The PowerShell Scripting and Toolmaking Book
Forever Edition
Don Jones and Jeff Hicks
This book is for sale at http://leanpub.com/powershell-scripting-toolmaking
This version was published on 2020-06-30
* * * * *
This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.
* * * * *
© 2017 - 2020 Don Jones and Jeff Hicks
Table of Contents
About This Book
The ‘Forever Edition’ of this book is published on LeanPub, an “Agile” online publishing platform. That means the book is published as we write it, and that means we’ll be able to revise it as needed in the future. We also appreciate your patience with any typographical errors, and we appreciate you pointing them out to us - in order to keep the book as “agile” as possible, we’re forgoing a traditional copyedit. Our hope is that you’ll appreciate getting the technical content quickly, and won’t mind helping us catch any errors we may have made. You paid a bit more for the book than a traditional one, but that up-front price means you can come back whenever you like and download the latest version. We plan to expand and improve the book pretty much forever, so it’s hopefully the last one you’ll need to buy on this topic!
You may also find this book offered on traditional booksellers like Amazon. In those cases, the book is sold as a specific edition, such as “Second Edition.” These represent a point-in-time snapshot of the book, and are offered at a lower price than the Agile-published version. These traditionally published editions do not include future updates.
If you purchased this book, thank you. Know that writing a book like this takes hundreds of hours of effort, during which we’re not making any other income. Your purchase price is important to keeping a roof over our families’ heads and food on our tables. Please treat your copy of the book as your own personal copy - it isn’t to be uploaded anywhere, and you aren’t meant to give copies to other people. We’ve made sure to provide a DRM-free file (excepting any DRM added by a bookseller other than LeanPub) so that you can use your copy any way that’s convenient for you. We appreciate your respecting our rights and not making unauthorized copies of this work.
If you got this book for free from someplace, know that you are making it difficult for us to write books. When we can’t make even a small amount of money from our books, we’re encouraged to stop writing them. If you find this book useful, we would greatly appreciate you purchasing a copy from LeanPub.com or another bookseller. When you do, you’ll be letting us know that books like this are useful to you, and that you want people like us to continue creating them.
Please note that this book is not authorized for classroom use unless a unique copy has been purchased for each student. No-one is authorized or licensed to manually reproduce the PDF version of this book for use in any kind of class or training environment.
This book is copyrighted (c)2017-2020 by Don Jones and Jeffery Hicks, and all rights are reserved. This book is not open source, nor is it licensed under a Creative Commons license. This book is not free, and the authors reserve all rights.
Dedication
This book is fondly dedicated to the many hardworking PowerShell users who have, for more than a decade, invite us into their lives through our books, conference appearances, instructional videos, live classes, and more. We’re always humbled and honored by your support and kindness, and you inspire us to always try harder, and to do more. Thank you.
Acknowledgements
Thanks to Michael Bender, who has selflessly provided a technical review of the book. Any remaining errors are, of course, still the authors’ fault, but Michael has been tireless in helping us catch many of them.
About the Authors
Don Jones received the Microsoft MVP Award recipient for 16 consecutive years for his work with Windows PowerShell and administrative automation. He has authored dozens of books, articles, white papers, and instructional videos on information technology, and today is a Vice President in the Content team at Pluralsight.com. Don was also a co-founder of The DevOps Collective, which offers IT education programs, scholarships, and which runs PowerShell.org and PowerShell + DevOps Global Summit and other DevOps- and automation-related events.
Don’s recent writing focuses on business, instructional design, self-improvement, and fiction, and can be found at http://leanpub.com/u/donjones. You can follow Don on Twitter @concentratedDon. He blogs at DonJones.com.
Jeff Hicks is a grizzled IT veteran with almost 30 years of experience, much of it spent as an IT infrastructure consultant specializing in Microsoft server technologies with an emphasis in automation and efficiency. He is a multi-year recipient of the Microsoft MVP Award. He works today as an independent author, teacher and consultant. Jeff has taught and presented on PowerShell and the benefits of automation to IT Pros worldwide for over a decade. Jeff has authored and co-authored a number of books, writes for numerous online sites, is a Pluralsight author, and a frequent speaker at technology conferences and user groups world-wide.
You can keep up with Jeff on Twitter (@JeffHicks) and on his blog at https://jdhitsolutions.com.
Additional Credits
Technical editing has been helpfully provided not only by our readers, but by Michael Bender. We’re grateful to Michael for not only catching a lot of big and little problems, but for fixing most of them for us. Michael rocks, and you should watch his Pluralsight videos. However, anything Michael didn’t catch is still firmly the authors’ responsibility.
Foreword
After the success of Learn PowerShell in a Month of Lunches, Jeff and I wanted to write a book that took people down the next step, into actual scripting. The result, of course, was Learn PowerShell Toolmaking in a Month of Lunches. In the intervening years, as PowerShell gained more traction and greater adoption, we realized that there was a lot more of the story that we wanted to tell. We wanted to get into help authoring, unit testing, and more. We wanted to cover working with different data sources, coding in Visual Studio, and so on. These were really out of scope for the Month of Lunches series’ format. And even in the “main” narrative of building a proper tool, we wanted to go into more depth. So while the Month of Lunches book was still a valuable tutorial in our minds, we wanted something with more tooth.
At the same time, this stuff is changing really fast these days. Fast enough that a traditional publishing process - which can add as much as four months to a book’s publication - just can’t keep up. Not only are we kind of constantly tweaking our narrative approach to explaining these topics, but the topics themselves are constantly evolving, thanks in part to an incredibly robust community building add-ons like Pester, Platyps, and more.
So after some long, hard thinking, we decided to launch this effort. As an Agile-published book on LeanPub, we can continuously add new content, update old content, fix the mistakes you point out to us, and so on. We can then take major milestones and publish them as “snapshots” on places like Amazon, increasing the availability of this material. We hope you find the project as exciting and dynamic as we do, and we hope you’re generous with your suggestions - which may be sent to us via the author contact form from this book’s page on LeanPub.com. We’ll continue to use traditional paper publishing, but through a self-publishing outlet that doesn’t impose as much process overhead on getting the book in print. These hard copy editions will be a “snapshot” or “milestone edition” of the electronic version.
It’s important to know that we still think traditional books have their place. PowerShell Scripting in a Month of Lunches, the successor to Learn PowerShell Toolmaking in a Month of Lunches, covers the kind of long-shelf-life narrative that is great for traditionally published books. It’s an entry-level story about the right way to create PowerShell tools, and it’s very much the predecessor to this book. If Month of Lunches is about getting your feet under you and putting them on the right path, this book is about refining your approach and going a good bit further on your journey.
Toolmaking, for us, is where PowerShell has always been headed. It’s the foundation of a well-designed automation infrastructure, of a properly built DSC model, and of pretty much everything else you might do with PowerShell. Toolmaking is understanding what PowerShell is, how PowerShell wants to work, and how the world engages with PowerShell. Toolmaking is a big responsibility.
My first job out of high school was as an apprentice for the US Navy. In our first six weeks, we rotated through various shops - electronics, mechanical, and so on - to find a trade that we thought we’d want to apprentice for. For a couple of weeks, I was in a machine shop. Imagine a big, not-climate-controlled warehouse full of giant machines, each carving away at a piece of metal. There’s lubrication and metal chips flying everywhere, and you wash shavings out of yourself every evening when you go home. It was disgusting, and I hated it. It was also boring - you set a block of metal into the machine, which might take hours to get precisely set up, and then you just sat back and kind of watched it happen. Ugh. Needless to say, I went into the aircraft mechanic trade instead. Anyway, in the machine shop, all the drill bits and stuff in the machine were called tools and dies. Back in the corner of the shop, in an enclosed, climate-controlled room, sat a small number of nicely-dressed guys in front of computers. They were using CAD software to design new tools and dies for specific machining purposes. These were the tool makers, and I vowed that if I was ever going to be in this hell of a workplace, I wanted to be a toolmaker and not a tool user. And that’s really the genesis of this book’s title. All of us - including the organizations we work for - will have happier, healthier, more comfortable lives as high-end, air-conditioned toolmakers rather than the sweaty, soaked, shavings-filled tool users out on the shop floor.
Enjoy!
Don Jones
Feedback
We’d love your feedback. Found a typo? Discovered a code bug? Have a content suggestion? Wish we’d answered a particular question? Let us know.
Zeroth, make sure you’re not using Leanpub’s online reader, as it omits some of the front matter from the book. Use the PDF, EPUB, or MOBI version, or a printed edition you bought someplace else.
First, please have a chapter name, heading reference, and a brief snippet of text for us to refer to. We can’t easily use page numbers, because our source documents don’t have any.
Second, understand that due to time constraints like having full-time jobs, we can’t personally answer technical questions and so forth. If you have a question, please hop on the forums at PowerShell.org, where we and a big community of enthusiasts will do our best to help.
Third, keep in mind that the EPUB and MOBI formats in particular allow little control over things like code formatting. So we can’t usually address those for you.
Then, head to the LeanPub website and use their email link to email us. We can’t always reply personally to every email, but know that we’re doing our best to incorporate feedback into the book.
Finally, accept our thanks!
Introduction
Pre-Requisites
We’re assuming that you’ve already finished reading an entry-level tutorial like, Learn Windows PowerShell in a Month of Lunches, or that you’ve got some solid PowerShell experience already under your belt. Specifically, nothing on this list should scare you:
If you’ve already done things like written functions in PowerShell, that’s marvelous - but, you may need to be open to un-learning some things. Some of PowerShell’s best practices and patterns aren’t immediately obvious, and especially if you know how to code in another language, it’s easy to go down a bad path in PowerShell. We’re going to teach you the right way to do things, but you need to be willing to re-do some of your past work if you’ve been following the Wrong Ways.
We also assume that you’ve read PowerShell Scripting in a Month of Lunches, a book we wrote for Manning. It provides the core narrative of “the right way to write PowerShell functions and tools,” this book essentially picks up where that one leaves off. Look for that book in late 2017 from Manning or your favorite bookseller. Part 1 of this book briefly slams through this “the right way” narrative just to make sure you’ve got it in your mind, but the Month of Lunches title really digs into those ideas in detail.
Versioning
This book is primarily written against Windows PowerShell v5/v5.1 running on Microsoft Windows. In January 2018, Microsoft announced the General Availability of PowerShell Core 6.0, which is a distinct cross-platform “branch” of PowerShell. This branch has now become PowerShell 7, which was released in early 2020. As far as we can tell, everything we teach in this book applies to PowerShell 7, too - although some of our specific examples may still only work on Windows PowerShell, the concepts and techniques are applicable to PowerShell 7. However, PowerShell 7 includes some new scripting features which we’ll cover in a dedicated chapter or two.
The Journey
This book is laid out into seven parts:
Following Along
We’ve taken some pains to provide review Q&A at the end of most chapters, and to provide lab exercises (and example answers) at the end of many chapters. We strongly, strongly encourage you to follow along and complete those exercises - doing is a lot more effective than just reading. And if you get stuck, hop onto the Q&A forums on PowerShell.org and we’ll try and unstick you. We’ve tried to design the labs so that they only need a Windows client computer - so you won’t need a complex, multi-machine lab setup. Of course, if you have more than one computer to play with, some of the labs can be more interesting since you can write tools that query multiple computers and so forth. But the code’s the same even if you’re just on a single Windows client, so you’ll be learning what you need to learn.
Providing Feedback
Finally, we hope that you’ll feel encouraged to give us feedback on this book. There’s a “Contact the Authors” form on this book’s page on LeanPub.com, and you’re also welcome to contact us on Twitter @concentratedDon and @JeffHicks. You can also post in the Q&A forums on PowerShell.org, which frankly is a lot easier to respond to than Twitter. If you purchased the “Forever Edition” of this book on LeanPub, then you’ll see us incorporating suggestions and releasing a new build of the book all the time. If you obtained the book elsewhere, we can’t turn your purchase into a LeanPub account for you. However, when the book changes enough for us to publish a new “edition” to other booksellers, that might be a time to pick it up on LeanPub instead, provided you understand the “Agile publishing” model and are comfortable with it.
A Note on Code Listings
The code formatting in this book only allows for about 60-odd characters per line. We’ve tried our best to keep our code within that limit, although sometimes you may see some awkward formatting as a result.
For example:
Invoke-CimMethod -ComputerName $computer-MethodName Change -Query "SELECT * FROM Win\
32_Service WHERE Name = '$ServiceName'"
Here, you can see the default action for a too-long line - it gets word-wrapped, and a backslash inserted at the wrap point to let you know. We try to avoid those situations, but they may sometimes be unavoidable. When we do avoid them, it may be with awkward formatting, such as using backticks (`):
Invoke-CimMethod -ComputerName $computer `
-MethodName Change `
-Query "SELECT * FROM Win32_Service WHERE Name = '$ServiceName'" `
Here, we’ve given up on neatly aligning everything to prevent a wrap situation. Ugly, but oh well.
You may also see this crop up in inline code snippets, especially the backslash.
If you are reading this book on a Kindle, tablet or other e-reader, then we hope you’ll understand that all code formatting bets are off the table. There’s no telling what the formatting will look like due to how each reader might format the page. We trust you know enough PowerShell to not get distracted by odd line breaks or whatever.
When you write PowerShell code, you should not be limited by these constraints. There’s no reason for you to have to use a backtick to “break” a command. Simply type out your command. If you want to break a long line to make it easier to read without a lot of horizontal scrolling, you can hit Enter after any of these characters:
This is probably not a complete list, but breaking after any of these characters makes the most sense.
Anyway, we apologize for these artifacts. Keep in mind that you can, and should, use Install-Module PowerShell-Toolmaking to download and install the code samples from the PowerShell Gallery. They’ll end up in \Program Files\WindowsPowerShell\Modules\PowerShell-Toolmaking, typically broken down by chapter. We try to update that download often, so if you don’t have the latest version installed, do that.
Lab Setup
We hope that you plan to follow along with us in this book, and to help you do so we’ve provided hands-on exercises at the end of most chapters. To complete those, you won’t need much of a lab environment - just a Windows 10 (or later) computer to which you have Administrator access, and which has Internet connectivity. Business editions (not “Home”) of Windows are recommended. We’ve built the labs so that there’s no need for a domain controller, servers, or anything else.
We assume that your lab computer (or virtual machine) will have Internet access.
Create a Virtualized Environment
We know that most of our readers are technically savvy and more than likely have a preferred virtualization tool. You might prefer Hyper-V or big a VMware fan. Or maybe something completely different. If you would like to have a separate Windows 10 environment, we suggest downloading the evaluation edition of Windows 10 from https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise. You should be able to use your virtualization tool of choice to create a new virtual machine from the ISO file.
Use the Windows 10 Sandbox
Another option if you are running a recent Pro or Enterprise version of Windows 10 is to enable the Windows Sandbox feature. You need a machine that supports virtualization and is enabled in the BIOS. The sandbox is a completely separate Windows 10 instance that you can play in without disturbing your main desktop. Although be aware that it is not persistent like a virtual machine. You get a fresh experience every time you launch it.
To install, open up Control Panel and go to Add/Remove Windows Features to enable the feature. Or run Enable-WindowsOptionalFeature -FeatureName Containers-DisposableClientVM. You’ll most likely need to reboot.
Adding Lab Files and Configuring PowerShell
We have published all of the lab files for this book on the PowerShell Gallery, to make it easier to install them.
If the installation fails, or if you see an error or warning when setting the execution policy, ensure that PowerShell is running as Administrator and that the computer has unrestricted Internet access. On a company-owned computer, restrictions may be in place that prevent the installation of files or the changing of the execution policy. You will need to consult your company’s IT administrators to remedy that.
If you are new to scripting, you may also want to install the free Visual Studio Code, often referred to as VS Code, from https://code.visualstudio.com/. The PowerShell ISE that ships with Windows 10 isn’t going away, and we used it a lot to develop the material in this book. But it should be considered deprecated. Microsoft is no longer developing it. All of their efforts are directed toward VS Code. This product is updated frequently and has a rich ecosystem of extensions. In fact, after you install it and launch it, click the gear icon in the lower left and then Extensions. Search for powershell and install the extension.
We won’t lie. VS Code has a learning curve. But if you are new to scripting, you most likely would have to learn the PowerShell ISE. If you have to spend time learning a tool you might as well learn the tool that will be around for a while and as a bonus works cross-platform!
Assumptions Going Forward
Because scripting and toolmaking are not entry-level tasks, we assume that readers are already aware of the need to run PowerShell “as Administrator” when developing scripts and tools. We assume a basic level of familiarity with the PowerShell Integrated Scripting Environment (ISE), and we assume an intermediate or higher level of familiarity with PowerShell itself. If you don’t feel you meet these expectations, we suggest first completing Learn Windows PowerShell in a Month of Lunches available from most booksellers or from Manning.com.
Part 1: Review PowerShell Toolmaking
This first Part of the book is essentially a light-speed refresher of what PowerShell Scripting in a Month of Lunches covers. If you’ve read that book, or feel you have equivalent experience, then this short Part will help refresh you on some core terminology and techniques. If you haven’t… well, we really recommend you get that fundamental information under your belt first.
Functions, the Right Way
This chapter is essentially meant to be a warp-speed review of the material we presented in the core narrative of Learn PowerShell Toolmaking in a Month of Lunches (and its successor, PowerShell Scripting in a Month of Lunches). This material is, for us, “fundamental” in nature, meaning it remains essentially unchanged from version to version of PowerShell. Consider this chapter a kind of “pre-req check;” if you can blast through this, nodding all the while and going, “yup,” then you’re good to skip to the next Part this book. If you run across something where you’re like, “wait, what?” then a review of those foundational, prerequisite books might be in order, along with a thorough reading of this Part of this book.
By the way, you’ll notice that our downloadable code samples for this book (the “PSToolmaking” module in PowerShell Gallery) contain the same code samples as the core “Part 2” narrative from PowerShell Scripting in a Month of Lunches. Those code samples also align to this book, and we use them in this chapter as illustrations.
Tool Design
We strongly advocate that you always begin building your tools by first designing them. What inputs will they require? What logical decisions will they have to make? What information will they output? What inputs might they consume from other tools, and how might their output be consumed? We try to answer all of these questions - often in writing! - up front. Doing so helps us think through the ways in which our tool will be used, by different people at different times, and to make good decisions about how to build the tool when it comes time to code.
Start with a Command
Once we know what the tool’s going to do, we begin a console-based (never in a script editor) process of discovery and prototyping. Or, in plain English, we figure out the commands we’re going to need to run, figure out how to run them correctly, and figure out what they produce and how we’re going to consume it. This isn’t a lightweight step - it can often be time-consuming, and it’s where all of your experimentation can occur.
A user in PowerShell.org’s forums once posted a request for help with the following:
I need a PowerShell script that will check a complete DFS Root, and report all targets and access based enumeration for each. I then need the script to check all NTFS permissions on all the targets and list the security groups assigned. I then need this script to search 4 domains and report on the users in these groups.
And yup - that’s what “Start with a Command” means. We’d probably start by planning that out - inputs are clearly some kind of DFS root name or server name, and an output path for the reports to be written. Then the discovery process would begin: how can PowerShell connect to a DFS root? How can it enumerate targets? How can it resolve the target physical location and query NTFS permissions? Good ol’ Google, and past experience, would be our main tool here, and we wouldn’t go an inch further until we had a text file full of answers, sample commands, and notes.
Build a Basic Function and Module
With all the functional bits in hand, we begin building tools. We almost always start with a basic function (no [CmdletBinding()] attribute) located in a script module. Why a script module? It’s the end goal for us, and it’s easier to test. We’d fill in our parameters, and start adding the functional bits to the function itself. We tend to add things in stages. So, taking that DFS example, we’d first write a function that simply connected to a DFS root and spewed out its targets. Once that was working, we’d add the bit for enumerating the targets’ physical locations. Then we’d add permission querying… and so on, and so on, until we were done. None of that along-the-way output would be pretty - it’d just be verifying that our code was working.
Adding CmdletBinding and Parameterizing
We’d then professional-ize the function, adding [CmdletBinding()] to enable the common parameters. If we’d hard coded any changeable values (we do that sometimes, during development), we’d move those into the Param() block. We’d also dress up our parameters, specifying data [types], mandatory-ness, pipeline input, validation attributes, and so on. We’d obviously re-test.
Emitting Objects as Output
Next, we work on cleaning up our output. We remove any “development” output created by Write-Output or Write-Host (yeah, it happens when you’re hacking away). Our function’s only output would be an object, and in the DFS example it’d probably include stuff like the DFS root name, target, physical location, and a “child object” with permissions.
If you’re really reading that DFS example, we’d probably stop our function at the point where it gets the permissions on the DFS targets. The results of that operation could be used to unwind the users who were in the resulting groups - a procedure we’d write as a separate tool, in all likelihood.
Using Verbose, Warning, and Informational Output
If we hadn’t already done so, we’d take the time to add Write-Verbose calls to our function so that we could track its progress. We tend to do that habitually as we write, almost in lieu of comments a lot of the time, but we have built that up as a habit. We’d add warning output as needed, and potentially add Write-Information calls if we wanted to create structured, queryable “sidebar” output.
Comment-Based Help
We’d definitely “dress up” our code using comment-based help, if not full help (we cover that later in the book). We’d make sure to provide usage examples, documentation for each parameter, and a pretty detailed description about what the tool did.
Handling Errors
Finally, and again if we hadn’t habitually done so already, we’d anticipate errors and try to handle them gracefully. “Permission Denied” querying permissions on a file? Handled - perhaps outputting an object, for that file, indicating the error.
Are You Ready
That’s our process. The entire way through, we make sure we’re conforming as much as possible to PowerShell standards. Input via parameters only; output only to the pipeline, and only as objects. Standardized naming, including Verb-Noun naming for the function, and parameter names that reflect existing patterns in native PowerShell commands. We try to get our command to look and feel as much like a “real” PowerShell command as possible, and we do that by carefully observing what “real” PowerShell commands do.
Ok, if you’ve gotten this far and you’re still thinking, “yup, got all that and good to go,” then you’re… well, you’re good to go. Proceed.
PowerShell Tool Design
Before you sit down and start whipping up a PowerShell function or class-based module, you need to seriously think about its design. We almost constantly see toolmaking newcomers start charging into their code, and before long they’ve made some monstrosity that is harder to work with than it should be. Or they are totally lost and don’t know what to do next. In this chapter, we’re going to lay out some core PowerShell tool design principles that we think, based on our experience, will help keep you the path of PowerShell Toolmaking Righteousness.
PowerShell Tools Do One Thing
When you buy a wrench or a hammer, they are designed to fill a specific need. You wouldn’t use a wrench to pound in a nail much less use a hammer to tighten a bolt. This philosophy carries over into our world. The Prime Directive for a PowerShell tool is that it onlyt does one thing. You can see this in almost every single PowerShell tool - that is, command - that ships with PowerShell. Get-Service gets services. It doesn’t stop them. It doesn’t read computer names from a text file. It doesn’t modify them. For that we can use Set-Service or Stop-Service. Commands in PowerShell do one thing.
This critical concept is one we see newcomers violate the most. For example, you’ll see folks build a command that has a -ComputerName parameter for accepting a remote machine name, as well as a -FilePath parameter so that you can alternately read computer names from a file. That’s Dead Wrong, because it means the tool is doing two things instead of just one. A correct design would be to stick with the -ComputerName parameter, and let it accept strings (computer names) from the pipeline. You could also feed it names from a file by using a -ComputerName (Get-Content filename.txt) parenthetical construct. The Get-Content command reads text files; you shouldn’t duplicate that functionality without a really strong reason.
PowerShell Tools are Testable
Another thing to bear in mind is that - if you’re trying to make tools like a real pro - you’re going to want to create automated units tests for your tools. We’ll actually get into how that’s done later in this book, but from a design perspective, you want to make sure you’re designing tools that are, in fact, testable. And trust us. In the long run you’ll be glad that you’ve designed your tools with testing in mind.
One way to do that is, again, to focus on tightly-scoped tools that do just one thing. The fewer pieces of functionality a tool introduces, the fewer things and permutations you’ll have to test. The fewer logic branches within your code, the easier it will be to thoroughly test your code using automated unit tests. This also means when someone reports a bug in your code, it will be easier to find and resolve.
For example, suppose you decide to design a tool that will query a number of remote computers. Within that tool, you might decide to implement a check to make sure each computer is online and reachable, perhaps by pinging it with Test-NetConnection. It makes sense in your head. But it might be a bad idea. First, your tool is now doing two things: querying whatever it is you’re querying, but also pinging computers. That’s two distinct sets of functionality. The pinging part, in particular, is likely to be code you’d use in many different tools, suggesting it should, in fact, be its own tool. Having the pinging built into the same querying tool will make testing harder, too, because you’ll have to explicitly write tests to make sure that the pinging part works the way it’s supposed to.
An alternate approach would be to write that “Test-PCConnection” functionality as a distinct tool. This code could use existing PowerShell commands wrapped up with features that make sense in your environment. So, if your “querying” tool is something like “Get-SystemData,” you might concoct a pattern like:
Get-Content computernames.txt | Test-PCConnection | Get-SystemData
The idea being that Test-PCConnection would filter out whatever computers weren’t reachable, perhaps logging the failed ones in some fashion, so that Get-SystemData could just focus on its one job of querying something. Both tools would then become easier to independently test, since they’d each have a tightly scoped set of functionality.
If you needed to take this a step further, say by automating this task for the help desk, you can put this pattern into a control script. Which is something we’ll cover later.
You also want to avoid building functionality into your tools that will be difficult to test. For example, you might decide to implement some error logging in a tool. That’s great - but if that logging is going to a SQL Server database, it’s going to be trickier to test and make sure that the logging is working as desired. Logging to a file might be easier, since a file would be easier to check. An even better approach would be to write a separate tool that handles logging. You could then test that tool independently, and simply use it within your other tools. This gets back to the idea of having each tool do one thing, and one thing only, as a good design pattern.
PowerShell Tools are Flexible
You want to design PowerShell tools that can be used in a variety of scenarios. This often means wiring up parameters to accept pipeline input. For example, suppose you write a tool named Set-MachineStatus that changes some setting on a computer. You might specify a -ComputerName parameter to accept computer names. Will it accept one computer name, or many? Where will those computer names come from? The correct answers are, “always assume there will be more than one, if you can” and “don’t worry about where they come from.” You want to enable, from a design perspective, a variety of approaches.
It can help to actually sit down and write some examples of using your command that you intend to work. These can become help file examples later, but in the design stage can help make sure you’re designing to allow all of these. For example:
Get-Content names.txt | Set-MachineStatus
Get-ADComputer -filter * | Select -Expand Name | Set-MachineStatus
Get-ADComputer -filter * | Set-MachineStatus
Set-MachineStatus -ComputerName (Get-Content names.txt)
That third example is going to require some careful design, because you’re not going to be able to pipe an Active Directory Computer object to the same -ComputerName parameter that also accepts a String object from Get-Content! You may have identified a need for two parameter sets, perhaps one using -ComputerName <string[]> and another using -InputObject <ADComputer> to accommodate both scenarios. Now, creating two parameter sets is going to make the coding, and the automated unit testing, a bit harder - so you’ll need to decide if the tradeoff is worth it. Will that third example be used so frequently that it justifies the extra coding and test development? Or will it be a rare enough scenario that you can exclude it, and instead rely on the similar second example?
The point is that every design decision you make will have downstream impact on your tool’s code, its unit tests, and so on. It’s worth thinking about those decisions up front, which is why it’s called the design phase!
Who and How
A lot of the ideas we’re discussing here come down to a fundamental set of questions. Who will be using your tools and what are their expectations? Are you writing a command for the help desk to use but they have minimal PowerShell experience? Are you creating something that you will be using? Will the use be importing Excel spreadsheets to pass as parameter values? What type of output do you need and how might it be used? Will your tool be used in conjunction with something else you are developing? The more you understand who will be using your tool and their expectations, the better your result.
PowerShell Tools Look Native
Finally, be very careful with tool and parameter names. Tools should always adopt the standard PowerShell Verb-Noun pattern, and should only use the most appropriate verb from the list returned by Get-Verb. Microsoft also publishes that list online and the online list includes incorrect variations and explanations that you can use to check yourself.
When you run Get-Verb in PowerShell 7, Microsoft has added a description for each verb.
Don’t beat yourself up too hard over fine distinctions between approved verbs, like the difference between Get and Read. If you check out that website, you’ll realize that Get-Content should probably be Read-Content; likely a distinction Microsoft came up with after Get-Content was already in the wild.
The noun portion of your name should be singular, although we have been known to bend this rule from time to time. What you should consider is the potential for a naming conflict. Yes, there are ways to call the right PowerShell command but it can be a bit cumbersome so why not avoid it altogether. We suggest you get in the habit of using a short prefix on your command’s noun. For example, if you work for DonCo, Inc., then you might design commands named Get-DCISystemStatus rather than just Get-SystemStatus. The prefix helps prevent your command name from conflicting with those written by other people and it will make it easier to discover and identify commands and tools created for your organization.
Parameter names should also follow native PowerShell patterns. Whenever you need a parameter, take a look at native PowerShell commands and see what parameter name they use for similar purposes. For example, if you need to accept computer names, you should use -ComputerName (notice it’s singular!) and not some variation like -MachineName. If you need a filename, that’s usually -FilePath or -Path on most native commands. Later in the book we’ll show you how to create a parameter alias. This let’s you use the official and proper parameter name, like -Computername but still let users of your tool use something like -Server.
An Example
Before we even start thinking about our design decisions, we like to review the business requirements for a new tool. We try to translate those business requirements to usage examples, so it’s clearer to us how a tool might be used. If there are other stakeholders to involve - such as the people who might consume this tool, once it’s done - we get them to sign off on this “functional specification,” so that we can go into the design phase knowing with clear, mutual expectations for the new tool. We also try to capture problem statements that this new tool is meant to solve, because those sometimes offer a clearer business perspective than a specification that someone else may have written. The discussion might go something like this:
We’ve been managing servers in our data center with PowerShell and PowerShell remoting. With the arrival of PowerShell 7, we will be able to use SSH for PowerShell remoting. We won’t switch every server to SSH because some servers may rely on Just Enough Administration. We need to inventory servers and identify which servers have PowerShell remoting enabled. And if it is enabled, is it also configured to use SSL. Long term, we need to move servers that must use WSMan remoting to use SSL. We also need to know if a server already has ssh installed.
That statement would drive some more detailed questions from us, asking for specifics on what the tool needs to query. Suppose the answer came back as:
There are a number of PowerShell commands to use, although Test-NetConnection might be a good choice. We can plan on writing a tools called Get-RemoteListeningConfiguration. It is of course going to have a -ComputerName parameter that accepts one or more computer names as strings. Looking ahead with a PowerShell 7 migration coming, it might also be helpful to know the operating system and current PowerShell version. That information could be part of this command, but since the information doesn’t really apply to remoting, it might be best to keep that as a separate tool. We might also take into account how computer names will be fed to the command and what we might do with the output. We’ll assume that some computers won’t respond, so we’ll design a way to deal with that situation.
Our design usage examples might be pretty simple:
Get-RemoteListeningConfiguration -Computername SRV1
Get-RemoteListeningConfiguration -Computername SRV1,SRV2
Get-Content servers.txt | Get-RemoteListeningConfiguration
Import-CSV servers.csv | Get-RemoteListeningConfiguration
Get-RemoteListeningConfiguration (Get-ADComputer -filter *).Name
The output of the command should be structured and predictable. That is, given a specific set of inputs, we should get the same output, which will make this a fairly straightforward design to write unit tests for. Our command is only doing one thing, and has very few parameters, which gives us a good feeling about the design’s tight scope.
So we’d take that back to the team and ask what they thought. Almost invariably, that will generate questions.
How will we know if a machine fails? Will the tool keep going? Will it log that information? Does it need to log anything?
OK - we might need to evolve the design a bit. We know that we need to keep going in the event of a failure, and give the user the option to log failures to, perhaps, a text file. Provided the team was happy with a text file as the error log, we’re good including that in the design. If they wanted something more complicated - the option to log to a database, or to an event log - then we’d design a separate logging tool to do all of that. For the sake of argument, though, let’s say they’re OK with the text file.
Get-Content servers.txt | Get-RemoteListeningConfiguration -LogPath errorlog.txt
Let’s say that the team is satisfied with these additions, and that we have our desired usage examples locked down. We can now get into the coding. But before we do, why don’t you take a stab at your own design exercise?
Your Turn
If you’re working with a group, this will make a great discussion exercise. You won’t need a computer, just a whiteboard or some pen and paper. The idea is to read through the business requirements and come up with some usage examples that meet the requirements. We’ll provide all of the business requirements in a single statement, so that you don’t have to “go back to the team” and gather more information.
Start Here
Your team has come to you and asked you to design a PowerShell tool that will help them automate a repetitive and critical, task. Team members are skilled in using PowerShell, so they just need a command, or set of commands, that will help automate this task.
Members of the HelpDesk, as well as the Server Management Team, periodically manually run a set of commands to get performance information that can be used to assess the status or health of system. This information is often used to generate reports and to populate a trend database. The information gathered includes these values:
It would be helpful to have a single command to run that would generate a unified result. It needs to be able to process multiple computers. And it will need to take credentials into account. It would also be helpful to have some sort of optional logging mechanism for failures.
Your Task
Your job is to design the tool that will meet the team’s business requirements. You are not writing any code at this point. When creating a new tool, you have to consider who will use the tool, how they might use it and their expectations. And the user might be you! The end-result of your design will be a list of command usage examples (like we have shown you previously), which should illustrate how each of the team’s business needs will be solved by the tool. It’s fine to include existing PowerShell commands in your examples, if those commands play a role in meeting the requirements.
Stop reading here and complete the task before resuming.
Our Take
We’ll design the command name as Get-TMComputerStatus. The “TM” stands for “Toolmaking,” which is part of this book’s name, since we don’t have a specific company or organizational name to use. We’ll design the following use cases:
Get-TMComputerStatus SRV1,SRV2
Get-Content servers.txt | Get-TMComputerStatus -credential company\administrator
(Get-ADComputer -filter *).name | Get-TMComputerStatus -ErrorLogFilePath err.log
Our intent here is that -Verbose will generate on-screen warnings about failures, while -ErrorLogFilePath will write failed computer names to a file. It might also be nice to append errors to the same log. Notice that, to make this “specification” easier to read, we’ve put each parameter on its own line. The command won’t actually execute exactly like that, but that’s fine - clarity is the idea at this point.
Get-TMComputerStatus -Computername SRV1,SRV2,SRV3 `
-Credential "company\administrator" `
-ErrorLogFilePath "statuserrors.txt" `
-ErrorAppend
This example uses -ErrorLogFilePath and -ErrorAppend to indicate logging errors to a text file and appending.
And because the output might be used to generate reports or be consumed by other applications, we’ll want to make sure our code will meet these scenarios:
Import-CSV servers.csv | Get-TMComputerStatus -credential $cred |
Export-CSV status.csv
Get-Content group1.txt | Get-TMComputerStatus |
ConvertTo-HTML <parameters>
Get-TMComputerStatus (Get-ADComputer -filter *).name |
Sort-Object Computername |
Format-Table -GroupBy Computername -property Date,Uptime,Pct* |
Out-File report.txt
We’re illustrating two things here. First is that we can accept an imported CSV file, assuming it has a Computername column. Our output is also consumable by standard PowerShell commands like ConvertTo-HTML, which implies that Format- commands and Export- commands will also work.
Let’s Review
Let’s quickly review some of the key concepts from this chapter, just to make sure you’ve got them all firmly in mind. See if you can answer these questions:
Review Answers
Not all of our questions lend themselves to easy, black-and-white answers, so if you didn’t answer exactly the way we did, it doesn’t necessarily mean you’re wrong. But here’s how we’d have answered:
Start with a Command
Before we ever open up a script editor, we start in the basic PowerShell command-line window. This is your “lowest common denominator” for testing, and it’s a perfect way to make sure that the commands your tool will run are actually correct. It’s way easier to debug or troubleshoot a single command in the window than it is to debug an entire script. And by “single command” we mean a PowerShell expression.
If you’ve already read the previous chapter, then you know that we’ve been asked to develop a tool that will query the following information:
We’ll plan to use CIM or CIM-related commands for much of this. We also know we’re going to need to write a text log file in the event of errors. There’s more in terms of the tool itself we’ll need to do, like adding a datetime stamp, but these are the basic units of functionality we need to figure out.
We’re going to assume that you already know how to run PowerShell commands. If that’s not your strong suit, please stop and go read Learn Windows PowerShell in a Month of Lunches, because it’s all about discovering and running commands. Our point here is that we want to test and make sure we know how to actually accomplish everything our tool needs to accomplish, by manually running commands in the command-line window.
In our specific case, we want to also make sure we know how to reliably retrieve all of the information in our list, which is going to involve more than one WMI/CIM class. We’ll need Win32_OperatingSystem and Win32_Processor at the least. We could use Win32_LogicalDisk to get C: drive information. Or we can use CIM-related commands like Get-Volume. Again - you should know how to do these things already if you’re reading this book, so we’re not going to walk through that entire “discovery” process.
We’re planning to use Get-CimInstance to do the actual querying, and because we’ll eventually end up querying multiple classes, we’ll use New-CimSession and Remove-CimSession to create (and then remove) a persistent connection to each computer, so that we can run all the queries over one connection. We’ll need to be able to detect errors in case the connection doesn’t work. Review the help for New-CimSession if you’re not familiar with those tasks.
For now we’ll assume that all computers can be reached using the CIM cmdlets. If they can’t, that probably means the server is in need of a major upgrade, and we’ll want to be able to log those failures.
Since so much of this tool is getting performance related data, you may be wondering about Get-Counter. This is a command designed to get performance information and can probably gather most of what we need. For us there are a few potential gotchas. First, Get-Counter relies on legacy remoting protocols like RPC and DCOM. It is not firewall friendly. Second, the output from Get-Counter is a little convoluted and would take a few extra steps to get the values we’re looking for. Get-CimInstance is a better (read that as modern) approach. And it will be easier to get the values we need. But this is exactly the type of discussion you need to have. What are the best PowerShell tools to use? What are the implications if we go with one over another?
Your Turn
The previous chapter also included an exercise for you, and this one picks up where it left off. This is where you’ll get to practice what we’ve preached in this chapter: making sure you know how to accomplish everything that your tool will need to do, by starting in the PowerShell command-line window.
Start Here
Remember that you are designing a tool that will get remoting configuration information for a remote server. You don’t have to write any code at this point. Instead, mock up a sample output. What PowerShell cmdlets do you think you will need to run? Come up with a list of examples on how the command might be used. List what requirements you might need in order for your code to run.
Your Task
Stop reading here and complete the task before resuming.
Our Take
For our exercise, we are creating a tool to get status information about a server. We know that we assume at a minimum that the command can be run passing a single computername and writing an object to the pipeline.
PS C:\> Get-TMComputerStats -Computername SRV1
Computername : SRV1
Processes : 275
CPULoad : 13
PctFreeMemory : 50.9874975465509
PctFreeDrive : 39.1990451499511
Uptime : 1.20:48:21.2817144
Date : 7/20/2020 2:09:16 PM
We also assume the person running the script will import a list of computernames and want to be able to export to a CSV file. If there are errors they should be written to a log file.
PS C:\> Get-Content c:\work\servers.txt |
Get-TMComputerstatus -ErrorLog c:\work\tmstatus-error.log -errorappend |
Export-CSV D:\status.csv -append
We’ll need commands like these to generate the necessary results:
Let’s Review
Here are a few questions you can answer to make sure you’ve picked up the key elements of this chapter:
Review Answers
Here are our answers to the questions. Note that these aren’t necessarily the only correct answers, but hopefully they’ll help you understand if you grasped the chapter’s material or not.
Build a Basic Function and Module
In this chapter, we’ll start creating the tool that we designed in “Tool Design,” using some of the commands that we figured out and tested in the previous chapter. It’s very important to understand that this chapter isn’t going to attempt to build the entire tool, or attempt to solve the entire business statement from our Design chapter. We’ll be taking things one step at a time, because it’s really the process of toolmaking that we want to demonstrate for you.
Start with a Basic Function
Basic functions have existed in PowerShell since v1, and they are one of the many types of commands that PowerShell understands (some of the others being cmdlets, applications, workflows, and so on). Functions make a great unit of work for toolmaking, so long as you follow a basic principle of keeping your function tightly scoped and self-contained. We’ve written already about the need to have tightly scoped functions - that is, functions that do just one thing. Self-contained means that the function needs to live in its own little world, and become a kind of little black box. Practically speaking, that means two things:
Information to be used inside the function should come only from declared input parameters. Of course, some functions may “look up” data from elsewhere, like a database or a registry, and that’s fine if it’s what the function does. But functions shouldn’t rely on external variables or other sources. You want them as self-contained as possible.* Output from a function should be to the PowerShell pipeline only. Stuff like creating a file on disk, updating a database, and other actions aren’t output, they’re actions. Obviously, a function can perform one of those actions if that’s what the function does.
Design the Input Parameters
Looking back through the design for your function to get computer status details, what information will the function need? Your usage examples should already provide pretty clear guidance on what parameters you’ll have to create, which is one reason we recommend creating usage examples as tht primary design deliverable. So now let’s create basic versions of those parameters.
Function Get-TMComputerStatus {
Param(
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
}
Notice how careful we’re being with the formatting of this code? In order to conserve space in this book, we’re only indenting the code a little bit within the function and within the Param() block, but you’ll typically indent four spaces (which, in most code editors, is what the Tab key will insert). Do not get lazy about your code formatting. Lazy formatting is a sign of the devil, and is a sure sign of code that probably has bugs - and will be hard to debug.
In the Param() block, we’ve only had to declare a few parameters. The Computername is pretty straightforward. Although thinking ahead, we might need to take alternate credentials into account. for the computer to query. We also have parameters related to the logging we want to do.
For those of you looking for some nits to pick, yeah, there’s probably one here. An argument could be made that logging is a second thing the command is doing and it should not be part of this command. On the other hand, a counter argument might be that the task of getting computer status information by design includes logging. Semantics. But if nothing else, including these parameters offers us some “teachable moments” so we’re going to go with it.
Parameter definitions are very simple declarations, and we’ll build on these in upcoming chapters. For now, here are some things to notice:
Write the Code
Now let’s insert some basic functional code. Again this will not complete the tool’s entire mission - we’re just getting started, and we want to walk you through each step.
Function Get-TMComputerStatus {
Param(
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
foreach ($computer in $Computername) {
get data via Get-CimInstance and Get-Volume
create output object
} #foreach #computer
} #Get-TMComputerStatus
Notice that we tagged a #Get-TMComputerStatus comment on the closing bracket of the function? That’s a good habit to get into when you have a closing bracket, as it can help remind you which construct the bracket closes. You’ll appreciate this when you have a script file with multiple functions defined.
We know we’ll need to run Get-CimInstance and maybe Get-Volume. At some point all of these outputs will need to be condensed down to a simple, unified object. The basic command also doesn’t include any error handling at this point. But this should be enough to give us a feel for how the command will be structured and how the execution will flow internally.
Details: The ForEach Construct
Our code uses a ForEach construct. It works a bit like PowerShell’s ForEach-Object command, but it has a different syntax:
ForEach ($item in $collection) {
code
}
The second variable - $collection here, and $ComputerName in our preliminary function - is expected to contain zero or more items. The ForEach loop will execute its {script block} one time for each item that is contained in the second variable. So, in Get-RemoteListeningConfiguration, if we provided three computer names to the -ComputerName parameter, the ForEach loop would run three times. Each time the loop runs, one item is taken from the second variable and placed into the first. So, within the script block above, $item will contain one thing at a time from $collection. In the defined function, $computer will contain one string at a time, taken from $ComputerName.
You’ll often see people use singular and plural words in their ForEach loops:
$names = Get-Content names.txt
ForEach ($name in $names) {
code
}
That approach makes it easier to remember that $name contains one thing from $names, but that’s purely for human readability. PowerShell doesn’t magically know that “name” is the singular of “names,” and it doesn’t care. The above could easily be rewritten as:
$unicorns = Get-Content names.txt
ForEach ($purple in $unicorns) {
code
}
And PowerShell would be perfectly happy. That code would be a lot harder to read and keep track of, though. In our sample function, you’ll notice that our second variable is not plural, right?
foreach ($computer in $computername) {
That’s because $ComputerName is one of our function’s input parameters. PowerShell’s convention is to use singular words for command and parameter names. You won’t see -ComputerNames; you only see -ComputerName as a parameter. We stuck with the convention, and so our ForEach loop doesn’t follow a singular/plural pattern. Again, PowerShell itself doesn’t care, and we feel it’s more important that our “outward-facing” elements - command and parameter names - follow PowerShell naming conventions. And, honestly, using $computer as our one-item-at-a-time variable name saves a little space in this book.
Design the Output
Finally, we need to have the command output something. We’ll add that in this version.
Function Get-TMComputerStatus {
Param(
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
foreach ($computer in $Computername) {
$OS = Get-CimInstance win32_operatingsystem -computername $computer |
Select-Object -property CSName,TotalVisibleMemorySize,FreePhysicalMemory,
NumberOfProcesses,
@{Name="PctFreeMemory";Expression = {($_.freephysicalmemory/`
($_.TotalVisibleMemorySize))*100}},
@{Name="Uptime";Expression = { (Get-Date) - $_.lastBootUpTime}}
$cpu = Get-CimInstance win32_processor -ComputerName $computer |
Select-Object -Property LoadPercentage
$vol = Get-Volume -CimSession $computer -DriveLetter C |
Select-Object -property @{Name = "PctFreeC";Expression = `
{($_.SizeRemaining/$_.size)*100 }}
$os,$cpu,$vol
} #foreach $computer
} #Get-TMComputerStatus
The output in the book has been formatted to fit the page.Normally you wouldn’t need to break lines using the back tick. This code works and writes results to the pipeline. However, this version is breaking the cardinal rule of writing more than 1 type of object to the pipeline. We’ll need to refine this code to get a single object type out of it. That’s coming up in the next few chapters.
Create a Script Module
Our last step will be to save all of this code as a script module. These are supported on PowerShell v2 and later, and should ideally be stored in one of the paths specified in the PSModulePath environment variable. On PowerShell v4 and later, the default path includes C:Program FilesWindowsPowerShellModules, so that’s where we’ll create our module. Specifically, we’ll save it as C:Program FilesWindowsPowerShellModulesToolmakingToolmaking.psm1. Notice that the subfolder name and the filename must match in order for PowerShell to automatically discover our module and load it on-demand.
We’re also going to create a module manifest. This isn’t strictly required, but it’s a good idea. A properly designed manifest can speed up PowerShell’s module auto-discovery, and as our module becomes more complex will offer us some useful features. To create the manifest, we’ll run:
Cd "\Program Files\WindowsPowerShell\Modules\Toolmaking"
New-ModuleManifest -Path .\Toolmaking-Prelim.psd1
-Author "Don Jones & Jeff Hicks"
-RootModule toolmaking.psm1
-FunctionsToExport @('Get-TMComputerStatus)
-Description "Sample Toolmaking module"
-ModuleVersion 1.0.0.0
As is our custom in this book, we’ve put each parameter on its own line for readability. In practice, you’d type all of the above as one long line which you’ll see in our final code samples. Notice:
We’ve included our module, to this point, in the code samples for this book (which are available by running Install-Module PowerShell-Toolmaking in PowerShell). You’ll find it in the Chapters folder, under this chapter’s title. To load the module, you’ll need to manually run Import-Module and provide the full path to our .psd1 file on your computer. In the code samples for this chapter, our module name is Toolmaking-Prelim, to avoid conflicting with the “finished” Toolmaking module that’s part of the code sample download.
Pre-Req Check
Before we test our command, especially if you’re planning to run it yourself and follow along, you need to check a few things.
Running the Command
Now for the real test. First, close your PowerShell window. That will ensure our test is in a “clean” PowerShell environment. Then open a new one (make sure it’s “as Administrator”), and run:
Get-TMComputerStatus -Computername localhost
You should get some output from that. In fact, you should just be able to type Get-TMCo and hit Tab, type a space, type -Comp and hit Tab, and then type a space and localhost. If the Tab completion isn’t working, then double-check your script for proper file names, any typos in the code (indicated in the PowerShell ISE by red squiggly underlines), and so on. Also make sure that you’ve used a path that’s in your machine’s PSModulePath environment variable:
$env:PSModulePath
If the command runs without trouble, then you’re good to go. Take some time to make sure you understand why each line of code is in the command, and that you can explain the reason for each step we’ve performed to this point.
If you make any changes to your module, it is very important to understand that PowerShell won’t “see” those changes. That’s because it loaded your module into memory when you first ran your command; afterwards, it runs entirely from memory, and doesn’t re-load from disk. So if you make any changes to your code, you need to do one of two things:
You’ll also notice that we tend to test our command in a normal PowerShell console window, even through we’re developing in something like the PowerShell ISE, Visual Studio Code, etc. That’s because development environments sometimes have a slightly different way of running scrips, and the console window represents the “standard” way that your script will run in production. Since the console represents the “production environment,” that’s where we test.
Your Turn
Let’s return to the tool that we asked you to design in the Design chapter to get remote listening configuration information. It’s time to start coding it up.
Start Here
To review, we designed the command name as Get-TMRemoteListeningConfiguration. The “TM” stands for “Toolmaking,” which is part of this book’s name, since we don’t have a specific company or organizational name to use. We’ll design the following use cases:
Get-TMRemoteListeningConfiguration -ComputerName SERVER1,SERVER2
-ErrorLog failed.txt
-Verbose
Our intent here is that -Verbose will generate on-screen warnings about failures, while -ErrorLog will write failed computer names to a file. Notice that, to make this “specification” easier to read, we’ve put each parameter on its own line. The command won’t actually execute exactly like that, but that’s fine - clarity is the idea at this point.
Get-TMRemoteListeningConfiguration -ComputerName SERVER1,SERVER2
This example illustrates that -ErrorLog and -Verbose were optional. We also want to illustrate some of our flexible execution options:
Get-Content servers.txt | Get-TMRemoteListeningConfiguration
This illustrates our ability to accept computer names from the pipeline. Finally:
Import-CSV computers.csv | Get-TMRemoteListeningConfiguration | ConvertTo-HTML
We’re illustrating two things here. First is that we can accept an imported CSV file, assuming it has a column named Computername. Our output is also consumable by standard PowerShell commands like ConvertTo-HTML, which also implies that Format- commands and Export- commands will also work.
Your Task
Create a basic function named Get-TMRemoteListeningConfiguration. Specify all of the parameters that are listed in the design, although right now we might not actually use all of those parameters. Write enough code so that, given a computer name you can get the desired configuration information.
Don’t worry about piping computer names into the function at this point. But you will need to use a ForEach construct.
Create the function in a script module named TMTools. Test your function against your computer, ie local host. For now, don’t worry about the logging or other features specified in the design. Keep in mind what you learned from previous chapters. For now, it’s okay to create output using Select-Object and custom properties. Later, we’ll work on getting the output closer to the design specification. Test your command in the PowerShell console, rather than in the ISE or VS Code, and bear in mind the caveats we pointed out about unloading your module after making changes.
Our Take
Here’s our solution for you to compare to your own. Minor variations shouldn’t be cause for concern, provided your command works when you run it.
Function Get-TMRemoteListeningConfiguration {
Param(
[string[]]$Computername,
[string]$ErrorLog
)
$ports = 22,5985,5986
foreach ($computer in $computername) {
foreach ($port in $ports) {
Test-NetConnection -Port $port -ComputerName $Computer |
Select-Object Computername,RemotePort,TCPTestSucceeded
}
#TODO
#better output
#error handling and logging
} #foreach
} #Get-RemoteListeningConfiguration function
Note that we are using a nested set of ForEach loops. We’re telling PowerShell, “For each computer, run though this collection of ports.” The command gives us output like this:
ComputerName RemotePort TcpTestSucceeded
------------ ---------- ----------------
WIN10PRO 22 True
WIN10PRO 5985 True
WIN10PRO 5986 False
If you get odd results using localhost use $env:computername or type your actual computername.
We created a manifest for this, too:
New-ModuleManifest -Path TMTools.psd1
-RootModule .\TMTools.psm1
-FunctionsToExport Set-TMServiceLogon
-ModuleVersion 1.0.0.0
We’ve included our solution, to this point, in the code samples for this book (which are available by running Install-Module PowerShell-Toolmaking in PowerShell). You’ll find it in the Chapters folder, under this chapter’s title. To load the module, you’ll need to manually run Import-Module and provide the full path to our .psd1 file on your computer. In the code samples for this chapter, our module name is TMTools-Prelim, to avoid conflicting with the “real” TMTools module that you’re building on your own.
Let’s Review
Let’s make sure you picked up on the key elements of this chapter. See if you can answer the following questions:
Review Answers
Here are the answers to this chapter’s review questions:
Adding CmdletBinding and Parameterizing
In this chapter, we’ll focus entirely on the Param() block of our function, and discuss some of the cool things you can do with it.
About CmdletBinding and Common Parameters
Back when PowerShell v2 was being developed, Microsoft toyed with the idea of having a cmdlet{} construct that was essentially a superset of function{}. The idea was that these “script cmdlets” would exhibit all of the behaviors of a “real” cmdlet (e.g., one written in .NET and compiled into an assembly). By the time v2 released, these had become advanced functions, and are differentiated primarily by the [CmdletBinding()] attribute. To illustrate the first major difference, let’s start with a basic function:
function test {
Param(
[string]$ComputerName
)
}
That’s it. No code at all. Now ask PowerShell for help with that function:
PS C:\> help test
NAME
test
SYNTAX
test [[-ComputerName] <string>]
ALIASES
None
That’s what we’d expect - PowerShell is producing the best help it can given the complete nonexistence of anything. Now, let’s make just one change to the code:
function test {
[CmdletBinding()]
Param(
[string]$ComputerName
)
}
and again ask for help:
PS C:\> help test
NAME
test
SYNTAX
test [[-ComputerName] <string>] [<CommonParameters>]
ALIASES
None
PowerShell has added the common parameters. If you read the about_CommonParameters help file, you’ll discover that all PowerShell commands support this set of parameters. The number has grown through the subsequent versions of PowerShell, and now consists of 11 parameters. Cmdlet authors don’t need to do anything to make these work - PowerShell takes care of everything. And now, because we added [CmdletBinding()], our function will support all of these common parameters as well. Some of the cooler ones (with availability differing based on your version of PowerShell) include:
There are others, and we’ll discuss almost all of them in more detail in upcoming chapters.
Accepting Pipeline Input
If you remember our original tool design, we specified a need to capture input from the pipeline. This requires a modification both to our parameters and to the code of the function. As a reminder, here’s where we’re starting after the previous chapter:
Function Get-TMComputerStatus {
Param(
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
foreach ($computer in $Computername) {
$OS = Get-CimInstance win32_operatingsystem -computername $computername |
Select-Object -property CSName,TotalVisibleMemorySize,FreePhysicalMemory,
NumberOfProcesses,
@{Name="PctFreeMemory";Expression = {($_.freephysicalmemory/`
($_.TotalVisibleMemorySize))*100}},
@{Name="Uptime";Expression = { (Get-Date) - $_.lastBootUpTime}}
$cpu = Get-CimInstance win32_processor -ComputerName $computername |
Select-Object -Property LoadPercentage
$vol = Get-Volume -CimSession $computername -DriveLetter C |
Select-Object -property @{Name = "PctFreeC";Expression = `
{($_.SizeRemaining/$_.size)*100 }}
$os,$cpu,$vol
} #foreach $computer
} #Get-TMComputerStatus
And here’s our modified function:
Function Get-TMComputerStatus {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline=$True)]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
BEGIN {}
PROCESS {
foreach ($computer in $Computername) {
$OS = Get-CimInstance win32_operatingsystem -computername $computername |
Select-Object -property CSName,TotalVisibleMemorySize,FreePhysicalMemory,
NumberOfProcesses,
@{Name="PctFreeMemory";Expression = {($_.freephysicalmemory/`
($_.TotalVisibleMemorySize))*100}},
@{Name="Uptime";Expression = { (Get-Date) - $_.lastBootUpTime}}
$cpu = Get-CimInstance win32_processor -ComputerName $computername |
Select-Object -Property LoadPercentage
$vol = Get-Volume -CimSession $computername -DriveLetter C |
Select-Object -property @{Name = "PctFreeC";Expression = `
{($_.SizeRemaining/$_.size)*100 }}
#TODO: Clean up output
$os,$cpu,$vol
} #foreach $computer
}
END {}
} #Get-TMComputerStatus
Here’s what we did:
Understanding how all this fits together requires you to remember that we want our function to run in two distinct modes, and that each mode has slightly different requirements from PowerShell.
Running Commands in Non-Pipeline Mode
Imagine running our command like this:
Get-TMComputerStatus -ComputerName ONE,TWO,THREE
In this mode, PowerShell will ignore the BEGIN{}, PROCESS{}, and END{}labels, but it won’t ignore the code within those labels. In other words, it’s simply like the labels never existed. $ComputerName will contain an array, or collection, of three [string] objects, “ONE”, “TWO”, and “THREE”. Our entire command will run one time, from the first line of code to the last. Our ForEach loop will execute three times.
Running Commands in Pipeline Mode
Imagine running our command like this:
"ONE","TWO","THREE" | Get-TMComputerStatus
First, PowerShell will construct a three-element array, because that’s what comma-separated lists do in PowerShell. It will then “scan ahead” in the pipeline, and execute the BEGIN{} block ONCE for each command in the pipeline. That’s true both for advanced functions and for compiled cmdlets. The Begin block (which does not have to be in all-uppercase, and which can be omitted if you don’t have any code to stick in there) is a good place to do “set up” tasks, such as opening database connections, setting up log files, or initializing arrays. Any variables you create in the Begin block will continue to exist elsewhere in your function.
Next, PowerShell will start feeding the elements from that three-element array down the pipeline, one at a time. So it will insert “ONE” into $ComputerName, and then run the PROCESS{} block. Our ForEach loop will execute, but only once - it’s actually kind of redundant in this mode, but we need it for the non-pipeline mode. PowerShell will then feed “TWO” into $ComputerName, and run PROCESS{} again. It’ll then put “THREE” into $ComputerName, and run PROCESS{} one last time.
Finally, after all the objects have been sent through the pipeline, PowerShell will re-scan the pipeline and ask everyone to run their END{} blocks once. Again, you can omit this if you don’t have anything to put in there, but for visual purposes we like to include it even if it’s empty. One suggestion is to insert a comment into empty Begin or End blocks so you don’t think something is missing.
End {
intentionally empty
}
We also like including comments at the closing } (e.g. } #close begin) so you can tell where scriptblocks begin and end.
Values and PropertyNames
Notice that our example is using this decorator:
[Parameter(ValueFromPipeline=$True)]
This enables ByValue binding of pipeline input. You can enable this only for one parameter per data type. Since $ComputerName is a [string], it’s therefore the only [string] parameter we can mark as accepting pipeline input ByValue.
We can also enable input ByPropertyName:
[Parameter(ValueFromPipeline = $True,ValueFromPipelineByPropertyName=$True)]
If you’re not deeply familiar with pipeline parameter input ByValue and ByPropertyName, we urge you to read Learn Windows PowerShell in a Month of Lunches and learn all about it. It’s a crucial PowerShell feature.
Now, if the object in the pipeline isn’t a System.String, but it has a ComputerName property, our $ComputerName variable will pick that up as well.
In the parameter attribute you will see that we assigned a value of $True to ValueFromPipeline. In earlier versions of PowerShell this was required and you’ll find plenty of examples in the wild. Along with other settings like Mandatory and ValueFromPipelineByPropertyName. However, specifying $True is redundant. If you decorate a parameter with ValueFromPipeline it is automatically true. You do not have to explicitly make it so. We will probably be explicitly redundant for a bit to make sure you understand what we’re doing but eventually, we’ll drop the explicit assignment. This also applies to other parameter settings like Mandatory.
Mandatory-ness
Because our function can’t really run correctly without a computer name, we want to ensure at least one is always provided. Here’s our revised set of parameters:
Param(
[Parameter(ValueFromPipeline=$True,Mandatory=$True)]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
Some notes on our decision-making process, here:
If one of your parameters is a [Switch] avoid making it mandatory, because you’re essentially forcing it to be $True (or forcing someone to run -Enable:$false to turn it off, which is awkward).
Parameter Validation
Our Computername parameter has a potential weakness, in that it’ll accept any string whatsoever. We have no way of knowing what data might be fed into this parameter or even how.
Param(
[Parameter(ValueFromPipeline=$True,Mandatory=$True)]
[ValidateNotNullorEmpty()]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
Here, we’ve added a [ValidateNotNullOrEmpty()] attribute to our $Computername parameter. PowerShell will complain if the value is empty or null. Again, we have no way of knowing how the user of our function is getting a value for Computername. We might even take this a step further and add a second validation.
Param(
[Parameter(ValueFromPipeline=$True,Mandatory=$True)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
It is possible that the user could specify a Computername value that was a variable with nothing but spaces. This would technically pass the not null or empty test. The second test using a regular expression pattern to ensure that the value is starts and ends with a word character. Parameter values need to pass all the validation tests. Also be aware that parameter validation doesn’t negate the need for error handling. All we’ve done so far is validate that the parameter might be a computername. But is it up? Do you have proper credentials? Eventually we will need to handle those situations.
There are other validation methods available, and we’ll cover those in an upcoming chapter. You can also read about_functions_advanced_parameters for a full list.
Parameter Aliases
Finally, although we’ve followed native PowerShell patterns in using -ComputerName as our parameter name, we might also find value in this addition:
Param(
[Parameter(ValueFromPipeline=$True,Mandatory=$True)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[Alias("CN","Machine","Name")]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
Here, we’ve defined three aliases for our parameter, making -CN, -Machine, and -Name valid alternatives. The user can run the command using these alternate parameters instead of -Computername. Note that code within the function will use the defined parameter name internally, that is, $Computername.
Your Turn
Okay, let’s return to the command you started building in the previous chapter, and start making some improvements.
Start Here
Here’s where we finished up after last chapter; you can either use this as a starting point, or use your own lab result.
Function Get-TMRemoteListeningConfiguration {
Param(
[string[]]$Computername,
[string]$ErrorLog
)
$ports = 22,5985,5986
foreach ($computer in $computername) {
foreach ($port in $ports) {
Test-NetConnection -Port $port -ComputerName $Computer |
Select-Object Computername,RemotePort,TCPTestSucceeded
}
#TODO
#better output
#error handling and logging
} #foreach
} #Get-RemoteListeningConfiguration function
Your Task
Go ahead and make this an advanced function, and accomplish the following:
Our Take
Here’s what we came up with. Notice especially the PROCESS{} label addition in the body of the code.
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline = $True, Mandatory = $True)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
#not used
}
Process {
$ports = 22,5985,5986
foreach ($computer in $computername) {
foreach ($port in $ports) {
Test-NetConnection -Port $port -ComputerName $Computer |
Select-Object Computername,RemotePort,TCPTestSucceeded
}
#TODO
#better output
#error handling and logging
} #foreach
}
End {
#not used
}
} #Get-RemoteListeningConfiguration function
We’ve included our solution, to this point, in the code samples for this book (which are available by running Install-Module PowerShell-Toolmaking in PowerShell). You’ll find it in the Chapters folder, under this chapter’s title. To load the module, you’ll need to manually run Import-Module and provide the full path to our .psd1 file on your computer. In the code samples for this chapter, our module name is TMTools-Prelim, to avoid conflicting with the “real” TMTools module that you’re building on your own.
Let’s Review
See if you can answer these questions, to help ensure that you’ve picked up the key facts from this chapter:
Review Answers
Here’s what we came up with:
Emitting Objects as Output
So far, the tool we’ve been building isn’t querying all of the information we originally specified in our design. That was a deliberate decision so that we could get some structure around the tool first. We’ve also held off because once we start querying a bunch of information, we need to take a specific approach to combining it, and we wanted to tackle that approach in a single chapter.
Right now, the “functional” part of our tool looks like this:
Query data
$os = Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName $computername
$cpu = Get-CimInstance win32_processor -ComputerName $computername
$vol = Get-Volume -CimSession $computername -DriveLetter C
The output is currently the collection of all these results. That’s not good design.
The code we have thus far is using Select-Object to create some of the custom properties that we want.
$vol = Get-Volume -CimSession $computername -DriveLetter C |
Select-Object -property @{Name = "PctFreeC";
Expression = {($_.SizeRemaining/$_.size)*100 }}
The problem is that all of the properties or data is spread across multiple results. We need to assemble them into a unified result object.
Assembling the Information
We’re going to move away from using backticks in some places, to keep our code’s column width under the 80 character count that fits well in this book. Instead, we’re going to start using a technique called splatting. With this technique, we construct a hash table whose keys are parameter names, and whose values are the corresponding parameter values. This is also a smart step in our particular case because we’re calling the same command multiple times with only slight parameter variations. Here’s what splatting looks like.
$params = @{ClassName = 'Win32_OperatingSystem'
ComputerName = 'CLIENT1'
}
We are defining a hashtable. You can call it anything you want. Put each parameter on a new line. For switch parameters, assign a value of $True.
$params = @{ClassName = 'Win32_OperatingSystem'
ComputerName = 'CLIENT1'
Verbose = $True
}
You then feed those to the command by prefixing the variable name with @ instead of $:
Get-CimInstance @params
There, now you can tell your family you splatted today ;). So here’s our revised chunk of code that queries the information we need into variables:
foreach ($computer in $Computername) {
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
#TODO: Clean up output
} #foreach $computer
A couple of notes on this snippet. One of the benefits of splatting is that because you are using a hashtable you can modify it on the fly. In this case, all of the calls to Get-CimInstance are using the same computer name. The only thing that is changing is the class name. You can assign a new value by using the dotted notation. And using splatting doesn’t mean you can’t use other parameters. We decided to switch out the Get-Volume command to also use Get-CimInstance. We are splatting the core parameters but also adding a filter parameter.
Constructing and Emitting Output
What we absolutely do not want to do at this point is output text. PowerShell should never use Write-Host for tool output, because that output would be drawn directly on the screen as text. We couldn’t re-use, re-direct, or re-anything that output, which isn’t the point of a reusable tool. Instead, our tools should always output structured data in the form of objects, just like “real” PowerShell commands do. In this case, there is data from 3 different objects. What we’re going to do is create a new, single object and assign property values from the collected data.
You probably noticed the snippet above doesn’t have all of the Select-Object statements to define all the custom properties. That can get a bit clunky especially when you compare it to this.
#Output data
$props = @{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
Again, some notes:
A Quick Test
Running the code snippet for the local machine we get:
FreeMem : 15050452
Uptime : 4.20:30:00.2480806
CPULoad : 8
Processes : 304
PctFreeMem : 45.0038011371357
TotalMem : 33442624
Computername : BOVINE320
PctFreeC : 36.5086482029627
Notice that these properties aren’t in the right order! That’s because we used a normal hash table to construct our property list, and .NET memory-optimizes that storage, which can result in a re-ordering. That’s fine. At this level of a tool, we shouldn’t be worried about what the output looks like - we could always use a Format command, or Select-Object, to specify an order. It is possible to construct an [ordered] hash table instead, but we rarely do so. You’ll see another trick later in the book.
By the way, we deliberately left the memory values in the native format, because it’ll be useful for showing you another trick later.
Here’s our revised code:
Revised Get-TMComputerStatus
Function Get-TMComputerStatus {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline = $True, Mandatory = $True)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
BEGIN {}
PROCESS {
foreach ($computer in $Computername) {
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
$props = @{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*1\
00
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
} #foreach $computer
}
END {}
} #Get-TMComputerStatus
Keep in mind that this is also in the code samples that we’ve mentioned previously.
Your Turn
Let’s turn back to the task at creating getting remote listening configuration. The current output is limited to Select-Object. But that’s about to change!
Start Here
Here’s where we left off with our version of this function:
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline = $True, Mandatory = $True)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
#not used
}
Process {
$ports = 22,5985,5986
foreach ($computer in $computername) {
foreach ($port in $ports) {
Test-NetConnection -Port $port -ComputerName $Computer |
Select-Object Computername,RemotePort,TCPTestSucceeded
}
#TODO
#better output
#error handling and logging
} #foreach
}
End {
#not used
}
} #Get-RemoteListeningConfiguration function
Use that, or your own work from the previous chapter, as a starting point.
Your Task
Modify your function so that it outputs an object for each computer it operates against. The output should include the computer name, the remote IP address that responded, and the date of the test. The primary purpose for this function is to determine what WSMan and SSH ports and/or protocols are enabled. You can assume the standard ports.
Don’t be afraid to restructure or revise the code. Often we start going down one path only to realize we really need to go down a different one.
Our Take
Here’s our version (remember, you can get the actual code file in the downloadable samples).
Get-TMRemoteListeningConfiguration
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline = $True, Mandatory = $True)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
#define a hashtable of ports
$ports = @{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
}
} #begin
Process {
foreach ($computer in $computername) {
$testParams.Computername = $computer
#define the hashtable of properties for
#the custom object
$props = @{
Computername = $computer
Date = Get-Date
}
#enumerate the hashtable
$ports.GetEnumerator() | ForEach-Object {
$testParams.Port = $_.Value
$test = Test-NetConnection @testParams
#add results
$props.Add($_.name, $test.TCPTestSucceeded)
#assume the same remote address will respond to all
#requests
if (-NOT $props.ContainsKey("RemoteAddress")) {
$props.Add("RemoteAddress", $test.RemoteAddress)
}
}
#create the custom object
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
#TODO
#error handling and logging
} #foreach
} #process
End {
#not used
} #end
} #Get-RemoteListeningConfiguration function
Notice a couple of things:
Let’s Review
Here are a few questions you can use to make sure you’ve picked up the key points of this chapter:
Review Answers
Here are our answers:
An Interlude: Changing Your Approach
Let’s take a quick break from the narrative. In the preceding chapters, we’ve focused a lot on building tools that conform to PowerShell’s native patterns and practices. That’s all well and good, but sometimes you can make a point truly hit home by showing its opposite.
Consider this forums post from PowerShell.org, which we’ve referenced with permission from its original author. He posted this code which we’ve reformatted slightly to fit the page:
$UserNames = Get-ADUser -Filter * -SearchBase `
"OU=NAME_OF_OU_WITH_USERS3,OU=NAME_OF_OU_WITH_USERS2,
OU=NAME_OF_OU_WITH_USERS1,DC=DOMAIN_NAME,DC=COUNTRY_CODE"
Select -ExpandProperty samaccountname
$UserRegex = ($UserNames | ForEach{[RegEx]::Escape($_)}) -join "|"
$myArray = (Get-ChildItem -Path "\\file2\Felles\Home*" -Directory |
Where {$_.Name -notmatch $UserRegex})
foreach ($mapper in $myArray) {
#Param ($mapper = $(Throw "no folder name specified"))
calculate folder size and recurse as needed
$size = 0
Foreach ($file in $(ls $mapper -recurse)) {
If (-not ($file.psiscontainer)) {
$size += $file.length
}
}
return the value and go back to caller
echo $size
}
The goal is to list the sizes of each user’s home folder, and to show any “orphan” folders - that is, folders which no longer correspond to an Active Directory user.
The Critique
Now, this isn’t in any way meant as a beat-up on the original author. People learn different things at different times, and arrive at their code through a variety of paths. Let’s just take the code for what it is.
One thing to remember is that, in Windows, folders don’t have a size. We have to instead get all the files within that folder, and add up their sizes.
Our Take
Here’s our first function. Notice that, if a folder doesn’t exist, we’re explicitly outputting an “empty” object.
Get-FolderSize
function Get-FolderSize {
[CmdletBinding()]
Param(
[Parameter(
Mandatory,
ValueFromPipeline,
ValueFromPipelineByPropertyName
)]
[string[]]$Path
)
BEGIN {}
PROCESS {
ForEach ($folder in $path) {
Write-Verbose "Checking $folder"
if (Test-Path -Path $folder) {
Write-Verbose " + Path exists"
#turn the folder into a true FileSystem path
$cPath = Convert-Path $Folder
$params = @{
Path = $cPath
Recurse = $true
File = $true
}
$measure = Get-ChildItem @params |
Measure-Object -Property Length -Sum
[pscustomobject]@{
Path = $cPath
Files = $measure.count
Bytes = $measure.sum
}
}
else {
Write-Verbose " - Path does not exist"
[pscustomobject]@{
Path = $folder
Files = 0
Bytes = 0
}
} #if folder exists
} #foreach
} #PROCESS
END {}
} #function
That’s our first function, and the results end up looking like this:
Path Files Bytes
---- ----- -----
Z:\Documents\GitHub\ToolmakingBook\code 35 44101
Z:\Documents\GitHub\ToolmakingBook\manuscript 55 63679159
Z:\nope 0 0
Obviously, we could pipe that to Select-Object to turn the Byte count into another unit, like megabytes, but we feel it’s important for our tool to output the lowest-level of information possible, to maximize its utility. Notice that we didn’t test this against “home folders” per se; we want this to be a generic folder-size-adding-up function. Later, we’ll write a controller script to put this function to a more specific business use, like summing up user home folder sizes.
Now we’re going to write a second function to deal with orphan folders. This will actually incorporate our Get-FolderSize function. This tool is a bit more task-specific, because it needs to understand our specific need to identify orphaned home folders.
Get-UserHomeFolderInfo
function Get-UserHomeFolderInfo {
[CmdletBinding()]
Param(
[Parameter(Mandatory)]
[string]$HomeRootPath
)
BEGIN {}
PROCESS {
Write-Verbose "Enumerating $HomeRootPath"
$params = @{
Path = $HomeRootPath
Directory = $True
}
ForEach ($folder in (Get-ChildItem @params)) {
Write-Verbose "Checking $($folder.name)"
$params = @{
Identity = $folder.name
ErrorAction = 'SilentlyContinue'
}
$user = Get-ADUser @params
if ($user) {
Write-Verbose " + User exists"
$result = Get-FolderSize -Path $folder.fullname
[pscustomobject]@{
User = $folder.name
Path = $folder.fullname
Files = $result.files
Bytes = $result.bytes
Status = 'OK'
}
}
else {
Write-Verbose " - User does not exist"
[pscustomobject]@{
User = $folder.name
Path = $folder.fullname
Files = 0
Bytes = 0
Status = 'Orphan'
}
} #if user exists
} #foreach
} #PROCESS
END {}
}
Here, we’re taking a root location which contains home folders. We go through them one at a time, and check to see that a corresponding Active Directory user exists. If one doesn’t, we output a “blank” object with an “Orphan” status property. We could easily use Where-Object to filter for just the orphans, so that someone can deal with those. If the user does exist, we use Get-FolderSize to get the size info, and output the same kind of object. This time, the object is fully populated, with an “OK” status.
The idea of writing out the same kind of object, either way, ensures consistent output, and maximizes the reusability of the information. You’ll find this code in the downloadable samples, under this chapter’s folder.
Our functions are far from a complete and production worthy pieces of code. There’s no error handling or parameter validation among other things. They were written to illustrate concepts and patterns. You are welcome to finish these functions off to meet your own production requirements.
Summary
The idea here is to take the task and really break it down. In the original forums post, the source data was “all users in AD,” which created some challenges in finding orphan folders. In our approach, we’ve used the actual list of folders as the source data, and checked each one against Active Directory. That won’t tell us if we have users without home folders, but that wasn’t a stated problem. In reality, we’d expect the users themselves would bring it up to the help desk if they didn’t have a home folder.
We took the one “generic” portion of our task and wrote it out as its own tool - Get-FolderSize. We made sure it was useful on its own, accepting pipeline input and such, even though that’s not how Get-UserHomeFolderInfo actually uses it. We incorporated Verbose output that will make each one a bit easier to follow and debug, if necessary. And, because we’ve used functions, each task is tightly scoped and does just one thing, making each function less complex, easier to debug, and easier to understand and maintain.
Using Verbose, Warning, and Informational Output
A couple of chapters ago, we pointed out that adding [CmdletBinding()] to our Param block would “enable” the output of certain commands for verbose, warning, and informational. Well, it’s time to put that to use.
Knowing the Six Channels
It’s useful to understand that PowerShell has six “channels,” or pipelines, rather than the one that we normally think of.
First up is the Success pipeline, which is the one you’re used to thinking of as just “the pipeline.” This gets some special treatment from the PowerShell engine. For example, it’s the pipeline used to pass objects from command to command. Additionally, at the end of the pipeline, PowerShell sort of invisibly adds the Out-Default cmdlet, which has the effect of running any objects in the pipeline through PowerShell’s formatting system. Whatever hosting application you’re using - the PowerShell console, ISE,VS Code, etc. - is responsible for dealing with that output by placing it onto the screen or something.
But there are five other pipelines:
Those numbers actually correspond with how PowerShell references each pipeline for redirection purposes.
Each pipeline represents a discrete and independent way of passing information. Each hosting application decided how to deal with each pipeline. For example, the console host displays items from pipeline #4 (Verbose) in yellow text, prefixed by “VERBOSE: “. Other hosts might log that output to an event log or ignore it completely.
Additionally, the shell defines several “preference” variables that control the output of each pipeline. $VerbosePreference controls pipeline #4, $WarningPreference controls #3, and so on. Setting a preference to “SilentlyContinue” will suppress that pipeline’s output; setting it to “Continue” will display the output in whatever way the host application defines. The common parameters we described in a previous chapter override the preference variables on a per-command basis. For example, adding -Verbose to your command, when you run it, will enable Write-Verbose output in your command.
Adding Verbose and Warning Output
Verbose output is disabled by default; Warning output is enabled. With that in mind, we tend to do something like the following with those two forms of output:
Get-TMComputerStatus
Function Get-TMComputerStatus {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline = $True, Mandatory = $True)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLogFilePath,
[switch]$ErrorAppend
)
BEGIN {
Write-Verbose "Starting $($myinvocation.mycommand)"
}
PROCESS {
foreach ($computer in $Computername) {
Write-Verbose "Querying $computer"
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
[pscustomobject]@{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
} #foreach $computer
}
END {
Write-Verbose "Ending $($myinvocation.mycommand)"
}
} #Get-TMComputerStatus
Sharp-eyed readers will notice two things:
When you run your command with -Verbose any cmdlets that you call which support -Verbose will also use it.
PS C:\> Get-TMComputerStatus -Computername thinkp1 -Verbose
VERBOSE: Starting Get-TMComputerStatus
VERBOSE: Querying thinkp1
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_Processor'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: Perform operation 'Query CimInstances' with following parameters,
''queryExpression' = SELECT * FROM Win32_logicalDisk WHERE DeviceID='c:',
'queryDialect' = WQL,'namespaceName' = root\cimv2'.
VERBOSE: Operation 'Query CimInstances' complete.
Processes : 220
Computername : THINKP1
FreeMem : 27192868
PctFreeMem : 82.2032500565296
PctFreeC : 54.8739635724224
Uptime : 1.03:13:05.0375303
TotalMem : 33080040
CPULoad : 1
VERBOSE: Ending Get-TMComputerStatus
We also added verbose output in the Begin and End scriptblocks to reflect starting and ending a command. Instead of hard-coding your command name, let PowerShell detect it from the automatic variable $myinvocation. This is a very handy technique when you have functions calling other functions and you are trying to follow the flow of execution.
We haven’t added any warning output yet, because we haven’t a need for it. But we will, eventually - so keep Write-Warning in the back of your brain. Eventually we’ll add statements like this:
Write-Warning "Danger, Will Robinson!"
Doing More With Verbose
If you take a moment to think about it, you’ll realize that incorporating Write-Verbose statements into your tool makes a lot of sense. In fact, we recommend you include the statements from the very beginning. Don’t wait to add them until after you have finished scripting. Add them first! Insert verbose messages throughout your script that highlight what action your command is performing, or the value of key variables. This will help you troubleshoot and debug during the development process because you can run your command with -Verbose. The verbose messages can also double as internal documentation. Finally, if someone is trying to run your tool and encountering problems, you can have them start a transcript, run your command with -Verbose, then close the transcript and send it to you. If you’ve written good verbose messages you’ll be able to track what is happening and hopefully identify the problem.
In fact, you might consider adding Verbose messages like this at the beginning of your command.
Write-Verbose "Execution Metadata:"
Write-Verbose "User = $($env:userdomain)\$($env:USERNAME)"
$id = [System.Security.Principal.WindowsIdentity]::GetCurrent()
$IsAdmin = [System.Security.Principal.WindowsPrincipal]::new($id).IsInRole(
'administrators')
Write-Verbose "Is Admin = $IsAdmin"
Write-Verbose "Computername = $env:COMPUTERNAME"
Write-Verbose "OS = $((Get-CimInstance Win32_Operatingsystem).Caption)"
Write-Verbose "Host = $($host.Name)"
Write-Verbose "PSVersion = $($PSVersionTable.PSVersion)"
Write-Verbose "Runtime = $(Get-Date)"
When executed you’ll get potentially useful information like this:
VERBOSE: Execution Metadata:
VERBOSE: User = BOVINE320\Jeff
VERBOSE: Is Admin = False
VERBOSE: Computername = BOVINE320
VERBOSE: Perform operation 'Enumerate CimInstances' with following
parameters, ''namespaceName' = root\cimv2,'className' =
Win32_Operatingsystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: OS = Microsoft Windows 10 Pro
VERBOSE: Host = Windows PowerShell ISE Host
VERBOSE: PSVersion = 5.1.18362.752
VERBOSE: Runtime = 07/03/2020 15:05:50
Another tip is to add a prefix to each verbose message that indicates what scriptblock is being called.
Get-Foo
Function Get-Foo {
[cmdletbinding()]
Param(
[string]$Computername
)
Begin {
Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
Write-Verbose "[BEGIN] Initializing array"
$a = @()
} #begin
Process {
Write-Verbose "[PROCESS] Processing: $Computername"
code goes here
} #process
End {
Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
} #end Get-Foo
See how there is sort of a “block comment” effect? This makes it easier to know exactly where your command is. Note the use of padded spaces. This is to make the verbose output easy to read.
PS C:\> Get-Foo -Computername FOO -Verbose
VERBOSE: [BEGIN] Starting: Get-Foo
VERBOSE: [BEGIN] Initializing array
VERBOSE: [PROCESS] Processing: FOO
VERBOSE: [END] Ending: Get-Foo
A variation you might consider is including a timestamp. This is especially useful for long running commands.
Get-Bar
Function Get-Bar {
[cmdletbinding()]
Param(
[string]$Computername
)
Begin {
Write-Verbose "[$((Get-Date).TimeOfDay) BEGIN] Starting: $($MyInvocation.M\
ycommand)"
Write-Verbose "[$((Get-Date).TimeOfDay) BEGIN] Initializing array"
$a = @()
} #begin
Process {
Write-Verbose "[$((Get-Date).TimeOfDay) PROCESS] Processing: $Computername"
code goes here
} #process
End {
Write-Verbose "[$((Get-Date).TimeOfDay) END] Ending: $($MyInvocation.Myc\
ommand)"
} #end
} #end Get-Bar
Which will give you verbose output like this:
PS C:\> Get-Bar -Computername foo -Verbose
VERBOSE: [14:01:51.8020007 BEGIN] Starting: Get-Bar
VERBOSE: [14:01:51.8140051 BEGIN] Initializing array
VERBOSE: [14:01:51.8170015 PROCESS] Processing: foo
VERBOSE: [14:01:51.8190054 END] Ending: Get-Bar
There’s really no limit to how you can use Verbose messages. It is up to you to decide what would be useful information.
Informational Output
This new, sixth channel was introduced in PowerShell v5. In fact, PowerShell v5 more or less did away with its original Write-Host cmdlet, and turned Write-Host into a wrapper around Write-Information. The Information stream is a bit different from other pipelines that can carry messages, because it’s designed to carry structured messages. It requires a bit of pre-planning to use well. However, there’s still an $InformationPreference variable which can suppress or allow the output of this stream, and it’s set to SilentlyContinue, or “off,” by default. When you run a command, you can specify -InformationAction Continue to enable that command’s Informational output.
$InformationPreference and -InformationAction are automatically set to “Continue” when you use Write-Host, so that Write-Host behaves as it did in previous versions of PowerShell.
It’s worth noting that Informational output works in PowerShell jobs, scheduled jobs, and workflows, which isn’t the case with most of the other forms of messaging - Verbose, Warning, etc.
On a basic level, using Write-Information isn’t any different than using Write-Verbose. The -MessageData parameter is in the first position, so you’ll often skip using the parameter name and just add whatever message you want to include - same as we just did with Write-Verbose. But messages can also be tagged, usually with a keyword like “information,” “instructions,” or whatever you decide. The information stream can then be searched based on those tags. You can also run commands using the -InformationVariable parameter to have informational messages added to a variable that you designate. This can help keep the information messages from “cluttering up” your normal output.
So, for example:
Get-Example
Function Get-Example {
[CmdletBinding()]
Param()
Write-Information "First message" -tag status
Write-Information "Note that this had no parameters" -tag notice
Write-Information "Second message" -tag status
}
Get-Example -InformationAction Continue -InformationVariable x
Using “Continue” the way we did there makes it apply to all Write-Information commands inside the Example function. And if you run that (in PowerShell 5 or later), you’ll see that the informational messages do indeed appear. Were you to examine $x, you’d find the messages in it, as well. Contrast the above with this:
Get-Example with variable output
function Get-Example {
[CmdletBinding()]
Param()
Write-Information "First message" -tag status
Write-Information "Note that this had no parameters" -tag notice
Write-Information "Second message" -tag status
}
Example -InformationAction SilentlyContinue -IV x
$x
This time, our messages don’t appear, because we used “SilentlyContinue.” However, the commands still run and still work, and if you were to examine $x you’d find all three messages in there. Notice that we shortened -InformationVariable to its -IV alias to save some room. Let’s now go one step further:
Get-Example with filtered output
function Get-Example {
[CmdletBinding()]
Param()
Write-Information "First message" -tag status
Write-Information "Note that this had no parameters" -tag notice
Write-Information "Second message" -tag status
}
Get-Example -InformationAction SilentlyContinue -IV x
$x | Where-Object tags -in @('notice')
In this example, only our second message, “Note that this had no parameters”, will display, because we filtered that out of $x by using the Tags property of the messages.
A Detailed Information Example
Like Verbose output, effectively using the Information channel requires some planning on your part. You have to figure out what needs to be logged and how it might be used and you need to implement your Write-Information commands when creating your tool. Here’s a very simple function we can use to illustrate how you might use Write-Information. You can find a file with these test functions in the code folder for this chapter.
Test-Me
Function Test-Me {
[cmdletbinding()]
Param()
Write-Information "Starting $($MyInvocation.MyCommand) " -Tags Process
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "OS = $((Get-CimInstance Win32_operatingsystem).Caption)" `
-Tags Meta
Write-Verbose "Getting top 5 processes by WorkingSet"
Get-Process | Sort-Object WS -Descending |
Select-Object -first 5 -OutVariable s
Write-Information ($s[0] | Out-String) -Tags Data
Write-Information "Ending $($MyInvocation.MyCommand) " -Tags Process
}
Running the command normally will give you the top 5 processes by working set. Now run it like this:
PS C:\> test-me -InformationAction Continue
Starting Test-Me
PSVersion = 5.1.18362.752
OS = Microsoft Windows 10 Pro
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
0 0 3860 1597352 382.23 3272 0 Memory Compression
273 45 1790192 1307884 1,376.14 4208 1 TabNine
1694 187 739776 618188 438.19 24200 1 firefox
2111 182 539468 516704 1,946.97 976 1 firefox
1906 67 844212 362408 7,494.30 1460 1 dwm
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
0 0 3860 1597352 382.23 3272 0 Memory Compression
Ending Test-Me
By setting the common parameter, -InformationAction to Continue this “turned on” the information channel which also displays the information. This can be useful when building your messages and you want to see how what they will do.
Next, run the command using the -InformationVariable parameter.
PS C:\> test-me -InformationVariable inf
This time you won’t get the information messages, because the command is running with the default “SilentlyContinue” setting for information messages, suppressing them. Instead, they will be directed to the variable inf.
PS C:\> $inf
Starting Test-Me
PSVersion = 5.1.18362.752
OS = Microsoft Windows 10 Pro
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
0 0 3860 1596064 382.27 3272 0 Memory Compression
Ending Test-Me
What you get back is a very rich object:
PS C:\> $inf | Get-Member
TypeName: System.Management.Automation.InformationRecord
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Computer Property string Computer {get;set;}
ManagedThreadId Property uint32 ManagedThreadId {get;set;}
MessageData Property System.Object MessageData {get;}
NativeThreadId Property uint32 NativeThreadId {get;set;}
ProcessId Property uint32 ProcessId {get;set;}
Source Property string Source {get;set;}
Tags Property System.Collections.Generic.List[string] Tags...
TimeGenerated Property datetime TimeGenerated {get;set;}
User Property string User {get;set;}
Which means you can work with the data however you’d like.
PS C:\> $inf.where({$_.tags -contains 'meta'}) | select Computer,MessageData
Computer MessageData
-------- -----------
BOVINE320 PSVersion = 5.1.18362.752
BOVINE320 OS = Microsoft Windows 10 Pro
The key takeaway is that if your command doesn’t have any Write-Information commands, then the information parameters are irrelevant.
However, as we mentioned earlier, beginning with PowerShell 5.05, Write-Host was re-factored to be a conduit for Write-Information. Check this revised version of the function.
Test-Me2
Function Test-Me2 {
[cmdletbinding()]
Param()
Write-Host "Starting $($MyInvocation.MyCommand) " -fore green
Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -fore green
Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)" `
-fore green
Write-Verbose "Getting top 5 processes by WorkingSet"
Get-Process | Sort-Object -property WS -Descending |
Select-Object -first 5 -OutVariable s
Write-Host ($s[0] | Out-String) -fore green
Write-Host "Ending $($MyInvocation.MyCommand) " -fore green
}
One benefit of using Write-Host is the ability to colorize the output. Unfortunately even if you run the command like this:
test-me2 -InformationVariable inf2
You will get the information output saved to $inf2. But you’ll also get the informational messages written to the host in green. This may not be desirable. This technique also loses the ability to add tags.
Here’s one final version that is more a proof of concept than anything.
Test-Me3
Function Test-Me3 {
[cmdletbinding()]
Param()
if ($PSBoundParameters.ContainsKey("InformationVariable")) {
$Info = $True
$infVar = $PSBoundParameters["InformationVariable"]
}
if ($info) {
Write-Host "Starting $($MyInvocation.MyCommand) " -fore green
(Get-Variable $infVar).value[-1].Tags.Add("Process")
Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -fore green
(Get-Variable $infVar).value[-1].Tags.Add("Meta")
Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)" `
-fore green
(Get-Variable $infVar).value[-1].Tags.Add("Meta")
}
Write-Verbose "Getting top 5 processes by WorkingSet"
Get-Process | Sort-Object WS -Descending |
Select-Object -first 5 -OutVariable s
if ($info) {
Write-Host ($s[0] | Out-String) -fore green
(Get-Variable $infVar).value[-1].Tags.Add("Data")
Write-Host "Ending $($MyInvocation.MyCommand) " -fore green
(Get-Variable $infVar).value[-1].Tags.Add("Process")
}
}
This function tests to see if -InformationVariable was specified and if so a variable ($Info) is switch on. When information is needed via Write-Host, if $Info is true, then the Write-Host lines are called. Immediately after each line a tag is added to the information variable.
test-me3 -InformationVariable inf3
This will display the information messages in green and generate the information variable.
PS C:\> $inf3 | Group-object {$_.tags -join "-"}
Count Name Group
----- ---- -----
2 PSHOST-Process {Starting Test-Me3 , Ending Test-Me3 }
2 PSHOST-Meta {PSVersion = 5.1.18362.752, OS = Mi...}
1 PSHOST-Data {...
Before we move on, don’t forget that the information variables are just another type of object. You could export the variable using Export-Clixml, store the results in a database, or create a custom text log file from the different properties.
Verbose output is still a good choice when you’re using PowerShell versions prior to 5. Once you’re using 5, however, it may make sense to start migrating to Information messages instead, given their flexibility, tags, and searchability. For now, because we’re aiming for greater compatibility, we’re sticking with verbose output in our example.
Your Turn
As you might imagine, you’re going to add some verbose output to the tool designed to get remote listening configurations.
Start Here
Here’s where we left off after the last round of revisions. You can start here (or use our code sample from the download), or start with your result from the earlier chapter.
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline = $True, Mandatory = $True)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
#define a hashtable of ports
$ports = @{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
}
} #begin
Process {
foreach ($computer in $computername) {
$testParams.Computername = $computer
#define the hashtable of properties for
#the custom object
$props = @{
Computername = $computer
Date = Get-Date
}
#enumerate the hashtable
$ports.GetEnumerator() | ForEach-Object {
$testParams.Port = $_.Value
$test = Test-NetConnection @testParams
#add results
$props.Add($_.name, $test.TCPTestSucceeded)
#assume the same remote address will respond to all
#requests
if (-NOT $props.ContainsKey("RemoteAddress")) {
$props.Add("RemoteAddress", $test.RemoteAddress)
}
}
#create the custom object
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
#TODO
#error handling and logging
} #foreach
} #process
End {
#not used
} #end
} #Get-RemoteListeningConfiguration function
Your Task
Add some meaningful verbose output to your tool. If you see an opportunity to add warning output, feel free to add that as well.
Our Take
Here’s what we came up with:
Get-TMRemoteListeningConfiguration
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline,Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
#define a private function to write the verbose messages
Function WV {
Param($prefix,$message)
$time = Get-Date -f HH:mm:ss.ffff
Write-Verbose "$time [$($prefix.padright(7,' '))] $message"
}
WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"
#define a ordered hashtable of ports so that the testing
#goes in the same order
$ports = [ordered]@{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
WarningAction = "SilentlyContinue"
WarningVariable = "wv"
}
#keep track of total computers tested
$total=0
#keep track of how long testing takes
$begin = Get-Date
} #begin
Process {
foreach ($computer in $computername) {
$total++
#make the computername all upper case
$testParams.Computername = $computer.ToUpper()
WV PROCESS "Testing $($testParams.Computername)"
#define the hashtable of properties for the custom object
$props = [ordered]@{
Computername = $testparams.Computername
Date = Get-Date
}
#this array will be used to store passed ports
#It is used by Write-Information
$passed = @()
#enumerate the hashtable
$ports.GetEnumerator() | ForEach-Object {
$testParams.Port = $_.Value
WV "PROCESS" "Testing port $($testparams.port)"
$test = Test-NetConnection @testParams
WV PROCESS "Adding results"
$props.Add($_.name, $test.TCPTestSucceeded)
if ($test.TCPTestSucceeded) {
$passed+=$testParams.Port
}
if (-NOT $props.Contains("RemoteAddress")) {
wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"
$props.Add("RemoteAddress", $test.RemoteAddress)
}
}
Write-Information "$($testParams.Computername) = $($passed -join ',')" `
-Tags data
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
#TODO: error handling and logging
} #foreach
} #process
End {
$runtime = New-TimeSpan -Start $begin -End (Get-Date)
WV END "Processed $total computer(s) in $runtime"
WV END "Ending $($myinvocation.mycommand)"
} #end
} #Get-TMRemoteListeningConfiguration function
Here are a few highlights of the changes we made.
Let’s Review
See if you can answer these questions:
Review Answers
Here are our answers:
Comment-Based Help
One of the things we all love about PowerShell is its help system. Like Linux’ “MAN” pages, PowerShell’s help files can provide a wealth of information, examples, instructions, and more. So we definitely want to provide help with the tools we create - and you should, too. You’ve got two ways of doing so. First, write “full” PowerShell help. That consists of external, XML-formatted “MAML” (Microsoft Assistance Markup Language) files, which can even include versions for different languages. We’ll show you how to do that in the next Part of this book. For now, we’re instead going to use the simpler, single-language comment-based help that lives right inside your function.
Where to Put Your Help
There are three “legal” places where PowerShell will look for your specially formatted comments, in order to turn them into help displays:
Getting Started
Let’s just dive in with a completed example using the Get-TMComputerStatus example.
Get-MachineInfo
Function Get-TMComputerStatus {
<#
.SYNOPSIS
Get computer status information.
.DESCRIPTION
This command retrieves system information from one or more remote computers
using Get-CimInstance. It will write a summary object to the pipeline for
each computer. You also have the option to log errors to a text file.
.PARAMETER Computername
The name of the computer to query.
.PARAMETER ErrorLog
The path to the error text file. This is not implemented yet.
.PARAMETER ErrorAppend
Append errors to the error file. This is not implemented yet.
.EXAMPLE
PS C:\> Get-TMComputerstatus -computername SRV1
#>
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLog,
[switch]$ErrorAppend
)
BEGIN {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
Write-Verbose "Starting $($myinvocation.mycommand)"
}
PROCESS {
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
[pscustomobject]@{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
} #foreach $computer
}
END {
Write-Verbose "Starting $($myinvocation.mycommand)"
}
} #Get-TMComputerStatus
The help here reflects what we believe is the bare minimum for inclusion in the race of Upright Human Beings. Some notes:
Here’s a slightly revised and “prettier” help block.
<#
.SYNOPSIS
Get computer status information.
.DESCRIPTION
This command retrieves system information from one or more remote computers
using Get-CimInstance. It will write a summary object to the pipeline for
each computer. You also have the option to log errors to a text file.
.PARAMETER Computername
The name of the computer to query. This parameter has aliases of
CN, Machine and Name.
.PARAMETER ErrorLog
The path to the error text file. This is not implemented yet.
.PARAMETER ErrorAppend
Append errors to the error file. This is not implemented yet.
.EXAMPLE
PS C:\> Get-TMComputerStatus -computername SRV1
Computername : SRV1
TotalMem : 33080040
FreeMem : 27384236
Processes : 218
PctFreeMem : 82.7817499616083
Uptime : 11.06:23:52.7176115
CPULoad : 2
PctFreeC : 54.8730920184876
Get the status of a single computer
.EXAMPLE
PS C:\> Get-Content c:\work\computers.txt | Get-TMComputerStatus |
Export-CliXML c:\work\data.xml
Pipe each computer name from the computers.txt text file to this
command. Results are immediately exported to an XML file using
Export-CliXML.
#>
As we wrote, these elements are the bare minimum. You can do more. A lot more.
Going Further with Comment-Based Help
You can use an .INPUTS section to list .NET class types, one per line, that your command accepts as input from the pipeline.
.INPUTS
System.String
Similarly, .OUTPUTS lists the type names that your script outputs. Because ours presently only outputs a generic PSObject, there’s not much point in listing anything.
A .NOTES section can list additional information, which is only displayed when the “full” help is requested by the user.
.NOTES
version : 1.0.0
last updated: 1 June, 2020
A .LINK, followed by a topic name or a URL, will show up as a “Related Topic” in the help. Use one .LINK keyword for each related topic; don’t put multiples under a single .LINK.
.LINK
https://powershell.org/forums/
.LINK
Get-CimInstance
There’s more, too - read the about_comment_based_help topic in PowerShell for the full list. A few of them, you’ll see us include in upcoming chapters, as we add functionality that pertains to those help keywords. So be on the lookout.
Broken Help
PowerShell’s a little bit picky - okay, a lot bit picky - about help formatting and syntax. Get just one thing wrong, and none of the help will work AND you’ll get no error message or explanation. So if you’re not getting the help display you expect, go review your help keyword spelling, period locations, and other details very carefully.
Your Turn
Time to add some comment-based help to your function.
Start Here
Here’s where we left off after the most recent chapter. You can use this as a starting point, or use your own result from that chapter:
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline,Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
#define a private function to write the verbose messages
Function WV {
Param($prefix,$message)
$time = Get-Date -f HH:mm:ss.ffff
Write-Verbose "$time [$($prefix.padright(7,' '))] $message"
}
WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"
#define a ordered hashtable of ports so that the testing
#goes in the same order
$ports = [ordered]@{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
WarningAction = "SilentlyContinue"
WarningVariable = "wv"
}
#keep track of total computers tested
$total=0
#keep track of how long testing takes
$begin = Get-Date
} #begin
Process {
foreach ($computer in $computername) {
$total++
#make the computername all upper case
$testParams.Computername = $computer.ToUpper()
WV PROCESS "Testing $($testParams.Computername)"
#define the hashtable of properties for the custom object
$props = [ordered]@{
Computername = $testparams.Computername
Date = Get-Date
}
#this array will be used to store passed ports
#It is used by Write-Information
$passed = @()
#enumerate the hashtable
$ports.GetEnumerator() | ForEach-Object {
$testParams.Port = $_.Value
WV "PROCESS" "Testing port $($testparams.port)"
$test = Test-NetConnection @testParams
WV PROCESS "Adding results"
$props.Add($_.name, $test.TCPTestSucceeded)
if ($test.TCPTestSucceeded) {
$passed+=$testParams.Port
}
if (-NOT $props.Contains("RemoteAddress")) {
wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"
$props.Add("RemoteAddress", $test.RemoteAddress)
}
}
Write-Information "$($testParams.Computername) = $($passed -join ',')" `
-Tags data
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
#TODO: error handling and logging
} #foreach
} #process
End {
$runtime = New-TimeSpan -Start $begin -End (Get-Date)
WV END "Processed $total computer(s) in $runtime"
WV END "Ending $($myinvocation.mycommand)"
} #end
} #Get-TMRemoteListeningConfiguration function
Your Task
Add, at a minimum, the following to your tool:
Import your module and test your help (Help Get-TMRemoteListeningConfiguration -ShowWindow, for example) to make sure it works.
Our Take
Here’s the help we came up with. As always, you’ll find this in the code downloads, under this chapter’s folder.
Get-TMRemoteListeningConfiguration Help
Function Get-TMRemoteListeningConfiguration {
<#
.Synopsis
Test remote listening ports.
.Description
This command will be used to test the network listening configuration on one
or more remote computers. It will test if standard PowerShell remoting is
enabled on both ports 5985 and 5986. It will also test if SSH is enabled on
port 22.
Because the command is testing at the network layer, you do not need to use
any credentials.
.Parameter Computername
Specify the name of IP address of a remote computer.
.Parameter ErrorLog
Specify the path to a text file to log errors. This feature is still in
development.
.Example
PS C:\> Get-TMRemoteListeningConfiguration -Computername srv1
Computername : SRV1
Date : 7/28/2020 5:13:57 PM
WSManHTTP : True
RemoteAddress : 192.168.3.50
WSManHTTPS : False
SSH : False
Get configuration information for a single computer.
.Example
PS C:\> Get-Content c:\work\computers.txt | Get-TMRemoteListeningConfiguration | Exp\
ort-CSV c:\work\results.csv -NoTypeinformation
Get remote listening information for every computer in the computers.txt file and
export results to a CSV file.
.Inputs
System.String
.Link
Test-NetConnection
#>
Let’s Review
Let’s make sure you picked up on a couple of key points from this chapter:
Review Answers
Here are our answers to the review questions:
Handling Errors
We have a lot of functionality yet to write in the tool we’ve been building, and we’ve been deferring a lot of it to this point. In this chapter, we’ll focus on how to capture, deal with, log, and otherwise “handle” errors that our tool may encounter. As a note, PowerShell.org offers a free eBook, The Big Book of PowerShell Error Handling, which dives into this topic from a more technical reference perspective. We recommend checking it out, once you’ve completed this tutorial-focused chapter.
Understanding Errors and Exceptions
PowerShell defines two broad types of “bad situation:” an error and an exception. Because most PowerShell commands are designed to deal with multiple things at once, and because in many cases a problem with one thing doesn’t mean you want to stop dealing with all the other things, PowerShell tries to err on the side of, “just keep going.” So, often times, when something goes wrong in a command, PowerShell will emit an error and keep going. For example:
Get-Service -Name BITS,Foo,WinRM
There’s no service named “Foo,” and so PowerShell will emit an error on that second item. But by default, PowerShell will keep going and process the third item in the list. When PowerShell is in this “keep going” mode, you cannot have your code respond to the problem condition. So, if you want to do something about the problem, you have to change PowerShell’s behavior to this kind of non-terminating error.
At a global level, PowerShell defines a $ErrorActionPreference variable, which tells PowerShell what to do in the event of a non-terminating error. This variable tells PowerShell what to do when a problem comes up, but PowerShell is able to keep going. The default value for this variable is “Continue”. The options are:
Check out the help topic about_preference_variables.
Rather than changing $ErrorActionPreference at the scope level, you’ll typically want to specify a behavior on a per-command basis. You can do this using the -ErrorActionPreference common parameter, or its alias -EA, that exists on each and every PowerShell command - even the ones you write yourself when you include [CmdletBinding[].
For example, try running these commands and note the different behaviors:
Get-Service -Name BITS,Foo,WinRM -EA Continue
Get-Service -Name BITS,Foo,WinRM -EA SilentlyContinue
Get-Service -Name BITS,Foo,WinRM -EA Inquire
Get-Service -Name BITS,Foo,WinRM -EA Stop
The thing to remember is that you can’t handle exceptions in your code unless PowerShell actually generates an exception. Most commands won’t generate an exception unless you run them with the “Stop” error action. One of the biggest mistakes people make is forgetting to add -EA Stop to a command that they want to properly handle when something goes wrong.
Bad Handling
There are two fundamentally bad practices that we see people engaging in. Now, these aren’t always always always bad, but they’re usually bad, so we want to bring them to your attention.
First up is globally setting $ErrorActionPreference='SilentlyContinue' right at the top of a script. In the days of VBScript people used On Error Resume Next. This is essentially saying, “I don’t want to know if anything’s wrong with my code.” People will do this in a misguided attempt to suppress possible errors that they know won’t matter. For example, attempting to delete a file which does not exist will cause an error - but you probably don’t care, because “mission accomplished” either way, right? But to suppress that unwanted error, you should be using -EA SilentlyContinue on the Remove-Item command, not globally suppressing all errors in your script.
The other bad practice is a bit more subtle, and can come up in the same situation. Suppose you do run Remove-Item with -EA SilentlyContinue, and then suppose you try to delete a file that does exist, but that you simply don’t have permission to. You’ll be suppressing the error, and wondering while the file still exists. So before you just start suppressing errors, make sure you’ve really thought it through. Nothing is more vexing than spending hours debugging a script, simply because you suppressed an error message that would have told you right where the problem was.
Two Reasons for Exception Handling
There are two very broad reasons to handle exceptions in your code. Oh, notice that we’re using their official name, exceptions, to differentiate from the non-handle-able errors that we wrote of previously.
Reason one is that you plan to run your tool out of your view. Perhaps it’s a scheduled task, or perhaps you’re writing tools that will be used by remote customers. In other case, you want to make sure that you have some evidence for any problems that occur, to help you with your debugging. In this scenario, you might globally set $ErrorActionPreference to “Stop” at the top of your script, and wrap your entire script in an error-handling construct. That way, any errors, even unanticipated ones, can be trapped and logged for diagnostic purposes. While this is a very valid scenario, it isn’t the one we’re going to focus on in this book.
We’ll focus on reason two, which is that you’re running a command where you can anticipate a certain kind of problem occurring, and you want to actively deal with that problem. This might be a failure to connect to a computer, a failure to log on to something, or some other scenario along those lines. So let’s dig into that with the tool we’ve been building.
Handling Exceptions in Our Tool
In the tool we’ve been building to get computer status information, we can anticipate the Get-CimInstance command running into problems, either should a computer simply be offline or nonexistent. We want to handle that condition and, depending on the parameters we were run with, log the failed computer name to a text file So we’ll start by focusing on the command that could cause the problem, and make sure that it’ll generate a terminating exception if it runs into trouble. We’ll change this:
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
}
$OS = Get-CimInstance @params
Into this:
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
ErrorAction = "Stop"
}
$OS = Get-CimInstance @params
Now, it’s hugely important to notice that we’ve already constructed our command so that it’s only ever attempting to connect to one computer at a time. That happens by means of our ForEach loop. Any time you’re going to be handling errors, it’s crucial that you construct things so that only one thing can fail at a time. That’s because we’re telling PowerShell to not continue. Were we to attempt five computers at once, a failure in any of them would result in the rest of them never being attempted. Make sure you understand why this design principle is so important!
Simply changing the error action to “Stop” isn’t enough, though. We also need to wrap our code in a Try/Catch construct. If an exception occurs in the Try block, then the entire rest of the Try block will be skipped, and the Catch block will execute instead. So the PROCESS{} block of our function begins looks like this:
PROCESS {
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
ErrorAction = "Stop"
}
Try {
$OS = Get-CimInstance @params
$OK = $True
}
Catch {
$OK = $False
#exception handling code...
}
...
The idea here is that, should a problem happen with Get-CimInstance, then everything else gets abandoned. That should make sense. If the first time Get-CimInstance is run it fails, there’s no reason to attempt to get the other data. If that one thing goes wrong, we need to quit.
Now let’s focus on what we’ll do if an error - sorry, an exception - does occur:
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
ErrorAction = "Stop"
}
Try {
$OS = Get-CimInstance @params
$OK = $True
}
Catch {
$OK = $False
$msg = "Failed to get system information from $computer. `
$($_.Exception.Message)"
Write-Warning $msg
if ($ErrorLog) {
Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"
"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend
}
}
if ($OK) {
#only continue if successful
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
...
First, we apologize if some of that wraps - remember, if you see a backslash in the last column is an indicator that the formatter for the book couldn’t fit everything into the printed page width.. As always, the code’s available in the downloads - so grab that for an un-wrapped version!
Anyway, here’s what’s happening.
Technically, the other Get-CimInstance commands could also be wrapped in Try/Catch but that felt like overkill. Assuming we didn’t misspell anything, if we have access and the computer is online, they should work. The other option is to move all of Get-Ciminstance commands into theTry block and use the same Catch block to handle all errors. This is a bit of complex logic - so go through it a few times and make sure you understand it!
Handling Exceptions for Non-Commands
What if you’re running something - like a .NET Framework method - that doesn’t have an -ErrorAction parameter? Well, in most cases, you can just run them in a Try block as-is, because most of them will throw trappable, terminating exceptions if something goes wrong. The “non-terminating exception” thing is kind of unique to PowerShell commands, like functions and cmdlets.
However, you still may have instances when you need to do this:
Try {
$ErrorActionPreference = "Stop"
run something that doesn't have -ErrorAction
$ErrorActionPreference = "Continue"
} Catch {
...
}
This is your error handling of last resort. Basically, we’re temporarily modifying $ErrorActionPreference for the duration of the one command (or whatever) we want to trap an exception for. This isn’t at all a common situation in our experience, but we figured we’d point it out.
Going Further with Exception Handling
It’s possible to have multiple Catch blocks after a given Try block, with each Catch dealing with a specific type of exception. For example, if a file deletion failed, you could react differently for a “File Not Found” or an “Access Denied” situation. To do this, you’ll need to know the .NET Framework type name of each exception you want to call out separately. The Big Book of PowerShell Error Handling has a list of common ones, and advice for figuring these out (e.g., generating the error on your own in an experiment, and then figuring out what the exception type name was). Broadly, the syntax looks like this:
Try {
something here generates an exception
} Catch [Exception.Type.One] {
deal with that exception here
} Catch [Exception.Type.Two] {
deal with the other exception here
} Catch {
deal with anything else here
} Finally {
run something else
}
Also shown in that example is the optional Finally block, which will always run after the Try or the Catch, whether an exception occurs or not.
Deprecated Exception Handling
You may, in your Internet travels, run across a Trap construct in PowerShell. This dates back to v1, when the PowerShell team frankly didn’t have time to get Try/Catch working, and Trap was the best short-term fix they could come up with. Trap is deprecated, meaning that it’s left in the product for backward compatibility, but you’re not intended to use it in newly written code. For that reason, we’re not covering it here. It does have some uses for global, “I want to catch and log any possible error” situations, but Try/Catch is considered a more structured, professional approach to exception handling, and we recommend you stick with it.
Your Turn
It’s time to deal with errors in your code.
Start Here
This is where we left off at the end of the previous chapter; you can use this as a starting point, or use your own results from that chapter.
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline,Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
#define a private function to write the verbose messages
Function WV {
Param($prefix,$message)
$time = Get-Date -f HH:mm:ss.ffff
Write-Verbose "$time [$($prefix.padright(7,' '))] $message"
}
WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"
#define a ordered hashtable of ports so that the testing
#goes in the same order
$ports = [ordered]@{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
WarningAction = "SilentlyContinue"
WarningVariable = "wv"
}
#keep track of total computers tested
$total=0
#keep track of how long testing takes
$begin = Get-Date
} #begin
Process {
foreach ($computer in $computername) {
$total++
#make the computername all upper case
$testParams.Computername = $computer.ToUpper()
WV PROCESS "Testing $($testParams.Computername)"
#define the hashtable of properties for the custom object
$props = [ordered]@{
Computername = $testparams.Computername
Date = Get-Date
}
#this array will be used to store passed ports
#It is used by Write-Information
$passed = @()
#enumerate the hashtable
$ports.GetEnumerator() | ForEach-Object {
$testParams.Port = $_.Value
WV "PROCESS" "Testing port $($testparams.port)"
$test = Test-NetConnection @testParams
WV PROCESS "Adding results"
$props.Add($_.name, $test.TCPTestSucceeded)
if ($test.TCPTestSucceeded) {
$passed+=$testParams.Port
}
if (-NOT $props.Contains("RemoteAddress")) {
wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"
$props.Add("RemoteAddress", $test.RemoteAddress)
}
}
Write-Information "$($testParams.Computername) = $($passed -join ',')" `
-Tags data
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
#TODO: error handling and logging
} #foreach
} #process
End {
$runtime = New-TimeSpan -Start $begin -End (Get-Date)
WV END "Processed $total computer(s) in $runtime"
WV END "Ending $($myinvocation.mycommand)"
} #end
} #Get-TMRemoteListeningConfiguration
Your Task
Your job is to add error handling to your tool. This might be a bit trickier than you realize. How errors are handled is also part of the cmdlet design. Get-Service behaves one way if you give it a bad name. But if you give Test-NetConnection a bad name, that doesn’t mean there is an error as far as the cmdlet is concerned. Rather, the test simply fails. You may want to capture the warning messages and generate our own “exceptions”. Or modify the function to use additional commands.
Our Take
Here’s what we came up with.
Get-TMRemoteListeningConfiguration
Function Get-TMRemoteListeningConfiguration {
<#
.Synopsis
Test remote listening ports.
.Description
This command will be used to test the network listening configuration on one
or more remote computers. It will test if standard PowerShell remoting is
enabled on both ports 5985 and 5986. It will also test if SSH is enabled on
port 22.
Because the command is testing at the network layer, you do not need to use
any credentials.
.Parameter Computername
Specify the name of IP address of a remote computer.
.Parameter ErrorLog
Specify the path to a text file to log errors. Entries will be automatically
appended. Make sure the folder location exists.
.Example
PS C:\> Get-TMRemoteListeningConfiguration -Computername srv1
Computername : SRV1
Date : 7/28/2020 5:13:57 PM
WSManHTTP : True
RemoteAddress : 192.168.3.50
WSManHTTPS : False
SSH : False
Get configuration information for a single computer.
.Example
PS C:\> Get-Content c:\work\computers.txt | Get-TMRemoteListeningConfiguration -erro\
rlog c:\work\tmerrors.txt | Export-CSV c:\work\results.csv -NoTypeinformation
Get remote listening information for every computer in the computers.txt file and
export results to a CSV file. Any errors will be logged to c:\work\tmerrors.txt.
.Inputs
System.String
.Link
Test-NetConnection
#>
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string[]]$Computername,
[string]$ErrorLog
)
Begin {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
#define a private function to write the verbose messages
Function WV {
Param($prefix, $message)
$time = Get-Date -f HH:mm:ss.ffff
Write-Verbose "$time [$($prefix.padright(7,' '))] $message"
}
WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"
if ($errorlog) {
WV BEGIN "Errors will be logged to $ErrorLog"
$outParams = @{
FilePath = $ErrorLog
Encoding = "ascii"
Append = $True
ErrorAction = "stop"
}
}
#define a ordered hashtable of ports so that the testing
#goes in the same order
$ports = [ordered]@{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
WarningAction = "SilentlyContinue"
#changed variable to not be confusing with helper function
WarningVariable = "warn"
}
#keep track of total computers tested
$total = 0
#keep track of how long testing takes
$begin = Get-Date
} #begin
Process {
foreach ($computer in $computername) {
#assume the computer can be reached
$ok = $True
$total++
#make the computername all upper case
$testParams.Computername = $computer.ToUpper()
WV PROCESS "Testing $($testParams.Computername)"
#define the hashtable of properties for the custom object
$props = [ordered]@{
Computername = $testparams.Computername
Date = Get-Date
}
#this array will be used to store passed ports
#It is used by Write-Information
$passed = @()
#enumerate the hashtable
foreach ($item in $ports.GetEnumerator()) {
$testParams.Port = $item.Value
WV "PROCESS" "Testing port $($testparams.port)"
$test = Test-NetConnection @testParams
if ($warn -match "Name resolution of $($testParams.computername) failed"\
) {
$msg = "[$(Get-Date)] $warn"
if ($ErrorLog) {
Try {
$msg | Out-File @outParams
}
Catch {
Write-Warning "Failed to log error. $($_.exception.message)"
}
} #if errorlog
$ok = $False
#break out of the ForEach loop
break
}
WV PROCESS "Adding results"
$props.Add($item.name, $test.TCPTestSucceeded)
if ($test.TCPTestSucceeded) {
$passed += $testParams.Port
}
if (-NOT $props.Contains("RemoteAddress")) {
wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"
$props.Add("RemoteAddress", $test.RemoteAddress)
}
} #foreach port
if ($ok) {
WV PROCESS "Generating an object for $($testparams.computername)"
Write-Information "$($testParams.Computername) = $($passed -join ',')" -\
Tags data
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
}
} #foreach computer
} #process
End {
$runtime = New-TimeSpan -Start $begin -End (Get-Date)
WV END "Processed $total computer(s) in $runtime"
#display a warning if errors would captured
if (Test-Path -Path $ErrorLog) {
Write-Warning "Errors were detected. See $ErrorLog."
}
WV END "Ending $($myinvocation.mycommand)"
} #end
} #Get-TMRemoteListeningConfiguration
Again, apologies for any word-wrapping in there (indicated by backslashes); consult the downloadable code samples for a well-formatted version.
In our solution we’re using the warning variable to test if something went wrong. In this function, the only thing that can really go wrong is if Test-NetConnection can’t resolve the computername. We’re expecting warnings for closed ports. We didn’t use a cmdlet like this Resolve-DNSName because that doesn’t indicate the computer is online. Nor is pinging reliable as firewall rules might prevent ICMP traffic.
One of the major changes we made was to switch from using ForEach-Object when processing each port to using a ForEach construct. We did this so that if the warning variable matches the name resolution error, we can log it and then break out of the loop. It makes no sense to test any other ports. If there is a matching warning this is where we can insert the logging mechanism. In the End block we’ve even added a bit of code to let the user know if errors were logged. For the sake of demonstration, we used a Try/Catch block for Out-File. Another option would be to use a [ValidateScript()] attribute on the ErrorLog parameter and test if the location exists and can be written to.
Let’s Review
Try answering these questions to see if you picked up the main points of this chapter:
Review Answers
Here are our answers:
Basic Debugging
Debugging is pretty much the bane of everyone’s existence. This chapter is designed to get you started with the core debugging concepts and tools in PowerShell. We’ll revisit this topic in an upcoming chapter and expand into nittier, grittier techniques and tools.
Two Kinds of Bugs
There are two kinds of software bugs on this big blue marble we all live on. The first kind of bug is the easiest: syntax. This is literally where you mistype something, your script won’t run, and you get a helpful error message telling you where the bug is. Funny thing is, so many people don’t read the helpful error messages! It’s probably because they’re red and scary, so in the PowerShell console you can do this:
$host.privatedata.errorforegroundcolor = 'green'
Now your errors will “feel” better and you will read them!. The PowerShell ISE and VS Code, with their red-squiggly underlines and color-coding, also make it easier to spot syntax errors. Tab completion can make it easier to avoid syntax errors, and frankly you should be doing this all the time anywayt. Generally, these bugs are the simplest to squash, and so we will speak no more of them.
Bug Species Two is a lot harder: the logic bug. This is where your script runs, probably without error, but it doesn’t do what you tell it to. Or, you get errors that make no darn sense, like a “illegal computer name” when you know perfectly well you’ve provided a legal computer name. That kind of thing. This is the kind of bug on which we will focus this chapter.
Logic bugs come from one basic source: bad assumptions.
Basically, you assumed one thing was happening, but it wasn’t, so bug.
The Ultimate Goal of Debugging
The ultimate goal of debugging, then, is to find out where your assumptions were wrong. Where does code execution diverge from your expectations. That means two things are needed:
We’re going to spend a lot of time in this chapter, and again in a more advanced debugging chapter, covering that second bit - tools. But before we do that, we’d like to run you through an exercise to really demonstrate what we’re talking about with that first bit - assumptions.
Developing Assumptions
Take a look at the following script. Read through it. In detail. At each and every line of code, ask yourself what is this going to do? What will be the result? and actually write that down on a piece of paper. Seriously, this is a good exercise - get some paper and do this. Write down all the variables, and what you think they contain. As that changes, lightly cross out your old value and write down the new one. When the script uses a property of some kind, from an object, write down what you think that contains, too. Don’t run any of this code. If you don’t know what a command does, that’s fine - look up its help in PowerShell or online (use a search engine to look up the command name). Read the help, and make a guess at what the command does or is producing.
If you don’t do this little exercise, we can’t teach you debugging. Don’t skip this. And no, we did not include this in the downloadable code because we want you looking at it here, not cheating and running it.
Here’s your code:
Get-DriveInfo
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(Mandatory,ValueFromPipelineByPropertyName)]
[string[]]$ComputerName
)
PROCESS {
ForEach ($comp in $ComputerName) {
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession = $session
ClassName = 'Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
if ($drives.DriveType -notlike '*optical*') {
[pscustomobject]@{
ComputerName = $comp
Letter = $drives.deviceid
Size = $drives.size
Free = $drives.freespace
}
}
} #foreach
} #process
} #function
This command is intended to produce a list of drives, including size and free space, for all non-optical drives (e.g., no DVD drives) in the system. It doesn’t work. With your set of assumptions in hand, let’s start looking at some debugging tools.
Debugging Tool 1: Write-Debug
This is the first and perhaps easiest tool to use, especially in a very short script like this one. You just drop some Write-Debug commands in key places, much as you would use Write-Verbose. When you run your function, which must include [CmdletBinding()] as this one does, each Write-Debug statement will give you a chance to stop and examine your script. We like to include them at each point where something changes, or where the script is about to take a logical branching. So:
Step1.ps1
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(Mandatory, ValueFromPipelineByPropertyName)]
[string[]]$ComputerName
)
PROCESS {
Write-Debug "[PROCESS] Beginning"
ForEach ($comp in $ComputerName) {
Write-Debug "[PROCESS] on $comp"
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession = $session
ClassName = 'Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
Write-Debug "[PROCESS] CIM query complete"
if ($drives.DriveType -notlike '*optical*') {
[pscustomobject]@{
ComputerName = $comp
Letter = $drives.deviceid
Size = $drives.size
Free = $drives.freespace
}
}
} #foreach
} #process
} #function
"localhost", "localhost" | Get-DriveInfo -Debug
That’s in the downloadable code examples as Step1.ps1 in this chapter’s folder. Run this from the console - the ISE is a little irritating to use with Write-Debug.
Our first assumption, based on the last line in the script, is that two strings, “localhost”, will be passed into the $ComputerName parameter.
Confirm
The input object cannot be bound to any parameters for the command
either because the command does not take pipeline input or the input
and its properties do not match any of the parameters that take
pipeline input.
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):
Apparently not. “…the command does not take pipeline input…” say what? It most certainly does… oh, wait. Our command takes pipeline input by property name, and we didn’t pass in an object having a “ComputerName” property. We passed in String objects. We need to modify our parameter attribute. Here’s Step2.ps1:
Step2.ps1
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(
Mandatory,
ValueFromPipelineByPropertyName,
ValueFromPipeline)]
[string[]]$ComputerName
)
PROCESS {
Write-Debug "[PROCESS] Beginning"
ForEach ($comp in $ComputerName) {
Write-Debug "[PROCESS] on $comp"
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession = $session
ClassName = 'Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
Write-Debug "[PROCESS] CIM query complete"
if ($drives.DriveType -notlike '*optical*') {
[pscustomobject]@{
ComputerName = $comp
Letter = $drives.deviceid
Size = $drives.size
Free = $drives.freespace
}
}
} #foreach
} #process
} #function
"localhost", "localhost" | Get-DriveInfo -Debug
Let’s run it again.
DEBUG: [PROCESS] Beginning
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):
This is Write-Debug in action. You can see our “Beginning” message, and the debugger is now active. We’re going to hit S to Suspend the script. It’ll be like we’re in the script’s head, and we just want to check that $ComputerName has something in it.
DEBUG: [PROCESS] Beginning
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):s
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>> $computername
localhost
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>>
OK, it looks like $ComputerName has “localhost” in it, which was exactly what we expected. Perfect. So we’ll run Exit and let the script continue by choosing Y for Yes.
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>> exit
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):y
DEBUG: [PROCESS] on localhost
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):s
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>> $comp
localhost
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>> exit
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):y
DEBUG: [PROCESS] CIM query complete
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):
Here, we’ve suspended again and checked the contents of $comp. “Localhost”, just as expected. We exited and allowed the script to continue. Now we’re at our “query complete” prompt, so we’ll suspend again and see what we got back.
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):s
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>> $drives
DeviceID DriveType ProviderName VolumeName Size Fre
eSp
ace
-------- --------- ------------ ---------- ---- ---
C: 3 63898120192 470
D: 5 CCSA_X64FRE_EN-US_DV5 4380387328 0
We have a problem here. Look at what $drives contains and then look at what our script is going to do next. Look at that If statement. See where it’s looking at the DriveType property? See how our script is expecting “*optical*” for the DriveType? See in the output above how it isn’t “optical” at all, but is rather a digit? Dang.
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging>> exit
Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):h
Write-Debug : The running command stopped because the user selected
the Stop option.
At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\
PowerShell-Toolmaking\Chapters\basic-debugging\Step2.ps1:21 char:13
+ Write-Debug "[PROCESS] CIM query complete"
+ ~~
+ CategoryInfo : OperationStopped: (:) [Write-Debug], P
arentContainsErrorRecordException
+ FullyQualifiedErrorId : ActionPreferenceStop,Microsoft.PowerSh
ell.Commands.WriteDebugCommand
Hey, no point continuing when we know it’s broken. We need to fix our script. You see, we assumed DriveType would be something like “Fixed” or “Optical” or whatever, but it isn’t. Apparently 5 means an optical drive. So we’ve found a logic bug in our script, because we made ourselves aware of our assumptions and then took the time to verify them.
Debugging Tool 2: Set-PSBreakpoint
We’ve fixed that line of our code, so here’s Step3.ps1:
Step3.ps1
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(
Mandatory,
ValueFromPipelineByPropertyName,
ValueFromPipeline)]
[string[]]$ComputerName
)
PROCESS {
Write-Debug "[PROCESS] Beginning"
ForEach ($comp in $ComputerName) {
Write-Debug "[PROCESS] on $comp"
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession = $session
ClassName = 'Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
Write-Debug "[PROCESS] CIM query complete"
if ($drives.DriveType -ne 5) {
[pscustomobject]@{
ComputerName = $comp
Letter = $drives.deviceid
Size = $drives.size
Free = $drives.freespace
}
}
} #foreach
} #process
} #function
"localhost", "localhost" | Get-DriveInfo
Let’s run it:
PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\
Chapters\basic-debugging> .\Step3.ps1
ComputerName Letter Size Free
------------ ------ ---- ----
localhost {C:, D:} {63898120192, 4380387328} {47037890560, 0}
localhost {C:, D:} {63898120192, 4380387328} {47037890560, 0}
That… that is weird. We expected two lines of results, because we have it two computer names, but… those are not the droids we were looking for. What’s with all the curly brackets? Time to do some more debugging. This time, let’s play with PowerShell’s built-in breakpoint feature.
Breakpoints work a lot like Write-Debug in that, when you “hit” a breakpoint, you get dumped into “suspend mode” and can “inspect” what’s happening inside your script. Unlike Write-Debug, breakpoints don’t display a prompt first - they just go into suspend mode. And, also unlike Write-Debug, breakpoints can be easily set, removed, enabled, and disabled. For long scripts, that means breakpoints can be a lot more convenient, because you don’t have to keep hitting “Yes” through a bunch of early ones to get to the one you’re actually after at the moment.
Our problem right now is that our output isn’t what we expected, and so we want to “break” the script right before that output is produced. Breakpoints are tied to a specific script by path and filename, and only exist for the duration of the PowerShell session where you created the breakpoint. We’ll add some lines at the bottom of our script file, just for convenience, so that you can see the breakpoints in the downloadable code samples. Normally, we’d just set these breakpoints right in the console window.
This is Step4.ps1.
Step4.ps1
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(
Mandatory,
ValueFromPipelineByPropertyName,
ValueFromPipeline)]
[string[]]$ComputerName
)
PROCESS {
Write-Debug "[PROCESS] Beginning"
ForEach ($comp in $ComputerName) {
Write-Debug "[PROCESS] on $comp"
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession = $session
ClassName = 'Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
Write-Debug "[PROCESS] CIM query complete"
if ($drives.DriveType -ne 5) {
[pscustomobject]@{
ComputerName = $comp
Letter = $drives.deviceid
Size = $drives.size
Free = $drives.freespace
}
}
} #foreach
} #process
} #function
Set-PSBreakpoint -Line 23 -Script ($MyInvocation.MyCommand.Source)
"localhost", "localhost" | Get-DriveInfo
Notice that $MyInvocation.MyCommand.Source trick? $MyInvocation is a built-in variable (we mentioned it before in the chapter on Verbose, Warning, and Informational output) that contains a bunch of stuff about the current script or command. In this case, we’re using it to nab our script’s source file location. This way, no matter where the file lives, we’ll be attaching the breakpoint to the right file.
Here’s our output:
PS X:\basic-debugging> .\Step4.ps1
ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
0 Step4.ps1 23
Entering debug mode. Use h or ? for help.
Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\
ToolmakingBook\code\PowerShell-Toolmaking\Chapters\
basic-debugging\Step4.ps1:23'
At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\
PowerShell-Toolmaking\Chapters\basic-debugging\Step4.ps1:23 char:17
+ [pscustomobject]@{'ComputerName'=$comp
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[DBG]: PS X:\basic-debugging>>
We’ve dropped into suspend mode at this point.
[DBG]: PS X:\basic-debugging>> $drives
DeviceID DriveType ProviderName VolumeName Size Fre
eSp
ace
-------- --------- ------------ ---------- ---- ---
C: 3 63898120192 470
D: 5 CCSA_X64FRE_EN-US_DV5 4380387328 0
Ah. See, we knew this - $drives contains multiple objects, but we’ve been behaving, in our code, as if it contained one object. Look at line 22:
if ($drives.DriveType -ne 5) {
This is like saying, “So, I have a bunch of cars. If they is red, then do this.” Well, what if one car is red and another isn’t? This is a nonsensical statement - just as our grammar, there, was nonsensical. We need to be looking at one drive at a time, and outputting an object for one drive at a time, rather than outputting one object for all the drives.
Here’s Step5.ps1.
Step5.ps1
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(
Mandatory,
ValueFromPipelineByPropertyName,
ValueFromPipeline)]
[string[]]$ComputerName
)
PROCESS {
Write-Debug "[PROCESS] Beginning"
ForEach ($comp in $ComputerName) {
Write-Debug "[PROCESS] on $comp"
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession = $session
ClassName = 'Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
Write-Debug "[PROCESS] CIM query complete"
ForEach ($drive in $drives) {
if ($drive.DriveType -ne 5) {
[pscustomobject]@{
ComputerName = $comp
Letter = $drive.deviceid
Size = $drive.size
Free = $drive.freespace
}
}
} #foreach drive
} #foreach computer
} #process
} #function
Set-PSBreakpoint -Line 24 -Script ($MyInvocation.MyCommand.Source)
"localhost", "localhost" | Get-DriveInfo
Notice that we updated our breakpoint line number. Because we’re using the same console session, the old breakpoint will still be there, so we’ll set an additional one. Now, to run it:
PS X:\basic-debugging> .\Step5.ps1
ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
3 Step5.ps1 24
Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\
ToolmakingBook\code\PowerShell-Toolmaking\Chapters\
basic-debugging\Step5.ps1:24'
Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\
ToolmakingBook\code\PowerShell-Toolmaking\Chapters\
basic-debugging\Step5.ps1:24'
At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\
PowerShell-Toolmaking\Chapters\basic-debugging\Step5.ps1:24 char:21
+ if ($drive.DriveType -ne 5) {
+ ~~~~~~~~~~~~~~~~~~~~~~
[DBG]: PS X:\basic-debugging>> $drive
DeviceID DriveType ProviderName VolumeName Size FreeSpace PS
Co
mp
ut
er
Na
me
-------- --------- ------------ ---------- ---- --------- --
C: 3 63898120192 47044632576 lo
OK - much more what we expected, and $drive contains one object, with a DriveType of 3. We would expect this to pass our If construct and produce a line of output, so we’ll continue:
[DBG]: PS X:\basic-debugging>> exit
ComputerName : localhost
Letter : C:
Size : 63898120192
Free : 47044632576
Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\
ToolmakingBook\code\PowerShell-Toolmaking\Chapters\basic-debugging\
Step5.ps1:24'
Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\
ToolmakingBook\code\PowerShell-Toolmaking\Chapters\basic-debugging\
Step5.ps1:24'
At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\
PowerShell-Toolmaking\Chapters\basic-debugging\Step5.ps1:24 char:21
+ if ($drive.DriveType -ne 5) {
+ ~~~~~~~~~~~~~~~~~~~~~~
Got it! Now, let’s clear out all the breakpoints we’ve created - we could just close the console window we’ve been using, but this works as well:
Get-PSBreakpoint | Remove-PSBreakpoint
Debugging Tool 3: The PowerShell ISE
The ISE provides a visual way of setting breakpoints. Just move to whatever line you want and press F9; the line will turn a dark red and you’ll know where the breakpoint is. Press F9 again to clear it. It’s really just running Set-PSBreakpoint and Remove-PSBreakpoint in the background; were you to manually run those in the ISE’s console pane, you’d see the dark red highlights come and go.
The ISE also provides quick access to some of PowerShell’s cooler debugging features. For example, go ahead and open Step6.ps1 in the ISE, and follow along:
Step6.ps1
function Get-DriveInfo {
[CmdletBinding()]
Param(
[Parameter(
Mandatory,
ValueFromPipelineByPropertyName,
ValueFromPipeline)]
[string[]]$ComputerName
)
PROCESS {
Write-Debug "[PROCESS] Beginning"
ForEach ($comp in $ComputerName) {
Write-Debug "[PROCESS] on $comp"
$session = New-CimSession -ComputerName $comp
$params = @{
CimSession=$session
ClassName='Win32_LogicalDisk'
}
$drives = Get-CimInstance @params
Write-Debug "[PROCESS] CIM query complete"
ForEach ($drive in $drives) {
if ($drive.DriveType -ne 5) {
[pscustomobject]@{
ComputerName=$comp
Letter=$drive.deviceid
Size=$drive.size
Free=$drive.freespace
}
}
} #foreach drive
} #foreach computer
} #process
} #function
"localhost","localhost" | Get-DriveInfo
Debugging Tool 4: VS Code
If your editor of choice is VS Code, it has the same type of debugging features. Open the Step6.ps1 in “VS Code. The keyboard shortcuts are the same is in the PowerShell ISE. Aside from possible color changes you should be able to follow the same steps as above, including hovering your mouse over variables to see their content.
Another nice feature of VS Code is the PSScriptAnalyzer is baked in and is always looking for potential issues. If you click on the Problems link (Ctr+Shift+M), you can see all of the things that might lead to bugs. This won’t help get rid of logic bugs, but it will make your code less prone to errors and mistakes.
We’ll get into a lot more detail and depth with breakpoints in an upcoming “advanced” chapter on debugging, but until then this should give you a great start.
Your Turn
You guessed it - it’s time to do some debugging.
Start Here
You’ll find this script as Exercise.ps1 in this chapter’s folder, if you’ve downloaded the code samples. You may recognize it - it’s the script you’ve been building, or at least our version of it. But this one is broken.
Exercise.ps1
#this version is broken in several ways
Function Get-TMRemoteListeningConfiguration {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipelineByValue, Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN")]
[string]$Computername,
[string]$ErrorLog
)
Begin {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
#define a private function to write the verbose messages
Function WV {
Param($prefix, $message)
$time = Get-Date -f HH:mm:ss.ffff
Write-Verbose "$time [$($prefix.padright(7,' '))] $message"
}
WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"
if ($errorlog) {
WV BEGIN "Errors will be logged to $ErrorLog"
$outParams = @{
FilePath = $ErrorLog
Encoding = "ascii"
Append = $True
ErrorAction = "stop"
}
}
#define a ordered hashtable of ports so that the testing
#goes in the same order
$ports = [ordered]@{
WSManHTTP = 5985
WSManHTTPS = 5986
SSH = 22
}
#initialize an splatting hashtable
$testParams = @{
Port = ""
Computername = ""
WarningAction = "SilentlyContinue"
#changed variable to not be confusing with helper function
WarningVariable = "warn"
}
#keep track of total computers tested
$total = 0
#keep track of how long testing takes
$begin = Get-Date
} #begin
Process {
foreach ($computerr in $computername) {
#assume the computer can be reached
$ok = $True
$total+1
#make the computername all upper case
$testParams.Computername = $computer.ToUpper()
WV PROCESS "Testing $($testParams.Computername)"
#define the hashtable of properties for the custom object
$props = [ordered]@{
Computername = $testparams.Computername
Date = Get-Date
}
#this array will be used to store passed ports
#It is used by Write-Information
$passed = @()
#enumerate the hashtable
foreach ($item in $ports.GetEnumerator()) {
$testParams.Port = $item.Value
WV "PROCESS" "Testing port $($testparams.port)"
$test = Test-NetConnection @testParams
if ($warn -match "Name resolution of $($testParams.computername) failed"\
) {
$msg = "[$(Get-Date)] $warn"
if ($ErrorLog) {
Try {
$msg | Out-File @outParams
}
Catch {
Write-Warning "Failed to log error. $($_.exception.message)"
}
} #if errorlog
$ok = $False
#break out of the ForEach loop
break
}
WV PROCESS "Adding results"
$props.Add($item.name, $test.TCPTestSucceeded)
if ($test.TCPTestSucceeded) {
$passed += $testParams.Port
}
if (-NOT $props.Contains("RemoteAddress")) {
wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"
$props.Add("RemoteAddress", $test.RemoteAddress)
}
} #foreach port
if ($ok) {
WV PROCESS "Generating an object for $($testparams.computername)"
Write-Information "$($testParams.Computername) = $($passed -join ',')" -\
Tags data
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
}
} #foreach computer
} #process
End {
$runtime = New-TimeSpan -Start (Get-Date) -End $end
WV END "Processed $total computer(s) in $runtime"
#display a warning if errors would captured
if (Test-Path -Path $ErrorLog) {
Write-Warning "Errors were detected. See $ErrorLog."
}
WV END "Ending $($myinvocation.mycommand)"
} #end
} #Get-TMRemoteListeningConfiguration
Your Task
Using whichever debugging techniques you prefer, fix the script. Be sure to test different ways of using the command, including different parameter combinations.
Our Take
Our sample solution is the same as the previous chapter’s, so we won’t repeat it here. Briefly:
Let’s Review
Let’s see if you picked up some of the key points of this chapter:
Review Answers
Here are our answers:
Verify Yourself
We want to give you an opportunity to see if you’re ready for the rest of this book. Here’s what we’re going to do: we’ll give you a transcript from a PowerShell console session (the same one is included in the downloadable code samples, because the line-wrapping here in the book is gonna be pretty horrific). The transcript shows a custom PowerShell tool being used. Your job is to observe that usage, and then recreate that tool. We’ll provide the original function in the downloadable code samples, but do not peek - you’re only cheating yourself. At the end of this chapter, we’ll do a blow-by-blow walk-through of what your brain should have been thinking as you read the transcript.
Here’s a tip: Read the transcript first. As you go, make notes about the things you see, and what you’ll need to do in order to duplicate those things. Then, start coding, checking off each thing you noted as you incorporate it into your code. The transcript file is too wide to properly fit the page of a printed book so the slashes you see at the end of lines are really line continuation characters.
The Transcript
Here you go:

Windows PowerShell transcript start
Start time: 20170623144152
Username: DESKTOP-7NKT52T\User
RunAs User: DESKTOP-7NKT52T\User
Machine: DESKTOP-7NKT52T (Microsoft Windows NT 10.0.14393.0)
Host Application: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
Process ID: 1412
PSVersion: 5.1.14393.1358
PSEdition: Desktop
PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.14393.1358
BuildVersion: 10.0.14393.1358
CLRVersion: 4.0.30319.42000
WSManStackVersion: 3.0
PSRemotingProtocolVersion: 2.3
SerializationVersion: 1.1.0.1

Transcript started, output file is .\transcript.txt
PS C:\> Get-XXSystemInfo -Computername localhost
BIOSSerial ComputerName OSVersion
---------- ------------ ---------
VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393
PS C:\> Get-XXSystemInfo -Computername localhost -verbose
VERBOSE: Attempting localhost on Wsman
VERBOSE: Operation '' complete.
VERBOSE: [+] Connected
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_BIOS'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
BIOSSerial ComputerName OSVersion
---------- ------------ ---------
VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393
PS C:\> Get-XXSystemInfo -Computername localhost -verbose -Protocol dcom
VERBOSE: Attempting localhost on dcom
VERBOSE: Operation '' complete.
VERBOSE: [+] Connected
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_BIOS'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
BIOSSerial ComputerName OSVersion
---------- ------------ ---------
VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393
PS C:\> Get-XXSystemInfo -Computername localhost -Protocol x
Get-XXSystemInfo : Cannot validate argument on parameter 'Protocol'. The argument
"x" does not belong to the set "Dcom,Wsman" specified by the ValidateSet attribute.
Supply an argument that is in the set and then try the command again.
At line:1 char:52
+ Get-XXSystemInfo -Computername localhost -Protocol x
+ ~
+ CategoryInfo : InvalidData: (:) [Get-XXSystemInfo], ParameterBindingV
alidationException
+ FullyQualifiedErrorId : ParameterArgumentValidationError,Get-XXSystemInfo
PS C:\> Get-XXSystemInfo -Computername nope -verbose -Protocol dcom -TryOtherProtocol
VERBOSE: Attempting nope on dcom
PS C:\> TerminatingError(New-CimSession): "The running command stopped because the
preference variable "ErrorActionPreference" or common parameter is set to Stop:
The RPC server is unavailable. "
WARNING: Skipping nope due to failure to connect
VERBOSE: Attempting nope on wsman
PS C:\> TerminatingError(New-CimSession): "The running command stopped because the
preference variable "ErrorActionPreference" or common parameter is set to Stop:
The RPC server is unavailable. "
WARNING: Skipping nope due to failure to connect
PS C:\> Stop-Transcript

Windows PowerShell transcript end
End time: 20170623144314

Our Read-Through
Let’s go through that transcript, and we’ll tell you what should have been coming to mind for you at each step.
PS C:\> Get-XXSystemInfo -Computername localhost
BIOSSerial ComputerName OSVersion
---------- ------------ ---------
VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393
OK, this tells us that the command name is Get-XXSysteminfo, and it has a -Computername parameter. We don’t know if it accepts just one value, or many, at this point. We can see what it produces, so we know we’re going to have to query two CIM/WMI classes. We don’t know what the module name is, but we could make one up if we needed to.
PS C:\> Get-XXSystemInfo -Computername localhost -verbose
VERBOSE: Attempting localhost on Wsman
VERBOSE: Operation '' complete.
VERBOSE: [+] Connected
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_BIOS'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
BIOSSerial ComputerName OSVersion
---------- ------------ ---------
VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393
The above tells is that [CmdletBinding()] is in use, and that Write-Verbose is used.
PS C:\> Get-XXSystemInfo -Computername localhost -verbose -Protocol dcom
VERBOSE: Attempting localhost on dcom
VERBOSE: Operation '' complete.
VERBOSE: [+] Connected
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,
''namespaceName' = root\cimv2,'className' = Win32_BIOS'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
BIOSSerial ComputerName OSVersion
---------- ------------ ---------
VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393
We now know that there are multiple protocols. Based on the verbose output above, at least Wsman and Dcom are supported. We can anticipate adding a ValidateSet() to only allow those two values, unless we encounter some more.
PS C:\> Get-XXSystemInfo -Computername localhost -Protocol x
Get-XXSystemInfo : Cannot validate argument on parameter 'Protocol'. The argument
"x" does not belong to the set "Dcom,Wsman" specified by the ValidateSet attribute.
Supply an argument that is in the set and then try the command again.
At line:1 char:52
+ Get-XXSystemInfo -Computername localhost -Protocol x
+ ~
+ CategoryInfo : InvalidData: (:) [Get-XXSystemInfo], ParameterBindingV
alidationException
+ FullyQualifiedErrorId : ParameterArgumentValidationError,Get-XXSystemInfo
The above confirms that a ValidateSet() is going to be needed.
PS C:\> Get-XXSystemInfo -Computername nope -verbose -Protocol dcom -TryOtherProtocol
VERBOSE: Attempting nope on dcom
PS C:\> TerminatingError(New-CimSession): "The running command stopped because
the preference variable "ErrorActionPreference" or common parameter is set to
Stop: The RPC server is unavailable. "
WARNING: Skipping nope due to failure to connect
VERBOSE: Attempting nope on wsman
PS C:\> TerminatingError(New-CimSession): "The running command stopped because
the preference variable "ErrorActionPreference" or common parameter is set to
Stop: The RPC server is unavailable. "
WARNING: Skipping nope due to failure to connect
The forgoing suggests that we have the ability to recursively call our own function to try the other protocol. We’ll need to build that into the error-handling routine.
Our Answer
As noted earlier, our code is in the downloadable samples, but here’s a print version for your convenience:
Answer.ps1
Function Get-XXSystemInfo {
[CmdletBinding()]
param(
[Parameter(
Mandatory,
ValueFromPipeline
)]
[string[]]$Computername,
[Parameter()]
[ValidateSet('Dcom', 'Wsman')]
[string]$Protocol = 'Wsman',
[Parameter()]
[switch]$TryOtherProtocol
)
BEGIN {
If ($Protocol -eq 'Dcom') {
$cso = New-CimSessionOption -Protocol Dcom
}
else {
$cso = New-CimSessionOption -Protocol Wsman
}
}
PROCESS {
ForEach ($comp in $computername) {
Try {
Write-Verbose "Attempting $comp on $protocol"
$s = New-CimSession -ComputerName $comp -SessionOption $cso -EA Stop
Write-Verbose " [+] Connected"
$os = Get-CimInstance -CimSession $s -ClassName Win32_OperatingSystem
$bios = Get-CimInstance -CimSession $s -ClassName Win32_BIOS
$props = @{
ComputerName = $comp
BIOSSerial = $bios.serialnumber
OSVersion = $os.version
}
New-Object -TypeName PSObject -Property $props
}
Catch {
Write-Warning "Skipping $comp due to failure to connect"
if ($TryOtherProtocol) {
If ($Protocol -eq 'Dcom') {
Get-XXSystemInfo -Protocol Wsman -Computername $comp
}
else {
Get-XXSystemInfo -Protocol Dcom -Computername $comp
}
}
} #Catch
} #ForEach
} #PROCESS
END {}
}
How’d You Do
If you were able to spot all of the major elements, and construct something at least vaguely like our solution, then we think you’re probably “good to go” in terms of this book. If not, check out PowerShell Scripting in a Month of Lunches from Manning.com, and thoroughly re-read Part 1 of this book, to bring yourself up to speed.
We can’t stress that enough: if you’re not up to speed at this point, then you’re not ready to proceed further in this book.
Part 2: Professional-Grade Toolmaking
In this Part, we’re going to try and take your toolmaking skills a bit further. This is the stuff that sets the beginners apart from the real pros. We’ve constructed these chapters into a kind of storyline, so each one builds on what the previous ones taught. That said, the storyline here isn’t tightly coupled, so feel free to dive in to whatever chapter seems of most interest or use to you. Because we’re moving into Toolmaking areas that are more optional and as-you-need, you won’t see “Your Turn” lab elements in every chapter - but that doesn’t mean you shouldn’t try and play along! Just follow along with your own code. However, when we include a “Your Turn” section, we obviously strongly suggest you follow along with that “lab.”
Going Deeper with Parameters
You should already have a strong understanding of parameters inside Advanced Functions. But there’s more to cover, and this is the time to do it. It turns out, you can do a lot with Param() blocks. And this isn’t even “it;” we’ve got a whole chapter on dynamic parameters coming up, as well.
Parameter Position
PowerShell has always been okay with you using parameters positionally, rather than providing their name. For example, these two commands are equivalent:
Get-Service -Name BITS
Get-Service BITS
It is hugely important to understand why this works, so let’s pull up the help for Get-Service:
Get-Service [-ComputerName <String[]>] [-DependentServices] -DisplayName
<String[]> [-Exclude <String[]>] [-Include <String[]>] [-RequiredServices]
[<CommonParameters>]
Get-Service [-ComputerName <String[]>] [-DependentServices] [-Exclude
<String[]>] [-Include <String[]>] [-InputObject <ServiceController[]>]
[-RequiredServices] [<CommonParameters>]
Get-Service [[-Name] <String[]>] [-ComputerName <String[]>]
[-DependentServices] [-Exclude <String[]>] [-Include <String[]>]
[-RequiredServices] [<CommonParameters>]
It’s worth looking at the full help for this, which we don’t want to reproduce here - hit up the online help page if you don’t have access to PowerShell, so you can follow along.
First, help files will usually list parameters in positional order. So in the above, the first parameter set - where -Name is defined - the -Name parameter is listed first. We can confirm that by scrolling down in the full help and looking at the details of the parameter:
PS C:\> Help Get-Service parameter Name
-Name <String[]>
Specifies the service names of services to be retrieved. Wildcards are
permitted. By default, this cmdlet gets all of the services on the
computer.
Required? false
Position? 0
Default value None
Accept pipeline input? True (ByPropertyName, ByValue)
Accept wildcard characters? false
Position 0 (zero) is first. It’s worth noting that -ComputerName, which is listed first in the other two parameter sets, is not positional. That is, you must specify -ComputerName to use it; you can’t just chuck computer names in someplace and expect PowerShell to figure it out. Its own details confirm this:
help get-service -Parameter Computername
-ComputerName <String[]>
Gets the services running on the specified computers. The default is the
local computer.
Type the NetBIOS name, an IP address, or a fully qualified domain name
(FQDN) of a remote computer. To specify the local computer, type the
computer name, a dot (.), or localhost.
This parameter does not rely on Windows PowerShell remoting. You can use
the ComputerName parameter of Get-Service even if your computer is not
configured to run remote commands.
Required? false
Position? named
Default value None
Accept pipeline input? True (ByPropertyName)
Accept wildcard characters? false
This is how PowerShell can tell that Get-Service BITS is meant to use the first parameter set. The only parameter with position 0, which can accept a string, is -Name, and it only exists in one parameter set, so that must be the one we meant to use. If you define multiple parameter sets, you can in theory have more than one parameter in position 0, but only if (a) each one accepts a different value type and (b) each one is unique to a separate parameter set.
If you don’t specify a position for your parameters, PowerShell automatically numbers them all in whatever order they’re listed. So consider this short function (we’re not including these examples in the downloadable code, because they’re not really intended to be executable):
function test {
param(
[string[]]$one,
[int]$two,
[switch]$three
)
}
help test -Full
This yields the following parameter details:
PARAMETERS
-one <string[]>
Required? false
Position? 0
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
-three
Required? false
Position? Named
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
-two <int>
Required? false
Position? 1
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
The $one parameter is first, in position 0; $two is second in position 1, and $three is not positional because it’s a switch. Switches can’t be positional when you’re relying on auto-generated position numbers. Also notice that the auto-generated help isn’t very picky about the order in which those parameters are documented! You can disable this automatic behavior by adding [CmdletBinding(PositionalBinding=$false)] in front of your Param() block.
Now, let’s specify a position for each:
function test {
param(
[Parameter(Position=1)]
[string[]]$one,
[Parameter(Position=2)]
[int]$two,
[Parameter(Position=3)]
[switch]$three
)
}
help test -Full
The results:
PARAMETERS
-one <string[]>
Required? false
Position? 1
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
-three
Required? false
Position? 3
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
-two <int>
Required? false
Position? 2
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
We’ve now specified position numbers for each, letting us put them in whatever position they want, regardless of the order they’re listed. And, we can explicitly assign a position to the switch parameter. In practice, this would be a bit awkward-looking to use:
test a b $true
With (in your mind) that $true being taken for the switch parameter (which won’t actually work, by the way). You can’t make switches positional - so there’s no point assigning them a position.
Now, let’s share some opinions. We generally don’t declare positions for our parameters, because we tend to use our commands in scripts, and in our scripts we like to spell out all of our parameter names. Doing so makes them easier to follow in the future. However, sometimes we’ll have a command where it just makes for easier reading to not have parameter names for certain parameters. In those cases only, we will declare a position number for those parameters, so that we don’t have to rely on PowerShell making something up. That way, if we later expand the function and accidentally change the order in which our parameters are declared, we still get our declared positions, rather than PowerShell re-ordering them and messing us up. We do not tend to declare a position for every parameter, which we see some people do almost reflexively. We feel that doing so makes our parameter block unnecessarily cluttered, and it encourages positional parameter use - which in a script, is not the best possible practice most times.
It’s worth noting that there are times when positional parameters make a ton of sense. Pester, the testing framework for PowerShell, is one such instance. It’s Should keyword, for example, is just a PowerShell command. To make the end result more English-readable, Pester’s creators chose to use positional parameters, and to use nonstandard command naming (“Should,” versus “Should-Object” or some other verb-noun scheme). So there are definitely times when it’s the right thing to do, but those tend to be edge cases.
Validation
Let’s run through the whole series of validation attributes. We’re just going to highlight these; the full documentation has more details and examples, and we’re not trying to recreate that here.
The first three apply mainly to parameters already marked as Mandatory, allowing them to accept empty values of some kind:
The remainder are more general-purpose:
Multiple Parameter Sets
This is one of the neatest, most effective, and most often screwed-up elements of PowerShell parameters. Have a look at the help for the old Get-WmiObject command as an example. In it, you’ll see a default parameter set that uses the -Class parameter. As soon as you use that parameter, you’re locked into that parameter set. You can’t use -Query, because it appears in a different parameter set. Many parameters appear in all of the available parameter sets, but some are unique to a given set.
Here’s what people often do wrong: they’ll define some switch parameter, like “-UseAlternateCredential,” which exists only in a given parameter set. That set will also contain a mandatory “-Credential” parameter. The idea is, you specify the first parameter to push you into the parameter set, and then the parameter set forces you to also provide a credential. This isn’t a great design approach, and it certainly doesn’t fit in with PowerShell’s native patterns. Natively, you’d simply specify a “-Credential” parameter, and if someone ran the command without using it, then you just didn’t use it. You don’t, in other words, typically see PowerShell using a switch simply to push the user into a parameter set. Instead, the parameters that are unique to a parameter set are typically related to one another in some way. For example, in Get-WmiObject, the -Filter parameter exists with -Class to help reduce the results you get back. But -Filter does not exist with -Query, because your query could already contain a filter preposition, making a filtering parameter redundant.
You assign a parameter to a parameter set by specifying a name for the set:
[Parameter(ParameterSetName="query")]
[string]$query
Any parameters given the same set name will also belong to that set; any parameters given no set name at all will belong to all sets. Each parameter can have only one ParameterSetName assigned per Parameter attribute. The following, however, is legal:
[Parameter(ParameterSetName="one")]
[Parameter(ParameterSetName="two")]
[string]$something
The $something parameter, here, would belong to both set “one” and set “two,” but not any other sets which were defined. Again, any parameter assigned to no set will be implicitly included in all sets. And, it should go without saying but let’s say it, each parameter set must have at least one unique parameter, which tells the shell you’re using that set.
If you are using multiple parameter sets, use Show-Command to verify your parameters are grouped as expected. When you run the cmdlet, the graphical display will show a tab for each parameter set with the related parameters.
PowerShell dynamically tries to figure out which parameter set you’re “in” by looking at the parameters you’ve used. This can sometimes be hard for it if you’re using positional parameters whose values might legitimately line up with more than one parameter set (which is another reason we personally like to avoid positional parameters). In most cases, you’ll also want to define a default parameter set, which is what PowerShell will try to use until it sees a parameter that forces it to consider a different set. You specify this in your [CmdletBinding()] attribute:
[CmdletBinding(DefaultParameterSetName="whatever")]
Parameter set names appear to be case-sensitive starting in Windows PowerShell 5.0. And as we move to a world of cross-platform scripting, watching your casing will be even more important.
In your code you can check for parameter values of use code like this to determine what parameter set is in use.
if ($PSCmdlet.ParameterSetName -eq "computer") {
`#do this
}
Value From Remaining Arguments
This is a bit of an odd duck that, honestly, you don’t see much and we’re not sure we’ve ever used. It basically says, “for this parameter, take all the values that haven’t been assigned to other parameters, and dump ‘em in.”
[Parameter(ValueFromRemainingArguments=$True)]
[string]$Extras
Frankly, we think you are better off carefully planning all of your parameters and if you do so you should never need to use this attribute. It is definitely for rare, edge cases.
Help Message
The help message is intended to be a very short description of what the parameter wants. This is mainly available from the prompt that PowerShell creates when a mandatory parameter is omitted.
[Parameter(HelpMessage="Enter a computer name or IP")]
[string[]]$ComputerName
This is the message that will be displayed at the prompt if the user types !?. If you don’t create comment based or external help, PowerShell will use this message when displaying help.
If you are marking a parameter as mandatory, we recommend you include a meaningful help message.
Alias
You can define a parameter alias using syntax like this:
[Alias("cn")]
[string[]]$Computername
Using a parameter alias is a handy technique if you have company jargon you expect people to use but need to follow PowerShell standards with a proper parameter name. Aliases also tend to be shorter but with improvements in tab-completion this doesn’t seem as compelling as it once might have been. Be aware that aliases aren’t easily discovered and may not show up in auto-generated help, especially for older PowerShell versions. You can specify them in comment-based help, or if you use the Platyps module, which we cover in the chapter on writing help, it will discover and document them accordingly.
More CmdletBinding
You should already know that [CmdletBinding()], when added before your Param() block, enables common parameters. You should also know how it can enable the -WhatIf and -Confirm parameter by adding SupportsShouldProcess and ConfirmImpact; and earlier in this chapter we showed you how it can disable automatic positional parameter numbering and specify a default parameter set. It can do a bit more, as described in the official docs:
A Demonstration
We thought it might be useful for you to see a sample function that uses many of these concepts and techniques. The reason for including them in your work is not to show off but to make your tool easier for someone to use, perhaps even yourself, and to catch and potential problems at the beginning before your command starts doing anything.
The complete function, Get-DiskCheck, is in the chapter download file. Here is the relevant parameter section.
Get-DiskCheck
Function Get-DiskCheck {
[cmdletbinding(DefaultParameterSetName = "name")]
Param(
[Parameter(
Position = 0,
Mandatory,
HelpMessage = "Enter a computer name to check",
ParameterSetName = "name",
ValueFromPipeline
)]
[Alias("cn")]
[ValidateNotNullorEmpty()]
[string[]]$Computername,
[Parameter(
Mandatory,
HelpMessage = "Enter the path to a text file of computer names",
ParameterSetName = "file"
)]
[ValidateScript({
if (Test-Path $_) {
$True
}
else {
Throw "Cannot validate path $_"
}
})]
[ValidatePattern("\.txt$")]
[string]$Path,
[ValidateRange(10, 50)]
[int]$Threshhold = 25,
[ValidateSet("C:", "D:", "E:", "F:")]
[string]$Drive = "C:",
[switch]$Test
)
We’ll admit that we are fudging a bit on best practices with this function but that is only for the sake of demonstration.
The function has two primary parameter sets. One for computer names and one for the path to a text file with computer names. The mandatory -computername parameter also has an alias of CN and a validation to make sure the value is not null or an empty string.
The -Path parameter has multiple validation tests. The path value must end in .txt and it must exist. This is what ValidateScript is testing. Normally, you can just use the validation attribute but you can control the output if there is an error. In this scenario if the filename doesn’t pass Test-Path the scriptblock throws an exception with our text. We could have written it like this:
[ValidateScript({Test-Path $_)}
But if it failed the user would see the default exception message which may not be helpful or perhaps overly verbose. With our approach if the validation fails the error message is a bit more succinct.
The remaining parameters belong to both parameter sets and we’re using a few validation attributes. One nice benefit of using ValidateSet is that you can cycle through the possible values with tab-completion.
When you ask for help on the function you can see the two different parameter sets.
SYNTAX
Get-DiskCheck [-Computername] <string[]> [-Threshold <int>]
[-Drive <string> {C: | D: | E: | F:}] [-Test] [<CommonParameters>]
Get-DiskCheck -Path <string> [-Threshold <int>] [-Drive <string>
{C: | D: | E: | F:}] [-Test] [<CommonParameters>]
Because the function lacks comment-based help, PowerShell displays the values for -Drive from the ValidateSet() attribute. And when looking at parameter details the help messages are also used.
PARAMETERS
-Computername <string[]>
Enter a computer name to check
Required? true
Position? 0
Accept pipeline input? true (ByValue)
Parameter set name name
Aliases cn
Dynamic? false
-Drive <string>
Required? false
Position? Named
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
-Path <string>
Enter the path to a text file of computer names
Required? true
Position? Named
Accept pipeline input? false
Parameter set name file
Aliases None
Dynamic? false
-Test
Required? false
Position? Named
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
-Threshold <int>
Required? false
Position? Named
Accept pipeline input? false
Parameter set name (All)
Aliases None
Dynamic? false
We’ll let you test out the function yourself to see how the different parameter techniques work.
Your Turn
In the first part of the book we had you work on a function to get computer status information from a number of CIM classes. The function took a computer name as a parameter. But Get-CimInstance can also use CimSessions. Why not have a function that can also accept CIMSessions?
Start Here
Start with the last iteration of the function which you can find in the downloads.
Get-TMComputerStatus.ps1
Function Get-TMComputerStatus {
<#
.SYNOPSIS
Get computer status information.
.DESCRIPTION
This command retrieves system information from one or more remote computers
using Get-CimInstance. It will write a summary object to the pipeline for
each computer. You also have the option to log errors to a text file.
.PARAMETER Computername
The name of the computer to query. This parameter has aliases of
CN, Machine and Name.
.PARAMETER ErrorLog
The path to the error text file. This is not implemented yet.
.PARAMETER ErrorAppend
Append errors to the error file. This is not implemented yet.
.EXAMPLE
PS C:\> Get-TMComputerStatus -computername SRV1
Computername : SRV1
TotalMem : 33080040
FreeMem : 27384236
Processes : 218
PctFreeMem : 82.7817499616083
Uptime : 11.06:23:52.7176115
CPULoad : 2
PctFreeC : 54.8730920184876
Get the status of a single computer
.EXAMPLE
PS C:\> Get-Content c:\work\computers.txt | Get-TMComputerStatus |
Export-CliXML c:\work\data.xml
Pipe each computer name from the computers.txt text file to this
command. Results are immediately exported to an XML file using
Export-CliXML.
.INPUTS
System.String
.NOTES
Version : 1.0.0
.LINK
Get-CimInstance
#>
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLog,
[switch]$ErrorAppend
)
BEGIN {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
Write-Verbose "Starting $($myinvocation.mycommand)"
}
PROCESS {
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
Try {
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
ErrorAction = "Stop"
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
$OK = $True
}
Catch {
$OK = $False
$msg = "Failed to get system information from $computer. $($_.Exception.Mes\
sage)"
Write-Warning $msg
if ($ErrorLog) {
Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"
"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend
}
}
if ($OK) {
#only continue if successful
[pscustomobject]@{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
} #if OK
} #foreach $computer
}
END {
Write-Verbose "Ending $($myinvocation.mycommand)"
}
} #Get-TMComputerStatus
Your Task
First, add whatever enhancements you’d like based on this chapter. Then add a second parameter set to accept a CIMSession. Save the new function to the Toolmaking module. Don’t forget to update your help!
Our Take
Revised Get-TMComputerStatus
Function Get-TMComputerStatus {
<#
.SYNOPSIS
Get computer status information.
.DESCRIPTION
This command retrieves system information from one or more remote computers
using Get-CimInstance. It will write a summary object to the pipeline for
each computer. You also have the option to log errors to a text file.
.PARAMETER Computername
The name of the computer to query. This parameter has aliases of
CN, Machine and Name.
.PARAMETER ErrorLog
The path to the error text file. This is not implemented yet.
.PARAMETER ErrorAppend
Append errors to the error file. This is not implemented yet.
.EXAMPLE
PS C:\> Get-TMComputerStatus -computername SRV1
Computername : SRV1
TotalMem : 33080040
FreeMem : 27384236
Processes : 218
PctFreeMem : 82.7817499616083
Uptime : 11.06:23:52.7176115
CPULoad : 2
PctFreeC : 54.8730920184876
Get the status of a single computer
.EXAMPLE
PS C:\> Get-Content c:\work\computers.txt | Get-TMComputerStatus |
Export-CliXML c:\work\data.xml
Pipe each computer name from the computers.txt text file to this
command. Results are immediately exported to an XML file using
Export-CliXML.
.INPUTS
System.String
.NOTES
Version : 1.0.0
.LINK
Get-CimInstance
#>
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[ValidateNotNullorEmpty()]
[ValidatePattern("^\w+$")]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLog,
[switch]$ErrorAppend
)
BEGIN {
Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "User = $env:userdomain\$env:username" -tags Meta
Write-Information "Computer = $env:computername" -tags Meta
Write-Information "PSHost = $($host.name)" -Tags Meta
Write-Information "Test Date = $(Get-Date)" -tags Meta
Write-Verbose "Starting $($myinvocation.mycommand)"
}
PROCESS {
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
Try {
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
ErrorAction = "Stop"
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
$OK = $True
}
Catch {
$OK = $False
$msg = "Failed to get system information from $computer. $($_.Exception.Mes\
sage)"
Write-Warning $msg
if ($ErrorLog) {
Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"
"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend
}
}
if ($OK) {
#only continue if successful
[pscustomobject]@{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
} #if OK
} #foreach $computer
}
END {
Write-Verbose "Starting $($myinvocation.mycommand)"
}
} #Get-TMComputerStatus
Using a CIMSession actually works in our favor for this function since it is making multiple calls to Get-CimInstance. When using a computer name this means there is extra overhead, and time, to setup each connection. Using an existing CIMSession speeds up the whole process. The new parameter belongs to its own parameter set. The parameters that don’t have a specified parameter set belong to all sets.
We revised the code to create a set of temporary CIMSessions to each computer. The main code was modified to use the sessions. We’re also keeping track of temporary sessions so they can be removed at the end of the function. We don’t want to remove a user’s existing CIMSessions.
Let’s Review
What did you learn?
Review Answers
Did you come up with these answers?
Advanced Function Tips and Tricks
This chapter will be a kind of loose round-up of other cool, advanced, and useful things you can do with an advanced function.
Defining an Alias
You already know that PowerShell can define aliases for commands, right? Functions are commands, and they can have aliases. But you don’t need to run New-Alias to make them–you can define an alias right in the function itself:
function Get-Foo {
[cmdletbinding()]
[Alias ("gf")]
Param()
}
This defines an alias gf, and PowerShell will even display that in its auto-generated help for the command.
Specify Output Type
When you are creating a function, you are most likely creating it work with other PowerShell commands. You might write a command that will be piped to another PowerShell object. To help the next person, it helps to document what type of object your command is writing to the pipeline. One way to accomplish this is to specify an[OutputType()].
Function Get-Runtime {
[CmdletBinding()]
[OutputType([timespan])]
Param([string]$Name)
...
}
When a user looks at full help for this function, they will see System.TimeSpan under OUTPUTS. You can enter a .NET type name as we’ve done here, or as a string.
Function Get-Runtime {
[CmdletBinding()]
[OutputType("System.Timespan")]
Param([string]$Name)
...
}
If you are writing a custom object to the pipeline of your own creation, perhaps from a class or something with a typename that you defined, we recommend you enter the output type as a string.
Function Get-ThatThing {
[CmdletBinding()]
[OutputType("MyThing")]
Param([string]$Name)
...
}
If you had used [MyThing], PowerShell will most likely try to find that type and complain.
You are allowed to specify multiple types.
Function Set-ThatThing {
[CmdletBinding()]
[OutputType("None","MyThing")]
Param([string]$Name,[switch]$Passthru)
...
}
In this hypothetical function, it is assumed it doesn’t right anything to the pipeline because of the -Passthru parameter. This command’s output could nothing, or it could be a MyThing object. What about parameter sets?
You can have multiple OutputType attributes.
Function Get-SomethingElse {
[CmdletBinding(DefaultParameterSetName="Name")]
[OutputType("System.String",ParameterSetName = "Other")]
[OutputType("MyThing",ParameterSetName = "Name")]
Param()
...
}
The help output will show both types but there is no indication about parameter sets.
Adding Labels
We have probably mentioned this elsewhere in the book and you’ve likely seen it in plenty of code examples. Consider this snippet of code:
...
$drives = Get-CimInstance @params
Write-Verbose "[PROCESS] CIM query complete"
ForEach ($drive in $drives) {
if ($drive.DriveType -ne 5) {
[pscustomobject]@{
ComputerName = $comp
Letter = $drive.deviceid
Size = $drive.size
Free = $drive.freespace
}
}
}
}
}
}
It definitely helps that the code has been formatted and indented. But can you tell if you have enough closing curly brackets? Or too many? Yes, there are things you do in your editor to help, but something like this can help.
...
$drives = Get-CimInstance @params
Write-Verbose "[PROCESS] CIM query complete"
ForEach ($drive in $drives) {
if ($drive.DriveType -ne 5) {
[pscustomobject]@{
ComputerName = $comp
Letter = $drive.deviceid
Size = $drive.size
Free = $drive.freespace
} #customobject
} #if drivetype <> 5
} #foreach drive
} #foreach computer
} #process
} #close Get-DriveInfo function
Now there’s no confusion.
Use Your Command Name Programmatically
We’ve mentioned how helpful it can be to incorporate Verbose messages into your PowerShell commands. We find it helpful to know what command is starting and when it is ending. This is particularly helpful if your command is calling other commands. The verbose messaging can help you keep track of potentially complicated command flow. One thing you can do to make life easy for you is to take advantage of the built-in $MyInvocation object. You can use this to programmatically capture the name of your command. Don’t hard code in your command name, because you might change it. Instead, use code like this:
Begin {
Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting $($myinvocation.mycomm\
and)"
} #begin
Process {
Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Processing $computername"
...
}
End {
Write-Verbose "[$((Get-Date).TimeofDay) END] Ending $($myinvocation.mycomman\
d)"
} #end
When run with verbose output you might see something like:
PS C:\> Get-SystemData -Verbose
VERBOSE: [09:26:41.6459721 BEGIN] Starting Get-SystemData
VERBOSE: [09:26:41.6469464 PROCESS] Getting system data for SRV1
VERBOSE: [09:26:41.6479456 BEGIN] Starting Get-OS
VERBOSE: [09:26:41.6489453 PROCESS] Processing SRV1
VERBOSE: [09:26:53.9988218 END] Ending Get-OS
VERBOSE: [09:26:54.0007555 PROCESS] Updating database
VERBOSE: [09:26:56.3576237 END] Ending Get-SystemData
PS C:\>
We used the same type of code to the main function and the run it calls. You should get the idea that this would make a great snippet.
ArgumentCompleter
One of the nice benefits of using the [ValidateSet()] attribute is that PowerShell will use it for auto completion. But what about other situations? One possibility is to use an ArgumentCompleter. Here’s a demo function.
Get-EventLogDetail.ps1
Function Get-EventLogDetail {
[cmdletbinding()]
Param(
[Parameter(Position = 0)]
[ArgumentCompleter({(Get-Eventlog -List).log})]
[string]$LogName
)
Write-Verbose "Getting $LogName log details"
$params = @{
ClassName = "win32_nteventlogfile"
filter = "filename='$LogName'"
ErrorAction = "Stop"
}
Try {
Get-CimInstance @params |
Select-Object -Property LogFileName, Name, FileSize, MaxFileSize,
LastModified, NumberOfRecords,@{Name="PctUsed";
Expression={[math]::Round(($_.filesize/$_.maxfilesize)*100,2)}}
}
Catch {
Write-Error $_
}
}
The LogName parameter has an ArgumentCompleter. The results of the code in the scriptblock will be passed as possible parameter values. Ideally, this code will run very quickly. In this case, the user will get a list of event logs. This doesn’t prevent them from manually entering a log name.
Dynamic Parameters
Dynamic parameters are ones that are only available under certain circumstances, such as when your command is being used from a particular drive (say, a FileSystem drive, but not a Registry drive). You see this with the -Encoding parameter of Get-Content; the parameter won’t work if you’re focused on anything but a FileSystem drive at the time. Dynamic parameters can also be enabled by using another, static parameter of your command, in which case they become something like a “child parameter set.” But dynamic parameters aren’t necessarily listed in help like a static parameter, meaning they’re harder for people to find and make use of. When possible, you want to avoid these, and only use them when they absolutely make sense and accomplish something you can’t do in other ways.
When someone asks for help on your command, PowerShell will try to evaluate your dynamic parameters to see if they’re applicable, and only show them if so. That’s why they can be harder to discover - if they’re not valid at the time, people won’t see them in help. It is also possible to create dynamic parameters that only appear if another parameter is specified which makes them even harder to discover.
For example, suppose you have a parameter named -UseAlternateLanguage, and you’re thinking you also want to add a dynamic parameter named -LanguageToUse. If someone specifies the first, they’ll be able to use the second to pick a language. That’s probably not a great use of dynamic parameters. Instead, you’d probably just pick a default language, and offer -LanguageToUse if someone wanted to use something different. If they didn’t specify it, you’d use the default. This eliminates the need for a more complex parameter arrangement.
That’s actually a good general rule to follow: try not to use one parameter simply to enable another. Instead, default to a sensible value and provide a single parameter to override that value.
Here’s another example: suppose you write a command that will provision new users. You always need certain information, like their name and department. But sometimes, users will need to be provisioned in the company accounting software, where you’ll also need to know their approver ID and spending limit. You might consider accomplishing that with a status -AddToAccounting parameter, which in turn enables dynamic parameters for -ApproverID and -SpendingLimit. However, you could accomplish something similar simply by having those latter two become mandatory parameters of their own parameter set. So your command has two parameter sets: one with the accounting stuff, and one without. Both would show up in help, making them more easily discoverable, and making their relationship more obvious.
This isn’t to say that dynamic parameters are never appropriate, of course, because otherwise they probably wouldn’t even be a thing. And this isn’t even to say that using them is rare. It’s just that we see a lot of people making poor parameter design decisions because they think, “well, dynamic parameters are a thing, and I should clearly be using them, because shiny.” Try and avoid that. if you can accomplish your need with something simpler, do.
Declaring Dynamic Parameters
Here’s a basic dynamic parameter declaration:
Param(
[ValidateSet("User","Administrator","Guest")]
[string]$UserLevel,
)
DynamicParam {
If ($UserLevel -eq "Administrator") {
create an $AdminType parameter
}
}
Notice first that DynamicParam is a new and distinct construct from the regular Param block. In it, you use an If construct to decide if the dynamic parameter is currently appropriate. In fact, you need to have some sort of condition evaluation to determine if the dynamic parameter needs to be defined. If you are basing your condition on another parameter, be aware your dynamic parameter won’t be available until the user specifies the other parameter. And no, you shouldn’t try to define a dynamic parameter that relies on another dynamic parameter.
In this example, the dynamic parameter will never show up in help, because when viewing the help no other parameter will have a value assigned, and so the condition will never be met. If the condition is met, then you manually - via code - create the parameter. The creation code isn’t hard, but it’s a bit laborious - you’re essentially going to programmatically create .NET Framework objects to generate and attach new parameters.
It’s a bit more complex than that, so let’s do some code (this isn’t in the downloadable code because it’s really not cut-and-pasteable; this is something you should be typing into your own functions, not reusing as boilerplate from us):
Create Attributes
You will start with something like this:
$attr = New-Object System.Management.Automation.ParameterAttribute
$attr.HelpMessage = "Enter admin type"
$attr.Mandatory = $true
$attr.ValueFromPipelineByPropertyName = $true
Other properties include:
Create an Attribute Collection
Next step:
$attrColl = New-Object System.Collections.ObjectModel.Collection[System.Attribute]
$attrColl.Add($attr)
Remember, each parameter can have one, and only one, attribute collection.
Create the Parameter
Here we go:
$param = New-Object System.Management.Automation.RuntimeDefinedParameter`
('AdminType',[string],$attrColl)
Really sorry about the word-wrapping there - it’s unavoidable with a line that long. Remember, the backslash doesn’t “exist” in the code, it’ a line-wrap character here in the PDF book. We’ve created a new -AdminType parameter, which will accept a String object, and attached our attribute collection. But we’re not quite done:
$dict = New-Object System.Management.Automation.RuntimeDefinedParameterDictionary
$dict.Add('AdminType',$param)
return $dict
That return keyword is what “sends” our new, dynamic parameter to PowerShell.
The Whole Picture
Here’s the whole example, which is in our downloadable code samples for this chapter:
Param(
[string]$UserLevel
)
DynamicParam {
If ($UserLevel -eq "Administrator") {
create an $AdminType parameter
$attr = New-Object System.Management.Automation.ParameterAttribute
$attr.HelpMessage = "Enter admin type"
$attr.Mandatory = $true
$attr.ValueFromPipelineByPropertyName = $true
$attrColl = New-Object System.Collections.ObjectModel.Collection[System.Attribut\
e]
$attrColl.Add($attr)
$param = New-Object System.Management.Automation.RuntimeDefinedParameter('AdminT\
ype',[string],$attrColl)
$dict = New-Object System.Management.Automation.RuntimeDefinedParameterDictionary
$dict.Add('AdminType',$param)
return $dict
}
}
Yup, that’s a lot. And each DynamicParam you define will need to do that same sequence of events.
Using Dynamic Parameters
Dynamic parameters won’t show up as “normal” variables like a static parameter will. Instead, you’d access them like this:
if ($PsBoundParameters.ContainsKey('AdminType')) {
Write-Verbose "Admin type $($PsBoundParameters.AdminType)"
}
You’ll find another really excellent walk-through at PowerShellMagazine, if you’re interested.
Let’s Review
Using dynamic parameters is certainly for edge cases. If you are like us you’ll have to review the documentation to remember how to implement. But, let’s see if anything from this chapter sunk in.
Review Answers
And our take on the answers:
Writing Full Help
You should already know how you can add comment-based help to your tools. Typically you would create help documentation and insert it into each command. But there are some downsides to this approach:
And just so you know, PowerShell itself doesn’t provide help to you via comment-based help. The big boys and girls at Microsoft create special external help that they ship with their modules. You can, and should, do the same thing.
There’s been a feeling for some time that comment-based help was “easier,” both in terms of writing, and because it doesn’t create external files that you also have to distribute. We say, “rubbish,” at least now. As we’ll show you, it’s just as easy to create, and if you’re properly building and distributing your modules then it’s no longer harder to distribute. And it’s easier to keep updated.
External Help
Typical commands such as Get-Service have their help content stored in special type of XML file. The file is written in an XML dialect known as MAML (Microsoft Assistance Markup Language). Use Get-Command to find the name of the help file.
PS C:\> Get-Command Get-Service | Select HelpFile
HelpFile

Microsoft.PowerShell.Commands.Management.dll-Help.xml
Because help from Microsoft is localized, or written in your language, you’ll find this file in $pshome\en-us where the subdirectory (en-us) is your localized language (for example, en-uk would be English, United Kingdom). The XML file will contain help for all commands in the designated module. Here’s a taste of what that looks like.
Get-Command Get-Service |
Select-Object @{Name="Path";Expression={Join-Path $pshome\en-us $_.helpfile}} |
Get-Content -Head 30
Which should show something like this:
<?xml version="1.0" encoding="utf-8"?>
<helpItems xmlns="http://msh" schema="maml">
<!-- Updatable Help Version 5.0.7.0 -->
<command:command xmlns:maml="http://schemas.microsoft.com/maml/2004/10"
xmlns:command="http://schemas.microsoft.com/ma
ml/dev/command/2004/10" xmlns:dev="http://schemas.microsoft.com/maml/dev/
2004/10" xmlns:MSHelp="http://msdn.microsoft.co
m/mshelp">
<command:details>
<command:name>Add-Computer</command:name>
<maml:description>
<maml:para>Add the local computer to a domain or workgroup.
</maml:para>
</maml:description>
<maml:copyright>
<maml:para />
</maml:copyright>
<command:verb>Add</command:verb>
<command:noun>Computer</command:noun>
<dev:version />
</command:details>
<maml:description>
<maml:para>The Add-Computer cmdlet adds the local computer or remote
computers to a domain or workgroup, or moves
them from one domain to another. It also creates a domain account if the
computer is added to the domain without an account.</maml:para>
<maml:para>You can use the parameters of this cmdlet to specify an
organizational unit (OU) and domain controller or to perform an unsecure
join.</maml:para>
<maml:para>To get the results of the command, use the Verbose and
PassThru parameters.</maml:para>
</maml:description>
<command:syntax>
<command:syntaxItem>
<maml:name>Add-Computer</maml:name>
<command:parameter required="true" variableLength="false"
globbing="false" pipelineInput="false" position="1" aliases="DN,Domain">
<maml:name>DomainName</maml:name>
<maml:description>
<maml:para>Specifies the domain to which the computers are
added. This parameter is required when adding the computers to a domain.
</maml:para>
</maml:description>
<command:parameterValue required="true" variableLength="false">
String</command:parameterValue>
If you are like us, you are thinking “Oh, dear God in heaven what have I gotten myself into?” This is admittedly nasty-looking stuff and not for the faint of heart. In fact, a couple of years ago, we’d launch into a description of all the GUI-based tools you can use to create that XML, simply by laboriously copying and pasting your help content into said tool.
But don’t run away. Things got better.
Using Platyps
Microsoft has an open source project on GitHub called Platyps. The project’s goal is to make it easier to generate external (i.e. MAML-based XML) help. This is accomplished through a set of commands that analyze your module to generate a set of Markdown help files which in turn can be used to generate external help. The Platyps commands are packaged as a module which you can install from the PowerShell Gallery:
Install-Module platyps
We won’t go through every command in the module, but we will walk you through the process.
Like most open source projects, Platyps is in a constant state of development. There may be new features added after this chapter was written or new bugs introduced. If you encounter problems we encourage you to use the Issues section on project’s GitHub repository.
Generate Markdown
The first step in the process is to generate a set of Markdown documents. If you are not familiar with it, Markdown is way to define what a document looks like, kind of like HTML, but a billion times easier (in fact, this book’s source is written in Markdown). Don’t worry, you don’t need to understand much about Markdown, and what you do need to know you’ll pick up quickly. One of the added benefits with this intermediate step is that you end up with set of help files that are formatted nicely for a web browser (Markdown documents also display great in GitHub, if you’re hosting your code there). If you take a few minutes to look at the Markdown documents for Platyps at https://github.com/PowerShell/platyPS/tree/master/docs, you’ll see what we mean. You could setup a web site with the help documents for your tool. Anyway, this isn’t a chapter on Markdown so let’s move on.
To get started, change location in PowerShell to the root folder of your module. We’re assuming this directory has your .psm1 and .psd1 files. You will want to have a separate folder for your Markdown documents. We typically use Docs. For the sake of our demonstration we’re going to use a copy of a module Jeff wrote for storing PSCredential objects in a json file.
PS C:\PSJsonCredential> mkdir Docs
Directory: C:\PSJsonCredential
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 1/10/2020 5:09 PM Docs
If you think you will be creating language specific versions of help, then create a separate documents folder for each language.
One of the great benefits of Platyps is that if you already have comment-based help, it will be used to generate the initial Markdown file. Once you have created external help, then you can delete the comment-based help from your files. Otherwise, there’s no need to pre-generate any comment-based help. Let the Platyps commands do it for you.
The first cmdlet you’ll use is New-MarkdownHelp. This command will create a Markdown help document for every command in your module. You should first load your module into your PowerShell session. Because the folder we are working with is not in one of the locations specified in $env:PSModulepath, we’ll explicitly import the module.
PS C:\PSJsonCredential> import-module .\PSJsonCredential
Now we can create new Markdown help.
PS C:\PSJsonCredential> New-Markdownhelp -Module PSJsonCredential `
-OutputFolder .\Docs\ -withModulePage
Directory: C:\PSJsonCredential\Docs
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 1/10/2020 5:29 PM 2136 Export-PSCredentialToJson.md
-a---- 1/10/2020 5:29 PM 749 Get-PSCredentialFromJson.md
-a---- 1/10/2020 5:29 PM 755 Import-PSCredentialFromJson.md
-a---- 1/10/2020 5:29 PM 735 PSJsonCredential.md
As you can see we get a Markdown file for each command plus one for the module which we’ll get to later in the chapter. If you had existing comment based help for a command you should see it in the corresponding Markdown document. Edit as necessary. Otherwise the command generates a Markdown version of same content you would see in comment-based help. All you need to do is fill in the blanks by replacing sections like {{Fill in the Description}} with your content.
These files are text files so you can edit in Notepad, the PowerShell ISE or any text editor. You can also find Markdown-specific tools like MarkdownPad 2 or use VS Code. We’ll open one of the files in the latter. Note, though, that because the Markdown is typically so simplistic (help files don’t use boldfacing or anything fancy), there’s no specific need to get a special Markdown editor if you don’t already have one.
Visual Studio Code has an add-in that allows it to interpret and “render” Markdown documents, making it a pretty slick Markdown editor. Press Ctrl+Shift+P for the command palette and start typing “Markdown”. Select “Open Preview to the Side”
Markdown in VS Code
As you can see, all of the help sections are created for you. Fill in the blanks and you are ready to go. Again, you don’t have to know much about Markdown syntax. But we’ll point out a couple of tips.
In Examples sections, any code between 3 back ticks will be formatted as code (giving you more control over your example formatting than in comment-based help). You can see the result in the preview. After the back tick-ed section of code, add any descriptive text for your example. If you want to show output of your command, insert it inside the back-ticked code block.
In the Related Links section, add other commands enclosed in square brackets followed by a set of parentheses:
[Get-Credential]()
[ConvertFrom-SecureString]()
[Import-PSCredentialFromJson](Import-PSCredentialFromJson.md)
[Get-PSCredentialFromJson](Get-PSCredentialFromJson.md)
[https://msdn.microsoft.com/en-us/library/system.management.automation.pscredential(\
v=vs.85).aspx]()
Inside the parentheses you can include a link. In the example, the link for the other commands is to the Markdown file in the same folder. The Microsoft link obviously is to MSDN, which is where they keep the online version of their docs (which are also generated from the original Markdown source). If the text in the brackets is a URL, the Markdown document will automatically turn that into a live link. The text inside the square brackets is what will ultimately be displayed in the external help.
Repeat this process for your remaining Markdown documents. By the way, if you had created another set of documents for another language, you would of course translate them as necessary.
The Module Page
If you followed our example above, you should have also created a Markdown document for the module that looks like this:

Module Name: PSJsonCredential
Module Guid: a582b122-80fd-4fcb-8c01-5520737530c9
Download Help Link: {{Please enter FwLink manually}}
Help Version: {{Please enter version of help manually (X.X.X.X) format}}
Locale: en-US

PSJsonCredential Module
Description
{{Manually Enter Description Here}}
PSJsonCredential Cmdlets
[Export-PSCredentialToJson](Export-PSCredentialToJson.md)
{{Manually Enter Export-PSCredentialToJson Description Here}}
[Get-PSCredentialFromJson](Get-PSCredentialFromJson.md)
{{Manually Enter Get-PSCredentialFromJson Description Here}}
[Import-PSCredentialFromJson](Import-PSCredentialFromJson.md)
{{Manually Enter Import-PSCredentialFromJson Description Here}}
As you can see there are places to fill in the blanks. If you intend to create downloadable help, which we’ll also get to, you can specify the online location for the “Download Help Link”. As of the time we’re writing this chapter, this link must be HTTP. Also, you should manually enter the help version.
Or you could use the parameters -HelpVersion and -FwLink with New-MarkdownHelp. You can create the module page at any time but if you’ve already started editing your command markdown files, run the command to a temporary folder then copy the module Markdown file to your Docs folder.
New-MarkdownHelp -Module PSJsonCredential -OutputFolder d:\temp `
-WithModulePage -HelpVersion 1.0.0.0 `
-fwlink http://mywebserver/help -force
Copy-Item D:\temp\PSJsonCredential.md -destination c:\psjsoncredential\docs
Here’s the updated module page:

Module Name: PSJsonCredential
Module Guid: a582b122-80fd-4fcb-8c01-5520737530c9
Download Help Link: http://mywebserver/help
Help Version: 1.0.0.0
Locale: en-US

PSJsonCredential Module
Description
{{Manually Enter Description Here}}
PSJsonCredential Cmdlets
[Export-PSCredentialToJson](Export-PSCredentialToJson.md)
{{Manually Enter Export-PSCredentialToJson Description Here}}
[Get-PSCredentialFromJson](Get-PSCredentialFromJson.md)
{{Manually Enter Get-PSCredentialFromJson Description Here}}
[Import-PSCredentialFromJson](Import-PSCredentialFromJson.md)
{{Manually Enter Import-PSCredentialFromJson Description Here}}
Create External Help from Markdown
Before we create the external help we’ll need a language specific folder. We know for our module that this is going to be en-US so you can simply run:
mkdir en-us
Or if you prefer a more agnostic approach try this:
PS C:\PSJsonCredential> mkdir (Get-Culture).name
Directory: C:\PSJsonCredential
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 1/10/2020 5:13 PM en-US
If you need additional languages, create them as necessary.Then create new external help from your Markdown files.
PS C:\PSJsonCredential> New-ExternalHelp -Path .\Docs\ `
-OutputPath .\en-US\ -Force
Directory: C:\PSJsonCredential\en-US
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 1/11/2020 8:53 AM 17370 PSJsonCredential-help.xml
Use the -Force parameter to overwrite previous versions of the xml file. You then test the help to see what it will look like in PowerShell.
Get-HelpPreview -Path .\en-US\PSJsonCredential-help.xml
Help preview
Congratulations! At this point your module now has professional grade help documentation.
Note that should you need to revise your module and help, you can use Update-MarkdownHelp to add command changes to your Markdown help without losing what you’ve created previously. When finished updating the Markdown, create new external help as before with -Force.
Supporting Online Help
Most PowerShell commands out of the box have a feature where you can go online to get the most current version of help.
help get-ciminstance -online
Did you know you can do the same thing? It is easier than you think, assuming you have already created the online destination. In the module or script file where your code is defined you should have a [Cmdletbinding()] attribute. Within this you will add a HelpUri settings specifying the online location.
Function Get-PSCredentialFromJson {
[cmdletbinding(HelpUri="http://bit.ly/Get-PSCredentialJson")]
You don’t have to use a shortening service but it is handy should you need to redirect users to a new site or page. This link can point to any web page that provides online help. You might put the Markdown document for the command online and point the HelpUri to that.
While it isn’t required, you might also want to include the URI under the Related Links section of your Markdown document.
RELATED LINKS
[http://bit.ly/Get-PScredentialJson]()
“About” Topics
Depending on your toolset, you may also want to include an About help topic. This file can offer more insights and guidance on how to use the commands in your tool, cover general concepts, and so on. Adding an about topic, especially for a complex toolset, is the sign of an experienced toolmaker.
You can use the Platyps module to create this as well.
PS C:\PSJsonCredential> New-MarkdownAboutHelp -OutputFolder .\Docs\ -AboutName PSJso\
nCredential
The -AboutName value typically will be the name of your module. This will create a file called about_<aboutname>.md which you can edit as you did before.
About Markdown in VSCode
You can delete the sections wrapped in code block that are notes so that the beginning of your document looks like this.
PSJsonCredential
about_PSJsonCredential
SHORT DESCRIPTION
{{ Short Description Placeholder }}
LONG DESCRIPTION
{{ Long Description Placeholder }}
Insert your documentation as indicated. You can use the # character to indicate heading style. Each additional # character indicates another level (e.g., # is for level 1, ## is for level 2, and so on; there’s not a lot of point in using more than 2 levels). You can see this easily in VSCode or anything else you use to preview your Markdown document.
When you are finished, run New-ExternalHelp, specifying the folder with your about Markdown document. This will create the proper text file in your culture-specific folder.
Because this is a simple text file, you could create it by hand without any intermediate Markdown. Just be sure to follow the same heading outline. The name of your file must be about_<modulename>.help.txt, and place it in your language specific folder.
Making Your Help Updatable
The other professional feature in PowerShell help is the ability to download or update help from an online source. You too can use this feature. The first thing you will need is a CAB file with your updated help documentation. This file should include compressed versions of your help XML file and any About topics. Fortunately the Platyps module includes a command, New-ExternalHelpCab that will handle this task for you.
If you are interested, all of the sausage-making details can be found on MSDN at https://msdn.microsoft.com/en-us/library/hh852754(v=vs.85).aspx.
In order to use New-ExternalHelpCab you need to have a finished module Markdown page. The related files will be named based on information in the module page.
New-ExternalHelpCab -CabFilesFolder C:\PSJsonCredential\en-US\ `
-LandingPagePath C:\PSJsonCredential\Docs\PSJsonCredential.md `
-OutputFolder c:\psJsonCredential\help
The first parameter is the path to your external XML help files. The second parameter points to the module Markdown page and the last parameter is the location where you’ll store your files. You might get a bunch of XML-related output which you can ignore. The important part is that you should get files like this:
PS C:\PSJsonCredential> dir .\help\ | select-object name
Name

PSJsonCredential_a582b122-80fd-4fcb-8c01-5520737530c9_en-US_helpcontent.cab
PSJsonCredential_a582b122-80fd-4fcb-8c01-5520737530c9_en-US_helpcontent.zip
PSJsonCredential_a582b122-80fd-4fcb-8c01-5520737530c9_HelpInfo.xml
The cab file is named using the pattern:
<modulename>_<module guid>_<culture>_helpcontent.cab
The HelpInfo XML file follows a similar pattern with the module name and guid. This XML file contains the information that tells PowerShell where to download the cab file.
<?xml version="1.0" encoding="utf-8"?>
<HelpInfo xmlns="http://schemas.microsoft.com/powershell/help/2010/05">
<HelpContentURI>http://mywebserver/help</HelpContentURI>
<SupportedUICultures>
<UICulture>
<UICultureName>en-US</UICultureName>
<UICultureVersion>1.0.0.1</UICultureVersion>
</UICulture>
</SupportedUICultures>
</HelpInfo>
Typically all of these files will go into the same location on a web server. The last piece of the puzzle is to update the module manifest and set the HelpInfoUri to this location.
HelpInfo URI of this module
HelpInfoURI = 'http://mywebserver/help'
This location should not include the name of the XML file, only to its container. When you run one of the updatable help cmdlets, PowerShell checks the module for the HelpInfoUri address, connects to it and downloads the module specific HelpInfo.xml file, opens up the XML file to get the HelpContentUri which points to the location of the cab file which it then downloads.
You can test this by running Save-Help. We recommend using -Verbose so you can verify the locations.
We mentioned this earlier, but at the time of this writing you can only use HTTP locations. HTTPS does not work.
Your Turn
Let’s see what you can do using the Platyps cmdlets to create professional-quality help documentation. There are commercial tools you can also use for creating comment-based help but the Platyps module is freely available which we like.
Start Here
The first thing you’ll need to do is install the Platyps module. Take a few minutes to read cmdlet help and examples. Then make sure you download the code for this book. Open up the code for this chapter and you should see a module called TMSample. Your job is to create external help documentation for this module.
Your Task
This chapter’s downloadable code sample contains a version of the Get-TMRemoteListeningConfiguration` command we’ve been working with plus a related command to get TrustedHosts information. You don’t need to worry about running the commands. Change location to the root of the module and follow the steps we’ve described in this chapter. To import the module, change to the appropriate folder and run this command:
import-module .\TMSample.psd1
You don’t need to create an About topic, unless you are feeling like you need an extra challenge. Once you create your help test it in PowerShell by re-importing the module and running help on the module commands.
import-module .\TMSample.psd1 -force
help Get-TMRemoteListeningConfiguration -full
Our Take
After you’ve finished you can compare your help with ours in the Solution folder.
Let’s Review
Let’s wrap up with a few review questions.
Review Answers
Unit Testing Your Code
One of the most important things you can do with your code is test it. That should go without saying. And you’ve probably already done some testing of your scripts and commands, which is great - except you’ve probably done it manually. That presents two problems.
Pester - which ships with Windows 10 and later, and is available for download from PowerShell Gallery - is designed to help with those problems. It’s a unit testing framework that can help automate your testing. You essentially tell it what to test, and then it can test the same things, every time. If you realize that you’ve forgotten to test something, you can just add that test, and Pester will handle it from then on.
This chapter is intended only to be a short introduction to Pester, and to cover its most basic syntax. The full version of this book includes a Part dedicated to Pester and PowerShell unit testing for those who’d like to dig deeper.
Starting Point
To get going, let’s create a short script to test. Note that this script, as presented right here (and in the code samples as Step1.ps1), is not necessarily going to work perfectly. That’s kind of the point of it - we haven’t tested it yet. This is the kind of “I just wrote it, and I hope it works” code that you might end up with after you’ve been in the ISE for a bit, but haven’t hit “run” yet. Also note that this script is deliberately simplistic. We want to focus on testing it, without making this chapter into War and Peace. Also notice that this is a script which contains a function.
function Get-FileContents {
[CmdletBinding()]
Param(
[Parameter(Mandatory=$True,
ValueFromPipeline=$True)]
[string[]]$Path
)
PROCESS {
foreach ($folder in $path) {
Write-Verbose "Path is $folder"
$segments = $folder -split "\\"
$last = $segments[-1]
Write-Verbose "Last path is $last"
$filename = Join-Path $folder $last
$filename += ".txt"
Get-Content $filename
} #foreach folder
} #process
}
If you’re looking at the sample code, you’ll also notice an empty “Get-FileContents.Test.ps1” file. This is where we’ll start building our tests. The intent of Get-FileContents is to accept one or more folder paths. For each, it will take the final folder name in the path, and assume that is also the filename of a .txt file. So, if the path is c:\test\testing, then it will attempt to read the contents of c:\test\testing\testing.txt.
Sketching Out the Test
Our Tests file looks like this right now:
$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Get-FileContents" {
It "does something useful" {
$true | Should Be $false
}
}
This is boilerplate that was created by running Pester’s New-Fixture command. It actually created our Get-FileContents.ps1 file, and populated it with the function declaration that we added our code to. You don’t have to use New-Fixture; you can quite easily use the above boilerplate to create a Tests script for something that you’ve already written. This boilerplate contains a Describe block, which is the main structure that a Pester tests live inside. It also contains a single It block as a placeholder. Essentially, each It block represents a single test that we’re going to run against our code.
Making Something to Test
Because our function is assembling file paths and attempting to read files, we need to give it something to test. Pester provides a TESTDRIVE: for that purpose. It’s a special FileSystem PSDrive that Pester automatically sets up when you run your test. Under the hood, it lives in your system’s TEMP folder, and Pester takes care not only of setting it up, but also of deleting it when your tests are complete. That makes TESTDRIVE: a kind of sandbox, so that you’re not polluting your real filesystem with testing artifacts. So, inside our Describe block, we’re going to set up a few folders and files to test against. We’re moving on to the Step2 folder in our sample code.
$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Get-FileContents" {
MkDir TESTDRIVE:\Part1
MkDir TESTDRIVE\Part1\Part2
MkDir TESTDRIVE:\Part1\Part3
"sample" | Out-File TESTDRIVE:\Part1\Part2\Part2.txt
"sample" | Out-File TESTDRIVE:\Part1\Part3\Part3.txt
"sample" | Out-File TESTDRIVE:\Part1\Part1.txt
It "does something useful" {
$true | Should Be $false
}
}
Now we need to write our first test:
$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Get-FileContents" {
MkDir TESTDRIVE:\Part1
MkDir TESTDRIVE\Part1\Part2
MkDir TESTDRIVE:\Part1\Part3
"sample" | Out-File TESTDRIVE:\Part1\Part2\Part2.txt
"sample" | Out-File TESTDRIVE:\Part1\Part3\Part3.txt
"sample" | Out-File TESTDRIVE:\Part1\Part1.txt
It "reads part2.txt" {
Get-FileContents -Path TESTDRIVE:\Part1\Part2 |
Should Be "sample"
}
}
We’ve used the It block to provide a brief description of what’s happening. Then, we run our command with a given parameter, and we test to see that the output is what we expected. Should is another Pester command, and we’ve followed it with the Be operator, indicating that we expect Get-FileContents to return the string “sample.”
Now we’ll go to a console window and use Invoke-Pester to run our test:
PS x:\unit-testing-your-code\step2> Invoke-Pester
Describing Get-FileContents
[+] reads part2.txt 87ms
Tests completed in 87ms
Passed: 1 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0
We can see the output of our Describe block, and our It block as a + indicator, showing us that our test passed.
Expanding the Test
Let’s add a couple more tests, now in Step3.
$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Get-FileContents" {
MkDir TESTDRIVE:\Part1
MkDir TESTDRIVE:\Part1\Part2
MkDir TESTDRIVE:\Part1\Part3
"sample" | Out-File TESTDRIVE:\Part1\Part2\Part2.txt
"sample" | Out-File TESTDRIVE:\Part1\Part3\Part3.txt
"sample" | Out-File TESTDRIVE:\Part1\Part1.txt
It "reads part2.txt" {
Get-FileContents -Path TESTDRIVE:\Part1\Part2 |
Should Be "sample"
}
It "reads part3.txt with fwd slashes" {
Get-FileContents -PATH TESTDRIVE:/Part1/Part3 |
Should Be "sample"
}
It "reads 3 files from the pipeline" {
$results = "TESTDRIVE:\part1",
"TESTDRIVE:\part1\part2",
"TESTDRIVE:\part1\part3" | Get-FileContents
$results.Count | Should Be 3
}
}
The first test is making sure that forward slashes work as well as backslashes, since in PowerShell a path may legally contain either. The second test is feeding three paths, as strings, to our command, and capturing the results in $results. We know that our test files contain one line apiece, so reading three files should result in three objects in $results. We test that by piping $results.Count to Should, and checking to see that the count is indeed 3.
PS x:\unit-testing-your-code\step3> Invoke-Pester
Describing Get-FileContents
[+] reads part2.txt 82ms
Get-Content : Cannot find path
'TestDrive:\Part1\Part3\TESTDRIVE:\Part1\Part3.txt' because it does
not exist.
At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\
PowerShell-Toolmaking\Chapters\unit-testing-your-code\step3\Get-FileC
ontents.ps1:17 char:13
+ Get-Content $filename
+ ~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : ObjectNotFound: (TestDrive:\Part...Par
t1\Part3.txt:String) [Get-Content], ItemNotFoundException
+ FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Comm
ands.GetContentCommand
[-] reads part3.txt with fwd slashes 42ms
Expected: {sample}
But was: {}
22: Should Be "sample"
at <ScriptBlock>, \\vmware-host\shared folders\Documents\GitHub\Too
lmakingBook\code\PowerShell-Toolmaking\Chapters\unit-testing-your-code
\step3\Get-FileContents.Tests.ps1: line 21
[+] reads 3 files from the pipeline 61ms
Tests completed in 186ms
Passed: 2 Failed: 1 Skipped: 0 Pending: 0 Inconclusive: 0
Whoops. Our original first test passed, and our new third test passed, but the second test - with the forward slashes, as the Pester output clearly shows, failed. The exception thrown by our function indicates that the filename TestDrive:\Part1\Part3\TESTDRIVE:\Part1\Part3.txt couldn’t be found, which makes sense, because that filename is crazy.
Returning to our code, here’s the likely problem:
$segments = $folder -split "\\"
We’re breaking the path up based on backslashes, which obviously doesn’t take forward slashes into account. We’ll fix that by converting forward slashes as a preliminary step (this is in step4 in the sample code):
$folder = $folder -replace "/","\"
$segments = $folder -split "\\"
And we’ll try our test again:
PS x:\unit-testing-your-code\step4> Invoke-Pester
Describing Get-FileContents
[+] reads part2.txt 220ms
[+] reads part3.txt with fwd slashes 23ms
[+] reads 3 files from the pipeline 38ms
Tests completed in 283ms
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0
Fantastic! Now we’re assured of that particular bug never creeping up unnoticed again.
But Wait, There’s More
Pester has a lot more it can do. A key concept is mocking, which means sort of overriding an existing command so that it outputs exactly what you want. For example, if your code relies on the Get-ChildItem cmdlet, you might not feel compelled to actually test Get-ChildItem to make sure it’s working. After all, you didn’t write that command, so if it’s broken, there’s not much you can do anyway. Rather than setting up a directory structure to test against (as we did in our run-through above), you could instead mock Get-ChildItem, temporarily replacing it, in your tests, with your own version that always returns a specific result. It’s a way of simplifying the testing process, removing external dependencies, and focusing just on your code. We’re not going to go into mocking here, as it gets to be a fairly complex topic, and would instead refer you to The Pester Book, which we mentioned at the top of this chapter. You can also visit the Pester project for the core Pester documentation, which covers mocks, all the other things Should can do, and much more.
Your Turn
Let’s give you a shot at making a simple Pester test of your own. First, make sure you have Pester installed by running Import-Module Pester and making sure no errors occur. If you don’t have it, run Install-Module Pester to install the module from PowerShell Gallery.
The Pester module is periodically updated so even if you are running Windows 10 you might want to run Find-Module Pester -repository PSGallery and compare the version to your currently installed version. Upgrade the module as necessary.
Start Here
The following function should work, and you’ll find it in the lab-start folder, in the downloadable code samples for this chapter. The purpose of this very simple command is to verify that a service is started and, if not, start it. It accepts one or more service names as strings, and returns the resulting service. If you give it a non-existent service name, it should simply skip it without error.
function Set-ServiceStatus {
[CmdletBinding()]
Param(
[string[]]$ServiceName
)
foreach ($name in $ServiceName) {
$svc = Get-Service $name -EA SilentlyContinue
if ($svc) {
if ($svc.Status -ne 'Running') {
$svc | Start-Service
}
$svc | Get-Service
}
} #foreach
}
Your Task
Write a Pester test - we’ve provided you with the boilerplate in lab-start - that tests the following:
Our Take
Our results are in lab-results, and look like this:
And our Pester run:
PS X:\unit-testing-your-code\lab-results> Invoke-Pester
Status Name DisplayName
------ ---- -----------
Running bits Background Intelligent Transfer Ser...
Describing Set-ServiceStatus
[+] starts BITS 1.39s
[+] starts BITS, skips FAKE 542ms
[+] starts 2 services 1.09s
Tests completed in 3.02s
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0
Notice that our third It block contains two Should tests. This is fine, because both tests are needed to ensure a correct result from the entire block. If either Should fails, the entire It is a fail. Of course, there are a lot of other ways you could have gone about this, so don’t be alarmed if your test code is different.
Let’s Review
Run through these review questions to make sure you picked up the key points from this chapter:
Review Answers
Here are our answers:
Extending Output Types
One of the coolest things about PowerShell is its Extensible Type System, or ETS. To understand that, we’ll need to cover a bit of boring (but important) terminology, and then we can show you why the ETS can be so awesome.
Understanding Types
In programming, a type is a description of what some programmatic structure looks like. For example, in .NET Framework, the System.String type includes methods for manipulating strings, counting the number of characters in the string, and so on. These are also referred to as the interface of the type - the means by which you, as a programmer, interact with it. You’ll also see the word class, which refers to the means by which a type is implemented - its internal state, and the actual code that makes it work. But what’s important here is the type.
Another important concept in programming is the so-called contract that a type represents. Just like a legal contract, a type’s interface - its properties, methods, and other members, are meant to be carved in stone. The contract is there to help ensure forward compatibility. For example, if you write code based on the ToShortDateString() method of the System.DateTime type, you want to have some assurances that Microsoft won’t eliminate that method, thus breaking your code, in some future release. That’s why you’ll sometimes see type names with a sort of version number, like System.DateTime2 (although such a thing doesn’t really exist yet). That defines a new type, and Microsoft could define it in any way they wanted, without breaking the contract for the original System.DateTime. However, it’s generally OK to add things to a type’s interface. You haven’t written any code which depends on System.Int32 not having a method called ToFormattedString(), so Microsoft could add such a method without breaking your old code. Adding to an interface isn’t a great practice, because you start to have to worry about things like, “which version of .NET can my code run on, since some versions have such-and-such a member and others don’t,” and so it’s pretty rare for framework developers, like Microsoft, to do that.
But PowerShell represents a slightly different situation.
The Extensible Type System
PowerShell’s ETS doesn’t permanently add anything to a type’s interface. Instead, it temporarily extends the interface, and only does so within PowerShell. In a way, you can think of it as a thin “wrapper” around the original interface, with a few things gently stuck on for just that moment. Most of the time, the things PowerShell adds to a type are there solely for PowerShell’s use, or to improve consistency in a systems administration context.
For example, Windows services are represented by the .NET Framework System.ServiceProcess.ServiceController type. The service’s name is found in the ServiceName property of that type. That’s all well and good, except that most .NET Framework types have a “Name” property. Because “Name” is so widely used, PowerShell has certain features which default to using the “Name” property. Services being such a commonly accessed administrative thing, it would be super-inconvenient for those features to simply not work. And so the ETS adds an AliasProperty called Name to System.ServiceProcess.ServiceController. The old ServiceName property is still there, so the type’s contract is still valid, but Name also exists and contains the same data, so PowerShell’s various features will work.
The ETS supports several different members that can be added to a type:
One PropertySet that you’ll often see is DefaultDisplayPropertySet. This is a list of property names that PowerShell should display, by default, when displaying the object. If the list contains 5 or fewer properties, PowerShell will always attempt to use a table-style display; for more properties, it will use a list-style display.
Extending an Object
For this example, we’ll use a slight variation of the Get-TMComputerStatus function.
Start.ps1
Function Get-TMComputerStatus {
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLog,
[switch]$ErrorAppend
)
BEGIN {
Write-Verbose "Starting $($myinvocation.mycommand)"
}
PROCESS {
foreach ($computer in $Computername) {
Write-Verbose "Querying $($computer.toUpper())"
Try {
$params = @{
Classname = "Win32_OperatingSystem"
Computername = $computer
ErrorAction = "Stop"
}
$OS = Get-CimInstance @params
$params.ClassName = "Win32_Processor"
$cpu = Get-CimInstance @params
$params.className = "Win32_logicalDisk"
$vol = Get-CimInstance @params -filter "DeviceID='c:'"
$OK = $True
}
Catch {
$OK = $False
$msg = "Failed to get system information from $computer. $($_.Exception.Mes\
sage)"
Write-Warning $msg
if ($ErrorLog) {
Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"
"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend
}
}
if ($OK) {
#only continue if successful
$obj = [pscustomobject]@{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
$obj
} #if OK
} #foreach $computer
}
END {
Write-Verbose "Starting $($myinvocation.mycommand)"
}
} #Get-TMComputerStatus
Get-TMComputerStatus $env:computername
Specifically, we’re going to be messing with this code:
if ($OK) {
$obj = [pscustomobject]@{
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
$obj
} #if OK
We mentioned, way back, that we’re in the habit of storing our newly created objects in a variable ($obj in this case), in case we ever want to modify the new object prior to outputting it. Here’s where you’ll see that practice in use. Now, this gets a little complicated, because the DefaultDisplayPropertySet is actually a child of a PSStandardMembers member set. Here we go:
create a default display property set
[string[]]$props = 'ComputerName','Uptime','Processes','PctFreeMem','PctFreeC'
$ddps = New-Object -TypeName System.Management.Automation.PSPropertySet `
DefaultDisplayPropertySet, $props
$pssm = [System.Management.Automation.PSMemberInfo[]]$ddps
$obj | Add-Member -MemberType MemberSet `
-Name PSStandardMembers `
-Value $pssm
$obj
You’ll find the complete thing in End.ps1 in the code download. For comparison, here’s the output before:
Computername : BOVINE320
TotalMem : 33442624
FreeMem : 11314680
Processes : 311
PctFreeMem : 33.833110703275
Uptime : 1.04:09:16.9994278
CPULoad : 29
PctFreeC : 30.2393308009492
And the output after:
ComputerName Uptime PctFreeMem PctFreeC
------------ ------ ---------- --------
BOVINE320 1.04:10:36.8124820 35.4735920243579 30.2408134074583
Our DefaultDisplayPropertySet is what made this happen. The other properties remain and can be seen by piping the command to Select-Object:
Get-TMComputerStatus $env:computername | select-object *
ScriptMethods, ScriptProperties, AliasProperties, and NoteProperties are all far easier to make - simply pipe your object to Add-Member, specify the -MemberType, give it a -Name, and a -Value. For ScriptMethod and ScriptProperty, the value is a {script block}, meaning PowerShell code inside curly brackets.
In the download folder you will find another copy of our function called using-add-member.ps1. In this folder we’ve added a few more object members.
#adding an alias
$obj | Add-Member -MemberType AliasProperty `
-Name Memory `
-Value TotalMem
#adding a script method
$obj | Add-Member -MemberType ScriptMethod `
-Name Ping `
-Value { Test-NetConnection $this.computername }
#adding a script property
$obj | Add-Member -MemberType ScriptProperty `
-Name TopProcesses `
-Value {
Get-Process -ComputerName $this.computername |
Sort-Object -Property WorkingSet -Descending |
Select-Object -first 5
}
$obj
Now when we run the function for the local host we can see these additions with Get-Member.
TypeName: System.Management.Automation.PSCustomObject
Name MemberType Definition
---- ---------- ----------
Memory AliasProperty Memory = TotalMem
PSStandardMembers MemberSet PSStandardMembers {DefaultDisplayPropertySet}
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Computername NoteProperty string Computername=BOVINE320
CPULoad NoteProperty uint16 CPULoad=7
FreeMem NoteProperty uint64 FreeMem=11732260
PctFreeC NoteProperty double PctFreeC=30.2406928049765
PctFreeMem NoteProperty double PctFreeMem=35.0817567425331
Processes NoteProperty uint32 Processes=305
TotalMem NoteProperty uint64 TotalMem=33442624
Uptime NoteProperty timespan Uptime=1.04:14:28.8250846
Mem PropertySet Mem {Computername, TotalMem, FreeMem, PctFreeMem}
Ping ScriptMethod System.Object Ping();
TopProcesses ScriptProperty System.Object TopProcesses {get= ...
If we save the command output to a variable we can see these new object properties and methods.
The alias is an alternate property name:
PS C:\> $o = Get-TMComputerStatus $env:computername
PS C:\> $o.memory
33442624
PS C:\> $o.TotalMem
33442624
The property set is a way of predefining a group of properties so that instead of running this:
PS C:\> $o | Select-object Computername,TotalMem,FreeMem,PctFreeMem
Computername TotalMem FreeMem PctFreeMem
------------ -------- ------- ----------
BOVINE320 33442624 12348324 36.9239088416029
We can run this:
PS C:\> $o | Select-object Mem
Computername TotalMem FreeMem PctFreeMem
------------ -------- ------- ----------
BOVINE320 33442624 12348324 36.9239088416029
The script property uses PowerShell to get a value. The code is invoked anytime you access the property. In our function, we created a property that reflects the top 5 processes.
PS C:\> $o.TopProcesses
$o.TopProcesses
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
0 0 4416 1700048 237.52 2480 0 Memory Compression
283 46 1857712 1350032 3,738.92 29556 1 TabNine
1570 217 978384 842932 2,322.17 22960 1 firefox
1467 86 612828 440168 427.52 5952 1 powershell_ise
0 0 1218936 426460 573.06 14504 0 vmmem
Finally the script method can be invoked to do something.
PS C:\> $o.ping()
ComputerName : BOVINE320
RemoteAddress : fe80::ddae:8ade:c3ff:e584%19
InterfaceAlias : vEthernet (LabNet)
SourceAddress : fe80::ddae:8ade:c3ff:e584%19
PingSucceeded : True
PingReplyDetails (RTT) : 0 ms
Using Update-TypeData
There’s nothing wrong with using Add-Member for simple extensions. It is certainly much easier than the traditional way of using complicated XML files, which we’re going to spare you. But, we want to mention another cmdlet that you might also consider, especially if you are building a toolset that will be working with custom objects.
You can use Update-TypeData to achieve many of the same results that we showed with Add-Member. The primary difference is that you will need to explicitly specify a type name. Open up the downloaded files for this chapter and you’ll find the beginnings of a module file (Info.psm1). This module has the same function, with modifications.
The most important change is that we have inserted a custom type name into the output object.
$obj.psobject.TypeNames.Insert(0,"TMComputerStatus")
The command tells PowerShell to insert ‘TMComputerStatus’ as the primary type name. If you create an object with this function and pipe it to Get-Member you’ll see this as the typename instead of PSCustomObject.
We will use this name to update the type. We’ve removed most of the Add-Member commands from the function and used Update-TypeData later in the psm1 file.
$myType = "myMachineInfo"
Update-TypeData -TypeName $myType -DefaultDisplayPropertySet 'ComputerName',
'OSVersion','Cores','RAM' -force
Update-TypeData -TypeName $myType -MemberType AliasProperty -MemberName Free `
-Value SysDriveFreeSpace -force
Update-TypeData -TypeName $myType -MemberType ScriptMethod -MemberName Ping `
-Value {
Test-NetConnection $this.computername
} -force
Update-TypeData -TypeName $myType -MemberType ScriptProperty -MemberName `
TopProcesses -Value {
Get-Process -ComputerName $this.computername |
Sort-Object -Property WorkingSet -Descending |
Select-Object -first 5
} -force
We use the -force parameter to overwrite any previous updates to this typename. The only type extension we left in the function with Add-Member was the PropertySet. There appears to a bug with Update-TypeData and this property extension. When working in the PowerShell ISE it looks like it should work, but when PowerShell goes to execute the command it errors.
One advantage to this approach is that the type extension is now separate from the function. We can now extend or modify the object type without having to edit the function and run the risk of screwing something up. Technically we could also dynamically extend the type after the fact for any objects previously created.
Define a PSTypename
You will find plenty of code samples in the wild that use the Insert() method which is why we showed it. However when defining a custom object, you can also define the type name as part of the property hashtable.
$obj = [pscustomobject]@{
PSTypeName = "TMComputerStatus"
Computername = $os.CSName
TotalMem = $os.TotalVisibleMemorySize
FreeMem = $os.FreePhysicalMemory
Processes = $os.NumberOfProcesses
PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100
Uptime = (Get-Date) - $os.lastBootUpTime
CPULoad = $cpu.LoadPercentage
PctFreeC = ($vol.FreeSpace/$vol.size)*100
}
Write-Output $obj
With this approach you don’t need to insert anything and all of your type extension commands using Update-TypeData can be handled elsewhere in your module.
You might also want to take a look at Jeff’s PSTypeExtensionTools module.
Next Steps
Because this was a pretty straightforward exercise, we’re not going to include a formal hands-on exercise. We encourage you to try out the sample code. Any code you need to add to your work can be simple cut-and-paste job of what we did. In fact, encourage you to try this out in one of your own functions that produce a custom object.
Advanced Debugging
You should already be familiar with the main debugging mechanisms in PowerShell. Those will get you through a lot of different scenarios, but there will definitely be times when you need a little more power in your debugging toolset. With that in mind, we’ll build on those basic debugging concepts and tools.
Getting Fancy with Breakpoints
The most basic use of breakpoints is their “interactive” mode. That is, when we set a breakpoint on a line number, and script execution reached that line number, the script stops and we drop into the debug console. Again sticking with basic usage, you might only set breakpoints on particular line numbers, which is a pretty common need. But we can do so much more!
Types of Breakpoints
PowerShell actually supports different breakpoint triggers:
Variable breakpoints in particular are like magic, and they’re similar to “watches” that some integrated development environments (like Visual Studio) let you create in “real” programming languages. Remember, script logic errors are nearly always caused by a variable (or property value) containing something other than you expected, and so breaking when a variable changes is a perfect time to validate your assumptions about what the variable contains.
Breakpoint Actions
When triggered, a breakpoint’s default action is to dump you into the DBG\> debug console. But you can always specify a separate -Action, by passing a script block to the parameter. That script block can run any legal PowerShell code, and specifying an action disables the dump-to-debug-console behavior. You might write action code that logs some message to a file, or even dumps the entire VARIABLE: drive to a text file so that you can analyze it later. This is a great tool for unattended debugging, such as with scripts that work fine interactively, but that fail when run as a scheduled task. By having automated breakpoints, you can gather evidence about the actual execution environment, even though you can’t “personally” be there while the code is running.
For example:
Set-PSBreakpoint -Script .\Mine.ps1
-Variable data
-Mode ReadWrite
-Action { Dir VARIABLE: | Out-File .\vars.txt -Append }
This would dump the entire VARIABLE: drive each time $data was read or changed. After the script ran, you could analyze that file while walking through your code, and you’d know, at each step, what each variable contained.
There are a couple of rules about action scripts:
Getting Strict
The Set-StrictMode command isn’t a debugging technique per se; it’s actually designed to help prevent certain types of bugs. Consider this command (we’ll truncate the output to save space, but it’s the columns to focus on):
PS C:\> get-service | select name,satus
Name satus
---- -----
AJRouter
ALG
AppIDSvc
Appinfo
AppMgmt
AppReadiness
AppVClient
You see the problem, right? We misspelled “status,” and got a blank “satus” column. Typos like this cause problems all the time. Here’s another:
PS C:\> $a = 3
PS C:\> $b = 4
PS C:\> $a + $v
3
Clearly, not what we intended, but we hit “v” because it’s next to “b” on the keyboard. Oops. The point is that, in a script, PowerShell’s casual treatment of non-existent variables and property names can cause difficult-to-diagnose problems.
PS C:\> Set-StrictMode -Version Latest
PS C:\> $a = 3
PS C:\> $b = 4
PS C:\> $a + $v
The variable '$v' cannot be retrieved because it has not been set.
At line:1 char:6
+ $a + $v
+ ~~
+ CategoryInfo : InvalidOperation: (v:String) [], Runti
meException
+ FullyQualifiedErrorId : VariableIsUndefined
You should take the time to read full help and examples for Set-StrictMode. The best way to avoid the most problems is to set the -version parameter to “Latest”
This is much more desirable behavior. Now, instead of blithely accepting $v and treating it as if it contains zero, the shell is telling us that the variable hasn’t been created.
PS C:\> get-service | select name,satus
Name satus
---- -----
AJRouter
ALG
AppIDSvc
Appinfo
AppMgmt
AppReadiness
Sadly, strict mode doesn’t affect the Select-Object command the same way. But it will throw an error in a script that:
You can throw the strict mode setting right at the top of your functions to take advantage of these extra protections.
Getting Remote
Finally, PowerShell 4.0 and later supports remote debugging. This is useful when a script is running on a remote machine, which may also have modules and other dependencies that your local computer does not. Remote debugging makes it easier to debug a script in its “natural habitat,” so to speak, since things like property values, OS features, and so on will differ from machine to machine. Whenever possible, we try to debug a script when it’s running on the same machine we plan to run it on in production. Remote debugging aids in this tremendously, but it does require PowerShell v4 or later on both ends. The machine the script will run on must also be configured to accept Remoting sessions.
Really, you’re just going to be using the standard -PSBreakpoint commands, but you’ll work with them in a remote session that’s connected to the machine where your script will run. Also note that this is designed (presently) to work in the PowerShell console, not the ISE.
In a remote debugging prompt, you’ll have a new set of special commands:
PowerShell 4.0 (and later) also supports disconnected sessions, and these are permitted for remote debugging. With this feature, you can disconnect a session that’s in the DBG\> debugging prompt, and then later reconnect and resume debugging. You may actually run into this feature accidentally, as sometimes triggering a breakpoint will interrupt the remote session connection, forcing you to use Enter-PSSession or Connect-PSSession to reconnect.
Microsoft has a great blog article with more examples on remote debugging.
Let’s Review
We don’t really have a challenge for you to try but we do want to make sure you picked up on a few key points.
Review Answers
Did you come up with these answers?
Command Tracing
This is another advanced debugging technique that we’ve used time and time again. It’s absolutely invaluable for figuring out what PowerShell is doing with all the input you pass to a given command, whether via parameters or via the pipeline. As an example, we’ll run through one of PowerShell’s native commands, but this is just as useful for debugging your own commands.
Getting in PowerShell’s Brain
Consider this command:
"g*","s*" | Get-Alias
It’s our hope that the array of strings, g* and s*, will be connected to the -Name parameter of Get-Alias. But we want to see it happening. We want inside PowerShell’s brain, to see it making that connection. Fortunately, PowerShell includes an X-Ray like cmdlet called Trace-Command. With this command we can look inside PowerShell and see what is happening.
trace-command -expression {"g*","s*" | Get-Alias } -name parameterbinding -pshost
We’re telling PowerShell to trace the same command which we are defining inside a scriptblock. We’ve asked it specifically to show us parameter binding information in the host window; review the command’s help for other things it can display. If you try this command, (and why wouldn’t you), this generates a truly horrifying amount of output, so we’ll run through the relevant chunks with you.
First up, we see that PowerShell always binds named parameters first, followed by positional ones. We didn’t technically use either; we relied on pipeline input. PowerShell then checks to make sure all of the command’s mandatory parameters have received input:
ParameterBinding Information: 0 : BIND NAMED cmd line args [Get-Alias]
ParameterBinding Information: 0 : BIND POSITIONAL cmd line args [Get-Alias]
ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on cmdlet [Get-Alias]
This teaches us something: named and positional parameters will override pipeline input, because they happen before pipeline input is processed.
Next, PowerShell calls the BEGIN block of every command in the pipeline. This is how commands can “bootstrap” themselves, and it teaches us that BEGIN blocks won’t have access to piped-in input values, because the pipeline hasn’t been engaged yet.
ParameterBinding Information: 0 : CALLING BeginProcessing
Next, the shell starts working on the pipeline. It sees that the pipeline contains objects of the String type, and it looks for a parameter that can accept that type, ByValue, from the pipeline.
ParameterBinding Information: 0 : BIND PIPELINE object to parameters: [Get-Alias]
ParameterBinding Information: 0 : PIPELINE object TYPE = [System.String]
ParameterBinding Information: 0 : RESTORING pipeline parameter's original values
The shell finds the -Name parameter will meet the needs without converting, or coercing, the data into another type, and so it attaches, or binds, the first input value, g*, to the -Name parameter. This behavior confirms that only one value at a time is sent through the pipeline.
ParameterBinding Information: 0 : Parameter [Name] PIPELINE INPUT ValueFromPipel\
ine NO COERCION
ParameterBinding Information: 0 : BIND arg [g*] to parameter [Name]
We see that -Name expects an array of values, but the pipeline only contains one value. So PowerShell creates a single-item array, and then attaches it to the parameter.
ParameterBinding Information: 0 : Binding collection parameter Name: argumen\
t type [String], parameter type [System.String[]], collection type Array, element ty\
pe [System.String], no coerceElementType
ParameterBinding Information: 0 : Creating array with element type [System.S\
tring] and 1 elements
ParameterBinding Information: 0 : Argument type String is not IList, treatin\
g this as scalar
ParameterBinding Information: 0 : Adding scalar element of type String to ar\
ray position 0
PowerShell then runs the command’s parameter validation attributes, if any, and we see that the value binding was successful.
ParameterBinding Information: 0 : Executing VALIDATION metadata: [System.Man\
agement.Automation.ValidateNotNullOrEmptyAttribute]
ParameterBinding Information: 0 : BIND arg [System.String[]] to param [Name]\
SUCCESSFUL
ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on cmdlet [Get-Alias]
There’s another value in the pipeline, so the process repeats:
ParameterBinding Information: 0 : BIND PIPELINE object to parameters: [Get-Alias]
ParameterBinding Information: 0 : PIPELINE object TYPE = [System.String]
ParameterBinding Information: 0 : RESTORING pipeline parameter's original values
ParameterBinding Information: 0 : Parameter [Name] PIPELINE INPUT ValueFromPipel\
ine NO COERCION
ParameterBinding Information: 0 : BIND arg [s*] to parameter [Name]
ParameterBinding Information: 0 : Binding collection parameter Name: argumen\
t type [String], parameter type [System.String[]], collection type Array, element ty\
pe [System.String], no coerceElementType
ParameterBinding Information: 0 : Creating array with element type [System.S\
tring] and 1 elements
ParameterBinding Information: 0 : Argument type String is not IList, treatin\
g this as scalar
ParameterBinding Information: 0 : Adding scalar element of type String to ar\
ray position 0
ParameterBinding Information: 0 : Executing VALIDATION metadata: [System.Man\
agement.Automation.ValidateNotNullOrEmptyAttribute]
ParameterBinding Information: 0 : BIND arg [System.String[]] to param [Name]\
SUCCESSFUL
Trace-Command can return a wealth of information based on type of information you are looking for. This is what the -Name parameter is providing. Run Get-TraceSource to see all of your options. Or to get the complete picture, run a trace command like this:
trace-command -expression {"g*","s*" | Get-Alias } -name * -pshost
The Debug output should show you everything PowerShell is doing when processing your expression. If you prefer to save the trace information to a file use the -FilePath parameter.
trace-command -expression {"g*","s*" | Get-Alias } -name * -filepath trace.txt
Command tracing is a useful tool for seeing exactly how PowerShell is dealing with parameter input, and has helped us out of many sticky situations by helping us better understand what’s happening in PowerShell’s head.
Analyzing Your Script
One of the neater projects that have come out of Microsoft is the PowerShell Script Analyzer. This is available as PSScriptAnalyzer in PowerShell Gallery (meaning you can use Install-Module to install it). It’s a static code analyzer, which means it doesn’t run your code; it merely gazes upon your code and offers suggestions related to best practices, coding style, and so on. It can analyze code inside .ps1 and .psm1 files.
Performing a Basic Analysis
We’re going to start with the code from our “Extending Output Types” chapter, but we’ll provide a standalone copy as Script.ps1 in the downloadable code for this chapter (just as a convenience, if you’re following along).
The PowerShell Script Analyzer consists of a set of rules. You can run an analysis using only specific rules, or excluding certain rules. We’ll run against the full rule set.
You can also create custom rules, and there are a few community projects that define new Script Analyzer rules for various purposes.
PS C:\analyzing-your-script> Invoke-ScriptAnalyzer .\Script.ps1
PS C:\analyzing-your-script>
WHAAAT? That’s awesome! “No news is good news,” meaning the analysis didn’t find anything it felt it needed to recommend. WE ARE AMAZING CODERZ. Well… sort of. You see, the analysis is only as good as the rules it supports. Let’s do this: we’ll add a $Password parameter to our script.
[cmdletbinding()]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[ValidateNotNullorEmpty()]
[Alias("CN", "Machine", "Name")]
[string[]]$Computername,
[string]$ErrorLog,
[switch]$ErrorAppend,
[string]$Password
)
And try again:
PS C:\analyzing-your-script> Invoke-ScriptAnalyzer .\Script.ps1 |
Select -expand message
Parameter '$Password' should use SecureString, otherwise this will exp
ose sensitive information. See ConvertTo-SecureString for more informa
tion.
The Analyzer has a rule about parameters named $Password which accept a [string], because that implies you’re passing passwords in clear text, which is obviously a Bad Idea. We triggered that rule, so you can see what it does. The Analyzer presently comes with just under 50 rules. You can see them all by running Get-ScriptAnalyzerRule.
Analyzing the Analysis
A thing to remember is that the Analyzer can’t catch every possible bad thing you might do in your code. It’s largely just matching regular expressions against known problem conditions, and alerting you to them. But it’s a good “first pass” on making sure you haven’t egregiously broken any really obvious best practices.
The rule collection has been cultivated over the years by a group of PowerShell subject matter experts and MVPs, many of them drawn from community best practices. However, you do not need to treat them as gospel. We’ve encountered warnings that don’t take into account what the rest of the command might be doing or how the command will be used. But for beginners, the rules do make a good sanity check.
If you plan on publishing your project to the PowerShell Gallery, you will want to make sure you are compliant with the script analyzer. Microsoft will run your submission through the analyzer automatically and kick it back to you if there are problems.
If you are interested in learning more about this tool, head over to the project’s GitHub repository at https://github.com/PowerShell/PSScriptAnalyzer.
Your Turn
Let’s see how Script Analyzer can help improve your code.
Start Here
In the downloadable sample code for this chapter, we’ve provided you with a Start.ps1 script. Load it up in the ISE and take a look at it.
Start.ps1
function Query-Disks {
[CmdletBinding(SupportsShouldProcess)]
Param(
[Parameter(Mandatory)]
[string[]]$ComputerName = 'localhost'
)
foreach ($comp in $computername) {
$logfile = "errors.txt"
write-host "Trying $comp"
try {
gcim win32_logicaldisk -comp $comp -ea stop
} catch {
}}
}
Your Task
Use Script Analyzer to analyze the script. Improve the script based on the Script Analyzer’s feedback.
Our Take
We’ve presented a possible solution in Improved.ps1, located in the same folder as the script you analyzed. This addresses all of Script Analyzer’s concerns - try running an analysis and see what you get.
Analyzing Start.ps1, we had the following complaints:
Here’s what we did to address them:
We also cleaned up the indentation, which Analyzer should honestly have complained about, but didn’t, when we ran it.
Result.ps1
function Get-Disk {
[CmdletBinding()]
Param(
[Parameter(Mandatory)]
[string[]]$ComputerName
)
foreach ($comp in $computername) {
$logfile = "errors.txt"
Write-Verbose "Trying $comp"
try {
Get-CimInstance -ClassName win32_logicaldisk -ComputerName $comp -ea stop
} catch {
$comp | Out-File $logfile -Append
}
}
}
Once huge advantage and reason to use VS Code as your primary development tool is that the Script Analyzer is built in. You get real time scanning as you write you code. And if there is an update to rules, you should get them in the next VS Code update.
Controlling Your Source
We’re going to go out on a limb and say that if are spending time and energy in creating a PowerShell-based tool, you would hate to see all that work go to waste or get lost. Yet for many IT Pros that is the exactly the risk they are taking every day. The real reason is that for the longest time IT Pros, and often their managers, treated scripting as an ad-hoc and throwaway activity. We cranked out a script to solve an immediate problem then went on to the next fire.
Recently though, IT Pros and their more enlightened managers, have come to understand that scripting and automation are key components to how they run their organization. For groups moving to a DevOps paradigm this is even more important. Even if you aren’t moving to the DevOps model, you need to begin thinking like a developer. The effort you are investing in your module or toolset is just as important as a developer in your company working on a new application.
This means you need to place equal importance on documentation, testing and source control which is the focal point of this chapter.
The Process
When we talk about source control the name should say it all. You need to have a mechanism to control the source code of your PowerShell tool. It doesn’t matter if you are writing a PowerShell function in Notepad or developing a full-blown module in Visual Studio Code. It also doesn’t matter if you are developing PowerShell solutions in a collaborative environment, or working alone. You need to protect yourself with source control.
The important thing to understand is that source control is a model. There are many, many ways to implement it (we’ll review a few in a moment) but all solutions incorporate these concepts
In short you write some code and check it in to a source control system. Later you, or a teammate, can check out the code for further work. The changed code is put back into source control, often with some description about what changed and why. This versioning information is what makes it possible to go back to earlier versions. Again, this description is merely intended as a generic overview.
Tools and Technologies
Source control tools generally fall into two categories, centralized and de-centralized. A centralized system tends to have a central server or repository that everyone connects to get and put code. Often in a centralized system only one person can work on a given piece of code at once. No one else can make any changes while the code is checked out. Visual Source Safe is a good example.
In a decentralized system, everyone has a copy and anyone can make any changes they want. Of course, there needs to be a mechanism to synchronize everyone’s code and handle conflicts. Git is perhaps the best well known example of this model.
We’re not going to tell you what to use. Your company may already have a source control mechanism in place that you will want, or have, to use. But you should use something. Between the two of use we’ve used a variety of source control platforms over the years. Yes, there will be a bit of a learning curve but accept it as the cost of being a professional PowerShell toolmaker. The point is, if you are not using some sort of source control today, you should be.
Here are a source control solutions you might consider. Obviously there are many on the market and we aren’t recommending anything.
git and GitHub
Without a doubt one of the most popular source control systems today is git. This is an open source product originally developed to manage the source code for the Linux kernel so you can imagine how robust this has to be. In the git model, you have a repository of all related files for your project. The repository itself is handled with some complex file system voodoo which you don’t have to worry too much about.
In a git environment you commit your changed files to the repository. Other people can clone your repository which gives them a working copy. They can then fetch and pull any of your changes. Otherwise, changes they make locally are committed to their repository which can be pushed to the remote repository. Depending on permissions, they might send you a pull request which basically says, “I made some changes you might like to have so pull them from my repository.”
For many IT Pros, this collaboration is implemented through the GitHub web site. This free service lets you set up your own repositories which other people can clone or fork. It is entirely possible to manage everything from the web, but most people will have a Github master repository and a local clone. This way you can work and test your code locally and push changes to GitHub.
For example, Jeff wrote a PowerShell tool that adds remote tab functionality to the PowerShell ISE. The tool has been published to the PowerShell Gallery as ISRemoteTab but the source code is an open source project on GitHub. Locally, he has a copy of the files in git repository which is configured with a remote branch.
PS S:\ISERemoteTab> git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working tree clean
PS S:\ISERemoteTab> git branch
dev
* master
* PS S:\ISERemoteTab> git log -1
commit cd473151cf24c15304fdb21acf2e99147918192b
Author: jdhitsolutions <jhicks@jdhitsolutions.com>
Date: Thu Jan 12 12:18:27 2017 -0500
revised license
PS S:\ISERemoteTab> git remote
origin
PS S:\ISERemoteTab> git remote -v
origin https://github.com/jdhitsolutions/New-ISERemoteTab.git (fetch)
origin https://github.com/jdhitsolutions/New-ISERemoteTab.git (push)
When he makes changes he can commit them locally and then push them to Github.
As you might expect there is much to learn about using git and GitHub. Fortunately, because these platforms are so widely used there is a ton of reference and training material online. You can also find a number of PowerShell related projects in the PowerShell gallery:
find-module -tag git -Repository PSGallery
Jeff also has a PowerShell function to create a GitHub repository from the command line which he blogged about.
You can get started as well as download the current version of git.
Azure DevOps Server
Formerly known as TeamFoundationServer or TFS, is a Microsoft product related to its Visual Studio product line. The new version is an Azure service that allows you to track and share code in team or collaborative environment. Because it runs in Azure, some of the setup is not as complicated as the older TeamFoundationServer product. Microsoft offers a free version for individuals or small teams that can run on your local computer.
Learn more about Azure DevOps Server.
Subversion
Another popular source control system is Subversion, also known as SVN. This is an open source project from the Apache Software Foundation. SVN is similar to git in that you have a repository where you can commit changes. You can also have multiple branches for different development efforts.
You use a subversion client to check code in and out of the repository. SVN only maintains command line clients but you can find a number of graphical clients online.
Learn more about Subversion.
Mercurial
One last project we want to at least introduce you to is Mercurial. This is a decentralized source control system based on Python. It is similar to git in that you can have a server based master repository and local versions. Even though the underlying technology differs you have the same concepts of forking, committing, pulling and pushing. Typically the server component is hosted by a site like Bitbucket which has free and paid accounts. You would then use the Mercurial client to interact with the local and remote repositories.
You can find a number of PowerShell-related modules in the Chocolatey gallery if you have that defined.
find-module -tag mercurial -Repository chocolatey
And lest you think Mercurial can’t handle your PowerShell module, Facebook apparently uses Mercurial for its source control!
You can learn more and download Mercurial.
Let’s Review
We hope you gleaned a few tidbits from this chapter. Let’s check.
Review Answers
Did you come close to these answers?
Converting a Function to a Class
Classes were a new feature introduced in PowerShell v5. They’ve continued to evolve since then, and we get asked about them all the time - hence, this chapter. On the surface, they’re really really similar to a function, and so converting a function to a class is usually straightforward although a more accurate description might be transforming.
Class Background
But before we go any further, let’s talk about what these are and set some expectations. We see a lot of people diving into classes because they’re the new shiny and because all the “real” developers are using them. There are reasons to use classes, and certain things they do, but they will not magically make your PowerShell commands “better” somehow.
Most of the time, you will find that functions are entirely adequate for creating the PowerShell commands you need. Classes come into play when you need to create a much more formal programming structure that requires object-oriented programming features. And, if you’ve used classes in other languages, know that PowerShell ain’t other languages. Its classes are their own things, and assuming that they “just work” like some other language will lead you to a bad, dark place in life. Classes were introduced mainly to improve DSC resource authoring, and if you’re working outside the DSC space (which we don’t touch on in this book), classes are less “polished” in some ways than you might hope. For example, debugging classes is a bit trickier prior to PowerShell 5.1, which improved debugging support.
A Class is kind of like a blueprint of something, or a template. A blueprint is wonderful, but you can’t live in one, right? When you create an instance of the blueprint - that is, a house - you have something to live in. And that same blueprint can create multiple instances, giving you multiple, identical houses. The class simply describes what your thing should look like and how it might behave.
A Property is one of the members that a class can contain. A property contains a bit of information, and it may permit you to read that information, change the information, or both. Reading and writing - that is, getting and setting - are accomplished by two hidden methods. You don’t need to worry about these when using an object, because as you’ve seen in working with PowerShell, .NET Framework just “makes it work.” However, when creating a class, you sometimes do need to worry about these “getter” and “setter” methods, although PowerShell does handle them for you if you just need basic implementations. A property consists of a data type, a name, and sometimes a default value.
A Method is another member that a class can contain. A method tells the class to take some action - basically, it’s a mini-function contained within the class. Like functions, methods can accept input arguments, and they can produce results.
Think of it this way: you may have made a module to help manage some line-of-business application. Your module contains commands like Get-AppUser, Set-AppUser, Remove-AppUser, and New-AppUser. Alternatively, you could create an AppUser class. It would contain methods for retrieving users, changing their attributes, deleting them, and creating them. The code would look remarkably familiar either way, but the class structure is more formal and a bit more complex than the module structure, which is just a bunch of functions.
A Constructor is a special method that’s used to create a new instance of a class. Constructs can accept input parameters. So, using the example above, you might be able to run AppUser(‘username’) to create a new instance of your AppUser class, pre-populated with a given user’s information.
Here’s a very simple class definition:
class AppUser {
Properties
[string]$UserName
[int]$EmployeeID
Constructors
AppUser () {
#your code
}
AppUser ([string]$UserName) {
#your code
}
Methods
[void] Delete() {
#your code
}
[void] Update() {
#your code
}
}
$x = New-Object -Type AppUser
We’ve defined a class with two properties, two ways of instantiating it, and two methods. This is obviously just the framework; we’d need to add code to make all this work. At the bottom, you’ll see where we instantiated the class using New-Object. You can also create a new instance by invoking the built-in New() static method: [AppUser]::new().
This brings up an interesting point. Right now, PowerShell doesn’t “know” where your classes live. It’s not like functions where, if they’re stored in a module that’s in the right folder, PowerShell can magically load up the function on-demand. With classes, you have to make sure the class definition is loaded, or PowerShell won’t know what it is. For example, in the above, we’re using the class in the same script that defines the class, which will work. This can make classes a bit less convenient. Most of the time, you’re stuck with dot-sourcing the class definition into whatever script needs to use it.
PowerShell supports inheritance. That means you could take the AppUser class we created, and inherit it in your own class definition. Your definition could add new properties and methods, and the ones we created would still function.
There’s a great overview of classes that goes into more detail and is especially useful if you have a background in another class-based language. We’re glossing over some fine detail and a lot of permutations in this chapter.
Another key thing in classes is the return keyword. In a normal PowerShell function, return is basically an alias to Write-Output: it writes objects to the pipeline. In a class method, however, return writes to the pipeline and then exits the method immediately. This is consistent with the keyword’s behavior in almost every other programming language, ever. In a PowerShell class, you must specify the type of object the method will emit, if any, and use the return keyword. In our example, the two methods don’t write anything to the pipeline so we use [void]. But if we want a method to write something to the pipeline we need to specify the datatype and return it.
[timespan]GetAge() {
$t = <code to calculate timespan>
return $t
}
A major upside to classes is that they are objects (well, an instance of a class is an object). So instead of your functions outputting “static” objects that only have properties, which only contain static information, classes can be very dynamic. You could create a class that was capable of refreshing its property values, for example, or that provided helpful methods for working with whatever it is the object represents. However, if all your command needs to do is do something, or produce static output, then classes can be harder to work with than functions while giving you no advantages. There’s a good introductory writeup on classes that creates a Computer object, essentially creating a wrapper around some existing AD commands. It’s a good introduction to class syntax, but it doesn’t create a lot of functional advantages over just running commands - that’s important to realize, from a design perspective.
With all that in mind, we almost never “convert” a function into a class. A class is something we kind of design. But, we’re going to go through the “conversion” routine here, because it’s a useful way of taking something we’ve already done with you, and leveraging that knowledge to do something new. So think of this as “conversion for teaching’s sake,” rather than, “oh, yeah, we convert all the time.” OK?
Starting Point
We’re going to take the function from the end of the error handling chapter as our starting point. It’s here for your reference, and more easily readable in the code downloads for this chapter. It is very similar to the Get-TMComputerStatus function.
Function Get-MachineInfo {
[CmdletBinding()]
Param(
[Parameter(ValueFromPipeline,
Mandatory)]
[Alias('CN', 'MachineName', 'Name')]
[string[]]$ComputerName
)
BEGIN {}
PROCESS {
foreach ($computer in $computername) {
Try {
Write-Verbose "Connecting to $computer"
$params = @{
ComputerName = $Computer
ErrorAction = 'Stop'
}
$session = New-CimSession @params
Write-Verbose "Querying $computer"
#define a hashtable of parameters to splat
#to Get-CimInstance
$cimparams = @{
ClassName = 'Win32_OperatingSystem'
CimSession = $session
ErrorAction = 'stop'
}
$os = Get-CimInstance @cimparams
$cimparams.Classname = 'Win32_ComputerSystem'
$cs = Get-CimInstance @cimparams
$cimparams.ClassName = 'Win32_Processor'
$proc = Get-CimInstance @cimparams | Select-Object -first 1
$sysdrive = $os.SystemDrive
$cimparams.Classname = 'Win32_LogicalDisk'
$cimparams.Filter = "DeviceId='$sysdrive'"
$drive = Get-CimInstance @cimparams
Write-Verbose "Outputting for $($session.computername)"
$obj = [pscustomobject]@{
ComputerName = $session.computername.ToUpper()
OSVersion = $os.version
OSBuild = $os.buildnumber
Manufacturer = $cs.manufacturer
Model = $cs.model
Processors = $cs.numberofprocessors
Cores = $cs.numberoflogicalprocessors
RAM = $cs.totalphysicalmemory
Architecture = $proc.addresswidth
SystemFreeSpace = $drive.freespace
}
Write-Output $obj
Write-Verbose "Closing session to $computer"
$session | Remove-CimSession
}
Catch {
Write-Warning "FAILED to query $computer. $($_.exception.message)"
}
} #foreach
} #PROCESS
END {}
} #end function
Get-MachineInfo -ComputerName $env:COMPUTERNAME
It’s worth noting that classes don’t support comment-based help, nor are they supported by the help system at all, so we’re going to lose that. We’d need to publish instead some kind of “about” help file along with our code to document how to use it.
Doing the Design
We need to look at this function and decide on a class design.
You can see that we’re moving some of our functionality into the class, but not everything. Classes are meant to be pretty tightly scoped, and should only include things that represent something. In our case, the class represents machine information for a single machine, and so we’re scoping our functionality to that.
Making the Class Framework
Here’s our basic framework (in ClassFramework.ps1 in the sample code):
class TMMachineInfo {
Properties
[string]$ComputerName
[string]$OSVersion
[string]$OSBuild
[string]$Manufacturer
[string]$Model
[string]$Processors
[string]$Cores
[string]$RAM
[string]$SystemFreeSpace
[string]$Architecture
Methods
none at this time
Constructors
TMMachineInfo([string]$ComputerName) {
insert code to create a new instance of $this
}
} #class definition
Some notes:
It’s possible to create our own “setter,” rather than using PowerShell’s implied one, for each property. We could then throw an error if someone tried to set the property. That’s… interesting, but not the same as creating a read-only property.
It’s also worth noting that, inside the constructor, $ComputerName is the argument passed to the constructor. $this.ComputerName would be used to modify the property of the class. That can be a confusing scoping issue, and it’s worth paying attention to.
Coding the Class
You’ll find this in the downloadable code as Coded.ps1.
class TMMachineInfo {
Properties
[string]$ComputerName
[string]$OSVersion
[string]$OSBuild
[string]$Manufacturer
[string]$Model
[string]$Processors
[string]$Cores
[string]$RAM
[string]$SystemFreeSpace
[string]$Architecture
hidden[datetime]$Date
Constructors
TMMachineInfo([string]$ComputerName) {
Try {
$params = @{
ComputerName = $Computername
ErrorAction = 'Stop'
}
$session = New-CimSession @params
#define a hashtable of parameters to splat
#to Get-CimInstance
$cimparams = @{
ClassName = 'Win32_OperatingSystem'
CimSession = $session
ErrorAction = 'stop'
}
$os = Get-CimInstance @cimparams
$cimparams.Classname = 'Win32_ComputerSystem'
$cs = Get-CimInstance @cimparams
$cimparams.ClassName = 'Win32_Processor'
$proc = Get-CimInstance @cimparams | Select-Object -first 1
$sysdrive = $os.SystemDrive
$cimparams.Classname = 'Win32_LogicalDisk'
$cimparams.Filter = "DeviceId='$sysdrive'"
$drive = Get-CimInstance @cimparams
$session | Remove-CimSession
#use the computername from the CIM instance
$this.ComputerName = $os.CSName
$this.OSVersion = $os.version
$this.OSBuild = $os.buildnumber
$this.Manufacturer = $cs.manufacturer
$this.Model = $cs.model
$this.Processors = $cs.numberofprocessors
$this.Cores = $cs.numberoflogicalprocessors
$this.RAM = ($cs.totalphysicalmemory / 1GB)
$this.Architecture = $proc.addresswidth
$this.SystemFreeSpace = $drive.freespace
$this.date = Get-Date
}
Catch {
throw "Failed to connect to $computername. $($_.exception.message)"
} #try/catch
}
} #class
New-Object -TypeName TMMachineInfo -ArgumentList "localhost"
We’ve included a line at the end of the script to try it out, which gave us:
ComputerName : BOVINE320
OSVersion : 10.0.19041
OSBuild : 19041
Manufacturer : LENOVO
Model : 30C2CTO1WW
Processors : 1
Cores : 8
RAM : 31.8933715820313
SystemFreeSpace : 79033331712
Architecture : 64
We decided to add an additional property called Date but it is hidden, although it’s only “lightly” hidden. Passing our object to Get-Member -force can still show the hidden property. This is just a display convenience, not a security thing. It won’t show up in the default display, but it can be accessed by the property name.
PS C:\> New-Object -TypeName TMMachineInfo -argumentlist ThinkP1 | Select Date,Compu\
tername,OS*
Date ComputerName OSVersion OSBuild
---- ------------ --------- -------
6/3/2020 12:52:34 PM THINKP1 10.0.18363 18363
So it works - but because a class is a lower-level beastie than a function, in many ways, we’ve “lost” some functionality. We’d have to make up for that in the script itself. Notice that, to create our output, we simply set the properties of $this, which represents the current instance of the class.
Adding a Method
Let’s try one more thing. Now, this isn’t because we think this is a good idea - it’s more to show you a couple of things. First, here’s a revision to our code.
class TMMachineInfo {
Properties
[string]$ComputerName
[string]$OSVersion
[string]$OSBuild
[string]$Manufacturer
[string]$Model
[string]$Processors
[string]$Cores
[string]$RAM
[string]$SystemFreeSpace
[string]$Architecture
hidden[datetime]$Date
#Methods
[void]Refresh() {
Try {
$params = @{
ComputerName = $this.Computername
ErrorAction = 'Stop'
}
$session = New-CimSession @params
#define a hashtable of parameters to splat
#to Get-CimInstance
$cimparams = @{
ClassName = 'Win32_OperatingSystem'
CimSession = $session
ErrorAction = 'stop'
}
$os = Get-CimInstance @cimparams
$cimparams.Classname = 'Win32_ComputerSystem'
$cs = Get-CimInstance @cimparams
$cimparams.ClassName = 'Win32_Processor'
$proc = Get-CimInstance @cimparams | Select-Object -first 1
$sysdrive = $os.SystemDrive
$cimparams.Classname = 'Win32_LogicalDisk'
$cimparams.Filter = "DeviceId='$sysdrive'"
$drive = Get-CimInstance @cimparams
$session | Remove-CimSession
#use the computername from the CIM instance
$this.ComputerName = $os.CSName
$this.OSVersion = $os.version
$this.OSBuild = $os.buildnumber
$this.Manufacturer = $cs.manufacturer
$this.Model = $cs.model
$this.Processors = $cs.numberofprocessors
$this.Cores = $cs.numberoflogicalprocessors
$this.RAM = ($cs.totalphysicalmemory / 1GB)
$this.Architecture = $proc.addresswidth
$this.SystemFreeSpace = $drive.freespace
$this.date = Get-Date
}
Catch {
throw "Failed to connect to $this.computername. $($_.Exception.message)"
} #try/catch
}
Constructors
TMMachineInfo([string]$ComputerName) {
$this.ComputerName = $ComputerName
$this.Refresh()
}
} #class
Clear-Host
$obj = New-Object -TypeName TMMachineInfo -ArgumentList "localhost"
$obj | Select Date,Computername,SystemFreeSpace
Get-Process | Out-File "$Home\delete_me.txt"
$obj.Refresh()
$obj | Select Date,Computername,SystemFreeSpace
In the script, we’re writing a tiny text file out, just to change the free space number on the drive:
PS C:\> $obj = New-Object -TypeName TMMachineInfo -ArgumentList "localhost"
PS C:\> $obj | Select Date,Computername,SystemFreeSpace
PS C:\> Get-Process | Out-File "$Home\delete_me.txt"
PS C:\> $obj.Refresh()
PS C:\> $obj | Select Date,Computername,SystemFreeSpace
Date ComputerName SystemFreeSpace
---- ------------ ---------------
6/3/2020 1:10:21 PM BOVINE320 79029981184
As you can see, Refresh() does indeed re-query the information. The method doesn’t need to return anything, because all it’s doing is changing the properties of the instance itself.
Making Classes Easy To Use
The scripts we’ve been showing you are for educational purposes. In order to use our class definitions you would need to know how to use New-Object and know the type name. But that might be a bit much to ask of a help desk user you want to use your tool. Instead, you might give them a command like Get-MachineInfo which still uses all of the class goodness, but hides all the messy dev-stuff.
In the chapter download file you will find a module version of the code we’ve been using called TMMachineInfo. If you look at the psm1 file you will find the class definition and two functions. The first function is essentially a wrapper for the New() constructor:
Function Get-MachineInfo {
[cmdletbinding()]
[alias("gmi")]
Param(
[Parameter(Position = 0, ValueFromPipeline)]
[Alias("cn")]
[ValidateNotNullorEmpty()]
[string[]]$Computername = $env:COMPUTERNAME
)
Begin {
Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
} #begin
Process {
foreach ($computer in $computername) {
Write-Verbose "[PROCESS] Getting machine information from $($computer.to\
Upper())"
New-Object -TypeName TMMachineInfo -ArgumentList $computer
}
} #process
End {
Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
}
By creating a function around it we can parameterize it, support processing pipelined input and more. The function will write an object to the pipeline that has a type name based on the class name.
PS C:\> $c = get-machineinfo
PS C:\> $c | get-member
TypeName: TMMachineInfo
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
Refresh Method void Refresh()
ToString Method string ToString()
Architecture Property string Architecture {get;set;}
ComputerName Property string ComputerName {get;set;}
Cores Property string Cores {get;set;}
Manufacturer Property string Manufacturer {get;set;}
Model Property string Model {get;set;}
OSBuild Property string OSBuild {get;set;}
OSVersion Property string OSVersion {get;set;}
Processors Property string Processors {get;set;}
RAM Property string RAM {get;set;}
SystemFreeSpace Property string SystemFreeSpace {get;set;}
We didn’t want to force the user to have to invoke an object method. Instead we wrote a function.
Function Update-MachineInfo {
[cmdletbinding()]
[alias("umi")]
Param(
[Parameter(Position = 0, ValueFromPipeline)]
[ValidateNotNullorEmpty()]
[TMMachineInfo]$Info,
[switch]$Passthru
)
Begin {
Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
} #begin
Process {
Write-Verbose "[PROCESS] Refreshing: $(($Info.ComputerName).ToUpper())"
$info.Refresh()
if ($Passthru) {
#write the updated object back to the pipeline
$info
}
} #process
End {
Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
}
Again, a function offers the benefits of help documentation, parameters, validation and verbose output. We are even able in the function to write the updated object back to the pipeline with the -Passthru parameter, even though the Refresh() method doesn’t return anything. You should also notice the typename on the -Info parameter.
[TMMachineInfo]$Info,
We wrote this thinking the help desk might use the command to get some information:
$info = get-content c:\work\servers.txt | get-machineinfo
Then later in the day, they update it:
$info | update-machineinfo -passthru
We think a key takeaway is that in some ways the class simplified the process of working with objects in PowerShell. But you need to think about how they will be used which might mean some additional tooling in the form of some wrapper or “helper” functions.
Wrapping Up
Classes have their place. The ones in PowerShell are a little under-baked compared to most languages, and understanding that classes aren’t a direct replacement for functions is important. Classes are lower-level, meaning PowerShell does less (like validation) for you. They’re also a different way of packaging functionality, and they don’t make sense in every case. In fact, as we admitted upfront, in our example above classes didn’t make sense. Our function did a much better job of accomplishing the job. But now you can at least get a side-by-side comparison of functions and classes, and hopefully a real feel for when they may make sense or not.
If you want to play with PowerShell class-based tools further or see how you might build a tool around a class, you might want to take a look at Jeff’s PSChristmas module on Github at https://github.com/jdhitsolutions/PSChristmas or the myStarship module. Yes, a little silly but hopefully educational.
Publishing Your Tools
Inevitably, you’ll come to point where you’re ready to share your tools. Hopefully, you’ve put those into a PowerShell module, as we’ve been advocating throughout this book, because in most cases it’s a module that you’ll share.
Begin with a Manifest
You’ll typically need to ensure that your module has a .psd1 manifest file, since most repositories will use information from that to populate repository metadata. Here’s the manifest from our downloadable sample code.
#
Module manifest for module 'PowerShell-Toolmaking'
#
Generated by: Don Jones & Jeffery Hicks
#
@{
Script module or binary module file associated with this manifest.
RootModule = 'PowerShell-Toolmaking.psm1'
Version number of this module.
ModuleVersion = '2.0.0.0'
Supported PSEditions
CompatiblePSEditions = @("Desktop")
ID used to uniquely identify this module
GUID = '3926b244-469c-4434-a4b1-70ce3b0bfb5d'
Author of this module
Author = 'Don Jones & Jeffery Hicks'
Company or vendor of this module
CompanyName = 'Unknown'
Copyright statement for this module
Copyright = '(c) 2017-2020 Don Jones & Jeffery Hicks. All rights reserved.'
Description of the functionality provided by this module
Description = "Sample for for 'The PowerShell Scripting and Toolmaking Book' by Don \
Jones and Jeffery Hicks published on Leanpub.com."
Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''
Name of the Windows PowerShell host required by this module
PowerShellHostName = ''
Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''
Minimum version of Microsoft .NET Framework required by this module. This prerequi\
site is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''
Minimum version of the common language runtime (CLR) required by this module. This\
prerequisite is valid for the PowerShell Desktop edition only.
CLRVersion = ''
Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''
Modules that must be imported into the global environment prior to importing this \
module
RequiredModules = @()
Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()
Script files (.ps1) that are run in the caller's environment prior to importing th\
is module.
ScriptsToProcess = @()
Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()
Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @()
Modules to import as nested modules of the module specified in RootModule/ModuleTo\
Process
NestedModules = @()
Functions to export from this module, for best performance, do not use wildcards a\
nd do not delete the entry, use an empty array if there are no functions to export.
FunctionsToExport = '*'
Cmdlets to export from this module, for best performance, do not use wildcards and\
do not delete the entry, use an empty array if there are no cmdlets to export.
CmdletsToExport = '*'
Variables to export from this module
VariablesToExport = '*'
Aliases to export from this module, for best performance, do not use wildcards and\
do not delete the entry, use an empty array if there are no aliases to export.
AliasesToExport = '*'
DSC resources to export from this module
DscResourcesToExport = @()
List of all modules packaged with this module
ModuleList = @()
List of all files packaged with this module
FileList = @()
Private data to pass to the module specified in RootModule/ModuleToProcess. This m\
ay also contain a PSData hashtable with additional module metadata used by PowerShel\
l.
PrivateData = @{
PSData = @{
Tags applied to this module. These help with module discovery in online ga\
lleries.
Tags = @()
A URL to the license for this module.
LicenseUri = ''
A URL to the main website for this project.
ProjectUri = ''
A URL to an icon representing this module.
IconUri = ''
ReleaseNotes of this module
ReleaseNotes = ''
} # End of PSData hashtable
} # End of PrivateData hashtable
HelpInfo URI of this module
HelpInfoURI = ''
Default prefix for commands exported from this module. Override the default prefix\
using Import-Module -Prefix.
DefaultCommandPrefix = ''
}
A lot of this is commented out, which is the default when you use New-ModuleManifest. The specifics you must provide will differ based on your repository’s requirements, but in general we recommend at least the following be completed:
Take note of your author name and try to be consistent. You want to make it easy for people to find the other amazing tools you have published.
These are, incidentally, the minimums for publishing to PowerShell Gallery. we also recommend, in the strongest possible terms, that you specify the FunctionsToExport array, as well as VariablesToExport, CmdletsToExport, and AliasesToExport if those are applicable. Ours, as you’ll see above, are set to *, which is a bad idea. In our specific example here, it makes sense, because our root module is actually empty - we aren’t exporting anything; the module is just a kind of container for our sample code to live in. But in your case, the recommended best practice is to explicitly list function, alias and variable (without the $ sign) names which will achieve two benefits:
Publishing to PowerShell Gallery
PowerShellGallery.com is a Microsoft-owned, public NuGet repository for released code. It can host PowerShell modules, DSC resources, and other artifacts. Start by heading over to PowerShellGallery.com and logging in or registering, using your Microsoft ID. Once signed in, click on your name. As part of your Gallery profile, you’ll be able to request, view, and see your API key. This is a long hexadecimal identifier that you’ll need when publishing code. Keep this secure.
With your API key in hand, it’s literally as easy as going into PowerShell and running Publish-Module (which is part of the PowerShellGet module, which ships with PowerShell v5 and later and can be downloaded from PowerShellGallery.com for other PowerShell versions). Provide the name of your module, and your API key (via the -NuGetApiKey parameter), and you’re good to go.
Publish-Module -path c:\scripts\MyAwesomeModule -nugetapikey $mykey
You may be prompted for additional information if it can’t be found in your module manifest.
Be aware that publishing a module will include all files and folders in your module location. Hidden files and folders should be ignored but make sure you have cleaned up any scratch, test or working files.
You’ll likely receive a confirmation email from the Gallery, which may include a number of PSScriptAnalyzer notifications. As we describe in the chapter on Analyzing Your Script, the Gallery automatically runs a number of PSScriptAnalyzer best practices rules on all submitted code, and you should try hard to confirm with these unless you’ve a specific reason not to.
So what’s appropriate for PowerShell Gallery publication?
Items can be removed from Gallery if you change your mind, but Microsoft doesn’t have the ability to go out and delete whatever people may have already downloaded. Bear that in mind before contributing.
Publishing to Private Repositories or Galleries
Microsoft’s vision is that organizations will host private and internal repositories. You may want to use a private repository merely for testing purposes. Ideally these internal repositories will be based on Nuget. Setting up one of these is outside the scope of this book. However you can setup a repository with a simple file share.
We’ve created a local file share and made sure that the admins group has write access.
New-SMBShare -name MyRepo -path c:\MyRepo -FullAccess Administrators `
-ReadAccess Everyone
Don’t put any other files in this folder other than what you publish otherwise you will get errors when using Find-Module.
Next, you can register this file share as a repository.
Register-PSRepository -name MyRepo -SourceLocation c:\MyRepo `
-InstallationPolicy Trusted
We set the repository to be trusted because we know what is going in and we don’t want to be bothered later when we try to install from it. If you forget, you can modify the repository later:
Set-PSRepository -Name MyRepo -InstallationPolicy Trusted
Now you can publish locally:
Publish-Module -Path c:\scripts\onering -Repository MyRepo
This local repository can be used just like the PowerShell gallery.
PS C:\> find-module -Repository MyRepo
Version Name Type Repository Description
------- ---- ---- ---------- -----------
0.0.1.0 onering Module MyRepo The module that ...
You can even install locally to verify everything works as expected.
PS C:\> install-module onering -Repository MyRepo
PS C:\> get-command -module OneRing -ListImported
CommandType Name Version Source
----------- ---- ------- ------
Function Disable-Ring 0.0.1.0 OneRing
Function Enable-Ring 0.0.1.0 OneRing
Function Get-Ring 0.0.1.0 OneRing
Function Remove-Ring 0.0.1.0 OneRing
Function Set-Ring 0.0.1.0 OneRing
We set this up locally as a proof of concept. It shouldn’t take that much more work to setup a repository on a company file share. Just mind your permissions.
Your Turn
We aren’t going to offer a real hands-on lab in this chapter, mainly because we think it’s a bad idea to use a public repo like PowerShell Gallery as a “lab environment!” It’s also non-trivial to set up your own private repository, and if you go through that trouble, we think you’ll want it to be in production, not in a lab, so that you can benefit from that work.
That said, we do want to encourage you to sign into the PowerShell Gallery and create your API key, as we’ve described doing in this chapter. It’s a first step toward getting ready to publish your own code.
Let’s Review
We aren’t going to ask you publish anything to the gallery. You may never have a need to publish or share your work. But let’s see if you picked up anything in this chapter.
Review Answers
Hopefully you came up with answers like this:
Part 3: Controller Scripts and Delegated Administration
With your tools constructed and tested, it’s time to put them to work - and that means writing controller scripts. Not sure what that means? Keep reading. We’ll look at several kinds, from simple to complex, and look at a couple of other, unique ways in which you can put your tools to work.
Basic Controllers: Automation Scripts and Menus
We’ve written a lot about tools and toolmaking in the first two parts of this book; this part is more about the controllers that use those tools. Just like a human hand controls a hammer to some useful purpose, like building a house, a controller script takes your tools and puts them to some useful purpose. In this chapter, we’ll start with two very basic kinds of controller scripts.
Building a Menu
One of the simplest things you can do to expose tools to less-technical colleagues is through a simple, text-based menu - a scenario where Read-Host and Write-Host are totally important. Well-designed tools will prompt for mandatory parameters automatically, making menu-driven tool use even easier. You can write your own prompts for any non-mandatory parameters, if desired.
We’re going to assume your menu-driven script is going to invoke your own commands and functions. For our demonstrations we’re going to use out-of-the-box cmdlets. In the download files for this chapter you’ll find a copy of basicmenu.ps1.
This script isn’t perfect but it demonstrates some basic concepts. It uses a here string to define a set of menu choices. This menu is display as the prompt for Read-Host. We’ve also prompted for a computer name. Once the user has entered a value you need to take some action based on the value. For that we use a simple Switch construct.
PS C:\> c:\scripts\basicmenu.ps1
MyMenu

1. Get services
2. Get processes
3. Get System event logs
4. Check free disk space (MB)
5. Quit
Select a menu choice: 4
Enter a computername or press Enter to use the localhost:
27005.375
PS C:\>
As we said there are some issues. Primarily you may want to repeat the menu until the user is finished. The first version also didn’t do a good job of validating choices which is very important. In basicmenu-improved.ps1 you’ll find this function.
This version adds the necessary validation and clears the screen each time making it visually more appealing. The key difference though is that after executing code in the Switch construct, the function calls itself again.
Of course since the menu is just a display on the screen, you can dress up with Write-Host. FancyMenu.ps1 has a more elaborate version.
This version will center the menu title and display it in Cyan. The menu itself is displayed in yellow. We’ll let you load the function into your PowerShell session and see for yourself.
You could also dress up the menu using ANSI escape sequences or adding borders. Take a look at Jeff’s PSScriptTools module which you can download from the PowerShell Gallery.
Using UIChoice
For longish menus, the approach we just showed works best. But there is another option for a selection menu of sorts. You’ve probably seen it whenever you get a confirmation prompt. You can create a similar menu command.
For each choice you need to create an object like this:
$a = [System.Management.Automation.Host.ChoiceDescription]::new("Running &Services")
The parameter value is the text that will be displayed. Put an & in front of the character you want the user to type to select that choice.
Optionally, you can create a help message:
$a.HelpMessage = "Get Running Services"
Now for the cool part. Eventually, the user will make a choice which will select the a choice object. We’re going to add a new member to the object and define a ScriptMethod.
$a | Add-Member -MemberType ScriptMethod -Name Invoke -Value {
Get-Service | where {$_.status -eq "running"}
} -force
When this object is selected we can run the Invoke() method and execute the scriptblock. You’ll repeat this process for all choices, adding each one to an array.
To run, use the PromptForChoice() method specifying a title, message, the array variable and the default choice which is the corresponding index number from the array.
$r = $host.ui.PromptForChoice("TITLE HERE","MESSAGE:",$collection,0)
In the code samples dot source choicemenu.ps1 to load the Invoke-Choice function.
Here’s a taste of what it looks like in the console.
Choice menu
If you run this in the PowerShell ISE you’ll get a graphical popup for the menu.
Writing a Process Controller
The tools that you have been building are essentially building blocks that you can assemble with other commands in order to achieve some end result. A command like Get-Service is useful we suppose on its own. But its real value comes from how you might integrate it into a larger process. The same should be true of your commands. Often you may have a process built around them. If you’ve been smart about it, you’ve probably figured out how to execute those commands in a number of pipelined expressions at a PowerShell prompt. But let’s go a step further.
Again, we’re going to use some common cmdlets to demonstrate concepts. You of course would be using your own tools. Let’s say that each Monday morning you need to go through a list of servers and find all errors and warning from the System event log that occurred in the last 48 hours and that you need to email a report to the server management team.
You might open up PowerShell every Monday morning and run a command like this:
$body = Get-Content s:\servers.txt |
Where-Object { Test-Wsman $_ -erroraction silentlycontinue } |
Foreach-Object {
Get-Eventlog -LogName System -EntryType Error,Warning `
-After (Get-Date).AddHours(-48) -ComputerName $_ } |
Select-Object Machinename,EntryType,TimeGenerated,Source,Message |
Out-string
Send-MailMessage -to team@company.com -Subject "Weekend Error Report" `
-Body $body
Yeah, it might get the job done, but do you really want to type that every week? And what about when you are on vacation or out sick? How flexible is this? What you need is a controller script that orchestrates the commands. Here is a possible solution, which you’ll also find in the chapter code downloads as ProcessController.ps1.
Can you see some advantages in a controller script? We’ve parameterized a lot of it and set some defaults. These are settings we would expect to use most of the time. Now every Monday, someone on the team can run this command:
s:\eventlogreport.ps1 -computername (Get-Content s:\servers.txt) `
-after (Get-Date).AddHours(36) -sendto admins@company.com
But the controller script allows the flexibility to specify different a different set of computers and event logs.
s:\eventlogreport.ps1 -computer $web -logname application -entrytype error `
-after (Get-Date).AddHours(-12)
Even better - once you have a controller script you could setup a PowerShell scheduled job and never have to worry about it again!
Your Turn
Let’s see how much you picked up in this chapter. We’re going to have you create a controller/menu type script. We’ve given you plenty of examples to take as a starting point. The sample scripts are in the code downloads so feel free to copy and paste.
Start Here
We’d like to see you build something that the help desk could run to provide system information using Get-CimInstance. You can assume they already have the necessary credentials to remotely query a machine. You will also need to prompt the user for a computername.
Your Task
Create a menu with these items:
Prompt the user to select one and then run corresponding Get-Ciminstance command to display the results. You should include some way for the user to specify a computername. Ideally, the menu should re-display until the user decides to quit
Our Take
If you wrote something that displayed a menu and executed a corresponding command, you succeeded. Our solution is probably “over-engineered” but we wanted to demonstrate as many techniques as possible.
Our solution displays a menu using Write-Host and then uses the choice prompt technique. After the command is executed, the script is re-run until the user opts to quit.
System Information Menu
Let’s Review
We really don’t have much in the way of review questions for this chapter. The primary take away is that you may want to wrap your tools in some sort of controller or “menu-ing” function. Again, think about who will be using your toolset and how they might interact with it. If you go down the path we’ve demonstrated in this chapter be sure to include plenty of documentation or training.
Graphical Controllers in WPF
For many IT Pros, PowerShell means running scripts and commands from a command line. While we appreciate the elegance of the pipeline, that doesn’t mean the GUI is dead. The PowerShell model has always been to first “do it” at the prompt. If you need a GUI, then build one on top of your command line version. Microsoft has followed this model for years.
You may want to do something similar. Perhaps you want to provide a graphical interface for a user to enter some values that can be passed to an underlying PowerShell command. Or maybe you want to build a complete, stand-alone GUI for a less-PowerShell savvy user. As with the rest of PowerShell toolmaking, you have to determine who will be using your graphical tool and their expectations.
Design First
We named this chapter “graphical controllers” for a reason. We don’t regard a GUI as a tool in the sense that we’ve used the word in this book. A GUI doesn’t do things; it provides a means of accessing tools. That means your functional code - the code doing something for you - should be written as functions. Your GUI should provide an interface to those tools. The code in your GUI should be the bare minimum necessary to collect input, run tools using that input, and display output. The less code in your GUI, the better a pattern you’ll have. You’ll have an easier time testing and troubleshooting, too.
WinForms or WPF
You’ve probably heard a lot of talk about WinForms (Windows Forms) in the PowerShell community. We’re sure that if you searched, you would find a lot of valuable examples and tips. WinForms are also based on .NET classes which, make them easy to use in PowerShell. WinForms have been around for a long time. So why would you choose WPF (Windows Presentation Foundation)?
There are two primary reasons.
First, WinForms doesn’t scale. And by scaling, we mean video resolution. Today, it is not uncommon to have very high-resolution monitors, now pushing 4K and beyond. If you have one of these displays, you may have run an older application that didn’t display well. The font was probably way too small to read without resorting to some sort of display jujitsu–more than likely, that application was written with WinForms.
WPF, on the other hand, is designed to display the same way regardless of screen resolution. You don’t have to worry about how your form will be displayed. Plus, we think WPF has a more “modern” look-and-feel.
The second reason is that with WPF, it is much easier to separate your display code from any logic (meaning, tools) behind it. It isn’t required, but you can have the code that creates your form in a separate file from your code that implements it. We’ll get to that in a bit.
Again, regardless of which approach you take, there is an important design pattern we want to stress. WPF itself is not the tool. The tool is the underlying PowerShell command that you have created. WPF is merely a graphical layer. This has always been the model going all the way back to the days of Exchange 2007. The GUI sits on top of the PowerShell commands. Now, creating the GUI, in this case, WPF will take its own chunk of PowerShell coding. We will spend the first part of this chapter explaining those nuts and bolts, and then we’ll pull everything together.
Coding with WPF is a huge topic and typically very developer-oriented. We’re going to give you enough information packaged for IT Pros who are just getting started with this stuff. We are intentionally glossing over a number of features that more experienced WPF developers would use. We wanted to keep this chapter as manageable as possible for you.
WPF Architecture
At its simplest, WPF is based on a concept of layers with nested objects. At the top is a window. Within the window, you will typically add either a stack panel or a grid. At this level, insert all of the graphical elements such as text boxes and buttons to the stack panel or grid and then add that to the window. Once everything is assembled, you can display it.
There are a few potential “gotchas”. First, your PowerShell session must be running in single-threaded apartment (STA) mode. That is the default, but if you started PowerShell in multi-threaded (MTA) mode, you’d most likely see errors when you start to create WPF elements.
The second thing to watch for is the need to load any required .NET libraries. If you are using the PowerShell ISE to develop and run your WPF-based scripts, you might find that everything works fine. But in the PowerShell console, you might get errors telling you that you need to load an assembly or two. If so, insert these lines at the beginning of your script.
Add-Type -AssemblyName PresentationFramework
Add-Type -AssemblyName PresentationCore
Add-Type -AssemblyName WindowsBase
That should cover just about everything, and it won’t hurt to include them.
PowerShell Core (6.x) does not support WPF. Nor does PowerShell 7.x on non-Windows platforms. And while you could use WPF on a Server Core installation, you shouldn’t. Create your graphical tool to run from a client desktop that manages remote servers.
Using .NET
Let’s start with the most basic of WPF scripts, and we’re going to do it all with .NET code. One of the added benefits of this approach is that you can pipe objects as you create them to Get-Member to learn more about their properties.
You can find all of our examples in the chapter’s code downloads. Remember, all we’re doing right now is demonstrating the mechanics of WPF.
First, we need to create a top-level form or window.
$form = New-Object System.Windows.Window
We should give the form a title and specify how large we want it to be.
$form.Title = "Hello WPF"
$form.Height = 200
$form.Width = 300
Nothing too complicated. Next, let’s add a button.
$btn = New-Object System.Windows.Controls.Button
What text should we put on it?
$btn.Content = "_OK"
The underscore in front of the O is an accelerator and completely optional. When displayed, you could hit Alt+O instead of clicking the button. We should also define how large the button should be and how to position it.
$btn.Width = 65
$btn.HorizontalAlignment = "Center"
$btn.VerticalAlignment = "Center"
Where did we get these values? Search for the class name, like System.Windows.Controls.Button and you’ll see links to the MSDN documentation. That’s a good place to get started. If you get stuck building your WPF tool, head to the forums at PowerShell.org to get a nudge in the right direction. But expect to go through a lot of trial and error when using .NET code like this.
We have a button, but it won’t do anything unless we program it. Windows is an event-driven operating system. We click, drag, and drop all the time, and when these events happen (fire), Windows responds accordingly. We need to provide instruction about what to do if the button is clicked. This is accomplished through an event handler.
The handler is essentially a PowerShell scriptblock. This scriptblock can be as simple or as complex as you need it to be, and you can reference other form elements (we’ll give you an example later in the chapter). All you need to do is add something to the _Click event.
$btn.Add_click({
$msg = "Hello, World and $env:username!"
Write-Host $msg -ForegroundColor Green
})
Once the button is finished, we can add it to the parent container, in this case, the window itself.
$form.AddChild($btn)
To display the form, invoke the ShowDialog() method.
There is a Show() method, but if you use it, you’ll have to close the PowerShell session to get rid of the form.
hello world
Notice that while the form is displayed, the script is still running, which means you don’t get your prompt back. However, if you click OK, you should get a message written in green to the host. Click the X to close the form and get your prompt back.
In our sample form, you’ll also see an alternate command in the click handler. Uncomment the Write-Output command so you end up with this:
Write-Output $msg
You should comment out the Write-Host statement. Re-run the demo and click OK. What happened? Nothing. While a WPF script is running, you are blocked from the rest of the pipeline. We’ll show you some ways around this, but this is an important piece of information.
Let’s look at another example that is a bit more practical, plus we can demo the stack panel element. This is Stack-Services.ps1.
#WPF Demonstration using a stack panel
#add the assembly
Add-Type -AssemblyName PresentationFramework
#create the form
$form = New-Object System.Windows.Window
#define what it looks like
$form.Title = "Services"
$form.Height = 200
$form.Width = 300
#create the stack panel
$stack = New-Object System.Windows.Controls.StackPanel
#create a label and assign properties
$label = New-Object System.Windows.Controls.Label
$label.HorizontalAlignment = "Left"
$label.Content = "Enter a Computer name:"
#add to the stack
$stack.AddChild($label)
#create a text box and assign properties
$TextBox = New-Object System.Windows.Controls.TextBox
$TextBox.Width = 115
$TextBox.HorizontalAlignment = "Left"
#set a default value
$TextBox.Text = $env:COMPUTERNAME
#add to the stack
$stack.AddChild($TextBox)
#create a button and assign properties
$btn = New-Object System.Windows.Controls.Button
$btn.Content = "_OK"
$btn.Width = 75
$btn.VerticalAlignment = "Bottom"
$btn.HorizontalAlignment = "Center"
#this will sort of work
$OK = {
Write-Host "Getting services from $($textbox.Text)" -ForegroundColor Green
Get-Service -ComputerName $textbox.Text | Where-Object status -eq 'running'
}
#add an event handler
$btn.Add_click($OK)
#add to the stack
$stack.AddChild($btn)
#add the stack to the form
$form.AddChild($stack)
#show the form
[void]($form.ShowDialog())
The script comments should explain what we’re doing. Notice in the $OK scriptblock how we’re referencing the computername from the $textbox variable. Go ahead and run the script.
get service with WPF
In a stack panel, all of the child objects are “stacked” like building blocks. Not necessarily elegant, but for a simple form, it is easy to pull together. What happens when you click OK? We want to display all the running services for the specified computer. The Write-Host command runs but not Get-Service. Again, this is because of blocking. Why not use WPF to also display the results.
Our WPF examples using Get-Service won’t work in PowerShell 7 because the -ComputerName parameter has been removed.
Here’s a revised version called Display-Services.ps1 which uses a new control, a datagrid, to display the results.
Display-Services.ps1
Add-Type -AssemblyName PresentationFramework
$form = New-Object System.Windows.Window
#define what it looks like
$form.Title = "Services Demo"
$form.Height = 400
$form.Width = 500
$stack = New-Object System.Windows.Controls.StackPanel
#create a label
$label = New-Object System.Windows.Controls.Label
$label.HorizontalAlignment = "Left"
$label.Content = "Enter a Computer name:"
#add to the stack
$stack.AddChild($label)
#create a text box
$TextBox = New-Object System.Windows.Controls.TextBox
$TextBox.Width = 110
$TextBox.HorizontalAlignment = "Left"
$TextBox.Text = $env:COMPUTERNAME
#add to the stack
$stack.AddChild($TextBox)
#create a datagrid
$datagrid = New-Object System.Windows.Controls.DataGrid
$datagrid.HorizontalAlignment = "Center"
$datagrid.VerticalAlignment = "Bottom"
$datagrid.Height = 250
$datagrid.Width = 441
$datagrid.CanUserResizeColumns = "True"
$stack.AddChild($datagrid)
#create a button
$btn = New-Object System.Windows.Controls.Button
$btn.Content = "_OK"
$btn.Width = 75
$btn.HorizontalAlignment = "Center"
#this will now work
$OK = {
Write-Host "Getting services from $($textbox.Text)" -ForegroundColor Green
$data = Get-Service -ComputerName $textbox.Text |
Select-Object -Property Name, Status, Displayname
$datagrid.ItemsSource = $data
}
#add an event handler
$btn.Add_click($OK)
#add to the stack
$stack.AddChild($btn)
#add the stack to the form
$form.AddChild($stack)
#run the OK scriptblock when form is loaded
$form.Add_Loaded($OK)
$btnQuit = New-Object System.Windows.Controls.Button
$btnQuit.Content = "_Quit"
$btnQuit.Width = 75
$btnQuit.HorizontalAlignment = "center"
#add the quit button to the stack
$stack.AddChild($btnQuit)
#close the form
$btnQuit.add_click({$form.Close()})
#show the form and suppress the boolean output
[void]($form.ShowDialog())
In the OK scriptblock, we can now run Get-Service and select the properties we want to display. The data can be used the ItemsSource for the datagrid object. We’ve also added a handler for when the form is loaded. We decided that when the form is loaded use the local host to go ahead and display the service information.
Services form
If you have another computer to test, enter the name and click the OK button or use the Alt+O shortcut. When finished, use the Quit button we added.
Using XAML
We showed you the .NET pieces so that you would understand the objects behind WPF. For simple projects, using native classes isn’t too bad. For more complicated layouts, you’ll end up with so much trial and error that you’ll put a permanent head-shaped dent into your desk. You’ll also recall at the beginning of the chapter, we mentioned the concept of separating the presentation from the logic. That’s where XAML comes into play.
If you were a developer creating a WPF application, you would end up with some specialized XML called XAML that describes the graphical layout.
XAML Sample
<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Disk Report" Height="355" Width="535" Background="#FFBDB3B3">
<Grid>
<Button x:Name="btnRun" Content="_Run" HorizontalAlignment="Left"
Height="20" Margin="343,291,0,0" VerticalAlignment="Top" Width="74"/>
<Button x:Name="btnQuit" Content="_Quit" HorizontalAlignment="Left"
Margin="433,291,0,0" VerticalAlignment="Top" Width="75"
RenderTransformOrigin="0.365,-0.38"/>
<ComboBox x:Name="comboNames" HorizontalAlignment="Left" Height="20"
Margin="11,25,0,0" VerticalAlignment="Top" Width="166"/>
<Label x:Name="label" Content="Select a computer"
HorizontalAlignment="Left" Height="27" Margin="9,3,0,0"
VerticalAlignment="Top" Width="206"/>
<DataGrid x:Name="dataGrid" HorizontalAlignment="Left" Height="229"
Margin="10,55,0,0" VerticalAlignment="Top" Width="498"/>
</Grid>
</Window>
Now, before you begin skipping to the next chapter, let us explain something. While you could write this off the top of your head, and there are free XAML editors that can help, you don’t need to. What you are really looking for is a graphical editor where you can drag and drop the graphical elements and in turn, generate the XAML.
The tool you are looking for is Visual Studio Community Edition, and it is a free download. Visit https://visualstudio.microsoft.com/vs/community/ to get the most current version.
When you install Visual Studio Community Edition, it will want to include a ton of stuff. Unless you intend to develop other applications, you don’t need to include anything extra. The last time we installed the application, we selected only the .NET desktop development workload. Be aware that even this may require a multi-gig install. You might be able to trim this down by deselecting optional packages.
Once installed, open the application and select File - New Project, then select WPF Application. Visual Studio will create a new project, although you won’t be using it.
Visual Studio Community Edition
On the left side is your tool palette. Grab a grid control and drag and drop it on the main form. Next, do the same for a button control. As each item is selected, the XAML is updated. You can set control properties such as the name directly in the XAML or in the Properties panel on the right side. It will take a bit of time to learn where everything is.
Visual Studio will automatically name controls like Button and Button1. You should rename them to reflect what they will eventually do. We like to use some type of prefix like “btn” which would lead us to rename them “btnRun” and “btnQuit”. Eventually you will need to “find” these controls so proper naming is important.
Continue dragging and dropping controls as necessary to get the look and feel you need. You aren’t putting any logic or commands to this project. All you need is the XAML that Visual Studio is generating. When you are finished, save your project. You can now either copy the XAML from Visual Studio and paste it into a new file or under File there is a menu choice to save the main window XAML.
The Visual Studio XAML includes references that you won’t need in PowerShell. In the XAML file you will find something like this:
<Window x:Class="WpfDiskReport.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local="clr-namespace:WpfDiskReport"
You can edit it down to:
<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
When you start using the XAML in PowerShell, you’ll get an error message about some namespace if you missed something. Delete the corresponding line in the XAML and try again.
How do we use it?
A Complete Example
First, we’re starting with a PowerShell command that we already know works from the console. It could be a script you’ve developed or a function that is part of your module. We have a sample script called DiskStats.ps1.
$cimParams = @{
Computername = "localhost", $env:computername
classname = "win32_logicaldisk"
filter = "drivetype=3"
}
Get-CimInstance @cimParams |
Select-Object -Property @{Name = "Computername";Expression = {$_.SystemName}},
DeviceID, @{Name = "SizeGB";Expression = {$_.Size/1GB -as [int]}},
@{Name = "FreeGB";Expression = { [math]::Round($_.Freespace/1GB, 2)}},
@{Name = "PctFree";Expression = { ($_.freespace/$_.size)*100 -as [int]}}
We designed the form so that the user could select a computer name from a drop-down box, get the disk usage data and display it directly in the form.
Disk Report form
Now that you know the goal let’s get there.
First, we need to bring in the XAML content into an XML document. If the XAML is in an external file we can use a line like this:
[xml]$xaml = Get-Content $psscriptroot\diskstat.xaml
Or you can include it directly into the PowerShell script file.
DiskStats XAML
[xml]$xaml = @"
<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Disk Report" Height="355" Width="535" Background="#FFBDB3B3">
<Grid>
<Button x:Name="btnRun" Content="_Run" HorizontalAlignment="Left"
Height="20" Margin="343,291,0,0" VerticalAlignment="Top" Width="74"/>
<Button x:Name="btnQuit" Content="_Quit" HorizontalAlignment="Left"
Margin="433,291,0,0" VerticalAlignment="Top" Width="75"
RenderTransformOrigin="0.365,-0.38"/>
<ComboBox x:Name="comboNames" HorizontalAlignment="Left" Height="20"
Margin="11,25,0,0" VerticalAlignment="Top" Width="166"/>
<Label x:Name="label" Content="Select a computer"
HorizontalAlignment="Left" Height="27" Margin="9,3,0,0"
VerticalAlignment="Top" Width="206"/>
<DataGrid x:Name="dataGrid" HorizontalAlignment="Left"
Height="229" Margin="10,55,0,0" VerticalAlignment="Top" Width="498"/>
</Grid>
</Window>
"@
To use this XAML, we need a special object to read it.
$reader = New-Object system.xml.xmlnodereader $xaml
$form = [windows.markup.xamlreader]::Load($reader)
Remember, all the XAML does is describe what the GUI bits look like. We need to provide the logic, which means we need to assign handlers to the different elements. The next step is to discover those elements in the form and create the objects.
$grid = $form.FindName("dataGrid")
$run = $form.FindName("btnRun")
$quit = $form.FindName("btnQuit")
$drop = $form.FindName("comboNames")
Now you can see why we stressed the importance of good control names.
When the Run button is clicked, obviously, we want to run our code using the computer name from the combo box. So we’ll add a _Click handler as we did earlier in this chapter.
$run.Add_Click({
$grid.clear()
#or call your external command
$data = @(Get-CimInstance -class win32_logicaldisk -filter "drivetype=3"
-ComputerName $drop.Text |
Select-Object -property @{Name="Computername";Expression={$_.SystemName}},
DeviceID,@{Name="SizeGB";Expression={$_.Size/1GB -as [int]}},
@{Name="FreeGB";Expression = {[math]::Round($_.Freespace/1GB,2)}},
@{Name="PctFree";Expression = {($_.freespace/$_.size)*100 -as [int]}})
$grid.ItemsSource = $data
})
The Quit button needs to close the form.
$quit.Add_Click({$form.Close()})
For the combo box we want to read in a list of computer names and allow the user to enter a separate value. We also want the combo box to have focus when the form is launched.
$drop.IsEditable = $True
#hard coded demo names
$names = $env:computername,"localhost"
$names | foreach {
$drop.Items.Add($_) | Out-Null
}
$drop.focus()
And that’s it! The only thing that remains is to show the form.
$form.ShowDialog() | Out-Null
We’ll let you play with the sample script to see it in action.
Just the Beginning
As you probably figured out, there is a lot to WPF. We’ve only scratched the surface. There are so many more controls to learn how to use plus things like running WPF in a separate runspace, or using synchronized hashtables. This is a topic we hope we can cover in more detail at some point since it comes up often.
If you’d like to see another example, install Jeff’s ISERemoteTab module from the PowerShell gallery and dig through the source code. You’ll see the console-oriented function to create a specialized remote tab in the PowerShell ISE plus a separate function that creates a WPF controller for the command that makes it easier to use. Or for something a bit more advanced, look at the source code for ConvertTo-WPFGrid in his PSScriptTools module.
Recommendations
As you have probably gathered by now, creating a WPF based PowerShell tool is not a “quick and dirty” task. Creating a well-designed tool will take some time and experience. With that in mind, here are a few recommendations:
Your Turn
Naturally, the best way to learn this is to get your hands dirty so let’s see what you’ve picked up from the chapter. Can you create a graphical PowerShell tool?
Start Here
Back in the chapter on converting functions to classes, you should have created a module with a function to get computer information. Or check in the code downloads for that chapter looking at the TMMachineInfo module.
Your Task
Create a new function called Show-MachineInfo that will create a WPF GUI where the user can enter a computer name and see the results in the form. You can keep things simple and display the results in a TextBlock control. We wanted to keep this simple enough that you could use .NET classes or feel free to try out using XAML.
Our Take
We hope you had fun with this exercise. We’ve included a sample module solution in the chapter’s download files. Our approach was to use a stack panel and .NET to keep it simple. Once we got the form code working, we wrapped it into a function.
Show-MachineInfo
Function Show-MachineInfo {
[cmdletbinding()]
[alias("smi")]
Param(
[Parameter(Position = 0)]
[Alias("cn")]
[ValidateNotNullorEmpty()]
[string]$Computername = $env:COMPUTERNAME
)
$form = New-Object System.Windows.Window
$form.Title = "TMMachine Info"
$form.Width = 300
$form.Height = 350
$stack = New-Object System.Windows.Controls.StackPanel
$txtInput = New-Object System.Windows.Controls.TextBox
$txtInput.Width = 100
$txtInput.HorizontalAlignment = "left"
$txtInput.Text = $Computername
$stack.AddChild($txtInput)
$txtResults = New-Object System.Windows.Controls.TextBlock
$txtResults.FontFamily = "Consolas"
$txtResults.HorizontalAlignment = "left"
$txtResults.Height = 200
$stack.AddChild($txtResults)
$btnRun = New-Object System.Windows.Controls.Button
$btnRun.Content = "_Run"
$btnRun.Width = 60
$btnRun.HorizontalAlignment = "Center"
$OK = {
#get machine info from the name in the text box.
#we're trimming the value in case there are extra spaces
$data = Get-MachineInfo -Computername ($txtInput.text).trim()
#set the value of the txtResults to the data as a string
$txtResults.text = $data | Out-String
}
$btnRun.Add_click($OK)
$stack.AddChild($btnRun)
$btnQuit = New-Object System.Windows.Controls.Button
$btnQuit.Content = "_Quit"
$btnQuit.Width = 60
$btnQuit.HorizontalAlignment = "center"
$btnQuit.Add_click({$form.close()})
$stack.AddChild($btnQuit)
$form.AddChild($stack)
$form.add_Loaded($ok)
[void]($form.ShowDialog())
}
Now the help desk could run the command, which will default to the local computer or they could enter a computer name.
PS C:\> show-machineinfo srv1
Show-MachineInfo
As long as the form is running, they can enter any other computer name and click Run.
Let’s Review
Before we go, let’s make sure you’ve understood some of the key concepts from this chapter.
Review Answers
We came up with these answers.
Proxy Functions
In PowerShell, a proxy function is a specific kind of wrapper function. That is, it “wraps” around an existing command, usually with the intent of either:
In some cases, a proxy command is meant to “replace” an existing command. This is done by giving the proxy the same name as the command it wraps; since the proxy gets loaded into the shell last, it’s the one that actually gets run when you run the command name.
There’s a way, using a fully-qualified command name, to regain access to the wrapped command, so proxy functions shouldn’t be seen as security mechanism. They’re more of a functional convenience.
For Example
You’re probably familiar with PowerShell’s ConvertTo-HTML command. We’d like to make a version that “replaces” the existing command, providing full access to it but always injecting a particular CSS style sheet, so that the resulting HTML can be a bit prettier.
Creating the Proxy Base
PowerShell actually automates the first step, which is generating a “wrapper” that exactly duplicates whatever command you’re wrapping. Here’s how to use it (we’ll put our results into a Step1 subfolder in this chapter’s sample code):
$cmd = New-Object System.Management.Automation.CommandMetaData (Get-Command ConvertT\
o-HTML)
[System.Management.Automation.ProxyCommand]::Create($cmd) |
Out-File ConvertToHTMLProxy.ps1
Here’s the rather-lengthy result (once again, apologies for the backslashes, which represent line-wrapping; it’s unavoidable in this instance, but the downloadable sample code won’t show them):
[CmdletBinding(DefaultParameterSetName='Page',
HelpUri='http://go.microsoft.com/fwlink/?LinkID=113290',
RemotingCapability='None')]
param(
[Parameter(ValueFromPipeline=$true)]
[psobject]
${InputObject},
[Parameter(Position=0)]
[System.Object[]]
${Property},
[Parameter(ParameterSetName='Page', Position=3)]
[string[]]
${Body},
[Parameter(ParameterSetName='Page', Position=1)]
[string[]]
${Head},
[Parameter(ParameterSetName='Page', Position=2)]
[ValidateNotNullOrEmpty()]
[string]
${Title},
[ValidateNotNullOrEmpty()]
[ValidateSet('Table','List')]
[string]
${As},
[Parameter(ParameterSetName='Page')]
[Alias('cu','uri')]
[ValidateNotNullOrEmpty()]
[uri]
${CssUri},
[Parameter(ParameterSetName='Fragment')]
[ValidateNotNullOrEmpty()]
[switch]
${Fragment},
[ValidateNotNullOrEmpty()]
[string[]]
${PostContent},
[ValidateNotNullOrEmpty()]
[string[]]
${PreContent})
begin
{
try {
$outBuffer = $null
if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
{
$PSBoundParameters['OutBuffer'] = 1
}
$wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('Microsoft.PowerShe\
ll.Utility\ConvertTo-Html',
[System.Management.Automation.CommandTypes]::Cmdlet)
$scriptCmd = {& $wrappedCmd @PSBoundParameters }
$steppablePipeline = $scriptCmd.GetSteppablePipeline($myInvocation.CommandOr\
igin)
$steppablePipeline.Begin($PSCmdlet)
} catch {
throw
}
}
process
{
try {
$steppablePipeline.Process($_)
} catch {
throw
}
}
end
{
try {
$steppablePipeline.End()
} catch {
throw
}
}
<#
.ForwardHelpTargetName Microsoft.PowerShell.Utility\ConvertTo-Html
.ForwardHelpCategory Cmdlet
#>
This isn’t wrapped in a function, so that’s the first thing we’ll do in the next step (which we’ll put into a file in Step2, so you can differentiate).
Modifying the Proxy
In addition to wrapping our proxy code in a function, we’re going to play with the -Head parameter. We’re not going to remove access to it; we want users to be able to pass content to -Head. We just want to intercept it, and add our stylesheet to it, before letting the underlying ConvertTo-HTML command take over. So we’ll need to test and see if our command was even run with -Head or not, and if it was, grab that content and concatenate our own. The final result:
function NewConvertTo-HTML {
[CmdletBinding(DefaultParameterSetName='Page',
HelpUri='http://go.microsoft.com/fwlink/?LinkID=113290',
RemotingCapability='None')]
param(
[Parameter(ValueFromPipeline=$true)]
[psobject]
${InputObject},
[Parameter(Position=0)]
[System.Object[]]
${Property},
[Parameter(ParameterSetName='Page', Position=3)]
[string[]]
${Body},
[Parameter(ParameterSetName='Page', Position=1)]
[string[]]
${Head},
[Parameter(ParameterSetName='Page', Position=2)]
[ValidateNotNullOrEmpty()]
[string]
${Title},
[ValidateNotNullOrEmpty()]
[ValidateSet('Table','List')]
[string]
${As},
[Parameter(ParameterSetName='Page')]
[Alias('cu','uri')]
[ValidateNotNullOrEmpty()]
[uri]
${CssUri},
[Parameter(ParameterSetName='Fragment')]
[ValidateNotNullOrEmpty()]
[switch]
${Fragment},
[ValidateNotNullOrEmpty()]
[string[]]
${PostContent},
[ValidateNotNullOrEmpty()]
[string[]]
${PreContent})
begin
{
try {
$outBuffer = $null
if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
{
$PSBoundParameters['OutBuffer'] = 1
}
$wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('Microsoft.PowerShe\
ll.Utility\ConvertTo-Html',
[System.Management.Automation.CommandTypes]::Cmdlet)
create our css
$css += @'
<style>
th { color:white; background-color: black;}
body { font-family: Calibri; padding: 2px }
</style>
'@
was -head specified?
if ($PSBoundParameters.ContainsKey('head')) {
$PSBoundParameters.head += $css
} else {
$PSBoundParameters += @{'Head'=$css}
}
$scriptCmd = {& $wrappedCmd @PSBoundParameters }
$steppablePipeline = $scriptCmd.GetSteppablePipeline($myInvocation.CommandOr\
igin)
$steppablePipeline.Begin($PSCmdlet)
} catch {
throw
}
}
process
{
try {
$steppablePipeline.Process($_)
} catch {
throw
}
}
end
{
try {
$steppablePipeline.End()
} catch {
throw
}
}
<#
.ForwardHelpTargetName Microsoft.PowerShell.Utility\ConvertTo-Html
.ForwardHelpCategory Cmdlet
#>
}
Our changes begin at around line 63, with the #create our css comment. Under that, we check to see if -head had been specified; if it was, we append our CSS to it. If not, we add a “head” parameter to $PSBoundParameters. Then we let the proxy function continue just as normal.
You may want to clean up references to the original version by deleting the HelpUri link in cmdletbinding as well as the forwarded help link at the end. Or if you have created your own help documentation you can delete the forward links altogether.
Adding or Removing Parameters
You’re likely to run into occasions when you do want to add or remove a parameter. For example, a new parameter might simplify usage or unlock functionality; removing a parameter might enable you to hard-code a value than the ultimate user shouldn’t be changing. The real key is the $PSBoundParametersCollection.
Adding a Parameter
Adding a parameter is as easy as declaring it in your proxy function’s Param() block. Add whatever attributes you like, and you’re good to go. You just want to remove the added parameter from $PSBoundParameters before the underlying command executes, since that command won’t know what to do with your new parameter.
$PSBoundParameters.Remove('MyNewParam')
$scriptCmd = {& $wrappedCmd @PSBoundParameters }
Just remove it before that $scriptCmd line, and you’re good to go.
Removing a Parameter
This is even easier - just delete the parameter from the Param() block! If you’re removing a parameter that’s mandatory, you’ll need to internally provide a value with it. For example:
$PSBoundParameters += @{'RemovedParam'=$MyValue}
$scriptCmd = {& $wrappedCmd @PSBoundParameters }
This will re-connect the -RemovedParam parameter, feeding it whatever’s in $MyValue, before running the underlying command.
Your Turn
Now it’s your turn to create a proxy function.
Start Here
In this exercise, you’ll be extending the Export-CSV command. However, you’re not going to “overwrite” the existing command. Instead, you’ll be creating a new command that uses Export-CSV under the hood.
Your Task
Create a proxy function named Export-TDF. This should be a wrapper around Export-CSV, and should not include a -Delimiter parameter. Instead, it should hard-code the delimiter to be a tab. Hint: you can specify a tab by putting a backtick, followed by the letter “t,” inside double quotes.
Our Take
Here’s what we came up with - also in the lab-results folder in the downloadable code.
function Export-TDF {
[CmdletBinding(DefaultParameterSetName='Delimiter',
SupportsShouldProcess=$true,
ConfirmImpact='Medium',
HelpUri='http://go.microsoft.com/fwlink/?LinkID=113299')]
param(
[Parameter(
Mandatory=$true,
ValueFromPipeline=$true,
ValueFromPipelineByPropertyName=$true
)]
[psobject]$InputObject,
[Parameter(Position=0)]
[ValidateNotNullOrEmpty()]
[string]$Path,
[Alias('PSPath')]
[ValidateNotNullOrEmpty()]
[string]$LiteralPath,
[switch]$Force,
[Alias('NoOverwrite')]
[switch]$NoClobber,
[ValidateSet('Unicode','UTF7','UTF8','ASCII','UTF32',
'BigEndianUnicode','Default','OEM')]
[string]$Encoding,
[switch]$Append,
[Parameter(ParameterSetName='UseCulture')]
[switch]$UseCulture,
[Alias('NTI')]
[switch]$NoTypeInformation
)
begin
{
try {
$outBuffer = $null
if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
{
$PSBoundParameters['OutBuffer'] = 1
}
$wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('Microsoft.PowerShe\
ll.Utility\Export-Csv',
[System.Management.Automation.CommandTypes]::Cmdlet)
$PSBoundParameters += @{'Delimiter'="`t"}
$scriptCmd = {& $wrappedCmd @PSBoundParameters }
$steppablePipeline = $scriptCmd.GetSteppablePipeline($myInvocation.CommandOr\
igin)
$steppablePipeline.Begin($PSCmdlet)
} catch {
throw
}
}
process
{
try {
$steppablePipeline.Process($_)
} catch {
throw
}
}
end
{
try {
$steppablePipeline.End()
} catch {
throw
}
}
} #close function
We really just removed one parameter definition and added one line of code to hard-code the delimiter. We removed the {} around the parameter names and lined things up in the Param() block the way we would normally write code. We also removed the forwarded help links. We would still need to create new comment based help for this command. Probably copying a lot of the help from the original command.
Once you understand the concepts, you can use Jeff’s Copy-Command function from the PSScriptTools module.
Let’s Review
See if you can answer a couple of questions on proxy functions:
Review Answers
Here are our answers:
Just Enough Administration: A Primer
This is going to be an interesting chapter. On one hand, the topic doesn’t have anything to do with creating better PowerShell tools and scripts. But it does affect why you might be creating something in the first place and how it might be used. This is, in other words, about using your tools, much like a controller script.
We’re sure you are familiar with the concept of “least privilege.” Microsoft believes this should apply to admins as well. PowerShell is an awesome tool for getting things done, especially across remote computers. But by default you have to have full admin rights on the remote server and you have access to everything. That may not always be desirable. Perhaps you want to give the help desk access to manage a few key services and nothing else. Or you want to give a department secretary a tool to manage the print spooler on the department print server? Or you need to give a developer team PowerShell remote access to a dev server.
This is where the idea of Just Enough Administration, or JEA, comes into play. To be honest, we’ve had something like this for quite awhile, but it was difficult to implement. Today the PowerShell team has made this much easier. We’re going to cover enough basics to get you started. A good place to get started online for more information is at https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview, or https://msdn.microsoft.com/en-us/library/dn896648.aspx.
Requirements
In order to work with JEA you will need a Windows platform (both client and server) with Windows Management Framework 5.1. You’ll need full admin rights on the remote server to set up the JEA configuration. The original version of JEA depended on PowerShell’s Desired State Configuration (DSC); the version we’re working with is now standalone, and does not require DSC. Keep that in mind as you’re exploring online, as the information you find won’t necessarily be applicable in every case.
JEA support is included in PowerShell v5 and later, so you’ll need that as well. If you’ve installed the WMF 5.1 you’re good to go.
Working with JEA is not always simple as there are a lot of moving parts to get right. And since the whole point of JEA is to minimize access which should improve security, you definitely should be testing everything in a non-production setting. The last thing you want is a poorly developed JEA solution that leaves the server vulnerable.
Theory of Operation
Hopefully, you’re familiar with PowerShell Remoting. Normally, when you run a command like Invoke-Command or Enter-PSSession, you connect to the default endpoint on your target computer. That endpoint is wide-open, and allows only Administrators (by default) to connect. It basically lets you do anything you have permission to do.
But Remoting can define many endpoints on a single computer, and each endpoint can be deeply customized. An endpoint has an Access Control List, or ACL, which determines who can connect. Instead of being wide-open, it can have only a tiny set of commands that you define. It can be configured to run those commands under an alternate “Run As” account, the credentials to which are stored as part of the endpoint. These features are a little tricky to set up, and what JEA really does is make all that easier to use and manage. The idea is to set up a kind of “jump server” filled with JEA-managed endpoints. Each endpoint has very tightly locked-down capabilities, and only permits connections from specific users or groups. By connecting to a JEA endpoint, you can accomplish tasks that your normal account doesn’t have permission to, and you can do it in a way that minimizes danger and damage if a piece of malware compromises your account. JEA is heavily used in Microsoft products like Azure Stack, and you’ll see more of it in the coming years.
These endpoints can contain your tools as well as native PowerShell ones - and that’s why this chapter is included in this book. This chapter is meant only to be a primer to JEA - an introduction. If it interests you, there’s a lot more to learn about, and we’ll continue to provide reference URLs as appropriate.
Roles
JEA can be considered a role-based administrative system. You decide what type of role to create, and what commands that role will be able to execute. These details are stored in a role capability file which, is a special type of PowerShell file that has a .psrc file extension. Remember, your goal here is to provide access to the tools and commands needed to achieve some role-related task, such as clearing a print queue, and nothing more.
Fortunately, you don’t have to create the .psrc file by hand. Instead you’ll use the New-PSRoleCapabilityFile cmdlet. At a minimum all you need to specify is a path.
New-PSRoleCapabilityFile -Path .\MyRoleFile.psrc
If you open the file you’ll see that it looks a lot like a module manifest which makes sense because the file is describing the limitations. You may want to restrict access to:
Essentially, unless you specify it, it won’t be included in the role capability file. We’re going to setup a role for the help desk to manage shares but in a limited manner.
New Role Capability File
$params = @{
Path = ".\ShareAdmins.psrc"
Description = "Share Admin"
VisibleFunctions = @("Get-SMBShare", "Get-SMBShareAccess", "Get-ShareSize")
VisibleAliases = "gcim"
ModulesToImport = "ShareAdmin"
VisibleCmdlets = @{Name = "Get-CimInstance"; Parameters = @{ Name = 'classname\
';
ValidateSet = 'win32_share'
}, @{Name = "filter"}
}
Note that even though you could use wildcards with command names the recommended best practice is to explicitly list each command. This eliminates the possibility of providing access to an unanticipated command.
You may be wondering why Get-SMBShare and Get-SMBShareAccess are listed as functions and not cmdlets. If you run Get-Command get-smbshare you’ll see that this command is actually a function.
Now for the tricky part. Your role configuration file needs to be part of a module. The module doesn’t even have to do anything. You could have an empty .psm1 file, but the module have a subfolder called RoleCapabilities. In our case though, and most likely yours, we are going to include some custom tools in this module. The functions you define can use any command and won’t be restricted. Although we do recommend you use the full cmdlet name to avoid any problems. We added this function to the module.
Get-ShareSize
Function Get-ShareSize {
[cmdletbinding()]
Param(
[Parameter(
Position = 0,
Mandatory,
ValueFromPipelineByPropertyName
)]
[string]$Path
)
Begin {
Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
} #begin
Process {
Write-Verbose "[PROCESS] Getting share size for $path"
#use full cmdlet names to avoid problems
#these commands do not need to be specified in the psrc file
$stats = Microsoft.PowerShell.Management\Get-Childitem -Path $Path -Recurse `
-file | Microsoft.PowerShell.Utility\Measure-Object -Property Length -sum
Microsoft.PowerShell.Utility\New-Object -TypeName PSObject -Property @{
Path = $path
FileCount = $stats.count
FileSize = $stats.sum
}
}
End {
Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
}
If you recall from the role file, we included this function name in the visible functions.
When you are finished, the module will need to be copied to the remote computer. For now, we’ll create it in our working directory and copy files to the required locations.
Copy to module
#region copy to module
Create a folder for the module
$modulename = "ShareAdmin"
#the path could also be a directory in $env:psmodulepath
$modulePath = Join-Path -path . -ChildPath $modulename
New-Item -ItemType Directory -Path $modulePath
<# Create an empty script module and module manifest. At least one file in the
module folder must have the same name as the folder itself.
#>
$path = (Join-Path -path $modulePath -ChildPath "$modulename.psm1")
New-Item -ItemType File -Path $path
$manifest = (Join-Path -path $modulePath -ChildPath "$modulename.psd1")
New-ModuleManifest -Path $manifest -RootModule "$modulename.psm1"
Create the RoleCapabilities folder and copy in the PSRC file
$rcFolder = Join-Path -path $modulePath -ChildPath "RoleCapabilities"
Endpoints
Next, you need to create the endpoint. This is the PowerShell remoting configuration that you will create. You can see all current endpoints with the Get-PSSessionConfiguration cmdlet. Creating a new endpoint used to be much harder, but now we have an easy to use cmdlet. You will need to create a file with a .pssc file extension.
New-PSSessionConfigurationFile -Path .\MyEndpoint.pssc
Well - easy but not necessary simple. You could open up the file and manually edit it, assuming you knew what you were doing.
Perhaps the most important step here is to define the session type. For JEA you want to use RestrictedRemoteServer. This means the session will operate in something called NoLanguage mode which severely restricts what the user has access to. This mode will provide access to these cmdlets and aliases, which means you do not have to include them in your role configuration:
You also need to specify what account to run under. If at all possible, you should use a local virtual account (read up on those if you’re not familiar with them). If you’ll need a greater level of permissions, check the documentation for using different types of accounts.
The last bit is to tie in the role capabilities defined earlier as that’s the whole point. You’ll do this with a hashtable of a group, which the delegated user will belong to, and an hashtable that indicates the role capabilities. The value must be the name of the .psrc file but without the extension.
$roles = @{
"Company\JEA_ShareAdmins" = @{RoleCapabilities = 'ShareAdmins'}
}
You can have multiple roles defined, and someone could belong to multiple groups. For your primer purposes we’re keeping it simple.
When you are ready, go ahead and create the .pssc file.
$params = @{
Path = ".\ShareAdmin.pssc"
SessionType = "RestrictedRemoteServer"
RunAsVirtualAccount = $True
RoleDefinitions = $roles
Description = "JEA Share Admin endpoint"
}
New-PSSessionConfigurationFile @params
Once you’ve completed your configuration you should test it.
Test-PSSessionConfigurationFile .\ShareAdmin.pssc
The configuration needs to be set up on the remote server so you’ll need to copy the necessary files to the server.
$s = New-PSSession -ComputerName chi-fp02
#copy the pssc file to C:\
copy .\shareadmin.pssc -Destination C:\ -ToSession $s
#copy the module with the role configuration
copy .\ShareAdmin -Container -Recurse `
-Destination 'C:\Program Files\WindowsPowerShell\Modules' -ToSession $s
The last step is to register it and bring the special endpoint to life with Register-PSSessionConfiguration.
invoke-command {
Register-PSSessionConfiguration -Path c:\shareadmin.pssc -Name "ShareAdmins"
} -Session $s
This will restart with WinRM service on the remote computer, breaking any open sessions.
You can try it out using an account that is a member of the specified group.
$enter = @{
ComputerName = "chi-fp02"
ConfigurationName =-"ShareAdmins"
Credential = "company\jshields"
}
Enter-PSSession @enter
The user will only have access to the commands you’ve specified.
[chi-fp02]: PS>get-command | select name
Name

Clear-Host
Exit-PSSession
Get-CimInstance
Get-Command
Get-FormatData
Get-Help
Get-ShareSize
Get-SmbShare
Get-SmbShareAccess
Measure-Object
Out-Default
Select-Object
You can only run what has been specified in the role capability file, including the Get-ShareSize function from our module.
[chi-fp02]: PS>gcim win32_share -filter "name='it'"
Name Path Description
---- ---- -----------
IT E:\Shared IT Data Share
[chi-fp02]: PS>gcim win32_bios
Cannot validate argument on parameter 'ClassName'. The argument "win32_bios"
does not belong to the set "win32_share" specified by the ValidateSet
attribute. Supply an argument that is in the set and then try the command again.
+ CategoryInfo : InvalidData: (:) [Get-CimInstance],
+ ParameterBindingValidationException
+ FullyQualifiedErrorId : ParameterArgumentValidationError,Get-CimInstance
[chi-fp02]: PS>get-smbshare public | get-sharesize
Path FileSize FileCount
---- -------- ---------
E:\shared\Public 8932930 121
[chi-fp02]: PS>get-childitem e:\shared\public
The term 'Get-ChildItem' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check
the spelling of the name, or if a path was included, verify that the path
is correct and try again.
+ CategoryInfo : ObjectNotFound: (Get-ChildItem:String) [],
+ CommandNotFoundException
+ FullyQualifiedErrorId : CommandNotFoundException
Should you need to update the role or module, you can make the changes to those files and copy them again to the server. They should take affect the next time a JEA session is opened. If you want to wipe the entire configuration and start all-over, unregister the configuration.
Invoke-command {
Unregister-PSSessionConfiguration -Name shareadmins
} -computername chi-fp02
Because this is such a specialized topic, and we’ve only provide some basic guidance we’ll save you the frustration of creating a JEA based tool. And it can be frustrating because nothing is available for the user to run, unless it is specified as part of the endpoint.
Let’s Review
Let’s review and see what you picked up in the chapter.
Review Answers
Did you come up with answers like these?
PowerShell in ASP.NET: A Primer
One interesting fact about PowerShell’s construction is that PowerShell itself - the engine that runs commands - is a .NET Framework class. The PowerShell you’re used to - either the console or the ISE, perhaps - is actually a hosting application. These applications give you a way of feeding stuff to the actual engine, and a way for the engine’s output to be shown to you. Technically, any .NET Framework application can “host” the PowerShell engine - including ASP.NET.
Hosting the engine in an ASP.NET web application is a cool way to create web-based self-service tools - a different kind of GUI than WPF or WinForms, basically. PowerShell would run on the web server, under whatever identity you’ve configured IIS to run ASP.NET as. This opens up a ton of useful possibilities.
Caveats
There are a few things we need to make clear:
You also need to know that using the “raw” engine is a little different from what you’re used to in the ISE or PowerShell console. The runspaces created by the engine aren’t populated with all the global variables that you’re used to, for example - it’s the console (or ISE) which creates those, not PowerShell itself. So you may find that you need to do a little more work to set up some commands to run properly.
The Basics
You’ll need to start by making sure you have the PowerShell Reference Assemblies in your IDE (e.g., Visual Studio). Specifically, you need the System.Management.Automation reference assembly. Beware of unofficial NuGet packages - these can be outdated or even contain malware. The official one is owned by “PowerShellTeam,” which is what you want to look for.
You’ll then need to add, in your ASP.NET code, a Using reference for System.Management.Automation.
Then you need to think about what you’ll do with the eventual command output. PowerShell returns everything as collections of objects; you’ll need to plan for a way to display that information. You could, for example, pipe your command to Out-String, which will cause PowerShell to render the objects as text using its own formatting subsystem - more or less what the console host application does when you run a command. Or, you could construct some big graphical display, like the Exchange Management Console, complete with icons and whatever information you want. It’s up to you.
When you’re ready, it’s pretty easy to run a command:
var shell = PowerShell.Create();
shell.Commands.AddScript("Get-Service | Out-String");
// this also works and is equivalent:
// shell.AddCommand("Get-Service");
// shell.AddCommand("Out-String");
var results - shell.Invoke();
foreach (var psObject in results) {
// use psObject
}
The AddCommand technique is a bit harder to use, as each command is added individually. You chain an AddParameter() call to specify parameters:
shell.AddCommand("Get-Service").
AddParameter("Name","WinRM")
The above also assumes you want to use the default runspace, which loads most of the core PowerShell command automatically. But you can also instantiate runspaces that contain only a custom set of commands - the official docs have examples on doing so.
Simply enumerate the results and you’re done. Here’s a good walk-through if you’d like to explore more, and the Microsoft documentation is definitely worth a read.
Beyond ASP.NET
There are third-party products that allow PowerShell scripts to be run by IIS, enabling those scripts to create web pages which are transmitted to requesting clients. In other words, you basically use PowerShell instead of ASP.NET on the web server. PowerShell Server is one such third-party tool, Posh Server is another.
Part 4: The Data Connection
In this Part, we’ll look at various kinds of structured data that you may need to work with from within PowerShell. It might mean grabbing something from some type of data source, or perhaps putting something into a particular data type. We’ll try and use some realistic examples that illustrate how to use these different structured data constructs, and give you some tips for keeping out of trouble.
Working with SQL Server Data
We often see people struggle - really hard, in some cases - to store data in Microsoft Excel, using PowerShell to automate the process. This makes us sad. Programmatically, Excel is kind of a hunk of junk. Sure, it can make charts and graphs - but only with significant effort and a lot of delicacy. But, people say, “I already have it!” This also makes us sad, because for the very reasonable price of $FREE, you can have SQL Server (Express), and in fact you probably have some flavor of SQL Server on your network that you could use. But why?
We don’t know how to better evangelize using SQL Server for data storage over Microsoft Excel.
SQL Server Terminology and Facts
Let’s quickly get some terminology and basic facts out of the way.
Just seven little things to know, and you’re good to go.
Even if you are the only person who will ever interact with stored data, you are still better off installing SQL Server Express (did we mention it is free?) instead of relying on Excel.
Connecting to the Server and Database
You’ll need a connection string to connect to a SQL Server computer/instance, and to a specific database. If you’re not using Windows Authentication, the connection string can also contain a clear-text username and password, which is a really horrible practice. We use ConnectionStrings.com to look up connection string syntax, but here’s the one you’ll use a lot:
Use Server=SERVER\INSTANCE;Database=DATABASE;Trusted_Connected=True; to connect to a given server and instance (omit the \INSTANCE if you’re connecting to the default instance) and database. Note that SQL Server Express usually installs, by default, as an instance named SQLEXPRESS. You can run Get-Service in PowerShell to see any running instances on a computer, and the service name will include the instance name (or just MSSQLSERVER if it’s the default).
With that in mind, it’s simple to code up a connection:
$conn = New-Object -Type System.Data.SqlClient.SqlConnection
$conn.ConnectionString = 'Server=SQL1;Database=MyDB;Trusted_Connection=True;'
$conn.Open()
You can leave the connection open for your entire script; be sure to run $conn.Close() when you’re done, though. It’s not a tragedy to not close the connection; when your script ends, the connection object will vanish, and SQL Server will automatically close the connection a bit later. But if you’re using a server that’s pretty busy, the DBA is going to get in your face about leaving the connection open. And, if you run your script multiple times in a short period of time, you’ll create a new connection each time rather than re-using the same one. The DBAs will definitely notice this and get agitated.
You do not need to have any SQL Server software installed locally for these steps as they are relying on out-of-the-box bits from the .NET Framework. And even if you are working with a local SQL installation, you should still follow SQL Server best practices.
Writing a Query
The next thing you need to do is retrieve, insert, update, or remove some data. This is done by writing queries in the Transact-SQL (T-SQL) language, which corresponds with the ANSI SQL standard, meaning most queries look basically the same on most database servers. There’s a great free online SQL tutorial if you need one, but we’ll get you started with the basics.
To do this, you’ll need to know the table and column names from your database. SQL Server Management Studio is a good way to discover these.
For the following sections, we’re going to focus on query syntax, and then give you an example of how we might build that query in PowerShell. Once your query is in a variable, it’s easy enough to run it - and we’ll cover how to do that in a bit. Also, we’re not going to be providing exhaustive coverage of SQL syntax; we’re covering the basics. There are plenty of resources, including the aforementioned online tutorial, if you need to dig deeper.
Adding Data
Adding data is done by using an INSERT query. The basic syntax looks like this:
INSERT INTO <tablename>
(Column1, Column2, Column3)
VALUES (Value1, Value2, Value3)
So you’ll need to know the name of the table you’re adding data to, and you’ll need to know the column names. You also need to know a bit about how the table was defined. For example, if a “Name” column is marked as mandatory (or “NOT NULL”) in the table design, then you must list that column and provide a value for it. Sometimes, a table may define a default value for a column, in which case you can leave the column out if you’re okay with that default value. Similarly, a table can permit a given column to be empty (NULL), and you can omit that column from your list if you don’t want to provide a value.
Whatever order you list the columns in, your values must be in the same order. You’re not forced to use the column order that the table defines; you can list them in any order.
Numeric values aren’t delimited in T-SQL. String values are delimited in single quotes; any single quotes within a string value (like “O’Leary”) must be doubled (“O’‘Leary”) or your query will fail. Dates are treated as strings, and are delimited with single quotes.
It’s dangerous to build queries from user-entered data. Doing so opens your code to a kind of attack called SQL Injection. We’re assuming that you plan to retrieve things like system data, which shouldn’t be nefarious, rather than accepting input from users. The safer way to deal with user-entered data is to create a stored procedure to enter the data, but that’s well beyond the scope of this book.
We might build a query in PowerShell like this:
$ComputerName = "SERVER2"
$OSVersion = "Win2012R2"
$query = "INSERT INTO OSVersion (ComputerName,OS) VALUES('$ComputerName','$OSVersion\
')"
This assumes a table named OSVersion, with columns named ComputerName and OS. Notice that we’ve put the entire query into double quotes, allowing us to just drop variables into the VALUES list.
We always put our query in a variable, because that makes it easy to output the query text by using Write-Verbose. That’s a great way to debug queries that aren’t working, since you get to see the actual query text with all the variables “filled-in.”
Removing Data
A DELETE query is used to delete rows from a table, and it is almost always accompanied by a WHERE clause so that you don’t delete all the rows. Be really careful, as there’s no such thing as an “UNDO” query!
DELETE FROM <tablename> WHERE <criteria>
So, suppose we’re getting ready to insert a new row into our table, which will list the OS version of a given computer. We don’t know if that computer is already listed in the table, so we’re going to just delete any existing rows before adding our new one. Our DELETE query might look like this:
$query = "DELETE FROM OSVersions WHERE ComputerName = '$ComputerName'"
There’s no error generated if you attempt to delete rows that don’t exist.
Changing Data
An UPDATE query is used to change an existing row, and is accompanied by a SET clause with the changes, and a WHERE clause to identify the rows you want to change.
UPDATE <tablename>
SET <column> = <value>, <column> = <value>
WHERE <criteria>
For example:
$query = "UPDATE DiskSpaceTracking `
SET FreeSpaceOnSysDrive = $freespace `
WHERE ComputerName = '$ComputerName'"
We’d ordinarily do that all on one line; we’ve broken it up here just to make it fit more easily in the book. This assumes that $freespace contains a numeric figure, and that $ComputerName contains a computer name.
In SQL Server, column names aren’t case-sensitive.
Retrieving Data
Finally, the big daddy of queries, the SELECT query. This is the only one that returns data (although the other three will return the number of rows they affected). This is also the most complex query in the language, so we’re really only tackling the basics.
SELECT <column>,<column>
FROM <tablename>
WHERE <criteria>
ORDER BY <column>
The WHERE and ORDER BY clauses are optional, and we’ll come to them in a moment.
Beginning with the core SELECT, you follow with a list of columns you want to retrieve. While the language permits you to use * to return all columns, this is a poor practice. For one, it performs slower than a column list. For another, it makes your code harder to read. So stick with listing the columns you want.
The FROM clause lists the table name. This can get a ton more complex if you start doing multi-table joins, but we’re not getting into that in this book.
A WHERE clause can be used to limit the number of rows returned, and an ORDER BY clause can be used to sort the results on a given column. Sorting is ascending by default, or you can specify descending. For example:
$query = "SELECT DiskSpace,DateChecked `
FROM DiskSpaceTracking `
WHERE ComputerName = '$ComputerName' `
ORDER BY DateChecked DESC"
Creating Tables Programmatically
It’s also possible to write a data definition language (DDL) query that creates tables. The four queries we’ve covered up to this point are data manipulation language (DML) queries. The ANSI specification doesn’t cover DDL as much as DML, meaning DDL queries differ a lot between server brands. We’ll continue to focus on T-SQL for SQL Server; we just wanted you to be aware that you won’t be able to re-use this syntax on other products without some tweaking.
CREATE TABLE <tablename> (
<column> <type>,
<column> <type>
)
You list each column name, and for each, provide a datatype. In SQL Server, you’ll commonly use:
You want to use the smallest data type possible to store the data you anticipate putting into the table, because oversized columns can cause a lot of wasted disk space.
Running a Query
You’ve got two potential types of queries: ones that return data (SELECT) and ones that don’t (pretty much everything else). Running them starts the same:
$command = New-Object -Type System.Data.SqlClient.SqlCommand
$command.Connection = $conn
$command.CommandText = $query
This assumes $conn is an open connection object, and that $query has your T-SQL query. How you run the command depends on your query. For queries that don’t return results:
$command.ExecuteNonQuery()
That can produce a return object, which you can pipe to Out-Null if you don’t want to see it. For queries that produce results:
$reader = $command.ExecuteReader()
This generates a DataReader object, which gives you access to your queried data. The trick with these is that they’re forward-only, meaning you can read a row, and then move on to the next row - but you can’t go back to read a previous row. Think of it as an Excel spreadsheet, in a way. Your cursor starts on the first row of data, and you can see all the columns. When you press the down arrow, your cursor moves down a row, and you can only see that row. You can’t ever press up arrow, though - you can only keep going down the rows.
You’ll usually read through the rows using a While loop:
while ($reader.read()) {
#do something with the data
}
The Read() method will advance to the next row (you actually start “above” the first row, so executing Read() the first time doesn’t “skip” any data), and return True if there’s a row after that.
To retrieve a column, inside the While loop, you run GetValue(), and provide the column ordinal number of the column you want. This is why it’s such a good idea to explicitly list your columns in your SELECT query; you’ll know which column is in what position. The first column you listed in your query will be 0, the one after that 1, and so on.
So here’s a full-fledged example:
$conn = New-Object -Type System.Data.SqlClient.SqlConnection
$conn.ConnectionString = 'Server=SQL1;Database=MyDB;Trusted_Connection=True;'
$conn.Open()
$query = "SELECT ComputerName,DiskSpace,DateTaken FROM DiskTracking"
$command = New-Object -Type System.Data.SqlClient.SqlCommand
$command.Connection = $conn
$command.CommandText = $query
$reader = $command.ExecuteReader()
while ($reader.read()) {
[pscustomobject]@{'ComputerName' = $reader.GetValue(0)
'DiskSpace' = $reader.GetValue(1)
'DateTaken' = $reader.GetValue(2)
}
}
$conn.Close()
This snippet will produce objects, one object for each row in the table, and with each object having three properties that correspond to three of the table columns.
If by chance you don’t remember your column positions, you can use something like this to auto-discover the column number.
while ($reader.read()) {
[pscustomobject]@{
'ComputerName' = $reader.GetValue($reader.getordinal("computername"))
'DiskSpace' = $reader.GetValue($reader.getordinal("diskspace"))
'DateTaken' = $reader.GetValue($reader.getordinal("datetaken"))
}
}
Regardless of the approach we’d usually wrap this in a Get- function, so that we could just run the function and get objects as output. Or a corresponding Set-, Update- or Remove- function depending on your SQL query.
Invoke-Sqlcmd
If you by chance have installed a local instance of SQL Server Express, you will also have a set of SQL-related PowerShell commands and a SQLSERVER PSDrive. We aren’t going to cover them as this isn’t a SQL Server book. But you will want to take advantage of Invoke-Sqlcmd.
Instead of dealing with the .NET Framework to create a connection, command and query, you can simply invoke the query.
Invoke-Sqlcmd "Select Computername,Diskspace,DateTaken from DiskTracking" `
-Database MyDB
You can use any of the query types we’ve shown you in this chapter. One potential downside to this approach in your toolmaking is that obviously this will only work locally, or where the SQL Server modules have been installed. And there is a bit of a lag while the module is initially loaded.
Thinking About Tool Design Patterns
If you’ve written a tool that retrieves or creates some data that you intend to put into SQL Server, then you’re on the right track. A next step would be a tool that inserts the data into SQL Server (Export-Something), and perhaps a tool to read the data back out (Import-Something). This approach maintains a good design pattern of each tool doing one thing, and doing it well, and lets you create tools that can be composed in a pipeline to perform complex tasks. You can read a bit more about that approach, and even get a “generic” module for piping data in and out of SQL Server databases in Ditch Excel: Making Historical & Trend Reports in PowerShell, a free ebook.
Let’s Review
Because we don’t want to assume that you have access to a SQL Server computer, we aren’t going to present a hands-on experience in this chapter. However, we do encourage you to try and answer these questions:
Review Answers
Here are our answers:
Working with XML Data
As a PowerShell toolmaker you may have a need to work with a variety of file types and sources. One such type, which can appear daunting at first, is XML. Perhaps you need to get data from XML to use it with your tool. Or perhaps your tool needs to create an XML document. In this chapter, we’ll explore a variety of ways you might interact with XML in your toolmaking.
Simple: CliXML
If you need to store results from a PowerShell command in a rich format that you intend to use again in a future PowerShell session, this is easily managed with the Clixml cmdlets Export-Clixml and Import-Clixml.
Remember that PowerShell tools should do one thing and typically they write objects to the pipeline. You shouldn’t really need to incorporate these cmdlets in your functions except for rare exceptions. Although you might include them in a controller script.
A great benefit of using Export-Clixml is that it also stores type information along with the data. When you import the file PowerShell recreates the objects. Note that these files can only be used in PowerShell.
You might decide to export drive information.
Get-CimInstance win32_logicaldisk -filter "drivetype=3" |
Export-Clixml .\disks.xml
You can view the file in Notepad but you shouldn’t need to modify it. Later, perhaps as part of another scripted process, you may want to work with the results. Easy. Import the file.
$d = import-clixml .\disks.xml
The variable $d now holds the same values as the original command and you can work with it the same way. If you need to work with data between PowerShell sessions, these are the best cmdlets.
Importing Native XML
Of course XML is a long-standing industry format and you may need to consume or work with native XML files, perhaps something created outside of PowerShell. Since the XML data is irrelevant for our purposes, we’ll have some fun with an XML file called BandData.xml which you can find in the corresponding code chapter.
To bring this data into PowerShell all we need to do is get the content and tell PowerShell to treat it as an XML document.
[xml]$data = Get-content .\BandData.xml
The variable $data is now an XML document which we can navigate like any rich object. We recommend using tab completion to help properly format names with special characters or spaces.
PS C:\> $data
xml #comment Bands
--- -------- -----
version="1.0" encoding="UTF-8" ... Bands
PS C:\> $data.'#comment'
This is a demonstration XML file
PS C:\> $data.Bands
Band

{Name, Name, Name, Name...}
PS C:\> $data.bands.band
Name Lead Members
---- ---- -------
Name Steven Tyler Members
Name Geddy Lee Members
Name Ozzie Osbourne Members
Name Joe Elliott Members
Name Bret Michaels Members
Name Vince Neil Members
Name Jim Morrison Members
Name Kurt Cobain Members
Name Ian Gillan Members
...
PS C:\> $data.bands.band[0]
Name Lead Members
---- ---- -------
Name Steven Tyler Members
PS C:\> $data.bands.band[0].name
Year City #text
---- ---- -----
1970 Boston, MA Aerosmith
PS C:\> $data.bands.band[0].members
Member

{Tom Hamilton, Joey Kramer, Joe Perry, Brad Whitford}
In this file the core data is a Band object. In XML-speak this is a node. The tricky part is turning this data back into a meaningful object you can use in PowerShell.
$data.bands.band |
Select-Object -property @{Name="Name";Expression = {$_.name.'#text'}},
@{Name="Founded";Expression={$_.name.Year}},
@{Name="Lead";Expression={$_.lead}},
@{Name="Members";Expression={$_.members.member}}
This should give you output like this:
Name Founded Lead Members
---- ------- ---- -------
Aerosmith 1970 Steven Tyler {Tom Hamilton, Joey Kramer, Joe Perry,
Brad Whitford}
Rush 1968 Geddy Lee {Alex Lifeson, Neil Peart}
Black Sabbath 1968 Ozzie Osbourne {Tony Iommi, Geezer Butler, Bill Ward}
Def Leppard Joe Elliott {Rick Allen, Phil Collen, Tony Kenning,
Rick Savage}
Poison Bret Michaels {Rikki Rockett, C.C. DeVille,
Bobby Dall}
...
Modify XML Data
Let’s say you are a big Poison fan and need to update missing information. First, you need to select the specific node. You can use Where-Object to filter the nodes:
PS C:\> $p = $data.bands.band | where {$_.Name.'#text' -eq 'Poison'}
PS C:\> $p
Name Lead Members
---- ---- -------
Name Bret Michaels Members
Or if you have experience with InfoPath and XML queries (which is outside the scope of this book) you can use Select-XML:
PS C:\> $data.SelectNodes("//Bands/Band[Name='Poison']")
Name Lead Members
---- ---- -------
Name Bret Michaels Members
The Year property is a child of the Name property.
PS C:\> $p.name
Year City #text
---- ---- -----
Poison
The band was founded in 1983 in Mechanicsburg, Pennsylvania so let’s update.
PS C:\> $p.name.year = '1983'
PS C:\> $p.name.city = 'Mechanicsburg, PA'
PS C:\> $p.name
Year City #text
---- ---- -----
1983 Mechanicsburg, PA Poison
Add XML Data
Or let’s say you need to add something to this XML file. To do this, you need to have some understanding of how the XML file is laid out. In looking at the file in a text editor, we can determine that if we want to add an band object for the group Cream, we will need to eventually have XML that looks like this:
<Band>
<Name Year="1966" City="London, England">Cream</Name>
<Lead>Eric Clapton</Lead>
<Members>
<Member>Ginger Baker</Member>
<Member>Jack Bruce</Member>
</Members>
</Band>
The first step is to create an empty XML element called ‘Band’.
Don’t forget that XML is case-sensitive.
$band = $data.CreateNode("element","Band","")
This node has child elements of Name, Lead and Members. The Name element has additional properties called attributes for the founding year and location. We’ll have to accommodate those as well. In fact, let’s create the Name element.
$name = $data.CreateElement("Name")
The band name will be the text value of this node so that is easily set:
$name.InnerText = "Cream"
The attributes are a bit trickier. You create them as distinct elements:
$y = $data.CreateAttribute("Year")
$y.InnerText = "1966"
$c = $data.CreateAttribute("City")
$c.InnerText = "London, England"
And then add them to their parent element, in this case the Name element.
$name.Attributes.Append($y)
$name.Attributes.Append($c)
You can verify by checking the OuterXML property.
PS C:\> $name.OuterXml
<Name Year="1966" City="London, England">Cream</Name>
If this looks good you can append this to the Band element.
$band.AppendChild($name)
Follow the same steps to add the Lead element.
$LeadMember = $data.CreateElement("Lead")
$LeadMember.InnerText = "Eric Clapton"
$band.AppendChild($LeadMember)
The Members node is a bit more complicated since it has child objects of Member but hopefully by now you’ve recognized the pattern.
$members = $data.CreateNode("element","Members","")
$people = "Ginger Baker", "Jack Bruce"
foreach ($item in $people) {
$m = $data.CreateElement("Member")
$m.InnerText = $item
$members.AppendChild($m)
}
#add members to the band node
$band.AppendChild($members)
Finally, add the new band object to the collection.
$data.Bands.AppendChild($band)
Saving XML
All we’ve done to this point is update the object. To update the file itself, we need to save it by specifying a path.
$data.Save('c:\work\banddata.xml')
You specify the original file if you want to update it. We recommend using complete and absolute path names. Relative paths and shortcut PSDrives may not work.
ConvertTo-Xml
We mentioned at the beginning of this chapter that the -Clixml cmdlets are an easy way to convert PowerShell data to XML. But those files are intended primarily for use within PowerShell. What if you need to create XML files to be used outside of PowerShell? That’s where ConvertTo-Xml comes into play.
You can convert any output but we’ll keep it simple and limit ourselves to data from the local computer. Pipe any cmdlet to ConvertTo-Xml to create an XML document.
Get-CimInstance win32_service | ConvertTo-Xml
If you look through the document you’ll realize the cmdlet converted all properties, not just what you see by default. Most likely you will want to be a little more selective.
$s = Get-CimInstance win32_service -ComputerName $env:computername |
Select-Object * -ExcludeProperty CimClass,Cim*Properties |
ConvertTo-Xml
This cmdlet will create generic Object nodes.
PS C:\> $s.objects.object[0]
Type Property
---- --------
System.Management.Automation.PSCustomObject {PSShowComputerName, Name, S...}
The cmdlet also does a decent job of capturing each property type.
PS C:\> $s.objects.object[0].Property
Name Type #text
---- ---- -----
PSShowComputerName System.Boolean True
Name System.String AdobeFlashPlayerUpdateSvc
Status System.String OK
ExitCode System.UInt32 0
DesktopInteract System.Boolean False
ErrorControl System.String Normal
PathName System.String C:\windows\SysWOW64\Macromed\Flash
\FlashPlayerUpdateService.exe
ServiceType System.String Own Process
StartMode System.String Manual
Caption System.String Adobe Flash Player Update Service
Description System.String This service keeps your Adobe Flash
Player installation up to...
InstallDate System.Object
CreationClassName System.String Win32_Service
Started System.Boolean False
SystemCreationClassName System.String Win32_ComputerSystem
SystemName System.String WIN81-ENT-01
AcceptPause System.Boolean False
AcceptStop System.Boolean False
DisplayName System.String Adobe Flash Player Update Service
ServiceSpecificExitCode System.UInt32 0
StartName System.String LocalSystem
State System.String Stopped
TagId System.UInt32 0
CheckPoint System.UInt32 0
ProcessId System.UInt32 0
WaitHint System.UInt32 0
PSComputerName System.String WIN81-ENT-01
While the XML document is still stored as a variable you could modify using the steps we showed earlier. When you are ready to save the data to a file use the Save() method.
$s.Save("c:\work\services.xml")
Creating native XML from scratch
The ConvertTo-Xml cmdlet is handy although it is a bit generic. If you truly need to create more meaningful XML you can build your own from scratch. Let’s say you need to create an XML file for an external application with update (or hotfix) information. The application is expecting a per computer node with this hotfix information:
First, we need data.
$data = Get-HotFix -ComputerName $env:computername |
Select-Object -Property Caption,InstalledOn,InstalledBy,HotfixID,Description
Because the XML node names won’t always align with the PowerShell property names, and we want avoid a lot of hard coding, we’ll create a “mapping” hashtable.
$map = [ordered]@{
'update-id' = 'HotFixID'
'update-type' = 'Description'
'install-date' = 'InstalledOn'
'install-by' = 'InstalledBy'
caption = 'Caption'
}
You’ll see how we use this in a bit. But we need an XML document.
[xml]$Doc = New-Object System.Xml.XmlDocument
While it is not an absolute requirement, you should create an XML declaration for the version and encoding and append it to the document.
$dec = $Doc.CreateXmlDeclaration("1.0","UTF-8",$null)
$doc.AppendChild($dec) | Out-Null
You’ll see us starting to use Out-Null to suppress the XML output since we don’t really want to see it.
Optionally, you might want to include a comment in your XML document. And for the sake of variety, we’ll even create and append it all in one command.
$text = @"
Hotfix Inventory
$(Get-Date)
"@
$doc.AppendChild($doc.CreateComment($text)) | Out-Null
Now to the heart of the document. We want to have a computer node to show the computername. The process should be looking familiar by now.
$root = $doc.CreateNode("element","Computer",$null)
$name = $doc.CreateElement("Name")
$name.InnerText = $env:computername
$root.AppendChild($name) | Out-Null
We’re creating, defining and appending to the parent. Where this gets interesting is where you have to create multiple, nested entries. You don’t want to have to manually create everything one item at a time. Let PowerShell do the work for you.
We know we’re going to need an outer node for Updates.
$hf = $doc.CreateNode("element","Updates",$null)
Within this node, we need to create an entry for each update. This is where the mapping table comes into play. We can loop through each update from $data and create an update entry. Then we can use a nested loop to go through the mapping hashtable to create the corresponding entries.
foreach ($item in $data) {
$h = $doc.CreateNode("element","Update",$null)
#create the entry values from the mapping hash table
$map.GetEnumerator() | foreach {
$e = $doc.CreateElement($_.Name)
$e.innerText = $item.$($_.value)
#append to Update
$h.AppendChild($e) | Out-Null
}
#append the element
$hf.AppendChild($h) | Out-Null
}
This performs the bulk of the work. All that remains is to append and save the file.
$root.AppendChild($hf) | Out-Null
$doc.AppendChild($root) | Out-Null
$doc.Save("c:\work\hotfix.xml")
The end result is something like this:
<?xml version="1.0" encoding="UTF-8"?>
<!--
Hotfix Inventory
06/04/2020 11:56:15
-->
<Computer>
<Name>DESK01</Name>
<Updates>
<Update>
<update-id>KB4552925</update-id>
<update-type>Update</update-type>
<install-date>06/02/2020 00:00:00</install-date>
<install-by>NT AUTHORITY\SYSTEM</install-by>
<caption>http://support.microsoft.com/?kbid=4552925</caption>
</Update>
<Update>
<update-id>KB4537759</update-id>
<update-type>Security Update</update-type>
<install-date>05/30/2020 00:00:00</install-date>
<install-by>NT AUTHORITY\SYSTEM</install-by>
<caption>http://support.microsoft.com/?kbid=4537759</caption>
</Update>
<Update>
<update-id>KB4557968</update-id>
<update-type>Security Update</update-type>
<install-date>05/30/2020 00:00:00</install-date>
<install-by>NT AUTHORITY\SYSTEM</install-by>
<caption>http://support.microsoft.com/?kbid=4557968</caption>
...
</Updates>
</Computer>
You can find the complete demo script in the code downloads for this chapter.
Your Turn
We’d like to see what you can do with creating an XML-oriented tool. Let’s say that your boss has decided she would like to start tracking disk usage using XML. Her plan is to take a usage snapshot on a weekly basis. She wants to maintain data for all reports and computers in a single XML file. (You might need to educate her about the use of a database!). On one hand you could easily accomplish this using Export-Clixml except that there is no parameter for appending.
Start Here
We’ll help you out and give you a PowerShell expression that provides the necessary information using the local computer. You’ll need to adjust to handle remote computers.
Get-CimInstance win32_logicaldisk -Filter "drivetype=3" |
Select-Object -property @{Name="Date";
Expression={(Get-Date).ToShortDateString()}},
PSComputername,DeviceID,Size,Freespace,@{Name="PercentFree";
Expression = {($_.freespace/$_.size)*100 -as [int]}}
Your Task
You will need to create a function to update the an xml file for multiple computers with the required information. You might consider creating several functions to handle the different aspects of this task.
Our Take
Given the manager’s requirements we thought it might be best to create an XML file from scratch. We could have probably achieved similar results with ConvertTo-Xml. Our solution consists of several functions which could be packaged together as a module. You can find our functions in the chapter’s code downloads.
The first function, Get-DiskUsage, uses Get-CimInstance to retrieve the disk information and writes an object to the pipeline. This function could be reused to send information to a CSV file, or anything else. The core function is Update-DiskXml. The function needs a parameter for the XML file and a group of computernames. If the XML file doesn’t exist, we wrote another function, New-DiskXML, to create an empty XML document that meets our requirements.
The Update-DiskXml command calls Get-DiskUsage to get drive information and then creates snapshot information which it appends to the main document. Usage syntax looks like this:
Get-Content servers.txt | Update-DiskXml -path c:\work\diskhistory.xml
From a design perspective we could have written the update command to take pipeline input from Get-DiskUsage.
Get-Content servers.txt | Get-DiskUsage |
Update-DiskXml -path c:\work\diskhistory.xml
Ultimately the correct choice depends on how you think the consumer of your PowerShell tool will use it. But notice that we didn’t build one function that did everything. This is a good reminder that in PowerShell toolmaking you build single purpose tools that do one thing but can work together in the PowerShell pipeline.
The other missing element is a command to process the XML and presenbt a formatted report. Or maybe this would be a controller script. It also might make sense to turn all of this into a module. We’ll leave these tasks to you as additional learning opportunities.
Let’s Review
Before you go, how about a quick test to see what you learned?
Review Answers
Here’ how we would have answered the questions.
Working with JSON Data
As you build your PowerShell tools, you might have a need to store stuff in separate files. This might be configuration data for your command. Or perhaps you need to store the results in a file that will be used by another process or program. Perhaps even outside of PowerShell. This use to mean using things like INI or XML files. But over the last few years a new format has entered the world of PowerShell, JSON. Processing JSON instead of XML is often faster and typically can result in smaller file sizes. JSON files also tend to be a lot easier for humans to read compared to XML.
Now, JSON has been around for quite a while in the developer world as a data storage mechanism. You can learn all the gritty details at http://json.org. But we’ll keep this simple. A JSON file is a text file that serializes an object, much like XML. The object is wrapped in a set of curly braces and contains one or more sets of name/value pairs.
{
"Name": "bits",
"DisplayName": "Background Intelligent Transfer Service",
"Status": 4
}
The name is essentially the property name and the value is self-evident. Because this is a text file, all of the values are strings. This will become important when you attempt to bring a JSON file into PowerShell.
JSON files can include multiple objects separated by commas and enclosed in a set of square brackets to indicate an array.
[
{
"Name": "BITS",
"DisplayName": "Background Intelligent Transfer Service",
"Status": 4
},
{
"Name": "Bluetooth Device Monitor",
"DisplayName": "Bluetooth Device Monitor",
"Status": 4
},
{
"Name": "Bluetooth OBEX Service",
"DisplayName": "Bluetooth OBEX Service",
"Status": 4
},
{
"Name": "BrokerInfrastructure",
"DisplayName": "Background Tasks Infrastructure Service",
"Status": 4
},
{
"Name": "Browser",
"DisplayName": "Computer Browser",
"Status": 4
},
{
"Name": "BthHFSrv",
"DisplayName": "Bluetooth Handsfree Service",
"Status": 1
},
{
"Name": "bthserv",
"DisplayName": "Bluetooth Support Service",
"Status": 4
}
]
Finally, the JSON format supports nested objects.
{
"Name": "bits",
"DisplayName": "Background Intelligent Transfer Service",
"Status": 4,
"RequiredServices": [
{
"CanPauseAndContinue": false,
"CanShutdown": false,
"CanStop": false,
"DisplayName": "Remote Procedure Call (RPC)",
"DependentServices": null,
"MachineName": ".",
"ServiceName": "RpcSs",
"ServicesDependedOn": "DcomLaunch RpcEptMapper",
"ServiceHandle": null,
"Status": 4,
"ServiceType": 32,
"StartType": 2,
"Site": null,
"Container": null
},
{
"CanPauseAndContinue": false,
"CanShutdown": false,
"CanStop": true,
"DisplayName": "COM+ Event System",
"DependentServices": "igfxCUIService1.0.0.0
COMSysApp SENS BITS",
"MachineName": ".",
"ServiceName": "EventSystem",
"ServicesDependedOn": "rpcss",
"ServiceHandle": null,
"Status": 4,
"ServiceType": 32,
"StartType": 2,
"Site": null,
"Container": null
}
]
}
We showed you these examples so you would know what a JSON file looks like, but you should never have to create one by hand. Instead you can call upon the PowerShell JSON cmdlets, ConvertTo-Json and ConvertFrom-Json.
Converting to JSON
You can take the output from any PowerShell expression that writes to the pipeline and turn it into JSON.
Get-CimInstance win32_computersystem | ConvertTo-Json
If you try that command you’ll notice right away that you don’t get a file. The cmdlet is doing exactly what it is designed to do, convert objects to a json format. To save the results to a file you can pipe to Out-File or Set-Content.
Get-CimInstance win32_computersystem | ConvertTo-Json |
Out-File wmics.json
Get-CimInstance win32_computersystem | ConvertTo-Json |
Set-Content .\wmics2.json
By default, you’ll end up with easy to read and formatted JSON. However, there is also an option to compress the converted json.
Get-CimInstance win32_computersystem | ConvertTo-Json -compress
You’ll notice that this removes all the spaces and indentations. The resulting file will be smaller but still valid JSON. We can’t think of any reason to compress unless you are creating very large files that you intend to copy between systems. Of course, you can also keep things manageable by only converting what you actually need.
Get-CimInstance win32_computersystem -computername $env:computername |
Select-Object -property PSComputername,Manufacturer,
@{Name="MemoryGB";Expression={$_.totalPhysicalmemory/1GB -as [int]}},
Number* | ConvertTo-Json
This should create output like this:
{
"PSComputerName": "CLIENT01",
"Manufacturer": "LENOVO",
"MemoryGB": 8,
"NumberOfLogicalProcessors": 4,
"NumberOfProcessors": 1
}
We’re assuming you know what you’ll do with the final file and will plan accordingly.
One tip we’ll point out is that if you want to create a json file, perhaps to hold configuration data or something similar, don’t try to manually create the file. Instead, “objectify” your data in PowerShell and then convert to JSON.
[pscustomobject]@{
Path = "C:\Scripts"
LastModified = 6/1/2020"
Count = 20
Types = @(".ps1","psm1","psd1","json","xml")
} | ConvertTo-Json
You don’t have to muck about trying to get the formatting right. Let the cmdlet do the work for you.
{
"Path": "C:\\Scripts",
"LastModified": "6/1/2020",
"Count": 20,
"Types": [
".ps1",
"psm1",
"psd1",
"json",
"xml"
]
}
We’ve already mentioned that the JSON format is essentially one long string. The format does not have any mechanism for comments or metadata like you can include in an XML file. That’s not to say you can’t incorporate such a feature but you’ll have to design your own implementation. Using our example above, you could try something like this:
[pscustomobject]@{
Created = (Get-Date)
Comment = "config data for script tool"
},
[pscustomobject]@{
Path = "C:\Scripts"
LastModified = "6/1/2020"
Count = 20
Types = @(".ps1","psm1","psd1","json","xml")
} | ConvertTo-Json
You’ll end up with this JSON:
[
{
"Created": {
"value": "\/Date(1591287561241)\/",
"DisplayHint": 2,
"DateTime": "Thursday, June 4, 2020 12:19:21 PM"
},
"Comment": "config data for script tool"
},
{
"Path": "C:\\Scripts",
"LastModified": "6/1/2020",
"Count": 20,
"Types": [
".ps1",
"psm1",
"psd1",
"json",
"xml"
]
}
]
As you can see, PowerShell transforms the date object into something a bit more complicated in JSON. Knowing that everything is going to be a string you might modify the first part:
[pscustomobject]@{
Created = (Get-Date).ToString()
Comment = "config data for script tool"
},
Now the JSON is a bit easier to read.
{
"Created": "6/4/2020 12:20:33 PM",
"Comment": "config data for script tool"
}
Converting from JSON
By now you can probably guess the name of the cmdlet that turns JSON content into something you can use in PowerShell: ConvertFrom-Json. If you read the help for the cmdlet, which you should by the way, you’ll recognize that the cmdlet doesn’t use a file. Rather, you have to get the json content and then convert it.
We have a json file (which we’ve included in the code samples for this chapter) with entries like this:
{
"Name": "wuauserv",
"DisplayName": "Windows Update",
"Status": 1,
"MachineName": "chi-dc04",
"Audit": "06/04/20"
},
To bring this into PowerShell we’ll run this command:
PS C:\> $in = Get-Content c:\work\audit.json | ConvertFrom-Json
Nothing too surprising here. You have to get the content before you can convert it. The conversion will create a custom object.
PS C:\> $in | Get-Member
TypeName: System.Management.Automation.PSCustomObject
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Audit NoteProperty string Audit=06/01/20
DisplayName NoteProperty string DisplayName=Microsoft Monitoring Agent
Audit Forwarding
MachineName NoteProperty string MachineName=chi-dc04
Name NoteProperty string Name=AdtAgent
Status NoteProperty int Status=1
As you can see everything is treated as a string which may not be an issue for you.
PS C:\> $in[0..2]
Name : AdtAgent
DisplayName : Microsoft Monitoring Agent Audit Forwarding
Status : 1
MachineName : chi-dc04
Audit : 06/04/20
Name : ADWS
DisplayName : Active Directory Web Services
Status : 4
MachineName : chi-dc04
Audit : 06/04/20
Name : AeLookupSvc
DisplayName : Application Experience
Status : 1
MachineName : chi-dc04
Audit : 06/04/20
One option to make this more accurate might be to “reformat” using Select-Object.
PS C:\> $in[0..2] | Select-Object -property Name,Displayname,
@{Name="Status";
Expression = { $_.Status -as [System.ServiceProcess.ServiceControllerStatus]}},
@{Name="Audit";Expression= { $_.Audit -as [datetime]}},
@{Name="Computername";Expression = {$_.Machinename}}
Name : AdtAgent
DisplayName : Microsoft Monitoring Agent Audit Forwarding
Status : Stopped
Audit : 6/4/2020 12:00:00 AM
Computername : chi-dc04
Name : ADWS
DisplayName : Active Directory Web Services
Status : Running
Audit : 6/4/2020 12:00:00 AM
Computername : chi-dc04
Name : AeLookupSvc
DisplayName : Application Experience
Status : Stopped
Audit : 6/4/2020 12:00:00 AM
Computername : chi-dc04
With this approach the objects are richer and can be properly sorted, filtered or whatever.
Now, you may be thinking, “why not do this reformatting during the conversion?” That’s an excellent an idea. Your initial idea is to use an expression like this:
Get-Content audit.json |
ConvertFrom-Json | Select Name,Displayname,
@{Name="Status";Expression = { $_.Status -as [System.ServiceProcess.ServiceControlle\
rStatus]}},
@{Name="Audit";Expression= { $_.Audit -as [datetime]}},
@{Name="Computername";Expression = {$_.Machinename}}
Only to realize you don’t get the expected results.
Name :
Displayname :
Status : ContinuePending
Audit :
Computername : {chi-dc04, chi-dc04, chi-dc04, chi-dc04...}
This is because the ConvertFrom-Json cmdlet writes a single object to the pipeline. If you use Get-Member you’ll see that it is a System.Object[]. The workaround is to use ForEach-Object.
Get-Content .\audit.json |
ConvertFrom-Json |
ForEach-Object { $_ | Select-Object -Property Name,Displayname,
@{Name="Status";
Expression = { $_.Status -as [System.ServiceProcess.ServiceControllerStatus]}},
@{Name="Audit";Expression= { $_.Audit -as [datetime]}},
@{Name="Computername";Expression = {$_.Machinename}}
}
For experienced and advanced readers, you could also insert a custom type name into the converted objects and then use custom type and format extensions. The bottom line when it comes to working with JSON is you still want to think about working with objects in the pipeline but you have to know what that data will look like and how you will use it.
In PowerShell 7, this annoying problem has been fixed and you don’t need to use this ForEach-Object hack. In fact, the Json cmdlets have a few more features in PowerShell 7. We are always harping about reading the help, even for commands you think you know. PowerShell is still a growing technology. Perhaps even more so now with PowerShell 7. You absolutely need to look at help and examples.
Your Turn
Let’s see what you’ve picked up in this chapter and see if you can build a simple PowerShell tool that utilizes JSON files.
Start Here
One of the great benefits of PowerShell is that you can use it with just about anything. So we are going to put you in a company that has an external process which processes widgets and generates a JSON summary report. Each file will have JSON like this:
{
"JobID": 214699,
"Items processed": 78,
"Errors": 2,
"Warnings": 0,
"RunDate": "6/2/2020 9:53:45 PM"
}
All of the files are created in a single folder. We’ve provided some files in the code folder under \codeChapters\working-with-jsonSampleData. Your manager has asked you to create a PowerShell tool which will process these files and generate a summary report.
Your Task
Knowing how fickle your manager is, your tool should just write a summary object to the pipeline. This way you can run your command and then pipe it to anything else to generate a specific type of report such as a text file or HTML, although that’s not the real goal. Instead, you should create a stand-alone PowerShell script that will process all of the JSON files in the SampleData directory and write a summary object to the pipeline with this information.
Our Take
You can find our complete solution in the downloadable code samples, under this book’s folder in the Chapters subfolder. Below is a stripped down version.
Summary Report
[cmdletbinding()]
Param(
[Parameter(
Position = 0,
Mandatory,
HelpMessage = "Enter the path with the json test data"
)]
[ValidateNotNullorEmpty()]
[string]$Path
)
Write-Verbose "Starting $($MyInvocation.MyCommand)"
Write-Verbose "Processing files from $Path"
$files = Get-ChildItem -Path $path -Filter *.dat
Write-Verbose "Found $($files.count) files."
$data = foreach ($file in $files) {
Write-Verbose "Converting $($file.name)"
Get-Content -Path $file.fullname |
ConvertFrom-Json |
Select-Object -Property Errors,Warnings,
@{Name = "Date"; Expression = {$_.RunDate -as [datetime]}},
@{Name = "ItemCount"; Expression = {$_.'Items processed'}}
}
#sort the data to get the first and last dates
$sorted = $data | Sort-Object Date
$first = $sorted[0].Date
$last = $sorted[-1].Date
Write-Verbose "Measuring data"
The $stats variable will be an array of measurements for each property
$stats = $data | Measure-Object errors, warnings, ItemCount -sum -average
Write-Verbose "Creating summary result"
[PSCustomObject]@{
NumberFiles = $data.count
TotalItemsProcessed = $stats[2].sum
AverageItemsProcessed = $stats[2].Average
TotalErrors = $stats[0].sum
AverageErrors = $stats[0].average
TotalWarnings = $stats[1].sum
AverageWarnings = $stats[1].Average
StartDate = $first
EndDate = $last
}
Naturally the trickiest part is converting the JSON files. Each file has a single entry which means each file has to be converted separately. And we also need to converted objects to be “good” PowerShell which means no spaces in property names and they should be properly typed. That’s why we use Select-Object and custom hash tables to rename the JSON property that contains a space and treat the RunDate as a [DateTime] object.
The rest of the script is merely using Measure-Object to calculate the necessary values and write a custom object to the pipeline.
PS C:\> c:\work\SampleReport.ps1 -path c:\work\SampleData
NumberFiles : 20
TotalItemsProcessed : 1151
AverageItemsProcessed : 57.55
TotalErrors : 21
AverageErrors : 1.05
TotalWarnings : 50
AverageWarnings : 2.5
StartDate : 5/3/2020 1:55:45 AM
EndDate : 6/3/2020 6:06:45 AM
Let’s Review
We readily admit that working with JSON files will be limited to some very specific use cases. But let’s make sure you still understand the basics.
Review Answers
Here are some likely answers.
Working With CSV Data
For the sake of completeness, it only made sense to do a chapter on working with CSV data. If there was one data format that comes up all the time, it is this. On one hand it is a pretty simple format. But looks can be deceiving which is probably why we see a lot of questions about it.
I Want to Script Microsoft Excel
No you don’t. Probably not really. What you really want to do is work with CSV data. Sure, use Microsoft Excel to get you started by exporting a CSV file. Or get your CSV file from PowerShell and open it in Excel for anything else you want to do. But for the love of Jeffrey Snover don’t try to write PowerShell to update cells in a worksheet. Yes, you can but it is interminable. After spending a few minutes counseling a wayward sole, we usually find that they really just need to work with a CSV file.
Know Your Data
When it comes to working with any data type, you have to know what you are exporting or importing. A CSV file is a plain text file with values separated by commas. Typically, the first line in the file is a header.
Name,Size,Color
john,12,green
george,3,yellow
paul,1,purple
ringo,7,white
The most important thing to know about a CSV file is that it is considered a “flat” file. All you can have is collection of values. You can’t have a column with a service object. That object has its own hierarchy of property values. It would be impossible to add it to the CSV sample above. For rich object types, you need to use a hierarchical format such as XML or JSON.
If you try this:
Get-Service win* | Export-CSV win.csv
Import-CSV win.csv
You won’t get the result you expect. You’ll see values like "System.ServiceProcess.ServiceController[]" which indicates a nested object. You can use the PowerShell CSV cmdlets, but you have to know what you are exporting.
Get-Service win* -ComputerName SRV1 |
Select-Object -property Name,Displayname,Status,StartType,
@{Name="Computername";Expression={$_.machinename}} |
Export-CSV win-srv1.csv
We’re going to trust that you’ll read the full help and examples for all the cmdlets we cover in this chapter.
Looking at the raw CSV file, we now have a simple collection of flat values.
#TYPE Selected.System.ServiceProcess.ServiceController
"Name","DisplayName","Status","StartType","Computername"
"WinDefend","Windows Defender Service","Running","Automatic","SRV1"
"WinHttpAutoProxySvc","WinHTTP Web Proxy Auto-Discovery Service","Running","Manual",\
"SRV1"
"Winmgmt","Windows Management Instrumentation","Running","Automatic","SRV1"
"WinRM","Windows Remote Management (WS-Management)","Running","Automatic","SRV1"
Knowing your data also applies to your export. Assuming you’ve sent it to a file with Export-CSV how are you going to use it? Are you going to import back into PowerShell? You don’t have to do anything. But if you plan on using the data in a non-PowerShell application, such as importing it into a SQL table, then you might want to get rid of that #TYPE header.
... | Export-CSV file.csv -NoTypeInformation
Custom Headers
Here’s a little trick that can make your life easier. Often we get CSV files from external sources. We may have no control over how they are created. But we still want to incorporate them into PowerShell. Here’s a sample CSV file that lacks a header line.
Dom1,DC,DB9097,3/16/18
Srv1,Member,CC2365,1/22/19
Srv2,Member,CC2369,1/22/19
Win10,Client,WX3487,12/4/18
Remember our comment that you need to know your data? We know that the first column is the computername, the second is type, the third is an asset tag and the last column is the acquisition date. We can tell PowerShell to import the data using a custom header.
$head = "Computername","Type","AssetTag","Acquired"
Import-Csv .\data-nohead.csv -Header $head
Which gives us this output:
Computername Type AssetTag Acquired
------------ ---- -------- --------
Dom1 DC DB9097 3/16/18
Srv1 Member CC2365 1/22/19
Srv2 Member CC2369 1/22/19
Win10 Client WX3487 12/4/18
Now we have objects in the pipeline with the right property names.
If your CSV file does have a header but you don’t want to use it, you have a few options. We have a variation of the above file that has a header of Server,Class,Asset,Inventory. We want to use the data as a source of computer names that we can pipe to Get-Service.
When you read the help and look at the Computername parameter, you’ll see that it accepts pipeline input by property name.
Required? false
Position? named
Default value None
Accept pipeline input? True (ByPropertyName)
Accept wildcard characters? false
We need to make sure that the objects coming from Import-CSV include a property called Computername. But the CSV heading is Server. No problem. We’ll rename it on the fly.
Import-Csv .\data.csv |
Select-Object @{Name="computername";Expression={$_.server}} |
Get-Service Bits | Select-Object Machinename,Name,Status
Or you can use the custom header but you need to take an extra step to strip it off. In this situation you have to parse the CSV file and then convert the results from CSV.
Get-Content .\data.csv | Select-Object -Skip 1 |
ConvertFrom-CSV -Header $head |
Get-Service Bits |
Select-Object Machinename,Name,Status
Importing Gotchas
One huge gotcha when working with CSV files is that everything is treated as a string. You might try this:
PS C:\> Import-Csv .\data.csv | Sort-Object Inventory
Server Class Asset Inventory
------ ----- ----- ---------
Srv1 Member CC2365 1/22/19
Srv2 Member CC2369 1/22/19
Win10 Client WX3487 12/4/18
Dom1 DC DB9097 3/16/18
But that didn’t work. If you use Get-Member you’ll see what we’re talking about.
PS C:\> import-csv .\data.csv | Get-member
TypeName: System.Management.Automation.PSCustomObject
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Asset NoteProperty string Asset=DB9097
Class NoteProperty string Class=DC
Inventory NoteProperty string Inventory=3/16/18
Server NoteProperty string Server=Dom1
This comes back to the mantra “know your data”. One solution is to re-define your properties using Select-Object.
Import-Csv .\data.csv |
Select-Object @{Name="ComputerName";Expression={$_.server}},
Asset,Class,
@{Name="InventoryDate";Expression = {$_.Inventory -as [datetime]}} |
Sort-Object InventoryDate
Now we get the results we’re expecting.
ComputerName Asset Class InventoryDate
------------ ----- ----- -------------
Dom1 DB9097 DC 3/16/2018 12:00:00 AM
Win10 WX3487 Client 12/4/2018 12:00:00 AM
Srv1 CC2365 Member 1/22/2019 12:00:00 AM
Srv2 CC2369 Member 1/22/2019 12:00:00 AM
Although, for sorting purposes we could have done this:
Import-Csv .\data.csv | Sort-Object {$_.Inventory -as [datetime]}
Regardless, we had to take steps to turn the string value into the proper type.
Your Turn
You should spend a little time with CSV files to make sure you understand the concepts and techniques.
Start Here
Export a group of files from a directory of your choice to a CSV file selecting these properties:
Your Task
Write a PowerShell expression to export the files to a CSV file. Create a file that you could use outside of PowerShell. Then write code to import the CSV file and sort by length in descending order. The timestamp properties should also be treated as [datetime] values.
Our Take
We used a relatively simple one-line command to create the CSV file.
Exporting Data
Get-ChildItem c:\work -file |
Select-Object Name,Extension,
@{Name="Path";Expression = {$_.fullname}},
@{Name="Size";Expression = {$_.length}},
@{Name="Created";Expression = {$_.Creationtime}},
@{Name="Modified";Expression = {$_.LastWriteTime}} |
Export-CSV -Path .\files.csv -NoTypeInformation
Our results file should be in the downloads.
To restore the data, we did something a little bit different. We wrote a function to create a new type of object from the CSV file. Again, “know your data”.
New-FileData
Function New-FileData {
[cmdletbinding()]
Param(
[Parameter(Mandatory,ValueFromPipeline)]
[object[]]$InputObject
)
Begin {}
Process {
[PSCustomObject]@{
PSTypeName = "FileData"
Name = $_.Name
Extension = $_.Extension
Path = $_.Path
Size = $_.Size -as [int]
CreationTime = $_.Created -as [datetime]
LastWritetime = $_.Modified -as [datetime]
}
}
End {}
}
Now we can import the data back into PowerShell.
$filedata = Import-CSV .\files.csv | New-FileData
We can verify that properties are of the correct type.
PS C:\> $filedata | Get-Member
TypeName: FileData
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
CreationTime NoteProperty datetime CreationTime=10/10/2019 10:21:17 AM
Extension NoteProperty string Extension=.vhdx
LastWritetime NoteProperty datetime LastWritetime=10/10/2019 10:21:17 AM
Name NoteProperty string Name=dummy.vhdx
Path NoteProperty string Path=C:\work\dummy.vhdx
Size NoteProperty int Size=4194304
And the sort works.
PS C:\> $fileData | Sort-Object size -Descending | Select-Object Name,Size
Name Size
---- ----
dummy.vhdx 4194304
handbrake_2019-04-03-1336.txt 780500
psconfcover.jpg 368578
AZUser.xml 206358
handbrake_2019-04-03-1337.txt 116054
get-psreleaseasset-macos.png 105876
...
Let’s Review
Review Answers
Part 5: Seriously Advanced Toolmaking
In this Part of the book, we’ll dive into some deep, “extra” topics. These are all things we’re pretty sure you should know, but that you might not use right away, especially if you are an apprentice toolmaker. This Part isn’t constructed in a storyline, so you can just pick and choose the bits you think you’ll need or you find interesting.
Tools for Toolmaking
If you look at any master craftsman from carpenter to chef and one thing they have in common is their toolkit. A carpenter is going to invest in high quality tools that help them do their job such as hammers and power tools. A chef will often invest hundreds of dollars for a single knife, but it is a knife they will use every day and it makes them more productive. As a PowerShell toolmaker, you need to take the same approach. Sure, you could build all the PowerShell tools you need with nothing more than Notepad but you will be far from efficient and you’ll dread your work. One feature of high quality tools is that they often make the job easier and more fun.
So, as the commercial line goes, “What’s in your toolbox?” In this chapter we want to share some suggestions for items you might consider adding. Don’t take any of these as absolute recommendations. Just because something works for us doesn’t mean it works for you. And obviously we don’t know about every tool in the PowerShell universe, but we need to start somewhere.
Some of the items we’re going to discuss are free and others are commercial products. Don’t assume anything. A free tool might be a buggy piece of junk while a commercial tool might save you hundreds of hours and pay for itself in short order. Most commercial tools have a trial period which we encourage you to take advantage of. Only then can you determine if the expense is justified.
Editors
The first tool you will need is an editor. You want something that accelerates your toolmaking. For us, these are the critical elements we look for in an editor:
You may also have to evaluate what other tasks your editor might need to accomplish based on your job duties. Do you need to write Python scripts? Do you often need to create graphical tools with WPF or WinForms? Do you need to create C# utilities? Do you need to support Windows only or are you a cross-platform kind of person?
Let’s look at a few options you might want to consider.
PowerShell ISE
The PowerShell ISE is an option you don’t really have to think about. On client operating systems you just have it. One of the reasons the ISE was developed was so that you wouldn’t have to use Notepad to write your PowerShell scripts and tools.
The PowerShell ISE offers all of the features we listed above. The layout and display are customizable. You can run the entire script or selected pieces of code directly in the editor and its integrated shell. You can run multiple and distinct PowerShell sessions through its tab interface as well as create sessions to remote computers. We also like that the PowerShell ISE has its own object model which means you can create your own ISE-tools and shortcuts. You will also find a number of plugins and extensions that have been developed over the years such as ISE Steroids.
At the very least, you should learn how to take advantage of the PowerShell ISE to create better code faster. The ISE is already installed and comes with a free copy of Windows!
Now for the buzz kill. With the release of PowerShell 7, the PowerShell ISE should be considered deprecated. It isn’t going away anytime soon. But it also isn’t getting any updates or fixes, aside from critical security problems that might arise. What you see is what you get. If you’ve already invested in mastering the ISE you don’t have to give it up. Just know that there’s nothing new on the horizon for it. If you are just getting started and need to learn how to use an editor, you might as well jump in with VS Code.
Visual Studio Code
As useful as the PowerShell ISE might be, it only runs on Windows and PowerShell is extending in the enterprise to Linux and Mac. To meet this need, Microsoft has been working on a concept of editor services. We’re not interested in APIs and architecture drawings. What can we use? The answer is a free download from Microsoft called Visual Studio Code, also known as VS Code.
You can download the latest version from https://code.visualstudio.com/download for Windows, a few Linux distros and MacOS. After it is installed, the application can auto-update as needed.
VS Code is the Microsoft source editor going forward. Microsoft Technical Fellow Jeffrey Snover has publicly stated that their investment is in VS Code. VS Code is designed to be a cross-platform product and supports multiple languages. For your purposes the first thing you’ll need to do is install the PowerShell extension. In VS Code type Ctrl+Shift+P and start typing “extensions”. Select “Install Extensions” and search for “PowerShell”. After you install the extension, you’ll get syntax highlighting and Intellisense-like completion in PowerShell script files. You can also run selected lines of code with F8 just like the ISE.
VS Code can be customized, has good debugging features and a nice git integration. For many IT Pros comfortably familiar with the ISE, VS Code still has a few shortcomings but Microsoft is aware of them and is actively working on them. Right now they are releasing monthly updates.
Expect a steeper learning curve than with the PowerShell ISE, but that is because VS Code is a much richer and feature-loaded application.
Visual Studio
So far we’ve been looking at editors with an eye towards scripting. If you need something more developer oriented clearly Visual Studio is the way to go. This is a very rich product that should cover just about any development or need you might have. As such, the installation can be hefty. Your organization may already have licenses for Visual Studio or you can download the free Visual Studio Community Edition.
You can find information about downloading all the Visual Studio products at https://www.visualstudio.com/downloads/.
One reason you might want some flavor of Visual Studio is support for WPF. Visual Studio makes it much easier to design the graphical interface for your PowerShell tool. You can take the XAML and build your tool around it. We covered this in the WPF chapter.
There is an excellent PowerShell extension for Visual Studio from fellow MVP Adam Driscoll. According to the extension’s description it offers these features:
Finally, if you are thinking about gliding from PowerShell into C#, you’ll want something like Visual Studio. This is certainly the most complex tool we’ve mentioned but if it fulfills a need it is worth your investment.
3rd Party
To properly fill out your toolbox you might need to spend a few bucks, or maybe more than a few bucks, for something that meets a need or increases your productivity. If you have to spend some money for something but it cuts your development time that might be a worthwhile investment.
ISESteroids
One of the more popular add-ons for the PowerShell ISE is ISESteroids developed by MVP Dr. Tobias Weltner. The product ships as a PowerShell module. You can find it in the PowerShell gallery.
Find-Module ISESteroids
The module adds a number of features and tools to the ISE that make it easier to develop, troubleshoot and debug your PowerShell projects. You can use the product free for 10 days. After that you will need to acquire a license. There are a variety of license options and for many IT Pros the cost has been more than offset by increased proficiency.
You can learn more at http://www.powertheshell.com/isesteroids/ including licensing details.
PowerShell Studio
Another popular commercial tool is PowerShell Studio from SAPIEN. They have been making scripting tools for long time going all the way back to the days of PrimalScript. PowerShell Studio is a very feature rich application that makes it easier to create PowerShell scripts, tools and modules.
One of the more compelling features is the ability to easily create WinForms-based PowerShell tools through a graphical drag-and-drop editor. This greatly simplifies the tedious process of developing the PowerShell code to display the graphical elements.
Another popular feature is the ability to “package” your PowerShell script as an executable.
PowerShell Studio is available in both 32 and 64 bit flavors and has a 45 day trial period. Learn more at https://www.sapien.com/software/powershell_studio.
PowerShell Community Modules
You might also find a number of useful tools from the PowerShell community. Many of these have been published to the PowerShell Gallery.
Find-Module -tag scripting
Jeff has published a number of modules to the PowerShell Gallery. Many of them designed to make scripting easier. Take a look at his GitHub repository for more information.
And of course, you should consider using the PowerShell Script Analyzer if you aren’t using VS Code, where it is baked in.
Install-module PSScriptAnalyzer
This module includes commands that will analyze your code and alert you to potential problems or those bits of code that run counter to currently accepted best practices. This functionality is built into Visual Studio Code where the analysis runs in real-time as you’re writing your code.
Books, Blogs and Buzz
Lastly, we are always asked about books and other learning material. Educational material should definitely be considered tools and you should be constantly adding to your bookshelf.
We’ve authored many, many books over our career. You can find current books from http://manning.com and http://leanpub.com. On LeanPub you can also find a number of ebooks you can get for free or a very modest price.
Both of us blog, http://donjones.com and https://jdhitsolutions.com. Jeff has also contributed for years to the Petri IT Knowledge base. Checkout https://petri.com/category/PowerShell for the latest. You should also check out https://mcpmag.com/pages/topic-pages/powershell.aspx which has a good PowerShell section authored by other MVPs such as Adam Bertram and Boe Prox.
The other web source we recommend is Powershell.org. Yes, we are actively involved in the organization behind it, but don’t let that sway you. The forums on the site are very lively and actively monitored. If you need help getting over a roadblock in your tool development, this is the place to go for answers.
Lastly, you may not be into this sort of thing, but social media is a fantastic source of PowerShell information. We’re both active on Twitter (@concentrateddon and @jeffhicks). We strongly recommend you setup a filter in your Twitter client for #PowerShell. This is the best way to keep up with what is new in the PowerShell world. There are also PowerShell-related groups in Facebook.
Recommendations
Where does all of this leave you? First off, if you want to consider yourself a professional PowerShell toolmaker you will need to invest time and perhaps money in tools for your toolbox. This might mean software. It might mean coughing up a few bucks for a couple books or some training videos. PowerShell and its related technologies like DSC are constantly evolving and you need to stay with the curve.
You should be using at least the PowerShell ISE for your development efforts with an eye towards moving to VS Code. That’s where Microsoft is making the investment so you probably should as well.
Finally, your most valuable tool is curiosity. You have to be willing and interested to read about PowerShell, how people are using it and what they are bringing to the party. The more you learn, the better toolmaker you become and the more rewarding your career will become.
Measuring Tool Performance
We PowerShell geeks will often get into late-night, at-the-pub arguments about which bits of PowerShell perform best under certain circumstances. You’ll hear arguments like, “the ForEach-Object cmdlet is slower because its script block has to be parsed each time” or, “storing all those objects in a variable will make everything take longer because of how arrays are managed.” At the end of the day, if performance is important to you, this is the chapter for you.
Is Performance Important
Well, maybe. Why is performance important to you? Look, if you’ve written a command that will have to reboot a dozen computers, then we’re going to be splitting hairs all night about which way is faster or slower. It won’t matter. But if you’re writing code that needs to manipulate thousands of objects, or tens of thousands or more, then a minute performance gain per-object will add up quickly. The point is, before you sweat this stuff, know that tweaking PowerShell for millisecond performance gains isn’t useful unless there are a lot of milliseconds to be saved.
Measure What’s Important
But if performance is important, then you need to measure it. Forget every possible argument for or against any given technique, and measure it. And, as you measure, make sure you’re measuring to the scale that your command will eventually run. That is, don’t test a command with five objects when the plan is to run against five hundred thousand. Pressures like memory, disk I/O, network, and CPU won’t interact in meaningful ways at small scale, and so small-scale measurements won’t prove out as you scale up your workload.
Think of it this way: just because a one-lane road can carry 100 cars an hour, doesn’t mean a 4-lane road can carry 400 an hour. It’s a different situation, with different dynamics. So measure against the workload you plan to run.
You’ll perform that measurement using the Measure-Command cmdlet. Feed it your command, script, pipeline, or whatever, and it’ll run it - and spit out how long it took it to complete. Take this short script as an example (this is test.ps1 in the sample files):
Test.ps1
Write-Host "Round 1" -ForegroundColor Green
Measure-Command -Expression {
Get-Service |
ForEach-Object { $_.Name }
}
Write-Host "Round 2" -ForegroundColor Yellow
Measure-Command -Expression {
Get-Service |
Select-Object Name
}
Write-Host "Round 3" -ForegroundColor Cyan
Measure-Command -Expression {
ForEach ($service in (Get-Service)) {
$service.name
}
}
This basically does the same thing in different ways. Let’s run that to see what happens:
Round 1
Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 148
Ticks : 1486572
TotalDays : 1.72056944444444E-06
TotalHours : 4.12936666666667E-05
TotalMinutes : 0.00247762
TotalSeconds : 0.1486572
TotalMilliseconds : 148.6572
Round 2
Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 37
Ticks : 379826
TotalDays : 4.39613425925926E-07
TotalHours : 1.05507222222222E-05
TotalMinutes : 0.000633043333333333
TotalSeconds : 0.0379826
TotalMilliseconds : 37.9826
Round 3
Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 38
Ticks : 389199
TotalDays : 4.50461805555556E-07
TotalHours : 1.08110833333333E-05
TotalMinutes : 0.000648665
TotalSeconds : 0.0389199
TotalMilliseconds : 38.9199
There’s a significant penalty, time-wise, for the first method, while the second two are almost tied. Neat, right?
Be Careful!
The thing to remember is that whatever you’re measuring will actually run and will actually do stuff. This isn’t a “safe test mode” or something. So you may need to modify your script a bit, so that you can test it without actually performing the task at hand. Of course, that can backfire, too. You can imagine that a tool designed to modify Active Directory might run a lot faster if it wasn’t actually communicating with Active Directory, and so your measurement wouldn’t really be real-world or useful.
One thing to watch for when running Measure-Command is that a single test isn’t necessarily absolute proof. There could be any number of factors that might influence the result. Sometimes it helps to run the test several times. Jeff wrote a command Test-Expression in the PSScriptTools module that allows you to run a test multiple times, giving you (hopefully) a more meaningful result. There’s even a GUI version.
Factors Affecting Performance
There are a bunch of things that can impact a tool’s performance.
Collections and arrays can get really slow if they get really big and you keep adding objects to them one at a time. This slowdown has to do with how .NET allocates and manages memory for these things.
Anything storing a lot of data in memory can get a slowdown if .NET has to stop and garbage-collect variables that are no longer referenced. Generally, you want to try and manage reasonable amounts of data in-memory, not great huge wodges of 60GB text files.
Compiling script blocks - as ForEach-Object requires - can incur a performance penalty. It’s not always avoidable, but it isn’t the fastest operation on the planet in some cases.
Wasting memory can result in disk paging, which can slow things down. For example, in the below fragment, we’re still storing a potentially and unnecessarily huge list of users in $users long past the point where we’re done with it.
$users = Get-ADUser -filter *
$filtered = $users | Where { $_.Department -like '*IT*' }
$final = $filtered | Select Name,Cn
$final | Out-File names.txt
It’d be better do to this entirely without variables, and getting the filtering happening on the domain controller:
Get-ADUser -filter "Department -like '*IT*'" |
Select Name,Cn |
Out-File names.txt
Now we’re getting massively less data back from Active Directory, and storing none of it in persistent variables. Or to put it more precisely, this is an example of the benefits filtering early.
Here’s the problem - We often see beginners write a command like this:
Get-CimInstance win32_service -computername server01 |
where state -eq 'running'
This may not seem like a big deal but imagine the CIM command was going to return 1000 objects. With the approach we just showed, the first command has to complete and send all 1000 objects, in this case across the wire and then the results are figured. Compared to letting Get-CimInstance do the filtering in place - on the server - and then only sending the filtered results back.
Get-CimInstance win32_service -computername server01 -filter "state = 'running'"
There’s one other feature you should take advantage of when using Get-CimInstance and not many people do. Let’s say you are using code like this:
Get-CimInstance win32_service -computername $computers-filter "state = 'running'" |
Select-Object -property Name,StartMode,StartName,ProcessID,SystemName
The $Computers variable is a list of computernames. This pattern is pretty common. Get something and then select the things that matter to you. However, the remote server is assembling a complete Win32_Server instance with all the properties. But you are throwing most of them away. The better approach is to limit what Get-CimInstance will send back.
$cimParams=@{
Classname = 'win32_service'
ComputerName = $computers
Filter = "state = 'running'"
Property = 'Name','StartMode','StartName','ProcessID','SystemName'
}
Get-CimInstance @cimParams | Select-Object -property Name,StartMode,StartName,
ProcessID,@{Name="Computername";Expression={$_.SystemName}}
PowerShell will want to display the results using its default formatting. You’ll most likely use Select-Object or create your own custom object. Regardless, this approach should run slightly faster. It may be small, but it can add up. You’ll really appreciate this when you are querying 500 servers.
Always look for ways to limit or filter as early in your command as possible. Take advantage of parameters like Filter, Include, Exclude, ID and Name.
Key Take-Away
You should get used to using Measure-Command to testing your code, especially if there are several ways you could go. We’ll look at other performance related concepts in the Scripting at Scale chapter. But for now your key take-away should be that good coding practices can go a long way toward avoiding performance problems!
PowerShell Workflows: A Primer
Introduced in PowerShell v3, Workflows are at attempt to make “scripts” that can take a long time to run, and might need to be interrupted and resumed where they left off. The idea of workflow has been around for a while but it required serious developer skills and Visual Studio. PowerShell workflow was intended as a way for IT Pros to leverage their scripting skills to create a a workflow, which most likely was going to run on remote servers. We have mixed feelings about workflows. Generally speaking, while we appreciate the sentiment, we think the execution is a little lacking, and very confusing.
Note that the feature we’re discussing here is not the same as workflows in Azure Automation, which look and behave the same (making this chapter totally relevant), but which use a different underlying engine. Our commentary below applies to the “on-prem” workflows bundled in PowerShell itself.
Workflow seems like PowerShell scripting. It isn’t. You’re using a PowerShell-like language to code for Windows Workflow Foundation, or WWF. That is, when you “run” your workflow, it’s literally being translated into WWF, which then runs it. PowerShell does not run workflows. This fact is, without a doubt, where almost all pain, confusion, and panic comes from when dealing with workflows. It is easy to think you are writing PowerShell but you aren’t.
Terminology
Let’s start with some terminology.
To make things interesting (or confusing), many native (that is, “core”) PowerShell cmdlets have an equivalent activity. So a workflow can contain the command Get-ChildItem, because an activity of that name exists. There is not an easy way to see which activities there are, outside of Visual Studio’s workflow designer surface.
Theory of Execution
It’s important to remember that your workflow script will be compiled into something else and handed off to WWF for execution. WWF may, in turn, need to run instances of PowerShell in order to run certain commands within your workflow, but WWF is in fact the one “in charge” of execution. This means the contents of your workflow are governed by WWF rules, which are a bit different from a PowerShell script.
Logical constructs in workflow work the way you’d expect them to, with a couple of differences:
Activities are a bit odder. First, you cannot use positional parameters. Can. Not. You also need to spell out cmdlet names (aliases are also supported) and parameter names. That’s actually all good practice regardless. The oddity comes up when you try to run a command that doesn’t have a corresponding workflow activity. In that case, WWF starts up an instance of PowerShell to run your command. This is notable, because once your command finishes, that PowerShell instance is shut down - meaning any state changes that your command created, like new variables, will be gone.
Variables are the big confusing point. Variables inside the workflow do persist, and they are available to each activity within the workflow. Variables created by a distinct PowerShell instance - as in the above case of running a non-activity command - will not persist back into the workflow scope. So if you have a bunch of non-activity commands that need to share information, you end up wrapping them all in an InlineScript{} block (which will discuss in a bit) so they can “see” each other. That partially defeats the point of a workflow, because if your code is interrupted, you can only resume to an activity - not midway into an InlineScript{} block.
So you can see why workflows can be confusing, and tend to not behave as you might initially expect them to. A workflow can persist data, shut down, and resume later with all the data intact - but only if that data existed in the workflow itself and not in some separate PowerShell process that got spawned.
We suggest reviewing the official reference docs before you dive in as well as the workflow about topics.
A Quick Illustration
Let’s look at a quick example and discuss some important features. We’re providing this as Example1.ps1 in the code samples, but this is not intended to run. It’s just a compilation of several points, so we can discuss them all at once.
Example
workflow Example {
Param(
[string]$Value
)
$procs = Get-Process
$total_ram = 0
$services = $null
$events = $null
$result = ""
foreach -parallel ($proc in $procs) {
$workflow:total_ram += $proc.ws
} #foreach
Write-Output "Total RAM used $total_ram"
sequence {
$folders = Get-ChildItem -Path $value -Directory
parallel {
$workflow:services = Get-Service
$workflow:events = Get-EventLog -LogName Security
} #parallel
$workflow:result = InLineScript {
"Hello it is $(Get-Date)"
} #inline script
Write-Output "Check $workflow:result"
$nics = Get-NetAdapter
} #sequence
Write-Output $result
Write-Output "$($folders.count) folders"
Write-Output "$($services.count) services"
Write-Output "$($events.count) events"
Write-Output "$($nics.count) NICs"
} #workflow
Example -Value "c:\"
You can run this, by the way - it just doesn’t do anything useful. It’s instructional to see how long it takes to run, though - showing that workflows aren’t necessarily about speed.
You cannot run a workflow from a PSDrive that is not a logical disk. Suppose you have a PSDrive called Scripts which is pointing to C:Scripts. You can’t execute the workflow command form Scripts:. You would need to change to some folder on the C:\ drive, or any other logical disk.
Here’s the output:
0 folders
218 services
13293 events
0 NICs
And here’s what to note:
Variable scope gets tricky.
The variable stuff - which is how you pass information from place to place, of course - is what makes workflows especially challenging. For example, we’ll see folks try to make this change:
$result = ""
InLineScript {
$result = "Hello it is $(Get-Date)"
} #inline script
Write-Output "Check $result"
This will simply result in “Check” being output - $result is still empty at that point. It was changed inside an inline script, and as soon as the inline script’s PowerShell process ended, whatever was inside the InlineScript block ceased to exist. We can’t use the $workflow: modifier because $result isn’t defined at the workflow level; it’s defined in a sequence block, which is its own scope. Here’s how to do what we’re attempting (this is Example2.ps1):
Example2
workflow Example {
Param(
[string]$Value
)
$procs = Get-Process
$total_ram = 0
$services = $null
$events = $null
$result = ""
foreach -parallel ($proc in $procs) {
$workflow:total_ram += $proc.ws
} #foreach
Write-Output "Total RAM used $total_ram"
sequence {
$folders = Get-ChildItem -Path $value -Directory
parallel {
$workflow:services = Get-Service
$workflow:events = Get-EventLog -LogName Security
} #parallel
$workflow:result = InLineScript {
"Hello it is $(Get-Date)"
} #inline script
Write-Output "Check $workflow:result"
$nics = Get-NetAdapter
} #sequence
Write-Output $result
Write-Output "$($folders.count) folders"
Write-Output "$($services.count) services"
Write-Output "$($events.count) events"
Write-Output "$($nics.count) NICs"
} #workflow
Example -Value "c:\"
Now, we’ve defined $result as a workflow-level script, right at the top. We _assign the results of the InlineScript to $result, using the $workflow: modifier because we’re inside a sequence block. Again - it’s tricky stuff, and can require a lot of experimentation.
Within an InlineScript, you cannot use the $workflow: modifier, just to keep things fun. Instead, use the $using: modifier. Here’s another revision1:
Example3
workflow Example {
Param(
[string]$Value
)
$procs = Get-Process
$total_ram = 0
$services = $null
$events = $null
$result = ""
foreach -parallel ($proc in $procs) {
$workflow:total_ram += $proc.ws
} #foreach
Write-Output "Total RAM used $total_ram"
sequence {
$folders = Get-ChildItem -Path $value -Directory
parallel {
$workflow:services = Get-Service
$workflow:events = Get-EventLog -LogName Security
} #parallel
$workflow:result = InLineScript {
"Hello it is $(Get-Date)"
"There are $($using:procs.count) Processes"
} #inline script
$nics = Get-NetAdapter
} #sequence
Write-Output $result
Write-Output "$($folders.count) folders"
Write-Output "$($services.count) services"
Write-Output "$($events.count) events"
Write-Output "$($nics.count) NICs"
} #workflow
Example -Value "c:\"
Go ahead and run this, if you like. Here’s the output on our machine:
Total RAM used 1620455424
Hello it is 06/21/2020 09:06:37
There are 62 Processes
0 folders
218 services
13310 events
0 NICs
As you can see, the $using: modifier inside the InlineScript block enabled us to “pass in” a workflow-level variable. Because we captured the InlineScript block output into another workflow-level variable, we were able to display that result at the end.
So in the end, you wind up declaring a lot of variables up-front, and then referencing them using the appropriate modifiers:
When to Workflow
We differ a bit from the official documentation in when you might want to use a workflow. We feel they’re best used when:
We don’t necessarily feel that workflow is a go-to simply when you need some task run on multiple remote machines. To do that, PowerShell just uses Remoting, and you could accomplish more or less the same thing using Invoke-Command and its -AsJob parameter. So the above criteria are really the points where we start considering workflow.
Sequences and Parallels are Standalone Scopes
Another element that sets workflows apart from the type of scripting you are used to is a Sequence and a Parallel block. The whole point of a workflow is to orchestrate some set of steps; sometimes these steps need to be in a specific order, and other times they can be run in parallel. That’s what the Sequence and Parallel blocks, which we introduced in the illustration above, are for. And, as we pointed out, tricky part is that you need to think about each sequence or parallel as its own stand-alone variable scope. The only way to pass variables between scopes is to first define the variable in the workflow (outside of a block), and then reference them inside the block by using the $workflow: prefix.
Workflow Example
Now let’s do something a bit more functional. We want to add up the amount of space a given set of user home folders take up on disk. This is one of the better examples we’ve come up with, because it is realistic, and it does take a long time to run if you do them all sequentially. This is DirSizer.ps1 in the sample code. The presumption is that you can provide a root path, whose immediate child directories are each a user’s home folder.
Get-UserFolderSizes
workflow Get-UserFolderSizes {
Param(
[string[]]$RootPath
)
foreach -parallel ($path in $RootPath) {
Write-Verbose "Scanning $path"
Get subdirectories
$subs = Get-ChildItem -Path $path -Directory
Write-Verbose "$($subs.count) user folders"
foreach -parallel ($sub in $subs) {
Write-Verbose "Scanning $($sub.FullName)"
$size = Get-ChildItem -recurse -Path ($sub.FullName) -File |
Measure-Object -Property Length -Sum |
Select-Object -ExpandProperty Sum
Write-Verbose "Size of $($sub.FullName) is $size"
$props = @{Path=$sub.FullName
Size=$size}
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj
} #foreach subdirectory
} #foreach path
}
Get-UserFolderSizes -RootPath c:\Users
You’ll notice that Write-Verbose works quite well, and in fact prefixes each line of output with the name of the computer it came from:
VERBOSE: [localhost]:Size of C:\Users\User is 3160
That behavior recognizes the fact that workflows are intended to be pushed out to multiple computers, so most output gets tagged with the name of the computer that produced it. For example:
Path : C:\Users\User
Size : 3160
PSComputerName : localhost
PSSourceJobInstanceId : 0448746e-a2c8-4e44-b1ff-92aa32851062
We only created two of those four properties; the other two were magically added by the workflow engine.
Notice that we didn’t have a lot of fussing with variable scope? If you’re careful with your design, you can avoid having to persist data across scopes. Here, because we only use the scope-less foreach loop, everything is basically a workflow-level variable. We’re pretty sure all the commands we used exist as activities, too, which eliminates implicit inline scripts. Although New-Object may be running in an inline script. We’re not sure, but at least our usage assigns the result of the inline script to a variable ($obj), getting that result into the workflow’s scope.
Workflow Common Parameters
Every workflow picks up a whole slew of common parameters, reflecting some of the built-in functionality that the workflow engine provides. A big one is -PSComputerName, which accepts a list of computer names. Each computer named will be sent a copy of the workflow, and asked to execute it. The local computer will not execute the workflow unless it’s in the list of names. Communication happens via PowerShell Remoting, which must be enabled and working.
The -PSCredential parameter specifies an alternate credential to run the workflow under, and is only valid along with -PSComputerName. You can also use -PSParameterCollection, which is a hashtable, to provide different input arguments to each named computer, allowing workflow to be customized on each.
This means we could define the dirsizer workflow locally and invoke it remotely specifying a path that is relative to the remote machine.
Get-UserFolderSizes -RootPath c:\Users `
-PSComputername server01 `
-PSCredential company\administrator
Another gotcha is that if you are running PowerShell v5 or later locally but the remote server is running v3 or v4, you’ll most likely get an error.
Find more common parameters in the docs.
One of the reasons workflows held any interest was for it’s ability to run tasks in parallel. PowerShell 7 now supports this feature with ForEach-Object`.
Checkpointing Workflows
This is kinda the whole magic point about workflows: they can be interrupted, and can pick up later where they left off. A checkpoint saves the “state” of the workflow, which includes workflow-level variables, any output created to that point, and so on. Checkpoints actually get saved to disk (within the user profile directory), meaning they can survive a reboot of the computer the workflow is running on.
Writing a checkpoint incurs processing overhead, so you don’t want to just drop these things in every other line of your code. Focus on checkpointing after major areas of work are done, especially long-running ones you’d hate to have to repeat. Also place them after sections which would be impractical to repeat, such as joining a machine to a domain.
If you run a workflow with the -PSPersist:$true common parameter, you’ll get automatic checkpoints at the beginning and end of the workflow, plus whichever ones you specify manually. To specify one manually, either add the -PSPersist:$true common parameter to any activity, and you’ll get a checkpoint after that activity completes. You can’t use that on InlineScript blocks, though. You can also run Checkpoint-Workflow anywhere within a workflow (but not in an InlineScript) to manually create a checkpoint at that spot.
Checkpoints that are part of a pipeline won’t be taken until the entire pipeline completes. Checkpoints in a Parallel block are taken when the entire block completes. Checkpoints in a Sequence are taken immediately.
Workflows and Output
PowerShell workflows were intended to be executed across multiple remote servers, sight unseen. Workflows don’t need to write anything back to the pipeline, and a good argument could be made that they shouldn’t. Their task is to get a bunch of steps accomplished in the most efficient matter possible. They are intended to do stuff, not get stuff. Using Write-Verbose statements is still a good practice for troubleshooting but don’t try to use Write-Host or feel you need something written to the pipeline.
This is a really important concept. If a workflow does need to create some output, you need to think about where it will go. You won’t personally be there to see it run, in most cases, and so you need to consider writing output to disk, to a central database, or some other location, so that you can get to the output later.
Your Turn
If you are up for a challenge we have one for you. We haven’t gone into tremendous detail about workflow because they still are a special case in our opinion, but we’ve given you pointers to additional resources. We’re also going to assume that you can run the workflow on a computer where you can make changes and manually reverse them.
Start Here
Let’s say that your company is deploying a special management application to your servers. In order to prepare for deployment, you need to create a workflow that accomplishes these tasks.
Your Task
You will need to think about what order these activities need to run and what variables you might need to pass through the workflow. Remember, it may look like you are using cmdlet names, but they are actually activities. And we’ll give you a tip that the common -PSCredential parameter is used to authenticate to the remote server. As you work on this exercise you will almost certainly get errors. Read the error message as it will often explain what you need to do to fix the problem.
Our Take
You can find our solution in the chapter downloads.
Solution.ps1
Workflow ITAppSetup {
Param(
[Parameter(Mandatory)]
[string]$Password,
[string]$Log = "c:\ITAppWF.txt"
)
Set-Content -Value "[$((Get-Date).timeofDay)] Starting Setup" -Path $log
Add-Content -Value "[$((Get-Date).timeofDay)] Configuring Remote Registry service" -\
Path $log
Set-Service -Name RemoteRegistry -StartupType Automatic
Sequence {
Add-Content -Value "[$((Get-Date).timeofDay)] Creating local user" -Path $log
net user ITApp $Password /add
}
Sequence {
Add-Content -Value "[$((Get-Date).timeofDay)] Testing for C:\ITApp folder" -Path\
$log
if (Test-Path -Path "C:\ITApp") {
Add-Content -Value "[$((Get-Date).timeofDay)] Folder already exists." -Path \
$log
$folder = Get-Item -Path "C:\ITApp"
}
else {
Add-Content -Value "[$((Get-Date).timeofDay)] Creating C:\ITApp folder" -Pat\
h $log
$folder = New-Item -Path C:\ -Name ITApp -ItemType Directory
Add-Content -Value "[$((Get-Date).timeofDay)] Created $($folder.fullname)" -\
Path $log
}
Add-Content -Value "[$((Get-Date).timeofDay)] Testing for ITApp share" -Path $log
if (Get-SmbShare ITApp -ErrorAction SilentlyContinue) {
Add-Content -Value "[$((Get-Date).timeofDay)] File share already exists" -Pa\
th $log
}
else {
Add-Content -Value "[$((Get-Date).timeofDay)] Creating file share" -Path $log
New-SmbShare -Name ITApp -Path $folder.FullName -Description "ITApp data" -Ful\
lAccess "$($env:computername)\ITApp" -ReadAccess Everyone
}
Add-Content -Value "[$((Get-Date).timeofDay)] Creating subfolders" -Path $log
foreach -parallel ($i in (1..10)) {
$path = Join-Path -Path $folder.FullName -ChildPath "Test_$i"
#add a random offset to avoid contention for the log file
$offset = Get-Random -Minimum 500 -Maximum 2000
Start-Sleep -Milliseconds $offset
Add-Content -Value "[$((Get-Date).timeofDay)] Creating $path" -Path $log
$out = New-Item -Path $folder.FullName -Name "Test_$i" -ItemType Directory
}
}
Add-Content -Value "[$((Get-Date).timeofDay)] Setup complete" -Path $log
} #close workflow
If you came up with something like this you probably ran into some issues such as contention for the log file or trying to use the -Not operator. While a command like this works as you expect it:
if (-Not (Test-Path -path C:\foo)) {
...
}
When executed in a Workflow the operator doesn’t appear to be evaluated. We ended up writing our solution to avoid using -Not.
We want to point out that there’s no reason you couldn’t have written a traditional PowerShell script to accomplish these same tasks. Or used DSC. That’s why we think many IT Pros mis-use workflow. You do get to take advantage of built-in parameters like -PSComputername and parallelism but you’ll have to decide if it is worth the trade-off.
Let’s Review
Ok. Quick review time.
Review Answers
We answered like this:
Globalizing Your Tools
This is a bit of a specialized chapter, and we realize up front that a lot of folks won’t ever need it. With that in mind, we’ll also try to keep it concise.
Globalization is the process of writing your tools in a way that makes them easier to localize. Localization is translating parts of your tool to reflect a specific culture. A culture is more than a language; it can also incorporate widely understood colors, iconography, and other communication elements. Because most PowerShell scripts are text-only, localization does tend to come down to language, which means you translate the text strings - error messages, verbose messages, and the like - into another language.
Neither of us are fluent in anything but English, and even that fluency is debatable sometimes. For our examples, we’re relying on machine translation, so please forgive us if anything is horribly amiss.
Starting Point
We’re going to go back a few chapters and start with a script that we’ve used previous. For this chapter’s downloadable sample code, we’ll call it StartingPoint.ps1.
StartingPoint.ps1
Function Get-MachineInfo {
[CmdletBinding()]
Param(
[Parameter(ValueFromPipeline,
Mandatory)]
[Alias('CN', 'MachineName', 'Name')]
[string[]]$ComputerName
)
BEGIN {}
PROCESS {
foreach ($computer in $computername) {
Try {
Write-Verbose "Connecting to $computer"
$params = @{
ComputerName = $Computer
ErrorAction = 'Stop'
}
$session = New-CimSession @params
Write-Verbose "Querying $computer"
#define a hashtable of parameters to splat
#to Get-CimInstance
$cimparams = @{
ClassName = 'Win32_OperatingSystem'
CimSession = $session
ErrorAction = 'stop'
}
$os = Get-CimInstance @cimparams
$cimparams.Classname = 'Win32_ComputerSystem'
$cs = Get-CimInstance @cimparams
$cimparams.ClassName = 'Win32_Processor'
$proc = Get-CimInstance @cimparams | Select-Object -first 1
$sysdrive = $os.SystemDrive
$cimparams.Classname = 'Win32_LogicalDisk'
$cimparams.Filter = "DeviceId='$sysdrive'"
$drive = Get-CimInstance @cimparams
Write-Verbose "Outputting for $($session.computername)"
$obj = [pscustomobject]@{
ComputerName = $session.computername.ToUpper()
OSVersion = $os.version
OSBuild = $os.buildnumber
Manufacturer = $cs.manufacturer
Model = $cs.model
Processors = $cs.numberofprocessors
Cores = $cs.numberoflogicalprocessors
RAM = $cs.totalphysicalmemory
Architecture = $proc.addresswidth
SystemFreeSpace = $drive.freespace
}
Write-Output $obj
Write-Verbose "Closing session to $computer"
$session | Remove-CimSession
}
Catch {
Write-Warning "FAILED to query $computer. $($_.exception.message)"
}
} #foreach
} #PROCESS
END {}
} #end function
Get-MachineInfo -ComputerName $env:COMPUTERNAME
Notice that we’ve explicitly removed the comment-based help from this script? That’s on purpose, as comment-based help isn’t really globalized. Instead, we’d rely on “full” help files, created with Platyps, which we’ve discussed in an earlier chapter.
Make a Data File
Our first step will be to create a separate file containing our English-language (specifically, US English) text strings. We use a separate file because that makes it easier to hand just that file off to a professional translator. They can create equivalents for whatever other languages we might need.
PowerShell’s data language provides a really minimal set of instructions, meaning these files aren’t scripts per se. That helps prevent malicious code from sneaking in. Add anything illegal, and the module won’t load.
File naming is important with data files. But, in our downloadable sample code, we aren’t really able to arrange the files into a proper module form. So here’s what we’re going to do: in the folder for this chapter, we’ll have a Modules folder that represents a normal module location, like Program Files\WindowsPowershell\Modules. Within it, we’ll create a folder named GloboTools, which represents a module named GloboTools.
In that folder, we’ll obviously have GloboTools.psm1 and GloboTools.psd1, which are the module file and the module manifest. You could load this module to try it out by running Import-Module and providing the full path to the .psd1 file.
The following, then, is en/GloboTools.psd1. The en part is a partial culture code, as in en-US. There’s a full list on MSDN, and it’s the first, lowercase two-letter part we’re using for the folder name.
ConvertFrom-StringData @'
connectingTo = Connecting to
queryingFrom = Querying
closingSessionTo = Closing session to
outputFor = Output for
failed = FAILED to query
'@
Basically, we created a hash table of sorts. Each pair consists of a message identifier (that’s our word for it, not an official term), which has no spaces. Each identifier is followed by the appropriate words for this culture.
Don’t confuse the language .psd1 files for the module manifest .psd1 file. They’re both the same file extension, but they have different purposes. Language .psd1 files are stored under a culture-specific subfolder in the module folder.
Use the Data File
Of course, we need to actually use that data file. So here’s our GloboTools.psm1, and you can see that we’ve replaced our static messages with references to $msgTable, along with a message identifier.
Notice in the below how we use a subexpression to access specific messages from $msgTable.
GloboTools.psm1
Import-LocalizedData -BindingVariable msgTable
Function Get-MachineInfo {
[CmdletBinding()]
[alias("gmi")]
Param(
[Parameter(ValueFromPipeline, Mandatory)]
[Alias('CN', 'MachineName', 'Name')]
[string[]]$ComputerName
)
BEGIN {}
PROCESS {
foreach ($computer in $computername) {
Try {
Write-Verbose "$($msgTable.connectingTo) $computer"
$params = @{
ComputerName = $Computer
ErrorAction = 'Stop'
}
$session = New-CimSession @params
Write-Verbose "$($msgTable.queryingFrom) $computer"
#define a hashtable of parameters to splat
#to Get-CimInstance
$cimparams = @{
ClassName = 'Win32_OperatingSystem'
CimSession = $session
ErrorAction = 'stop'
}
$os = Get-CimInstance @cimparams
$cimparams.Classname = 'Win32_ComputerSystem'
$cs = Get-CimInstance @cimparams
$cimparams.ClassName = 'Win32_Processor'
$proc = Get-CimInstance @cimparams | Select-Object -first 1
$sysdrive = $os.SystemDrive
$cimparams.Classname = 'Win32_LogicalDisk'
$cimparams.Filter = "DeviceId='$sysdrive'"
$drive = Get-CimInstance @cimparams
Write-Verbose "$($msgTable.outputFor) $($session.computername)"
$obj = [pscustomobject]@{
ComputerName = $os.CSName
OSVersion = $os.version
OSBuild = $os.buildnumber
Manufacturer = $cs.manufacturer
Model = $cs.model
Processors = $cs.numberofprocessors
Cores = $cs.numberoflogicalprocessors
RAM = $cs.totalphysicalmemory
Architecture = $proc.addresswidth
SystemFreeSpace = $drive.freespace
}
Write-Output $obj
Write-Verbose "$($msgTable.ClosingSessionTo) $computer"
$session | Remove-CimSession
}
Catch {
Write-Warning "$($msgTable.failed) $computer. $($_.exception.message)"
}
} #foreach
} #PROCESS
END {}
} #end function
Notice the first line in our module, which is outside of any function. The Import-LocalizedData command magically checks our system’s configured culture, which happens to be en-US. It then looks in the \en subfolder for a .psd1 file having the module’s name, imports it, and stores the results in $msgTable, which is the -BindingVariable we specified (note that the variable name, when used with the parameter, doesn’t include the dollar sign). In our script, $msgTable now represents all of our localized strings, and we can access each one as a property of that variable.
If you Import-Module GloboTools.psd1, and then run Get-GloboMachineInfo -ComputerName localhost -Verbose, you’ll see the localized strings in action.
Adding Languages
We’ll save the following as de\GloboTools.psd1 and again apologize for machine translations. We have several German friends and we hope they’re giggling.
ConvertFrom-StringData @'
connectingTo = Verbinden mit
queryingFrom = Abfrage von
closingSessionTo = Abschlusssitzung zu
outputFor = Ausgabe f端r
failed = gescheitert
'@
Testing this is a little tricky; you basically have to add a -UICulture parameter to Import-LocalizedData to force it to import something other than what your system is configured to do.
Another option is to use the Test-WithCulture command from the Jeff’s PSScriptTools module. Adjust paths in the following as needed.
Test-WithCulture -Culture de-de -Scriptblock { import-module .\GloboTools.psd1 -force get-machineinfo localhost -Verbose }
Defaults
Now, there’s a downside to this approach we’ve shown you, which is that Import-LocalizedData will simply not do anything if the culture it needs isn’t present. So you can take another step to provide a default - say, in English. Just add this to the top of the module script file, before the call to Import-LocalizedData:
$msgTable = Data {
culture-en-US
ConvertFrom-StringData @'
connectingTo = Connecting to
queryingFrom = Querying
closingSessionTo = Closing session to
outputFor = Output for
failed = FAILED to query
'@
}
This pre-populated $msgTable with English strings, and allows Import-LocalizedData to overwrite those with another culture, if needed and if that other culture has a file present.
Let’s Review
We don’t really have an exercise for you with this chapter. But let’s at least ask a few review questions.
Review Answers
And some answers are:
Using “Raw” .NET Framework
This topic comes up a lot. So let’s break it down a bit: our overwhelming preference is to use “native” PowerShell whenever possible. That means running commands - cmdlets, functions, and so on - versus external applications, or using .NET Framework classes. We have three core reasons for this preference:
But you’ll run into times when there just isn’t a command for what you need to do - and that’s what this chapter is all about.
Understanding .NET Framework
The .NET Framework consists of a set of classes that perform an enormous variety of tasks. There are simple classes for manipulating strings, complex classes for working with Active Directory, and super-complex classes for dealing with databases and data structures. The Framework is huge. The Framework is accessible from any language that can run in the .NET Common Language Runtime (or CLR) or Dynamic Language Runtime (DLR), which means PowerShell is “in.”
However: just because you’re using .NET in PowerShell doesn’t mean you’re “scripting in PowerShell” or that you’re “.NET scripting.” The Framework is a hugely different beast from PowerShell. It’s more complex, it’s very developer-centric, it’s documented differently, and so on. You may find that your favorite Q&A forums for PowerShell can’t help as much when you start doing .NET, and that you have to take your questions to a developer-centric site like StackOverflow.com.
Let’s be clear about something: if .NET was a good administrator tool, PowerShell would literally not exist, and we’d all be “scripting” in C# instead. In fact, we regularly see people struggling to make complex .NET stuff work in PowerShell, and wonder why they don’t just fire up Visual Studio and start a new C# project, because we know what they’re doing would be faster and easier that way. PowerShell is not a “first class citizen” in the .NET world. It lacks many crucial .NET language features that much of the Framework takes for granted - things like proper event management, asynchronous callbacks, generics, and more. It is not accurate to say that “PowerShell can do anything in .NET.” It can’t, always, and you’ll get a bloody forehead banging your head against that wall.
But there are times when something you need exists within .NET, doesn’t exist in PowerShell command, and will work fine in PowerShell. For those instances, this chapter exists.
Let’s start with some terminology:
Interpreting .NET Framework Docs
Always run $PSVersionTable in PowerShell to see what version of the .NET Framework you’re using. Then, make sure whatever docs you read are for the same version. We can’t tell you how much time we’ve wasted trying to get something to work, only to realize we were reading instructions from a different version!
MSDN.Microsoft.com is the base point for .NET Framework’s documentation. We find, however, that it’s often easier to start with a search engine, using a .NET type name if possible. That way, you can jump straight to what you need.
Let’s use the documentation for System.DateTime as an example.
You can click through on any member to read more about it. Go ahead and take a second to look up System.DateTime and make sure you can identify the above items.
Coding .NET Framework in PowerShell
Now let’s talk about using these things!
Static Members
Remember, a static member (which appears in the docs with a big red “S” icon) doesn’t require you to instantiate the class. That is, you don’t need to create an object. You simply use the class name, in square brackets, followed by two colons, and then the member:
[System.DateTime]::Now
Or a method:
[System.DateTime]::DaysInMonth(2020,2)
We looked that up in the documentation, by the way, to figure out how to use it. It says DaysInMonth() takes on integer for the year, and another for the month, and then tells you how many days that month has.
Instance Members
These require you to instantiate the class - or, in PowerShell terms, to create an object. To do so, you’ll use New-Object along with the class’ type name. You have to pick a constructor in order to create the new object! Some types will allow you to create a new instance using zero input arguments; other classes can’t create a new instance of themselves unless you provide some kind of input. Perusing the constructors for System.DateTime, for example, they all appear to require one or more arguments, which means we’ll have to provide them:
$dt = New-Object -TypeName System.DateTime -ArgumentList 1
Now, here’s how arguments work: if you look at the docs, you’ll see that arguments are simply a comma-separated list inside parentheses. From PowerShell’s perspective, you just provide a comma-separated list of arguments to the -ArgumentList parameter. .NET magically figures out which constructor you’re using, based on the data types of your arguments, and the number of arguments you provide. There’s no other way to specify a constructor, so you have to get the arguments spot-on.
For example, System.DateTime has five constructors:
You’ll never, ever see two constructors that accept the same number of arguments all of the same data type, in the same order.
Wait - “enumerations?” Yeah. These are basically like a ValidateSet() parameter attribute, in that the enumeration is a list of acceptable values. Under the hood, they’re always numbers, but to you, they’re friendly-looking names. They just look a bit funky in PowerShell code. We had to look up the DateTimeKind enumeration by clicking through from the constructor’s help page.
$dt = New-Object -Type System.DateTime -Arg (500, [System.DateTimeKind]::Utc)
Once you’ve got your new instance, you can use its members:
$dt.DayOfWeek
$dt.ToLocalTime()
And that’s about it. It’s a lot harder to find stuff in .NET than it is to use it!
Loading Assemblies
PowerShell can access most of the “core” .NET stuff (like, in the System namespace) without needing to load anything. But other times, you’ll first need to load the .NET assembly into memory, so PowerShell knows what you’re trying to use. If you know the path and filename of your DLL, it’s easy:
[System.Reflection.Assembly]::LoadFile("Mydll.dll")
If you don’t - say, if you’re trying to use something from the Global Assembly Cache (GAC) - it’s sometimes a bit tougher. Ideally, you should be able to use the Add-Type command. In theory, the GAC knows where the DLL files are for every type in the GAC.
Add-Type -Assembly My.Big.Crazy.Framework
Notice you’re just providing the type name, not a filename. But if this doesn’t work - and sometimes, it doesn’t - try:
[System.Reflection.Assembly]::LoadWithPartialName('My.Big.Crazy.Framework')
The LoadWithPartialName() method can be a little bit of a bad practice (it’s actually deprecated), and if you have a lot of side-by-side versioning going on, it can potentially load a version you didn’t mean to load. So you want to try and avoid it and stick with Add-Type instead, which actually lets you be very specific about what to load:
Add-Type -AssemblyName "Microsoft.SqlServer.Smo, `
Version=12.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
What’s fun is that Add-Type has a -Path parameter, meaning it can also replace the LoadFile() method, too! And it makes for easier reading in your scripts!
Wrap It
OK, let’s say you’ve found a magical .NET type that’ll do everything you’ve always dreamed of, and more. You’ve found its docs, you figured out how to use it, and you’ve got some working code. You’re done!
Not so fast.
A true Toolmaker isn’t done. Not until that thing has been wrapped into a PowerShell command, so that future generations don’t have to go through all that figuring-out pain, ever again. Let’s run through a quick example.
PowerShell 5 (and later) has an [enum] type accelerator that makes it easier to work with enumerations. It has two static methods, GetValues() and GetNames(). Given an enumeration type, it can get you the names (that is, the possible choices) in the enumeration, or the underlying values. For example:
[enum]::GetNames([System.Environment+SpecialFolder])
So this [enum] bit works like a normal type; it’s essentially a shortcut to a .NET Framework type that has a longer and less-convenient name. Two colons indicates we’re using a static member, and we’ve used the GetNames() method. According to the docs, the method needs a type as its input argument, and it’ll get the enumerations for that type. In PowerShell, type names go inside [square brackets], like [System.DateTime]. In our case, we wanted the SpecialFolder enumeration from the System.Environment class.
We told you, the toughest part was figuring out .NET, not using it.
Anyway, the docs for System.Environment links to the SpecialFolder enumeration, and so we constructed [System.Environment from the type name, and +SpecialFolder] from the name of the enumeration itself. That is, System.Environment contains the SpecialFolder enumeration.
So we came up with this (which is Example.ps1 in the sample code):
Example.ps1
function Get-SpecialFolders {
[CmdletBinding()]
Param()
$folders = [enum]::GetNames([System.Environment+SpecialFolder])
Write-Verbose "Got $($folders.count) folders"
foreach ($folder in $folders) {
[pscustomobject]@{
Name = $folder
Path = [environment]::GetFolderPath($folder)
}
}
}
Get-SpecialFolders
Notice the empty Param() block? That’s so we could still have [CmdletBinding()] even though we don’t need any input parameters for this function. Notice that we’ve turned this obscure .NET-ish code into a simple PowerShell function that returns familiar-looking objects as its output. This is the goal of a Toolmaker!
Your Turn
This is great toolmaking practice, so prepare to dive in and make something cool!
Start Here
The System.Math class (Google it!) has a ton of static members. In fact, that’s all it has - you can’t actually instantiate the type, because it doesn’t have any constructors. Cool, right? It’s not hard to use already:
System.Math::Abs(-5)
That’ll return the absolute value of -5, which is 5.
Your Task
We want you to figure out how to use the Round() method from System.Math. When you do, build a function around it. We’ll suggest a command name of ConvertTo-RoundNumber. Your command should:
Good luck!
Our Take
Here’s what we did (it’s in Solution.ps1 in the downloadable sample code for this chapter):
Solution.ps1
function ConvertTo-RoundNumber {
[CmdletBinding()]
Param(
[Parameter(Mandatory)]
[double]$Number,
[int]$DecimalPlaces
)
if ($PSBoundParameters.ContainsKey('DecimalPlaces')) {
[System.Math]::Round($Number, $DecimalPlaces)
}
else {
[System.Math]::Round($Number)
}
}
ConvertTo-RoundNumber -Number 5.55345 -DecimalPlaces 2
ConvertTo-RoundNumber -Number 5.6748
Let’s Review
Answer these questions, and you’ll know you picked up the main point of the chapter:
Review Answers
Here are the answers:
Scripting at Scale
We’ve always felt that one of PowerShell’s greatest strengths was that if you could do something with one thing, be it a file, event log, computer or user account, you could do it for 10, 100 or 1000. In most cases, your PowerShell code would be essentially the same. This notion should also be influencing the way you do your work as an IT Pro.
For the longest time we usually approached our work on a singular basis. Say you had to check free disk space on 10 servers. In the last century, you’d go through your list one at a time and get the data you needed. But today, you should be thinking about managing at scale. Don’t think about getting disk space for 1 server at a time, think about how to do it for all 10 at the same time. Don’t check individual event logs on 100 servers, check them all at once. Once you start looking at your work from this perspective, you’ll realize you need to change your tool set or how you are using it. Fortunately, PowerShell makes it relatively easy to take this approach.
However, even with all of that we’re also going to offer up this potentially heresy, “PowerShell isn’t always the answer.” If you need to manage 10,000 servers in near real-time, PowerShell is probably not going to be the best tool. We’re not saying it won’t work, but the scripting effort may be beyond your abilities or performance won’t be what you need. PowerShell is always going have overhead, which is not necessarily a bad thing. That “overhead” makes it easy to find and use well-defined commands and parameters in a meaningful pipelined expression. We want you to realize that at some point you may need to move beyond PowerShell to compiled C# applications or full-blown software management solutions.
So what’s the point of this chapter? Well, this is for the majority of you that want to use PowerShell to manage more than a few things at a time. When you are building your PowerShell tools, you may want to take large-scale operations into account. To that end we wanted to provide some advice and techniques for scripting at scale but with a few caveats.
Depending on your tool, performance at scale may be influenced by factors outside of your control such as network or server loads, limitations with cmdlets you are using within your PowerShell tool and how a user, maybe even you, are expecting to use it. The best we can say is keep the following things in mind and test.
In this chapter you’ll see us use Measure-Command quite a bit. But you shouldn’t rely on a single test as an absolute metric. Any number of factors could influence the value. Plus, there is often a caching effect which can throw off consecutive test results. You might consider testing in new PowerShell sessions. You can also use Jeff’s Test-Expression module which you can find in the PowerShell Gallery.
To Pipeline or not
Without a doubt the pipeline makes PowerShell easy to use. It is pretty easy to run a command like this:
Get-Content services-to-test.txt | Get-Service
However, you could also have written the expression like this:
Get-Service -name (Get-Content services-to-test.txt)
For a small list the differences are irrelevant. But once you start scaling, this type of performance difference begins to add up. Using the pipeline will always involve some degree of overhead which is the price we pay for the convenience. Let’s look at the cost.
Here’s a bunch of service names.
$names = Get-Service | Select-Object -expandproperty name
Now let’s see the difference in how we use it:
Measure-Command {
$names | Get-Service
}
Measure-Command {
Get-Service $names
}
In our test, the first command took 57ms to complete and the latter only 40ms. Not that much really. So let’s make a bigger list of names.
$big = $names+$names+$names+$names+$names
Now we’ll re-run the tests with $big instead of $names. Now we’re at 253ms vs 169ms which is beginning become noticeable. And we’re going to assume that as the amount of data to process goes up the differences will become more noticeable.
All of our talk about scripting at scale assumes you are running your toolset interactively and efficiency is paramount. If the typical usage will be to run your command in background job where you’ll get the data when you get around to it, then everything we’re covering may not really matter.
Or let’s look at a larger pipelined process.
$data = Get-ChildItem -path $env:temp -file -Recurse |
Group-Object -property extension |
Sort-Object -property Count |
Select-Object -property Count,Name,
@{Name="Size";Expression = {($_.group | Measure-Object -Property length -sum).sum}}
There’s nothing inherently wrong with this approach. It works and on our test system with a very cluttered temp folder it took about 860ms. Compare the previous command to this:
$files = Get-ChildItem $env:temp -file -Recurse
$grouped = $files | Group-Object -Property extension
$sorted = $grouped | Sort-Object -Property Count
$data = $sorted | Select-Object -Property Count,Name,
@{Name="Size";Expression = {($_.group | Measure-Object -Property length -sum).sum}}
The end result is the same, but in this case the commands ran in about 780ms. This version might even be easier to understand.
Let’s look at this from a toolmaking perspective. We have a function, which you can find in the chapter’s code downloads, to calculate the square root of a number.
SquareRoot.ps1
Function SquareRoot {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory, ValueFromPipeline)]
[int[]]$Value
)
Begin {
Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
} #begin
Process {
foreach ($item in $value) {
[pscustomobject]@{
Value = $item
SquareRoot = [math]::Sqrt($item)
}
}
} #process
End {
Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
}
The command is written so that the user can pipe in a list of numbers or pass the list with the parameter.
$n = 1..1000
Measure-Command {$n | squareroot}
Measure-Command {squareroot $n }
In this simple comparison we scored 52ms vs 38ms respectively. Let’s see the difference with varying sets of numbers between using the pipeline and using the parameter.
10,100,500,1000,5000,10000 | ForEach-Object {
$n = 1..$_
$pipe = (Measure-Command {$n | squareroot}).totalMilliseconds
$param = (Measure-Command {squareroot $n}).TotalMilliseconds
[pscustomobject]@{
ItemCount = $_
PipelineMS = $pipe
ParameterMS = $param
PctDiff = 100 - (($param/$pipe) * 100 -as [int])
}
}
The results speak for themselves:
ItemCount PipelineMS ParameterMS PctDiff
--------- ---------- ----------- -------
10 1.1204 0.7462 33
100 3.1137 1.5254 51
500 16.268 9.499 42
1000 48.8335 32.456 34
5000 207.8208 119.046 43
10000 395.9118 290.6119 27
In this case, we may want to consider revising the tool and removing the option of accepting pipelined input, thus forcing the use to pass values with the parameter. Although this might make the tool more difficult for the user who might be expecting to pipe in a set of numbers.
This is not to say you should never use the pipeline in your toolmaking, only that you might want to consider if you are using it wisely.
Foreach vs ForEach-Object
Another scaling factor might be whether you rely on the Foreach enumerator or the ForEach-Object cmdlet. Let’s demonstrate with a large number of items to process.
$n = 1..10000
Let’s do something with each item and measure:
Measure-Command {
$a = 0
foreach ($i in $n) {
$a+=$i
}
}
This took about 50ms to complete compared to the alternative:
Measure-Command {
$n | ForEach-Object -Begin { $a = 0 } -process {
$a+=$_
}
}
Which took about 227ms to get the same result. Again there may be other reasons you might want to use one technique over the other but once you start scaling, there are differences to consider.
Write-Progress
Another design consideration for tools that need to work at scale is user feedback. If you have a long running command, it is often helpful to let the user know what is happening. You could sprinkle a bunch of Write-Host commands throughout your function but that’ll get ugly pretty quickly. Instead, you should use a cmdlet that doesn’t get a lot of love, Write-Progress.
You’ve probably seen a text-style progress bar when running some commands. That comes from Write-Progress. The tricky part is that you have to write your code to include it from the beginning. The cmdlet requires at least an activity description. Here’s a quick one-liner that demonstrates it:
1..5 | foreach {
Write-Progress "Counting"
Start-Sleep -Seconds 1
}
You can also include a Status which will display just below it.
1..5 | foreach {
Write-Progress -activity "Counting" -status "Processing"
Start-Sleep -Seconds 1
}
And if you want to get very granular there is a provision to display the current operation.
1..5 | foreach {
Write-Progress -activity "Counting" -status "Processing" -currentOperation $_
Start-Sleep -Seconds 1
}
You’ll find many of our demos in the chapter download.
Here’s more complete example. We’ve thrown in a Start-Sleep command to make it easier to see the progress display.
$out = Get-Process | Where-Object starttime | ForEach-Object {
Write-Progress -Activity "Get-Process" `
-Status "Processing" `
-CurrentOperation "process: $($_.name) [$($_.id)]"
$_ | Select-Object ID, Name,StartTime,
@{Name="Runtime";Expression = {(Get-Date) - $_.starttime}}
Start-Sleep -Milliseconds 50
}
Now, if you know in advance how much data you need to process, you can provide a time remaining value or a percent complete.
$i = 20
1..$i | foreach -Begin {
[int]$seconds = 21
} -process {
Write-Progress -Activity "My main activity" -Status "Calculating square roots" `
-CurrentOperation "processing: $_" -SecondsRemaining $seconds
[math]::Sqrt($_)
Start-Sleep -Seconds 1
$seconds-= 1
}
It is up to you to come up with code to figure out the seconds remaining value. You don’t have to be 100% accurate but “close enough”. When the loop finishes, the Write-Progress display will automatically dismiss.
There is a -Completed switch parameter for the cmdlet which will force the display to disappear, but we’ve never had to use it.
Maybe it’s because of the type of commands we write, but when we use Write-Progress we tend to show a percent complete value.
$i = 20
1..$i | ForEach-ObjectNotFound -Begin {
[int]$count = 0
} -process {
#calculate percent complete
$count++
$pct = ($count/$i) * 100
Write-Progress -Activity "My main activity"
-Status "Calculating square roots" `
-CurrentOperation "processing: $_" -PercentComplete $pct
[math]::Sqrt($_)
Start-Sleep -Milliseconds 200
}
Usually when using Write-Progress most values like activity and status will remain unchanged or rarely change This is a good use case for splatting a hashtable of parameters. We’ve included a sample function in the GetFolderSize.ps1 file.
GetFolderSize.ps1
Function Get-FolderSize {
[cmdletbinding()]
Param(
[Parameter(
Position = 0,
ValueFromPipeline,
ValueFromPipelineByPropertyName
)]
[ValidateNotNullorEmpty()]
[string]$Path = $env:temp
)
Begin {
Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
} #begin
Process {
Write-Verbose "[PROCESS] Analyzing: $path"
#define hash table of parameter values for Write-Progress
$progParam = @{
Activity = $MyInvocation.MyCommand
Status = "Querying top level folders"
CurrentOperation = $path
PercentComplete = 0
}
Write-Progress @progParam
Write-Verbose "[PROCESS] Get top level folders"
$top = Get-ChildItem -Path $path -Directory
#sleeping enough to see the first part of Write-Progress
Start-Sleep -Milliseconds 300
#initialize a counter
$i = 0
#get the number of files and their total size for each
#top level folder
foreach ($folder in $top) {
#calculate percentage complete
$i++
[int]$pct = ($i/$top.count)*100
#update the param hashtable
$progParam.CurrentOperation = "Measuring folder size: $($folder.Name)"
$progParam.Status = "Analyzing"
$progParam.PercentComplete = $pct
Write-Progress @progParam
Write-Verbose "[PROCESS] Calculating folder statistics for $($folder.name)\
."
$stats = Get-ChildItem -path $folder.fullname -Recurse -File |
Measure-Object -Property Length -Sum -Average
if ($stats.count) {
$fileCount = $stats.count
$size = $stats.sum
}
else {
$fileCount = 0
$size = 0
}
#write a custom object result to the pipeline
[pscustomobject]@{
Path = $folder.fullName
Modified = $folder.LastWriteTime
Files = $fileCount
Size = $Size
SizeKB = [math]::Round($size/1KB, 2)
SizeMB = [math]::Round($size/1MB, 2)
Avg = [math]::Round($stats.average, 2)
}
} #foreach
} #process
End {
Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
}
In the beginning you can see where we defined a hashtable of values for Write-Progress.
$progParam=@{
Activity = $MyInvocation.MyCommand
Status = "Querying top level folders"
CurrentOperation = $path
PercentComplete = 0
}
Later, as the script processes folders we can update the hashtable on the fly.
#calculate percentage complete
$i++
[int]$pct = ($i/$top.count)*100
#update the param hashtable
$progParam.CurrentOperation = "Measuring folder size: $($folder.Name)"
$progParam.Status = "Analyzing"
$progParam.PercentComplete = $pct
Write-Progress @progParam
You can change the progress bar color scheme in the console by modifying $host.privatedata.progressforegroundcolor and $host.privatedata.progressbackgroundcolor. Use the same values you’d use with Write-Host.
For your commands that need to process a lot of data, or might take a bit longer to run, using Write-Progress will make you look like a real professional.
Leverage Remoting
Perhaps the idea of scripting at scale is most important when your tool needs to process hundreds or thousands of computers. PowerShell cmdlets make it easy to pass in multiple computer names, but there are some things you might want to consider.
When you see a cmdlet with a -Computername parameter, more than likely that command is connecting to each computer sequentially over legacy protocols like RPC and DCOM. If one of the computers is slow to respond or offline, you can’t get to the rest of the list until it responds or errors out. We did a quick test with 5 computers we knew to be online.
Measure-Command {
Get-Service bits,wuauserv -ComputerName $computers
}
This took about 917ms. We’re working with the assumption that as the number of computers increases the time required will increase proportionally. Compare this to running the same Get-Service command but this time using Invoke-Command which means it runs essentially simultaneously on all the computers.
Measure-Command {
Invoke-Command {Get-Service bits,wuauserv} -ComputerName $computers
}
This version took a bit longer at 1348ms, primarily because of the overhead in setting up and tearing down a PSSession. But let’s say you already had a PSSession created.
$ps = New-PSSession -ComputerName $computers
Measure-Command {
Invoke-Command {Get-Service bits,wuauserv} -session $ps
}
Now the command completes in 161ms! And this improves if your list of computers contains items that are offline or otherwise might error out. We added an offline computer to the list and re-ran the first test. That took over 6 seconds to complete. But using Invoke-Command and the computername took 581ms AND we got an error we could have handled. Or course, if you use a PSSession you know that Invoke-Command will run without error.
Our tests with 5 computers hardly posed any sort of impact on the network. But what if we were querying 50 or 500 computers? By default Invoke-Command will throttle connections to 32 at a time. That means if we gave it 50 computers, it would make a connection to the first 32, then as servers responded, the remaining list would be processed up to a max of 32 at a time. You can raise or lower this limit with the -ThrottleLimit parameter.
So what does this mean with your toolmaking?
Assuming your underlying code relies on remoting anyway, you might consider running that code through Invoke-Command. For example, look at this simple function that gets drive info:
GetDiskSpace.ps1
Function Get-DiskSpace {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory)]
[string[]]$Computername
)
Invoke-Command -scriptblock {
Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |
Select-Object -property @{Name="Computername";Expression={$_.SystemName}},
DeviceID,Size,Freespace,
@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}
} -ComputerName $computername -HideComputerName |
Select-Object -Property * -ExcludeProperty RunspaceID
Or if you need to handle errors with offline computers or access issues you could use something like this version:
With Error Handling
Function Get-DiskSpace {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory)]
[string[]]$Computername
)
foreach ($computer in $computername) {
Write-Verbose "Querying $computer"
Try {
Invoke-Command -scriptblock {
Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |
Select-Object -Property @{Name="Computername";Expression={$_.SystemName}},
DeviceID,Size,Freespace,
@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}
} -ComputerName $computer -HideComputerName -ErrorAction stop |
Select-Object -Property * -ExcludeProperty RunspaceID
}
Catch {
Write-Warning "[$($computer.toupper())] $($_.exception.message)"
}
} #foreach
}
Need to support pipelining a bunch of computer names? You might consider this variation.
From the pipeline
Function Get-DiskSpace {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory, ValueFromPipeline)]
[string[]]$Computername
)
Begin {
#initialize an array
$computers=@()
}
Process {
#add each computer to the array
$computers+=$Computername
}
End {
#run the actual command here for all computers
Invoke-Command -scriptblock {
Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |
Select-Object -Property @{Name="Computername";Expression={$_.SystemName}},
DeviceID,Size,Freespace,
@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}
} -ComputerName $computers -HideComputerName |
Select-Object -Property * -ExcludeProperty RunspaceID
}
}
All of the work is done at once in the End scriptblock.
Notice that in all cases, we’re doing as much processing, such as selecting properties, on the remote computer to take advantage of its processing resources and to limit what has to come back across the wire.
If your function is running a single command in a remoting session, there’s no advantage to creating a session, running Invoke-Command and then removing the session. But if you are doing something that requires multiple commands on a remote server, then we recommend creating a PSSession and re-using that as necessary. Just remember to clean it up at then end.
Leverage Jobs
Another option for scaling your commands might be to take advantage of PowerShell’s background job infrastructure. Certainly anyone should be able to run your tool with Start-Job but perhaps you’d like to make this easier or you know your commands will take a long, long time to complete and jobs make sense.
Here’s a version of the diskspace function that simply passes the -AsJob parameter to the underlying Invoke-Command.
AsJob
Function Get-DiskSpace {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory, ValueFromPipeline)]
[string[]]$Computername,
[switch]$AsJob
)
Begin {
#initialize an array
$computers=@()
}
Process {
#add each computer to the array
$computers+=$Computername
}
End {
#add a parameter
$psboundParameters.Add("HideComputername",$True)
#run the actual command here for all computers
Invoke-Command -scriptblock {
Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |
Select-Object -Property @{Name="Computername";Expression={$_.SystemName}},
DeviceID,Size,Freespace,
@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}
} @psboundParameters |
Select-Object -Property * -ExcludeProperty RunspaceID
}
}
One potential “gotcha”, that you’d have to document or train, is that if there are errors, the job might show as failed but there will be results from computers where it was successful.
Or you might want to internally spin off a bunch of jobs in order scale. Here’s a template of what such a function might look like:
Job Template
Function Get-Foo {
[cmdletbinding()]
Param(
[Parameter(Position = 0, ValueFromPipeline)]
$This,
$That,
$TheOtherThing
)
Begin {
#initialize an array to hold job objects
$jobs = @()
$mycode = {
#define your code to run with parameters if necessary
#parameters will need to be passed positionally
Param($this, $that)
#awesome PowerShell code goes here
}
}
Process {
#add the job to the array
$jobs += Start-Job -ScriptBlock $mycode -ArgumentList $this, $that
}
End {
#wait for all jobs to complete
Write-Host "Waiting for background jobs to complete" -ForegroundColor Yellow
$jobs | Wait-Job
#receive job results
#or bring job results back in to the function and do
#something with them
$jobs |
Get-Job -ChildJobState Completed -HasMoreData $True |
Receive-Job -keep
}
}
Consider this nothing more than a starting point and we’ve included this in the chapter downloads.
Leverage Runspaces
Background jobs are convenient but there is a price to pay. Although by this point in the book we hope you realize everything in PowerShell toolmaking is a trade-off. One final option for scripting at scale is the use of a PowerShell runspace. Frankly, we were a little hesitant in covering this topic as it is advanced stuff and borders on .NET systems programming. But the concept comes up often enough that we figured we’d at least get you started, with the caveat that using runspaces should be for exceptional situations and not the norm.
Before we dive into the gnarly details let’s get some context. We built a list of 85 computernames and ran Test-WSMan through a few different approaches and used Measure-Command.
$all = foreach ($item in $computers) {
Test-WSMan $item
}
Testing sequentially took 4 minutes and 45 seconds.
Measure-Command {
$all=@()
$all+= foreach ($item in $computers) {
Start-Job {Test-WSMan $item}
}
$all | Wait-job | Receive-Job -Keep
}
Using background jobs was a bit faster at 4 minutes 32 seconds. Using runspaces we were able to test in about 18 seconds. That probably got your attention. Here’s what we did.
First, you need to create a runspace object.
$run = [powershell]::Create()
The runspace is basically an empty PowerShell session that you fill with commands and scripts. We added the Test-WSMan cmdlet and the computername parameter.
$run.AddCommand("Test-WSMan").addparameter("computername",$env:computername)
The main reason to use runspaces is the ability to run commands asynchronously. In other words, we can very quickly spin off a runspace, even faster than a background job. This will require using the BeginInvoke() method.
$handle = $run.beginInvoke()
You can test this handle to see if the task is completed with $handle.IsCompleted. If so, stop the asynchronous process by invoking EndInvoke() with the handle object.
$results = $run.EndInvoke($handle)
This will give you the command results. The last step you should do is clean up after yourself.
$run.Dispose()
As you can tell, there’s a lot of .NET stuff here. But if your comfortable with that, you can come up with code like we did to test all 85 computers.
#initialize an array to hold runspaces
$rspace = @()
#create a runspace for each computer
foreach ($item in $computers) {
$run = [powershell]::Create()
$run.AddCommand("Test-WSMan").addparameter("computername",$item)
$handle = $run.beginInvoke()
#add the handle as a property to make it easier to reference later
$run | Add-Member -MemberType NoteProperty -Name Handle -Value $handle
$rspace+=$run
}
While (-Not $rspace.handle.isCompleted) {
#an empty loop waiting for everything to complete
}
#get results
$results=@()
for ($i = 0;$i -lt $rspace.count;$i++) {
$results+= $rspace[$i].EndInvoke($rspace[$i].handle)
}
#cleanup
$rspace.ForEach({$_.dispose()})
For an interesting take on working with runspaces take a look at https://smsagent.wordpress.com/2017/02/17/powershell-tip-create-background-jobs-with-a-custom-class/. You’ll find some great tutorials at https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-1/]. There is also the popular PoshRSJob module in the PowerShell Gallery which might help you out.
With this in mind here’s a version of the Get-DiskSpace function that uses runspace.
Using Runspaces
Function Get-DiskSpace {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory)]
[string[]]$Computername
)
$rspace = @()
foreach ($computer in $computername) {
Write-Verbose "Creating runspace for $Computer"
$run = [powershell]::Create()
[void]$run.AddCommand("Get-CimInstance").addparameter("computername",$computer)
[void]$run.Commands[0].AddParameter("classname","win32_logicaldisk")
[void]$run.commands[0].addParameter("filter","deviceid='c:'")
$handle = $run.beginInvoke()
#add the handle as a property to make it easier to reference later
$run | Add-member -MemberType NoteProperty -Name Handle -Value $handle
$rspace+=$run
} #foreach
#wait for everything to complete
While (-Not $rspace.handle.isCompleted) {
#an empty loop waiting for everything to complete
}
Write-Verbose "Getting results"
$results=@()
for ($i = 0;$i -lt $rspace.count;$i++) {
#stop each runspace
$results+= $rspace[$i].EndInvoke($rspace[$i].handle)
}
Write-Verbose "Cleaning up runspaces"
$rspace.ForEach({$_.dispose()})
Write-Verbose "Process the results"
$Results |
Select-Object -property @{Name="Computername";Expression={$_.SystemName}},
DeviceID,Size,Freespace,
@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}
}
There’s no guarantee that this approach is any faster. We ran the very first version that used Invoke-Command with our list of 85 computer names in just a bit over 26 seconds. Using the runspace version took 1 minute 19 seconds so perhaps it isn’t the right choice for this particular task.
If you are using PowerShell 7 you can use ForEach-Object with it’s -Parallel parameter. But don’t get carried away. As we’ve pointed out there is overhead in setting up and tearing down the runspaces. You want to make sure that the commands you want to run warrant the overhead.
Design Considerations
Is your head spinning yet? There’s a lot to digest here and no absolute answers. But we can give you some design guidelines.
Everything in toolmaking is a balancing act and trade-off. Only you can decide what approach will work best in your environment. Using tools like Measure-Command can help. Or take advantage of the expertise in the PowerShell.org forum and solicit feedback on your project.
Your Turn
Let’s see how much you’ve picked up in this chapter by re-visiting a PowerShell tool from an earlier chapter.
Start Here
In the chapter on creating Basic Controller Scripts and Menus we looked at a process script that checked for recent eventlog entries on remote servers and created an HTML report. That version ran through the list of computers sequentially which could potentially take a long time to run. We’ve included a copy in this chapter’s downloads called GetEventlogs-Start.ps1.
Your Task
Modify it to perform better at scale using content from this chapter as inspiration. If you have a bunch of computers you can test with, measure how long each version takes to complete.
Our Take
We ran the starting version against a list of 10 computers, some of which we knew would fail and script took 2 minutes and 22 seconds to complete. Then we tested with this version.
GetEventLogs.ps1
#Requires -version 5.0
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory)]
[ValidateNotNullorEmpty()]
[string[]]$Computername,
[ValidateSet("Error", "Warning", "Information", "SuccessAudit",
"FailureAudit")]
[string[]]$EntryType = @("Error", "Warning"),
[ValidateSet("System", "Application", "Security",
"Active Directory Web Services", "DNS Server")]
[string]$Logname = "System",
[datetime]$After = (Get-Date).AddHours(-24),
[Alias("path")]
[ValidateScript({Test-Path $_})]
[string]$OutputPath = "."
)
#define a hashtable of parameters for Write-Progress
$progParam = @{
Activity = $MyInvocation.MyCommand
Status = "Gathering $($EntryType -join ",") entries from $logname after $\
after."
CurrentOperation = $null
}
Write-Progress @progParam
#invoke the command remotely as a job
$jobs = @()
foreach ($computer in $computername) {
$progParam.CurrentOperation = "Querying: $computer"
Write-Progress @progParam
$jobs += Invoke-Command {
$logParams = @{
LogName = $using:logname
After = $using:after
EntryType = $using:entrytype
}
Get-EventLog @logParams
} -ComputerName $Computer -AsJob
} #foreach
do {
$count = ($jobs | Get-Job | Where-Object state -eq 'Running').count
$progParam.CurrentOperation = "Waiting for $count remote commands to complete"
Write-Progress @progParam
} while ($count -gt 0)
$progParam.CurrentOperation = "Receiving job results"
Write-Progress @progParam
$data = $jobs | Receive-Job
if ($data) {
$progParam.CurrentOperation = "Creating HTML report"
Write-Progress @progparam
#create html report
$fragments = @()
$fragments += "<H1>Summary from $After</H1>"
$fragments += "<H2>Count by server</H2>"
$fragments += $data | Group-Object -Property Machinename |
Sort-Object -property Count -Descending |
Select-Object -property Count, Name |
ConvertTo-Html -As table -Fragment
$fragments += "<H2>Count by source</H2>"
$fragments += $data | Group-Object -Property source |
Sort-Object Count -Descending |
Select-Object -property Count, Name |
ConvertTo-Html -As table -Fragment
$fragments += "<H2>Detail</H2>"
$fragments += $data |
Select-Object -property Machinename, TimeGenerated, Source, EntryType,
Message | ConvertTo-Html -as Table -Fragment
the here string needs to be left justified
$head = @"
<Title>Event Log Summary</Title>
<style>
h2 {
width:95%;
background-color:#7BA7C7;
font-family:Tahoma;
font-size:10pt;
font-color:Black;
}
body { background-color:#FFFFFF;
font-family:Tahoma;
font-size:10pt; }
td, th { border:1px solid black;
border-collapse:collapse; }
th { color:white;
background-color:black; }
table, tr, td, th { padding: 2px; margin: 0px }
tr:nth-child(odd) {background-color: lightgray}
table { width:95%;margin-left:5px; margin-bottom:20px;}
</style>
"@
$convert = @{
Body = $fragments
PostContent = "<h6>$(Get-Date)</h6>"
Head = $head
}
$html = ConvertTo-Html @convert
#save results to a file
$file = "$(Get-Date -UFormat '%Y%m%d_%H%M')_EventlogReport.htm"
$filename = Join-Path -Path $OutputPath -ChildPath $file
$progparam.CurrentOperation = "Saving file to $filename"
Write-Progress @progParam
Start-Sleep -Seconds 1
Set-Content -Path $filename -Value $html -Encoding Ascii
#write the result file to the pipeline
Get-Item -Path $filename
} #if data
else {
Write-Host "No matching event entries found." -ForegroundColor Magenta
}
#clean up jobs if any
if ($jobs) {
$jobs | Remove-Job
}
You’ll see that we took advantage of Write-Progress to keep the user informed and Invoke-Command to run the event log queries remotely. We decided to run the remote commands as background jobs so that we could keep track of how many computers we were waiting on. Using the same list of computers this script completed in under 25 seconds!
Let’s Review
Did you learn anything in this chapter?
Review Answers
Did you come up with answers like these?
Scaffolding a Project with Plaster
By this point, you shouldn’t be thinking about your PowerShell code so much in terms of “scripts” as you are in terms of “projects.” Your code is going to need a lot more than just a .psm1 file - there’ll be a manifest, automated unit tests, Visual Studio Code configuration files, and lots more. We find that a lot of people skip some of these professional-grade “extras” in their eagerness to “just get scripting,” which, if we’re being honest, we do too, a lot of the time. Plaster is an open-source PowerShell tool that’s designed to help you do things the right way, without slowing you down. It helps scaffold a project. That is, it’s designed to create a complete, pro-grade “structure” for a project, so that all the right things are in all the right places and you can focus on writing your code quickly. It’ll create the right folders for help files (PlatyPS!), unit tests (Pester!), and more, all based on customizable templates.
Getting Started
The first thing you need to do is install the latest version of Plaster from the PowerShell Gallery.
Install-Module Plaster
Plaster is still in development and is an open source project. If you encounter issues or wish to learn more, head to the project’s Github repository at https://github.com/PowerShellOrg/Plaster. The current version of the module only has a handful of commands.
PS C:\> get-command -module plaster
CommandType Name Version Source
----------- ---- ------- ------
Function Get-PlasterTemplate 1.1.3 plaster
Function Invoke-Plaster 1.1.3 plaster
Function New-PlasterManifest 1.1.3 plaster
Function Test-PlasterManifest 1.1.3 plaster
We’ll take a look at these commands throughout the chapter.
Plaster was created by Microsoft and maintained by them for a number of years. In June of 2020 project ownership was transferred to PowerShell.org.
Plaster Fundamentals
Plaster works by parsing an XML manifest (think of it as a template) that you create which in turn generates a file and folder structure for your commands and module. Creating the template is the most time-consuming task, but once completed it makes spinning up new projects incredibly easy to do in a consistent manner.
Plaster’s concept is that you set up a template folder structure and an XML manifest file. When you invoke the manifest, Plaster will create a new folder, copying and creating files or folders as needed. The great feature in Plaster is that everything happens dynamically based on information gathered from the template. Let’s walk through the process.
Invoking a Plaster Template
Before we create our own it might help to see the Plaster in action. To invoke Plaster we need the path to a Plaster manifest or template file. Running Get-PlasterTemplate will show available templates.
PS C:\> Get-PlasterTemplate
Title : AddPSScriptAnalyzerSettings
Author : Plaster project
Version : 1.0.0
Description : Add a PowerShell Script Analyzer settings file to the root of your wo\
rkspace.
Tags : {PSScriptAnalyzer, settings}
TemplatePath : C:\Program Files\WindowsPowerShell\Modules\Plaster\1.1.3\Templates\Ad\
dPSScriptAnalyzerSettings
Title : New PowerShell Manifest Module
Author : Plaster
Version : 1.1.0
Description : Creates files for a simple, non-shared PowerShell script module.
Tags : {Module, ScriptModule, ModuleManifest}
TemplatePath : C:\Program Files\WindowsPowerShell\Modules\Plaster\1.1.3\Templates\Ne\
wPowerShellScriptModule
These are the templates included with the Plaster module. The important piece of information you need is the TemplatePath property. Let’s use the module template.
PS C:\> $temp = Get-PlasterTemplate | select-object -last 1
PS C:\> dir $temp.TemplatePath
Directory: C:\Program
Files\WindowsPowerShell\Modules\Plaster\1.1.3\Templates\NewPowerShellScriptModule
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 1/30/2018 12:25 PM editor
d----- 1/30/2018 12:25 PM test
-a---- 10/27/2017 6:10 AM 323 Module.psm1
-a---- 10/27/2017 6:10 AM 3129 plasterManifest.xml
To make it easy we’ll save it to a variable. Now we can invoke it using Invoke-Plaster. We’ll need to supply the path to the template file and a destination for our new module.
PS C:\> Invoke-Plaster -TemplatePath $temp.TemplatePath -DestinationPath C:\TestModu\
le
____ _ _
| _ \| | __ _ ___| |_ ___ _ __
| |_) | |/ _` / __| __/ _ \ '__| |
| __/| | (_| __ \ || __/ |
|_| |_|__,_|___/_____|_|
v1.1.3
==
Enter the name of the module:
The first thing we get is a prompt for the name of our module. We’ll call it TestModule to match the destination folder. Plaster will then prompt us for additional information.
Invoking a Plaster Manifest
Within a matter of seconds, a new module directory has been created, complete with the beginnings of a Pester test.
PS C:\> dir C:\TestModule\
Directory: C:\TestModule
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 2/8/2018 5:42 PM .vscode
d----- 2/8/2018 5:42 PM test
-a---- 2/8/2018 5:42 PM 3867 TestModule.psd1
-a---- 10/27/2017 6:10 AM 323 TestModule.psm1
How did all of this work and how can you make it work for you? This is where the real fun begins.
Creating a Plaster Module Template
The first step is to create a simple manifest using the New-PlasterManifest cmdlet. You will need to provide a name for the template and ideally a description. You also should specify the path. This is where the manifest XML file will be created. If you don’t specify a path everything goes into the current directory. You should create the directory before creating the manifest
PS C:\> New-PlasterManifest -TemplateName MySample -TemplateType Project -Author "Ar\
t Deco" -Description "my sample template" -Path C:\mySample\plastermanifest.xml
The Plaster manifest is always called plastermanifest.xml. All we did was create it in our new directory with the file.
PS C:\> dir .\mySample\
Directory: C:\mySample
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 2/8/2018 5:29 PM 511 plastermanifest.xml
The only thing in this file is the Plaster metadata.
<?xml version="1.0" encoding="utf-8"?>
<plasterManifest
schemaVersion="1.1"
templateType="Project" xmlns="http://www.microsoft.com/schemas/PowerShell/Plaster/\
v1">
<metadata>
<name>MySample</name>
<id>c6cc56bb-e3cc-4af5-a38b-d97b9649ecef</id>
<version>1.0.0</version>
<title>MySample</title>
<description>my sample template</description>
<author>Art Deco</author>
<tags></tags>
</metadata>
<parameters></parameters>
<content></content>
</plasterManifest>
The only items you might want to change going forward are the version or description. As it stands now this Plaster manifest doesn’t do anything. It needs some content. While you can specify content with the New-PlasterManifest command, we think you’ll find it easier to open the file in your scripting editor. Remember, that this is an xml file so watch the case in your tags.
Adding Prompts
As you saw when we ran the sample template, Plaster can prompt you for key pieces of information. We can do the same thing by defining entries in the <parameters></parameters> section. First, we’ll prompt for the name of the module.
<parameter name='ModuleName' type='text' prompt='Enter the name of the module'/>
It might also be helpful to include a version.
<parameter name='Version' type='text' prompt='Enter the initial module version' defa\
ult = '0.1.0'/>
Notice that with this parameter we are also including a default value. We’ll also prompt the an author name and description.
<parameter name='Description' type='text' prompt='Enter a description of this mo\
dule'/>
<parameter name="ModuleAuthor" type='user-fullname' prompt='Enter the module aut\
hor name'/>
The ‘user-fullname’ type will use the name associated with your git configuration. Here’s the current state of the Plaster manifest.
The Plaster Manifest with Parameters
If we run Plaster we can see the prompts in action.
Testing Plaster Parameters
As you can tell from the PowerShell session, the manifest didn’t do anything because we haven’t defined any actual content. That is, we haven’t told it what files or folders to create or copy.
Adding Files and Folders
Since we are creating a new module, we most likely need a module manifest. Plaster can create that file for us with an XML declaration like this:
<newModuleManifest
destination='${PLASTER_PARAM_ModuleName}.psd1'
moduleVersion = '$PLASTER_PARAM_Version'
rootModule = '${PLASTER_PARAM_ModuleName}.psm1'
encoding = 'UTF8-NoBOM'
author = '$PLASTER_PARAM_ModuleAuthor'
description = '$PLASTER_PARAM_Description'
openInEditor = "true"
/>
The newModuleManifest tag is essentially a proxy for the New-ModuleManifest cmdlet. You’ll also notice that Plaster has a way for us to pass the parameter values. The format is $PLASTER_PARAM_[your parameter name].
Next, we might want a consistent folder structure. We can instruct Plaster to create new folders for us. Because we intend to create help documentation with Platyps we’ll create the necessary folders.
<file destination='docs' source=''/>
<file destination='en-us' source=''/>
However the Plaster philosophy is to have a model folder that you can build from. Any files and folders you want to reference are relative to the plastermanifest.xml file. We’ll add a few files to the directory and update the Plaster manifest.
<file source='Module.psm1' destination='${PLASTER_PARAM_ModuleName}.psm1'/>
<file source='changelog.txt' destination='changelog.txt'/>
<file source='README.md' destination='README.md'/>
<file source='license.txt' destination='license.txt'>
Notice how we are using Plaster parameters to change the name of of module.psm1 file.
Before we see how this works so far, and because we’re working with XML which can be picky, let’s test the manifest.
Testing the Plaster Manifest
Sure enough we goofed and it is a common mistake. Looking at the file in VS Code we see that we forgot to close a tag.
Manifest XML Error
We fix the error, save the file and re-run the test. Now, there are no errors.
Successful Plaster Manifest Test
Let’s invoke the manifest and see what happens.
Invoking a Custom Plaster Template
Checking the project folder we specified we see the new files and folders.
PS C:\> dir .\MyProject\
Directory: C:\MyProject
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 2/12/2018 4:30 PM docs
d----- 2/12/2018 4:30 PM en-us
-a---- 2/12/2018 4:12 PM 14 changelog.txt
-a---- 2/12/2018 4:16 PM 2198 license.txt
-a---- 2/12/2018 4:30 PM 3906 MyProject.psd1
-a---- 2/12/2018 4:16 PM 145 MyProject.psm1
-a---- 2/12/2018 4:13 PM 16 README.md
PS C:\>
Your source folder can be as complex as you need it to be. You configure the Plaster template to create and copy files as needed.
Using Template Files
If copying PSl files was all Plaster did, that still puts you ahead. But that is just the beginning. Plaster also has the ability to create dynamic content. That is, content based on parameter values or other conditions. If you read through the Plaster documentation on GitHub, you’ll learn that you can modify files using regular expressions. However, we think you’ll want to use template files.
In a template, you define sections of the file as replaceable parameters wrapped in <% %> tags. Plaster will replace the contents with corresponding parameter value. We’re going to add a Test folder to be copied with the beginnings of a Pester test. But we want the final file to have the module name. Here’s the template file.
$ModuleManifestName = '<%=$PLASTER_PARAM_ModuleName%>.psd1'
$ModuleManifestPath = "$PSScriptRoot\..\$ModuleManifestName"
Describe '<%=$PLASTER_PARAM_ModuleName%> Manifest Tests' {
It 'Passes Test-ModuleManifest' {
Test-ModuleManifest -Path $ModuleManifestPath | Should Not BeNullOrEmpty
$? | Should Be $true
}
}
In the manifest, we need to tell Plaster to use this file. Instead of the ‘file’ directive we use ‘templatefile’.
<templateFile source='test\Module.T.ps1' destination='test\${PLASTER_PARAM_ModuleNam\
e}.Tests.ps1' />
Be very careful here as ‘templateFile’ is case-sensitive.
We’ll save the manifest and re-run the template. The Pester test file now looks like this:
$ModuleManifestName = 'myProject.psd1'
$ModuleManifestPath = "$PSScriptRoot\..\$ModuleManifestName"
Describe 'myProject Manifest Tests' {
It 'Passes Test-ModuleManifest' {
Test-ModuleManifest -Path $ModuleManifestPath | Should Not BeNullOrEmpty
$? | Should Be $true
}
}
You can use Plaster parameters that you define as well as a set of hard-coded variables.
Armed with this information, we can turn the other static files into dynamic templates. For example, the README.md template file now looks like this:
<%=$PLASTER_PARAM_ModuleName%>
last updated <%=$PLASTER_Date%>
As long as the manifest has the correct settings, Plaster will make the substitutions.
<templateFile source='changelog.txt' destination='changelog.txt'/>
<templateFile source='README.md' destination='README.md'/>
<templateFile source='license.txt' destination='license.txt'/>
<templateFile source='test\Module.T.ps1' destination='test\${PLASTER_PARAM_ModuleNam\
e}.Tests.ps1' />
We’ve included a version of the mySample folder with the template file changes in the code download.
Adding Messages
Plaster does a pretty good job at letting you know what is going on. But you can also write additional messages in the <content/> block.
<content>
<message>Scaffolding your PowerShell Project</message>
<file destination='docs' source=''/>
<file destination='en-us' source=''/>
...
</content
Content items are processed sequentially. Here’s a manifest excerpt:
<content>
<message>

| Scaffolding your PowerShell project |

| |\ /| | /| /| |\ | | / \ |
| |/ \| | / |/ | | \ | |/ \|
</message>
<message>Creating your module manifest for ${PLASTER_PARAM_ModuleName}</messag\
e>
<newModuleManifest
destination='${PLASTER_PARAM_ModuleName}.psd1'
moduleVersion = '$PLASTER_PARAM_Version'
rootModule = '${PLASTER_PARAM_ModuleName}.psm1'
encoding = 'UTF8-NoBOM'
author = '$PLASTER_PARAM_ModuleAuthor'
description = '$PLASTER_PARAM_Description'
openInEditor = "true"
/>
<file source='Module.psm1' destination='${PLASTER_PARAM_ModuleName}.psm1'/>
<message>Creating required folders</message>
<file destination='docs' source=''/>
<file destination='en-us' source=''/>
<message>Creating template files</message>
<templateFile source='changelog.txt' destination='changelog.txt'/>
<templateFile source='README.md' destination='README.md'/>
<templateFile source='license.txt' destination='license.txt'/>
<templateFile source='test\Module.T.ps1' destination='test\${PLASTER_PARAM_Modul\
eName}.Tests.ps1' />
<message>
Your new PowerShell module project '$PLASTER_PARAM_ModuleName' has been created at $\
PLASTER_DestinationPath
</message>
</content>
As you can see, you can include Plaster variables and parameters in your message text. This is the output from invoking the template manifest:
Plaster template messages
Creating a Plaster Function Template
Creating a folder structure for a new PowerShell project is very helpful. But you can leverage the template file feature to create function code. This needs a different type of Plaster manifest - an Item manifest. The concepts are still the same. We’ll end up with a plastermanifest.xml file in the root of a folder with supporting files.
PS C:\myFunction> New-PlasterManifest -TemplateName myFunction -TemplateType Item -D\
escription "Function scaffolding" -author "Art Deco"
This gives us the beginning of a manifest.
<?xml version="1.0" encoding="utf-8"?>
<plasterManifest
schemaVersion="1.1"
templateType="Item" xmlns="http://www.microsoft.com/schemas/PowerShell/Plaster/v1">
<metadata>
<name>myFunction</name>
<id>4a3def64-dd0a-4b46-b959-1fb56a525c19</id>
<version>1.0.0</version>
<title>myFunction</title>
<description>Function scaffolding</description>
<author>Art Deco</author>
<tags></tags>
</metadata>
<parameters></parameters>
<content></content>
</plasterManifest>
We’re going to need some information which we can get through a set of parameters.
<parameter name='Name' type='text' prompt='Enter the name of your function.'/>
<parameter name='Version' type='text' prompt='What is the function version?' default\
='0.1.0'/>
<parameter name='OutputType' type='text' prompt='What type of output is expected' de\
fault="[PSCustomObject]"/>
Even though we didn’t mention it with the module-based manifests, you can create parameters that offer a choice of possible values. This will come in handy when scaffolding a function. For example, we might want to ask if the function needs to include code for SupportsShouldProcess.
<parameter name="ShouldProcess" type="choice" prompt="Do you need to support -WhatIf\
" default='1'>
<choice label="&Yes" help="Adds SupportsShouldProcess" value="Yes" />
<choice label="&No" help="Does not add SupportsShouldProcess" value="No" />
</parameter>
Within the parameter tag you’ll define a set of <choice> tags. The & helps identify an accelerator character and goes in front of the desired character. The end result will be _Yes and _No where the user only needs to type Y or N. The Default value is based on a 0-based array. In our example, the default is No.
Here is the finished manifest which you’ll also find in the code downloads.
<?xml version="1.0" encoding="utf-8"?>
<plasterManifest
schemaVersion="1.1"
templateType="Item" xmlns="http://www.microsoft.com/schemas/PowerShell/Plaster/v1">
<metadata>
<name>myFunction</name>
<id>4a3def64-dd0a-4b46-b959-1fb56a525c19</id>
<version>1.0.0</version>
<title>myFunction</title>
<description>Function scaffolding</description>
<author>Art Deco</author>
<tags></tags>
</metadata>
<parameters>
<parameter name='Name' type='text' prompt='Enter the name of your function.'\
/>
<parameter name='Version' type='text' prompt='What is the function version?'\
default='0.1.0'/>
<parameter name='OutputType' type='text' prompt='What type of output is expe\
cted' default="[PSCustomObject]"/>
<parameter name="ShouldProcess" type="choice" prompt="Do you need to support\
-WhatIf ?" default='1'>
<choice label="&Yes" help="Adds SupportsShouldProcess" value="Yes" />
<choice label="&No" help="Does not add SupportsShouldProcess" value="No"\
/>
</parameter>
<parameter name="Help" type="choice" prompt="Do you need comment based help?" \
default='1'>
<choice label="&Yes" help="Add comment based help outline" value="Yes" />
<choice label="&No" help="Does not add comment based help" value="No" />
</parameter>
<parameter name="ComputerName" type="choice" prompt="Add a parameter for Compu\
tername?" default='0'>
<choice label="&Yes" help="Adds a default parameter for computername" va\
lue="Yes" />
<choice label="&No" help="Does not include computername parameter" value\
="No" />
</parameter>
</parameters>
<content>
<message>'/|= Scaffolding your PowerShell function $PLASTER_PARAM_Name =|\'</messa\
ge>
<templateFile source='function-template.ps1' destination='${PLASTER_PARAM_Name\
}.ps1'/>
<message>Your function, '$PLASTER_PARAM_Name', has been saved to '$PLASTER_Des\
tinationPath\$PLASTER_PARAM_Name.ps1'</message>
</content>
</plasterManifest>
Before we can run this, we need to create the function template. We’ll use the same concept that we used with files in the module manifest where Plaster will replace <% plaster-variables %> with text. For example, we might want to include a comment header in the function with the version information and creation date. Our function template file would include code like this:
<%
@"
version: $PLASTER_PARAM_version
created: $PLASTER_Date
"@
%>
You need to explicitly tell Plaster you are replacing everything inside the <% %> with text. In this case, a here string. Of course, we can do the same thing with the name of the new function.
<%
"Function $PLASTER_PARAM_Name {"
%>
But now it gets interesting. We can use some simple logic to dynamically add content. In our manifest we’re prompting if the user wants to include comment based help. Their response is saved to a Plaster parameter value. We can test that parameter in the function template file and insert a string of text if the answer is Yes.
<%
If ($PLASTER_PARAM_Help -eq 'Yes')
{
@"
<#
.SYNOPSIS
Short description
.DESCRIPTION
Long description
.PARAMETER XXX
Describe the parameter
.EXAMPLE
Example of how to use this cmdlet
.NOTES
insert any notes
.LINK
insert links
#>
"@
}
%>
You have to be careful. The curly braces are part of the If statement and not part of the text you are inserting into the file. The inserted text is the here string with the comment-based help. We can repeat this process for other parts of the function, based on the user’s answers to the parameter prompts.
<%
if ($PLASTER_PARAM_ShouldProcess -eq 'Yes') {
"[cmdletbinding(SupportsShouldProcess)]"
}
else {
"[cmdletbinding()]"
}
%>
<%
"[OutputType($PLASTER_PARAM_OutputType)]"
%>
<%
if ($PLASTER_PARAM_computername -eq 'Yes') {
@'
Param(
[Parameter(Position=0,ValueFromPipeline,ValueFromPipelineByPropertyName)]
[ValidateNotNullorEmpty()]
[string[]]$ComputerName = $env:COMPUTERNAME
)
'@
}
else {
@'
Param()
'@
}
%>
You can find the completed template in the code downloads. Let’s invoke the template.
Plaster Function Template
Within seconds we have the beginnings of an advanced PowerShell function.
#requires -version 5.0
version: 1.0.0
created: 2/19/2020
Function Get-SecretOfLife {
<#
.SYNOPSIS
Short description
.DESCRIPTION
Long description
.PARAMETER XXX
Describe the parameter
.EXAMPLE
Example of how to use this cmdlet
.NOTES
insert any notes
.LINK
insert links
#>
[cmdletbinding()]
[OutputType([PSCustomObject])]
Param(
[Parameter(Position=0,ValueFromPipeline,ValueFromPipelineByPropertyName)]
[ValidateNotNullorEmpty()]
[string[]]$ComputerName = $env:COMPUTERNAME
)
Begin {
Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting $($myinvocation.my\
command)"
} #begin
Process {
Foreach ($computer in $Computername) {
Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Processing $($computer.\
toUpper())"
#<insert code here>
}
} #process
End {
Write-Verbose "[$((Get-Date).TimeofDay) END] Ending $($myinvocation.myco\
mmand)"
} #end
} #close Get-SecretOfLife
Integrating Plaster into your PowerShell Experience
We’ve spent a great deal of time in this chapter on Plaster mechanics. Before we go though, we want to show you why this is worth the effort, especially if you are locked into VS Code as your primary editor. If you recall at the beginning of the chapter we showed how to use Get-PlasterTemplate to identify available templates. But this command has an additional parameter, -IncludeInstalledModules. When you include this parameter, Plaster will check installed module manifests for particular bit of code to indicate that the module contains templates.
Under the PSData section of the module manifest, we’re going to add a setting for Extensions and specify an array of Plaster template names.
Extensions = @(
@{
Module = "Plaster"
Details = @{
TemplatePaths = @("myProject","myFunction")
}
}
)
The paths are relative to the module manifest. We took our function and project template folders and copied them to a new module called MyTemplates.
PS C:\> dir 'C:\Program Files\WindowsPowerShell\Modules\myTemplates\'
Directory: C:\Program Files\WindowsPowerShell\Modules\myTemplates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 2/19/2018 11:03 AM myFunction
d----- 2/19/2018 11:06 AM myProject
-a---- 2/19/2018 11:25 AM 8186 myTemplates.psd1
-a---- 2/19/2018 11:23 AM 95 myTemplates.psm1
The psm1 file is empty except for a comment indicating why it is empty. The manifest file includes the Extensions setting and also specifies Plaster as a required module. Now we get these templates.
Get custom templates
We could use these templates like we did at the beginning of this chapter. But because we’re using VSCode we can also invoke them via the command palette.
In VSCode press Ctrl+Shift+P to bring up the command palette. Then start typing ‘PowerShell: Create New Project from Plaster Template’. After a moment or two, click on the option to load additional templates.
Load additional Plaster templates
Within seconds you should get the list of your custom templates.
Available custom templates
When you select one, VSCode will prompt you for parameter values.
Invoking a Plaster template in VSCode
We created a new module project which is then immediately opened up in VSCode. We can now invoke the MyFunction manifest and begin adding code to the module. Within minutes we can create the outlines of a complete PowerShell module.
Tip
To skip the extra step of forcing VS Code to always search installed modules for Plaster templates, you can take advantage of $PSDefaultParameterValues. In either the PowerShell profile script for all hosts, or the VS Code specific profile profile add this command:
$PSDefaultParameterValues."Get-PlasterTemplate:IncludeInstalledModules"=$True
Now when you invoke the VS Code command to create a new project from Plaster it will automatically display all templates from modules.
Creating Plaster Tooling
Finally, we take advantage of one other Plaster feature and create everything from a PowerShell prompt. Even though our Plaster manifests prompt for values, Plaster will dynamically generate parameters for Invoke-Plaster. This means we can use something like this to rapidly generate outlines for numerous files.
"Get-MyThing","Set-MyThing","Remove-MyThing","Invoke-Something" |
foreach-object -begin {
$splat = @{
TemplatePath = 'C:\Program Files\WindowsPowerShell\Modules\myTemplates\myFunction\'
DestinationPath = "c:\MyNewTool"
version = "0.1.0"
Outputtype = "[PSCustomObject]"
shouldprocess = "Yes"
help = "No"
computername = "yes"
NoLogo = $True
}
} -process {
#add the name
$splat.name = $_
if ($_ -match 'Get') {
$splat.ShouldProcess = "No"
}
Invoke-Plaster @splat
}
This means that you can create your own tooling around your Plaster templates that don’t rely on VS Code.
New-Scaffold.ps1
#requires -version 5.0
#requires -module Plaster
#this function assumes you have git installed and configured
Function New-Scaffold {
[cmdletbinding(SupportsShouldProcess)]
Param(
[Parameter(
Mandatory,
HelpMessage = "Enter the name of your new module."
)]
[ValidateNotNullorEmpty()]
[string]$ModuleName,
[Parameter(
Mandatory,
HelpMessage = "The folder name for your new module. The top level name s\
hould match the module name"
)]
[ValidateNotNullorEmpty()]
[string]$DestinationPath,
[Parameter(
Mandatory,
HelpMessage = "Enter a brief description about your project"
)]
[ValidateNotNullorEmpty()]
[string]$Description,
[Parameter(HelpMessage ="The module version")]
[string]$Version = "0.1.0",
[Parameter(HelpMessage ="The module author which should be your git user nam\
e")]
[string]$ModuleAuthor = $(git config --get user.name),
[ValidateSet("none", "VSCode")]
[Parameter(HelpMessage = "Do you want to include VSCode settings?")]
[string]$Editor = "VSCode",
[Parameter(HelpMessage = "The minimum required version of PowerShell for you\
r module")]
[string]$PSVersion = "5.0",
[Parameter(HelpMessage = "The path to the Plaster template")]
[ValidateNotNullorEmpty()]
[ValidateScript({ Test-Path $_ })]
[string]$TemplatePath = "C:\Program Files\WindowsPowerShell\Modules\myTempla\
tes\myProject\"
)
if (-Not (Test-PlasterManifest -Path $TemplatePath\plastermanifest.xml)) {
write-Warning "Failed to find a valid plastermanifest.xml file in $TemplateP\
ath"
#bail out
return
}
if (-Not $PSBoundParameters.ContainsKey("templatePath")) {
$PSBoundParameters["TemplatePath"] = $TemplatePath
}
if (-not $PSBoundParameters.ContainsKey("version")) {
$PSBoundParameters["version"] = $version
}
if (-not $PSBoundParameters.ContainsKey("ModuleAuthor")) {
$PSBoundParameters["ModuleAuthor"] = $ModuleAuthor
}
if (-not $PSBoundParameters.ContainsKey("Editor")) {
$PSBoundParameters["editor"] = $editor
}
if (-not $PSBoundParameters.ContainsKey("PSVersion")) {
$PSBoundParameters["PSVersion"] = $PSVersion
}
$PSBoundParameters | Out-String | Write-Verbose
Invoke-Plaster @PSBoundParameters
if ($PSCmdlet.ShouldProcess($DestinationPath)) {
Write-Host "Initializing $DestinationPath for git" -ForegroundColor cyan
Set-Location $DestinationPath
git init
Write-Host "Adding initial files to first commit" -ForegroundColor cyan
git add .
git commit -m "initial files"
Write-Host "Switching to Dev branch" -ForegroundColor cyan
git branch dev
git checkout dev
}
Write-Host "Scaffolding complete" -ForegroundColor green
}
This script assumes you have git installed. After the Plaster creates the module scaffolding, the function then uses git to initialize the folder as a git repository, make an initial commit of files and then checkout a dev branch. Now, one command sets up everything! The file in the code download won’t have the wonky line wrapping you might see here.
Scaffolding with a Plaster-based function
There’s no doubt that there is a learning curve for Plaster. But once you take the time to put together a template, you’ll find yourself using it all the time.
Adding Auto Completion
PowerShell has always been designed and intended to be easy to use. Nobody wants to spend any more typing than they actually have to. The PowerShell team thought about this and you probably don’t even think about it. You can type a command like Get-Service, press the space bar and then start pressing <kbd>Tab</kbd>. PowerShell will cycle through all the possible values for the positional Name parameter. Once you get used to that kind of auto completion, you start looking for it everywhere. And for a professional toolmaker, this might be something you want to add to your own work.
ValidateSet
Technically, this is a little bit different than what we have in mind for this chapter, but it can have the same net result. Look at this simple demo function.
Get-Foo
Function Get-Foo {
[cmdletbinding()]
Param(
[Parameter(Position = 0)]
[ValidateSet("This","That","Other","Squirrel")]
[string]$Item = "This"
)
Write-Host "Working with $item" -ForegroundColor green
}
We’ve added parameter validation specifying that the value for the -Item parameter must be one of the values. When someone runs the function they press <kbd>Tab</kbd> to cycle through the options. But don’t forget that the user can’t specify any other value.
Argument Completer Attribute
The other option you have is to add an [ArgumentCompleter()] attribute to a parameter in your function. Here’s an example.
Get-ProcessDetail
Function Get-ProcessDetail {
[cmdletbinding()]
Param(
[Parameter(Position = 0, Mandatory)]
[ArgumentCompleter({(Get-Process).name})]
[string]$Name
)
Get-Process -Name $Name |
Select-Object -property ID, Name, StartTime, WorkingSet,
@{Name = "Path" ; Expression = {$_.MainModule.FileName}},
@{Name = "RunTime"; Expression = {(Get-Date) - $_.starttime}}
}
The attribute needs a scriptblock that will generate the argument completer results. In our sample it is running Get-Process and returning the name property. You can have as much code as you need in the script block but we suggest it be something that can execute quickly. You don’t want to be waiting around the argument completion to finish.
The user isn’t forced to use the completer or its results. They can type whatever value they want.
Advanced Argument Completers
For all your other auto completion needs, you can create a separate argument completer. This thing exists outside of your command. You’ll want to spend a few minutes looking at the help and examples for Register-ArgumentCompleter. In fact, pay close attention to the examples because you’re going to use them as boilerplate templates.
The ultimate goal is to come up with a scriptblock that will generate the values you need. Again, this shouldn’t take very long to run. What’s nice with this approach is that you can add wildcard support so that the user can start typing part of the value and your argument completer can fill in the rest. Let’s build one for an existing cmdlet that doesn’t have auto complete but we wish it did.
When you use Get-Eventlog, PowerShell will cycle through and auto complete all of the possible log names. However, Get-WinEvent does not. You can list them, but the -LogName parameter doesn’t auto complete. We can fix that.
First, we need the scriptblock.
Get-WinEvent LogName Scriptblock
$sb = {
param(
$commandName,
$parameterName,
$wordToComplete,
$commandAst,
$fakeBoundParameter
)
(Get-WinEvent -listlog "$wordtoComplete*").logname |
ForEach-Object {
[System.Management.Automation.CompletionResult]::new($_,$_,'ParameterValue',$_)
}
}
We’re using the same parameter names from the help example. What you need to come up with is the code that will generate the list of values. In our example that’s what (Get-Winevent -listlog "$wordtoComplete*").logname is doing. But here’s the fun part. You can include the $wordtoComplete variable as placeholder for what the user is typing. You can include wildcards. We’re adding one at the end. If the user starts typing “Micro” and presses <kbd>Tab</kbd the auto completer will fill in the return the rest. You can decide how much wildcard support you need.
The values from the Get-WinEvent expression are used to create a CompletionResult object. The new() method takes needs 4 parameters.
new(completion text,listitem text,result type,Tooltip)
In our example, we are using log name for all values.
The last step is to register the completer.
$params = @{
CommandName = "Get-WinEvent"
ParameterName = "Logname"
ScriptBlock = $sb
}
Register-ArgumentCompleter @params
With this in place, we now get tab completion for the LogName parameter. It may take a moment to populate the results. This change only lasts for as long as your PowerShell session is running. If this is something you want all the time, you would add this code to your PowerShell profile.
Sadly, there isn’t a Get-ArgumentCompleter command. But you can see it with a bit of .NET code.
PS C:\> [System.Management.Automation.CompletionCompleters]::CompleteCommand("Get-Wi\
nEvent")
CompletionText ListItemText ResultType ToolTip
-------------- ------------ ---------- -------
Get-WinEvent Get-WinEvent Command …
If you need to make a change, simply re-register a new completer.
And you don’t have to use the $WordtoComplete variable. Here’s a variation on our function to get a folder size.
Measure Folder
Function Measure-Folder {
[cmdletbinding()]
Param(
[Parameter(Position = 0,HelpMessage = "Specify the folder path to measure")]
[string]$Name = "."
)
Get-ChildItem -path $Name -Recurse -File |
Measure-Object -Property length -sum -Average |
Select-Object @{Name="Path";Expression={Convert-Path $Name}},
Count,Sum,Average
}
And an argument completer for the -Name parameter.
Measure Folder Auto Completer
$sb = {
param(
$commandName,
$parameterName,
$wordToComplete,
$commandAst,
$fakeBoundParameter
)
Get-Childitem -path . -Directory |
ForEach-Object {
[System.Management.Automation.CompletionResult]::new($_.fullname,$_.name,
'ParameterValue',$_.fullname)
}
}
$params = @{
CommandName = "Measure-Folder"
ParameterName = "Nanme"
ScriptBlock = $sb
}
Register-ArgumentCompleter @params
The scriptblock is defaulting to getting the directories in the current location. Here’s how it all looks in the PowerShell ISE.
AutoCompleter
This makes it clear that the Name property is the list item and the full name is the tool tip.
If you want to include argument completers, the easiest thing is to put the code in the module’s .psm1 file. The completers will be registered automatically when the module is imported.
Your Turn
Let’s see what you can do with what we’ve shown you in this chapter. If you have a function of your own that you think could use auto completion, go ahead and add it. Otherwise, we’ll provide an exercise.
Start Here
The Get-Command command has a -Verb parameter. But you have to type the name of a standard verb. Create an auto completion code snippet so that this parameter can auto-complete with a standard verb.
Our Take
Here’s what we came up with.
Verb Auto Completer
$sb = {
param (
$commandName,
$parameterName,
$wordToComplete,
$commandAst,
$fakeBoundParameter
)
Get-Verb -Verb "$wordToComplete*" |
ForEach-Object {
[System.Management.Automation.CompletionResult]::new($_.Verb,$_.Verb,
'ParameterValue',("Group: $($_.Group)"))
}
}
$params = @{
CommandName = "Get-Command"
ParameterName = "Verb"
ScriptBlock = $sb
}
Register-ArgumentCompleter @params
We’re populating the auto completion list with results from Get-Verb. We even added a tool tip that you can see when using the PSReadline module.
Verb Auto completion
Let’s Review
Review Answers
Adding Custom Formatting
At this point in the book you should recognize the value of “objects in the pipeline”. For the most part, we’re kinda letting PowerShell do its own thing. We give it a bunch of objects and it decides how to display them. But maybe you want a little more control or want to have a nicer user experience for your tool. You might need to tell PowerShell how to format your objects.
Here’s an example function.
New-SysInfo
Function New-SysInfo {
[cmdletbinding()]
Param([string[]]$Computername = $env:Computername)
$cim = @{
Classname = ""
Computername = ""
ErrorAction = "Stop"
}
foreach ($computer in $computername) {
$cim.Computername = $Computer
Try {
$cim.classname = "Win32_OperatingSystem"
$os = Get-CimInstance @Cim
$cim.classname = "Win32_Process"
$ps = Get-CimInstance @cim
[PSCustomobject]@{
Computername = $os.CSName
Processes = $PS.Count
OS = $os.Caption
Build = $os.BuildNumber
BootTime = $os.LastBootUpTime
}
}
Catch {
Write-Warning "Failed to get information from $($Computer.ToUpper())"
Write-Warning $($_.exception.message)
}
} #foreach
} #New-SysInfo
When you run the command, you’ll most likely get output as a list.
PS C:\> new-sysinfo
Computername : BOVINE320
Processes : 316
OS : Microsoft Windows 10 Pro
Build : 19041
BootTime : 6/11/2020 10:11:20 PM
But really, this would look fine as a table.
PS C:\> new-sysinfo | format-table
Computername Processes OS Build BootTime
------------ --------- -- ----- --------
BOVINE320 316 Microsoft Windows 10 Pro 19041 6/11/2020 10:11:20 PM
But you don’t want to force the user to remember to do this. You want the default display to always be a table.
Or perhaps your command is writing a very rich object to the pipeline and by default you want to see a specific set of properties displayed in a certain way. This too will require some custom formatting.
Format.ps1xml
PowerShell maintains its formatting rules in a set of XML files. These files will often follow a naming convention of <typename>.format.ps1xml. In Windows PowerShell you can find these files in the $PSHome folder. Here’s a snippet that shows the formatting for service objects.
<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>service</Name>
<ViewSelectedBy>
<TypeName>System.ServiceProcess.ServiceController</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Width>8</Width>
</TableColumnHeader>
<TableColumnHeader>
<Width>18</Width>
</TableColumnHeader>
<TableColumnHeader>
<Width>38</Width>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>Status</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Name</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>DisplayName</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>
This is why when you run Get-Service you see what you see. To create a custom format for your object, you need to create your own format xml file.
In PowerShell 7, these format xml files have been moved to inside the code for performance reasons. You can still create and use custom xml files but you’ll need to use the ones in Windows PowerShell as examples.
The file contains a collection of View definitions. Each view has a name and is associated with a given typename.
<View>
<Name>service</Name>
<ViewSelectedBy>
<TypeName>System.ServiceProcess.ServiceController</TypeName>
</ViewSelectedBy>
Each view can then dictates what type of display to use such as table, list or wide. Table and List are most widely used.
Define a TypeName
Before you can use a format ps1xml file, you need to make sure your object has a unique typename. We’ve shown you a few ways in the book. If we want to add a default table view, we need to modify our function to include a custom typename. You can’t define custom settings for a generic PSObject.
[PSCustomobject]@{
PSTypename = 'SysInfo'
Computername = $os.CSName
Processes = $PS.Count
OS = $os.Caption
Build = $os.BuildNumber
BootTime = $os.LastBootUpTime
}
We can verify this with Get-Member.
PS C:\> new-sysinfo thinkp1 | get-member
TypeName: SysInfo
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
BootTime NoteProperty datetime BootTime=6/23/2020 8:46:39 AM
Build NoteProperty string Build=19041
Computername NoteProperty string Computername=THINKP1
OS NoteProperty string OS=Microsoft Windows 10 Pro
Processes NoteProperty int Processes=240
Defining a View Definition
The table format for services is pretty close to what we want. We can copy and paste it into our editor, along with the opening and closing tags. We can then add column headers and items to the view, adjusting the column width as necessary. We also need to change the typename.
<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>default</Name>
<ViewSelectedBy>
<TypeName>SysInfo</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Width>15</Width>
</TableColumnHeader>
<TableColumnHeader>
<Width>10</Width>
<Alignment>Right</Alignment>
</TableColumnHeader>
<TableColumnHeader>
<Width>25</Width>
</TableColumnHeader>
<TableColumnHeader>
<Width>6</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>LastBoot</Label>
<Width>22</Width>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>Computername</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Processes</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>OS</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Build</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>BootTime</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>
One change we made was to add an <Alignment/> tag to the seconds column which is the number of processes. We want it the values to be right-justified. We also added a <Label/> for the last entry. Instead of using the property name, we want to use a custom entry. This looks more complicated than it really is and in a little bit we’ll show you and even easier way to create this XML.
Update-FormatData
Once the file is created, we need to load it into PowerShell. This is done with Update-FormatData and the path to your xml file.
Update-FormatData .\sysinfo.format.ps1xml
When you read the cmdlet help you’ll see there are options for prepending or appending. This means do you want your definition to take precedence over anything Microsoft might have defined or come after. In this case it doesn’t matter since we’re using a unique and custom typename.
You only have to run this command once to load the format definition into your session. Typically, for a standalone function you can add the Update-FormatData command at the end of your script file. But now when we run the command we get a formatted table by default.
PS C:\> new-sysinfo thinkp1,bovine320,srv1
Computername Processes OS Build LastBoot
------------ --------- -- ----- --------
THINKP1 240 Microsoft Windows 10 Pro 19041 6/23/2020 8:46:39 AM
BOVINE320 306 Microsoft Windows 10 Pro 19041 6/11/2020 10:11:20 PM
SRV1 32 Microsoft Windows Serv... 14393 6/22/2020 2:54:08 PM
New-PSFormatXML
It can be tedious copying and pasting XML so Jeff wrote a function called New-PSFormatXML which is part of the PSScriptTools module. The process is to pipe a single instance of the object to the command, specify what type of view you want and the properties. The command creates the XML which you can fine tune if you want.
Since we already have a file, we’re going to add a new view called computer that will be a custom table.
$new = @{
Path = '.\sysinfo.format.ps1xml'
Properties = 'Processes', 'OS', 'BootTime'
GroupBy = 'Computername'
ViewName = 'computer'
FormatType = 'table'
Append = $True
}
New-SysInfo | New-PSFormatXML @new
The command makes a best guess as to column widths if you want to use them but defaults to an AutoSize setting.
A nice feature of formatting files is that you can customize the heck out them. In our file, we added a new column called Uptime that gets its value from a <ScriptBlock/> entry. We also changed a few other property names to display differently than the property. The underlying object doesn’t change. Only the way it is displayed.
Computer View
<View>
<!--Created 06/23/2020 09:16:53 by BOVINE320\Jeff-->
<Name>computer</Name>
<ViewSelectedBy>
<TypeName>SysInfo</TypeName>
</ViewSelectedBy>
<GroupBy>
<!--
You can also use a scriptblock to define a custom property name.
You must have a Label tag.
<ScriptBlock>$_.machinename.toUpper()</ScriptBlock>
<Label>Computername</Label>
Use <Label> to set the displayed value.
-->
<PropertyName>Computername</PropertyName>
<Label>Computername</Label>
</GroupBy>
<TableControl>
<!--Delete the AutoSize node if you want to use the defined widths.-->
<AutoSize />
<TableHeaders>
<TableColumnHeader>
<Label>Processes</Label>
<Width>12</Width>
<Alignment>left</Alignment>
</TableColumnHeader>
<TableColumnHeader>
<Label>OperatingSystem</Label>
<Width>27</Width>
<Alignment>left</Alignment>
</TableColumnHeader>
<TableColumnHeader>
<Label>LastBootUpTime</Label>
<Width>24</Width>
<Alignment>right</Alignment>
</TableColumnHeader>
<TableColumnHeader>
<Label>Uptime</Label>
<Width>24</Width>
<Alignment>right</Alignment>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<!--
By default the entries use property names, but you can replace them with\
scriptblocks.
<ScriptBlock>$_.foo /1mb -as [int]</ScriptBlock>
-->
<TableColumnItem>
<PropertyName>Processes</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>OS</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>BootTime</PropertyName>
</TableColumnItem>
<TableColumnItem>
<ScriptBlock>
$ts = (Get-Date) - $_.BootTime
$ts.ToString("dd\.hh\:mm\:ss")
</ScriptBlock>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
As you are developing and testing your format file, don’t forget to re-run Update-FormatData.
With the updated view loaded, we can now get formatted results that are more useful to us.
New-SysInfo
This view is using autosizing which we could go in and remove. Then the view would use the defined column widths.
Adding to a Module
You can add as many format .psxml files to your module as you’d like. Instead of invoking Update-FormatData you can add the files to the module manifest. Normally this section is commented out.
FormatsToProcess = @('mything.format.ps1xml')
You can put the format file in the module root. Or some people like to keep them organized.
FormatsToProcess = @('formats\this.format.ps1xml','formats\that.format.ps1xml')
When the module is imported, the formatting files are automatically.
Your Turn
This is such a useful scripting tool that we want to make sure you try it out. It may feel awkward at first but after you do it a few times, and especially if you use New-PSFormatXML, you’ll find yourself using it all the time.
Start Here
In the first part of this book you worked on a module to get machine information. The default output contained a lot of information.
PS C:\> get-machineinfo
ComputerName : BOVINE320
OSVersion : 10.0.19041
OSBuild : 19041
Manufacturer : LENOVO
Model : 30C2CTO1WW
Processors : 1
Cores : 8
RAM : 31.8933715820313
SystemFreeSpace : 92282933248
Architecture : 64
Your boss doesn’t want to see all of this by default. In the downloads for this chapter you’ll find the TMMachineInfo module. Use that as your starting point. The module we’re using has a class-definition for the custom object so the class name is the type name.
Your Task
At a minimum, create a formatting file that has a default table view that displays these properties:
If want an extra challenge create a second table view called hardware that meets these specifications:
Our Take
Using Jeff’s function we can create a format file and add it to the module for the default.
$new = @{
Path = 'TMMachineInfo\tmmachineinfo.format.ps1xml'
Properties = 'Computername', 'OSVersion', 'Manufacturer','RAM'
ViewName = 'default'
FormatType = 'table'
}
Get-Machineinfo | New-PSFormatXML @new
We edited the xml file to make some minor adjustments such as this snippet:
<TableColumnHeader>
<Label>MemGB</Label>
<Width>5</Width>
<Alignment>right</Alignment>
</TableColumnHeader>
...
<TableColumnItem>
<ScriptBlock>$_.RAM -as [int]</ScriptBlock>
</TableColumnItem>
We tested by manually running Update-FormatData.
PS C:\> get-machineinfo -Computername thinkp1
ComputerName OSVersion Manufacturer MemGB
------------ --------- ------------ -----
THINKP1 10.0.19041 LENOVO 32
The default output is now our custom table. The object is still there.
PS C:\> get-machineinfo -Computername thinkp1 | Select-object *
ComputerName : THINKP1
OSVersion : 10.0.19041
OSBuild : 19041
Manufacturer : LENOVO
Model : 20MD0029US
Processors : 1
Cores : 12
RAM : 31.5475845336914
SystemFreeSpace : 128774402048
Architecture : 64
We also created a second table view called ‘hardware’.
$new = @{
Path = 'TMMachineInfo\tmmachineinfo.format.ps1xml'
Properties = 'Computername','Manufacturer','Model','Processors','Cores',
'RAM','SystemFreeSpace'
ViewName = 'hardware'
FormatType = 'table'
Append = $True
}
Get-Machineinfo | New-PSFormatXML @new
Here’s a peek at some of the file.
...
<Label>MemGB</Label>
<Width>5</Width>
<Alignment>right</Alignment>
</TableColumnHeader>
<TableColumnHeader>
<Label>SysFreeGB</Label>
<Width>10</Width>
<Alignment>right</Alignment>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Manufacturer</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Processors</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Cores</PropertyName>
</TableColumnItem>
<TableColumnItem>
<ScriptBlock>$_.RAM -as [int]</ScriptBlock>
</TableColumnItem>
<TableColumnItem>
<ScriptBlock>[math]::Round($_.SystemFreeSpace/1GB,4)</ScriptBlock>
</TableColumnItem>
...
We modified the manifest:
FormatsToProcess = @('tmmachineinfo.format.ps1xml')
With the custom views we have a more flexible and easy to use tool.
Hardware View
The solution version of the module is in the download material for this chapter if you want to see all the changes we made.
Let’s Review
Review Answers
Adding Logging
Even though we’ve touched on this topic elsewhere in the book, it comes up so frequently that we felt we had to devote a chapter. We can’t tell you the number of times people ask about how to add logging to their function or they want to have a paper trail or their boss is being unreasonable. Whatever the case, hopefully we can shed some light on this subject and at least get you headed in the right direction.
We’ll tell you right now that there is no magic or hidden log command. You’ll have to build it. Which shouldn’t be that difficult once you finish this book. But we need to start with a question many IT Pros seem to over look.
Why Are You Logging
Let’s say you have written a killer function that has gotten you rave reviews from your boss and a big fat raise. But now the boss says, “We need to add logging to the command.” Without sounding flippant, your response should be “Why?”. The process for adding “logging” to your command is no different than the command itself. You need to gather some business requirements.
Your choice of scripting technique and commands will vary depending on these answers. Building a long term logging result for independent auditor will likely entail something different than a need to log offline or unreachable computers.
Logging or Transcript
During the course of requirements gathering you should at some point need to determine if you need a log or transcript. People will say they need logging when what they really want is a transcript of who ran the command and what happened. To our way of thinking, a log is some artifact that records specific pieces of information. A transcript is a written log of an interactive session or command.
PowerShell already has a built-in transcript feature and it supports nested transcripts. Here’s a taste of how you might take advantage of this feature.
Get-Bits
Function Get-Bits {
[cmdletbinding()]
Param([string[]]$Computername = $env:computername)
Begin {
$file = "{0}_{1}.txt" -f (Get-Date -f "yyyy_MMddhhmm"),
$($myinvocation.MyCommand)
$tfile = Join-Path -Path $env:temp -ChildPath $file
[void](Start-Transcript -Path $tfile)
Write-Verbose "Starting $($myinvocation.MyCommand)"
$PSBoundParameters | Out-String | Write-Verbose
}
Process {
foreach ($computer in $Computername) {
Write-Host "Getting BITS from $computer" -ForegroundColor green
Get-Service -Name Bits -ComputerName $computer
}
}
End {
Write-Verbose "Ending $($myinvocation.MyCommand)"
[void](Stop-Transcript)
}
} #end function
When someone runs the command, it will create a transcript file in the %TEMP% folder using a naming convention of a time stamp and the command name. All output from the command will be captured in the transcript file. It is up to you to figure out how to manage or use the transcript. One bonus about using a transcript is that it will include metadata about the user and their PowerShell session. You don’t have to code anything extra.
PowerShell also has other native logging features that may be what you really need. In PowerShell 7 you can read the help topic about_logging_windows or follow the online link. As with transcripts, you’ll have to figure out how to manage the logged results.
Structured vs Unstructured
So let’s say you’ve decided you need some type of logging, which doesn’t mean you can’t also add a transcript feature. And you’ve thought about what pieces of information you need to record and in what situations. Next you should decide what format to use. Do you need plain, unstructured results like a text file of events? Or do you need some sort of structured data like an XML or JSON object? Structured data tends to be something you can search or more easily manipulate than plain text. Or maybe you need to write log stuff to a SQL database.
This is where the answers to the questions we posed earlier come into play. If you need secure, long-term storage with reporting capabilities, writing to a SQL database may be the smart move. Or maybe you have your command emit a CSV file and with a separate process, you suck up all the CSV logs into a central database. Bigger companies can probably afford bigger tools so you’ll have to figure out what works for you.
Write-Information
We thought it might help to revisit the Write-Information command. This is a command that probably doesn’t get the love it deserves because most people don’t know about it or how to use it. Here’s a revision to the sample Get-Bits function that uses Write-Information.
Get-Bits with Write-Information
Function Get-Bits {
[cmdletbinding()]
Param(
[Parameter(Position = 0, ValueFromPipeline)]
[string[]]$Computername = $env:computername
)
Begin {
$start = Get-Date
$msg = "[$start] Starting $($myinvocation.MyCommand)"
Write-Verbose $msg
Write-Information $msg -Tags meta,begin
$count = 0
$errorcount = 0
$PSBoundParameters | Out-String | Write-Verbose
$cim = @{
ClassName = 'Win32_Service'
Filter = "name='bits'"
ErrorAction = "Stop"
Computername = ""
}
}
Process {
foreach ($computer in $Computername) {
$count++
$cim.Computername = $Computer
Write-Information "Query $computer" -Tags process
Try {
Write-Host "Getting BITS from $computer" -ForegroundColor green
Get-CimInstance @cim |
Select-Object @{Name = "Computername";Expression = {$_.SystemName}},
Name, State, StartMode
}
Catch {
$errorcount++
$msg = "Failed to query $computer. $($_.exception.message)"
Write-Warning $msg
Write-Information $msg -Tags process, error
}
}
}
End {
$end = Get-Date
$timespan = New-Timespan -start $start -end $end
$sum = "Processed $count computer(s) with $errorcount error(s) in $timespan"
Write-Information $sum -Tags meta,end
$msg = "[$end] Ending $($myinvocation.MyCommand)"
Write-Information $msg -Tags meta,end
Write-Verbose $msg
}
} #end function
The tags parameter lets you add whatever tagging taxonomy you’d like. If you are writing PowerShell in a team environment, we encourage you to define a standard set and usage guidelines. The information commands are ignored unless the user running your command knows enough to use the common information parameters.
$r = "thinkp1","srv1","srv3","bovine320" |
Get-Bits -InformationVariable iv -Verbose
All of the information records generated by Write-Information are stored in $iv. These are objects with their own set of properties.
PS C\> $iv | Select-Object -property TimeGenerated,MessageData,tags
TimeGenerated MessageData
------------- -----------
6/23/2020 1:15:49 PM [06/23/2020 13:15:49] Starting Get-Bits
6/23/2020 1:15:50 PM Query thinkp1
6/23/2020 1:15:50 PM Getting BITS from thinkp1
6/23/2020 1:15:50 PM Query srv1
6/23/2020 1:15:50 PM Getting BITS from srv1
6/23/2020 1:15:52 PM Query srv3
6/23/2020 1:15:52 PM Getting BITS from srv3
6/23/2020 1:15:54 PM Failed to query srv3. The WinRM client cannot process ...
6/23/2020 1:15:54 PM Query bovine320
6/23/2020 1:15:54 PM Getting BITS from bovine320
6/23/2020 1:15:55 PM Processed 4 computer(s) with 1 error(s) in 00:00:05.1028159
6/23/2020 1:15:55 PM [06/23/2020 13:15:55] Ending Get-Bits
Or you can filter on tags.
PS C:\> $iv | Where-Object tags -contains meta |
Select-Object -property TimeGenerated,User,MessageData |
Format-Table -GroupBy User -Property TimeGenerated,MessageData
User: BOVINE320\Jeff
TimeGenerated MessageData
------------- -----------
6/23/2020 1:15:49 PM [06/23/2020 13:15:49] Starting Get-Bits
6/23/2020 1:15:55 PM Processed 4 computer(s) with 1 error(s) in 00:00:05.1028159
6/23/2020 1:15:55 PM [06/23/2020 13:15:55] Ending Get-Bits
Due to some quirk with this object type, we had to pipe to Select-Object before we could use Format-Table.
The downside is that you are relying on the user. But here’s a trick you might try to take advantage of Write-Information, which is structured data if you haven’t figured that out, and persistent storage. In the End block of your function, insert code like this:
$xml = "$($env:computername)-{0}_{1}.xml" -f (Get-Date -f "yyyy_MMddhhmm"),
$($myinvocation.MyCommand)
$export = Join-Path -path C:\work -ChildPath $xml
$PSCmdlet.GetVariableValue($PSBoundParameters["InformationVariable"]) |
Export-Clixml $export
We’re defining a location for a file that we’re going to create by sending the information variable to Export-CliXml. Naturally, you need to ensure the location exists.
The second step is to provide a default value for the InformationVariable. In the module file or the .ps1 file that will be dot sourced, add an entry to PSDefaultParameterValues.
$PSDefaultParameterValues["Get-Bits:InformationVariable"]="myIV"
If the user runs Get-Bits without specifying the parameter, the default will be used, information records will be generated and exported at the end. If they specify the parameter, nothing changes. You still get your export, which the user won’t know about, and they get their variable to work with.
As we’ve hopefully made clear, “adding logging” is more than adding a few lines of Out-File. Or at least it should be. We’re giving you a lot of techniques and concepts in this book that you can use to build your own logging mechanism that meets your business requirements.
Toolmaking Tips and Tricks
We’ve been scripting and toolmaking since the earliest days of PowerShell. Throw in our experiences with VBScript and batch files and we’ve been automating since the days of dirt. We’ve shared as much of our experiences throughout the book, but there’s always something else – some little tidbit that might make your work easier or enjoyable.
So without further fuss, and in no particular order of importance, here are some things to keep in mind during your PowerShell toolmaking adventures.
code c:\scripts\mycooltool
This will launch VS Code and load the specified folder. You can then select files to edit from the file tree.
The change is immediate. Now, every time you create a new file VS Code will treat it as a PowerShell file which means you’ll get all the PowerShell-related functionality like snippets and command completion.
Function Get-Awesomeness {
<code> }
or after:
Function Get-Awesomeness
{
<code>
}
PowerShell doesn’t care where your braces are, but some people do.
Get-ChildItem ~\Documents -Directory | foreach-object {
$stats = Get-ChildItem $_.fullname -Recurse -File |
Measure-Object length -sum
$_ | Select-Object Fullname,@{Name="Size";Expression={$stats.sum}},
@{Name="Files";Expression={$stats.count}}
} | Sort Size
That’s a pretty unwieldy chunk of code. Something like this might make more sense in a script:
$folders = Get-ChildItem -path ~\Documents -Directory
Write-Verbose "Found $($folders.count) top level folders"
#process each folder and save all results to a variable
$data = $folders | foreach-object {
Write-Verbose "Processing $($_.fullname)"
#measure the total size of all files
$stats = Get-ChildItem -Path $_.fullname -Recurse -File |
Measure-Object length -sum
#write the custom object to the pipeline
$_ | Select-Object Fullname,
@{Name = "Size"; Expression = {$stats.sum}},
@{Name = "Files"; Expression = {$stats.count}}
} #end foreach folder
#write sorted results to the pipeline
$data | Sort-Object -property Size
You can also see how much easier it is to insert comments and Write-Verbose commands.
$folders = Get-ChildItem -path ~\Documents -Directory
Write-Verbose "Found $($folders.count) top level folders"
#process each folder and save all results to a variable
$data = foreach ($folder in $folders) {
$stats = (Get-ChildItem -path $folder.fullname -file -Recurse |
Measure-Object -Property length -sum)
#create a custom object for each top-level folder
[pscustomobject]@{
Path = $folder.FullName
Files = $stats.count
Size = $stats.sum
}
} #foreach folder
$data | Sort-Object -property Size
This code uses the ForEach enumerator in place of ForEach-Object and creates a custom object instead of relying on Select-Object. The end result is the same but this code took 3.6 seconds to complete. Is this approach better for saving 300 milliseconds? Is it better for you? That’s for you to figure out. You might test with different folders sizes. You might decide based on how easy it is to read the code. You might decide based on what else you are considering adding to the code. The point is, be open to testing alternative solutions.
Format Code
One of the best reasons for using VS code as your editor of choice is for its formatting features. We constantly talk about the importance of writing code that is easy to read. Using indentation and whitespace is a part of this. But we’re all a little lazy. Fortunately, VS Code can save us from ourselves. Suppose you have a chunk of code that is all left justified and otherwise not as well-formatted as you would like. Open the file in VS Code, right click anywhere in the document and select Format Document from the context menu. Or you can use the keyboard shortcut ‘Shift+Alt+F`. VS Code should then make your code “prettier” and more professional.
Note that VS Code needs to be able to identify your file as a PowerShell file. It also needs to be able to parse it without errors. If you have syntax errors or other problems that would prevent your code from running, formatting probably won’t work until you fix the errors.
PowerShell scripting and toolmaking is a much an art as anything. We can’t teach you to be “artistic” in your PowerShell scripting, but good mechanics and discipline will go a long way in making it an enjoyable and productive experience.
Part 6: Pester
We provided an introduction to Pester earlier in this book, but now we’d like to really dig deep. Pester is a pretty important part of the PowerShell universe these days, and if you’re going to be a professional-grade PowerShell toolmaker, you should make Pester a big part of your world.
Why Pester Matters
In the world of DevOps and automation, it’s crucial that your code - you know, the thing that enables your automation - be reliable. In the past, you’d accomplish reliability, or attempt to, by manually testing your code. The problems with manual testing are legion:
This is where Pester comes in. Simply put, it’s a testing automation tool for PowerShell code, as we explained earlier in this book.
The vision goes something like this:
The “miracle” here is some kind of automated workflow. VSTS, for example, might spin up a test environment, load your code into it, and run your Pester tests against your code. We’re not going to cover how to make the miracle work, as it’s not really a PowerShell thing per se, and because there are so many combinations of options you could choose. We are going to focus on how to write those Pester tests, though.
The big thing here is that you need to be writing testable code, a concept we’ll devote a specific chapter to. But if you’re looking for the short answer on, “what is testable code?” It’s basically “follow the advice we’ve been giving you in this book.” Write concise, self-contained, single-task functions to do everything.
The other thing you’ll want to quickly embrace is to write your Pester tests immediately, if not actually in advance of your code (something we’ll discuss more in the chapter on test-driven development). This is going to require an act of will for most PowerShell folks, because we tend to want to just dive in and start experimenting, rather than worrying about writing tests. But the difference between the adults and the babies, here, is that the adults do the right thing because they know it’s the right thing to do. Having tests available from the outset of your project is how you reap the advantages of Pester, and indeed of PowerShell more generally.
So that’s why Pester is important. We don’t think anyone should really write any code unless they’re also going to write automated tests for it.
It’s also important to understand what Pester really does, and this gets a bit squishy. First, it’s worth considering the different kinds of testing you might want to perform in your life. Here are few, but by no means all:
All of this is important to understand, because it helps you better understand what a Pester test looks like. If you’ve written a function that’s little more than a wrapper around ConvertTo-HTML, for example, then your Pester tests aren’t going to be very complex, because you probably didn’t write much code. You’re not trying to make sure ConvertTo-HTML itself works, because that’s not your code, so it’s not your problem in a unit test. Because so much of our PowerShell code is really leveraging other people’s code, our own Pester tests are often simpler and easier to grasp.
Core Pester Concepts
Although we touched on Pester briefly earlier in the book, we want to take a step back and really dig into some of its core concepts. A lot of people, we find, get a bit intimidated by Pester, and it’s mainly because they’re overthinking what it does. We don’t want that to happen to you, so please — start here.
Installing Pester
Pester actually shipped with Microsoft Windows for the first time in Windows 10 and Windows Server 2016. The problem is that the version shipping with the OS (3.4.0) is grossly outdated, and you can’t update it. Instead, you have to install a new version. This chapter is based on Pester 4.2.0, which was released right about the time we wrote this section of the book.
Most of our content should still be relevant and even correct. You’ll probably even find lots of Pester test examples in the wild. But be careful. In June 2020, Pester v5 was released with some major changes. The concepts which we’ll cover haven’t changed but some of the implementation details might. If you upgrade to v5 be sure to look at the release documentation
Installing a new version isn’t hard, as Pester is available in PowerShell Gallery, but because you’re installing a new version of a module that’s already installed in Windows, you have to take a couple of extra precautions. First, you must be running PowerShell as Administrator for this to work, meaning your console window must have “as Administrator” in the window title bar. Then, run this:
Install-Module -Name Pester -Force -SkipPublisherCheck
This will pull the latest Pester down from PowerShell Gallery and install it. From now on, you can update this newly installed version from the Gallery as new versions become available:
Update-Module -Name Pester
This will update the Gallery-installed version, not the “came with Windows” version. There’s no need to delete the “came with Windows” version, and indeed the OS will usually try and put it back if you do delete it.
For versions of Windows that don’t come with Pester, you can just run the Install-Module command above. For PowerShell versions earlier than 5, you may need to first install PowerShellGet from PowerShellGallery.com; PowerShellGet is where Install-Module comes from.
If you need it, https://pester.dev/docs/introduction/installation] contains more information about installing Pester in other situations.
What is Pester
The previous chapter dug into what Pester is at a high level, but let’s carefully present a technical definition:
Pester is a Behavior-Driven Development (BDD) Unit Test execution framework. Pester exposes a Domain Specific Language (DSL) for defining Unit tests, and a file naming convention that makes it easier to run tests in an automated fashion. Pester contains a set of Mocking functions, allowing it to mimic the functionality of any PowerShell command inside a test, thereby “faking” a command for the purposes of a test.
In short, Pester is a special set of PowerShell commands, written in PowerShell itself, which are used to define and run unit tests against your PowerShell code.
Pester’s Weak Point
Pester’s main weak point is that it’s designed to run and mock PowerShell commands. We get a lot of people who incorrectly conflate “doing stuff in PowerShell” with “PowerShell commands.” For example, the following is without a doubt a PowerShell script:
$Computer = 'COMPUTER1'
Try
{
$filter = "(&(objectCategory=computer)(objectClass=computer)(cn=$Computer))"
$ComputerObject = ([adsisearcher]$filter).FindOne()
$CertStore = New-Object System.Security.Cryptography.X509Certificates.X509Store "\\
\$Computer\My", "LocalMachine" -ErrorAction Stop
$CertStore.Open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadOnl\
y)
If ($CertStore.Certificates) {
Foreach ($Cert in $CertStore.Certificates) {
PERFORM ACTION WITH EACH CERT...
}
}
}
Catch{
CATCH ERRORS
}
But you’ll notice that there are basically no actual PowerShell commands being run, there. It’s all .NET Framework classes. Yes, this is in PowerShell, but if we may be deeply philosophical for a moment, this is not of PowerShell. It’s more like a C# program translated into PowerShell script. Pester will not be great at unit-testing this.
Instead, we’d suggest wrapping all of the above into PowerShell functions. That’s essentially been the theme for this entire book, right? Write PowerShell functions. Anything not already a PowerShell command (that is, a cmdlet or a function, for our purposes) should be made into a PowerShell command. No “raw” .NET Framework unless it’s wrapped in a PowerShell command. PowerShell commands maintain the consistency of PowerShell’s naming conventions and behaviors, and as a bonus are exactly what Pester can help you unit test.
So calling this “Pester’s weak point” is actually unfair of us. If you’re doing the right thing in PowerShell, then this isn’t a “weak point” in Pester; if you’re not doing the right thing in PowerShell, then this is your “weak point,” not Pester’s.
Understand Unit Testing
Unit testing, which is Pester’s first and main use case, is designed to do specific things. While we’re also going to show you (a bit later) some other kinds of tests Pester can do, it’s important to understand what unit testing is, what it is meant to do, and what it isn’t meant to do. Without really buying into the scope of what unit testing is for, it’s easy to go down a rabbit hole with Pester and spend all your time trying to do stuff that you’re really not meant to.
A unit test is very explicitly not meant to modify anything in the environment. It’s not supposed to talk to the network, make changes to a database, or anything else. Yes, those activities may introduce different kinds of errors, and you do need to test for those, but that’s an integration test, not a unit test. Unit tests are meant to be as self-contained as possible, and that’s actually where mocks come into play. If you’re writing a command which uses Get-DataFromDatabase (a second command you or someone else wrote), then you would mock Get-DataFromDatabase in your unit test. The mock would return some static “dummy” data, making it seem as if Get-DataFromDatabase was running, but in fact not actually running it. This way, your unit test is only testing your code, not the code from Get-DataFromDatabase as well. Get-DataFromDatabase would, presumably, have its own units tests to test its code.
There’s a great comparison chart between unit testing and integration testing at https://www.guru99.com/unit-test-vs-integration-test.html, and it’s worth a few minutes to read it. Unit testing isn’t meant to ensure the Total Correct Functionality of code you write; it’s meant to catch specific kinds of problems. Integration tests may be necessary, but they’re a distinct thing, harder to write, and harder to execute, and harder to maintain. So we start with unit tests.
Scope
Compared to stricter, more full-fledged programming languages, PowerShell is pretty lightweight when it comes to scope. Basically, the shell itself is a global scope, any scripts you run get their own script scope, and the inside of any functions is an independent scope. But that’s it: inside a ForEach loop, for example, isn’t a distinct scope. So PowerShell coders aren’t usually accustomed to thinking a whole lot about scope.
Pester provides a rich scoping mechanism. It includes three basic structures, which we’ll discuss in the coming chapters: Describe, Context, and It. Each of these represents their own scope, meaning certain things done within those structures “vanish” when the structure is finished executing. It’s important to pay attention to that scoping as you go, because you can create some pretty unexpected results if you don’t. We’ll dig into the specifics as we hit each structure, but we wanted to call out the importance of paying attention to scope right up front.
Here’s a simple way to think about scope: how would you manually test a function that you’ve written? You might start by running it with a particular set of parameters, providing sample input to each of them, and then examining several pieces of output to make sure they were as you expected. You might then run it a second time with similar parameters but slightly different input, and again check the output. Then you might run it in a completely different way, with totally different parameters and input, and check the output again. Pester actually provides structures where you’d define those three tests, and they might very well end up being different scopes, depending on how you needed to manage the input data between those three test runs.
Sample Code
For the remainder of our Pester chapters, we’re going to use the following as the function we’re writing unit tests for. You’ll find this in the downloadable sample code, if you want to pop it open in VS Code and follow along with us.
Get-ServiceRemote
function Get-ServiceRemote {
[CmdletBinding()]
Param(
[Parameter(Mandatory,
ValueFromPipeline,
ValueFromPipelineByPropertyName
)]
[string[]]$ComputerName,
[Parameter(ValueFromPipelineByPropertyName)]
[Alias('Name')]
[string[]]$ServiceName
)
if ($PSBoundParameters.ContainsKey('ServiceName')) {
Invoke-Command -ComputerName $ComputerName -ScriptBlock {
Get-Service -Name $using:ServiceName
}
} else {
Invoke-Command -ComputerName $ComputerName -ScriptBlock {
Get-Service
}
}
}
This isn’t meant to be a fancy script. It’s just designed for a PowerShell 7 world, where Get-Service no longer has a -ComputerName parameter. Instead, it’s making a convenient replacement for Get-Service that uses PowerShell Remoting under the hood. It will default to retrieving all running services from each specified computer, and it can optionally retrieve only a specified list of services.
Let’s go ahead and get a basic Pester test file set up for this script, and add this script to a file.
New-Fixture
The Pester module includes a command that makes it brain-dead easy to scaffold up TDD environment. The Pester paradigm is that your tests are written before your code so the New-Fixture command will create the outline of a Pester test and a file for your command. Because these files are considered a discrete unit, they will be created in a separate directory. You need to provide the path to that directory and the name of the command you are creating. Pester will create the folder if it doesn’t exist.
If you end up using the Plaster module template we provide this will add the testing framework for you.
New-Fixture -path c:\tools -name Get-ServiceRemote
This will create two files in C:\tools: Get-ServiceRemote.ps1 which will be the script file and Get-ServiceRemote.Tests.ps1 which in the unit test file. The script file is nothing more than an empty Function declaration:
Function Get-ServiceRemote {
}
You can copy the sample code from the downloads into this file. The Tests file handles loading the command (which you supposedly haven’t written yet) and defines a simple Describe block with a sample test.
$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Get-ServiceRemote" {
It "does something useful" {
$true | Should -Be $false
}
}
Pester assumes that the name of your test file begins with the name of the command you intend to test. The code before the Describe block is kinda optional and can be modified as needed. In our case since we are testing a standalone function it needs to be dot sourced. Later, when we get to testing a module, we might modify this to import the module being tested. Or add whatever other code you might need to setup your unit tests. But for now this should suffice.
Writing Testable Code
Before we go any further, we need to stress that Pester isn’t designed to work with just any old script you might bang out. Like, you could probably get it to effectively test pretty much anything, but you’d have to put a lot of unnecessary effort into it.
Pester is designed to test tools. Modularized, self-contained functions that receive their inputs via parameters, and produce output to the PowerShell pipeline. That’s Pester’s bread and butter, and not incidentally it’s the pattern this entire book has been pushing you to use (as does “Learn PowerShell Scripting in a Month of Lunches,” this book’s “prequel”). Pester will work great if you’re following PowerShell’s native patterns and practices which, again, is what this book has focused on. If you’re just cranking out ad-hoc scripts with no structure, no parameters, and not really using the pipeline, then Pester isn’t your guy. You’re not toolmaking.
So before you even dip your toe into Pester-infested waters, stop and look at your code. Here are some warning signs that you’ve done things wrong:
Your code isn’t a function. Pester is designed to test tools, which in PowerShell’s world are commands, which in our specific case means advanced functions.
Your input doesn’t come from parameters. 100% of a function’s input should come from parameters. Not out-of-scope variables (although a module-level variable could, for example, be used as the default value of a parameter). Not from files (although part of your code’s purpose might be to read files). Only parameters. Of course, some of those parameters might accept pipeline input, which is fantastic. But the point is that parameters represent the only way for data to enter your function and control its behavior.
Your output doesn’t go wholly to the pipeline. This doesn’t mean you can’t produce other kinds of messages, by using commands like Write-Verbose or Write-Error; those aren’t “output,” though. You shouldn’t be using Write-Host, unless the only purpose of your command is to display information on-screen. Now, sometimes, your functions might not produce any output. That’s fine. Maybe your function accepts input and formats it into a file on disk (which, for our definition, is a work product and not output per se), or puts something into a database, but doesn’t write anything to the pipeline. Fine. More than likely you have internal code that is using PowerShell commands to achieve those ends. That is something you can test with Pester.
Your function does more than one thing. The classic example of this is a function with a -ComputerName parameter to accept computer names, but also a -FilePath parameter, giving it the path of a text file which it will open and read computer names from. This is two different things, and the -FilePath thing should go away. You don’t want the same kind of potential input (computer names, in this case) coming from multiple possible sources within the function itself. This isn’t so much a “will break Pester” thing as it is a bad design pattern that will make testing (and debugging, and maintenance, and usage) harder than it should be.
If you can safely say that your code doesn’t violate any of these patterns, then you’re good to keep reading.
What to Test
We’ve touched on this a bit, but we wanted to pull out some more specific discussions are the idea of “what exactly do I test?” since it’s an area that often gets Pester newcomers pretty wound up. We’ve some core guidelines that’ll get you started.
Don’t test other people’s commands. Look, if Get-ADUser isn’t functioning, there’s not much you can do about it. You don’t necessarily need to write a test to confirm that someone else’s commands are working; they should have done that. So you’ll usually mock other people’s commands, so that they don’t represent a “moving part” in your code that you have to worry about. In some cases, you may find that once you mock everyone else’s commands, there’s not much left to your command except parameter definitions. That’s fine!
Don’t just test the positive. You don’t want to only write tests that makes sure things run the way you expect. You also need to write tests to verify “negative” conditions. That means feeding bad parameters to your commands, to make sure everything behaves as it should. It means feeding incorrect data or object types to your parameters. It means forcing your command to run in a situation that’ll generate an error. You want to test all the “use cases.”
Test parameter conditions. A big part of Pester testing is making sure your own parameters behave the way you want. Make sure they’re accepting the right object types, make sure parameter sets behave the way you want, etc. If you’ve declared a parameter as mandatory, test to make sure that PowerShell is treating it that way. We don’t do this because we mistrust PowerShell, we do it because if someone else gets into our code and removes the Mandatory attribute on a parameter, our test will catch that as a fail condition.
Describe Blocks
When you had Pester set up its basic template for tests, it created a single Describe block for you. This is where you’ll start writing your tests.
We’ve discussed the importance of scope in Pester, and Describe is the “outermost” scope Pester offers. When you define mocks, or use Pester’s TESTDRIVE: testing drive location, those things persist throughout the Describe block and then cease to exist after the Describe block finishes. In many cases, you can probably get away with a single Describe block for all of your tests. However, in many other cases you’ll end up breaking your tests into different Describe blocks, within the same script file, so that you can separate the mocks and TESTDRIVE: uses of different test scenarios. Other times, with especially large test sets, you may use multiple Describe blocks simply to help keep your various test scenarios organized.
A simple Describe block comes with just a name, that… well, describes the scenario you’re testing.
Describe "Get-ServiceRemote" {
}
Describe "Do-Something with database input" {
}
Describe "Do-Something with file input" {
}
You can also tag these blocks. Doing so allows you to run only those block having a certain tag. This is really useful when, for example, you’re developing a whole bunch of tests and you only need to be able to run certain sets of them at a time. Group those sets into Describe blocks that have tags:
Describe -Tag "FileTests" "Get-ServiceRemote" {
}
Describe -Tag "FileTests","Remoting" -Name "Get-ServiceRemote2" {
}
Pester doesn’t care if you define tags before or after the description. But you should try to be consistent.
In the second example, there, we explicitly used the -Name parameter, which we didn’t do previously.
And that’s kind of all there is to Describe. It’s not meant to be complex or complicated; it’s just the outermost holder that Pester works with. A Describe is the smallest unit of work Pester can execute; when you run tests, you’ll run at least one Describe, and everything it will execute.
In Pester terms, a Describe block can contain Context blocks and It blocks, both of which we’ll discuss in the upcoming chapters. But more broadly, a Describe block can contain pretty much any other PowerShell code you might want, and it will execute those top-to-bottom, just like any PowerShell script. For example, prior to executing any tests, you might create a sample CSV file in the Pester TESTDRIVE:, and then use that CSV file in the tests that follow.
Context Blocks
The Context block is one of two Pester structures, in addition to It, that can live in a Describe block.
You can kind of think of Context as a mini-Describe that lives inside a Describe. That is, like a Describe block, a Context block acts as a scope for your tests. Mocks and the contents of TESTDRIVE: which are created within the Context block will be cleared after the Context block reaches its end. It’s worth noting that the TESTDRIVE: business is a little tricky. Files added to TESTDRIVE: inside a Context will be removed; files removed inside a Context will not miraculously come back to life, and changes to files already in TESTDRIVE: will persist.
A Context block, in Pester terms, can contain It blocks, and the purpose of Context is to logically group some number of It blocks that require a shared scope. A Context block, like a Describe block, can also contain other PowerShell commands if needed.
It’s entirely possible to not use Context at all. If your tests are small and only require a single scope, then you might not find any reason to sub-group them in Context blocks. If you only have one Context block, then you didn’t really need it; the containing Describe block would have been sufficient.
BeforeEach and AfterEach
This is a good time to discuss the BeforeEach and AfterEach structures, although they’re valid in a Describe block as well as within a Context block. These structures are scoped; if you define them in a Context, then they apply only to that Context, which is why we usually see them in a Context and not in a Describe.
These are designed to let you define set-up and tear-down code, which will run before each It block and after each It block. Say, for example, that each little test you run requires a database connection. You want to make a fresh connection for each test, for some reason - perhaps to ensure each one is completely isolated from the others. So in a BeforeEach, you’d set up the connection, in the AfterEach, you’d close the connection, and use the connection in each It block. That’d help modularize the connect/disconnect code into a central place. Any variables defined in a BeforeEach or AfterEach are valid within your It blocks.
BeforeEach and AfterEach can be defined in both Describe and Context, as we’ve already mentioned. We traditionally put them at the top of whatever block they’re within, because that keeps them visible - otherwise, we worry about forgetting they exist and screwing something up. That’s important to remember: even if an If block precedes your AfterEach and BeforeEach, they will still apply to that It block. No matter where BeforeEach and AfterEach are defined, they apply to the entire Describe or Context they live in. That’s why we like to keep them at the top, as a reminder that they’re there.
In the event that you define these in both a Context and its containing Describe, the order of execution goes like this:
These are simple to define:
Describe "Get-ServiceRemote" {
BeforeEach {
}
AfterEach {
}
Context {
BeforeEach {
}
AfterEach {
}
}
}
It Blocks
The It block is the heart of Pester. This is an actual test. The Describe and Context blocks we’ve discussed up to this point are all about containing, organizing, and scoping tests; the It block is the test itself (and must live inside either a Describe or a Context block).
In testing lingo, the It block is where you define assertions, and each It block should normally contain one assertion. Think of an assertion as an English statement, such as, “this command will return two objects if I run it and provide two computer names.” It is your expectation. The It block is where you actually run it with those two computer names, and then see if it indeed behaves as you have asserted. It blocks get a name, which should pretty clearly describe what’s been asserted:
It "returns two objects when run with two computer names" {
}
The It block is not the assertion itself; it’s stating what the assertion will be, and providing a small container for the test code to live in. It blocks have to end in one of 5 states:
All It blocks have a name, and you can explicitly use the -Name parameter if you like:
It -Name "returns two objects when run with two computer names" {
}
But a lot of people don’t use the parameter name, simply because not doing so lets the whole thing read as an English sentence:
It "rubs lotion on itself or it gets the hose" {
}
There are some other parameters you can play with:
The -Test parameter is what holds the actual code. As with the -Name parameter, it’s rare to see this explicitly used, but it would look like this:
It -Name "returns two objects when run with two computer names" -Test {
}
Omitting both the -Name and -Test parameter names makes the It block read more like a PowerShell construct, like an If construct, which is what It is pretending to be.
The -Skip parameter is just a switch, and it tells Pester to skip the It block. You’d normally do this instead of just “commenting out” an unused test, because it keeps the test explicitly listed, as “Skipped,” in the test output. Similarly, -Pending will also skip the test and output it as “Pending.”
The -TestCases parameter is the most complex, and requires that you be familiar with the PowerShell concept of splatting. As a reminder, splatting is a way of bundling up a command’s parameters into a dictionary or hash table. So, instead of running this:
Get-CimInstance -Class Win32_Service `
-ComputerName SERVER1 `
-Filter "Name LIKE '%svchost%'"
You could instead do this:
$params = @{
Class = "Win32_Service"
ComputerName = "SERVER1"
Filter = "Name LIKE '%svchost%'"
}
Get-CimInstance @params
The -TestCases parameter takes an array of those dictionary objects. So, you’d define several variations of our $params variable, feed them to -TestCases, and the It block would automatically repeat one time for each dictionary object you fed in. You include placeholders in the It block’s name to “pull in” those values, so that your test output will clearly show what’s happening. Each time the It block runs, a new dictionary will be splatted to the test block, allowing you to use those values. You’ll need to construct a Param() block, inside the test code and with matching parameter names, for this all to work. Here’s an example (pretend that this is inside a Describe block):
$params[0] = @{CN='SERVER1';Class='Win32_Service'}
$params[1] = @{CN='SERVER2';Class='Win32_Service'}
$params[2] = @{CN='SERVER2';Class='Win32_Process'}
It "Gets <Class> for <CN>" -TestCases $params {
Param($CN,$Class)
Get-CimInstance -Computer $CN -Class $Class
}
This example would run three times. The hashtable values will be splatted as parameters to the test code. As an added bonus Pester will also pass the values to the It statement.
Describing Foo
[+] Gets Win32_Service for SERVER1 66ms
[+] Gets Win32_Service for SERVER2 14ms
[+] Gets Win32_Process for SERVER2 20ms
Now, it’s super important to realize that this is a partial example. We’ve not actually made any assertions; we’ve just set up the structure in which we could do so. We’ll play with this a bit more in the next chapter, though, which is where those assertions actually get made.
Should and Assertions
When you run code inside an It block, you normally examine the output of your code to see if it’s what you expected. This examination is called the assertion of the test. It’s where you lay out what you think should have happened. Pester’s convention is to throw a terminating error, using the PowerShell throw command, if the assertion was not met. It’s kind of a, “no news is good news” attitude; if the assertion failed, you throw an error. If the assertion succeeded, you don’t do anything.
It is hugely important to realize that you can run any code you want in the It block to examine the output of whatever it is you’re testing. All you need to do is throw an exception if things aren’t up to snuff. However, for convenience and better readability, Pester provides the Should command, along with a variety of comparison operators. The Should command accepts your assertion, and you’re meant to pipe output to it. If that output and the assertion match, Should doesn’t do anything. If they don’t match, Should throws a terminating exception. Let’s take this really simple example:
It "returns 4" {
$var = 2 + 2
If ($var -ne 4) {
Throw "was not 4"
}
}
This is completely legal, but it’s a little harder to read than this:
It "returns 4" {
$var = 2 + 2
$var | Should -Be 4
}
Internally, Should is basically doing the same If logic with a Throw, but it reads more easily, making the test itself easier to understand, follow, and maintain. Should supports a universal -Not switch, which looks like this:
It "doesn't return 4" {
$var = 2 + 3
$var | Should -Not -Be 4
}
Let’s return to the example from last chapter, and add some assertions:
$params[0] = @{CN='SERVER1';Class='Win32_Service';Count=100}
$params[1] = @{CN='SERVER2';Class='Win32_Service';Count=100}
$params[2] = @{CN='SERVER2';Class='Win32_Process';Count=100}
It "Gets <Class> for <CN>" -TestCases $params {
Param($CN,$Class,$Count)
(Get-CimInstance -Computer $CN -Class $Class).Count |
Should -Be $Count
}
Here, we’ve added an addition parameter to each hash table, indicating how many objects we expect each command to return. We’ve used that in our Should assertion. So this will run three tests. Note how we contained our main command in parentheses, so that we could access the Count property of the array that the command should return.
Should Operators
The power of Should comes in its various operators. This is not an exhaustive list.
Just bear in mind that you don’t have to use Should; if you have some situation that one of these operators doesn’t cover, you can code up whatever logic you need, and just Throw an exception to indicate a failed assertion.
See https://pester.dev/docs/usage/assertions for more details.
Mocks
Mocks are, for us, the heart and soul of what makes any testing framework so useful. To understand the purpose of mocks, you first have to embrace something that a lot of people don’t always take to easily:
The purpose of unit testing is to test your code, not someone else’s.
Consider our sample function:
Get-ServiceRemote
function Get-ServiceRemote {
[CmdletBinding()]
Param(
[Parameter(Mandatory,
ValueFromPipeline,
ValueFromPipelineByPropertyName
)]
[string[]]$ComputerName,
[Parameter(ValueFromPipelineByPropertyName)]
[Alias('Name')]
[string[]]$ServiceName
)
if ($PSBoundParameters.ContainsKey('ServiceName')) {
Invoke-Command -ComputerName $ComputerName -ScriptBlock {
Get-Service -Name $using:ServiceName
}
} else {
Invoke-Command -ComputerName $ComputerName -ScriptBlock {
Get-Service
}
}
}
Get-Service isn’t our code. We didn’t write that, Microsoft did. So we’re not going to try and test it. If it’s broken, we can’t fix it. Because it’s not ours, we need to somehow “remove it” from our test — and that’s what a mock lets us do. We can mock, or fake out, that command for our testing purposes. Rather than running the real Get-Service, we’ll run a fake version that returns a predetermined output.
You’re going to want to create a mock for any commands in your script that aren’t yours, and that aren’t the specific subject of a test.
Where to Mock
The next question is, “where do I put mocks?” You’ve got three basic choices:
Generally speaking, you want to put your mocks in the smallest scope that the mock will apply to. Keep in mind that you’ll often code a mock to produce some predetermined output that the rest of your code will work with; that output might need to be different for different tests. So you might end up mocking a given command multiple times, with slightly different fake output each time.
A mock that will apply globally to all of your tests might best live in the top-level Describe block. If you’ve got a couple of Context blocks, and each one might need a different mock, then the Context would be the place for those mocks. If you’ve got a mock that will apply only to a specific test, then it might live inside the It for that test.
Defining a mock at a low level will override any mocks for the same command defined at a higher level. So, an It block mocking Get-Service would override any mocks for Get-Service appearing in the containing Context or Describe blocks.
If you are using Pester v5.x there might be some slight variations from what we are going to show you. You’ll need to check the latest documentation for proper implementation.
How to Mock
The most basic mock requires the name of the command you are mocking and a scriptblock of code. The code in the scriptblock returns a hashtable with only the keys (fake properties) that you need. Here’s how you do it:
Mock Get-Service {
return @{'Name'='Svchost'}
}
Pretty easy! This will return a single object having a Name property, which will contain “Svchost.”
Verifiable Mocks
You can also mark a mock as verifiable. It looks like this:
Mock Get-Service {
return @{'Name'='Svchost'}
} -Verifiable
By itself, this does nothing. However, somewhere in one of your It blocks you can run Assert-VerifiableMocks. This command will then scan for any mocks that you’ve defined as -Verifiable, and make sure that each of those mocks has been run at least once. If it finds one that hasn’t been run, it throws an exception. Inside of an It block, that exception causes the test to fail. This is kind of an easy way of making sure that the code you’re testing ran through all of the code paths you wanted it to. It’s a way of saying, “I want to check and make sure my code actually tried to run Get-Service, and if it didn’t, I want to fail that test.”
There’s a similar command called Assert-MockCalled that’s more granular and specific. It doesn’t care about -Verifiable at all. Instead, you give it the name of the specific mock you’re interested in, and the minimum number of times you wanted that mock to be called:
Assert-MockCalled Get-Service -Times 3
If the Get-Service mock was called fewer than three times, an exception is thrown. You can also make it check for an exact number of calls, meaning it can’t be less or more than the times you specify:
Assert-MockCalled Get-Service -Times 3 -Exactly
Parameter Filters
This is a super-fancy addition to a mock. It’s a bit like parameter sets in PowerShell, enabling you to define a different mock for the same command, based on the inputs passed to the command using the -ParameterFilter scriptblock. In the scriptblock you define a comparison using the mocked parameter name as a variable.
Here’s a quick example:
Mock Get-Process { Return @{'Id'=1234;'Name'='svchost'}) `
-ParameterFilter { $Name -eq 'svchost' }
This mock will only run if Get-Process -Name svchost is run. If your code tries to just run Get-Process by itself, with no -Name svchost, then the mock wouldn’t run in response to that. If you needed a mock that would apply to command without any parameters, you could define another mock:
Mock Get-Process { Return @{'Id'=789;'Name'='notepad'})
With this mock, any Get-Process command in your code will get an object with a predefined ID and Name.
Mocking the Unmockable
A trick with mocks is that they can only “fake out” PowerShell commands. So if you’ve got code that runs this:
[System.Math]::Abs($x)
You can’t mock that, because it’s a .NET Framework static method, not a PowerShell cmdlet or function. That’s why we hold firm to our opinion that all .NET Framework calls should be “wrapped” in a function:
Function Get-AbsoluteValue {
Param(
[float]$inputObject
)
[System.Math]::Abs($inputObject)
}
Now, we can mock the Get-AbsoluteValue command if we need to. By the way, this also applies to any command line utilities you might need to run. You cannot mock an expression like whomai /user /fo csv but you can if you wrap it in a PowerShell function.
Read the help topic about_mocking for more examples.
Pester’s TESTDRIVE
So many operations require some sort of disk access that Pester provides a specific disk drive, the TESTDRIVE:, for that purpose. There are two main advantages to using TESTDRIVE: and, as we’ll discuss, only use TESTDRIVE:, for file access during your tests.
If you’re curious, Pester dynamically creates the TESTDRIVE: under your %TEMP% folder. In most situations this won’t matter to you. But depending on your test, you may need to use a cmdlet like Convert-Path to resolve TESTDRIVE: to a “real” file path.
Clean Slate and Auto-Cleanup
TESTDRIVE: is well-scoped. What that means is, it “starts” existing when a Describe block runs, and it ceases to exist after that Describe block finishes. Further, once you enter a Context block, if you use those, Pester “tracks” what’s done inside that block. Once the Context block ends, TESTDRIVE: reverts back to whatever it looked like when the same Context block started.
That reversion is a little less magical than you might think, though. It only applies to file creation. So, any file created inside a Context block will be deleted once that block finishes. Any files that exist prior to the Context block that get changed inside the Context block will remain changed after the block completes. Similarly, if you delete a file within a Context block, it stays deleted.
Working with Sample Data
One thing we deal with a lot when writing unit tests is the creation of test data. For example, suppose you have a command that’s intended to take pipeline input from a CSV file. How should you do that? After all, the test data won’t exist on TESTDRIVE:, and ideally, you shouldn’t read test data from any other location because that would involve creating permanent artifacts on the testing system. So what do you do?
One option is to simply mock a command like Import-Csv so that, instead of reading an actual file, it just spews out test data that you hard-code into the mock itself.
Another option is to, at the start of a Describe or Context block, write out hard-coded test data to a file on TESTDRIVE:. You can then read or modify that data throughout your test as needed, knowing that it’ll vanish once the block exits or the test is complete.
It may seem like “cheating” to hard-code test data into your tests, but we don’t see it that way. We see it as making the tests more self-contained. It also helps the test preserve knowledge of past bugs. For example, one famous kind of bug involves people’s last names being inserted into databases, using less-than-ideally-designed queries. A name like “O’Shea,” with that single quote in the middle, can break those queries. Once you realize that, you can make sure that kind of name is included in your test data, preventing that kind of bug from ever happening again. That’s really the ultimate goal of a unit test: to make sure bugs you’ve solved in the past never crop up unnoticed again.
Using TESTDRIVE
Use TESTDRIVE: just as you would any other drive. Instead of starting paths with C:, just start them with TESTDRIVE:. Here’s a sample function that creates an HTML report.
New-DiskReport
Function New-DiskReport {
[cmdletbinding()]
Param(
[Parameter(Mandatory)]
[string]$Computername,
[Parameter(Mandatory)]
[ValidatePattern("\.htm(l)?$")]
[string]$Path
)
$cimparams = @{
ClassName = 'Win32_logicaldisk'
filter = "drivetype=3"
ComputerName = $Computername
}
$data = Get-CimInstance @cimparams | Select-Object -property DeviceID,
VolumeName,
@{Name="SizeGB";Expression={$_.size / 1gb -as [int32]}},
@{Name="FreeGB";Expression={[math]::Round($_.freespace/1gb,4)}},
@{Name="PctFree";Expression={[math]::Round(($_.freespace /$_.size) * 100,2)}}
$htmlParams = @{
Title = "$($Computername.toUpper()) Disk Report"
PreContent = "<H1>$($Computername.toUpper())</H1>"
}
$html = $data | ConvertTo-Html @htmlParams
Set-Content -Value $html -Path $Path
} #end function
We might build a Pester test to verify a file gets created.
Describe New-DiskReport
Describe New-DiskReport {
Mock Get-CimInstance {
return @{
DeviceID = "C:"
Size = 200GB
Free = 100GB
VolumeName = "System"
}
} -ParameterFilter {$classname -eq 'win32_logicaldisk' -AND `
$filter -eq "drivetype=3" -AND $computername -eq 'FOO'} -Verifiable
New-DiskReport -Computername FOO -Path TESTDRIVE:\foo.html
It "Should call Get-CimInstance" {
Assert-VerifiableMock
}
It "Should create a file" {
Test-Path -Path TESTDRIVE:\foo.html | Should be $True
}
It "Should throw an error with an invalid file extension" {
{New-Diskreport -computername FOO -Path TESTDRIVE:\foo.ht} | Should Throw
}
}
The html file is actually created in TESTDRIVE:. We aren’t mocking the Set-Content cmdlet. As long as the test is running we could do whatever we wanted with the file such as testing to ensure it is greater than 0 bytes or looking at the content. When the test finishes the drive is removed including our test file.
Pester for Infrastructure Validation
So far, we’ve discussed Pester’s use as a unit testing framework. As we outlined in the beginning of this Part, unit testing tries really hard to never make actual changes to the system. That is, you try to exercise your code up to the point where something actually happens, and at that point, you try to use mocks so that you’re not actually changing anything. The idea here is to isolate your code as much as possible from the external world, so that you’re testing just your code.
But plenty of administrators need to go a bit further. In addition to their unit tests, they want to step up to letting their code actually make changes, and then testing to see if those changes were made as desired. That’s what the community often refers to as validation testing, or specifically in the case of server and network infrastructure, infrastructure validation.
This might be creating a bunch of Active Directory users, and then verifying that they were in fact created correctly. Or it might involve configuring a remote server in a certain way, and then testing to see that the configuration “took” as expected. But you need to be a bit careful in how you scope these validation tests.
For one, think about how you’re going to validate. For example, if you’re writing code that uses New-ADUser to create a new user account, and then plan to use Get-ADUser to see if the accounts were really created… well what, exactly, are you testing? “I just want to make sure New-ADUser worked” is a poor answer, because that’s not your code. If it’s “I want to make sure that I fed the right data to the New-ADUser parameters,” then that’s a better answer, although you could potentially verify that by cleverly mocking New-ADUser. Anyway, what you don’t want to do is put yourself in a position where you distrust All The Code Ever Written By Anyone, because your test workload will quickly balloon out of control. Think about why you’re testing, and if the answer is, “I don’t trust someone else’s code,” make sure you’ve a reason for that lack of trust beyond mere paranoia.
Spinning Up the Validation Environment
Of course, since you’re going to be making changes to an actual environment, you’ll need a test environment. This is part of what continuous integration frameworks like Team City and its ilk are for: they can help coordinate the spin-up and provisioning of virtual machines, which you can run your tests against and then de-provision. In no circumstances should you run validation tests against your production infrastructure. If spinning up a validation environment is going to be a bunch of manual tasks for you, then you’re not ready for validation testing; this is only a good idea if you can automate the entire process from start to finish, and if you have tools that will let you do so.
Taking Actual Action
It’s likely that you’ll be mocking fewer commands in a validation test, since much the point of it is to let stuff actually happen. But that doesn’t mean you won’t need to set up certain pre-conditions. That might include test data files, or specify certain environmental configurations. You might “inject” those into the environment at the start of your Describe block, or you might have them “baked into” the environment in the form of virtual machine images or something similar. Whatever the case, the key thing here is to understand that there’s a bit more “setup” involved, because you’re no longer simply focused on your code and only your code.
Timing your tests can be tricky, too, which again is where orchestration tools can come into play. For example, if you’re authoring Desired State Configuration (DSC) resources, you may need to spin up a test virtual machine, inject a DSC configuration that uses your resource, let DSC stew on all that for half an hour or whatever, and then run your Pester tests. Those are all tasks you’ll have to plan out, and the highlight how much more complex validation testing can be.
Testing the Outcomes of Your Actions
Your It blocks and Should commands remain the foundation of your tests. For example, suppose you need to ensure that a given test virtual machine has build 2004. You might:
It "Has Windows build 2004" {
$p = @{
ComputerName='TESTMACHINE'
Class='Win32_OperatingSystem'
}
Get-CimInstance @p |
Select-Object -Expandproperty BuildNumber |
Should Be 2004
}
This would throw an exception, failing the test, if the correct result didn’t come back. And as always, you don’t need to use Should; you can use any kind of code you want, and simply throw an exception if your criteria aren’t met.
This is a very different approach to testing, but it’s one Pester is well-suited for. Obviously, there’s a lot more “lifting” on you, in terms of setting up test environments, deciding what to test, and coding up the tests themselves, but if this is what you need to do, then you now have an idea on how to go about it.
Measuring Code Coverage
Code coverage is the idea of making sure that your unit tests are “exercising” all of your code. For example, consider this snippet:
If ($condition) {
Get-CimInstance -Class Win32_Service
} else {
Get-WmiObject -Class Win32_Service
}
You’d want to make sure that a unit test of this code ran both possible conditions. You’d likely mock both Get-CimInstance and Get-WmiObject, since they’re not your code, but you’d want to ensure that both “code paths” executed under the correct conditions.
Pester can help you measure your tests’ code coverage, so that you can better estimate if every “code path” has run. However, Pester’s code coverage tools, like similar tools in any unit testing framework, can only do so much. Specifically, they can simply look at the number of lines of code you’ve written, and tell you how many of those lines have actually executed. What they can’t do is make sure you’re testing all the different conditions you should be. In the above snippet, for example, you might think to write one test where $condition is $True, and another where it’s $False. If you ran both of those tests, Pester would indicate that you’d hit 100% code coverage for that snippet. But Pester couldn’t remind you to test your code where $condition was equal to "Purple" or some other unexpected value. In other words, Pester can’t tell you if you’ve run a complete test of all logical possibilities; merely if every line of code has executed. So code coverage is a tool, but it’s not the only tool you should use. The best tool is your own brain, and your understanding of your code.
Displaying Code Coverage Metrics
Unlike Pester itself, which will run on PowerShell v2 and later, code coverage metrics require PowerShell v3 or later. We’re trusting this is no longer an issue for you bue we don’t want to make any assumptions.
To generate code coverage statistics, simply add the -CodeCoverage parameter when you run Invoke-Pester to execute your tests. The parameter accepts strings, which should be the file paths (and can include wildcards) of the scripts you want to generate coverage for. You can also get more granular by passing a hash table to the parameter, like this:
@{ Path = 'c:\path\to\script*'
Function = 'Get-*'
StartLine = 120
EndLine = 150 }
Only Path is required (and you can use p instead). If you specify Function (or f), you can provide the name of a function (or wildcards) that you want to generate coverage metrics for. Alternately, you can provide StartLine and EndLine (or s and e); these will be ignored if you used Function or f, but otherwise indicate the lines of code you want coverage metrics for. If you include StartLine and omit EndLine, it’ll just run through the end of the specified file(s).
Even though we’re trying to provide an introduction to code coverage, this is far from exhaustive coverage. Be sure to read full help for Invoke-Pester looking at the code coverage related parameters.
An Example
Let’s look at a relatively simple example. The script file and Pester test are included in the chapter downloads. Say you have a function like this that resides in the file FunctionToTest.ps1
Get-MyServer
function Get-MyServer {
[cmdletbinding()]
Param(
[Parameter(Mandatory, ValueFromPipeline)]
[string]$Computername,
[switch]$ResolveIP,
[switch]$UseDcom,
[pscredential]$Credential
)
Begin {
Write-Verbose "Starting $($myinvocation.MyCommand)"
$params = @{
SkipTestConnection = $True
}
}
Process {
if ($UseDcom) {
Write-Verbose "Connecting with DCOM"
$opt = New-CimSessionOption -Protocol Dcom
$params.Add("SessionOption", $opt)
}
if ($Credential) {
Write-Verbose "Using alternate credential"
$params.Credential = $Credential
}
if ($ResolveIP) {
Write-Verbose "Resolving IP4 address"
$resolve = @{
Name = $Computername
Type = "A"
TcpOnly = $True
ErrorAction = "SilentlyContinue"
}
$IP = (Resolve-DnsName @resolve).ip4Address
}
else {
$IP = "0.0.0.0"
}
$cs = New-Cimsession @params
$compsys = $cs | Get-CimInstance -classname win32_computersystem
$os = $cs | Get-CimInstance -ClassName win32_operatingsystem
$proc = $cs |
Get-CimInstance -ClassName win32_processor |
Select-Object -Property Name -first 1
[pscustomobject]@{
Computername = $compsys.Name
IP = $IP
TotalMemGB = $compsys.TotalPhysicalMemory / 1GB -as [int]
Model = $compsys.model
OS = $os.Caption
Build = $os.BuildNumber
Processor = $proc.Name
}
Remove-CimSession $cs
}
End {
Write-Verbose "Ending $($myinvocation.MyCommand)"
}
}
In the same directory we started writing a Pester test for the function.
Get-MyServer Pester Test
$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Get-MyServer" {
Mock Get-CimInstance {
New-CimInstance -ClientOnly -ClassName Win32_ComputerSystem -Property @{
Name = "SERVER1"
TotalPhysicalMemory = 32GB
Model = "BestServerEver"
}
} -ParameterFilter {$classname -eq "win32_computersystem"} -Verifiable
Mock Get-CimInstance {
New-CimInstance -ClientOnly -ClassName Win32_OperatingSystem -Property @{
Caption = "Windows Server"
BuildNumber = "1234"
}
} -ParameterFilter {$classname -eq "win32_operatingsystem"} -Verifiable
Mock Get-CimInstance {
New-CimInstance -ClientOnly -ClassName Win32_Processor -Property @{
Name = "Flux Capacitor 2K"
}
} -ParameterFilter {$classname -eq "win32_processor"} -Verifiable
Mock Resolve-DNSName {
@{
Name = "SERVER1"
IP4Address = "10.10.10.10"
Type = "A"
}
}
$r = Get-MyServer -Computername SERVER1
It "should run Get-CimInstance" {
Assert-VerifiableMock
}
It "should run Get-CimInstance 3 times" {
Assert-MockCalled Get-Ciminstance -Times 3
}
It "The result should have a Computername property of SERVER1" {
$r.Computername | Should be "SERVER1"
}
It "The result should have a Build property of 1234" {
$r.build | Should be "1234"
}
}
As written, the function passes all the tests. But is it complete? That’s why we check for code coverage.
invoke-pester -CodeCoverage @{Path=".\FunctionToTest.ps1";
Function="Get-MyServer"}
The tests run but we also get a listing at the end.
Pester code coverage
It is difficult to read some of the output, but the code coverage report says that our tests “Covered 77.14% of 35 analyzed Commands in 1 File”. And then you can see the commands that were not tested. Some of the commands, like Write-Verbose we probably don’t need to test. But some of the others we might. We also want to re-iterate that this is showing up what command execution paths we didn’t test for. Code coverage doesn’t mean, “What commands am I not testing.” Our function uses commands like Remove-CimSession which isn’t included anywhere in our Pester test. Code coverage didn’t detect it because we are testing the path where that command gets called.
The idea of Pester code coverage is to just get one indicator of whether or not all of your code ran; Pester isn’t making any commentary on whether all of your code received all of the relevant input variation that might be appropriate.
Test-Driven Development
Test-Driven Development, or TDD, is a big philosophy. Test Driven Development by Example, by Ken Beck, is one of our favorite texts on the subject, should you want to dive deeper… because this chapter ain’t going to dive too deep.
TDD, stripped away of every possible meaningful detail, is simply the practice of writing your unit tests before writing your code. Your unit tests serve, in a way, as a kind of unit-level functional specification for your code. If someone else wrote your code, they’d simply have to make sure all the tests passed, and you’d all agree that the code was good.
This doesn’t mean sitting down and writing every possible test that you’ll ever need to write. The practical reality is that, except for the smallest imaginable chunks of code, TDD is part of an iterative process.
Imagine, for example, that you usually start writing functions by defining your parameters. That’s a pretty common approach. In TDD, you’d start by writing tests that verify and validate those parameters, before you write a lick of actual PowerShell code. You’d write tests that ensure pipeline input worked when it was supposed to, parameters accepted the data types they were supposed to, and so on. Once the tests were ready, you’d start writing your code, even though so far as you’re “coding” is the Param block. You’d keep messing with the Param block until you could run the tests and pass every single one.
Then you’d move on to the next bit of your script. Perhaps, for example, you have a switch parameter that tells your function to behave in one way or another. You’d write tests that tested the different behaviors, and then write the logic itself, and then run the tests. You’d keep revising the code until the tests passed.
The idea with TDD is to force you to think about what your code should conform to first, rather than just diving in and coding by the seat of your pants. Writing tests first implies a certain design stage, where you think about things before you start typing. TDD also kind of forces you to get tests in place, which even though you know you should do, you won’t always want to do.
Let’s say you finish your function (and its tests!). Later, you discover a bug. Before you fix the bug, you’d write the test(s) necessary to see if the bug exists or not. Initially, that test will fail. But then you go and fix your code so that the test passes. With TDD, it’s always write the test first, and then get the code to comply with the test.
It’s a big commitment. And trust us, not every professional software development team even does this. But, those that do have had quite a bit of success with it, and end up writing a fuller and more reliable test suite, as well as having a better shared goal about what the eventual code will need to do.
We’re not saying you have to use TDD, but we’d recommend considering it on your next project.
Part 7: PowerShell 7 Scripting
PowerShell 7, which is essentially today’s PowerShell and runs cross platform, offers a few new features that you can use in your scripting projects. Of course, these will only work when the code is run on a PowerShell 7 platform. The chapters in this section will introduce you to some new operators, variables, and parameters.
PowerShell 7 Scripting Features
The world of PowerShell is slowly shifting. It began a number of years ago when Microsoft make PowerShell an open source project. At the time, this new version of PowerShell would run on Windows, Linux and Mac. These were the days of PowerShell Core or 6.x. Over time, Microsoft slowly started adding back features that people really wanted out of PowerShell. Eventually, we ended up with PowerShell 7.
Microsoft made a major version increment primarily as a way to make a statement. Going forward, PowerShell 7.x is PowerShell. Windows PowerShell 5.1 which ships with Windows 10 isn’t going anywhere. But it is also finished. Barring critical security bugs, Microsoft is investing in developing PowerShell 7. Notice they even dropped “Windows” from the name. Eventually, you should be able to manage anything from anywhere using whatever client you want. Even today, you can manage Windows servers running Windows PowerShell 5.1 from a Windows 10 desktop running PowerShell 7. However from a scripting perspective PowerShell 7 offers up new features you’ll find useful but new challenges as well. For now, let’s explore some of the scripting goodies PowerShell 7 brings to the party. Don’t forget that if you use any of these features to add #requires -version 7 at the top of your script file.
If you are interested in what’s new in PowerShell 7 and why you might want to make the jump, grab a free (there is an option to make a charitable donation) copy of the #PS7Now.
Updating Your Editor
If you are running VS Code and have the PowerShell extension installed, you should be set. It will detect and use PowerShell 7 as part of its integrated terminal. If you need to switch to Windows PowerShell, you can do that as well. In the terminal dropdown, click Select Default Shell and pick one.
Even though the recommendation is to use VS Code, there are plenty of legitimate reasons you may have to stick with the PowerShell ISE. This app will never be updated to use PowerShell 7. But there is an easy hack you can implement. Assuming you installed PowerShell 7 and enabled PowerShell remoting, launch the PowerShell ISE with elevated credentials. In the console panel, run this code:
Enter-PSSession -computername $env:COMPUTERNAME -Configuration PowerShell.7
This hack will open a remoting session to yourself using the PowerShell 7 endpoint. Now, the scripting panel will be PowerShell 7 “aware”.
Ternary Operators
One of the most anticipated PowerShell 7 features is the addition of Ternary Operators. The structure is something like this:
<if some condition is true> ? <do this> : <else do this>
In Windows PowerShell, you would have written code like this:
if ($IsWindows) {
"ok"
}
else {
"not ok"
}
Sure. You could squeeze it down into a single line.
if ($IsWindows) {"ok"} else {"not ok"}
But with the ternary operator you can write it like this:
$IsWindows ? "ok":"not ok"
The first part of the expression is some bit of code that evaluates as True or False. Whatever comes after the ? runs when true and code after the : runs when false. There’s no performance benefit as far as we can tell. And frankly, it is a bit cryptic at first glance. Especially when compared to an If/Else construct.
As an example, here’s a traditional structure.
if ($IsWindows) {
Get-CimInstance -ClassName win32_service -filter "name='bits'"
Get-CimInstance -ClassName win32_service -filter "name='wsearch'"
}
else {
Clear-Host
Get-Date
Write-Warning "This command requires Windows"
}
And here’s the ternary equivalent:
$IsWindows ? (Get-CimInstance -ClassName win32_service -filter "name='bits'"),
(Get-CimInstance -ClassName win32_service -filter "name='wsearch'") :
(Clear-Host),(Get-Date),(Write-Warning "This command requires Windows")
This could be written as a one-line expression. We’re accommodating page width restrictions.
As an alternative, in some situations, code like this might make sense:
$win = {
Get-CimInstance -ClassName win32_service -filter "name='bits'"
Get-CimInstance -ClassName win32_service -filter "name='wsearch'"
}
$nowin = {
Clear-Host
Get-Date
Write-Warning "This command requires Windows"
}
$IsWindows ? (&$win) : (&$nowin)
For simple expressions, using the ternary operator might save some typing and create a succinct expression.
$var = (get-date).DayOfWeek -eq "Friday" ? "tgif": "blah"
Chain operators
Many shells have conditional operators that allow you to string commands to together. The logic typically goes “run this command and if it is successful then run this next command”. In PowerShell, you can now use the && operator.
1 && 2
If the command on the left side of && is successful, then run the command on the right side. The operator decides based the of the value of the built-in variable $?. Here’s a more practical example.
PS C:\> test-wsman thinkp1 && Get-CimInstance win32_bios -ComputerName Thinkp1
wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0
SMBIOSBIOSVersion : N2EET46W (1.28)
Manufacturer : LENOVO
Name : N2EET46W (1.28)
SerialNumber : R90SH9GR
Version : LENOVO - 1280
PSComputerName : Thinkp1
Because the Test-WSMan command succeeded, the Get-CimInstance command is run. You could have written this with an If construct, and perhaps in a script that would make more sense.
But be careful. Even if the first expression fails, that doesn’t mean the second expression won’t run.
[void](test-wsman foo) && Get-CimInstance win32_bios -ComputerName foo
The Test-WSMan command will fail, but that doesn’t mean it didn’t run. The $? variable will be True so the second command is run. You may need to force a terminating exception.
[void](test-wsman foo -erroraction stop) && Get-CimInstance win32_bios -ComputerName\
foo
You may also want to execute a statement if the first command does not complete. That’s where || comes into play.
1/0 || Write-Warning "What are you trying to do?"
Try this. Then try a variation that doesn’t fail.
1/1 || Write-Warning "What are you trying to do?"
That’s the easiest way to see this in action.
You can also combine operators into a kind of If/Then/Else equivalent.
Get-Service foo && Write-Host "service found" || Write-Host "service failed" -Foregr\
oundColor red
But be careful. You might think this would work.
$svc = Get-Service bits && Write-Host "service $($svc.name) found" || Write-Host "se\
rvice failed" -ForegroundColor red
But you’ll get nothing for the service name. The solution is to use the common OutVariable parameter.
$svc = Get-Service bits -ov s && Write-Host "service $($s.name) found" || Write-Host\
"service failed" -ForegroundColor red
These operators will be cryptic to people just getting started with PowerShell so if you use them in your code, it wouldn’t hurt to throw in a comment or two.
Take a few minutes to review the help topic about_Pipeline_Chain_Operators.
Null-Coalescing Assignment
Is your head screwed on tight? This next one will have your head spinning, at least at first. PowerShell 7 has a new operator, ?? which is referred to a a null-coalescing operator. Huh? This operator goes between 2 statements.
<left-side> ?? <right-side>
If the left side is null, then PowerShell will give you the right-side value. If the left-side is not null, you get the left side.
$foo = $null
$foo ?? "bar"
If you try this in PowerShell 7, you’ll get “bar” because $foo is Null. But be careful. If define $foo="" that is NOT null and you’ll get an empty line.
$foo = $PSVersionTable.PSVersion.ToString()
$foo ?? "bar"
Running this will display your PowerShell version because $foo isn’t Null.
How might you use this in a script? Let’s say a variable called SomeVariable is getting processed. If it has a value, it will be for a computer name. But if it is Null, you want to use the local computername. In PowerShell 7 you would write it like this:
$c = $SomeVariable
$computername = $c ?? ([system.environment]::MachineName)
Yes, you could also simply write an If statement but some people like this succinct approach.
Related to this is the Null-Coalescing assignment operator, ??=.
<left-side> ??= <right-side>
In this situation, the value from the right side is applied to left side, if the left side is null. If the left side is not Null the right side is ignored. Using the previous scenario, we could assign a value to $Computername if it is Null, using the local computername.
$computername ??= ([system.environment]::MachineName)
Null Conditional Operators
If your head wasn’t spinning before, this’ll do it. The Null Conditional operators ? and ?[] are used to allow conditional access to an object’s member such as a method or property as long as it isn’t null. Let’s look at what happens with a non-null value.
$p = Get-Process -id $pid
${p}?.startTime
The result should be the start time of the current PowerShell process. Note that because PowerShell allows the use of ? in variable names, (don’t ask us why you would ever want to do that), you need to reference the variable using that funky ${} syntax. If $p was Null, then PowerShell wouldn’t give you anything. In fact, it won’t even try to resolve the member so you won’t get any errors.
You can do something similar with array elements.
$n = 2,4,6,8,10
${n}?[2]
Because $n is not null, You’ll get the array element at index 2 or 6. If $n was Null, PowerShell doesn’t even try to get the array element. Again, there’s no error message.
The new Null-related operators are documented in about_Operators.
The Null Conditional Operators are a PowerShell 7 experimental feature. If you encounter problems trying to use them, run Get-ExperimentalFeature and see if the PSNullConditionalOperators feature is enabled. If not, you can run Enable-ExperimentalFeature PSNullConditionalOperators and restart your PowerShell 7 session.
ForEach-Object Parallel
One feature that got a lot of people excited for PowerShell 7 was the -Parallel parameter in ForEach-Object. The basic premise is that PowerShell will run your scriptblock in parallel runspaces. The number of parallel operations is controlled by the ThrottleLimit parameter which has a default of 5. The concept looks like this:
<input objects> | ForEach-Object -parallel {<do something with $_>}
Looks simple enough. But just because you can do this doesn’t mean you should. Here’s a simple demonstration.
Measure-Command {1..1000 | ForEach-Object {$_*10}}
This takes about 102 milliseconds.
Measure-Command {1..1000 | ForEach-Object -parallel {$_*10}}
This took 35 seconds! There is overhead in setting up and tearing down the parallel runspaces so you need to be smart about how you use it. And sometimes you simply have to test.
Here’s an example where using -Parallel can help. In Windows PowerShell, you would use code like this to process a list of locations.
$locations| ForEach-Object {
$p = $_
Write-Host "[$(Get-Date -f 'hh:mm:ss.ffff')] Measuring $p" -Fore green
Get-ChildItem -Path $p -file -Recurse |
Measure-Object -Property length -sum -Average |
Select-Object @{Name="Path";Expression = {$p}},Count,
@{Name="SumKB";Expression={$_.sum/1KB -as [int]}},
@{Name="AvgKB";Expression={$_.average/1KB -as [int]}}
}
}
In our test with 6 locations, including one on a NAS device this took about 2 minutes to complete. Here’s the parallel equivalent:
$locations | ForEach-Object -parallel {
$p = $_
Write-Host "[$(Get-Date -f 'hh:mm:ss.ffff')] Measuring $p" -ForegroundColor green
Get-ChildItem -Path $p -file -Recurse |
Measure-Object -Property length -sum -Average |
Select-Object @{Name="Path";Expression = {$p}},Count,
@{Name="SumKB";Expression={$_.sum/1KB -as [int]}},
@{Name="AvgKB";Expression={$_.average/1KB -as [int]}}
}
Which took almost 3 minutes. Which obviously isn’t much of an improvement. However, there are external factors that can come into play with this particular example such as disk contention and network latency, since we’re querying a NAS device. The key takeaway with this feature is this it just depends. You have to take more than your code into consideration to determine if using -Parallel is appropriate.
Using ANSI
Even though we probably had support in previous editions, one cool feature in PowerShell 7 is more widespread use of ANSI escape sequences. These are kind of an old-school approach to working with text in a console or terminal. With PowerShell 7, you can do things like color a piece of text without resorting to Write-Host.
In short, you wrap your text in an ANSI sequence.
"`e[36mHello World`e[0m"
This will write “Hello World” to the PowerShell pipeline, but it will be in color!
In PowerShell 7 use `e for the escape sequence. In Windows PowerShell, you can use $([char]0x1b). You could write the Hello World example as "$([char]0x1b)[36mHello World$([char]0x1b)[0m" and it would work in both Windows PowerShell and PowerShell 7. But not in the PowerShell ISE which doesn’t know what to do with ANSI characters.
Here’s a snippet of a function that takes advantage of this feature. The full function is is in the code downloads.
Get-Status
foreach ($item in $free) {
$sName = $item.name -replace "Pct", "%"
if ($IsWindows -AND $IsCoreCLR) {
#Colorize values
if ([double]$item.value -le 20) {
#red
$value = "`e[91m$($item.value)`e[0m"
}
elseif ([double]$item.value -le 50) {
#yellow
$value = "`e[93m$($item.value)`e[0m"
}
else {
#green
$value = "`e[92m$($item.value)`e[0m"
}
}
else {
$value = $item.Value
}
$string += " {0}:{1}" -f $sname, $value
} #foreach item in free
$string
If the user is running PowerShell 7 and uses the functions -AsString parameter, they’ll get color-coded output.
Get-Status -AsString
And yes, the function could be revised to use the $([char]0x1b) to work in Windows PowerShell and PowerShell 7.
There is a terrific write-up on this feature in the free ebook #PS7Now. You might also checkout a script Jeff wrote to show ANSI samples in your console. And he has a number of ANSI related features in the PSScriptTools module.
Cross Platform Scripting
When Microsoft moved PowerShell to the open source world a few years ago, they opened up an entire new world of scripting possibilities. Microsoft wants you to be able to manage anything from anywhere on whatever platform you need. Of course, you’ll want to build scripts and tools to use in this new world. And even if you aren’t in a situation now thats requires cross-platform management, you never know what’s gonna happen tomorrow. And frankly, some of the things you need to keep in mind when it comes to cross-platform scripting can make you a better scripter for Windows PowerShell.
What do we mean when we say “cross-platform”? We mean that you can develop a tool that can be used on any PowerShell-supported platform and ideally, can manage or work with any platform. Instead of writing one tool to run on Linux and another to run on Windows, you write one tool that can run on both. Don’t build multiple tools to manage remote servers depending on the target operating system. Write one command that you can use regardless of the OS.
In order to meet these requirements, there are a few things we want you to keep in mind. We are under no illusion that everything you want to do cross-platform will work. It won’t. There will be situations where a true cross-platform solution simply doesn’t work.
Many of the things we’re covering in this chapter, technically also apply to PowerShell Core which was the PowerShell 6.x branch.
Know Your OS
When you are building something that can potentially be used cross-platform you need to think about the operating system where your code will be running. As cool as PowerShell 7 is, not every feature or command is supported on every operating system. You don’t need to be an expert level Linux engineer, but you do need to understand some basics. For example, Linux doesn’t have the same concept of services as we understand them in the Windows world, so there is no Get-Service command in PowerShell 7 on non-Windows systems. Likewise, Linux doesn’t have WMI or CIM so you won’t find Get-CimInstance. Nor could you use Get-CimInstance to target a remote Linux machine. The OS doesn’t support these features so they aren’t available.
What this means is that you need to know what OS your code is running on and there are some things you can do to make your life easier.
State Your Requirements
First off, if you are writing a PowerShell function that uses PowerShell 7 features, such as the new ternary operator, you need to make sure the person running your script is using PowerShell 7. This means adding a #requires statement at the top of your file
#requires -version 7.0
Honestly, this is something you should have been doing all along but you absolutely need it now. If you need specific modules that might be Windows specific, state that requirement as well.
#requires -modules CIMCmdlets
If someone runs this on a Linux box they’ll get an error like:
The script 'Get-Miracle.ps1' cannot be run because the following modules that are sp\
ecified by the "#requires" statements of the script are missing: CimCmdlets.
If you are building a module, in the manifest you can use this setting to set requirements.
Supported PSEditions
CompatiblePSEditions = @('Desktop','Core')
Desktop means Windows PowerShell. Core means the open-source and cross-platform version of PowerShell, regardless of operating system. This can be a little tricky. Because even though Get-CimInstance doesn’t work on a Mac in PowerShell 7, it will work just fine on a Windows desktop running PowerShell 7. Still, this high level compatibility setting should be set. Delete whatever isn’t supported.
Testing Variables
Even though the Core setting is potentially problematic, there are a number of new automatic variables you can use in your code, to validate and test.
And of course, don’t forget $PSVersionTable.
PS C:\> $PSVersionTable
Name Value
---- -----
PSVersion 7.0.2
PSEdition Core
GitCommitId 7.0.2
OS Microsoft Windows 10.0.19041
Platform Win32NT
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
WSManStackVersion 3.0
Which can vary by platform.
PS /home/jeff> $PSVersionTable
Name Value
---- -----
PSVersion 7.0.2
PSEdition Core
GitCommitId 7.0.2
OS Linux 4.19.104-microsoft-standard #1 SMP Wed Feb 19 0\
6:37:35 UTC 2020
Platform Unix
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
WSManStackVersion 3.0
It is also different on Windows PowerShell.
PS C:\> $PSVersionTable
Name Value
---- -----
PSVersion 5.1.19041.1
PSEdition Desktop
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
BuildVersion 10.0.19041.1
CLRVersion 4.0.30319.42000
WSManStackVersion 3.0
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
These are all potentially useful items you can use to build If constructs or even dynamic parameters.
Environment Variables
One of the major challenges in cross-platform scripting is breaking out of the old way of doing things. Here’s a great example using a common parameter definition you might see in Windows PowerShell.
[string[]]$Computername = $env:ComputerName
This sets the %COMPUTERNAME% environment variable as the default value for $Computername. This will work just fine on Windows PowerShell and even PowerShell 7 running on Windows. But non-Windows platforms have different environment variables and this will fail. Instead, you can use a .NET code snippet to get the same result.
[environment]::MachineName
This also true with $env:username which can be replaced with [environment]::UserName. If you are used to referencing environment variables, you’ll need to add a step to verify they are defined or begin using .NET alternatives.
Paths
PowerShell has always never cared about the direction of slashes in paths. You can run Test-Path c:\windows or Test-Path c:/windows. This is even true on non-Windows systems. You can use test-path /etc/ssh or test-path \etc\ssh. But you really should be careful. Many of you probably have used or seen code like this:
$file = "$foo\child\file.dat"
There’s a good chance it will work cross-platform. But the better approach, which you should be using anyway, is to use the path cmdlets like Join-Path. Here’s a sample.
Export-Data
Function Export-Data {
[cmdletbinding()]
Param(
[ValidateScript({Test-Path $_})]
[string]$Path = "."
)
$time = Get-Date -format FileDate
$file = "$($time)_export.json"
$ExportPath = Join-Path -Path (Convert-Path $Path) -ChildPath $file
Write-Verbose "Exporting data to $exportPath"
code ...
}
Instead of worrying about which direction to put the slashes, let PowerShell do it for you.
If you need it, you can use [System.IO.Path]::DirectorySeparatorChar to get the directory separator character. For the %PATH% variable you can use [System.IO.Path]::PathSeparator. Let’s say you want to split the %PATH% environment variable into an array of locations. A simple cross-platform approach would be $env:PATH -split [System.IO.Path]::PathSeparator. Don’t forget that Linux is case-sensitive.
Watch Your Aliases
You’ve most likely heard us go on and on about the downside of using aliases in your PowerShell scripts. Use them all you want interactively at a prompt but in written code, use full cmdlet names. Now you really need to.
In the old days, we’d happily write a command like this:
get-process | sort handles -descending
And it would work just fine on Windows, even under PowerShell 7. But not Linux.
PS /home/jeff> get-process | sort handles -descending
/usr/bin/sort: invalid option -- 'e'
Try '/usr/bin/sort --help' for more information.
What happened? In PowerShell 7 on Linux, any alias that could resolve to a native command has been removed. So there is no sort alias for Sort-Object. PowerShell thinks you want to run the native sort command. If you’ve been in the habit of using Linux aliases like ps or ls, you’ll need to get over it. You need to start writing expressions like:
get-process | sort-object handles -descending
Now there’s no mistaking what you want to do and it will run everywhere.
If you are using VS Code, and we don’t know why you’re not, it is very easy to convert aliases. We get it. You have muscle memory and you find it easier to write code using aliases. Fine. When you are finished and before you release you code into the world, open the command palette (<kbd>Ctrl</kbd>+<kbd>Shift</kbd>+<kbd>P</kbd>) and run `Powershell: Expand alias”. Done.
Leverage Remoting
One of the most anticipated features of PowerShell 7 is the use of ssh for remoting. Non-Windows systems won’t support the WSMan protocol which means no remoting the way you used to do it. But you may still want to use remoting in your toolmaking. In fact, leveraging remoting is a smart idea. Going to PowerShell 7 just means a little more work on your part.
We’re not going to dive into the mechanics of getting SSH remoting to work in PowerShell 7. That’s all up to you and your organization. We’re simply going to assume it already works.
One relatively easy approach you can use is parameter sets. Define one parameter set for a computer name and another for PSSession objects. PowerShell already follows this model. You can too. Here’s a proof of concept function.
Get-RemoteData
Function Get-RemoteData {
[cmdletbinding(DefaultParameterSetName = "computer")]
Param(
[Parameter(
Position = 0,
Mandatory,
ValueFromPipeline,
ParameterSetName = "computer"
)]
[Alias("cn")]
[string[]]$Computername,
[Parameter(ParameterSetName = "computer")]
[alias("runas")]
[pscredential]$Credential,
[Parameter(ValueFromPipeline,ParameterSetName = "session")]
[System.Management.Automation.Runspaces.PSSession]$Session
)
Begin {
$sb = {"Getting remote data from $([environment]::MachineName) [$PSEdition]"}
$PSBoundParameters.Add("Scriptblock",$sb)
}
Process {
Invoke-Command @PSBoundParameters
}
End {}
}
The person running the function can either pass a computername with an optional credential, or a previously created PSSession object. They may have existing connections to a mix of platforms, some using SSH connections. Now they can run one command that works for all.
PS C:\> get-pssession | get-remotedata
Getting remote data from SRV2 [Desktop]
Getting remote data from FRED [Core]
Getting remote data from SRV1 [Desktop]
In this example, FRED is a Linux server running Fedora. Start simple like this.
But when you are ready, you can get very creative. Here’s a function that defines dynamic parameters if the user is running PowerShell 7.
Stop-RemoteProcess
#requires -version 5.1
Function Stop-RemoteProcess {
[cmdletbinding(DefaultParameterSetName = "computer")]
Param(
[Parameter(
ParameterSetName = "computer",
Mandatory,
Position = 0,
ValueFromPipeline,
ValueFromPipelineByPropertyName,
HelpMessage = "Enter the name of a computer to query."
)]
[ValidateNotNullOrEmpty()]
[Alias("cn")]
[string[]]$ComputerName,
[Parameter(
ParameterSetName = "computer",
HelpMessage = "Enter a credential object or username."
)]
[Alias("RunAs")]
[PSCredential]$Credential,
[Parameter(ParameterSetName = "computer")]
[switch]$UseSSL,
[Parameter(
ParameterSetName = "session",
ValueFromPipeline
)]
[ValidateNotNullOrEmpty()]
[System.Management.Automation.Runspaces.PSSession[]]$Session,
[ValidateScript({$_ -ge 0})]
[int32]$ThrottleLimit = 32,
[Parameter(Mandatory,HelpMessage = "Specify the process to stop.")]
[ValidateNotNullOrEmpty()]
[string]$ProcessName,
[Parameter(HelpMessage = "Write the stopped process to the pipeline")]
[switch]$Passthru,
[Parameter(HelpMessage = "Run the remote command with -WhatIf")]
[switch]$WhatIfRemote
)
DynamicParam {
#Add an SSH dynamic parameter if in PowerShell 7
if ($isCoreCLR) {
$paramDictionary = New-Object -Type System.Management.Automation.RuntimeDefi\
nedParameterDictionary
#a CSV file with dynamic parameters to create
#this approach doesn't take any type of parameter validation into account
$data = @"
Name,Type,Mandatory,Default,Help
HostName,string[],1,,"Enter the remote host name."
UserName,string,0,,"Enter the remote user name."
Subsystem,string,0,"powershell","The name of the ssh subsystem. The default is power\
shell."
Port,int32,0,,"Enter an alternate SSH port"
KeyFilePath,string,0,,"Specify a key file path used by SSH to authenticate the user"
SSHTransport,switch,0,,"Use SSH to connect."
"@
$data | ConvertFrom-Csv | ForEach-Object -begin { } -process {
$attributes = New-Object System.Management.Automation.ParameterAttribute
$attributes.Mandatory = ([int]$_.mandatory) -as [bool]
$attributes.HelpMessage = $_.Help
$attributes.ParameterSetName = "SSH"
$attributeCollection = New-Object -Type System.Collections.ObjectModel.C\
ollection[System.Attribute]
$attributeCollection.Add($attributes)
$dynParam = New-Object -Type System.Management.Automation.RuntimeDefined\
Parameter($_.name, $($_.type -as [type]), $attributeCollection)
$dynParam.Value = $_.Default
$paramDictionary.Add($_.name, $dynParam)
} -end {
return $paramDictionary
}
}
} #dynamic param
Begin {
$start = Get-Date
#the first verbose message uses a pseudo timespan to reflect the idea we're just\
starting
Write-Verbose "[00:00:00.0000000 BEGIN] Starting $($myinvocation.mycommand)"
#a script block to be run remotely
Write-Verbose "[$(New-TimeSpan -start $start) BEGIN] Defining the scriptblock \
to be run remotely"
$sb = {
param([string]$ProcessName,[bool]$Passthru,[string]$VerbPref = "SilentlyContinue\
", [bool]$WhatPref)
$VerbosePreference = $VerbPref
$WhatIfPreference = $WhatPref
Try {
Write-Verbose "[$(New-TimeSpan -start $using:start) REMOTE] Getting Process\
$ProcessName on $([System.Environment]::MachineName)"
$procs = Get-Process -Name $ProcessName -ErrorAction stop
Try {
Write-Verbose "[$(New-TimeSpan -start $using:start) REMOTE] Stopping $($p\
rocs.count) Processes on $([System.Environment]::MachineName)"
$procs | Stop-Process -ErrorAction Stop -PassThru:$Passthru
}
Catch {
Write-Warning "[$(New-TimeSpan -start $using:start) REMOTE] Failed to sto\
p Process $ProcessName on $([System.Environment]::MachineName). $($_.Exception.messa\
ge)."
}
}
Catch {
Write-Verbose "[$(New-TimeSpan -start $using:start) REMOTE] Process $Proces\
sName not found on $([System.Environment]::MachineName)"
}
} #scriptblock
#parameters to splat to Invoke-Command
Write-Verbose "[$(New-TimeSpan -start $start) BEGIN] Defining parameters for I\
nvoke-Command"
#remove my parameters from PSBoundparameters because they can't be used with New\
-PSSession
$myparams = "ProcessName","WhatIfRemote","passthru"
foreach ($my in $myparams) {
if ($PSBoundParameters.ContainsKey($my)) {
[void]($PSBoundParameters.remove($my))
}
}
$icmParams = @{
Scriptblock = $sb
Argumentlist = @($ProcessName,$Passthru,$VerbosePreference,$WhatIfRemote)
HideComputerName = $False
ThrottleLimit = $ThrottleLimit
ErrorAction = "Stop"
Session = $null
}
#initialize an array to hold session objects
[System.Management.Automation.Runspaces.PSSession[]]$All = @()
If ($Credential.username) {
Write-Verbose "[$(New-TimeSpan -start $start) BEGIN] Using alternate crede\
ntial for $($credential.username)"
}
} #begin
Process {
Write-Verbose "[$(New-TimeSpan -start $start) PROCESS] Detected parameter set $(\
$pscmdlet.ParameterSetName)."
$remotes = @()
if ($PSCmdlet.ParameterSetName -match "computer|ssh") {
if ($pscmdlet.ParameterSetName -eq 'ssh') {
$remotes += $PSBoundParameters.HostName
$param = "HostName"
}
else {
$remotes += $PSBoundParameters.ComputerName
$param = "ComputerName"
}
foreach ($remote in $remotes) {
$PSBoundParameters[$param] = $remote
$PSBoundParameters["ErrorAction"] = "Stop"
Try {
#create a session one at a time to better handle errors
Write-Verbose "[$(New-TimeSpan -start $start) PROCESS] Creating a te\
mporary PSSession to $remote"
#save each created session to $tmp so it can be removed at the end
$all += New-PSSession @PSBoundParameters -OutVariable +tmp
} #Try
Catch {
#TODO: Decide what you want to do when the new session fails
Write-Warning "Failed to create session to $remote. $($_.Exception.M\
essage)."
#Write-Error $_
} #catch
} #foreach remote
}
Else {
#only add open sessions
foreach ($sess in $session) {
if ($sess.state -eq 'opened') {
Write-Verbose "[$(New-TimeSpan -start $start) PROCESS] Using session\
for $($sess.ComputerName.toUpper())"
$all += $sess
} #if open
} #foreach session
} #else sessions
} #process
End {
$icmParams["session"] = $all
Try {
Write-Verbose "[$(New-TimeSpan -start $start) END] Querying $($all.count\
) computers"
Invoke-Command @icmParams | ForEach-Object {
#TODO: PROCESS RESULTS FROM EACH REMOTE CONNECTION IF NECESSARY
$_
} #foreach result
} #try
Catch {
Write-Error $_
} #catch
if ($tmp) {
Write-Verbose "[$(New-TimeSpan -start $start) END] Removing $($tmp.count\
) temporary PSSessions"
$tmp | Remove-PSSession
}
Write-Verbose "[$(New-TimeSpan -start $start) END] Ending $($myinvocation.my\
command)"
} #end
} #close function
We know the code will wrap here. The script file won’t have that problem.
This function essentially follows the same model as a previous example. But this one creates several dynamic parameters if PowerShell 7 is detected. Notice we’re using one of the new variables. When the user runs help in PowerShell 7, they’ll get the new parameters.
Stop-RemoteProcess Help
The last parameter set is the dynamic one. Instead of having to write several versions of the command, you can write a single function. Check out https://jdhitsolutions.com/blog/powershell/7458/a-powershell-remote-function-framework/ for a bit more detail on this function.
Custom Module Manifests
The last cross-platform scripting feature to consider is a custom module manifest. In the code downloads for this chapter you’ll find a demo module called CrossDemo. The module has several commands, some of which will only work in PowerShell 7. The goal is to only export the commands (and aliases) that are supported. Here’s how.
Normally, a psd1 is static and can’t contain code. But there is an exception for a module manifest. You can use a simple If statement to tell PowerShell what functions to export.
FunctionsToExport = if ($PSEdition -eq 'desktop') {
'Export-Data','Get-DiskFree'
}
else {
'Export-Data','Get-DiskFree','Get-Status','Get-RemoteData'
}
...
AliasesToExport = if ($PSEdition -eq 'desktop') {
'df'
}
else {
'df','gst'
}
When the module is imported on Windows PowerShell, only 2 functions and 1 alias are exported. PowerShell 7 systems get everything.
Even so, you still may need to fine-tune platform requirements. For example, if you look at our sample code for the Get-DiskFree function, you’ll see code like this:
if ($IsWindows -OR $PSEdition -eq 'desktop') {
$Drive = (Get-Item $Path).Root -replace "\\"
Write-Verbose "Getting disk information for $drive in $As"
...
} #if Windows
else {
Write-Warning 'This command requires a Windows platform.'
}
Because the function uses Get-CimInstance it requires a Windows platform. It will work in PowerShell 7 on Windows but not Linux. So even though we’re exporting the function for PowerShell 7, it will only run on Windows. You’ll need to keep things like this in mind. Will it work in PowerShell 7 and what are the platform dependencies?
Not every sample function in our demo module is using this logic. Feel free to update the code as an exercise.
We’ll be honest with you and say that a lot of community accepted best practices for cross-platform scripting are still being developed. But if you use a little common-sense and follow the best practices that are accepted, you shouldn’t have too much trouble.
Wish List
Some items we’re considering:
Release Notes
2020-June-30
2019-Jul-12
2018-Jul-15
2018-Apr-5
2018-Mar-30
2018-Mar-12
2018-Mar-08
2018-Jan-21
2017-May-17
2017-Feb-24
2017-Feb-23
2017-Feb-18
2017-Feb-15
2017-Feb-10
2017-Feb-6
2017-Jan-30
2017-Jan-16
2017-Jan-13
2017-Jan-31