

Learn Git in a Month of Lunches

ii

Learn Git in a
Month of Lunches

RICK UMALI

M A N N I N G
SHELTER ISLAND

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Helen Sturgis
20 Baldwin Road Technical development editor: Jonathan Thoms
PO Box 761 Copyeditor: Sharon Wilkey
Shelter Island, NY 11964 Proofreader: Corbin Collins

Technical proofreader: Karsten Strøbaek
Typesetter: Marija Tudor

Cover designer: Leslie Haimes

ISBN: 9781617292415
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

www.manning.com

brief contents
1 ■ Before you begin 1

2 ■ An overview of Git and version control 8

3 ■ Getting oriented with Git 25

4 ■ Making and using a Git repository 36

5 ■ Using Git with a GUI 47

6 ■ Tracking and updating files in Git 61

7 ■ Committing parts of changes 76

8 ■ The time machine that is Git 98

9 ■ Taking a fork in the road 119

10 ■ Merging branches 140

11 ■ Cloning 160

12 ■ Collaborating with remotes 177

13 ■ Pushing your changes 192

14 ■ Keeping in sync 214

15 ■ Software archaeology 239

16 ■ Understanding git rebase 261

17 ■ Workflows and branching conventions 279
v

BRIEF CONTENTSvi
18 ■ Working with GitHub 293

19 ■ Third-party tools and Git 311

20 ■ Sharpening your Git 328

contents
preface xvii
about this book xix
acknowledgments xxii

1 Before you begin 1
1.1 What makes Git so special? 1

1.2 Is this book for you? 3

1.3 How to use this book 3

1.4 Installing Git 4

1.5 Your learning path 5

1.6 Online resources 7

1.7 Being immediately effective 7

2 An overview of Git and version control 8
2.1 Version control concepts 8

Version control for the software developer 8 ■ Version control for
the organization 9 ■ What is a repository? 10 ■ What is a
commit? 11 ■ What is a branch? 12
vii

CONTENTSviii
2.2 Git’s key features 14
Distributed repositories 15 ■ Fast branching 16
The staging area 17

2.3 A quick tour of Git 17
Using the GUI to tour a Git repository 18 ■ Using the command
line to tour a Git repository 21

2.4 Version control terminology 24

3 Getting oriented with Git 25
3.1 Getting set up 25

3.2 Using commands 27
Git command-line syntax 27 ■ Common commands 28

3.3 Improving command-line efficiency 30

3.4 Using Git help 31

3.5 Controlling long output with a pager 33

3.6 Lab 34

3.7 Further exploration 34

3.8 Commands in this chapter 35

4 Making and using a Git repository 36
4.1 Understanding repository basics 36

4.2 Creating a new repository with git init 37

4.3 Tracking files with git status and git add 39
Using git status to check your repository state 39 ■ Using git add
to add a file to your repository 41

4.4 Committing files with git commit 42

4.5 Viewing the repository with git log and ls-files 44

4.6 Lab 45

4.7 Commands in this chapter 46

5 Using Git with a GUI 47
5.1 Starting Git GUI 47

Starting Git GUI in Windows 48

5.2 Creating a repository with Git GUI 49

5.3 Adding a file into the repository via Git GUI 51

5.4 Looking at your history 57

CONTENTS ix
5.5 Lab 58

5.6 Further exploration 59
Other GUIs for Git 59 ■ Tcl, Tk, and Wish 59

5.7 Commands in this chapter 60

6 Tracking and updating files in Git 61
6.1 Making simple changes 61

Creating a new repository 61 ■ Telling Git about changes 62
Seeing what’s different 63 ■ Adding and committing changes to
the repo 64

6.2 Thinking about git add 65
An analogy to introduce the staging area 65 ■ Adding changes
to the staging area 66 ■ Updating the staging area 66
Understanding the staging area 67 ■ Committing
changes 70

6.3 Adding multiple files 72

6.4 Lab 74
Understanding command-line nuances 74 ■ Getting out of
trouble 74 ■ Adding your own file 74

6.5 Further exploration 74

6.6 Commands in this chapter 75

7 Committing parts of changes 76
7.1 Deleting files from Git 76

7.2 Renaming files in Git 78

7.3 Adding directories into your repository 81

7.4 Adding parts of changes 83
Reconsidering the stage analogy 83 ■ Considering when to
commit 84 ■ Committing parts of a file by using Git GUI 86
Committing parts of a file using git add -p 90 ■ Removing
changes from the staging area 93 ■ Resetting a file to the last
committed version 94 ■ Understanding consequences of partial
commits 95

7.5 Lab 96
Working with multiple hunks 96 ■ Changing your mind with a
delete 97 ■ Reading assignments 97

7.6 Commands in this chapter 97

CONTENTSx
8 The time machine that is Git 98
8.1 Working with git log 98

Working with the SHA1 ID 99 ■ Exploring meta
information 100 ■ Using gitk to view the commit history 102
Finding all commits by file 104 ■ Using variations
of git log 104

8.2 Making proper commit log messages 105

8.3 Checking out a specific version 107
Understanding HEAD, master, and other names 108
Going back in time with git checkout 110

8.4 Breadcrumbs to previous versions 114

8.5 Lab 115
Viewing history (part 1) 115 ■ Amending commits 116
Using other names 116 ■ Committing while in detached
HEAD mode 116 ■ Deleting tags 117 ■ Viewing history
(part 2) 117

8.6 Further exploration 117

8.7 Commands in this chapter 117

9 Taking a fork in the road 119
9.1 Introducing branches 119

Creating references 120 ■ Understanding that master is just a
convention 121

9.2 When and how to create branches 123
Introducing new code with branches 123 ■ Introducing fixes
with branches 130

9.3 Performing other branch operations 131
Branching faster 131 ■ Deleting branches 132

9.4 Switching branches safely 134
Stashing away your work 134 ■ Popping the stash 135

9.5 Lab 136
Using the GUI for branch work 136 ■ Warm-up
questions 137 ■ Working on another_fix_branch 137
Viewing branches 138

9.6 Further exploration 138

9.7 Commands in this chapter 139

CONTENTS xi
10 Merging branches 140
10.1 Considering point of view: Traffic merges into us 141

10.2 Performing a merge 141
Starting with at least two branches 141 ■ Checking the
difference between two branches 143 ■ Performing the
merge 144 ■ Working with a merge commit’s parents 146
Performing merges in Git GUI 147

10.3 Handling merge conflicts 148
Understanding differences that Git can’t handle 148
Merging files by directly editing conflicting hunks 150
Merging files by using a merge tool 151 ■ Aborting a
merge 154

10.4 Performing fast-forward merges 154
Understanding the direct-descendant concept 154 ■ Making a
fast-forward merge 156

10.5 Lab 157

10.6 Further exploration 158
Calculating the base of a merge with git merge-base 158
Changing how conflicts are displayed (merge.conflictstyle) 158
Performing octopus merges 158

10.7 Commands in this chapter 159

11 Cloning 160
11.1 Cloning: making copies locally 160

Using git clone 161 ■ Viewing branches in your clone 163
Checking out branches 166

11.2 Working with the bare directory 167
Examining Git repository files 168 ■ Creating bare directories
with git clone 168 ■ Cloning from bare directories 170

11.3 Listing files in the repo by using git ls-tree 173

11.4 Lab 174

11.5 Further exploration 175

11.6 Commands in this chapter 176

12 Collaborating with remotes 177
12.1 Remotes are distant places 177

Analyzing a clone’s origin (git remote) 179 ■ Renaming a
remote 180 ■ Adding a remote 182

CONTENTSxii
12.2 Interrogating a remote 184

12.3 Getting a clone from somewhere remote 188

12.4 Lab 189
Exploring your math.github clone 189 ■ Making remotes
manually 189 ■ Using other git remote subcommands 190
Creating clones with Git GUI 190 ■ Accessing another remote
URL 190

12.5 Further exploration 190

12.6 Commands in this chapter 191

13 Pushing your changes 192
13.1 Pushing sends changes to a remote 193

Permissions are required 193 ■ Pushing requires a branch and
a remote 194 ■ Verifying a successful git push 196

13.2 Understanding push conflicts 200

13.3 Pushing branches 202

13.4 Deleting branches on the remote 206

13.5 Pushing and deleting tags 208

13.6 Configuring simple pushes 209

13.7 Lab 210

13.8 Further exploration 211

13.9 Commands in this chapter 212

14 Keeping in sync 214
14.1 Completing the cycle of collaboration 214

14.2 Using git pull: a two-part operation 218
Fetching files from a remote repository (git fetch) 219
Merging two branches (git merge) 224

14.3 Merging a pull 225
Clean merge 226 ■ Clean merge with nonautomatic
commit 227 ■ Clean merge with automatic commit 230
Conflicted merges 231

14.4 Restricting pulls to fast-forwards only 235

14.5 Using git fetch and merge instead of pull 236

14.6 Lab 237

14.7 Commands in this chapter 238

CONTENTS xiii
15 Software archaeology 239
15.1 Understanding git log 239

Reviewing the basics of git log 239 ■ Limiting the display of
commits 241 ■ Seeing differences with git log 244
Using git name-rev to name commits 246

15.2 Understanding gitk view configurations 248
Showing only specific branches in gitk 248 ■ Working with
simplified views 250

15.3 Studying files 251
Finding files of interest (git grep) 251 ■ Examining the history
of one file 252

15.4 Finding which revision updated a specific line of
code 255
Running git blame as a GUI 255 ■ Using git blame on the
command line 257

15.5 Leaving messages for those who follow 257

15.6 Lab 258

15.7 Further exploration 258

15.8 Commands in this chapter 260

16 Understanding git rebase 261
16.1 Examining two git rebase use cases 262

Keeping up with the upstream by using git rebase 262
Cleaning up history by using git rebase 263

16.2 Examining use case 1: keeping up with the upstream 264

16.3 Using git reflog and git reset to revert your repo 267

16.4 Examining use case 2: cleaning up history 270

16.5 Lab 275

16.6 Further exploration 276
Cherry picking 276 ■ Commit deleting 277

16.7 Commands in this chapter 278

17 Workflows and branching conventions 279
17.1 The need for Git conventions 279

Conventions for commits 280 ■ Conventions for pushing
code 280 ■ Conventions for branching 281 ■ Conventions
for using rebase 281 ■ Conventions for tagging 281

CONTENTSxiv
17.2 Two Git workflows 281

17.3 git-flow 282
Making a feature branch 283 ■ Making a release branch 286

17.4 GitHub’s flow 288

17.5 Lab 290

17.6 Further exploration 290

17.7 Commands in this chapter 292

18 Working with GitHub 293
18.1 Understanding GitHub basics 293

Creating a GitHub account 295 ■ Creating a repository 296
Interacting with the repository 297

18.2 Working with forks 300
Making a fork on GitHub 300 ■ Cloning your fork 302

18.3 Collaborating with pull requests 303
Making a change to your fork 304 ■ Making a pull
request 305 ■ Closing the pull request 307

18.4 Lab 308

18.5 Further exploration 309

18.6 Commands in this chapter 310

19 Third-party tools and Git 311
19.1 SourceTree 311

Installing SourceTree 312 ■ Adding a repository into
SourceTree 313 ■ Staging a file 315 ■ Tracking underlying
Git commands in SourceTree 316 ■ Committing a file in
SourceTree 318 ■ History view 318

19.2 Git and the Eclipse IDE 319
Installing Eclipse 320 ■ Adding a repository into Eclipse 320
Staging and committing a file 322 ■ History view 325

19.3 Other third-party tools 326

19.4 Lab 327

20 Sharpening your Git 328
20.1 Introducing the git config command 328

Using Git configuration variables 328 ■ Understanding Git
configuration order of precedence 329 ■ Setting Git

CONTENTS xv
configurations temporarily 331 ■ Setting Git configurations
permanently 332 ■ Resetting Git configurations 333

20.2 Working with Git configuration files 333
Editing Git configuration files 333 ■ Using Git configuration
file syntax 334

20.3 Configuring Git’s default editor 336

20.4 Configuring files to ignore 339

20.5 Continually learning Git 341
Work on a clone 341 ■ Work with the help 341 ■ Commit
often 342 ■ Collaborate 342

20.6 Lab 342

20.7 Commands in this chapter 344

index 345

CONTENTSxvi

preface
A few years ago, while watching an instructional video about how to play the guitar, I
heard a great expression. The instructor was demonstrating a complicated strumming
pattern. At the correct speed, it looked incredibly fast. He said he’d try to slow it down
so we could see what was happening but acknowledged that it would be hard to do so.
He said it would be like trying to fall down slowly.

 I liked that: fall down slowly.
 When Git is demonstrated, it can seem incredibly fast. The fact that it is often dem-

onstrated on the command line adds even more mystery to what exactly is happening
with all those commands.

 This book is my attempt to slow things down so that you can see and think about
every single step that is happening when you interact with Git. I am taking this
approach because, when I have presented Git at local user groups, people want to
know what each command is doing. In a presentation, it’s hard to cater to each ques-
tion, but in a book, there is room to explore the details.

 Another guitarist, this time on YouTube, gave the sage advice that before you play
musical pieces at their correct tempo, you should learn them much more slowly.
When you take things slowly, your fingers learn how to properly move, and only after
you build confidence can you play a piece faster and faster.

 I liked that as well: learn things slowly.
 The tutorial in the Git documentation covers details in short paragraphs, but this

book will take the opposite approach. We’ll devote a whole chapter to what the tuto-
rial covers in a single sentence. As you slowly build confidence with one command,
you will find yourself using it faster the next time.
xvii

PREFACExviii
 I have spent much of my career in customer-facing roles such as technical support,
onsite consulting, and training. I have learned from speaking with people that “slow-
ing down” goes a long way toward making people comfortable with the nontrivial,
technical details. This book is a result of that approach.

about this book
This book is aimed at coding professionals who are beginners to either source control
or Git. Anyone who types code into files (whether it is a computer program, a CSS file,
or an HTML file) can benefit from learning Git to keep track of their work. This book
covers beginner to intermediate level topics.

 Using version control is one of the characteristics of a professional developer, but
this book does not assume you know another version control system. In fact, this book
will explain Git entirely in Git’s terminology, so I won’t mention any other version con-
trol system.

 I hope you are comfortable on the command line, but do not worry if you are not.
I will go over each command, and over time you will become more comfortable with
this skill. In addition, the book will show various GUIs that make Git easier to use.

 If you are a complete beginner, you should read the chapters in order. Each chap-
ter is designed to be read during your lunch hour. In that hour, you should be able to
read the text and go through each of the “Try it now” exercises for a particular chap-
ter. The exercises at the end of each chapter will help reinforce the points of the chap-
ter, but they can be done at your leisure.

 Making time for the “Try it now” exercises is key. Performing these exercises will
help you understand Git better. In each chapter, you will work on a repository that is
completely your own. Each chapter creates an environment or a situation that is safe to
experiment in. In certain chapters, you can re-create the repository to a known working
state using code that is available from the book’s website (http://www.manning.com/
umali).
xix

http://www.manning.com/umali
http://www.manning.com/umali

ABOUT THIS BOOKxx
 Each chapter is full of illustrations and screen shots. The diagrams will give you a
mental model for how Git organizes your code and its history. Take time to think
about these drawings, and how they apply to the exercises. Finally, the end of each
chapter will list the Git commands covered in that chapter, where appropriate.

 Chapters are grouped into basic topics, intermediate topics, advanced topics,
branching and merging, collaborating, and the Git ecosystem. The first chapter pro-
vides a thorough outline of these groupings. Some chapters build on earlier chapters,
so keep that in mind if you are past the beginner level and you decide you want to skip
around.

 Basic topics, covered in chapters 1 through 6, include setting up a repository, add-
ing and committing files to the repository, and inquiring about the status and history
of this repository. If you’re a solo developer, these chapters will probably be sufficient
for 80% of your needs.

 Intermediate topics (chapters 7 and 8) focus on the Git staging area and accessing
different parts of your repository. Advanced topics (chapters 15 and 16) reveal inter-
esting ways to query your repository history, as well as how to manipulate your history.

 Branching and merging, addressed in chapters 9 and 10, will break down how to
use one of Git’s foremost features: fast branching. After reading these chapters, you
won’t think twice about creating a branch to experiment with something in your code
base. The collaborating chapters (chapters 11 through 14) will explain how to collab-
orate correctly using Git’s collaboration commands. If you’ve ever been confused
about pushing and pulling, these four chapters will clear things up!

 There are three chapters (chapters 17, 18, and 19) on Git’s ecosystem: third-party
tools, user interfaces, and GitHub. Git has gained more users thanks to user interfaces
and tools that make Git easier, but it is GitHub, the Git repository hosting company,
that helped increase its adoption by the open-source community at large.

 Finally, there is a chapter (chapter 20) on customizing Git for your environment. It
appears last because I believe that learning a new system in its default or stock settings
is the best way to get started. That said, skimming this chapter early in your reading may
be helpful.

Source code downloads

As mentioned before, the publisher’s website for the book contains code that will help
you re-create a working environment for the text, as well as files and scripts necessary
for the various exercises. This code (in the form of scripts) is available for download as
a zip file from www.manning.com/books/learn-git-in-a-month-of-lunches.

Author Online

Support for this book will come from Author Online, a web-based forum at https://
forums.manning.com/forums/learn-git-in-a-month-of-lunches. A link to the forum is
also available from the publisher’s website at www.manning.com/books/learn-git-in-a-
month-of-lunches.

https://forums.manning.com/forums/learn-git-in-a-month-of-lunches
https://forums.manning.com/forums/learn-git-in-a-month-of-lunches
www.manning.com/books/learn-git-in-a-month-of-lunches
www.manning.com/books/learn-git-in-a-month-of-lunches
www.manning.com/books/learn-git-in-a-month-of-lunches

ABOUT THIS BOOK xxi
 Readers are encouraged to post questions and feedback there. I plan to monitor
the forum and to chime in as necessary.

About the author

Rick Umali is a senior-level technology professional who lives and works in greater
Boston, Massachusetts.

 He has worked for high-tech companies his entire career and enjoys speaking to
beginner audiences about technology.

 His experience ranges from enterprise software (search, e-commerce) to web
development. He has spent time in customer-facing roles (training, support, and con-
sulting) and programming in a range of languages (Java, PHP, Ruby).

acknowledgments
I had a lot of help throughout the writing and publishing process. First and foremost,
I want to thank Helen Stergius at Manning, who gave me a lot of support during the
development of the manuscript. She was always positive and cheerful, and she helped
me get the book to the finish line. Other editors who helped along the way include
Supriya Savkoor, Susie Pitzken, and Sean Dennis.

 Jonathan Thoms and Karsten Strøbaek provided a detailed technical reading and
proofing during the manuscript phase. They can take the credit when the code and
examples work well.

 Kevin Sullivan and his team took my drawings and made them much clearer. Sha-
ron Wilkey copyedited the manuscript and made the words gleam. Mary Piergies, with
Janet Vail, oversaw the production of the book through layout and printing.

 Aleksandar Dragosavljevic managed the peer reviews for this book. Each reviewer
weighed in on issues big and small, and in doing so, helped improve the book. Their
names: Art Bergquist, Boris Vasile, Changgeng Li, Ernesto Cardenas Cangahuala,
Harinath Mallepally, Kathleen Estrada, Keith Webster, Luciano Favaro, Michel Graci-
ano, Miguel Biraud, Mohsen Mostafa Jokar, Nacho Ormeño, Nitin Gode, Patrick Den-
nis, Ralph Leibmann, Richard Butler, Scott King, Stuart Ellis, and Travis Nelson.

 Ozren Harlovic, review editor, was the first person at Manning who noticed my
interest in writing a book. Michael Stephens, Manning’s associate publisher, got me to
sign on the dotted line.
xxii

ACKNOWLEDGMENTS xxiii
 The initial idea for writing the book came from my involvement with the Boston
PHP Meetup, the largest education-focused Meetup in New England. Organizers Matt
Murphy, Bobby Cahill, and Gene Babon were a source of great encouragement.

 My neighbor, Peter Loshin, provided early inspiration. Emails from Mike
McQuaid, Ben Melançon, and Larry Ullman kept me going.

 My wife Jenn and my daughter Mia were always good-natured about my book writ-
ing. I am grateful for their patience and love.

ACKNOWLEDGMENTSxxiv

Before you begin
You may have heard of Git, the wondrous new software that puts the fun back into
the laborious work of version control. You might even have browsed the many soft-
ware offerings on GitHub, the popular social coding website. (You might even be
confused about Git and GitHub!) Maybe you’re using one of those other version
control systems, which are now considered old-school. Maybe you’ve been working
without version control (gasp!), because you think it’s only for programmers (it’s
not). Maybe you’ve become curious about how to contribute to open source soft-
ware, but Git has always been a roadblock. However you got to this book, I’m glad
you’re here exploring Git!

 As more and more corporate IT shops begin to embrace open source software,
more and more IT developers and administrators will encounter Git. Git has
become the de facto source-code control system for open source developers. Tin-
kering and modifying open source software to suit your needs is one of the benefits
of open source, but you’ll want to use the safety net of source-code control, and Git
is that safety net.

 As you use Git, you’ll see that it encourages an attitude of being careful about
changes. Commit often is a mantra you’ll hear often in the Git community (as well as
continuous integration and continuous deployment camps), and for good reason. Version
control is the most important thing you can practice as a developer, and Git makes
it easy.

1.1 What makes Git so special?
Git is a distributed version control system (DVCS). This means that you don’t need
to run a Git server to get all its benefits. You don’t even need a network to run Git’s
commands.
1

2 CHAPTER 1 Before you begin
 Earlier version control systems put
code in a castle, but developers have to
be given access to read and write to a
repository, which is where the code is
stored. This repository, also called a repo,
often exists on some other machine,
which requires a network. As developers
are added, the increased load to this one
server decreases reliability. Certain ver-
sion control commands such as branch-
ing and tagging become specialized and
often require special access. Finally, the
version control server must be up and
running in order for developers to do
work. This uptime requirement requires
oversight and adds to the cost of running
a version control system. All this makes
the server a single point of failure, as
shown in figure 1.1.
 Git inverts this by giving each devel-
oper a version control repository, as
shown in figure 1.2. Each repository runs
entirely on the developer’s local
machine. Each developer can access any
part of a project’s history, compare ver-
sions, make branches, and perform any
other operation that would normally
require special permissions or network
access with a server. This liberating sce-
nario is an idea that takes some getting
used to. Instead of making requests to
the specialists who run your version con-
trol system, you can perform any and all
of these specialized tasks—but this means
that you have to learn more about these
tasks.
 This idea of giving every developer a
repository makes Git a distributed version
control system. Being distributed allows

every developer to have the same capabilities as everyone else. Large open source
projects like Drupal and Linux have thousands of developers in many locations, some
with sparse Internet connectivity. With Git, all of these developers can make their con-
tributions with the same ease as the project leader.

Figure 1.1 The “single point of contention” that
developers have to deal with: the version control
system that houses the repository

Figure 1.2 Distributed version control systems are
liberating because each developer has a copy of the
entire repository.

3How to use this book
 This may sound like a free-for-all but, because Git doesn’t require a central reposi-
tory, many projects have self-organized in ideal ways. Some projects have small devel-
opment teams with a single project leader who can manage all the commits that
might be made to a repository, but many projects have multiple people that help with
commits.

1.2 Is this book for you?
Version control is akin to basic hygiene, and everyone needs hygiene. If you produce
or modify files on a computer, this book might be for you. This book is geared toward
people who are coding professionals: software engineers, developers, programmers,
web developers, system administrators, and quality assurance and testing people.

 Git is available on the three major platforms: Windows, Mac, and Unix/Linux. It
was born and bred on the command line, so you’ll have a lot of command-line work.
Ideally, you’re someone who embraces this concept, or at least is open to putting
down the mouse and typing in a lot of commands.

 If you have directories or files that look like the following listing, you’re a candi-
date for this book!

C:\buildtools>dir
 Volume in drive C is GNU
 Volume Serial Number is 5101-E64D

 Directory of C:\buildtools

03/15/2014 08:22 PM <DIR> .
03/15/2014 08:22 PM <DIR> ..
03/01/2014 08:22 AM 11,843 filefixup-01.bat
03/03/2014 08:52 AM 11,943 filefixup-02.bat
03/08/2014 11:22 AM 12,050 filefixup-03.bat
03/10/2014 02:22 PM 12,352 filefixup-04.bat
03/15/2014 03:21 PM 11,878 filefixup.bat
 5 File(s) 60,066 bytes
 2 Dir(s) 467,705,196,544 bytes free

Finally, this book is geared to Git beginners. The book demonstrates Git tasks step-by-
step in tutorial fashion. Each chapter has a set of tasks to try, and they start out slowly
but eventually build up speed.

1.3 How to use this book
This book is designed to be read one chapter each day. Each chapter should take only
40 minutes to read, and if you take an hour for lunch, you’ll have 20 minutes left to do
the practice assignments contained in each chapter. If you can type and eat lunch at
the same time (I’ve seen people who do this), you might be able to squeeze in a chap-
ter in a half hour!

Listing 1.1 Are you a candidate for learning Git with this book?

4 CHAPTER 1 Before you begin
MAIN CHAPTERS

Chapters 2 through 20 contain the main content. This gives you roughly one month
(four five-day business weeks) of lunch learning. You don’t need to rush through this
content. It’s helpful to let the content marinate in your brain before you start the next
day’s chapter. Each chapter also has several TRY IT NOW sections.

HANDS-ON LABS

Most of the main-content chapters include a short lab for you to complete. You’ll
need to install Git on your local machine to serve as your lab environment. The labs
consist of tasks that enable you to practice your new knowledge. In some tasks, you’ll
repeat the commands you encountered in the chapter. In other tasks, you’ll experi-
ment with commands you just learned. Some of the labs require you to dig around
and find answers.

 All of the tasks and answers are rooted in the material of the current chapter or
previous chapters. Sample answers are available on the book’s website, but persist
before giving in. That’s the best way to learn!

FURTHER EXPLORATION

Git is deep. I can’t plumb all the depths in this one book, but I can point you to some
resources and say, “Go in that direction.” One of the goals of this book is to teach you
how to teach yourself about Git.

ABOVE AND BEYOND

Figuring out how Git implements its commands has been a source of great learning
for me. The Above and Beyond sections share some of that learning, but they’re not
necessary for the labs or for the subject matter discussed in the chapter. If you’re the
type of person who likes to know why something works the way it does, these sections
can provide some additional insight, but feel free to skip these or bookmark them for
a later time.

1.4 Installing Git
This book will teach you Git by having you run Git commands in its native command-
line environment. Installing Git is as straightforward as installing any other software
package on your platform. I’d argue that it’s easier because there’s no server to start up.
Git installs a directory of commands and documentation, and then places the git com-
mand in your PATH. (For Windows, it also installs a command line that you must use.)
Keep repeating to yourself that there’s no server installation at all, and the only thing
to watch out for is your PATH.

 Remember, this installation will be used for your labs, so be sure to complete this
step.

5Your learning path
UNIX/LINUX

On Unix/Linux, use the package manager of your distribution to install both the Git
and Git GUI packages. This is covered in plenty of places on the web, but the definitive
guide is http://git-scm.com/download/linux. You’ll type into the command-line
window.

MAC

To keep things simple, install the DMG package at http://git-scm.com/download/
mac. This installation includes the Git GUI application as well as the Git commands.
You’ll type commands into the Mac Terminal client (a.k.a. the command-line
window).

WINDOWS

In Windows, install Git from http://msysgit.github.io/. This package contains the Git
GUI application as well as the Git commands. You’ll type commands into the Git BASH
window (a.k.a. a command-line window).

 Git requires a specific command-line environment, so you can’t run Git commands
in Windows Command (CMD) or Windows PowerShell. The installation provides the
correct command-line environment for Git (namely, Git BASH).

1.5 Your learning path
The first three chapters introduce version control concepts and how to become ori-
ented to your Git installation.

 The basics are covered in chapters 4 through 6. The Git commands covered in
these chapters are arguably the ones you’ll be using almost half of the time. Any devel-
oper who works with a version control system needs to know how to add files to a
repository and how to inspect its history. You’ll also learn how to make a Git reposi-
tory. These are the basics, and if you’re using Git on your own, these are probably the
only chapters you need to learn.

 Chapters 7 and 8 present intermediate commands. You’ll learn about the Git stag-
ing area. You’ll also learn other ways to inspect a repository’s history, beyond the
basics. These techniques become important if you work as a contributor to reposito-
ries that you don’t own or create.

 Chapters 9 and 10 cover branching and merging. Branching is a key feature of Git
that requires you to merge more often.

 Chapters 11 through 14 discuss how to collaborate with others: how to get changes
from other people and how to submit your own changes.

 The rest of the book touches on advanced topics (such as the git rebase com-
mand), the Git ecosystem (a few third-party tools are examined), and the git config
command.

http://git-scm.com/download/linux
http://git-scm.com/download/mac
http://git-scm.com/download/mac
http://msysgit.github.io/

6 CHAPTER 1 Before you begin
 Table 1.1 outlines this learning path.

Table 1.1 Your learning path

Chapter 1: Before you begin An Introduction to Key Concepts
If you’re unfamiliar with version control in general, this is where to
start. You’ll start with key version control concepts and then take a
whirlwind tour of Git.

Chapter 2: An overview of Git
and version control

Chapter 3:
Getting oriented with Git

Chapter 4: Making and using a
Git repository

The Basics
This covers the Git commands you’ll end up using 70% of the time:
init, add, commit, log, status, diff.

Chapter 5: Using Git with a GUI

Chapter 6: Tracking and updat-
ing files with Git

Chapter 7:
Committing parts of changes

Intermediate Topics
You’ll study the staging area (manipulated by git add) and learn
how to manipulate the Git time machine with git checkout.

Chapter 8:
The time machine that is Git

Chapter 9:
Taking a fork in the road

Branching and Merging
This section covers git branch and merge. You’ll learn how to use
Git’s ability to perform lightning-fast branching and then how to merge
your branches back to your mainline.Chapter 10: Merging branches

Chapter 11: Cloning Collaborating
This four-chapter block covers the basics of collaboration using git
clone, remote, push, pull, and fetch.Chapter 12:

Collaborating with remotes

Chapter 13:
Pushing your changes

Chapter 14: Keeping in sync

Chapter 15:
Software archaeology

Advanced Topics
You’ll explore the ability to deeply probe your history (via git log)
and change your history (via git rebase). Chapter 16:

Understanding git rebase

Chapter 17: Workflows and
branching conventions

Git Ecosystem
Git’s flexible architecture has spawned a wide ecosystem of work-
flows (git-flow and GitHub Flow), hosting (we’ll focus on GitHub), and
third-party tools (we’ll focus on the Atlassian SourceTree and Eclipse
GUIs for Git).

Chapter 18:
Working with GitHub

Chapter 19:
Third-party tools and Git

Chapter 20:
Sharpening your Git

Staying Sharp
This chapter covers git config and how to keep your Git skills
sharp.

7Being immediately effective
1.6 Online resources
The book’s website (www.manning.com/umali) is a place I hope you’ll visit as you
progress through this book. Several supplementary resources for this book are avail-
able on that site, including these:

■ Companion videos for some chapters
■ Answers for each end-of-chapter lab
■ Additional articles
■ Consolidated up-to-date links to all the resources mentioned in this book

I’ll be watching and responding to reader requests and feedback made on that site.
You’ll find the book’s forum there, where I hope to interact with people.

1.7 Being immediately effective
The goal of this book is for you to immediately become effective with Git. Being effective
means being able to quickly translate a version control task (“I want to make a tag”) to
the Git command (git tag). Git makes this easy because its verbs (tag, branch,
commit, and so forth) directly map to version control tasks.

 Being effective also means learning how to map Git commands to their equivalents
in the Git GUIs (where appropriate). Even though Git is primarily accessed via the
command line, some important aspects of Git are easier to do via a GUI. You’ll learn
this too.

 Provided you have installed a local copy of Git, this book will show you how to
safely operate Git in sandbox environments. Practicing the Git commands will
increase your familiarity and confidence with the system.

 You have no lab for this chapter, other than installing Git, which shouldn’t take too
much time. See you tomorrow, when you’ll look at an overview of Git and take a quick
tour.

www.manning.com/umali

An overview of Git
and version control
Welcome back to lunch! Today you’re going to learn about high-level version con-
trol concepts and take a quick tour of Git. Some of this may be familiar, so please
skim as necessary, but be sure to pay attention to the Git features section and the
tour! If you’re completely new to version control, this chapter gives you enough
background to follow the rest of this book. For people new to Git, the whirlwind
tour gives you a fast introduction to Git’s features.

2.1 Version control concepts
Version control is an essential practice for computer programmers. It’s the act of
keeping track of changes you make to a file or set of files. By extension, version
control is an essential practice for organizations: it’s the act of keeping track of ver-
sions of software.

 For programmers, developing software isn’t easy; you sometimes have to try
multiple things before you come up with an acceptable solution. Versions are these
multiple things. Keeping track of what you’ve tried is a good discipline that version
control helps with (not only that, but it preserves working copies in case something
goes awry in the current version)!

 For organizations, maintaining software that’s out in the field is made easier by
knowing its version. If a bug is found, the organization needs to know which ver-
sion contains that bug in order to properly fix it.

2.1.1 Version control for the software developer

If you’re a software developer (and I’m guessing you are), figure 2.1 may look
familiar.
8

9Version control concepts
Figure 2.1 presents a timeline for the Java source-code file Trans.java. You’ll notice
that each box has a revision number, and let’s assume further that there were 33 ear-
lier revisions (boxes) of this file. Each box represents a logical step you made in the
development of this particular file (a version of the file). As a developer, you’re keep-
ing track of these detailed versions. These versions are tracked over time, and as the
changes are strung together, a timeline, or history, is formed. You may want to revisit
certain versions in this timeline; version control helps with that.

 You might save the file to your hard drive often, but for each of these versions, you’ve
made a change that represents a complete thought. At this point, you save the file not
just to the hard drive, but also to the version control system, as shown in figure 2.2.

2.1.2 Version control for the organization

For an organization, version control is more like figure 2.3.
 Instead of the detailed steps that an individual would be concerned with, the orga-

nization is concerned with the big picture. For an organization that releases software,
a version of software usually consists of many files. Version control must be able to

Trans.java development timeline

Trying brute
force loop of
current data

structure

Looping
through

keys

Testing out
alternate data

structure

Trying the latest
algorithm that
the team lead

suggested

Rev34 Rev35 Rev36 Rev37

Figure 2.1 Version control for the individual developer

Local file saves Version control
system saves

Testing out
alternate data

structure

Trying the latest
algorithm that
the team lead

suggested

Trans.java development timeline

Rev36 Rev37

Figure 2.2 Saving to disk happens more often than saving to the version control system.

10 CHAPTER 2 An overview of Git and version control
answer questions such as, what files make up version 1.0? What files make up the bug
fix that’s on top of version 1.1? What version contains the security fix?

 Just like the single file that we’re tracking in figure 2.1, the software system is
tracked over time; but a software system has more files, typically coming from more
than one developer.

 The concerns of the version control system are the same for the individual and for
the organization, despite the difference in scope. Each party wants to be able to go to
a particular known version and be able to view the files within that version.

2.1.3 What is a repository?

A repository is a storage area for your files. Conveniently, in version control, this is typi-
cally a directory or folder that contains all the files for whatever project you’re work-
ing on. There may even be subdirectories (subfolders) inside your repository,
depending on how your project is organized.

 If your directory looks like the following listing, you’re practicing a manual form of
version control.

C:\buildtools>dir
 Volume in drive C is GNU
 Volume Serial Number is 5101-E64D

 Directory of C:\buildtools

03/15/2014 08:22 PM <DIR> .
03/15/2014 08:22 PM <DIR> ..
03/01/2014 08:22 AM 11,843 filefixup-01.bat
03/03/2014 08:52 AM 11,943 filefixup-02.bat
03/08/2014 11:22 AM 12,050 filefixup-03.bat
03/10/2014 02:22 PM 12,352 filefixup-04.bat
03/15/2014 03:21 PM 11,878 filefixup.bat
 5 File(s) 60,066 bytes
 2 Dir(s) 467,705,196,544 bytes free

Listing 2.1 Manual version control (annotated command-line session)

Bug fix

v1.1

Basic
e-commerce

layer

v1.0

Web
services

layer

v2.0

Security fix

v1.2

Figure 2.3 Version
control for the
organization

Get a directory listing of
the files in the current
directory (on Windows)

11Version control concepts

Get a lis
of the fil
this dire

Change d
to the pa
director
Every time you make some kind of change to a file, you append a number to its name.
 This manual system may make sense to you, but after a month or two, will you

remember what has changed between filefixup-03.bat and filefixup-04.bat? Was it an
important change?

 If you work on multiple files, all in the same directory, another manual form of ver-
sion control is making a copy of the entire directory. The following listing shows a ter-
minal session on my server.

% pwd
/home/rumali/RickUmaliVanityWebsite
% ls
README.txt make_new_index.pl process_sports_feed.pl
bio.tmpl make_ramblings_tmpl.sh process_tech_feed.pl
blog_start.tmpl make_rick_index.sh processfeed.pl
contact.tmpl make_sports_tmpl.sh rick-yui.tmpl
footer.tmpl make_tech_tmpl.sh sports_start.tmpl
getfeed.pl pictures_start.tmpl tech_start.tmpl
make_flickr_tmpl.sh process_flickr_feed.pl
% cd ..
% ls
RickUmaliVanityWebsite RickUmaliVanityWebsite.v01
RickUmaliVanityWebsite.v02 RickUmaliVanityWebsite.v03
RickUmaliVanityWebsite.v04 RickUmaliVanityWebsite.v05
% cp –r RickUmaliVanityWebsite RickUmaliVanityWebsite.v06

The listing is annotated, so don’t worry if this is new to you.
 On my server, I first examine the list of files in the directory containing my vanity

website. Then I go up to the parent directory and make a copy of this directory. This is
yet another form of manual version control on a so-called repository.

2.1.4 What is a commit?

A commit is a saved change.
 Listing 2.1 made a new version of a file by appending a number to the end of the

filename. For example, the file filefixup-03.bat represents the third version of that
Windows batch file.

 In figure 2.1, I made a new version of the Trans.java file at every unique change.
How do you know when to make a new version? Whenever you’ve made a change
that’s worth saving. In version control, to commit (the verb) is to save a change you
made to your file (or files) back to the repository.

 In listing 2.2, you saw that the website had five previous versions, prior to making a
sixth version. What could those other versions be? Maybe version 1 is the initial set of

Listing 2.2 Manual version control (annotated command-line session)

Get the name of the
current directoryting

es in
ctory

irectory
rent

y
Get a listing of the
files in this directory

Create a copy of the website directory recursively,
using the cp command with -r switch (note that
we give it a new name, an incremented number)

12 CHAPTER 2 An overview of Git and version control
HTML pages, and version 2 is when I introduced CSS files. Version 3 might be the ver-
sion where I added an image. Clearly, the variations are endless. Versions are saved
changes that are worth saving.

 Keeping track of changes is important because it allows you to go back to an earlier
change. Remember that repository with the utility batch script (shown in the follow-
ing listing)?

03/01/2014 08:22 AM 11,843 filefixup-01.bat
03/03/2014 08:52 AM 11,943 filefixup-02.bat
03/08/2014 11:22 AM 12,050 filefixup-03.bat
03/10/2014 02:22 PM 12,352 filefixup-04.bat

You have multiple versions (multiple saved copies) of a Windows batch file. Let’s
imagine that you share filefixup-03.bat with a colleague. If for some reason the BAT
file didn’t work for that person, you could now offer an earlier version, filefix-02.bat.
This is an important capability! Having versions, and knowing what is in these ver-
sions, is a key first step in being a professional software developer.

2.1.5 What is a branch?

Branches are other paths, or lines, of develop-
ment.

 Imagine that you’re making a website for a cli-
ent, and it consists of an HTML file and a CSS file.
You work on these two files in a default repository.
This default repository is also conveniently associ-
ated with a default branch, which is often called
the main branch, or the trunk. When you commit
your changes to the repository, your changes go
into this default branch, as in figure 2.4.

 In the figure, the arrows rep-
resent commits to the branch.
The HTML and CSS files are
committed three times. Let’s
now suppose your client is com-
fortable with how these two files
look, and asks you to install
them on their web server.
Because you’re smart and you
use version control, you make a
copy of the repository, calling it
Version 1. This is the creation of a new branch! In figure 2.5, the files you had on the
main branch are copied to the Version 1 branch.

Listing 2.3 List of batch scripts in that manual repository

HTML CSS

Main or trunk

Figure 2.4 Saving files to a main, or
trunk, branch

Main or trunk

Version 1HTML CSS

HTML CSS

Figure 2.5 Making Version 1 in the repository

13Version control concepts
After you install the files on the web server, you go back to work. You do this work on
the default branch. Let’s suppose you’ve added a PHP file to your website to make it
more dynamic. This causes you to update your HTML and CSS files. You now commit
these changes to the repository. This commit is new work that was done after Version 1
(see figure 2.6).

 Your client calls you up and wants you to make a change to the existing files on the
web server. You might be bold enough to make changes directly on the server; this
temptation is more common than you think! You might be able to make these
changes on your main branch, and then copy the files from that main branch up to
the website, but then you’ll inadvertently install that PHP file. What if that PHP file
isn’t finished? It’s more likely that the HTML and CSS changes you made are such that
you can't make the fix in the main branch and then copy them up to the server. In this
situation, usually too much has changed between commits.

 You need a way to go back to the Version 1 branch and make the changes to that
branch. You need the ability to go back to an earlier version of your entire repository.
If you had this capability, you could make the changes in Version 1, upload those
changes to the web server, and then resume your work back on the main branch.

 Figure 2.7 shows all the commits that were made to this repository. Note the addi-
tional changes to the Version 1 branch. Another way to visualize the commits and
branches is to use an ASCII timeline, as in the following listing.

 D---F Version 1
 /
A---B---C---E Main

It might be more apparent from this ASCII diagram that you have two paths of devel-
opment: Main and Version 1.

Listing 2.4 Visualizing a branch in ASCII

Version 1

CSS PHPHTML

Main or trunkMain or trunk

Figure 2.6 New commits happen after Version 1, as indicated by the
arrow. The trunk grows bigger.

14 CHAPTER 2 An overview of Git and version control
Released code often gets updated as part of regular maintenance. Consider figure 2.8.
 We made changes to the v1.0 code to add a bug fix (v1.1) and a security fix (v1.2).

Some versions might not even get published!

2.2 Git’s key features
Let’s talk about Git, the software that puts the fun back into the drudgery of version
control. The previous section presented the key concepts of version control. Every ver-
sion control system today implements these concepts: versioning, auditing (via com-
mit messages), and branching.

Version 1

HTML CSS HTML CSS

HTML CSS

CSS PHPHTML

Main or trunkMain or trunk

Figure 2.7 All of your commits and branches

Bug fix

v1.1

Basic
e-commerce

layer

v1.0

Web
services

layer

v2.0

Security fix

v1.2

Figure 2.8 The organization’s view of version control

15Git’s key features
 You’ll now look at three of Git’s key features, which distinguish it from other ver-
sion control systems: distributed repositories, fast branching, and the staging area.
(The inventor of Git, Linus Torvalds, placed a premium on these features for his proj-
ect, the Linux kernel.)

2.2.1 Distributed repositories

I touched briefly on distributed repositories in the previous chapter, but let’s dig a
little deeper. Every time you make a commit of your file, it is stored in a repository.
Earlier, I said that a repository is like a folder that contains all the files for a specific
project. Where do you think that repository or folder exists? Do you think of a central-
ized location, perhaps a server, that’s clearly labeled repository? If so, it’s not surprising.
Many of the common version control systems have a centralized server that houses the
repository. Commits send your changed files up to this server. If you want to work on
the file, you check it out of the repository, an operation that tells the repository you’re
now manipulating the file.

 Git is the opposite of this. Git doesn’t require a central server to be installed any-
where. With Git, every developer is given a copy of the repository, as shown in figure
2.9. All version control operations are done locally.

 A brag that you may hear about Git is that you can commit changes to a repository
even while you’re flying in an airplane. This phrase didn’t hit home until I remem-
bered an evening I had flown from Boston to Minneapolis. On the plane, I realized
that I couldn’t connect to my version control system, so I'd have to wait until I landed
before committing the work I was doing on the flight.

 This happened to me sometime
between 2006 and 2008. Nowadays,
you can find Wi-Fi on airplanes, but
at what cost? Also, what might the
performance be on an airplane’s Wi-
Fi? With Git, you don’t need to
worry about cost or network perfor-
mance; you can do everything to the
repository because the repository is
entirely local to you.
 Being distributed allows source
code to be extensively shared.
There’s no hassle of setting up per-
missions. With Git, you copy a repos-
itory you’re interested in, and you
can immediately make commits (on
your copy).
 Being distributed does require
conventions and workflows, but you
and your collaborators can define

Figure 2.9 Distributed version control systems are liberating
because every developer has a copy of the entire repository.

16 CHAPTER 2 An overview of Git and version control
these. (Conventions and workflows help eliminate issues when multiple people work
on the same files and then share them with others.) All large projects need organiza-
tion and conventions, and projects that use Git are no exception, but because Git is
decentralized, each developer has full control of a local copy.

 Backups for your repositories come for free when you use Git. Because everyone
working on a project has the repository, you don’t have to worry about losing the
entire repository. A backup (current up to the last time you shared your changes with
others) can be obtained by copying someone else’s repository. People can still store
the repository in a common location, but no one person’s repository is more impor-
tant than anyone else’s.

2.2.2 Fast branching

As you saw in section 2.1.5, branching is the ability to make a copy of the repository, so
you can work on that copy. In that section, you made a branch called Version 1
because you released some website code to a web server. Later, you used that branch
to fix the website, all the while keeping your current work isolated from the fixes.

 In large software companies, whole departments (often named release engineering)
were tasked with managing branches. This is natural because releasing software
almost always involves separating the code to be released from the developers who
want to work on that code. It’s for this reason that the ability to branch was often lim-
ited to restricted personnel.

 Figure 2.10 represents the code in a repository at a software company that has
released two versions of its product.

 All the code that the company develops is stored in a main, or trunk, repository.
 When a version of the software is ready to be released, a copy is made of the repos-

itory at that point in time, and given a name (for example, Version 1.0). This snapshot
of the code base is made in case that version needs to be updated in the future (for
example, as Version 1.1).

 In earlier version control systems, making a branch to release software was pains-
taking and intricate. Making a branch usually involved copying files to a separate

Version 1

Version 2

Main or trunk

Figure 2.10 Software is developed on code that resides in the main (or
trunk) part of the repository. As versions are ready to be released, a branch
is made. This branch is a copy, or a snapshot, of all the code that
represents that version.

17A quick tour of Git
location. Once this was ready, developers would then check out this branch, at which
point they had two copies of the code: their local main code, and a copy of a particu-
lar version. If this sounds arduous, it is.

 Git, on the other hand, makes branching as easy as changing a directory, and just
as fast too. In most OSs, to switch to a directory via the command line, you type cd
some_directory. In Git, to switch to a branch, you type git checkout some_branch.
There’s no copying of files and no interaction with a remote server to make this spe-
cial copy. (Underneath the covers, Git updates a pointer to the specific commit of the
new path, or line, of development.)

 The speed with which you can create a new branch and begin developing on it
introduces a new model for doing work: if you want to try a new idea in your code, cre-
ate your own branch. Because you’re working in a local repository, no other developer
is disturbed by this new code stream. Your work is safe and isolated. In fact, working in
such feature branches (as these are known) is the hallmark of a competent Git user!

2.2.3 The staging area

The staging area is an advanced architectural feature of Git that allows you, as the
developer, to pick and choose exactly which parts of your changes should be commit-
ted. As you do work in a working copy of your files, you might make multiple changes
in the course of your development. Most of these changes will ultimately be commit-
ted to the repository, but some shouldn’t go in the repo. Debugging statements, sensi-
tive information such as passwords, and other items for the developer’s eyes can be
cleanly removed only by using the staging area.

 In figure 2.11, I’ve hardcoded my username/password into a file named file.c.
Clearly, this isn’t something to commit into the repository. I could commit a sanitized
version of file.c, but what if I’ve made other changes to file.c that should be commit-
ted? Using the Git staging area allows me to commit just the parts of file.c that I want.

2.3 A quick tour of Git
Everything we’ve discussed and more is covered in great length in the upcoming
chapters, but, for now, let’s do something at the computer. Let’s take a whirlwind tour
of Git!

Working area

file.c
u = "rick"
pw = "changeme"
connect(u, pw)

Commit history

file.c
u = read_config
pw = read_config
connect(u, pw)

Staging
area

Figure 2.11 The staging area

18 CHAPTER 2 An overview of Git and version control
By now, you should have installed Git. Please do this if you haven’t already. To prop-
erly understand a tool like Git, you need to try its commands. This is the only way to
get comfortable with Git’s way of doing things. Initially, the commands may seem
strange, especially if you’ve used other version control systems, but after you get Git’s
commands under your fingers, you’ll become more comfortable.

 To begin your initial exploration of Git, it’s best to obtain an existing repository.
You’ll take a fast tour of this work in both the GUI and command line. Whenever pos-
sible, this book provides instruction on using Git with either the GUI or the command-
line mechanisms.

2.3.1 Using the GUI to tour a Git repository

Earlier in this chapter, you learned that repositories are distributed. To get a reposi-
tory onto your computer, you have to clone it. In Git, cloning is the act of copying a
repository from a remote location to a local directory on your machine.

 Cloning a repository is the initial step in collaborating on source code, or any set
of versioned files in Git. Someone has made a repository full of work, and in order for
you to contribute changes to it, you must first clone it. Learning how to clone reposi-
tories enables you to begin collaborating with others who use Git.

 The first thing you need in order to clone a repository is the URL for the existing
repository. Visit https://github.com/rickumali/RickUmaliVanityWebsite. On this
page, down the right-hand side, you’ll see a text box labeled HTTPS Clone URL, as in
figure 2.12. Use the browser to select this URL.

Figure 2.12 The Git clone URL

https://github.com/rickumali/RickUmaliVanityWebsite

19A quick tour of Git
Once you have the URL, open the Git GUI tool and select Create New Repository, as in
figure 2.13. Depending on which GUI you’ve selected for Git, there may be a different
mechanism to access the clone feature.

WINDOWS NOTES The Git GUI is usually available from the Start menu. Alter-
natively, you can navigate your directories by using the standard Windows
Explorer, and then right-click to choose Git GUI Here from the context
menu. In some cases, you may need to type git gui at the command line.

MAC NOTES The Mac may have difficulty bringing up the Git GUI, depending
on which Git you’ve installed. You may have to manually start the Git GUI by
typing git gui at the Terminal. Please visit this book’s forum for other tips on
Git GUI startup issues.

Click in the Clone Existing Repository text box, and type the source URL https://
github.com/rickumali/RickUmaliVanityWebsite, as shown in figure 2.14. This URL
is known as a Git URL. Note that the Target Directory must be a directory that doesn’t
exist yet (Git will create it for you).

Figure 2.13 The initial screen for the
Git GUI

Figure 2.14
The Git clone prompt

20 CHAPTER 2 An overview of Git and version control
After you click Clone, the Git GUI auto-
matically downloads the entire reposi-
tory to your machine, into the directory
specified by Target Directory. This reposi-
tory isn’t big, so it won’t take long to
download. Once you’re finished, you’ll
be at a default window to work with the
repository. To see exactly what you’ve
copied, select Browse master’s Files from
the Repository menu, shown in figure
2.15.

 You should see a small window titled
File Browser that shows all the files of this
repository, as in figure 2.16.

 Double-clicking any file brings up that
file in a specialized window showing the
history for each line. For example, dou-
ble-click the file README.txt, and you’ll
see the window shown in figure 2.17. This
window shows the file, and for every line
in the file, it shows the specific date and
reason for bringing that line into the file.
Hover over the lines, and a tooltip will
show these details. This view is known as
Git’s blame output.

 In summary, this repository now exists as a directory on your own machine. The
directory is the Target Directory you specified in the prompt in figure 2.14. You can view

Figure 2.15 The Repository menu

Figure 2.16 Viewing all the files of a
repository

Figure 2.17 Git blame output

21A quick tour of Git
its contents in whatever file-browsing tool you like (Mac Finder, Windows Explorer).
The files appear as normal files, and you can update them whenever you want.

 Another way to view the repository is to select Visualize master’s History from the
Repository menu (figure 2.15). A window like that in figure 2.18 opens, showing the
history of this repository. Specifically, this is the history of commits, the auditing capa-
bility that every version control system must provide.

 Each line in this history view represents a commit and shows the date that I made
that commit. As you click each commit, it’s highlighted, and the SHA1 ID text box
changes to reflect the correct ID.

2.3.2 Using the command line to tour a Git repository

Cloning a repository via the GUI has a concise equivalent on the command line. After
you’ve explored this repository via the GUI, go ahead and delete this directory.
Because there’s no server interaction, you can do this anytime you want to start over!
Once you’ve deleted this directory, open the command-line prompt.

 To access the Git command
line in Windows, you’ll have to
use Git BASH. For Mac and
Unix/Linux users, the com-
mand line is the terminal pro-
gram. Once the terminal
window is open, it looks like
figure 2.19.

 You can type git --ver-
sion into this window, and
after you press Return/Enter,

Figure 2.18 A view of this repository’s history

Figure 2.19 The Git command line

22 CHAPTER 2 An overview of Git and version control
it should respond with Git’s version number. Please make sure you can do this. Figure
2.19 shows the output of the git --version command. For the Mac and Ubuntu, this
output is similar.

 Next, type the following:

git clone https://github.com/rickumali/RickUmaliVanityWebsite

The preceding command and the output from Git should look like the following
listing.

% git clone https://github.com/rickumali/RickUmaliVanityWebsite
Cloning into 'RickUmaliVanityWebsite'...
remote: Reusing existing pack: 91, done.
remote: Total 91 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (91/91), done.

You duplicated the steps you followed in the previous section, this time with the com-
mand line. As a result, you’ve made another clone of the repository you just deleted.
Let’s explore the command-line equivalents of our explorations with the Git GUI.

 To view the files, change into the directory via the cd command. Once you’re in
the target directory, you’re in what is known as the repository’s working directory. You
can get the list of files that the repository knows about by typing git ls-files, as
shown in the following listing. (Additionally, you can list the files by using the com-
mand-line tool ls.)

% git ls-files
README.txt
bio.tmpl
blog_start.tmpl
contact.tmpl
footer.tmpl
getfeed.pl
make_flickr_tmpl.sh
make_new_index.pl
make_ramblings_tmpl.sh
make_rick_index.sh
make_sports_tmpl.sh
make_tech_tmpl.sh
pictures_start.tmpl

Listing 2.6 is the equivalent of figure 2.16, where you viewed all the files of a reposi-
tory via the Git GUI.

 To see a detailed view of the README.txt file, type git blame README.txt (see list-
ing 2.7). Depending on the size of your command-line window, you may have to press

Listing 2.5 Output of git clone

Listing 2.6 Output of git ls-files

23A quick tour of Git
the spacebar to allow the output to continue scrolling. Git uses a pager to display text
that’s longer than the height of the screen. Press the Q key to exit this pager. (You’ll
learn about the pager tool in the next chapter.)

22:25 514> git blame master README.txt
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 1) rickumali-index
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 2)
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 3) This is the software
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 4)
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 5) The best way to read
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 6)
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 7) min hr day month weekday
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 8) 0 10 * * *
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 9) 10 10 * * *
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 10) 20 10 * * *
7308dd03 (Rick Umali 2013-01-07 23:03:45 -0500 11) 25 10 * * *
436cf890 (Rick Umali 2009-09-05 02:10:36 +0000 12) 30 10 * * *

The output in listing 2.7 is roughly the same as figure 2.17.
 To get a listing of the repository’s history of commits, type git log --oneline.

Again, depending on your terminal size, Git may display the output in the pager. You
may have to press the spacebar to page through the output in the pager, and press Q
to exit the pager. The following listing shows the output.

% git log --oneline
fe4e8f9 Refactored fix.
0fa9e1d Fixed processing of tech feed.
7308dd0 Updating README to reflect new tech tab.
447606a Fixing bad link in tech tab intro page.
364d2d4 Adding link to GitHub.
821d75c Adding 'tech' tab.
c4a15c5 Shortened intro text for the "Pictures" tab.
23db75c Shortened the intro text to the BLOG tab.

Don’t worry if you’re not comfortable with the command line. You can rely on this
book to tell you exactly what to type. The most complicated thing you’ll do outside Git
is editing files, and I’ll guide you in doing this properly. Be warned, though, that the
command line dominates the later portions of this book.

 This chapter doesn’t have a lab. Ideally, you’ve followed all the steps in the previ-
ous section. If you haven’t, and there’s still time in your lunch hour, then by all means
go for it. But the next chapters go through each aspect of Git’s version control system
much more slowly, so don’t be discouraged if this section went too quickly. You’ll be
going through the material in more detail shortly.

Listing 2.7 Output of git blame

Listing 2.8 git log --oneline output

24 CHAPTER 2 An overview of Git and version control
2.4 Version control terminology
You’ll encounter many terms when reading about version control. This section offers
a brief listing of those terms and a short definition for each:

■ Branch—Another path, or line, of development in the repository.
■ Check out—To request a copy of a file so you can work on it; a typical feature of

centralized version control systems.
■ Clone—To make a copy of a repository that exists somewhere locally (in another

directory) or remotely (on another server, or Git hosting site such as GitHub).
■ Commit—A change that’s saved to a repository, recording itself into the time-

line.
■ Distributed—A characteristic of a system such that its operations can be per-

formed without the need of a server (as opposed to centralized).
■ Repository—A storage area for files; in the context of version control, this stor-

age area is usually a directory or folder with special operations for viewing the
timeline, committing files, and branching.

■ Staging area—A feature of Git that enables the developer to commit certain
parts of files instead of the whole file.

■ Timeline—A set of events ordered by time, from the earliest to the most recent
event; also known as a history.

■ Version control—The practice of keeping track of changes such that you can
always go back to a known state.

Getting oriented with Git
The command line is where you'll interact with Git. Yes, there are GUIs for Git (for
example, Git GUI), and you'll examine those, but most Git work is done by typing
commands. Git was born on the command line, so it’s no surprise that all of its
functionality is oriented toward commands that you have to type in. You’ll first
learn about Git’s command-line syntax, a command-line pattern that will help you
understand how all Git commands are structured. You’ll also orient yourself to the
command line in general. If you’re a command-line veteran, chances are this chap-
ter will be straightforward!

 Finally, you’ll learn about the Git help system. Every command has help that you
can access, and learning how to access it will enable you to become more effective
with Git. Moreover, Git has longer-form documentation that is accessible from the
help system. This documentation is worth reading, and this chapter shows you how
to do that.

3.1 Getting set up
By now you should have already installed Git, which makes it immediately available
to the command line. To open the command line on Mac or Linux, start your ter-
minal program. In Windows, the CMD or PowerShell environments won’t suffice;
you’ll have to start the Git BASH program, which should be a double-click away
from either your desktop or your Windows Start menu, depending on how you
installed it. From here on out, I’ll refer to this window as the command-line window
(or command line for short).

 Because Git doesn’t have a server, there isn’t anything to start. Once you have
the command line, you should be able to type git --version. After you press
25

26 CHAPTER 3 Getting oriented with Git
Return/Enter (which I’m going
to assume from here on out), you
should see the output in figure
3.1 (though your text prompt
and Git version may vary).

 Git keeps track of who per-
forms version control actions, so
you must at least configure Git
with your own name and email.
Note that you’re not connecting
to a server or making a network connection, but rather configuring the Git software
that’s installed on your machine.

 To configure Git with your name and email, type the following Git commands on
the command line.

TRY IT NOW

% git config --global user.name "Your Name"
% git config --global user.email "Your E-mail@example.com"

Replace your own name and email address for the appropriate configuration
settings.

To see that you’ve set these properly, you can type git config user.name, and your
name will print as a response to that command. You can list all the configurations that
Git knows about with git config --list. When I type this command, I see the out-
put in the following listing. Notice that the user.name and user.email are shown in
the list.

% git config --list
core.symlinks=false
core.autocrlf=true
color.diff=auto
color.status=auto
color.branch=auto
color.interactive=true
pack.packsizelimit=2g
help.format=html
http.sslcainfo=/bin/curl-ca-bundle.crt
sendemail.smtpserver=/bin/msmtp.exe
diff.astextplain.textconv=astextplain
rebase.autosquash=true
user.name=Rick Umali
user.email=rickumali@gmail.com
gui.recentrepo=C:/Users/Rick/Documents/gitbook
gui.recentrepo=C:/Users/Rick/Documents/RUVW

Listing 3.1 git config --list

Figure 3.1 The Git command line

27Using commands
TRY IT NOW Perform the following to view Git’s configuration. The git con-
fig command can be run to show all the settings or just a specific setting.

% git config user.email
% git config user.name

3.2 Using commands
Commands are what you type into the command line. There are two kinds of com-
mands: those supplied by Git, and common commands that perform typical opera-
tions.

3.2.1 Git command-line syntax

All Git commands follow the same con-
vention: the word git, followed by an
optional switch, followed by a Git com-
mand (so far, you’ve learned config),
followed by optional arguments (abbre-
viated in figure 3.2 as args) that the
command recognizes.

 You’ve already typed a Git command, git config. Figure 3.3 is a diagram of a
slightly more complicated version of this command, showing its structure.

The only command that’s absolutely necessary is git. Go ahead and type git. You
should see output that looks like listing 3.2.

 In the previous section, when you typed git --version, the string --version is a
switch to the git command itself. Notice in listing 3.2 how --version is but one of
several optional switches you can pass into the git command. In figure 3.3, I used the
-p switch, which paginates the output if needed.

 (The use of one or two dashes is important. In general, switches that are a single
character use one dash, and switches that are fully spelled-out words use two dashes.)

usage: git [--version] [--exec-path[=<path>]] [--html-path]
[--man-path] [--info-path]
[-p|--paginate|--no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
[-c name=value] [--help]
 <command> [<args>]

Listing 3.2 Output from typing git

Always needed!

git [switches] <command> [<args>]

Figure 3.2 The Git command-line syntax

Switch Three arguments (args)

Command

git -p config --global user.name "Rick"

Figure 3.3 A breakdown of the Git
command-line structure

28 CHAPTER 3 Getting oriented with Git
The most commonly used git commands are:
 add Add file contents to the index
 bisect Find by binary search the change that introduced a bug
 branch List, create, or delete branches
 checkout Checkout a branch or paths to the working tree
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, commit and working tree, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create empty git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories together
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and merge another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head
 reset Reset current HEAD to the specified state
 rm Remove files from the working tree and from the index
 show Show various types of objects
 status Show the working tree status
 tag Create, list, delete or verify a tag object signed with GPG

See 'git help <command>' for more information on a specific command.

The output in listing 3.2 is the same output you would get if you typed git help.
You’ll explore the Git help system in the next section, and perhaps become a little
more comfortable with typing Git commands on the command line.

3.2.2 Common commands

The most important thing about the command line is knowing where you are. When
you first open the command line, you’re in the home directory. You might see this dis-
played as a tilde (~) or $HOME (pronounced dollar home). Both mean the same thing:
home.

 To display the name of the current directory, type pwd. This prints the name of the
current directory. Find this directory in the graphical directory-browsing tool of your
choice (Windows Explorer, Mac Finder, Ubuntu Files). I hope this is an obvious exer-
cise. The main thing is knowing where you are.

 To list the files in your current directory, type ls. This produces a listing of files.
For now, don’t worry if the output scrolls off the top of the screen, or even what its
contents are.

 To create an empty directory, type mkdir my_empty_dir. Please type the under-
scores. If you leave them out, you’ll create three directories. This command creates a
directory named my_empty_dir in the current directory. See if you can find this direc-
tory in your graphical directory-browsing tool.

 To go into this newly created directory, type cd my_empty_dir. After that, if you
type pwd, you’ll see the name of the directory you just created. If you type ls, you
won’t see any output because there are no files in the directory. Confirm in your
graphical directory-browsing tool that you don’t see any files. To go back to your

29Using commands
parent directory (the directory where you typed mkdir), type cd ... The two dots (..)
signify the parent directory. There's no space between these two dots. There’s a space
between the cd and the dots.

 If you traverse into multiple different directories, you can go back home by typing
cd. In the command line, it’s always easy to get back home. (This book creates its
repositories in the home directory for this reason. If another directory is more conve-
nient, remember to make this substitution every time you see a reference to home in
this book.) Git repositories are directories in your file system, which is why knowing
the commands in table 3.1 is important.

Because you’ll be typing commands into the command line, and navigating up and
down directories, it’s helpful to know your way around the command line. Knowing
how to list files (ls), print your current working directory (pwd), make directories
(mkdir), and change your directory (cd) are the most essential commands you need
to learn in any operating system.

TRY IT NOW Try the commands in table 3.1 by typing the following:

% pwd
% ls
% mkdir my_empty_dir
% ls
% cd my_empty_dir
% ls
% pwd
% cd ..

Certain users will recognize these commands as standard Unix/Linux commands, but
don’t worry. This is the only chapter where I specifically mention Unix/Linux. If this
is your first time using these commands, congratulations! You’re learning not just Git,
but a little about the command line as well.

 The last topic before we leave this section on the command line is how to remove
files and directories. The command to do this is rm. As with any command that
removes files, be careful! To remove a directory, use the rm -r command. If you’ve fol-
lowed the TRY IT NOW steps, you’re in the directory where you first typed mkdir. To
remove my_empty_dir, type rm -r my_empty_dir.

Table 3.1 Common command-line commands

Command Explanation

pwd Print the current directory. (PWD is short for present,
or print, working directory.)

ls List files in the current directory.

mkdir directory_name Make a directory with the name directory_name.

cd directory_name Change the current directory to directory_name.

30 CHAPTER 3 Getting oriented with Git
TRY IT NOW Create another empty directory and then remove it. Use the fol-
lowing steps:

% mkdir another_dir
% rm -r another_dir

To practice removing a file, you first have to create one. Use your favorite text
editor (Windows Notepad, Notepad++, Mac TextMate, Sublime Text, or
Unix/Linux vi, Vim, or nano) to create a file in your home directory. The file
can contain any content. Now locate this file by using a combination of the
cd, ls, and pwd commands. Once you find the file, remove it with the rm
command.
One thing to notice with this task is that you created a file by using a tool out-
side the command line. In the next chapter, you’ll be creating files from the
command line!

3.3 Improving command-line efficiency
Typing from the command line can get tedious. You often find yourself repeating the
same commands or changing parts of the previous command that you just typed. For-
tunately, the command line does have features that reduce the tedium. This section
describes these essential command-line features.

 The first thing to notice is that pressing the up arrow or down arrow recalls the
previous or subsequent commands, respectively. The command line has a history of
the commands that you’ve typed. You can list this history by using the history
command.

 Once you’ve started typing something on the command line, but before you’ve
pressed Return/Enter, you can use the left arrow and right arrow to move around in
the text. Using the Delete key (or Ctrl-D) or the Backspace key (Ctrl-H) allows you to
remove characters before or after the cursor location.

 Take a look at figure 3.4. The cursor is on top of the capital F. If you press Ctrl-D,
the letter F disappears, and all the characters move to the right. If you press Ctrl-H,
the letter g to the left of the letter F disappears.

 Other shortcuts on the command line include pressing Ctrl-U to erase everything
to the left of the cursor, or Ctrl-K to erase everything to the right of cursor. Ctrl-A
positions your cursor at the beginning of the line, and Ctrl-E positions your cursor at
the end of the line.

Ctrl-A: move cursor to beginning Ctrl-U: delete
all to left

Ctrl-K: delete
all to right

Ctrl-E: move cursor to end

Ctrl-D: delete character under cursor:Ctrl-H: delete character to left of cursor:

% ls aVeryLongFileNameWithCaps

Figure 3.4 Command-line editing summarized

31Using Git help
TRY IT NOW On the command line, press the up arrow a few times. You
should see the commands you typed earlier. Then press the down arrow. The
history of your session is kept in chronological order.

Now type some gibberish letters and then practice using the Delete (Ctrl-D)
and Backspace (Ctrl-H) keys to remove characters. Use the arrow keys to
move the cursor around on the line that you’re typing. Type some more gib-
berish, and then test the other shortcut keys (Ctrl-U, Ctrl-K, Ctrl-A, and Ctrl-
E). Again, move the cursor around on the line you’re typing. More command-
line techniques are available, so explore the resources in the “Further explo-
ration” section at the end of this chapter. I also have some videos on More-
Lunches.com that demonstrate some of these techniques.

Another shortcut that’s incredibly helpful is tab completion. At the command line, if
you partially type the name of a directory, you can press Tab, and the command line
will complete the name of the directory. This completion works for filenames as well.

TRY IT NOW On the command line, create a directory with a long name:

% mkdir directoryWithLongName

Now type the following exactly:

% cd direc<TAB>

You should see the name of the directory appear. Make sure to delete this
directory by using the rm -r command. (The -r switch to rm signifies that the
argument is a directory, and you want to remove its contents recursively.) That
task should be easier now that you know about directory name completion.

To see the same thing with filenames, you’ll have to learn how to easily create
a file with a long filename. On the command line, this is done with the touch
command. Type the following:

% touch filewithsuperlongname
% ls filewith<TAB>

You should see the filename appear automatically. (To remove this file, use
the rm command, without the -r switch.)

Typing on the command line won’t be too tedious now that you can correct what
you’re typing and can easily complete long filenames and directories.

3.4 Using Git help
When you type git help, Git presents a daunting picture by suggesting that 21 com-
mands are the most commonly used ones (see listing 3.2). Some, such as rebase and
reset, have confusing descriptions. Don’t worry about these commands for now! Rest
assured that by the end of this book, you’ll become more familiar with all the com-
mands in this list.

 The Git help system is where you should start if you’re looking for answers about
Git, as it has a description of every command available, along with its valid switches

32 CHAPTER 3 Getting oriented with Git
and arguments, guides on how to do
common tasks from Git developers, and
a glossary. To get a lay of the land, try this
command: git help help. By compar-
ing the syntax in figure 3.2, you know
that the first help is the command, and
the second help is the argument. You’re
asking Git for help about its help system.

 Depending on your platform, either
your default browser appears, showing
you a help page (figure 3.5), or your
command-line window displays a help
page right in the command-line window
(figure 3.6).

 In the latter case, you can page down
this text by using the spacebar, and page
up by using the B key. A separate tool called a pager enables you to move up and down
a long document. You’ll explore pagers in the lab.

 Git’s help is modeled using the classic manual page format. A brief synopsis of the
command is shown, along with its valid switches and arguments. A description comes
next, followed by other information, depending on the command itself.

 Take some time reading the git help help output. Notice the -a switch, which
enumerates all the Git commands available. When you type git help -a, you’ll see a
list of over 150 commands. It’s so long that the output scrolls off the page. This puts
listing 3.2 into some perspective!

 Depending on your version of Git, you may have a git help -g switch. This switch
reveals a small list of common Git guides. These guides, written by Git developers,
offer a more narrative explanation of how Git works.

Figure 3.5 A typical Git help page, displayed in
a browser

Figure 3.6 A typical Git help page, displayed in the command-line window

33Controlling long output with a pager
Of special interest is the Git glossary. Type git help glossary. Many of the terms that
you’ll read in other Git help pages are described here. Keep this page in mind as you
work with Git.

 In section 3.1, you used git config to tell Git your username and email address.
But notice that you used the --global switch. What does this switch do? Now that you
know about Git’s help system, you can learn about this switch by typing git help
config.

TRY IT NOW Type the help commands that you’ve seen so far in this section:

% git help help
% git help glossary
% git help -a
% git help config
% git help -g

Does your installation bring up the help in a browser or in the command-line
window?

Alternatively, you can get help about any command by passing --help, as in git
config --help. Who says Git isn’t helpful?

 It bears repeating: to get help about any Git command, type git help command, or
git command --help, substituting the word command with the command you’re inter-
ested in knowing more about. Remember to try git help with all the commands that
you learn about in the upcoming chapters.

 The documentation for Git exists on the web at many places. I often refer to www
.kernel.org/pub/software/scm/git/docs/ and http://git-scm.com/documentation.
The Git help manual page says that the formatted and hyperlinked help for the latest
version of Git exists at http://git-htmldocs.googlecode.com/git/git.html. These are
authoritative sources for Git documentation.

3.5 Controlling long output with a pager
In the previous TRY IT NOW exercise, you typed git help -a to see a listing of all the
commands available in Git. The output of this command is so long that it scrolls past
the height of the window. To see the first few lines of this output, you’d need to use
the command-line window’s scrollbars.

 To make long output pause at each page worth of text, you can ask Git to send its
output to a pager. The -p or --paginate switch to Git (see figure 3.3) tells Git to
pause after it displays one full screen of text.

 To display the rest of the text, press the spacebar. To go backward in the output,
press B. This pager is the same mechanism used by the help text.

TRY IT NOW At the command line, compare the output of these two com-
mands:

% git help -a
% git --paginate help -a

You can use the -p switch in place of --paginate.

www.kernel.org/pub/software/scm/git/docs/
www.kernel.org/pub/software/scm/git/docs/
http://git-scm.com/documentation
http://git-htmldocs.googlecode.com/git/git.html

34 CHAPTER 3 Getting oriented with Git
3.6 Lab
You’re now at your first lab. I hope that throughout this chapter, you’ve been typing
the commands as I’ve been prompting in the text. Also, I hope you performed the
TRY IT NOW exercises, especially the one at the start of section 3.2, which is a prereq-
uisite for your future Git work. Now you're ready to follow these steps:

1 You told Git your name and email, but where does Git save that information?
See if you can locate where this is.

2 Git is known as the stupid content tracker. What git help page says this?
3 What is the Git command that forward-ports local commits?
4 What does the abbreviation DAG stand for, in the context of Git?
5 Does your installation come with a Git tutorial help file?
6 The command-line commands you saw in the first TRY IT NOW are not Git com-

mands, but rather Unix/Linux commands. Do they display anything helpful
when you type them followed by the --help switch?

7 When Git is given the -p (or --paginate) switch, it uses the command-line tool
less. Type less --help to play with this pager some more, and learn about
other ways to scroll through long text (for example, instead of scrolling one
page at a time, you can scroll one line at a time).

3.7 Further exploration
The command line that you’ve been working in is known officially as the Unix/Linux
shell, or the shell. It’s one part of Unix/Linux (some would argue the most visible part).

 I hope working on the command line has piqued your interest in the shell. For
those with an interest in learning more, seek out references for BASH, the flavor of the
shell that Git is typically paired with. Because working on the command line involves a
lot of typing, many of the interesting techniques used in the shell are those that
reduce keystrokes. These include things like aliases, command-line history (repeating
commands you’ve just typed), command-line editing (which we covered), and direc-
tory stacks.

 It’s beyond the scope of this book to discuss all of these techniques, but they’re
worth exploring, especially if you find yourself typing the same things over and over. If
you sit with someone who’s an expert at the command line, it can look like magic as
commands seemingly appear out of nowhere, with just a keystroke or two. Visit these
URLs to learn a bit more about these features:

■ www.gnu.org/software/bash/manual/html_node/Aliases.html
■ www.gnu.org/software/bash/manual/html_node/Bash-History-Facilities.html
■ www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
■ www.gnu.org/software/bash/manual/html_node/The-Directory-Stack.html

The parent URL for these pages is here:

■ www.gnu.org/software/bash/manual/html_node/index.html

www.gnu.org/software/bash/manual/html_node/index.html
www.gnu.org/software/bash/manual/html_node/The-Directory-Stack.html
www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
www.gnu.org/software/bash/manual/html_node/Bash-History-Facilities.html
www.gnu.org/software/bash/manual/html_node/Aliases.html

35Commands in this chapter
3.8 Commands in this chapter
Starting with this chapter, the Git commands discussed in each chapter are summa-
rized in a table, alongside a short description (see table 3.2).

Table 3.2 Commands used in this chapter

Command Description

git config --global user.name "Your Name" Add your name to the global Git configuration

git config --global user.email
"Your E-mail Address"

Add your email address to the global Git
configuration

git config --list Display all the Git configurations

git config user.name Display the user.name configuration value

git config user.email Display the user.email configuration value

git help help Ask Git for help about its help system

git help -a Print all available Git commands

git --paginate help -a Paginate the display of all Git commands

git help -g Print all available Git guides

git help glossary Display the Git glossary

Making and using
a Git repository
You spent yesterday reviewing the command line and learning how to get help
from Git. You also configured Git by telling it your name and email address. You
saw in figure 1.2 of chapter 1 that Git gives each and every user the entire reposi-
tory. Today you’re going to create your own Git repository by using the git init
command. You’ll then add files into it by using git add and git commit. Finally,
you’ll learn how to get your repository’s status and history with the git status and
git log commands.

 These are fundamental commands for working with Git! I hope you’ll see that
creating a repository isn’t such a big deal, and that because repositories are so easy
to create, it always makes sense to create one for tracking even trivial projects.

4.1 Understanding repository basics
A repository is a specialized storage area in which you can keep track of your work. In
chapter 1, I introduced in listing 1.1 a simple example of what an ad hoc repository
might look like. Let’s gradually uncover this example to properly introduce the
basics of a version control repository.

 Let’s assume you have a build process that requires you to preprocess some files.
Maybe you have to rename these files or add a timestamp to them. Let’s assume
you’re on Windows, so you’ll use a Windows batch file (its suffix is BAT) to execute
these steps.

 You write code for this utility script, saving it to a file called filefixup.bat. The
script works great, but a few days later you need to code up different preprocessing
steps. The old BAT file still works, so instead of making modifications to that file, you
rename it by appending the string “-01” to its name (filefixup-01.bat). This signifies
36

37Creating a new repository with git init
version 01, and you’ve made a mental note that version 01 is the first version of the util-
ity that renames and adds a timestamp to the files. This new filename also gives you the
ability to keep using this old version as you work on the newer version.

 You start adding the newer code to the file filefixup.bat, knowing that you can
always go back to filefixup-01.bat. The file with the 01 suffix is a copy of the BAT file.
The file without the 01 suffix is your working copy.

 After a few hours, you reach a good stopping point with the new utility program.
You realize that this would be a good point to make a new version of this program. Fol-
lowing your convention, you make a copy of the working file, naming it filefixup-
02.bat. Once again, you make another mental note that version 02 contains your
improvements.

 Now your directory looks like the following listing.

C:\buildtools> dir
 Volume in drive C is GNU
 Volume Serial Number is 5101-E64D

 Directory of C:\buildtools

03/15/2014 08:22 PM <DIR> .
03/15/2014 08:22 PM <DIR> ..
03/01/2014 08:22 AM 11,843 filefixup-01.bat
03/03/2014 08:52 AM 11,943 filefixup-02.bat
03/03/2014 08:53 AM 11,943 filefixup.bat
 3 File(s) 60,066 bytes
 2 Dir(s) 467,905,187,544 bytes free

I hope you can see how you could get to the listing that you saw in chapter 1. You keep
making changes methodically to the program, saving it to a new filename each time
you get to a logical stopping point. If you’re witty, you might even save a copy named
filefixup-beforelunch.bat, to indicate the version that you were working on immedi-
ately before lunch. You’ll throw this one away, but going to lunch is a stopping point.

 Over time, you can see a makeshift history by looking at your progress via the time-
stamps on the version files. You might back up the entire directory to a flash drive or
to a network shared drive. You might someday have to revert to an earlier version, and
to do so, you copy the version that you want on top of the working file. These are the
kinds of operations you could do using this ad hoc version control system.

 It should come as no surprise that Git does all this, and more. Let’s forget about
this, or any other, ad hoc system you might have been using before, and try out Git.

4.2 Creating a new repository with git init
The command to create a new Git repository is git init. You can type this in any
directory, and instantly a Git repository will be created in that directory. That’s all
there is to it.

Listing 4.1 An ad hoc version control system

38 CHAPTER 4 Making and using a Git repository
TRY IT NOW In this section, you’ll enter commands into the Git command
line. Refer to section 3.1 for how to start this command line for your platform.
For Windows users, you’ll be typing commands into Git BASH (you can’t use
the DOS or PowerShell windows for these kinds of operations). For Mac and
Unix/Linux users, you’ll be entering commands into the standard terminal
application.

These steps navigate you to the home directory, create a new directory, and
then create a Git repository in that directory:

% cd
% mkdir buildtools
% cd buildtools
% git init
% ls

One thing to note is that the last command won’t print anything. No files are
in the repository, because you haven’t added any yet!

Performing the preceding steps creates a Git repository right in the buildtools direc-
tory. There are two important things to note:

■ No server was started.
■ The repository is entirely local.

It’s hard to overemphasize the first item: no server was started. Usually commands are
available on our individual machines to let us see all the running processes. In
Windows, you can visit the Task Explorer. In the Mac or on Unix/Linux, you can type
ps -e. If you inspect these mechanisms, you won’t see a Git process running. Git
doesn’t require a server. By not requiring a server, it’s easy to decide for yourself to
start version control on a particular directory because you don’t have to request per-
mission from anyone, except yourself. (And yes, you should always allow yourself to
use Git!)

 The second item is a corollary of the first item: the repository that you created is
entirely on your machine. Note that I didn’t say the repository is “running on your
machine.” Nothing is running. But the Git repository files have been created, and the
directory buildtools has been transformed from an ordinary directory into a version
control working directory.

 Figure 4.1 illustrates what happens when you type git init after creating a work-
ing directory: you create a Git repository. The Git repository is on your machine inside
the working directory, not on a server somewhere over the network! I take pains to dis-
tinguish between the working directory and the repository because they’re two differ-
ent things. A working directory is simply the place where you do your work. The repository
is the specialized storage area in which you can save versioned files. The Git software
can track files, meaning it can detect differences between files in the repository and
files in the working directory.

 At this point, you can start to create files in the working directory and add them to
the repository.

39Tracking files with git status and git add

4.3 Tracking files with git status and git add
Your repository is empty, but it’s ready for action. To see this for yourself, you’ll use
the git status command. This Git command will tell you the state of your working
directory.

4.3.1 Using git status to check your repository state

The command git status is something you’ll type often, so let’s get used to it by
trying it out.

Above and Beyond

Git’s repository exists in a separate hidden directory named .git. In the command line,
filenames or directories that begin with a period, or dot, are considered hidden by the
ls file- and directory-listing command. You can see the Git repository by typing
ls -a .git in your working directory (recall that this is the directory named buildtools).
You can even look around in there by typing the following:

% cd .git
% ls

The nature of these files and directories is beyond the scope of this chapter. I do ac-
knowledge that people are curious about where the repository lives, and this answers
it: the repository lives inside the working directory.

Be advised that you shouldn’t touch any of these files! They’re manipulated by Git,
and modifying them manually will cause issues down the road. For the uneasily sat-
isfied, or the eternally curious, type git help repository-layout to explore some
more.

% mkdir buildtools

buildtools

% cd buildtools
% git init

buildtools

git repo

Figure 4.1
Visualizing git init

40 CHAPTER 4 Making and using a Git repository
TRY IT NOW These steps navigate you to the home directory and then to the
newly created buildtools directory. You’ll query the status of this working
directory:

% cd
% cd buildtools
% git status

Notice that you can skip the first and second commands if you’re already in
the buildtools directory. Remember, you can find out your current directory
by typing pwd.

The status output looks like the following listing.

On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)

The status message enumerates information such as the branch name and the current
commit identifier (this is the initial commit); these can be ignored for now. The last line
is the one to focus on. It announces that there’s nothing to commit. It then says how to
start tracking files: use git add to track. Let’s create a file that Git can track. You’ll stick
with the command line and create a file by using the echo command.

TRY IT NOW These steps navigate you to the home directory and then to the
newly created buildtools directory. You’ll create a file by using the echo com-
mand:

% cd
% cd buildtools
% git status
% echo -n contents
% echo -n contents > filefixup.bat
% git status

The first echo command takes the string argument contents and prints it
onscreen. You’ll notice that it doesn’t include the newline, so the prompt
prints immediately after the word contents. The second echo command
takes the string argument and prints it to a file that we call filefixup.bat.

Both times you use the -n switch to suppress the newline. This avoids an end-
of-line warning message that you’ll examine more thoroughly in the lab at
the end of the chapter. (If you do see “warning: LF will be replaced by CRLF
in new_file. The file will have its original line endings in your working direc-
tory,” check that you added the -n switch to echo. You can ignore this
warning.)

Listing 4.2 The initial git status of an empty repository

41Tracking files with git status and git add
Your git status output looks something like the following listing.

On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
filefixup.bat
nothing added to commit but untracked files present (use "git add" to track)

As with the git status output in listing 4.2, you can ignore the branch and commit
identifier. But unlike listing 4.2, Git has now detected a new file in the working direc-
tory, and points out that it’s untracked. In the last line, it offers its suggestion of what
to do next: use git add to track.

4.3.2 Using git add to add a file to your repository

Whenever you want to introduce a new file to a Git repository, you must use git add
on that file first. Git can only keep track of files that it has been told about. Let’s run
git add in the next exercise.

TRY IT NOW This exercise, and all future ones in this chapter, assume you’re
already in the buildtools directory (the working directory). Refer to the ear-
lier TRY IT NOW exercises to see how to navigate to this directory via the com-
mand line. You might also refer to the previous chapter on how to use the
Tab key to autocomplete long filenames and directories.

% git add filefixup.bat
% git status

The output of git status tells you the same boilerplate information (your branch
and your commit number), as you can see in the following listing. But it now tells you
that there’s a new file, and that it can be committed.

On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: filefix.bat
#

Listing 4.3 git status before adding a file

Listing 4.4 git status after adding a file

42 CHAPTER 4 Making and using a Git repository
As you can see in figure 4.2, typing git add adds the file to the repository. You’ll see in
the next section that the command adds the file to a special part of the repository
(and you’ll learn more about this area in chapters 6 and 7).

4.4 Committing files with git commit
Git now knows about your file (filefixup.bat) and tracks changes to it. But you haven’t
yet committed this file to the repository. Committing files to the repository creates the
timeline discussed back in section 2.1. If you look at figure 4.2 in the previous section,
the file has been copied into the repository, but no history has been recorded.

 To create a timeline event, you have to commit the file to the repository, using git
commit. The commit step is what stores the file and records a timeline entry in the
repository. Remember, this whole time you’ve been working on the file in the working
directory, and the only thing Git has been doing is tracking it. Let’s run git commit in
the following TRY IT NOW exercise.

TRY IT NOW This exercise assumes you’re already in the buildtools directory.
See the previous TRY IT NOW sections on how to access this directory. The next
command commits your change to the repository, along with a message, which
is in quotes after the -m switch (-m stands for message). Now type the following:

% git commit -m "This is the first commit message"

You should see the message in listing 4.5.

[master (root-commit) 5308add] This is the first commit!
 1 file changed, 1 insertion(+)
 create mode 100644 filefixup.bat

Listing 4.5 A successful Git commit message

create filefixup.bat

buildtools

% git add filefixup.bat

git repofilefixup

buildtools

filefixup filefixup

Figure 4.2
Visualizing git add

43Committing files with git commit
The string [master (root-commit) 5308add] is significant in that it’s announcing
that this is the root commit, which means this is the first time you’ve run git commit
in this repository. The word master indicates the branch. Every repository opens a
default branch, so don’t worry about it for now. The 5308add is a SHA1 ID, and it’s the
unique identifying number for this commit. Every commit has a unique SHA1 ID.

 Skipping the commit message for a moment, the last two lines of the commit out-
put report the number of files that have changed (in this case, one file) and the
nature of those changes (in this case, one insertion). It also reports the mode for the
newly created file in your repository (100644). The mode is a number representing a
file’s permission. For the purposes of this book, don’t worry about a file’s permissions,
but do note that Git tracks this.

 Once again, Git gives you a lot of information to look at, but the most important
item here is the commit message: This is the first commit!

 In figure 4.3, I’ve split the repository into two sections. When you use git add, the
file is stored in a kind of waiting room, the staging area (the lower half of the reposi-
tory in the figure). It’s only when you commit the file with git commit that Git starts
tracking the file’s history (the upper half of the repository figure). You’ll learn more
about the staging area in chapter 7.

 Recall your ad hoc version control system back in section 4.1? Every time you saved
the spreadsheet with a special suffix, you had to make a mental note of what that suf-
fix indicated. I don’t know about you, but my mental note capacity is limited! In that
example, the 01 suffix represented the spreadsheet with just the data, the 02 suffix

% git add filefixup.bat

% git commit

git repo

git repo

filefixup

filefixup

filefixup
Figure 4.3
git add and then git commit

44 CHAPTER 4 Making and using a Git repository
represented the spreadsheet with formulas down the first column, and so on. With
Git’s commit messages, you can write these mental notes directly into the repository!

 In the next chapter, you’ll learn how to make commits by using Git GUI. For now,
bask in the fact that you’ve made your first commit into a Git repository!

4.5 Viewing the repository with git log and ls-files
The repository now has your file, and your working directory is in a clean state. To
confirm this, you’ll use the git status, git log, and git ls-files commands.

TRY IT NOW This exercise assumes you’re already in the buildtools directory:

% git status
% git log

The first command should announce that the working directory is clean, and
that there’s nothing to commit. The second command displays the log.

The output of git log appears in a pager. You learned how pagers work in
the previous chapter. To page through the output, press the spacebar. To exit
the pager and return to the command-line prompt, press Q.

If all goes well, you’ll see output that looks like the next listing.

commit 5308adddb9a1526dbf12928f51f7c5328730d38b
Author: Rick Umali <rickumali@gmail.com>
Date: Wed Apr 16 22:12:07 2014 -0400

 This is the first commit message!

The git log command displays all the commits that have been made to the reposi-
tory. It turns out that this is the typical way most people look at the repository: as a
series of commits. In listing 4.6, you’ll notice that the Author field is the user and
email specified by our git config commands from chapter 3. The date should be
your local date, and the commit log message is the message that you entered earlier.

 To see the files that are a part of the commit, pass in the --stat switch to git log.
When you use this switch, your listing should look like the following.

commit 5308adddb9a1526dbf12928f51f7c5328730d38b
Author: Rick Umali <rickumali@gmail.com>
Date: Wed Apr 16 22:12:07 2014 -0400

 This is the first commit message!
 filefixup.bat | 1 +
 1 file changed, 1 insertion(+)

Listing 4.6 git log output

Listing 4.7 git log --stat output

45Lab
To list the files in the repository, use git ls-files. Because you’ve committed the
working directory contents to the repository, git ls-files will display the same out-
put as the command ls (to list files in the current directory).

4.6 Lab
Creating a Git repository is a lightweight operation. Adding a file to the repository
requires three steps: creating the file, telling Git to track the file (via git add), and
then committing the file to the repo (via git commit). This lab reinforces these steps.

 If you haven’t yet performed the TRY IT NOW sections on your own, please do so
now. If you’ve tried them, now is the perfect time to do them again, perhaps with a dif-
ferent directory name or a different filename.

 You can encounter a lot of strange errors with Git. But if you’re careful and delib-
erate, you can usually spot where things went wrong. In this lab, you’re going to delib-
erately perform Git operations in the wrong order so you can see the strange error
messages. Think about why you get the error message and then see if you can
continue.

1 Create a new directory. Run git init and then run git log.
What is the error that you receive? Why might you get this error?

2 Follow these step carefully:

% mkdir twoatonce
% cd twoatonce
% git init
% echo -n contents > file.txt
% git add file.txt
% echo -n newcontents > file.txt
% git status

What is the output of the status command? Do you see file.txt twice in the sta-
tus message? Once to be committed and once to be added?

3 Create another file for a current Git repository, this time using echo contents
> file.txt.
Note that this time you didn’t use the -n switch in the echo command. Now try
git add on this file. If you’re on Windows, you should see the warning message
“warning: LF will be replaced by CRLF in new_file. The file will have its original
line endings in your working directory.”

Read the help for git config (type git config --help), and look at the
core.safecrlf and core.autocrlf settings. This warning is Git saying that it
will try to be careful with your text file’s line endings.

The point of this lab is to observe that Git is sensitive to end-of-line issues, the
kind that has bedeviled text-file interoperability between Unix/Linux and non-
Unix/Linux machines.

46 CHAPTER 4 Making and using a Git repository
4.7 Commands in this chapter
Table 4.1 Commands used in this chapter

Command Description

git init Initialize a Git repository in the current directory

git status Display status of current directory, as it relates to Git

git add FILE Start tracking FILE in Git; adds FILE to the staging area

git commit -m MSG Commit changes to the Git repository, with a message (in quotes)

git log Display the log (history) of the Git repository

git log --stat Display the log with the files that were modified

git ls-files List the files in the repository

Using Git with a GUI
In Git, you’ll spend the majority of your time on the command line. As I said in the
previous lunch, Git was born and bred on the command line. But now is a good time
to explore how to interact with Git via its GUI. That’s right. Git ships with a GUI!

 Command-line aficionados often look down their noses at the GUI (the some-
what derogatory abbreviation for graphical user interface, pronounced gooey). They
take the stance that any tool without a command-line interface is a tool not worth
using. But it’s worth exploring because the GUI does allow for a much richer user
experience with Git by offering a better visualization of what’s happening in the
repository. The git gui command makes it easy to visualize the state of the work-
ing directory. Making commits and visualizing the status is a one-window operation
with this tool, and for some people, that’s a more comfortable way of working.

 This chapter focuses on interacting with a few Git GUI features, such as creating
a repository, adding and committing files, and viewing your repository’s history.
You’ll learn the other features of Git GUI later, as you learn more about Git itself.

 Finally, the GUI that you’ll be using is the one that ships with Git itself. Plenty of
other GUIs are available for Git, and you’ll explore two of these in chapter 19, but
Git GUI is the official GUI for Git. It’s designed to be portable, which means it can
be run from any of the three major platforms (Windows, Unix/Linux, or Mac) and
it generally runs the same way. When you install Git, you get Git GUI for free.

5.1 Starting Git GUI
By design, to start Git GUI, you should first be on the command line. Follow the
TRY IT NOW to see Git GUI on your screen.
47

48 CHAPTER 5 Using Git with a GUI
TRY IT NOW These steps
navigate you to the home
directory and then start Git
GUI:

% cd
% git gui

At this point, you should
see a window on your
screen, as shown in figure
5.1. Behold: Git GUI!

In the preceding exercise, I purposely had you run Git GUI in your home directory
(remember, typing cd by itself switches you to the home directory). The small window
that you see is the default screen offering you some options. You won’t do anything
with this window, but for curiosity’s sake, go ahead and look at the Repository and
Help menus at the top of Git GUI.

 Depending on how you installed Git, and your system (Windows, Unix/Linux, or
Mac), you may have a menu item that will start Git GUI. Look for this option, but I’ve
found this reliably only on Windows machines.

5.1.1 Starting Git GUI in Windows

Windows users have an additional way to start Git GUI. When Windows users install
Git, the default installation creates three context menus for Git, which users can
access by right-clicking any folder in Windows Explorer.

 These three context menus are Git Init Here, Git GUI, and Git BASH, as shown in
figure 5.2. They do just what you might expect. If you click a directory that isn’t a Git

Figure 5.1 The initial screen for Git GUI

Figure 5.2 Git’s context menu (in Windows)

49Creating a repository with Git GUI
working directory already, Git Init Here will create a repository in that directory. If you
select Git GUI or Git BASH, you’ll open either Git GUI or the Git command line with
the selected directory as the working directory.

5.2 Creating a repository with Git GUI
Creating a repository by using Git GUI can be done from the initial Git GUI screen.
Let’s create a new repository in the next TRY IT NOW section. You’ll use this repository
in the rest of the chapter, so please follow along.

TRY IT NOW These steps position you in your home directory and start Git
GUI. Remember, you may have a menu item to start Git GUI, and you can use
that instead.

% cd
% git gui

Git GUI appears. Click the Create New Repository link. This prompts you for a
directory name. Click the Browse button, and you’ll see a familiar file browser
window.

Create a new directory called newrepo in your home directory.

WINDOWS

If you’re on Windows, you should be able to create a directory in this browser,
as shown in figure 5.3.

MAC

On the Mac, use Finder to cre-
ate the path shown in figure
5.4. (You’ll use your own home
directory.)

Figure 5.4 Creating
newrepo on the Mac

Figure 5.3 Creating
newrepo in Windows

50 CHAPTER 5 Using Git with a GUI
UNIX/LINUX

On Unix/Linux, create the newrepo directory by typing newrepo in the dia-
log box that appears when you click Browse (see figure 5.5).

After you’ve entered the newrepo directory, click Create. You’ll then see the
main Git GUI screen shown in figure 5.6. The main screen indicates, via the
title bar, that it’s in the newrepo repository.

Figure 5.5 Creating newrepo on Linux

Figure 5.6 The newrepo
repository open in Git GUI

51Adding a file into the repository via Git GUI
Git GUI is designed to have the same look and feel across all three platforms.
From here on out, I’ll mostly show the Windows platform, unless important
differences apply to a specific platform.

At this point, the repository is created. Access the Repository menu (see fig-
ure 5.7), and then click Explore Working Copy to see the empty working
directory in your system’s file browser.

As you learned in yesterday’s lunch, Git doesn’t need to communicate to a server dur-
ing the repo initialization process. The repository is created entirely on your local
machine and doesn’t need a network connection to complete.

 Git GUI’s advantage is the ability to browse the file system by using your system’s
file-browsing tool. If you’re not used to working in the command line and keeping
track of where you are (via the pwd command), creating a repository should be a piece
of cake in the GUI.

 The main Git GUI screen reminds you of the working directory via the title bar.
Also, using the menu item Explore Working Copy (under the Repository menu), you
can open your system’s browsing tool to see the directory and its contents.

5.3 Adding a file into the repository via Git GUI
The Git repository has been created in your newrepo working folder. Let’s add a file
to the repository, as you did yesterday.

TRY IT NOW The first part of this TRY IT NOW opens the newrepo directory
with git gui. If Git GUI is still up and running from the last TRY IT NOW,
you’re already in the right spot. You can proceed to the text after figure 5.9.

You can use git gui to open the newrepo directory in two ways.

First, you can open the Git command-line window and then type in a few com-
mands:

% cd
% cd newrepo
% git gui

Note that you can replace the first two commands with cd $HOME/newrepo.
After you type git gui, it will appear as in figure 5.8.

Figure 5.7 Explore Working Copy

52 CHAPTER 5 Using Git with a GUI
The second, and possibly easier, way is to open Git GUI as in section 5.2. You
open the Git command-line window and then immediately type the following:

% git gui

Git GUI’s first window appears. Select the newrepo folder via the file system
browser (see figure 5.8). Git GUI will open a working directory only if it’s a Git
repository.

Your Git GUI displays the screen in figure 5.9.

Figure 5.8 Opening an existing Git repository via Git GUI

Figure 5.9 Git GUI open in the newrepo working directory

53Adding a file into the repository via Git GUI
The multiple text windows capture the status of the working directory. Recall from
yesterday that you learned the git status command. This main window shows the
same information as git status. Let’s now add a file to the repository.

TRY IT NOW Open the Repository menu and select the Explore Working
Copy menu. This brings up your system’s file browser. It should show an
empty directory. Use your file browser to add a new text file.

WINDOWS

Figure 5.10 shows how to do this in Windows.

You should name this file sample.txt to follow along in this section. What
you’ve done is similar to what you did on the command line with the echo
command. You could open the text file now by using your favorite editor and
type in some text.

MAC

For the Mac, you can use Text-
Edit to create a new file in the
newrepo directory. Open the
File menu of TextEdit, as
shown in figure 5.11, and click
Save to save the file in the
newrepo directory.

Figure 5.11 On the Mac, save your
text file to the newrepo directory.

Figure 5.10 Create a new text file here.

54 CHAPTER 5 Using Git with a GUI
The Save dialog box in
TextEdit prompts you
for the location, as you
can see in figure 5.12.

Figure 5.12 Mac’s TextEdit
saves files only with the RTF

extension. This is OK. Just
make sure the file is in
the newrepo directory.

UNIX/LINUX

In a system running a desktop Unix/Linux, use the File Manager tool to
introduce a new file, as shown in figure 5.13.

Make sure to save the file in the newrepo directory, as shown in figure 5.14.

Figure 5.13 Create a new empty file by using the Linux File Manager.

Figure 5.14 Saving the new file in the newrepo directory using Unix/Linux

55Adding a file into the repository via Git GUI
Once you can see your empty file in the newrepo working directory, go back
to Git GUI and click Rescan. This button appears highlighted in figure 5.15.
This is also a menu item under the Commit menu.

Clicking Rescan makes Git GUI recognize this new file, and it now appears in
the upper-left pane of Git GUI. Clicking the file in this pane makes its status
appear in the upper-right pane. Figure 5.16 shows what Git GUI looks like.

This file is untracked. Git recognizes that there’s a new file, but announces that it’s
“untracked” and “not staged.” To commit this file into the repository, you must first
introduce it to the repository. You’ll now use the equivalent of the git add command
in Git GUI.

Figure 5.15 The Rescan button

Figure 5.16 Your file in Git GUI

56 CHAPTER 5 Using Git with a GUI
TRY IT NOW To begin tracking the
file, first select the file by clicking
it. Then open the Commit menu
and select the Stage to Commit
menu item. The file moves from
the top-left pane (Unstaged) to
the bottom-left pane (Staged), as
in figure 5.17. You’ve just staged
this file! This is the equivalent of
typing git add sample.txt, which
you did in the preceding chapter.

Now that the Git repository knows about this file, you can commit it. The file is now
“staged” (in the lower-left pane), and you can probably guess what button you’ll press
next!

TRY IT NOW With the file in the Staged Changes pane, you can click Commit.
But first you must enter a commit message in the bottom-right pane.

Just as you did in the preceding chapter, let’s enter one line in the text pane,
as shown in figure 5.18: This is the first commit.

After entering this message, click the Commit button. You’ll notice that your
file disappears from the lower-left text pane, and your commit message
appears in the status bar at the bottom of the Git GUI window, as shown in fig-
ure 5.19.

Figure 5.17 Staging your file via Git GUI

Figure 5.18 The first
commit message

Figure 5.19 How Git GUI
looks after the Commit
button is clicked

57Looking at your history
Your file is now in the repository after this commit. If you’re comfortable with com-
mand-line editors, bringing up a UI to enter a commit log message may be overkill!

5.4 Looking at your history
At the end of the preceding chapter, you were able to examine the contents of your
repository by running the git log command. Let’s check out the equivalent in Git
GUI.

TRY IT NOW From the Repository menu, select Visualize Master’s History, as
in figure 5.20. Recall from yesterday that every repository opens a default
branch called master.

Clicking this item brings up another window that should look like figure 5.21.

Figure 5.20 Visualize
the master’s history.

Figure 5.21 gitk, the equivalent of git log

58 CHAPTER 5 Using Git with a GUI
Observe that the window that appears has the word gitk in the title, next to the reposi-
tory name (newrepo). This window is a separate program from the Git GUI window
you’ve been using so far in this chapter.

 The gitk window contains a lot of text panes, but the key information is the ribbon
of text in the upper-left pane. This is your log message. The text panes to the right
show the committer’s ID and date of this commit. The SHA1 ID is displayed under-
neath this commit information.

 Because your repository contains only one commit, most of the other buttons and
menu items aren’t of any interest at the moment. Let’s try a quick lab!

5.5 Lab
Let’s exercise Git GUI a bit, but first make sure you’ve completed the TRY IT NOW sec-
tions if you didn’t attempt them during your reading of the chapter. The flow of creat-
ing a repository, adding a file to the repository, and then checking the repository’s
contents is something you should be comfortable with.

 If you’ve already done this during your lunch, I encourage you to perform the
steps once again. Think about how Git GUI and gitk mimic operations you saw in the
previous chapter.

 In this lab, you’ll intermix operations between the GUI and the command line
(from yesterday). This section demonstrates that the Git repository can be accessed
from either the GUI or the command line. Moreover, you can do some operations in
the GUI, and some from the command line, as you see fit.

 Follow the steps carefully:
1 From the command line, type the following:

% cd
% mkdir labrepo
% cd labrepo
% git init
% echo -n contents > file.txt
% git citool

In what text pane does file.txt appear? (For those who have problems bringing
up the git citool, visit this book’s forum for help.)

2 What is git citool? (Hint: read its help documentation.)
3 Exit the Git GUI that appeared after you typed git citool; then from the com-

mand line, type this:

% git add file.txt
% git citool

In what text pane does file.txt appear?

4 Exit the Git GUI that appeared after you typed git citool. Now type this:

% echo -n more > file.txt
% git citool

Do you see file.txt in both the upper-left and the lower-left text panes?

59Further exploration
5 How do you think you commit both of these changes?
6 Type gitk at the command line. Are you surprised that this ends up being a sep-

arate command? Does gitk have a --help switch?

5.6 Further exploration
You spent a lot of time with Git GUI in this chapter. Graphical user interfaces are a
great jumping-off point for two areas of further exploration.

5.6.1 Other GUIs for Git

At least a dozen GUI clients are available for Git, across all the major platforms. Search
around and try them out! Attempt the operations that you did in this chapter (create
a repository and then add a file to it), to see how they approach things.

 As you continue to learn more about Git via the command line, you’ll also touch
on how to complete those same operations with Git GUI and gitk, so you haven’t seen
the last of these tools.

5.6.2 Tcl, Tk, and Wish

A tantalizing area of exploration is the underlying technology behind Git GUI and
gitk. Both tools are implemented in the computer language Tcl, which stands for Tool
Command Language. Tcl is a dynamic, interpreted language invented in 1988 by John
Ousterhout. Tk, a toolkit of GUI controls (a.k.a. widgets), was added to the language
not long after. To learn more about the Tcl/Tk, visit www.tcl.tk.

 Both Git GUI and gitk are written
in Tcl/Tk. To get a taste for how to
interact with the windowing shell
and create a GUI entirely on the fly,
open the command line and type
wish. A window should appear on
your screen, as in figure 5.22.

 In Windows, two windows
appear, one titled Console, and the
other titled Wish. For Mac and
Unix/Linux, only the Wish window
appears. The console is on the com-
mand line, indicated by the %
prompt.

 In the console, type the lines in the following listing.

button .submit -text "git" -command { catch { exec git --version }
➥ results ; puts $results}
pack .submit

Listing 5.1 A simple wish GUI program

Figure 5.22 The Wish GUI window

www.tcl.tk

60 CHAPTER 5 Using Git with a GUI
After you type the pack .submit line, you’ll see the Wish window change. It becomes
a single button with Git as its label. Pressing this button displays the output of git --
version in the Console window, as in figure 5.23.

 As you can see, you’ve made a window with a button that prints out the Git version
when you click it. How easy was that? As I said, this is an interesting area to explore,
and when you install Git, you have the capabilities right on your machine.

5.7 Commands in this chapter

Table 5.1 Commands used in this chapter

Command Description

git gui Start Git GUI

git citool Start Git GUI to commit changes

gitk Start gitk (git log viewer)

Figure 5.23 A small GUI
implemented in Wish

Tracking and updating
files in Git
You’re now the proud owner of a Git repository. You’ve successfully added a single file
into it. You can view the contents of your repository. It’s now time to dive a little deeper
into how to update and keep track of changes that you make to files in your repository.
This is clearly one of the most important features of any version control system!

 In this chapter, you’ll create a new repository and then add files by using git
add and git commit. You’ll learn about the git diff command, which will help
you keep track of what you’ve changed in your repository as you’re working. You’ll
then dive into the staging area, one of the special features of Git that enables you to
commit parts of your changes into the repository. This is a use case that comes up
often, and Git’s support for this is worth learning. Finally, you’ll see how Git GUI
provides these same operations.

6.1 Making simple changes
In this chapter, you’ll be working in a new repository in which you’ll build a simple
program that adds two numbers.

6.1.1 Creating a new repository

Let’s make an entirely new repository and put one file in it.

TRY IT NOW You’ll create a working directory called math, and then create
a Git repository in that directory. You’ll next create a small program called
math.sh that initially contains one comment. This will be added into the
repository.

Given what you’ve learned over the preceding two chapters, you already
know how to do this via Git GUI. This section describes the steps using the
61

62 CHAPTER 6 Tracking and updating files in Git
command line. To that end, the first step is to open the command line. In
Windows, this is Git BASH, but in Mac or Unix/Linux, this is the terminal.

Next, you can execute all the commands shown here:

% cd
% mkdir math
% cd math
% git init
% echo "# Comment " > math.sh
% git add math.sh
% git commit -m "This is the first commit."
% git log

These commands give you a new repository with a new file in it. Remember that the
first cd command puts you in your home directory. Notice that you use the git
commit -m switch, which you first saw in chapter 4. The result of using these com-
mands is shown in figure 6.1.

For Windows users, because you’re not using the -n switch to echo, you may see the
warning message “warning: LF will be replaced by CRLF in math.sh. The file will have
its original line endings in your working directory.” For now, this can be ignored. (See
the lab in chapter 4 for more details about this warning.)

6.1.2 Telling Git about changes

Now let’s make a change to this math.sh file and see how Git tracks changes.

TRY IT NOW Add one line to your math.sh program:

a=1

You can use your favorite text editor, but let me introduce a command-line
technique to append a line to a file. Type this:

% echo "a=1" >> math.sh

Figure 6.1 Our entire TRY
IT NOW exercise

63Making simple changes
The >> symbols say to add the text in quotes to the end of the file. After typ-
ing this, math.sh will have one more line in it. To see the entire file on the
command line, type this command:

% cat math.sh

This command shows you the two lines of your file. Because you added this
file to Git (via git add), you can ask Git if the file has changed by typing this
command:

% git status

You should then see the following output.

On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: math.sh

no changes added to commit (use "git add" and/or "git commit -a")

Notice how git status reports that there are Changes not staged for commit. It
instructs us to use "git add <file>" to update what will be committed. It also
tells you how to discard the changes: use "git checkout -- <file>..." to discard
changes in the working directory.

 The important thing here is that in order to commit this change, you have to add it
to Git (via git add). You’ll explore this in the next section, but first, let’s take a look at
what’s different.

6.1.3 Seeing what’s different

The git status command tells you that a file has been changed, but can you find out
exactly what that change is? Yes.

TRY IT NOW In the math directory, type the following:

% git diff

You should see the following code listing.

diff --git a/math.sh b/math.sh
index 8ae40f7..a8ed9ca 100644
--- a/math.sh
+++ b/math.sh
@@ -1 +1,2 @@
 # Comment
+a=1

Listing 6.1 git status

Listing 6.2 git diff output

64 CHAPTER 6 Tracking and updating files in Git
The output of the git diff command demonstrates that Git knows exactly how the
file has changed. Let’s concentrate on these five lines:

--- a/math.sh
+++ b/math.sh
@@ -1 +1,2 @@
 # Comment
+a=1

The output begins with a two-line header that shows which two files are being com-
pared. The first line (a/math.sh) is the original file. Remember, the Git repository has
the original file! The second line (b/math.sh) is the new file in your working direc-
tory. You can make changes only to files in the working directory.

 The string @@ -1 +1,2 @@ says how to interpret the next two lines. These next two
lines are affectionately known as a hunk, and a hunk shows one area of the two files
that is different. Our change adds one line, so the line starting with @@ is roughly say-
ing take the original file (a/math.sh) at the first line (-1) and then apply the contents
of the new file (b/math.sh) starting at line 1 and going for two lines (+1,2).

 The real meat of the diff is the hunk:

 # Comment
+a=1

You’ll recognize the first line (# Comment) from when you created the file. The second
line is what you added to the file in the working directory. It has a + prepended to it,
to indicate that it’s an addition. More complicated diff outputs can include multiple
hunks, and they each are prefaced by @@ lines.

 Git can use this difference output to transform a file from one version to another.
(You can learn more about this format by searching for unified format or unidiff on the
web.) For our purposes, it’s a helpful record of what has changed. As you progress
with Git, you’ll learn to read this difference output, but as you can see from this sec-
tion, there’s a certain intuition about it.

6.1.4 Adding and committing changes to the repo

Let’s add this file to the repository by following the instructions from git status.

TRY IT NOW To commit this to the repository, you have to add this change via
git add and then type git commit.

The git status command offers an alternative way to commit this change to
the repository: use the git commit command with the -m switch and the -a
switch.

Type the following:

% git commit -a -m "This is the second commit."

By using the -a and -m switches together, you've avoided the git add step and
entered a message at the same time.

65Thinking about git add
The Git command from the previous TRY IT NOW should give an output that looks
like the following listing.

[master e9e6c01] This is the second commit
 1 file changed, 1 insertion(+)

Performing the git add at the same time as git commit is a common shortcut. You do
have to add the file first (with an initial git add) before this shortcut can work. The
-a switch to git commit says to automatically stage (run git add) any files that Git
knows about.

6.2 Thinking about git add
One thing that might begin to bother you about Git is that you have to use git add at
least once for every file that you want to commit into the repository. Then, after every
change you make to that file, you still have to use git add on the changed file before
you can commit the file to the repository.

 What’s up with that? After the first git add, doing it again for every change seems
redundant. The last section ended with a helpful shortcut (git commit -a), which
saves you from having to type git add before typing git commit, but why is this step
necessary to begin with?

6.2.1 An analogy to introduce the staging area

One analogy is to pretend that your code is an actor in a theater production. The
dressing room is the Git working directory. The actor gets a costume and makeup all
prepared for the upcoming scene. The stage manager calls the actor and says that the
scene is just about to start. The actor (the code) doesn’t jump in front of the audience
right then. Instead, it waits in an area behind the curtain. This is our Git staging area.
Here, the actor might have one last look at the costume or makeup. If the actor (the
code) looks good, the stage manager opens the curtains, and the code commits itself
to its performance. You might visualize this as in figure 6.2.

 It must be said that most actors will spend only the briefest of moments behind the
curtain before appearing in front of the audience. But what if you had a last-minute
change in costume? Naturally, you leave the staging area, perhaps even go back to the

Listing 6.3 git commit -a -m output

Working area Commit historyStaging area

Figure 6.2 Three stages in the commit

66 CHAPTER 6 Tracking and updating files in Git
dressing room, and make more changes. Then you rush back to the staging area
before you commit.

 The only thing that gets committed must pass through the staging area first!

6.2.2 Adding changes to the staging area

The Git staging area contains the version of the Git working directory that you want to
commit. Git acknowledges with the shortcut git commit -a that most of us will typi-
cally put the changes in our working directory into the repository. But Git does allow
you to make changes to what is staged (to go back to the dressing room, if you will).

TRY IT NOW Let’s add some more code to the math.sh program. Again, using
your favorite editor, add these two lines:
echo $a
b=2

I recommend that you use your favorite editor to add these two lines. On the
command line, you could echo these two lines as you did earlier:

echo "echo \$a" >> math.sh
echo "b=2" >> math.sh

To see this code running, type the following:

% bash math.sh

You should see the number 1 after you press Return/Enter. You’re printing
the value of the variable a.

Now type git status and git diff. You should see that Git recognizes a
change has been made, and in order to put these changes into the staging
area (stage for commit), you should type git add. Let’s do this now:

git add math.sh

Your command-line session should look
roughly like figure 6.3.

6.2.3 Updating the staging area

In the previous section, you added some
code into the staging area. You can now
commit this change. But wait! Suddenly you
realize that you no longer want that echo
$a line! You originally added it to confirm
the contents of the variable $a, but you
don’t want to commit that line into the Git
repository.

 To change that, let’s edit the math.sh
file in the working directory and add this
corrected version to the staging area.

Figure 6.3 The working session to add your
latest change

67Thinking about git add
TRY IT NOW Your file has four lines. You’ve already added this code to the
staging area via git add. Can you update it one more time before doing a
commit? Yes!

First, use your favorite editor to remove the line echo $a. (Any editor will do,
provided you can open the file and delete lines with it.) After you’ve saved the
file, type this:

git status

You’ll have the puzzling output that follows.

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: math.sh

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: math.sh

Git has listed math.sh twice, showing that it’s been modified twice. Let’s see why.
 The first section of the status output says that math.sh is “to be committed.” This

means it’s already staged. The second section of the status output says that the
math.sh isn't yet staged. How can there be two copies of math.sh? Simple: one is in the
staging area, and one is in the working directory!

6.2.4 Understanding the staging area

In the previous section, the file math.sh has gone through the changes in figure 6.4.
 Figure 6.4 shows your working area (the directory in which you’re making edits), a

staging area (where files are stored when you use the git add command), and finally
the commit history itself: the final permanent record of your file.

Listing 6.4 Slightly confusing output

Working area

math.sh

Commit historyStaging area

Comment
a = 1
b = 2

math.sh

Comment
a = 1
echo $a
b = 2

math.sh

Comment
a = 1

Figure 6.4 git add, followed by git commit

68 CHAPTER 6 Tracking and updating files in Git
When you perform the git status from the TRY IT NOW in section 6.2.3, Git simulta-
neously checks the math.sh file in the staging area with the math.sh that is already
committed, and the math.sh file in the working directory. These two checks are shown
in figure 6.5. Remember, the version in the staging area is what will be committed
when you run git commit.

TRY IT NOW Let’s look at two commands that demonstrate the three different
math.sh files. At the command line, type the following:

% git diff

When you type git diff, you should see the following output.

diff --git a/math.sh b/math.sh
index 964c002..5bb7f63 100644
--- a/math.sh
+++ b/math.sh
@@ -1,4 +1,3 @@
 # Comment
 a=1
-echo $a
 b=2

By looking at figure 6.5, you should see how this diff output is formed: when you run
git diff, you’re comparing the copy of the file in the working directory with the copy
of the file in the staging area. Let’s account for the differences.

TRY IT NOW At the command line, type the following:

git diff --staged

This command produces the following output.

diff --git a/math.sh b/math.sh
index a8ed9ca..964c002 100644
--- a/math.sh

Listing 6.5 git diff (between working area and staging area)

Listing 6.6 git diff --staged (between the staging area and the repository)

Working area

math.sh

Commit historyStaging area

math.sh math.sh
git diff git diff --staged

Figure 6.5 Understanding the confusing git status output

69Thinking about git add
+++ b/math.sh
@@ -1,2 +1,4 @@
 # Comment
 a=1
+echo $a
+b=1

Again, look at figure 6.5 to convince yourself that git diff --staged is comparing
the copy of math.sh that you committed earlier with the version of the math.sh that
you staged (via git add).

 This situation may be easier to see in the Git GUI tool, in figure 6.6.

TRY IT NOW Start Git GUI in the math directory that you’ve been working in.
The simplest way to do this on the command line is via the following com-
mands:

% cd
% cd math
% git gui

Remember, the first cd command changes you to the home directory. Refer
to the previous chapter for other ways to invoke this. Then after Git GUI
appears, select math.sh in the Unstaged Changes pane (the upper-left pane).
Observe the difference pane (the larger, upper-right pane).

Next select math.sh in the Staged Changes pane (at the lower left). Observe
the output in the difference pane.

In figure 6.6, you have the equivalent of the git diff output. Thanks to Git GUI’s col-
ors, you can see that you’ve just removed the echo statement between the a=1 and b=1
lines.

Figure 6.6 git diff

70 CHAPTER 6 Tracking and updating files in Git
In figure 6.7, you have the equivalent of the git diff --staged output. Again, thanks
to Git GUI’s colors, you can see what you’re doing to the file that you’ve committed:
you’re adding two lines.

6.2.5 Committing changes

To commit the most recent change (the file in your working directory), you should
type git add at the command line. Refresh your memory by typing git status at the
command line (you should see listing 6.4). In the next TRY IT NOW section, you’ll do
the add by using Git GUI.

TRY IT NOW If Git GUI isn’t open from the previous TRY IT NOW section, type
the following:
% cd
% cd math
% git gui

Above and Beyond

One question that might have crossed your mind at this stage is how Git might work
with binary files, such as spreadsheet files or image files. The short answer is that
Git works pretty well with these files, except for the case of taking a difference between
one version of a binary file and another. A longer and more proper treatment is unfor-
tunately beyond the scope of this book.

Searching the web will lead to some standard answers for how Git handles binary files
(namely, a combination of Git attributes and the git config command). To start learn-
ing these techniques, read the help for Git attributes by typing git help attributes.

Figure 6.7 git diff --staged

71Thinking about git add
This opens Git GUI. You’ll see the two math.sh files, one in the staged pane
and one in the unstaged pane. Select math.sh in the Unstaged Changes pane
(upper left). Then, instead of accessing the Commit menu’s Stage to Commit
item, right-click the hunk itself. In the resulting context menu, choose Stage
Hunk For Commit, shown in figure 6.8.

This GUI step is roughly equivalent to typing git add.

After staging this hunk, you can commit the file. This time, enter this message
in the Commit Message pane (lower right): Adding b variable. Then click
the Commit button, as shown in figure 6.9. Your Git’s status bar will read,
“Created commit SHA1: Adding b variable.” These steps are the equivalent of
typing git commit -m "Adding b variable."

To check that everything is correct, exit Git GUI and then type git log --oneline.
You should see the following output.

d4cf31c Adding b variable.
e9e6c01 This is the second commit
dbfda13 This is the first commit.

Listing 6.7 git log --oneline output

Figure 6.8 Staging a hunk

Figure 6.9 Committing
the change

72 CHAPTER 6 Tracking and updating files in Git
This listing shows that three commits have taken place. The --oneline switch is a
more compact listing of the Git log output.

6.3 Adding multiple files
Throughout this chapter, you’ve been operating on one file. But software typically
consists of multiple files. How might you add multiple files into a Git repository? To
exercise this functionality, let’s first create lots of multiple files. In the command line,
touch is a command that can create multiple empty files.

TRY IT NOW Go into the math directory (see the earlier TRY IT NOW sections)
and then type the following:

% touch a b c d

Now type this:
% ls

You should see four new files: a, b, c, d. They are all empty files (0-byte files).
You should also be able to see this in your file-browsing tool. To see what Git
thinks, type the following:

% git status

This indicates that these four files are untracked.

You could add these new files one at a time with four individual git add commands.
But git add does take a directory name that will add all the files in that directory
(including the untracked ones).

TRY IT NOW Before you run git add and pass in a directory name, let’s find
out what git add would do. In the math directory, type the following:

% git add --dry-run .

That period is important. That’s the directory name for the current directory.
When you run this command, it displays the files that it would add, as in the
following listing.

add 'a'
add 'b'
add 'c'
add 'd'

The dry-run switch does what you’d expect from that descriptive name: it
does a dry run, showing you what it would have done. Using the period as an
argument to git add causes Git to add all the files in the current directory
that it doesn’t yet know about (in addition to any files that have changed).

To add these four empty files at once, type the following:

% git add .
% git status

Listing 6.8 git add --dry-run . output

73Adding multiple files
The git add command won’t produce any output, but git status shows that you
now have four new files to commit. Let’s commit these files. You have at least two ways
to do this:

■ git commit -m
■ git gui

The first option allows you to pass in your commit message as an argument to the -m
switch. The last option opens up Git GUI, where you can confirm the four staged files
(in the lower-left pane). Enter a message in the Commit Message pane and then click
the Commit button, as shown in figure 6.10.

TRY IT NOW Use one of the preceding methods to commit these four files.
When you’re finished, type git log or look at gitk. Your commit history
should look like the following listing.

commit 6f51fb1d4528f11e3c9936ec68e6fa03a1f236a0
Author: Rick Umali <rickumali@gmail.com>
Date: Wed May 21 21:06:13 2014 -0400

 Adding four empty files.

commit d4cf31c0506d5207f8c6ef410c6506e820fe87b5
Author: Rick Umali <rickumali@gmail.com>
Date: Tue May 20 21:45:01 2014 -0400

 Adding b variable.

commit e9e6c019ca153eb12da3a5e878f0dff30b2d2b44
Author: Rick Umali <rickumali@gmail.com>
Date: Thu May 15 22:51:19 2014 -0400

 This is the second commit

commit dbfda13f1d26c289732827f3f882d3c232485643
Author: Rick Umali <rickumali@gmail.com>
Date: Thu May 15 21:33:42 2014 -0400

 This is the first commit.

Listing 6.9 Current state of repository

Figure 6.10 Committing four files

74 CHAPTER 6 Tracking and updating files in Git
6.4 Lab
This chapter was about adding and tracking files, and learning that there’s a staging
area that all files must pass through before they’re committed. Also, along the way,
I’ve shown you nuances and alternative forms of various Git commands, as well as
some new command-line commands.

6.4.1 Understanding command-line nuances

To further explore the command line, answer the following questions:

1 What is another way to call git diff --staged?
2 What is the short form of git add --dry-run?
3 How do you display line numbers to your file via the cat command?
4 The --oneline switch that you passed to git log is shorthand for a longer git

log command. What is it?
5 The -a switch to git commit (to automatically pass files to git add) has a lon-

ger alternative switch that is surprisingly not --add. What is it?

6.4.2 Getting out of trouble

When you realized you had done a git add for a change that you didn’t want to add,
you backed out of it by plowing ahead: you added your fix on top of the staging area!
You could have backed out another way. How? Try it now!

6.4.3 Adding your own file

Add a new file to this math directory. Call this file readme.txt. You can add anything
to this file (or even leave it empty). Now add this to the repo. The output of git log
--shortstat --oneline should match the following listing.

0c3df39 Adding readme.txt
 1 file changed, 0 insertions(+), 0 deletions(-)
6f51fb1 Adding four empty files.
 4 files changed, 0 insertions(+), 0 deletions(-)
d4cf31c Adding b variable.
 1 file changed, 1 insertion(+)
e9e6c01 This is the second commit
 1 file changed, 1 insertion(+)
dbfda13 This is the first commit.
 1 file changed, 1 insertion(+)

6.5 Further exploration
The simple program that you’ve been building in this chapter is in BASH. BASH stands
for Bourne-Again Shell. You’ll be building on this little program in the coming chap-
ters, so it might be worthwhile to explore it further on your own. The official starting
point for BASH is www.gnu.org/software/bash/manual/.

Listing 6.10 Adding one more file

www.gnu.org/software/bash/manual/

75Commands in this chapter
6.6 Commands in this chapter

Table 6.1 Commands used in this chapter

Command Description

git commit -m "Message" Commit changes with the log message entered on com-
mand line via the -m switch

git diff Show any changes between the tracked files in the current
directory and the repository

git commit -a -m "Message" Perform a git add, and then a git commit with the sup-
plied log message

git diff --staged Show any changes between the staging area and the
repository

git add --dry-run . Show what git add would do

git add . Add all new files in the current directory (use git status
afterward to see what was added)

git log --shortstat --oneline Show history using one line per commit, and listing each file
changed per commit

Committing parts
of changes
The Git staging area, introduced in the previous chapter, is a powerful but, at the
same time, confusing feature of Git. This chapter builds on what you’ve learned
about the staging area, helping you to understand it better.

 The staging area is used to add, delete, and rename files before they are com-
mitted into the repository. Any change to the repository goes through the staging
area, which means you must come to grips with it. The commands that manipulate
the staging area include git add, git rm, git mv, and git reset.

 The staging area also provides the ability to commit parts of files to the reposi-
tory. If you add debugging code or print statements, and don’t want to commit
these into the repository, you can leave these out of the staging area without having
to delete them from the file. This technique enables you to make more-refined
commits and take control of your repository.

7.1 Deleting files from Git
In Git, adding files to the repository is achieved via the git add and git commit
commands. But what if you want to delete files from the repository? It turns out you
follow a similar two-step pattern from the preceding chapter: git rm and git
commit.

 In the previous chapter, after you completed the lab, your working directory
contained six files: a, b, c, d, math.sh, and readme.txt. The a, b, c, and d files were
empty files that you created with the touch command.

 To delete the first file, a, you can use your operating system’s file browser to
manually delete the file. On the Git command line, you would use rm a. In both
cases, because you’re deleting a file that you’ve previously committed in the Git
76

77Deleting files from Git
repository, you can always recover this file. You’ll see this in the next chapter, but for
now, let’s try deleting files and see what happens.

TRY IT NOW On the command line, let’s change to the math repository that
you created in the preceding chapter. Then let’s delete the first file. Use
these commands:

cd
cd math
rm a

Now let’s use the helpful git status command to see what Git considers to
be the status. Type the following:

git status

You should see output like the following listing.

On branch master
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: a

no changes added to commit (use "git add" and/or "git commit -a")

As you saw in the preceding section, you’ve updated your working directory, but Git
needs to have this update added to the staging area. To make a delete to the staging
area, you must use git rm.

TRY IT NOW In the math directory, delete the file from the staging area by typ-
ing this:

git rm a

This reports back a line that reads rm 'a'. Now type this:

git status
git gui

Observe that the deleted file is already staged
in the lower-left pane (you should see some-
thing like figure 7.1). Select the Repository
menu and click Quit to exit Git GUI. Now type
the following:

git status

You should see the following output from the git status command.

Listing 7.1 Output from git status

Figure 7.1 git rm in Git GUI

78 CHAPTER 7 Committing parts of changes
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: a

It may seem counterintuitive to tell the staging area that a file has been deleted after
you delete it from the working directory. But remember that the staging area repre-
sents the content that you want to commit into the repository! If you want to delete it
from the repository, you have to delete it from the staging area first, and then commit
what is in the staging area.

 You can delete files from the working directory and the staging area at the same
time by using the git rm command. This is a handy shortcut to remember. Let’s use
this to delete the b file.

TRY IT NOW In the math directory, delete the b file by typing the following:
git rm b

Notice that this is the same thing you would have had to type if you did a regular dele-
tion of the file! You now have two ways to do the same thing, but this method is faster
(one step versus two).

 To finally delete these two files (a and b), use git commit, as you’ve done before.

TRY IT NOW In the math directory, to commit the two deletions that you per-
formed in the previous TRY IT NOW sections, you can type this:

git commit -m "Removed a and b"

This should give you the following output.

[master 38ac358] Removed a and b
 2 files changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 a
 delete mode 100644 b

7.2 Renaming files in Git
To rename a file on the command line, you must use the mv command. mv stands for
move, as in “move c to the new file named renamed_file.” To Git, a file rename consists
of two steps: copying the original file to a new file and then deleting the original file.
Let’s explore this.

TRY IT NOW On the command line, in your directory, type this command:

ls

You should see at least four files (if you’ve been following along): c, d,
math.sh, and readme.txt.

Listing 7.2 Output after deleting a file and running git status

Listing 7.3 Output from git commit after deleting the two files

79Renaming files in Git
Now type this:

mv c renamed_file

Confirm by typing ls that you no longer have a file c, but you have a file
renamed_file. Now type the following:

git status

You should see output like the next listing.

On branch master
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: c

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 renamed_file

no changes added to commit (use "git add" and/or "git commit -a")

Look carefully at this status. Git considers the rename as two distinct actions:

1 Deleting a file (the file c)
2 Adding a file (the untracked file renamed_file)

To properly record this action into the staging area, use the steps in the next TRY IT
NOW.

TRY IT NOW In the math directory, first remove the original c file by typing
this command:

git rm c

Add the untracked file by typing this:

git add renamed_file

Now type the following:

git status

From git status, you should see the same output as the following listing.

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: c -> renamed_file
#

Listing 7.4 git status after renaming a file

Listing 7.5 git status after renaming a file (and after git rm and git add)

80 CHAPTER 7 Committing parts of changes
At this point, Git realizes that you were renaming c to renamed_file. Is there a better
way to announce to Git that you’re renaming a file? Yes: git mv. If you’re renaming a
file, this command saves you the additional steps of git rm and git add.

TRY IT NOW The last file that you have is d. Let’s rename it by typing this:
git mv d another_rename

Now check the status:

git status

Your git status output should look like this listing.

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: c -> renamed_file
renamed: d -> another_rename
#

You didn’t need to use git rm or git add! If you were to
examine this working directory in Git GUI, you’d see the
two steps exposed as from the earlier git status (see
figure 7.2).

Figure 7.2 git mv in Git GUI

TRY IT NOW In the same directory, type the following:

git gui

From Git GUI, let’s perform the commit. Type the commit message Renaming
c and d. in the lower-right Commit Message pane, as shown in figure 7.3.

Click the Commit button. The status bar reports the commit information.

Exit Git GUI by selecting Quit from the Repository menu.

From the command line, type git log --oneline.

Listing 7.6 Output of git status after using git mv

Figure 7.3 Committing the renames
of c and d

81Adding directories into your repository
The git log output should look roughly like the following listing.

3e39fec Renaming c and d.
4d2d662 Removed a and b
0c3df39 Adding readme.txt
6f51fb1 Adding four empty files.
d4cf31c Adding b variable.
e9e6c01 This is the second commit
dbfda13 This is the first commit.

7.3 Adding directories into your repository
A lot has been happening in your little repository. You’ve been adding files, deleting
files, and renaming files. You saw that you can use the standard command-line pro-
grams (rm to delete, mv to rename) or even your OS file browser, provided that you
inform Git by using git add, git rm, and git mv. Even better, you can use the git rm
and git mv commands directly to save a step. Whenever you use these commands, you
affect the staging area, and it's this staging area that you commit into the repository.

 You can see this more clearly by using Git GUI.

TRY IT NOW In the math directory, start Git GUI by typing the following:

git gui

In Git GUI, click the Repository menu and select Explore Working Copy. This
brings up your computer’s file browser, which should look roughly like
figure 7.4.

Listing 7.7 git log --oneline output

Figure 7.4 The working directory of your repository

82 CHAPTER 7 Committing parts of changes
In this file browser, create a directory named doc. In that new directory, cre-
ate an empty file called doc.txt. (Git will add only directories that already
have files in them.)

In Git GUI, click the Rescan button. You should see the new file and directory
in the Unstaged Changes pane (upper left), as in figure 7.5.

Before you go through the stage and commit steps, let’s confirm that Git
doesn’t know about this new directory. In Git GUI, click the Repository menu
and click Browse Master’s Files.

You should see a small window that
shows all the files that the Git reposi-
tory knows about. Notice that the
newly created directory and file aren’t
present yet (see figure 7.6).

Close this File Browser window. In Git
GUI, click doc/doc.txt from the
Unstaged Changes pane. Then, from
the Commit menu, select Stage to
Commit. You should be prompted by a
dialog box with the text “Stage 1
untracked files?” Click Yes.

Now open the File Browser (Repository > Browse Master’s Files) and confirm
once again that the new directory isn’t present. It’s in the staging area only,
but not yet committed in the repository.

Close this File Browser window. In Git GUI, enter the
string Adding new doc dir and file in the Commit
Message pane and then click Commit. Open the File
Browser and confirm that you can see the new direc-
tory, as in figure 7.7.

Figure 7.7 The new doc directory

Figure 7.5 Adding a new directory to the repository

Figure 7.6 The new directory and file
aren’t present in the repository yet.

83Adding parts of changes
The previous chapter introduced a diagram (repeated here in figure 7.8) showing the
three stages that a file must complete before being committed into the repository.

 The next figure shows the three stages using the windows that you’ve just explored
in this section. To see files in the working area, you use your computer’s file browser.
To see files in the staging area, you can use the lower-left pane of Git GUI. And to see
files that were committed into the repository, you can look at Git GUI’s File Browser
(figure 7.9).

7.4 Adding parts of changes
You’ve been adding, deleting, and renaming directories and files in your repository,
and each operation has you going through the staging area in a fairly straightforward,
though seemingly superfluous, manner. In this section, you’ll see a powerful tech-
nique that the staging area offers.

7.4.1 Reconsidering the stage analogy

If you remember the analogy from the previous chapter, you might begin to think of
the staging area as something entirely unnecessary. After all, you only pause to take a
breath in that small area behind the curtain. This is also the case with your files. You

Working area Commit historyStaging area

Figure 7.8
The three stages

OS file browser
(Explorer, Finder)

Staged changes
window (Git GUI)

File Browser
(Git GUI)

Figure 7.9 The three stages using the GUI

84 CHAPTER 7 Committing parts of changes
spend time working on them in the working area, but then when you’re ready, you
commit the file as is into the repository.

 Instead of thinking of the staging area as a narrow space behind a curtain, what if
you thought of it as the luxurious green room of a modern-day talk show? Here, you
would spend time getting yourself ready before the performance. You might review
notes, watch some TV, or have a snack. Same thing with your files! After you’ve fin-
ished your work in the working directory, maybe you want to polish up the file before
you commit it to history.

 This turns out to be a pretty common need. As you do development, you might
place things in your file that you don’t want to commit into the project’s history, such
as comments that say TODO, debugging code meant for your development environ-
ment, and more. The Git staging area lets you check in just the parts of the file that
you want. With the staging area, you can be precise about what you commit.

7.4.2 Considering when to commit

You’ve been slowly developing our little example math program. Right now, its con-
tents are modest. In listing 7.8, you can see that you have only three lines.

Comment
a=1
b=1

Let’s pretend you’ve been asked to add the values contained in these two variables. You
make a change to the comment in line 1. Your file will look like the following listing.

Add a and b.
a=1
b=1

Maybe you’re new to BASH programming, so before you write the code to add the two
variables, you write code to print out their values to the screen. You dutifully write a
comment to remind yourself that this is just debugging or testing code. This makes
your file look like the following listing.

Add a and b.
a=1
b=1
#
These are for testing
#
echo $a
echo $b

Listing 7.8 Your initial file

Listing 7.9 Changing the first comment

Listing 7.10 Adding some debugging lines

85Adding parts of changes
If you were to run this code, you’d see the
values of those two variables, as shown in fig-
ure 7.10.

 The new code from listing 7.10 is purely
for testing.

Figure 7.10 Running your program so far

Now you’re on a roll. You change your program one last time, making it look like the
next listing.

Add a and b
a=1
b=1
#
These are for testing
#
echo $a
echo $b
let c=$a+$b
echo $c

If you run this code, you’ll see not only the value of the
two variables, but the sum of those two variables, as
shown in figure 7.11.

 Your program grew incrementally. In figure 7.12, take
a look at the growth of the program. It should be easier
to pick out which lines you added. The leftmost listing is
the last commit you made to your local repository.

Listing 7.11 Adding code to sum up two variables

Figure 7.11 Your program
is finally doing some math.

Comment

a=1
b=1

Add a and b

a=1
b=1

Add a and b

a=1
b=1
#
These are for testing
#
echo $a
echo $b

Add a and b

a=1
b=1
#
These are for testing
#
echo $a
echo $b
let c=$a+$b
echo $c

Figure 7.12 Side-by-side listing of your program

86 CHAPTER 7 Committing parts of changes
At this point, your program is done. Now is a good time to commit it into the reposi-
tory. You’ve run git commit many times already, but let’s consider the act of commit-
ting more closely.

 When you commit code into the repository, you’re leaving a record. You’re pre-
serving an artifact that you can return to. When should you commit? It makes sense to
commit to the repository under any of these conditions:

■ Adding or deleting a file
■ Renaming a file
■ Updating a file to a known good working state
■ When you anticipate being away from the work
■ When you introduce some questionable code

One of the overriding refrains you’ll hear about Git is that it enables you to commit
often. The list I enumerated should cover practically every hour of your working day.
Committing something into the repository is a local act, because Git doesn’t require a
server to run.

 Committing should be treated like punctuation. Add it at the end of every sen-
tence, and between every break. Committing should reflect the trail of thought you
followed to get to the present code.

 I’ve encountered organizations that have guidelines and rules about how and
when to commit to the repository. With Git, you’ll still have guidelines and rules, and
we’ll get to that, but it’s important to keep in mind that Git is distributed. How your
commits appear in your local repository has no bearing on how you ultimately share
your code with others. (You’ll learn how to share your code in chapter 13.) Commit as
often as you’d like!

7.4.3 Committing parts of a file by using Git GUI

Your code is ready to be committed, but let’s pretend that you want to commit the
code that adds the numbers. You might do this because you don’t want to commit your
debugging code. There might be rules or guide-
lines about committing tests in your organiza-
tion. Regardless of your reason, what you want to
do is commit only the highlighted changes in
figure 7.13, and keep the rest in your working
directory.

 In this section, you’ll handpick lines that you
want to commit into the repository, something
that Git lets you do because of its staging area.

 You can edit your file to delete the comment
and the lines that echo variables a and b. That
might suffice for this example, but consider your
own work. Haven’t you written code that was

1 # Add a and b

2 a=1
3 b=1
4 #
5 # These are for testing
6 #
7 echo $a
8 echo $b
9 let c=$a+$b
10 echo $c

Figure 7.13 The code that is circled
is what you want to commit. You’ll
handpick these lines.

87Adding parts of changes
meant to help you? Code that you probably wouldn’t want to commit, but nonetheless
was helpful for your own day-to-day development work? Git supports partial file com-
mits for precisely this use case!

TRY IT NOW First, update the math.sh file to look like the following listing.
Use your favorite editor for this operation. You’re going make the edits as
shown in figure 7.12.

Add a and b
a=1
b=1
#
These are for testing
#
echo $a
echo $b
let c=$a+$b
echo $c

After you’ve edited your file, you’ll look at it with Git GUI, because it’s easier
to visualize:

cd
cd math
git gui

In Git GUI, you should see the diff pane (at the upper right) displaying the
output in figure 7.14.

Stop and consider why the picture looks the way that it does. Observe that the
original lines (a=1 and b=1) don’t have a + or -, because the file has always
contained these lines.

The diff pane shows that you edited the first line and then added all the lines
after b=1. Figure 7.15 is what you saw in the earlier side-by-side diagram

Listing 7.12 math.sh contents

Figure 7.14 Your diff pane

88 CHAPTER 7 Committing parts of changes
(figure 7.12), reproduced here, with the lines that you’re going to handpick
for your commit highlighted.

If your file looks like figure 7.16, you’ll need to modify how your editor treats
the end of the line. Each line has to be on its own separate line. Resave the
file by using a different end-of-line format, and then reopen in Git GUI.

To save the lines that are specified in figure
7.15, position your cursor over the first diff
line (-# Comment), as in figure 7.17.

Figure 7.17 Position the cursor over the first diff line.

Next, right-click to bring up a context menu and choose Stage Line For Com-
mit, as shown in figure 7.18.

Comment

a=1
b=1

Add a and b

a=1
b=1

Add a and b

a=1
b=1
#
These are for testing
#
echo $a
echo $b

Add a and b

a=1
b=1
#
These are for testing
#
echo $a
echo $b
let c=$a+$b
echo $c

Figure 7.15 Your editing session, with the lines you’re going to handpick circled in the far-right
listing

Figure 7.16 If your Git GUI display looks like this, examine the end-of-line
configuration in your editor.

Figure 7.18 Choose the Stage
Line For Commit option.

89Adding parts of changes
To complete this exercise, do the same for the highlighted
three lines in figure 7.19.

 As you perform these steps, you’ll notice that the diff pane
changes as more lines are added to the staging area. When
you’re finished, the status line at the top of the diff pane will
read, “Portions staged for commit.” To see those, click
math.sh in the Staged Changes pane (at the lower left). You’ll
see your diff pane look like figure 7.20.

 At this point, quit Git GUI. Then in the command line,
type the following:

git diff --staged

The output should look like the following listing. Remember from section 6.2.4 that
git diff --staged compares what is in the staging area with the version that was last
committed.

diff --git a/math.sh b/math.sh
index 5bb7f63..dab42fb 100644
--- a/math.sh
+++ b/math.sh
@@ -1,3 +1,5 @@
-# Comment
+# Add a and b
 a=1
 b=1
+let c=$a+$b
+echo $c

Take stock of what you just did: you handpicked individual lines to commit into the
repository. You’ve left out your personal debugging lines and are staging only the
good stuff. The only thing left is to commit your code. You know two ways to do it: git
commit and git citool (which is the same thing as git gui).

Listing 7.13 git diff --staged output

Figure 7.20 Your final
diff pane

Figure 7.19 Stage the three
circled lines.

90 CHAPTER 7 Committing parts of changes
TRY IT NOW Before you commit the changes, type the following:

git status

What do you think you’ll see? (To refresh your memory, look at listing 6.4
from chapter 6.)

Now commit the changes by typing the following:

git citool

This brings up the Git GUI. Enter this commit message: Adding two numbers.
Then click the Commit button.

7.4.4 Committing parts of a file using git add -p

The TRY IT NOW steps that you performed in the previous section have their corre-
sponding functionality on the command line. Unlike the point-and-click functionality
you saw with Git GUI, selecting which lines to include does require some command-
line editor know-how.

 In this section, you’ll handpick lines to commit, this time without using a GUI tool.
For some, this may be a preferred method of interacting with the staging area! You’re
going to add the contents of the circled lines of the working directory into the staging
area by using git add -p, as shown in figure 7.21.

TRY IT NOW First, type the following:

git status

This should report that you have changes that have yet to be staged. How can
you figure out what these changes are? That’s right—type the following:

git diff

Staging area

Add a and b

a=1
b=1
These are for testing
#
echo $a
echo $b
let c=$a+$b
echo $c

git add -p

Working directory

Add a and b

a=1
b=1
#
These are for testing
echo $a
echo $b
let c=$a+$b
echo $c

Figure 7.21 Changing the staging area by using git add -p

91Adding parts of changes
This compares the working directory with the staging area. (Remember from
the previous section you didn’t commit every change from the working direc-
tory. You handpicked what lines you wanted to commit.) This shows you out-
put like the following listing.

diff --git a/math.sh b/math.sh
index 135274b..d187591 100644
--- a/math.sh
+++ b/math.sh
@@ -1,5 +1,10 @@
 # Add a and b
 a=1
 b=1
+#
+# These are for testing
+#
+echo $a
+echo $b
 let c=$a+$b
 echo $c

The lines that are prefixed with the + symbol are new to the file. To stage this,
you would type git add. But you now know you can pick exactly which lines
to stage. Let’s do that using the command line to delete just the # characters
before and after the line These are for testing.

To initiate the same staging area editing functionality that you had with Git
GUI, type this:

git add -p

You’ll be presented with a diff, plus a prompt, as in the following listing.

diff --git a/math.sh b/math.sh
index 135274b..d187591 100644
--- a/math.sh
+++ b/math.sh
@@ -1,5 +1,10 @@
 # Add a and b
 a=1
 b=1
+#
+# These are for testing
+#
+echo $a
+echo $b
 let c=$a+$b
 echo $c
Stage this hunk [y,n,q,a,d,/,e,?]?

Listing 7.14 git diff output

Listing 7.15 git add -p output and prompt

92 CHAPTER 7 Committing parts of changes
The listing repeats the output from the git diff command, but the line that
starts with Stage this hunk? is a prompt asking you what to do. From listing
7.15 (and from your screen—you’re trying this now, aren’t you?), the ques-
tion “Stage this hunk?” has eight possible responses: y, n, q, a, d, /, e, ?. To
find out these what these responses mean, you can enter ?.

Type it now:

?

You should see a brief sentence for each of these responses, including a few
responses that weren’t given to you, as shown in the following listing.

y - stage this hunk
n - do not stage this hunk
q - quit; do not stage this hunk nor any of the remaining ones
a - stage this hunk and all later hunks in the file
d - do not stage this hunk nor any of the later hunks in the file
g - select a hunk to go to
/ - search for a hunk matching the given regex
j - leave this hunk undecided, see next undecided hunk
J - leave this hunk undecided, see next hunk
k - leave this hunk undecided, see previous undecided hunk
K - leave this hunk undecided, see previous hunk
s - split the current hunk into smaller hunks
e - manually edit the current hunk
? - print help

Type this:

e

This brings up the vi editor, which is the default editor that Git is configured
to use. Don’t be afraid! This section walks you through how to use vi to
choose the right lines from this hunk. (See chapter 20 for how to use git
config to change the default editor from vi to something you’re more famil-
iar with.)

The text that you’re editing is the diff hunk from listing 7.15. In comments
(lines starting with #), the file explains how to edit this hunk in a line-by-line
fashion. You should see instructions that look like the following listing.

To remove '-' lines, make them ' ' lines (context).
To remove '+' lines, delete them.
Lines starting with # will be removed.
#
If the patch applies cleanly, the edited hunk will immediately be

Listing 7.16 git add -p prompt help

Listing 7.17 Instructions for editing the diff file

93Adding parts of changes
marked for staging. If it does not apply cleanly, you will be given
an opportunity to edit again. If all lines of the hunk are removed,
then the edit is aborted and the hunk is left unchanged.

If you’re familiar with the vi editor, delete
the two highlighted lines marked in figure
7.22 (the ones with the empty comments).
In the file that you’re editing, the high-
lighted lines are lines 6 and 8.

Don’t worry about getting this next
sequence exactly right. In the next section,
you end up discarding these changes, so if
you’re not familiar with the vi editor and
want to jump ahead, then type :wq to exit
the editor.

If you’re not familiar with vi and want to delete the two lines, carefully type in
all of these letters in the exact sequence you see here:

1
G
jjjjj
dd
j
dd
:wq

This sequence will be fully demonstrated as a screencast, which you can find
on the book’s website. The end result of this editing will be the deletion of
these two empty comment lines.

After typing :wq, the program returns to the command-line prompt.

The preceding steps make a change to the staging area. After you type :wq, the edited
hunk will be staged, just as if you had typed git add. In the next section, you’ll learn
how to reset the staging area, which removes the changes that you’ve staged.

7.4.5 Removing changes from the staging area

The change you made in the last section was artificial. It was meant to introduce how
to use the command-line environment to make a detailed change to the staging area.
To undo a staging area change, you have to use git reset, which is the opposite of
git add.

TRY IT NOW Take stock of the situation with the staging area by typing the fol-
lowing three commands:

git status
git diff --staged
git diff

Add a and b

a=1
b=1
#
These are for testing
#
echo $a
echo $b
let c=$a+$b
echo $c

Figure 7.22 Remove the two lines
containing the single # marks.

94 CHAPTER 7 Committing parts of changes
If you followed the vi steps from the previous section, you should see two
changes with these two uses of git diff. Figure 7.23 shows the two files that
git diff uses for its comparison.

To undo the staging area change that you made, type the following:

git reset math.sh

The edits that you added to the staging area are removed. More important,
the working directory is untouched: your debugging code is still in the
math.sh file.

To visualize what just happened, look at figure 7.24.

In figure 7.24, anything in the staging area is removed from the staging area. Keep in
mind that the working area always has the staging area changes. You’ll learn more
about this point in section 7.4.7.

7.4.6 Resetting a file to the last committed version

At this point, you may decide to remove this debugging code after all. As before, you
could use your editor to remove the lines, but because the current code in the reposi-
tory doesn’t have this debugging code, you can more simply check out the latest ver-
sion of math.sh (see figure 7.25).

Working area

math.sh

Commit historyStaging area

math.sh math.sh
git diff git diff --staged

Figure 7.23 How git diff does its comparisons

Working area

math.sh

Commit historyStaging area

git reset

Figure 7.24 Resetting the staging area

95Adding parts of changes
When you check out a file in this manner, you overwrite the file in the working
directory.

 To check out a file, follow this last TRY IT NOW.

TRY IT NOW In the repository you’ve been working in, examine the current
state by typing the following:

git status
git diff --staged
git diff

Now type this:

git checkout -- math.sh
bash math.sh

At the end of this TRY IT NOW, math.sh will no longer have any debugging code. You
have successfully checked out the latest committed version of math.sh. Its contents are
shown in the following listing.

Add a and b
a=1
b=1
let c=$a+$b
echo $c

7.4.7 Understanding consequences of partial commits

When you handpick individual lines to commit, as you’ve done in sections 7.4.3 and
7.4.4, you should be careful that the rest of the code still works even without the lines
you’ve omitted. It’s easy to think that your partial commit will produce working code
because your working directory still has all the code (including the lines you’ve cho-
sen to omit). But other people who collaborate with the code won’t have the code in
your working directory.

Listing 7.18 Contents of math.sh

Working area Commit historyStaging area

git checkout

math.sh math.sh

Figure 7.25
Checking out a file

96 CHAPTER 7 Committing parts of changes
 In this chapter’s example, you removed only comment lines and debugging code,
so you don’t have to worry about this issue for this example. But as you begin to
embrace the staging area, keep this point in mind.

 One way to run an accurate build/test cycle is to use git stash to completely
remove the omitted code. This allows you to test the code as others will see it. (The
git stash command is covered in chapter 9.)

7.5 Lab
In this chapter, you’ve done a lot of detailed work with the staging area. In the exer-
cises that follow, you’ll take slight variations of these steps.

7.5.1 Working with multiple hunks

To set up the repository for this lab, follow these steps. You should be able to do all of
these without specific instructions, but if you need help, please visit the book’s
website.

1 Create a new directory named bigger_file, and make a Git repository.
2 Download the zip file named LearnGitMoL_SourceCode.zip from the book’s

website. Unzip this file, and then copy the lorem-ipsum.txt file from the ZIP
This Git repository.

3 Commit this file into the repository.
4 Copy lorem-ipsum-change.txt from the zip file of the previous step, and add it

to the directory. (You’ll need this again, so perhaps save this file to a good loca-
tion.)

5 Rename (or copy) this new file to lorem-ipsum.txt.

By following the preceding steps, you’ve created a change in the lorem-ipsum.txt file.
Git can detect these changes. Now, some questions and tasks:

1 How many hunks does this change have? (Hint: Each hunk is delimited by a
line that starts with @@. You can see these lines with git diff.)

2 Using git add -p, stage and commit the change to just the second hunk.
3 Now check out the latest code (removing the changes in the working direc-

tory). (Hint: use git status to see the syntax for how to do this.)
4 Once again, copy the lorem-ipsum-change.txt file into the directory, and then

rename (or copy) this new file on top of the lorem-ipsum.txt file.
5 Now how many hunks does this change have?
6 Commit the entire file.

To exercise this, delete this repository, and perform the exercise again, but this time
use Git GUI for step 2. (You may notice that git gui produces fewer hunks than git
diff.)

97Commands in this chapter
7.5.2 Changing your mind with a delete

In the previous lab, you had a file named lorem-ipsum.txt. Delete this file from the
working directory by using git rm lorem-ipsum.txt. For this lab, bring this file back,
following the instructions from the git status command.

7.5.3 Reading assignments

Read the Git help pages for git checkout and git reset. Notice that the commands
have different forms. In this chapter, you used these commands:

■ git checkout -- math.sh
■ git reset math.sh

For each of these commands, what form are you using?

7.6 Commands in this chapter

Table 7.1 Commands used in this chapter

Command Description

git rm file Remove file from staging area

git mv file1 file2 Rename file1 to file2 in the staging area

git add -p Pick parts of your changes to add to the staging area

git reset file Reset your staging area, removing any changes you’ve added
with git add

git checkout file Check out the latest committed version of the file into your
working directory

The time machine
that is Git
When you make a commit into the repository, as you’ve been doing all along,
you’re making a mark on a timeline. Each commit says that on this date, at this
time, I made this content change. Each commit is a version of your entire project.
In this chapter, you’ll learn that Git lets you visit any version of your project via the
git checkout command. You’ll also learn how to bookmark past versions of your
project by using git tag. Learning this gives you the capability to go back in time
with your code, which is important for making bug fixes to released software. Ulti-
mately, Git is a time machine for your code!

8.1 Working with git log
In the repository that you’ve been working on so far, you’ve made eight commits.
You can examine the timeline of these commits by typing git log. This produces a
listing that looks roughly like the following.

commit 934e62e6a56843e4c6a859cb3e85e7901b007c2b
Author: Rick Umali <rickumali@gmail.com>
Date: Fri Jun 13 21:15:58 2014 -0500

 Adding two numbers.

commit 595b6786212c9b329bb09fef81ff50ccc1208caf
Author: Rick Umali <rickumali@gmail.com>
Date: Thu Jun 12 20:15:58 2014 -0500

 Renaming c and d.

Listing 8.1 git log listing for your math repository
98

99Working with git log
commit 9289ea1d30a7fc9a2799edd9c5cb2a9f457a6814
Author: Rick Umali <rickumali@gmail.com>
Date: Thu Jun 12 19:15:58 2014 -0500

 Removed a and b.

commit 5ecc3d2efebdd8763d6948e3bd712aa947da0198
Author: Rick Umali <rickumali@gmail.com>
Date: Wed Jun 11 21:15:58 2014 -0500

 Adding readme.txt

commit 8a9a8bd631d7a2eacc0afe8490b91d9f86d3d31d
Author: Rick Umali <rickumali@gmail.com>
Date: Tue Jun 10 21:15:58 2014 -0500

 Adding four empty files.

commit 874a7942a1ab43ee6d6b01a6b12f312ee2ee3b63
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Jun 9 21:15:58 2014 -0500

 Adding b variable.

commit 90d1dda323e79ad70c669f27a8083d2d236428de
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Jun 9 19:15:58 2014 -0500

 This is the second commit.

commit 96bfa4e220dcf74313e6ecf7cc8b41a11bd17198
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Jun 9 17:15:58 2014 -0500

 This is the first commit.

The listing is in reverse chronological order: the most recent commit is shown first,
and then the second most recent, and so forth, all the way back to the first commit. As
you step backward, all the way to the beginning, the commit log message should help
you recall the various changes that were made at each commit.

8.1.1 Working with the SHA1 ID

The first thing to point out about the git log output is that each commit has an ID.
This ID is unique to this commit even if you share your repository with a different
server. In the git log output in listing 8.1, the ID is displayed next to the word com-
mit. This ID is the SHA1 ID.

 You first see the SHA1 ID when you use git commit. Every time you run the git
commit command, it displays a status message and a new SHA1 ID. The git commit
output in the following listing shows an abbreviated SHA1 ID: 96bfa4e.

100 CHAPTER 8 The time machine that is Git
[master (root-commit) 96bfa4e] This is the first commit.
 1 file changed, 1 insertion(+)
 create mode 100644 math.sh

Notice that the SHA1 ID is abbreviated in listing 8.2, but the default git log output
(shown in listing 8.1) shows the full SHA1 ID string (which is 40 characters). In Listing
8.2, the abbreviated SHA1 ID is 96bfa4e, but the full SHA1 ID is 96bfa4e220dcf
74313e6ecf7cc8b41a11bd17198. Either form serves as the commit’s name, and is the
equivalent of a version number that you might see in another version control system.

 The SHA1 IDs are usually unique even if you were to compare only their first six or
seven characters. Therefore, many Git commands display or accept a SHA1 ID that is
shorter than the 40 characters.

 The SHA1 IDs are cryptographically unique; they’re guaranteed not to repeat
between any file or any server. This is a powerful property that enables Git’s ability to
be distributed. Because no other file or server could ever generate this ID, you’re free
to share this commit with anyone without fear that this ID will be repeated by another
commit.

8.1.2 Exploring meta information

Each commit contains, at a minimum, the committer’s name and the date and time at
which the user made the commit. These come from the git config user.email and
git config user.name settings that you created previously, in section 3.1.1.

 Each commit also contains the commit log message. This is the message that you
entered with the -m switch of git commit or git gui. (You may also be aware that you
can enter a Git commit log message using Git’s default editor, though you’ve avoided
doing this.)

 One thing that’s not so obvious in the git log output is that every commit has a
parent, except for the first commit. The parent commit can be revealed by using the
git log --parents switch.

TRY IT NOW Let’s look at the parents of your commits. Go to the command
line and type the following:

cd
cd math
git log --parents

The first two cd commands change your directory, first to the home directory
and then to the math directory. The second command outputs your commit
history. Git sends this output to the pager, which you learned about in detail
in section 3.4. Remember that to page through the output, you press the
spacebar, and to quit the pager (and return to the prompt), you press the Q
key. The output may be a bit unwieldy because of the display of the full SHA1
IDs. Now type the following:

git log --parents --abbrev-commit

Listing 8.2 Sample git commit

101Working with git log
You should see a listing that looks like the following.

commit cef45ff 29c7e58
Author: Rick Umali <rickumali@gmail.com>
Date: Sat Jun 14 18:34:58 2014 -0500

 Adding two numbers.

commit 29c7e58 e5f8486
Author: Rick Umali <rickumali@gmail.com>
Date: Fri Jun 13 17:34:58 2014 -0500

 Renaming c and d.

commit e5f8486 50534f8
Author: Rick Umali <rickumali@gmail.com>
Date: Fri Jun 13 16:34:58 2014 -0500

 Removed a and b.

...

In the excerpted listing 8.3, for the first entry, you see the commit’s abbreviated SHA1

ID, cef45ff, and its parent’s SHA1 ID, 29c7e58. The abbrev-commit switch shows only
the first few characters of the SHA1 ID. Notice that the second entry in listing 8.3 is the
commit with the ID 29c7e58. It too has a parent, which is immediately before that one,
and so on.

 Figure 8.1 illustrates the proper way to think about commits. They’re a list of
objects, each commit object pointing to its parent. Each commit contains the full
complete working directory at the time of the commit. When you do a git add and
then a git commit, you’re saving that working directory into this timeline. In figure
8.1, the first commit (96bfa4e) doesn’t have a parent, because it’s the root commit.

 Commits are almost always shown in reverse chronological order because as a
developer, you’ll typically review your most recent work first. The questions “What did
I do just now?” or “… an hour ago?” or “… yesterday?” are more common than
“How did I start this repository?” This is especially the case in repositories with long
histories.

Listing 8.3 Partial output from git log --parents --abbrev-commit

…96bfa4e e5f8486 29c7e58 cef45ff

Figure 8.1 Each commit always points back to its parent.

102 CHAPTER 8 The time machine that is Git
8.1.3 Using gitk to view the commit history

The gitk GUI offers a great alternative to viewing the commit history, especially for
repositories with lots of history. You explored gitk in chapter 5.

TRY IT NOW In the command window, assuming you’re in the math directory,
type this:

gitk

You should see a window like figure 8.2.

You should observe that the upper-left pane shows the commit log, in the same
reverse chronological listing as the git log command-line output. The selected com-
mit log (Adding two numbers.) is used to populate the rest of the panes. Your SHA1
IDs will be different, but in our example, the last commit’s abbreviated SHA1 ID was
cef45ff.

 The gitk window lets you view any commit by clicking any commit line in the
upper-left pane. Try this for yourself.

TRY IT NOW In the gitk window, click any commit line. Notice that the two
bottom panes show more detailed information. Right above the pane on the
lower-right, you’ll see a toggle for either Patch or Tree, as shown in figure 8.3.

Figure 8.2
The gitk window

103Working with git log
In Patch mode, this window lists the files that were patched by the selected
commit. The lower-left pane is a patch viewer of sorts. Clicking any file (here,
you have only one, math.sh) will show how the file was changed (patched) to
get to this commit.

Now select Tree mode, as shown in figure 8.4. The lower-right pane lists all
the files that existed in the staging area for that commit. This directory listing,
or tree of files, is associated with every commit. Clicking any file displays that
file in the lower-left pane, which is now a file viewer.

Patch view

Figure 8.3 The patch view

File viewer

Figure 8.4 The tree view

104 CHAPTER 8 The time machine that is Git
8.1.4 Finding all commits by file

Finally, you can select all the commits that affect a particular file. Let’s do this to see
all the commits that touched the math.sh file.

TRY IT NOW Using gitk, go to the Find section and choose the option Touch-
ing Paths from the pull-down menu, as shown in figure 8.5. Then type
math.sh.

The pane in the upper-left corner should
change, boldfacing each commit log that
touches math.sh, as shown in figure 8.6.

Use the up and down arrow buttons (shown
previously in figure 8.5) to visit the three
commits, and observe the patch pane. You
should be able to see the various stages of
your math.sh file!

8.1.5 Using variations of git log

The git log command-line tool is capable of doing all the operations that you saw in
the previous sections with gitk. Unlike gitk, the git log tool’s output is limited to the
size of your command window, but don’t let that deter you from trying out these
commands.

TRY IT NOW In the math directory, to view a more concise listing of the git
log output, type the following:

git log --oneline

Depending on the size of your command-line window, you may need to press
the spacebar to page through the output. To view a listing showing the patch
information, type the following:

git log --patch

This command definitely requires the pager, as the output is going to be lon-
ger than the command window’s height. Remember to press Q to exit the
pager.

To match the patch display from gitk, type the following:

git log --stat

Figure 8.5 The Find section

Figure 8.6 Finding all the
math.sh commits

105Making proper commit log messages
With this command, git log will output what has changed from the point of
view of the files in each commit. Both of these commands can be combined
by typing the following:

git log --patch-with-stat

Finally, to view the commits that pertain to just math.sh, pass the filename as a
command-line argument. Type this:

git log --oneline math.sh

This lists all the commits that touch math.sh. Again, remember to press Q to
exit the pager that git log uses.

The git log command is a powerful tool that makes quickly looking at commit his-
tory easy. The gitk GUI does offer multiple views of your repository’s state, but if you
know what you’re looking for, git log can usually give you those same views concisely.

8.2 Making proper commit log messages
When you run git log --oneline, you’ll see output that looks like the following list-
ing as well as the upper-left pane shown previously in figure 8.2.

cef45ff Adding two numbers.
29c7e58 Renaming c and d.
e5f8486 Removed a and b.
50534f8 Adding readme.txt
bcaa6e2 Adding four empty files.
80f0ccc Adding b variable.
ea91623 This is the second commit.
8c31e35 This is the first commit.

This terse listing is easy to understand right now, because you’ve been looking at these
changes for the past few days. But what happens a week from now? Or a month from
now? Or even a year from now? Will these short sentences help you remember why
you performed these changes?

 One of the best ways to improve the utility of git log is to create proper commit
messages. The git commit help page includes a DISCUSSION section that’s worth
reading. It states, “Though not required, it’s a good idea to begin the commit message
with a single short (less than 50-character) line summarizing the change, followed by
a blank line and then a more thorough description.”

 Using this format will make a huge difference in your history messages.

TRY IT NOW The DISCUSSION section referenced in the preceding text can be
seen by typing the following:

git help commit

Scroll or page down to see the DISCUSSION. Bookmark this to read later.

Listing 8.4 Output from git log --oneline

106 CHAPTER 8 The time machine that is Git
Next, let’s make a change to math.sh and make a commit that follows the con-
vention for a proper commit message. Using your favorite editor, open the
math.sh file. Replace the last line (echo $c) with this line:

printf "This is the answer: %d\n" $c

Exit your editor and then run this new version of the math.sh program:

bash math.sh

You should see that the output is different. Let’s commit this change.
Remember that you have to add this change to the staging area:

git add math.sh
git citool

I covered git citool in chapter 5. If you have problems bringing up this win-
dow, visit the book’s forum (www.manning.com/umali) for suggestions. In
the window that pops up, enter the following text exactly:

Adding printf.

This is to make the output a little more human readable.

printf is part of BASH, and it works just like C's printf()
function.

Figure 8.7 shows what your commit message should look like. Now click the
Commit button.

You’ve added one more commit to the end of your work, but this commit message is
different from the previous messages. Instead of a one-line message, it contains multi-
ple lines.

 The git log --oneline output looks only at that first line of your commit, as in
the following listing.

cbcd3e3 Adding printf.
cef45ff Adding two numbers.
29c7e58 Renaming c and d.
e5f8486 Removed a and b.
...

Listing 8.5 Output from git log --oneline

Figure 8.7 A proper commit message

www.manning.com/umali

107Checking out a specific version
To see how this full commit looks, use git log. You’ll see output that looks like the
next listing.

commit cbcd3e3d61aed114c695b5c308fa0ca4e869bf5c
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Jun 16 22:26:12 2014 -0400

 Adding printf.

 This is to make the output a little more human readable.

 printf is part of BASH, and it works just like C's printf()
 function.

commit cef45fff290dddf15a642f0861e8f9028dbc24e2
Author: Rick Umali <rickumali@gmail.com>
Date: Fri Jun 13 21:15:58 2014 -0500

 Adding two numbers.

commit 29c7e5827955d0812d4e3f8e953202a2d2af1fb1
Author: Rick Umali <rickumali@gmail.com>
Date: Thu Jun 12 20:15:58 2014 -0500

 Renaming c and d.
...

What you’ve done with this latest commit is add a little bit of a story to it. The core
change is that you’ve replaced the echo statement with the printf statement. This is
the bare-bones summary of the change. But the text that you’ve added elaborates on
the change.

 When you’re writing a commit log message, anything that isn’t in code or a code
comment is a candidate for documentation in the commit message. The moment
when you’re committing code is the best time to write the reasons that you’re making
the change. At code commit time, you’re the best and most experienced person (and
your memory is freshest) at that moment. Take advantage of the moment by writing a
commit message that will help you or a fellow developer in the future.

 If you’ve finished making a commit but need to give it more text, you can amend
your commit via the git commit --amend command. This helpful command lets you
edit your most recent commit. You’ll try this out in an exercise!

8.3 Checking out a specific version
When you were exploring gitk in section 8.1.3, you observed that the tree view shows a
directory listing for every commit. Each commit contains the entire staging area (or
working directory) for that commit. In figure 8.8, Git has clearly kept track of what
files go with what commit.

Listing 8.6 Excerpted output from git log

108 CHAPTER 8 The time machine that is Git
Even better, Git can quickly and efficiently regenerate any tree of files just by asking for
the commit by its SHA1 ID. This is the Git time machine! What distinguishes Git from
other version-control systems is that you can go backward in time without any help from
a server. Your repository has everything it needs for every commit in the git log.

8.3.1 Understanding HEAD, master, and other names

Before you start using your time machine, it makes sense to know how to get back to
the present. What good is a time machine if you can take only a one-way trip?

 Figure 8.9 is a diagram of your commit history. It’s a line of commits, each commit
pointing to its parent, as depicted by the arrows.

Your line of commits is also known as a branch. When you ran git init, Git made a
default branch for you to put your commits into. You’ll spend tomorrow’s lunch on
branches, but in order to get back to the present, you should know that this default
branch has a name, and that name is master (see figure 8.10).

… 50534f8 e5f8486 29c7e58 cef45ff

math.sh
readme.txt
c
d
b
a

math.sh
readme.txt
c
d

math.sh
readme.txt
renamed_file
another_rename

math.sh
readme.txt
renamed_file
another_rename

Figure 8.8 Git commits reference an entire tree of files.

…

Figure 8.9 Your line of commits, each pointing back to its parent

…

Master

Figure 8.10 Your
branch, known
as master

109Checking out a specific version
The master branch represents the entire line of development, but in figure 8.10, mas-
ter is also a reference, or a pointer, to the last commit made on this branch. This is
why I drew master with an arrow pointing to the last commit. Git always keeps master
pointed at this last commit, and this is how you can safely travel back in time: you
know that master points to the last commit (which is your present)!

 The last piece that you need for time travel is the device that does the travel. It
turns out that Git supplies this device by default: it’s your HEAD (see figure 8.11).

At its simplest, the HEAD is the current branch. This HEAD is analogous to the laser in
a CD/DVD player, the needle of a record player, the tape player head in a cassette
player, or that marker on a progress bar that you can move with your finger to any part
of a song on your music-playing device. HEAD is also your actual head. What is your
head (you) looking at right now? At the moment, you’re looking at the present, but in
just a few paragraphs, you’ll move your head to another point in the timeline.

 When you read Git documentation, HEAD, our time-travel device, is always capital-
ized. The final official picture looks like figure 8.12, but if you find it easier to think of
a smiling face, please do so!

…

Master

Figure 8.11 The
HEAD of your branch.
It typically points to
the last commit of
the branch.

…

Master

HEAD

Figure 8.12 The HEAD and master

110 CHAPTER 8 The time machine that is Git
Let’s see how these pictures work in your repository. The following listing shows your
commits via git log --oneline.

cbcd3e3 Adding printf.
cef45ff Adding two numbers.
29c7e58 Renaming c and d.
e5f8486 Removed a and b.
50534f8 Adding readme.txt
bcaa6e2 Adding four empty files.
80f0ccc Adding b variable.
ea91623 This is the second commit.
8c31e35 This is the first commit.

You know that this list of commits is a branch called master. You can refer to the entire
master branch by its latest commit (cbcd3e3). Let’s confirm this.

TRY IT NOW In this exercise, you’ll use a command called git rev-parse.
This command translates branch names to their corresponding SHA1 IDs.
Type the following into the command line, in the math working directory:

git rev-parse HEAD
git rev-parse master

Both commands produce the same output: the SHA1 ID of the latest commit.

8.3.2 Going back in time with git checkout

If you wanted to go back to the version of your repository when you added the four
empty files, you can go back in time to that specific version by typing git checkout
bcaa6e2. Let’s carefully try this.

TRY IT NOW In the math directory, you must first obtain the SHA1 ID of the
commit to which you added the four empty files. Type the following:

ls
git log --oneline

The first command lists the files in the directory. This should return this list:
another_rename, math.sh, readme.txt, renamed_file, and doc.

The second command returns the list of commits. Look for the SHA1 ID for
the commit that reads Adding four empty files. From listing 8.7, this ID is
bcaa6e2:

bcaa6e2 Adding four empty files.

Remember that your SHA1 ID will be different! Once you have this ID, type
the following:

git checkout YOUR_SHA1ID

Listing 8.7 Your commits on the master branch

111Checking out a specific version
where YOUR_SHA1ID is the ID of the commit in which you added the four
empty files. You can specify the entire 40-character SHA1 ID, or you can use
the first four characters. (Git will complain if it can’t find a match with a
shortened SHA1 ID.)

Next you’ll see a big warning. Ignore this for now, and type this:

ls

You should see this list: a, b, c, d, math.sh.

The following listing shows the warning that you see from Git after performing the
checkout.

Note: checking out 'bcaa6e'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b new_branch_name

HEAD is now at bcaa6e2... Adding four empty files.

There’s a lot going on in this note from Git! There’s a mention of branches, a HEAD
that is detached, and another switch to git checkout (the -b switch). No wonder
some people claim Git is hard to learn!

 Figure 8.13 illustrates the detached HEAD state.
 Normally, your HEAD is associated with a branch. When you move your HEAD

around by using git checkout, you disassociate your HEAD from your current
branch, which Git considers detached.

 A more detailed diagram of your repository and HEAD is shown in figure 8.14.
Compare this figure with figure 8.8. Whenever you move the HEAD (what you’re

Listing 8.8 The warning about the detached HEAD state

…

MasterHEAD

Figure 8.13 The detached HEAD. Compare this to figure 8.12, when HEAD
pointed to the same place as master.

112 CHAPTER 8 The time machine that is Git
looking at) to a new commit, your working directory changes to match that commit’s
contents. The master pointer (reference) doesn’t move. It always points to the last
commit of the branch.

 The warning from Git does say you can look around, so let’s do that next.

TRY IT NOW Read the DETACHED HEAD section of the git checkout docu-
mentation page. Type this:
git help checkout

In the math directory, in your detached state, confirm that the math.sh file
has indeed reverted to an earlier version:

cat math.sh

You should see that the file contains only your first comment and the two vari-
ables. Run this program by typing the following:

bash math.sh.

Notice how it doesn’t return anything. This is because the program has
reverted to its older functionality, back when you did this commit. Now type
this:

git log --oneline

You should see output like the following listing.

bcaa6e2 Adding four empty files.
80f0ccc Adding b variable.
ea91623 This is the second commit.
8c31e35 This is the first commit.

Listing 8.9 git log output after you went back in time

… …bcaa6e2 e5f8486 29c7e58 cef45ff

math.sh
c
d
b
a

math.sh
readme.txt
c
d

math.sh
readme.txt
renamed_file
another_rename

math.sh
readme.txt
renamed_file
another_rename

HEADHEAD Master

Figure 8.14 The detached HEAD state in Git

113Checking out a specific version
You’ve gone back in time, and one consequence is that git log in your repository
now stops at this version. It’s as if the future (your present) didn’t even happen. Stop
and think about this: you’re in an earlier state! But it’s only temporary.

 To get back to your present state, you use git checkout again, except this time
you’ll check out master.

TRY IT NOW In the math directory, type the following:

git checkout master

You should confirm that math.sh contains your current settings, and that git
log returns the entire history of your work.

Think back to all those time-travel movies, where the hero is in the past. The hero can
remember the future but can affect only the present. In Git, when you travel around
your timeline, you’re also limited to seeing and affecting wherever your HEAD is.

 Figure 8.15 shows a simplified timeline. Each commit is a box labeled with a letter
(instead of a SHA1 ID). Your HEAD is pointing at master, which is pointing at the last
commit. This is your present. If you were to run git log, you’d see all the commits: A,
B, C, D, E, F, and G.

If you ran git checkout D (to move HEAD to the commit labeled D), git log would
show you only commits A, B, C, and D. Your HEAD would be detached as well, as
shown in figure 8.16.

Master

HEAD

GFEDCBA

Figure 8.15 HEAD pointing to master: this is your present.

MasterHEAD

GFEDCBA

Figure 8.16 Checking out an earlier version

114 CHAPTER 8 The time machine that is Git
Labeling commits in this fashion is convenient. Now you’re ready to learn the com-
mand to label your commits: git tag.

8.4 Breadcrumbs to previous versions
Referencing commits by their SHA1 IDs can get old quickly, even if you abbreviate
them. Git has a mechanism to give names to commits: git tag. Let’s say that you
wanted to go back to the point in time where you added the four files again. Rather
than remembering the long SHA1 ID (or even the abbreviated ID, which Git lets us get
away with), you can give that particular commit a tag.

TRY IT NOW First, get the SHA1 ID for the Adding four empty files. com-
mit. Use the technique from the previous TRY IT NOW.

Now type the following:

git tag four_files_galore -m "The commit with four files" YOUR_SHA1ID

where YOUR_SHA1ID is the SHA1 ID of the commit that has the log message
Adding four empty files. Notice that you pass in a message (via the -m
switch) to git tag. As with commits, tags can have messages, which can be as
detailed as you want. And as with git commit, the -m switch lets you type the
message on the command line, rather than in Git’s default editor.

To confirm that you have this tag, type the following:

git tag

To visualize this tag, type gitk in this
directory. You should see figure 8.17.

Make sure to exit from gitk to get back
to the command prompt.

To look at the tag itself, you use the
git show command:

git show four_files_galore

You should see the following listing.

tag four_files_galore
Tagger: Rick Umali <rickumali@gmail.com>
Date: Fri Jun 20 19:42:54 2014 -0400

The commit with four files

commit c2eb6c5f275d18c0432431a66a868565e3078381
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Jun 16 18:39:39 2014 -0500

 Adding four empty files.

Listing 8.10 git show output

Figure 8.17 A tag in gitk

115Lab
diff --git a/a b/a
new file mode 100644
index 0000000..e69de29
diff --git a/b b/b
new file mode 100644
index 0000000..e69de29
diff --git a/c b/c
new file mode 100644
index 0000000..e69de29
diff --git a/d b/d
new file mode 100644
index 0000000..e69de29

Listing 8.10 contains two Git objects: the tag itself (which is what you passed to the git
show command), and the commit that the tag points to.

 Tags let you give human-readable names to commits. As you work with Git, you’ll
be looking at and referencing a lot of SHA1 IDs. It’s good to know that you can give
them names.

 Typically, you create a tag as soon as you make a commit. In the workflows that
you’ll see in chapter 17, you normally use git tag immediately after git commit. But
you can add a tag anytime you want, as you’ve shown here.

 Let’s now use the tag you’ve created.

TRY IT NOW From the gitk window (figure 8.17), you can see that you’re at
the master’s latest commit. To check out the commit containing your four
empty files, type the following:

git checkout four_files_galore

Open the gitk program to confirm
that your repository looks like figure
8.18.

Make sure to reset the repository
back to master by typing this:

git checkout master

8.5 Lab
You’ve covered a lot of Git commands that help you understand your commit history.
You also saw how to travel anywhere in that history via git checkout.

8.5.1 Viewing history (part 1)

You spent the first part of this chapter looking at your history via git log. This com-
mand has a lot of functionality, and these exercises are designed to teach some of
these functions:

1 How can you list the history from the first commit to the last?
What do you think is faster for Git to generate: the default listing or a reverse
listing?

Figure 8.18 Your repository at the “four
empty files” commit

116 CHAPTER 8 The time machine that is Git
2 Is there a way to list just the most recent N commits? (Where N can be any num-
ber?) How?

3 Can you display the date as time relative to the current time (for example, 2
hours ago)?

4 I’m a big fan of git --oneline, but it’s a shortcut. What is it a shortcut for?

8.5.2 Amending commits

Make any change that you want to any file in your math repository. After you perform
git add and git commit, note the SHA1 ID of this commit. Now type the following:

git commit --amend -m "Fixed commit" -m "Second paragraph" -m "Wall of text"

Observe the SHA1 ID of this amended commit. Is it different? Notice that your commit
now has multiple lines. You can pass in the -m switch multiple times to git commit,
allowing you to form longer messages (though you would probably use Git’s default
editor or git citool to enter a longer message).

8.5.3 Using other names

You examined the git rev-parse and git show commands. Like git log, these com-
mands have much more utility than you looked at during this chapter. To practice
these commands some more, type the following listing in your math repository and
then answer the following questions.

git rev-parse master~3
git show master@{3}
git show master^^^
git rev-parse :/"Removed a and b"

1 What commits do each of these commands point to?
2 What did the last git rev-parse search to find its commit?
3 Does git rev-parse work on tag names?
4 Do these symbols (~3, @{3}, and so forth) work on tag names?

8.5.4 Committing while in detached HEAD mode

When you performed a git checkout while on the four_files_galore commit, you
had a detached HEAD from the master. The note that Git displays indicates that you
can make a commit. For this exercise, find out what happens when you make a com-
mit while the HEAD is detached. What does Git do when you run git checkout
master?

 Working in the detached HEAD mode isn’t an everyday event. Git has a better
mechanism for introducing bug fixes, called branches, which you’ll learn in the next
chapter.

Listing 8.11 Example git rev-parse and git show commands

117Commands in this chapter
8.5.5 Deleting tags

Tags can be deleted as well! When you no longer need a tag pointing to a SHA1 ID, you
can delete this tag. Look up how to delete a tag. For this exercise, create a tag, confirm
that it exists via git show, and then delete it.

8.5.6 Viewing history (part 2)

Download the script make_lots_of_commits.sh from the book’s website (www.manning
.com/umali). Run this program from your home directory, in the command-line win-
dow, by typing this:

cd $HOME
bash make_lots_of_commits.sh

The script creates a repository in the directory called lots_of_commits. This working
directory will be in the directory that you ran the script from. Go into this directory
and then orient yourself by typing git log. Now answer the following questions:

1 What does the first commit say? What is the date of the first commit?
2 What is the SHA1 ID of the commit containing the word ubiquitous in its

message?
3 Which commit was authored by the user with the rgu@freeshell.org address?
4 The dates of the commits have been modified. Display all the commits since yes-

terday in one git log command.
5 Open the repository in gitk and look at the last commit. It has multiple files

affected. Use the patch and tree views and select specific files to see how to dis-
play changes.

8.6 Further exploration
In section 8.1.1, I used the phrase cryptographically unique with regards to the SHA1 IDs
produced by the git commit command. The SHA1 ID is the foundation of Git’s ability
to be distributed because the SHA1 IDs are guaranteed to never repeat. Of course, you
can never say never. To learn more about SHA1 IDs and computing collisions in hash
functions, read the thread at http://marc.info/?l=git&m=111365428717118&w=2.

8.7 Commands in this chapter

Table 8.1 Commands used in this chapter

Command Description

git log --parents Show the history, displaying the parent commit’s SHA1 ID for
each commit.

git log --parents --abbrev-
commit

Same as the preceding command, but shorten the SHA1 ID.

git log --oneline Display history concisely, using one line per each commit.

http://marc.info/?l=git&m=111365428717118&w=2
www.manning.com/umali
www.manning.com/umali

118 CHAPTER 8 The time machine that is Git
git log --patch Display the history, showing the file differences between
each commit.

git log --stat Display the history, showing a summary of the file changes
between each commit.

git log --patch-with-stat Display the history, combining patch and stat output.

git log --oneline file_one Display the history for file_one.

git rev-parse Translate a branch name or a tag name to a specific SHA1
ID.

git checkout YOUR_SHA1ID Change your working directory to match the version specified
in YOUR_SHA1ID.

git tag TAG_NAME -m "MESSAGE"
YOUR_SHA1ID

Create a tag named TAG_NAME, pointing to YOUR_SHA1ID.
The tag will have a short MESSAGE associated with it.

git tag List all tags.

git show TAG_NAME Show information about the tag named TAG_NAME.

Table 8.1 Commands used in this chapter (continued)

Command Description

Taking a fork in the road
Branches are an important feature in many version control systems, but in Git,
they’re especially important because they’re so easy to create. In this chapter, you’ll
learn how to make branches in your repository. This is sometimes known as diverg-
ing your code base. If you want to add a new feature or fix a bug in your repository’s
code, you’ll want to create a branch so you can do that work on a copy of your code.

 This chapter also covers how to switch between branches, and how to delete
branches by using the git branch command. You’ll learn how to jump back and
forth among branches by using git checkout. In the next chapter, you’ll bring
together (converge) your branched code base.

 Branching does introduce questions of how best to use branches. You’ll tackle
these policy questions in chapter 17. This chapter is about the mechanics of creat-
ing and using branches. Finally, don’t worry if you lose track of the steps as you go
through the TRY IT NOW sections; the lab at the end of the chapter introduces a
small script that will rebuild your repository to the correct state.

9.1 Introducing branches
In the preceding chapter, you learned that when you create a repository, Git auto-
matically creates a default branch called master. In this chapter, all the figures show
branches like a tree, growing from bottom to top. Like a real tree, Git’s branches
grow higher and higher as you make commits.

 Figure 9.1 shows the master branch and the last three commits on that branch.
This master branch is a line of development, an ordered sequence of the commits
you’ve made since you created the repository.
119

120 CHAPTER 9 Taking a fork in the road
9.1.1 Creating references

Because each commit points to its parent, you can point to the
last commit’s SHA1 ID if you want to reference the entire branch.
Instead of saying that the branch master consists of a set of com-
mits, you can say that the branch master is the last commit. The
last commit on a branch is called the tip of the branch, and it’s
always the most recent commit made to a branch.

 This idea of pointing to a commit is known as a reference. In
figure 9.2, you label the word master as a reference, and you
point master to the tip of the branch (the last commit). In the
Git software, master contains the SHA1 ID of this last commit.

 If you make a new commit, Git changes the reference
named master to point to this new commit (the reference
moves forward to point at this latest commit). See this in fig-
ure 9.3.

Figure 9.1 The master branch. Each box
represents a commit, labeled with its SHA1 ID.

…

e5f8486

29c7e58

cef45ff

master

…

e5f8486

29c7e58

cef45ff

master

Reference

Figure 9.2 master is
a reference to the last
commit (its SHA1 ID
is cef45ff).

…

e5f8486

29c7e58

cef45ff

35e2b05

…

e5f8486

29c7e58

cef45ff

git commit

master

master

Figure 9.3 After making a new commit,
master is changed to point to this new
commit (35e2b05).

121Introducing branches
9.1.2 Understanding that master is just a convention

The word master has a certain meaning, doesn’t it? It suggests that it’s somehow essen-
tial or important. But if you look up the definition of master in the Git glossary, you’ll
read this sentence: “In most cases, [master] contains the local development, though
that is purely by convention and isn’t required.” The next example will convince you
that the branch master isn’t required, as it’s an important point.

TRY IT NOW In your home directory, create a new repository:

cd
mkdir empty
cd empty
git init

Add a file to this repository:

touch foo
git add foo
git commit -m "committing the file foo"

After you have a commit, Git creates the branch master. To list the branches
that you have so far, type the following:

git branch

Your repository looks like figure 9.4.

Figure 9.4 Your small repository,
with one branch, master

The command should return a single line, * master. The * represents the
current branch that you’re on. You now know that this file belongs to the mas-
ter branch. But let’s create a new branch:

git branch dev

This creates a new branch called dev. Confirm that this branch is available by
typing this:
git branch

You should see two branches: dev and master. The
* is still next to master, meaning that you’re still in
the master branch. Your repository looks like fig-
ure 9.5.

Figure 9.5 Your repository with two branches

Because dev was created as a branch of master, it initially contains the exact
same content as master. It may be easier to think of your repository as having

foo
master

foo
master
dev

122 CHAPTER 9 Taking a fork in the road
two copies of foo, one belonging to the master branch and one belonging to
the dev branch, as in figure 9.6.

Keep in mind that figure 9.6 doesn’t show how Git works internally, but it may
be clearer to think about branches as having their own copies of files. To
access the files of this new branch, you check out the branch by using the git
checkout command. Type the following:

git checkout dev

Check out isn’t like checking out a book from a library; in the context of Git,
check out means changing the working directory to reflect the contents of
the branch. (Because dev and master are the same, there’s no difference
between these two branches.)

Now type the following:

git branch

You should see two branches, dev and master, and that dev is the current
branch. Delete the master branch, using the -d switch to git branch:

git branch -d master

To confirm that master is gone, type the following:

git branch
git checkout master

The first command lists only the dev branch. The second command produces
a somewhat cryptic error: pathspec 'master' did not match any file(s).
Read this to mean that master doesn’t exist.

At this point, your empty repository contains only one branch. This is the branch
named dev. It does contain a single commit, the one for the file foo. You’ve proven
that master isn’t required!

 The most important branch to your organization is the one that’s designated as the
most important branch. This is sometimes the branch named master, but more often
than not, it’s a branch named v1.0 or dev or even perhaps a code name. You (or your
organization) get to pick which branch rules all the other branches. Chapter 17 covers
some basic conventions.

foo
master

foo
dev

Figure 9.6 Another way of thinking
about these two branches

123When and how to create branches
9.2 When and how to create branches
In the course of any project, you’ll often need additional lines of development. The
master branch (or whichever branch your team designates as the master) typically rep-
resents the working code-base. The code in master is generally clean, builds properly,
can be deployed to the production environment, and so forth. Therefore, you typi-
cally don’t want to develop on master directly. Instead, you want to create a copy of
this master branch and work on that.

 Your workplace may have a different approach, but the benefit of having your own
copy of the repository means you can do your own work in your own private branches.
It’s only when you have to collaborate that you must pay strict attention to which branch
you’re developing on. In this book, you’ll treat master as the working code base.

 In general, you’ll want to create a branch for two common scenarios: introducing
new code and fixing existing code. For both scenarios, you want to create a copy of mas-
ter. In the next section, you’ll create new branches of master to cover these scenarios.

9.2.1 Introducing new code with branches

Let’s say you’re going to add new functionality to your code
base. This new work could take multiple days to implement.
To keep the master branch in working condition, you’ll make
a branch (a copy) of master for your new development.

 When you create a branch, you introduce a new line of
development. This diverges your code base. When you make
commits on this new line of development, it’s completely sep-
arated from the master. You get to make commits and track
your work without messing up the build.

 In figure 9.7, this new branch grows upward by our con-
vention. Notice that nothing has been committed on this new
branch. Instead, Git has made another reference (called
new_feature). This reference points to the same commit as
master, but not for long.

TRY IT NOW From the command line, go to the math direc-
tory that you were working with in the preceding chapter.
(All of our TRY IT NOWs in this chapter are run from this
directory, unless otherwise stated.)

cd $HOME/math

List the branches that are in your repository:

git branch

This should return a single line, * master. To create a
branch, type the following:

git branch new_feature

…

new_feature

master

Figure 9.7 The
repository, after you
type git branch
new_feature

124 CHAPTER 9 Taking a fork in the road
Now type this:

git branch

You should see two branches. The * is still next to the master branch, as
shown in figure 9.8.

COMMITTING ON A NEW BRANCH

The previous TRY IT NOW section introduced a new line of
development. This is a fork in the road of your master branch.
What you can do now is change your working directory to use
this new branch, and start making commits on it. After the next
TRY IT NOW section, you’ll have a repository that looks like fig-
ure 9.9.

TRY IT NOW Let’s first examine the state of your repository
via gitk, which is a useful tool for visualizing branches. In the
math directory, type the following:

gitk

You should see a window that looks like figure 9.10. Notice
that the new second branch is immediately next to the mas-
ter branch. This is how gitk depicts the situation. Also, notice
that the master branch is in boldface. This indicates that
master is the current branch.

Figure 9.9 Commits in your new line of
development. Again, notice that the new

commits are growing (and going upward).

Figure 9.8 Creating a new branch

…

master

new_feature

Figure 9.10 gitk’s look at a new branch

125When and how to create branches
Exit gitk, and from the command-line window, change into the new_feature
branch:

git checkout new_feature

You should see a message indicating that the working directory has switched
to the new_feature branch. At this moment, this new branch is a copy of mas-
ter, but after you make commits to it, it will be different from master.

To make two new commits in this new line of development, type the
following:

echo "new file" > newfile.txt
git add newfile.txt
git commit -m "Adding a new file to a new branch"
echo "another new file" > file3.c
git add file3.c
git commit -m "Starting a second new file"

Now type gitk to see these commits in
a UI. It should look like figure 9.11.

You can now exit gitk.

Compare figure 9.11 with figure 9.9 at the
start of this section. It’s mostly the same,
right? You’re starting your development
of a new feature in a separate branch
(called new_feature), and master is unaf-
fected by any of this development work.

VIEWING BRANCHES VIA GIT LOG

Like gitk, git log can display branches. The tree display is shown in the terminal by
using characters such as * and |. (You’ll see these for yourself in listing 9.3 later in this
section.)

TRY IT NOW In the command-line window, ensure that you’re in the math
directory and then type the following:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

This produces output like the following listing.

* 15f75dd (HEAD, new_feature) Starting a second new file
* 0e29c71 Adding a new file to a new branch
* 5bfd3c8 (master) Adding printf.
* 34d51d1 Adding two numbers.
* bd6a2c4 Renaming c and d.
* 3788018 Removed a and b.
* ba8ca57 Adding readme.txt

Listing 9.1 Viewing branches via git log

Figure 9.11 Two commits in your new
line of work

126 CHAPTER 9 Taking a fork in the road
* 737f38b (tag: four_files_galore) Adding four empty files.
* 6bb3f6a Adding b variable.
* 5e31795 This is the second commit.
* 56e7d7d This is the first commit.

In most terminal windows, the HEAD, the branches, and the tags have different colors,
making them easier to see. The command-line switch that enables all the branches to
be displayed is --all.

 If you spend a lot of time on the command line, knowing this is helpful, but as you
create more branches, you’ll probably need to resort to gitk to manage the entire
display.

NAMING BRANCHES

You might be wondering whether any restrictions or conventions exist for naming
branches. Branch names must pass the rules described by the git check-ref-format
command. These rules can be seen by typing git check-ref-format --help. Most of
the rules forbid special characters (such as a space, ?, or *) and sequences (such
as ..). As long as you stick to alphanumeric names, you’ll be fine.

 I’ve seen the gamut of naming conventions when it comes to branch names. I’ve
seen branch names with camel case (capitalized words that aren’t separated by spaces,
such as MyBigBranch), bug numbers (for example, BUG14015), and folder-style names
(for example, branch/rick/bug1). Git doesn’t impose any guidelines on what your
branch name should be. It’s up to you or your organization to come up with a conven-
tion that makes sense.

SWITCHING BETWEEN BRANCHES

When creating a diagram of the repository after the previous section, I tend to draw a
diagonal line, to emphasize that these two new commits are on a different branch (see

Above and Beyond

Git has a built-in alias system so that you can shorten a long command line like the
one in this section. With an alias, instead of typing git log --graph --decorate
--pretty=oneline --all --abbrev-commit, you could type git lol.

To create an alias, you must use the git config command. You did this back in
chapter 2 to initialize your username and email address. To create an alias, use this
command:

git config --global alias.lol "log --graph --decorate
➥ --pretty=oneline --all --abbrev-commit"

You have to type this only once. Afterward, you can type git lol.

You’ll be visiting the git config command in later chapters because, in addition to
creating aliases, you can modify the default behavior of many of Git’s commands. (I
use git lol because it’s a common alias. Search git lol on GitHub for this and
other snippets.)

127When and how to create branches
figure 9.12). You may observe from the gitk display that a
straight line could be drawn from the tip of the new feature to
the tip of master. Even though this is the case, the contents of
both branches are different. You can see this for yourself in the
next TRY IT NOW.

TRY IT NOW Let’s switch between the two branches and
observe that the working directory changes appropriately.
You should be in the new_feature branch. Confirm that by
typing the following:

git branch

You should see the two branches, master and new_feature.
new_feature should have the * next to it, denoting that it’s
the current branch. Now type this:

git branch -v

This should show you output like the following listing.

 master 35e2b05 Adding printf.
* new_feature ebcd35d Starting a second new file

The -v switch displays the SHA1 ID of the tips of these
branches. (If you did the lab in chapter 8, the tip of master
will be Fixed commit.) Now type the following:

ls

Your directory should include the two new files, newfile.txt and file3.c. Now
type this:

git checkout master
ls

This time newfile.txt and file3.c aren’t present. You should see something
close to figure 9.13.

Listing 9.2 git branch -v output

…

master

new_feature

Figure 9.12 Two
commits made to
the new_feature
branch

Figure 9.13 Switching between branches changes the working directory

128 CHAPTER 9 Taking a fork in the road
The thing to keep reminding yourself is that the branches are independent of one
another. Let’s see what happens if you make a commit on master.

TRY IT NOW Go to the math directory and type the following:

echo "A small update." >> readme.txt
git commit -a -m "A small update to readme."

Now the picture of your repository looks like figure 9.14.

The new commit makes the master branch grow upward by one commit. The
new_feature branch isn’t affected by this change at all.

ADJUSTING GITK TO VIEW MULTIPLE BRANCHES

It may be more clear after this last commit that
both branches are independent. Let’s look at
this history and learn to switch between
branches in gitk.

TRY IT NOW Start gitk. One thing you
should notice is that the only branch that
appears is master, as in figure 9.15.

git checkout master
git commit

……

master

master

new_feature new_feature

Figure 9.14 Adding a new
commit on the master branch

Figure 9.15 Viewing the master branch
in gitk

129When and how to create branches
As you move the tips of the branches apart by making commits, they’re no
longer visible to the other branch.

To configure gitk to show the other branch, click the View menu and choose
New View. This brings up a complicated-looking window with the title Gitk
View Definition -- Criteria for Selecting Revisions, shown in figure 9.16.

The change you’ll make is to select the All (Local) Branches option (high-
lighted in figure 9.16). To make this take effect, click Apply (F5) at the bot-
tom of the window. To make gitk remember this change, click the Remember
This View check box at the upper right. (You can give your view a unique
name in the View Name field, and the name will appear in the menu.) Then
click OK. Your gitk should look like figure 9.17.

You can now exit gitk.

Compare figure 9.17 with figure 9.14, and you should see the similarities between the
two graphs. You’ve seen that git log can mimic this view as well.

TRY IT NOW In the repository’s directory, type the following:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

(The Above and Beyond sidebar earlier in this chapter showed how to create
an alias for this long command. If you created that alias, give it a try here.)
This should give you a listing like the following.

Figure 9.16 Configuring the view to show all

Figure 9.17 Your two branches

130 CHAPTER 9 Taking a fork in the road
* e150c19 (master) A small update to readme.
| * b1641b2 (new_feature) Starting a second new file
| * eafc3ce Adding a new file to a new branch
|/
* f48c719 Adding printf.
* 58ee0fc Adding two numbers.
* d3ae3ea (HEAD, another_fix_branch) Renaming c and d.
* dd87c91 Removed a and b.
* 11a90b4 Adding readme.txt
* 12a7b37 (tag: four_files_galore) Adding four empty files.
* 907b870 Adding b variable.
* 56d7919 This is the second commit.
* c57cd5c This is the first commit.

The key thing to notice is that listing 9.3 splits at f48c719. This is how Git depicts the
branch in figure 9.17 using ASCII. (Your commit messages may be different, depend-
ing on how much of the earlier labs you’ve completed, but the branch should be visi-
ble.) Now let’s switch between branches in gitk.

TRY IT NOW Restart the gitk program. Make sure you’re using the same view
as in the previous TRY IT NOW.

In the branch window pane, hover
over the new_feature branch, and
then bring up the context menu. In
Windows or Unix/Linux, context
menus are raised by clicking the
right mouse button, but on the Mac,
you have to click the mousepad with
two fingers. You should see a menu
pop up, as in figure 9.18.

Click the Check Out This Branch
item. Exit gitk, and confirm on the
command line that you’ve changed to the new_feature branch by typing the
following:

git branch

The output should show new_feature with the asterisk in front of it.

9.2.2 Introducing fixes with branches

Branches provide a way to isolate changes from the rest of the code base. In the previ-
ous section, you created a new branch right from the tip of master. This branch could
represent a new feature that you’re developing. But perhaps more common is the
need to create a branch to develop a fix. Fixes tend to be made on an earlier part of
your repository’s history.

Listing 9.3 git log --graph --decorate --pretty=oneline
 --all --abbrev-commit

Figure 9.18 The context menu to check
out branches in gitk

131Performing other branch operations
 In figure 9.19, a bugfix branch is created at commit 29c7e58,
which is two commits behind master. With Git, you can specify
any commit point as the starting point for a new branch.

TRY IT NOW On the command line, in the math directory,
type this:

git checkout master
git log --oneline

The first command makes sure you’re on the master branch.
The second command lists the history with the correspond-
ing SHA1 IDs. Next, identify the SHA1 ID for the commit
labeled Renaming c and d. Write down or copy this SHA1 ID.
Now, on the command line, type the following:

git branch fixing_readme YOUR_SHA1ID
git checkout fixing_readme

Replace YOUR_SHA1ID in the preceding step with the SHA1
ID for the Renaming c and d commit.

At this point, your repository should look like figure 9.20.
Confirm that by typing gitk.

9.3 Performing other branch operations
You’ve created two branches so far and made commits to one of them. You have a
handful of other branch operations to learn.

9.3.1 Branching faster

Branches are incredibly fast to create. Unlike other version-control systems, Git
requires no server to talk to and no copying of files. This is due to Git’s architecture
(commits point back to their parents). Because of this, the git branch/git checkout
operations are fast. You can use your branches just as quickly as you can create them.

 A useful shortcut can help you more fully embrace branching. Using git
checkout’s -b switch, you can create a branch and check it out in one step.

35e2b05

…

e5f8486

29c7e58

cef45ff

master

bugfix

Figure 9.19
Branching for
a bug fix

Figure 9.20 Making a branch
from an earlier start time

132 CHAPTER 9 Taking a fork in the road
TRY IT NOW On the command line, in the math directory, type the following:

git checkout -b another_fix_branch fixing_readme

Now type this:

gitk

Your branch list should look like figure 9.21.

You can now exit gitk.

Look carefully at this command in figure 9.22, because it does two things at once.

This command takes three arguments: the -b switch, the name of the new branch to
create, and the starting point on which to create this new branch.

 The starting point that you used in the TRY IT NOW section was the branch you cre-
ated before. There’s nothing wrong with using a current branch as a starting point!
The starting point can also be a commit SHA1 ID or a tag.

 The new branch name is the name you’d normally pass into the git branch com-
mand. The -b switch is the signal to checkout that you want to create the branch and
then enter that branch immediately.

 Memorize this form of git checkout, because when you create a branch, you
almost always want to use it immediately.

9.3.2 Deleting branches

Sometimes you need to delete branches. Remember that branches are forks in the
road. Some branches you’ll walk down only a short way. You create branches because
you want to try something, but sometimes your experiment doesn’t succeed.

Figure 9.21 Making
another branch

Command New branch to create

Create new branch Start point

git checkout -b another_fix_branch fixing_readme

Figure 9.22 The git
checkout -b command

133Performing other branch operations
 You may inadvertently create a branch by accident. As you saw in the previous sec-
tion, branches are easy to create. Deleting is just as easy. To delete a branch, use the
-d switch of git branch. Remember that you deleted a branch already in the first TRY
IT NOW of this chapter.

TRY IT NOW In the command-line window, in the math directory, type this:

git checkout master
git branch -d fixing_readme

To see what branches you have, type this:

git branch

You immediately deleted the fixing_readme branch that you created moments ago.
Hopefully, this encourages you to create branches anytime you want to try an experi-
ment with your code base. Branches isolate your development from the rest of your
work and from the master branch. Anytime you think, “I wish I had a copy of my
repository,” you should immediately think, “I’ll just make a new branch!”

 You should be careful with git branch -d. This operation has no fail-safes, and Git
does delete the branch. Git protects you from the obvious blunder of deleting the
branch you’re currently on, but if you delete a branch that you meant to keep, you
can easily re-create it with the error message that Git provides.

TRY IT NOW Make sure you’re in the master branch and then type this:

git branch -d another_fix_branch

Notice the message that Git provides after you perform a deletion. It should
read something like the following listing.

% git branch -d another_fix_branch
Deleted branch another_fix_branch (was d6cc762).

The SHA1 ID in the delete message is the starting point of the branch you just
deleted. At this point, if you realize that this delete was the wrong thing to do,
you can re-create the branch by immediately typing the following:

git checkout -b another_fix_branch d6cc762

Notice that you specify the same SHA1 ID from the error message.

Confirm that the branch is now back by typing this git log command from
earlier:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

If for some reason you don’t have the SHA1 ID, you can resort to git reflog.
This command shows a record of all the times that you’ve changed branches.

Listing 9.4 Output from git branch -d

134 CHAPTER 9 Taking a fork in the road
Type the following:

git reflog

You should see output like the following listing.

158b7ef HEAD@{0}: checkout: moving from master to another_fix_branch
2bd20cb HEAD@{1}: checkout: moving from another_fix_branch to master
158b7ef HEAD@{2}: checkout: moving from fixing_readme to another_fix_branch
158b7ef HEAD@{3}: checkout: moving from master to fixing_readme

Locate the line moving from master to another_fix_branch. The SHA1 ID
at the start of this line (in listing 9.5, it’s 158b7ef) is the SHA1 ID of
another_fix_branch. You can now perform the git checkout command from
this section by using this SHA1 ID.

9.4 Switching branches safely
Multitasking in your code base becomes easy, because creating and switching
branches is so easy. But if you’re in the middle of some work (you have uncommitted
changes in your working directory), Git won’t allow you to check out another branch.
You must put this work aside properly.

9.4.1 Stashing away your work

Git does have a facility for putting aside your work temporarily: the git stash com-
mand. You can use this to save all your work temporarily, leaving you with a clean
working directory. Think of it as a temporary commit! Let’s explore its most common
use case.

TRY IT NOW In the math repository, confirm that you’re in the another
_fix_branch branch. Type the following:

git status

If you aren’t in this branch, type this:

git checkout another_fix_branch

Now that you’re in this branch, make a change to math.sh by using your favor-
ite editor. Add this line at the end:

c = 0

Confirm that your repository is in the middle of some work:

git status

math.sh should be marked as modified. Now imagine that your manager has
asked you to look at something important on the master branch. Try to switch
to it by typing this:

git checkout master

Listing 9.5 git reflog output

135Switching branches safely
You should get an error message like the following listing.

error: Your local changes to the following files would be overwritten
➥ by checkout:
 math.sh
Please, commit your changes or stash them before you can switch branches.
Aborting

This error is self-evident: changing branches at this time would erase your current
work. You could commit your change now (using git commit -a), but if your work
isn’t finished, you may not want to commit it. You could reset the code (using the
instructions from the git status command), but what you want to do is temporarily
save your changes without doing a formal commit. This is what git stash does.

TRY IT NOW In the math repository, type the following:

git stash

You should get a message like the following listing.

Saved working directory and index state WIP on
➥ another_fix_branch: 29c7e58 Renaming c and d.
HEAD is now at 29c7e58 Renaming c and d.

This message says Git is saving your WIP, short for work in progress. Under the
covers, Git stores the work in a commit, but it’s reachable only by the git
stash command. Now type this:

git status

At this point, you can do a git checkout of the master branch:

git checkout master

9.4.2 Popping the stash

Let’s continue the scenario: you and your manager are no longer looking at master.
You want to go back to whatever work you were doing in another_fix_branch.

TRY IT NOW Go back to another_fix_branch:

git checkout another_fix_branch

Now let’s take a look at what you’ve stashed away. For this, you’ll use git
stash list:

git stash list

Listing 9.6 An error from git status command

Listing 9.7 git stash output

136 CHAPTER 9 Taking a fork in the road
This shows you one item, the work that you stashed away in the previous sec-
tion. To reapply this work to your current branch, type this:

git stash pop

You should see output like the following listing.

On branch another_fix_branch
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: math.sh

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (48569a9917d430bad9aaa856e6cc1a05be1701da)

After you pop the stash, it’s removed from the stash list, and the work that was stashed
is added back to your working directory. After git stash pop, the working directory is
in the same state as it was before the first git stash. You can think of the stash as a
sticky note that you leave for yourself. If you get interrupted, stash your work so you
can safely switch context (both in your brain and in your repository).

9.5 Lab
The following lab exercises use the math repository from the TRY IT NOW sections. If
you’ve been able to follow along without problems, feel free to jump into the lab exer-
cises now.

 However, if you’ve found yourself in a mixed-up state with regards to the math
repository, or just want to work on a math repository that’s in the right state, download
the zip file LearnGitMoL_SourceCode.zip from the book’s website. It contains a script
named make_math_repo.sh. Run this script on the command line:

bash make_math_repo.sh

This creates a new math repository in a directory named math. You’ll have to delete
your existing math directory. The script creates a new repository following all of the
steps and exercises up to section 9.4.2. The script leaves the repo in
another_fix_branch branch, with one edited file that needs to be committed (via git
add and git commit). Be sure to look at the code, as it documents the steps.

9.5.1 Using the GUI for branch work

1 Using Git GUI, try a git checkout of the new_feature branch.
2 Use gitk to add another branch starting at the same place as the another_fix

_branch branch.

Listing 9.8 git stash pop output

137Lab
3 Create a branch off the tag from the first chapter. Try this operation with both
Git GUI and gitk. (You’ll need to give these two branches different names.)
Which is easier to you?

4 Delete these three branches by using both Git GUI and gitk.

9.5.2 Warm-up questions

1 If you create a branch in error, could you rename the branch instead of delet-
ing it?

2 In section 9.2.7, you had to search for the SHA1 ID of the commit containing
the string Renaming c and d. How would you identify this SHA1 ID when using
the command git rev-parse?

3 Section 9.2.3 introduced a lengthy git log command. Look up what all the
switches do! (Try running the command and leaving some of the switches out.)

4 What happens to the commits of a branch if you delete that branch?

9.5.3 Working on another_fix_branch

When you last left another_fix_branch, you had changed math.sh but hadn’t commit-
ted it yet. Instead of committing it, remove this impending change by typing the
following:

git checkout -- math.sh

1 What form of the git checkout command are you using?
Look up this answer via git checkout --help.

2 Add the following line to the math.sh file (still in another_fix_branch):

c=1

Commit this change.

Does your repository look like figure 9.23?

Figure 9.23 Adding a commit to
another_fix_branch

138 CHAPTER 9 Taking a fork in the road
9.5.4 Viewing branches

The same zip file mentioned at the beginning of this section contains a script,
make_lots_of_branches.sh. Run this script in your command-line window:

bash make_lots_of_branches.sh

The script creates a repository in the directory called lots_of_branches. It may run for
a long time, but it will eventually finish, after creating 40 branches in this repository.
Answer and perform the following tasks:

1 What commit do all the example branches start from?
2 How many commits are in branch_30 from this start point?
3 Three branches are tagged random_prize_1, random_prize_2, and

random_prize_3, respectively. What are these branches? Confirm by looking at
the file answers.txt in branch_40.

4 Locate the tag labeled random_tag_on_file. Which branch contains this tag?
(Use the git branch command to find this answer.)

5 Type git log --oneline --decorate --simplify-by-decoration --all.
What is this command telling you? Add the --graph switch. What do you see
then?

9.6 Further exploration
In figure 9.24, you see a small bit of the command line. The command that was typed
was ls, but all the text preceding it is a detailed command prompt.

 You may be familiar with the standard prompt of $ or > (or # if the user is a super
user). On Windows, entering the command line will give you a prompt that contains
the drive letter, as in C:\>. On the Mac, the prompt is $, usually preceded by the
hostname.

 The default prompt on most command-line systems can be modified to be more
descriptive. Git BASH for Windows comes with a customized prompt that always
announces the branch name for the current directory. If you’re using the BASH envi-
ronment (and you definitely are using BASH with Git BASH, the Mac, and with most
Unix/Linux servers), explore this customization by reading the prompt customiza-
tion code at the following site:

https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh

Figure 9.24 A fancy command-line prompt

https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh

139Commands in this chapter
9.7 Commands in this chapter

Table 9.1 Commands used in this chapter

Command Description

git branch List all branches.

git branch dev Create a new branch named dev. (This branch
points to the same commit as HEAD.)

git checkout dev Change your working directory to the branch
named dev.

git branch -d master Delete the branch named master.

git log --graph --decorate
--pretty=oneline --all --abbrev-commit

View history of the repository across all
branches (see section 9.2.3).

git config --global alias.lol "log
--graph --decorate --pretty=oneline
--all --abbrev-commit"

Make an alias named lol for the git log
command in the previous row (see the Above
and Beyond sidebar).

git branch -v List all branches with SHA1 ID information.

git branch fixing_readme YOUR_SHA1ID Make a branch using YOUR_SHA1ID as the
starting point.

git checkout -b another_fix_branch
fixing_readme

Make a branch named another_fix_branch using
branch fixing_readme as the starting point.

git reflog Show a record of all the times you changed
branches (via git checkout).

git stash Set the current work in progress (WIP) to a
stash (holding area), so you can perform a git
checkout.

git stash list List works in progress that you’ve stashed away.

git stash pop Apply the most recently saved stash to the cur-
rent working directory; remove it from the stash.

Merging branches
In the preceding chapter, you
created multiple branches,
diverging your code base. You
learned that when you work on a
branch, you’re working on a sep-
arate line of development. If you
want to incorporate the work
from your separate branch back
into your main line of develop-
ment, you need to use git
merge, as shown in figure 10.1.

 Branching diverges code
bases, and merging converges
code bases. In figure 10.1, we
diverge the code base at commit
B, making two branches: master
and new_feature. We then make
some commits on both bran-
ches. Next, using git merge,
we converge new_feature and
master back together in commit

Figure 10.1 A typical merge.
The commits are the boxes with letters.

git merge

master

master

E

B

…

A

E

F

B

…

A

new_feature

D

C

new_feature

D

C

140

141Performing a merge
F. git merge is the focus of this chapter, as well as some of the graphical tools accessed
by git mergetool (you’ll see a few of them). Because producing branches is so easy,
the git merge command is an important tool.

10.1 Considering point of view: Traffic merges into us
When you run the git merge
command, you merge branches
into whatever branch you have
currently checked out, as shown in
figure 10.2.

 As an example, suppose that
the master branch from your math
repository has been checked out,
using git checkout master. This
repo has two other branches,
another_fix_branch and new_feature, that could merge into master. Your working
directory contains the master branch, and you can run git merge to bring in either
another_fix_branch or new_feature.

 Now imagine traveling down a highway. The highway you’re on is the master
branch, and on-ramps join the highway. Those on-ramps are the git merge com-
mands, bringing in traffic from another branch. In Git, you decide when those on-
ramps appear.

 You can check out any branch, and merge any branch into it.
But in practice, one branch is usually designated as the branch that
accepts all merges. Typically, this is master, but as you saw in the
previous chapter, it can be any branch.

10.2 Performing a merge
A merge results in a commit that has two (or even more) parent
commits. In figure 10.1, the merge commit F has two parent com-
mits: E and D. Performing a merge is easy: you call git merge. In
these next sections and TRY IT NOWs, you’ll review your under-
standing of branches and then practice using git merge.

10.2.1 Starting with at least two branches

To try merging, you must create at least two branches. In this chap-
ter, you’ll work on a bugfix branch whose commit point is earlier
than the master branch. This repository looks like figure 10.3, and
you’ll create the bugfix branch by using the steps in chapter 9, in
section 9.2.2.

Figure 10.3 The bugfix branch

another_fix_branch

new_feature

master

Figure 10.2 Branches merge into whatever branch
you’re on.

C

masterbugfix

F

B

…

A

E

D

142 CHAPTER 10 Merging branches
In this repository, after the code bases have diverged, the master branch has added
commits C and F, and the bugfix branch has added commits E and D.

 You’ll now create this repository and perform a merge between master and bugfix.

TRY IT NOW Download the script make_merge_repos.sh from the book’s web-
site, and run that in the command window. Do something like the following:

cd $HOME
bash make_merge_repos.sh

At this point, you’ll have a mergesample directory, containing a repository of
two branches that should look like figure 10.3. As before, get comfortable
with the two branches. Type this:

cd mergesample
git checkout master

This puts the contents of the master branch into your working directory. This
branch has four files: README.txt, bar, baz, and foo. The file baz is a small
script that you can run by typing this:

bash baz

The script has a bug in it that causes a division-by-zero error message. Take a
look at the contents of the file (type cat baz), and it should be apparent why
this error occurs. Now type this:

git checkout bugfix
bash baz

This branch contains a fix for the program, and running it should output the
number 1 at the command line. Now type this:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

This should produce the following listing.

* 115df4c (HEAD, bugfix) Ugh, I was dividing by zero!
* 6e0c5d3 Adding echo to check error.
| * f771da4 (master) Committing bar.
| * 1d4640c Committing foo.
|/
* b47c153 (tag: bug_here) Committing baz.
* a3c8e23 Committing the README.

You should also open this repository in gitk.
After you enable the viewing of all (local)
branches in gitk’s view configuration, you
should see the tree in figure 10.4.

Figure 10.4 Two branches that you’ll merge

Listing 10.1 Two branches that you’ll eventually merge

143Performing a merge
Hopefully, you can see that it represents the scenario in figure 10.5. In this figure, the
commit messages are shown next to each box. In the next section, you’ll learn how to
figure out the differences between these two branches.

10.2.2 Checking the difference between two branches

The git diff command has an interesting syntax you can use to determine the differ-
ences between two branches.

TRY IT NOW In the mergesample directory from the preceding section, type
this:

git diff master...bugfix

Notice the three periods between the two branches. This produces the follow-
ing listing.

diff --git a/baz b/baz
index 56d6546..1c52108 100644
--- a/baz
+++ b/baz
@@ -1,3 +1,4 @@
 a=1

Listing 10.2 git diff between two branches

…

master

Committing bar Ugh, I was dividing by zero!

Committing foo

Committing baz

Committing the
README

…

Adding echo to check error

bugfix

Figure 10.5 Drawing out the commits and
branches for the last TRY IT NOW section

144 CHAPTER 10 Merging branches
-b=0
+b=1
 let c=$a/$b
+echo $c

The output of this form of git diff shows the differences between bugfix and the
master branch, relative to when they first became different. This is a preview of what
the merge will do. The order of branches to the git diff command is significant:
master is listed first, and bugfix is listed second. Remembering the highway analogy,
bugfix (the on-ramp) will merge onto master (the highway).

 In listing 10.2, the string a/baz represents the baz file as it exists on master, and the
string b/baz represents the baz file as it exists on bugfix.

 The diff output (refresh your memory of this by looking at chapter 6) shows how
to turn the file baz from master (a/baz) to the file baz from bugfix (b/baz). This is
why you list master first, and then bugfix in the git diff command. Knowing the dif-
ference between branches is helpful before you do a merge. You can anticipate what
the merge of the file baz will look like.

One other variation of git diff is helpful in analyzing branch differences.

TRY IT NOW In the mergesample directory, type the following:

git diff --name-status master...bugfix

This displays the following listing.

M baz

Here, the M means baz will be merged into master. For our case, this command is over-
kill, but in larger repositories, multiple files may be merged, and this command pro-
vides a useful summary of those files.

 Let’s complete this merge, now that you know baz is the file that will be affected.

10.2.3 Performing the merge

To incorporate the changes from bugfix into master, you’ll use git merge.

Above and Beyond

Listing 10.2 gives some insight into how Git can perform the merge.

The variable b is set to 0 (b=0) in the master branch, but in the bugfix branch, b is
set to 1 (b=1). Git can tell that these changes happen in a certain order, and that only
the number has changed. Git will then merge this by changing 0 to 1.

The echo statement is a new line, added by the bugfix branch. master didn’t have
this before. Git will merge this by adding this line.

Listing 10.3 git diff --name-status listing

145Performing a merge
TRY IT NOW Type the following in the mergesample directory:

git checkout master
git merge bugfix

Depending on your version of Git, this may put you in Git’s default editor so
you can type in a new message. A default message already exists, indicating
Merge branch 'bugfix'. Type this in the editor:

:wq

This saves the message, at which point Git will merge the two branches.

You’ll see output like the following listing.

Merge made by the 'recursive' strategy.
 baz | 4 +++-
 1 file changed, 3 insertions(+), 1 deletion(-)

Now check the git log output to see the merge. Type the following:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

You saw how to abbreviate this long command into an alias called git lol in
chapter 9. The log output looks like the following listing.

* 71a0b88 (HEAD, master) Merge branch 'bugfix'
|\
| * 115df4c (bugfix) Ugh, I was dividing by zero!
| * 6e0c5d3 Adding echo to check error.
* | f771da4 Committing bar.
* | 1d4640c Committing foo.
|/
* b47c153 (tag: bug_here) Committing baz.
* a3c8e23 Committing the README.

Now look at the output of the gitk screen. It should look like figure 10.6.
Make sure you can see how the gitk picture matches listing 10.5.

Listing 10.4 git merge output

Listing 10.5 Detailed git log output

Figure 10.6 A merge in gitk

146 CHAPTER 10 Merging branches
10.2.4 Working with a merge commit’s parents

A merge results in a new commit that represents the merge. In our example from the
previous TRY IT NOW, this merge commit has two parents: the latest commit from the
master branch and the latest commit from the bugfix branch.

TRY IT NOW In the mergesample directory, type the following:

git log -1

You should see output like the following listing.

commit 65f538a53a0d530ce0ca2e06069b8f13f7385e8b
Merge: 8d13856 3c00c46
Author: Rick Umali <rickumali@gmail.com>
Date: Sun Jul 13 19:29:51 2014 -0400

 Merge branch 'bugfix'

Notice the line that starts with Merge:. This line lists the two commits that produced
this merge commit. This is easier to see in gitk, as shown in figure 10.7.

gitk shows that the commit has two parents. On
a color screen, you’d see that one parent is in
red, and one is in blue. These colors corre-
spond to the branch colors in the tree window
of gitk (see figure 10.8).

Listing 10.6 git log output

Figure 10.7 The merge
commit in gitk

Figure 10.8 Another tree from
mergesample. Notice the colors of
the branches.

147Performing a merge
Figure 10.9 depicts this merge in a diagram.

10.2.5 Performing merges in Git GUI

The git gui command has the ability to select branches that you can merge into your
current branch.

TRY IT NOW Let’s re-create mergesample to get to a known starting point. To
do this, you’ll delete the mergesample directory and then re-create it from
the make_merge_repos.sh script. Type the following:

cd $HOME
rm -rf mergesample
bash ./make_merge_repos.sh

Now you’ll start Git GUI in the mergesample directory and make sure you’re
in the correct branch:

cd mergesample
git checkout master
git gui

git checkout master
git merge bugfix

masterbugfix

…

master

bugfix

…
Figure 10.9 Notice how the
merge introduces a new commit.

148 CHAPTER 10 Merging branches
When the GUI appears,
choose Merge > Local
Merge, as in figure 10.10.

Figure 10.10 Doing a
merge from Git GUI

This brings up a window, shown in figure
10.11, that lists the branches that are eligi-
ble to merge with your current branch,
master.

Figure 10.11 Selecting a
branch to merge into master

Because this merge can be
done automatically, the out-
put window that appears will
show success, as you can see in
figure 10.12.

10.3 Handling merge conflicts
In the preceding section, one file, baz, was modified on two branches. The merge of
these two branches produced a clean merge. Git determined how to merge the two
changes to baz from the two branches automatically, but this won’t always be the case.

10.3.1 Understanding differences that Git can’t handle

Figure 10.13 depicts the two
changes made to the file baz
from the previous section. In
the bugfix branch, you changed
the value of the b variable from
0 to 1 (fixing the divide-by-zero
error), and you added an echo
statement.

Figure 10.12 Merging the bugfix successfully via Git GUI

bugfix

Modified

Added

master

a=1
b=1
let c=$a/$b
echo $c

a=1
b=0
let c=$a/$b

Figure 10.13 Diffs between bugfix and master

149Handling merge conflicts
The underlying algorithms that Git uses to determine how to perform a merge con-
sider these kinds of changes to be simple. But most changes aren’t simple, and those
kinds of changes result in a conflict.

TRY IT NOW Let’s re-create the mergesample directory to get to a known start-
ing point, as you did in the previous TRY IT NOW. Remember, to do this,
you’ll delete the mergesample directory and then rerun the make_merge
_repos.sh script. Type the following:

cd $HOME
rm -rf mergesample
bash make_merge_repos.sh

To create a state that will cause a conflict, you’ll edit the master branch’s baz
file to have a printf statement. Type the following:

cd mergesample
git checkout master

Using your favorite editor, add the following as a new line at the end of the
baz file:

printf "The answer is %d" $c

Alternatively, if you don’t want to open an editor, carefully type the following
line on the command line:

echo 'printf "The answer is %d" $c' >> baz

The difference be-
tween the two ver-
sions of baz is shown
in figure 10.14.

Commit this change:

git commit -a -m "Adding printf"

Now try to merge in the bugfix branch:

git merge bugfix

It should produce an error message like the following listing.

Auto-merging baz
CONFLICT (content): Merge conflict in baz
Automatic merge failed; fix conflicts and then commit the result.

The previous TRY IT NOW presented a typical scenario when developing with other
people: two or more people will make changes to a single file. In our case, someone

Listing 10.7 A merge conflict

bugfix master

a=1
b=1
let c=$a/$b
echo $c

a=1
b=0
let c=$a/$b
printf "The answer is %d" $c

Figure 10.14 A diff that results in a conflict (in the last line)

150 CHAPTER 10 Merging branches
made a change to the baz file in the bugfix branch, and someone made a change to
the same file in the master branch. In some cases, as in the previous section, Git can
figure out how to do the merge. But in other cases, Git can’t figure out how to do the
merge, and therefore you must handle it.

10.3.2 Merging files by directly editing conflicting hunks

When Git generates the message in listing 10.7, it has already modified the conflicted
file. It merges the lines that it can calculate, but it leaves special markers that indicate
where it needs help. If you open the file, you’ll see the area delimited by lines that
start with <<<, >>>, and ===. baz will contain the lines in the following listing.

a=1
b=1
let c=$a/$b
<<<<<<< HEAD
printf "The answer is %d" $c
=======
echo $c
>>>>>>> bugfix

The lines between b and c represent the code that is in the HEAD commit. Remem-
ber that HEAD is always on the current branch, and in this situation you’re on the mas-
ter branch (you just did a git checkout of the master branch). The lines between c
and d represent the code that is in the bugfix branch. The change between lines b
and c is a local change, and the change between lines c and d is a remote change.

 Merging any file in Git is straightforward: pick the correct hunk and remove the
other hunk. Also, you have to remove the markers. For example, if you decide you like
the master branch, a corrected file would look like the following listing.

a=1
b=1
let c=$a/$b
printf "The answer is %d" $c

Here you picked the HEAD (or master, or local) change over the bugfix (remote)
change. If you decide you like the echo in bugfix, your corrected file would look like
the following listing.

a=1
b=1
let c=$a/$b
echo $c

Listing 10.8 A merged file with a conflicted hunk

Listing 10.9 A possible fixed file

Listing 10.10 Another possible fixed file

Start of HEAD changesb

Separator between
conflicting changes

c

End of bugfix changesd

151Handling merge conflicts
Once you make the file look like either listing 10.9 or listing 10.10, using perhaps your
favorite editor, you can perform git add/git commit on this file as usual. This com-
pletes the merge. (But don’t perform these steps yet. In the next section, you’ll
explore how to fix the conflicts by using another tool.)

10.3.3 Merging files by using a merge tool

If you have multiple conflicted hunks or want to
more clearly see the conflicted hunks, you
should consider using a merge tool. This graphi-
cal tool displays the details of the three-way
merge. Three-way merge? Consider figure 10.15.

 When you edited the file baz in your various
branches, you produced three versions of baz.
The first two may be obvious by now: the ver-
sions on your two branches. You have one ver-
sion of baz on the bugfix branch, and the one on
master (HEAD). The third isn’t so obvious: it’s
the original version of baz from which you pro-
duce the master and bugfix versions.

 Merging assigns names to these three ver-
sions, which are labeled in figure 10.15. Base is
this original version. Git refers to this as the com-
mon ancestor. Local is the version of your current
branch, which is master. Remote is the version of
the branch you’re trying to merge, which in this
example is bugfix.

 In the next TRY IT NOW, you’ll look at a few merge tools and how they display the
three-way merge presented by the conflict.

TRY IT NOW In the mergesample directory, type the following:

git mergetool

(Remember, this TRY IT NOW assumes you haven’t fixed the conflicts. If you
have, redo the steps in the TRY IT NOW in section 10.3.1.)

The command window prompts you with something that looks like the follow-
ing listing (depending on your platform).

Merging:
baz

Normal merge conflict for 'baz':
 {local}: modified file
 {remote}: modified file
Hit return to start merge resolution tool (kdiff3):

Listing 10.11 Prompt for git mergetool

…

master

HEAD

bugfix

Remote Localbaz

baz

…

baz

Base

Figure 10.15 The three-
way merge

152 CHAPTER 10 Merging branches
When you press Return/Enter, you’ll see a window appear. This window is
your merge tool. The screen capture in figure 10.16 is a merge tool in Unix/
Linux (gvimdiff). This particular merge tool can also be configured for
Windows.

Figure 10.17 is a screen capture for KDiff3, a merge tool that you can use on
Windows.

Figure 10.16 The merge tool gvimdiff (for Linux/Unix and Windows)

Figure 10.17 The merge tool KDiff3 (for Windows)

153Handling merge conflicts
Figure 10.18 is a merge tool for Mac, called opendiff.

Configuring these tools can be challenging, because they aren’t supplied by
the Git distribution. Online resources describe how to set up these tools.
Please visit this book’s forum (from the book’s website) for additional help or
pointers.

After the tool is running, it will let you select a conflicted line. For each con-
flict, the tool presents a choice of selecting the corresponding line from the
current branch or the branch that you’re merging. In figures 10.16, 10.17,
and 10.18, the line with the ? is the conflicted line.

The screenshot in figure 10.19 shows how to resolve this conflict with KDiff3
(Windows). You first position the cursor on the conflicted line. Then you
click B from the toolbar to pick the change from the local branch.

Figure 10.18 The opendiff merge tool (Mac)

Figure 10.19 Selecting
the B (or local) version
for the conflict

154 CHAPTER 10 Merging branches
After you click B, the main window that represents the merged file no longer
displays the ? (figure 10.20). At this point, you can save the file.

The git mergetool command detects whether the merge was completed,
and in this case, typing git status shows that you have a change to commit.
This means that git add was already run implicitly. At this point, type the fol-
lowing:

git commit

10.3.4 Aborting a merge

At times you have to abandon or abort a merge. This is usually because you’ve selected
the wrong branch to merge into, or you forgot to check out the correct branch to use
as the starting point. One way to avoid this is to use Git GUI to at least figure out the
list of branches that are eligible to merge into your current branch!

 If you’re in the middle of a merge, you should be able to type git diff to see the
conflicted hunks. This will help you determine whether you should abandon the
merge. To stop a merge, type git merge --abort.

 If you’ve already performed a merge and need to revert, or roll back, to a previous
version, you’ll have to use more advanced techniques. Chapter 16 covers this
procedure.

10.4 Performing fast-forward merges
One special case of merging in Git is the fast-forward merge. This special case takes
effect when the target branch is a descendant of the branch that it will merge with.
This section will help you understand what it means to be a descendant, and then
you’ll perform a fast-forward merge of your own.

10.4.1 Understanding the direct-descendant concept

In the preceding chapter, you learned how to create a new_feature branch on top of
master, using git checkout -b new_feature while in the master branch. The result-
ing repository looks like figure 10.21. The new_feature branch is available, and it’s
waiting for a commit.

Figure 10.20 All conflicts resolved

155Performing fast-forward merges

After making a few commits to the
new_feature branch, your repository
looks like figure 10.22. Notice that
master hasn’t made any commits yet!

 Each box is a commit, and it’s easy
to see that there’s a path from the lat-
est commit of the new_feature branch
to the latest commit of the master
branch. From the figure, the commits
made to the new_feature branch are
descendants of master’s last commit.

 To be more precise, a commit is a
descendant of a target branch if you
can follow its parents all the way to the
target branch. Remember that each
commit points back to its parent. In
figure 10.23, you can see by the arrows
that commits in new_feature point all
the way back to master.

 If you perform a merge of two
branches that are connected to one
another in this manner, Git will perform a fast-forward merge.
You can try this for yourself by producing a repository that has
two branches in this fashion.

TRY IT NOW You can either type the following to create a new
repository in a new directory (called ff), or use the script
make_merge_ff.sh from the zip file of code from the book’s
website, and run that (using bash make_merge_ff.sh):

cd $HOME
mkdir ff
cd ff
git init
touch README.txt
git add README.txt
git commit -m "Committing the README."
touch baz
git add baz
git commit -m "Committing baz."
git checkout -b new_feature
touch foo
git add foo
git commit -m "Committing foo."
touch bar
git add bar
git commit -m “Committing bar.”

…

master

new_feature

Figure 10.21 A
new_feature branch

Figure 10.22 Committing
on the new_feature branch

…

master

new_feature

Figure 10.23 If you
can follow a commit’s
parents all the way to

another commit,
they’re descendants.

…

master

new_feature

156 CHAPTER 10 Merging branches
Now type the following:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

Remember that this command can be
aliased so you don’t have to type all of
this. The command to make this an
alias is in the previous chapter.

Also, open gitk in this directory, and
make sure to view all branches. You
should see something like figure
10.24.

Convince yourself that figure 10.24 is the equivalent of figure 10.23.

10.4.2 Making a fast-forward merge

Now that you have the right configuration, let’s perform the fast-forward merge.

TRY IT NOW In the ff directory that you created in the previous section, type
the following:

git checkout master
git merge new_feature

This performs the fast-forward merge. You don’t have to do anything special
to invoke this. You’ll now perform the same checks from the previous TRY IT
NOW section. Type the following:

git log --graph --decorate --pretty=oneline --all --abbrev-commit

Also, open gitk in this repository. It
should look like figure 10.25.

Figure 10.25 Branches now merged

The merge command produces output like the following listing.

Updating 9d7b1b8..3e7c402
Fast-forward
 bar | 0
 foo | 0
 2 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 bar
 create mode 100644 foo

Listing 10.12 git merge output (from a fast-forward)

Figure 10.24 The result of the TRY IT
NOW section, in gitk

SHA1 IDs of our branchesb

157Lab
In listing 10.12, b shows the SHA1 IDs of our two branches. 9d7b1b8 is the SHA1 ID of
master, and 3e7c402 is the SHA1 ID of new_feature.

 Once Git detects that the branch being merged is a direct descendant of the cur-
rent branch, it moves the local branch (master) up to the remote branch
(new_feature). This is what is meant by fast-forward. Take a look at figure 10.26. Our
repo before the merge has the branches at two locations, but after the merge (desig-
nated by the arrow), master is now at the same place as the new_feature branch. Mas-
ter was fast-forwarded.

One thing to point out from figure 10.26 is that after git merge, the new_feature
branch isn’t deleted. This branch remains in the repository. You can add and commit
files to new_feature, causing master and new_feature to diverge again.

10.5 Lab
Git forces you to do more merges by making it easy for you to create branches. The
key thing to remember is that merges bring into the current branch (the HEAD)
changes from another branch. Complete the following questions and tasks:

1 Read the HOW TO RESOLVE CONFLICTS section of the git merge command.
2 Create a branch from master and then try to merge master into it. What happens?

git checkout master
git merge new_feature

…

master

new_feature

…

new_feature

master

Figure 10.26 A fast-forward merge

158 CHAPTER 10 Merging branches
3 In section 10.2.2, you typed git diff master...bugfix before performing a
merge. What happens if you type it now? Is there another word you can substi-
tute for either master or bugfix? What happens to the diff if you try a different
order?

4 Delete the mergesample directory. Then re-create it via the
make_merge_repos.sh script. Add a new file in the bugfix branch. What is the
output of git diff --name-status master...bugfix?

5 The fast-forward merge from section 10.4 doesn’t produce a commit after the
merge is completed. Look up the switch to git merge to add a commit even
though it’s a fast-forward merge, and retry the TRY IT NOW using this switch.

10.6 Further exploration
Merging branches is a deep computer problem. Git’s underlying architecture allows it
to calculate both clean and conflicted merges quickly. Git has plenty of tooling, con-
figuration options, and controls that facilitate its handling of merges.

10.6.1 Calculating the base of a merge with git merge-base

One of the key steps in performing a merge is the calculation of the common ances-
tor. This base is displayed when you use the mergetool command. Git has a command-
line tool that determines the commit of this base: git merge-base. Reset the mergesa-
mple directory (as you did in step 4 of the lab), and use git merge-base to display the
SHA1 ID of the base between master and bugfix.

10.6.2 Changing how conflicts are displayed (merge.conflictstyle)

Git has a configuration setting that subtly changes the way conflicting hunks are dis-
played in a file. Look at merge.conflictstyle in the git merge documentation. Enable
this configuration (using git config) and examine how the conflicted hunk is pre-
sented differently when you do the merge of master and bugfix from section 10.4.

10.6.3 Performing octopus merges

An octopus merge is a merge that consists of more than two parents. All of the merges
you’ve considered in this chapter have two parents: the master branch, and the
branch that you’re merging into master.

 Git has the ability to merge multiple branches into the branch you’re working on
(the HEAD). Project maintainers may use this to bring in the work of multiple
branches into the current branch. To see this for yourself, reset the mergesample
directory (as you did in step 4 of the lab), and create another branch. Add a file in
that branch, and commit it. Now check out the master branch, and try to merge both
the bugfix branch and this new branch that you created.

159Commands in this chapter
10.7 Commands in this chapter

Table 10.1 Commands used in this chapter

Command Description

git diff BRANCH1...BRANCH2 Indicate the difference between BRANCH1 and BRANCH2
relative to when they first became different.

git diff --name-status
BRANCH1...BRANCH2

Summarize the difference between BRANCH1 and
BRANCH2, by listing each file and its status.

git merge BRANCH2 Merge BRANCH2 into the current branch that you’re on.

git log -1 A shorthand for git log -n 1 (show only the most
recent commit).

git mergetool Open a tool to help perform a merge between two con-
flicted branches.

git merge --abort Abandon a merge between two conflicted branches.

git merge-base BRANCH1 BRANCH2 Show the base commit between BRANCH1 and BRANCH2.

Cloning
Cloning, the act of making a physical copy of a Git repository, is the first step in col-
laborating with others. You’ll be covering collaboration over this and the next three
chapters. When you clone a repository, you make an exact replica of that reposi-
tory. The clone has a special reference to the original repository. This reference lets
your clone push (send) and pull (receive) changes to and from the original reposi-
tory. You’ll study this special reference (called a remote) in the next chapter, and
then read about push and pull in chapters 13 and 14.

 In this chapter, you’ll make a copy of your repository by using git clone. You’ll
examine your clone and figure out how to confirm that it’s an exact copy of the
original, where it stores your branches, and how it knows about the original reposi-
tory. All this will help you become oriented after you run git clone on an existing
repository. Finally, you’ll cover a special type of clone called the bare directory that
lets you set up collaboration, as in figure 11.1. This is a technique that this book
uses to teach collaboration on a single machine, and it’s the basis for server-based
Git systems like GitHub.

 It won’t take you long to learn these operations, which are the foundation of Git
collaboration.

11.1 Cloning: making copies locally
What if you wanted someone else to work on your math program, the one you’ve
been developing the past few chapters? You have two options for sharing your
repository. In the first option, you can make a copy of your entire working directory
by using the standard operating system Copy command. You can then give it to any-
one you want. That person will have an exact duplicate of your repository.
160

161Cloning: making copies locally
The second option is to make a special repository that someone else can clone from.
That person would use the git clone command to make a copy of your repository.
This second option differs from the first in an important way: the copy created with
git clone is linked to the original and can send and receive changes back to the orig-
inal. No such capability is available in the first option.

 This capability is so important that git clone is the universally accepted mecha-
nism to make a copy of a Git repository. Another key advantage in using git clone is
that you can clone over the Internet, something you can’t do with the first option.

11.1.1 Using git clone

The git clone command copies a Git repos-
itory from a source location to a local direc-
tory on your machine. It also sets up the
special linking between the clone and the
source repository, which you’ll fully explore
in the next chapter. The syntax of the git
clone command is shown in figure 11.2.

 Only two arguments are needed: the
source repository and the directory to copy it
into. If you omit the name of destination
directory, git clone will make one up based on the source repository. The destina-
tion directory is also local to your machine.

Git repo Git repoGit repo

Git repo

Figure 11.1 A set of repositories collaborating with one another

Command Directory to
clone into

URL or local directory
of repo to copy from

git clone source destination_dir

Figure 11.2 The form of the git clone
command

162 CHAPTER 11 Cloning
 Reading the git clone documentation makes you realize that the source can be
local to your machine, or a repository that is at another remote location (such as
GitHub or Bitbucket). You’ll practice on remote locations in chapter 18, but in this
chapter you’ll consider the local case.

TRY IT NOW In this exercise, you’ll make two clones, one using the command-
line technique, and the second using Git GUI.

First, you’ll make a clone using the command line:

cd $HOME/math
git checkout master
cd $HOME
git clone math math.clone1

Note that you check out the master branch so it’s the active branch in this
repository. After you type the preceding git clone command, you’ll have a
clone of math in the directory math.clone1.

Now you’ll make a clone using Git GUI. First, start Git GUI via the menu or by
typing the following:

git gui

Click the Clone Existing Repository option. In the window that appears, click
the Browse button next to the Source Location field. In the file browser that
appears, select the math repository directory. Then click the Browse button
next to the Target Directory field, and enter the directory corresponding to
$HOME/math.clone2 (see figure 11.3). Remember, the target directory
doesn’t exist yet, so you’ll have to type it out. If you see a Clone Type prompt,
select Standard.

At this point, you have two copies of the math repository. The first one is math.clone1,
which you created with the git clone command, and the second one is math.clone2,
which you created via the Git GUI’s Clone Existing Repository feature.

Figure 11.3 Cloning via Git GUI

163Cloning: making copies locally
You can visit either of these repositories, and confirm that they contain the current
history (by typing git log --oneline --all). Each of these repositories is linked
back to the original repository, and you can begin to see that link by examining how
your new repositories handle branches.

11.1.2 Viewing branches in your clone

In this section, you’ll use the git branch command in your clones to see the link back
to the original repository. Remember that the original math repository contains three
branches: master, new_feature, and another_fix_branch. Let’s confirm this.

TRY IT NOW To confirm the branches that are in the original math repository,
type the following:

cd $HOME/math
git branch

The git branch command should show the three branches. The output
should look like the following listing.

 another_fix_branch
* master
 new_feature

You could also see the branches by
looking at gitk, as shown in figure 11.4.
(You should have at least the three
listed here, but don’t worry if you see
more.)

Figure 11.4 The branches
of the math repository

Recall that to get the listing of all the
branches, your gitk view must be
edited to show All (Local) Branches
(see section 9.2.1). To simplify this dis-
play, you can also edit the gitk view to
use a simple history (under Miscella-
neous options in the gitk view configu-
ration). The gitk window looks like
figure 11.5.

Listing 11.1 git branch output

Figure 11.5 The gitk output with
simple history

164 CHAPTER 11 Cloning
Knowing the branches available in a repository is important. Here’s the com-
mand-line equivalent to get a simplified list of branches, as in figure 11.5:

git log --simplify-by-decoration --decorate --all --oneline

This displays output like the following listing. (Again, don’t be worried if your
listing is different. You should, however, see the master, new_feature, and
another_fix_branch branches.)

2f84c2a (master) A small update to readme.
835ad57 (new_feature) Starting a second new file
547a17b (HEAD, another_fix_branch) Renaming c and d.
1c18222 (tag: four_files_galore) Adding four empty files.
0231899 This is the first commit.

This git log output contains more information than the git branch output. It shows
the SHA1 ID and the first part of the commit message for each branch.

 A repository contains branches, so figure 11.6 is another helpful way to think
about a Git repository and its branches. Your math repository contains three
branches.

Now that you’ve confirmed the branches in the original repository, let’s see how these
branches appear in the clone.

TRY IT NOW Go into the cloned directory and list the branches:

cd $HOME/math.clone1
git branch

You’ll see just one branch (depending on which branch was active in the
math directory).

When you clone a repository, the only branch that appears in the clone is the active
branch (the one HEAD points to) from the original repository. In this case, it should

Listing 11.2 git log listing to show branches

math

master

new_feature another_fix_branch

Figure 11.6 The math repository and its branches

165Cloning: making copies locally
be master. In figure 11.7, I placed HEAD next to master in the original math reposi-
tory. Your clone in math.clone1 has only this one branch, and the HEAD of
math.clone1 points to it.

 Where did the other two branches go? When you make a clone, only the active
branch (the one that HEAD points to in the original repository) is checked out. To see
the other branches in your clone, you must use the git branch command’s --all
switch.

TRY IT NOW To list all the branches in your clone’s repository, use the git
branch’s --all switch:

cd $HOME/math.clone1
git branch --all

This produces output like the following listing.

* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/another_fix_branch
 remotes/origin/master
 remotes/origin/new_feature

Listing 11.3 shows that three branches b are available on the remote, including
another_fix_branch and new_feature, but they have the string remotes/origin/ pre-
pended to their names. This indicates that these branches are tracked from the
remote that is named origin. The remote is the link from the clone to the original
repository. The output b reads remotes because Git allows you to have multiple
remotes. You’ll study remotes more closely in the next chapter. Figure 11.8 illustrates
these new terms.

 In figure 11.8, the original repository (math) is labeled a remote that is named ori-
gin. Think of remote as an address for another Git repository. When you perform a

Listing 11.3 Annotated git branch --all output

math.clone1

HEAD
master

math

HEAD
master

new_feature another_fix_branch

Figure 11.7 The clone of the math repository has only one branch checked out.

Available branches
on the remote

b

166 CHAPTER 11 Cloning
clone of this repository to the directory math.clone1, Git checks out only the master
branch in the math.clone1 directory, but because the clone copies in the entire repos-
itory, it can record, or track, the other branches from the original repository.

 The dashed lines in figure 11.8 indicate these remote-tracking branches. Their
complicated names (remotes/origin/new_feature and remotes/origin/another_fix
_branch) are another indication that these branches also exist on the remote that is
named origin. In the next section, you’ll learn to how access these branches in your
cloned repository.

11.1.3 Checking out branches

Remember: git clone always copies the entire repository. As a result, your clone has
the files and the history it needs to re-create any branch that existed in the original
repository. How? Using git checkout.

TRY IT NOW Let’s check out another_fix_branch, which existed in the origi-
nal repository. In the math.clone1 directory, type the following:

git checkout another_fix_branch

This should produce the output in the following listing.

Branch another_fix_branch set up to track remote branch another_fix_branch
➥ from origin.
Switched to a new branch 'another_fix_branch'

Now the situation looks like figure 11.9.
 Now there are two references to another_fix_branch labeled another in figure 11.9:

the local branch named another_fix_branch, and the original remote-tracking
branch. The line is solid, indicating that you’ve checked it out, and HEAD is next to
another_fix_branch.

Listing 11.4 Checking out a tracking branch

math.clone1remotes/origin/math

HEAD
master

new_feature another_fix_branch

HEAD
master

remotes/origin/
new_feature

remotes/origin/
another_fix_branch

Figure 11.8 Remotes, origins, and tracking branches

167Working with the bare directory
The command git checkout another_fix_branch is a shortcut for this longer form
of git checkout:

git checkout -b another_fix_branch remotes/origin/another_fix_branch

You saw this command in section 8.3.2. The local branch named another_fix_branch
set its starting point as the remote-tracking branch named remotes/origin/another
_fix_branch.

 It’s important to understand this section before proceeding to the next chapter. If
you use your imagination, you might be able to see how the origin might exist on
another server, and further, you might be able to envision how multiple people might
access a common remote location. As I said: cloning is an essential step to collaborating.

11.2 Working with the bare directory
Because we’re now talking
about cloning the repository,
it’s a good time to more thor-
oughly discuss what the Git
repository is and where it
exists.

 In chapter 4, you spent time
with the git init command.
This command initializes a Git
repository in whatever direc-
tory you’re in. Figure 11.10
shows what happens.

Figure 11.10 git init creates
the repository.

math.clone1

remotes/origin/new

another_fix branch
HEAD

1.

remotes/origin/
another_fix_branch

2.

remotes/origin/math

new_feature another_fix_branch

HEAD
master master

Figure 11.9 Checking out a remote-tracking branch

% mkdir buildtools

buildtools

% cd buildtools
% git init

buildtools

Git repo

168 CHAPTER 11 Cloning
In this example, the Git repository exists within the buildtools directory. Recall that
the buildtools directory is also known as your working directory. The repository is
another directory containing files and other subdirectories, hidden inside your work-
ing directory. All Git commands use and manipulate the files and directories within
this hidden directory. The entire repository is completely contained within this direc-
tory, even if you have other subdirectories within your working directory.

11.2.1 Examining Git repository files

In general, your working directory is where you can run Git commands. The reposi-
tory is in the hidden folder previously described. It’s easy to think of your working
directory as the repository, and for the most part, no harm comes from mixing up the
two.

TRY IT NOW In the math.clone1 directory, let’s examine the repository files by
using the ls command. Type the following:

ls -a
cd .git
ls -F

The ls -a command shows a directory listing with all hidden directories
revealed. The ls -F command shows a directory listing with all the folders
marked with a slash (/). The preceding commands should give you the fol-
lowing output.

$ ls -a
./ ../ .git/ another_rename math.sh readme.txt renamed_file

$ cd .git

$ ls -F
HEAD description index logs/ packed-refs
config hooks/ info/ objects/ refs/

You need to know only that this .git directory exists, and that it’s called by a particular
name: the bare directory. When you clone repositories, this bare directory is manipu-
lated and copied around.

 The bare directory’s contents include the objects that you’re tracking and refer-
ences (for branches, which you already learned about in chapter 9). It’s not important
to know about these internals, but they’re described in the Git help page for
gitrepository-layout.

11.2.2 Creating bare directories with git clone

This bare directory itself is important because when you later push commits that you
make in your repository back to the original repository (which you’ll do in chapter

Listing 11.5 Getting to and examining the repository directory

169Working with the bare directory
13), the original repository should ideally also be a bare directory. The bare directory
is therefore crucial for collaboration!

 There’s a way to create a Git repository that consists of just this bare directory: git
clone --bare.

TRY IT NOW You’ll create a bare Git directory from the math repository:

cd $HOME
git clone --bare math math.git
cd math.git
ls -F

The -F switch to ls reveals the directories. The last command gives you a list-
ing like the following.

$ ls -F
HEAD config description hooks/ info/ objects/ packed-refs refs/

Notice that it’s mostly the same as listing 11.5. (The only exception is that the original
repository has a logs directory, indicating that it’s active.) Figure 11.11 illustrates what
you’ve just done. You start at the top and then run the git clone command. The
arrow shows the result.

 You started with one repository and then made a clone of that repository into
another directory named math.git. Because you used the --bare switch, the math.git

Listing 11.6 math.git directory contents

math

git clone --bare math math.git

Git repo

math.gitmath

Git repo Git repo

Figure 11.11 git clone --bare

170 CHAPTER 11 Cloning
directory is known as the bare directory. In figure 11.11, the repo fills up the entire
math.git directory, which is how this book depicts a bare directory. This drawing indi-
cates that there’s no room for a working directory in the bare directory.

 The math.git directory is just the repository files (the bare directory). You can’t
perform any Git operations within the math.git directory, because there’s no working
directory. But you can clone this math.git directory and push commits to it.

11.2.3 Cloning from bare directories

Another important aspect of a bare directory is that it has no reference to the original
repository. Unlike a clone, which has a reference to its originating repository, the bare
directory is a completely standalone repository. Because of this, and the fact that it has
no working directory, bare directories are often the official copy of a repository. The
only way to update it is to push to it, and the only way to retrieve its contents is to
clone, or pull, from it.

TRY IT NOW Let’s make a clone from the repository (bare) directory:

cd $HOME
git clone math.git math.clone3

To confirm that you have a working repository, type the following:

cd math.clone3
git log --oneline --all

It should give you a listing like math.clone1.

Figure 11.12 illustrates what you’ve done with the last two TRY IT NOWs.
 You’ve created two new directories, each a copy of the math repository. One of the

copies is a bare repository. (Remember in this book, bare directories are drawn in fig-
ures as a directory containing only the repository.)

 You’ve run git clone to make copies of your math repository. In three of the
directories (math, math.clone2, and math.clone3), you could perform Git work such
as committing new changes, and making and merging new branches. One of the
directories (math.git) is just the repository, and, because it has no working directory, it
might be considered the official version of your code.

 If our environment supported sharing directories and multiple users, you might
decide to declare the math.git repository as the official version, and have people clone
from and push commits to it. (By now you might be wondering when you’ll push
across the Internet to another Git hosting site like GitHub. You’ll get to that in chap-
ters 13 and 18.)

 In figure 11.13, you’ve made a clone of this repository, using git clone math.git.
(You use the convention your/math to represent your directory, and the directory
math within it.) Notice again that the your/math is a directory that contains the work-
ing directory and the repository.

171Working with the bare directory
math

git clone --bare math math.git

git clone math.git math.clone3

Git repo

math.gitmath

Git repo Git repo

math.gitmath

Git repo

math.clone3

Git repoGit repo

Figure 11.12 Making copies with git clone

math.git

Git repo

your/math

Git repo
Figure 11.13 Making an initial clone
in your directory from math.git

172 CHAPTER 11 Cloning
math.git

Git repo

your/math

Git repo

bob/math

Git repo

If you had a colleague named Bob, he might make a
clone of this repository in his directory, again using
git clone math.git. He makes this math clone in
his directory (bob/math), as in figure 11.14.

Figure 11.14 Bob
creating a clone of

math.git in his directory

Notice how math.git is acting as a centralized copy. But because Git supports cloning
from any source, Bob could just as easily clone from the your/math directory, if Bob
could access it.

 To extend the example once more, imagine a colleague named Carol. She joins
your company and has to access the repository. You tell her that from her carol direc-
tory, she can type git clone math.git. That produces a carol/math directory (see
figure 11.15). You now have three copies of the math.git repository!

math.git

Git repo

your/math

Git repo

carol/math

Git repo

bob/math

Git repo

Figure 11.15 Carol joins the team and makes her own clone.

173Listing files in the repo by using git ls-tree
I’ll leave it as an exercise for you to create this scenario on your PC. Spend time think-
ing about this situation, and how the bare directory serves as an official version, but
only because as an organization we decided that to be the case. Nothing stops Carol
from cloning Bob’s copy of the repository. And nothing stops us from deleting
math.git and declaring bob/math to be the new official version. This is an important
feature of a distributed version-control system.

 Making a bare directory on your local computer is a way for you to learn about col-
laboration without resorting to using an external server. Bare repositories are what are
hosted on GitHub or any Git server, and over the course of these chapters on collabo-
ration, you’ll treat the math.git bare directory as a simple, practice GitHub.

11.3 Listing files in the repo by using git ls-tree
In the previous sections, you convinced yourself that you had the entire repository by
using the command git log --oneline --all. But this shows you only that you have
the entire history (the entire list of commits). Can you convince yourself that you have
all the files? Yes, you can. The Git command git ls-tree lists all the files in a tree.

 Remember, every commit in Git contains a tree of files. You saw this in the gitk
tool, and how selecting a commit showed its corresponding tree. In figure 11.16, if
you highlight the commit Adding four empty files, gitk shows its SHA1 ID to be
bcaa6e (see the arrow in figure 11.16).

 This pane contains the files a, b, c, d, and math.sh (see the highlighted box in
figure 11.16).

Figure 11.16 Each commit contains a tree of files.

174 CHAPTER 11 Cloning
TRY IT NOW You’ll now go to a math.clone3 directory and try the git ls-
tree command. This command takes one argument: a SHA1 ID (a commit
ID), or a branch or tag. Note that these point to commits. Type the following:

cd $HOME/math.clone3
git checkout master
git ls-tree HEAD

This should give you the following output.

100644 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 another_rename
100644 blob 41c57fac1f6c7eab44a0c2c181f934eb3b0040e0 math.sh
100644 blob 26f994161380366e6fed57f80203c0af2dfb9fe8 readme.txt
100644 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 renamed_file

This shows you the files at the HEAD, also known as the current branch. You
can view the files that have been tagged by the git tag command (from sec-
tion 8.4). You made a four_files_galore tag. To see its files, type the following:

git ls-tree four_files_galore

This should display the output in the following listing.

100644 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 a
100644 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 b
100644 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 c
100644 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 d
100644 blob 5bb7f6370f458be09d74514bab11178bf39fe4d8 math.sh

The git ls-tree command is a helpful way to get the list of files for any part of your
Git history. When you work with clones, using git ls-tree can help you confirm that
you have all the files from the source repository.

11.4 Lab
You’ve made a good number of clones. These short exercises and questions will check
your understanding of the cloning process.

1 In section 11.1, you made a distinction between a repository made by a simple
Copy command and a repository made by git clone. Type the following com-
mands to make a copy of your math repository, using the command-line copy
command:

cd $HOME
cp -r math math.copy

Now type git log --oneline --all in both the math and the math.copy direc-
tories. You should confirm that these yield the same output. Compare that this

Listing 11.7 git ls-tree HEAD

Listing 11.8 git ls-tree four_files_galore output

175Further exploration
copy is different from the clone by using git branch --all. The copy has no
remote-tracking branches.

2 Make a clone with the current active branch in the original repository set to
something else besides master.
Go to the math directory and use git checkout fixing_readme. Now make a
clone of the math repository. Confirm that the initial branch of the new clone is
the fixing_readme branch.

3 What happens when you try git checkout on one of the remote-tracking
branches? Are you able to?
Remember that the remote-tracking branches are the ones that have the word
remotes in the name when you do a git branch --all.

4 Use the longer form of git checkout (discussed in section 11.1.3) to make a
whole new local branch with a different name from the remote-tracking
branch.

5 Is there a limit to the number of branches that use the starting point?
6 Use the --origin switch of the git clone command to specify another name

instead of origin. Confirm that the git branch --all command in your clone
doesn’t contain the string origin anymore.
The word origin can be replaced by any name you want.

11.5 Further exploration
With git clone, you have the ability to clone only the most recent parts of a reposi-
tory. To do this, you must use the --depth switch to the git clone command. For this
section, use the --depth switch with varying arguments (--depth 1, then --depth 2,
and so on), and convince yourself that you’re getting a smaller repository.

 To use the --depth switch, you must use a more formal manner of specifying the
local directory. Your command looked like this: git clone math math.clone1. In this
command, math references the source, the local directory math. But if you pass in the
--depth switch to this command, you’ll encounter this error: --depth is ignored in
local clones; use file:// instead.

 To get past this error, specify the source with the file:// URL. Learn about this syn-
tax in the GIT URLs section of the git clone documentation. For my machine, the
math directory is specified with file:///home/rick/math.

 Another git clone switch to
explore is --no-single-branch.
Using this switch combined with
--depth 1 enables you to pro-
duce a repository that consists
of only one commit for all the
branches in your repository. In
gitk, this repository looks like
figure 11.17.

Figure 11.17 gitk showing a clone of math with --depth 1
and --no-single-branch passed to git clone

176 CHAPTER 11 Cloning
11.6 Commands in this chapter

Table 11.1 Commands used in this chapter

Command Description

git clone source destination_dir Clone the Git repository at source to the
destination_dir.

git log --oneline --all Display all commit log entries from all branches.
(Normally, git log displays only entries from the
current branch.)

git log --simplify-by-decoration
--decorate --all --oneline

Display the history in a simplified form.

git branch --all Show remote-tracking branches in addition to local
branches.

git clone --bare source
destination_dir

Clone the bare directory of the source repository
into the destination_dir. By convention,
destination_dir should end with .git.

git ls-tree HEAD Display all the files for HEAD (the current branch).

Collaborating
with remotes
This is the second chapter (of four) on Git collaboration. In chapter 11, you
learned about cloning. In this one, you’ll learn about remotes and the command
that manipulates them, git remote. Each clone that you create contains a refer-
ence to where it came from. This reference is a remote. Remotes serve as pointers
back to a location, either on your computer or on the Internet. It’s the basis for col-
laboration, along with cloning.

 You’ll learn how git remote allows you to examine and update the remote.
You’ll also learn about the git ls-remote command, which lets you know if your
local repository and your original (remote) repository are out of sync. This chapter
will help you understand Git’s collaboration model, and will make the next two
chapters on git push and git pull clearer.

12.1 Remotes are distant places
In figure 12.1, you have three repositories: math.clone, math.bob, and math.carol.
All of these repositories are created from the math.git repository, which is a bare
directory.

 In your collection of repositories, each clone in the second row (math.clone,
math.bob, and math.carol) is created by git clone, using math.git as the source.
Each clone contains a reference to math.git. This reference, called a remote, indi-
cates the location of the original repository.

TRY IT NOW If you performed all the TRY IT NOW sections in the preceding
chapter, you already have parts of this exercise completed. This section
repeats all the steps, so you might be able to skip some. The only prerequi-
site is to have a known math repository.
177

178 CHAPTER 12 Collaborating with remotes
If you don’t have a working math repository, download the LearnGitMoL
_SourceCode.zip file from the book’s website, and obtain the make_math
_repo.sh script from it (this is the script from the chapter 9 exercises). Run
that script, using the following:

cd $HOME
bash make_math_repo.sh

This makes a math directory containing your starting point. As described in
chapter 9, the script leaves the repo in the state described at the end of sec-
tion 9.4.2. To get out of that state, perform the following steps:

cd math
git checkout -f master

This changes the branch to master, without saving any of the edits. Now to
make the clone, type this:

cd ..
git clone --bare math math.git

If you get an error saying that math.git already exists, you already have the
math.git repository. The preceding git clone command makes a bare repos-
itory that will serve as the source of your future collaboration (cloning, push-
ing, pulling).

To make the rest of the clones in your collection, using this bare repository as
the source URL, type the following:

git clone math.git math.clone
git clone math.git math.bob
git clone math.git math.carol

This makes the three clones that are below math.git in figure 12.1.

math.git/

Git repo

math.clone/

Git repo

math.carol/

Git repo

math.bob/

Git repo

Figure 12.1 A small collection of repositories

179Remotes are distant places
Collaboration on a software project using Git’s distributed architecture starts with git
clone. As you learned in the preceding chapter, when you make a clone, you make a
copy of a repository. Remember, each clone contains a reference to where it came
from, and this reference is a remote.

12.1.1 Analyzing a clone’s origin (git remote)

Each clone that you created in the previous section knows where it came from. It
knows its origin, thanks to the remote. You can confirm this by using the git remote
command. This command provides multiple ways to manipulate references to a
clone’s original repository. The git remote command has many forms, and you’ll
now try out a few.

TRY IT NOW Let’s go into your math.clone repository and try git remote.
Type the following:

cd $HOME
cd math.clone
git remote

The simplest form of the git remote command shows only the name of the
remote. Each remote has a name, and the preceding git remote command
shows that you have one remote, called origin. Now type this:

git remote -v show

The git remote -v show command shows the remote URL. Running these two
git remote commands should produce the following output.

$ git remote
origin

$ git remote -v show
origin c:/Users/Rick/Documents/gitbook/math.git (fetch)
origin c:/Users/Rick/Documents/gitbook/math.git (push)

The last output (from git remote -v show) shows where the origin exists for the
fetch and push operations. Fetch is an operation that downloads (receives) files from
a remote, and for purposes of the git remote command, you can replace fetch with
pull. Push is an operation that uploads (sends) files to a remote. In both cases, your
remote is a separate directory on your local machine, but soon in this chapter, it’ll be
a server on the Internet somewhere. I have more to say about push and fetch in the
following chapters.

 It’s important to note that the source URL that you gave to the git clone com-
mand is the URL that the remote is set to. Git expands math.git to the full path to the
math.git directory.

Listing 12.1 git remote output

180 CHAPTER 12 Collaborating with remotes
 Figure 12.2 depicts that origin is the name (local
to your repository) of the remote that points back to
the math.git directory/repository. (The arrow could
be thought of as the remote—a reference, or
pointer, back to the source.)

 To be absolutely precise, git clone creates
remote-tracking branches in the new repository.
These branches, discussed in the preceding chapter,
are given a distinct name to indicate that they are
tracking branches that originally existed in the
source repository.

 In figure 12.3, the math.clone repository has
three remote-tracking branches:

■ remotes/origin/master
■ remotes/origin/new_feature
■ remotes/origin/another_fix_branch

These three branches existed in the original reposi-
tory, and these remote-tracking branches serve as
bookmarks to those branches in your local repository.

 When you cloned a repository, you brought over every commit and every directory
and file that make up those commits. The remote-tracking branches, like regular
branches, point to the last commit of that line of development. Because every commit
points to its parent, you can see how you have the entire history.

12.1.2 Renaming a remote

The word origin is the name that a remote is given by default by the git clone com-
mand. But you can rename this string if you want to.

math.git/

Git repo

math.clone/

Git repo

origin

Figure 12.2 origin is a name
that exists locally.

math.clone

remotes/origin/master

origin remotes/origin/
new_feature

remotes/origin/
another_fix_branch

math.git

HEAD
master

new_feature another_fix_branch

Figure 12.3 Remote-tracking branches

181Remotes are distant places
TRY IT NOW Make sure you are in the math.clone directory and type the fol-
lowing:

git branch --all
git remote -v show

This should give you the following output.

$ git branch --all
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/another_fix_branch
 remotes/origin/master
 remotes/origin/new_feature

$ git remote -v show
origin c:/Users/Rick/Documents/gitbook/math.git (fetch)
origin c:/Users/Rick/Documents/gitbook/math.git (push)

Now use git remote to rename origin:

git remote rename origin beginning

This variation of git remote renames the remote from origin to beginning.
Notice that this is all happening locally. Now confirm that the rename took
place by typing the following:

git branch --all
git remote -v show

This should give you the following output.

$ git branch --all
* master
 remotes/beginning/HEAD -> beginning/master
 remotes/beginning/another_fix_branch
 remotes/beginning/master
 remotes/beginning/new_feature

$ git remote -v show
beginning c:/Users/Rick/Documents/gitbook/math.git (fetch)
beginning c:/Users/Rick/Documents/gitbook/math.git (push)

In this example, origin is just a name for a remote. It can be renamed, as you see here.
The only person affected by this change is you. Figure 12.4 depicts your situation.

Listing 12.2 git branch --all and git remote output

Listing 12.3 Looking at the branches and remotes

182 CHAPTER 12 Collaborating with remotes
 Compare figure 12.4 with figure 12.2, and listing
12.3 with listing 12.2. Everything is the same, except
for the name of your remote.

12.1.3 Adding a remote

You can even add a remote. That’s right. Even after
you make a clone, you can add another remote,
which represents another repository that you want to
track. If you collaborate on a repository where con-
tributors are actively developing on their own reposi-
tories, it may be useful to add their repositories, in
addition to the remote that was created when you
first did the clone. Let’s consider Bob’s and Carol’s
repositories. They look like figure 12.5.

 Notice that math.bob and math.carol both have a
remote named origin, pointing back to math.git. If
Carol and Bob wanted to collaborate, Carol could
create a remote that points to Bob’s repository (and
vice versa). Let’s try this.

TRY IT NOW In the math.carol repository, to point to Bob’s repo, you use the
git remote add command. Type the following:

cd $HOME/math.carol
git remote add bob ../math.bob

math.git/

Git repo

math.clone/

Git repo

beginning

Figure 12.4 Changing the name
of the remote

math.git/

Git repo

math.carol/

Git repo

origin

math.bob/

Git repo

origin

Figure 12.5 Bob and Carol’s repositories, both cloned from math.git

183Remotes are distant places
This creates a new remote called bob. You can view it by typing this:

git remote
git remote -v show

The last two git remote commands produce the output in the following
listing.

$ git remote
bob
origin

$ git remote -v show
bob ../math.bob (fetch)
bob ../math.bob (push)
origin c:/Users/Rick/Documents/gitbook/math.clone (fetch)
origin c:/Users/Rick/Documents/gitbook/math.clone (push)

After the preceding TRY IT NOW, your environment looks like figure 12.6.
 By now, I hope it’s clear that you can make a remote point to any repository. But

what’s the point of creating these remotes? The point of remotes is to collaborate. The
remotes are the other repositories with which you can collaborate.

 Because Carol’s repository is cloned from math.git, she can bring in any changes
from that repository into her repository. Because Carol added a remote to Bob’s
repository, she can also bring in any changes from Bob’s repo into hers. And she

Listing 12.4 Output from git remote commands

math.git/

Git repo

math.carol/

Git repo

origin

bob

math.bob/

Git repo

origin

Figure 12.6 Carol has a remote named bob that points to Bob’s repository.

184 CHAPTER 12 Collaborating with remotes
could go the other way too: she can push any changes she makes on her repository to
either Bob or the official repository at math.git.

 In the real world, both Carol and Bob would most likely just point to math.git, and
math.git would be stored on GitHub, which you’ll read about in chapter 18. But Git
supports this kind of cross-repository sharing, and the git remote command estab-
lishes this.

12.2 Interrogating a remote
As you saw from the git remote show command, Git enables a repository to push to,
and fetch from, another repository. Listing 12.4 shows the output of git remote show
-v from the math.carol repository. For each repo, she can push or fetch. You can see
this in figure 12.7.

 In the next few chapters, you’ll be pushing and fetching (a.k.a. pulling), but let’s
take the baby step of interrogating (querying) the remote repository by exercising the
git ls-remote command. This command returns a list of the SHA1 IDs of each
branch and tag (each reference) on the remote repository.

TRY IT NOW In the math.carol directory, type the following:

git ls-remote
git ls-remote origin
git ls-remote bob

The git ls-remote command can be typed by itself or with an argument.
The argument must be a remote that is the name of the original repository

math.carol/

Git repo
bob

fetch

fetch

push

push

math.bob/

Git repo

math.git/

Git repo

origin

Figure 12.7 From math.carol, she can fetch from or push to bob or origin.

185Interrogating a remote
(for example, origin) or the name of another remote that you added (for
example, bob). All three outputs should look like the following listing.

From c:/Users/Rick/Documents/gitbook/math.git
4465c540dc79718076bcf66951d27fb65152a895 HEAD
23d30770e5b8b0e42bc5927a0a348a6912963aff refs/heads/another_fix_branch
4465c540dc79718076bcf66951d27fb65152a895 refs/heads/master
dc6f60f417c011bafe6284d362a06e39f9f3cb69 refs/heads/new_feature
f4b5a261dfdcdc5d9081b2ecc252a62f198b01c3 refs/tags/four_files_galore
ef47d3fd293bc13321270e88af284f63d6f85f84 refs/tags/four_files_galore^{}

These are the SHA1 IDs of the references on the remote named origin. When
you cloned the repository, you also cloned these SHA1 IDs. You can compare
this to SHA1 IDs of the current local repo (math.carol) by typing the following:

git ls-remote .

In this command, the period (.) represents the current local repository. This
should give you the same listing!

Look at the first line of listing 12.5. This line shows which remote you’re connecting
to. The command doesn’t show the remote’s name, however. Instead, it shows the
remote path or URL. Notice that the second time you used git ls-remote, you speci-
fied the remote on the command line (git ls-remote origin). This makes it easier
to remember what remote you’re listing.

 After the first line, each line consists of a SHA1 ID and a reference name. The refer-
ences should be somewhat familiar: they’re the names of your branches (prefixed by
refs/heads) and the names of your one tag (prefixed by refs/tags).

 The SHA1 IDs should be familiar as well. They’re the SHA1 IDs of your own branches
and tags. You can see this by using git ls-remote. The period indicates the current
local repository. The SHA1 IDs are the same because math.carol is a clone of math.git!
Figure 12.8 illustrates your situation: two repositories, one a clone of the other.

Listing 12.5 git ls-remote output

math.carol/

Git repo

math.bob/

Git repo

4465c5 HEAD
4465c5 master
4465c5 remotes/origin/HEAD
23d307 remotes/origin/another_fix_branch
4465c5 remotes/origin/master
dc6f60 remotes/origin/new_feature
f4b5a2 tags/four_files_galore

4465c5 HEAD
4465c5 master
4465c5 remotes/origin/HEAD
23d307 remotes/origin/another_fix_branch
4465c5 remotes/origin/master
dc6f60 remotes/origin/new_feature
f4b5a2 tags/four_files_galore

Figure 12.8 Each repo has a list of references. Because these are clones, they’re exactly alike initially.

186 CHAPTER 12 Collaborating with remotes
Notice that each of the SHA1 IDs is the same. The other key thing to realize is that git
ls-remote makes a network connection to the remote repository, and displays its list
of references. Now, let’s make a change to the math.bob repository.

TRY IT NOW Type the following to commit a small change to the math.bob
repository:

cd $HOME/math.bob
echo "Small change to file" >> another_rename
git commit -a -m "Updating this file."

Now let’s visit the math.carol repository and interrogate the remotes:

cd $HOME/math.carol
git ls-remote
git ls-remote origin
git ls-remote bob
git ls-remote .

If you look at all four outputs, the one from git ls-remote bob is different
from all the others. The SHA1 ID of its HEAD is different!

The git ls-remote bob output should show the SHA1 ID of the latest commit that
you made to the math.bob repo. HEAD (and refs/heads/master) should now have this
new SHA1 ID. Let’s confirm this.

TRY IT NOW Let’s obtain the last commit to the math.bob repository (on its
current branch, which is master). Type the following to do this:

cd $HOME/math.bob
git branch
git log -1

Remember that git log -1 shows only one commit—the most recent one.
The listing should look similar to the following.

commit db106c748e5b6aa90cc63de3d25cb5dcbebbcfc6
Author: Rick Umali <rickumali@gmail.com>
Date: Sat Aug 9 19:59:46 2014 -0400

 Updating this file

(Don’t worry if your commit message is slightly different.)

Now go to the math.carol repository, and confirm that this SHA1 ID is associ-
ated with the HEAD from the git ls-remote bob output:

cd $HOME/math.carol
git ls-remote bob

That listing should be something like the following listing.

Listing 12.6 Committing a change in the math.bob directory

187Interrogating a remote
db106c748e5b6aa90cc63de3d25cb5dcbebbcfc6 HEAD
db106c748e5b6aa90cc63de3d25cb5dcbebbcfc6 refs/heads/master
4465c540dc79718076bcf66951d27fb65152a895 refs/remotes/origin/HEAD
23d30770e5b8b0e42bc5927a0a348a6912963aff refs/remotes/origin/another_fix_
branch
4465c540dc79718076bcf66951d27fb65152a895 refs/remotes/origin/master
dc6f60f417c011bafe6284d362a06e39f9f3cb69 refs/remotes/origin/new_feature
f4b5a261dfdcdc5d9081b2ecc252a62f198b01c3 refs/tags/four_files_galore
ef47d3fd293bc13321270e88af284f63d6f85f84 refs/tags/four_files_galore^{}

Notice how the HEAD (and refs/heads/master) is the same as the new commit.
Notice, too, that refs/remotes/origin/HEAD is the old commit. Why? You made a
change to the math.bob repository that you haven’t pushed to the math.git repository
(see figure 12.9). You’ll see how to push changes in the next chapter.

Figure 12.9 shows that math.bob’s master branch and its HEAD have changed. Let’s
make one more change to the math.bob repository: let’s add a branch to this repo.

TRY IT NOW To add a branch to the bob repository, type the following:

cd $HOME/math.bob
git checkout -b a_new_branch

As you may recall, this not only creates a new branch (a_new_branch), but
also checks out that branch (changing HEAD). Now confirm that git ls-
remote can see this new branch from math.carol. Type the following:

cd $HOME/math.carol
git ls-remote bob

The last output shows a new line for the new branch:

db106c748e5b6aa90cc63de3d25cb5dcbebbcfc6 refs/heads/a_new_branch

Listing 12.7 git ls-remote bob output

math.carol/

Git repo

math.bob/

Git repo

db106c HEAD
db106c master
4465c5 remotes/origin/HEAD
23d307 remotes/origin/another_fix_branch
4465c5 remotes/origin/master
dc6f60 remotes/origin/new_feature
f4b5a2 tags/four_files_galore

4465c5 HEAD
4465c5 master
4465c5 remotes/origin/HEAD
23d307 remotes/origin/another_fix_branch
4465c5 remotes/origin/master
dc6f60 remotes/origin/new_feature
f4b5a2 tags/four_files_galore

Figure 12.9 math.bob has a new commit. Its list of references is now different from math.carol.

188 CHAPTER 12 Collaborating with remotes
In figure 12.10, this new branch (a_new_branch) appears in the git ls-remote bob
output.

 You’re interrogating the remote and getting its up-to-date information. It’s impor-
tant to note again that no server is running to tell you that a new branch has been cre-
ated. Only when you ask the other repository do you find out that something has
changed.

 Interrogating a remote is the basis for the interactions you’ll look at in the upcom-
ing chapters. Please take the time to understand this section, as it’s the foundation for
the next two chapters!

12.3 Getting a clone from somewhere remote
Let’s now finally interact with a repository that is remote in the literal sense of the word:
a repository that exists on the Internet. You already did this at the end of chapter 2. In
that chapter, you went to a GitHub page, obtained its clone URL, and used that as the
source URL in the git clone command. This time, you’ll clone a known URL.

TRY IT NOW On the command line, you’re going to retrieve a version of the
math repository that I stored on GitHub. Type the following:

cd $HOME
git clone https://github.com/rickumali/math.git math.github

In this command, you use https://github.com/rickumali/math.git as the source URL.
Your destination URL is math.github. The output of this command should look like
the following listing.

Cloning into 'math.github'...
remote: Counting objects: 35, done.

Listing 12.8 git clone of the math repo from GitHub

math.carol/

Git repo

math.bob/

Git repo

db106c HEAD
db106c master
db106c a_new_branch
4465c5 remotes/origin/HEAD
23d307 remotes/origin/another_fix_branch
4465c5 remotes/origin/master
dc6f60 remotes/origin/new_feature
f4b5a2 tags/four_files_galore

4465c5 HEAD
4465c5 master
4465c5 remotes/origin/HEAD
23d307 remotes/origin/another_fix_branch
4465c5 remotes/origin/master
dc6f60 remotes/origin/new_feature
f4b5a2 tags/four_files_galore

Figure 12.10 math.bob has a new branch now. Notice this is missing from math.carol.

https://github.com/rickumali/math.git

189Lab
remote: Compressing objects: 100% (17/17), done.
remote: Total 35 (delta 7), reused 34 (delta 6)
Unpacking objects: 100% (35/35), done.
Checking connectivity... done.

The only difference between this git clone command and the other ones that you
typed earlier in this chapter is that this git clone specifies a source location that’s on
the Internet. Let’s examine the remote by using the git remote command.

TRY IT NOW Go into the math.github directory, and type this:

git remote –v show

This yields the following listing.

origin https://github.com/rickumali/math.git (fetch)
origin https://github.com/rickumali/math.git (push)

Compared to your earlier clones, this remote is a URL that’s not on your local
machine. It’s a true remote location, but observe that the only time it interacted with
GitHub was to download the repository to your directory. After the repository is down-
loaded, no further interaction occurs with the remote.

12.4 Lab
Remotes serve as pointers back to a location, either on your computer (as in our math
clone directories) or on the Internet (as in the previous section). Remotes are the
basis for collaboration, along with cloning.

12.4.1 Exploring your math.github clone

In the following steps, you’ll confirm that SHA1 IDs are constant between clones. This
is the basis for distributed version control.

1 In the math.github directory, type git log --oneline --decorate.
2 What is the SHA1 ID of the remote-tracking branch another_fix_branch?
3 Is there a tag or branch for the SHA1 ID ef47d3f?

One important aspect of this exercise is to recognize that the SHA1 IDs will
always be the same for a clone of this repository. Convince yourself of this by
creating a clone of this same repository on another computer.

4 Are the SHA1 IDs of math.github the same as math.bob or math.clone? Why not?

12.4.2 Making remotes manually

In the math.bob repository, create a remote named carol that points to the math.carol
repository. Now repeat the exercise of making a change in Carol’s repository, and use
git ls-remote to see the change.

Listing 12.9 git remote –v show output

190 CHAPTER 12 Collaborating with remotes
12.4.3 Using other git remote subcommands

In this chapter you used git remote to add, rename, and show remotes. The git
remote command can also delete remotes and update the URL of a remote. Explore
the remove and set-url subcommands by looking at the help for git remote. Exper-
iment with these commands on a clone of the math repository.

12.4.4 Creating clones with Git GUI

Create a clone by using Git GUI. When
you start Git GUI, you’ll be greeted with
a screen like figure 12.11.

 From here, click Clone Existing
Repository. Specify this GitHub URL:
https://github.com/rickumali/math.git.
Now specify a target directory. In figure
12.12, I specify the same target directory
as in the preceding TRY IT NOW. Will
that work?

 Confirm that the end result is the
same as performing a git clone on the
command line.

12.4.5 Accessing another remote URL

I’ve created the math repository on another code-sharing website called GitLab. Visit
the URL: https://gitlab.com/rickumali/math. Create a clone from this repository
(you’ll need to use the URL https://gitlab.com/rickumali/math.git as the source to
git clone). Are the SHA1 IDs the same?

12.5 Further exploration
On the command line, you run the git ls-remote command with environment vari-
ables that enable you to trace the network activity. On the command line in either the
math.github or any of the math clones, type GIT_TRACE_PACKET=1 git ls-remote.

Figure 12.11 The initial Git GUI screen

Figure 12.12 Obtaining a clone by using Git GUI

https://github.com/rickumali/math.git

191Commands in this chapter
 This should produce the following output.

packet: git< # service=git-upload-pack
packet: git< 0000
packet: git< 4465c540dc79718076bcf66951d27fb65152a895
➥ HEAD\0multi_ack thin-pack side-band side-band-64k ofs-delta
➥ shallow no-progress include-tag multi_ack_detailed
➥ no-done symref=HEAD:refs/heads/master agent=git/2.0.3
packet: git< 23d30770e5b8b0e42bc5927a0a348a6912963aff
➥ refs/heads/another_fix_branch
packet: git< 4465c540dc79718076bcf66951d27fb65152a895
➥ refs/heads/master
packet: git< dc6f60f417c011bafe6284d362a06e39f9f3cb69
➥ refs/heads/new_feature
packet: git< f4b5a261dfdcdc5d9081b2ecc252a62f198b01c3
➥ refs/tags/four_files_galore
packet: git< ef47d3fd293bc13321270e88af284f63d6f85f84
➥ refs/tags/four_files_galore^{}
packet: git< 0000
From https://github.com/rickumali/math.git
4465c540dc79718076bcf66951d27fb65152a895 HEAD
23d30770e5b8b0e42bc5927a0a348a6912963aff refs/heads/another_fix_branch
4465c540dc79718076bcf66951d27fb65152a895 refs/heads/master
dc6f60f417c011bafe6284d362a06e39f9f3cb69 refs/heads/new_feature
f4b5a261dfdcdc5d9081b2ecc252a62f198b01c3 refs/tags/four_files_galore
ef47d3fd293bc13321270e88af284f63d6f85f84 refs/tags/four_files_galore^{}

12.6 Commands in this chapter

Listing 12.10 Tracing the network activity from git ls-remote

Table 12.1 Commands used in this chapter

Command Description

git checkout -f master Check out the master branch, throwing away any changes in
your current branch.

git remote Display the name of the remote(s) in the current repository.

git remote -v show Display the names of the remotes along with the corre-
sponding remote URL.

git remote add bob ../math.bob Add a remote named bob that points to the local repository
in ../math.bob.

git ls-remote REMOTE Display the references of a remote repository (use . as the
REMOTE when you want the current local repository).

GIT_TRACE_PACKET git ls-remote
REMOTE

Display the underlying network interaction.

Pushing your changes
You’re now halfway through your study of how to collaborate with Git. You’ve
learned how to clone repositories (git clone) and how to work with remotes (git
remote). In the preceding chapter, you created the environment shown in figure
13.1 on your local computer. Cloning and making remotes establishes the ground-
work for the next two commands: git push and git pull.

math.carol/

Git repo
bob

fetch

fetch

push

push

math.bob/

Git repo

math.git/

Git repo

origin

Figure 13.1 Carol can push files.
192

193Pushing sends changes to a remote
In this chapter, you’ll learn about the git push command, the first half of the Git col-
laboration process (git pull is the second half, covered in the next chapter). git
push is important because it’s how you share (publish) your changes. You’ll see that
git push merges those changes with the repository you’re pushing to. This may cause
conflicts, and you’ll see how to recover from those. git push operates on your
changes in branches, and you’ll see how it does double-duty creating and deleting
branches and tags on remotes.

13.1 Pushing sends changes to a remote
Everything that you’ve done up to now has affected only your local repository. In
chapter 12, you learned about the git ls-remote command, which enables you to list
the contents of a remote repository. The git push command is the first command
that will directly affect another repository besides your own.

13.1.1 Permissions are required

Because git push makes changes to another repository, you must have the right per-
missions to perform git push to this remote. Let’s try git push with the math clone
that you made from GitHub.

TRY IT NOW Make sure you have a directory math.github, which is a clone of
the math repository from https://github.com/rickumali/math. This direc-
tory was created in the previous chapter. To do a push, type the following:

cd $HOME/math.github
git push origin master

You may be prompted for a GitHub username and password. If you have
these, enter them, and you should see an error that looks like the following
listing. If you don’t have them, you can press Ctrl-C to get past the login
prompt.

remote: Permission to rickumali/math.git denied to ff-rumali.
fatal: unable to access 'https://github.com/rickumali/math.git/': The
requested URL returned error: 403

The error (after you enter GitHub credentials) happens because you don’t have per-
mission to do a push to this repository on GitHub. Before this chapter, you had free
reign over your entire repository. But when you venture into the realm of Git collabo-
ration, you must have the appropriate permissions. These permissions aren’t as com-
plicated as those needed in other version-control systems, but they do exist
nonetheless. In this specific case, the repository owner (me) must grant you permis-
sion to push to this repository. You’ll spend a lot of time on this in chapters 17 and 18.

 Because the repositories you created in chapter 12 are all in your control on your
machine, you can freely push to each of them. Let’s make git push work between
your local math repositories.

Listing 13.1 A git push error due to permissions

https://github.com/rickumali/math

194 CHAPTER 13 Pushing your changes
13.1.2 Pushing requires a branch and a remote

To see git push work, you’ll use the math repositories that you created in chapter 12.
Specifically, you’ll focus on the bob and carol repositories, and the math.git reposi-
tory, which you’ve designated as the official repository on your local machine. Figure
13.2 shows these repositories.

TRY IT NOW Let’s go to the math.carol repository and do a push to the
math.git repository:

cd $HOME/math.carol
git push origin master

You should see the message Everything up-to-date.

I know that was anticlimactic, but believe me when I say that Git did a lot of work; it
compared the local repository with the remote repository. If there were changes in the
local repository, Git would have pushed them over.
Because you haven’t made any changes, this git push
doesn’t do anything.

 Let’s break down this command a bit more. Take a
look at figure 13.3.

 This form of the git push command specifies two
arguments: the remote to which you want to send
your changes, and the branch that contains the
changes you want to push. This is the safest form of

math.carol/

Git repo
bob

fetch

fetch

push

push

math.bob/

Git repo

math.git/

Git repo

origin

Figure 13.2 You’ll push changes to math.git.

Command Branch to push

Remote to push
changes to

git push origin master

Figure 13.3 Anatomy of the
git push command

195Pushing sends changes to a remote
git push, in that everything is spelled out. Later in this chapter, you’ll see how git
push works when you don’t pass it any arguments. (You’ll also see another breakdown
of figure 13.3 in section 13.4.)

 Finally, let’s push a change from carol to the main repository.

TRY IT NOW In the math.carol directory, let’s edit one of the files. Type the
following:

cd $HOME/math.carol
git checkout master
echo "Added a line here." >> renamed_file
git commit –a –m "Updated renamed_file"

You first make sure you’re in the master branch. When you do the commit,
Git announces the new SHA1 ID (in an abbreviated form).

At this point, Git knows that you’ve made a change that the remote doesn’t
have. Type this:

git status

You should see a message like the following listing.

On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)

nothing to commit, working directory clean

This message contains a lot of information, which is mostly self-explanatory.
The key line says that your local branch is ahead of the origin/master by 1
commit. This new commit is the change you just made to renamed_file. ori-
gin/master is another way of saying the branch master on the remote origin.

Instead of doing git push as the instructions say, let’s use a more careful
command and type the following:

git push origin master

This syntax does suggest that you can push any local branch, including one
that you’re not already on.

Our git push command should report its activity and status, as shown in the
following listing.

Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 287 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To /Users/rumali/math.git
 4465c54..b9af80a master -> master

Listing 13.2 Output of git status (that is ahead of its remote-tracking branch)

Listing 13.3 Output from git push command

196 CHAPTER 13 Pushing your changes
Here Git does a lot of work compressing and writing objects. This is just debugging
output. The key line in the output is the one at the end:

4465c54..b9af80a master -> master

This is saying that on the remote repository (the directory math.git), the master
branch’s SHA1 ID was changed from 4465c54 to b9af80a. This is because you pushed a
new commit to this remote. Let’s look at the SHA1 IDs of the last two commits on the
math.carol repository.

TRY IT NOW Let’s list the last two SHA1 IDs of your repository to confirm that
they match what was reported in the git push command. Type the following:

git log -2

The -2 switch is shorthand for -n 2, which limits the git log output to just
two commits. This command will list something like the following.

commit b9af80a0d435ef74f5c72197311544c37a23ea91
Author: Rick Umali <rumali@firstfuel.com>
Date: Thu Aug 21 20:30:27 2014 -0400

 Updated master/renamed_file

commit 4465c540dc79718076bcf66951d27fb65152a895
Author: Rick Umali <rickumali@gmail.com>
Date: Wed Aug 6 08:54:56 2014 -0500

 A small update to readme.

You can see that the last two commits do correspond to the git push output
4465c54..b9af80a master -> master. The git push announces the old SHA1 ID of
the branch (4465c54), and then the new SHA1 ID (b9af80a) after the push.

13.1.3 Verifying a successful git push

Figure 13.4 attempts to visualize the push. When you make a commit (the short arrow
labeled A), you add a change to the master branch of your local repository
(math.carol, on the right). When you push this change to your math.git repository,
the commit is sent to the remote (the arrow labeled B), along with the corresponding
changes.

 How can you tell that your new commit made it to the remote repository? In chap-
ter 12, you learned about git ls-remote, a command that lets you query the
branches on the report repository. You can use this to confirm that the remote has the
latest SHA1 ID.

TRY IT NOW In the math.carol directory, type the following:

git ls-remote origin

Listing 13.4 git log -2 output

197Pushing sends changes to a remote
Look at the listing returned from this command. Pay attention to the refs/
heads/master reference. They should have the same SHA1 IDs as your latest
commit.

When you run this command, you should see output like the following listing.

From /Users/rumali/math.git
b9af80a0d435ef74f5c72197311544c37a23ea91 HEAD
23d30770e5b8b0e42bc5927a0a348a6912963aff refs/heads/another_fix_branch
b9af80a0d435ef74f5c72197311544c37a23ea91 refs/heads/master
fc85daffa32ce38362b28ed846cdd12fff5429c5 refs/heads/new_feature
f4b5a261dfdcdc5d9081b2ecc252a62f198b01c3 refs/tags/four_files_galore
ef47d3fd293bc13321270e88af284f63d6f85f84 refs/tags/four_files_galore^{}

Notice that refs/heads/master is the same SHA1 ID (b9af80a) as the last commit of
math.carol. (Make sure to confirm this in your own repository, because your SHA1 IDs
will be different from this text.)

 Making comparisons in this fashion is a little tedious. A better way is to use the git
remote command’s show subcommand.

Listing 13.5 git ls-remote output

math.carol (local)

math.git (remote)

new_feature another_fix_branch

B git push

A git commit

B

A

HEAD
master

HEAD
master

Figure 13.4 Visualizing a git push

198 CHAPTER 13 Pushing your changes

Br

for
TRY IT NOW In the math.carol directory, type the following:

git remote –v show origin

This should show you output that looks like the following listing.

* remote origin
 Fetch URL: /Users/rumali/math.git
 Push URL: /Users/rumali/math.git
 HEAD branch: master
 Remote branches
 another_fix_branch tracked
 master tracked
 new_feature tracked
 Local branches configured for 'git pull':
 master merges with remote master
 Local refs configured for 'git push':
 master pushes to master (up to date)

This output has a lot of detail, so let’s go through it carefully. The push URL is b, the
directory that you used in the git clone command that created this current repository.

 If you try this in the math.github directory, you’ll see that the push URL is the
GitHub URL (https://github.com/rickumali/math.git).

 The current HEAD branch c on the remote repository is master. If you change the
branch in the math.git directory, c will change accordingly.

 All the available branches on the remote d are listed. Your remote has three
branches: master, another_fix_branch, and new_feature. When you did the git
clone, Git created remote-tracking branches for all the branches that were available at
math.git.

 The local branches, and what they merge to e, are discussed in the next chapter,
but for now just recognize that this section has to do with git pull. Depending on
what you’ve checked out, you may see more than one branch in this section.

 The local branches, and what branch they’ll push to on the remote f, will look
like the list from e because a git clone or a git checkout will associate the current
branch c with its corresponding remote branch.

 The up-to-date label (in parentheses in f) shows that all your local changes are in
sync with the origin. This should make sense, because you’ve made one change to
math.carol, and you’ve pushed it up to math.git.

 Let’s compare this output with the math.bob directory, which also has its origin set
to math.git. Remember that you haven’t done anything in math.bob to retrieve the lat-
est changes.

TRY IT NOW In the math.bob directory, type the following:

git remote –v show origin

Listing 13.6 git remote –v show origin (annotated)

Push URLb
HEAD

branch
c

Remote branchesdanches
eligible
 git pull

e

Branches eligible
for git push

f

https://github.com/rickumali/math.git

199Pushing sends changes to a remote
You’re typing the same command as the previous TRY IT NOW, but you’re in a
new directory, the math.bob repository. This should give output like the fol-
lowing listing.

* remote origin
 Fetch URL: /Users/rumali/math.git
 Push URL: /Users/rumali/math.git
 HEAD branch: master
 Remote branches:
 another_fix_branch tracked
 master tracked
 new_feature tracked
 Local branches configured for 'git pull':
 master merges with remote master
Local refs configured for 'git push':
 master pushes to master (local out of date)

b shows that the local master branch in math.bob is out of sync. Why? Because you
haven’t done any operation in math.bob to bring in the changes that are now present
in the math.git repository thanks to the git push that you did on math.carol.

 Figure 13.5 illustrates why math.bob’s local master branch is out-of-date.

Listing 13.7 git remote –v show origin (not in sync)

Branches eligible
for git push

b

math.carol (local)

math.git (remote)

new_feature another_fix_branch

B git pull

A git push

B

HEAD
master

HEAD
master

A

math.bob

HEAD
master

Figure 13.5
math.bob is
out of sync.

200 CHAPTER 13 Pushing your changes
In figure 13.5, the operation denoted by the arrow labeled A (the git push from
math.carol to math.git) shows that a new commit is being added to math.git. But the
git pull denoted by the arrow labeled B hasn’t yet been performed to bring
math.bob up-to-date with its remote. This is why the git remote command in
math.bob shows that things are out of sync. You’ll learn how to bring math.bob up-to-
date in chapter 14.

 Keeping your code base in sync (pushing your changes back up to the remote, or
pulling down any new changes from the remote) is a circular effort. In this chapter,
you focus on the push side, but keep in mind that’s only half of the sync process. If
you make contributions to a project, you’ll be expected to push your changes. If the
repository changes frequently, you’ll have to pull in the new changes to your local
working directory. But if you only track a project (for example, if you’re the end user
of a Git repository), git pull may be the only thing you need to do.

13.2 Understanding push conflicts
In your current situation, the changes to math.carol have been pushed to the math.git
repo. But math.bob hasn’t yet brought down these changes from math.git. math.bob
is out of sync. Let’s see what happens if you try to make a change to math.bob.

TRY IT NOW Let’s commit a change in the math.bob directory. Type the
following:

cd $HOME/math.bob

Make sure you’re in the master branch:

git checkout master

Now let’s make a small change and commit it:

echo "Small change to file" >> another_rename
git commit -a -m "Updating this file."

This commits a change to the math.bob repository. Let’s publish this change
to math.bob’s remote. Type the following:

git push origin master

This produces the error message in the following listing.

To /Users/rumali/gitbook/math.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to '/Users/rumali/gitbook/math.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Listing 13.8 git push error

201Understanding push conflicts
Give this message a careful reading, especially these hints: Updates were rejected
because the remote contains work that you do not have locally. This is
usually caused by another repository pushing to the same ref. This describes
the situation in figure 13.6.

 You’ve pushed changes from math.carol to math.git first (the arrow labeled A).
When math.bob does the same operation (the arrow labeled B), Git complains
because math.bob isn’t up-to-date with math.git. You can push changes to a remote
only when those changes are a descendant of what is on the remote; git push is the
equivalent of merging with the math.git repository.

 If you need a refresher on merging, review chapter 9. Git allows you to push your
branch only if the commit that you’re pushing is a descendant of the remote’s branch
(a fast-forward merge).

 The git push from the math.carol repository has this situation, as you can see in
figure 13.7.

 This push (the output is in listing 13.3) is allowed because the new commit C in
math.carol is a descendant of commit B. Commit B is in the math.git repo.

math.carol (local)

math.git (remote)

new_feature another_fix_branch

B git push

A git push

B

HEAD
master

HEAD
master

A

math.bob

HEAD
master

Figure 13.6 math.bob and math.carol are both pushing files to math.git.

202 CHAPTER 13 Pushing your changes
The rejected git push from the math.bob repository can be drawn as in figure 13.8.
 This is rejected because math.bob made a commit (D) that has a parent (B).

math.git has the B commit, but its immediate child is C; math.bob needs to bring over
math.git first. To fix this, you must use the git pull command, which you’ll read
about in detail in chapter 14.

 In our lab, you’ll be introduced to the --force switch of the git push command.
This heavy hammer could also get you past this error, but it does blindly change the
remote repository. When changes are pushed to the main repository, it’s considered
published, and using --force to overwrite those published changes will affect users
when they pull down changes from the remote repository. After you push your
changes, you shouldn’t change them. And in the context of this error, if you encoun-
ter a conflict when pushing your changes to a repo, you must incorporate the changes
from the repo first (you’ll do that in the next chapter).

13.3 Pushing branches
For the past few sections, you’ve been running git push with two arguments: the
source remote (typically origin) and the branch to push (typically master). In this sec-
tion, you’ll learn that you can omit these two arguments because git checkout auto-
matically associates local branches with their corresponding remote-tracking
branches, if their names match.

 For example, your math.git repository has three branches: master, another_fix
_branch, and new_feature. When you clone this repository into math.carol, git
clone creates three remote-tracking branches: remotes/origin/master, remotes/
origin/another_fix_branch, and remotes/origin/new_feature.

git push allowed

math.carol

C

B

…

A

math.git

B

…

A

Figure 13.7 This is an allowed push, because
math.carol can fast-forward math.git.

Figure 13.8 This isn’t an allowed push,
because math.bob can’t fast-forward math.git.

math.bob

D

B

…

A

math.git

B

C

…

A

git push rejected

203Pushing branches
 All the remote-tracking branches that are in your clone keep track of the upstream
version. The word upstream means the original source. When you check out a local
branch with the same name as one of the remote-tracking branches, Git assumes that
this local branch will track the remote branch.

 Let’s check out a local branch that’s one of our remote-tracking branches, so you
can see this behavior for yourself.

TRY IT NOW In the math.carol repository, check out a local branch of one of
the remote-tracking branches. Type the following:

cd $HOME/math.carol
git checkout another_fix_branch

This produces output that looks like the following listing.

Branch another_fix_branch set up to track remote branch another_fix_branch
➥ from origin.
Switched to a new branch 'another_fix_branch'

You analyzed this form of git checkout in chapter 11. Because another_fix_branch is
the same name as an existing remote-tracking branch, this command is git checkout
-b another_fix_branch remotes/origin/another_fix_branch. Now that you know
about git push, you can better appreciate the message in listing 13.9. Because git
clone sets up remote-tracking branches, and git checkout automatically associates
these branches with local branches having the same name, you can call git push on
this branch without any arguments.

TRY IT NOW You’ll now make a change to one of the files in another_fix
_branch. Type the following:

echo "Small change" >> another_rename
git commit -a -m "Small change"

This commits the change to your local branch. Observe the output from typ-
ing this:

git status

This command states that you can call git push to publish your local com-
mits. Now type this:

git push

Observe that you didn’t need to type the remote or local branch! (You may
receive a warning message about push.default, as shown in the upcoming list-
ing 13.14. The push will continue as you expect, but read section 13.6 to bet-
ter understand the warning you might receive.)

This shortcut is set up by git checkout. When you call git checkout on a branch
that has a corresponding remote-tracking branch, the ability to push to it using git
push without any arguments is enabled.

Listing 13.9 git checkout output

204 CHAPTER 13 Pushing your changes
 But what if you create a new local branch? How do you go about publishing that
new branch upstream? And how do you push to it automatically?

TRY IT NOW In the math.carol directory, create a new local branch from
master:

git checkout -b new_branch master

This shortcut command was introduced in chapter 8. You made a new branch
(specified by the -b switch and its argument new_branch), and based it off
master. In figure 13.9, you see what happens to your two repositories when
you type this command.

The left side of figure 13.9 is your starting state. After the git checkout com-
mand, the right side shows that only the local repository is changed by the git
checkout command. Now try to push this new branch upstream without any
arguments. Type the following:

git push

You’ll see a message like the following listing.

fatal: The current branch new_branch has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin new_branch

You can type the command exactly as suggested:

git push --set-upstream origin new_branch

The last command will not only push the branch, but also create the remote-tracking
branch in your local repository. The result of this command is shown in figure 13.10.

Listing 13.10 git push without an upstream configuration

math.git (remote)

math.carol (local)

math.git (remote)

math.carol (local)

git checkout -b new_branch

new_branch
Figure 13.9
Creating a new
branch doesn’t
create it on the
remote.

205Pushing branches
The left side shows your two repositories before the git push. The right side shows
that you’ve successfully pushed the new_branch to the remote repository.

 After this, you’ll be able to push to new_branch on the remote without any argu-
ments. The output of the last command is shown in the following listing.

Total 0 (delta 0), reused 0 (delta 0)
To c:/Users/Rick/Documents/gitbook/math.git
 * [new branch] new_branch -> new_branch
Branch new_branch set up to track remote branch new_branch from origin.

You need to run git push with the --set-upstream switch only once. When you use
this switch, Git writes this information into a configuration file, so you don’t have to
repeat it.

Listing 13.11 git push setting the upstream branch

Above and Beyond

The --set-upstream switch sets the upstream branch and writes this information
into a Git configuration file. The git config command accesses the Git configuration
files, and you can use it to find out the values of any configuration setting.

In the math.carol directory, type the following:
git config --get-regexp branch

This command retrieves configuration settings that match the string branch. The mean-
ing of --get-regexp is get regular expression, which means git config will match
any configuration with the word branch in it. This should list settings like this:
branch.master.remote origin
branch.master.merge refs/heads/master

math.git (remote)

math.carol (local)

math.git (remote)

math.carol (local)

git push --set-upstream
 origin new_branch

new_branch

new_branch

new_branch

Figure 13.10 Creating the upstream branch via the git push --set-upstream command

206 CHAPTER 13 Pushing your changes
13.4 Deleting branches on the remote
In the preceding section, you created a new branch and pushed it back to your
remote. This creates a new branch on the remote. What happens when you no longer
need this branch?

 In your local repository, you can delete a branch with the git branch -d com-
mand, as shown in figure 13.11. Recall from section 9.3.2 that you can delete a branch
by using that command.

 In figure 13.11, the left side are your local and remote repositories before you type
the command. On the right side of figure 13.11, after typing the git branch -d com-
mand, the new_branch is removed from your local repository, but it's still on the
remote. The command to delete a remote branch is git push with a colon (:) before
the branch name. Let’s try it.

(continued)
branch.another_fix_branch.remote origin
branch.another_fix_branch.merge refs/heads/another_fix_branch
branch.new_branch.remote origin
branch.new_branch.merge refs/heads/new_branch

Each configuration setting is followed by a space and then its value. Notice how each
setting is of the form branch.<name>.remote and branch.<name>.merge. These
allow separate values for each branch, which you specify in the <name> part of the
configuration setting.

The branch.<name>.remote configuration setting specifies which remote to push to.
The branch.<name>.merge configuration setting specifies which branch to update.
This setting is also controlled by the push.default setting. The push.default setting
is so important that it’s covered in section 13.6.

math.git (remote)

math.carol (local)

math.git (remote)

math.carol (local)

git branch -d new_branch

new_branch

new_branch

new_branch

Figure 13.11
Deleting a local
branch doesn’t
delete it on the
remote.

207Deleting branches on the remote
TRY IT NOW In the math.carol repository, let’s first delete the local branch.
Type the following:

git checkout master
git branch
git branch –d new_branch
git branch

You first check out the master branch, which will enable you to delete the
new_branch (you can’t be in the branch that you’re about to delete). Then
you show the list of current branches (git branch), delete one of them
(new_branch), and list the current branches again. This will help you confirm
that new_branch is deleted locally. But you’ll still be able to see it on the
remote. Type the following:

git ls-remote origin

You’ll see new_branch in the output of this command. It’ll be listed as refs/
heads/new_branch. To get rid of it on the remote, type this:

git push origin :new_branch

You should see the message shown in the following listing.

To /Users/rumali/gitbook/repo.git
 - [deleted] new_branch

This gives you the picture in figure 13.12. The left side shows what your two reposito-
ries look like before you do the git push. After the git push command, notice that
you’ve finally deleted new_branch from the remote repository.

Listing 13.12 Output after deleting a branch

math.git (remote)

math.carol (local)

math.git (remote)

math.carol (local)

git push origin :new_branch

new_branch

Figure 13.12
Properly deleting
a remote branch

208 CHAPTER 13 Pushing your changes
Using a colon causes the git push command to
use the more complex meaning of the fourth
argument. In figure 13.13, the fourth argument
to git push is a refspec, a colon-separated string
that describes the mapping between a source and
destination branch. (Compare figure 13.13 with
figure 13.3.)

 Using git push origin master is equivalent
to using git push origin master:master. Git
pushes your local branch named master to the
remote branch named master. When you omit
src from the full form, leaving the string :master, you’re telling Git to delete that
remote branch.

 Do be careful with this syntax and operation! After you’ve been granted permis-
sion to push to a remote, you can use this form of git push to delete any branch you
want. Git doesn’t have a safety net for this operation either.

13.5 Pushing and deleting tags
Tags behave just like branches, with regards to pushing to a remote or deleting from a
remote. When you clone a repository, you receive all tags that were a part of the origi-
nal repo. As you work on your local repo, you might make your own local tags. If you
want to share your tags with your collaborators, you have to push them up to the
remote separately.

TRY IT NOW In math.carol, let’s look at our tags. Type the following:

git tag

You should see one tag: four_files_galore. Let’s go ahead and create a tag in
our repo. Type this:

git checkout master
git tag -a two_back -m "Two behind the HEAD" HEAD^^
git log --decorate --oneline

You’re going to tag the commit that is two commits behind the HEAD (which
is the last commit). The arcane syntax (HEAD^^) says from HEAD, go two com-
mits back (see chapter 8). The git log command shows where the tag is.

Using git ls-remote, you can confirm that the tag isn’t present on the
remote origin. Type the following:

git ls-remote

To push your tag, type this:

git push origin two_back

Command refspec (local src
mapping to remote dest)

remote to push
changes to

git push origin src:dest

Figure 13.13 The more complete
form of the git push command,
showing the refspec

209Configuring simple pushes
You’ll see output like the following listing.

Counting objects: 1, done.
Writing objects: 100% (1/1), 166 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To /Users/rumali/gitbook/math.git
 * [new tag] two_back -> two_back

Unlike the git push command with branches, you must explicitly state that you’re
pushing tags to the remote. There’s no shortcut (though git push does have a --
tags switch, but this sends over all the local tags that you’ve created, which might not
always be what you want to do).

 Deleting tags follows the same syntax as at the end of section 13.4.

TRY IT NOW In math.carol, confirm that you have the tag two_back in the
remote:

git ls-remote

Delete this tag, and confirm that it’s no longer on the remote:

git push origin :two_back
git ls-remote

Remember that this deletes only the tag from the remote. Your local tag still
exists. To delete this, use git tag with the -d switch:

git tag -d two_back

13.6 Configuring simple pushes
Git 2.0, released in May 2014, changed a configuration that governs how git push
works if you don’t pass in any arguments. If you’re on an older version of Git, and you
use git push without arguments, you may see the lengthy warning in the following
listing.

% git push
warning: push.default is unset; its implicit value is changing in
Git 2.0 from 'matching' to 'simple'. To squelch this message
and maintain the current behavior after the default changes, use:

 git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

 git config --global push.default simple

See 'git help config' and search for 'push.default' for further information.
(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
'current' instead of 'simple' if you sometimes use older versions of Git)

Listing 13.13 Pushing tags

Listing 13.14 git push warning message

210 CHAPTER 13 Pushing your changes
Counting objects: 5, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 1.82 KiB | 0 bytes/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To git@bitbucket:rickumali/gitbook.git
 d64950e..9751bdd master -> master

To remove this warning, you must use the command specified in the warning: git
config --global push.default simple. This command assigns the value simple to
the configuration setting push.default. The --global switch indicates that this set-
ting is global to any repository that you access.

 You’ll examine git config in great detail in chapter 20.
git push defines a push.default configuration setting that can take one of the

values in table 13.1.

Please read the git config documentation on push.default for more details. The
value recommended for beginners is simple. To set this, type the following:

git config --global push.default simple

This setting prevents you from pushing a branch to the remote that you didn’t intend
to share. The developers of Git came to this newer setting in order to make things less
confusing for beginners.

 Git configuration is covered in more detail in chapter 20.

13.7 Lab
You use the git push command to publish commits from your repository. The follow-
ing exercises help reinforce this idea, and introduce you to some interesting aspects
of this command:

1 Read git push help, especially the Note About Fast-Forwards section.
2 Create another clone from math.git and, from that new clone, push up a few

changes. Confirm from the other repositories that math.git is different.
3 The syntax to delete a branch or a tag uses a colon in front of a branch or tag

name. This syntax is part of the refspec, a shorthand for specifying the source
and destination branch or tag. Read about refspecs in the git push help.

Table 13.1 Values for push.default configuration setting

push.default setting Value

nothing Don’t push unless a source and a destination are specified.

current Push current branch to update a branch with the same name.

upstream Similar to current.

simple Similar to upstream, but check that the branch name matches what
is upstream.

matching Push all branches that have corresponding branches on the remote.

211Further exploration
4 You saw in section 13.2 that git push won’t work if the local branch can’t be
merged with (isn’t a fast-forward of) the remote branch. But there’s a --force
option. Experiment with it, but be advised that this should be used with cau-
tion. As you’ll see in chapter 14, git pull is the recommended first step for get-
ting past a failing git push.

5 Create multiple tags and then use git push --tags to push them all across to
the remote.

6 Try to push from carol to bob. What does the error message mean?
7 Read git config help, especially the section Files and the configuration setting

push.default.

13.8 Further exploration
You probably noticed that I didn’t use much of Git GUI or gitk in this chapter. git
push is somewhat supported by the Git GUI program. At the time of this writing, there
isn’t any push support in gitk.

 In Git GUI, choose Remote > Push. From the dialog box that appears (shown in fig-
ure 13.14), push a branch back up to the math.git repository.

 The Git GUI support for git push is adequate, but you need to have a good pic-
ture of the branches in your head. One thing Git GUI gives you is a listing of the avail-
able source branches.

Figure 13.14 Git GUI support for git push

212 CHAPTER 13 Pushing your changes
Using gitk, and enabling the remote-tracking branches as figure 13.15 shows, allows
you to see the remote-tracking branches.

 When you enable this view
and look at the math.bob
repository, you’ll see a view that
looks similar to figure 13.16.

 If you look at the first two
lines (remotes/origin/master
and master), you should be
able to see that the master’s last
commit (Updating this file)
isn’t on the remote. If you
pushed master to the remote,
you’d get a rejection because
its commit can’t be merged.

13.9 Commands in this chapter

Table 13.2 Commands used in this chapter

Command Description

git push origin master Push the master branch to the remote named origin.

git push Push the current branch to the default remote-tracking branch set
up by git checkout or git push --set-upstream.

git push --set-upstream
origin new_branch

Create a remote-tracking branch to new_branch on the remote
named origin.

git config --get-regexp
branch

List all Git configuration settings that have the word branch in the
variable name.

git branch -d localbranch Remove the local branch named localbranch.

git push origin
:remotebranch

Remove the branch named remotebranch from the remote named
origin.

Figure 13.15 Enable the remote-tracking branches view.

Figure 13.16 Observing the remote-tracking branches in
math.bob

213Commands in this chapter
git tag -a TAG_NAME -m
TAG_MESSAGE SHA1ID

Create a tag to the SHA1ID with the name TAG_NAME and the
message TAG_MESSAGE.

git push origin TAGNAME Push the tag named TAGNAME to the remote named origin.

git push --tags Push all tags to the default remote.

git push origin :TAGNAME Delete the tag named TAGNAME on the remote named origin.

git tag -d TAGNAME Remove the tag named TAGNAME from your local repository.

git config --global
push.default simple

Set the push.default configuration variable to simple for all
repositories that you have access to (globally).

Table 13.2 Commands used in this chapter

Command Description

Keeping in sync
Collaborating with a software project that uses Git requires that you keep your
repository in sync with this remote repository. The focus of this chapter is the com-
mand that helps you keep in sync: git pull.

git pull is the opposite operation of git push. You’ll learn how to use git
pull to bring in changes that were made in the remote repository you’re tracking.
This is the step that keeps you in sync! You’ll
also learn that git pull consists of two com-
mands: git fetch and git merge. You learned
about git merge in chapter 10, but knowing
how it’s used in conjunction with git fetch will
help you understand issues you might have with
git pull.

14.1 Completing the cycle of collaboration
You’ve learned about clones (chapter 11) and
how the git remote command (chapter 12)
enables you to push to a remote (chapter 13).
In figure 14.1, your clone (math.carol) can
fetch (pull) from the remote (math.git), in
addition to push.

Figure 14.1 A cycle of collaboration
between math.carol and math.git

math.git/

Git repo

math.carol/

Git repo

fetch (pull) push
214

215Completing the cycle of collaboration
When you make a clone of a repository, Git creates a remote that enables your clone
to both push and pull from the repository that you just cloned. The remote sets up a
cycle of collaboration. In section 14.2, you’ll learn that git pull comprises two com-
mands: git fetch and git merge. That’s why figure 14.1 labels the arrow from
math.git to math.carol as fetch (pull).

 If you’ve been following along on your local computer, you’ve created a math.git
directory, which you’ve designated as the official version, or official repository. It’s the
source repository that other collaborators can consider the official source code of
your math project. Git doesn’t have any special software for this designation: it’s
decided among collaborators on a project. An official repository of this sort is neces-
sary in distributed version control systems because there’s no centralized server.

 As you make changes, you’ll want to publish those commits to the official reposi-
tory (using git push). But if you’re working with many collaborators, you won’t be
the only person who’ll be publishing changes. You saw in the preceding chapter that
you can’t push your changes to the remote unless your repository is in sync with the
remote. This is where git pull comes in.

TRY IT NOW You’ll create a situation where two repositories are out of sync
with the official repository. You’ll then see how git pull helps bring these
back in sync.

The best way to set up your environment for this chapter is to run the script
make_math_repo.sh to create another math directory. If you use your current
math directory, some of the listings in this chapter won’t match, which may
be confusing.

The script is in a zip file on the book’s website. Delete your math directory (or
rename it, if you want to preserve something you’ve done). Type the follow-
ing after you have the script:

cd $HOME
bash make_math_repo.sh

The make_math_repo.sh script leaves the math directory in a state described
in section 9.4.2. To get out of that state, type this sequence:

cd math
git checkout -f master

Now you can make the clones:

cd ..
git clone --bare math math.git
git clone math.git math.carol
git clone math.git math.bob

In the $HOME directory, type this:

git clone math.git math.bill

216 CHAPTER 14 Keeping in sync
This creates a repository for Bill. Inside math.bill, you’ll make a commit:

cd math.bill
echo "Small change" >> another_rename
git commit -a -m "Small change"

Now you’ll push this change to
math.git:

git push

You’ve created the situation in
figure 14.2.

Figure 14.3 shows the commit,
labeled small_change, in the
math.bill repository. Once you
do the git push, math.git is
updated with the small_change
commit. Note that math.carol
hasn’t been updated yet (the
small_change commit isn’t pres-
ent in the math.carol reposi-
tory).

Figure 14.3 A look at the
history after the math.bill push

push

math.git/

Git repo

math.bill/

Git repo

math.carol/

Git repo

Figure 14.2 One half of the cycle (a push from Bill)

git push

…

math.git

small_change

small_change

A

…

math.bill

A
…

math.carol

A

217Completing the cycle of collaboration
Let’s enter math.carol’s point of view and confirm that math.git has changed.
Type this:

cd $HOME/math.carol
git remote -v show origin

This should result in output like the following listing.

 * remote origin
 Fetch URL: c:/Users/Rick/Documents/gitbook/math.git
 Push URL: c:/Users/Rick/Documents/gitbook/math.git
 HEAD branch: master
 Remote branches:
 another_fix_branch tracked
 master tracked
 new_feature tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local ref configured for 'git push':
 master pushes to master (local out of date)

For the Local refs configured for 'git push' section, notice that master
is marked as local out of date. Trying to do a git push will cause an error.
Type the following:

git push

Confirm that you get the error shown in the following listing.

To /Users/rumali/gitbook/math.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to '/Users/rumali/gitbook/math.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

math.carol hasn’t made any changes to math.git, so a git push from
math.carol shouldn’t have done anything. But because Git checks that the
repositories are in sync whenever you do a push, Git sees that math.carol isn’t
in sync with the changes on math.git, and therefore a push to math.bill isn’t
allowed.

If the push succeeded (by using git push --force), math.git would lose the
commit that you made from math.bill.

To sync the math.carol repository with math.git, type this:

git pull

Listing 14.1 git remote -v show origin output

Listing 14.2 Attempting a git push, from math.carol

218 CHAPTER 14 Keeping in sync
This produces the following output. (Note that the git pull command omits
the .git suffix from the remote URL.)

remote: Counting objects: 8, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From /Users/rumali/gitbook/math
 ab05274..e5c34ed master -> origin/master
Updating ab05274..e5c34ed
Fast-forward
 another_rename | 1 +
 1 file changed, 1 insertion(+)

Doing this last part allows you to complete the cycle, which you see in figure
14.4.

Figure 14.5 shows a picture of the completed cycle, using the commits.

14.2 Using git pull: a two-part operation
git pull is a two-part operation. In the first part, your local repository retrieves
(fetches) the contents of the remote repository. In the second part, git pull attempts
to make your repository look like the remote repository (which is now on your local
machine) by performing a merge of the local branch and the remote-tracking branch.

Listing 14.3 A successful git pull

pushfetch (pull)

math.git/

Git repo

math.bill/

Git repo

math.carol/

Git repo

Figure 14.4 Completing the last half of the cycle

219Using git pull: a two-part operation
Performing the merge is what makes git pull much more complicated than git
push. git pull is more than just the mirror operation of git push. git push pushes
only changes that can be cleanly merged (fast-forwards). Anything more complicated
than that requires intervention: you have to make the merge in a local repository and
then push the result.

 Reading the git pull help page, you’ll see this sentence in the first paragraph: “In
its default mode, git pull is shorthand for git fetch followed by git merge
FETCH_HEAD.” Let’s examine these two steps carefully, because knowing these details
will help you figure out why git pull sometimes produces conflicts.

14.2.1 Fetching files from a remote repository (git fetch)

git fetch is the first step of the git pull command. It’s a completely separate com-
mand that retrieves files from one repository and incorporates those files into your
repository. Specifically, git fetch retrieves references, which for you means branches
or tags. When they arrive at your local repository, they are laid down on top of your
repository, along with any files that they point to. These new references are tracked by
using remote-tracking branches, which you’ve seen before in chapter 11.

TRY IT NOW In this section, you’ll create a change in one repository and then
fetch those changes from another repository. You’ll make your change in
math.bill and then push it up to math.git. The math.git repository is the
source repository (origin) that both math.bill and math.carol use.

git pull

…

math.git

small_change

small_change

A

…

math.bill

A

small_change

…

A

math.carol

Figure 14.5 All the repositories
are in sync now!

220 CHAPTER 14 Keeping in sync
In math.bill, as in the previous TRY IT NOW, you’ll make one change:

cd $HOME/math.bill
echo "Tiny change" >> another_rename
git commit -a -m "Another tiny change"

This makes a commit that exists only in the math.bill repository. To publish
this change, type this:

git push

This pushes the change to math.git. So far, you’ve done the first half (in fig-
ure 14.6) of the push/pull cycle.

From our previous TRY IT NOW, you know that to sync math.carol with math.git, you’ll
need to do a git pull. But this time, you’ll do a git fetch so you can see exactly
what git pull is doing. Before you do that, however, let’s take a look at the current
state of the math.carol repository.

TRY IT NOW In the math.carol repository, you’re going to examine the log of
commits. Type the following:

cd $HOME/math.carol
git log --decorate --oneline --all

push

math.git/

Git repo

math.bill/

Git repo

math.carol/

Git repo

Figure 14.6 Doing a single push to math.git

221Using git pull: a two-part operation
Your output will look similar to the following listing (the difference being the
SHA1 IDs).

195f2a1 (HEAD, origin/master, origin/HEAD, master) Small change
9517faf A small update to readme.
3682ea9 (origin/new_feature) Starting a second new file
eff9bb7 Adding a new file to a new branch
ebe9470 Adding printf.
133c8e4 Adding two numbers.
9a3e7f4 (origin/another_fix_branch) Renaming c and d.
a405b46 Removed a and b.
...

The --decorate switch adds key information to the git log output, and it’s impor-
tant to understand this output. From listing 14.4, let’s focus on the following three
lines:

195f2a1 (HEAD, origin/master, origin/HEAD, master) Small change
3682ea9 (origin/new_feature) Starting a second new file
9a3e7f4 (origin/another_fix_branch) Renaming c and d.

Each entry shows a SHA1 ID, a list of references in parentheses, and an excerpt of the
commit log message. The references prepended with origin/ are the remote-tracking
branches.

 The first line shows that the current commit in the math.carol repository is SHA1
ID 195f2a1. Your SHA1 ID will be different. This line is what your working directory is
pointing to, as indicated by the label HEAD (remember our analogy from chapter 8:
HEAD is your playback machine, and it always points to your current branch).

 The labels in parentheses (the decorations) from the first line further show that
this is the master branch. Finally, this line shows that the remote repository (math.git)
has at this time the same SHA1 ID for both origin/master and origin/HEAD remote-
tracking branches. The key fact to note is that these remote-tracking branches aren’t
updated until you do a git fetch or git pull.

 The second and third lines show the remote-tracking branches origin/
new_feature and origin/another_fix_branch at their respective commits (3682ea9,
9a3e7f4). In the listing, there’s no local branch. Your listing may be different. The
important point to note is that on the remote (math.git), new_feature and
another_fix_branch are at these commits.

 You can see this in the gitk program.

TRY IT NOW In the math.carol repository, type the following:

gitk

Listing 14.4 git log --decorate --oneline --all output

222 CHAPTER 14 Keeping in sync
In the view configuration screen (figure 14.7), make sure to show all local and
remote-tracking branches. If you omit the All Remote-Tracking branches tog-
gle, you won’t see the labels indicating the remote-tracking branches.

With this configuration,
gitk should look like fig-
ure 14.8.

If your gitk view is differ-
ent, check whether your
view configuration win-
dow (figure 14.7) has the
Simple History toggle
button clicked on. You
looked at this in section
11.1.2, and it greatly
reduces the display.

Make sure to exit gitk.

Now that you’ve examined the log of math.carol, you’re going to perform a git
fetch. This will update the math.carol repository, overlaying the new objects on top of
your old one.

TRY IT NOW Type the following:

cd $HOME/math.carol
git fetch

This should give you the following output.

remote: Counting objects: 9, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From /Users/rumali/gitbook/math
 195f2a1..7746e35 master -> origin/master

Listing 14.5 git fetch output

Figure 14.7 gitk configuration to look at all branches and remote-tracking branches

Figure 14.8 gitk showing the history, with labels for the
remote-tracking branches overlaid on top

223Using git pull: a two-part operation
Now you’ll repeat the steps from the previous TRY IT NOW to confirm that the
remote branches have been updated. Type this:

git log --decorate --all --oneline

This should result in the following listing.

7746e35 (origin/master, origin/HEAD) Another tiny change
195f2a1 (HEAD, master) Small change
9517faf A small update to readme.
3682ea9 (origin/new_feature) Starting a second new file
...

You should be able to confirm that this listing is different from listing 14.5.
Let’s look at the first two lines:

7746e35 (origin/master, origin/HEAD) Another tiny change
195f2a1 (HEAD, master) Small change

From here, you can see that your current HEAD (master) is still at 195f2a1 on
the second line, but the remote-tracking branch for master (origin/master) is
7746e35 on the first line. Let’s
take a look at this in gitk. In
the math.carol directory, type
the following:

gitk

You’ll see a view like figure
14.9.

Figure 14.9 Notice that the remote origin/
master is ahead of your local master branch.

Hopefully it’s clear by now that
git fetch has brought in a new
object (a new commit to master)
and laid it right on top of your
local repository. Another way to
picture this is to use the branch
diagrams from chapters 8 and 9,
as shown in figure 14.10.

 To make your local repository
match the remote, you need to do
a merge.

Figure 14.10 After performing the fetch,
a new commit exists in your local repo.

Listing 14.6 git log output after a git fetch

git fetch

master

…

master

…

remotes/origin/master

224 CHAPTER 14 Keeping in sync
14.2.2 Merging two branches (git merge)

The second step of git pull is to run
git merge FETCH_HEAD. What is
FETCH_HEAD? It’s a reference to the
remote branch that you just fetched
in the previous section. Look at figure
14.11.

 Compare figure 14.11 with figure
14.10. Every time you run git fetch,
FETCH_HEAD will contain the SHA1 ID
of the remote’s HEAD, and git merge
can use this to merge the change into
your branch. Just as HEAD points to
the current branch, FETCH_HEAD
points to the most recent remote-
tracking branch that was fetched.

 Notice too that HEAD and
FETCH_HEAD are capitalized. Git is
case-sensitive regarding these particu-
lar names.

TRY IT NOW Let’s examine FETCH_HEAD more closely and confirm that it’s
the same as remotes/origin/master (the remote-tracking branch). In
math.carol, type the following:

git rev-parse FETCH_HEAD

This should give you a SHA1 ID that points to the latest commit from the
remote’s master branch. Keep in mind that this remote master branch is
already in your local repository. You can access it by its special name, origin/
master. Type the following:

git rev-parse origin/master

This last command should give you the same SHA1 ID as FETCH_HEAD.

Finally, because you have two commit IDs, you can ask Git to indicate what is
different between these two branches, as you learned in chapter 9. Type the
following:

git diff HEAD..FETCH_HEAD

This should give you output like the following listing.

diff --git a/another_rename b/another_rename
index 86d347f..fb7f0ae 100644
--- a/another_rename

Listing 14.7 Output from git diff

master
HEAD

master
HEAD

git fetch

… …

remotes/origin/master
FETCH_HEAD

Figure 14.11 HEAD and FETCH_HEAD references
labeled (compare with figure 14.10)

225Merging a pull
+++ b/another_rename
@@ -1 +1,2 @@
 Small change
+Tiny change

 Finally, and most important, FETCH_HEAD is used as the argument to git merge.

TRY IT NOW Let’s go ahead and perform the merge. Type the following:

git merge FETCH_HEAD

You should get the following output.

$ git merge FETCH_HEAD
Updating 195f2a1..7746e35
Fast-forward
 another_rename | 1 +
 1 file changed, 1 insertion(+)

Hopefully, that output was some-
what expected. math.carol hadn’t
made any changes, so you can just
fast-forward this repo to the latest
commit that math.bill performed
(and pushed to math.git).

 In figure 14.12, I’ve taken the
branch that FETCH_HEAD points
to (namely, remotes/origin/mas-
ter), and I’ve merged it into the
local master branch. Knowing
that git pull is doing both a git
fetch and git merge will help
you understand the situations
you’ll run into with more-compli-
cated merges and git pull.

14.3 Merging a pull
The git pull cycle described in
the previous section is the easiest
kind of pull to perform. Why? Because when you made your change in math.bill and
pushed it up to math.git, math.carol had no changes. When git pull is done in
math.carol, the change from math.bill could be incorporated as a fast-forward merge.

 Just like the merges you learned about in chapter 10, a git pull’s merge step
might resolve cleanly or might result in a conflict.

Listing 14.8 Output from git merge FETCH_HEAD

git merge FETCH_HEAD

…

master
HEAD

remotes/origin/master
FETCH_HEAD

master
HEAD

…

remotes/origin/master
FETCH_HEAD

Figure 14.12 A git merge that results in a fast-forward

226 CHAPTER 14 Keeping in sync
14.3.1 Clean merge

A clean merge is one that Git can automatically resolve. For example, if the two reposito-
ries make the same change to the same file in the same line, Git’s merge can resolve
the difference by itself. But because git pull does an automatic git merge, you
could be surprised at Git’s behavior.

TRY IT NOW Make a commit in the math.carol directory:

cd $HOME/math.carol
echo "Small change 2" >> another_rename
git commit -a -m "Small change 2 from carol"

For the math.bill directory, do the same thing:

cd $HOME/math.bill
echo "Small change 2" >> another_rename
git commit -a -m "Small change 2 from bill"

Now let’s push this change to math.git. Type this in the math.bill directory:

git push

It’s important to recognize that both repositories have different commits (different
SHA1 IDs) at the tips of their branches. Git will need to merge these two branches. You
can see this for yourself by running gitk in both the math.carol and the math.bill
directories. Their master branches will have the same change, but their SHA1 IDs will
be different, as shown in figure 14.13.

Figure 14.13 The same change still produces different commit IDs.

227Merging a pull
In figure 14.13, math.carol and math.bill have different SHA1 IDs for their last com-
mits (indicated by the dashed arrow). This requires Git to merge these two branches.
But because both files have the same change, Git can merge the files automatically.
There’s no conflict between the files.

TRY IT NOW In math.carol, type the following:

git pull

You’ll see one of two things: an output message as in listing 14.9, or a text file
open in the Git’s default editor, as shown in figure 14.14. (You’ll learn how to
change the default editor in chapter 20.) The first item is known as a clean
merge with an automatic commit message. The second item is a clean merge with a
nonautomatic commit message.

The following listing is your clean merge with an automatic commit message.

remote: Counting objects: 9, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From c:/Users/Rick/Documents/gitbook/math
 db106c7..fe04975 master -> origin/master
Merge made by the 'recursive' strategy.

Figure 14.14 is your clean merge with a nonautomatic commit.

This second case can be confusing. What exactly happened? Let’s break this
second case down in the next section, 14.3.2, and the simpler, first case, in
section 14.3.3.

14.3.2 Clean merge with nonautomatic commit

When you’re in Git’s default editor, it turns out that git pull has already performed
the git merge cleanly, and is now asking you to write a commit message. This is why
the editor window has appeared—for you to write a commit message. In figure 14.14,

Listing 14.9 git pull of a clean merge

Figure 14.14 This clean git pull causes you to jump inside Git’s default editor.

228 CHAPTER 14 Keeping in sync
Git does provide a default message. git pull will run git commit for you after you
exit the editor.

 To see this for yourself, let’s cancel the merge by creating an empty commit message.

TRY IT NOW The steps in this section can be followed only if your git pull
resulted in a clean merge with a nonautomatic commit message. This means
that your git pull put you inside the editor window. If this isn’t the case,
your git pull was a clean merge with an automatic commit message, and you
can skip to section 14.3.3.

If you’re inside Git’s default editor (vi), type the following exactly:

:%d
:wq

The first line deletes all the lines from the current editor message. The sec-
ond line saves the message. You’ve produced an empty commit message.
Because the message is empty, the git commit that git pull tried to run will
fail. Your screen should now look like the following listing.

remote: Counting objects: 8, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From c:/Users/Rick/Documents/gitbook/math
 e150c19..834c869 master -> origin/master
error: Empty commit message.
Not committing merge; use 'git commit' to complete the merge.

In the output, the key line is this:

e150c19..834c869 master -> origin/master

This shows that the commit e150c19 (the old commit) was updated to 834c869 (the
new commit). The last line, which begins Not committing merge, is from the merge
command. This means you’re still in the middle of a merge. You can confirm all of
this with gitk and with git status. Resolving merges is something that happens in
other version-control systems.

TRY IT NOW In math.carol, now that you’ve cancelled the automatic commit
message, type this:

git status

You should see output as in the following listing.

On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commit each, respectively.

Listing 14.10 A clean merge, after cancelling the automatic commit message

Listing 14.11 Output from git status after cancelling the merge

229Merging a pull
 (use "git pull" to merge the remote branch into yours)

All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)

nothing to commit, working directory clean

This message is hard to understand at first glance.
The first sentence of the status message (Your
branch and 'origin/master' have diverged)
means that these two branches aren’t on the same
line of development anymore. The next sentence (1
and 1 different commit each, respectively)
says that your branch (you’re in master) has one
newer commit, and origin/master has one newer
commit. To understand this line, look at the follow-
ing line again:

e150c19..834c869 master -> origin/master

This says that commit 834c869 was added to
e150c19 (or origin/master was added on top of
master). This looks like figure 14.15.

Figure 14.15 master is diverged with this
pull. Note that the base is e150c19.

This can be visualized by run-
ning gitk in the math.carol
directory, as shown in figure
14.16.

 Finally, git log can draw the
same type of graph, using the --
graph switch.

TRY IT NOW In the math.carol directory, type the following:

git log --decorate --graph --oneline --all

The top part of the listing looks similar to the following.

* 41646b0 (HEAD, master) Small change 2 from carol
| * 834c869 (origin/master, origin/HEAD) Small change 2 from bill
|/
* e150c19 A small update to readme.

Listing 14.12 A graph view from git log

…

e150c19

41646b03 834c869

master remotes/origin/master

Figure 14.16 Two paths diverging from A small update.

230 CHAPTER 14 Keeping in sync
The first two lines can appear in any order. This is why you’re in the editor in the first
place. Git is allowing you to write a new commit message to replace the default mes-
sage. This may be helpful to your fellow collaborators, who may be expecting a com-
mit message explaining why a merge has taken place.

TRY IT NOW Let’s complete the merge, which you interrupted with the empty
commit message. Type the following:

git commit

You’ll be thrown into Git’s default editor (notice that you didn’t pass a mes-
sage via the -m switch). An autogenerated commit message is already entered,
and to make things easy, let’s just accept it. Type this:

ZZ

You’ll be returned to the prompt, and you’ll see a short message like the fol-
lowing listing.

[master 655cbee] Merge branch 'master' of /home/rick/gitbook/math

14.3.3 Clean merge with automatic commit

In a clean merge with an automatic commit message, Git writes the commit message for
you and commits it. You don’t have to run git commit at all, but you also don’t get the
chance to edit the commit message. If your merge had an automatic commit, type git
log -1, and you’ll see the generated commit message, shown in the following listing.

commit 655cbee109eadd98d894639ad57f35ff7ce5bf59
Merge: 41646b0 834c869
Author: Rick Umali <rickumali@gmail.com>
Date: Sat Sep 13 14:39:11 2014 -0400

 Merge branch 'master' of c:/Users/Rick/Documents/gitbook/math

This commit joins the two parents (41646b0 and 834c869, in b) into a new commit
(655cbee). If you were to open gitk, you’d see this merge (see figure 14.17), as you
saw in chapter 10.

 The merge will be the same, regardless of whether you had an automated commit
message or not.

Listing 14.13 Typical merge message

Listing 14.14 A merge commit

The parents of this commitb

Figure 14.17 Merging the
clean merge

231Merging a pull
14.3.4 Conflicted merges

There’s one more level of complexity past what we’ve already discussed: conflicted
merges. Recall from chapter 10 that Git’s algorithms can’t resolve all differences. If
two branches have modified the same file in the same place but in different ways, Git
has to ask how to resolve the conflict. This same situation can arise when you use git
pull (remember, git pull is just git fetch and then git merge).

TRY IT NOW To set up for this TRY IT NOW, you’ll push the changes you made
in the previous section from math.carol back to the repo:

cd $HOME/math.carol
git push

Then, in the math.bill directory, you pull these changes:

cd $HOME/math.bill
git pull

Now both carol and bill are back in sync with one another and the main
repository. As in the previous sections, you’ll introduce a commit in the
math.bill repository, push it to math.git, and then introduce a conflicting
commit in the math.carol repository. You’ll first make a commit in the
math.bill directory, and push this to the central math.git repo:

cd $HOME/math.bill
echo "JKL MNO PQR" >> another_rename
git commit -a -m "JKL part of alphabet"
git push

These steps conclude with git push, shown in figure 14.18.

push

math.git/

Git repo

math.bill/

Git repo

math.carol/

Git repo
Figure 14.18
Pushing a
change to
math.git

232 CHAPTER 14 Keeping in sync
Then you’ll make a commit in the math.carol directory:

cd ~/math.carol
echo "ABC DEF GHI" >> another_rename
git commit -a -m "ABC part of alphabet"

So far, you have the same picture as before (you didn’t push your change
from math.carol to math.git), but this time the files have conflicting edits on
the same line.

You’re now going to pull down the changes from math.git and encounter the merge
conflict.

TRY IT NOW Type the following:

git pull

You should see the CONFLICT error shown in the following listing.

remote: Counting objects: 9, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From c:/Users/Rick/Documents/gitbook/math
 834c869..5b84cb4 master -> origin/master
Auto-merging another_rename
CONFLICT (content): Merge conflict in another_rename
Automatic merge failed; fix conflicts and then commit the result.

You’ll be returned immediately to the prompt. Git needs help resolving the
conflicting changes in the file another_rename. (The next-to-last line shows
the conflicted file, though do keep in mind that Git will enumerate all the
conflicted files that it has detected.) Figure 14.19 shows the conflicting line in
this file between the two repositories.

You can confirm the status with the git status command:

git status

Listing 14.15 A git pull conflict

math.carol/another_rename: math.bill/another_rename:

Small change
Small change 2
ABC DEF GHI

Small change
Small change 2
JKL MNO PQR

Figure 14.19 The last line is the conflicting line.

233Merging a pull
You should see output like the following listing. Section 14.3.3 explains the 1
and 1 different commit each message, but you may have skipped this
section if your first git pull produced a clean merge with an automatic
message.

On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commit each, respectively.
(use "git pull" to merge the remote branch into yours)

You have unmerged paths.
(fix conflicts and run "git commit")

Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: another_rename

no changes added to commit (use "git add" and/or "git commit -a")

At this point, the file must be manually fixed. With this one git pull, Git has brought
down the new changes (git fetch) and tried to merge them (git merge). As in chap-
ter 10, the file containing the conflict is modified to show you the lines that Git had
problems with. Use your favorite editor to open the file. Confirm that you see your file
at the top, but that conflicted lines appear at the bottom of the file, as in the following
listing. (You last looked at this in detail in section 10.3.2.)

<<<<<<< HEAD
ABC DEF GHI
=======
JKL MNO PQR
>>>>>>> 5b84cb4be250b2a748515d66da76bbad4314f455

TRY IT NOW You covered handling merge conflicts in chapter 10, so flip back
to that chapter to review the details. The key with merge conflicts is to pick
the right lines for the merged file. Typically, one file has the correct line, but
there’s nothing to prevent you from replacing the lines with anything that
makes sense. Using your favorite editor, open the file named
another_rename, remove the lines (shown in the box in figure 14.20), and
replace them with ABC DEF GHI JKL MNO PQR.

After you’ve made the fix, type the following to commit the change in the
math.carol repository:

git add another_rename
git citool

Listing 14.16 git status for a conflicted merge

Listing 14.17 The conflicted lines

234 CHAPTER 14 Keeping in sync
The last command displays the Git GUI tool, shown in figure 14.21. There you
can see that a commit message is automatically generated. Click the Commit
button to finish.

In the previous TRY IT NOW, you could have used the git commit command directly
with the -m switch to specify your own message. This would override the message that
Git would have generated for you.

 At this point, you must push your changes from math.carol back to math.git, and
then have Bill pull these changes down from math.git.

TRY IT NOW This will sync up both the math.carol and math.bill repos with
one another. Type the following:

cd $HOME/math.carol
git push
cd $HOME/math.bill
git pull

Small change
Tiny change
Small change 2
ABC DEF GHI JKL MNO PQR

Small change
Tiny change
Small change 2
<<<<<<<HEAD
ABC DEF GHI
=======
JKL MNO PQR
>>>>>>>5b84cb4be250b2a74…

Figure 14.20 Fixing the merge by combining the changes. The line on the right is the
new merged file.

Figure 14.21 Committing the change with git citool (a.k.a. Git GUI)

235Restricting pulls to fast-forwards only
14.4 Restricting pulls to fast-forwards only
Clearly, fast-forward merges are the easiest to deal with. You can run git pull to
incorporate only commits that are descendants of your current branch, using the --
ff-only switch. This prevents Git from doing any automated work, unless it’s a fast-
forward merge.

TRY IT NOW Repeat the setup steps between math.bill and math.carol to
introduce a merge. Here are those steps again, listed concisely:

cd $HOME/math.bill
echo "ABC" >> another_rename
git commit -a -m "Alphabet (on bill)"
git push
cd $HOME/math.carol
echo "ABC" >> another_rename
git commit -a -m "Alphabet (on carol)"

These steps create the situation where two branches have to be merged. Now
type this (from the math.carol directory):

git pull --ff-only

You’ll see the following output.

remote: Counting objects: 9, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From c:/Users/Rick/Documents/gitbook/math
 5b84cb4..1ac8efa master -> origin/master
fatal: Not possible to fast-forward, aborting.

If you’re running Git 2.0 or greater, it’s also possible to configure Git so that this is the
default behavior. To do this, type the following:

git config pull.ff only

Setting this behavior means that you’ll always need to manually perform the merge,
even though Git might be able to automatically perform the merge.

 At this point, you’ll do the merge yourself, push the changes from math.carol back
to math.git, and then have Bill pull these changes down from math.git.

TRY IT NOW The first git pull is a repeat of the steps you saw in section 14.3:

cd $HOME/math.carol
git pull

The next steps sync up the math.carol and math.bill repos with one another:

git push
cd $HOME/math.bill
git pull

Listing 14.18 git pull --ff-only

236 CHAPTER 14 Keeping in sync
14.5 Using git fetch and merge instead of pull
git pull is one of those commands that Git developers consider troublesome for the
beginner. The Git mailing list had a lively thread declaring git pull as evil. One of its
shortcomings is that it doesn’t allow you to see what will change when you perform
the merge.

 Instead of using git pull all the time, especially in an actively updated repository,
consider performing the git fetch and the git merge FETCH_HEAD (section 14.2)
commands, so you see exactly what files will be merged and how. This is helpful in an
active repository with frequent commits.

TRY IT NOW Let’s repeat the steps to set up a conflicted merge:

cd $HOME/math.bill
echo "ABC" >> another_rename
git commit -a -m "ABC (on bill)"
git push
cd $HOME/math.carol
echo "DEF" >> another_rename
git commit -a -m "DEF (on carol)"

If you were to perform a git pull on math.carol, you’d immediately get
thrown into a conflicted state. But type this:

git fetch
git diff HEAD FETCH_HEAD

This displays the differences between the two commits, as shown in the follow-
ing listing.

diff --git a/another_rename b/another_rename
index cec2e13..c39bef6 100644
--- a/another_rename
+++ b/another_rename
@@ -3,4 +3,4 @@ Tiny change
 Small change 2
 ABC DEF GHI JKL MNO PQR
 ABC
-DEF
+ABC

git diff is showing you how to change the HEAD so it looks like
FETCH_HEAD. Because the only difference is the last line (in math.bill, you
had ABC, and in math.carol you had DEF), the git diff output says you’d
remove the DEF and add ABC to make math.carol’s another_rename file con-
tents match the contents from math.bill’s another_rename file.

Using git pull on a common branch can result in surprises. This is why git pull is
considered evil: surprise merges! If you perform the two steps of git pull individually,

Listing 14.19 git diff between HEAD and FETCH_HEAD

237Lab
you’ll have a better chance of anticipating errors in the merge step by doing a git diff
between your branch and the updated branch.

14.6 Lab
You’ve learned a lot in this chapter, and yet it feels like more could be covered. This
lab enables you to explore some of these other areas:

1 Merge the last fetch in the previous section.
2 In the math.bill repo, make a change and commit it in every branch (master,

another_fix_branch, and new_feature). Push these up to math.git by using git
push --all, and then do a git fetch from math.carol. Can you confirm that
the git log --decorate --all --oneline output shows that all these
branches are advanced on the remote-tracking branches?

3 Confirm that the FETCH_HEAD file changes every time you do a git fetch. Use
git checkout on every branch, and check FETCH_HEAD (with git rev-parse,
or by directly looking at the file).

4 In all of the exercises of this chapter, you pushed from math.bill to math.git,
simulating a centralized Git server. Try the following:

cd $HOME/math.carol
git remote add bill ../math.bill
git branch --set-upstream-to=bill/master

This sets up math.bill to be a remote to carol. You can now do all the exercises
without a push to math.git. What are the implications of this approach? Note:
Reset the math.carol repository to point back to origin by typing the following:

git branch --set-upstream-to=origin/master

5 The repository contains two remote-tracking branches: another_fix_branch
and new_feature. Merge these branches by typing this:

cd $HOME/math.carol
git checkout master
git merge new_feature

Did Git complain? Why? At this point, you could merge new_feature directly
from the remote-tracking branch, by typing this:

git merge origin/new_feature

Or you could create a new local branch based on origin/new_feature. Try this!

6 Examine the contents of the FETCH_HEAD file. Compare it with the HEAD file
(found in your working directory’s .git directory). For example, type the
following:

cd $HOME/math.carol
cat .git/FETCH_HEAD

238 CHAPTER 14 Keeping in sync
14.7 Commands in this chapter

Table 14.1 Commands used in this chapter

Command Description

git pull Sync your repository with the repository that you cloned from (a.k.a. the
upstream repository). This command comprises two commands: git
fetch and git merge.

git fetch The first part of git pull. This brings in new commits from the remote
repository and updates the remote-tracking branch.

git merge FETCH_HEAD Merge the new commits from FETCH_HEAD into the current branch.

git pull --ff-only The --ff-only switch will allow a merge only if FETCH_HEAD is a
descendant of the current branch (a fast-forward merge).

Software archaeology
When you start interacting with a new Git repository, you might want to understand
its history. Git has a variety of commands that let you dig into these details. This
chapter describes how to survey a repository’s history by using git log, git short-
log, and git name-rev. The chapter also focuses on commands that help you
understand the files in the repository: git grep, git show, and git blame.

 If you’re going to start work on an existing repository, especially one with lots of
contributors or lots of history, you’ll want to perform a kind of archaeological sur-
vey of the code base. You’ll want to examine the code base at a high level and then
narrow down to a particular set of files for a closer examination. These Git tools
enable you to perform this survey of the code base. Let’s get digging!

15.1 Understanding git log
git log is the command that displays your repository’s timeline history. You’ve
been using this throughout the book already, but if you look at its documentation,
you’ll see that it has a rich set of capabilities. You’ll check out some of that function-
ality here.

15.1.1 Reviewing the basics of git log

You learned in chapter 2 that git log shows your timeline of commits, from the
most recent commit to the root. git log’s basic output format is to show the entire
commit message, so you learned about the --oneline switch to produce a more
succinct form. In chapter 4, you learned about the --stat switch, which makes git
log display the files that were updated in a commit.
239

240 CHAPTER 15 Software archaeology
TRY IT NOW In the math.carol directory, review your commit history by typing
the following git log commands. The listing may be long, so Git may use the
pager. Remember to press Q to exit the pager.

git log
git log --oneline
git log --stat

You should see familiar-looking output, as these were the commits you made over the
past day or so.

 A full commit consists of the parts in figure 15.1.

When you write a commit message, the first line is considered the title, or subject, of
the commit. This title is displayed when you use the --oneline switch. This title
should be a sentence that is 50 characters or fewer, so Git commands that display this
text next to other data won’t be too crowded.

 In chapter 8, you learned about the --parents switch. Now that you have merges,
you can practice the --merges switch, which finds all the merges in your repository.

TRY IT NOW Let’s identify from the git log output those commits that repre-
sent merges of two branches. In the math.carol directory, type the following:

git log --parents
git log --parents --oneline

Adding the --oneline switch makes the output much more concise. You
should see something similar to the following listing. (Don’t worry if the
order is different, or if your repository has different commits. The key is to
find a merge commit.)

fb9fed6 c4ccf59 20a708a Merge branch 'master' of ../math.bill
c4ccf59 e150c19 JLK Part of Alphabet (on carol)
20a708a e150c19 ABC Part of Alphabet (on bill)
e150c19 f48c719 A small update to readme.

Listing 15.1 An annotated listing of git log --parents --oneline

Metadata

Full commit message

Subject (title)

commit ebe9470fee8882…
Author: Rick Umali <rickumali@gmail.com>
Date: Sun Sep 7 06:46:40 2014-0500

 Adding printf.

 This is to make the output a little more human readable.

 printf is part of BASH, and it works just like C’s printf()
 function.

Figure 15.1 A breakdown of a commit message

Three SHA1 IDs b

241Understanding git log
f48c719 58ee0fc Adding printf.
58ee0fc d3ae3ea Adding two numbers.
d3ae3ea dd87c91 Renaming c and d.
dd87c91 11a90b4 Removed a and b.
11a90b4 12a7b37 Adding readme.txt
12a7b37 907b870 Adding four empty files.
907b870 56d7919 Adding b variable.
56d7919 c57cd5c This is the second commit.
c57cd5c This is the first commit.

You can eyeball the output and see that b contains three SHA1 IDs. Look at
this closely by typing the following:

git --no-pager log fb9fed6 -n 1

Replace fb9fed6 with the SHA1 ID of the merge commit. The -n 1 limits the
git log to display only one commit entry. The --no-pager switch tells Git
not to paginate the output. Your SHA1 ID will be different. Find an entry that
has three SHA1 IDs.

This command results in the following output.

commit fb9fed602170a079db5f5eeb6ee6477eb4fa3fca
Merge: c4ccf59 20a708a
Author: Rick Umali <rickumali@gmail.com>
Date: Sun Sep 14 21:22:58 2014 -0400

 Merge branch 'master' of ../math.bill

This shows that commit fb9fed6 is a merge of commits c4ccf59 and 20a708a.

Rather than finding these merges by hand, you can use the --merges switch:

git log --merges

You should see only the commits that have merges in them.

15.1.2 Limiting the display of commits

The switch --merges provides a way to limit (or reduce) the number of commits dis-
played. By default, git log shows all commits, from the most recent commit all the
way back to the first commit. As you scan and survey your new repository, this full list-
ing is helpful, but as you narrow down a particular time range or a particular set of
files, you’ll want to see specific parts of the history. The git log documentation has a
section named Commit Limiting, which discusses how to reduce the number of com-
mits based on criteria. These criteria can be combined, as you saw in the previous sec-
tion, by combining the --merges switch and -n 1.

 The following sections show how to specify different kinds of criteria to git log.
This criteria reduces the number of commits displayed by git log.

LIMITING BY FILE

Let’s learn how to limit your history to a specific file or set of files.

Listing 15.2 A log listing of a merge (with --parents switch)

242 CHAPTER 15 Software archaeology

Stat l
renam
TRY IT NOW In the math.carol directory, you’ll limit the git log output to
the commits that affected one or more files:

git log --oneline readme.txt

You can do this for more than one file. Type the following:

git log --oneline readme.txt renamed_file

To prove that you’re getting only the commits that pertain to these two files,
type this:

git log --stat --oneline readme.txt renamed_file

This produces output similar to the following listing.

8e07daf Adding a line to renamed_file
 renamed_file | 1 +
 1 file changed, 1 insertion(+)
d09f697 Merge branch 'new_feature' of /home/rick/gitbook/math into

new_feature
7f16f04 Adding new line
 readme.txt | 1 +
 1 file changed, 1 insertion(+)
48c8718 A small update to readme.
 readme.txt | 1 +
 1 file changed, 1 insertion(+)
2624567 Renaming c and d.
 renamed_file | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
50d36bc Adding readme.txt
 readme.txt | 1 +
 1 file changed, 1 insertion(+)

The files displayed by the --stat switch (b and c) correspond to the files that were
entered on the command line. By using the --stat switch, git log indicates the files
that have changed in the commit, showing only those files specified on the command
line. (Leave out readme.txt and renamed_file to see the difference.)

FINDING SPECIFIC COMMITS

You can tell git log to show only those commit messages that match a particular
string by using the --grep switch to search commit messages for that string. For exam-
ple, if your project is in the habit of entering bug numbers in commit messages, you
can use git log --grep for all commits that pertain to a particular bug number.

TRY IT NOW In the math.carol directory, type this:

git log --grep=change

This should list any commits that have the word change in the commit
message.

Listing 15.3 git log --stat --oneline output

ine for
ed_file b

Stat line for
readme.txtc

243Understanding git log
LIMITING BY TIME RANGE

You can limit the commits to those that took place in a certain time range, using the -
-since and --until switches. For example, you might find documentation with a par-
ticular date and might want to see what code changes took place immediately after
that date. This kind of exploratory digging is possible with these switches.

TRY IT NOW In the math.carol directory, examine the dates of the commits.
Now try to show only those commits that happened in a two-day period. You’ll
have to come up with dates yourself, but your command will look similar to
this one:

git log --since 10/10/2014 --until 10/24/2014

LIMITING BY AUTHOR

You can also limit commits to a particular author, with the --author switch. Of course,
you’ll need a list of authors, so let’s tackle that first. An easy way to get the list of
authors from a repository is to use git shortlog.

TRY IT NOW In the math.carol directory, type this:

git shortlog

This should display something like the following listing.

Rick Umali (12):
 This is the first commit.
 This is the second commit.
 Adding b variable.
 Adding four empty files.
 Adding readme.txt
 Removed a and b.
 Renaming c and d.
 Adding two numbers.
 Adding printf.
 A small update to readme.
 Small change
 Another tiny change

To get the author list with email addresses, pass in the -e switch:

git shortlog -e

After you have an author’s name or email address, you can restrict commits to that
one author by passing it into the git log --author command.

TRY IT NOW In chapter 12, you cloned the math repository from GitHub into
the directory math.github. Let’s go into that directory to practice the git
shortlog and git author commands:

cd $HOME/math.github
git shortlog -e
git log --author="Rick Umali"

Listing 15.4 git shortlog output

244 CHAPTER 15 Software archaeology
You can also search by a partial name or partial email address. (In Git, the
author of a commit is a concatenation of a name and email address.) Type
the following:

git log --author="Rick"
git log --author="gmail.com"

As you’re digging for information about changes in the code base, and your clues
point to a particular author, you can use this command to find other places where
they made changes as well.

15.1.3 Seeing differences with git log

Each commit corresponds to a distinct version of the entire repository. A commit can
consist of one change to one file, or multiple changes to multiple files. One question
you’ll often ask is what is the difference between two commits? Perhaps while debug-
ging a problem, you’ll learn that the code base was functioning properly in one com-
mit but began failing after another commit. git log can be used to see the
differences between those two commits.

TRY IT NOW Use this command to display the number of files that have
changed between the most current commit (HEAD) and its immediate prede-
cessor (HEAD^):

git log --stat HEAD^..HEAD

The --stat switch shows a list of files that have changed.

Two interesting pieces of syntax are at play. The first is HEAD^ (HEAD
appended with the caret symbol), which signifies the parent of HEAD. HEAD
without the caret symbol represents the current commit. You can substitute
any reference (for example, a branch or tag) or even a SHA1 ID in place of
HEAD. The second interesting syntax is the double-period. It specifies a revi-
sion range. Ranges specify a set of commits. In this case, the two commits are
next to each other (HEAD^ is immediately before HEAD).

If you wanted to see what changed in the files since the last commit, try this:

git log --patch HEAD^..HEAD

The --patch switch shows the contents that have changed. You’ll see output
like the following listing.

commit 7746e35930e562304e347ac69929aa276ed345dc
Author: Rick Umali <rumali@firstfuel.com>
Date: Sun Sep 7 21:51:15 2014 -0400

 Another tiny change

diff --git a/another_rename b/another_rename
index 86d347f..fb7f0ae 100644

Listing 15.5 Output of git log --patch

245Understanding git log
--- a/another_rename
+++ b/another_rename
@@ -1 +1,2 @@
 Small change
+Tiny change

It’s possible to combine patch and stat with --patch-with-stat, though you probably
want to do --stat first, to see how many files were affected, and then run git diff on
those files individually. I discussed git diff extensively in chapters 6 and 7.

 Keep in mind that unless you limit the files, git log --patch shows all the files
that are different between the two versions. If multiple files are changed, multiple files
will be displayed. Files by themselves don’t have versioning information. Git tracks
changes across the entire set of files in the repository.

TRY IT NOW Let’s go to the math.github directory and look at a difference
that spans multiple files. Type the following:

cd $HOME/math.github
git log --patch ef47d3f^..ef47d3f

Notice the use of the caret (^) after a SHA1 ID. This indicates the version
immediately before ef47d3f. This git log command produces output that
looks like this listing.

commit ef47d3fd293bc13321270e88af284f63d6f85f84
Author: Rick Umali <rickumali@gmail.com>
Date: Sat Aug 2 18:54:56 2014 -0500

 Adding four empty files.

diff --git a/a b/a
new file mode 100644
index 0000000..e69de29
diff --git a/b b/b
new file mode 100644
index 0000000..e69de29
diff --git a/c b/c
new file mode 100644
index 0000000..e69de29
diff --git a/d b/d
new file mode 100644
index 0000000..e69de29

The listing shows that four files have been added. Each one looks like this
entry:

diff --git a/a b/a
new file mode 100644
index 0000000..e69de29

Listing 15.6 git log --patch revealing multiple files

246 CHAPTER 15 Software archaeology
Git uses two indicators to show that this is a new file:

■ new file mode, which indicates that this is a new file with permissions
mode 100644

■ index 0000000, which indicates that a previous version for this file didn’t
exist

You can limit the output by typing the following:

git log --patch ef47d3f^..ef47d3f -- a
git log --patch ef47d3f^..ef47d3f -- a b

In these commands, you have to separate the files with a double-dash. When
you type the commands, you’ll see that the git log output is limited to the
files you specified.

15.1.4 Using git name-rev to name commits

If your repository contains lots of branches, you’ll want to use limiting arguments to
make sure you’re not overwhelmed. In this section, you’ll try to find some interesting
artifacts among a large number of branches. You’ll learn how to use git name-rev to
give a human-readable name to any commit, which can help specify revisions.

TRY IT NOW To create your testing area, download the zip file containing the
code for this book from the book’s website (www.manning.com/umali). In
that zip file is a script named make_lots_of_branches.sh. This script creates a
repository full of branches. Unzip the contents into your $HOME directory.
Then type the following:

cd $HOME
bash make_lots_of_branches.sh

You may have run this earlier, in the chapter 9 exercises, but if you haven’t,
be advised that this script may take a minute to run. It’s creating many
branches. After you’ve done that, type the following:

cd $HOME/lots_of_branches
git branch

This output shows a long listing of all the branches in the repository. You can
use git branch’s --column switch to make the listing more manageable. It dis-
plays the branch list in columns, as shown in the following listing. Type this:

git branch --column

 branch_01 branch_08 branch_15 branch_22 branch_29 branch_36
 branch_02 branch_09 branch_16 branch_23 branch_30 branch_37
 branch_03 branch_10 branch_17 branch_24 branch_31 branch_38
 branch_04 branch_11 branch_18 branch_25 branch_32 branch_39
 branch_05 branch_12 branch_19 branch_26 branch_33 branch_40
 branch_06 branch_13 branch_20 branch_27 branch_34 * master
 branch_07 branch_14 branch_21 branch_28 branch_35

Listing 15.7 git branch --column output

247Understanding git log

Com
7a

belo
bran
If you were to run the git lol command that you created in the previous section, it
would display all the commits for each one of these branches. This is because you cre-
ated the git lol command with the --all switch. You can limit the output by passing
one or more branches as arguments to the git log command.

TRY IT NOW Type the following:

git log --graph --decorate --oneline --all

This shows all the branches. Because there are so many, you’ll need to use the
pager to view all the contents. Try running git log with the --no-pager switch.

git log --graph --decorate --oneline branch_03

This command limits the git log output to one branch, which is easier to
see. Now type this:

git log --graph --decorate --oneline branch_03 branch_10 master

This form passes in three branches to the git log command. You’ll see a tree
listing of the branches, but notice how the listing is easier to understand
because you limited the commits to a few branches (instead of showing the
full set of branches).

The following listing shows the output of the last command on my machine. Your out-
put will be different, because the script randomizes the files in each branch. The mas-
ter branch should have exactly the same commit log messages, however, with different
SHA1 IDs.

* c524ab7 (branch_03) Commit for file_15360
* ae8c666 Commit for file_28769
| * 9ae4e58 (branch_10) Commit for file_23500
| * 7a1adec Commit for file_5795
|/
* ec2c398 (HEAD, tag: four_files_galore, master) Adding four empty files.
* d7bf074 Adding b variable.
* c4df58a This is the second commit.
* a9c7ba1 This is the first commit.

Each commit’s SHA1 ID is followed by a decoration, or label. This label shows the
branch that the commit belongs to. Commit ae8c666 b belongs to branch_03, and
commit 7a1adec c belongs to branch_10. Git has commands that show which branch
a commit belongs to, in case you’re ever asked to look at a specific SHA1 ID and need
to know which branch to check out.

TRY IT NOW You’ll use the math.github repository, so you can specifically ref-
erence a known SHA1 ID. Type this:

cd $HOME/math.github
git log --graph --decorate --oneline
git log 80f5738 -n 1

Listing 15.8 Annotated output of git log --graph with branch limiting

Commit ae8c666 belongs
to branch_03b

mmit
1adec

ngs to
ch_10 c

248 CHAPTER 15 Software archaeology
The last command should show you the commit Removed a and b. What
branch does this commit belong to? You can find out by typing this:

git name-rev 80f5738

The git name-rev command produces a name for a commit, based on the
nearest branch. This is one way to find out the branch that a commit
belongs to.

Another way to determine what branch a commit belongs to is to use git
branch --contains:

git branch -r --contains ce051a3

This command outputs the string origin/new_feature, meaning that this
SHA1 ID is part of the remote-tracking branch new_feature. If you check out
the new_feature branch and type git branch --contains ce051a3, you’ll
see the output new_feature.

The switch --contains is a useful switch to git branch when you’re given a
SHA1 ID and want to know what branch it belongs to.

15.2 Understanding gitk view configurations
Working on the command line to dig through a repositories history is noble, but ulti-
mately, it can break down. The repository for Git software (known as git-core) con-
tains over 30,000 commits and 500 tags. The simplify-by-decoration switch cuts this
down to only 500 lines. Even utilizing the pager, it’s hard to look at that many com-
mits, tags, or references in the terminal window.

 In this section, you’ll look at the GUI tool gitk and see how its graphical design may
make your code research a little easier.

15.2.1 Showing only specific branches in gitk

Like git log, the gitk GUI, by default, shows only the commits of the current branch.
You can pass the --all switch to git log to get all the branches, but if you want to iso-
late your view to specific branches, you can do so from two places: the view configura-
tion and the command line.

TRY IT NOW Go into the lots_of_branches directory and type the following:

gitk --all

In gitk, click View > Edit
View, as shown in figure 15.2.

Figure 15.2 The view
configuration from gitk --all

249Understanding gitk view configurations
Notice that this lengthy configuration window lets you specify which branches
you’d like to look at. First, deselect the All Refs check box, as highlighted in
figure 15.3. Then type branch_03 branch_10 master in the Branches & Tags
text field. (Each branch is separated by a space.)

Clicking the OK button changes the view, limiting the branches to what was
specified. (The OK button is at the bottom of the tall configuration window.)
You can see how this new view compares with the previous view in figure 15.4.
On your computer, you’ll be able to confirm that the view containing three
branches is faster to scroll through because there are only three branches,
instead of all branches.

The GUI in figure 15.4 was started by typing gitk --all at the command line. You
then limited the view by accessing the view configuration. If you know ahead of time
that you want to view a specific set of branches, you can pass those into gitk via the
command line.

Figure 15.3 Selecting
the refs by using the
Branches & Tags field

Figure 15.4 Comparing two gitk views (the left includes all the
branches, and the right shows just three branches)

250 CHAPTER 15 Software archaeology
 Pay attention to the branches shown in the gitk tool. Controlling the selection of
branches can be done in either the view configuration or on the command line.

TRY IT NOW Exit the gitk window from the previous TRY IT NOW section. On
the command line, from the lots_of_branches directory, type this:

gitk branch_03 branch_10 master

When gitk appears, you should
observe that it contains only the three
branches that you specified on the
command line, as shown in figure 15.5.

15.2.2 Working with simplified views

Let’s construct a simplified view of all
the branches. This view is going to be
the same as what you saw in section 15.1.4 with the --simplify-by-decoration
switch. Namely, it will show only commits that are at the tip of the branch.

TRY IT NOW Stop and restart the gitk
program. From the View menu, choose
New View, as shown in figure 15.6.

When the view configuration screen
appears, click the following:

■ All Refs (toggle on)
■ Simple History (toggle on)

The Simple History option is under the
Miscellaneous section of the view con-
figuration, as shown in figure 15.7.

Figure 15.5 A simplified view of your branches

Figure 15.6 Creating a new view

Figure 15.7 The Simple History configuration in the view configuration window

251Studying files
When you click Apply, the gitk view
changes, as in figure 15.8.

The view that you configured can be saved
for future use. At the top of the view config-
uration window (which doesn’t go away
even after you click Apply), in the View
Name text box, type Simplified All. Then
click the Remember This View check box
(see figure 15.9).

When you click OK to close the view
configuration window, this view
becomes available to gitk as a menu
item. Confirm this by clicking the
View menu (figure 15.10).

You can exit gitk at this time.

15.3 Studying files
Looking through a repository’s history
shows timelines and files together. This
remains the most important view of a
project’s history. But after you get the
lay of the land, you’ll need to focus on a
specific file or set of files with which to work. To continue the archaeology analogy,
after you’ve surveyed the land, you pick one or two places to start digging. For devel-
opers, this means studying individual files.

15.3.1 Finding files of interest (git grep)

In section 15.1.2, you learned how to limit your history to those commits that con-
tained a specific string. You did this by using the git log --grep command. But this
searches only the text in the commit messages. If you’re looking for files that contain
a particular string, you’ll need to use the git grep command.

TRY IT NOW In the math.carol repository, suppose you wanted to find all the
files that contained the word line. Type the following:

cd $HOME/math.carol
git grep change

Figure 15.8 gitk’s simplified listing of all
branches Figure 15.9 Creating a new view called Simplified All

Figure 15.10 You saved your view to the menu.

252 CHAPTER 15 Software archaeology
This should produce output like the following listing.

another_rename:small change

The output shows the filename containing the match (in this example, it’s
another_rename), the matching line, and the matching text. You don’t have to specify
the filename to search; git grep searches all the files in your repository for a match-
ing string.

15.3.2 Examining the history of one file

After identifying a file that you want to study further, you’ll often want to examine the
history for just that one file. The gitk window lets you examine how a particular file
has changed between commits. I covered the basics of this in chapter 8, but now let’s
dive into this feature more closely.

TRY IT NOW Navigate to the math.github directory. Using this repository
helps you share the SHA1 IDs. You can isolate your view to just the math.sh file
by typing this:

cd $HOME/math.github
gitk math.sh

You should see something like figure 15.11.

When you start gitk like this, it shows only the commits that touch the math.sh file. If
you open the view configuration, you’ll notice math.sh listed in the text box labeled
Enter Files and Directories to Include, One per Line, as in figure 15.12.

Listing 15.9 git grep output

Figure 15.11 Isolating
gitk to study one file

Figure 15.12 The view configuration for
viewing one file in gitk

253Studying files
TRY IT NOW Let’s step through each commit and observe the Diff/File viewer
window. (See figure 15.13 for the different windows on this screen.)

In the Commit Log window, go to the commit that reads This is the first
commit. Make sure that Patch is selected in the Patch/Tree selector. This
turns the Diff/File viewer into a Diff (or patch) viewer, and you can see the
diff indicating that this is a file creation.

In the Diff/File viewer, click through the three toggles labeled Diff, Old Ver-
sion, and New Version. The viewer displays these views, as shown in figure
15.14. (The Diff/File viewer can only show one view at a time. Figure 15.14 is
a composite of all three views.)

Doing this changes what is shown in the Diff/File viewer. In Diff view, you’ll
see a diff. In this case, in the first commit, the diff is between an empty file
and the first commit of this file. In the Old Version view, the file view is
empty. In the New Version view, it shows the current file.

Commit log

Diff/File viewer

Patch/Tree
(Diff/File) selector

Figure 15.13 The diff window and commit log of gitk

254 CHAPTER 15 Software archaeology
Now click the commit log Adding two numbers. The viewer displays these
views in figure 15.15.

Take a look at these three views so you can convince yourself that each view is
appropriate. You can see how the file math.sh changed between the commit
256d402 (Adding two numbers) and its parent.

Each file change is in the context of a commit, which itself considers the entire repos-
itory. The Patch/Tree selector window shows how other files might have changed for a
particular commit (though in our math.github repository, only one file has been
changed).

Above and Beyond

In figure 15.15, each view of the patch (Diff, Old Version, New Version) shows a line
that starts with index 5bb7f63..dab42fb. Each SHA1 ID is a file being compared
(a particular version of math.sh).

Figure 15.14 Toggling between the Diff, Old Version, and New Version views

Diff Old version New version

Figure 15.15 Different views from the commit Adding two numbers

255Finding which revision updated a specific line of code
15.4 Finding which revision updated a specific line of code
The gitk Diff/File viewer is one way to see how a file has evolved. As you click through
each commit, you can see how the file has changed between each call to git commit.
Another way to understand how a file has evolved is to look at the file’s git blame out-
put. The git blame command examines a file and announces which commit contrib-
uted to each line. For source files, this lets you find out what Git commit contributed
to a specific line of code.

15.4.1 Running git blame as a GUI

The git gui command supports git blame output. You’ll see this first, but if difficul-
ties arise with this on your computer, see the next section for an alternative way to
obtain this listing on the command line.

TRY IT NOW Using the math.github directory, let’s use the same gitk program
and limit it to math.sh. Use the steps from the preceding TRY IT NOW to show
the math.sh in the Diff/File viewer for the commit Adding two numbers.

In the Diff/File viewer, bring up the context menu (by right-clicking, or using
a two-finger mouse click on a Mac). You’ll see a menu like figure 15.16.

You can view the contents of any SHA1 ID by using the git show command. This is
what you’ll see:

% git show 5bb7f63
Comment
a=1
b=1

% git show dab42fb
Add a and b
a=1
b=1
let c=$a+$b
echo $c

Git contains every version of every file that’s committed into the repository, and git
show lets you call up those versions.

Figure 15.16 Context menu to
start git gui blame

256 CHAPTER 15 Software archaeology
Click the Run Git Gui Blame on This Line item. This brings up a separate win-
dow, as in figure 15.17.

This new window shows all the lines of the math.sh file for this particular commit.
(For you, it’s commit 256d402, in the yellow section of figure 15.17. This is the log
entry Adding two numbers.) Each line of this file is now annotated with the SHA1 ID
of the commit that added the particular line.

 This view is a powerful way to figure out the context for a particular set of lines in
computer source code. How many times have you wondered why a particular line was
added, or who might have inserted a bug into a piece of code? With git blame, you
can answer those questions.

 This window is interactive. You can click through each commit to go backward in
time. When you click any line outside the SHA1 ID columns, the lower half of the git
gui blame window changes, showing the commit log message.

TRY IT NOW The git gui blame functionality is part of the Git GUI program.
You can start it directly from the command line. Close gitk and Git GUI at this
time. Now type this from the math.github directory:

git gui blame math.sh

This brings up the version math.sh for the current branch. To specify a ver-
sion, type the following:

git gui blame 256d4027 math.sh

Alternatively, you can bring up the file browser. This lists all the files in the
current branch that Git knows about. Type this:

git gui browser master

See figure 15.18 for what you should see. You can also type the following:

git gui browser HEAD

Figure 15.17 git gui
blame output

257Leaving messages for those who follow
15.4.2 Using git blame on the command line

You may run into problems getting the Git GUI program to run git blame. If so, you
can use a command-line mechanism.

TRY IT NOW Finally, git blame can also be run from the command line, in a
far less interactive program. On the command line, type this:

git blame math.sh

You’ll see output like the following listing.

256d4027 (Rick Umali 2014-08-05 18:54:56 -0500 1) # Add a and b
2732d6a3 (Rick Umali 2014-08-02 16:54:56 -0500 2) a=1
3847b0be (Rick Umali 2014-08-02 17:54:56 -0500 3) b=1
256d4027 (Rick Umali 2014-08-05 18:54:56 -0500 4) let c=$a+$b
6f6af168 (Rick Umali 2014-08-06 05:54:56 -0500 5) printf "This is the

answer: %d

Because source files will be long, you might consider saving the output of git
blame to a file by typing the following:

git --no-pager blame math.sh > math-annotate

Recall that the > symbol redirects the output to a file. Now you can view this
file in your favorite editor.

15.5 Leaving messages for those who follow
The Git tools you’ve explored in this chapter show lots of ways that you can learn
more about your code base. But these tools are only as helpful as the messages that
developers leave behind.

Listing 15.10 git blame output

Figure 15.18 Running git gui browser master from the command line brings
up a file browser.

258 CHAPTER 15 Software archaeology
 You saw that git log --oneline relies on a good commit title. You saw that git
log --grep relies on good text to search on. Commit messages should be messages to
your future self, and to those who have to maintain and work on this code. When you
make a commit, you’re the expert of that commit. When you make a commit to the
repository, you should share the pertinent details that led to this change.

 Leaving good messages isn’t limited to commit messages. Consider strong branch
names and tags. v1.37 is good for the end customer, but maybe branch_fix_memory
_leak is better internally.

 I named the chapter “Software archaeology” because if you’re working on an exist-
ing repository, you often have to decipher the clues left behind. You have to under-
stand not only the code, but the context for that code as well. You might learn context
from the comments in the source code, but a lot of context might come from the Git
commit messages. Commit messages aren’t tweets: you can provide elaborate explana-
tions in commit messages. You should cite external sources such as requirements,
specifications, documentation, and even bug reports.

15.6 Lab
git log has more than 130 command-line switches. Take an afternoon or an evening
reading what’s available. The switches are subdivided into several sections (commit
limiting, formatting, diff options, and so forth). You’ll need to explore this documen-
tation to get through the following questions.

1 The git log --merges command shows all those commits that are the result of
merges. What switch (or switches) is the --merges switch shorthand for?

2 In the math.carol repository, create a new branch named another_rename. Now
type git log another_rename. You’ll get an error message like the following:

fatal: ambiguous argument 'another_rename': both revision and filename

Follow the instructions to separate the path from the branch name.

3 When you made our own version of git log --oneline, you implemented
everything except the color highlighting of the SHA1 ID. How would you add
color to the SHA1 ID portion of the output?

4 Where is your Simplified All menu item saved? (Check the help for gitk.)
5 In section 15.2.1, you learned how to make gitk display information for a single

file, by typing gitk filename on the command line. Can you do this after
you’ve started gitk?

6 What git blame switch limits the output to a particular set of lines?

15.7 Further exploration
The git notes command is another helpful feature that lets you attach arbitrary
notes to Git commits. In Git, after you make a commit, you freeze the commit log mes-
sage along with the change into your repository’s timeline. But let’s say a bug was iden-
tified as originating from this particular commit. You could attach a short note to the

259Further exploration
commit that states this fact, without changing the commit itself. Think of git notes as
yellow sticky notes for your commits.

TRY IT NOW Let’s add a note to the last commit in the math.carol repository.
Start by typing this:

cd $HOME/math.carol
git log -n 1

The preceding steps put you in the math.carol working directory and print
out the most recent commit. Now type the following:

git notes add -m "This is an attached note"

This command adds a note to your commit. Type this:

git log -n 1

You’ll see this output.

commit 7746e35930e562304e347ac69929aa276ed345dc
Author: Rick Umali <rumali@firstfuel.com>
Date: Sun Sep 7 21:51:15 2014 -0400

 Another tiny change

Notes:
 This is an attached note

Like most Git commits you’ve seen, you can add a longer note with an editor by typing
git notes add. The gitk tool recognizes commits with these extra notes by drawing a
little yellow square next to the commit summary (as shown by the circled area in figure
15.19).

Listing 15.11 Output of git log after attaching a note

Figure 15.19 git notes shown
in the gitk tool

260 CHAPTER 15 Software archaeology
15.8 Commands in this chapter

Table 15.1 Commands used in this chapter

Command Description

git log --merges List commits that are the result of merges.

git log --oneline FILE List commits that affect FILE.

git log --grep=STRING List commits that have STRING in the commit message.

git log --since MM/DD/YYYY
--until MM/DD/YYYY

List commits between two dates.

git shortlog Summarize commits by authors.

git shortlog -e Summarize commits by authors (and show email
address).

git log --author=AUTHOR List commits by AUTHOR (name or email).

git log --stat HEAD^..HEAD List commits (with files) between the current commit
and its immediate parent.

git log --patch HEAD^..HEAD List commits (with text changes) between the current
commit and its immediate parent.

git branch --column List all branches in columns

git name-rev SHA1_ID Print a name for the specified SHA ID, based on the
closest branch.

git branch -r --contains SHA1_ID Similar to the preceding command, in that it will identify
all the branches that contain this SHA1 ID (-r specifies
remote-tracking branches; omit this to print local
branches).

git grep STRING Find all files that contain STRING.

git gui blame FILE Bring up a FILE in the Git GUI showing git blame out-
put (each line showing what commit it’s from).

git gui browser REV List all files at REV (use HEAD for the current directory)
in the GUI browser.

git blame FILE Display blame output of FILE on the command line.

git --no-pager blame FILE >
FILE-annotate

Save the blame output of FILE to FILE-annotate on the
command line.

Understanding git rebase
The git rebase command is one of the most powerful commands in Git. It has the
ability to rewrite your repository’s commit history, by rearranging, modifying, and
even deleting commits. Trying to understand all its capabilities might take you the
rest of the book. Instead, you’ll focus on the two primary reasons for using git
rebase: keeping up with the repository you’ve cloned, and cleaning up your
branch before you merge it.

 When you clone a repository, you have a copy of that repository. But your collab-
orators will often add changes to the original repository. You can use git pull to
refresh your clone, but if you’ve created a local branch to isolate your develop-
ment, you may need to resync your branch to incorporate the changes from the
original repository. The git rebase command handles this, and if you’re collabo-
rating on an active repository, you’ll find yourself using this technique to keep up
with the upstream branch. (Remember, the upstream branch is the original source
that you branched from.)

 The git rebase command also allows you to clean up and edit your commits
before you perform a git merge of your local branch. In this chapter, you’ll use
git rebase --interactive to exercise full control over how you clean and edit
the commits on your local branch.

 Finally, you’ll study the git reset command, which lets you revert your reposi-
tory to a previous known working state. Along with the git reflog command, to
help you find the previous known working state, git reset is the command that
you’ll reach for if you make mistakes with the git rebase command.
261

262 CHAPTER 16 Understanding git rebase
16.1 Examining two git rebase use cases
The git rebase command is almost always used in the context of collaboration with
other developers. If you’re a solo developer, you’ll probably never need to do a git
rebase. But if you’re working with even one other person, you may find yourself need-
ing to reparent your branch (to keep up with changes made to the original reposi-
tory), or cleaning up your branches before you merge them back. This section dives
into these use cases at a theoretical level. In section 16.2, you’ll perform the git
rebase steps.

 One thing that will help in this chapter is to pretend that the master branch is
being actively developed and committed to by other people. You’re working on the
new_feature branch, but pretend that others are actively working on master, which is
your upstream branch.

 The git rebase command is often scorned because it rewrites history, but think
of git rebase as a way to keep your local branches up-to-date. It’s also a way to edit
and polish your local commits before you merge them with the main repository. Keep
these two use cases in mind as you dive into the mechanics of git rebase.

 Notice too that git rebase is meant only for your local repository and, even more
specifically, your local branch. You’ll see that git rebase creates new SHA1 IDs when-
ever you use them, so if you’ve pushed your work to a public repository, you shouldn’t
be using git rebase.

16.1.1 Keeping up with the upstream by using git rebase

You learned in chapters 9 and 10 how to branch and merge your code. You create
local branches to isolate your work from the main branch (which is typically master).
This is a best practice. Your branch code is new development. When you branch your
code, you implicitly create a starting point for your work. Examine figure 16.1.

git branch new_feature

master

…

master

…

new_feature

X X

Figure 16.1 Making a new_feature
branch from the master branch. X is
your starting point.

263Examining two git rebase use cases
In figure 16.1, the master branch is to the left of the arrow. When you type git branch
new_feature, you create the branch new_feature from the commit labeled X. The
starting point of your work is on the master branch. When you’re in the new_feature
branch (by using git checkout new_feature), the master branch is considered the
upstream, or originating, branch.

 You make commits to new_feature, and other people make
commits to master. Soon you’ll have a situation like figure 16.2:
one commit has been added to the master branch (commit Y),
and two commits have been made in the new_feature branch
(commits A and B).

 In chapter 10, you learned how to merge these two separate
branches back to master, using git merge. A merge joins mas-
ter and new_feature, bringing the two branches together. But
what if new_feature isn’t yet ready to merge, but you want the
newest commit from master to be part of new_feature? If you
want to bring the newest commit or commits from master into
new_feature, you can use git rebase. Bringing in the newest
commit is a way to keep up with the upstream repository. The
git rebase command resets your branch’s starting point from
X to Y (in figure 16.2). This is the first use case of git rebase.
In section 16.2, you’ll go over this simple use case.

Figure 16.2 Work performed on both master and new_feature branches

16.1.2 Cleaning up history by using git rebase

When you work with others, you’ll eventually establish some conventions for your
shared repository. You’ll read about this topic in the next chapter, but making your
commits fit the conventions used by your fellow collaborators is one reason to use the
capabilities of git rebase.

 As with the previous section, let’s consider a repository in which your work is in a
local branch called new_feature. Let’s assume that the seven commits in the git log
output, shown in the following listing, represent your work on that new_feature
branch.

b8f3239 Fixed last error. This compiled and passed tests!
9afd8a0 Added comment about global.
fb6f863 Incorporated new data structure.
8748134 Fixed spelling mistake.
92ea3ac Fixed script error.
ffcc1f8 Fixed failure on building machine.
bb6ac5e Committing final change for build. Last syntax error!

Listing 16.1 git log output

master

…

new_feature

Y

X

B

A

264 CHAPTER 16 Understanding git rebase
Some of the commit subjects look significant. The commit log Incorporated new
data structure might be an important one to study, especially for a new developer
coming into a project, for example. Some of the commit subjects suggest more day-to-
day work, such as fixing a spelling mistake or adding a comment. Remember, each
commit represents a complete working directory. When you look at the differences
between SHA1 ID 92ea3ac (fixing a script error) and 8748134 (fixing a spelling mis-
take), the only difference you’ll see is the correction of a spelling mistake. This com-
mit might be an unnecessary detail.

 With git rebase, you can squash these
detailed commits. When you squash com-
mits with git rebase, you keep their
changes but remove their commit log
entries. You’ll hear the word squash among
Git users often. Squashing commits (com-
bining them from one or more commits) is
a form of editing your commit history, and
you’ll examine this technique closely in
section 16.4. With git rebase, you can
modify your commit history, as in figure
16.3.

 In figure 16.3, you’ve reduced the num-
ber of commits from seven to four, presum-
ably removing the unnecessary commits’
log entries but leaving their changes. Note
too that git rebase changes the base of
the new_feature branch from A to Y.

16.2 Examining use case 1: keeping up
with the upstream
The word rebase means to give a new parent
to a branch. This is what you’re doing when
you use git rebase to keep up with the
upstream repository. The most important
reason for using git rebase is to change
the starting point of your local branches.

 Remember, in your first use-case, you
want to incorporate the new changes from
the upstream’s master branch into your
local new_feature branch. Moreover, you

Figure 16.3 Using git rebase to
squash some unhelpful commits

git rebase
(squash)

master

…

Y

A

…

Y

A

new_feature

265Examining use case 1: keeping up with the upstream
don’t want to merge new_feature because it isn’t ready to be merged yet. This last
requirement is a key consideration: sometimes you may be working on your
new_feature for a long time before it’s ready to be merged. The git rebase com-
mand keeps your new_feature branch up-to-date.

 In figure 16.4, you start with your repository at the left of the arrow. You’re devel-
oping a new feature on a separate branch. You based that new feature on the reposi-
tory at commit X. Commit X is what you branched from, and you could think of it as
your base, or starting point. Observe that this base commit, X, has advanced by one
commit, Y. If you wanted to incorporate the changes of Y into your new_feature
branch without doing a merge, you could choose to rebase your new_feature commits
on top of Y.

 In our examples, the commit represented by Y is a trivial change to a file. But in
the real world, the commit in Y might represent code that you’ll need to use in order
to continue your development of new_feature. In the real world, Y may consist of mul-
tiple commits.

TRY IT NOW To try the most basic form of the git rebase command, you’ll
re-create the math directory by using a script called make_rebase_repo.sh.
This script is a variation of the make_math_repo.sh script introduced in

new_feature

A'

B'

git rebase master new_feature

…

master

Y

X

new_feature

A

B

…

master

Y

X

Figure 16.4 The basic git
rebase, moving new_feature
from base X to Y. The full
command is git rebase
master new_feature.

266 CHAPTER 16 Understanding git rebase
chapter 9. After you’ve downloaded this script into your home directory, type
the following at the command line:

cd $HOME
rm -rf math
bash make_rebase_repo.sh
cd math

If you were to open gitk at this time (with All Refs chosen from the gitk view
configuration), you’d see something like figure 16.5. Notice its similarity with
figure 16.4.

What you’ll now do is rebase the new_feature branch on the master branch.
This will replay the commits from new_feature on the latest commit from
master (Y, in figure 16.4). Confirm that you’re on the new_feature branch in
the math directory. Type the following:

git checkout new_feature

Take note of the SHA1 IDs of the two commits of the new_feature branch.
Type this:

git log --oneline master..new_feature

This should list two commits. The .. syntax shows the commits between mas-
ter and new_feature. These are the two commits in new_feature that will be
rebased. To perform the rebase, type the following:

git rebase master

Remember, you must be on the new_feature branch. The command indicates
to rebase the current branch (new_feature) with the latest commit from the
master branch. The following listing shows the output.

First, rewinding head to replay your work on top of it...
Applying: Adding a new file to a new branch
Applying: Starting a second new file

Listing 16.2 The output of the git rebase master command

Figure 16.5 Your initial repository

267Using git reflog and git reset to revert your repo
When you look at gitk, you’ll notice that new_feature is on top of master (figure 16.6).
 You should also notice that the SHA1 IDs of these two commits are different. Con-

firm this within gitk, or with git log --oneline master..new_feature, or with git
log --oneline -n 2.

 Figure 16.7, an excerpt of our ear-
lier diagram, shows that the original
A and B commits that were part of
the new_feature branch have
changed to A' and B' (read this as A-
prime and B-prime). These are the
same changes (with the same dates),
but they now have new SHA1 IDs.
More important, the new_feature
branch has a new starting point,
labeled Y in figure 16.7. Any changes
in Y are now part of new_feature.

16.3 Using git reflog and git reset
to revert your repo
You might inadvertently make a mis-
take with the git rebase command.
Before discussing our second use
case, which is cleaning up your com-
mits before merging, let’s look at
how to recover from a mistake with
git rebase.

 Git has a way to reset your local
repository back to its earlier state
before the git rebase command,
with the command git reset.

 Remember from chapter 8 that HEAD always points to the branch (or commit)
that Git (and you) are looking at. After the previous section, you can picture your

Figure 16.6 The original
two commits were moved
on top of master.

new_feature

A'

B'

git rebase
master

new_feature

…

master

Y

X

new_feature

A

B

…

master

Y

X

Figure 16.7 Commits A and B are different from A'
and B'.

268 CHAPTER 16 Understanding git rebase
timeline of the new_feature branch to look something like figure 16.8. (The finish of
git rebase is shown two commits after the original commit, which matches figure
16.7, but remember that this can vary.)

 If you wanted to go back to the earlier new_feature, before you ran git rebase,
you could reset the HEAD pointer to the commit that points to the earlier
new_feature. You’d have to identify that SHA1 ID, but you can’t use git log for this,
because the git rebase command removes the original SHA1 ID from the history! To
find the earlier new_feature SHA1 ID, you’ll need to use the git reflog command.
Let’s try out these commands to reset the repository back to the way things were
before the rebase.

TRY IT NOW The goal of this session is to reset your local repository to the
state before git rebase.

First, you must use the git reflog command to find the correct name for the
commit. This command accesses an internal list of every change to HEAD.
Every time you run git checkout or perform a git rebase, you change the
HEAD, and git reflog records this by using the reflog. Think of the reflog as a
local history of sorts. The git reflog command accesses this history, letting
you reference old SHA1 IDs that may no longer exist. This is an important fea-
ture because git rebase changes the SHA1 IDs of the branch you’re rebasing.

In the math directory, type the following:

git reflog

The first few lines should look roughly like the following listing.

9488bc2 HEAD@{0}: rebase finished: returning to refs/heads/new_feature
9488bc2 HEAD@{1}: rebase: Starting a second new file
1a7aa0d HEAD@{2}: rebase: Adding a new file to a new branch
094e6b3 HEAD@{3}: rebase: checkout master
f883bbd HEAD@{4}: checkout: moving from master to new_feature

Listing 16.3 First few lines of git reflog

…

new_feature
(after rebase)

new_feature
(before rebase)

HEAD

Figure 16.8 Our timeline diagram before and after running git rebase

269Using git reflog and git reset to revert your repo
Each row of the git reflog output shows a SHA1 ID, an alias for this SHA1 ID,
and an explanatory note. The alias is what you’re looking for. This listing rep-
resents all the individual steps the HEAD has taken. Unlike the git log list-
ing, this isn’t a chain of commits, with each commit pointing back to its
parent. Instead, it’s a recording of every branch that HEAD has been set to.
Look at figure 16.9.

This figure, along with listing 16.3, shows that HEAD traveled four spots
(HEAD@{3}, HEAD@{2}, HEAD@{1}, and HEAD@{0}) from the version of
new_feature before the git rebase. You can assume that this is the right ver-
sion because the first part of our TRY IT NOW has you performing a git
checkout new_feature, which you see in step HEAD@{4}. Also, git rebase
seems to take up the first four rows of your reflog.

Finally, before you do the reset, confirm how your commit history looks with
gitk. Type the following:

gitk

You should see a screen that looks like figure 16.10 (with All Refs chosen in
the gitk view configuration).

… HEAD@{2}HEAD@{3}HEAD@{4} HEAD@{1} HEAD@{0}

new_feature
(after rebase)

new_feature
(before rebase)

HEAD

Figure 16.9 Our timeline diagram, overlaid with the git reflog names for each spot that
HEAD visited

Figure 16.10 Your current repository, after git rebase

270 CHAPTER 16 Understanding git rebase
To reset your repository back to the earlier state, type this:

git reset --hard HEAD@{4}

The --hard switch resets both the staging area and the working directory.
This properly sets the repository back to the original state. After you type this
command, HEAD is moved (rewound) to the version of new_branch before
you used git rebase, as shown in figure 16.11.

You can confirm this. Type the following:

gitk

Now confirm (after making sure your gitk view configuration has All Refs)
that your repository looks like figure 16.12. You’ve gone backward in time by
using git reset.

16.4 Examining use case 2: cleaning up history
The second use-case for git rebase is to clean up commits. If you’re collaborating
with others, you might be required to clean up your commits before merging them to
the master branch. Typically, you’d clean up your commits before merging your local

… HEAD@{2}HEAD@{3}HEAD@{4} HEAD@{1} HEAD@{0}

new_feature
(after rebase)

new_feature
(before rebase)

HEAD

Figure 16.11 Moving HEAD backward in reflog history (to HEAD@{4})

Figure 16.12 After using the git
reset command, new_feature is
back where it was.

271Examining use case 2: cleaning up history
branch back to the main branch. If your repository doesn’t follow any convention, you
can merge your branch back to master, but cleaning up your local commits is a good
practice. Consider figure 16.13.

 Look at the two commits for new_feature. Each commit adds a new file to the
repository. What if you wanted to make one commit to add both of these files?

 You might want to squash multiple commits in this fashion because some reposito-
ries follow a convention of wanting to manage the number of commits that appear in
the main branch. In this convention, you’re encouraged to make as many commits as
you want in your local branch, but when you’re ready to share your work, you must
squash your entire local branch before merging!

TRY IT NOW Your repository should be in the correct state, thanks to the pre-
vious TRY IT NOW session. What you’ll do now is confirm that you’re in the
right branch, and then you’ll use git rebase --interactive. Type the fol-
lowing:

git branch
git log -n 2 --stat --oneline

Confirm that you’re in the new_feature branch, and that the previous two
commits add both file3.c and newfile.txt. The two commands should look like
the following listing.

new_feature

B'

A'

git rebase -i master

…

master

Y

X

new_feature

file3.c

newfile.txt

file3.c

newfile.txt

A

B

…

master

Y

X

Figure 16.13 Your goal for this session

272 CHAPTER 16 Understanding git rebase
% git branch
 another_fix_branch
 master
* new_feature

% git log -n 2 --stat --oneline
3950012 Starting a second new file
 file3.c | 1 +
 1 file changed, 1 insertion(+)
b402970 Adding a new file to a new branch
 newfile.txt | 1 +
 1 file changed, 1 insertion(+)

Now type this:

git rebase --interactive master

Your command-line
window changes to a
text file inside Git’s
default editor, vi.
(You’ll learn how to
change this default edi-
tor in chapter 20.) The
window looks roughly
like figure 16.14.

The full text file inside the vi editor is shown in the following listing.

pick 08d4474 Adding a new file to a new branch
pick b4b3b38 Starting a second new file

Rebase a185c38.. b4b3b38 onto a185c38
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
Note that empty commits are commented out

Listing 16.4 Output from your git branch and git log commands

Listing 16.5 Annotated text of git rebase --interactive

Figure 16.14 The git rebase interactive screen. (It’s that
vi editor window.)

The list of commits
that you’ll rebase

b

Instructions for commands
to perform on each commitc

273Examining use case 2: cleaning up history
The text file is divided into two parts: the list of commits available for the git
rebase command b, and the instructions for how to interact with the list of
commits c. Each line b is preceded by an instruction (pick, reword, edit,
squash, fixup, or exec).

Next you’ll edit this file, specifying the instruction for each commit. This pro-
duces figure 16.15.

To do this, you have to edit the file. You’ll change the second line’s command
from pick to squash. This change looks like figure 16.16.

new_feature

B'

A'

git rebase -i master

…

master

Y

X

new_feature

file3.c

newfile.txt

file3.c

newfile.txt

A

B

…

master

Y

X

Figure 16.15 git rebase,
squashing two commits into one

Figure 16.16 Your editing session
to squash the two commits

274 CHAPTER 16 Understanding git rebase
After your change, the first two lines of your text file look like the following
listing.

pick 08d4474 Adding a new file to a new branch
squash b4b3b38 Starting a second new file

Each commit is processed one line at a time, from top to bottom. This order
is reversed from the order presented with the git log command. When you
enter the word squash in the second commit, Git melds it into the previous
commit.

In the vi editor, arrow down to the first character of the second line (on the
letter p). Then delete the word pick and insert the word squash in its place,
as in figure 16.16.

Now type the following:

<ESC>
:wq

Pressing the Esc key ensures that you’re not in vi’s insert mode. The :wq saves
the text file. The editor disappears, and the terminal window indicates that
it’s doing some work. After a moment, it presents some more text in another
vi editor. The text contains the lines in the following listing.

This is a combination of 2 commits.
The first commit's message is:

Adding a new file to a new branch

This is the 2nd commit message:

Starting a second new file

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
rebase in progress; onto c56bf97
You are currently editing a commit while rebasing branch
'new_feature' on 'c56bf97'.
#
Changes to be committed:
new file: file3.c
new file: newfile.txt
#

This is a new commit message. In the comments, you can see the part that
indicates the changes to be committed: file3.c and newfile.txt. To make the
rebase easy to finish, let’s use this commit message as is. Type the following:

:wq

Listing 16.6 Your rebase file after you change the second line

Listing 16.7 Text for commit message after squashing two commits

275Lab
This saves the current message and exits git rebase. The final output of this
git rebase command should look like the following listing.

[detached HEAD 00ee93f] Adding a new file to a new branch
 2 files changed, 2 insertions(+)
 create mode 100644 file3.c
 create mode 100644 newfile.txt
Successfully rebased and updated refs/heads/new_feature.

To confirm that the new commit adds both file3.c and newfile.txt, type this:

git log -n 1 --stat

This command should show the output in the following listing. More impor-
tant, both files will be present in the math directory.

commit 00ee93f1de6bd214ee25a1672d826adeef1b37da
Author: Rick Umali <rickumali@gmail.com>
Date: Sat Oct 4 03:10:15 2014 -0500

 Adding a new file to a new branch

 Starting a second new file

 file3.c | 1 +
 newfile.txt | 1 +
 2 files changed, 2 insertions(+)

From figure 16.15 and the previous git log, it should be apparent that squashing is a
way of combining commits. This is one way to remove intermediate commits when
their commit log entry isn’t needed. You might consider using squash to remove the
checkpoint commits where you fixed spelling mistakes, for example.

 In the end, editing and refining your commits to fit the conventions of your repos-
itory are the marks of a good contributor.

16.5 Lab
It’s probably worthwhile to review the TRY IT NOW exercises again. The git rebase
command is complicated because it demands a good understanding of how the
branches and commits work within a repository. Practicing the TRY IT NOW exercises
will help you recognize when you should use git rebase.

1 Find the math.bob repository and then do a git rebase on the remote-track-
ing branch. Type the following:

git rebase master origin/new_feature

What branch are you on when this command finishes?

Listing 16.8 Output of git rebase

Listing 16.9 Output of git log to confirm squash worked

276 CHAPTER 16 Understanding git rebase
2 Reset the math repository as in the previous exercise, and then try to squash the
first commit listed. You should get an error. Why?

3 Read the git reflog documentation. What command is it shorthand for? Try
this other command, and confirm that it gives the same output as git reflog.

4 Try another git rebase --interactive, and this time explore using the
reword command next to a commit (see listing 16.5). What does this let you do?

5 You used the syntax master..new_feature to see the commits reachable from
new_feature and excluding master, as explained by the git rev-parse docu-
mentation. What is another way to express master..new_feature?

16.6 Further exploration
In this chapter, you covered how to manipulate your commit log with git rebase. You
can explore two intriguing techniques on your own that are related to manipulating
your history.

16.6.1 Cherry picking

Sometimes you might want to take a branch and copy it onto a new starting point.
Your work on one branch is possibly applicable elsewhere in the repository, and you
might want to copy this code to this new starting point. Git can do this with the git
cherry-pick command. In figure 16.17, see that the commit labeled b is copied on
top of master.

 To explore this on your own, create a repository and a second branch. In the sec-
ond branch, make a commit that adds one file. Check out the master branch, and

git checkout master
git cherry-pick b

…

master

Y

X

new_feature

B

new_feature

B

…

Y

master

B'

X

Figure 16.17 A view of the
git cherry-pick command

277Further exploration
then use git cherry-pick, specifying the SHA1 ID from the branch that added the
file. A session that did this might look like the following listing.

% git checkout master

% git log --graph --all --oneline --decorate
* ef05774 (HEAD, master) Updating the contents of bar
| * 01fdf3a (branch01) Updating baz
| * 8a1a317 Adding baz file
|/
* e9fb7a4 Adding foo file
* f171aa9 Adding bar file

% git cherry-pick 8a1a317
[master a798ed7] Adding baz file
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 baz

% git log --graph --all --oneline --decorate
* a798ed7 (HEAD, master) Adding baz file
* ef05774 Updating the contents of bar
| * 01fdf3a (branch01) Updating baz
| * 8a1a317 Adding baz file
|/
* e9fb7a4 Adding foo file
* f171aa9 Adding bar file

The git cherry-pick command makes a copy of the single SHA1 ID. Depending on
circumstances, this technique may be helpful.

16.6.2 Commit deleting

If you’ve created a commit (or a set of commits) that need to be deleted, git rebase
can do this for you, using the --onto switch. To explore this on your own, use the
another_fix_branch commits from the math repository, as shown in the following
listing.

$ git log --oneline --graph --decorate
* 90e94aa (HEAD, another_fix_branch) Renaming c and d.
* 637439d Removed a and b.
* a374d84 Adding readme.txt
* 9252019 (tag: four_files_galore) Adding four empty files.
* c916ada Adding b variable.
* 5a5e48a This is the second commit.
* 5a8ca2f This is the first commit.

Let’s say that you wanted to get rid of the commit that removes a and b (637439d in
listing 16.11).

Listing 16.10 git cherry-pick example

Listing 16.11 The another_fix_branch commits

278 CHAPTER 16 Understanding git rebase
 First, examine the output of this command:

git log --oneline another_fix_branch~1..another_fix_branch

This command shows one commit, 90e94aa (Renaming c and d). This is the commit
at the tip of another_fix_branch. This is the commit that will be rebased.

 Now, per the git rebase documentation, you can type this to delete 637439d:

git rebase --onto another_fix_branch~2 \
 another_fix_branch~1 another_fix_branch

The commit that you’ll rebase onto is Adding readme.txt (a374d84 in listing 16.11).
By rebasing on this commit, you effectively delete the commit that comes after it
(637439d in listing 16.11). The commit that you’re rebasing is the single commit spec-
ified by the range another_fix_branch~1 and another_fix_branch (which you saw with
git log).

 It’s an interesting technique, but it’s one that I hope you never have to use!

16.7 Commands in this chapter

Table 16.1 Commands used in this chapter

Command Description

git log --oneline mas-
ter..new_feature

Show the commits between the master branch and the
new_feature branch.

git rebase master Rebase your current branch with the latest commit from master.

git reflog Display the reflog (the internal history of all the times that you
changed HEAD).

git reset --hard HEAD@{4} Reset HEAD to point to the SHA1 ID represented by HEAD@{4}.
The --hard switch says to reset both the staging area and the
working directory.

git rebase --interactive
master

Interactively rebase your current branch with the latest commit
from master. This opens an editor, allowing you to pick and
choose which commits will be included in the rebase.

git cherry-pick SHA1 ID Copy the commit to the current branch that you’re on.

Workflows and
branching conventions
Over the past 16 chapters, you’ve learned a great deal about Git. You now know
how to create and update your local repository, and you also know the fundamen-
tals of collaborating. The various Git mechanisms (branches, tags, commit mes-
sages) are just that: mechanisms. They don’t impose any kind of policy or
convention.

 In this chapter, you’ll discuss matters of policy and convention. It’s important to
at least get a feel for some of these, because when you collaborate with others,
knowing the common conventions will prevent you from making mistakes with the
code base. Your code base will be examined not just by other developers but also by
automated testing systems, QA, support, and possibly even documentation. Con-
ventions help all these audiences.

 You’ll first look at the common Git features that require good conventions.
These open-ended commands don’t impose any rules, so it’s up to you to figure out
how to use them sensibly and consistently. What’s needed is a workflow, a sequence
of steps you can follow for common source-code control tasks.

 You’ll then survey two popular workflows: git-flow and GitHub flow. These com-
mon workflows appear whenever you search the Internet about Git workflows.
You’ll use the appropriate Git commands to implement these flows, so you’ll get a
taste for which might suit your group, or how to adapt them for your specific needs.

17.1 The need for Git conventions
When multiple people are collaborating on a shared set of code, you need conven-
tions. Conventions are like traffic signs and signals. They’re there to enforce the
rules of the road and to prevent accidents. Traffic signs and signals enforce an
279

280 CHAPTER 17 Workflows and branching conventions
orderly flow of traffic, and serve as reminders about what particular driving technique
to use (right on red, yield, merge, speed limits).

 Software developer/manager Philip Chu wrote in his book Technicat on Software,
“The fate of your company could depend on the ability to make a clean build.” Con-
ventions can be instrumental to an organization’s ability to have clean builds.

 In the following sections, you’ll look at a few Git commands that require conven-
tions. These are all commands that you’ve seen, but because of their open-ended
nature, it would be helpful to set conventions on how they should be used in a partic-
ular repository. These conventions may change! Some of the conventions must be
strict (when and where to push), but some can be fluid (commits).

 Think of these conventions as rules of the road for a car. In this case, Git is your
vehicle, but you need some rules of the repository so you can drive in a predictable
and orderly fashion. In Code Complete, author Steve McConnell argues for conventions
so programmers can handle the details of programming consistently. This is the same
with Git. Many Git commands can be run in an arbitrary fashion. Deciding on how to
use Git in these cases makes it easier for people joining the project.

17.1.1 Conventions for commits

Making a commit means updating your local timeline. When you make a commit,
you’re stating that the current directory of code represents a certain state. Your com-
mit log message should indicate that current state, and how the change brings us
there. For example, a good commit log subject is Fixed bug 17414, the data shift
issue. This means that the changes introduced by this commit fix this particular bug.

 Because Git is a distributed version-control system, each individual user can make
commits at any time to their local repository. Some organizations might stipulate that
a commit must not break the build, or that a commit must be accompanied by a unit
test. You might even see some places try to enforce how the commit message should
be written.

 The only guideline to try to follow is to keep the Git commit subject (that first line
in a commit message) under 50 characters. This way, the output of git log --one-
line won’t be truncated or wrapped.

 Your local commits do become public when you push code, however.

17.1.2 Conventions for pushing code

Conventions for pushing code to a shared repository must be agreed upon. Because
Git is a distributed version-control system, there might be more than one remote, but
most places do use a shared server where the official code base resides. This shared
server is often the location that automated testing, building, or deployment software
will reference.

 Organizations have a wide range of options when it comes to the release process.
Some companies have departments that focus on release tasks. Some companies,
adopting continuous integration principles, follow a more automated approach.
Releasing code often includes preparing a release candidate from a branch that
builds cleanly.

281Two Git workflows
 Because Git allows everyone to have the entire repository, it may make sense to
limit who can push to where. Individual developers can commit as often as they’d like
to their local repository, but the group or automation that deploys or builds the
release may want to build up their own repository by pulling from individual reposito-
ries. Allowing everyone the ability to push to the official code base can get messy.

17.1.3 Conventions for branching

Some organizations may want to control the number of branches in the shared repos-
itory. Users working on their local repository should feel empowered to create as
many local branches as they need to stay organized, but pushing such branches to a
shared server might require conventions.

 One such convention could standardize the names of branches. Because branches
can be given any name, you might establish a convention requiring each branch to
have a folder-like name such as feature/new_field, which means a feature branch for
the new_field feature. Or the branch name could include the ID of the owner, which
makes it easy to detect who is doing what on a repository.

 Branching is the heart of the workflows that you’ll be looking at later in this chap-
ter. Because a branch represents a snapshot of your code, different parts of a large
organization may choose to have a repository with two or more active lines of develop-
ment. One branch would be used by the developers, one by the automated tests,
another representing the deployed software, and so on.

17.1.4 Conventions for using rebase

Do you want your code to have every incremental commit? Or is a single commit rep-
resenting the entire work for a feature or bug fix sufficient? If so, your organization
will want to set guidelines around when and how to rebase. Conversely, if your organi-
zation wants to maintain a complete and unaltered history of development, warts and
all, it may prohibit developers from using the git rebase command.

 Rebase is helpful for individual developers to use on their own branches to pre-
pare them for sharing. As discussed in chapter 16, cleaning up your work and making
a presentable set of commits that represent it is welcome.

17.1.5 Conventions for tagging

The git tag command allows you to make bookmarks to any part of the commit his-
tory timeline. But like commits, tags are considered local until they are pushed to the
main repository. As with branches, your company may want to impose a tag name con-
vention. You may want to use it only to mark code that has been released.

17.2 Two Git workflows
This section introduces two popular Git workflows: git-flow and GitHub Flow. These are
representative of the kinds of workflows that take advantage of Git’s features. They’re
by no means the only two workflows, and Git is open enough that it can be made to fit

282 CHAPTER 17 Workflows and branching conventions
different conventions. Table 17.1 presents key criteria you might think about for a work-
flow, and outlines how git-flow and GitHub Flow address those features.

As a developer, joining any new development team requires you to learn the policies
and conventions of the new group. Just as most teams have guidelines on when to take
a vacation or conduct reviews, these same teams will have conventions that spell out
how the repository should be used.

 Computer source code has many audiences: developers, QA automation systems,
release engineering, and even technical support. Workflows help people understand
how the code is organized in relation to the developers and how to add code safely.

17.3 git-flow
git-flow is probably the most popular workflow you’ll read about when it comes to Git.
It was written by Vincent Driessen (a.k.a. nvie) and published in January 2010. It pro-
poses that your repository be divided into two infinite branches: master and develop.
The URL that describes git-flow is http://nvie.com/posts/a-successful-git-branching-
model/.

 The master branch contains released,
production-level code. This is what the pub-
lic can see, perhaps on a deployed website
or in some released software that they’ve
downloaded from you. The develop branch
contains code that is about to be released.
This is depicted in figure 17.1.

Figure 17.1 The two main branches in a
git-flow repository. Other branches such

as feature and release are created
temporarily and then deleted when finished.

Table 17.1 Workflow criteria addressed by git-flow and GitHub Flow

Feature git-flow GitHub Flow

Use of git tag Yes No

Long-lived branches Two: develop and master (and
possibly more)

One: master

git merge --no-ff required Yes No

Release numbering (for example, V1.0) Important Not a focus

Delete feature branches Yes No

Hotfix branch Yes No

Support scripts Yes (see “Further exploration”),
helpful but not required

Some, but not required

develop

feature

master

v1.0

release

v2.0

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

283git-flow
When the code in the develop branch becomes mature enough, and a release is
required (or declared), then develop is merged into master, and master is tagged with
a release number. Both develop and master are considered long-lived branches, or
infinite branches, because they are never deleted in git-flow.

 The workflow defines what Git commands to run when you want to transition your
code from a new feature idea to mature code that should be merged to develop. Like-
wise, the workflow defines the Git commands to run when you want to release code.
Both of these transitions use temporary branches. Let’s explore these two aspects of
the workflow: working with a feature branch and then releasing that code. To do this,
you’ll first create a new repository that is correctly set up for git-flow.

17.3.1 Making a feature branch

Imagine you’re adding a feature to add two numbers. This will be a part of your
released software. In git-flow, all feature development starts by branching off the
develop branch. Let’s explore this workflow. The book’s website has a script that runs
through the steps in this section, and the next, so don’t worry if you get lost!

TRY IT NOW In your $HOME directory, let’s create a new repository, and set it
up so that you can use the git-flow workflow with it.

cd $HOME
mkdir nvie
cd nvie
git init

This gives you an empty repository. Remember that Git supplies a master
branch already. For git-flow, you now need to make a branch named develop.
Here’s a fast way to do this:

git commit --allow-empty -m "Initial commit"
git branch develop

You can probably guess that the --allow-empty switch allows for a commit
with no files, and it’s a handy mechanism in this case. The master branch
must contain an initial commit before you can create the develop branch
from it.

After these two steps, you have two branches: master and develop. These are
the long-lived branches of this workflow. Both branches initially are at the
same starting point. Confirm this by typing the following:

git branch

You should see that you have two branches: master and develop. Git should
indicate that you’re still on the master branch. To see that both master and
develop are starting at the same commit, type the following:

git log --decorate

The --decorate switch shows the branches that are part of this commit. See
the following listing for this output.

284
 CHAPTER 17 Workflows and branching conventions

commit 3bfe0c0e3991b598ffecce6626d2cbed8dfaf0e9 (HEAD, master, develop)
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Dec 22 21:47:39 2014 -0500

 Initial commit

You’re now ready to make a feature. Your
repository roughly looks figure 17.2. There’s
one initial empty commit and two branches.

 In the git-flow workflow, you don’t work on
develop directly. Instead, you make a feature
branch off it.

Figure 17.2 Your repository at the
start of using git-flow

TRY IT NOW In the nvie directory, type the following:

git checkout -b feature/sum develop

Notice that the name of your new branch is feature/sum. (Remember from
chapter 9 that the -b switch to git checkout causes a new branch to be cre-
ated.) The / character isn’t important to Git, but some third-party tools will
display this branch in a folder named feature because of the use of the / char-
acter. Remember, this is a convention. Git lets you name your branch practi-
cally anything.

At this point, you have a separate feature branch that you’ll work on until your feature
is ready. You’ll now commit some code into it.

TRY IT NOW In the nvie directory, confirm that you’re on the feature/sum
branch by typing the following:

git branch

This command should result in the output feature/sum. Let’s add a simple pro-
gram to this branch. Using your favorite editor, create a file called sum.sh and
have it contain these lines:

Add a and b
a=1

Listing 17.1 Confirming that branch and master start on the same commit

Git repo

develop master

Initial commit
b=1
let c=$a+$b
printf "This is the answer: %d\n" $c

These lines may be familiar: they’re the same as the math.sh file you used ear-
lier. Remember that you can run this by typing the following:

bash sum.sh

285git-flow

Now add your sum.sh file to the repository by typing this:

git add sum.sh
git commit -m "The sum program"

This commits your code to the
feature/sum branch. Your repo
should look roughly like figure
17.3.

In the conventions for git-flow,
when your code is deemed ready,
you have to merge it into develop
before it can be released. The
develop branch is the long-lived
branch that represents the code
that is coming up for release.

TRY IT NOW To merge a branch into develop, you must first be on the
develop branch. Merges branch into us, remember. Type the following:

git checkout develop

Observe that no files are in the working directory! This is because no work has
been made in the develop branch yet.

The git-flow convention says to use the --no-ff switch to git merge. This pre-
vents a fast-forward merge (see chapter 10) by creating a merge commit. This
preserves the history of the merge. Type the following:

git merge --no-ff feature/sum

If Git’s default editor appears, accept the autogenerated merge message by
typing this:

:wq

To confirm that the merge commit has been created and to view its message,
type the following:

git log -1

This shows the last commit, which will be your merge commit, as in the fol-
lowing listing.

Git repo

developfeature/sum master

Initial commit

sum program

Figure 17.3 The repository after you make a
commit to the feature/sum branch
commit 22428bb3f6228c2cf3b54ebcce483722275de127
Merge: 3bfe0c0 d942d42
Author: Rick Umali <rickumali@gmail.com>
Date: Mon Mar 16 21:29:03 2015 -0400

 Merge branch 'feature/sum' into develop

Listing 17.2 A merge commit with an autogenerated merge message

286 CHAPTER 17 Workflows and branching conventions
Now that the code is part of the
develop branch, you no longer
need the feature/sum branch.
The workflow has you deleting
these unneeded branches. Type
the following to delete the fea-
ture/sum branch:

git branch -d feature/sum

What you’ve done is depicted in
figure 17.4.

Other developers will be merging
code into the develop branch as
well. Further, your repository will
probably have set up a remote that you should push changes to. That’s the workflow
from the developer side. Let’s see how to deliver this code into a version 1.0 release.

17.3.2 Making a release branch

After the develop branch is worthy to become a full release, you must merge develop
into master, by way of a release branch. Remember that in this workflow, master always
represents your released code. The release branch might be considered the candi-
date. Testing can be performed on this branch, as well as fixes, but it’s expected to
become a release. The convention also demands a tag, which will be created to mark
this release.

TRY IT NOW Let’s release the code that you have in develop. To start, you
merge develop into a release branch. Type the following:

git checkout -b release-1.0 develop

Now you’ll bump the version. This is
also a convention in this workflow. A
file will be updated to include your
release number. Use your favorite
editor to add this comment to the
top of the file sum.sh:

Version 1.0

Now commit this change:

git commit -a -m "Bumping to
version 1.0"

Figure 17.5 shows what your code
looks like now.

Let’s release this without any further
commits. What typically happens,

Git repo

develop

feature/sum master

Initial commit

sum program

Figure 17.4 You’ve merged your program into
develop.

Git repo

release-1.0

develop master

Initial commit

sum program

Figure 17.5 Now you have a release
branch, but it’s only temporary.

287git-flow
however, is that the release-1.0 branch may have other commits added to it as
the release is finalized. Each of these commits would need to be merged back
to develop. You won’t study that case. Instead, type the following to release
the code:

git checkout master
git merge --no-ff release-1.0

If Git’s default editor appears, accept the autogenerated merge message by
typing this:

:wq

Now type the following:

git tag -a V1.0 -m "Release 1.0"

In this command, git tag,
you specify a message with
the -m switch. If you omit-
ted this switch, Git’s default
editor would open so you
could enter a message.

Your repository looks like
figure 17.6 now.

Don’t forget, per the work-
flow, you must merge the
just-released code back into
the develop branch, so that
anyone who wants to imple-
ment a new feature will have the release-1.0 code as the starting point. Type
the following:

git checkout develop
git merge --no-ff release-1.0

If Git’s default editor
appears, type the following
to accept the autogenerated
merge message:

:wq

Finally, you can delete the
release branch. It’s no lon-
ger needed. Type this:

git branch -d release-1.0

Your repository finally looks
like figure 17.7.

Git repo

release-1.0develop

master

Initial commit

sum program

v1.0

Figure 17.6 Releasing code with git-flow

Git repo

develop

master

Initial commit

sum program

v1.0

Figure 17.7 Merging the release back to develop

288 CHAPTER 17 Workflows and branching conventions
The sessions you did with git-flow aren’t the entirety of this workflow. A workflow exists
for bug fixing, and it looks roughly the same as the flow from feature to development
or from development to production. When performing a bug fix, you must branch off
master (which represents the production code), and after you’re done with the bug
fix, merge that fix back to develop and master. The workflow has a convention for the
bug fix branch name: hotfix-*.

17.4 GitHub’s flow
Leading Git evangelist and author Scott Chacon described the workflow used at
GitHub, named GitHub Flow. His post is at http://scottchacon.com/2011/08/31/
github-flow.html.

 Figure 17.8 depicts an imaginary
repository using GitHub Flow. The
straight line illustrates the master branch.
It’s long-lived, as in git-flow. This figure
shows two feature branches that have
branched off master. This is unlike git-
flow, where feature branches must be
branched off the develop branch. These feature branches are later merged back to
master. Unlike git-flow, GitHub Flow doesn’t delete these feature branches.

 A more formal description of GitHub Flow can be found at https://guides
.github.com/introduction/flow/index.html.

 GitHub Flow and git-flow both designate master as the branch that represents the
released code. But GitHub Flow doesn’t describe any use of tags and the long-lived
develop branch. Instead, a new developer who wants to add code to the code base
must create only a descriptively named branch. After the branch is finished and
signed off by a counterpart, it can be merged into master. Because master contains
code that can be released to production, the developer is encouraged to deploy the
code as well.

TRY IT NOW Let’s repeat the code that you produced in the previous section
by using this simpler workflow. First, you’ll make a new repository in the
directory gh-flow (gh for GitHub):

cd $HOME
mkdir gh-flow
cd gh-flow
git init

As with git-flow, you’ll initially create an empty commit. This step creates the
master branch:

git commit --allow-empty -m "Initial commit"

Per the workflow, you’ll now create a descriptively named branch. This is sim-
ilar to git-flow. Type the following:

git checkout -b sum_program

master

Figure 17.8 A depiction of GitHub Flow, with
two feature branches. Only master is long-lived.

http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html

289GitHub’s flow
Remember that this variation of the git check-
out command was introduced in chapter 9.
This command creates the situation shown in
figure 17.9.

Your working directory is now the sum_program
branch. This variation of the git checkout com-
mand normally takes a branch as its starting
point, but because this version omits the branch,
git checkout defaults to the current branch.
Confirm this by typing the following:

git branch

You should see sum_program as the selected
branch. Now let’s create the sum.sh file as in the
previous section. In your favorite editor, create a
file called sum.sh and add these lines into it:

Add a and b
a=1
b=1
let c=$a+$b
printf "This is the answer: %d\n" $c

After you save this file, you can run it by typing this:

bash sum.sh

Now add and commit this to the branch:

git add sum.sh
git commit -m "The sum program"

The feature is saved on the sum_program branch. To bring this into produc-
tion using this workflow, merge this into master. Type the following:

git checkout master
git merge sum_program

The git checkout command puts you in the
master branch. Then you merge in the
sum_program branch.

After the preceding steps, your repository can be
drawn like figure 17.10.

 When you merged sum_program into master,
the code can officially be considered part of pro-
duction. Depending on your project, a further
deployment step is usually performed at this
point. If the repo represents a website, a deploy-
ment script would retrieve the contents of the
master branch and push it up to the web servers,

master

Git repo

sum program

Initial commit

Figure 17.9 Making a feature
branch off the master branch

Git repo

master

sum program

Initial commit

Figure 17.10 Your simple repository
following the GitHub Flow process

290 CHAPTER 17 Workflows and branching conventions
for example. If the repo is server code, a continuous integration tool would produce a
new build based on this update to master, for example. The emphasis on this workflow
is fast development, rapid deployment, as well as fast collaboration (using GitHub fea-
tures such as pull requests). You’ll read about GitHub (and pull requests) in the next
chapter.

17.5 Lab
This chapter didn’t cover a lot of new Git mechanics. Instead, it focused on how Git
should be used. Git’s flexibility lends itself to multiple workflows. Steps 4 and 5 that
follow are starting points for exploring more complicated workflows and conventions.

1 This chapter refers to external sources for official documentation of workflows.
If you didn’t peruse the URLs during your reading, please give them a read now.

2 Look at the repository produced by the GitHub workflow. Now delete this
repository and repeat the steps, with one change to the last git merge com-
mand: add the --no-ff switch. Now look at the repository and confirm that
you have one additional commit.

3 The book’s website contains a zip file of simple scripts. Two of these scripts
make the sample repositories you discussed in this chapter: make_nvie_repo.sh
and make_gh_repo.sh. Download and examine these scripts if you haven’t
already.

4 The open source project Drupal (a content management system written in PHP
that is similar to WordPress) has lengthy guidelines for using Git. Skim through
it at www.drupal.org/documentation/git.
One interesting aspect is that Drupal module developers shouldn’t use the mas-
ter branch. Instead, developers are asked to use a major-version branch (for
example, 7.x–1.x), and are instructed to delete the master branch. See
www.drupal.org/empty-git-master.

5 The Git project describes its branching process at https://code.google.com/p/
git-core/source/browse/MaintNotes?name=todo.
Like git-flow, Git relies on a few long-lived branches (master, maint, next, and
proposed updates—abbreviated as pu).

If you wanted to contribute to Git, you’d follow the steps here:

https://code.google.com/p/git-core/source/browse/Documentation
/SubmittingPatches?name=master

The Git documentation discusses workflows as well. Type the following for more
information:

git help gitworkflows

17.6 Further exploration
The git-flow conventions have been encapsulated into command-line software by the
gitflow project at GitHub. Visit https://github.com/nvie/gitflow.

www.drupal.org/documentation/git
https://code.google.com/p/git-core/source/browse/MaintNotes?name=todo
https://code.google.com/p/git-core/source/browse/MaintNotes?name=todo
https://code.google.com/p/git-core/source/browse/Documentation/SubmittingPatches?name=master
https://code.google.com/p/git-core/source/browse/Documentation/SubmittingPatches?name=master
https://github.com/nvie/gitflow

291Further exploration
 The gitflow software can be installed on Windows, Mac, or Unix/Linux, and its
documentation has detailed installation instructions for all three platforms. After you
have it installed, you can use the command-line helper functions to move code
between feature and develop branches, and between develop and release branches,
and finally between release and master branches. These helper functions are all in the
command line, and they take care of tagging and merging code as necessary.

 The following listing shows an example session on the command line with gitflow.

% git flow
usage: git flow <subcommand>

Available subcommands are:
 init Initialize a new git repo with support for the branching

model.
 feature Manage your feature branches.
 release Manage your release branches.
 hotfix Manage your hotfix branches.
 support Manage your support branches.
 version Shows version information.
% git flow feature start dumpstamp
Switched to a new branch 'feature/dumpstamp'

Summary of actions:
- A new branch 'feature/dumpstamp' was created, based on 'develop'
- You are now on branch 'feature/dumpstamp'

Now, start committing on your feature. When done, use:

 git flow feature finish dumpstamp
% git branch
 develop
 *feature/dumpstamp
 master
% git flow feature finish dumpstamp
Switched to branch 'develop'
Merge made by the 'recursive' strategy.
 README.txt | 1 +
 dumpstamp.info | 4 ++++
 dumpstamp.module | 21 +++++++++++++++++++++
 3 files changed, 26 insertions(+)
 create mode 100644 README.txt
 create mode 100644 dumpstamp.info
 create mode 100644 dumpstamp.module
Deleted branch feature/dumpstamp (was 28e24e8).

In the session listing, first notice that the command presents its own help text b, when
no subcommand is given. You create a new feature c in one step with the command
git flow feature start dumpstamp (dumpstamp is the name of the feature in the
example). You can confirm that this creates the appropriate branches d. Finally, after

Listing 17.3 An example session with the gitflow helper command

Type this to get
help in gitflowb

Starting a new featurec

Checking the branched

Finishing the featuree

292 CHAPTER 17 Workflows and branching conventions
you commit some new code into this branch, you can finish this feature e with the git
flow feature finish command. This takes care of merging the code to develop.

 The git-flow workflow also has support in a third-party GUI tool called SourceTree,
which you’ll learn about in chapter 19.

17.7 Commands in this chapter

Table 17.2 Commands used in this chapter

Command Description

git commit --allow-empty -m
"Initial commit"

Create a commit without adding any files.

git merge --no-ff BRANCH Merge BRANCH into the current branch, creating a merge
commit even if it’s a fast-forward commit.

git flow A Git command that becomes available after installing gitflow.

Working with GitHub
GitHub (http://github.com) is the Git project-hosting website that has done much
to increase Git’s popularity. GitHub takes advantage of Git’s distributed architec-
ture, but offers additional project management and collaboration features. These
features include wiki documentation, issue tracking, and basic collaboration man-
agement. GitHub’s social coding features have made it a popular platform for host-
ing and sharing code.

 In this chapter, you’ll create a project on GitHub. I’ll relate GitHub repos to our
earlier git clone exercises. You’ll then practice the two important GitHub features
for collaboration: forks and pull requests. These two features take the standard git
diff and git push/pull commands and add a bit more formality. Developers must
understand forks and pull requests in order to collaborate on GitHub, as GitHub
encourages this mode of collaboration.

18.1 Understanding GitHub basics
In chapter 11, you created a small set of Git repositories based on the math reposi-
tory. The set of repos looks like figure 18.1.

 In figure 18.1, the folder in the bottom row (math.clone, math.bob, math.carol)
are cloned from the folder at the top (math.git). The folders on the bottom are
clones of the main repository, math.git. All the clones can perform a git push to
and a git pull from this main repository.

 In chapter 11, you learned how to create this main repository by using the git
clone --bare command to create a bare directory. Remember, the bare directory
293

http://github.com

294 CHAPTER 18 Working with GitHub
is what is manipulated in collaboration. This is depicted in figure 18.2. To refresh your
memory, visit section 11.2. That section introduced the convention of drawing the
bare repository with a repo that fills up the entire folder. (This leaves no room for a
working directory.)

 In chapter 11, you used the bare directory as a way to simulate Git repository host-
ing on an external server. Your bare directory pretended to be a GitHub-hosted repo.

math.git/

Git repo

math.clone/

Git repo

math.carol/

Git repo

math.bob/

Git repo

Figure 18.1 A set of Git repositories

math

git clone --bare math math.git

Git repo

math.gitmath

Git repo Git repo Figure 18.2 Creating
a bare directory, using
git clone --bare

295Understanding GitHub basics
You created your repository on a local directory of your computer, and cloned it
directly from that directory. Now you’re ready to try the real thing.

 In this chapter, you’ll create a repository on GitHub and push your math reposi-
tory to it. GitHub will replace your bare directory. As a Git hosting site, GitHub
enables you to share your repository with any number of collaborators. Your project is
also public for anyone else to find and clone.

 In figure 18.3, the left side shows how you cloned your repository to a bare direc-
tory (via git clone --bare) that exists on your computer. The right side shows what
you’ll perform: pushing an existing repository into a bare directory that you’ll create
on GitHub.

18.1.1 Creating a GitHub account

Now is a good time to create a GitHub account. It’s free, and more important, you’ll
need it to explore the other facilities. If you’ve already created an account, go to the
next TRY IT NOW, where you’ll create a new repository.

TRY IT NOW In your browser, visit the GitHub website at http://github.com.

On this first page, you can enter a username, a password, and an email
address, as in figure 18.4. Enter your information and then click Sign Up for
GitHub.

math

git clone --bare math math.git

Git repo

math.git

Git repo

math

git push (to GitHub)

Git repo

http://github.com/math.git

Git repo

Figure 18.3 Relating your bare directory to GitHub

http://github.com

296 CHAPTER 18 Working with GitHub
On the second page, Welcome to
GitHub, choose the free plan and then
click the Finish Sign Up button to con-
tinue.

The third page is your dashboard. Suc-
cess! You’re now a member of GitHub.

18.1.2 Creating a repository

Next you’ll create a repository on
GitHub. This is also straightforward.

TRY IT NOW If you’ve followed the pre-
vious TRY IT NOW, you’ll be on the
dashboard page (the page that appears
when you go to http://github.com,
after you’ve logged in). If you already
have an account, log into GitHub and
go to the dashboard.

On this page (and on practically every
page) is a header that contains your
username. A plus sign is next to your
username, as in figure 18.5.

Click this plus sign, and in the pull-
down menu that appears, click New Repository.

When you click this, the URL in your browser should be http://github.com/
new, and your page should look like figure 18.6.

Figure 18.4 The signup for GitHub

Figure 18.5 Creating a new repository

Figure 18.6 Creating a repository in GitHub

http://github.com
http://github.com/

297Understanding GitHub basics
On this page, enter a repository name in the Repository Name text box; for
now, enter the string math. In the Description text box, enter something that
will remind you that this repository was created from this book. Next, click
the green Create Repository button.

18.1.3 Interacting with the repository

The next page on the GitHub website contains information about how to interact with
this repository you just created. It may be helpful to consider figure 18.7.

You’ve created an empty repository on GitHub, giving it the name math. Behind the
scenes, Git has created a bare directory for your code. GitHub then gives you instruc-
tions for interacting with your new empty repository on GitHub. Hopefully, all the
instructions will look familiar, because you went through them in the collaboration
chapters, starting with chapter 11.

TRY IT NOW The GitHub web page includes instructions that describe how to
push an existing repository from the command line.

At the top of the GitHub web page, as in figure 18.8, you’ll see a Quick Setup
section. Click HTTPS, changing the URL to one that begins with https (shown
in figure 18.8).

math

Git repo

math.git
GitHub

Git repo

Your computer

Figure 18.7 Creating a
GitHub repository

Figure 18.8
The clone URL in
the Quick Setup
question

298 CHAPTER 18 Working with GitHub
The page contains a section titled Push an Existing Repository from the
Command Line. This section contains the instructions shown in the following
listing.

git remote add origin https://github.com/yourname/math.git
git push -u origin master

As you may remember from chapter 13, these are the steps that you used to
push your master branch of your math repo to math.git.

Let’s type these two commands, but instead of using the remote name origin,
you’ll use github. In chapter 12, you learned that you can pick any name for the
remote. Type the following command, which creates a remote named github:

git remote add github https://github.com/yourname/math.git

Replace yourname in the preceding command with your login name at
GitHub. Also, if you named your repository something else besides math,
replace math with that name.

Now that you have this remote, type the following:

git push -u github master

The git push command sends the master branch of your math repository to
your math.git repository on GitHub.

GitHub has good documentation for how to create repositories and upload code to
those repositories via git push.

 Figure18.9 depicts the creation of the repository on GitHub. After you click Create
Repository, you push code into the repository via the git push command.

Listing 18.1 Instructions to push an existing repository to GitHub

math

Git repo

math.gitGitHub

Git repo

git push

Create repository

Figure 18.9 Creating your
repository on GitHub and
adding your files to it

299Understanding GitHub basics
Figure 18.10 compares making clones locally (below the dashed line) to making a
repository on GitHub and pushing to it.

 The GitHub repository name is math.git, the same name you created for your bare
directory (the right side of figure 18.10). Using git as the suffix of a directory is a Git
convention indicating that this is a bare directory. GitHub follows this convention.

 Everything you learned about collaborating, you can now do with your GitHub
repository, provided you set the remote properly.

TRY IT NOW You’ll now attempt to delete this repository. This will set you up
for the next section.

In the GitHub web page for your math
repository, click Settings. This button is on
the right-hand side of the page, as in figure
18.11. (Note that it’s not the little cog icon,
which is also on the right-hand side of the
page.)

On the Settings page, scroll down to the
Danger Zone section, marked in red. This
is an appropriately named section, because
it provides you the ability to delete this
repository. Click it, and then follow the prompts to properly remove this
repository.

One thing to notice about deleting repositories on GitHub: it has no effect on
clones of this repository. The only way they’ll know this repository is gone is if
they try to pull from or push to it.

math.gitGitHub

Git repo

math.git (local)

Git repo

git clone
--bare

math

Git repo

git push

Create repository

Figure 18.10 Making clones locally versus on GitHub

Figure 18.11 The Settings
button

300 CHAPTER 18 Working with GitHub
Everything you did in this section would be repeated if you accessed another Git host-
ing platform such as Atlassian’s Bitbucket, or Gitorious, or GitLab. You need to create
a login, create a project, and then use Git collaboration commands (git remote, git
clone, git push, git pull).

 GitHub repositories can be copied using forks, and you can collaborate with repos-
itories by using pull requests. You’ll look at these two GitHub-specific mechanisms in
the next two sections.

18.2 Working with forks
A fork is a copy of a GitHub repository that you have full rights to push to and pull
from. Remember that with GitHub, practically any repository can be cloned, but by
default not everyone can push changes back to it. To push changes back to a reposi-
tory that you didn’t create, you must be added as a collaborator. Forks get you past this
limitation, enabling you to make changes to a repository that you ordinarily wouldn’t
be able to update.

18.2.1 Making a fork on GitHub

If you want to make changes to an existing GitHub project that you’re not a collabora-
tor for, you must first make a fork of this repository. In figure 18.12, you make a fork of
the rickumali/math repository. Then, after you have this fork on GitHub, you clone
that in order to make changes.

 When you’re ready to submit your changes back to the original repository, you ini-
tiate a pull request to the originating repository. You’ll learn more about pull requests
in the next section.

 The number of forks made from a repository on GitHub is a measure of its popu-
larity. It gives a measure of developers’ interest in contributing to a code base, and
GitHub has areas that track this measurement.

Above and Beyond

As shown in figure 18.8 and figure 18.11, GitHub gives you two clone URLs with which
you can clone a repository: HTTPS and SSH. If you select the HTTPS URL as your clone
URL, the git push command prompts you for your username and password. Con-
stantly entering your credentials can become tedious.

You can avoid constantly entering your username and password by selecting the SSH
clone URL and setting up an SSH key. This is beyond the scope of this book, but GitHub
has plenty of help for this configuration at the following site:

https://help.github.com/articles/generating-ssh-keys

If you start working with GitHub a lot, setting up an SSH key becomes an essential
configuration and is worth exploring.

https://help.github.com/articles/generating-ssh-keys

301Working with forks
TRY IT NOW You’ll now practice making a fork. You can make a fork of any
repository, but in this exercise, you’ll make a fork of my math repository. In
your browser, visit this URL:

https://github.com/rickumali/math

This is the URL for my math repository. In the upper-right part of this page,
you’ll see a Fork button, shown in figure 18.13.

Click the Fork button. GitHub completes its steps to make a copy of the math
repository into your account. When it’s complete, the math repo will exist in
your GitHub account.

rickumali/math.git

Fork

GitHub

Git repo

you/math.git

Git repo

Your computer

Figure 18.12 Making a fork of a repository

Figure 18.13 The Fork button on a project’s home page

https://github.com/rickumali/math

302 CHAPTER 18 Working with GitHub
Notice that the name of the forked repository is
the same as the name of the original repository,
and that immediately underneath the repo name
is a small line of text that indicates it’s a fork. In
figure 18.14, your account name will appear
where the name rodrigoumali appears (rodrigoum-
ali is a second account I used to simulate the pull request flow). At this point, you’ve
created the situation shown in the top half of figure 18.12, at the start of this section.

18.2.2 Cloning your fork

Now that you have this fork, you can make a clone of it to your local machine. Figure
18.15 depicts cloning the fork to your computer.

TRY IT NOW Let’s make a clone of the forked repository. To do that, you’ll
need the clone URL. This can be obtained from the right-hand sidebar of
your repo’s main page (see figure 18.16).
You looked at this way back in chapter 3.

Figure 18.16 The clone URL, which is on
the right-hand side of your project’s main page

Figure 18.14 A forked repository

rickumali/math.git

GitHub

Git repo

you/math.git

Git repo

Your computer

Git repo

git clone

math

Figure 18.15
Cloning your fork

303Collaborating with pull requests
Make sure to use the HTTPS form of the clone URL, by clicking the HTTPS
link shown in figure 18.16. Then, in your home directory, remove the existing
math repository by typing this:

cd $HOME
rm -rf math

Type the following, replacing the string yourname with your GitHub username:

git clone https://github.com/yourname/math.git

Now you have a GitHub clone of your fork!

At this point, you have the situation shown in figure 18.15 at the start of this subsec-
tion. Working on a fork allows you to push your changes to your own copy on GitHub.
The original repository isn’t modified when you do this. But how would you contrib-
ute a change back to the original project? By performing a pull request with the fork
you’ve just created.

18.3 Collaborating with pull requests
You learned in the preceding section that a fork is your personal copy of another
repository. If you make changes to your personal copy, you can push it back up to
GitHub, because the clone of your fork is yours and yours alone. But what if you want
to push your change to the originating project (as in figure 18.17)?

rickumali/math.git (original)

GitHub

Git repo

you/math.git (fork)

Git repo

Your computer

Git repo

???

math

Figure 18.17 How do you
contribute your change back
to the original project?

304 CHAPTER 18 Working with GitHub
To do this, you might think to notify the original repository’s owner of your change.
Instead of doing that, GitHub has a mechanism to propose changes back to the origi-
nal repository: the pull request.

 The GitHub pull request was introduced in 2008. Pull requests are like messages
back to the original repository’s owner, indicating a change request. As shown in fig-
ure 18.18, pull requests are always made from the fork (indicated by you/math.git) to
the original repository.

 This feature enables you to make a fork of a repository and test your contribution
on your local clone. After you’re satisfied with your change, you can use the pull
request feature to present the change to the original repository.

18.3.1 Making a change to your fork

To try out a pull request, you must first make a change to your repository, and then
push it back to your fork (as in figure 18.18).

TRY IT NOW You’ll now use the clone of the fork that you made.

% cd $HOME
% cd math
% git branch

rickumali/math.git (original)

GitHub

Git repo

you/math.git (fork)

Git repo

Your computer

Git repo

git push

git pull

math

Figure 18.18 The GitHub pull request

305Collaborating with pull requests
Confirm that your branch is master. Then make a small change to the reposi-
tory by typing the following:

% echo "Small change to fork" >> readme.txt

Commit this change:

git commit -a -m "Small change to fork"

Now push this change. Because your clone is a clone of your fork, the change
won’t go to the rickumali/math.git repository. The change will instead go to
your fork. Type this:

git push

You’ll be prompted for your GitHub username and password. The output
looks like the following listing.

Username for 'https://github.com': yourusername
Password for 'https://rickumali@github.com':
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 308 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To https://github.com/yourusername/math.git
 2e044d8..5bc718c master -> master

If you have problems pushing back to your repository from your computer,
consult the help from GitHub or visit this book’s website. Pushing code
involves going over the network (as does git clone and git pull), but push-
ing code also requires obtaining authorization (your username and pass-
word). On GitHub, you can push code only to repositories that you’re
authorized on. You can push only to repositories you’ve created.

18.3.2 Making a pull request

At this point, if you visit your repository’s page on GitHub, you’ll see that it’s ahead of
its original repository, as shown in figure 18.19.

Listing 18.2 Output from git push (back to your fork)

Figure 18.19 Your fork is now one ahead of the original repository (see text in square).

306 CHAPTER 18 Working with GitHub
On GitHub, the title section of your fork’s main page should look like figure 18.19. To
the right of the announcement that the fork is one ahead of rickumali:master, you
should see a Pull Request link. Let’s use this.

TRY IT NOW On the GitHub page for your fork, click Pull Request. You’ll be
taken to a page that prepares your pull request (partially shown in figure
18.20). It isn’t the pull request yet. On this pre-pull-request page, you’re able
to review the change you’re going to send to the owner of the originating
repository.

In your pull request, you changed
only one file on the master
branch. The GitHub UI does show
a diff window (figure 18.21) that
should be familiar (it’s a variation
of the git diff output that you’ve
used in the past).

Click the green button on the web
page. The next page your browser
displays (figure 18.22) offers you a few fields for documenting the change
you’re proposing. This page also gives you a status indicating whether you can
merge the change immediately.

Figure 18.20 Preparing a pull request

Figure 18.21 The difference viewer in a
GitHub pull request

Figure 18.22 Documenting your pull request

307Collaborating with pull requests
Enter any title and any comment you want. Remember that the owner of the
originating repository will see this.

At the bottom of the form is another green button, Create Pull Request. Click
it, and the pull request will be given a number and sent to the originating
repository.

18.3.3 Closing the pull request

After the pull request has been made, the owner of the original repository is notified.
When logging into GitHub, the owner will see a web page like figure 18.23.

 The owner will see the change that’s proposed, who it’s from, plus all the commits
that led up to this change. The fork owner and the originating repository owner can
now carry on a dialogue on the pull-request page. But notice that only the original
repository owner can merge the code, per the message “Only those with write access
to this repository can merge pull requests.”

In this TRY IT NOW, you won’t be able to merge your change to the original repository,
but you can close the pull request. This view is helpful because it’s the same view that
the owner of the originating repository sees.

TRY IT NOW On the pull-request page, click the Close Pull Request button. If
you want to leave the page open, that’s appropriate as well. I’ll see your
request (remember, GitHub sends an email to the originating repository
owner) and I’ll close it from my side.

Figure 18.23 A basic pull-request
page (seen by the owner of the
originating repository)

308 CHAPTER 18 Working with GitHub
On GitHub, if you explore any active repository, you’ll see projects with any number
of open pull requests. Like forks, pull requests are a measure of a project’s activity and
popularity.

18.4 Lab
Forks and pull requests are two features you’ll use frequently if you collaborate on a
project hosted on GitHub. Work through this lab to acquaint yourself with nifty fea-
tures.

1 Walk through the Hello World GitHub guide at https://guides.github.com/
activities/hello-world/.

2 Explore the many projects on GitHub by visiting the following site:
https://github.com/explore

Try to find a project of interest, mark it to be watched, and add a star to it (if
you’re so inclined). Visit a project’s issue queue, labels, and wiki to see the vari-
ety of ways a project can be documented.

3 Follow some users, including myself! GitHub by default sends emails based on
activity, and you can control this frequency.

4 Forks and pull requests are necessary because by
default repositories on GitHub allow only the cre-
ator of the project to push commits to it. But you
can enable other people to push to your project.
Find your repository’s Settings link (see figure
18.24).
From the Settings page, you can add collaborators
to your project. Click Collaborators, as in figure
18.25. Consider adding someone you know (like
me!)

5 The pull request that you explored in the previous section was from the point
of view of initiating a pull request. The easiest way to go through the process
from the receiving end of a pull request is to create a second account on
GitHub. This account could be considered your alter ego account, and like the

Figure 18.24 Your
repository’s Settings link
(above the clone URL)

Figure 18.25 On the Settings
page for a project, you can add
other collaborators.

https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://github.com/explore

309Further exploration
repositories you created for Carol and Bob in chapter 13, it’s to simulate a sec-
ond user.

Once you have created this second account, go through the process of forking a
repository from your first account, making a change to it, and then initiating a
pull request. From here, when you log back into GitHub using your first
account, you’ll see a notification for the pull request. You can visit the page, as
shown in figure 18.23. Now, as the owner of this repository, you can merge this
change.

The GitHub website has more resources on this workflow:

https://help.github.com/articles/merging-a-pull-request/

18.5 Further exploration
One of the best features of GitHub-hosted projects is its adoption of Markdown for its
documentation format. Markdown is a syntax for text files that allows the author to
mark sections, add links, make text bold or italicized, and more. It’s similar to HTML,
but somewhat easier. The following listing shows some text Markdown syntax.

First Header
============

Second Header

This is text with *emphasis*.

A Markdown program will convert listing 18.3 into stylized
text, as in figure 18.26.

 GitHub converts any text files in your repository named
README into web-friendly documentation, if it’s written
using Markdown. Markdown is readable in the text file, but
on the GitHub pages, this text becomes stylish and web-
friendly.

 Read these URLs for more information:

https://help.github.com/articles/markdown-basics/

https://help.github.com/articles/github-flavored-markdown/

As a way to explore this, rename the readme.txt file to README.md in the math reposi-
tory that you pushed to GitHub in section 18.1. Edit this file to use Markdown syntax
(discussed in the preceding URLs). Then push README to GitHub. Notice how the
text is displayed compared with before.

Listing 18.3 Text utilizing Markdown

Figure 18.26
Converted Markdown text

https://help.github.com/articles/markdown-basics/
https://help.github.com/articles/github-flavored-markdown/
https://help.github.com/articles/merging-a-pull-request/

310 CHAPTER 18 Working with GitHub
18.6 Commands in this chapter

Table 18.1 Commands used in this chapter

Command Description

git remote add github https://
github.com/yourname/math.git

Add a rename named github that points to your math repo on
GitHub. (Replace yourname with your GitHub username.)

git push -u github master Push your master branch to the remote identified by GitHub,
and set it to the upstream (review in chapter 13).

git clone https://github.com/
yourname/math.git

Clone your GitHub repository named math. (Replace
yourname with your GitHub username.)

https://github.com/yourname/math.git
https://github.com/yourname/math.git
https://github.com/yourname/math.git
https://github.com/yourname/math.git

Third-party tools and Git
The only Git tools that you’ve used so far have been the command-line and GUI
tools that come with the standard distribution of Git. Let’s consider these the Git
native tools. In this chapter, you’ll explore two third-party tools that can serve as
supplements or even replacements for these native Git tools. These are Atlassian’s
SourceTree and the Git integration that comes with the Eclipse IDE.

 I selected these two tools based on my familiarity but also their cost: both tools
are free. SourceTree’s singular focus on Git makes it similar to GitHub for Windows
and Tower for Mac. Eclipse is popular, and its functionality is representative of
other IDEs such as IntelliJ IDEA and NetBeans.

 This chapter appears near the end of the book because it’s important to form a
good understanding of Git from the point of view of its stock installation and its
native tools. Now that you’ve used the Git native tools over the past several lunches,
you’ll have a better understanding for the underlying Git functionality as sup-
ported by these third-party tools. But at this point, it’s time to learn about the larger
Git ecosystem.

 One last note about this chapter: you’ll be downloading software (in sections
19.1.1 and 19.2.1), which may take some time. Plan accordingly; this chapter may
take longer than a typical lunch. Consider doing the downloads earlier!

19.1 SourceTree
A good number of third-party tools have been created to replace the gitk and Git
GUI native tools. In this section, you’ll install Atlassian’s SourceTree, a powerful
GUI that claims to eliminate the use of the command line. SourceTree is available
for both Windows and Mac, but not other Unix/Linux platforms such as Ubuntu.
(If you’re on Unix/Linux, you can skip to section 19.2.)
311

312 CHAPTER 19 Third-party tools and Git
19.1.1 Installing SourceTree

Installing SourceTree is a straightforward process, which you’ll attempt now.

TRY IT NOW Let’s first install SourceTree on your computer. Visit www.source-
treeapp.com. Then click the Download button. The web page detects
whether you’re running Windows or Mac, and downloads the appropriate
binary.

Next, locate the down-
loaded file in your
browser’s designated
Downloads directory. For
Windows, you’ll look for
an EXE file with Source-
TreeSetup in its name (fig-
ure 19.1). For Mac, the
download will result in a
disk icon on your desk-
top. Double-click that.

Now install the software by follow-
ing your platform’s standard
installation process. The installa-
tion downloads the version control
systems. Then the initial welcome
screen appears (figure 19.2).

Accept the license agreement
(this is free software) and click
Continue. The program then
prompts you for other configura-
tions. One such configuration is
the setup of the global ignore file,
as shown in figure 19.3. Accept
this with Yes. I cover this configu-
ration in the next chapter, and as
the dialog box states, you can
always change this later.

Figure 19.1 The SourceTree download for Windows, and
its tooltip (when you hover the mouse over it)

Figure 19.2 The initial welcome screen of
Atlassian’s SourceTree on Windows

Figure 19.3 Global ignore
file configuration

313SourceTree
You may be prompted for a username or password, but you can skip this step
for now. Eventually, you’ll see the main SourceTree window, which looks like
figure 19.4 for Windows.

On the Mac, the initial
screen looks like figure 19.5.

Figure 19.5 The default
SourceTree window (in Mac)

What should be obvious right away is that SourceTree has a Windows- or Mac-specific
look and feel, compared with the gitk and Git GUI tools. Next you’ll need to add your
existing math repository that you’ve been using throughout the book into Source-
Tree.

19.1.2 Adding a repository into SourceTree

You don’t have to create repositories in SourceTree in order to use them in Source-
Tree. In this TRY IT NOW, you’ll add an existing repository into SourceTree.

TRY IT NOW This exercise relies on the math directory that you’ve been using
throughout the book. To follow along, start by downloading the
make_math_repo.sh script from the book’s website. The script will re-create
the math directory, and you can then point SourceTree to it.

The make_math_repo.sh script does have an uncommitted change in the
branch named another_fix_branch.

After you’ve re-created the math directory, continue with the appropriate sec-
tion that follows for your platform.

Figure 19.4 The default SourceTree window (in Windows)

314 CHAPTER 19 Third-party tools and Git
WINDOWS

Click the Clone/New button (in the upper-left window below the menu bar).
A New Repository tab appears, as in figure 19.6.

To add your repository to
SourceTree, click the Add Work-
ing Copy tab, and then browse to
the math directory, as shown in
figure 19.7. Remember that the
math directory is your working
directory, and that the Git repos-
itory is inside it.

Now click Add. Your math repos-
itory is shown in its current state
in the SourceTree window. It
should look roughly like figure 19.8. Notice the tab labeled math and its con-
tents. If you open another repository, its content would appear inside its own

Figure 19.6 The New Repository tab

Figure 19.7 Choosing the math repository

Figure 19.8 The standard SourceTree window, open to a repository

315SourceTree
tab. If you’re on Windows, you may see the leftmost pane showing any reposi-
tories that you’ve opened. This is the bookmarks pane, which is available only
on the Windows version of SourceTree. In figure 19.8, only one repository is
in this bookmarks pane.

MAC

Click the New Repository > Add
Existing Local Repository option,
shown in figure 19.9. (Alterna-
tively, you could scan your home
directory, and SourceTree will
attempt to locate Git reposito-
ries from a specific directory.)

From here, select the math
repository. It then appears in
your SourceTree window, as
shown in figure 19.10. Double-
click the repository to access the
default repository view.

Figure 19.10 Your local repository
 in the Mac version of SourceTree

SourceTree detects the current state of your repository. If you followed the
steps exactly, it recognizes that the repository is in the branch named
another_fix_branch (shown previously in figure 19.8), and that the repository
contains an unstaged file, math.sh.

19.1.3 Staging a file

The current SourceTree view is the File Status view, as indicated by the tabs at the bot-
tom of SourceTree (figure 19.11).

On the Mac, the view is indicated by small icons at the
top left of the main view (figure 19.12).

 The icon next to math.sh is an indicator that the
file has been modified (hover your mouse over it). As
you learned in chapter 6, anytime Git detects that a file
has been updated, it will be flagged as needing to be
staged. (In this case, the last step of the make_math_
repo.sh script is to modify a file.) You’ll stage this file
by performing the UI equivalent of git add.

Figure 19.9 Adding a repository in the Mac
version of SourceTree

Figure 19.11 The File Status view in
the Windows version of SourceTree

Figure 19.12 The File Status
view in the Mac version of
SourceTree

316 CHAPTER 19 Third-party tools and Git
TRY IT NOW In this exercise, you’ll examine the
contents of the math tab that shows the status of
the files in your repository. On Windows, click
View Show/Hide Bookmarks, which removes the
bookmarks display to the left of the math tab.

On the math tab (shown previously in figure
19.8) SourceTree shows an information pane
containing file statuses, branches, and any tags or
remotes. Figure 19.13 shows this information
pane on a Mac, against a newly re-created math
directory.

Now observe that the file view (figure 19.14)
shows math.sh in the Unstaged Files section. To
move this file to the Staged Files section, click the check box next to the file-
name to select it. This is the equivalent of the git add command.

If you decide that you want to make further changes to the file, you can
remove it from the staging area. To remove it from staging, click the check
box next to the filename (to deselect it) when it’s in the Staged Files section.

19.1.4 Tracking underlying Git commands in SourceTree

One of the challenges of working with any third-party tool is understanding which Git
command is invoked with mouse-button presses and menu selections. In the Mac ver-
sion of SourceTree, you can enable Show Com-
mand Output mode, which lets you see Git com-
mands as they’re invoked (see figure 19.15). This is
one way to learn the tooling.

Figure 19.15 On the Mac, enabling Show Command
Output will display Git commands as you operate.

Figure 19.13 The
SourceTree information pane

Figure 19.14 The file view

317SourceTree
Unfortunately, this mode doesn’t exist in Windows as of this writing.
 On the Mac, if you performed the preceding steps of moving a file into and out of

the staging area, and you’ve enabled Command History mode, you’ll see the git add
and git reset commands being performed under the covers, as in figure 19.16.

TRY IT NOW Let’s make sure
the math.sh file is back in the
staging area. If it isn’t, click the
check box next to math.sh to
select this file in the Unstaged
Files area. As in figure 19.17,
you should see that the file
appears in the staging area of
the UI. The Unstaged Files sec-
tion is empty.

One other tracking option
available for both Mac and
Windows is displaying the con-
sole output. To enable this,
open the Options dialog box.
On Windows, you access this
from the Tools menu, and on
the Mac you use the standard
Preferences menu. Select the
General tab. Now enable the setting Always Display Full Console Output (fig-
ure 19.18). This displays the console output of most Git commands after
they’re run by SourceTree, which you’ll see after you complete the next step.

Figure 19.16 The Command History mode (on SourceTree for Mac)

Figure 19.17 The staging area depicted in
SourceTree

Figure 19.18 Enable the Always Display Full Console Output option

318 CHAPTER 19 Third-party tools and Git
19.1.5 Committing a file in SourceTree

Now that you’ve added a file to the staging area, you can commit that file to the
repository.

TRY IT NOW Enter a commit
log message in the text area
at the bottom of the Staged
Files section, as in figure
19.19. This commit log mes-
sage is always available, and
the editor is native for your
platform.

Figure 19.19 Entering a commit
message in SourceTree

With the Display Full Console Output option enabled, you’ll see a dialog box
showing the Git command that was performed, as in figure 19.20.

The common Git operations are always on display in the top ribbon of commands, as
in figure 19.21. (The figure doesn’t show all the options.) These commands will act on
any files that are selected in the File Status view. Pay attention to the list of files
selected before clicking any buttons!

19.1.6 History view

Other Git capabilities (such as git rebase and git reset) are present in the history
view. Let’s examine this view now.

TRY IT NOW From the menu bar, click the View menu and select Log View.
The main window pane switches to a view that shows the entire log history, as
in figure 19.22.

Figure 19.20 Console output for git commit in SourceTree

Figure 19.21 The ribbon of Git commands

319Git and the Eclipse IDE
This view is the equivalent of the git log output, which should be familiar.
SourceTree shows all branches. If you access the context menu (via a right
mouse-button click on Windows or Linux, or a two-finger click on the Mac),
you’ll see other Git operations, as in figure 19.23.

At this point, you could experiment on your own with the various capabilities such as
tagging or checking out a particular SHA1 ID.

19.2 Git and the Eclipse IDE
An integrated development environment (IDE) is a natural place to incorporate Git.
Some developers do all their work in an IDE, and having access to Git inside this tool
makes sense.

Figure 19.22 The log history view

Figure 19.23 The context menu
available from the history view

320 CHAPTER 19 Third-party tools and Git
 In this section, you’ll explore the integration of Git inside the Eclipse IDE. Eclipse
is a popular IDE that can be run on all three major platforms: Windows, Mac, and
Linux. Moreover, variants of the IDE are available for a variety of languages, including
Java, PHP, and C/C++. In this section, you’ll install a particular version of Eclipse into
its own directory, and then create a new project pointing to your math repository.

19.2.1 Installing Eclipse

Eclipse is easy to install because all of its files go into one directory.

TRY IT NOW You’ll install Eclipse C/C++ Development Tooling (CDT). Install-
ing any variant of Eclipse is relatively straightforward, but this particular vari-
ant includes Git support. The documentation for Eclipse CDT is at the
following site: https://eclipse.org/cdt/.

I’ll defer to the documentation for details, but at a high level, the steps are as
follows: download and install a current version of Java (Eclipse uses the Java
runtime environment), and then download and install Eclipse CDT into its
own directory. These two downloads may make this a long lunch.

Once you have Eclipse CDT installed, you can run the tool by double-clicking
its icon or typing the following at the command line:

cd $HOME/eclipse-cdt
./eclipse

These steps assume you’ve installed the Eclipse files in the eclipse-cdt direc-
tory, inside your $HOME directory. If you’re prompted for a workspace direc-
tory, make sure not to use the math directory yet. You’ll explicitly add the
math directory separately. The workspace directory can be your $HOME/
workspace (or some other directory).

19.2.2 Adding a repository into Eclipse

To add your project (and its repository) into Eclipse, you must use a two-step process:
you must first import your files into a new project, and then you must share your proj-
ect, specifying your Git repository. You’ll go through these steps in the next two TRY IT
NOW sections.

TRY IT NOW The first step is to
create a new project from the
existing math directory. In
Eclipse, files belong to proj-
ects. From the Eclipse menu,
click the New Project item. As
in figure 19.24, you’ll see the
New project wizard. Under the
General folder, click Project.

Figure 19.24 The New
project wizard in Eclipse

https://eclipse.org/cdt/

321Git and the Eclipse IDE
Now click Next. The next dialog box
that appears (figure 19.25) prompts
you for the directory containing your
project. Browse to the math directory.

Click Next. The math directory
appears in the Project Explorer (the
pane on the left side of Eclipse).

Figure 19.25 Associating your
directory with the project

The project is now in Eclipse, as you can see in the Project Explorer. But in order to
associate your math Git repository with this project, you have to share the project via
the Team menu. This is the second step of the two-part process.

TRY IT NOW With your mouse over the math project in the Project Explorer,
open the context menu (via a right mouse-button click on Windows or
Linux, or a two-finger click on the Mac) and choose Team > Share Project
(figure 19.26).

If you don’t see the Share Project option, but instead the larger menu (shown
later in this chapter, in figure 19.30), then you can jump ahead to figure
19.29 and confirm that your project looks like that image, and then move to
the next section (section 19.2.3).

This brings up another dialog box, prompting you for the version-control sys-
tem. Select Git (figure 19.27). Eclipse’s architecture is such that it can use
other version-control systems, provided it’s implemented as an Eclipse plugin,
and that this plugin is installed.

On the next screen, you have to select the appropriate .git directory. Pick the
one that is in the math directory. In figure 19.28, the dialog box displays two

Figure 19.26 Sharing your
project in Eclipse

Figure 19.27 You can choose how to share
your project in Eclipse.

Figure 19.28 Picking the correct repository directory

322 CHAPTER 19 Third-party tools and Git
.git directories, one in the same directory as math (indicated by the .), and
another .git directory in the parent directory (indicated by the ..). Choose the
one in the math directory.

At this point, the math project in the
Project Explorer will have an indicator
showing that it’s the math repository
in the branch master. (Your indicators
may look different from those in fig-
ure 19.29, depending on which
branch is currently checked out.)

Figure 19.29 The project now has
indicators showing that it’s associated

with the Git repository.

19.2.3 Staging and committing a file

Now that you’ve associated the repository to this project, you can perform the usual
Git operations.

TRY IT NOW Let’s modify a file and make a commit. You’ll make these
changes in the master branch, so let’s switch branches inside Eclipse. Put your
mouse on your project, and activate the context menu (via a right mouse-
button click on Windows or Linux, or a two-finger click on the Mac). More
menu items appear than before (compare figure 19.30 with figure 19.26).

Figure 19.30 The new context menu, now that you’ve associated your project with the repository

323Git and the Eclipse IDE
Bring up the history view by clicking Team > Show in History, as shown in fig-
ure 19.30.

In the history view (indicated by the History tab), click the log entry message
that contains the word master. Using the context menu of the history view (via
a right mouse-button click on Windows or Linux, or a two-finger click on the
Mac), select Checkout, as in figure 19.31. This is how to change Git branches
in Eclipse.

If you don’t see the branch master, you may need to turn on the Show All
Branches and Tags toggle button, which is on the far-right side of the history
view. This button is highlighted in figure 19.31.

The Project Explorer changes the text next to the math project to read math
master. This indicates that you’re in the master branch (figure 19.32). Now
double-click the file named another_rename. The file opens in an editor win-
dow, with a tab containing its name (also shown in figure 19.32).

Enter some text in the editor. Notice that the file in the Project Explorer has
a symbol next to its filename, indicating that it needs to be saved. Save the file
now by clicking File > Save.

Figure 19.31 The context menu for the history view

Figure 19.32 Your file inside
the Eclipse editor (the filename
is in the tab another_rename)

324 CHAPTER 19 Third-party tools and Git
Git recognizes that this saved file will need to be committed, using the by-now
familiar two-step process: git add and git commit. To add the file to the stag-
ing area, use the context menu for the another_rename filename, and from
the Team menu, select Add to Index (as in figure 19.33).

The Project Explorer window displays another
symbol next to the file another_rename, indicat-
ing that it’s in the staging area, as in figure 19.34.

Using the context menu from figure 19.33, this
time choose Team > Commit. This action opens
the Commit Changes dialog box, shown in figure
19.35.

This dialog box requires you to fill in a commit
message, and it requires you to pick the files to
commit. Make sure that the filename
another_rename has a check mark next to it. If

Figure 19.33 Adding a file to the staging area in the Eclipse IDE

Figure 19.34 The icon next
to another_rename indicates
that it’s in the staging area.

Figure 19.35 The Commit Changes
dialog box in Eclipse

325Git and the Eclipse IDE
you see a filename .project, you can leave that unchecked. Click the Commit
button to commit the change to the repository.

19.2.4 History view

Now that you’ve made changes to the repository, let’s look at how the commit appears
in the history view. This view is the equivalent of the git log command.

TRY IT NOW With the mouse over the math project in the Project Explorer,
open the context menu (via a right mouse-button click on Windows or Linux,
or a two-finger click on the Mac).

From the context menu,
choose Team > Show in His-
tory. You’ll see your proj-
ect’s commit log in the
History tab of Eclipse, as in
figure 19.36.

If you click any of the com-
mit messages in the History
tab, and access the context
menu Open in Commit
Viewer, you’ll see a dialog
box that has two tabs of
commit information: the
commit message and the
diff between the current ver-
sion and the parent. Figure
19.37 and figure 19.38 show
the commit message dialog box after selecting the second commit (for SHA1
ID 2628aff4).

Figure 19.36 The history tab

Figure 19.37 The commit message tab of the Commit detail window

326 CHAPTER 19 Third-party tools and Git
Using Git with the Eclipse IDE makes a lot of sense if your organization is standardized
on Eclipse. If you use a different form of Eclipse, you can add Git into your Eclipse as
a plugin. The version of Eclipse that you downloaded for this section has this Git plu-
gin already incorporated, so if you have another version of Eclipse, explore how to
install the EGit plugin (formally known as Team Provider). A similar plugin exists for
IntelliJ IDEA.

19.3 Other third-party tools
Many more third-party tools exist for Git. For an up-to-date list, visit the following
URL:

http://git-scm.com/downloads/guis

SourceTree and Eclipse are popular choices, for the reasons discussed in the opening
section of this chapter. SourceTree might be easier to grasp initially than Eclipse,
because it’s closer in spirit to Git GUI and gitk. Eclipse, on the other hand, is first and
foremost an IDE.

 Your environment and workflow might dictate another choice. Microsoft’s Visual
Studio 2013 (an IDE for Windows) and Visual Studio Online (a cloud-based develop-
ment environment) have support for Git. GitHub offers tooling for both Windows
and Mac.

 Learning any new Git tool requires orienting yourself to the UI, and relating it to
the Git operations. Like your exploration with SourceTree and Git inside Eclipse, try
to make a simple commit in an existing repository. Then examine the history of the
repository. From there, move on to more complicated operations.

 Finally, you can continue to use the standard command-line tools even if you opt
for using a third-party tool. The GUIs are better suited for displaying log and file dif-
ferences compared with the command line, but you can continue adding and commit-
ting with the command-line tools.

Figure 19.38 The diff of the Commit detail window

http://git-scm.com/downloads/guis

327Lab
19.4 Lab
In this lab, you’ll continue the exploration of SourceTree and Eclipse (with Git).

1 In SourceTree, create a new repository from scratch and add a file to that.
2 In SourceTree or Eclipse, switch between branches. Confirm that you’re on the

different branch by examining the git branch output on the command line of
the math directory.
It’s important to know that you can use Git native tools in addition to using
SourceTree or Eclipse.

3 SourceTree has built-in support for git-flow, which you learned about in chap-
ter 17.
To try out this support, click the Git Flow icon. The program prompts you for
branch names and prefixes, and then converts the selected repository into one
that uses git-flow. After the repository has been converted, click the Git Flow icon
again, and you’ll see the git-flow options to start a new feature, a new release, or
a new hotfix. Try these, following along with what you did in section 17.3.

Sharpening your Git
At long last, you’ve reached the last chapter. This chapter covers the git config
command. Its main benefit is to customize the Git commands and tools that you’ve
learned over the past chapters. You’ve already used git config in earlier chapters
to set or examine specific configurations such as what email address to use for com-
mits (chapter 3) or how git push should behave (chapter 13). You’ve also used git
config to create aliases (chapter 15). This chapter focuses on how to modify the
behavior of other Git commands to suit your preferences.

 Git is a tool, and keeping your Git sharp falls under the habit of always keeping
your tools sharp. When your tools are sharp, they’ll always be ready to use when the
time comes. In the case of computer tools such as Git, the sharpness of the tool
depends a lot on the knowledge and ability of the person using the tool.

20.1 Introducing the git config command
The git config command is the key command for advanced techniques with Git.
This command lets you create aliases, modify the behavior of certain Git com-
mands, and extend its capabilities. A great many Git features are controlled by Git
configuration variables, which git config manipulates, so it’s important to under-
stand what these are, where they’re stored, and how to change them.

20.1.1 Using Git configuration variables

Git configuration variables control how Git behaves. Some of these settings are cos-
metic—for example, the color to display branches in the git log command. Some
control Git’s behavior, such as push.default (which you saw in chapter 13).

 Let’s use Git’s help to see other configuration variables.
328

329Introducing the git config command
TRY IT NOW From your command line, type the following:

git config --help

Alternatively, to view the long list from the browser, visit this URL:

https://git-htmldocs.googlecode.com/git/git-config.html

You can see a wide variety of variables, from cosmetic configurations to behavioral
ones. Do note that other Git configurations are described in their respective Git docu-
mentation. Before changing any settings, you should understand order of precedence
for Git configurations.

20.1.2 Understanding Git configuration order of precedence

Git configuration has three levels: local, global, and system. Configurations that are
set at the local level have the highest precedence, followed by global, followed by sys-
tem. In the context of Git configuration, local means the current repository (reposi-
tory-specific), global means global across all the repositories you have control over, and
system means server-wide.

 In figure 20.1, you have two users, mary and bob, on a server (the outermost box).

Both users (mary and bob) have their own global configuration (labeled global config)
in figure 20.1. Any configuration at this level can be applied globally to the two repos-
itories that each owns. Global configurations are the equivalent of user-specific config-
urations, but the word global has stuck from the earliest Git implementations.

 Let’s take a closer look at these configurations now.

TRY IT NOW Go into the math directory, and list the configurations in each of
these areas by typing the following:

cd $HOME/math
git config --local --list
git config --global --list
git config --system --list

System config

Global config (user) mary

Local
config

Local
config

Global config (user) bob

Local
config

Local
config

Figure 20.1 The levels
of Git configuration

https://git-htmldocs.googlecode.com/git/git-config.html

330 CHAPTER 20 Sharpening your Git
You should see output from at least two of these git config commands (the
system configuration is often empty). For my computer, I see the session in
the following listing.

> git config --local --list
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
core.ignorecase=true
core.precomposeunicode=true
> git config --global --list
user.name=Rick Umali
user.email=rumali@firstfuel.com
core.excludesfile=/Users/rumali/.gitignore_global
core.editor=vim
alias.lol=log --graph --oneline --all --decorate --simplify-by-decoration
color.ui=auto
color.diff=true
push.default=simple
gui.recentrepo=/Users/rumali/git-test
> git config --system --list
fatal: unable to read config file '/usr/local/etc/gitconfig': No such file

or directory

Don’t worry if your output doesn’t look like listing 20.1. Do observe that your name
and email are set in the global configuration. Also, depending on the state of your
math repository, you may have branch configuration.

 The error that you see in listing 20.1 (unable to read config file) for git con-
fig --system --list is typical, and it means that there are no server-level configura-
tions. These would typically be configured by a system administrator, but don’t be
surprised if there aren’t any on the system you’re working on.

 Visit the other repositories you’ve made in the course of this book and examine
the local configuration. The following listing shows the git config --local --list
output of my math.github repository (first created in chapter 12).

core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
core.ignorecase=true
core.precomposeunicode=true
remote.origin.url=https://github.com/rickumali/math.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin
branch.master.merge=refs/heads/master

Listing 20.1 Output from git config --list commands

Listing 20.2 Output of git config --local --list

331Introducing the git config command
Each configuration is specified as name=value. The name
is typically separated by a period, as in user.name=Rick
Umali. In Git, the string before the first period is consid-
ered the section, and the string after this period is the key.
So in the configuration user.name, user is the section,
and name is the key. See figure 20.2.

 When you have two periods (for example,
remote.origin.url in listing 20.2), the period that sepa-
rates the section and the key is the next-to-last period. So
for remote.origin.url, the section is remote.origin,
and the key is url. The string origin, in this case, is con-
sidered a subsection. The key is always the string after the
last period (as in figure 20.3). This nomenclature of sec-
tions is necessary to understand Git config files, which
you’ll see later in this chapter.

 The git config help pages that you looked at in sec-
tion 20.1.1 organize config variables into specific sections
(for example, core, color, diff). Remember that the full
name for a configuration variable is its section (or sec-
tions) and the key.

20.1.3 Setting Git configurations temporarily

In this section, you’ll modify how the git log command displays the date and time-
stamp of each commit message. This is a cosmetic configuration, the easiest type of
configuration to experiment with. Let’s first set this configuration variable by using
the -c Git command-line switch.

TRY IT NOW From the command line, type the following:

cd $HOME/math
git -c log.date=relative log -n 2

This should result in output like the following listing. (Remember, press Q to
exit the pager.)

commit 7e8e188384ad0cd36af07f6035a1da7ac55b02cb
Author: Rick Umali <rickumali@gmail.com>
Date: 10 days ago

 Renaming c and d.

commit 2b12d3e602ea24d893b1c870d2f46f155d9dea11
Author: Rick Umali <rickumali@gmail.com>
Date: 10 days ago

 Removed a and b.

Listing 20.3 Output from git -c log.date=relative log -n 2

Name

Section Key

Value

user.name=Rick Umali

user.name

Figure 20.2 Visualizing
the Git configuration
name/value

Figure 20.3 A Git
configuration with a
subsection

Section

Subsection

Key

remote.origin.url

332 CHAPTER 20 Sharpening your Git
This output shows the date using the
relative date format. The behavior of
the git log command changed,
because you applied a new configura-
tion via the -c switch of the git com-
mand. The -c switch is a fast way to
override a configuration quickly (see
figure 20.4). Remember, git -c is not
the git config command!

 Setting configurations in this way is a good technique for testing an unfamiliar
configuration.

20.1.4 Setting Git configurations permanently

This configuration from the preceding section (log.date=relative) is temporary. If
you run git log without the -c switch, you won’t see dates in the relative format. To
make this configuration change permanent, you must use the git config command
to set the configuration. Let’s do this now.

TRY IT NOW In the math repository, let’s make the log.date=relative con-
figuration permanent by typing the following:

git config --local log.date relative

After typing this, the configuration will be saved in the local Git configura-
tion. Every time you access this repository, git log will use the relative date
format. Type this:

git log -n 2

The output should look like listing 20.3. The --local switch to the git
config command saves the configuration locally. Let’s visit another reposi-
tory—that math.github directory. If you don’t have math.github in your
$HOME directory, type the following to create it:

cd $HOME
git clone https://github.com/rickumali/math.git math.github

Now type this:

cd $HOME/math.github
git log -n 2

This output should show the dates in the default format, which is different
from the other repository. Make sure to confirm this. Local Git configuration
means local to the repository.

If you want to make this change applicable to any repository that you visit, use the
--global switch instead of the --local switch. Remember, in Git parlance, --global
means a configuration that can be applied globally to any repository you control. In

Configuration parameter

overriding log.date Switches

Log command

git -c log.date=relative log -n 2

Figure 20.4 Changing the behavior of git log
via the -c switch

333Working with Git configuration files
practice, test switches by saving them locally first (the --local switch is the default,
and it may be omitted), before promoting them to the global setting.

20.1.5 Resetting Git configurations

To go back to Git’s default value for a particular configuration setting, you can unset
the value. In the previous section, you set log.date to the value relative. Let’s unset
this, so you can view the dates in their original format.

TRY IT NOW In the math repository, let’s reset the log.date configuration
permanently by unsetting its value. Type the following:

git config --local --unset log.date

Now type this:

git log -n 2

The dates appear as they originally did.

20.2 Working with Git configuration files
Ultimately, Git configurations are stored in plain-text files. Table 20.1 lists the typical
locations.

If you stick with using the standard git config command, and use the --local,
--global, and --system switches, you won’t have to worry about knowing where these
files are. But you might feel comfortable examining and even editing the config file.

20.2.1 Editing Git configuration files

Now that you know the location of the Git config files, you could edit them directly by
using your favorite editor. If you’re making a lot of changes, editing the file may be a
good option. Some Git commands document their configuration by using the config
file syntax, so editing the file directly will make the documentation easier to follow. In
this section, you’ll use the command line to start an editing session.

Table 20.1 Locations for Git configuration files

Location Path Notes

Local $GIT_DIR/config $GIT_DIR represents the working
directory of your repository.

Global $HOME/.gitconfig This is in the home directory.

System C:/Program Files (x86)/Git/etc/gitconfig (Windows)
/Applications/Xcode.app/Contents/Developer/usr/
etc/gitconfig (Mac)
/etc/gitconfig (Unix/Linux)

This may vary, depending on how
Git was installed.

334 CHAPTER 20 Sharpening your Git
TRY IT NOW You’ll work inside the math.github working directory. With the
next commands, you’ll go inside this directory to edit the local configuration
file:

cd $HOME/math.github
git config --local --edit

This immediately opens the config file in the vi editor. The editor may be
configured to show you the filename, shown in the bottom line (sometimes
known as a ruler) in figure 20.5.

You can exit the editor without saving anything by typing this:

:q!

This is a good practice if you’re not sure you made any changes, and don’t
want to save what might be edited.

20.2.2 Using Git configuration file syntax

The Git config file has a particular syntax. The section is marked by brackets (for
example, [core]), and some names have a subsection (for example, [remote "ori-
gin"]). The key and the value are then indented below their appropriate sections.
The file format also supports comments, by placing a # or ; in front of any string on its
own line, as in the following listing.

#
Comments
#

; User identity
[user]
 ; personal detail
 name = "Rick Umali"
 email = "rickumali@gmail.com"

Listing 20.4 Comments in Git configuration files

Figure 20.5 Looking at
the local configuration with
git config --edit

335Working with Git configuration files
TRY IT NOW Let’s examine the other configurations. From the same
math.github directory, type this:

git config --global --edit

For my Windows machine, I see figure 20.6.

To exit, type the following:

:q!

Finally, let’s look at the system configuration. On your machine, this com-
mand might not work, depending on whether you have a system Git configu-
ration file. Type the following:

git config --system --edit

On my Windows machine, I see
figure 20.7. (On my Mac and
Ubuntu machines, I received an
error because the system configu-
ration file didn’t exist. Your
machine may behave differently!)

Clearly, a lot of configurations
exist. You can look up all of these
in the git config help file. On
my Ubuntu machine, the file that
the command opens is empty, as
shown in figure 20.8. You can also
see from the editor bar that it’s a
new file.

Make sure to exit the file:

:q!

Figure 20.8 An empty Git system
configuration file (on Ubuntu)

You won’t edit the global or system configuration. Instead, let’s examine one more big
change: how to configure Git’s default editor.

Figure 20.6 Looking at the
global configuration inside
with git config --edit
--global

Figure 20.7 Looking at the system
configuration inside with git config --edit
--system (on Windows)

336 CHAPTER 20 Sharpening your Git
20.3 Configuring Git’s default editor
During this entire book, you’ve been using the default editor that Git is configured
with. But now that you’ve learned git config, you can override the default editor for
a particular repository or globally (or even for the entire system) by configuring the
core.editor configuration setting.

 The core.editor configuration value is the name of an editor. It’s typically already
in your PATH, meaning that you can type its name, and it will start immediately. The
value of the core.editor setting is substituted in the command line, as in the follow-
ing listing.

$(core.editor) temp_file

In the listing, the temp_file is the target file. This is usually a file containing a commit
message, or one of the Git configuration files. Generally, if Git wants you to edit some-
thing, it will create a temporary file containing a template of what to edit, and then
call the core.editor on that temporary file.

TRY IT NOW From the math or math.github directory, type the following:

cd $HOME/math
git -c core.editor=echo config --local --edit

If all goes well, you’ll see a path returned to the screen, as in the following listing.

c:/Users/Rick/Documents/gitbook/math/.git/config

What just happened here?
The breakdown of the com-
mand is in figure 20.9.

 You use the -c switch
and an argument to that
switch (core.editor=echo).
In Git, the -c switch causes
Git to override core.editor with the supplied value from the command line. In the
case of the git config command, the name of the configuration file is passed to the
core.editor, and since core.editor is set to the echo command, the resulting git
config command prints the name of the file.

TRY IT NOW Type the following to learn the location of the configuration files
on your computer:

git -c core.editor=echo config --global --edit
git -c core.editor=echo config --system --edit

Listing 20.5 How core.editor is used to edit a file

Listing 20.6 Output from fancy git config command

Configuration parameter

Overriding core.editor Switches

Configuration

git -c core.editor=echo config --local --edit

Figure 20.9 Overriding the core.editor via git config

337Configuring Git’s default editor
At this point, you have everything you need to change your core.editor. Two TRY IT
NOW sections follow. One is for Windows users, and the second is for Mac and Unix/
Linux users. Both sections do the same thing: change the core.editor into some-
thing else for your local repository.

TRY IT NOW (WINDOWS) If you’re on a Windows machine, install Notepad++
from this URL:

http://notepad-plus-plus.org/download/v6.7.4.html

Once the executable is available, make sure that it starts properly. Now edit
(perhaps using Notepad++) the command line’s initialization file. This is
either .bash_profile or .bashrc, in the $HOME directory. All the lines of the
initialization file are executed every time you start Git BASH. Add this line at
the bottom of the file:

PATH="$PATH:/c/Program Files (x86)/Notepad++"

Then save the file. The line appends the directory of Notepad++ to the end of
the existing PATH. This is a standard technique. To make this change take
effect, exit and then restart Git BASH. Now type this:

which notepad++

The response should look like the following listing.

/c/Program Files (x86)/Notepad++/notepad++

Now you can take the intermediate step of setting the editor with the -c switch:

cd $HOME/math.github
git -c core.editor=notepad++ --local --edit

You should see the editor appear (it’s a GUI) with the local repository’s con-
figuration, as in figure 20.10.

Listing 20.7 Output of which notepad++

Figure 20.10 Using
Notepad++ as the
git config editor

http://notepad-plus-plus.org/download/v6.7.4.html

338 CHAPTER 20 Sharpening your Git
Exit the editor (choose File > Exit). Now type the following to make this per-
manent for the current repository:

git config --local core.editor notepad++

The next time you’re in this repository and you’re making an edit that
requires the core.editor, it will use Notepad++ instead of vi.

If you had difficulties with this, try putting the full path value in the
core.editor setting. This skips the setting in the initialization file, reading
the full path to Notepad++ from the config value. The Internet has resources
on these kinds of configuration issues, but you can also visit the book’s forum
(from the book’s website).

TRY IT NOW (MAC AND UNIX/LINUX) On the Mac or a Unix/Linux machine
(such as Ubuntu), you’ll change the core.editor from vi to nano. Nano is
another text editor similar to vi, but perhaps slightly easier to learn.

A key assumption I’m making is that nano is already in your path. Type the
following:

nano

You should see an editor window appear, similar to figure 20.11. The rows at
the bottom of the window show how to operate the editor. (The ^ represents
the Ctrl key.)

To exit, press Ctrl-X.

As an intermediate step, you’ll set the editor with the -c switch:

cd $HOME/math.github
git -c core.editor=nano config --local --edit

You’re using the -c Git command-line switch, for the git config command,
as explained in section 20.1.3. You’ll see something similar to figure 20.12.

Figure 20.11 The nano editor

339Configuring files to ignore
Exit the editor once again by pressing Ctrl-X.

Next, to make the nano editor the default editor for the current repository,
type this:

git config --local core.editor nano

The next time you’re in this repository and you’re making an edit that
requires the core.editor, it will use nano instead of vi.

20.4 Configuring files to ignore
Another common configuration is to enumerate the list of files that Git should
ignore. These tend to be files that are generated (object files, output from scripts, and
so forth) in your working directory, but that you don’t want to store in the repository.
To do this, you’ll have to manipulate a Git ignore file.

 In the previous chapter, for the installation of Atlassian SourceTree, you may have
noticed the prompt about the global ignore file (figure 20.13).

Figure 20.12
Editing files with nano

Figure 20.13 Global ignore
file prompt, during Atlassian
SourceTree installation

340 CHAPTER 20 Sharpening your Git
This configuration turns out to be a core configuration setting named core
.excludesfile. This setting specifies a file containing a list of files to omit from
source control. (This is a common requirement for projects that use languages that
compile source files into object files. Typically, you don’t want to store object files in
version control.)

TRY IT NOW First, read the description of core.excludesfile in the git
config help page, by typing this:

git config --help

The core.excludesfile entry on this help page reveals that the value of the
core.excludesfile is used as a fallback file to the file .gitignore, which
resides in your repository.

From the math repository, type the following to get the value of this configu-
ration:

git config core.excludesfile

This command may show you a filename, or it may return nothing. Don’t
worry if you don’t receive output. Continue reading to see what you might
want to configure. If the preceding command does return a filename, type
the following to display the contents of this file:

cat 'git config core.excludesfile'

This command-line technique retrieves the filename via the command in the
backticks, and then displays the contents of that filename. Using this one-line
command in Windows may show you the contents in the following listing.

#ignore thumbnails created by windows
Thumbs.db
#Ignore files build by Visual Studio
*.obj
*.exe
*.pdb
*.user
*.aps
*.pch
*.vspscc
*_i.c
*_p.c
*.ncb
*.suo
*.tlb
*.tlh
*.bak
*.cache
*.ilk
*.log
*.dll
*.lib
*.sbr

Listing 20.8 Listing of core.excludesfile (on Windows)

341Continually learning Git
These lines are files that Git will ignore.

The page refers to the gitignore help page, which you can get to by typing this:

git help gitignore

The gitignore help page gives great guidance on which file you might use over
another, so let’s instead focus on the technique that .gitignore provides. The following
TRY IT NOW will have you creating a .gitignore file in your math repository, and put-
ting in a pattern that your repository will ignore.

TRY IT NOW Let’s go into the math directory and create an empty file with an
.obj extension. This file will represent your object file, which you don’t want
in the repository:

cd $HOME/math
touch file.obj
git status

The output of git status announces that a new file exists named file.obj. To
make Git ignore this file, you’ll create a .gitignore file in your directory. Type
the following (being careful to put a period at the beginning of .gitignore):

echo "*.obj" > .gitignore
git status

Now git status will not report the file.obj file. But it does detect that the
.gitignore file is a new file. At this point, you should commit the .gitignore file
into the repository, so anyone else who clones the repository will ignore the
same set of files.

20.5 Continually learning Git
You’re at the end of the book, but it’s safe to say that you’re not finished learning
about Git. “Manuals are most useful after you’ve used a product for a bit,” is how
author Larry Ullman sums it up. I’d add that most computer books fall under this
guidance as well.

 This book aims to go over all the techniques a beginner needs to know in order to
competently use Git. But as you work with more varied repositories, or make more
complicated changes, you’ll need to do more than what is covered here. What follows
are some techniques to help you keep on top of Git.

20.5.1 Work on a clone

Chapter 11 covered git clone extensively. If you find yourself in a confusing situation
and aren’t sure what Git operation to perform, make a clone of your repository and
do your work on that clone first. This way, you can experiment without causing any
damage to your working repository.

20.5.2 Work with the help

Git’s documentation is still the authoritative help guide for Git. When you see tech-
niques on the Internet that suggest using Git switches or commands that you’re not

342 CHAPTER 20 Sharpening your Git
sure of, look them up in the official Git help documentation first. Building up a good
vocabulary obliges you to read with a dictionary by your side, and by extension, build-
ing up your Git knowledge requires you to access the git help command, so you can
understand what you’re typing. This technique, plus working on a clone of your work,
is a good way to speed up your learning with Git.

20.5.3 Commit often

The more often you commit, the more confidence you’ll have in being able to recover
from any version-control issues. When files are committed into the repository, you’ll
always be able to get at them. And with git rebase, you can clear out these smaller
intermediate commits before you publish your changes.

20.5.4 Collaborate

Be sure to collaborate with your fellow repository contributors. Because each repository
comes with its own conventions, make sure you understand those conventions before
you make contributions. Interacting with your co-contributors is key in this suggestion.
They may have developed Git aliases or practices that are specific to their workflow.

 To collaborate with other Git users outside a project, consider joining one of these
Git groups:

■ Git for Human Beings (Google Groups)
https://groups.google.com/group/git-users

■ Git Mailing List
git@vger.kernel.org

Details for joining this list are available at

https://git.wiki.kernel.org/index.php/GitCommunity

Finally, I plan to participate on the book’s website:
https://forums.manning.com/forums/learn-git-in-a-month-of-lunches

20.6 Lab
This is our last lunch together, so let’s make this lab an easy one! Following are some
questions to guide you along with git config:

1 In figure 20.1 (the bob and mary picture), how many Git configuration files are
possible?

2 Using your favorite editor, add a fake section in your repository’s configuration
file, and add a few keys underneath it. Follow these steps:

% cd $HOME/math
% git config --add rick.set1 value1
% git config --add rick.set2 value2

Using these commands, you’ve defined a section named rick. What git
config switch will rename this section?

https://groups.google.com/group/git-users
https://git.wiki.kernel.org/index.php/GitCommunity
https://forums.manning.com/forums/learn-git-in-a-month-of-lunches

343Lab
What git config switch will remove this section in one command?

3 In figure 20.6, one of the configurations is help.autocorrect. Look up what
this does, and why this setting may be helpful. To try it in your local repository,
type this:

% git config --local --add help.autocorrect -1
% git statsu

The misspelling in the preceding command is intentional!

4 If you installed Atlassian SourceTree and/or Eclipse, try examining their con-
figuration-setting capabilities.
In SourceTree, choose Repository > Repos-
itory Settings. In the resulting dialog box,
click Edit Config File (figure 20.14). This
prompts you for a tool to edit the configu-
ration.

Pick an editor you’re comfortable with.
After you make that selection, the Git con-
figuration file is loaded into the editor.

In Eclipse, you access the Git configuration
settings via Window > Preferences. In the
Preferences dialog box that appears, scroll
down to the Team section, then the Git
subsection, and click Configuration. You’ll
see figure 20.15. This dialog box offers a
way to edit configuration values without
resorting to an outside editor.

Figure 20.14 Editing configurations
with SourceTree

Figure 20.15 Editing configurations with Eclipse

344 CHAPTER 20 Sharpening your Git
20.7 Commands in this chapter

Table 20.2 Commands used in this chapter

Command Description

git config --local --list List the local (repository-specific) Git configuration.

git config --global --list List the global (user-specific) Git configuration.

git config --system --list List the system (server-specific) Git configuration.

git -c log.date=relative log -n 2 Show the last two commits using the relative date
format.

git config --local log.date relative Save the relative date format in the local Git
configuration.

git config --local --edit Edit the local (repository-specific) Git configuration.

git config --global --edit Edit the global (user-specific) Git configuration.

git config --system --edit Edit the system (server-specific) Git configuration.

git -c core.editor=echo config
--local --edit

Print the name of the local Git configuration file.

git -c core.editor=nano config
--local --edit

Edit the local Git configuration file using nano.

git config core.excludesfile Print the value of the core.excludesfile Git
configuration setting.

index

Git commands are indexed by their command name. To find “git clone,” look for “clone com-
mand.” Switches to the commands are indexed separately, followed by “switch.” To find “- -bare,”
look for “- -bare switch.”
Symbols

^ (caret) 245
: (colon) 206, 208
* (asterisk) 121
> symbol 257
>> markers 150
>> operator 63
~ (tilde) 28

A

-a switch 39, 64, 66, 75, 168
- -abbrev-commit switch 101, 117
- -abort switch 154
add command

committing parts of files using 90–93
overview 41–42, 46
staging area and 65
using -dry-run switch 72, 75

aliases 126
- -all switch 165, 248
- -allow-empty switch 283, 292
- -amend switch 107
arrow keys 30
- -author switch 243, 260
authors, limiting commits by 243–244

B

-b switch 131–132, 139, 284
bare directories 293

cloning from 170–173

creating with git clone 168–170
overview 167–168
repository files in 168

- -bare switch 169, 176, 293
batch files 36
binary files 70
Bitbucket 300
blame command 20, 255–257, 260
branch command 163, 176, 260
branches

adding fixes with 130–131
adjusting gitk to view 128–130
checking out 166–167
committing on 124–125
conventions for 281
creating 123–124
creating and checking out at once 131–132
creating for features 283–286
creating for releases 286–288
defined 24, 108
deleting 132–134
deleting on remote 206–208
displaying specific using gitk 248–250
fast branching 16–17
fast-forward merges

overview 154–156
performing merge 156–157

master 121–122
merge conflicts

aborting merge 154
by directly editing conflicting hunks 150–151
overview 148–150
by using merge tool 151–154
345

INDEX346
branches (continued)
merging 224–225

checking differences between branches
143–144

in Git GUI 147–148
merge commit parents 146–147
overview 140–143
performing merge 144–145
traffic analogy 141

naming 126
overview 12–14, 119–120
pushing to remote 202–206
references and 120
stash command 134–136
switching between 126–128, 134–136
viewing for cloned repository 163–166
viewing via git log 125–126

build process 36

C

-c switch 331–332, 336
caret (^) 245
cd command 29
CDT (C/C++ Development Tooling) 320
centralized version control system 24
check-ref-format command 126
checking out branches

creating and checking out branch at once
131–132

defined 24
overview 166–167
specific version

detached HEAD state and 110–114
HEAD/master and 108–110
overview 107–108

checkout command 97, 118, 122, 191, 203, 289
cherry-pick command 278
Chu, Philip 280
citool command 60, 89
clean merge

with automatic commit 230
with nonautomatic commit 227–230
overview 226–227

clone command 176, 310
cloning repositories

analyzing clone origin 179–180
from bare directory 170–173
checking out branches 166–167
clone command 161–163
creating bare directory 168–170
defined 18, 24
forking 302–303
overview 160–161
remote repositories 188–189

using command line 21–23
using GUI 18–21
viewing branches 163–166

collaboration
GitHub pull requests

closing pull request 307–308
making change to fork 304–305
making pull request 305–307
overview 303–304

merging
clean merge 226–227
clean merge with automatic commit 230
clean merge with nonautomatic commit

227–230
conflicted merges 231–234

overview 214–218
pulling from remote

fetching files 219–223
merging branches 224–225
overview 218–219

restricting pulls to fast-forwards only 235
using git fetch and merge instead of pull

236–237
colon (:) 206, 208
- -column switch 246, 260
command line

cloning repository 21–23
common commands 28–30
configuration 26
keyboard shortcuts 30–31
overview 25–27
paging output 33
repositories

adding files 41–42
checking status of 39–41
committing files 42–44
creating 37–38
overview 36–37
viewing contents of 44–45

syntax 27–28
“commit often” mantra 1
commits

amending 107
on branches 124–125
committing parts of files

using git add -p 90–93
using Git GUI 86–90

conventions for 280
defined 24
in Eclipse IDE 322–325
fetching from remote repository 184–188
finding by file 104
finding revision that updated specific line

overview 255

INDEX 347
using command line 257
using GUI 255–256

importance of commit messages 105–107
naming 246–248
overview 11–12, 42–44
pushing to remote repository 184–188
resetting file to last committed version 94–95
in SourceTree 318
squashing 264
staging area

adding changes to 66
analogy for 65–66
committing changes 70–72
overview 67–70
updating 66–67

viewing history using gitk 102–103
common ancestor 151
config command

configuration files
editing directly 333–334
file syntax 334–335
order of precedence 329–331
overview 333

configuration variables 328–329
creating aliases 126
initial setup 26–27
overview 328
push.default configuration 210
resetting configurations 333
setting configurations permanently 332–333
setting configurations temporarily 331–332
setting default editor 336–339
setting files to ignore 339–341

conflicts
conflicted merges 231–234
merging branches

aborting merge 154
by directly editing conflicting hunks 150–151
overview 148–150
by using merge tool 151–154

pushing changes 200–202
- -contains switch 248, 260
conventions

for branching 281
for commits 280
importance of 279–280
for pushing code 280–281
for tagging 281
for using rebase 281

core.editor setting 336, 344
core.excludesfile setting 340, 344

D

-d switch 133, 139, 209, 212
- -decorate switch 176, 283
default editor, setting 336–339
detached HEAD state 110–114
diff command 63, 68–69, 75, 89, 143–144
diff pane 87
direct-descendant concept 154
directories, adding to repository 81–83
- -dry-run switch 72, 75
DVCS (distributed version control system) 1–2, 24

E

echo command 40
Eclipse IDE

adding repository into 320–322
committing files 322–325
history view 325–326
installing 320
overview 319–320

F

-f flag 191
fast branching 16–17
fast-forward merges

overview 154–156
performing merge 156–157

feature branches 283–286
fetch command 219, 238
FETCH_HEAD reference 224, 238
fetching from remote

overview 184–188, 219–223
using git fetch and merge instead of pull 236–237

- -ff-only switch 235, 238
flow command 292
- -force switch 202
forking

cloning fork 302–303
making fork on GitHub 300–302

G

-g switch 32
- -get-regexp switch 205, 212
Git

command line
cloning repository 21–23
common commands 28–30
keyboard shortcuts 30–31
overview 25–27
paging output 33
syntax 27–28

INDEX348
Git (continued)
configuration 26
distributed repositories 15–16
fast branching 16–17
help 31–33
installing

Mac 5
overview 4–5
Unix/Linux 5
Windows 5

overview 1–3
staging area 17

Git Bash 5, 25, 38
git command 27
.git directory 39
Git GUI

adding files to repository
on Mac 53–54
overview 51–53
on Unix/Linux 54–57
on Windows 53

cloning repository 18–21
committing parts of files using 86–90
creating repositories

on Mac 49
overview 49
on Unix/Linux 50–51
on Windows 49

diff pane 87
merging branches in 147–148
Rescan 55
starting

overview 47–48
in Windows 48

viewing history 57–58
Git URL 19
git-flow

creating feature branches 283–286
creating release branches 286–288
overview 282–283

GitHub
creating account 295–296
creating repositories 296–297
forking

cloning fork 302–303
making fork on GitHub 300–302

interacting with repositories 297–300
overview 293–295
pull requests

closing pull request 307–308
making change to fork 304–305
making pull request 305–307
overview 303–304

GitHub flow 288–290

gitk 59
showing specific branches 248–250
simplified views 250–251
viewing branches using 128–130
viewing commit history using 102–103

GitLab 300
Gitorious 300
global configuration 329
- -global switch 33, 210, 213, 332, 344
- -globlocal switch 333
- -graph switch 229
grep command 260
- -grep switch 242, 251, 260
gui command 47, 60
gvimdiff command 152

H

- -hard switch 270, 278
HEAD

checking out specific version and 108–110
defined 109
detached HEAD state 110–114

help command 31–33, 35
- -help switch 33
history

checking out specific version
detached HEAD state and 110–114
HEAD/master and 108–110
overview 107–108

cleaning up using rebase command 263–264,
270–275

cloned repositories and 166
commit messages and 105–107
defined 24
finding files of interest 251–252
finding revision that updated specific line

overview 255
using command line 257
using GUI 255–256

log command
finding commits by file 104
limiting commits 241–244
meta information from 100–101
overview 98–99, 239–241
SHA1 IDs 99–100
using git name-rev to name commits 246–248
variations of 104–105
viewing commit history using gitk 102–103
viewing differences 244–246

naming conventions and 257–258
tag command 114–115
viewing for single file 252–255
viewing in Eclipse IDE 325–326

INDEX 349
viewing in gitk
showing specific branches 248–250
simplified views 250–251

viewing in SourceTree 318–319
viewing using Git GUI 57–58

$HOME 28
HTTPS URL (GitHub) 300, 303
hunks 64

I

IDE (integrated development environment) 319
ignored files 339–341
init command 37–38, 46, 167
installation

Eclipse IDE 320
Git 4–5
SourceTree 312–313

- -interactive switch 271, 278

K

KDiff3 152–153
keyboard shortcuts 30–31

L

Linux
adding files to repository using Git GUI 54–57
creating repository using Git GUI 50–51
installing Git 5

list command 139
listing repository files 173–174
local configuration 329
- -local switch 332–333, 344
log command 44, 46, 75, 176

finding commits by file 104
limiting commits

by author 243–244
by file 241–242
overview 241
specific commits 242
by time range 243

meta information from 100–101
overview 98–99, 239–241
SHA1 IDs 99–100
using git name-rev to name commits 246–248
variations of 104–105
viewing branches using 125–126
viewing commit history using gitk 102–103
viewing differences 244–246

ls command 29, 39, 168
ls-files command 45–46

ls-remote command 184–186, 191, 208
ls-tree command 173–174, 176

M

-m switch 42, 62, 64, 73, 75, 100, 230, 287
Mac

adding files to repository using Git GUI 53–54
creating repository using Git GUI 49
installing Git 5
locating Git GUI 19

main branch 12
master branch 43

checking out specific version and 108–110
overview 121–122

merge command 141, 144, 219, 238
- -merges switch 240–241, 260
mergetool command 151, 154
merging branches

checking differences between branches 143–144
clean merge 226–227
clean merge with automatic commit 230
clean merge with nonautomatic commit

227–230
conflicted merges 231–234
fast-forward merges

overview 154–156
performing merge 156–157

in Git GUI 147–148
handling conflicts

aborting merge 154
by directly editing conflicting hunks 150–151
overview 148–150
by using merge tool 151–154

merge commit parents 146–147
overview 140–143, 224–225
performing merge 144–145
traffic analogy 141

mkdir command 29
mv command 78, 97

N

name-rev command 246–248, 260
nano 338–339
- -no-ff switch 285, 292
- -no-pager switch 241, 247, 260

O

- -oneline switch 75, 104–105, 176, 239–240, 280
- -onelineall switch 176
online resources 7
opendiff 153

INDEX350
P

-p switch 90–93, 97
- -paginate switch 33
- -parents switch 100, 117, 240
parents, merge commit 146–147
- -patch switch 104, 118, 244, 260
- -patch-with-stat switch 105, 118, 245
PATH environment variable 4
pop command 139
PowerShell 25
pull command 218, 236, 238
pull requests

closing pull request 307–308
making change to fork 304–305
making pull request 305–307
overview 303–304

pulling from remote
fetching files 219–223
merging

clean merge 226–227
clean merge with automatic commit 230
clean merge with nonautomatic commit

227–230
conflicted merges 231–234
overview 224–225

overview 218–219
restricting pulls to fast-forwards only 235
using git fetch and merge instead of pull

236–237
push command 193–194, 208, 212, 298, 310
pushing changes

conflicts 200–202
conventions for 280–281
deleting branches on remote 206–208
overview 184–188, 192–196
permissions required for 193
push.default configuration setting 209–210
pushing and deleting tags 208–209
pushing branches 202–206
verifying success 196–200

pwd command 28–29

R

rebase command
cleaning up history using 263–264, 270–275
conventions for 281
keeping up with upstream using 262–267
overview 261–262
reflog command and 267–270
reset command and 267–270

references 120
reflog command 133, 139, 261, 267–270, 278

refspec, defined 208
release branches 286–288
remote command 179, 191, 298, 310
remote repositories

adding files to repository 182–184
analyzing clone origin 179–180
cloning 188–189
overview 177–179, 184–188
pulling from

fetching files 219–223
merging branches 224–225
overview 218–219
restricting pulls to fast-forwards only 235
using git fetch and merge instead of pull

236–237
pushing changes

conflicts 200–202
deleting branches on remote 206–208
overview 192–196
permissions required for 193
push.default configuration setting 209–210
pushing and deleting tags 208–209
pushing branches 202–206
verifying success 196–200

renaming 180–182
repositories

adding directories to 81–83
adding files using Git GUI

on Mac 53–54
overview 51–53
on Unix/Linux 54–57
on Windows 53

adding into Eclipse IDE 320–322
adding into SourceTree 313–315
adding multiple files 72–73
checking status of changed files 62–63
cloning

using command line 21–23
using GUI 18–21

committing changes 42–44, 64–65
creating 37–38, 61–62
creating on GitHub 296–297
creating using Git GUI

on Mac 49
overview 49
on Unix/Linux 50–51
on Windows 49

defined 2, 24
distributed 15–16
file status in 39–41
git files in 168
listing files using ls-tree command 173–174
overview 10–11, 36–37

INDEX 351
staging area
adding changes to 66
analogy for 65–66
committing changes 70–72
overview 67–70
updating 66–67

viewing changes 63–64
viewing contents of 44–45

Rescan 55
reset command 93, 97, 261, 267–270, 278
resetting files 94–95
resources online 7
rev-parse command 118
rm command 29, 77–78, 97
root commit 43

S

- -set-upstream switch 205, 212
SHA1 IDs 99–100
shortlog command 260
- -shortstat switch 75
show command 118, 184
- -simplify-by-decoration switch 176, 250
- -since switch 243, 260
“single point of contention” 2
SourceTree

adding repository into 313–315
committing files 318
displaying Git commands in 316–317
history view 318–319
installing 312–313
overview 311–312
staging files 315–316

squashing commits 264
SSH URL (GitHub) 300
- -staged switch 69, 75, 89
staging area

adding changes to 66
adding directories into repository 81–83
analogy for 65–66
committing changes 70–72
defined 24
deleting files 76–78
in Git GUI 56
overview 17, 67–70, 76
parts of files in

circumstances for committing 84–86
committing parts of file using git add -p 90–93
committing parts of file using Git GUI 86–90
consequences of partial commits 95–96
overview 83–84
removing changes from staging area 93–94
resetting file to last committed version 94–95

renaming files 78–81

in SourceTree 315–316
updating 66–67

stash command 134–136, 139
- -stat switch 44, 46, 104, 118, 239, 242, 260
status command 39, 41, 46, 63–64
syntax, command line 27–28
system configuration 329
- -system switch 344

T

tag command 114–115, 118, 213
tags

conventions for 281
pushing and deleting 208–209

- -tags switch 209, 213
Tcl (Tool Command Language) 59
Terminal application 38
terminology 24
tilde (~) 28
timeline 24
Tk 59
Tool Command Language. See Tcl
touch command 31, 72
tracking changes

adding multiple files 72–73
checking status of changed files 62–63
committing changes 64–65
staging area

adding changes to 66
analogy for 65–66
committing changes 70–72
overview 67–70
updating 66–67

viewing changes 63–64
trunk 12

U

-u switch 310
Ullman, Larry 341
unidiff 64
unified format 64
Unix

adding files to repository using Git GUI 54–57
creating repository using Git GUI 50–51
installing Git 5

- -until switch 243, 260
upstream version 203, 262–267

V

-v switch 139, 179, 184, 191
variables, configuration 328–329
verbs, Git 7

INDEX352
version control system 2
branches 12–14
commits 11–12
defined 24
for organizations 9–10
repositories 10–11
for software developers 8–9
terminology 24

- -version switch 22, 27
vi command (editor) 92–94
Visual Studio 326

W

Windows
adding files to repository using Git GUI 53

batch files 36
creating repository using Git GUI 49
installing Git 5
locating Git GUI 19
starting Git GUI 48

Windows Explorer 48
wish command 59
workflows

git-flow
creating feature branches 283–286
creating release branches 286–288
overview 282–283

GitHub flow 288–290
overview 281–282

working directory 22, 38

US $39.99 | Can $45.99

SOFTWARE DEVELOPMENT

GIT
is the source code control system preferred
by modern development teams. Its

decentralized architecture and lightning-fast branching
let you concentrate on your code instead of tedious
version control tasks. At first, Git may seem like a
sprawling beast. Fortunately, to get started you just
need to master a few essential techniques. Read on!

Learn Git in a Month of Lunches introduces the disci-
pline of source code control using Git. Helpful for both
newbies who have never used source control and busy
pros, this book concentrates on the components of Git
you’ll use every day. In easy-to-follow lessons that take
an hour or less, you’ll dig into Git’s distributed collabo-
ration model, along with core concepts like committing,
branching, and merging. This book is a road map to
the commands and processes you need to be instantly
productive.

WHAT’S INSIDE
• Start from square one—no experience required
• The most frequently used Git commands
• Mental models that show how Git works
• Learn when and how to branch code

No previous experience with Git or other source
control systems is required.

Rick Umali uses Git daily as a developer and is a
skilled consultant, trainer, and speaker.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/learn-git-in-a-month-of-lunches

“ A must-read resource ... learn
how to use Git for maximum
day-to-day effectiveness.”

 —Scott M. King, Amazon

“ Do you think Git is hard to
learn and manage? This book
will change your mind.”

 — Mohsen Mostafa Jokar, Hamshahri

“ The simplest way to become
highly skilled at using Git. A
must-read to make you more
efficient very quickly.”

 — Kathleen Estrada
Millersville University

“ Like being taught by a patient
friend. The book is thorough
without being stuffy, with clear
explanations and well-crafted
exercises.”

 —Stuart Ellis, 27stars Ltd.

“ Git is the road you’ll need to
take sooner or later. Why not
start down the road while
having your lunch?”

 —Nacho Ormeño, Startupxplore

 F
ree eBook

	Learn GIT - front
	brief contents
	contents
	preface
	about this book
	Source code downloads
	Author Online
	About the author

	acknowledgments
	1 Before you begin
	1.1 What makes Git so special?
	1.2 Is this book for you?
	1.3 How to use this book
	1.4 Installing Git
	1.5 Your learning path
	1.6 Online resources
	1.7 Being immediately effective

	2 An overview of Git and version control
	2.1 Version control concepts
	2.1.1 Version control for the software developer
	2.1.2 Version control for the organization
	2.1.3 What is a repository?
	2.1.4 What is a commit?
	2.1.5 What is a branch?

	2.2 Git’s key features
	2.2.1 Distributed repositories
	2.2.2 Fast branching
	2.2.3 The staging area

	2.3 A quick tour of Git
	2.3.1 Using the GUI to tour a Git repository
	2.3.2 Using the command line to tour a Git repository

	2.4 Version control terminology

	3 Getting oriented with Git
	3.1 Getting set up
	3.2 Using commands
	3.2.1 Git command-line syntax
	3.2.2 Common commands

	3.3 Improving command-line efficiency
	3.4 Using Git help
	3.5 Controlling long output with a pager
	3.6 Lab
	3.7 Further exploration
	3.8 Commands in this chapter

	4 Making and using a Git repository
	4.1 Understanding repository basics
	4.2 Creating a new repository with git init
	4.3 Tracking files with git status and git add
	4.3.1 Using git status to check your repository state
	4.3.2 Using git add to add a file to your repository

	4.4 Committing files with git commit
	4.5 Viewing the repository with git log and ls-files
	4.6 Lab
	4.7 Commands in this chapter

	5 Using Git with a GUI
	5.1 Starting Git GUI
	5.1.1 Starting Git GUI in Windows

	5.2 Creating a repository with Git GUI
	5.3 Adding a file into the repository via Git GUI
	5.4 Looking at your history
	5.5 Lab
	5.6 Further exploration
	5.6.1 Other GUIs for Git
	5.6.2 Tcl, Tk, and Wish

	5.7 Commands in this chapter

	6 Tracking and updating files in Git
	6.1 Making simple changes
	6.1.1 Creating a new repository
	6.1.2 Telling Git about changes
	6.1.3 Seeing what’s different
	6.1.4 Adding and committing changes to the repo

	6.2 Thinking about git add
	6.2.1 An analogy to introduce the staging area
	6.2.2 Adding changes to the staging area
	6.2.3 Updating the staging area
	6.2.4 Understanding the staging area
	6.2.5 Committing changes

	6.3 Adding multiple files
	6.4 Lab
	6.4.1 Understanding command-line nuances
	6.4.2 Getting out of trouble
	6.4.3 Adding your own file

	6.5 Further exploration
	6.6 Commands in this chapter

	7 Committing parts of changes
	7.1 Deleting files from Git
	7.2 Renaming files in Git
	7.3 Adding directories into your repository
	7.4 Adding parts of changes
	7.4.1 Reconsidering the stage analogy
	7.4.2 Considering when to commit
	7.4.3 Committing parts of a file by using Git GUI
	7.4.4 Committing parts of a file using git add -p
	7.4.5 Removing changes from the staging area
	7.4.6 Resetting a file to the last committed version
	7.4.7 Understanding consequences of partial commits

	7.5 Lab
	7.5.1 Working with multiple hunks
	7.5.2 Changing your mind with a delete
	7.5.3 Reading assignments

	7.6 Commands in this chapter

	8 The time machine that is Git
	8.1 Working with git log
	8.1.1 Working with the SHA1 ID
	8.1.2 Exploring meta information
	8.1.3 Using gitk to view the commit history
	8.1.4 Finding all commits by file
	8.1.5 Using variations of git log

	8.2 Making proper commit log messages
	8.3 Checking out a specific version
	8.3.1 Understanding HEAD, master, and other names
	8.3.2 Going back in time with git checkout

	8.4 Breadcrumbs to previous versions
	8.5 Lab
	8.5.1 Viewing history (part 1)
	8.5.2 Amending commits
	8.5.3 Using other names
	8.5.4 Committing while in detached HEAD mode
	8.5.5 Deleting tags
	8.5.6 Viewing history (part 2)

	8.6 Further exploration
	8.7 Commands in this chapter

	9 Taking a fork in the road
	9.1 Introducing branches
	9.1.1 Creating references
	9.1.2 Understanding that master is just a convention

	9.2 When and how to create branches
	9.2.1 Introducing new code with branches
	9.2.2 Introducing fixes with branches

	9.3 Performing other branch operations
	9.3.1 Branching faster
	9.3.2 Deleting branches

	9.4 Switching branches safely
	9.4.1 Stashing away your work
	9.4.2 Popping the stash

	9.5 Lab
	9.5.1 Using the GUI for branch work
	9.5.2 Warm-up questions
	9.5.3 Working on another_fix_branch
	9.5.4 Viewing branches

	9.6 Further exploration
	9.7 Commands in this chapter

	10 Merging branches
	10.1 Considering point of view: Traffic merges into us
	10.2 Performing a merge
	10.2.1 Starting with at least two branches
	10.2.2 Checking the difference between two branches
	10.2.3 Performing the merge
	10.2.4 Working with a merge commit’s parents
	10.2.5 Performing merges in Git GUI

	10.3 Handling merge conflicts
	10.3.1 Understanding differences that Git can’t handle
	10.3.2 Merging files by directly editing conflicting hunks
	10.3.3 Merging files by using a merge tool
	10.3.4 Aborting a merge

	10.4 Performing fast-forward merges
	10.4.1 Understanding the direct-descendant concept
	10.4.2 Making a fast-forward merge

	10.5 Lab
	10.6 Further exploration
	10.6.1 Calculating the base of a merge with git merge-base
	10.6.2 Changing how conflicts are displayed (merge.conflictstyle)
	10.6.3 Performing octopus merges

	10.7 Commands in this chapter

	11 Cloning
	11.1 Cloning: making copies locally
	11.1.1 Using git clone
	11.1.2 Viewing branches in your clone
	11.1.3 Checking out branches

	11.2 Working with the bare directory
	11.2.1 Examining Git repository files
	11.2.2 Creating bare directories with git clone
	11.2.3 Cloning from bare directories

	11.3 Listing files in the repo by using git ls-tree
	11.4 Lab
	11.5 Further exploration
	11.6 Commands in this chapter

	12 Collaborating with remotes
	12.1 Remotes are distant places
	12.1.1 Analyzing a clone’s origin (git remote)
	12.1.2 Renaming a remote
	12.1.3 Adding a remote

	12.2 Interrogating a remote
	12.3 Getting a clone from somewhere remote
	12.4 Lab
	12.4.1 Exploring your math.github clone
	12.4.2 Making remotes manually
	12.4.3 Using other git remote subcommands
	12.4.4 Creating clones with Git GUI
	12.4.5 Accessing another remote URL

	12.5 Further exploration
	12.6 Commands in this chapter

	13 Pushing your changes
	13.1 Pushing sends changes to a remote
	13.1.1 Permissions are required
	13.1.2 Pushing requires a branch and a remote
	13.1.3 Verifying a successful git push

	13.2 Understanding push conflicts
	13.3 Pushing branches
	13.4 Deleting branches on the remote
	13.5 Pushing and deleting tags
	13.6 Configuring simple pushes
	13.7 Lab
	13.8 Further exploration
	13.9 Commands in this chapter

	14 Keeping in sync
	14.1 Completing the cycle of collaboration
	14.2 Using git pull: a two-part operation
	14.2.1 Fetching files from a remote repository (git fetch)
	14.2.2 Merging two branches (git merge)

	14.3 Merging a pull
	14.3.1 Clean merge
	14.3.2 Clean merge with nonautomatic commit
	14.3.3 Clean merge with automatic commit
	14.3.4 Conflicted merges

	14.4 Restricting pulls to fast-forwards only
	14.5 Using git fetch and merge instead of pull
	14.6 Lab
	14.7 Commands in this chapter

	15 Software archaeology
	15.1 Understanding git log
	15.1.1 Reviewing the basics of git log
	15.1.2 Limiting the display of commits
	15.1.3 Seeing differences with git log
	15.1.4 Using git name-rev to name commits

	15.2 Understanding gitk view configurations
	15.2.1 Showing only specific branches in gitk
	15.2.2 Working with simplified views

	15.3 Studying files
	15.3.1 Finding files of interest (git grep)
	15.3.2 Examining the history of one file

	15.4 Finding which revision updated a specific line of code
	15.4.1 Running git blame as a GUI
	15.4.2 Using git blame on the command line

	15.5 Leaving messages for those who follow
	15.6 Lab
	15.7 Further exploration
	15.8 Commands in this chapter

	16 Understanding git rebase
	16.1 Examining two git rebase use cases
	16.1.1 Keeping up with the upstream by using git rebase
	16.1.2 Cleaning up history by using git rebase

	16.2 Examining use case 1: keeping up with the upstream
	16.3 Using git reflog and git reset to revert your repo
	16.4 Examining use case 2: cleaning up history
	16.5 Lab
	16.6 Further exploration
	16.6.1 Cherry picking
	16.6.2 Commit deleting

	16.7 Commands in this chapter

	17 Workflows and branching conventions
	17.1 The need for Git conventions
	17.1.1 Conventions for commits
	17.1.2 Conventions for pushing code
	17.1.3 Conventions for branching
	17.1.4 Conventions for using rebase
	17.1.5 Conventions for tagging

	17.2 Two Git workflows
	17.3 git-flow
	17.3.1 Making a feature branch
	17.3.2 Making a release branch

	17.4 GitHub’s flow
	17.5 Lab
	17.6 Further exploration
	17.7 Commands in this chapter

	18 Working with GitHub
	18.1 Understanding GitHub basics
	18.1.1 Creating a GitHub account
	18.1.2 Creating a repository
	18.1.3 Interacting with the repository

	18.2 Working with forks
	18.2.1 Making a fork on GitHub
	18.2.2 Cloning your fork

	18.3 Collaborating with pull requests
	18.3.1 Making a change to your fork
	18.3.2 Making a pull request
	18.3.3 Closing the pull request

	18.4 Lab
	18.5 Further exploration
	18.6 Commands in this chapter

	19 Third-party tools and Git
	19.1 SourceTree
	19.1.1 Installing SourceTree
	19.1.2 Adding a repository into SourceTree
	19.1.3 Staging a file
	19.1.4 Tracking underlying Git commands in SourceTree
	19.1.5 Committing a file in SourceTree
	19.1.6 History view

	19.2 Git and the Eclipse IDE
	19.2.1 Installing Eclipse
	19.2.2 Adding a repository into Eclipse
	19.2.3 Staging and committing a file
	19.2.4 History view

	19.3 Other third-party tools
	19.4 Lab

	20 Sharpening your Git
	20.1 Introducing the git config command
	20.1.1 Using Git configuration variables
	20.1.2 Understanding Git configuration order of precedence
	20.1.3 Setting Git configurations temporarily
	20.1.4 Setting Git configurations permanently
	20.1.5 Resetting Git configurations

	20.2 Working with Git configuration files
	20.2.1 Editing Git configuration files
	20.2.2 Using Git configuration file syntax

	20.3 Configuring Git’s default editor
	20.4 Configuring files to ignore
	20.5 Continually learning Git
	20.5.1 Work on a clone
	20.5.2 Work with the help
	20.5.3 Commit often
	20.5.4 Collaborate

	20.6 Lab
	20.7 Commands in this chapter

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Learn GIT - back

