0.0.0/0 in the Source column.

	32.
Click the Save Rules button.

This rule will be added to the existing rules in the security group.
This rule will allow the SSH connection to be made with the EC2 instance using port 22 (the default SSH port).	33.
Test the SSH connection between the local computer and the EC2 instance: Now you have all the necessary configurations in place. Let’s test the connectivity using SSH between the local computer and the EC2 instance by running the following command:

ssh <UserName>@<EC2Instance_PublicIPV4DNS>

The command I am using is as follows:ssh Administrator@ec2-3-141-17-90.us-east-2.compute.amazonaws.com

	34.
You can get the publicIPv4DNS from the Details page of the EC2 instance.

	35.
I executed the following command from the command prompt:

ssh Administrator@ec2-3-141-17-90.us-east-2.compute.amazonaws.com

This will ask, Are You Sure You Want to Continue Connecting (Yes/No/[Fingerprint])? Prompt. Choose Yes and press Enter.
You should now be able to successfully connect to the EC2 instance through SSH.
Copying the Calculator.html File to the EC2 Instance
Before you create a Jenkins job that will deploy the CalculatorWebApplication by copying Calculator.html to the EC2 instance, you need to test the copying functionality by running the scp command.
You need to use the following command for this purpose:scp -i /directory/to/privatekey /your/local/file/to/copy user@ec2-xx-xx-xxx-xxx.compute-1.amazonaws.com:path/to/file

I want to copy the Calculator.html file to this folder:
D:\JenkinsBookExamples\CalcualtorWebApplication\src\main\webapp to C:\DeployedCalculatorApp on the EC2 instance. Therefore, my command is as follows:scp –I
C:\Users\magicuser\.ssh\id_rsa D:\JenkinsBookExamples\CalcualtorWebApplication\src\main\webapp\Calculator.html Administrator@ec2-3-141-17-90.us-east-2.com
pute.amazonaws.com:C:\DeployedCalculatorApp

After running this command from the command prompt, the Calculator.html file should be copied successfully to the EC2 instance inside the C:\DeployedCalculatorApp folder.
Accessing Calculator.html Copied to the EC2 Instance from a Browser on a Local Computer
Let’s now access the Calculator.html file from the browser on the local computer. Before you access the EC2 instance using the HTTP URL, you need to create an inbound rule to allow this connection. Follow the same steps you performed previously to create an inbound rule for SSH. The only change is that you need to select HTTP in the Type dropdown.
Go to the EC2 instance, choose the Windows Start ➤Services menu, and restart the World Wide Web Publishing service. Open a browser on your local computer and access this URL:
http://<EC2InstancePublicIP4DNS>/CalculatorWebApp/Calculator.html
I used this URL:
http://ec2-3-141-17-90.us-east-2.compute.amazonaws.com/CalculatorWebApp/Calculator.html
Creating a Jenkins Job to Deploy the Calculator Web Application on an EC2 instance
I created a free-style job called BuildAndDeployCalculatorWebApplicationOnEC2Instance. This job contains an Execute Windows batch command build step using the scp command shown here:scp -i C:\Users\magicuser\.ssh\id_rsa src\main\webapp\Calculator.html Administrator@ec2-3-141-17-90.us-east-2.compute.amazonaws.com:C:\DeployedCalculatorApp

We have already discussed this command. This job will pull changes from the CalculatorWebApplication SCM. Using the scp command, it will copy Calculator.html from the workspace directory to the Amazon EC2 instance inside the C:\DeployedCalculatorApp folder.
After the build step is complete, this job will call the downstream job TestCalculatorWebApplication, which will start the Selenium tests. This job is mentioned in the Projects to Build field in the Post-Build Actions section. Click the Save button.
Changing the Calculator Application URL in Selenium Framework
The Selenium framework accesses the Calculator.html file from your local computer. Now you want that framework to access the Calculator.html file deployed on the EC2 instance and run tests on it.
You need to change the ApplicationURL environment variable in EnvVars.csv to include the EC2 instance’s calculator.html URL.
Commit and push this change to the Selenium framework repository. I pushed the change to my framework repository:	gitlab.com/Pranoday/JenkinsBookSeleniumPythonFramework.git

This is where the Selenium framework and tests will be pulled and executed.
Running the BuildAndDeployCalculatorWebApplication OnEC2Instance Job
Let’s run the BuildAndDeployCalculatorWebApplicationOnEC2Instance job by clicking the clock sign on the Jenkins dashboard. Click the Build button.
You can see the console log of the build of the BuildAndDeployCalculatorWebApplicationOnEC2Instance job.
After completing its tasks, it will trigger the TestCalculatorWebApplication job.
This job will start testing the Calculator web application, which its upstream job has deployed on the EC2 instance.
Summary
This chapter explained what an EC2 instance is and how to create one. Then you installed the IIS web server on an EC2 instance and created a web alias to deploy the Calculator web application. You configured an SSH public key on the EC2 instance so that it can be connected over SSH. You also learned how to create inbound rules in the Security group attached to an EC2 instance to be able to connect it to HTTP and SSH. Finally, you created a Jenkins job which pulled the Calculator application and copied the Calculator.html file on the EC2 instance using the scp command. As of now, you have interacted with Jenkins through its UI. In the next chapter, you learn how to control Jenkins using its CLI (command-line interface).

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_19

19. Miscellaneous Topics Part 1

Pranoday Dingare1
(1)Pune, Maharashtra, India

This and the following chapter cover a few important topics such as Jenkins CLI, Jenkins Rest APIs. You are already aware of how to control Jenkins manually using its UI. But sometimes you may need to control Jenkins programmatically through scripting languages or shell programs. In that case, you need to know how to use the programming interface provided by Jenkins and its command-line interface. This chapter focuses on how to interact with Jenkins using its CLI.
You are going to learn about some different common use cases where you are required to interact with Jenkins programmatically instead of manually.
Understanding the Jenkins CLI
Jenkins provides two kinds of interfaces—the Graphical User Interface(GUI), which we have already covered in this book, and the Command-line Interface (CLI), which you are going to learn about in this chapter.
Jenkins provides a different set of shell commands that you can run from shell programs, like the command prompt on Windows or the console shell on Linux-based systems. You can write batch programs or shell scripts to automate access to the Jenkins server. Let’s see in detail the different CLI commands Jenkins provides, how can we interact with the Jenkins server using these commands, and most importantly, how to provide authentication information to the Jenkins server to authenticate the Jenkins server access using CLI.
Jenkins provides us with many CLI commands, a list of which is available on the Jenkins CLI page.
Click the Manage Jenkins link available on the left side of the Jenkins dashboard. This will open the Manage Jenkins page.
Scroll down the page to find the Jenkins CLI link under the Tools and Actions section. Click the Jenkins CLI link, which will take you to the Jenkins CLI. This page shows a list of different commands and the purpose of each command.
How to Interact with Jenkins Using its CLI
This section explains how to perform basic operations through the CLI, like creating a job, running a build of a specific job, retrieving a list of all jobs, retrieving console output of a build, disabling a particular job, deleting a particular job, and more.
Before you start using the Jenkins CLI, you need to download jenkins-cli.jar. This JAR file provides the CLI client so you can access the CLI interface.
Click the jenkins-cli.jar link from the Jenkins CLI page to download the Jenkins-cli.jar file. After you click the link, the jenkins-cli.jar file will be downloaded.
Note
I started my Jenkins server from my machine’s IPv4 address (192.168.43.10) and the default port 8080. Therefore, my Jenkins URL is http://192.168.43.10:8080, which I use to access my Jenkins server through CLI. Your Jenkins URL will contain either the localhost or your IP address along with the port. I keep the jenkins-cli.jar file in the D:\JenkinsBookExamples folder, so the CLI commands have the jenkins-cli.jar path, written as D:\JenkinsBookExamples\jenkins-cli.jar. You need to use your path on your machine.

How to Create a Job Using the Jenkins CLI
To create a new job in Jenkins, you need to specify the job name and the configuration XML based on the new job. A view is a way to organize jobs and content into tabbed categories on the Jenkins dashboard. By default, Jenkins jobs are created in the All view; this is the tab that you see when you go to the Jenkins dashboard
To create a new job in Jenkins, run the following command:java –jar {pathofJenkins-cli.jar} -s ${JENKINS_URL} –webSocket create-job ${JobName} < ${Configuration.xml}

Note
While demonstrating different CLI commands in this chapter, placeholders use ${}, which should be replaced with actual values.

To create a new job through CLI, you need to specify its specifications using an .XML file, which would be taken as a template for the new job.
I want to create new job called CLIJob1 using the configuration of an existing job named Demo. The configuration file is {JENKINS_HOME}\jobs\Demo\Config.xml. You get this configuration file of a demo job by default after Jenkins is installed. I copied this file to the D:\JenkinsBookExamples folder and renamed it Demo.xml so my command is as follows:java –jar D:\JenkinsBookExamples\jenkins-cli.jar –s http://192.168.43.10:8080/ –webSocket create-job CLIJob1 < D:\JenkinsBookExamples\Demo.xml

Open the command prompt and run this command:java –jar D:\JenkinsBookExamples\jenkins-cli.jar –s http://192.168.43.10:8080/ –webSocket create-job CLIJob1 < D:\JenkinsBookExamples\Demo.xml

It will give the following error:ERROR: anonymous is missing the Overall/Read permission

You get an error here because Jenkins considered this command coming from an anonymous user, as you have not provided authentication yet. Anonymous users are not authorized to create jobs according to the security configurations of the Jenkins server. Now let's see how to provide the authentication information of a user who is authorized to create a job in this CLI.
Authenticating Users Using Basic Authentication (Username-Password/API Token)
When you perform any task using the Jenkins CLI, you need to provide authentication information to perform that task using the –auth argument. You can authenticate users using basic authentication as well as SSH authentication. Let’s see first how to send Basic Authentication data using the –auth command-line argument. In basic authentication, you have to send a username-password or a username-API token. Sending an API token is the preferred and more secure option.
Log in using the authorized user’s credentials in the Login window. Once you are logged in, you can go to the page to create an API token.
I logged in using my Jenkins administrator credentials.
Click the User Name shown in the top-right corner of the dashboard page.
Click the Configure link to go to the next page, where you can configure API token for the user.
Click the Add New Token button inside the API Token section to generate a new token.
Enter a name in the field and click the Generate button.
Copy the generated token using the Copy This Token button and paste it in a file to preserve it for future use. Click the Save button.
Let’s authenticate the user using this token and create the job again using CLI with the following command:Java –jar ${Jenkins-cli.jar file path} –s {JENKINS_URL} –auth ${UserName}:${API_TOKEN} –webSocket create-job ${JOB_NAME} < ${Configuration.xml}

I am using the following command after replacing all the placeholders with values:java –jar D:\JenkinsBookExamples\jenkins-cli.jar –s http://192.168.43.10:8080/ -auth Pranodayd:119737275fd132a08d5a3b457ed56649a2 –webSocket create-job CLIJob1 < D:\JenkinsBookExamples\Demo.xml

Run the command at the command prompt. Then go to your Jenkins Dashboard page and refresh it. You can see that new job with the name CLIJob1 was created.
Let’s go inside CLIJob1 to see the build step having the Execute Batch command step with the echo Hi, which you also have in the Demo job.
Note
If the template XML file has any syntax issues, the create-job CLI command returns this error: cannot access the file because it is being used by another process. This is quite misleading and not related to the cause of the problem.

If a job with the same name already exists, the create-job command gives the Job Already Exists error.
Authenticating Users Through SSH While Using CLI Commands
You have already seen how to authenticate users using the username-APIToken. Now you'll see how to authenticate Jenkins users using the SSH authentication technique. You are familiar with SSH authentication, which was discussed in previous chapters of this book. The SSH authentication you need is a private key-public key pair.
First generate a new key pair using the following command:ssh-keygen -m PEM -t rsa

Note that the –m PEM argument is used in the ssh-keygen -m PEM –t. rsa command. –m PEM will generate a private key in RSA format, whereas simple the SSH-Keygen command, without the –m PEM argument, generates a private key in the OpenSSH format. The Jenkins CLI client supports private keys in the RSA format, so don't forget to mention the –m argument in the command. Once the key pair is generated, you need to specify the public key on the Jenkins User Configuration page. Follow these steps to do this:	1.
Click the username shown on top-right side of the Dashboard page and click the Configure link.

This will open a page on which you can configure details for the user, like the API token, the public key, etc.	2.
Scroll down the page to find the SSH Public Keys section. Paste the public key you generated into the SSH Public Keys field.

	3.
Click the Save button.

Configuring an SSH Server in Jenkins
To access Jenkins using SSH authentication, you need to configure the SSH Server in Jenkins. First choose the Manage Jenkins➤Configure Global Security menu, which will take you to the Configure Global Security page.
Scroll down the page to find the SSH Server section near the end.
You need to set a port for the SSH connection. You have two options—Fixed and Random. If you select the Random radio control, the Jenkins server will select a random port to accept SSH connections. If we have a Firewall set up on the machine and need to allow incoming connections made on a specific port, then setting up an inbound rule for the random port will be difficult. If you select the Fixed radio button, you can use the port number of your choice. Jenkins will accept SSH connections on a given port. As the port is fixed, it would be easy to set up an inbound rule in a firewall. I selected the Fixed radio button and set it to 9090. Click the Save button.
Configuring an Inbound Rule in a Firewall
If a firewall is set up on the machine, you need to create an inbound rule so that incoming connections made at particular port/incoming connections from a particular program will be allowed. In this example, we are going to create an inbound rule for the SSH server port 9090.	1.
Go to the Windows Defender Firewall with Advanced Security menu option from the Windows start menu.

	2.
Click the Inbound Rules option on left side.

	3.
Click the New Rule link on the right side, which will open the Rule Type window.

	4.
Select the Port radio button.

	5.
Click the Next button.

	6.
Select the Specific Local Ports radio button and enter 9090.

	7.
Click the Next button, which will open the Action window.

	8.
Click the Next button to see the Profile window.

	9.
Click the Next button to see the Name window.

	10.
Enter a name for the rule and click the Finish button.

How to Build Jobs with the Jenkins CLI Using SSH Authentication
This section explains how to build a Jenkins job using the Jenkins CLI command build.
The build command has the following optional command-line options:	-c: If you pass this option to the build command it checks if there are any changes on the SCM configured in the job and triggers the build only if there are changes.

	-f: If you pass this option to the build command, it returns the exit code based on the outcome of the build. If the build is successful, it returns an exit code of 0.

	-p: Using this option, you can pass parameters to a build in the Key=Value format.

	-s: If you pass this option, then the build command will wait until the build completes/gets interrupted. If you do not set this option, the build command will trigger the build but will not wait until its completion.

	-v: This option will print the console output of the build.

	-w: This option will wait until the start of the command.

While running the build command, you need to authenticate the Jenkins user who will use the SSH authentication technique. To use Jenkins CLI with SSH authentication, you have the following two options:	Using an SSH client like OpenSSH/Putty

	Using Jenkins-cli.jar

Using the OpenSSH Client to Run Jenkins CLI Commands
Let’s use the OpenSSH client to trigger a build using Jenkins CLI build command.
Open the command prompt and run the following command to run the build of the ReleaseCalculatorAPI job:ssh ${JenkinsUserName}@${JenkinsServerIPAddress} -p ${JenkinsSSHPort} -i ${PrivateKeyFilePath} build ${JOB_NAME}

I replaced these placeholders with actual values and created the following command:ssh Pranodayd@192.168.43.10 -p 9090 -i D:\SSHKey\JenkinsCLI build ReleaseCalculatorAPI

Note
9090 is a port we configured under the SSH Server section in the Jenkins settings.

Pranodayd is a Jenkins user we are authenticating. D:\SSHKey\JenkinsCLI is a file with the private key.
Run the following command from the command prompt:ssh Pranodayd@192.168.43.10 -p 9090 -i D:\SSHKey\JenkinsCLI build ReleaseCalculatorAPI

Go to the Jenkins dashboard page. You will see that the build for the ReleaseCalculatorAPI job was triggered.
Let’s run the build command again, but this time using the build command's options.ssh Pranodayd@192.168.43.10 -p 9090 -i D:\SSHKey\JenkinsCLI build ReleaseCalculatorAPI –s -v –c

Go to the Jenkins Dashboard page and note that this time the build is not triggered, as we sent the –c option, which checks for changes in the SCM. Since there are no changes in the Git repository, the build is not triggered.
I changed version to 10.0 in pom.xml of the CalculatorAPI project and pushed this change to the Gitlab repository. Then I executed the same Jenkins CLI build command.
You can observe on the Jenkins dashboard that this time, the build was triggered and the console log of the build command was listed because you used the –v option.
Using the jenkins-cli.jar Client to Run Jenkins CLI Commands with SSH
You are already familiar with Jenkins-cli.jar, which you used to run Jenkins CLI commands using the HTTP connection mode. The previous section covered the SSH connection mode and you saw how the SSH client called OpenSSH to run the Jenkins CLI commands. This section explains how to use Jenkins-cli.jar to run Jenkins CLI commands using SSH authentication (SSH Connection mode).
If you are starting the Jenkins server on an IP address (i.e. non-default), then you need to start the Jenkins server with an argument named org.jenkinsci.main.modules.sshd.SSHD.hostName, which will include the IP address of the Jenkins machine as its value.
If you are using the Jenkins.war file to start the Jenkins server, you need to use the following command:Java -Dorg.jenkinsci.main.modules.sshd.SSHD.hostName=<IPAddress> -jar <PATH of Jenkins jar> --httpListenAddress=<IPAddress>

I am using the following command:Java -Dorg.jenkinsci.main.modules.sshd.SSHD.hostName=192.168.43.10 -jar D:\jenkins\jenkins.war--httpListenAddress=192.168.43.10

Note
There should not be whitespace between - and D and -D and org.jenkinsci.main.modules.sshd.SSHD.hostName.

If you are starting Jenkins as a service, you need to go to the Jenkins.xml file and add this argument inside the <arguments> tag, as shown in Figure 19-1.[image:]A screenshot of a notepad page in which, dash Dorg dot jenkins c i dot main dot modules dot S S H D dot hostname equals 192.168.43.10, is highlighted and boxed.

Figure 19-1The Dorg.jenkinsci.main.modules.sshd.SSHD.hostName in Jenkins.xml

Restart the Jenkins service. Once the Jenkins server starts, either by using Jenkins.war or a Jenkins service, you can use Jenkins-client.jar to run the Jenkins CLI commands. You need to use the following command:java -jar ${PATH of Jenkins-cli.jar} -s ${JENKINSURL} -i ${PrivateKeyPATH} -ssh -user ${UserName} ${Jenkins CLI command} ${CLI options}

I am using the following command to build the job named Demo:java -jar D:\JenkinsBookExamples\jenkins-cli.jar -s http://192.168.43.10:8080 -ssh -user Pranodayd -i D:\SSHKey\JenkinsCLI -p 9090 build Demo

Note that when you are using SSH connection mode, you need to specify -ssh in the command. If you are using -ssh then you must send the user ID with the -user option. By default, jenkins-cli.jar connects to the host and port that the Jenkins server is running on to get the SSH connection. But if you have set up a different port for SSH in the Jenkins server configuration (refer to previous sections of this chapter to learn how to set the SSHD port), as we set it to 9090, you need to specify the -p option in the command.
How to Export All Jobs
If you want to shift your Jenkins server from one machine to another, you need to export Jenkins jobs from the old machine before you discontinue it. Listing 19-1 is batch code that exports all Jenkins jobs in .XML files.set JenkinsCLIJarLocation=D:\JenkinsBookExamples\jenkins-cli.jar
set JenkinsURL=http://192.168.43.10:8080
FOR /F "tokens=*" %%g IN ('java -jar %JenkinsCLIJarLocation% -s %JenkinsURL% -auth Pranodayd:Pranodayd@10 list-jobs') do (java -jar %JenkinsCLIJarLocation% -s %JenkinsURL% -auth Pranodayd:Pranodayd@10 get-job %%g > %%g.xml)

Listing 19-1Batch Code to Export all Jenkins Jobs

The batch code defines the variable JenkinsCLIJarLocation with the location of Jenkins-cli.jar. It defines the variable JenkinsURL as having the Jenkins URL. The following command returns all jobs using the Jenkins CLI command list-jobs:java -jar %JenkinsCLIJarLocation% -s %JenkinsURL% -auth Pranodayd:Pranodayd@10 list-jobs

The following command runs in a loop and iterates over job names returned by list-jobs. It exports the configuration of each job using the get-job Jenkins CLI command. It exports the configuration returned for each job in the .XML file using the > (the redirection symbol).java -jar %JenkinsCLIJarLocation% -s %JenkinsURL% -auth Pranodayd:Pranodayd@10 get-job %%g > %%g.xml

How to Import All Jobs
Once the jobs are exported in the form of .XML files from the old machines, you can copy the folder with all jobs exported to a new Jenkins server machine and run the batch shown in Listing 19-2.set JenkinsCLIJarLocation=D:\JenkinsBookExamples\jenkins-cli.jar
set JenkinsURL=http://192.168.43.10:8080
set JobsExportLocation=D:\PD
FOR /F "delims=*" %%a IN ('dir /s /b %JobsExportLocation%*.xml') do java -jar %JenkinsCLIJarLocation% -s %JenkinsURL% -auth Pranodayd:Pranodayd@10 create-job %%~na< %%a

Listing 19-2Batch Code to Import All Jenkins Jobs

The batch code defines the variable JenkinsCLIJarLocation as having the location of Jenkins-cli.jar. It defines the variable JenkinsURL as having the Jenkins URL of the new machine
It defines the variable JobsExportLocation as having the path of the folder in which you exported the job XML files.
The following line returns an absolute location of each .XML file from the folder and will store it in a variable:FOR /F "delims=*" %%a IN ('dir /s /b %JobsExportLocation%*.xml')

The following line runs the Jenkins CLI command create-job${JOB_NAME} < ${CONFIGURATIONFILE} in a loop.
JOB_NAME is extracted from the full path stored in variable a using ~na and CONFIGURATIONFILE is sent using variable a.do java -jar %JenkinsCLIJarLocation% -s %JenkinsURL% -auth Pranodayd:Pranodayd@10 create-job %%~na< %%a

Summary
This chapter explained how to interact with Jenkins server using its CLI (command-line interface) and how to use the Jenkins-cli.jar to interact with the Jenkins server by connecting using HTTP URL and SSH authentication. You also learned, with the help of code snippets, how to perform regular tasks like exporting Jenkins jobs using the Jenkins CLI.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
P. P. DingareCI/CD Pipeline Using Jenkins Unleashedhttps://doi.org/10.1007/978-1-4842-7508-5_20

20. Miscellaneous Topics Part 2

Pranoday Dingare1
(1)Pune, Maharashtra, India

The last chapter discussed how to interact with the Jenkins server using its CLI. You learned about using Jenkins-cli.jar to interact with the Jenkins server through its CLI. Sometimes interacting with the Jenkins server through its CLI is not sufficient. Users may need extra programmatic control over the Jenkins server, which is possible only by using programming languages. They may need to interact with the Jenkins server using a programming language like Java or Python, for example. Jenkins provides Rest APIs, through which you can interact with the Jenkins server using different programming languages.
This chapter explains how to control the Jenkins server through REST APIs provided by Jenkins, using Python. This chapter also covers creating reusable libraries to be used in multiple pipelines.
Understanding Jenkins Remote Access API
Jenkins provides remote access API to its functionalities. Currently, it comes in the following three flavors:	XML

	JSON

	Python

Remote access API is offered in REST-like style. REST APIs are light-weight web services. These are the APIs that can be called over the HTTP protocol. Jenkins APIs are available under .../api/ URL where the ... portion is the data that it acts on. For example, if my Jenkins server is started on http://192.168.43.10:8080, then http://192.168.43.10:8080/api/ will show the top-level API features available, primarily listing of all configured jobs. If I want to access information about the last successful build of the Demo job, then I go to http://192.168.43.10:8080/job/Demo/lastSuccessfulBuild.
Before you look at all things you can do with Jenkins Remote APIs (REST-API), let’s consider a few fundamentals of REST APIs. REST APIs provide different methods such as GET, POST, PUT, and DELETE. If you wanted to get information about some resource on the server, you would use GET. If you wanted to create a new resource on the server, like a Jenkins job, you would use POST.
You can send parameters to REST APIs in the following three ways:	Query parameters: Values sent to the REST API as a part of URL in the form of Key=Value. These Key-Value pairs appear after the ? in the URL.
For example, https://example.com/articles?sort=ASC&page=2
There are two parameters here—sort with a value of ASC and page with a value of 2.

	Path parameters: These are the values sent as part of a URL endpoint. These are usually within curly braces, i.e., {}.

	Header parameters: These are the parameters sent in the request headers. Authentication information such as username-password and API tokens are typically sent using this type of parameter.

Using Jenkins Remote Access API
This section discusses how to use Jenkins REST APIs to perform different tasks. Before you start using Jenkins REST APIs, you need a REST client to access REST APIs. Web browsers acts like clients when you access any HTML file from the server, right? Similarly, in order to access resources available on the server using REST APIs, you need software/utility that will act as a REST client. There is a popular REST client available called Curl. Using Curl, you can access REST APIs through command-line programs like the command prompt on a Windows machine.
Download Curl from https://curl.se/windows/. Clicking this link will download a .ZIP file. Unzip the file at your desired location.
Add this bin folder path to the PATH environment variable so that Curl.exe can be accessed from any working directory in the command prompt.
Getting the Configuration of Existing Jenkins Jobs Using Jenkins Remote API
Now you have Curl set up. Let’s start with the actual work now. We are going to fetch a configuration of the existing Jenkins jobs using the following Jenkins REST API.curl -X GET http://192.168.43.10:8080/job/Demo/config.xml -u Pranodayd:119737275fd132a08d5a3b457ed56649a2 -o D:\PD\mylocalconfig.xml

Let’s look at this API request in more detail:	-X GET: Defines the type of method of the REST API. This is a GET request as you are fetching details of some resource that’s already present on the server.

	http://192.168.43.10:8080/job/Demo/config.xml: This is the URL of the config.xml file for the Demo job, which you want to fetch. As discussed previously in this chapter, every job’s configuration is stored in the file named config.xml in the ${JENKINS_HOME}\Jobs\${JOB_NAME} folder.

	-u Pranodayd:119737275fd132a08d5a3b457ed56649a2: After –u, you are sending the user’s authentication information. Authentication information contains UserName:APIToken. This is the same API token used previously in this chapter.

	-o D:\PD\mylocalconfig.xml: Using –o, you are writing the configuration contents you are receiving as a response in a file path.

Note that when using REST APIs, you need to provide the authentication information of the user who is authorized to perform the task in question.
Run the following command from the command prompt:curl -X GET http://192.168.43.10:8080/job/Demo/config.xml -u Pranodayd:119737275fd132a08d5a3b457ed56649a2 -o D:\PD\mylocalconfig.xml

Go to folder D:\PD. You will see that the mylocalconfig.xml file has been created.
Creating New Jenkins Jobs Using Jenkins Remote API
This section creates a new Jenkins job using the following Jenkins remote API. To create a new job, you need a job name and a configuration XML file that will be used as a template.curl -X POST http://192.168.43.10:8080/createItem?name=RestAPIJob -u Pranodayd:119737275fd132a08d5a3b457ed56649a2 --data-binary @D:\PD\Demo.xml -H "Content-Type:text/xml"

Let’s look at this API request in more detail:	-X POST: Defines the type of the method of the REST API. This is a POST request, as you are creating a new resource on the server.

	http://192.168.43.10:8080/createItem?name=RestAPIJob: http://192.168.43.10:8080/createItem is the URL endpoint that you want to access to create a new job. name=RestAPIJob after the ? is a query string parameter containing the name of the new job.

	-u Pranodayd:119737275fd132a08d5a3b457ed56649a2: After –u you are sending the authentication information of the user. The authentication information contains UserName:APIToken. This is the same API token you used previously in this chapter.

	--data-binary @D:\PD\Demo.xml: You are sending a path of the job configuration XML that needs to be taken as a template to create a new job. The contents of this xml will be sent as a request data and is used to create new job.

	-H "Content-Type:text/xml": You are sending information about the type of request data using the Content-Type request header.

Run the following command from the command prompt:curl -X POST http://192.168.43.10:8080/createItem?name=RestAPIJob -u Pranodayd:119737275fd132a08d5a3b457ed56649a2 --data-binary @D:\PD\Demo.xml -H "Content-Type:text/xml"

Go to the Jenkins Dashboard. You can see that the new job with the name RestAPIJob has been created.
Triggering Parameterized Jenkins Job Using Jenkins Remote API
This section talks about the Jenkins remote API, which you can use to trigger a Jenkins parameterized job and explains how to send parameters to this job.
I want to trigger a build of the parameterized job called BuildAndDeployCalculatorWebApplication. This job takes the following two parameters:	CalculatorWebApplicationDeploymentDirectory

	TypeOfTestsToRun

I use the following curl command to trigger this parameterized job.curl -X POST http://192.168.43.10:8080/job/BuildAndDeployCalculatorWebApplication/buildWithParameters -u Pranodayd:119737275fd132a08d5a3b457ed56649a2 -d "CalculatorWebApplicationDeploymentDirectory=D:\JenkinsBookExamples\DeployedCalculatorWebApp\&TypeOfTestsToRun=AllTests"

Let’s look at this command in more detail:	-X POST: Defines the type of method of the REST API. This is a POST request.

	http://192.168.43.10:8080/job/BuildAndDeployCalculatorWebApplication/buildWithParameters: This is the URL endpoint that you want to access to trigger a build. This URL endpoint is in this format:

${JENKINS_URL}/job/${JOB_NAME}/buildWithParameters

	-u Pranodayd:119737275fd132a08d5a3b457ed56649a2: After –u, you are sending the authentication information of the user. The authentication information contains UserName:APIToken. This is the same API token you used previously in this chapter.

-d"CalculatorWebApplicationDeploymentDirectory=D:\JenkinsBookExamples\DeployedCalculatorWebApp\&TypeOfTestsToRun=AllTests": This is sending the required two job parameters in the format VariableName=VariableValue. Note that there is a & in between both parameters.

Run the following command from the command prompt: curl -X POST http://192.168.43.10:8080/job/BuildAndDeployCalculatorWebApplication/buildWithParameters -u Pranodayd:119737275fd132a08d5a3b457ed56649a2 -d "CalculatorWebApplicationDeploymentDirectory=D:\JenkinsBookExamples\DeployedCalculatorWebApp\&TypeOfTestsToRun=AllTests"

Go to the Jenkins Dashboard. You can see that a build for the job named BuildAndDeployCalculatorWebApplication/buildWithParameters has been triggered.
During the build process, the web application would be tested through the Python Selenium tests.
Triggering Normal (Non-Parameterized) Jenkins Job Using Jenkins Remote API
Let’s trigger a non-parameterized job using a Jenkins REST API. There is a very simple REST API call to trigger a non-parameterized job. Say you want to trigger the job named ReleaseCalculatorAPI. You would use the following command:curl -X POST http://192.168.43.10:8080/job/ReleaseCalculatorAPI/build -u Pranodayd:119737275fd132a08d5a3b457ed56649a2

Let’s look at this command in more detail:	-X POST: Defines the type of method of the REST API. This is a POST request.

	http://192.168.43.10:8080/job/ReleaseCalculatorAPI/build: This is the URL endpoint that you want to access to trigger a build. This URL endpoint is in this format:

${JENKINS_URL}/job/${JOB_NAME}/build

Note that it uses build at the end here to trigger a non-parameterized job.	-u Pranodayd:119737275fd132a08d5a3b457ed56649a2: After –u, you are sending the user’s authentication information. The authentication information contains UserName:APIToken. This is the same API token you used previously in this chapter.

Run the following command from the command prompt:curl -X POST http://192.168.43.10:8080/job/ReleaseCalculatorAPI/build -u Pranodayd:119737275fd132a08d5a3b457ed56649a2

On the Jenkins dashboard, you can see a new build where the job named ReleaseCalculatorAPI/ is triggered.
Working with the Jenkins Server Using Python-Jenkins
You learned how to use Jenkins REST APIs to perform different tasks. You used the REST client called Curl for this purpose. If you want to work more effectively with REST APIs from different programming languages like Java, C#, Python, Ruby, and so on, you need language wrappers created over a particular REST API endpoint. If you use these language wrappers, the response returned by a REST API is returned after serializing it in the form of a variable type that a particular language supports. For example, if you are using a Java wrapper over a REST API, the returned response would be serialized in the Java object and you could deal with it the way you deal with any other Java object.
This section explains how Python wrappers implemented over Jenkins REST APIs can be used to perform different tasks. You can try other Ruby and Java wrappers as per your language preferences.
There are various Python wrappers, including JenkinsAPI, Python-Jenkins, api4jenkins, and aiojenkins. They are all object-oriented Python wrappers for Python REST API, which provides the Pythonic way to control the Jenkins server. Of these four Python wrappers, you are going to learn how to use Python-Jenkins to perform different tasks.
Before you can start using a Python wrapper, you need to install the following things if they are not installed on your system:	Python Interpreter: Download the appropriate Python version from https://www.python.org/downloads/

	Pycharm: Download the Professional version (free trial for 30 days) or Community edition (free version)of Pycharm, a code editor for Python.

	Python-Jenkins package: Once you install the Python interpreter, you need to add Pip and Python to the PATH system environment variable. This is explained in Chapter 15.

Once Pip is present in the PATH environment variable, you can install the Python-Jenkins package using the pip install Python-jenkins command.
Using Python-Jenkins Package Libraries
I created a Python project in pycharm and created a Python file called WorkingWithJenkinsJobs.py and wrote code in it. The code written in this file is shown in Listing 20-1.import jenkins
#Connecting to a Jenkins server
server = jenkins.Jenkins('http://192.168.43.10:8080',username="Pranodayd",password="119737275fd132a08d5a3b457ed56649a2")

Listing 20-1Python Code to Connect to a Jenkins Server

The code in Listing 20-1 calls a constructor of class with the URL of the Jenkins server, username, and password parameters. It creates a reference variable named server to programmatically access the Jenkins server instance.#Getting information about loggedin user
user = server.get_whoami()
version = server.get_version()
print('Hello %s from Jenkins %s' % (user['fullName'], version))

Listing 20-2Python Code to Get the Information About the Logged-in User in Jenkins

The code in Listing 20-2 calls an API called get_whoami(), which returns information about the logged-in user. This code prints this user information along with the version of the Jenkins server.#Getting the configuration of existing job named "Demo"
DemoJobConfiguration=server.get_job_config("Demo")

Listing 20-3Python Code to Retrieve the configuration.xml File of the Job Named Demo

The code in Listing 20-3 retrieves the configuration XML of an existing job named Demo and saves it in a variable named DemoJobConfiguration.'''
 Creating a new job named "JobCreatedUsingPythonJenkins" using configuration retrieved and saved in
 variable DemoJobConfiguration
'''
 server.create_job('JobCreatedUsingPythonJenkins',DemoJobConfiguration)

Listing 20-4Python Code to Create a New Job Named JobCreatedUsingPythonJenkins

The code in Listing 20-4 calls the create_job API to create a new job named JobCreatedUsingPythonJenkins and the configuration is stored in the DemoJobConfiguration variable. The text within the quotes '" is commented code.#Printing information of all jobs,Each job information is returned in the form of Dictionary
jobs = server.get_jobs()
print(jobs)

Listing 20-5Python Code to Print Information of All Jobs Available in Jenkins

The code in Listing 20-5 returns the information about all existing jobs. Information about each job is returned in the form of a dictionary object having the name, url, color, and fullname keys.#Triggering a build of Non-parameterized job
server.build_job('ReleaseCalculatorAPI')

Listing 20-6Python Code to Trigger a Build of a Job Not Accepting Any Parameters (Simple Non-Parameterized Job)

The code in Listing 20-6 triggers the build of a non-parameterized job named ReleaseCalculatorAPI.#Deleting a job created
server.delete_job('JobCreatedUsingPythonJenkins')

Listing 20-7Python Code to Delete a Specific Jenkins Job

The code in Listing 20-7 deletes the job named JobCreatedUsingPythonJenkins.# build a parameterized job
Building our job "BuildAndDeployCalculatorWebApplication" with required 2 parameters
server.build_job('BuildAndDeployCalculatorWebApplication', {'CalculatorWebApplicationDeploymentDirectory': 'D:\\JenkinsBookExamples\\DeployedCalculatorWebApp\\', 'TypeOfTestsToRun': 'AllTests'})

Listing 20-8Python Code to Trigger a Build of a Job That Accepts Parameters (a Parameterized Job)

The code in Listing 20-8 builds the parameterized job named BuildAndDeployCalculatorWebApplication. It calls build_jobapi with two parameters—the first parameter is the job name and the second parameter is the dictionary object having both parameters sent using Key:Value.#Retrieving build number of last build executed for job "BuildAndDeployCalculatorWebApplication"
last_build_number = server.get_job_info('BuildAndDeployCalculatorWebApplication')['lastCompletedBuild']['number']

Listing 20-9Python Code to the Retrieve the Build Number of the Last Build Executed for a Specific Job

The code in Listing 20-9 retrieves the number of the last completed build for the job named BuildAndDeployCalculatorWebApplication.
Note
I uploaded the whole Python project with this code to the GitLab public repository at https://gitlab.com/Pranoday/python_jenkins.git.

How to Use Shared Libraries in the Jenkins Pipeline
Multiple jobs often have common build steps in their pipelines. Instead of repeating these steps in each of these jobs, you can implement them in one Groovy file and share this Groovy file with the multiple jobs. This approach reduces code repeatability and introduces maintainability in pipelines.
You created a pipeline that deploys the CalculatorAPI.jar file. This pipeline pulls the code of the Calculator API from the Git repository and runs all the required build phases, like compile, test, package, and deploy. Now let’s assume that you have another Java API .JAR file to build using the pipeline and all the steps applicable to the CalculatorAPI jar are also applicable to this Java API. Creating different pipeline scripts with the same steps in two different pipeline jobs is not a good idea. What you can do is implement these steps in one Groovy file and use it as a library file in both of the Jenkins jobs. There would be a few project-specific parameters like Git URL, credentials, that you could send to this common library as an argument. Let’s create a shared library and use it in the Jenkins pipeline to achieve this.
Step 1: Creating a Shared Library in the .Groovy File
I created a blank folder called SharedLibrary on my machine. Inside that, I created a folder called vars and in that I created a file named buildJavaAPI (camel case for the filename is mandatory here) with the .groovy extension.
Note an important point here: The .groovy script file should be inside a directory named src or vars. It does not work otherwise.
The code for this file is in Listing 20-10.def call(String RepoUrl,StringBranch,String Credentials) {
 pipeline {
 agent any

 stages {

stage("Checkout Code") {
 steps {
git branch: "${Branch}", credentialsId: "${Credentials}", url: "${RepoUrl}"
 }
 }
stage("Cleaning workspace") {
 steps {
 bat 'mvn clean'
 }
 }
stage("Running Testcase") {
 steps {
 bat 'mvn test'
 }
 }
stage("Packing Application") {
 steps {
 bat 'mvn package -DskipTests'
 }
 }
stage("Deploying Application") {
 steps {
 bat 'mvn deploy -DskipTests'
 }
 }
 }
 }
}

Listing 20-10Call Function Written in the buildJavaAPI.groovy File

It contains the build pipeline written in a function named call. A shared library file should contain the function named call and the reusable code should be written inside this function. Whenever a Jenkins job refers to a shared library, Jenkins calls the function named call from within the Groovy file. The call function is like a main function in Java. The call function written in this .groovy file has three parameters that will require project-specific information—Giturl, credentials entry name, and branch.
Step 2: Push the Created Shared Library File to the GitLab Repository
Let’s create a new GitLab repository and push the .groovy file to that.
I created a private repository called JenkinsSharedLibrary on GitLab and pushed the .groovy file in it.
Step 3: Configure the Shared Library in Jenkins
Go to the Jenkins UI and choose Manage Jenkins ➤ Configure System. This will open the next page. Scroll down to find the Global Pipeline Libraries section.
Click the Add button in the Global Pipeline Libraries section, which will open additional fields.
Enter a name in the Name field to use in the @Library annotation in the job pipelines to make a reference to the reusable library. I entered BuildJavaAPIs.
In the Default Version field, enter the name of the branch where the reusable library is pushed to on the Git repository. The groovy script is pushed into the master branch in the repository, so I used master in this field.
In the Retrieval Method section, select the Modern SCM radio control and then inside the Source Code Management subsection, select the Git radio control.
Specify the Git repository URL of the reusable library in the Project Repository field and select the appropriate credentials entry in the Credentials dropdown.
Click the Save button.
Step 4: Create a Pipeline Job to Use the Shared Library
I created a new pipeline job named PipelineJobUsingSharedLibrary. Scroll down the page to find the Pipeline section and write the script shown in Listing 20-11.@Liabrary('BuildJavaAPIs')
buildJavaAPI('https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git','Master','MyGitCredentials')

Listing 20-11Pipeline Script Calling the Shared Library

Line 1: @Library imports the shared library to the Jenkins job. (Recall that BuildJavaAPIs is the name we used when configuring shared libraries in Manage Jenkins.)
Line 2: Calls the buildJavaAPI (a name of the shared library .groovy file) with three parameters—the Calculator API GitLab URL, the branch in which you keep the Calculator API’s latest source code, and the name of the credentials entry with the GitLab authentication information stored inside Jenkins.
Click the Save button.
Step 5: Running the Pipeline Job
Go to Jenkins dashboard and run the PipelineJobUsingSharedLibrary job by clicking the clock sign. Check the console output.
You can see that it will check out the shared library from its SCM and run the pipeline code inside it by using the values received as parameters.
This reusable library can be used to build other Java API projects as well. You need to simply send project-specific details as arguments to it.
Summary
In this chapter, you learned how to get the configuration of an existing Jenkins job and trigger Jenkins jobs using Jenkins REST APIs in Python. You also learned how to create a reusable library and use it in the Jenkins pipeline.
Throughout this book, you learned about all important features that a Jenkins administrator or a Jenkins user needs to know. I hope this book has shown you how to use Jenkins with your real-time projects.

Index

A

Addition and Subtraction functions

Add Parameter button

Agile development lifecycle model

Agile methodology

Amazon Web Services (AWS)

Apache Tomcat

API access token
creation
free-style jobs
GitLab repository
Jenkins
private GitHub repository
private GitLab repository

API authentication
aim
GitHub repositories

API token

Application Programming Interface (API)

ApplicationURL environment

Arithmetic operations

Artifact

Artifact/package registries

Assigning roles to users in Jenkins
Assign Roles screen
creating user roles
Role-Based Authorization Strategy Plugin
Role-Based Strategy
steps
View role

Authentication

Authentication information

Authorization

Auto-Triggering

AWS platform

B

Basic authentication

BuildAndDeployCalculatorWebApplication

Build in Jenkins

buildJavaAPI

Build step

Build tools

C

CalcualtorAPI.jar

CalculatorAPI repository

Calculator.html file

Calculator.java file

CalculatorPage class

Calculator web application

Chrome browser

Chromedriver.exe

Chron expressions

CI/CD process

CI/CD workflow
Addition() function code
code development
developing/running unit test cases
rerun the unit test case
run e-e tests
web application and deploy

Cloning Calculator API repository stage

Command-line interface (CLI)

CompileJavaApplication

Configure Global Security page

Configure System menu option

Console Output menu option

Console stage

Continuous Integration (CI)
code to the central repository
running unit tests locally
unit and integration tests

Credentials

Credentials ID

Cross-Site Request Forgery (CSRF)

Crumb

Curl

D

Declarative pipelines

Declarative syntax

Default Subject

Default website running

DemoJobConfiguration

Deploying CalculatorAPI

Deployment process

Development flow of a Java API Project
coding and writing unit test cases
downloaded libraries
third-party libraries
unit test cases

DingarePranoday user

Distributed Version Control system

Domain Specific Language (DSL)

E

EC2 instance, AWS
creation
sign in
sign up
starting
virtual server

EC2 Instance configuration, calculator web application
accessing Calculator.html File
copying Calculator.html File
IIS web server
Jenkins Job
running application
selenium framework
SSH connection

Eclipse workspace

Edit Virtual Directory window

E-E testing

Elastic Compute Cloud

Email Extension plugin

Email notification

F

Free-style jobs

G

Generate Pipeline Script button

Git
end-end use for the API Project
GitLab/GitHub
installing

GitHub account

GitHub branch

GitHub repository

GitHub Webhook

GitLab

GitLab code repositories

GitLab credentials

GitLab/GitHub

GitLab private key path

GitLab repository

GitLab repository page

GitLab Webhook
local IP address
local port range
port forwarding
protocol
Public IP Webhooks
remote IP address
remote port range
triggering procedures
URL

Git repository

Global Tool Configuration page

Global Tool Configuration Settings

Graphical User Interface (GUI)

H

Header parameters

HTTP Proxy Configuration section

I

Inheritance Strategy dropdown

Installation of Jenkins
configuration files and directory structure
as a Docker Image
hardware/software requirements
settings in Jenkins.xml
using a .WAR file
using the MSI Installer
on Windows

Internet access

J, K

JAR file

Java API Project
code files
pom.xml File
third-party libraries
using Maven build tool

Java Configuration

JAVA_HOME environment variable

Java Network Launch Protocol (JNLP)

Jenkins
anonymous user access
architecture
assigning project-based role to the user
authentication
automation server
as a CI/CD automation server
CI/CD process
configuring a credentials provider
configuring global security
configuring Jenkins
SeeJenkins configuration
creating project-based roles
creating users
credential entries
credentials entry in a different domain
credentials management
history
implementing CI/CD
installing Jenkins
SeeInstallation of Jenkins
Jenkins Credentials plugin
LDAP
matrix authorization strategy
matrix-based security option
own user database
Role-Based Authorization Strategy Plugin
Role-Based Strategy option
scope and domains
server
settings for the Authorize Project plugin
software development process
updating a credentials entry

JenkinsBookCalculatorAPI repository

JenkinsBookCalculatorWebApplication repository

Jenkins CLI
authenticating users, SSH
basic authenticating users
exporting all Jenkins jobs
GUI
importing all Jenkins jobs
inbound rule configuration
interaction
jenkins-cli.jar client
job building
job creation
OpenSSH client
shell commands
SSH server configuration

jenkins-cli.jar link

jenkins-cli.jar client

Jenkins configuration
adding a new user
global settings and paths
opening the browser and signing in
resetting the username and password
signing
starting the Jenkins server
System Configuration page
using the .WAR file on Linux

Jenkins controller

Jenkins creation

Jenkins Credentials Provider

Jenkins dashboard

Jenkins distributed builds
adding node entry
adding public entry
architecture
changing permissions
connecting configuration
connecting master and slaves
connection checking
credentials entry
launching new node
SSH build agent’s plugin
sshd service
SSH public-private key pair

Jenkinsfile
advantages
definitions
Jenkins creation
Jenkins UI
saving pipeline code
scripted vs. declarative syntax
triggering, GitLab Webhook
writing pipeline

JENKINS_HOME

Jenkins home directory

Jenkins installation directory

Jenkins job
SeeJob in Jenkins

Jenkins job configuration
build triggers
Credentials dropdown
Credentials Manager
description
discard old builds
display name
executing concurrent builds
GitlabCredentialsDomain
job parameters
log rotation
quiet period
Source Code Management
workspace

Jenkins machine

Jenkins master

Jenkins master-slave architecture

Jenkins pipeline
CI/CD process
code and use
concepts
definition
scripting references
stages
types
Shared libraries

Jenkins plugins
advanced tab
disabling
Email Extension plugin
Git plugin
installation
installed tab
Plugin Manager page
troubleshooting installation problems
updated versions
vailable tab

Jenkins Project

Jenkins remote access API
creating new jobs
fetching configuration, existing jobs
Jenkins server, Python-Jenkins
PATH environment variable
Python-Jenkins Package Libraries
REST APIs
REST-like style
shared libraries
triggering non-parameterized jobs
triggering parameterized jobs
types
web browsers

Jenkins Remote APIs (REST-API)

JenkinsSharedLibrary

Jenkins slave

Jenkins system

Jenkins.xml file

JNLP agent

Job configuration page

JobCreatedUsingPythonJenkins

Job in Jenkins
build history for an executed job
build step
clear a job’s workspace
create a job
delete an existing Jenkins job
edit an existing Jenkins job
execution status
job configuration page
See alsoJenkins job configuration
trigger
view a job’s workspace

L

Lightweight Directory Access Protocol (LDAP)

Local network (LAN)

Local repository, Maven’s

M

Master to slave configuration, JNLP
connection requests
Jenkins URL
JNLPNodeJob
new node entry creation

Maven build tool

Maven CLI commands

Maven configuration

Maven Integration plugin

Maven project directory

Maven Projects option

Maven settings xml

Multiplication function

MultiplicationFunction branch

MyMaven

N

New free-style job, node1 agent

New Merge Request page

New Repository menu option

Nexus repository
accessing
CalculatorAPI.jar
free-style job
hosted repository
installation
installing Nexus as a Windows service
integrating Maven
repository system

O

ObjectRepositories

OpenSSH

P

Parameterized checkbox

parameterized Jenkins Freestyle jobs

Parameterized job

Parameterized pipeline job

Parameterized Trigger plugin

PATH environment variable

Path parameters

PEM argument

Pipeline

Pipeline as code
SeeJenkinsfile

Pipeline execution

Pipeline job

Pipeline script

Pipeline section

Pipeline Syntax

Plugin
See alsoJenkins plugins

Plugin Manager

Post build actions

Preferences page

Project-based matrix authorization

Project Members page

Project Object Model (POM)

Push Event radio control

Pycharm

Pytest

Python files

Python Interpreter

Python-Jenkins Package Libraries

Python libraries

Python package

Python package manager

Python project

Python REST API

Python selenium library

Python Selenium tests

Python virtual environment

Python wrappers

Q

Query parameters

R

Random numbers

Rapid Application Development (RAD)

Remote GitLab repository

Remote repository

Repo checkbox

Repository master branch

Repository page

RESTful API services

Role-Based Authorization Strategy Plugin

S

Scripted pipeline
node block
stage blocks

Selenium

Selenium E-E tests

Selenium Python library

Selenium WebDriver

Selenium WebDriver Python libraries

Sequential execution

Shared libraries, Jenkins Pipeline
CalculatorAPI.jar file
configuration
groovy file
pipeline job creation
running

Simple pipeline

SmokeTest option

SMTP Authentication checkbox

Snippet Generator

Source code management (SCM) tools

SSH authentication
apply
public and private key
public-private key pair
ssh-keygen command
technique

SSH credentials

SSH key pair

SSH public-private key pair

SSH server

Stable code

String interpolation

String parameter

System Configuration page

SystemRoot

T

TestCalculatorWebApplication

Test-driven development (TDD)

TestNG

Third-party libraries

Tomcat

Troubleshooting installation problems

U

UI automation testing

UI automation tool

UI interface

User Credentials Provider

V

Version control systems

Virtual Directory

Virtual environment

W, X, Y, Z

Web alias

Web application

Web Application Archive files (WAR)

Webhooks

Windows Credentials

Workspace

World Wide Web Publishing service

OEBPS/images/515276_1_En_3_Chapter/515276_1_En_3_Fig1_HTML.jpg
Edit environment variable

%JAVA_HOME%\bin
%SystemRoot%\system32

%SystemRoot%

%SystemRoot%\System32\Wbem

%SYSTEMROOT %\System32\WindowsPowerShell\v1.0\
%SYSTEMROOT%\System32\OpenSSH\

C:\Program Files\nodejs\
C\Users\magicuser\AppData\Local\Programs\Python\Python39\...
C\Program Files\Git\cmd

D:\JavaSeleniumBatch
C\Users\magicuser\AppData\Local\Programs\Python\Python39
D:\QualityKioskTraining\apache-maven-3.8.1\bin

OK

Move Up

Move Down

Edit text...

Cancel

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig1_HTML.jpg
- -httpPort=58881 --httpListenAddress=192,168.43.1¢

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig8_HTML.jpg
MINGW®64:/c/Users/magicuser/.ssh

| magicuser@LPTSEPT12 MINGW64 ~/.ssh
'$ touch config

;magicuser@LPTSEPle MINGW64 ~/.ssh
$

OEBPS/images/515276_1_En_16_Chapter/515276_1_En_16_Fig3_HTML.jpg
Generic Credentials Add a generic credential

githttps://git-codecommit.us-east-2.amazonaws.com Modified: 17-03-2021 (_7)
githttps://github.com Modified: Today @

Internet or network address: git:https://github.com
User name: dpranoday

Password: ssessess

Persistence: Local computer

Edit Remove

OEBPS/images/515276_1_En_5_Chapter/515276_1_En_5_Fig1_HTML.jpg
§ Update Center Venkins] x o+

O = Gl R
« C O localhost ginManag x %@
Jenkins YT I ———

Dashboard * Plugin Manager

4 Back to Dashboard

Q il

£% Manage Jenkins

[TZNS Available Installed Advanced

No updat

Select: All. Compatible. None

This page lists updates to the plugins you currently use.

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig1_HTML.jpg
Q Manage Jenkins Venkins] x + e - o X

« C O localhost * »Q :
Jenkins 2 Pranodsy Dingare] log out

Dashboard

& Newttem Manage Jenkins

& Moo sk 253 el o o Gan
> Build History

2% Manage Jenkins Building on the controller node can be a security

& My views .
System Configura
W Newview
M, Configure System Global Tool Configuration .G Manage Plugins
§ figure global settings and path Configure tools, their Il Gios d. e i hat car
Build Queue ~ installers. d the fun
e queve. Manage Nodes and Clouds ﬂ Install as Windows Service
Add, re e various a dows servici
Build Executor Status ~ . .
Security
Configure Global Security
’ Status Information -

Y © o tece o searen

OEBPS/images/515276_1_En_17_Chapter/515276_1_En_17_Fig2_HTML.jpg
8 Node! Configuration Ueri: X | [F) Feed |Linkedin X | [Jenkins Configure Master s X | A Pranoday Dingare /Jenkin: X | & java - Jenkins Windowssie: X | @ Protractor - end-to-endte: X | + e - 0o X

€ 9 C A Notsecure | 192.16843.10:8080/computer/Node1/configure *

Dashboard * Nodes ' Nodel

|| Known hostsfile Verification Strategy v
= [] ©
Avalability L]
Keep this agent online as much as possible v
Node Properties
B Environment variables
List of variables o
Name
JAVA_HOME
Value

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig2_HTML.jpg
»Q :

SJlog out

Dashboard * MyFirstlenkinslob

General u de Manage Build Trigg Post-build A

Description

[Plain text] Preview

Discard old builds
This project is parameterised

Disable this project

0000

Execute concurrent builds if necessary

Advanced

Source Code Management

Build Triggers

©0®

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig13_HTML.jpg
'€ Browse / ©

& Upload component HIML View
= B Pranodayd
= B CaicaoAPt
1310
+820
~@30
B CalcuatorAPE3 0 far
O Calcuator APE3 0 jamdS
D Caicuaeor APE3 0 jacshat
‘o CalcuatarAPE3 0 pom
O CalcuatorAPE3 0 pomundS
O Calcuatr APE3 0 pomshat

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig7_HTML.jpg
8 x 8

€ >cCc 0
Dashboard PipelineJobToReleaseCalculatorAPl

Generdl Buld Tiggers Advanced Project Opions | Piatine |
Pipeline
Definition
Pipeline script
1+ ose {
x def mvnHome
3 stage('Preparation) { // for display purposes
: 75 Gat som. sodt frem Gitlp eapusioary
5 e e
H 77 et the aven st
H 77 % WO ks " Hoven 1001 must be conigured
H 77 w0 I he glonan contiguracion:
H ntome = ool "
}
stage('Butle’) {
77 R the saven butld
Lishénomm o

1 (4suntx() {
S *~SIVA_IOME /bin/mvn -Dmaven. test..failure. ignore clean package”
} else {
bas(open shaso packanel)

B Use Groovy Sandbox
Pipeline Syntax

REST API

Jenkins 2290

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig18_HTML.jpg
+

8 Configure Global Security enkir X
C ® localhost8080/configureSecuity/

<

»0Q :

>

g w
Read
Delete
w Create
Configure
Update
M Delete
Workspace
Read
Discover
Delete
M Create

priigure

m ancel
Buld

connect
IDelete
reate

ornect
brfigure
Buki

View

localhost:2080 says
User orgroup name:
(ogueprancasy

TOT Administer

User/group

@ aonymousUses 00 0 0 00 0 0[0joooojoooojoooojoooo0looo ane
@ Authenticated Users 0 (O O 0 0|0 0 00000000 0DOO0O0O0O000O0O000GO a0s

< ooy e
O Logged-i
®

+ Configure Global Security

Dashboard

O Project-based Matrix Authorization Strategy

Markup Formatter
Plain text

Markup Formatter

Agents

TCP port for inbound agents

OFived: ORandom @ Disable

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig1_HTML.jpg
Gl %
*» 0

Pranoday Dingare =] log out

Dashboard Jenkins’ own user database

4 Back to Dashboard Create User

2% Manage Jenkins

& Create User

Jenkins 2.290

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig10_HTML.jpg
B ABCD Config flenkins]

©

i

2 C O localhost8080/job/ABCD/configure:

Dashboard

ABCD

) This project is parameterised
) Disable this project

O Execute concurrent builds if necessary

Source Code Management

O None
® Git

Branches to build

Branch Specifler (blank for any)

OEBPS/images/515276_1_En_18_Chapter/515276_1_En_18_Fig1_HTML.jpg
i
4

A

a o € m o g0

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig6_HTML.jpg
©) Creste a New Reposiory x 4 o - o x
€ 5 C @ githubcom/new 7

Owner * Repository name *
P =)

Description (optionsi)

0 [Pubke

® 0 priute
Youchaose who can see and commit 10 ths repasitory.

Initialize this repository with:
Skip this step if you're importing an existing repository.
O Add a README file

O Add gitignore
a

O Choose alicense

Camuanic Tems ey Sewty Sws Do o) ComiGunn beg M1 Taees Beg Awut

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig1_HTML.jpg
Pranoday Dingare =] log out

Dashboard Credentials
W v 4. Credentials
Peopl:
. o & P Store | Domain o Name
= Build History con: SML
£+ Manage Jenkins Stores scoped to Jenkins
& MyViews [Domains
B Newview 3 Jenkins i (global)
Build Queue ~

Build Executor Status A

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig1_HTML.jpg
§ Manage Jenkins Veniins] X 4
€ 5 C O localhost8090/manage

Dashboard

Build Queue

Nobuids in the queve.
Build Executor Status
1 e

2 gl

Jocalhost8080/configureSecurity

P Type here to search

System Configuration

Configure System
Configure global settings and paths.

Manage Nodes and Clouds
Add, remove, control and monitor the various
nodes that Jenkins runs jobs on.

Security

Configure Global Se(unly
Secure Jenkins: define wh
access/use the|

Manage Users
Create/delete/modify users that can log i to
this Jenkins

Status Information
System Information

Displays various environmental information to
assist trouble-shooting.

2 About Jenkins

Global Tool Configuration Manage Plugins
&5 Configure toos, their locations and automatic Add, remove, disable or enable plugins that can
installers. extend the functionality of Jenkins.

8 There are updates available

Install as Windows Service

l Installs Jenkins as a Windows service to this
system, so that Jenkins starts automatically when
the machine bools.

/) Manage Credentials 5 Configure Credential Providers
Configure credentials Configure the credential providers and types

Load Statistics
Check your resource utilization and see if you
need more computers for your builds:

System Log
System log captures output from

Java.util. logging output related to Jenkins.

OEBPS/images/515276_1_En_16_Chapter/515276_1_En_16_Fig5_HTML.jpg
| S Browse | [serdCacinsan prese

& Upload compooat HTML View
= B Pacodeyd
= B Calcdator ARt
10
sR20
830
@

B Calouann P 80
- Colcdnx AP 80 jyemnds
-0 Caloudanr AP 8.0 jor shat
10 Colcsanx P80 pom
- Cllodanx AP 80 pommas
- 1) Gl AP 80 pom shat
-0 Paven-xtadyta xrl
T navenmeadata xmingS
0 navenavtadra i !

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig16_HTML.jpg
Extended E-mail Notification
SMTP server
smtp.gmail.com
SMTP Port
465
SMTP Username
pranoday.dingare@gmail.com
SMTP Password
Use SSL

(J UseTLS

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig17_HTML.jpg
Build periodically

Schedule

45855

N

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig12_HTML.jpg
Environment Variables

User variables for magicuser

Variable
Name
OneDrive
Path
PyCharm
TEMP
T™P

Value

Pranoday

C:\Users\magicuser\OneDrive
C:\Users\magicuser\AppData\Local\Microsoft\WindowsApps;...
C:\Program Files\JetBrains\PyCharm 2020.3.3\bin;
C\Users\magicuser\AppData\Local\Temp
C\Users\magicuser\AppData\Local\Temp

System variables

‘ ‘ Delete

Variable

PROCESSOR_IDENTIFIER
PROCESSOR _LEVEL
PROCESSOR_REVISION
PSModulePath

IR T ~ e

PROCESSOR_ARCHITECTU...

.COM;.EXE;.BAT;.CMD; VBS .VBE,.JS; JSE \WSF;.WSH;.MSC
AMD64

Intel64 Family 6 Model 142 Stepping 12, Genuinelntel

6

8elc

%ProgramFIIes%\WlndowsPowerSheII\Modules,C \Wlndows\s

e s = e CTR T Y SIS SR T -V TN a

New.. J\ Edit..

‘ ‘ Delete

| OK |‘ Cancel ‘

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig11_HTML.jpg
Build

Invoke top-level Maven targets (2]

Maven Version
MyMaven v
Goals

deploy

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig13_HTML.jpg
8 Mylob Config [lenkins]

<«

x

+

2 C O localhost8080/job/MyFirstlenkinsiob/configure

Dashboard

* Mylob

General | Source Code Management | Build Triggers Build Post-build Adtions

Repository URL
https//gitlab.com/Pranoday/mywebapplication.git

Branches to build

Branch Specifier (blank for ‘any)

*/master

Repository browser

(Auto)

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig7_HTML.jpg
Master v jeideabockcalodatoras [¥ v

Switch bearcViag X
lfum branches and tagn a]
Banihes

Firstiranch
v Mater Op
© AFYYYYe

T rovrerst 15 Lowa A reves

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig4_HTML.jpg
Days to keep artifacts

if not empty, artifacts from builds older than this number of days will be deleted, but the logs, history, reports, etc for the build will be kept

Max # of builds to keep with artifacts

if not empty, only up to this number of builds have their artifacts retained

OEBPS/images/515276_1_En_18_Chapter/515276_1_En_18_Fig3_HTML.jpg
Add Virtual Directory ?

Site name: Default Web Site

Path: /f
Alias:
|CalculatorWebApp I

Example: images

Physical path:)
| C:\DeployedCalculatorApp|] [

Pass-through authentication
| Connect as... Test Settings...

==

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig5_HTML.jpg
Dashboard

& New item

& People

= Build History
2% Manage Jenkins

W New View

Build Queue

Build Executor Status

Y o s

‘ People

User ID

g login identities whi

Name

P pr——

Pranoday Dingare

REST AP

Jenkins 2.290

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig8_HTML.jpg
0 the w

jith the ¢
munity.

yraph h
pender

g pusk
n in the

dits

Signed in as
Pranodayd

@ Set status

Your profile

Your repositories
Your codespaces
Your organizations
Your projects

Your stars

Your gists

Upgrade
Feature preview ®

Help

Sign out

h lectiee — hine 16h 11InAdAate

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig12_HTML.jpg
Build

Execute Windows batch command (7]
Command
RMDIR %CalculatorWebApplicationDeploymentDirectory%

MKDIR %CalculatorWebApplicationDeploymentDirectory%
copy /y src\main\webapp\Calculator.html %CalculatorWebApplicationDeploymentDirectory%

N

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig14_HTML.jpg
New System Variable

Variable name:

Variable value:

| JAVA_HOME

| Di\jdk-9.0.4\jdk-9.0.4]

Browse Directory... l l Browse File...

OK

H Cancel J

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig5_HTML.jpg
8 Global Teol Confguration lenk

&

x +
C O localhost8080/configureTools/
Dashboard * Global Tool Configuration

| Adacn~

Maven

Maven installations

Maven

Name.

ERROR

MAVEN_HOME

ERROR

O3 install automati

List of Maven instalations on this system

=]

Jenkins 2.290

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig2_HTML.jpg
v 2 CalcualtorWebApplication
> BA JRE System Library [JavaSE-1.7]

v (= webapp
> & WEB-INF
@ Calculator.html
indexjsp
> & target
M pom.xml

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig5_HTML.jpg
« C O localhost dentials/store/system/domair ntial/MyCr pdate * 2@ :
® Jenkins Pranoday Dingare] log out

Dashboard Credentials System Global credentials (unrestricted) Pranodayd/****** (This credential is used to access Gitlab repository)
Scope)

& Back to Global credentials (unrestricted)

2. Update

© Delete

Global (Jenkins, nodes, items, all child items,
System (Jenkins and nodes only)

nodayd

b Move
Password o
[E——
D o
MyCredentials
Description o

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig18_HTML.jpg
) *Calculator - Notepad
File Edit Format View Help

width: 21
color:red;
border: solid black 2px;

input[type="button"]
{

Ln33,Col 1

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig19_HTML.jpg
Pranoday Dingare =] log out

Dashboard

& New item
& People

Build History

A\l

Project Relationship

Check File Fingerprint
Manage Jenkins
& My Views

W New View

Build Queue

Build Executor Status

Icon: SML

CompilesavaApplication
Mylob

Legend

N Atom feed for al

S Atom feed for faitures

@add description

N Atom feed for just latest builds

OEBPS/images/515276_1_En_5_Chapter/515276_1_En_5_Fig3_HTML.jpg
8 Aviabiepugins penns] X o - o0 X

« C O localhost ginManager/availa * »Q :
\Q‘ Jenkins 2 Pranoday Dingare =] log out
Dashboard * Plugin Manager

4 Back to Dashboard Q Junit

Manage Jenkins

Updates Installed Advanced

JUnit

Buld Reports

2mo 11 days

Allows JUnit-format test results to be published.

Maven Integration

Build Tools

5, for better and
IAPSHOTs, automated configurati

a deep integration

of various Jenki

Performance

pertormance | [pipeline | | Build Reports

This plugin allows

king perf

ance KPls, based on results read fr

m popular testing tools (Apache JMeter, JUnit, Taurus).

MsTest

NET Development | | Build Reports

plugin converts MSTest TRX test reports into JUnit XML rey

s 50 it can be integrated with Hud

n's JUnit features

NUnit

Build Reports 02 11 moago

This plugin transforms NUnit test reports so

Install without restart Download now and install after restart [

Jenkins' JUnit features.

ey can be e

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig1_HTML.jpg
S Eclipse IDE Launcher

Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: 1 D:\JenkinsBookExamples\J v | Browse...

[CJ Use this as the default and do not ask again

» Recent Workspaces

|

| Launch | Cancel

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig5_HTML.jpg
Dashboard

SamplePipelineJob

4 Back to Project

Status

\J

Changes
B Console Output

View as plain text
= Edit Build Information
© Delete build #3
@ Restart from Stage
& Replay

Pipeline Steps

BB Workspaces

@ Previous Build

#3

Pranoday Dingare

REST API

SJlog out

Jenkins 2.290

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig20_HTML.png
Q Anpenkis)
<

x o+

C O localhost8080/iew/all/builds

Jenkins

Q search

€] 2@

o

2 Pranoday Dingare

[T
9

Dashboard Al

& Newltem
& People

Build History

\|

\ Project Relationship

Check File Fingerprint
2% Manage Jenkins
& MyViews

BB New View

Build Queue

No builds in the queue.

Build Executor Status.
1 1dle
2 e

:/ Build History of Jenkins

This history is not guaranteed to include all subtasks executed on the node, e.g. Jenkins Pipeline subtasks wil not be displaye.

@ CompileJavaApplication #3

@ CompilelavaApplication #7

@ CompilelavaApplication
@ CompilelavaApplication #5
o CompilelavaApplication #4
@ CompileJavaApplication #3

@ CompilelavaApplication #2

@ CompilelavaApplication #

Time Since 1

CompileJavaApplication #8

CompileJavaApplication #7

>
e e

Q

CompileJavaApplication #6

1 min 15 sec

1 min 20 sec

1 min 31 sec

stable

stable

stable

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig3_HTML.jpg
§ Update Center Venkins] x o+

O = Gl R
« C O localhost ginManag x %@
Jenkins YT I ———

Dashboard * Plugin Manager

4 Back to Dashboard

Q il

£% Manage Jenkins

[TZNS Available Installed Advanced

No updat

Select: All. Compatible. None

This page lists updates to the plugins you currently use.

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig3_HTML.jpg
8 Signin enkins] x4+ e - o Xx
€ 5 C O localhost8080/login?rom=%2F * »Q

Welcome to Jenkins!

Please sign in below or create an account.
Username

Password

[J downloadhtm - showall X

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig17_HTML.jpg
Types

Only selected

Username with password

SSH Username with private key

Certificate

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig16_HTML.jpg
x| + e - o X

© localhost o % »Q

® Jenkins

gare Pranoday 5] log out

Dashboard

{@add description

& People

= Build History

& Myviews <) @ E-€ Testing N/A N/A
& UnitTesting NA N/A g
9)
W New View G EHE
Legend N\ Atom feed for sl N Atom feed for fatures N Atom feed for just latest builds
Build Queue ~
Build Executor Status ~

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig2_HTML.jpg
Apps & features

Default apps

o Offline maps

@ Apps for websites

o0 Video playback

4

Start-up

Apps & features

Installing apps

Choose where you can get apps from. Only install apps from the
Store to help protect your PC and keep it running smoothly.

‘ Allow apps from anywhere v

Apps & features

Manage optional features

xecution

Manage app

Search, sort and filter by drive. If you would like to uninstall or
move an app, select it from the list.

[searcn this st 5

Sortby:Name v Filter by: All drives v

[JJ0] Adobe Actobat Reader DC 594 MB
) 16/06/2019
Affinity Designer 741 M8
13/06/2019

Al Suite 3

18/05/2018

Change app defaults
To choose the default apps that
open your files, links, and more, go
to Default app settings.

Open Defa

Related settings

Programs and Features

Make Windows better

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig8_HTML.jpg
Dashboard

& New ltem
& People
= uild History

2% Manage Jenkins
& My views

W New View

Build Queue

Build Executor Status

Pranoday Dingare =] log out

Credentials * System

4 System

Domain Name

o
Description o
domain contains Gitlab credentials which are used to acce
A specfication o
Hostname
Include @
Exclude @

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig25_HTML.jpg
Workspace of MyJob on master
= o

E.git

(&5 settings

[Esrc/main/webapp

[Etarget

[F] .classpath 4 Jun 2021, 08:32:50 1.04 KB &= view
[E] .project 4 Jun 2021, 08:32:50 568 B 4= view
[E]Jenkinsfile.txt 4 Jun 2021, 08:32:50 1.76 KB &= view
[£] pom.xml 4 Jun 2021, 08:32:50 2.08 KB &z view

B (all files in zip)

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig12_HTML.jpg
(v)Console Output

Started by user Pranoday Dingare
Running as SYSTEM
Building in workspace C:\Users\magicuser\.jenkins\workspace\ReleaseCalculatorAPI
The recommended git tool is: NONE
using credential MyGitCredentials
Cloning the remote Git repository
Cloning repository https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git
> git.exe init C:\Users\magicuser\.jenkins\workspace\ReleaseCalculatorAPI # timeout=10
Fetching upstream changes from https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git
> git.exe --version # timeout=10
> git --version # 'git version 2.30.1.windows.1'
using GIT_ASKPASS to set credentials
> git.exe fetch --tags --force --progress -- https://gitlab.com/Pr /jenki lculatorapi.git +refs/heads/
> git.exe config remote.origin.url https://gitlab.com/Pranoday/jenkinsbookcalculatorapi.git # timeout=10
> git.exe config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* # timeout=10
Avoid second fetch
> git.exe rev-parse "refs/remotes/origin/Master~{commit}" # timeout=10
Checking out Revision 406ab@Saf2e174d73blcdcac2f82082d81de34cd (refs/remotes/origin/Master)
> git.exe config core.sparsecheckout # timeout=10
> git.exe checkout -f 406ab@5af2e174d73blcdcac2f82082d81de34cd # timeout=10
Commit message: "Merge branch 'SubtractionFunction' into 'Master'"
First time build. Skipping changelog.
[ReleaseCalculatorAPI] $ cmd.exe /C "D:\MavenInstallation\apache-maven-3.8.1\bin\mvn.cmd package && exit %%ERRORLE\
[INFO] Scanning for projects...

[INFO]

[INFO] -- -< Pranodayd:CalculatorAPI >-

[INFO] Building CalculatorAPI 2.0

[INFO] -----mmmmmmmmmmm oo [Jar J---omommmm e
[INFO]

[INFO] --- maven-resources-plugin:3.0.2:resources (default-resources) @ CalculatorAPI ---

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig10_HTML.jpg
B Mylob Config llenkins] x +
€ 2 C O localhostB080/job/Myfirstienkinslob/configure
Dashboard © Mylob *

General | Source Code Management | Build Triggers

Build

Post-build Actions

Source Code Management

O None

® Git

Repositories
Repository URL
httpsy/qitlab.com/Pranoday/mywebapplication.git
Credentials.
al i used t

Branches to build

Branch Specifier (blank for ‘any)

*/master

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig1_HTML.jpg
Dashboard

Enter an item name

dd, Freestyle project

sting, you can ust

Pranoday Dingare

S log out
9

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig24_HTML.jpg
4 Back to Dashboard
Status

= Changes

W Workspace

) Build Now

2% Configure

© Delete Project

= Rename

6 Build History trend A

o

©n

Project MyJob

U workspace

7 Recent Changes

Permalinks

+ Last build (£9), 2 hr 59 min ago
« Last stable build (£9), 2 hr 59 min ago

« Last successful build (#9), 2 hr 59 min ago
« Last completed build (#9). 2 hr 59 min ago

Pranoday Dingare

] log out

[@add description

Disable Project

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig11_HTML.jpg
Dashboard * Manage and Assign Roles

& New ltem

& People

= Build History

&% Manage Jenkins

& My Views

W New View
Build Queue ~
Build Executor Status A

&} Assign Roles

Global roles

G &P

User/group to add

Item roles

User/group to add

Pranoday Dingare

*» 0

SJlog out

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig5_HTML.png
D:\JenkinsBookExamples\CalculatorAPI>git checkout -b FirstBranch
Switched to a new branch ‘FirstBranch

D:\JenkinsBookExamples\CalculatorAPI>git add .

D:\JenkinsBookExamples\CalculatorAPI>git commit --m "First commit in Java API project”
[FirstBranch (root-commit) 451e77b] First commit in Java API project
7 files changed, 367 insertions(+)

create
create
create
create
create
create
create

mode
mode
mode
mode
mode
mode
mode

100644
100644
100644
100644
100644
100644
100644

.gitignore

pom. xml

src/main/java/Pranodayd/CalculatorAPI/Calculator.java
src/test/java/Pranodayd/CalculatorAPI/TestAdditionFunctionality.java
src/test/java/Pranodayd/CalculatorAPI/TestDivisionFunctionality.java
src/test/java/Pranodayd/CalculatorAPI/TestMultiplication.java
src/test/java/Pranodayd/CalculatorAPI/TestSubtractionFunctionality.java

D:\JenkinsBookExamples\CalculatorAPI>

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig13_HTML.jpg
o 1 > Pranoday Dingare

=2 Builds

Configure

e My Views

* Credentials

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig12_HTML.jpg
8 i x +
« X © localhost i x *»Q
® Jenkins Pranoday Dingare] log out
Dashboard Jenkins’ own user database
4 Back to Dashboard Users

£% Manage Jenkins

& Create User

dingarepranoday

dingarepranoday

pd pd

pranodayd pranodayd

Jenkins 2.290

Connecting.

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig9_HTML.jpg
©) YourProfie

x

+

€ 9 C @ githubcom/settings/profile

“https://github com/settings/keys

H dpranoday
Your personal account

Account settings

| Profile
Account
Appearance
Account security
Biling & plans
Security log
Security & analysis
Emails
Notifications
Repositories.
Packages
Organizations
Saved replies.
Applications

Developer settings

Public profile

Name

remove it at any time.
Public email

Select a verified email to display

Go to your personal profile

‘and uncheck “Keep my emal address prvate.”
Bio

Tell us a little bit about yourself

2 Edit

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig15_HTML.png
mpt

Microsoft Windows [Version 10.0.19041.1052]
(c) Microsoft Corporation. All rights reserved.

C:\Users\magicuser>cd D:\JenkinsBookExamples\CalculatorAPI
C:\Users\magicuser>D:

D:\JenkinsBookExamples\CalculatorAPI>

nom@Bme[E 6

Deskiop

& 25°C Cloudy ~ O) B3 ENG

145
14-06-2021

I

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig4_HTML.jpg
C:\Users\magicuser>ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (C:\Users\magicuser/.ssh/id_rsa): D:\SSHKey\MyGitlabKeys
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in D:\SSHKey\MyGitlabKeys.

Your public key has been saved in D:\SSHKey\MyGitlabKeys.pub.

The key fingerprint is:

SHA256 : 6W1pLLADGKEYVBBhoMpCtTYBVQhrYVSZND/1hPIEmgd magicusen8LPTSEPT12
The key's randomart image is:

+---[RSA 3072)----+

==.80. ... |

|+ *o= 0.0E .

|
|
|
|+.= oS o |
|
|
|
|

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig19_HTML.jpg
) *Calculator - Notepad
File Edit Format View Help

input[type="button"]

background-color:red;
color: black;

border: solid black 2px;
width:100%

input[type="text"]
{

Ln41,Col 1

OEBPS/css/envelope.png

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig7_HTML.jpg
§ Global Tool Configuration lenk X
€ 5 C O localhost8090/configureTools/

Dashboard ' Global Tool Configuration
L Install automatically

Maven

Name.

InstallMaven
Install automatically

Install from Apache
Version

[381 ~

Add Installer ~
et “zp/ targz

Install flom Apache

Run Batch Command

i -

List of Maven instalations on thi system

=

e - o

o % »Q

Jenkins 2.290

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig6_HTML.jpg
This project is parameterised

String Parameter

Name 0

FirstName

Default Value @

Description (2]

This parameter sends first name to job for printing on console

1 Pranoday

[Plain text] Preview

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig7_HTML.jpg
8 Configure Global Security Jenkir X o - o0 X

€ 5 C O localhost8080/confiqureSecurity/ * »0Q

Dashboard ' Configure Global Security

o
ins’ own user database]
o
Server
Server]
°
-] or

Advanced Server Configuration...

=

O None

Authorization

© Anyone can o anything
O Legacy mode

® L anaadin e can do anvthing

s [

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig12_HTML.jpg
Maven
Maven installations

Maven

Name

MyMaven

MAVEN_HOME

D:\Mavenlnstallation\apache-maven-3.8.1

O Install automatically

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig10_HTML.jpg
& @ Mson

® Q

o ‘Welcome Learn about Sonatype Nexus Repository Manager

() Sonatype Nexus Repository Manager
055 3.301.01

Browse

O Welcome

Sonatype Spots 150+ Maliclous npm Packages Copying Recent Software Supply Chain Attacks that Hit 35 Organizations

» Q Search
8 sowse
Get Started
Configuration D9 signin

admin "
D:\NexusRepository\sonatype

Repository Formats

O APT @ Composer ” @ Conan

% Raw

workinexus3\admin.password LS GO Go? E:Heim? V Maven” [l npm” B NuGet

B2z BPPIZ R

* Communty supporied

Nexus
Repository Pro

Repository staging, dynamic storage for blob stores, &
ort

nierprise SUpP

Meet Muse. !

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig8_HTML.png
Org

testng

testng

OEBPS/images/515276_1_En_17_Chapter/515276_1_En_17_Fig4_HTML.jpg
|| Advanced Security Settings for authorized_keys O X

Name: C:\Users\ADMIN\.ssh\authorized_keys
Owner: ADMIN (DESKTOP-G93Q38T\ADMIN) &) Change
Permissions Auditing Effective Access |
For additional inft ion, double-click a permission entry. To modify a permission entry, select the entry and click Edit (if available).

Permission entries:

Type Principal Access Inherited from
82 Allow SYSTEM Full control None
‘ Allow ADMIN (DESKTOP-G93Q38T\ADMIN) Full control None

Enable inheritance

ok | [Cancel | [apply |

OEBPS/images/515276_1_En_18_Chapter/515276_1_En_18_Fig2_HTML.png
@) Interet Information Services (IS) Manager

- o X
@5 (@ LPTSEPTI2 » Stes » Default WebSite » [RESESN ° N
Fie View Hep
Default Web Si
ite Home
CMETENY @ Defauitwe B eplore
W Surtpage = it Permisions
95 LPTSEPTI2 (PTSEPTIZAmag | * iXSe. L Wshow N | Ceupln, Ares o
2 Application Pools. ASP.NET -
50 sites |

— = 2 5 e 2 9@ & 2 B % BE 8 & B
=

NET NETEmor NET NETProfile NETRoles NETTust NETUsers Application Conmection MachineKey Pagesand Providers ~Session State
pilaion Pages Globalization Levels Setting: ings ntrols

iew Applications
Edit Permissions.

172225200 View Virtual irectories

D Add Application. Manage Website: ~
%3 Add Virtual Directory. 2 Restant
prr— >
Momgeweite .
@ e [car B & & 8 = A ;
X Remove €l Compression Default Directory ErorPages Handler HTTP ISAPIFiters Logging MIMETypes Modules Output Request prot
= Document Browsing Mappings ~ Respon. Caching Filtering itings
= —
. w

Switch to Content View

Limits.
Sl Seftings URL Rewrite HSTS
@ Hep
Management X
Configura.
Editor
< | [EFestures View i ContentView

Ready

«

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig2_HTML.jpg
S Preferences O X
| type filter text Maven SvDvw §
> General (] Offline
i Do not automatically update dependencies from remote repositories
> Cucumber
Gradle [] Debug Output
> Help Download Artifact Sources
> Install/Update [J Download Artifact Javadoc
> Java [[] Download repository index updates on startup
> Language Servers [[J Update Maven projects on startup
> Maven [[] Automatically update Maven projects configuration (experimental)
> Oomph [[] Hide folders of physically nested modules (experimental)
> Plug-in Developm Global Checksum Policy: Default vq\
> Run/Debug
> Terminal
> TestNG
> TextMate
Validation
> Version Control (T¢
> XML 1
< > ’ Restore Defaults Apply
@ %) L/El |Apply and Closel 1 Cancel

OEBPS/images/515276_1_En_5_Chapter/515276_1_En_5_Fig4_HTML.jpg
Pranoday Dingare =] log out

Dashboard * Plugin Manager

£ Backto Doshboard vpdates mvatble e [N

&% Manage Jenkins HTTP Proxy Configuration

4 Update Center Server .
Port =
User name ¢
Password
No Proxy Host P

Advanced.

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig3_HTML.jpg
S Select a wizard O X

Select a wizard =<

Create a Maven project |

Wizards:

| type filter text

> & Java A
v (& Maven
J, Check out Maven Projects from SCM
%% Maven Module
%5 Maven Project
> & Oomph
> (& Plug-in Development Y

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig9_HTML.jpg
Environment Variables

User variables for magicuser

Variable Value

Name Pranoday

OneDrive C:\Users\magicuser\OneDrive

Path C:\Users\magicuser\AppData\Local\Microsoft\WindowsApps;...
PyCharm C:\Program Files\JetBrains\PyCharm 2020.3.3\bin;

TEMP C\Users\magicuser\AppData\Local\Temp

T™P C:\Users\magicuser\AppData\Local\Temp

New... | Edit. || Delete

System variables

Variable Value

CLASSPATH D:\JavaSeleniumBatch\JavaPrograms
ComSpec C:\Windows\system32\cmd.exe
DriverData C:\Windows\System32\Drivers\DriverData
JAVA_HOME D:\openjdk-11_windows-x64_bin\jdk-11
Name Dingare

NUMBER_OF_PROCESSORS 8

oS Windows_NT

‘v OK ‘ ‘ Cancel

OEBPS/images/515276_1_En_17_Chapter/515276_1_En_17_Fig5_HTML.jpg
2 Jenkins Q@ 2 PranodayDingare Slo

Dashboard Nodes Node3

4 Backto List

B Agent Node3
=8 9
Connect agent to Jenkins one of these ways:

\, Status

Java Web Start is not available for the JVM version running Jenkins

© Delete Agent

Run from agent command line:

s sor (TR

76f01ces: b9afcl, 908675F5a6ed229eFd8b4909 -workDir

4. Configure

-jnlpUrl http://192.168.43.10:8080/ computer/Node3/jenkins-agent. jnlp -secret
INLPNode™

"> Build History

Load Statistics Run from agent command line, with the secret stored in a file:

le

_ echo 76f1ce9s b9b743b9afc1 8 746 > secret
[Z] rog java -jar agent.jar -jnlpUrl http://192.168.43.10:8080/computer/Node3/jenkins-agent.jnlp -secret @secret-file -workDir
"C:\INLPNode™
@ Open Blue Ocean
Labels

INLPNode

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig5_HTML.jpg
This project is parameterised

CIiC S

Add Parameter ~

Boolean Parameter

Choice Parameter
Credentials Parameter

File Parameter

Multi-line String Parameter
Password Parameter

Run Parameter

String Parameter

lecessary

ent

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig5_HTML.jpg
e - o X
* » @ :

Pranoday Dingare =] log out

Dashboard * Update Center

B pak s Desbiond Installing Plugins/Upgrades

2% Manage Jenkins Preparat

& Manage Plugins

Go back to the top page
> ° X

start using the installed plugins right away;

® R

ST APL Jenkins 2290

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig12_HTML.jpg
Dashboard Configure Credential Providers

& New ltem
& People
= build History

2% Manage Jenkins

& My views

W New View
Build Queue ~
Build Executor Status A

4. Configure Credential Providers

Providers

Jenkins Credentials Provider
User Credentials Provider
Types.
All available
Restrictions

Add ~

*» 0

Sllog out

Jenkins 2.290

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig10_HTML.jpg
New System Variable

Variable name:

Variable value:

| M2_HOME

| D:\Mavenlnstallation\apache-maven-3.8.1[

Browse Directory... ‘ \ Browse File...

OK

H Cancel J

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig13_HTML.jpg
« C A Notsecure | 192.16843.10:808

() Sonatype Nexus Repository Manager
0553

301-01

€ o a

Browse

£ Browse JenkinsBookCalculatorAPI_Release
Welcome
o & Upload component | HTML View Advanced search.
» Q search # Pranodayd/CalculatorAPI/7.0
WDeims componaat] O Anslae pecstion
& Upload Gy
Repository JenkinsBookCalculatorAPI_Release
CalculatorAPL.7.0.jar
B Calcsl g Format maven2
CalculatorAPI-7.0. jarmdS
SR ISTAAPY T URESEHE Group Pranodayd
 CalculatorAP1-7.0.pom Name CalculatorAPI
UlatorAPL.7.0,pom.mdS Verslon 2

CalculatorAPI-7.0.pom.shat &
Most popular version

data.xml

metadata.xml.mds Age

metadata.xmlshat Popularity
Usage
Apache Mave: - &

Insert this snippet int pom.xmi

<dependency>

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig11_HTML.jpg
% Adding sub ® in Jave APY proj aarsefef ’G
Pranoday Dingare authored 7 minutes 590 1

B Cakulatorjova (3 2678 BEX o o 6B s
L package Pranodayd.Calculaterdlly
2
| peblie class Caleulater
a4
€ Peblic iat Additiea(int numl,int suml)
z <
s it Ressnuatonuad)
’ retwrn ey
) I1/return
u)
it Blic Lat Subtraction(int muml,ist mmd)
1

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig12_HTML.jpg
E-mail Notification
SMTP server

smtp.gmail.com

Default user e-mail suffix

O Use SMTP Authentication
O UsessL

O UseTLS

SMTP Port

Reply-To Address

Charset

UTF-8

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig6_HTML.jpg
e - o

§ Global Tool Configuration lenk X

€« C O localhost:8080/configureTools/ o % »Q

Dashboard ' Global Tool Configuration

Add Git ~

Maven

Maven installations

=3

MyMavenConfiguration

MAVEN_HOME

D\apachemaven363 |]

O Install automatically

=3

List of Maven instalations on thi system

[- [

Jenkins 2.290

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig3_HTML.png
Microsoft Windows [Version 10.0.19041.1052]
(c) Microsoft Corporation. All rights reserved.

C: \Users\magicuser>ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (C:\Users\magicuser/.ssh/id_rsa): D:\SSHKey\MyGitlabKeys

® & ® o |C) ® 26CAQ4 A & @) B ENG

=

1118
16-06-2021

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig9_HTML.jpg
B New Credentials peniins] x

€« >cCc 0

Dashboard ' Credentials

@= Add Credentials.
#. Configure

© Delete domain

System

' GitlabCredentialsDomain *
SSH Usermame with private key
Scope
Global Jenkins, nodes, items, al child items, etc)
1}

MySSHCredentials

Description

Usemame
Pranodayd
Private Key
® Enter directly
Key

by private Key

Enter New Secret Below

OEBPS/images/515276_1_En_16_Chapter/515276_1_En_16_Fig1_HTML.jpg
New personal access token
Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a password for Git over
HTTPS, or can be used to authenticate to the APl over Basic Authentication.

Note

AccessTokenToAccessPrivateRepositories

What's this token for?
Expiration *

30 days $ | The token will expire on Wed, Jul 20 2022

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo Full control of private repositories
repo:status Access commit status
repo_deployment Access deployment status
public_repo Access public repositories
repoinvite Access repository invitations
security_events Read and write security events

O workflow Update GitHub Action workflows

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig14_HTML.jpg
8 TestCalcultomebAppication ¢ X e - o Xx

€ > C 0 "

Dashboard ' TestCalculatorWebApplication

General Source Code Management Build Triggers Build Environment | Build | Post-build Actions
Command

echo installing selenium library
pip install selenium

See the list of available environment variables

Execute Windows batch command
Command

echo_installing pytest framework
pip install pytest-html

See the list of available environment variables.

Execute Windows batch command
Command

acho installing pytest-ital Library
pip install pytest-htal

L] .'E L 6] .'E (=]

nt variables

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig15_HTML.jpg
githttps://gitlab.com
Internet or network address: git:https://gitlab.com
User name: dpranoday@gmail.com
Password: ssseeeee

Persistence: Local computer

Edit Remove

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig3_HTML.jpg
§ System » Global credentials urv. X o o

Pranoday Dingare

SJlog out

Dashboard Credentials System Global credentials (unrestricted)

A Back to credential domains ﬁGlobal credentials (unrestricted)

@= Add Credentials

is used to access Gitlab

SML

REST AP

Jenkins 2.290

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig21_HTML.jpg
NeY

Tag DiD [u]
rRad 0lo O

: Delete ooo

> Create (m} ?u =]

Configure [m}{u}is]

= Update 0 WD o

2 Delete 000

Workspace |0 |0 O

Rad 00O

Discover (m] ?u @]

5 Delete \D\,m_wwD\

- Create (m] iD (=]

Configure 'O 0 O

Cancel (m] ru (w]

wmid 0o ®

Disconnect |00 O

Delete oloo

= Create 0 7D w]

m,. Connect O ”D [u]

Configure 0|00

Build 000

View 0ooo

Im Update m m m

5 ManageDomains 0 |0 | O

M Delete o000

Create 000

3 Rad 00D
3

& admnser Olo 0O

i 3l

$ i

2 288

= HEE

D@

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig4_HTML.jpg
Edit environment variable

X

%SystemRoot%\system32

%SystemRoot%

%SystemRoot%\System32\Wbem
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0%
%SYSTEMROOT%\System32\0OpenSSHY

C\Program Files\nodejs\

C\Users\magicuser\AppData\Local\Programs\Python\Python39\Scripts
C\Program Files\Git\cmd

D:M\JavaSeleniumBatch
C\Users\magicuser\AppData\Local\Programs\Python\Python39
D:M\QualityKioskTraining\apache-maven-3.8.1\bin

%M2_HOME%\bin

%JAVA_HOME%\bin

New

Edit

NLER

rowse...

(=]

Delete

Move Up

Move Down

Edit text...

OK

Cancel

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig3_HTML.jpg
) config - Notepad
File Edit Format View Help

<?xml version='1.1"' encoding="UTF-8'?>
<hudson>
<disabledAdministrativeMonitors/>
<version>2.290</version>
<numExecutors>2</numExecutors>
<mode>NORMAL</mode>
I<use$ecurity>false</useSecurity>
<authorizationStrategy class="hudson.security.FullControlOncelogs
<denyAnonymousReadAccess>true</denyAnonymousReadAccess>
</authorizationStrategy>
<securityRealm class="hudson.security.HudsonPrivateSecurityRealm'

<

Ln7,Col 21 10

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig6_HTML.jpg
Clone with SSH

git@gitlab.com:Pranoday/jenkinsboo [}

Clone with HTTPS

https://gitlab.com/Pranoday/jenkin

Copy URL
Open in your IDE

o Visual Studio Code (SSH)

2
Visual Studio Code (HTTPS)
Intelli) IDEA (SSH)

IntelliJ IDEA (HTTPS)

Find file Web IDE | v & v clonevl

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig2_HTML.jpg
igu iy x + S Ol
« C O localhost 2 % » Q

= ______ = ——————___ |
Dashboard * Configure Global Security

(= Configure Global Security

Authentication

) pisable remember me

Security Realm

Delegate to servlet containes)

® Jenkins' own user database)

Allow users to sign up %]

oA)

Non

Authorization

Anyone can do anything)

]

® can do anything e

Allow anonymous read access %]

Markup Formatter

Markup Formatter

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig1_HTML.jpg
a . x 4+ ° 2]
*» 0

2 Pranoday Dingare =] log out

Dashboard Al

Enter an item name

[

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_17_Chapter/515276_1_En_17_Fig1_HTML.jpg
Windows Slave Node

Jenkins Master

(un)

TCP Connection

Linux Slave Node

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig2_HTML.jpg
Pranoday Dingare =] log out

Dashboard Global Tool Configuration
B pak s Desbiond 2 Global Tool Configuration
"

Manage Jenkins

Maven Configuration
Default settings provider

Default global settings provider

JDK

IDK installations
Add 10K

Maven

Maven installations

Add Maven

M 1 o

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig6_HTML.jpg
2 <l & x|+
€ >cCc 0

Dashboard ' PipelineJobToReleaseCalculatorAPI

General Buld Triggers Advanced Project Options Pipeline.

Pipeline
Definition
Pipeline script
Seript
o

Use Groovy Sandbox

Pipeline Syntax

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig11_HTML.jpg
Environment Variables

User variables for magicuser

Variable
Name
OneDrive
Path
PyCharm
TEMP
T™P

Value

Pranoday

C:\Users\magicuser\OneDrive
C:\Users\magicuser\AppData\Local\Microsoft\WindowsApps;...
C:\Program Files\JetBrains\PyCharm 2020.3.3\bin;
C\Users\magicuser\AppData\Local\Temp
C:\Users\magicuser\AppData\Local\Temp

New. || Edit. || Delete
System variables
Variable Value 2
CLASSPATH D:\JavaSeleniumBatch\JavaPrograms
ComSpec C:\Windows\system32\cmd.exe
DriverData C:\Windows\System32\Drivers\DriverData
JAVA_HOME

D:\openjdk-11_windows-x64_bin\jdk-11
D:\Mavenlnstallation\apache-maven-3.8.1

~n

Dingare

NUMBER_OF_PROCESSORS 8

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig2_HTML.jpg
Dashboard configuration

& New ltem
& People
= build History

2% Manage Jenkins

& My Views

W New View

Build Queue

Build Executor Status

Home directory

System Message

text] Preview

of executors

Labels

Usage

Quiet period

B Avety

Pranoday Dingare

i o X
*» 0
SJlog out
]
]
2]
o

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig5_HTML.jpg
Pull requests Issues Marketplace Explore.

Your email was verified %

What do you want to do first?

eds to configure their environment, 5o let's get your GitHub experience optimized for you.

Start a new project Collaborate with your team Learn how to use GitHub

Create a repository Create an organization Start Learning

Skip this for now >

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig17_HTML.jpg
Authorization

O Anyone can do anything

O Legacy mode

O Logged-in users can do anything

@© Matrix-based security

Run Ne)

Job

Agent

Credentials

Overall

Tag
Read
Delete
Create
Configure
Update
Delete
Workspace
Read
Discover
Delete
Create
Configure
Cancel
Build
Disconnect
Delete
Create
Connect
Configure
Build
View
Update
ManageDomains
Delete
Create
Read

Administer

User/group

@ AnonymousUsers O |0 O O OO0 000000 O000O0DO|I0OC0O00O0O0OO0O0DOCOG@
@ AuthenticatedUsers O |[O O O OO 0O 00O 0O0OO0OO0OC0DO0OOCOOCOO0DODOOOODOOG@

Add user or group.

O Project-based Matrix Authorization Strategy

O Role-Based Strategy

OEBPS/images/515276_1_En_5_Chapter/515276_1_En_5_Fig2_HTML.jpg
Filter:](\ Blue Ocean |

Updates Available Installed Advanced

Install Name | Version Installed

Blue Ocean beta
1.0.0-b14 1.0.0-b13

A new user experience for Jenkins

wnload now and install after restart Check now

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig2_HTML.jpg
Dashboard Credentials

& Back to credential domains

System Global credentials (unrestricted)

Kind

Scope
Global (Jenkin

Username

Password

Description

Pranoday Dingare

REST API

*» 0

] log out

Jenkins 2.290

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig15_HTML.jpg
Command

echo Running Selenium tests

if %TestType%==AllTests (

pytest --html %TestType%Result.html
Jelse (

pytest -m %TestType% --html %TestType%Result.html

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig16_HTML.jpg
Generic Credentials Add a generic credential

githttps://git-codecommit.us-east-2.amazonaws.com Modified: 17-03-2021 @

virtualapp/didlogical Modified: 01-06-2021 ()

$SO_POP_Device Modified: Today ()

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig9_HTML.png
D: \NewDeveloper\jenkinsbookcalculatorapi>git push -u git@gitlab.com:Pranoday/jenkinsbookcalculatorapi.git Multiplication|
Function

Enter passphrase for key 'D:\SSHKey\MyGitlabKeys':

Enumerating objects: 24, done.

Counting objects: 100% (24/24), done.

Delta compression using up to 8 threads

Compressing objects: 100% (7/7), done.

riting objects: 100% (14/14), 1.60 KiB | 544.00 KiB/s, done.

[Total 14 (delta 2), reused @ (delta ©), pack-reused ©

remote:

remote: To create a merge request for MultiplicationFunction, visit:

remote: https://gitlab.com/Pranoday/jenkinsbookcalculatorapi/-/merge_requests/new?merge_request%5Bsource_branch%5D=Mulj
‘tiplicationFunction

remote:

To gitlab.com:Pranoday/jenkinsbookcalculatorapi.git

* [new branch] MultiplicationFunction -> MultiplicationFunction

Branch 'MultiplicationFunction" set up to track remote branch ‘MultiplicationFunction' from 'git@gitlab.com:Pranoday/jen|
kinsbookcalculatorapi.git'.

D: \NewDeveloper\jenkinsbookcalculatorapi>

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig2_HTML.jpg
a i x 4+
© localhost i
® Jenkins
Dashboard Jenkins’ own user database

4 Back to Dashboard

Users

These users can log into Jenkins. This is a sub set of this list. which al

Pranoday Dingare

o X
»0Q :
Sllog out

£% Manage Jenkins cers uto-created users t ma nits on somy v

R T

& -
& pronodewd

DingarePranoday

pd

pranodayd

Jenkins 2.290

OEBPS/css/sidebar.gif

OEBPS/images/978-1-4842-7508-5_CoverFigure.jpg
Solutions While Setting Up
Cl/CD Processes

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig4_HTML.jpg
Pranoday Dingare =] log out

Dashboard * Plugin Manager

4 Back to Dashboard

£% Manage Jenkins

Q Role-bas

Updates

d Authorization str

LU installed Advanced

Name

Role-based Authorization Strategy

Securty | | Authentication and User Management
1 2mo 17 days ago

Enables user authorization using a Role-Based strategy. Roles can be defined globally or for particular jobs or nodes selected by regular

expressions.

RESTAPI Jenkins 2290

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Understanding CI/CD

 		2. Introducing Jenkins

 		3. Installing Jenkins

 		4. Configuring Jenkins

 		5. Managing Plugins in Jenkins

 		6. Understanding the Global Tool Configuration Page

 		7. Managing Security with Jenkins

 		8. Managing Credentials

 		9. Managing Users

 		10. Understanding Jobs in Jenkins

 		11. Preparing a Java API Project Using Maven

 		12. Integrating Maven with the Nexus Repository and Creating Free-Style Jobs to Release the Java API on the Nexus Repository

 		13. Creating an Auto-Trigger Free-Style Job to Manage Java API Releases

 		14. Understanding the Jenkins Pipeline

 		15. Creating Jenkins Jobs to Manage a Web Application Project

 		16. Understanding Pipeline as Code

 		17. Jenkins Distributed Builds

 		18. Integrating Jenkins with AWS

 		19. Miscellaneous Topics Part 1

 		20. Miscellaneous Topics Part 2

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig8_HTML.jpg
) JenicesBockCaladatorA Ploase engure your court's recovery sengs e op %0 date.

0 Poject information

D Repostory

[0 0
1) Mesge requess e
€ a0

© Securty & Complarce

@ Deployments Gerend

@ Montr Ftegrations

@ i Wedhaos

[} Packages & Regatries Regantory

& Avlyics QKD

0 we Morer

X Soippess Papes

¢ Settngs Packages & Regatries

You pusted 12 taster 2t Pranoday Dingare / JenkinsBookCa

JenkinsBookCalculatorAPl &

Proect 0 27058690
©20ommts P 20rches Q0T D 3S8KBFies

o) At DevOps

2 % wll ptomatically buld test, o

0 Lears more in the At DevOps &

Enable n setings

OEBPS/images/515276_1_En_3_Chapter/515276_1_En_3_Fig2_HTML.png
W3 *jenkins - Notepad - 0 %
Fle Edit Famat View Help

To uninstall, run "jenkins.exe stop" to stop the service, then "jenkins.exe uninstall" to uninstall the
Both commands don't produce any output if the execution is successful.
-->
<service>
<id>jenkins</id>
<name>Jenkins</name>
<description>This service runs Jenkins automation server.</description>
<env name="JENKINS_HOME" value="%BASE%"/>
<l--
if you'd like to run Jenkins with a specific version of Java, specify a full path to java.exe.
The following value assumes that you have java in your PATH.
==
<executable>C:\JavaInstallation\JDK11\bin\java.exe</executable>
<arguments>-Xrs -Xmx256m -Dhudson.lifecycle=hudson.lifecycle.WindowsServicelifecycle -Dorg.jenkinsci.mz
<l--
interactive flag causes the empty black Java window to be displayed.
I'm still debugging this.
<interactive />
-->
<logmode>rotate</logmode>

<onfailure action="restart" />

n27,Col 1 100% Unix (LF) uTF-8

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig4_HTML.jpg
edentials Jenkins] X

<« C O localhost: ntial
e Pranoday Di =)
y Dingare og out
Dashboard Credentials
- 4. Credentials
& People
& P Store | Domain L Name
B Build History & A Jenking (global) MyCredentials Pranodayd/*++++ (This credential s used to access Gitlab repository)
£ Manage senkins sML
& Myviews Stores scoped to Jenkins
% P Store | Domains
W Newview
¥ Jenkins s (global)
Build Queue ~

Build Executor Status A

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig20_HTML.jpg
»0Q :

localhost:8080 says
User or group name:
(oogueprancant

O oap
O None

+

C O© localhost:8080/configureSecurity/
+ Configure Global Security

>

8 Configure Global Security enkir X

<

Dashboard

5 -
Read
Delete

View

Create
Configure
Update

M Delete
Workspace

Read

Discover

Delete

Create
Configure
Cancel

W Buld

Disconnect
- Delote
Create

w_ Connect

Configure
Buid

ojocjcocjojooojojoojo/ojcooojojo/o 00000000 gou

@AuthenticatedUsers 0 O 0 0O 0 OO 0O0ODO0ODODO0DODO0DOOOOOOCODOCOQO gowe

.w
g Read
8! =
£ 8.3 &
R & &
£i4057 8
Fiisll g W
=1 w,m..m.m.
£ FBEIE Q
2 0000@ o

Plain text

[— =

Markup Formatter

Markup Formatter

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Figa_HTML.jpg
Poll SCM

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig4_HTML.jpg
) *config - Notepad
File Edit Format View Help

<version>2.290</version>

<numExecutors>2</numExecutors>

<mode>NORMAL</mode>

<useSecurity>true</useSecurity>

<authorizationStrategy class="hudson.security.FullControlOncelogg
</authorizationStrategy>
<securityRealm class="hudson.security.SecurityRealm$None"/>
<disableRememberMe>true</disableRememberMe>
<projectNamingStrategy class="jenkins.model.ProjectNamingStrategy
<workspaceDir>${JENKINS HOME}/workspace/${ITEM FULL_ NAME}</worksg

Ln 9, Col 61 10

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig3_HTML.jpg
Edit Virtual Directory ?

Site name: Default Web Site
Path: /

Allas:

CalculatorWebApp

Example: images

Physical path:

D:\JenkinsBookExamples\DeployedCalculatorWebApp

Pass-through authentication

Connect as... | Test Settings... ;

OK | Cancel

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig15_HTML.jpg
Dashboard

& New item

& People

= Build History
2 Manage Jenkins
& My Views

W New View

Build Queue

Build Executor Status

Pranoday Dingare

Sllog out

{@add description

s
o CreateAPUar A NA N
o o E-£ Testing N/A NA NA D)
e UritTesting /A NA o
on: SML
logend M Aomfesdforal M Atomfesdforfues 3\ Atom feed fojust tes buids

REST AP

Jenkins 2.290

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig7_HTML.jpg
C:\Users\magicuser>ssh -i D:\SSHKey\MyGitlabKeys git@gitlab.com

The authenticity of host 'gitlab.com (2606:4700:90:0:f22e:fbec:5bed:a9b9)" can't be established.

ECDSA key fingerprint is SHA256:HbW3g8zUjNSksFbqTiUWPWg2Bq1x8xdGUrliXFzSnUw.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added ‘'gitlab.com,2606:4700:90:0:f22e:fbec:5bed:a9b9' (ECDSA) to the list of known hosts.
Enter passphrase for key 'D:\SSHKey\MyGitlabKeys':

PTY allocation request failed on channel @

‘Welcome to GitLab, @Pranoday!

Connection to gitlab.com closed.

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig4_HTML.jpg
Maven Configuration
Default settings provider

Settings file in filesystem

File path

D:\UserSettings.xml

Default global settings provider

Global settings file on filesystem

File path

E\\CommonSettings.xml

OEBPS/images/515276_1_En_16_Chapter/515276_1_En_16_Fig2_HTML.jpg
v ghp_K9YChRgV55v6‘tICoJ8Tf2Ax8EdJljeABJlx

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig14_HTML.jpg
@Testﬂpriority:l)

Run | Debug
public void TestAdditionWithPositiveNumbers()
{

System.out.println("I am in 1 st TestCase");
Result=0bj.Addition(10,20);
Assert.assertEquals(Result, 300,"Addition does not work with positive numbers");

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig14_HTML.jpg
@ Credential Manager

1 @ > Control Panel > All Control Panel ltems > Credential Manager

Control Panel Home

See also

User Accounts

Manage your credentials

View and delete your saved logon information for websites, connected applications and networks.

% Web Credentials * Windows Credentials

Back up Credentials Restore Credentials

Windows Credentials Add a Windows credential

‘No Windows credentials.
Certificate-Based Credentials Add a certificate-based credential
No certificates.

Generic Credentials Add a generic credential

Modified: 17-03-2021 ()

githttps://gitiab.com Modified: Today (~)

virtualapp/didlogical Modified: 01-06-2021 \\:/7
SSO_POP_Device Modified: Today ()

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig3_HTML.jpg
Discard old builds o
Strategy

Log Rotation ¥

Days to keep builds

if not empty, build records are only kept up to this number of days

Max # of builds to keep

if not empty, only up to this number of build records are kept

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig13_HTML.jpg
B TesCacuomebrppication ¢ X

<«

A 0}

Dashboard

TestCalculatorWebApplication *

General Source Code Management Build Triggers Build Environment

Build

Post-build Actions

echo Installing python package : virtualenv
pip install virtualenv

See the list of available environment variables

Execute Windows batch command
Command

echo creating virtual

amed :
Virtuslem TestCalculatoruempplication

See the list of available environment variables.

Execute Windows batch command
Command

echo Activating Testc: ication virtual

:nt variables

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig22_HTML.jpg
Pranoday Dingare =] log out

Dashboard

& New item
& People

Build History

\J

Project Relationship

Check File Fingerprint
Manage Jenkins
& My Views

W New View

Build Queue

Build Executor Status

yFirsUenkinsJob/configure

@add description

47 min - #9 N/A

®
3
s
g

Legend N Atom feed for al N Atom feed for failures N Atom feed forjust latest builds

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig10_HTML.jpg
B ReleseCalculsortPiAutaTrigge: X o - o x

«>c 0 i o % »@:

Passphrase

(= ==

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig6_HTML.jpg
Authorization

O Anyone can do anything
O Legacy mode
@® Logged-in users can do anything

\
! Allow anonymous read access

O Matrix-based security
O Project-based Matrix Authorization Strategy

O Role-Based Strategy

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig11_HTML.jpg
8 A8CD Config enkins] x o+
%

€« » C @ localhost:8080/job/ABCD/configure
Dashboard * ABCD
O This project is parameterised

) Disable this project

-

e

o

O Execute concurrent builds if necessary o

Advanced.
o
o
e

Source Code Management

O None
® Git
Repositories

Repository URL

HEAD" returned status code 128: =
(- form 5

remote: Invalid username or password.

e ;

Credentials

—none- v | eAda~

=n - .

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig4_HTML.png
[) Pranoday P Dingare =] log out

Dashboard

(Zadd description
& New ltem !

Welcome to Jenkins!

This page is where your Jenkins jobs will be displayed. To get started, you can set up distributed
builds or start building a software project.

> Build History

™
Manage Jenkins
Start building your software project

& My Views

Create ajob =
B New View
Build Queue A Set up a distributed build
No builds n the queue Setup an agent =
Build Executor Status ~ Configure a cloud =
1 e

Learn more about distributed builds ©

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig5_HTML.jpg
Q O N~ & &-

G0 L sred naes ared men)

Pranodey Dvgare
CHharaday

et vata

Kt on Ulimate vl
(e profie

Peteevn

\'r oL

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig11_HTML.jpg
<«

x G x| +

> C 0
Dashboard PipelineJobToReleaseCalculatorAPl

Generdl Buld Tiggers Advanced Project Opions | Piatine |

Pipeline

Definition

Pipeline script v

Script)
el Scripted Pipeline
3+ stage("Checking out Code’) (// for display purposes
i S et cote from Gltish, repositiny
H e ranchs Masrer’s , el “giegettian,
H
7 }
H
5 stoge(*Deploying CalculatordPI on Mexus Repository”)
10 £
n
TR
B
i
B Use Groovy Sandbox)
Pipeline Syntax

Jenkins 2290

OEBPS/images/515276_1_En_19_Chapter/515276_1_En_19_Fig1_HTML.png
3 tenkins - Notepad - o x
file Edit Famat View Help

jenkins.exe uninstall" to uninstall the service.
ssful.

iption>

specify a full path to java.exe.

jowsServicelLifecycle -jar "%BASE%\jenkins.w

Layed.

Ln41,Col 149 100% Unix (LF) ureg

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig1_HTML.jpg
" .git Properties

General Sharing Security Previous Versions Customize

I l.git

Type: File folder (.git)
Location: D:\JenkinsBookExamples\CalculatorAPI
Size: 23.3 KB (23.908 bytes)

Size ondisk: 40.0 KB (40.960 bytes)

Contains: 17 Files. 8 Folders
Created: 15 June 2021, 09:40:52
Attributes: [m]Read-only (Only applies to files in folder)

Advanced...

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig26_HTML.jpg
h Workspace

b Wipe Out Current Workspace

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig7_HTML.jpg
T M 1 s | CalculatorAPl

O e oo e

»

Pinto Quick Copy Paste
access

k! =1 % cut
% Copy path

[#] paste shortcut

Clipboard

4 [® X =}

Move Copy Delete Rename

to~

Organize

3y New item ~
{7 Easy access ~
Pder

New

~ 4 1 > ThisPC > DATA (D) > JenkinsBookExamples > CalculatorAPI

< DATA (D) A Name

1 JenkinsBook

1 settings

1 QualityKioskTrait B s
" SeleniumPython [classpath
@ OneDrive 0 project

is PC

¥ 3D Objects
I Desktop
% Documents
¥ Downloads
b Music

&= Pictures
B videos
.05 (C)

~ DATA (D)

5items

1item selected 2.85 KB

Date modified

12-06-2021 11:05
12-06-2021 11:05
15-05-2021 10:14
15-05-2021 10:14
15-05-2021 10:14

properties

3 open -
[edit
oHistory
Open

Type
File folder

File folder
CLASSPATH File
PROJECT File
XML Document

EH selectall
1 Select none
& invert selection

Select
v|D P Search CalculatorAPl

Size

2KB
1KB
3KB

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig4_HTML.jpg
S New Maven Project] X

New Maven project @
Select project name and location

[create a simple project (skip archetype selection)
Use default Workspace location
Location: | Browse... |

[J Add project(s) to working set

Working set: || More...

» Advanced

©) <Back [Next>] Finish . cancel |

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig6_HTML.jpg
J Prevent Cross Site Request Forgery exploits

Access Control for Builds

Configure Build Authorizations in Project Configuration
[] Runas Specific User

(V] Run as User who Triggered Build

V] Run as anonymous

e

Delote

©@9O®

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig8_HTML.jpg
C O localhost

eseCainon xR

SJlog out

Pranoday Dingare

Dashboard + PipelineJobToReleaseCalculatorAPI Pipeline Syntax

£ Back .
Overview

™

Snippet Generator This Snippet G do which ca i to def P > you are interested in from the « Generate

Pipeline Script e uld cal -‘ tion. You may copy and he whole statement into your scrip

2% Declarative Directive Generator the cptions you care sbout: (Most paramels an be ¢ script ot def

@ Declarative Online Documentation Steps

@ Steps Reference Sample Step

@ Global Variables Reference
@ Online Documentation
@ Exomples Reference

@ Intelli IDEA GDSL

archiveArtifacts

Files to archive

Advanced.

Global Variables 8

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig23_HTML.jpg
Pranoday Dingare =] log out

Dashboard * CompileJavaApplication

General e Mansgement 4 Triga: ild Postt

Description

] Preview
Discard old builds

This project is parameterised

Disable this project

©o0o00®

Execute concurrent builds if necessary

Advanced.

Source Code Management

©

Build Triggers

Trigger builds remotely (e.g, from seripts)

ﬂ il

POOO®

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig10_HTML.png
Overall Credentials Agent | Job. Run View scm

Administer Read Create Delete ManageDomains Update View Build Configure Connect Create Delete Disconnect Provision Build Cancel Configure Create Delete Discover Read Workspace Delete Update Configure Create Delete Read Tag
admin a
iew O O O O o olojo o oloo o ocloo/o o o0o/ojo o oo 0l

OEBPS/images/515276_1_En_17_Chapter/515276_1_En_17_Fig3_HTML.jpg
. Advanced Security Settings for authorized_keys =)

Name: C:\Users\ADMIN\.ssh\authorized_keys
Owner: ADMIN (DESKTOP-G93Q38T\ADMIN) . Change
Permissions Auditing Effective Access

For additional information, double-click a permission entry. To modify a permission entry, select the entry and click Edit (if available).

Permission entries:

Type Principal Access Inherited from
82 Allow SYSTEM Full control C:\Users\ADMIN\
S2 Allow Administrators (DESKTOP-G93Q38T\Admini... Full control C:\Users\ADMIN\
& Allow ADMIN (DESKTOP-G93Q38T\ADMIN) Full control C:\Users\ADMIN\

[Add [Remove View
| Disable inheritance

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig13_HTML.jpg
Item roles

Credentials Job Run SCM
Role Pattern
Create Delete ManageDomains Update View Build Cancel Configure Create Delete Discover Read Workspace Delete Update Tag

Role to add

TestingOnlyRole

Pattern

esting

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig2_HTML.jpg
8 samplepipelineiob Config Uenk: X

<«

2 C O localhost8080/job/SamplePipelinelob/configure

Dashboard

+ SamplePipelineJob

General | Build Triggers Advanced Project Options Pipeline

[Plain text] Preview

) Enable project-based security

O Discard old builds]
O Do not allow concurrent builds

O Donot ipeli restarts.

Pipeline speed/durability override [>)

M: bility but slowest (previously the only opt

Build Triggers

O Build after other projects are built

) Build periodically

0O Poll sScM

O Disable this project

O Quiet period

O Trigger builds remotely (e.g., from scripts)

Advanced Project Options

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig19_HTML.jpg
Matrix-based security

]
BEEB

SCM

Tag oloo
Read o 7D [m]
3 Delete oo o
Z Create ololo
Configure O |0 QO
= Update ooo
2 Delete 0ooo
Workspace 0|0 8
Read oo
Discover olo
o Delete oo
& Create oo
Configue Q|0 D
Cancel oo
Build oo
Disconnect Q|0 O
Delete oo o
5ot Create oloo
m_ Connect oloo
Configure |0 |0 O
Build oo o
View ol|o|o
£ Wdte QOO
M ManageDomains O |0 O
(5] Delete oloo
Create oo o
s Read olo L)
M Administer Q|0 0O D

User/group
& Dingare Pranoday
| & Pranoday Dingare

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig7_HTML.jpg
Dashboard

Configure Global Security

73 Configure Global Security

Authentication
Disable remember me

Security Realm

Markup Formatter

Markup Formatter

B il

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig5_HTML.jpg
S New Maven Project] X

New Maven project @

Select an Archetype

Catalog: |All Catalogs Nl »Qonfigure...‘
Eilter: X
Group Id Artifact Id Version ()
org.apache.maven.archetypes maven-archetype-j2ee-simple 1.0

org.apache.maven.archetypes maven-archetype-plugin 12

org.apache.maven.archetypes maven-archetype-plugin-site 1.1

org.apache.maven.archetypes maven-archetype-portlet 1.0.1

org.apache.maven.archetypes maven-archetype-profiles 1.0-alpha-4
org.apache.maven.archetypes maven-archetype-quickstart 1.1

org.apache.maven.archetypes maven-archetype-site 1.1 Vi

An archetype which contains a sample Maven project.

Show the last version of Archetype only [JInclude snapshot archetypes Add Archetype... '
» Advanced

Downloading Archetype org.apache.maven.archetypes:maven-archetype-quickstart:1.1: https://repo.mave

@ < Back Next > Finish Cancel

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig7_HTML.jpg
Quiet period
Retry Count
Block build when upstream project is building

Block build when downstream project is building

00O00aOo

Use custom workspace

Display Name

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig14_HTML.jpg
Stores scoped to User: Pranoday Dingare
P Store | Domains

a User: Pranoday Dingare i (global)

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig9_HTML.jpg
€ Jenkins

Dashboard * Manage and Assign Roles
& New tem

& Peopic

= Build History

2% Manage Jenkins

& MyViews
W New View
Build Queue A
Build Executor Status ~

&= Manage Roles

Global roles

Overal Credentials

Role to add

Item roles

Role to add

Pattern

Pranoday Dingare

*» 0

SJlog out

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig6_HTML.jpg
S New Maven Project

New Maven project

Specify Archetype parameters

Group Id: I Pranodayd

Artifact Id: | CalulatorAPI

Version: | 1.0 v |

2=Te s [>aMlPranodayd.CalulatorAPI

Properties available from archetype:

Name Value \ Add...
F_{emove:

» Advanced

@ < Back 'v Next > Finish l [Cancel J

OEBPS/images/515276_1_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig4_HTML.jpg
9 Pranoday Dingare /JenkinsBook X e - 0 X

€« C @ gitlab.com/Pranoday/jenkinsbookcalculatorapi

GitLab

) JenkinsBookCalculat... Please ensure your account’s recovery settings are up to date. x

2 : Pranoday Dingare > JenkinsBookCalcultorA
@ Project overview o 4 oA

Details
e @ Project enkinsBook=CalculatorAPT was successfully created. x

Activty
D tssues o j JenkinsBookCalculatorAPI & ool (ETs

Project ID: 27438650

1Y Megeroquests
Invite your team

¢ aio Add members to this project and start collaborating with your team.

© Sty Complce =

% Operations
The repository for this project is empty

Packages & Registie
O Backges & Regiatrs You can get started by cloning the repository or start adding files to it with one of the following options.

LA m & Upload file || B Newfile | |) Add README | @ Add LICENSE | | B Add CHANGELOG | | @ Add CONTRIBUTING
0 wii @ Setup CI/CD | | €¥ Configure Integrations

%5 50ppets Command line instructions

8 Members You can also upload existing files from your computer using the instructions below,

£ Settings. I Git global setup

& Collapse sidebar

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig8_HTML.jpg
Gl %
*» 0

Pranoday Dingare =] log out

Dashboard * Manage and Assign Roles

& New ltem
& People

=) Manage and Assign Roles
.
= suildHistory
Assgn Roles

Role Strategy Macros
& My views

W New View
Build Queue ~
Build Executor Status A

Jenkins 2.290

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig8_HTML.jpg
§ Global Tool Configuration lenk X
« C O localhost8090/configureTools
Dashboard * Global Tool Configuration

B Install automatically

Install from Apache
Version

[381~

Extract *zip/*tar.gz
Label @

Download URL for binary archive @

] 8. 8.1-binzip

Subdirectory of extracted archive @

Add Installer ~

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig10_HTML.jpg
JDK

JDK installations

JDK11

JAVA_HOME
D:\openjdk-11_windows-x64_bin\jdk-11

O Install automatically

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig8_HTML.jpg
x 4 e - o X

© localhost “ %@ :
Dashboard

@add description
& Newltem R

& People

= Build History]

Mylob N/A N/A NA)

2% Manage Jenkins Legend N Atom feed for al N Atom feed for ailures N Atom feed for just latest builds

& My views

W New View

Build Queue ~

Build Executor Status ~

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig15_HTML.jpg
« C O localhost nodayd/credentia . * »Q

Pranoday Dingare =] log out

Dashboard Pranoday Dingare Credentials User Global credentials (unrestricted)

A Back to credential domains ﬁGlobal credentials (unrestricted)

@= Add Credentials

ial domain is empty.

adding some credentials?

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig7_HTML.jpg
8 Manage Jenkins Venkins] x +
« C O loclhost8080/manage

Dashboard

ocalhosta080/role-strategy

P Type here to search

Manage Nodes and Clouds
Add, remove, control and monitor the various
nodes that Jenkins runs jobs on.

Security

wi Configure Global Security
Secure Jenkins; define who i allowed to
accessfuse the system.

=

A

1 Manage and Assign Roles
Handle permissions by creating roles and
assigning them to users/groups

Status Information
System Information

Displays various environmental information to
assist trouble-shooting,

About Jenkins
See the version and license information.

Troubleshooting

Manage Old Data
‘ Serub configuration files to remove remnants
from old plugins and earlier versions.

g

Install as Windows Service
Installs Jenkins as a Windows service to this
system, so that Jenkins starts automatically when
the machine boots.

Manage Credentials
Configure credentials

Manage Users
Create/delete/modify users that can log in to
this Jenkins

System Log
System log captures output from
Jjava.util. logging output related to Jenkins.

Providers
! providers and types

Configure Credent
Configure the creden

Load Statistics
Check your resource utilization and see if you
need more computers for your bulds.

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig16_HTML.jpg
) Jerking » Credentisis Jeniins] X @ Managing Jenkins x|+
<« C O localhost: ‘credential

Dashboard Credentials

o vt 4. Credentials

& People

T P Store | Domain D Name

B DuAd tistory. & a4 Jenkins (global) Pranodayd/++++* (This credential is used to access Gitlab repository)
£% Manage Jenkins ® 4 Jenkins GitlabCredentialsDomain MySSHCredentials Pranodayd

& i lcon: SML

. Stores scoped to Jenkins

W NewView

Store | Domains
Build Queue A ¥ Jenkins di(global) & GitlabCredentialsDomain

Build Executor Status A

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig23_HTML.jpg
8 Mylob Config penkins] x +
€ 5 C O localhost8080/job/Myfistienkinsiob/configure

Dashboard * MyJob
General | Source Code Management Build Triggers Build Post-build Actions

B Enable project-based security
Inheritance Strategy
Do not inherit permission arants from other ACLs
Inherit permissions from parent ACL

3
5
User/group o g & § < e 8 g2 aigsg .
iy e fEigriigige
QAoymousises O O [0 0 0 0|0 ololojolo|o[o aom
Auhentcaed Users O O | O o olo oo oloo o o|0 aoa
o o olooooloooo|o aos

& DingarePranoday O O

) Discard old builds
) This project i parameterised

) Disable this project

O Execute concurrent builds if necessary.

OEBPS/images/515276_1_En_18_Chapter/515276_1_En_18_Fig4_HTML.jpg
B, ec2-3-141-17-90 - ec2-3-141-17-90.us-east-2. compute. amazonaws.com - Remote Desktop Connection
LER=E 5

Home Share View

v 4 T > ThisPC > Local Disk(C) > ProgramData > ssh

Name Date modified Type
> Quick access

[H Desktop

[Documents

© loa 2000001850 AM__Eile falder
() sshd_config - Notepad

file Edit Format View Help
¥ Downloads | 4rcpreepalive yes

& Pictures #UseLogin no

B sh #PermitUserEnvironment no
#ClientAliveInterval @

T ossh #ClientAliveCountMax 3
#UseDNS no

#Pidrile /var/run/sshd.pid
#MaxStartups 10:30:100
#PermitTunnel no
#ChrootDirectory none
#VersionAddendum none

= This PC

w6 Network

no default banner path
#Banner none

override default of no subsystems
Subsystem sftp sftp-server.exe

Example of overriding settings on a per-user basis
#Match User anoncvs

AllowTcpForwarding no

PermitTTY no

ForceCommand cvs server

#Match Group administrators
AuthorizedKeysFile _ PROGRAMDATA__/ssh/administrators_authorized_keys

Windows (CRLF) Ln 87, Col 1

P Type here to search

OEBPS/images/515276_1_En_BookFrontmatter_Figa_HTML.png
APIess®

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig2_HTML.jpg
Folder Options X

General View Search

Folder views
You can apply this view (such as Details or Icons) to all

E} folders of this type.
|

| Apply to Folders I { Reset Folders ‘

Advanced settings:

| Files and Folders A
[[] Aways show icons. never thumbnails
[[] Aiways show menus
Display file icon on thumbnails
Display file size information in folder tips
J Display the full path in the title bar
[_ Hidden files and folders
(O Don't show hidden files. folders. or drives
@®
Hide empty drives
Hide extensions for known file types
Hide folder merge conflicts
Hide protected operating system files (Recommended) v

‘ Restore Defaults ‘

L OK J [Cancel ' LApply 1

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig9_HTML.jpg
® Git

Repositories

Repository URL

https://gitlab.com/Pranoday/mywebapplication.git

git HEAD"

Failed to connect to repository : C 1 “git.exe te -h -- https://gitlab. /P
returned status code 128:
- stdout:
stderr: fatal: Cannot prompt b user i ivity has been disabled
remote: HTTP Basic: Access denied
fatal: Authentication failed for "https://gitlab. /P! d; L i git/"

Credentials

y

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig7_HTML.jpg
Dashboard Credentials

& New ltem
& People
= build History

2% Manage Jenkins

& My views

W New View

Build Queue

Build Executor Status

Pranoday Dingare

*» 0

Sllog out

System
4 System
Dormain Name o
@ You must provide a name for the domain
Desciiption)
Speciction e
naa +

REST AP

Jenkins 2.290

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig22_HTML.jpg
Pranoday Dingare =] log out

Dashboard

& New item
& People

Build History

A\l

Project Relationship

Check File Fingerprint
Manage Jenkins
& My Views

W New View

Build Queue

Build Executor Status

lcon: SML

Legend

N Atom feed for al

S Atom feed for faitures

@add description

N Atom feed for just latest builds

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig13_HTML.jpg
~ @20

Pob [P CalculatorAPI-2.0.jar
-[I) CalculatorAPI-2.0.jar.md5
v [T CalculatorAPI-2.0.jar.shal
-[¢p CalculatorAPI-2.0.pom
-[[CalculatorAPI-2.0.pom.md5
-7 CalculatorAPI-2.0.pom.shal

[¢p maven-metadata.xml

-[[7y maven-metadata.xml.md5

[y maven-metadata.xml.shat

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig11_HTML.jpg
B Mylob Config llenkins] x +
€ 2 C O localhostB080/job/Myfirstienkinslob/configure
Dashboard © Mylob *

General | Source Code Management | Buld Triggers Build

Post-build Actions

Source Code Management

O None

® Git

Repositories
Repository URL
httpsy/qitlab.com/Pranoday/mywebapplication.git
Credentials.
al i used t

Branches to build

Branch Specifier (blank for ‘any)

*/master

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig10_HTML.jpg
Pull requests Issues Marketplace Explore.

dpranoday
Lo ,

Goto your personal profile

Account settings SSH keys / Add new
Profile
Title
Appearance -
Account secuity
Billing & plans B i
Securitylog
Security & analysis

Emails

Notifications

SH and GPG keys Add SSH key
Repositories

Packages

Organizations

Saved replies

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig1_HTML.jpg
GRLD & M

) JerkieaBockCalodatorA
O Project informaton
D Repostory

0 L)

1Y Merge requests H

« Qxo

© Security & Complance
© Deployments

@ Montox

@ whatructue

O Packages & Regatries
& Ao

0 we

& Soppets

O Semngs

Ploase evmure your xx
Ay .
Labets
Me~2ery

<
-

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig3_HTML.jpg
8 samplepipelineiob Config Uenk: X
C O localhost8080/job/SamplePipelinelob/configure

€ >
Dashboard + SamplePipelinelob
Generdl Buld Tiggers Advanced Project Opions | Piatine |
—
Pipeline
Definition
Pipeline script v
Script o
et
o i
3
s
= -
&
H
H
H)
10 }
1n)
2

Use Groovy Sandbox
Pipeline Syntax

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig9_HTML.jpg
archiveArtifacts: Archive the artifacts
bat: Windows Batch Script

C O loalhost m"/mt:/mmhwmnhqu: build: Build a job

Py catchError: Catch error and set build result to failure

* o a1 3 checkout: Check out from version control

A J € lll\l ns (Mele[)u Recursively delete the current directory from the workspace

r: Change current directory

B PoelnelchToRelesseCalcuators X Q) Pipeline sy

Dashboard ' PipelineJobToReleaseCalcu m\o Print Message
| error: Error signal
fileExists: Verify if file exists in workspace
#* Back fingerprint: Record fingerprints of files to track usage
% Snippet Generator | input: Wait for interactive input
isUnix: Checks f running on a Unix-like node
% Declarative Directive Generator | junit: Archive JUnit-formatted test results
foary Load a shared ibrary on the fy
@ Dedarative Load a resource file from a shared library
load: Evaluate a Groovy source file into the Pipeline script
lock: Lock shared resource
© Steps Reference | mait: Mait K]
@ Global Variables Reference git: Git i
i git o
@ Online Documentation i
| Repository URL
@ Examples Reference { “Repository, °
Intelli IDEA GOSL P
L © Please enter Git repository.
| Branch o
master

none - v | ke~

Include in polling? o

8 Include in changelog? o -

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig20_HTML.jpg
@ localhost:8082/CalculatorWebAp X +

€& > C @ localhost:8082/CalculatorWebApp/Calculatorhtml

Chrome is being controlled by automated test software.

JenkinsBook Calculator
Application

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig21_HTML.jpg
Gl %
*» 0

Pranoday Dingare =] log out

Dashboard * CompileJavaApplication '+ #8

£ Backto Project @Console Output

Status by user Pranoday Dingare

= changes Building in work

B Console Output

View as plain text
= Edit Build Information
© Delete build 8

& Previous Build

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_13_Chapter/515276_1_En_13_Fig6_HTML.png
M Inbox (123; o x| ™

€ 5 C & gitlabcom//profilefkeys

GitLab

X A SSH Keys - User Settings - Gitlab X

to date.

?ﬁ, User Settings Pl

@ Profile
8% Account

8 silling

2 Applications
B chat

® Access Tokens
2 Emails

B Password

Q Notifications
P ssHKeys

P GPGKeys

52 Preferences
D Active Sessions
B Authentication log

® Usage Quotas

& Collapse sidebar

your

User Settings > SSH Keys

M Inbox (40) - dpranoday@gmailc: X | +

Q search settings

SSH Keys

55H keys allow you to establish a secure
connection between your computer and GitLab.

Add an SSH key

o add an SSH key you need to generate one or use an existing key.

Key

Paste your public SSH key, which is usually contained in the file"~/ssh/id_ed25519.pub or
“~/.ssh/id_rsa,pub' and begins with ‘ssh-ed25519" or ‘sshrrsat. Do not paste your private SSH key, as
that can compromise your identity.

sshtsa -
AARABINzAC \QABAAABGQDQY P
7 QS30T. i QUKRBAEYw10dbaXHS
GCr
nPl+my] JPWWX
3IRAXLV2gvFwUvLPae7OT116xnhD/Cbl M 1ns00/3WNE
1w52ajdQKO: OLIQhISbQ) i9nb7i
i 1Q990V2C: i Ql8mO +
XIT9gR6 +HTNxqWB: EPT12 4
itle Expires at

Pranodayd @LPTSEPT 1 dd-mm-yyyy B

Give your individual key a title This will be Key will be deleted on this date.
publicly visible.

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig14_HTML.jpg
Global roles

User/group View admin

& & Pranoday Dingare O (%]
& Anonymous 0 a
@ dingarepranoday O a
User/group to add
dingarepranoday
Item roles
User/group TestingOnlyRole

& Anonymous (8] %]
W dingarepranoday a

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig27_HTML.jpg
Pranoday Dingare =] log out

Dashboard

& New item
& People

Build History

A\l

Project Relationship

Check File Fingerprint
Manage Jenkins
& My Views

W New View

Build Queue

Build Executor Status

lcon: SML

CompilelavaApplication

= Rename

Legend

N Atom feed for al

S Atom feed for faitures

@add description

N Atom feed for just latest builds

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig4_HTML.jpg
Pranoday Dingare =] log out

Dashboard

& New item
& People
= Build History

Project Relationship
45 Check File Fingerprint
2% Manage Jenkins
& My views

5 Lockable Resources

B New View

Build Queue

@add description

s
) % pip NA N/A)
@ o ReleaseCalculatorAPI # 1day 2 15 sec)
® @ ReleaseCalculatorAPIAutoTrigger *)
e @ SamplePipelinesob 1 min 21 sec 10 sec)
on: SML

Legend N Atom feed for justatest builds

OEBPS/images/515276_1_En_7_Chapter/515276_1_En_7_Fig5_HTML.jpg
Dashboard

A problem occurred while processing the request.

Logging ID=f1f6bd3d-4605-4c1

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_14_Chapter/515276_1_En_14_Fig10_HTML.jpg
a X R Pie

x

«>Cc 0

Dashboard ' PipelineJobToReleaseCalculatorAPI ' Pipeline Syntax

@ Declarative Online Documentation
@ Steps Reference

@ Global Variables Reference

@ Online Documentation

@ Examples Reference

@ Intell) IDEA GDSL.

Steps
Sample Step.
git:Git

git

Repository URL

Branch

Master

Credentials
MyGitSSHCredentials
Include in polling?

Include in changelog?

yal Variables

»

a

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig11_HTML.jpg
Gesenal | Source Code Maropement BuldTigpers BuldInvironment Buld Post Duld Actons

[Plan teey] Preview
O T the sviny @

Nare @
TroelflessyTofun
Oroces @

FogessonTes
SmokeTest

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig12_HTML.jpg
8 Mylob Config penkins] x +
€ 2 C O localhosts0s0/joby/Myfirstenkinsiob/configure

@.,Jenklns Credentials Provider: Jenkins

o Add Credentials
Domain
Global credentials (unrestricted)

OEBPS/images/515276_1_En_11_Chapter/515276_1_En_11_Fig13_HTML.jpg
Edit environment variable

%SystemRoot%\system32

%SystemRoot%

%SystemRoot%\System32\Wbem
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
%SYSTEMROOT%\System32\OpenSSH\

C:\Program Files\nodejs\
C:\Users\magicuser\AppData\Local\Programs\Python\Python39\...
C:\Program Files\Git\cmd

D:\JavaSeleniumBatch
C:\Users\magicuser\AppData\Local\Programs\Python\Python39
D:\QualityKioskTraining\apache-maven-3.8.1\bin

| %M2_HOME%\bin

Edit

Browse...

Delete

LRI

Move Up

Move Down

b

Edit text...

OK

r Cancel

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig17_HTML.jpg
8 TestCakculatorWebApplication - X o

<«

> C O

Dashboard

+ TestCalculatorWebApplication

General Source Code Management Build Triggers

Build Environment Build | Post-build Actions

Project Recipient List @

pranoday dingare@gmail.com

(¢ ddress that should
Project Reply-To List @

SDEFAULT_REPLYTO

this project.

« =

Content Type @
Default Content Type
Default Subject @
Calculator Web Application details SDEFAULT_SUBJECT

Default Content @

for this project.

OEBPS/images/515276_1_En_16_Chapter/515276_1_En_16_Fig4_HTML.jpg
B ReleaseCalculstorAPi APIToken « X

«->c o0 lculatorAP|

Dashboard ' ReleaseCalculatorAPI APIToken

General | Source Code Management | Build Triggers

Build Environment

Build Post-build Actions

© None
® Git

dpranoday@amail com’

Branches to build

Branch Specifier (blank for ‘any)

*/Master

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig3_HTML.jpg
Maven Configuration
Default settings provider

Use default maven settings
Default global settings provider

Use default maven global settings

OEBPS/images/515276_1_En_10_Chapter/515276_1_En_10_Fig18_HTML.jpg
Build

Execute Windows batch command (2]
Command

echo "Hi there"

See the list of available environment variables

Execute Windows batch command

Command

echo "Bye"

See the list of available environment variables

OEBPS/images/515276_1_En_6_Chapter/515276_1_En_6_Fig9_HTML.jpg
| apache-maven-38.1

& HO@"IE S@E View

Date modified

07-11-2019 12:32
07-11-2019 12:32
07-11-2019 12:32
07-11-2019 12:32
07-11-2019 12:32
07-11-2019 12:32
07-11-2019 12:32

« v 4 1 > ThisPC > DATA(D) > Newfolder > apache-maven-381 >
7 @ Documents # ~ Name =
& Pictures > & bin
1 jenkins B boot
1 AdDocs B it
7 JenkinsBook T iib
1 QualityKioskTrair [ucense
[NoTice
@ OneDrive
= This PC
9 3D Objects
I Desktop
[Documents
¥ Downloads
J Music
& pictures
18 videos

£.05(C)
~- DATA (D)

& Network

7 items.

Type
File folder

File folder

File folder

File folder

File

File

Text Document

Size

9]

18K8
6KB
3K8

P Search apache-maven-3.8.1

OEBPS/images/515276_1_En_9_Chapter/515276_1_En_9_Fig24_HTML.jpg
o - o0 X

© localhost * »Q :

gare Pranoday 5] log out

® Jenkins

Dashboard

& People

= Build History
N/A 3)

Project Relationship Icon: SML

Legend N Atom feed for al N Atom feed for failures N Atom feed for just latest build

42 Check File Fingerprint

& My views

Build Queue ~

Build Executor Status ~

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_8_Chapter/515276_1_En_8_Fig6_HTML.jpg
8 ABCD Config enkins)

©

i

2 C O localhost8080/job/ABCD/configure:

Dashboard

ABCD

e e s peane es

) Disable this project

) Execute concurrent builds if necessary

Source Code Management

O None
® Git

Repositories

Repository URL

Branches to build

Branch Specifier (blank for ‘any)

Lesmactor

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig1_HTML.jpg
6 localhost:8082/CalculatorWebAp X -~

& 2> C ® localhost:8082/CalculatorWebApp/Calculator.html

JenkinsBook Calculator
Application

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig9_HTML.jpg
% Services

File Action View

Help

& mELRE

MyNexusService

Start the service

Name . Description Status Startup Type ~ LogOnAs *
18k Microsoft Store Inst... Provides infr... Running Manual Local Syster
@ Microsoft Update H.. Maintains U.. Disabled Local Systel

16k Microsoft Windows .. Routes mess... Manual (Trigg.. Local Servic

OEBPS/images/515276_1_En_4_Chapter/515276_1_En_4_Fig6_HTML.jpg
Dashboard * Pranoday Dingare

2 peopie & Pranoday Dingare

I Status [@add description

= Builds

2% Configure

& My views

RESTAPI Jenkins 2290

OEBPS/images/515276_1_En_12_Chapter/515276_1_En_12_Fig3_HTML.jpg
) New Project- Gitlab x o+ o - o0 X

€ 5 C @& gitlbcom/projects/newsblank project

GitLab

Please ensure your account’s recovery settings are up to date.

@ New project + Create blank project/repository
Project name
[[senkinsBookcoleutatorael]
Create blank
project/repository Project URL Project slug
Create a blank project to house your fles plan o //gilabcom/ Pranoday v jenkinsbookcalculatorapi
your work. and collaborate on code, among
other things. Want to house several dependent projects under the same namespace? Create a group.
Project description (optional)
Description format
Visibility Level @
® @ Private
Project access must be granted explicitly to each user. If this project is part of a group, access will be granted to members of the group.
© @ Public

The project can be accessed without any authentication.

) Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repasitory.

OEBPS/images/515276_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/515276_1_En_15_Chapter/515276_1_En_15_Fig7_HTML.jpg
) config - Notepad

Eile Edit Format View Help

Host gitlab.com
HostName gitlab.com
PreferredAuthentications publickey
IdentityFile D:\SSHKey\MyGitlabKeys

PreferredAuthentications publickey
IdentityFile D:\SSHKey\MyGithubKeys

Ln 11, Col 39 100% Windows (CRLF)

UTF-8

