

Practical Python Programming
for IoT

Build advanced IoT projects using a Raspberry Pi 4, MQTT,

RESTful APIs, WebSockets, and Python 3

Gary Smart

BIRMINGHAM - MUMBAI

Practical Python Programming for IoT
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Karan Sadawana
Acquisition Editor: Shrilekha Inani
Content Development Editor: Romy Dias
Senior Editor: Rahul Dsouza
Technical Editor: Aurobindo Kar
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Joshua Misquitta

First published: October 2020

Production reference: 1151020

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-246-1

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Gary Smart is a senior software engineer and an IoT and integration expert. The
commencement of Gary's IT career coincided with the birth of the World Wide Web and
has grown in line with the internet and emerging technologies ever since, including the rise
of mobile phones and tablets, embedded technologies, SaaS and business migration to the
cloud, and in recent years, the IoT revolution. Gary's practical experience includes both
technical and management positions and experience in both small and large organizations,
including Hewlett-Packard, Deakin University, and Pacific Hydro-Tango, boutique
consulting firms, and innovative internet and IoT start-ups.

A big and loving thanks to my wife, Kylie. Without your encouragement and support, this
book and the opportunity to share my passion and knowledge with others would not have
happened. And a big thanks also to my friends and colleagues who along the journey have
likewise provided encouragement and expressed sincere interest in the material I was
producing. You've all helped me understand that I have something valuable to share!
Thank you!

About the reviewer
Federico Gonzalez is an Argentinian-based cooperative developer and teacher. He studies
information systems engineering at UTN with a focus on development. He is part of
Devecoop, a cooperative where he works on projects using a broad range of technologies,
currently focusing on developing software and teaching React.js. He contributes to open
source projects such as Lelylan (an IoT cloud platform with microservices architecture),
EventoL (conference and installfest management software), and some minor contributions
to projects with a Docker environment, Python, or JavaScript code. He also gives various
workshops at universities, conferences, and companies in Argentina featuring React.js,
Python, Docker, open source free software, and cooperatives.

Devecoop is my company. It lets me work on many interesting projects and sponsors me to
go to conferences and give workshops and talks, and also helps me grow my teaching
skills. I've learned a lot from the people that contribute to free software communities
(USLA, GNUTN, CAFELUG, and more) and I'm a contributor too.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Programming with Python and the Raspberry
Pi
Chapter 1: Setting Up your Development Environment 13

Technical requirements 14
Understanding your Python installation 14
Setting up a Python virtual environment 16
Installing Python GPIO packages with pip 19

Anatomy of a virtual environment 24
Alternative methods of executing a Python script 27

Using sudo within virtual environments 27
Executing Python scripts outside of their virtual environments 28
Running a Python script at boot 29

Configuring the GPIO interface on our Raspberry Pi 31
Configuring the PiGPIO daemon 33

Summary 34
Further reading 35

Chapter 2: Getting Started with Python and IoT 37
Technical requirements 38
Creating a breadboard prototype circuit 39

Understanding the breadboard 40
Positioning and connecting the push button 42
Positioning and connecting the LED 45
Positioning and connecting the resistor 47

Reading an electronic schematic diagram 49
Reading the push button schematic connection 50
Reading the LED and resistor schematic connection 52
Introducing ground connections and symbols 54

Exploring two ways to flash an LED in Python 56
Blinking with GPIOZero 56

Imports 57
Pin Factory configuration 58
Blinking the LED 58

Blinking with PiGPIO 58
Imports 59
PiGPIO and pin configuration 59
Blinking the LED 60

Table of Contents

[ii]

Comparing the GPIOZero and PiGPIO examples 60
Exploring two ways to integrate a push button in Python 61

Responding to a button press with GPIOZero 61
Imports 62
Button pressed handler 62
Button configuration 63
Preventing the main thread from terminating 64

Responding to a button press with PiGPIO 64
Button pin configuration 65
Button pressed handler 65

Creating your first IoT program 67
Running and testing the Python server 68
Understanding the server code 68

Imports 69
Variable definitions 69
The resolve_thing_name() method 70
The get_lastest_dweet() method 70
The poll_dweets_forever() method 72
The process_dweet() method 72
The main program entry point 73

Extending your IoT program 74
Implementing a dweeting button 74
PiGPIO LED as a class 75

Summary 76
Questions 76
Further reading 77

Chapter 3: Networking with RESTful APIs and Web Sockets Using Flask 78
Technical requirements 79
Introducing the Flask microservices framework 80
Creating a RESTful API service with Flask-RESTful 80

Running and testing the Python server 81
Understanding the server code 84

Imports 84
Flask and Flask-RESTful API instance variables 85
Global variables 85
The init_led() method 86
Serving a web page 86
The LEDControl class 87
The get() class method 88
The post() class method 88
LEDController registration and starting the server 89

Introduction to PWM 90
Adding a RESTful API client web page 91

Understanding the client-side code 91
JavaScript imports 92
The getState() function 92

Table of Contents

[iii]

The postUpdate() function 93
The updateControls() function 93
Registering event handlers with jQuery 94
The web page HTML 95

Creating a Web Socket service with Flask-SocketIO 96
Running and testing the Python server 96
Server code walkthrough 98

Imports 98
Flask and Flask-RESTful API instance variables 99
Serving a web page 99
Connecting and disconnecting handlers 99
LED handler 100
Starting the server 101

Adding a Web Socket client web page 102
Understanding the client-side code 102

Imports 103
Socket.IO connect and disconnect handlers 103
The on LED handler 104
The document ready function 104
The web page HTML 105

Comparing the RESTful API and Web Socket servers 106
Summary 107
Questions 108
Further reading 108

Chapter 4: Networking with MQTT, Python, and the Mosquitto MQTT
Broker 110

Technical requirements 111
Installing the Mosquitto MQTT broker 112
Learning MQTT by example 114

Publishing and subscribing MQTT messages 116
Exploring MQTT topics and wildcards 118
Applying Quality of Service to messages 121
Retaining messages for later delivery 124

Publishing a retained message 124
Creating durable connections 126

Saying goodbye with a Will 128
Using MQTT broker services 130

Introducing the Python Paho-MQTT client library 131
Controlling an LED with Python and MQTT 132

Running the LED MQTT example 133
Understanding the code 134

Imports 134
Global variables 135
The set_led_level(data) method 135
The on_connect() and on_disconnect() MQTT callback methods 136
The on_message() MQTT callback method 137

Table of Contents

[iv]

The init_mqtt() method 138
Main entry point 139

Building a web-based MQTT client 140
Understanding the code 140

Imports 140
Global variables 141
The Paho JavaScript MQTT client 141
Connecting to the broker 142
The onConnectionLost and onMessageArrived handler methods 143
JQuery document ready function 144

Summary 145
Questions 146
Further reading 146

Section 2: Practical Electronics for Interacting with the
Physical World
Chapter 5: Connecting Your Raspberry Pi to the Physical World 148

Technical requirements 148
Understanding Raspberry Pi pin numbering 150
Exploring popular Python GPIO libraries 152

Reviewing GPIOZero – simple interfacing for beginners 153
Reviewing RPi.GPIO – a low-level GPIO for beginners 153
Reviewing Circuit Python and Blinka – interfacing for complex devices 154
Reviewing PiGPIO – a low-level GPIO library 155

Exploring remote GPIO with PiGPIO (and GPIOZero) 155
Reviewing SPIDev and SMBus – dedicated SPI and I2C libraries 156
Why PiGPIO? 157

Exploring Raspberry Pi electronic interfacing options 158
Understanding digital IO 158
Understanding analog IO 158
Understanding Pulse-Width Modulation 159

Creating PWM signals 160
Understanding SPI, I2C, and 1-wire interfaces 162
Understanding the serial / UART protocol 162

Interfacing with an analog-to-digital converter 163
Building the ADS1115 ADC circuit 165
Making sure the ADS1115 is connected to your Raspberry Pi 169
Reading analog input with the ADS1115 170

Understanding the code 172
Imports 172
ADS1115 setup and configuration 173
Global variables 173
Program entry point 174

Using PWM to control an LED 174
Understanding the code 176

Global variables 176

Table of Contents

[v]

Range mapping function 176
Generating the PWM signal 177

Visually exploring PWM with PiScope 177
Visualizing software and hardware-timed PWM 181

Summary 182
Questions 183
Further reading 183

Chapter 6: Electronics 101 for the Software Engineer 184
Technical requirements 185
Fitting out your workshop 186

Buying electronic modules and components 187
Purchasing lose components 187
Purchasing open source hardware modules 188

Keeping your Raspberry Pi safe 189
Three ways electronic components fail 190
Electronics interfacing principles for GPIO control 191

Ohm's Law and power 191
Kirchhoff's circuit laws 192
Why are we using a 200 Ohm resistor for the LED circuit? 192

Calculating the resistor value 194
Factoring in the Raspberry Pi's current limits 195
Calculating the resistor's power dissipation 196

Exploring digital electronics 198
Digital output 198
Digital input 200
Using pull-up and pull-down resistors 203

The resistor solution 203
The code solution 205

Exploring analog electronics 207
Analog output 208
Analog input 209

Voltage dividers 209
Understanding logic-level conversion 213

Voltage dividers as logic-level converters 213
Logic-level converter ICs and modules 214
Comparing voltage dividers and logic-level converters 219

Summary 219
Questions 220
Further reading 221

Section 3: IoT Playground - Practical Examples to Interact
with the Physical World
Chapter 7: Turning Things On and Off 224

Technical requirements 225

Table of Contents

[vi]

Exploring a relay driver circuit 226
Determining a load's voltage and current 227

Measuring the current requirement of a DC motor 227
Measuring the current requirement of a relay and LED 230

Using an optocoupler as a switch 232
Building the optocoupler circuit 233
Controlling the optocoupler with Python 235

Using a transistor as a switch 237
Building the MOSFET circuit 239
Controlling the MOSFET with Python 242

Using a relay as a switch 245
Building the relay driver circuit 245
Controlling the Relay Driver Circuit with Python 249

Summary 251
Questions 251
Further reading 252

Chapter 8: Lights, Indicators, and Displaying Information 253
Technical requirements 254
Making color with an RGB LED and PWM 255

Creating the RGB LED circuit 256
Running and exploring the RGB LED code 258

Controlling a multi-color APA102 LED strip with SPI 261
Creating the APA102 circuit 262

Powering the APA102 circuit 266
Configuring and running the APA102 LED strip code 267
APA102 LED strip code walkthrough 267
Discussion of APA102 and the SPI interface 271
APA102 LED strip troubleshooting tips 272

Using an OLED display 273
Connecting the OLED display 274
Verifying whether the OLED display is connected 276
Configuring and running the OLED example 276

OLED code walkthrough 277
Making sound with buzzers and PWM 281

Building the RTTTL circuit 282
Running the RTTTL music example 285

Summary 286
Questions 287
Further reading 287

Chapter 9: Measuring Temperature, Humidity, and Light Levels 289
Technical requirements 290
Measuring temperature and humidity 291

Creating the DHT11/DHT22 circuit 292

Table of Contents

[vii]

Running and exploring the DHT11/DHT22 code 294
Detecting light 296

Creating an LDR light-detecting circuit 298
Running the LDR example code 301
LDR code walkthrough 304
LDR configuration summary 306

Detecting moisture 307
Comparing detection options 310

Summary 312
Questions 313

Chapter 10: Movement with Servos, Motors, and Steppers 314
Technical requirements 314
Using PWM to rotate a servo 316

Connecting a servo to your Raspberry Pi 316
How a servo is controlled using PWM 319
Running and exploring the servo code 320
Different types of servos 323

Using an H-Bridge IC to control a motor 324
Building the motor driver circuit 326
Running the example H-Bridge code to control a motor 331

motor.py 331
motor_class.py 333

Introduction to stepper motor control 337
Connecting the stepper motor to the L293D circuit 339
Running and exploring the stepper motor code 340

Summary 345
Questions 345

Chapter 11: Measuring Distance and Detecting Movement 347
Technical requirements 348
Detecting movement with a PIR sensor 349

Creating the PIR sensor circuit 351
Running and exploring the PIR sensor code 352

Measuring distance with an ultrasonic sensor 354
How an ultrasonic distance sensor works 356
HC-SR04 distance measurement process 357
Building the HC-SR04 circuit 358
Running and exploring the HC-SR04 example code 361

Detecting movement and distance with Hall-effect sensors 365
Creating a Hall-effect sensor circuit 367
Running and exploring the Hall-effect sensor code 369

Summary 370
Questions 371

Table of Contents

[viii]

Chapter 12: Advanced IoT Programming Concepts - Threads, AsyncIO,
and Event Loops 372

Technical requirements 373
Building and testing our circuit 374

Building the reference circuit 376
Running the examples 380

Exploring the event-loop approach 381
Exploring a threaded approach 384
Exploring the publisher-subscriber alternative 390
Exploring an AsyncIO approach 392

An asynchronous experiment 397
Summary 398
Questions 399
Further reading 399

Chapter 13: IoT Visualization and Automation Platforms 400
Technical requirements 401
Triggering an IFTTT Applet from your Raspberry Pi 402

Creating the temperature monitoring circuit 403
Creating and configuring an IFTTT Applet 403
Triggering an IFTTT Webhook 409
Triggering an IFTTT Applet in Python 412

Actioning your Raspberry Pi from an IFTTT Applet 414
Method 1 – using the dweet.io service as an intermediary 415
Method 2 – creating a Flask-RESTful service 416
Creating the LED circuit 416
Running the IFTTT and LED Python program 417
Creating the IFTTT Applet 417
Controlling the LED from an email 421
IFTTT troubleshooting 423

Visualizing data with the ThingSpeak platform 424
Configuring the ThinkSpeak platform 426
Configuring and running the ThinkSpeak Python program 428

Other IoT and automation platforms for further exploration 430
Zapier 431
IFTTT platform 431
ThingsBoard IoT platform 431
Home Assistant 432
Amazon Web Services (AWS) 433
Microsoft Azure, IBM Watson, and Google Cloud 433

Summary 434
Questions 434

Chapter 14: Tying It All Together - An IoT Christmas Tree 435
Technical requirements 436

Table of Contents

[ix]

Overview of the IoT Christmas tree 438
Building the IoTree circuit 439

Three IoTree service programs 440
Configuring, running, and using the Tree API service 441

Configuring the Tree API service 443
Running the Tree API service 443

Configuring, running, and using the Tree MQTT service 446
Configuring the Tree MQTT service 448
Running the Tree MQTT service program 449

Integrating the IoTree with dweet.io 450
Configuring the Tree MQTT service 453
Running the dweet integration service program 454

Integrating with email and Google Assistant via IFTTT 455
Integration with email 456
Integration with Google Assistant 457

Ideas and suggestions to extend your IoTree 460
Summary 461
Questions 462

Assessments 464

Other Books You May Enjoy 474

Index 477

Preface
Welcome to Practical Python Programming for IoT. The focus of this book is centered around
Raspberry Pis, electronics, computer networking, the Python programming language, and
how we combine all these elements to build complex and multifaceted IoT projects.

We will be looking at these elements from many angles, comparing and contrasting
different options, and discussing the how and why behind the electronic circuits we build.
By the time you reach the end of this book, you will have a broad toolkit comprised of
electronic interfacing code examples, networking code examples, and electronic circuit
examples that you can borrow from, adapt, and reengineer for your own needs and
projects.

I look forward to joining you on this IoT journey.

Who this book is for
This book is for application developers, IoT professionals, and hobbyists interested in
building IoT applications leveraging the Python programming language. It is written with
mid-to senior-level software engineers in mind who are experienced in desktop, web, and
mobile development, but who have little to no exposure to electronics, physical computing,
and IoT.

What this book covers
Chapter 1, Setting Up Your Development Environment, explores the Python ecosystem in the
context of the Raspberry Pi OS and teaches you how to correctly set up a Python
development project for success. You will also learn alternative ways of starting Python
programs and how to configure your Raspberry Pi for GPIO interfacing.

Chapter 2, Getting Started with Python and IoT, teaches you the basics of electronics and
GPIO interfacing with Python. You will build and experiment with simple electronic
circuits that are controlled using Python, and combine this learning to build a simple yet
complete internet-controllable IoT application from the ground up using the dweet.io
platform.

Preface

[2]

Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, explores how to build
network servers in Python using two approaches – RESTful APIs and Web Sockets. You
will learn how to use these servers in conjunction with Python and an HTML/JavaScript
user interface to control electronic circuits over a network from a web browser.

Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker, teaches
networking approaches using Message Queue Telemetry Transport, a popular choice for
distributed IoT applications. You will learn how to use MQTT in conjunction with Python
and an HTML/JavaScript user interface to control electronic circuits over a network and
from a web browser.

Chapter 5, Connecting Your Raspberry Pi to the Physical World, explores different Python-
based software options and techniques used to interface and control electronics using a
Raspberry Pi's GPIO pins. You will also build and learn to use an ADS1115 analog-to-
digital converter module to expand your Raspberry Pi's native interfacing options, and be
introduced to Pulse Width Modulation (PWM), an important electronic and interfacing
concept that you'll be using in later chapters.

Chapter 6, Electronics 101 for the Software Engineer, teaches you core electronic concepts and
fundamentals. You will learn the essential how and why behind common electronic and
interfacing circuits and how they are used practically to correctly and safely interface
sensors and actuators to your Raspberry Pi. You will also learn the differences between
digital and analog electronics and how each applies to and influences interfacing circuit
requirements. Many of the fundamentals you learn about in this chapter are seen applied
practically in subsequent chapters as we work with different electronic components and
modules.

Chapter 7, Turning Things On and Off, teaches you how to use optocouplers, MOSFET
transistors, and relays to turn other circuits on and off using your Raspberry Pi and Python.
You will also learn about circuit loads, how they are measured, and how this influences the
choice and use of optocouplers, MOSFET transistors, and relays in circuits.

Chapter 8, Lights, Indicators, and Displaying Information, teaches you how to use an APA102
LED lighting strip, RGB LEDs, OLED displays, and buzzers in conjunction with Python to
create visual and auditable orientated circuits and applications.

Preface

[3]

Chapter 9, Measuring Temperature, Humidity, and Light Levels, teaches you how to measure
common environmental attributes with your Raspberry Pi and Python. You will build a
circuit using a DHT11/22 temperature and humidity sensor and learn about and use Light-
Dependent-Resistors (LDRs) to detect the presence or absence of light. In this chapter, you
will also deepen your practical understanding and experience of analog electronics, and
apply the basic principle to build a moisture detection circuit and application.

Chapter 10, Movement with Servos, Motors, and Steppers, teaches you how to create
movement using popular mechanical devices together with your Raspberry Pi and Python.
You will learn how to control a servo using PWM to create angular movement, use an H-
bridge IC circuit together with a motor to control its speed and direction of rotation. Plus,
you will learn how to adapt the H-bridge IC circuit for use with a stepper motor for those
projects where you need precise control over movement.

Chapter 11, Measuring Distance and Detecting Movement, teaches you the principles behind
distance measurements using an HC-SR04 ultrasonic distance sensor and how to use an
HC-SR501 PIR sensor to detect movement on a macro scale. You will also learn how to use
both a ratiometric and switch-type Hall-effect sensor to detect movement and measure
relative distance on micro scales.

Chapter 12, Advanced IoT Programming Concepts – Threads, AsyncIO, and Event Loops, is an
advanced programming chapter that looks at alternative approaches to structuring complex
Python programs. You will learn about Python threading, asynchronous I/O, classic event
loops, and publisher-subscriber patterns, all within the context of electronic interfacing. By
the end of the chapter, you will have experimented with and understood four functionally
equivalent applications that are written in four very different ways.

Chapter 13, IoT Visualization and Automation Platforms, is a journey into the world of IoT-
related online services and integration. You will be creating two environmental-monitoring
applications based on the DHT11/22 temperature and humidity circuit from Chapter 9,
Measuring Temperature, Humidity, and Light Levels. First, you will leverage your MQTT
understanding from Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT
Broker, to create an online dashboard at ThingSpeak.com to display and graph both
temperature and humidity data. Then, you will also apply RESTful API concepts from
Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker, and build an If-
This-Then-That (IFTTT.com) workflow Applet that sends you an email whenever the
temperature rises above or falls below a certain point.

Preface

[4]

Chapter 14, Tying It All Together – An IoT Christmas Tree, pulls together many of the themes
and concepts you have learned about in earlier chapters with a multifaceted example
centered around an internet-connected Christmas tree. From an electronics perspective, you
will revisit the APA102 LED strip from Chapter 8, Lights, Indicators, and Displaying
Information (this will be the Christmas tree lights), and servos from Chapter 10, Movement
with Servos, Motors, and Steppers (this is used to provide a mechanism to shake or rock the
tree). From a networking perspective, you will revisit dweet.io from Chapter 2, Getting
Started with Python and IoT; RESTful-APIs from Chapter 3, Networking with RESTful APIs
and Web Sockets Using Flask; and MQTT from Chapter 4, Networking with MQTT, Python, and
the Mosquitto MQTT Broker, and learn how to combine techniques to achieve complex
integrations that need to bridge different technologies. Finally, you will revisit IFTTT from
Chapter 13, IoT Visualization and Automation Platforms, and create two Applets that let you
control your tree's lights and make the tree shake or rock over the internet. These three
Applets include email control, and voice-activated control using Google Assistant.

To get the most out of this book
The following headings provide an overview of the hardware, software, electronics, and
peripherals you will require to successfully work through and complete the exercises found
in this book.

Hardware and software: All of the exercises and code in this book were built and
tested on the following hardware and software versions:

Raspberry Pi 4 Model B
Raspberry Pi OS Buster (with desktop and recommended
software)
Python version 3.5

It will be my assumption that you will be using an equivalent setup; however, it is
reasonable to expect that the code examples should work without modification on
a Raspberry Pi 3 Model B or a different version of Raspbian OS or Raspberry Pi
OS as long as your Python version is 3.5 or higher.

If you are not too sure about your Python version, don't worry. One of our first
tasks in Chapter 1, Setting Up Your Development Environment, will be
understanding Python on your Raspberry Pi and working out which versions are
available.

Preface

[5]

Electronic Parts and Equipment: We will be using many electronic parts
throughout this book. At the start of each chapter, I list the specific parts and
quantities you will require for the chapter's examples. In addition to the parts
listed, an electronic breadboard and a mixture of jumper/dupont cables will also
be required.

For your convenience, a table cataloging all the electronic parts used throughout
the book, the chapters where they are used, plus the minimum quantities you will
require follows. If you are new to buying electronic parts, you'll also find tips to
help get you started after the table:

Part Name Minimum
Quantity Description / Notes Used in

Chapter(s)

Red LED 2 *
5mm red LED. Different-colored LEDs can have
different electrical characters. Most of our examples
in the book will assume a red LED.

2, 3, 4, 5, 6,
7, 9, 12, 13

15Ω Resistor 2 * Color bands (4-band resistor) will be brown, green,
black, silver/gold 8

200Ω Resistor 2 * Color bands (4-band resistor) will be red, black
brown, silver/gold

2, 3, 4, 5, 6,
8, 9, 12, 13

1kΩ Resistor 2 * Color bands (4-band resistor) will be brown, brown,
red, silver/gold 6, 7, 9, 8, 11

2kΩ Resistor 2 * Color bands (4-band resistor) will be red, black, red,
silver/gold 6, 11

10kΩ Resistor 1 * Color bands (4-band resistor) will be brown, black,
orange, silver/gold 9, 13

51kΩ Resistor 1 * Color bands (4-band resistor) will be green,
brown, orange, silver/gold 6

100kΩ Resistor 1 * Color bands (4-band resistor) will be brown, black,
yellow, silver/gold 7, 8, 9

Momentary Push-Button
Switch 1 To source a push-button switch that is breadboard

friendly, try searching for a large tactile switch. 1, 6, 12

10kΩ Linear Potentiometers 2

Larger potentiometers that you can adjust with your
fingers will be easier to work with in the book's
examples than small potentiometers that will
require a screwdriver to adjust. Make sure you have
linear potentiometers (not logarithmic).

5, 6, 12

2N7000 MOSFET 1 * This is a logic-level compatible MOSFET transistor. 7, 8

FQP30N06L Power
MOSFET 1 *

Optional. When purchasing, make sure the part
number ends with L, indicating that it is a logic-
level compatible MOSFET (otherwise, it will not
reliably work your Raspberry Pi).

7

PC817 Opto-Coupler 1 * Also known as an opto-isolator. 7

Preface

[6]

SDR-5VDC-SL-C Relay 1

These relays are very popular and easy to come by;
however, they are not breadboard friendly. You will
need to solder terminals or wires to them so you can
plug them into your breadboard.

7

1N4001 Diode 1 *
We will be using a diode in the role of a fly-back
suppression diode to protect other electrical
components from voltage spikes.

7, 8

Size R130 5-volt DC Hobby
Motor 2

Size R130 is just a suggestion. What we need are 5-
volt compatible DC motors with a stall current
(ideally) less than 800 mA. While these motors are
easy to come by on auction sites, their current and
operating currents can be poorly documented so it
can be a gamble as to what you get. Chapter
7, Turning Things On and Off, will take you through
an exercise to measure the operating currents of
your motors.

7, 10

RGBLED, Common
Cathode type 1 * This is an LED that is capable of making different

colors. 8

Passive Buzzer 1 A passive buzzer that will work with 5 volts. 8
SSD1306 OLED Display 1 This is a small monochrome pixel-based display. 8

APA102 RGBLED Strip 1

This is a strip of addressable APA102 RGBLEDs.
You will just need the LED strip, not a power
supply or a remote control for our exercises. Be
careful to make sure it is the APA102 LEDs that you
are purchasing as there are different (and
incompatible) types of addressable LEDs available.

8, 14

DHT11 or DHT22
Temperature/Humidity
Sensor

1
The DHT11 and DHT22 are interchangeable. The
DHT22 is slightly more expensive but offers more
accuracy and can measure sub-zero temperatures.

9, 13

LDR 1 * Light-Dependent-Resistor 9

MG90S Hobby Servo 1 This is a suggestion. Any 5-volt hobby servo with 3
wires (+, GND, Signal) should be suitable. 10, 14

L293D H-Bridge IC 1 *
Make sure the part number you purchase ends in D,
meaning the IC includes embedded fly-back
suppression diodes.

10

28BYJ-48 Stepper Motor 1 Make sure you purchase the 5-volt stepper motor
variety, with a 1:64 gearing ratio. 10

HC-SR501 PIR Sensor 1 A PIR sensor detects movement. It works on heat, so
it can detect the presence of people and animals. 11

HC-SR04 Ultrasonic
Distance Sensor 1 An Ultrasonic Distance Sensor estimates distances

using sound waves. 11

A3144 Hall-Effect Sensor 1 * This is a non-latching switch-type Hall-effect sensor
that turns on in the presence of a magnetic field. 11

Preface

[7]

AH3503 Hall-Effect Sensor 1 * This is a ratiometric-type Hall-effect sensor that can
detect how close (relatively) it is to a magnetic field. 11

Magnet 1 A small magnet is required for use with the Hall-
effect sensors. 11

ADS1115 Analog-to-Digital
(ADC) Converter Breakout
Module

1 This module will allow us to interface analog
components with our Raspberry Pi. 5, 9, 12

Logic Level
Shifter/Converter Breakout
Module

1

This module will allow us to interface 5-volt
electrical components with our Raspberry Pi. Search
for a Logic Level Shifter/Converter Breakout
Module and look for a bi-directional (preferred)
module when 4 or 8 channels.

6, 8, 14

Breadboard 1

All our electronic examples will be built on a
breadboard. I recommend purchasing two full-size
breadboards and joining them together – more
breadboard working areas will make building
circuits easier.

2 - 14

Dupont / Jumper Cables 3 sets *

These cables are used to wire components together
on your breadboard. I recommend purchasing sets
of male-to-male, male-to-female, and female-to-
female types.

2 - 14

Raspberry Pi GPIO
Breadboard Breakout 1

This is optional, however, it will make it easier to
interface your Raspberry Pi GPIO pins with your
breadboard.

2 - 14

Digital Multimeter 1
As a guide, a digital multimeter in the price range of
$30-50 USD should be more than suitable. Avoid the
very-low and cheapest multi-meters.

6, 7

External Power Supply 2

Some of the circuits in this book will require more
power than we can expect our Raspberry Pi to
provide. As a minimum source, a 3.3/5-volt
breadboard-compatible power supply capable of
outputting 1 amp will be suitable. You might also
like to research lab power supplies as a more
capable and general alternative.

7, 8, 9, 10,
14

Soldering Iron and Solder 1

There will be cases where you need to solder wires
and terminals onto components – for example, it is
highly likely that you will need to solder terminal
legs on to the ADS1115 and logic level
converter/shifter modules that you purchase. You
will also need to solder terminals or wires onto
your SDR-5VDC-SL-C relay so you can plug it into
your breadboard.

Preface

[8]

* Spares recommended. These are components that can be damaged if incorrectly connected or
powered or can physically break with use (for example, legs breaking off).

These parts have been selected due to their low price points, and their general availability
on websites such as eBay.com, Bangood.com, AliExpress.com, and electronics retailers.

Before making your purchases, please consider the following:

The Minimum Quantity column is what you will need for the exercises in this
book, however, it's highly recommended that you purchase spares, especially of
LEDs, resistors, and MOSFETs as these components are easily damaged.
You will find that many components will need to be purchased in bulk lots.
Search around for Electronic Component Starter Kits and compare what they
include against the parts listed in the table. You may be able to purchase many of
the parts together in a single (and discounted) transaction.
The many available plug-and-play Sensor Module Starter Kits that are available
will, for the most part, not be compatible with the circuit and code exercises
presented throughout this book. The depth of our electronic and code examples
means we will need to work with core electrical components. After completing
this book, however, you will be in a great position to understand how these plug-
and-play sensor modules are built and work!

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[9]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Practical-​Python-​Programming-​for-​IoT. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github.​com/​PacktPublishing/​. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https:/​/​bit.​ly/​316OvNu

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/​/​static.​packt-​cdn.​com/​downloads/
9781838982461_​ColorImages.​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's check for the availability of GPIO packages using gpio_pkg_check.py and
pip."

A block of code is set as follows:

Global Variables

...

BROKER_HOST = "localhost" # (2)

BROKER_PORT = 1883

CLIENT_ID = "LEDClient" # (3)

TOPIC = "led" # (4)

client = None # MQTT client instance. See init_mqtt() # (5)

...

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://bit.ly/316OvNu
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982461_ColorImages.pdf

Preface

[10]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Global Variables

...

BROKER_HOST = "localhost" # (2)
BROKER_PORT = 1883

CLIENT_ID = "LEDClient" # (3)

TOPIC = "led" # (4)

client = None # MQTT client instance. See init_mqtt() # (5)

...

Any command-line input or output is written as follows:

$ python --version
Python 2.7.16

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"From your Raspbian desktop, navigate to the Raspberry menu | Preferences | Raspberry
Pi Configuration."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

https://www.packtpub.com/support/errata

Preface

[11]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Programming with
Python and the Raspberry Pi

In this first section of our journey, our primary focus will be on the Internet part of IoT.

We'll start by learning how to properly set up your Python development environment,
before exploring and playing with a variety of networking techniques using Python to
build network- and internet-connected services and applications. We will also create simple
web user interfaces that work with the techniques and examples we will learn about.

However, I am sure if you are reading this book you are eager to jump right in, learn about
and play with electronics, and start building and tinkering. I know I would be! So, Chapter
2, Getting Started with Python and IoT is dedicated to building a simple internet-connected
IoT project from the ground up – electronics and all – so that we have a reference example
for later chapters (and something to tinker with!).

Let's get started!

This section comprises the following chapters:

Chapter 1, Setting Up Your Development Environment
Chapter 2, Getting Started with Python and IoT
Chapter 3, Networking with RESTful APIs and Web Sockets using Flask
Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker

1
Setting Up your Development

Environment
An important yet often overlooked aspect of Python programming is how to correctly set
up and maintain a Python project and its runtime environment. It is often overlooked
because it presents as an optional step for the Python ecosystem. And while this might be
fine for learning Python language fundamentals, it can quickly become a problem for more
complex projects where we need to maintain separate code bases and dependencies to
ensure our projects do not interfere with one another, or worse as we will discuss, break
operating system tools and utilities.

So, before we jump into IoT code and examples in later chapters, it is so very important for
us to cover the steps required to set up a Python project and its run time environment.

In this chapter, we will cover the following topics:

Understanding your Python installation
Setting up a Python virtual environment
Installing Python GPIO packages with pip
Alternative methods of executing a Python script
Raspberry Pi GPIO interface configuration

Setting Up your Development Environment Chapter 1

[14]

Technical requirements
To perform the hands-0n exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

The full source code for this book can be found on GitHub at the following URL: https:/​/
github.​com/​PacktPublishing/​Practical-​Python-​Programming-​for-​IoT. We will clone
this repository shortly when we come to the Setting up a Python virtual environment section.

Understanding your Python installation
In this section, we will find out which versions of Python you have installed on your
Raspberry Pi. As we will discover, there are two versions of Python that come pre-installed
on Raspbian OS. Unix-based operating systems (such as Raspbian OS) typically have
Python version 2 and 3 pre-installed because there are operating-system-level utilities built
with Python.

To find out which versions of Python you have on your Raspberry Pi, follow these steps:

Open a new Terminal and execute the python --version command:1.

$ python --version
Python 2.7.16

In my example, we see that Python version 2.7.16 has been installed.

Next, run the python3 --version command:2.

$ python3 --version
Python 3.7.3

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT

Setting Up your Development Environment Chapter 1

[15]

In my example, we see that the second version of Python (that is, python3, with
the 3) that is installed is version 3.7.3.

Don't worry if the minor versions (the numbers .7.16 after the 2 and .7.3 after 3) are not the
same; it is the major versions 2 and 3 that are of interest. Python 2 is a legacy version of
Python, while Python 3 is the current and supported version of Python at the time of
writing. When we are starting a new Python development, we will practically always use
Python 3 unless there are legacy issues we need to contend with.

Python 2 officially became end-of-life in January 2020. It is no longer
maintained and will not receive any further enhancements, bug fixes, or
security patches.

If you are an experienced Python programmer, you may be able to discern whether a script
is written for Python 2 or 3, but it's not always obvious by simply looking at a piece of code.
Many new-to-Python developers experience frustrations by mixing up Python programs
and code fragments that are meant for different Python versions. Always remember
that code written for Python 2 is not guaranteed to be upward-comparable with Python 3
without modification.

A quick tip I can share to visually help to determine which Python version a code fragment
is written for (if the programmer has not made it clear in the code comments) is to look for
a print statement.

If you look at the following example, you will see that there are two print statements. The
first print statement without the parentheses is a give-away that it will only work with
Python 2:

print "Hello" # No parentheses - This only works in Python 2, a dead give-
away that this script is for Python 2.

print("Hello") # With parentheses - this will work in Python 2 and Python 3

Of course, you can always run the code against both Python 2 and 3 and see what happens.

We have now seen that there are two Python versions available by default on Raspbian OS,
and made mention that there are system-level utilities that are written in Python that reply
on these versions. As Python developers, we must take care not to disrupt the global
Python installations as this can potentially break system-level utilities.

We will now turn our attention to a very important Python concept, the Python virtual
environment, which is the way we isolate or sandbox our own Python projects from the
global installation.

Setting Up your Development Environment Chapter 1

[16]

Setting up a Python virtual environment
In this section, we will discuss how Python interacts with your operating system
installation and cover the steps necessary to set up and configure a Python development
environment. In addition, as part of our setup process, we will clone the GitHub repository
that contains all of the code (organized by chapter) for this book.

By default, Python and its package management tool, pip, operate globally at the system
level and can create some confusion for Python beginners because this global default is in
contrast to many other language ecosystems that operate locally on a project folder level by
default. Unwearyingly working and making changes to the global Python environment can
break Python-based system-level tools, and remedying the situation can become a major
headache.

As a Python developer, we use Python virtual environments to sandbox our Python
projects so they will not adversely interfere with system-level Python utilities or other
Python projects.

In this book, we will be using a virtual environment tool known as venv, which comes
bundled as a built-in module with Python 3.3 and above. There are other virtual
environment tools around, all with their relative strengths and weaknesses, but they all
share the common goal of keeping Python dependencies isolated to a project.

virtualenv and pipenv are two alternative virtual environment tool
options that offer more features than venv. These alternatives are well
suited for complex Python projects and deployments. You'll find links to
these in the Further reading section at the end of this chapter.

Let's begin and clone the GitHub repository and create a new Python virtual environment
for this chapter's source code. Open a new Terminal window and work through the
following steps:

Change into or create a folder where you want to store this book's source code1.
and execute the following commands. With the last command, we rename the
cloned folder to be pyiot. This has been done to help shorten Terminal
command examples throughout the book:

$ cd ~
$ git clone
https://github.com/PacktPublishing/Practical-Python-Programming-for
-IoT
$ mv Practical-Python-Programming-for-IoT pyiot

Setting Up your Development Environment Chapter 1

[17]

Next, change into the chapter01 folder, which contains the code relating to this2.
chapter:

$ cd ~/pyiot/chapter01

Execute the following command, which creates a new Python virtual3.
environment using the venv tool. It's important that you type python3 (with the
3) and remember that venv is only available with Python 3.3 and above:

$ python3 -m venv venv

The options that we are passing to python3 include -m venv, which tells the
Python interpreter that we want to run the module named venv. The
venv parameter is the name of the folder where your virtual environment will be
created.

While it might look confusing at first glance in the preceding command,
it's a common convention to name a virtual environment's folder venv.
Later in this chapter, in the Anatomy of a virtual environment section, we
will explore what lies beneath the venv folder we just created.

To use a Python virtual environment, we must activate it, which is accomplished4.
with the activate command:

From with in the folder ~/pyiot/chapter01
$ source venv/bin/activate
(venv) $

When your Terminal has a Python virtual environment activated, all Python-
related activity is sandboxed to your virtual environment.

Notice in the preceding code that, after activation, the name of the virtual
environment, venv, is shown as part of the Terminal prompt text, that
is, (venv) $. In this book, whenever you see Terminal examples where
the prompt is (venv) $, it's a reminder that commands need to be
executed from within an activated Python virtual environment.

Setting Up your Development Environment Chapter 1

[18]

Next, execute which python (without the 3) in your Terminal, and notice that5.
the location of the Python executable is beneath your venv folder and if you
check the version of Python, it's Python version 3:

(venv) $ which python
/home/pi/pyiot/chapter01/venv/bin/python

(venv) $ python --version
Python 3.7.3

To leave an activated virtual environment, use the deactivate command as6.
illustrated here:

(venv) $ deactivate
$

Notice also that (venv) $ is no longer part of the Terminal prompt text once the
virtual environment has been deactivated.

Remember to type deactivate to leave a virtual environment, not exit.
If you type exit in a virtual environment, it will exit the Terminal.

Finally, now that you are outside of our Python virtual environment if you7.
execute which python (without the 3) and python --version again, notice
we're back to the default system-level Python interpreter, which is version 2:

$ which python
/usr/bin/python

$ python --version
Python 2.7.13

As we just illustrated in the preceding examples, when we ran python --version in an
activated virtual environment, we see that it's Python version 3 whereas in the last example,
at the start of this chapter, the system level, python --version, was version 2, and we
needed to type python3 --version for version 3. In practice, python (with no number)
relates to the default version of Python. Globally, this is version 2. In your virtual
environment, we only have one version of Python, which is version 3, so it becomes the
default.

Setting Up your Development Environment Chapter 1

[19]

A virtual environment created with venv inherits (via a symbolic link) the
global Python interpreter version that it was invoked with (in our case,
version 3 because the command was python3 -m venv venv). If you
ever need to target a specific Python version that is different from the
global version, investigate the virtualenv and pipenv virtual
environment alternatives.

We have now seen how to create, activate, and deactivate a Python virtual environment
and why it is important to use a virtual environment to sandbox Python projects. This
sandboxing means we can isolate our own Python projects and their library dependencies
from one another, and it prevents us from potentially disrupting the system-level
installation of Python and breaking any system-level tools and utilities that rely on them.

Next, we will see how to install and manage Python packages in a virtual environment
using pip.

Installing Python GPIO packages with pip
In this section, we learn how to install and manage Python packages in a Python virtual
environment you created and explored in the previous section. A Python package (or library
if you prefer that term) allows us to extend the core Python language with new features and
functionality.

We will need to install many different packages throughout this book, however, for starters
and to explore and learn the basic concepts related to package installation and
management, we will be installing two common GPIO-related packages in this section that
we will use throughout this book. These two packages are the following:

The GPIOZero library, an entry-level and easy to use GPIO library for controlling
simple electronics
The PiGPIO library, an advanced GPIO library with many features for more
complex electronic interfacing

In the Python ecosystem, package management is done with the pip command (pip stands
for Python installs packages). The official public package repository that pip queries is
known as the Python Package Index, or simply PyPi, and it is available for browsing on the
web at https:/​/​pypi.​org.​

https://pypi.org.
https://pypi.org.
https://pypi.org.
https://pypi.org.
https://pypi.org.
https://pypi.org.
https://pypi.org.
https://pypi.org.

Setting Up your Development Environment Chapter 1

[20]

Similarly to python and python3, there is pip and pip3. pip (without
the number) will be the default pip command that is matched to the default
python command in a given virtual environment.

There will be code examples in this book where we will be interacting with your Raspberry
Pi's GPIO pins, so we need to install a Python package (or two) so that your Python code
can work with your Raspberry Pi's GPIO pins. For now, we are just going to check for and
install two GPIO-related packages. In Chapter 2, Getting Started with Python and IoT, and
Chapter 5, Connecting Your Raspberry Pi to the Physical World, we will cover these GPIO
packages and other alternatives in greater detail.

In your chapter01 source code folder, you will find a file named gpio_pkg_check.py,
which is replicated in the following. We will use this file as the basis to learn about pip and
package management in the context of a Python virtual environment. This script simply
reports the availability of a Python package depending on whether using import succeeds
or raises an exception:

"""
Source File: chapter01/gpio_pkg_check.py
"""
try:
 import gpiozero
 print('GPIOZero Available')
except:
 print('GPIOZero Unavailable. Install with "pip install
gpiozero"')

try:
 import pigpio
 print('pigpio Available')
except:
 print('pigpio Unavailable. Install with "pip install pigpio"')

Let's check for the availability of GPIO packages using gpio_pkg_check.py and with pip.
I'll kill the suspense by telling you that they're not going to be available in your freshly-
created virtual environment (yet), however, we are going to install them!

Note: They are already installed at the system level if you want to check
yourself by running this script outside of your virtual environment.

Setting Up your Development Environment Chapter 1

[21]

The following steps will walk us through the process of upgrading pip, exploring the tool's
options, and installing packages:

As the first step, we will upgrade the pip tool. In a Terminal window, run the1.
following command, remembering that all commands that follow must be
performed in an activated virtual environment—meaning you should see the text
(venv) in the Terminal prompt:

(venv) $ pip install --upgrade pip
...output truncated...

The preceding upgrade command may take a minute or two complete and will
potentially output a lot of text to the Terminal.

Are you facing pip problems? If you're getting a sea of red errors and
exceptions when trying to install a package with pip, try upgrading the
pip version as a first step using pip install --upgrade pip. It is a
recommended first step after creating a fresh Python virtual environment
to upgrade pip.

With pip now upgraded, we can see what Python packages are already installed2.
in our virtual environment using the pip list command:

(venv) $ pip list
pip (9.0.1)
pkg-resources (0.0.0)
setuptools (33.1.1)

What we see in the preceding are the default Python packages in our fresh virtual
environment. Do not worry if the exact package list or version numbers do not
match exactly with the example.

Run our Python script with the python gpio_pkg_check.py command and3.
observe that our GPIO packages are not installed:

(venv) $ python gpio_pkg_check.py
GPIOZero Unavailable. Install with "pip install gpiozero"
pigpio Unavailable. Install with "pip install pigpio"

Setting Up your Development Environment Chapter 1

[22]

To install our two required GPIO packages, we use the pip install command4.
as shown in the following example:

(venv) $ pip install gpiozero pigpio
Collecting gpiozero...
... output truncated ...

Now, run the pip list command again; we will see these new packages are5.
now installed in our virtual environment:

(venv) $ pip list
colorzero (1.1)
gpiozero (1.5.0) # GPIOZero
pigpio (1.42) # PiGPIO
pip (9.0.1)
pkg-resources (0.0.0)
setuptools (33.1.1)

You may have noticed that there is a package called colorzero (this is a color
manipulation library) that we did not install. gpiozero (version 1.5.0) has a
dependency on colorzero, so pip has installed it for us automatically.

Re-run python gpio_pkg_check.py and we now see that our Python modules6.
are available for import:

(venv) $ python gpio_pkg_check.py
GPIOZero Available
pigpio Available

Great! We now have a virtual environment with two GPIO packages installed. As
you work on Python projects, you will inevitably install more and more packages
and want to keep track of them.

Take a snapshot of the packages you have previously installed with the pip7.
freeze command:

(venv) $ pip freeze > requirements.txt

The preceding example freezes all installed packages into a file
named requirements.txt, which is a common filename to use for this purpose.

Setting Up your Development Environment Chapter 1

[23]

Look inside the requirements.txt file and you will see all of the Python8.
packages listed together with their version numbers:

(venv) $ cat requirements.txt
colorzero==1.1
gpiozero==1.5.0
pigpio==1.42
pkg-resources==0.0.0

In the future, if you move your Python project to another machine or a new
virtual environment, you can use your requirement.txt file to install all of
your captured packages in one go using the pip install -r
requirements.txt command.

Our requirements.txt example shows we have installed GPIOZero
version 1.5.0, the current version at the time of writing. This version has a
dependency on ColorZero version 1.1. It is possible that different (past or
future) versions of GPIOZero may have different dependencies than those
shown in our example, so your own requirements.txt file when
performing the example exercise may be different.

We've now completed the basic installation life cycle of Python packages using pip. Note
that whenever you install new packages with pip install, you also need to re-run pip
freeze > requirements.txt to capture the new packages and their dependencies.

To finish our exploration of pip and package management, here are a few other common
pip commands:

Remove a package
(venv) $ pip uninstall <package name>

Search PyPi for a package (or point your web browser at
https://pypi.org)
(venv) $ pip search <query text>

See all pip commands and options (also see Further Reading at the
end of the chapter).
(venv) $ pip --help

Congratulations! We've reached a milestone and covered the essential virtual environment
principles that you can use for any Python project, even ones that are not Raspberry Pi
related!

Setting Up your Development Environment Chapter 1

[24]

During your Python journey, you will also come across other package
installers and tools named easy_install and setuptools. Both have
their uses; however, it's pip that you will rely on most of the time.

Now that we have seen how to create a virtual environment and install packages, let's take
a look at a typical Python project folder structure such as ~/pyiot/chapter01 and
discover what lies beneath the venv folder.

Anatomy of a virtual environment
This section relates to venv, which we have been using in this chapter, and will apply
to virtualenv but not pipenv, which we listed as alternative virtual environment
tools. The example is also specific to a Raspbian OS and is typical of a standard Unix-based
OS. It's important to, at a minimum, understand the basic structure of a virtual
environment deployment since we will be mixing our own Python programming code in
with the files and folders that make up the virtual environment.

The light weight venv tool that comes with Python 3.3 and above is a
subset of virtualenv.

Here is the folder structure of our virtual environment. Yep, its a screenshot from a Mac.
That's so I could get everything on screen at once:

Setting Up your Development Environment Chapter 1

[25]

Figure 1.1 – Contents of a typical venv virtual environment folder

The following points explain the core subfolders that are found within
our ~/pyiot/chapter01 folder after we ran python3 -m venv venv and installed
packages using pip:

The venv folder contains all of the Python virtual environment files. There is no
real practical need to be touching anything under this folder manually—let the
tools do that for you. Remember that the folder is named venv only because
that's what we called it when it was created.

Setting Up your Development Environment Chapter 1

[26]

The venv/bin folder contains the Python interpreter (in the venv case, there are
symbolic links to the system interpreter) and other core Python tools, including
pip.
Underneath the venv/lib folder are all the sandboxed Python packages for the
virtual environment, including the GPIOZero and PiGPIO packages we installed
using pip install.
Our Python source file, gpio_pkg_check.py, is in the top-
level folder, ~/pyiot/chapter01; however, you can create sub-folders here to
help to organize your code and non-code files.
Finally, requirements.txt lives by convention in the top project folder.

The virtual environment folder venv does not actually need to be kept in the project folder;
however, it's often convenient to have it there for activation with the activate command.

Your venv folder and anything below it should not be added to your
source version control system, but you should add
requirements.txt. As long as you have a current requirements.txt
file, you can always recreate your virtual environment and reinstate
packages to a known state.

It's important to understand that, as a Python developer, you will be mixing in your own
programming code with files and folders that form part of the virtual environment system
and that you should be pragmatic when selecting which files and folders are added to your
version control system, should you be using one.

This last point is important since the virtual environment system can amount to many
megabytes in size (and often many times larger than your program code) that does not
need versioning (since we can always recreate the virtual environment as long as we have a
requirements.txt file), plus it's host platform-specific (that is, there will be differences
between Windows, Mac, and Linux), plus there will be differences between different virtual
environment tools (for example, venv versus pipenv). As such, virtual environments are
not generally portable in projects that involve many developers working on different
computers.

Now that we have briefly explored the file and folders structure and the importance of
understanding this structure, we will continue and look at alternative ways of running a
script that is sandboxed to a virtual environment.

Setting Up your Development Environment Chapter 1

[27]

Alternative methods of executing a Python
script
Let's briefly turn our attention to the alternative ways that we can execute a Python script.
As we will learn, choosing the appropriate method is all based around how and from
where you intend to start your script and whether your code requires elevated permissions.

The most common way of running a Python script is from within its virtual environment
and with the permissions of the currently logged in user. However, there will be scenarios
where we need to run a script as the root user or from outside an activated virtual
environment.

Here are the ways we will explore:

Using sudo with virtual environments
Executing Python scripts outside of their virtual environments
Running a Python script at boot

Let's start by learning how to run a Python script with root user permissions.

Using sudo within virtual environments
I'm sure that while working on your Raspberry Pi you have had to execute commands in a
Terminal with the sudo prefix because they required root privileges. If you ever need to
run a Python script that is in a virtual environment as root, you must use the full path to
your virtual environment's Python interpreter.

Simply prefixing sudo before python, as shown in the following example, does not work
under most circumstances, even if we are in the virtual environment. The sudo action will
use the default Python that's available to the root user, as shown in the second half of the
example:

Won't work as you might expect!
(venv) $ sudo python my_script.py

Here is what the root user uses as 'python' (which is actually
Python version 2).
(venv) $ sudo which python
/usr/bin/python

Setting Up your Development Environment Chapter 1

[28]

The correct way to run a script as root is to pass the absolute path to your virtual
environment's Python interpreter. We can find the absolute path using the which
python command from inside an activated virtual environment:

(venv) $ which python
/home/pi/pyiot/chapter01/venv/bin/python

Now, we sudo our virtual environment's Python interpreter and the script will run as the
root user and within the content of our virtual environment:

(venv) $ sudo /home/pi/pyiot/chapter01/venv/bin/python my_script.py

Next, we'll see how to run a Python script that's sandboxed in a virtual environment from
outside of its virtual environment.

Executing Python scripts outside of their virtual
environments
A natural extension to the preceding discussion on sudo is how do I run a Python script from
outside of its virtual environment? The answer is the same as in the preceding section: just
make sure you are using the absolute path to your virtual environment's Python
interpreter.

Note: In the following two examples, we're not in a virtual
environment—there is no $ (venv) on the prompt. If you still need to
exit your Python virtual environment, type deactivate.

The following command will run a script as the currently logged in user (which, by default,
is the pi user):

Run script as logged-in user.
$ /home/pi/pyiot/chapter01/venv/bin/python gpio_pkg_check.py

Or to run the script as root, prefix sudo:

Run script as root user by prefixing sudo
$ sudo /home/pi/pyiot/chapter01/venv/bin/python gpio_pkg_check.py

Since we are using the virtual environment's Python interpreter, we are still sandboxed to
our virtual environment and any Python packages we installed are available.

Next, we will learn how to make a Python script run whenever you boot your Raspberry Pi.

Setting Up your Development Environment Chapter 1

[29]

Running a Python script at boot
There will come a time when you have developed an awesome IoT project and you want it
to run automatically every time you start your Raspberry Pi. Here is one simple way to
achieve this using a feature of cron, the Unix scheduler. If you are not familiar with the
basics of cron, search the web for cron tutorial—you'll find heaps of them. I've provided
curated links in the Further reading section.

Here are the steps to configure cron and make a script run on boot:

In your project folder, create a bash script. I've named it run_on_boot.sh:1.

#!/bin/bash

Absolute path to virtual environment python interpreter
PYTHON=/home/pi/pyiot/chapter01/venv/bin/python

Absolute path to Python script
SCRIPT=/home/pi/pyiot/chapter01/gpio_pkg_check.py

Absolute path to output log file
LOG=/home/pi/pyiot/chapter01/gpio_pkg_check.log

echo -e "\n####### STARTUP $(date) ######\n" >> $LOG
$PYTHON $SCRIPT >> $LOG 2>&1

This bash script will run a Python script using the absolute paths for both the
script and its Python interpreter. Also, it captures any script output and stores it
in a log file. For this example, we're simply going to run and log the output
of gpio_pkg_check.py on boot. It's the last line that ties everything together and
runs and logs our Python script. The 2>&1 part at the end is necessary to ensure
that errors, in addition to standard output, are also logged.

Mark the run_on_boot.sh file as an executable file:2.

$ chmod u+x run_on_boot.sh

If you are not familiar with the chmod command (chmod means change mode),
what we are doing is giving the operating system permission to execute
the run_on_boot.sh file. The u+x parameters mean for the current User, make the
file eXecutable. To learn more about chmod, you can type chmod --help or man
chmod in the Terminal.

Setting Up your Development Environment Chapter 1

[30]

Edit your crontab file, which is the file where cron scheduling rules are stored:3.

$ crontab -e

Add the following entry to your crontab file, using the absolute path to the4.
run_on_boot.sh bash script we created in step 1:

@reboot /home/pi/pyiot/chapter01/run_on_boot.sh &

Do not forget the & character at the end of the line. This makes sure the script runs
in the background.

Run the run_on_boot.sh file manually in a Terminal to make sure it works.5.
The gpio_pkg_check.log file should be created and contains the output of the
Python script:

$./run_on_boot.sh
$ cat gpio_pkg_check.log
####### STARTUP Fri 13 Sep 2019 03:59:58 PM AEST ######
GPIOZero Available
PiGPIO Available

Reboot your Raspberry Pi:6.

$ sudo reboot

Once your Raspberry Pi has finished restarting, the7.
gpio_pkg_check.log file should now contain additional lines, indicating that
the script did indeed run at boot:

$ cd ~/pyiot/chapter01
$ cat gpio_pkg_check.log

####### STARTUP Fri 13 Sep 2019 03:59:58 PM AEST ######

GPIOZero Available
PiGPIO Available

####### STARTUP Fri 13 Sep 2019 04:06:12 PM AEST ######

GPIOZero Available
PiGPIO Available

Setting Up your Development Environment Chapter 1

[31]

If you are not seeing the additional output in the gpio_pkg_check.log file after a reboot,
double-check that the absolute path you entered in crontab is correct and that it works
manually as per step 5. Also, review the system log file, /var/log/syslog, and search for
the text, run_on_boot.sh.

Our cron-based example of running a script on boot is one of many
options that are available in Unix-based operating systems such as
Raspbian. Another common and more advanced option using systemd
can be found on the Raspberry Pi website at https:/​/​www.​raspberrypi.
org/​documentation/​linux/​usage/​systemd.​md. Irrespective of the option
you prefer, the key point to remember is to ensure your Python scripts run
from within their virtual environment.

We have now learned alternative methods to run a Python script, which will help you in
the future to correctly run your Python-based IoT projects after they are developed or start
them when your Raspberry Pi boots if required.

Next, we will now move on to making sure your Raspberry Pi is set up and configured
correctly for the GPIO and electronic interfacing that we'll be diving into in the next
chapter, Chapter 2, Getting Started with Python and IoT, and subsequent chapters.

Configuring the GPIO interface on our
Raspberry Pi
Before we can start working with Python GPIO libraries and controlling electronics, one
task we need to perform is to enable the GPIO interfaces on your Raspberry Pi. Even
though we have installed Python packages for GPIO control, we have not told Raspbian OS
that we want to use the Raspberry Pi's GPIO Pins for specific cases. Let's do that now.

https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md

Setting Up your Development Environment Chapter 1

[32]

Here are the steps to follow:

From your Raspbian desktop, navigate to the Raspberry menu | Preferences1.
| Raspberry Pi Configuration, as shown here in Figure 1.2:

Figure 1.2 – Location of the Raspberry Pi Configuration menu item

Alternatively, interfaces can be managed at the command line with the
sudo raspi-config command and navigating to the Interfacing
Options menu.

Enable all of the interfaces as shown in the following screenshot:2.

Setting Up your Development Environment Chapter 1

[33]

Figure 1.3 - Raspberry Pi Configuration Dialog

Click the OK button.3.

After you click the OK button, you may be prompted to reboot your Raspberry Pi;
however, do not confirm the reboot just yet because there is one more task we need to
perform first. We'll look at that next.

Configuring the PiGPIO daemon
We also need to start the PiGPIO daemon, which is a system service that needs to be
running so that we can use the PiGPIO GPIO client library, which we will start using next
in Chapter 2, Getting Started with Python and IoT.

Architecturally, the PiGPIO library comprises two parts—a server service
and a client that communicates over local pipes or sockets to the service.
We will cover more about this basic architecture in Chapter 5, Connecting
Your Raspberry Pi to the Physical World.

Setting Up your Development Environment Chapter 1

[34]

Execute the following in a Terminal. This will start the PiGPIO daemon and will ensure that
the PiGPIO daemon is started automatically when your Raspberry Pi boots:

$ sudo systemctl enable pigpiod
$ sudo systemctl start pigpiod

Now, it's time to reboot your Raspberry Pi! So, take a break while your Raspberry Pi
restarts. You deserve it because we have covered a lot!

Summary
In this chapter, we explored the Python ecosystem that is part of a typical Unix-based
operating system such as Raspbian OS and learned that Python is a core element of the
operating system tooling. We then covered how to create and navigate a Python virtual
environment so that we can sandbox our Python projects so they will not interfere with one
another or the system-level Python ecosystem.

Next, we learned how to use the Python package management tool, pip, to install and
manage Python library dependencies from within a virtual environment, and we did this
by installing the GPIOZero and PiGPIO libraries. And since there will be times that we
need to execute a Python script as the root user, from outside its virtual environment or
during boot up, we also covered these various techniques.

By default, Raspbian does not have all of its GPIO interfaces enabled, so we performed the
configuration needed to enable these features so that they are readily available for use in
later chapters. We also started and learned how to set up the PiGPIO daemon service so
that it starts every time your Raspberry Pi is booted.

The core knowledge you have gained in this chapter will help you to correctly set up and
navigate sandboxed Python development environments for your own IoT (and non-IoT)
projects and safely install library dependencies so they do not interfere with your other
Python projects or the system-level installation of Python. Your understanding of different
ways of executing a Python program will also help you to run your projects with elevated
user permissions (that is, as the root user), or at boot, should your project have these
requirements.

Next, in Chapter 2, Getting Started with Python and IoT, we will jump straight into Python
and electronics and create an end-to-end internet-enabled program that can control an LED
over the internet. We will take a look at two alternative ways of flashing an LED using the
GPIOZero and PiGPIO GPIO libraries before connecting our LED to the internet by using
an online service, dweet.io, as our networking layer.

Setting Up your Development Environment Chapter 1

[35]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

What is the main reason why you should always use a virtual environment for1.
your Python projects?
Do you need to or should you place the virtual environment folder (that is, venv)2.
under version control?
Why create a requirements.txt file?3.
You need to run a Python script as the root user. What step must you take to4.
ensure that the script executes in its intended virtual environment context?
What does the source venv/bin/activate command do?5.
You are in an activated virtual environment. What is the command to leave the6.
virtual environment and return to the host shell?
You created a Python project and virtual environment in PyCharm. Can you7.
work on and run the project's Python scripts in a Terminal?
You want a GUI tool to edit and test Python code on your Raspberry Pi but do8.
not have PyCharm installed. What pre-installed tool that comes with Python and
Raspbian could you use?
You've advanced in your Python and electronics knowledge and are trying to9.
hook up a device using I2C to your Raspberry Pi but you cannot get it to work.
What might be the problem and how do you address it?

Further reading
We covered the venv virtual environment tool in this chapter. Here are links to its official
documentation:

venv documentation: https:/​/​docs.​python.​org/​3/​library/​venv.​html

venv tutorial: https:/​/​docs.​python.​org/​3/​tutorial/​venv.​html

If you would like to learn about the virtualenv and pipenv alternative virtual
environment tools, here is their official documentation:

virtualenv home page: https:/​/​virtualenv.​pypa.​io/​en/​latest

pipenv home page: https:/​/​docs.​pipenv.​org/​en/​latest

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/
https://docs.pipenv.org/en/latest/

Setting Up your Development Environment Chapter 1

[36]

The following is a link to the Python Packaging Guide. Here you will find a comprehensive
guide regarding Python package management, including pip and the easy-install/setup
tools alternatives:

Python Packaging User Guide: https:/​/​packaging.​python.​org

If you wish to learn more about scheduling and cron, here are two resources to get you
started:

An overview of cron syntax (and a GUI tool): https:/​/​www.​raspberrypi.​org/
documentation/​linux/​usage/​cron.​md

A detailed tutorial on cron syntax: https:/​/​opensource.​com/​article/​17/​11/
how-​use-​cron-​linux

https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://packaging.python.org
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://www.raspberrypi.org/documentation/linux/usage/cron.md
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux

2
Getting Started with Python and

IoT
In Chapter 1, Setting Up Your Development Environment, we went through the essentials of
the Python ecosystem, virtual environments, and package management and set up your
Raspberry Pi for development and GPIO interfacing. In this chapter, we will begin our
journey in Python and IoT.

What we cover in this chapter will lay the foundations and give us a working point of
reference for the more advanced content that we'll cover in later chapters. We will learn to
create a simple electrical circuit with a button, resistor, and LED (or light-emitting diode)
and explore alternative ways to interact with the button and LED with Python. We will
then proceed to create and discuss a complete end-to-end IoT program to control the LED
over the internet and complete this chapter by looking at ways that you can extend the
program.

In this chapter, we will cover the following topics:

Creating a breadboard prototype circuit
Reading an electronic schematic diagram
Exploring two ways to flash a LED in Python
Exploring two ways to integrate a push button in Python
Creating your first IoT program
Extending your IoT program

Getting Started with Python and IoT Chapter 2

[38]

Technical requirements
To perform the exercises in this chapter and throughout this book, you will need the
following:

Raspberry Pi 4 Model B. A 1 GB RAM version will be adequate to run our
examples. If you are working directly on your Raspberry Pi versus a Secure
Shell (SSH) session; for example, more RAM is recommended to improve the
Raspbian Desktop experience and responsiveness.
You will need Raspbian OS Buster (with desktop and recommended software).
You will need a minimum of Python version 3.5.

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B, Raspberry Pi Zero W, or a different version of Raspbian OS as long as your
Python version is 3.5 or higher.

You will find this chapter's source code in the chapter02 folder in the GitHub repository
available at the following URL: https:/​/​github.​com/​PacktPublishing/​Practical-
Python-​Programming-​for-​IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter02 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent

packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https:/​/​pypi.​org/​project/​gpiozero)
PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
Requests: A high-level Python library for making HTTP requests (https:/​/
pypi.​org/​project/​requests)

We are going to require a few physical electronic components:

1 x 5 mm red LED
1 x 200 Ω resistor: Its color bands will be red, black, brown, and then gold or
silver

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests

Getting Started with Python and IoT Chapter 2

[39]

Momentary push button (Single Pole Single Throw—SPST)
A breadboard
Male-to-female and male-to-male jumper cables (sometimes called Dupont
cables)

You will find a complete parts list cataloging all of the electrical
components required for every chapter in the Preface.

When you have your electronic components ready, we can proceed and arrange them on
your breadboard.

Creating a breadboard prototype circuit
Throughout this book, we will be building many electrical circuits, and we will do this
using an electronic breadboard. In the initial chapters, I will present many of the circuits
with both a breadboard layout similar to that illustrated toward the end of this section
in Figure 2.7 and with a schematic diagram as shown in Figure 2.8.

As we progress through this book and you gain more experience building breadboard
circuits, I will cease with the breadboard layouts for the simpler circuits; however, I will
still present them for the more complex circuits so you have something to compare your
builds against.

Please note that the proceeding circuit examples and discussions are only
brief. At this stage of this book, we intend to build a simple electronic
circuit that will be the basis for our Python examples in this chapter
and Chapter 3, Networking with RESTful APIs and Web Sockets Using
Flask, and Chapter 4, Networking with MQTT, Python, and the Mosquitto
MQTT Broker.

We will discuss the Raspberry Pi and its pin numbering in detail
in Chapter 5, Connecting Your Raspberry Pi to the Physical World.
Furthermore, we will cover in detail circuits and electronics fundamentals
in Chapter 6, Electronics 101 for the Software Engineer, where among other
topics we will learn the why behind how the button interacts electrically
with your Raspberry Pi and why a 200 Ω resistor accompanies our LEDs.

Getting Started with Python and IoT Chapter 2

[40]

Let's get started with building our first circuit. I'll walk you through the breadboard build
step by step and talk briefly about each component as we work with them. We will start by
discussing what a breadboard is and how it works.

Understanding the breadboard
An electronic breadboard, as illustrated in Figure 2.1, is a prototyping board that helps you to
electrically connect components and wires quickly and easily. In this section, we will
discuss the general properties of a breadboard in preparation for connecting components
and wires together in the following sections:

Figure 2.1 – Breadboard

Getting Started with Python and IoT Chapter 2

[41]

Breadboards come in many different sizes, and our illustrated breadboard is a half-sized
breadboard. Irrespective of their size, however, their basic layout and electrical connectivity
are similar—with one small exception that I'll mention later.

Real breadboards may, or may not, have the row and column numbers
markings on them. They have been included in the illustration to assist with
the following discussion and explanations.

The holes in the breadboard are where you place electrical components and wires to
electrically connect them. The holes are electrically connected in the following ways:

The two outer columns of holes are commonly referred to as power rails. There is
a positive (+) column and a negative (-) column on either side of the breadboard.
Each column of holes is electrically connected and run for the full length of the
breadboard. Hence, there are four independent power rails on this breadboard:
a + and - rail on the left-hand side of the breadboard and a + and - rail on the
right-hand side.

The power rails are frequently used to help to distribute power around the
breadboard to components. Please note that they do not provide power
themselves! They need a power source such as a power supply or battery
connected to them to provide power.

The center of the breadboard has two banks of holes, which I have labeled Bank
A-E and Bank F-J. Each row of holes in a bank is electrically connected. For
example, holes A1 through to E1 are electrically connected, as are holes F1
through to J1. However, to be clear in our understanding, A1-E1 are not
electrically connected to F1-J1 because they are on a separate bank.

We straddle Integrated Circuits (ICs)—commonly
called chips—across the gap between the two banks when we connect
them into a breadboard. We will see an example of this in Chapter 10,
Movement with Servos, Motors, and Steppers, when we use an IC to control
motors.

Getting Started with Python and IoT Chapter 2

[42]

Here are a few more examples of how the holes are connected that you can work through to
help with your understanding:

B5 is electrically connected to C5 (they share the same row).
H25 is electrically connected to J25 (they share the same row).
A2 is not electrically connected to B2 (they don't share the same row).
E30 is not electrically connected to F30 (they are on different banks).
The third + hole (from the top of the breadboard) on the left-hand side power rail
is electrically connected to the last + hole on the left-hand side power rail (they
are in the same vertical column).
The third + hole (from the top of the breadboard) on the left-hand side power rail
is not electrically connected to the third + hole on the right-hand side power rail
(they are on different power rails).

I mentioned at the start of this section that all breadboards are basically the same, with one
minor exception. This exception relates to the power rails. Some full-size breadboards may
split their power rails into two separate vertical banks (so, electrically, the vertical holes in a
rail do not run the full length of the breadboard). It is not always visually obvious that the
power rails are split, so discovery needs to happen on a breadboard-by-breadboard basis. I
mention this just in case you are using a full-size breadboard and experience connectivity
issues when using the power rails.

Now that we have introduced breadboards, and we understand how the holes are
electrically related to one another, let's start plugging components and wires into our
breadboards to create our first circuit. We'll start with the push button.

Positioning and connecting the push button
We are using a simple on/off button, also commonly known as an Single Pole, Single
Throw (SPST) momentary switch. An example is shown in Figure 2.2:

Figure 2.2 – A push button and schematic symbol

Getting Started with Python and IoT Chapter 2

[43]

On the left-hand side of Figure 2.2 is a photograph of a momentary push button, while the
right-hand side shows the schematic symbol for a momentary push button. We'll see this
symbol and discuss schematic diagrams where these types of symbols appear in the next
section.

Push buttons come in many shapes and sizes; however, their general operation is the same.
This specific push button pictured on the left-hand side is known as a tactile push button.
They are small and well suited for use with a breadboard.

Figure 2.3 illustrates the push button connection we need to create on our breadboard.
Please refer to this as you follow the forthcoming steps:

Figure 2.3 – Connecting the push button

Getting Started with Python and IoT Chapter 2

[44]

Here is how to connect the push button into your breadboard and connect it to your
Raspberry Pi. The following step numbers match the numbered black circles in Figure 2.3:

Position the button on the breadboard as shown. It does not matter exactly which1.
row of holes the button goes into, however, Figure 2.3 shows the button
positioned (top-left leg) at hole B10.

Next, connect a jumper wire into the same row as the push button's top-most leg2.
(our illustration uses hole A10). Connect the other end of this wire to the eighth
pin counted down from the outer edge of your Raspberry Pi's GPIO header. This
pin is known as GPIO 23.

You can get header pin labels and breadboard compatible modules to
assist you with Raspberry Pi pin connections and identification. Here is a
link to a printable version to get you started: https:/​/​github.​com/
splitbrain/​rpibplusleaf. We will cover GPIO pins and their numbering
in Chapter 5, Connecting Your Raspberry Pi to the Physical World.

Finally, using another wire (labeled gnd'), we connect the other side of the push3.
button (the leg in hole B2) to the negative power rail on your breadboard. Our
illustration shows the gnd' wire connection from hole A12 to a nearby hole on the
left-hand side negative (-) power rail. The abbreviation gnd means ground. We
will cover this term in more detail in the forthcoming section, Understanding
ground connections and symbols.

Electrically, an SPST switch can be installed any way around. If your
button has four legs (two sets will be electrically connected) and your
circuit below does not work when we test it later in the Exploring two ways
to integrate a push button in Python section try rotating the button in your
breadboard 90 degrees.

Now that our push button is in position and wired, we will next position and connect our
LED.

https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf
https://github.com/splitbrain/rpibplusleaf

Getting Started with Python and IoT Chapter 2

[45]

Positioning and connecting the LED
An LED is a small, yet bright, light made of a tiny crystal that emits a color when electricity
is connected to it.

A typical LED is shown in Figure 2.4. The left-hand side of the diagram shows a physical
representation of a LED, while the right-hand side shows the schematic symbol for a LED:

 Figure 2.4 – LED and schematic symbol

LEDs need to be connected the correct way around into a circuit, otherwise, they will not
work. If you look closely at your LED, you will notice a flat side on the LED casing. The leg
on this side is the cathode, which connects to the negative or ground side of a power source.
The cathode leg will also be the shorter of the LED's legs. The other leg is known as
the anode and connects to the positive side of a power source. If you examine the LED
symbol, you will notice that the cathode side of the LED has a line drawn across the tip of
the triangle—if you think of this line as being like a big negative sign, it'll help you to
remember which side of the symbol is the cathode leg.

Getting Started with Python and IoT Chapter 2

[46]

Figure 2.5 the LED connection we are about to create. Please refer to this diagram as you
follow the forthcoming steps:

Figure 2.5 – Connecting the LED

Here is how to connect the LED into your breadboard and connect it to your Raspberry Pi.
The following step numbers match the numbered black circles in Figure 2.5 :

Connect the LED into your breadboard as illustrated, taking care to ensure that1.
the LED is installed the correct way around. Our illustration shows the cathode
leg in hole E15 and the anode leg in hole E16.

You may need to bend the legs on your LED to get it into position. As you
position your LED, make sure the two legs are not touching one another!
If they are touching, this will cause what is known as an electrical short,
and the LED part of the circuit will not work.

Getting Started with Python and IoT Chapter 2

[47]

Next, using a jumper wire (labeled gnd"), connect the cathode leg of the LED into2.
the same power rail shared by the push button. We have shown this connection
with one end of the gnd" wire connected in hole A15, while the other end of the
wire connected to a nearby hole on the left-hand side negative (-) power rail.
Finally, using another jumper wire (labeled gnd), connect the negative (-) power3.
rail to the 17th outer edge pin on your Raspberry Pi's GPIO header. This pin is a
ground (GND) pin on your Raspberry Pi.

Well done! That's our LED connected. Next, we add the resistor, which will complete our
circuit.

Positioning and connecting the resistor
A resistor is an electronic component used to limit (that is, resist) current flow and divide
voltage and they are a very common electrical component.

Shown in Figure 2.6 are a physical resistor (left-hand side) and two schematic symbols
(right-hand side). There is no practical difference between the schematic symbols pictured.
They represent different documentation standards, and you will find that the author of a
schematic diagram will choose and stick with one type of symbol. We'll be using the zig-
zag symbol throughout this book:

Figure 2.6 – Resistor and schematic symbols

Resistors come in many shapes, sizes, and colors. As a general guide, their physical shape
and size relate to their physical properties and capabilities, while the color of their casing is
usually insignificant, at least as far as their properties are concerned. The colored bands on
a resistor, however, are very significant as they identify the resistor's value. It's worth
mentioning that small general-purpose resistors (which are what we will be using) use
color bands for specifying their value, while physically larger resistors used in high power
applications frequently have their resistance value printed on their casing.

Getting Started with Python and IoT Chapter 2

[48]

Resistors are an unbiased electrical component, meaning that they can be installed in an
electrical circuit either way around. Their values, however, need to be chosen correctly,
otherwise a circuit may not work as intended, or worse, the resistor and/or other
components (including your Raspberry Pi) can be damaged.

When starting out and learning about circuits, it is highly recommended
and safest to always use the intended resistor values that are listed for a
circuit. Avoid any temptation to substitute different values when you do
not have the correct value on hand as this can result in damage to
components and even your Raspberry Pi.

Our use of resistors through this book will be pragmatic. although I will be explaining how
and why we arrive at the certain values we use from Chapter 6, Electronics 101 for the
Software Engineer, onward. If you are new to resistors, you will find two links in the Further
reading section where you can learn more about them, including how to read their values.

Figure 2.7 demonstrates the resistor connection we need to create. Please refer to this as you
follow the forthcoming steps:

Figure 2.7 – Completed button and LED circuit on the breadboard

Getting Started with Python and IoT Chapter 2

[49]

Here is how to connect the resistor into your breadboard. The following step numbers
match the numbered black circles in Figure 2.7:

Place one leg (is does not matter which one) of the resistor into a hole that shares1.
the same row as the LED's anode leg. This connection is shown at hole
D16. Insert the other leg inserted into a vacant row, shown at D20 (it'll be a
vacant row on your breadboard until we connect the wire next).

Using a jumper wire (illustrated starting at hole A20), we connect the other leg of2.
our resistor to the 20th pin on the outer edge of your Raspberry Pi's GPIO header.
This pin is known as GPIO 21.

Well done! With that last connection, we have created our first circuit. We'll be using this
base circuit throughout the rest of this chapter and in the next two chapters, Chapter 3,
Networking with RESTful APIs and Web Sockets Using Flask, and Chapter 4, Networking with
MQTT, Python, and the Mosquitto MQTT Broker. We will start to explore a range of other
circuits from Chapter 5, Connecting Your Raspberry Pi to the Physical World, onward.

Now that we have completed our breadboard circuit and learned how components and
wires are connected on our breadboard, we are ready to explore a diagramming technique
that is used to describe electrical circuits.

Reading an electronic schematic diagram
In the last section, we built our first circuit on a breadboard by following a series of
illustrated steps. In this section, we will learn about schematic diagrams, which is a formal
way of documenting and describing an electrical circuit. These are the diagrams you find in
electronic texts and datasheets.

We will learn how to read a simple schematic diagram and how it relates back to the
breadboard layout we just created. Understanding how the two relate, and especially being
able to create a breadboard layout from a schematic diagram, is an important skill you will
need to develop as you continue your electronics and IoT journey.

Getting Started with Python and IoT Chapter 2

[50]

The electronic circuits and schematic diagrams we will be seeing and working with
throughout this book will be relatively simple as far as schematic diagrams are concerned.
We will address important concepts and component symbols as we encounter them on a
case-by-case basis. For our journey, a full and detailed explanation of the ins and outs of
schematic diagramming is unnecessary and beyond the practical scope of this book.
However, I encourage you to read through the Spark Fun tutorial that's mentioned in the
Further reading section. It provides a brief, yet comprehensive overview of reading
schematic diagrams and will provide you with a good foundational understanding of this
diagramming technique and its semantics.

Let's start by looking at a schematic diagram that represents the breadboard circuit we just
created as shown in Figure 2.7. Our semantic diagram is illustrated here:

Figure 2.8 – Schematic diagram of the breadboard circuit from Figure 2.7

A schematic diagram can be correctly drawn in a multitude of ways; however, I've
purposely drawn this diagram (and will do so where appropriate in this book) to closely
resemble its equivalent breadboard layout to help with its interpretation and
understanding.

We'll learn to read this schematic diagram by first explaining the push button connection
and wiring.

Reading the push button schematic connection
I've combined the breadboard layout and schematic diagram (with a few additional labels)
as follows:

Getting Started with Python and IoT Chapter 2

[51]

Figure 2.9 – Combined breadboard and schematic diagram, part 1 of 2

Here is how to read the pushbutton connection. The following step numbers match the
numbered black circles in Figure 2.9:

Start at the breadboard with the wire labeled wire 1. If we look at the ends of this1.
wire, we see that one end is connected to GPIO 23 on the Raspberry Pi, while the
other end (at hole A10) connects to a row shared by the push button.

Looking at the schematic diagram, this breadboard connection is depicted2.
diagrammatically by the line labeled wire 1. You will notice one end of the line is
labeled GPIO23, while the other end leads into one side of the button symbol.

The color of a wire's casing has no inherent meaning. The color is simply a
visual aid to help to distinguish different wires and connections.
However, there are some common conventions such as using a red wire
for a positive power connection and a black wire for the negative or
ground wire

Next, starting at the other side of the push button on the breadboard (hole A12),3.
notice the wire labeled gnd'. This wire connects the push button to the outer
power rail on the breadboard.

Getting Started with Python and IoT Chapter 2

[52]

Five holes down from this first power rail connection, we see a second ground4.
wire (labeled gnd) leading from the breadboard back to a GND pin on the
Raspberry Pi.

The breadboard gnd and gnd' wire connections are seen in the schematic diagram5.
as the line labeled gnd, which leads out of the button and ends at a downward
pointing arrow symbol annotated GND (remember gnd and gnd' are electrically
connected on the breadboard and are therefore logically a single wire). This is the
symbol for a ground connection, and you will frequently see this symbol repeated
a lot in schematic diagrams. I'll have more to say about this symbol when we
reach the section titled Reading and understanding the ground symbol.

Examine the button symbol in the schematic diagram and you will notice that6.
the wire 1 and gnd lines are not joined but rather terminate in the button symbol
(the small circles). This is known as a normally open connection or, in our specific
case, a normally open switch. You can think of normally open as meaning the line is
broken (and remember a line represents a wire). Now, if you imagine the button
pressed, then the button touches each circle and connects the blue and gnd lines,
resulting in a closed connection that completes the circuit between GPIO 23 and
GND. We'll discuss this idea more in Chapter 6, Electronics 101 for the Software
Engineer.

When you are comfortable that you understand how the push button connections on the
breadboard match the push button section of the schematic diagram, we will proceed and
discuss LED and resistor connections.

Reading the LED and resistor schematic
connection
Continuing from the previous section, where we learned how to read and understand the
push button part of the schematic diagram, next we complete our explanation by covering
the LED and resistor connections, as shown here:

Getting Started with Python and IoT Chapter 2

[53]

Figure 2.10 – Combined breadboard and schematic diagram, part 2 of 2

Here is how to read the LED and resistor connection. The following step numbers match
the numbered black circles in Figure 2.10:

Start at the wire labeled wire 2 on the breadboard. This wire connects GPIO 21 on1.
the Raspberry Pi into the row shared by one end of the resistor (hole A25).
The wire 2 connection is depicted by the line also labeled wire 2 on the schematic2.
diagram.
On the breadboard, the other end of the resistor is connected to the anode leg of3.
the LED (hole E15). Remember, the resistor and anode leg of the LED are
electrically connected because they share the same row of holes in the same bank
on the breadboard.
We see the resistor/LED connection in the schematic diagram where the resistor4.
symbol meets the LED symbol. We know the resistor connects to the anode side
of the LED in the diagram by the way the LED symbol is orientated.
Next, on the breadboard, the other leg of the LED (hole E15)—the cathode5.
leg—connects to the gnd" wire (hole A15), which then connects back to the outer
power rail that is also shared by the push button's gnd' wire (which is then
connected back to the Raspberry Pi's GND pin with the gnd wire.)
Finally, on the schematic diagram, this connection from the LED cathode leg to6.
GND is depicted by the line labeled gnd (the same one used by the push button).

Getting Started with Python and IoT Chapter 2

[54]

We have now completed our schematic diagram explanation. How did you do? I hope you
were able to trace around the diagram and see how it relates back to the circuit we built on
the breadboard.

Our last step illustrates an important concept in electronics—a common ground. We'll discuss
this concept in more detail next.

Introducing ground connections and symbols
Electrical circuits all require a common electrical point of reference, and we call this point
ground. This is why we see the push button and LED sharing a common connection on both
the breadboard and schematic diagram (as a reminder, refer to Figure 2.10.

For the simple circuits presented throughout this book and when working with your
Raspberry Pi's GPIO pins, it will be practical to consider the terms negative and ground as
interchangeable. This is because the negative side of a power source will be our common
point of electrical reference (and yes, GPIO pins are a source of power, which we will
explore more in Chapter 6, Electronics 101 for the Software Engineer).

As mentioned previously in the Reading the push button schematic connection section, in step 4,
we diagrammed the ground point using an arrow symbol. Our ground symbol (made out
of line segments) is one common variation of a ground symbol. You'll see another variation
in Figure 2.11:

Figure 2.11 – Common schematic diagram ground symbols

Getting Started with Python and IoT Chapter 2

[55]

All ground points are electrically connected, and we may repeat the symbol many times in
a schematic diagram to help to simplify the diagram. By using the ground symbol to
indicate a common ground connection, we remove the need to draw many interconnecting
lines to join all ground connections together (which would get rather messy for large or
more complex circuits).

Our simple circuit certainly does not come under the banners of large or complex, however,
to illustrate the concept of common ground, I have redrawn the schematic diagram shown
originally in Figure 2.8 here, only this time using multiple ground symbols:

Figure 2.12 – Alternative schematic diagrams of the breadboard circuit in Figure 2.7

Although our alternative schematic diagram looks like two separate circuits, they are
electrically connected exactly the same as our original schematic diagram in Figure 2.8.

Please take a moment now to examine both Figure 2.8 and Figure 2.12 and see whether you
can work out how the two diagrams are electrically the same.

All I have done here is broken the line (labeled gnd in Figure 2.8) and redrawn the push
button subcircuit and LED/resistor subcircuit in a different orientation and used separate
ground symbol for each subcircuit.

As mentioned previously, at this stage of this book, we do not go into how or why this
circuit works electronically or how it interacts electrically with the GPIO pins on your
Raspberry Pi. We'll cover these topics and many more with practical and illustrative
exercises when we reach Chapter 6, Electronics 101 for the Software Engineer.

Getting Started with Python and IoT Chapter 2

[56]

Now that you have seen the schematic diagram that documents our breadboard circuit and
see how they relate to one another, we're finally ready to dive into code and learn two ways
to make our LED flash in Python!

Exploring two ways to flash an LED in
Python
In this section, we will investigate two alternative GPIO libraries and ways to make an LED
flash in Python, including the following:

The GPIOZero library: An entry-level GPIO library
The PiGPIO library: An advanced GPIO library

As we learn to use these two libraries, we will see how they approach GPIO control
differently and discover their relative strengths and weaknesses.

After completing this section (and the following section, Exploring two ways to integrate a
push button in Python), you will have explored and compared two very different approaches
to GPIO control—the high-level (using GPIOZero) and a lower-level (using PiGPIO)—and
have a good introductory grasp of when and how you would choose between the
alternative when building an electronic interfacing program.

Let's start our practical exercises by making the LED blink using GPIOZero.

Blinking with GPIOZero
We are now ready to investigate our first blinking method using the GPIOZero library. You
will find the code we are about to cover in the chapter02/led_gpiozero.py file. Please
review this file before proceeding.

In the Further reading section, you will find relevant links to the GPIOZero
API documentation for the specific features of this library that we use in
this section.

We will start by running our example code.

Getting Started with Python and IoT Chapter 2

[57]

Run the program using the following command, remembering that you need to be in
the activated virtual environment (if you need a refresher on how to activate a Python
virtual environment, see Chapter 1, Setting Up Your Development Environment):

(venv) $ python led_gpiozero.py

If the LED is connected correctly, it should blink.

If you receive an error about PiGPIO when you run the program, make
sure you have enabled the pigpio daemon as outlined in Chapter
1, Setting Up Your Development Environment. We'll talk more about PiGPIO
and the PiGPIO daemon in Chapter 5, Connecting Your Raspberry Pi to the
Physical World.

Now that we have run the code and seen the LED blink, it's time to look through the code
that makes this happen.

Imports
We will start our code exploration by looking at the external libraries we are importing in
our Python program. They appear near the top of the source file, as shown here:

from gpiozero import Device, LED # (1)
from gpiozero.pins.pigpio import PiGPIOFactory # (2)
from time import sleep

 The imports of interest are the following:

At line (1), we import the Device and LED classes from the GPIOZero package.
At line (2), we are importing a GPIOZero Pin Factory. This is used together with
the Device class, which we'll see next.

Next, we see how to set the GPIOZero Pin Factory implementation.

Getting Started with Python and IoT Chapter 2

[58]

Pin Factory configuration
A Pin Factory is used in GPIOZero specify which concrete GPIO library GPIOZero will use
to perform the actual GPIO work. We will discuss Pin Factories in more detail when we
compare the GPIOZero and PiGPIO examples later in this chapter in the Comparing the
GPIOZero and PiGPIO examples section:

Device.pin_factory = PiGPIOFactory() # (3)

On line (3), we are telling GPIOZero to use PiGPIO as its Pin Factory using
the Device and PiGPIOFactory imports.

Now that we've seen how a Pin Factory is set up, let's look at the code that makes our LED
blink.

Blinking the LED
Here, we see the LED class at line (4) in the following is created and assigned to
the led variable. The parameter to LED is the GPIO pin that the physical LED is connected
to, as per the breadboard in Figure 2.1:

GPIO_PIN = 21
led = LED(GPIO_PIN) # (4)
led.blink(background=False) # (5)

On line (5), we start the LED blinking. The background=False parameter to blink() is
needed to run the LED on the main thread so the program does not exit (an alternative
of background=True would be to use signal.pause(). We'll see an example of this in
the next section).

GPIOZero makes it very easy to interface with common electronic components such as an
LED. Next, we will perform the same exercise, only this time using the PiGPIO library.

Blinking with PiGPIO
Now that we have seen how to blink our LED using the GPIOZero library, let's look at an
alternative method using the PiGPIO library.

The code we are about to walk through is contained in
the chapter02/led_pigpio.py file. Terminate the previous example if it is still running,
and run led_pigpio.py. The LED should blink again.

Getting Started with Python and IoT Chapter 2

[59]

In the Further reading section, you will find relevant links to the PiGPIO
API documentation for the specific features of this library that we are
using in this section.

Let's walk through the PiGPIO version of our LED blinking code.

Imports
Starting at the top of the file, we have the import section of the source file:

import pigpio # (1)
from time import sleep

This time around, on line (1), we only need to import the PiGPIO module.

Next, we will see how to configure PiGPIO and set the I/O mode on the GPIO pin that is
connected to our LED.

PiGPIO and pin configuration
Let's look at the code that configures PiGPIO and the LED's GPIO pin:

GPIO_PIN = 21
pi = pigpio.pi() # (2)
pi.set_mode(GPIO_PIN, pigpio.OUTPUT) # (3)

We create an instance of PiGPIO on line (2) and assign it to the pi variable. We use this
variable to interact with the PiGPIO library from this point forward in the code.

On line (3), we configure GPIO pin 21 to be an output pin. Configuring a pin
as output means we want to use that pin to control something connected to it from our
Python code. In this example, we want to control the LED. Later in this chapter, we'll see an
example of an input pin used to respond to button presses.

Now that we have imported our required libraries and configured PiGPIO and the out
GPIO pin, let's now see how we are making the LED blink.

Getting Started with Python and IoT Chapter 2

[60]

Blinking the LED
Finally, we make our LED blink:

while True:
 pi.write(GPIO_PIN, 1) # 1 = High = On # (4)
 sleep(1) # 1 second
 pi.write(GPIO_PIN, 0) # 0 = Low = Off # (5)
 sleep(1) # 1 second

We achieve the blinking with PiGPIO using a while loop. As the loop executes, we are
toggling GPIO pin 21— our output pin—on and off (lines (4) and (5)), with a
short sleep() function in between, hence making the LED appear to blink.

Next, we will compare our two libraries and their different approaches to blinking the LED.

Comparing the GPIOZero and PiGPIO examples
If you look at the code for the GPIOZero example, it's pretty obvious we're making an LED
blink—it's pretty explicit in the code. But what about the PiGPIO example? There is no
mention of LEDs or blinking. In truth, it could be doing anything—it's just we know an
LED is connected to GPIO 21.

Our two blinking examples reveal important aspects of GPIOZero and PiGPIO:

GPIOZero is a higher-level wrapper library. On the surface, it abstracts common
electronic components such as LEDs into simple-to-use classes while,
underneath, it is delegating the actual interfacing work to a concrete GPIO
library.

PiGPIO is a lower-level GPIO library where you work with, control, and access
GPIO pins directly.

The "zero" in GPIOZero refers to a naming convention for zero boilerplate
code libraries where all of the complex internals are abstracted away to
make it easier for beginners to get started.

GPIOZero performs its delegation to an external GPIO library using a Pin Factory. In our
example, we delegated to PiGPIO using the line, Device.pin_factory =
PiGPIOFactory(). We'll pick up the topic of GPIOZero and delegation again in Chapter
5, Connecting your Raspberry Pi to the Physical World.

Getting Started with Python and IoT Chapter 2

[61]

As we proceed through this book, we will be using both GPIOZero and PiGPIO. We'll
use GPIOZero to simplify and condense code where appropriate, while we will be using
PiGPIO for more advanced code examples and to teach core GPIO concepts that are
otherwise abstracted away by GPIOZero.

Next, we will continue building on our LED blinking examples by integrating the push
button.

Exploring two ways to integrate a push
button in Python
In the previous section, we explored two different approaches to making our LED
blink—one using the GPIOZero library and the other with the PiGPIO library. In this
section, we will integrate the push button from the circuit in Figure 2.1 with Python and see
how we can integrate the button using both the GPIOZero and PiGPIO libraries.

We will start by making our LED turn on and off with a button that is integrated using the
GPIOZero library.

Responding to a button press with GPIOZero
The code we are about to cover is included in
the chapter02/button_gpiozero.py file. Please review and run this file. The LED
should turn on and off as you press the button. As per the circuit in Figure 2.1, the LED is
still connected to GPIO 21, while our button is connected to GPIO 23.

As mentioned previously in the Creating a breadboard circuit section, if your
button has four legs (two sets will be electrically joined) and your circuit
does not work, try rotating the button in the breadboard 90 degrees.

Let's walk through the significant parts of the code, noting that we are skipping sections of
code that we've already covered.

Getting Started with Python and IoT Chapter 2

[62]

Imports
Starting at the top of the source file, you will find the section of code where we import
external libraries, as shown here:

from gpiozero import Device, LED, Button # (1)
from gpiozero.pins.pigpio import PiGPIOFactory
import signal # (2)

For this example, we have also imported the GPIOZero Button class (1) and the
Python signal module (2).

Now that you have seen that we are importing the Button class, let's look at the handler
function that will be called when the button is pressed.

Button pressed handler
We are using a callback handler to respond to button presses, defined in the pressed()
function:

def pressed():
 led.toggle() # (3)
 state = 'on' if led.value == 1 else 'off' # (4)
 print("Button pressed: LED is " + state) # (5)

On line (3), our LED is turned on and off each time pressed() is invoked using the
toggle() method of led. On line (4), we query the value property of led to determine
whether the LED is on (value == 1) or off (value == 0) and store it in the state
variable, which we print to the Terminal on line (5).

You can also control the LED with the led.on(), led.off(),
and led.blink() methods. You can also directly set the LED on/off state
by setting led.value, for example, led.value = 1 will turn the LED
on.

Let's continue and see how to create and configure a Button class instance and register the
pressed() function so it is called when you press the physical button.

Getting Started with Python and IoT Chapter 2

[63]

Button configuration
Following are the lines used to configure the push button. On line (6), the class we use is
Button. In GPIOZero, we use a Button class for any input device that can be either on or
off, such as buttons and switches:

button = Button(BUTTON_GPIO_PIN,
 pull_up=True, bounce_time=0.1) # (6)
button.when_pressed = pressed # (7)

On line (7), we register the pressed() callback handler with our button instance.

Here are the meanings of the parameters to the Button constructor on line (6):

The first parameter is the button's GPIO pin (BUTTON_GPIO_PIN == 23).
The second parameter, pull_up=True, enables an internal pull-up resistor for
GPIO 23. Pull-up and pull-down resistors are an important concept in digital
electronics. We're are going to skip over this concept for now because we will be
covering the importance and use of pull-up and pull-down resistors in greater
detail in Chapter 6, Electronics 101 for the Software Engineers.
The third parameter bounce_time=0.1 (0.1 seconds), is used to compensate for
an occurrence known as switch or contact bounce.

Bounce is a type of electrical noise that occurs as the metal contacts within a physical button
or switch come together. The result of this noise is seen as a rapid succession of on-off (or
high-low) states changes on a digital input pin. This is undesirable because we want one
physical press of a button (or toggle of a switch) to be seen as one state change on the input
pin. This is commonly achieved in code using a debounce threshold or timeout, which in
our case is the amount of time that our Raspberry Pi ignores successive pin stage changes
following an initial state change.

Try setting bounce_time=0 (no debouncing). You should find that the button behaves very
erratically. Then, use a higher number such as bounce_time=5 (5 seconds), and you will
find that after the first press the button is non-responsive until the duration expires.

When it comes to push buttons, selecting an appropriate debounce
threshold is a matter of balancing how rapidly a user needs to press the
button (this demands lower thresholds) versus how much bounce is
inherent in your button (this demands higher thresholds). About 0.1
seconds is a good suggested starting value.

Finally, let's cover a common technique that is used to prevent an electronic-interfacing
Python program from exiting.

Getting Started with Python and IoT Chapter 2

[64]

Preventing the main thread from terminating
It's common to see the use of signal.pause() or an equivalent construct in GPIO
examples and programs:

signal.pause() # Stops program from exiting. # (8)

Line (8) prevents the main program thread from reaching its natural end, which under
normal circumstances is where the program terminates.

Forgetting to add signal.pause() to the end of a GPIO-interfacing
Python program is a common and often confusing mistake when starting
out. If your program exits immediately after it's started, try adding
signal.pause() at the end of your program as a first step.

We didn't need signal.pause() with our previous LED flashing examples. Here is why:

Our GPIOZero example (chapter02/led_gpiozero.py) used
background=False in the LED constructor. This prevented our program from
exiting by keeping the LED's thread in the foreground.
In the PiGPIO example (chapter02/led_pigpio.py), it's the while loop that
prevents the program from exiting.

If this seems confusing, don't worry! Knowing how to prevent a program from existing
abnormally all comes down to experience, practice, and understanding how Python and
GPIO libraries work.

Next, let's see how to integrate the button using PiGPIO.

Responding to a button press with PiGPIO
We will now replicate the same functionality as our previous GPIOZero example to turn
our LED on and off with a button press, only this time using the PiGPIO library. The code
for our PiGPIO example can be found in the chapter02/button_pigpio.py file. Please
review and run this file now, and confirm that the LED responds to your button presses.

Let's unravel the interesting parts of the code, starting with the GPIO pin configuration for
the push button (again, noting that we're skipping sections of code that we've already
covered).

Getting Started with Python and IoT Chapter 2

[65]

Button pin configuration
Starting on line (1), we configure GPIO pin 23 (BUTTON_GPIO_PIN == 23) as an input pin:

pi.set_mode(BUTTON_GPIO_PIN, pigpio.INPUT) # (1)
pi.set_pull_up_down(BUTTON_GPIO_PIN, pigpio.PUD_UP) # (2)
pi.set_glitch_filter(BUTTON_GPIO_PIN, 10000) # (3)

Next, on line (2), we enable an internal pull-up resistor for pin 23. In PiGPIO, we debounce
the push button on line (3) using the pi.set_glitch_filter() method. This method
takes the parameter in milliseconds.

Notice, in PiGPIO, we needed to configure each property for our button (pin input mode, a
pull-up resistor, and debouncing) as a discrete method call, whereas in the previous
GPIOZero example this all occurred on a single line when we created an instance of the
GPIOZero LED class.

Button pressed handler
Our button callback handler is defined at starting on line (4) and is more involved than the
previous GPIOZero handler:

def pressed(gpio_pin, level, tick): # (4)
 # Get current pin state for LED.
 led_state = pi.read(LED_GPIO_PIN) # (5)

 if led_state == 1: # (6)
 # LED is on, so turn it off.
 pi.write(LED_GPIO_PIN, 0) # 0 = Pin Low = Led Off
 print("Button pressed: Led is off")
 else: # 0
 # LED is off, so turn it on.
 pi.write(LED_GPIO_PIN, 1) # 1 = Pin High = Led On
 print("Button pressed: Led is on")

Register button handler.
pi.callback(BUTTON_GPIO_PIN, pigpio.FALLING_EDGE, pressed) # (7)

Getting Started with Python and IoT Chapter 2

[66]

Notice the signature of pressed(gpio_pin, level, tick). Our previous GPIOZero
version has no parameters while PiGPIO has three mandatory parameters. Our simple one-
button example does not use these parameters; however, for completeness they are as
follows:

gpio_pin: This is the pin responsible for invoking the callback. This will be 23 in
our example.
level: This the state of the pin. For us, this will
be pigpio.FALLING_EDGE (we'll see why shortly).
tick: This is the number of microseconds since boot.

On line (5), we read the current state of GPIO 21 (our LED) into a variable with led_state
= pi.read(). Then, starting on line (6), depending on whether the LED is currently on
(led_state == 1) or off (led_state == 0), we set the GPIO 21 high or low using
pi.write() to toggle the LED to its inverse on or off state.

Finally, the callback handler is registered on line (7). The parameter
value, pigpio.FALLING_EDGE, means the call handler is pressed() whenever the GPIO
pin, BUTTON_GPIO_PIN, (that is, 23) starts to transition from a digital high to a digital low.
This is a lot more explicit than simply testing whether a pin is high or low; however, for
simplicity, consider the following level parameter options to pi.callback(). Try
changing the parameter and see what happens when you press the button:

pigpio.FALLING_EDGE: This is low (think falling toward low). pressed() is
called when you press the button.
pigpio.RAISING_EDGE: This is high (think raising toward high). pressed() is
called when you release the button.
pigpio.EITHER_EDGE: This can be high or low. pressed() is called when you
both press and release the button, effectively meaning the LED will only
illuminate when you hold down the button.

Did you notice or think at any stage in the PiGPIO example that when the button is
pressed—that is, you activated the button—GPIO pin 23 becomes low (that is, the
pigpio.FALLING_EDGE parameter on line (7)), and this results in pressed() begin called?
Did this seem a bit back-to-front or false from a programming perspective? We'll revisit this
idea and discuss the reasons behind it in Chapter 6, Electronics 101 for the Software Engineer.

Getting Started with Python and IoT Chapter 2

[67]

That's enough on GPIO libraries and electronics for now. We've seen how to respond to
button presses with both the GPIOZero and PiGPIO libraries. In particular, we saw that the
GPIOZero approach was rather simple and straightforward compared to the PiGPIO
approach, which involved more code and more configuration. This is the same outcome we
discovered in the previous section, Exploring two ways to flash an LED in Python—that is, the
GPIOZero approach was simpler.

Is one approach better than the other? The answer to that all depends on what goal you are
trying to achieve and how much lower-level control you require over your electronic
interfacing to achieve that goal. At this stage of this book, I just wanted to give you
contrasting options regarding GPIO libraries and how we interface them with electronics.
We'll be picking this topic up again in greater detail when we revisit popular GPIO libraries
for Python in Chapter 5, Connecting Your Raspberry Pi to the Physical World.

Let's move on and create an IoT program to control our LED over the internet.

Creating your first IoT program
We are about to create a Python program to integrate with a service called dweet.io. This is
how their website describes the service: "it's like Twitter for social machines."

We will create simple dweets, which are the dweet.io equivalent of a tweet, by pasting a URL
into a web browser.

Our program will monitor and receive our dweets by polling a dweet.io RESTful
API endpoint for data. As data is received, it will be parsed to find an instruction specifying
whether our LED should be turned on or off or made to blink. Based on this instruction, our
LED state will be changed using the GPIOZero library. We'll have a look at data format
received from dweet.io when we discuss the program's code in a subsequent
section titled Understanding the server code.

We're using the free public dweet.io service where all information is
publicly accessible, so do not publish any sensitive data. There is a
professional service available at dweetpro.io that provides data privacy,
security, dweet retention, and other advanced features.

The code for this program is contained in the chapter02/dweet_led.py file. Read
through the source code in this file to get a broad perspective about what's happening
before continuing.

http://dweet.io/
http://dweet.io/
http://dweetpro.io/

Getting Started with Python and IoT Chapter 2

[68]

Running and testing the Python server
In this section, we will run and interact with a Python server program that will let us
control our LED from a web browser by copying and pasting links. Once we have used the
program to control our LED, we'll then delve into the mechanics of the code and how it
works in the next section.

Here are the steps to follow:

Run the chapter02/dweet_led.py program. You should see output similar to1.
the following:

(venv) $ python dweet_led.py
INFO:main:Created new thing name a8e38712 # (1)
LED Control URLs - Try them in your web browser:
 On : https://dweet.io/dweet/for/a8e38712?state=on # (2)
 Off : https://dweet.io/dweet/for/a8e38712?state=off
 Blink : https://dweet.io/dweet/for/a8e38712?state=blink

INFO:main:LED off
Waiting for dweets. Press Control+C to exit.

On line (1), the program has created a unique name for our thing to use with
dweet.io. You'll notice this name in the URLs starting on line (2). The name
created for your thing will be different from the preceding example.

A thing name in dweet.io is analogous to an @handle on Twitter.

Copy and paste the URLs at starting on line (2) into a web browser (it could be a2.
computer other than your Raspberry Pi). After a short delay, the LED should
change its state (on, off, or blinking) depending on the URL used.

Once you have confirmed that the LED is controllable using the URLs, we will proceed and
look at the program.

Understanding the server code
In this section, we will step through the major parts of the dweet_led.py program and
discover how it works, starting with the imports.

Getting Started with Python and IoT Chapter 2

[69]

Imports
First, at the start of the source code file, we see the Python imports:

...truncated...
import requests # (1)

There is one specific import I want to draw your attention to. On line (1), we are importing
the request module (this was installed earlier in this chapter when you ran pip install
-r requirements.txt). requests is a high-level library for making HTTP requests in
Python. Our program uses this module to communicate with the dweet.io APIs, which
we'll see shortly.

Now that we understand that we are importing and will later use the requests library,
let's cover the global variables used in our program.

Variable definitions
Next, we define several global variables. For now, review the following comments for their
purposes. You'll see them being used as we progress through the code:

LED_GPIO_PIN = 21 # LED GPIO Pin
THING_NAME_FILE = 'thing_name.txt' # Thing name file
URL = 'https://dweet.io' # Dweet.io service API
last_led_state = None # "on", "off", "blinking"
thing_name = None # Thing name
led = None # GPIOZero LED instance

As you read through the master source file, following these variable definitions, you'll also
notice that we are using the Python logging system instead of print() statements:

logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger('main') # Logger for this module
logger.setLevel(logging.INFO) # Debugging for this file. # (2)

If you need to turn on debugging for the program to diagnose a problem or to see the raw
JSON data exchanged between our program and the dweet.io service, change line (2) to
logger.setLevel(logging.DEBUG).

Next, we will step through the significant methods in the program and see what they do.

Getting Started with Python and IoT Chapter 2

[70]

The resolve_thing_name() method
The resolve_thing_name() method is responsible for loading or creating a unique name
for our thing for use with dweet.io.

Our intention when using this method is to always reuse a name so that our dweet URLs
for controlling our LED remain the same between the program restarts:

def resolve_thing_name(thing_file):
 """Get existing, or create a new thing name"""
 if os.path.exists(thing_file): # (3)
 with open(thing_file, 'r') as file_handle:
 name = file_handle.read()
 logger.info('Thing name ' + name +
 ' loaded from ' + thing_file)
 return name.strip()
 else:
 name = str(uuid1())[:8] # (4)
 logger.info('Created new thing name ' + name)

 with open(thing_file, 'w') as f: # (5)
 f.write(name)

 return name

On line (3), we load a name stored previously in thing_file if the file exists; otherwise,
we use the Python UUID module method uuid1() on line (4) to create an 8-character
unique identifier and use that as the thing name. We store this newly created identifier-
cum-name in thing_file on line (5).

Next, we will look at the function that retrieves the last dweet made to our thing.

The get_lastest_dweet() method
get_lastest_dweet() queries the dweet.io service to retrieve the latest dweet (if any)
made for our thing. Following is an example of the JSON response we expect to receive. It is
the content.state property on line (1) that we are ultimately interested in:

{
 this: "succeeded",
 by: "getting",
 the: "dweets",
 with: [
 {
 thing: "a8e38712-9886-11e9-a545-68a3c4974cd4",

Getting Started with Python and IoT Chapter 2

[71]

 created: "2019-09-16T05:16:59.676Z",
 content: {
 state: "on" # (1)
 }
 }
]
}

Looking at the following code, we see, on line (6), the creation of the resource URL used to
query the dweet.io service. A call to this URL will return us a JSON similar to that shown in
the preceding. You will find a link in the Further reading section to the complete dweet.io
API reference.

Next, on line (7), the requests module use used to make an HTTP GET request to retrieve
the latest dweet:

def get_lastest_dweet():
 """Get the last dweet made by our thing."""
 resource = URL + '/get/latest/dweet/for/' + thing_name # (6)
 logger.debug('Getting last dweet from url %s', resource)

 r = requests.get(resource) # (7)

Starting on line (8) in the following, we check whether the request succeeded at the HTTP
protocol level. If successful on line (9), we then proceed to parse the JSON response and
extract and return the content property starting on line (10):

 if r.status_code == 200: # (8)
 dweet = r.json() # return a Python dict.
 logger.debug('Last dweet for thing was %s', dweet)

 dweet_content = None

 if dweet['this'] == 'succeeded': # (9)
 # Interested in the dweet content property.
 dweet_content = dweet['with'][0]['content'] # (10)

 return dweet_content
 else:
 logger.error('Getting last dweet failed
 with http status %s', r.status_code)
 return {}

Our next method to cover is poll_dweets_forever(), which will
use get_lastest_dweet().

Getting Started with Python and IoT Chapter 2

[72]

The poll_dweets_forever() method
poll_dweets_forever() is a long-running function that periodically calls on line (11)
the get_lastest_dweet() method we just covered. When a dweet is available, it is
handled on line (12) by process_dweet(), which we will discuss shortly:

def poll_dweets_forever(delay_secs=2):
 """Poll dweet.io for dweets about our thing."""
 while True:
 dweet = get_last_dweet() # (11)
 if dweet is not None:
 process_dweet(dweet) # (12)

 sleep(delay_secs) # (13)

We sleep for a default delay of 2 seconds on line (13) before continuing the loop. Practically,
this means there will be up to an approximate 2-second delay between using one of the
dweeting URLs to request a LED state change and the LED altering its state.

At this point in the master source file, you will come across a function
named stream_dweets_forever(). This is an alternative and more
efficient stream-based method of accessing dweets in real time using
HTTP streaming.

The polling-based approach of poll_dweets_forever() was chosen
here for discussion for simplicity. It will become clear as you read on
where you can switch approaches.

Our next stop is the method we use to control the LED.

The process_dweet() method
As we saw previously when poll_dweets_forever() (similar
to stream_dweets_forever()) gets a dweet, it parses out the content property from the
dweet's JSON. This is then passed to process_dweet() for handling, where we extract the
state child property from the content property:

def process_dweet(dweet):
 """Inspect the dweet and set LED state accordingly"""
 global last_led_state

 if not 'state' in dweet:
 return

Getting Started with Python and IoT Chapter 2

[73]

 led_state = dweet['state'] # (14)

 if led_state == last_led_state: # (15)
 return; # LED is already in requested state.

On line (15) (and (17) in the subsequent code block), we test for and maintain the LED's last
known state and avoid interacting with the LED if it's already in the requested state. This
will avoid potential visual glitching of the LED that can occur if it's repeatedly put into a
blinking state when already blinking.

The core of process_dweet() is to access the state property of the dweet and change the
LED's state, which starts on line (16):

 if led_state == 'on': # (16)
 led_state = 'on'
 led.on()
 elif led_state == 'blink':
 led_state = 'blink'
 led.blink()
 else: # Off, including any unhanded state.
 led_state = 'off'
 led.off()

 last_led_state = led_state # (17)
 logger.info('LED ' + led_state)

Following line (16), we set the LED state based on the dweet (remember the led variable is
a GPIOZero LED instance) before keeping track of the new state on line (17), as mentioned,
for subsequent testing when process_dweet() is called on line (15).

Thanks to the simplicity of GPIOZero, our LED controlling code only makes a fleeting
appearance in the code!

We will conclude by covering the program's main entry point.

The main program entry point
At the end of the source file, we have the following code:

Main entry point
if __name__ == '__main__':
 signal.signal(signal.SIGINT, signal_handler) # Capture CTRL + C
 print_instructions() # (18)

 # Initialize LED from last dweet.

 latest_dweet = get_latest_dweet() # (19)

Getting Started with Python and IoT Chapter 2

[74]

 if (latest_dweet):
 process_dweet(latest_dweet)

 print('Waiting for dweets. Press Control+C to exit.')

 #Only use one of the following.
 #stream_dweets_forever() # Stream dweets real-time.
 poll_dweets_forever() # Get dweets by polling. # (20)

On line (8), print_instructions() is responsible for printing the sweet URLs to the
Terminal, while on line (19), we see a call to get_latest_dweet(). This call initializes our
LED to the last dweeted state when the program starts. Finally, on line (20), we start polling
the dweet.io service to access the latest dweets. It's here you swap the dweet polling
method to the streaming method.

This now completes our walk-through of dweet_led.py. Through this discussion, we have
now seen how to leverage the dweet.io service to create a simple and functional IoT
program. Before we complete this chapter, I want to leave you with two bonus source code
files that you can use to extend your IoT program.

Extending your IoT program
The following two files in the chapter02 folder complement what we have covered in this
chapter by combining the concepts we have learned. As the overall code and approach are
similar to what we have already covered, we will not go through the code in detail:

dweet_button.py provides an implementation showing how to use a push
button to create a dweet with the dweet.io service. This will let you change your
LED state with the press of a button.
pigpio_led_class.py provides a code-level example of how a low-level
library like PiGPIO relates to a high-level library like GPIOZero.

We'll start by discussing dweet_button.py.

Implementing a dweeting button
This program in dweet_button.py integrates the GPIOZero push button example with
dweet.io. Earlier in this chapter, in the section titled Running and testing the Python server,
we copied and pasted URLs into a web browser to control our LED.

Getting Started with Python and IoT Chapter 2

[75]

When you run dweet_button.py, each time you press the button, this program cycles
through the dweet.io URLs to change the LED's state. To configure this program, find and
update the following line with the thing name you are using with dweet_led.py:

thing_name = '**** ADD YOUR THING NAME HERE ****'

Remember, that you'll also need the dweet_led.py program to be running in a Terminal,
otherwise, the LED will not respond to your button presses.

Next, we see how to mimic GPIOZero using PiGPIO and a Python class.

PiGPIO LED as a class
In the pigpio_led_class.py file, we have a Python class that is a re-engineering of the
PiGPIO LED example to wrap it as a class that mimics the GPIOZero LED class. It
demonstrates the basic principle of how GPIOZero abstracts away lower-level GPIO
complexity. This re-engineered class can be used as a drop-in replacement for the
GPIOZero LED examples in this chapter, as shown here. See the header comments in
pigpio_led_class.py for more information:

""" chapter02/dweet_led.py """
...
from gpiozero import LED # Comment out import
from pigpio_led_class import PiGPIOLED as LED # Add new import

I hope you find these two bonus files interesting, and that by exploring the PiGPIO LED as
a class example, you can better appreciate how the higher-level GPIOZero library and
lower-level PiGPIO library relate to one another.

At this stage of your journey, if you are a little unclear about what's happening
with pigpio_led_class.py, do not get worried. I wanted to simply set out a
brief example of GPIO library interactions for you to ponder in the context of an end-to-end
application, as this will serve as a point of reference as you continue reading. We'll be
covering the GPIOPZero and PiGPIO libraries (plus others) in greater detail in Chapter 5,
Connecting Your Raspberry Pi to the Physical World, plus we'll be covering more advanced
concepts such as threading in electronic interfacing programs (similar to the use of threads
in pigpio_led_class.py) in Chapter 12, Advanced IoT Programming Concepts – Threads,
AsyncIO, and Event Loops.

Getting Started with Python and IoT Chapter 2

[76]

Summary
Through this chapter, you've just created a real functional IoT application using a
Raspberry Pi and Python. We saw two alternative ways to flash a LED and read a button
press in Python using both the GPIOZero and PiGPIO GPIO libraries. We also compared
the use of these libraries and saw that GPIOZero takes a higher-level and more abstract
approach to coding and GPIO control than does the lower-level PiGPIO library. We also
connected the LED to the internet using the online dweet.io service. Using simple URLs, we
were able to turn on and off and blink the LED by simply visiting the URLs in a web
browser.

As you proceed through the subsequent chapters in this book, we'll be building on and
going deeper into the core knowledge you have learned in this chapter about GPIO
interfacing, electronic circuits, and controlling a circuit over the internet. We will learn
alternative approaches to building an application to those we have covered in this chapter
and discover the core principles related to GPIO control and electronic interfacing.
Equipped with this deepening knowledge, you'll be able to create even more powerful and
grand IoT solutions by the time you complete this book!

In Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, we will be looking
at the popular Flask microservices framework, and we will create two Python-based web
servers and accompanying web pages to control the LED over a local network or the
internet.

Questions
Here is a list of questions for you to test your knowledge regarding this chapter's material.
You will find the answers in the Assessments section of the book:

You don't have the correct resistor value. Can you just substitute another value1.
resistor that you have lying around?
The GPIOZero package is a compete GPIO library. Is it all you'll ever need?2.
Should you always use the built-in Python packages for networking wherever3.
possible?
True or false: an LED is unbiased, meaning it can be plugged into a circuit any4.
way around and still work.
You are building an IoT application that interacts with other existing networked5.
devices and it times out. What could be the problem?
What Python module and function can be used to stop a program exiting?6.

Getting Started with Python and IoT Chapter 2

[77]

Further reading
We connected our LED to the internet using the dweet.io service and called its RESTful
APIs, which are documented at the following:

Dweet.io API documentation: https:/​/​dweet.​io

You may wish to familiarize yourself with the GPIOZero library briefly to get an idea about
what it can do. It's well documented with heaps of examples. Here are a couple of useful
links to relevant parts of the API documentation that we've covered so far:

GPIOZero home page: https:/​/​gpiozero.​readthedocs. ​io

Output Devices (LED): https:/​/​gpiozero.​readthedocs.​io/​en/​stable/​api_
output.​html

Input Devices (Button): https:/​/​gpiozero.​readthedocs.​io/​en/​stable/​api_
input.​html

Regarding PiGPIO, here are the relevant parts of its API documentation. You'll notice that
PiGPIO is a more advanced GPIO library with less verbose documentation.

The PiGPIO Python home page: http:/​/​abyz.​me.​uk/​rpi/​pigpio/​python.​html

The read() method: http:/​/​abyz.​me.​uk/​rpi/​pigpio/​python.​html#read

The write() method: http:/​/​abyz.​me.​uk/​rpi/​pigpio/​python.​html#write

The callback() method: http:/​/​abyz.​me.​uk/​rpi/​pigpio/​python.
html#callback

set_glitch_filter(): https:/​/​abyz.​me.​uk/​rpi/​pigpio/​python.​html#set_
glitch_​filter

Resistors are a very common electronic component. The following resources provide an
overview of resistors and how to read their color bands to determine their resistance value
in Ohms:

Resistor overview: https:/​/​www.​electronics-​tutorials.​ws/​resistor/​res_​1.
html

Reading color bands: https:/​/​www.​electronics-​tutorials.​ws/​resistor/​res_
2.​html

The following Spark Fun tutorial provides an excellent introduction to reading schematic
diagrams:

How to Read a Schematic Diagram: https:/​/​learn.​sparkfun.​com/​tutorials/​how-
to-​read-​a-​schematic/​all

https://dweet.io
https://dweet.io
https://dweet.io
https://dweet.io
https://dweet.io
https://dweet.io
https://dweet.io
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_output.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
https://gpiozero.readthedocs.io/en/stable/api_input.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#read
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#write
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
http://abyz.me.uk/rpi/pigpio/python.html#callback
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_1.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://www.electronics-tutorials.ws/resistor/res_2.html
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all

3
Networking with RESTful APIs
and Web Sockets Using Flask

In Chapter 2, Getting Started with Python and IoT, we created a networked IoT application
based on dweet.io where you controlled an LED connected to your Raspberry Pi over the
internet. Our first IoT application was driven purely by making API requests.

In this chapter, we will turn our attention to alternative approaches to creating networked
services in Python that can be accessed by both Python and non-Python clients. We will be
looking at how to build a RESTful API server and a Web Socket server in Python and
applying the electronic interfacing techniques we learned in the previous chapter to make
them interact with our LED.

After completing this chapter, you will have an understanding of two different approaches
to building servers with Python, complete with accompanying web pages that interact with
the servers. These two servers will provide you with an end-to-end reference
implementation that you can use as a starting point for your own network-connected IoT
projects.

Since this chapter is about networking techniques, we will continue with our GPIOZero-
based LED from the preceding chapter merely for simplicity and abstraction so that our
examples are to-the-point and network-focused and not cluttered by GPIO-related code.

In this chapter, we will cover the following topics:

Introducing the Flask microservices framework
Creating a RESTful API service with Flask
Adding a RESTful API client web page
Creating a Web Socket service with Flask-SocketIO
Adding Web Socket client web page
Comparing the RESTful API and Web Socket servers

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[79]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

You will find this chapter's source code in the chapter03 folder in the GitHub repository
available here: https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-
for-​IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install Python libraries required for the code in this chapter:

$ cd chapter03 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https:/​/​pypi.​org/​project/​gpiozero)
PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
Flask: The core Flask microservices framework (https:/​/​pypi.​org/​project/
Flask)
Flask-RESTful: A Flask extension for creating RESTful API services (https:/​/
pypi.​org/​project/​Flask-​RESTful)
Flask-SocketIO: A Flask extension for creating Web Socket services (https:/​/
pypi.​org/​project/​Flask-​SocketIO)

We will be working with the breadboard circuit we created in Chapter 2, Getting Started
with Python and IoT, Figure 2.7.

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO
https://pypi.org/project/Flask-SocketIO

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[80]

Introducing the Flask microservices
framework
Flask is a popular and mature microservices framework for Python that you can use for
creating APIs, websites, and just about any other networked service you can imagine. Flask
is certainly not the only option available for Python, even though its maturity, range of
add-ons, and extensions plus the availability of quality documentation and tutorials make it
an excellent choice.

We could conceivably do all of the following coding exercises in this chapter using just the
core Flask framework; however, there are quality extensions that will make our life much
easier. These extensions are Flask-RESTful for creating RESTful API services and Flask-
SocketIO for building Web Socket services.

The official API documentation for Flask-RESTful and Flask-SocketIO (or
any Flask extension for that matter) generally assume existing knowledge
of the core Flask framework, classes, and terminology. If you can't seem to
find answers to your questions in an extension's documentation,
remember to check the core Flask API documentation also. You'll find a
link to this documentation in the Further reading section.

Let's commence and create a RESTful API service in Python using Flask-RESTful.

Creating a RESTful API service with Flask-
RESTful
In this section, we will explore our first Python-based server, which will be a RESTful API
server implemented using the Flask-RESTful framework for Python.

A RESTful API (REST stands for Representational State Transfer) is a software design
pattern used for building web service APIs. It's a flexible pattern that is both technology-
and protocol-independent. Its technology independence helps to promote interoperability
between different technologies and systems, including different programming languages.
And although it does promote protocol independence, it's frequently and almost always by
default (or, at the least, assumed to be) built on top of the HTTP protocol used by web
servers and web browsers.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[81]

RESTful APIs are the most common technique used today for building web services and
APIs. In fact, it's so common that many people learn about them and use the design pattern
without ever understanding what they are! If you are new to RESTful APIs, you will a link
in the Further reading section, which I encourage you to review as a primer before
proceeding.

Our focus in this section will be on controlling an LED with a RESTful API and
understanding how this is implemented using Python and the Flask-RESTful framework.
After completing this section, you will be able to leverage this RESTful API server a starting
point for your own IoT projects and integrate it with other electronics, especially as learn
more about electronic actuators and sensors in part 3 of this book, IoT Playground.

For the examples in this chapter, we will assume you are working and
accessing the Flask-based servers locally on your Raspberry Pi. These
servers will also be accessible from another device on your local network
if you use the IP address or hostname of your Raspberry Pi. To make the
servers directly accessible over the internet would require configuration of
your specific firewall and/or router, which we cannot practically cover in
this book. For prototyping ideas and creating demos, a simple alternative
to configuring firewalls and routers is to use a service such as Local
Tunnels (https:/​/​localtunnel.​github.​io/​www) or Ngrok (https:/​/
ngrok.​com), which will help you to make the Flask servers on your
Raspberry Pi accessible over the internet.

We will start by running and using our RESTful API to interact with the LED before
proceeding to review the server's source code.

Running and testing the Python server
You will find the code in the chapter03/flask_api_server.py file. Please review this
file before proceeding to get an overall idea about what it contains before you proceed.

We are running our Flask examples using Flask's built-in HTTP server.
This is more than adequate for development purposes; however, it's not
recommended for production usage. Consult the Flask
documentation section titled Deployment Options for information on how
to deploy a Flask application with production-quality web servers. You'll
find a link in the Further reading section to the official Flask website and
documentation.

https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[82]

To test the Python server perform the following steps:

Run our RESTful API server with the following command:1.

(venv) $ python flask_api_server.py
... truncated ...
NFO:werkzeug: * Running on http://0.0.0.0:5000/ (Press CTRL+C to
quit)
... truncated ...

The second to last line in the preceding code block indicates that our server has
started successfully. Our server is running in debug mode by default, so its log
output will be verbose and if you make any changes to flask_api_server.py
or other resource files, the server will restart automatically.

If flask_api_server.py raises an error when started in debug mode,
clear the file's execute bit. This issue occurs on Unix-based systems and
has to do with the development web server shipped with Flask. Here is
the command to clear the execute bit:
$ chmod -x flask_api_server.py

We will create a web page to interact without API shortly; however, for now,2.
browse to http://localhost:5000 in a web browser and verify that you can
use the slider on the web page to change the brightness of the LED.

Our example URL is http://localhost:5000, however, if you use your
Raspberry Pi's IP address instead of localhost, you will be able to access
the web page from another device on your local network.

The following screenshot is an example of the web page you will see:

Figure 3.1 – RESTful API client web page

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[83]

We can also use the curl command-line tool to interact with the API. We will do3.
this now to observe the input and output JSON from our API server requests.

Our first curl command in the following makes an HTTP GET request and we
see the LED's brightness level (a number between 0 and 100) printed on the
Terminal in JSON (line 1). The default LED brightness when the server is started
is 50 (that is, 50% brightness):

$ curl -X GET http://localhost:5000/led
{
 "level": 50 # (1)
}

The options for curl are as follows:

-X GET: The HTTP method used to make the request
<url>: The URL to request

This next command performs an HTTP POST request, and we are setting the4.
brightness level to its maximum of 100 (line 2), which is returned as JSON and
printed back to the Terminal (line 3):

$ curl -X POST -d '{"level": 100}' \ # (2)
 -H "Content-Type: application/json" \
 http://localhost:5000/led
{
 "level": 100 # (3)
}

The options for curl are as follows:

-X POST: This is the HTTP method; this time, we're making a
POST request.
-d <data>: This is the data we want to POST to the server. We're
posting a JSON string.
-H <HTTP headers>: These are the HTTP headers to send with the
request. Here, we're letting the server know that our data, (-d), is
JSON.
<url>: This is the URL to request.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[84]

An alternative to curl on the command line is Postman
(getpostman.com). If you are not familiar with Postman, it's a free API
development, querying, and testing tool that is invaluable when you are
developing and testing RESTful API services.

Try altering the level value in the preceding curl POST example to a number outside of
the range 0-100 and observe the error message you receive. We will see shortly how this
validation logic is implemented with Flask-RESTful.

Let's now proceed to look at our server source code.

Understanding the server code
In this section, we will walk through our RESTful API server's source code and discuss the
core parts to help you to understand how the server is coded and operates. Please keep in
mind that we're about to cover many code-level artifacts that are specific to the Flask and
Flask-RESTful frameworks, so don't get worried if, at first, some concepts do not make
immediate sense.

Once you have an understanding of the foundations and an overall idea of how our sever
works, you'll be in an excellent position to deepen your understanding of Flask and Flask-
RESTful by consulting their respective websites (you will find links in the Further reading
section). Furthermore, you will have a solid reference RESTful API server that you can
rework and use as a starting point for your own future projects.

Please note that as we discuss the code, we will skip over any code and concepts that we
covered in earlier chapters, such as GPIOZero.

We will start by looking at the imports.

Imports
At the top of the source code file, we see the following imports:

import logging
from flask import Flask, request, render_template # (1)
from flask_restful import Resource, Api, reqparse, inputs # (2)
from gpiozero import PWMLED, Device # (3)
from gpiozero.pins.pigpio import PiGPIOFactory

http://getpostman.com

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[85]

The Flask-related imports we see on lines (1) and (2) are all of the classes and functions of
Flask and Flask-RESTful that we will require in our server. You will notice on line (3), we're
importing PWMLED not LED as we have done in previous chapters. In this example, we're
going to change the brightness of our LED rather than just turning it on and off. We'll cover
more about PWM and PWMLED as we proceed with this chapter.

Next, in our source code, we start to work with Flask and the Flask-RESTful extension.

Flask and Flask-RESTful API instance variables
In the following, on line (4), we create an instance of our core Flask app and assign it to
the app variable. The parameter is the name of our Flask application, and it's a common
convention to use __name__ for the root Flask app (we only have a root Flask app in our
example). Anytime we need to work with the core Flask framework, we will use
the app variable:

app = Flask(__name__) # Core Flask app. # (4)
api = Api(app) # Flask-RESTful extension wrapper # (5)

On line (5), we wrap the core Flask app with the Flask-RESTful extension and assign it to
the api variable, and as we will see shortly, we use this variable anytime we are working
with the Flask-RESTful extension. Following our app and api variables, we define
additional global variables.

Global variables
The following global variables are used throughout our server. First, we have the GPIO pin
and an led variable, which will later be assigned a GPIOZero PWMLED instance for
controlling our LED:

Global variables
LED_GPIO_PIN = 21
led = None # PWMLED Instance. See init_led()
state = { # (6)
 'level': 50 # % brightness of LED.

}

On line (6), we have a state dictionary structure that we will use to track the brightness
level of our LED. We could have used a simple variable instead but have opted for a
dictionary structure since it's a more versatile option because it will be marshaled into
JSON to send back to a client, as we will see later on.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[86]

Next, we create and initialize our led instance.

The init_led() method
The init_led() method simply creates a GPIOZero PWMLED instance and assigns it to the
global led variable that we saw previously:

def init_led():
 """Create and initialize an PWMLED Object"""

 global led
 led = PWMLED(LED_GPIO_PIN)
 led.value = state['level'] / 100 # (7)

We explicitly set the LED's brightness to match the value of our server's brightness state on
line (7) to ensure the server's managed state and the LED are in sync when the server starts.
We are dividing by 100 because led.value expects a float value in the range of 0-1, while
our API will be using an integer in the range 0-100.

Next, we start to see the code that defines our server and its service endpoints, starting with
the code that serves the web page we visited earlier.

Serving a web page
Starting on line (8), we use the Flask @app.route() decorator to define a callback method
that is invoked when the server receives an HTTP GET request from a client to the root
URL /, that is, a request to http://localhost:5000:

@app.route applies to the core Flask instance (app).
Here we are serving a simple web page.
@app.route('/', methods=['GET']) # (8)
def index():
 """Make sure index_api_client.html is in the templates folder
 relative to this Python file."""
 return render_template('index_api_client.html',
 pin=LED_GPIO_PIN) # (9)

On line (9), render_template('index_api_client.html', pin=LED_GPIO_PIN) is a
Flask method use to return a templated page to the requesting client.
The pin=LED_GPIO_PIN parameter is an example of how to pass a variable from Python to
the HTML page template for rendering. We will cover the contents of this HTML file later
in this chapter.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[87]

Notice, in the preceding code block on line (8), we
have @app.route(...). The presence of the app variable means we are
using and configuring the core Flask framework here.

Returning an HTML page to the client is the only core Flask feature that we will cover in
this book, however, there will be additional resources listed in the Further reading section
for you to explore the core concepts of Flask further.

Our next stop in code is the LEDController class. It's here that we are interacting with the
LED and GPIOZero.

The LEDControl class
In Flask-RESTful, API resources are modeled as Python classes that extend
the Resource class, and on line (10) in the following snippet, we see the
LEDControl(Resource) class defined that will contain the logic used to control our LED.
Later on, we will see how we register this class with Flask-RESTful so that it responds to
client requests:

class LEDControl(Resource): # (10)
 def __init__(self):
 self.args_parser = reqparse.RequestParser() # (11)
 self.args_parser.add_argument(
 name='level', # Name of arguement
 required=True, # Mandatory arguement
 type=inputs.int_range(0, 100), # Allowed 0..100 # (12)
 help='Set LED brightness level {error_msg}',
 default=None)

On line (11), we create an instance of RequestParser() and assign it to the
args_parser variable before configuring the parser with add_argument(). We use an
instance of RequestParser() in Flask-RESTful to define validation rules for the
arguments we expect our LEDControl resource to handle.

Here, we are defining a mandatory parameter named level, which must be an integer in
the range 0 to 100, as shown on line (12). We've also provided a custom help message for
when the level parameter is missing or out of range.

We will see the use of args_parser when we cover the post() method shortly, but first,
let's discuss the get() method.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[88]

The get() class method
The get() class method handles HTTP GET requests for our LEDControl resource. It's
what handled our URL request when we tested the API previously with the following
command:

$ curl -X GET http://localhost:5000/led

get() simply returns, on line (13), the global state variable:

 def get(self):
 """ Handles HTTP GET requests to return current LED state."""
 return state # (13)

Flask-RESTful returns JSON responses to clients, and that's why we return the state
variable. In Python, state is a dictionary structure that can be mapped directly into a JSON
format. We saw the following JSON example previously when we make a GET request
using curl:

{ "level": 50 }

This class-as-a-resource (for example, LEDControl) and method-to-HTTP-method
mapping (for example, LEDControl.get()) is an example of how the Flask-RESTful
extension makes RESTful API development easy.

There are also method names reserved for other HTTP request methods, including POST,
which we cover next.

The post() class method
The post() class method handles HTTP POST requests made to the LEDControl resource.
It is this post() method that received and processed our curl POST request when we
made the following request earlier when we tested our server:

curl -X POST -d '{"level": 100}' \
 -H "Content-Type: application/json" \
 http://localhost:5000/led

post() is more complex than our get() method. It is here where we change the brightness
of our LED in response to a requesting client's input:

 def post(self):
 """Handles HTTP POST requests to set LED brightness level."""
 global state # (14)

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[89]

 args = self.args_parser.parse_args() # (15)

 # Set PWM duty cycle to adjust brightness level.
 state['level'] = args.level # (16)
 led.value = state['level'] / 100 # (17)
 logger.info("LED brightness level is " + str(state['level']))

 return state # (18)

On line (14), we use the Python global keyword to indicate that we will be altering
the state global variable.

On line (15), we see the use of args_parser that we discussed previously. It's this call
to args_parser.parse_args() that will parse and validate the caller's input
(remember level was a required argument and it must be in the range 0-100). If our
predefined validation rules fail, the user will be issued with an error message, and post()
will terminate here.

If the arguments are valid, their values are stored in the args variable, and the code
continues to line (16) where we update the global state variable with the newly requested
brightness level. On line (17), we alter the physical LED's brightness using the GPIOZero
PWMLED instance, led, which expects a value between 0.0 (off) and 1.0 (full brightness),
so we're mapping our level input range of 0-100 back to 0-1. The value of state is
returned to the client on line (18).

Our final task is to register LEDController with Flask-RESTful and start the server.

LEDController registration and starting the server
After calling the init_led() method to initiate and default out GPIOZero led instance,
we then see how to register our LEDControl resource with api.add_resource() on line
(19). Here, we are mapping the URL endpoint, /led, with our controller.

Notice, in the code block on line (19), we have api.add_resource(...).
The presence of the api variable means we are using and configuring
the Flask-RESTful extension here.

Finally, on line (20), our server is started (in debug mode) and is ready to receive client
requests. Notice that we use the core Flask instance in the app variable to start the server:

Initialize Module.

init_led()

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[90]

api.add_resource(LEDControl, '/led') # (19)

if __name__ == '__main__':
 app.run(host="0.0.0.0", debug=True) # (20)

Well done! We've just covered the build of a simple, yet, functional RESTful API server in
Python. You'll find links in the Further reading section to the official Flask-RESTful
documentation so you can take your knowledge further.

As mentioned, we've used PWMLED in our server. Let's briefly introduce the term
PWM before we proceed and review the web page that accompanies our RESTful API
server.

Introduction to PWM
In the proceeding example, we used PWMLED, not LED, from GPIOZero. PWMLED allows us to
control the brightness of the LED using a technique known as Pulse Width Modulation,
commonly abbreviated as PWM.

PWM is a technique used to create a lower the average voltage from a source signal, which
can be a 3.3-volt GPIO pin. We will be covering PWM and GPIO pin voltages in detail in
Chapter 6, Electronics 101 for the Software Engineer.

For our current example, briefly (and somewhat oversimplified), PWM pulses the LED on
and off really, really fast, and our eyes observe different pulse durations (that are creating
different voltages) manifesting as different brightness levels of the LED. We changed this
pulse duration (known as the duty-cycle) using the value property of a PWMLED instance,
that is, led.value = state["level"] in LEDControl.post(). In Chapter 5, Connecting
Your Raspberry Pi to the Physical World, we will explore PWM in greater detail.

We've now covered our Python-based Flask-RESTful API server and learned how to
implement a simple and functional RESTful API server that is capable of handling both
GET and POST requests, the two most popular ways of interacting with RESTful API
servers. Plus, we also saw how to achieve data validation with Flask-RESTful as a simple
and effective way to guard our server against invalid input data.

We also learned to use the curl command-line tool to interact with and test our server. As
you build, test, and debug RESTful API servers, you will find curl a useful addition to
your development toolkit.

Next, we will take a look at the code behind the web page that interacts with our API.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[91]

Adding a RESTful API client web page
The web page we are about to discuss is the one you interacted with previously to change
the brightness of your LED when you visited http://localhost:5000 in your web
browser. A screenshot of the web page is shown in Figure 3.1.

As we proceed through this section, we will be learning how to build this basic web page
using HTML and JavaScript. We will discover how to make the HTML range component
interact with the Flask-RESTful API server that we created in the previous section, so that
when we change the range control (that is, slide the slider), our LED's brightness also
changes.

You will find the page's code in
the chapter03/templates/index_api_client.html file. Please review this file before
proceeding to get an overall idea about what it contains.

The templates folder is a special Flask folder where template files are kept. An HTML
page is considered a template in the Flask ecosystem. You will also find a folder
named static. This folder is where static files are stored. For our example, this is where a
copy of the jQuery JavaScript library file is found.

All files and resources referenced in a web page served from Flask are
relative to the server's root folder. For us, this is the chapter03 folder.

Let's walk through the web page code.

Understanding the client-side code
This section's code is JavaScript, and we will be using the jQuery JavaScript library. An
understanding of basic JavaScript and jQuery will be essential to understanding the code
examples that follow. If you are not familiar with jQuery, you can find learning resources at
jQuery.com.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[92]

JavaScript imports
We see in the following, on line (1), that we import the jQuery library that is contained in
the static folder:

<!-- chapter03/templates/index_api_client.html -->
<!DOCTYPE html>
<html>
<head>
 <title>Flask Restful API Example</title>
 <script src="/static/jquery.min.js"></script> <!--(1)-->
 <script type="text/javascript">

Next, we will start to cover the JavaScript functions in the file.

The getState() function
The primary purpose of getState() is to retrieve the LED's current state from the server.
It uses the JQuery get() method to make an HTTP GET request to our API server's /led
resource. We saw, in the previous section, that the URL path, /led, is mapped to
the LEDControl Python class, and because we're making a GET request,
it's LEDControl.get() that will receive and handle our request:

// GET request to server to retrieve LED state.
function getState() {
 $.get("/led", function(serverResponse, status) { // (2)
 console.log(serverResponse)
 updateControls(serverResponse) // (3)
 });
}

The server's response is contained in the serverResponse parameter on line (2), which is
passed to the updateControls() function on line (3) to update the web page controls.
We'll cover this method shortly.

While getState() gets data from our Python server, our next method, postUpdate(),
sends (that is, posts) data to the server.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[93]

The postUpdate() function
postUpdate() changes the LED's brightness by performing an HTTP POST to the server.
This time, it's the LEDControl.post() method in our API server that handled the request:

// POST Request to server to set LED state.
function postUpdate(payload) { // (4)
 $.post("/led", payload, function(serverResponse, status) {
 console.log(serverResponse)
 updateControls(serverResponse); // (5)
 });
}

On line (4), it receives and parses (remember arg_parser from LEDControl) the data in
the payload parameter. payload is a JavaScript object with a state child property. We'll
see this object constructed later in the web page slider's change event handler.

For consistency, we also update the controls on line (5) even though, in our case,
the serverResponse variable will contain the same level value as the payload parameter.

Next, we will see what the call to updateControls() on line (5) does.

The updateControls() function
updateControls() changes the visual appearance of the web page controls. This function
receives JSON input as the data parameter, which is in the form: {"level":50}. Starting
on line (6) and using jQuery selectors, we update the slider control and text on the web
page to reflect the new level value:

function updateControls(data) {
 $("input[type=range].brightnessLevel").val(data.level); // (6)
 $("#brightnessLevel").html(data.level);
}

Next, we'll see how we use JQuery to create an event handler that responds when we or
another user changes to the web page's slider component.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[94]

Registering event handlers with jQuery
We are following jQuery best practice and using the jQuery document ready function (that
is, $(document).ready(...)) to register the event handlers for our web page's slider
control and initialize our web page elements:

 $(document).ready(function() {
 // Event listener for Slider value changes.
 $("input[type=range].brightnessLevel")
 .on('input', function() { // (7)
 brightness_level = $(this).val(); // (8)
 payload = { "level": brightness_level } // (9)
 postUpdate(payload);
 });

 // Initialize slider value form state on server.

 getState() // (10)
 });
 </script>
</head>

On line (7), we register an event handler for the slider controls input event. This handler
function will be called when a user interacts with the slider on the web page.

Starting on line (8), after a user moves the slider, we extract the slider's new value of the
slider using val() (which will be between 0 and 100—we'll see why shortly when we
review the page's HTML).

On line (9), we create a JSON object containing our new brightness level before passing it
to postUpdate(), which calls our RESTful API to change the brightness of our physical
LED.

Finally, on line (10), we call our getState() function, which makes an HTTP request to
our server to get the current brightness level for the LED. As we saw previously,
getState() then delegates to updateControls(), which then updates the slider and
page text to reflect the LED's brightness value.

We'll conclude this section by looking at the HTML that makes up the web page.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[95]

The web page HTML
Previously in our Python server, we had the
line render_template('index_rest_api.html', pin=LED_GPIO_PIN). It's the pin
parameter in this method call that is rendered on our web page on line (11), represented by
the template variable, {{pin}}:

<body>
 <h1>Flask RESTful API Example</h1>
 LED is connected to GPIO {{pin}}
 <!--(11)-->
 Brightness: %

 <input type="range" min="0" max="100" <!--(12)-->
 value="0" class="brightnessLevel">
</body>
</html>

Finally, we see, on line (12), our HTML slider component is restricted to the range of 0-100.
As we saw previously, it's the call to getState() in the document ready handler that
updates the slider's value attribute to match the brightness level stored on the server after
the web page has finished loading.

Congratulations! We've reached a milestone now, having completed a full end-to-end
server and client example based on RESTful APIs. Our learning about Flask and Flask-
RESTful means we have learned to use one of the most popular and feature-
rich Python libraries for building web services. Plus, learning to build a RESTful API server
and matching client means we have practically implemented the most common approach
used today for client-server communication.

We have barely scratched the surface of what can be achieved with Flask, Flask-RESTful,
and RESTful APIs in general, and there is much more that can be explored. You'll find links
in the Further reading section if you wish to take your understanding of these topics further.

Next, we will create the same client and server scenario we built in this section, only this
time using Web Sockets as our transport layer.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[96]

Creating a Web Socket service with Flask-
SocketIO
We will now implement our second Python-based server. Our overall outcome in this
section will be similar to our RESTful API server and client that we created in the previous
section—that is, we will be able to control our LED from a web browser. Our objective this
time around, however, will be to create our program using a different technological
approach using Web Sockets as our transport layer.

Web Sockets are a full-duplex communication protocol and are a common technology
choice where real-time client/server interaction is required. Web Sockets are a technology
that—in my opinion and experience—is best learned through doing rather than reading,
especially if you are new to server development. A deep discussion of Web Sockets is
beyond the scope of this chapter; however, you'll find two links in the Further reading
section covering the basics.

If you are new to Web Sockets, I highly recommend reading those two resources as a
primer before proceeding. And don't worry if the content does not sink in initially because
I'm confident that, once you have used and understood how our Python Web Socket server
and the accompanying Web Socket-enabled web page is implemented, the pieces of the
larger Web Socket puzzle will start to come together.

For our Web Socket sever build, we will use the Flask-SocketIO library, which is modeled
after and compatible with the popular Socket.IO library for JavaScript (https:/​/​socket.
io).

We will start by running and using our Web Socket server to interact with the LED before
proceeding to review the server's source code.

Running and testing the Python server
Let's start by having a quick look at our Python Web Socket server code and running the
server to see it in operation. This will give us a broad idea of the code and a first-hand
demonstration of how the code works before we discuss it in detail.

You will find the Web Socket server's code in the chapter03/flask_ws_server.py file.
Please review this file before proceeding.

https://socket.io
https://socket.io
https://socket.io
https://socket.io
https://socket.io
https://socket.io

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[97]

When you have looked through the code, we will run our server. Here are the steps to
follow:

Run the Web Socket server with the following command:1.

(venv) $ python flask_ws_server.py
... truncated ...
NFO:werkzeug: * Running on http://0.0.0.0:5000/ (Press CTRL+C to
quit)
... truncated ...

The preceding output is similar to what we saw when we ran the RESTful API
server; however, you can expect more output messages on your Terminal for this
server. The additional output you will see has been truncated from the preceding
example.

If flask_ws_server.py raises an error when started in debug mode,
clear the file's execute bit. This issue occurs on Unix-based systems and
has to do with the development web server shipped with Flask. Here the
is command to clear the execute bit:
$ chmod -x flask_ws_server.py

Visit the http://localhost:5000 URL in a web browser. You will get a web2.
page with a slider as shown in Figure 3.2. While the visual appearance of the web
page is similar to the RESTful API server's web page, the underlying JavaScipt is
different:

Figure 3.2 – Web Socket client web page

Verify that you can use the slider on the web page to change the brightness of the
LED.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[98]

Open a second web browser and visit http://localhost:5000 (so now
you have two pages open). Change the slider, and you will see that both
pages stay in sync and in real time! And presto, you have discovered a
unique advantage offered by Web Sockets compared to a RESTful API.

Find on the web page, the line Connected to server: Yes, then perform3.
the following:

Terminate the server by pressing Ctrl + C in the Terminal, and you will
notice the line changes to Connected to server: No.
Restart the server again and it changes back to Connected to server:
Yes.

This illustrates the bi-directional nature of Web Sockets. We'll see how this is implemented
on the web page when we review it's JavaScript but first, we will review the Python code
that makes up our Web Socket server.

Server code walkthrough
In this section, we will walk through our Python server's source code and discuss the core
parts. Again, we'll skip over any code and concepts that we covered in earlier
chapters. First, let's see what we're importing.

Imports
Near the top of the source file, we have the following imports:

from flask import Flask, request, render_template
from flask_socketio import SocketIO, send, emit # (1)

The main difference concerning our preceding imports compared to the RESTful API
imports are on line (1), where we now import classes and functions from Flask-SocketIO.

Next, in our source code, we start to work with Flask and the Flask-SocketIO extension.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[99]

Flask and Flask-RESTful API instance variables
On line (2), we create an instance of SocketIO and the Flask-SocketIO extension and assign
it to the socketio variable. It's this variable that we will use throughout our server to
access and configure our Web Socket service:

Flask & Flask Restful Global Variables.
app = Flask(__name__) # Core Flask app.
socketio = SocketIO(app) # Flask-SocketIO extension wrapper # (2)

Following the creation of our SocketIO instance, we once again will server a web page from
the default URL endpoint, /.

Serving a web page
Similarly to the RESTful API example, we configure the core Flask framework to serve a
web page from the root URL using the @app.route() decorator:

@app.route('/', methods=['GET'])
def index():
 """Make sure index_web_sockets.html is in the templates folder
 relative to this Python file."""
 return render_template('index_web_sockets.html', # (3)
 pin=LED_GPIO_PIN)

For our Web Socket server, this time, we are serving the HTML
file, index_web_sockets.html, which we will be covering shortly in the next
section, Adding a Web Socket client web page.

Next, we start to see the code that sets up and handles Web Socket event messages.

Connecting and disconnecting handlers
From this point in code forward, we start to see the major differences between the RESTful
API server and this Web Socket server:

Flask-SocketIO Callback Handlers
@socketio.on('connect') # (4)
def handle_connect():
 logger.info("Client {} connected.".format(request.sid)) # (5)

 # Send initializating data to newly connected client.

 emit("led", state) # (6)

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[100]

We see, on line (4), how to register a message or event handler using the Python decorator
notation. The parameter to each @socketio.on(<event_name>) is the name of an event
our server will listen for. The connect and disconnect events (in the following) are two
reserved events. These handlers are called whenever a client connects to or disconnects from
the server.

You will notice, on line (5), we are logging whenever a client connects, along with a unique
identifier for the client accessed via request.sid. Each client session with the server
receives a unique SID. When you visit http://localhost:5000, you will see this
connected message logged by the server. If you open two or more web browsers (or tabs) to
this URL, you will notice that each session receives a unique SID.

On line (6), we emit the current LED state back to the connecting client so it can initialize
itself as required:

@socketio.on('disconnect') # (7)
def handle_disconnect():
 """Called with a client disconnects from this server"""
 logger.info("Client {} disconnected.".format(request.sid))

Our disconnect handler on line (7) is simply logging the fact that a client disconnects. As
you browse away from http://localhost:5000, you will notice the server logging this
message, along with the disconnecting client's sid.

Next, we come across the event handler that controls our LED.

LED handler
On line (8) in the following, we have another message handler—this time using a custom
event named led. Also notice on line (9) that this event handler has a data parameter,
whereas the connect and disconnect handlers in the preceding section had no parameters.
The data parameter contains data sent from the client, and we see, on line (10), the level
child property of data. All data form clients are strings, so here we validate the data and
cast it to an integer on the following line. There is no equivalent built-in argument
validating and parsing utility with Flask-SocketIO, so we must perform validation checks
manually, as shown starting on line (11):

@socketio.on('led') # (8)
def handle_state(data): # (9)
 """Handle 'led' messages to control the LED."""
 global state
 logger.info("Update LED from client {}: {} "
 .format(request.sid, data))

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[101]

 if 'level' in data and data['level'].isdigit(): # (10)
 new_level = int(data['level'])

 # Range validation and bounding. # (11)
 if new_level < 0:
 new_level = 0
 elif new_level > 100:
 new_level = 100

In the following code block, on line (12), we set the LED's brightness. On line (13), we see
the server-side use of the emit() method. This method call emits a message to one or more
clients. The "led" parameter is the name of the event that will be consumed by a client.
We've called both the client-side and server-side events related to LED control the same
name, led. The state parameter is the data to pass to the client. Similar to the RESTful API
server, it's a Python dictionary object.

The broadcast=True parameter means that this led message will be emitted to all
connected clients, not just the client that originated the led message on the server. The
broadcasting of this event is why, when you opened multiple web pages and changed the
slider on one, the others also stayed in sync:

 led.value = new_level / 100 # (12)
 logger.info("LED brightness level is " + str(new_level))

 state['level'] = new_level

 # Broadcast new state to *every*
 # connected connected (so they remain in sync)
 emit("led", state, broadcast=True) # (13)

Our final task is to cover how to start our Web Socket server.

Starting the server
Finally, we start the server on line (14). This time, we are using the Flask-SocketIO
instance, socketio, rather than the core Flask app instance, as we did for the RESTful API
server:

if __name__ == '__main__':
 socketio.run(app, host="0.0.0.0", debug=True) # (14)

Well done! That's our Web Socket server complete.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[102]

We have now seen how we can build a Web Socket server using Python together with
Flask-SocketIO. While the overall outcome of our Web Socket server implementation
controls our LED similarly to our RESTful API server, what we have learned is a different
approach to achieving the same end result. However, in addition to this, we demonstrated
a feature provided by a Web Socket approach, which is how we can keep multiple web
pages in sync!

You will find links in the Further reading section to the Flask-SocketIO
documentation so you can further your knowledge even more.

Now that we have seen the Python server implementation of a Web Socket server,
we'll next turn our attention to the Web Socket version of the web page.

Adding a Web Socket client web page
In this section, we will review the HTML web page we used to control our LED from our
Web Socket server. An example of this page as seen in Figure 3.2.

We will learn how to use the Socket.IO JavaScript library with our web page so we can send
and receive messages (when we work in a Web Socket environment, we tend to refer to data
as messages) to and from our Python Flask-SocketIO Web Socket server. Plus, as we explore
the JavaScript and Socket.IO-related code, we'll discover how our client-side JavaScript
code relates to our Python server-side code.

You will find the following web page's code in
the chapter03/templates/index_ws_client.html file. Please review the contents of
this file to get a broad overview of what it contains.

When you have reviewed our HTML file, we will continue and discuss the important parts
of this file.

Understanding the client-side code
Now that you had a look through
the chapter03/templates/index_ws_client.html file, it's time to discuss how this file
is constructed and what it does. We will start our code walk-through with the additional
JavaScript import we need for Web Socket support.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[103]

Imports
Our Web Socket client requires the Socket.IO JavaScript library, and we see this imported
on line (1). You will find a link to the Socket.IO JavaScript library in the Further reading
section if you want to learn more about this library and how it works:

<!-- chapter03/templates/index_ws_client.html -->
<!DOCTYPE html>
<html>
<head>
 <title>Flask Web Socket Example</title>
 <script src="/static/jquery.min.js"></script>
 <script src="/static/socket.io.js"></script> <!-- (1) -->
 <script type="text/javascript">

Following the imports, we will see next the JavaScript that integrates with our Python Web
Socket server.

Socket.IO connect and disconnect handlers
In the <script> section of the file, on line (2), we create an instance of the io() class from
the socket.io JavaScript library and assign it to the socket variable:

 var socket = io(); // (2)

 socket.on('connect', function() { // (3)
 console.log("Connected to Server");
 $("#connected").html("Yes");
 });

 socket.on('disconnect', function() { // (4)
 console.log("Disconnected from the Server");
 $("#connected").html("No");
 });

On line (3), with socket.on('connect', ...), we register a connect event listener. This
handler is called every time our web page client connects successfully to our Python server.
This is the client-side equivalent of the Python server's on connect handler we defined
with @socketio.on('connect').

On line (4), we see the disconnect handler that is called every time the client web page
loses its connection to the server. This is the client-side equivalent of the Python server-
side @socketio.on('disconnect') handler.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[104]

Notice, in both handlers, we update our web page to indicate whether it has a connection
back to the server. We saw this in operation previously when we terminated and restarted
the server.

Next, we have a handler related to our LED.

The on LED handler
On line (5), we have our led message handler, which is responsible for updating the HTML
controls with the current brightness level of our LED:

socket.on('led', function(dataFromServer) { // (5)
 console.log(dataFromServer)
 if (dataFromServer.level !== undefined) {
$("input[type=range].brightnessLevel").val(dataFromServer.level);
 $("#brightnessLevel").html(dataFromServer.level);
 }
});

If you review the Python server's @socketio.on('connect') handler, you will notice it
contains the line emit("led", state). When a new client connects to the server, it emits
back to the connecting client a message containing the current state of our LED. It's the
JavaScript socket.on('led', ...) part on line (5) that consumes this message.

Next, we have the jQuery document ready callback.

The document ready function
The jQuery document ready callback is where we set up the event handler for the HTML
slider:

 $(document).ready(function(){
 // Event listener for Slider value changes.
 $("input[type=range].brightnessLevel")
 .on('input', function(){
 level = $(this).val();
 payload = {"level": level};
 socket.emit('led', payload); // (6)
 });
 });
 </script>
</head>

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[105]

On line (6), we see how to emit a message in JavaScript. The call to socket.emit('led',
payload) emits a message to the Python server with the brightness level we want to apply
to our LED.

It's the Python @socketio.on('led') handler that receives this message and changes the
LED's brightness.

If you review this Python handler, you will notice the line: emit("led", state,
broadcast=True). This line broadcasts a message with the new LED state to all connected
clients. Each client's socket.on('led', ...) handler will consume this message and
synchronize their sliders accordingly.

Finally, we have the HTML that makes up our web page.

The web page HTML
The only difference to the RESTful API web page is the inclusion on line (7) of a message to
indicate whether we have a connection to the Python server:

<body>
 <h1>Flask Web Socket Example</h1>
 LED is connected to GPIO {{pin}}

 Connected to server: No <!-- (7) -->

 Brightness :

 <input type="range" min="0" max="100"
 value="0" class="brightnessLevel">
</body>
</html>

Congratulations! That's two Python servers and web page clients using two different
transport layers you have just completed.

We have seen how to implement the same project to control an LED's brightness using both
a RESTful API-based approach and a Web Sockets-based approach. These are two very
common options for implementing web services and integrating a web page (or any client
for that matter) to a backend server, so an understanding and appreciation of both
techniques are useful so you can choose the most suitable technique for your own
applications or for those times when you are trying to understand how an existing
application is implemented.

Let's recap what we have covered by comparing the approaches and learning a little more
about which problem domains each approach is best suited for.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[106]

Comparing the RESTful API and Web Socket
servers
A RESTful-based API is conceptually similar to design, develop, and test, and are more
commonly found across the internet where a one-way request/response data exchange is
needed.

Here are some defining characteristics of this approach:

The communication protocol is built around HTTP methods with GET, POST,
PUT, and DELETE being the most common.
The protocol is half-duplex in the form of request-response. The client makes a
request and the server responds. The server cannot initiate a request to a client.
We have options including curl on the command line and GUI tools such as
Postman to test and development RESTful APIs.
We can use a common web browser to test HTTP GET API endpoints
In Python, we can use the Flask-RESTful extension to help us to build a RESTful
API server. We model endpoints as Python classes that have class methods such
as .get() and .post() that match HTTP request methods.
For a web page client, we can use a library such as jQuery to make HTTP
requests to our Python server.

Web Sockets, on the other hand, are often found in chat applications and games where real-
time two-way data exchange is needed, often with many simultaneous clients.

Here are some defining characteristics of this approach:

The communication protocol is based on publishing and subscribing to
messages.
The protocol is full-duplex. Both the client and the server can initiate requests to
one another.
In Python, we can use the Flask-SocketIO extension to help us to create Web
Socket services. We create methods and designate them as a callback handler for
a message event.
For a web page client, we use the socket.io JavaScript library. Similar to
Python, we create common JavaScript functions and register them with
socket.io as callback handlers for message events.

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[107]

Is one approach better than the other? There is no single best or one-size-fits-all approach,
so choosing a networking approach for your IoT applications is largely going to depend on
what you are creating and how clients are going to connect to and use your application. If
you are new to building networked applications and web services in general, RESTful APIs
with Flask-RESTful is a great place to start while you learn the concepts and experiment.
This is a very common and widely used approach, plus if you use a tool such as Postman
(getpostman.com) as your API client while developing, then you'll have a powerful and fast
way to play with and test the APIs that you create.

Summary
In this chapter, we have covered in two common methods for building networked services
with Python—RESTful APIs and Web Socket services. We built these services in Python
using the Flask microservices framework and the Flask-RESTful and Flask-SocketIO
extensions. After we created each server, we also created web page clients. We learned how
to use the JavaScript jQuery library to make a RESTful API request and the Socket.IO
JavaScript library to perform Web Socket messaging and subscribing.

With this new knowledge, you now have the foundations and a simple end-to-end client-
server framework built using Python, HTML, JavaScript, and jQuery that you can expand
on and experiment with to create grander IoT applications. For example, as you proceed
through Part 3 of this book, IoT Playground, and learn about different electronic sensors and
actuators, you'll be in a position to expand and build upon this chapter's examples using
different electronic components. We'll also see another example of Flask-RESTful and
RESTful APIs when we reach Chapter 14, Tying It All Together – An IoT Christmas Tree,
where we introduce a web page that interacts with a LED lighting strip and servo.

In Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker, we will look
at a more advanced and very versatile approach to building the networking layer of IoT
applications, this time with MQTT, the Message Queue Telemetry Transport protocol.

http://getpostman.com

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[108]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

What feature of the Flask-RESTful extension can we use to help to validate a1.
client's input data?
What communication protocol can be used to provide real-time full-duplex2.
communication between a client and a server?
How do we perform request data validation with Flask-SocketIO?3.
What is the Flask templates folder?4.
When using jQuery, where should we create component event listeners and5.
initialize our web page content?
What command-line tool can be used to make requests to a RESTful API service?6.
What happens to the physical LED when we change the value property of a7.
PWMLED instance?

Further reading
We have mentioned the word "RESTful" a lot in this chapter, without any deep discussion
of what it means exactly. If you want all of the details, a great introductory tutorial can be
found on SitePoint.com:

REST on SitePoint.com: https:/​/​www.​sitepoint.​com/​developers-​rest-​api

Our RESTful API example barely even touches the basics of Flask and Flask-RESTful but
provides a working example that you can build upon. I encourage you to read at a
minimum the Flask Quick Start Guide, followed by the Flask RESTful Quick Start Guide to
get a good grounding and understanding of these two frameworks:

Flask Quick Start: https:/​/​flask.​palletsprojects.​com/​en/​1.​1.​x/​quickstart

Flask-RESTful Quick Start: https:/​/​flask-​restful.​readthedocs.​io/​en/
latest/​quickstart.​html

https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://www.sitepoint.com/developers-rest-api
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask.palletsprojects.com/en/1.1.x/quickstart/
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html
https://flask-restful.readthedocs.io/en/latest/quickstart.html

Networking with RESTful APIs and Web Sockets Using Flask Chapter 3

[109]

As mentioned during the chapter in the section titled Introducing the Flask microservices
framework, if you experience difficulties with Flask-RESTful and cannot find answers in its
documentation, you should also consult the official core Flask documentation:

Flask documentation: https:/​/​flask.​palletsprojects.​com

We have also only scratched the surface of Web Sockets with Flask-SocketIO and Socket.IO.
The following links point to the official Flask-SocketIO and Socket.IO libraries. I've also
included two additional links that provide a generalized and simple introduction to Web
Sockets. As a reminder, Web Sockets are a technology that is best learned through doing
rather than reading, especially if you are new to server development. So, as you read
introductory material on Web Sockets, expect core underlying concepts to be illustrated
with a wide range of different code examples and libraries in addition to the Flask-SocketIO
and Socket.IO libraries we used in this chapter:

Flask-SocketIO: https:/​/​flask-​socketio.​readthedocs.​io

Socket.IO (JavaScript library): https:/​/​socket.​io

Web Socket basics: https:/​/​www.​html5rocks.​com/​en/​tutorials/​websockets/
basics

Web Socket basics: https:/​/​medium.​com/​@dominik.​t/​what-​are-​web-​sockets-
what-​about-​rest-​apis-​b9c15fd72aac

https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://www.html5rocks.com/en/tutorials/websockets/basics
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac
https://medium.com/@dominik.t/what-are-web-sockets-what-about-rest-apis-b9c15fd72aac

4
Networking with MQTT, Python,

and the Mosquitto MQTT
Broker

In the previous chapter, we created two Python servers and accompanying web pages
using both a RESTful API and Web Socket approach to networking. In this chapter, we will
cover another networking topology that is common in the IoT world, known as
MQTT or Message Queue Telemetry Transport.

We will commence by setting up your development environment and installing the
Mosquitto MQTT broker service on your Raspberry Pi. Then, we will learn about MQTT
features using command-line tools that come with Mosquitto to help you to understand the
core concepts in isolation. After that, we'll proceed to a Python IoT application that uses
MQTT for its messaging layer—and yes, it'll be all about controlling the LED!

We will cover the following topics in this chapter:

Installing the Mosquitto MQTT broker
Learning MQTT by example
Introducing the Python Paho-MQTT client library
Controlling an LED with Python and MQTT
Building a web-based MQTT client

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[111]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

You will find this chapter's source code in the chapter04 folder in the GitHub repository
available at the following URL: https:/​/​github.​com/​PacktPublishing/​Practical-
Python-​Programming-​for-​IoT

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter04 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https:/​/​pypi.​org/​project/​gpiozero)
PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
Paho-MQTT Client: The Paho-MQTT client library (https:/​/​pypi.​org/
project/​paho-​mqtt)

We will be working with the breadboard circuit we created in Chapter 2, Getting Started
with Python and IoT, Figure 2.7.

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[112]

Installing the Mosquitto MQTT broker
MQTT, or Message Queue Telemetry Transport, is a lightweight and simple messaging
protocol targeted specifically for IoT applications. While a Raspberry Pi is powerful enough
to leverage more complex messaging protocols, if you are using it as part of a distributed
IoT solution, chances are you are going to encounter MQTT; hence, learning it is very
important. Besides, its simplicity and open nature make it easy to learn and use.

Our introduction to MQTT is going to be performed using a popular open source
MQTT broker called Mosquitto that we will install on your Raspberry Pi.

The examples we cover in this chapter were performed with the
Mosquitto broker and client version 1.5.7, which are MQTT protocol
version 3.1.1-complaint. A different version of the broker or client tools
will be suitable as long as they are MQTT protocol version 3.1.x-
compatible.

To install the Mosquitto MQTT broker service and client tools, follow these steps:

Open a new Terminal window and execute the following apt-get command.1.
This must be performed using sudo:

$ sudo apt-get --yes install mosquitto mosquitto-clients
... truncated ...

To ensure that the Mosquitto MQTT broker service has started, run the following2.
command in the Terminal:

$ sudo systemctl start mosquitto

Check that the Mosquitto service has started with the following service3.
command. We expect to see the active (running) text printed to the Terminal:

$ systemctl status mosquitto
... truncated ...
 Active: active (running)
... truncated ...

We can check the Mosquitto and MQTT protocol version with the mosquitto -4.
h command. Here, we see that the Mosquitto broker is using MQTT version 3.1.1:

$ mosquitto -h
mosquitto version 1.5.7
mosquitto is an MQTT v3.1.1 broker.
... truncated ...

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[113]

Next, we will configure Mosquitto so that it can serve web pages and handle5.
Web Socket requests. We will use these features when we come to build a web
page client later in this chapter.

In the chapter4 folder, there is a file named mosquitto_pyiot.conf, which is
partially replicated here. There is one line in this file that we need to check:

File: chapter04/mosquitto_pyiot.conf

... truncated...

http_dir /home/pi/pyiot/chapter04/mosquitto_www

For the exercises in this chapter, you need to update the http_dir setting on the
last line so it's the absolute path to the chapter04/mosquitto_www folder on
your Raspberry Pi. If you used the suggested folder, /home/pi/pyiot, when
cloning the GitHub repository in Chapter 1, Setting Up Your Development
Environment, then the path listed previously is correct.

Next, we copy the configuration in mosquitto_pyiot.conf using the6.
following cp command into the appropriate folder so that it can be loaded by
Mosquitto:

$ sudo cp mosquitto_pyiot.conf /etc/mosquitto/conf.d/

Now we restart the Mosquitto service to load our configuration:7.

$ sudo systemctl restart mosquitto

To check that the configuration has worked, visit the8.
http://localhost:8083 URL in a web browser on your Raspberry Pi, and you
should see a page similar to the following screenshot:

Figure 4.1 – Web page served by the Mosquitto MQTT broker

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[114]

This is a giveaway to what we'll be doing later in this chapter! At the moment, while you
can move the slider, it will not change the LED's brightness because we do not have the
Python-side code running. We'll cover that in due course later in this chapter.

If you experience problems getting the Mosquitto MQTT Broker to start, try the following:

Execute sudo mosquitto -v -c /etc/mosquitto/mosquitto.conf in a
Terminal. This will start Mosquitto in the foreground and any start up or
configurations errors will be shown on your Terminal.
Read the troubleshooting comments in the mosquitto_pyiot.conf file for
additional suggestions.

The default configuration of Mosquitto after installation creates
an unencrypted and unauthenticated MQTT broker service. The Mosquitto
documentation contains details regarding its configuration and how to
enable authentication and encryption. You will find links in the Further
reading section at the end of this chapter.

Now that we have Mosquitto installed and running, we can explore MQTT concepts and
perform examples to see them in practice.

Learning MQTT by example
MQTT is a broker-based publishing and subscription messaging protocol (frequently
paraphrased as pub/sub), while an MQTT broker (just like the Mosquitto MQTT broker we
installed in the previous section) is a server that implements the MQTT protocol. By using
an MQTT-based architecture, your applications can essentially hand off all complex
messaging handling and routing logic to the broker so they can remain solution-focused.

MQTT clients (for example, your Python programs and the command-line tools we are
about to use) create a subscription with the broker and subscribe to message topics they are
interested in. Clients publish messages to a topic, and it is the broker that is then responsible
for all message routing and delivery assurances. Any client may assume the role of a
subscriber, a publisher, or both.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[115]

A simple conceptual MQTT-based system involving a pump, water tank, and controller
application is illustrated in Figure 4.2:

Figure 4.2 – MQTT example

Here is a high-level description of system components:

Think of the Water Level Sensor MQTT client as the software connected to a water
level sensor in a water tank. This client assumes the role of a publisher in our
MQTT example. It periodically sends (that is, publishes) messages about how full
the water tank is to the MQTT broker.
Think of the Pump MQTT client as a software driver that is capable of switching a
water pump on or off. This client assumes both the role of a publisher and
subscriber in our example:

As a subscriber, it can receive a message (via a subscription)
instructing it to switch the pump on or off.
As a publisher, it can send a message indicating whether the pump
is on and pumping water or off.

Think of the Controller MQTT client as the application where all of the control
logic resides. This client also assumes both the roles of a publisher and subscriber:

As a publisher, this client can send a message that will tell the pump
to switch on or off.
As a subscriber, this client can receive messages from both the water
tank level sensor and the pump.

By way of example, the Controller MQTT client application could be configured to switch on
the pump when the water level in the tank falls below 50% and switch off the pump when
the level reaches 100%. This controller application may also include a dashboard user
interface that displays the current water level in the tank and a status light indicating
whether the pump is on or off.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[116]

An important point to note regarding our MQTT system is that each client is unaware of
the other clients—a client only ever connects to and interacts with the MQTT broker, which
then routes messages as appropriate to clients. This routing is achieved using message
topics, which we will cover later in the section entitled Exploring MQTT topics and wildcards.

It's understandable why the pump would need to receive a message to tell it to turn on or
off, but what about the pump's need to also send a message stating whether it is on or off?
If you wondered about this, here is the reason. MQTT messages are send-and-forget,
meaning that a client does not get an application-level response to a message that it
publishes. So, in our example, while the controller client can publish a message asking the
pump to turn on, without the pump publishing its status, the controller has no way of
knowing whether the pump actually turned on.

In practice, the pump would publish its on/off status every time it turns on or off. This
would allow the controller's dashboard to update the pump's status indicator in a timely
manner. Furthermore, the pump would also periodically publish its status (just like the
water level sensor) independent of any requests it receives to turn on or off. This way, the
controller application can monitor the connection and availability of the pump and detect
whether the pump goes offline.

For now, if you can grasp the basic ideas presented in the preceding example, then you are
well on your way to understanding at a deeper level the core MQTT concepts that will be
our focus for the remainder of this chapter. By the time we finish, you will have a
fundamental end-to-end understanding of how to work with and design MQTT-based
applications.

We will start by learning how to publish and subscribe to messages.

Publishing and subscribing MQTT messages
Let's work through the steps to send (that is, publish) and receive (that is, subscribe to)
messages using MQTT:

In a Terminal, run the following command. mosquitto_sub (Mosquitto1.
subscribe) is a command-line tool to subscribe to messages:

Terminal #1 (Subscriber)
$ mosquitto_sub -v -h localhost -t 'pyiot'

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[117]

The options are as follows:

-v (--verbose): verbose is so we get both the message topic and
message payload printed on the Terminal.
-h (--host): localhost is the host of the broker we want to connect
to; here it's the one we just installed. The default port used is 1883.
-t (--topic): pyiot is the topic we want to subscribe to and listen
to.

In this chapter, we will require two and sometimes three Terminal
sessions for the examples. The first line of a code block will indicate which
Terminal you need to run a command in; for example, Terminal #1 in the
preceding code block, and Terminal #2 in the following code block.

Open a second Terminal and run the following2.
command. mosquitto_pub (Mosquitto publish) is a command-line tool to
publish messages:

Terminal #2 (Publisher)
$ mosquitto_pub -h localhost -t 'pyiot' -m 'hello!'

Let's look at the options:

-h and -t have the same meaning as in the preceding subscription
command.
-m 'hello!' (--message) is the message we want to publish.
Messages in MQTT are simple strings— if you're wondering about
JSON, it just needs to be serialized/deserialized to strings.

On Terminal #1, we see the topic and message, hello!, printed:3.

Terminal #1 (Subscriber)
$ mosquitto_sub -v -h localhost -t 'pyiot'
pyiot hello!

The final line is in the format <topic> <message payload>.

The hello! message is preceded by the topic name, pyiot, because we
have used the -v option to mosquitto_sub. Without the -v option, if we
were subscribing to multiple topics, we could not identify which topic a
message belonged to.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[118]

Now, we've learned how to publish and subscribe to messages with a simple topic. But is
there any way we can organize these messages in a better way? Read on.

Exploring MQTT topics and wildcards
MQTT topics are used to categorize, or group, messages together in a hierarchical format.
We have already been working with topics in our proceeding command-line examples, but
in a non-hierarchical fashion. Wildcards, on the other hand, are special characters used by a
subscriber to create flexible topic matching patterns.

Here are a few hierarchical topic examples from a hypothetical building with sensors. The
hierarchy is delimited by the / character:

level1/lounge/temperature/sensor1

level1/lounge/temperature/sensor2

level1/lounge/lighting/sensor1

level2/bedroom1/temperature/sensor1

level2/bedroom1/lighting/sensor1

There is no need to pre-create a topic on an MQTT broker. Using the default broker
configuration (which we are), you just publish and subscribe to topics at will.

When the Mosquitto broker is configured to use authentication, there is
the possibility to restrict access to topics based on a client ID and/or
username and password.

Messages must be published to a specific topic such as pyiot, while subscriptions can be
made to a specific topic, or a range of topics, by using the wildcard characters, + and #:

+ is used to match a single element of the hierarchy.
is used to match all remaining elements in a hierarchy (it can only be at the
end of a topic query).

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[119]

Subscriptions to topics and wildcards are best explained by example. Using the
aforementioned hypothetical building with sensors, consider the examples in the following
table:

We want to
subscribe to... Wildcard topic Topic matches

All temperature
sensors everywhere

+/+/temperature/+

•

level1/lounge/temperature/sensor1
•

level1/lounge/temperature/sensor2
•

level2/bedroom1/temperature/sensor1

All light sensors
everywhere

+/+/lighting/+

•

level1/lounge/lighting/sensor1
•

level2/bedroom1/lighting/sensor1

Every sensor on
level 2

level2/+/+/+

•

level2/bedroom1/temperature/sensor1
•

level2/bedroom1/lighting/sensor1

Every sensor on
level 2
(a simpler way
where # matches
every remaining
child)

level2/#

•

level2/bedroom1/temperature/sensor1
•

level2/bedroom1/lighting/sensor1

Only
sensor1 everywhere

+/+/+/sensor1

•

level1/lounge/temperature/sensor1
•

level1/lounge/lighting/sensor1
•

level2/bedroom1/temperature/sensor1
•

level2/bedroom1/lighting/sensor1

Only
sensor1 everywhere
(a simpler way
where # matches
every remaining
child)

#/sensor1
Invalid because # can only be at the end of the
topic query

Every topic # Matches everything

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[120]

We want to
subscribe to... Wildcard topic Topic matches

Broker information $SYS/#

This is a special reserved topic where the
broker publishes information and runtime
statistics.

Table 1 - MQTT wildcard topic examples

What may be evident from the preceding examples is that you need to take care when
designing topic hierarchies for an application so that subscribing to multiple topics using
wildcards is consistent, logical, and easy.

If you are subscribing using the + or # wildcards with mosquitto_sub,
remember to use the -v (--verbose) option so that the topic name is
printed in the output, for example, mosquitto_sub -h localhost -v
-t '#'.

Try a few examples for yourself on the command line by mixing and matching the
preceding topics and wildcards to get a feel for how topics and wildcards work. Following
are the steps for one example where mosquitto_sub subscribes to all childtopics that have
the parent temperature two levels down from the root topic:

In a Terminal, start a subscriber that subscribes to a wildcard topic:1.

Terminal #1 (Subscriber)
mosquitto_sub -h localhost -v -t '+/+/temperature/+'

Using the topics from Table 1 – MQTT wildcard topic examples, here are two2.
mosquitto_pub commands that will publish messages that will be received by
the mosquitto_sub command in Terminal #1:

Terminal #2 (Publisher)
$ mosquitto_pub -h localhost -t 'level1/lounge/temperature/sensor1'
-m '20'
$ mosquitto_pub -h localhost -t
'level2/bedroom1/temperature/sensor1' -m '22'

We have just seen how to subscribe to topic hierarchies using the wildcard characters, +
and *. Using topics and wildcards together is a design decision you'll need to make on a
per-project level based on how your data needs to flow and how you envision it will be
both published and subscribed by client applications. Time invested in designing a
congruent yet flexible wildcard-based topic hierarchy will go a long way to helping you to
build simpler and reusable client code and applications.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[121]

Next, we will learn all about message Quality of Service and how this impacts the messages
you send through an MQTT Broker.

Applying Quality of Service to messages
MQTT provides three Quality of Service (QoS) levels for individual message delivery—I am
emphasizing individual message delivery because QoS levels apply to the delivery of
individual messages and not to a topic. This will become clearer as you work through the
examples.

While you, as the developer, stipulate the QoS for your messages, it's the broker that is
responsible for ensuring that the message delivery adheres to the QoS. Here is the QoS you
can apply to a message and what they mean for delivery:

QoS level Meaning Number of messages delivered

Level 0 The message will be delivered at most once, but maybe
not at all. 0 or 1

Level 1 The message will be delivered at least once, but
perhaps more. 1 or more

Level 2 The message will be delivered exactly once. 1

Table 2 – Message QoS levels

You might be asking the question: Level 0 and 1 seem a bit random, so why not just always
use Level 2? The answer is resources. Let's see why...

The broker and clients will consume more resources to process higher-level QoS messages
than lower-level QoS messages—for example, the broker will need more time and memory
to store and process messages, while both the broker and clients consume more time and
network bandwidth with acknowledgment confirmations and connection handshaking.

For many use cases, including the examples that follow in this chapter, we will not notice a
difference between QoS levels 1 and 2, nor will we be able to practically demonstrate them
(Level 0 gets omitted for a good reason, which we'll see later on when we cover message
retention and durable connections). However, set your mind to a distributed IoT system
with thousands of sensors publishing thousands or more messages every minute, and now
designing around QoS starts to make a little more sense.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[122]

QoS levels apply to both message subscriptions and message publishing, which may seem
odd when you first think it through. For example, a client may publish a message with a
QoS of 1 to a topic, while another client may subscribe to that topic with a QoS of 2 (I know
I said QoS relates to messages, not topics, but here it's the messages flowing through the
topic that the QoS relates to). What QoS is this message, 1 or 2? For the subscriber, it's
1—let's find out why.

It's the subscribing client that chooses the highest QoS of messages it wants to receive—but it
may get lower. So, effectively, this means the delivery QoS received by a client is
downgraded to the lowest QoS of the publication or subscription.

Here are a few examples for you to ponder:

Publisher
sends message

Subscriber
subscribing at What subscriber gets

QoS 2 QoS 0 Delivery of message adhering to a QoS 0 (subscriber gets
the message 0 or 1 time)

QoS 2 QoS 2 Delivery of message adhering to a QoS 2 (subscriber gets
the message exactly once)

QoS 0 QoS 1 Delivery of message adhering to QoS 0 (subscriber gets
the message 0 or 1 time)

QoS 1 QoS 2 Delivery of message adhering to QoS 1 (subscriber gets
the message 1 or more times)

QoS 2 QoS 1 Delivery of message adhering to QoS 1 (subscriber gets
the message 1 or more times)

Table 3 – Publisher and subscriber QoS examples

The takeaway from these examples is that, in practice, when designing or integrating IoT
solutions, you need to be aware of the QoS used by both publishers and subscribers on
either side of a topic—QoS cannot be interpreted on either side in isolation.

Following are the steps to play out QoS scenarios and see client-broker interactions in real
time:

In a Terminal, run the following command to start a subscriber:1.

Terminal 1 (Subscriber)
$ mosquitto_sub -d -v -q 2 -h localhost -t 'pyiot'

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[123]

In a second Terminal, run the following command to publish a message:2.

Terminal 2 (Publisher)
$ mosquitto_pub -d -q 1 -h localhost -t 'pyiot' -m 'hello!'

Here, we are again subscribing on Terminal #1, and publishing on Terminal #2.
Here are the new options used with both mosquitto_sub and mosquitto_pub:

-d: Turn on debugging messages
-q <level>: QoS level

With debugging enabled (-d), try changing the -q parameter (to 0, 1, or 2) on
either side and publishing new messages.

Observe the logged messages in Terminal #1 and Terminal #2.3.

Among the debugging messages that will appear in Terminal #1 and Terminal
#2, you will obverse the QoS downgrade occurring at the subscription side (look
for q0, q1, or q2) while, on both sides, you will also notice different debug
messages depending on the QoS specified as the client and broker perform
handshaking and exchange acknowledgments:

Terminal 1 (Subscriber)
$ mosquitto_sub -d -v -q 2 -h localhost -t 'pyiot' # (1)
Client mosqsub|25112-rpi4 sending CONNECT
Client mosqsub|25112-rpi4 received CONNACK (0)
Client mosqsub|25112-rpi4 sending SUBSCRIBE (Mid: 1, Topic: pyiot,
QoS: 2) # (2)
Client mosqsub|25112-rpi4 received SUBACK
Subscribed (mid: 1): 2
Client mosqsub|25112-rpi4 received PUBLISH (d0, q1, r0, m1,
'pyiot', ... (6 bytes)) # (3)
Client mosqsub|25112-rpi4 sending PUBACK (Mid: 1)
pyiot hello!

Following is the debug output for the subscriber on Terminal #1. Notice the
following:

At line (1), we subscribed using QoS 2 (-q 2). This is reflected in
the debug output, QoS: 2, on line (2).
On line (3), we see the QoS downgrade. The message received is
QoS 1 (q1), which is the QoS that the message was published in
Terminal #1.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[124]

QoS is one of the more complex MQTT concepts to grasp. You will find links in the Further
reading section if you want to go deeper into QoS levels and the lower level
communications that take place between publishers, subscribers, and the broker.

Now that we have covered message QoS levels, we will next learn about two MQTT
features that ensure offline clients can receive past messages when they come back online.
We will also see how QoS levels impact these features.

Retaining messages for later delivery
An MQTT broker can be instructed to retain messages published to a topic. Message
retention comes in two flavors, known as retained messages and durable connections:

A retained message is where the broker retains the last message published on a
topic. This is also commonly referred to as the last known good message, and any
client subscribing to a topic automatically gets this message.
Durable connections are also about retaining messages but in a different context.
If a client tells the broker it wants a durable connection, then the broker retains QoS
1 and 2 messages for that client while it's offline.

Unless configured specifically, Mosquitto does not retain messages or
connections across server restarts. To persist this information across a
restart, a Mosquitto configuration file must contain the
entry persistence true. A default installation of Mosquitto on a
Raspberry Pi should include this entry, however, to be sure it has also
been included in mosquitto_pyiot.conf that we installed earlier.
Please consult the official Mosquitto documentation for more information
and configuration parameters regarding persistence. You will find a link
in the Further reading section at the end of the chapter.

Next, we will learn about retained messages and cover durable connections in the
subsequent section.

Publishing a retained message
A publisher can ask the broker to retain a message as the last known good message for a
topic. Any newly connecting subscriber will immediately receive this last retained message.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[125]

Let's step through an example to demonstrate retained messages:

Run the following, noting that we're starting with Terminal #2, the publisher in1.
this example:

Terminal 2 (Publisher)
$ mosquitto_pub -r -q 2 -h localhost -t 'pyiot' -m 'hello, I have
been retained!'

A new option has been added,-r (--retain), to tell the broker that this message
should be retained for the topic.

Only a single retained message can exist for a topic. If you publish another
message using the -r option, the previous retained message will be
replaced.

Start a subscriber in another Terminal, and immediately you will receive the2.
retained message:

Terminal 1 (Subscriber)
$ mosquitto_sub -v -q 2 -h localhost -t 'pyiot'
pyiot hello, I have been retained!

Press Ctrl + C in Terminal #1 to terminate mosquitto_sub.3.
Start mosquitto_sub again using the same command from step 2, and you will4.
see the retained message received again in Terminal #1.

You can still publish normal messages (that is, not using the -r option),
however, it's the last retained message indicated by the use of the -
r option that newly connecting subscribers will receive.

Our final command shows how to clear a previously retained message:5.

Terminal 2 (Publisher)
$ mosquitto_pub -r -q 2 -h localhost -t 'pyiot' -m ''

Here, we are publishing (with -r) an empty message with -m ''. Note that we can use -
n as an alternative to -m '' to indicate an empty message. The effect of retaining an empty
message is to actually clear the retained message.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[126]

When you send an empty message to a topic to remove a retained
message, any clients currently subscribed to the topic (including offline
clients with durable connections—see the next section) will receive the
empty message, so your application code must test for and handle empty
messages appropriately.

Now that you understand and know how to use retained messages, we can now explore
the other type of message retention available with MQTT, called durable connections.

Creating durable connections
A client subscribing to a topic can ask the broker to retain, or queue, messages for it while
it's offline. This is known in MQTT terminology as a durable connection. For durable
connections and delivery to work, the subscribing client needs to be configured and
subscribe in a certain way, as follows:

The client must provide a unique client ID to the broker when it connects.
The client must subscribe with a QoS 1 or 2 (levels 1 and 2 guarantee delivery, but
level 0 does not).
The client is only guaranteed to get messages published with QoS 1 or 2.

The last two points concern an example where knowing QoS on both the publishing and
subscribing sides of a topic is very important for IoT application design.

MQTT brokers can—and the default configuration of Mosquitto on the
Raspberry Pi does—retain messages for durable connections between
broker restarts.

Let's step through an example:

Start a subscriber, and then immediately terminate it with Ctrl + C so that it is1.
offline:

Terminal #1 (Subscriber)
$ mosquitto_sub -q 1 -h localhost -t 'pyiot' -c -i myClientId123
$ # MAKE SURE YOU PRESS CONTROL+C TO TERMINATE mosquitto_sub

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[127]

The new options used are as follows:

-i <client id> (–id <client id>) is a unique client ID (this is how
the broker identifies the client).
-c (--disable-clean-session) instructs the broker to keep any QoS 1
and 2 messages that arrive at subscribed topics even while the
client is disconnected (that is, retain the messages).

It's worded a bit backward, but by starting the subscriber with the -c option,
we've asked the broker to create a durable connection for our client by not clearing
out any stored messages on connecting.

If you subscribe to a range of topics using wildcards (for example,
pyiot/#) and request a durable connection, then all messages for all
topics in the wildcard hierarchy will be retained for your client.

Publish a few messages (while the subscriber in Terminal #1 is still offline):2.

Terminal #2 (Publisher)
$ mosquitto_pub -q 2 -h localhost -t 'pyiot' -m 'hello 1'
$ mosquitto_pub -q 2 -h localhost -t 'pyiot' -m 'hello 2'
$ mosquitto_pub -q 2 -h localhost -t 'pyiot' -m 'hello 3

Bring the subscriber in Terminal #1 back online, and we will see that the3.
messages published in step 2 are delivered:

Terminal 1 (Subscriber)
$ mosquitto_sub -v -q 1 -h localhost -t 'pyiot' -c -i myClientId123
pyiot hello 1
pyiot hello 2
pyiot hello 3

Try steps 1 to 3 again, only this time omit the -c option from the subscriber in steps 1 and 3
and you will notice that no messages are retained. Also, when you connect without the -c
flag when there are retained messages waiting to be delivered, then all retained messages
are purged (and is how you would clear retained messages for a client if you wanted to).

If you are using both retained messages (that is, last known good message)
and durable connections together on a single topic and reconnect an offline
subscriber, you will receive the retained message twice—one is the retained
message, while the second is from the durable connection.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[128]

When building solutions around MQTT, your knowledge of retained messages and durable
connections will be key to designing systems that are resilient and reliable, particularly
where you need to handle offline clients. Retained (last known good) messages are ideal for
initializing a client when they come back online, while durable connections will help you to
retain and deliver messages in bulk for any offline client that must be able to consume
every message for topics that it subscribes to.

Well done! We have covered a lot and you actually now know most of the core MQTT
features you will use when building an MQTT-based IoT solution. Our last feature to learn
about is known as a Will.

Saying goodbye with a Will
Our final MQTT feature for exploration is known as a Will. A client (publisher or
subscriber) can register a special Will message with the broker so that if the client dies and
disconnects from the broker abruptly (for example, it loses its network connection or its
batteries go flat), the broker on the clients' behalf will send out the Will message notifying
subscribers of the device's demise.

Wills are just a message and topic combination similar to what we have been using
previously.

Let's see Wills in action, and for this, we're going to need three Terminals:

Open a Terminal and start a subscriber with the following command:1.

Terminal #1 (Subscriber with Will)
$ mosquitto_sub -h localhost -t 'pyiot' --will-topic 'pyiot' --
will-payload 'Good Bye' --will-qos 2 --will-retain

The new options are as follows:

--will-payload: This is the Will message.
--will-topic: This is the topic the Will message will be
published on. Here we are using the same topic that we are
subscribing to, but it could be a different topic.
--will-qos: This is the QoS for the Will message.
--will-retain: If this option is present, then if the client
disconnects abruptly, the Will message will be retained by the
broker as the retained (last known good) message for the Will topic.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[129]

Start a subscriber in a second Terminal with the following command:2.

Terminal #2 (Subscriber listening to Will topic).
$ mosquitto_sub -h localhost -t 'pyiot'

And in a third Terminal, publish a message using the following command:3.

Terminal #3 (Publisher)
$ mosquitto_pub -h localhost -t 'pyiot' -m 'hello'

Once you execute the mosquitto_pub command in step 3 on Terminal #3, you4.
should see hello printed on both the subscribers in Terminals #1 and #2.
In Terminal #1, press Ctrl + C to terminate the subscriber that registered the Will5.
with the broker. Ctrl + C is seen as a non-graceful or abrupt disconnection from
the broker.
In Terminal #2, we will see the Will's Good Bye message:6.

Terminal #2 (Subscriber listening to Will topic).
$ mosquitto_sub -h localhost -t 'pyiot'
'Good Bye'

Okay, what about a graceful disconnection where the subscriber properly closes
its connection with the broker? We can demonstrate this using the -C option
with mosquitto_sub.

Restart the subscriber in Terminal #1 with the following command:7.

Terminal #1 (Subscriber with Will)
$ mosquitto_sub -h localhost -t 'pyiot' --will-topic 'pyiot' --
will-payload 'Good Bye, Again' --will-qos 2 --will-retain -C 2

The new -C <count> option tells mosquitto_sub to disconnect (gracefully) and
exit after it has received the specified number of messages.

You will notice the Good Bye message printed immediately. This is because we
specified the --retain-will option previously in Terminal #1. This option
made the Will message become the retained or last known good message for the
topic, so newly connecting clients will receive this message.

In Terminal #3, publish a new message, and the subscriber in Terminal #1 will8.
exit. Notice in Terminal #3 that the Will message, Good Bye, Again,
is not received. This is because our Terminal #1 subscriber disconnected gracefully
from the broker because of the -C option—and in case you are wondering
about 2 in -C 2, the retained Will message counted as the first message.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[130]

Well done! If you have worked your way through each of the preceding MQTT examples,
then you have covered the core concepts and use of MQTT and the Mosquitto broker. Do
remember that all of these principles will apply to any MQTT broker or client since MQTT
is an open standard.

So far, we've learned about message subscriptions and publication, how we
segregate messages using topics, and how features including QoS, message retention,
durable connections, and Wills can be leveraged to control how messages are managed and
delivered. This knowledge alone provides you with the foundations to build complex and
resilient distributed IoT systems using MQTT.

I'll leave you with one final tip (which caught me out a few times when I started with
MQTT).

If your live, retained, or queued durable connection messages seem to be
vanishing into a black hole, then check the QoS levels on both your
subscribing and publishing clients. To monitor all messages, start a
command-line subscriber with QoS 2, listening to the # topic, with both
verbose and debug options enabled, for example, mosquitto_sub -q 2
-v -d -h localhost -t '#'.

We have now completed all of our examples from the MQTT-by-example section and
learned how to interact with an MQTT broker from the command line. Next, I want to
briefly make mention of public broker services. Following this, we'll get into code and see
how we can leverage MQTT with Python.

Using MQTT broker services
There are several MQTT broker service providers on the internet that you can use to create
MQTT-based messaging applications if you do not want to host your own MQTT broker.
Many also offer free public MQTT brokers that you can use for testing and quick proofs-of-
concept—but remember they are free and public, so do not publish any sensitive
information!

If you experience frustration, disconnections, or unexpected behavior with a free public
broker service, then test and verify your application with a local broker. You cannot reliably
know or verify the traffic congestion, topic usage, or configuration details of an open public
broker and how that may be impacting your application.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[131]

Here are a few free public brokers you can try. Just replace the -h localhost option in the
preceding examples with the address of the broker. Visit the following pages for more
information and instructions:

https:/​/​test.​mosquitto.​org

http:/​/​broker.​mqtt-​dashboard.​com

https:/​/​ot.​eclipse.​org/​getting-​started

In the following sections, we will move a level higher. Finally, we're up to the Python bit of
MQTT! Rest assured that everything we just covered will be invaluable when you develop
IoT applications that use MQTT because the command-line tools and examples we covered
will become an important part of your MQTT development and debugging toolkit. We will
be applying the core MQTT concepts we have learned already, only this time using Python
and the Paho-MQTT client library.

Introducing the Python Paho-MQTT client
library
Before we get into Python code, we first need an MQTT client library for Python. At the
start of this chapter in the Technical requirements section, we installed the Paho-MQTT client
library, which was part of requirements.txt.

If you are new to MQTT and have not read the preceding section, Learning
MQTT by example, I recommend stopping now and reading it first so you
gain an understanding of MQTT concepts and terminology that will be
used in the Python examples that follow.

The Paho-MQTT client library comes from the Eclipse Foundation, which also maintains
the Mosquitto MQTT broker. In the Further reading section, you will find a link to the
official Paho-MQTT Client Library API documentation. After completing this chapter, if you
wish to deepen your understanding of this library and its capabilities, I recommend
reading through the official documentation and the examples found therein.

The Python Paho-MQTT library has three core modules:

Client: This gives you full life cycle management of MQTT in your Python
application.
Publisher: This is a helper module for message publishing.
Subscriber: This is a helper module for message subscribing.

https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
https://test.mosquitto.org/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
http://broker.mqtt-dashboard.com/
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes
https://iot.eclipse.org/getting-started/#sandboxes

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[132]

The client module is ideal if you are creating more complex and long-running IoT
applications, whereas the publisher and subscriber helper modules are convenient for
short-lived applications and situations where full life cycle management is not warranted.

The following Python examples will connect to your local Mosquitto
MQTT broker that we installed in the Installing the Mosquitto MQTT broker
section previously.

We will be using the Paho client module so we can create a more complete MQTT example.
However, once you can follow and understand the client module, creating alternatives
using the helper modules will be a piece of cake.

As a reminder, we will be working with the breadboard circuit we created
in Chapter 2, Getting Started with Python and IoT, Figure 2.7.

Now that we have a basic familiarity with the Paho-MQTT library, we will next start by
briefly reviewing what the Python program and the accompanying web page client do and
see Paho-MQTT in action.

Controlling an LED with Python and MQTT
Previously, in the Installing the Mosquitto MQTT broker section, we tested the installation by
visiting the http://localhost:8083 URL, which gave us a web page with a slider.
However, at the time, we could not change the LED's brightness. When you moved the
slider, the web page was publishing MQTT messages to the Mosquitto broker, but no
program was receiving the messages to change the LED's brightness.

In this section, we'll see the Python code that subscribes to a topic called led and processes
the messages generated by the slider. We will start by running the Python code and making
sure we can change the LED's brightness.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[133]

Running the LED MQTT example
You will find the code in the chapter04/mqtt_led.py file. Please review this file before
proceeding to get an overall idea of what it contains and then follow these steps:

Run the program in a Terminal with the following command:1.

Terminal #1
(venv) $ python mqtt_led.py
INFO:main:Listening for messages on topic 'led'. Press Control + C
to exit.
INFO:main:Connected to MQTT Broker

Now, open a second Terminal window and try the following, and the LED2.
should turn on (be careful to make sure the JSON string is formed correctly):

Terminal #2
$ mosquitto_pub -q 2 -h localhost -t 'led' -r -m '{"level": "100"}'

Did you notice the -r (--retain) option used in step 2? Terminate and3.
restart mqtt_led.py and watch the log output in Terminal #1 and the LED. You
should notice on startup that mqtt_led.py receives the LED's brightness value
from the topic's retained message and initializes the LED's brightness accordingly.
Next, visit the http://localhost:8083 URL and make sure the LED changes4.
its brightness as you move the slider.

Leave the web page open, and try the command in step 2 again. Observe
what happens to the slider—it will stay in sync with the new level value
you specified.

Next, let's see durable connections in action. Terminate mqtt_led.py again and5.
perform the following:

On the web page, move the slider around randomly for about 5
seconds. As you move the slider, messages are being published to the
broker on the led topic. They will be queued for delivery
to mqtt_led.py when it reconnects.
Restart mqtt_led.py and observe the Terminal and LED. You will
notice a flood of messages on the Terminal, and the LED will flicker as
the queued messages are delivered and processed by mqtt_led.py.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[134]

By default, Mosquitto is configured to queue 100 messages per client that
are using a durable connection. A client is identified by its client ID that
you provide when connecting to the broker.

Now that we have interacted with and seen mqtt_led.py in action, let's take a look at its
code.

Understanding the code
As we discuss the code found in chapter04/mqtt_led.py, pay particular attention to
how the code connects to the MQTT broker and manages the connection life cycle.
Furthermore, as we cover how the code receives and processes messages, try to relate the
code workflow back to the command-line examples that we used to publish the message in
the previous subsection, Running the LED MQTT example.

Once you have an understanding of our Python code and how it integrates with our MQTT
broker, you'll have an end-to-end working reference solution built around MQTT
messaging that you can adapt for your own needs and projects.

We will start by looking at the imports. As usual, we will skip over any common code that
we have already covered in previous chapters, including logging setup and GPIOZero-
related code.

Imports
The only new import we have in this example is for the Paho-MQTT client:

import paho.mqtt.client as mqtt # (1)

At line (1), we are importing the Paho-MQTT client class and giving it the alias, mqtt. As
mentioned previously, this is the client class that will allow us to create a full life cycle
MQTT client in Python.

Next, we will consider global variables.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[135]

Global variables
The BROKER_HOST and BROKER_POST variables at line (2) are referring to our locally
installed Mosquitto MQTT broker. Port 1883 is the standard default MQTT port:

Global Variables

...

BROKER_HOST = "localhost" # (2)

BROKER_PORT = 1883

CLIENT_ID = "LEDClient" # (3)

TOPIC = "led" # (4)

client = None # MQTT client instance. See init_mqtt() # (5)

...

At line (3), we define CLIENT_ID, which will be the unique client identifier we use to
identify our program with the Mosquitto MQTT broker. We must provide a unique ID to
the broker so that we can use durable connections.

At line (4), we define the MQTT topic that our program will be subscribing to, while at line
(5), the client variable is a placeholder that will be assigned the Paho-MQTT client
instance, which we'll see shortly.

The set_led_level(data) method
set_led_level(data) at line (6) is where we integrate with GPIOZero to change the
brightness of our LED and the method similar to the corresponding methods we covered
in Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, so we will not cover
the internals here again:

def set_led_level(data): # (6)

 ...

The data parameter is expected to be a Python dictionary in the form of { "level": 50 },
where the integer is between 0 and 100 to indicate the brightness percentage.

Next, we have the callback functions for MQTT. We'll start by reviewing
on_connect() and on_disconnect().

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[136]

The on_connect() and on_disconnect() MQTT callback
methods
The on_connect() and on_disconnect() callback handlers are examples of the full life
cycle that is available using the Paho client class. We will see how to instantiate a Paho
client instance and register these callbacks later when we cover the init_mqtt()
method.

The parameters of interest to on_connect() at line (7) in the following code block are
client, which is a reference to the Paho client class, and result_code, which is an
integer describing the connection result. We see result_code used at line (8) to test the
success of the connection. Notice the connack_string() method, which is used for a
connection failure to translate result_code into a human-readable string.

When we speak of the MQTT client and see the client parameter at line
(7) in the following code block, remember this is our Python code's client
connection to the broker, NOT a reference to a client program such as the
web page. This client parameter is very different in meaning to the client
parameter we saw used in callback handlers for our Flask-SocketIO Web
Socket server in Chapter 3, Networking with RESTful APIs and Web Sockets
Using Flask.

For reference, the user_data parameter can be used to pass around private data between a
Paho client's callback methods, while flags is a Python dictionary containing response and
configuration hints from the MQTT broker:

def on_connect(client, user_data, flags, result_code): # (7)

 if connection_result_code == 0: # (8)

 logger.info("Connected to MQTT Broker")

 else:

 logger.error("Failed to connect to MQTT Broker: " +

 mqtt.connack_string(result_code))

 client.subscribe(TOPIC, qos=2) # (9)

At line (9), we see the Paho client instance method, subscribe(), used to subscribe to
the led topic using the TOPIC global variable, which we saw defined earlier. We also
indicate to the broker that our subscription is a QoS level 2.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[137]

Always subscribe to topics in an on_connect() handler. This way, if the
client ever loses the connection to the broker, it can re-establish
subscriptions when it reconnects.

Next, at line (10) in the following, we have the on_disconnect() handler, where we are
simply logging any disconnects. The method parameters have the same meanings as for
the on_connect() handler:

def on_disconnect(client, user_data, result_code): # (10)

 logger.error("Disconnected from MQTT Broker")

We will now move on to the callback method that handles incoming messages for the led
topic that we subscribed to in on_connect() on line (9).

The on_message() MQTT callback method
It's the on_message() handler at line (11) that is called whenever a new message for a
subscribed topic is received by our program. The message is available through the msg
parameter, which is an instance of MQTTMessage.

At line (12), we access the payload property of msg and decode it into a string. We expect
our data to be a JSON string (for example, { "level": 100 }), so we parse the string into
a Python dictionary using json.loads() and assign the result to data. If the message
payload is not valid JSON, we catch the exception and log an error:

def on_message(client, userdata, msg): # (11)

 data = None

 try:

 data = json.loads(msg.payload.decode("UTF-8")) # (12)

 except json.JSONDecodeError as e:

 logger.error("JSON Decode Error: "

 + msg.payload.decode("UTF-8"))

 if msg.topic == TOPIC: # (13)

 set_led_level(data) # (14)

 else:

 logger.error("Unhandled message topic {}

 with payload " + str(msg.topic, msg.payload)))

Using the topic property of msg on line (13), we check that it matches our expected led
topic, which it will in our case since our program is only subscribing to this specific topic.
However, this provides a point of reference regarding where and how you would perform
conditional logic and routing for a program that subscribes to multiple topics.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[138]

Finally, at line (14), we pass our parsed message to the set_led_level() method, which,
as discussed, changes the brightness of our LED.

Next, we will learn how the Paho client is created and configured.

The init_mqtt() method
We see the Paho-MQTT client instance created and assigned to the global client
variable at line (15). A reference to this object is the client parameter we saw previously
in the on_connect(), on_disconnect(), and on_message() methods.

The client_id parameter is set to be the client name we defined earlier in CLIENT_ID,
while clean_session=False tells the broker that it must not clear any stored messages for
our client when we connect. As we discussed earlier in the command-line examples, this is
the back-to-front way of saying we want a durable connection so any messages published
to the led topic are stored for our client when it's offline:

def init_mqtt():

 global client

 client = mqtt.Client(# (15)

 client_id=CLIENT_ID,

 clean_session=False)

 # Route Paho logging to Python logging.

 client.enable_logger() # (16)

 # Setup callbacks

 client.on_connect = on_connect # (17)

 client.on_disconnect = on_disconnect

 client.on_message = on_message

 # Connect to Broker.

 client.connect(BROKER_HOST, BROKER_PORT) # (18)

An important point to note is on line (16). Our program is using the standard Python
logging packages, so we need to make this call to client.enable_logger() to ensure
that we get any Paho-MQTT client log message. Missing this call means helpful diagnostic
information may not get logged.

Finally, at line (18), we connect to the Mosquitto MQTT broker. It's our on_connect()
handler that will be called once the connection is established.

Next, we will see how our program is started.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[139]

Main entry point
After initializing our LED and client instances, we get to the program's main entry point.

We are registering a signal handler to capture Ctrl + C key combinations at line (19).
The signal_handler method (not shown) simply turns off our LED and gracefully
disconnects from the broker:

Initialise Module

init_led()

init_mqtt()

if __name__ == "__main__":

 signal.signal(signal.SIGINT, signal_handler) # (19)

 logger.info("Listening for messages on topic '"

 + TOPIC + "'. Press Control + C to exit.")

 client.loop_start() # (20)

 signal.pause()

At line (20), the call to client.loop_start() is what allows our client to start, connect to
the broker, and receive messages.

Did you notice that the LED program is stateless? We are not storing or
persisting any LED level in code or to disk. All our program does is
subscribe to a topic on the broker and change the LED's brightness using
GPIOZero. We effectively hand all state management over to the MQTT
broker by relying on MQTT's retained message (also known as the last
known good message) facility.

We have now finished exploring the Python code that interacts with both the LED and
MQTT broker. We learned how to use the Python Paho-MQTT library to connect to an
MQTT broker and subscribe to an MQTT topic. As we received messages on the subscribed
topic, we saw how to process them and changed the brightness level of our LED according
to the message payload.

The Python and Paho-MQTT framework and example we covered will provide you with a
solid starting point for your own MQTT-based IoT projects.

Next, we will be looking at a web client that uses MQTT together with Web Sockets. This
web client will connect to our Mosquitto MQTT broker and publish messages to control our
LED.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[140]

Building a web-based MQTT client
In Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, we covered a code
example using Web Sockets, which included an HTML file and JavaScript web client. In
this section, we will also be looking at a Web Socket-based web client built using HTML
and JavaScript. However, this time, we will be leveraging the built-in Web Socket features
provided by the Mosquitto MQTT broker and the compatible JavaScript Paho-JavaScript
Web Sockets library (you will find a link to this library in the Further reading section).

For comparison, in Chapter 3, Networking with RESTful APIs and Web
Sockets Using Flask, we created our Web Socket server ourselves in Python
using Flask-SocketIO, while our web client used the Socket.io JavaScript
Web socket library.

We interacted with the web client we are about to explore to control our LED previously in
the Installing the Mosquitto MQTT broker at section step 7. You might like to quickly review
step 7 to refamiliarize yourself with the web client and how to access it in your web
browser.

You will find the code for the web page client in
the chapter04/mosquitto_www/index.html file. Please review this file before
proceeding.

Understanding the code
While the JavaScript library we are using in this example is different, you will find that the
general structure and use of the JavsScript code are similar to the code we saw for the
socket.io-based web client in Chapter 3, Networking with RESTful APIs and Web Sockets
Using Flask. As usual, we will start by looking at the imports.

Imports
Our web client imports the Paho-MQTT JavaScript client library at line (1):

<title>MQTT Web Socket Example</title>

<script src="./jquery.min.js"></script>

<script src="./paho-mqtt.js"></script> <!-- (1) -->

paho-mqtt.js can be also found in the chapter04/mosquitto_www folder.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[141]

The official documentation page for the Paho-MQTT JavaScript library is available
at https:/​/​www.​eclipse.​org/​paho/​clients/​js, while its official GitHub page is found
at https:/​/​github.​com/​eclipse/​paho.​mqtt.​javascript.

When you explore the Paho-MQTT JavaScript API further, start at its
GitHub site and make note of any breaking changes that are mentioned.
The documentation pages are known to contain code fragments that do
not reflect the latest GitHub code base.

Next, we encounter the global variables.

Global variables
At line (2), we initialize a Client_ID constant that will identify our JavaScript client with
the broker.

Each Paho JavaScript MQTT client must have a unique hostname, port, and client
ID combination when it connects to the broker. To ensure we can run multiple web pages
on a single computer for testing and demonstration, we use a random number to create a
quasi-unique client ID for each web page:

<script type="text/javascript" charset="utf-8">

 messagePubCount = 0;

 const CLIENT_ID = String(Math.floor(Math.random() * 10e16)) // (2)

 const TOPIC = "led"; // (3)

At line (3), we define the TOPIC constant with led, the name of the MQTT topic that we
will be subscribing and publishing to shortly. Next, we create our client instance.

The Paho JavaScript MQTT client
At line (4), we create our Paho-MQTT Client instance and assign it to the client variable.

The parameters to Paho.MQTT.Client() are the broker's hostname and port. We are
serving this web page via Mosquitto, so the broker's host and port will be the same as web
pages:

const client = new Paho.Client(location.hostname, // (4)

 Number(location.port),

 CLIENT_ID);

https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://www.eclipse.org/paho/clients/js

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[142]

You may have noticed in the http://localhost:8083 URL that the port is 8083, while in
Python we used port 1883:

Port 1883 is the MQTT protocol port on the broker. Our Python program
connects directly to the broker on this port.
We previously configured port 8083 as a Web Socket port on the Mosquitto
broker. Web pages can speak HTTP and Web Socket protocols, not MQTT.

This raises an important point. While we're using the term MQTT in the context of our
JavaScript code, we're really proxying the MQTT idea using Web Sockets back and forth to
the broker.

When we speak of the MQTT client and created the client instance at
line (4), remember this is our JavaScript code's client connection to the
broker.

Next, we see how to connect to the broker and register an onConnect handler function.

Connecting to the broker
We define our onConnectionSuccess() handler at line (5), which will be called after our
client successfully connects to the broker. When we successfully connect, we then update
the web page to reflect the successful connection and enable the slider control:

onConnectionSuccess = function(data) { // (5)

 console.log("Connected to MQTT Broker");

 $("#connected").html("Yes");

 $("input[type=range].brightnessLevel")

 .attr("disabled", null);

 client.subscribe(TOPIC); // (6)

};

client.connect({ // (7)

 onSuccess: onConnectionSuccess,

 reconnect: true

 });

Next, at line (6), we subscribe to the led topic. It's at line (7) that we connect to the broker.
Notice that we're registering the onConnectionSuccess function as the onSuccess
option.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[143]

Remember, similar to the Python example, always subscribe to topics in
an
onSuccess handler. This way, if the client ever loses the connection to the
broker, it can re-establish subscriptions when it reconnects.

We also specify the reconnect: true option so that our client will automatically
reconnect to the broker if it loses its connection.

It has been observed that it may take up to a minute for the JavaScript
Paho-MQTT client to reconnect after losing a connection, so please be
patient. This is in contrast to the Python Paho-MQTT client, which
reconnects almost instantly.

Next, we have another two handlers to review.

The onConnectionLost and onMessageArrived handler
methods
In the following code, at lines (8) and (9), we see how to register an onConnectionLost
and onMessageArrived handler with our Paho-MQTT client instance:

client.onConnectionLost = function onConnectionLost(data) { // (8)

 ...

}

client.onMessageArrived = function onMessageArrived(message) { // (9)

 ...

}

These two functions are similar in principle to their corresponding functions in the socket.io
example from the previous Chapter 3, Networking with RESTful APIs and Web Sockets Using
Flask, in that they update the slider and web page text based on the data found in their
respective data and message parameters.

Next, we have our document ready function.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[144]

JQuery document ready function
Finally, we encounter the document ready function at line (1o) where we initialize our web
page content and register the event listener for the slider:

$(document).ready(function() { // (10)

 $("#clientId").html(CLIENT_ID);

 // Event listener for Slider value changes.

 $("input[type=range].brightnessLevel").on('input', function() {

 level = $(this).val();

 payload = {

 "level": level

 };

 // Publish LED brightness.

 var message = new Paho.Message(// (11)

 JSON.stringify(payload)

);

 message.destinationName = TOPIC; // (12)

 message.qos = 2;

 message.retained = true; // (13)

 client.send(message);

 });

});

Within the sliders event handler at line (11), we see how to create an MQTT message.
Notice the use of JSON.stringify(payload). The Paho.Message constructor expects a
String parameter, not an Object, so we must convert the payload variable (which is an
Object) in to a string.

Starting at line (12), we set the message publication topic to led
with message.destinationName = TOPIC before flagging its QoS level as 2.

Next, at line (13), with message.retained = true, we indicate that we want this
message to be retained so that it is automatically delivered to new clients subscribing to the
led topic. The retention of this message is what allows mqtt_led.py to reinitialize the
LED's previous brightness between restarts.

Well Done! We have now covered both the Python and JavaScript sides of a simple MQTT-
based application.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[145]

Summary
In this chapter, we have explored and practiced the core concepts of MQTT. After installing
and configuring the Mosquitto MQTT broker on your Raspberry Pi, we moved straight into
learning a range of examples on the command line. We learned how to publish and
subscribe to MQTT messages, how to understand topic construction and name hierarchies,
and how we can attach a QoS level to a message.

We also covered durable connections and retained messages, two mechanisms offered by
MQTT brokers for storing messages for later delivery. We concluded our walk-through of
MQTT concepts by exploring a special message and topic type known as a Will, whereby a
client can register a message with a broker that gets automatically published to a topic in
cases where the client abruptly loses its connection.

Next, we reviewed and walked through a Python program that used the Paho Python
MQTT library to subscribe to an MQTT topic and control the brightness of our LED in
response to the messages it received. We followed this with a walk-through of a web page
built with the Paho JavaScript MQTT library that published the messages consumed by our
Python program.

You now have a working knowledge of MQTT and a practical code framework you
can now leverage for your own IoT applications. This is in addition to the other networking
approaches and code frameworks that we've explored in earlier chapters, such as the
dweet.io service, Flask-RESTful, and Flask-SocketIO. Which approach you use for your
projects all depends on what you are trying to create and, of course, your own personal
preference. For larger projects and projects where you need to integrate with external
systems, you may find yourself needing to leverage multiple approaches in tandem and
even find the need to research and explore additional techniques. I do not doubt that your
learning and understanding of the alternative networking approaches we've covered so far
will be of value and help with your understanding of other approaches you encounter.

In the next chapter, Connecting Python to the Physical World, we will be exploring a range of
topics related to how you connect your Raspberry Pi to the world. We will run through
popular Python GPIO library options in addition to GPIOZero and PiGPIO and look at
the different types of electronic interfacing options and configurations that are available
with a Raspberry Pi. We also have a comprehensive exercise where we will be adding an
analog-to-digital converter to your Raspberry Pi and using it to create a program to explore
PWM techniques and concepts.

Networking with MQTT, Python, and the Mosquitto MQTT Broker Chapter 4

[146]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

What is MQTT?1.
Your retained MQTT messages never get delivered. What should you check?2.
Under what condition will an MQTT broker publish a Will message?3.
You choose to use MQTT as your IoT application's messaging layer and must4.
ensure that messages are sent and received. What is the minimum QoS level
required?
You develop an application using MQTT and use the Mosquitto broker, but now5.
you need to use a different broker. What does this mean for your code base and
deployment configuration?
Where in code (hint: which handler method) should you subscribe to MQTT6.
topics and why?

Further reading
We covered the basics of MQTT from an operational level in this chapter. If you want to
learn more about MQTT from a protocol and data level, HiveMQ (an MQTT broker and
service provider) has an excellent 11-part series on the MQTT protocol available at https:/
/​www.​hivemq.​com/​blog/​mqtt-​essentials-​part-​1-​introducing-​mqtt.

The home page of the Mosquitto MQTT broker and client tools are available at the
following URL:

Mosquitto MQTT broker: https:/​/​mosquitto.​org

The documentation and API references for the Paho-MQTT libraries we used in this chapter
are available at the following URLs:

Paho-MQTT Python library: https:/​/​www.​eclipse.​org/​paho/​clients/​python

Paho-MQTT JavaSctipt library: https:/​/​www.​eclipse.​org/​paho/​clients/​js

In addition to MQTT, HTTP RESTful APIs, and Web Sockets, there are complimentary
communication protocols that are specially designed for constrained devices, known as
CoRA and MQTT-NS. The Eclipse Foundation has a summary of these protocols available
at https:/​/​www.​eclipse.​org/​community/​eclipse_​newsletter/​2014/​february/​article2.
php.

https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://mosquitto.org
https://mosquitto.org
https://mosquitto.org
https://mosquitto.org
https://mosquitto.org
https://mosquitto.org
https://mosquitto.org
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/python/
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/paho/clients/js
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php

2
Section 2: Practical Electronics
for Interacting with the Physical

World
In this section, we are going to explore concepts related to connecting your Raspberry Pi to
the physical world with electronics using its P1 header, which is the large set of pins on the
motherboard that we commonly just call the GPIO pins.

In essence, this section is the bridge between the software world and the electronics world.
Our goal is to cover the core terminology and practical concepts that you need to know to
start interfacing with both simple and complex electronics. By the end of this section, you
will have the knowledge to further explore and investigate the challenges of interfacing
electronics to a Raspberry Pi and make informed decisions and carry out directed research
as your use cases and interests desire.

This section comprises the following chapters:

Chapter 5, Connecting Your Raspberry Pi to the Physical World
Chapter 6, Electronics 101 for the Software Engineer

5
Connecting Your Raspberry Pi

to the Physical World
In this chapter, we will explore hardware and software concepts related to connecting your
Raspberry Pi to the physical world. We will be covering popular numbering schemes that
are used by GPIO libraries to refer to the GPIO header pins on your Raspberry Pi and
provide an overview of popular GPIO libraries, in addition to the GPIOZero and PiGPIO
libraries that we used in earlier chapters. As we will learn, understanding GPIO numbering
schemes is crucial to ensure your understanding of how GPIO libraries work with GPIO
pins.

Our journey will also include a conceptual overview and discussion of the many different
ways in which electronics can be interfaced with our Raspberry Pi before we will finish
with a detailed exercise and practical demonstration of two important electronic
concepts—Pulse-Width Modulation (PWM) and analog-to-digital conversion.

We will cover the following topics in this chapter:

Understanding Raspberry Pi pin numbering
Exploring popular Python GPIO libraries
Exploring Raspberry Pi electronic interfacing options
Interfacing with an analog-to-digital converter

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

Connecting Your Raspberry Pi to the Physical World Chapter 5

[149]

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

You will find this chapter's source code in the chapter05 folder in the GitHub
repository available at the following URL: https:/​/​github.​com/​PacktPublishing/
Practical-​Python-​Programming-​for-​IoT

You will need to execute the following commands in a Terminal to set up a virtual
environment and install Python libraries required for the code in this chapter:

$ cd chapter05 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

GPIOZero: The GPIOZero GPIO library (https:/​/​pypi.​org/​project/​gpiozero)
PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
RPi.GPIO: The RPi.GPIO library (https:/​/​sourceforge.​net/​p/​raspberry-
gpio-​python/​wiki/​Home)
ADS1X15: The ADS11x5 ADC library (https:/​/​pypi.​org/​project/​adafruit-
circuitpython-​ads1x15)

Besides the preceding installations, we require a few physical electronic components for the
exercise in this chapter:

1 x 5 mm red LED
1 x 200 Ω resistor—its color bands will be red, black, brown, and then gold or
silver
1 x ADS1115 ADC break-out module (for example, https:/​/​www.​adafruit.​com/
product/​1085)
2 x 10 kΩ potentiometers (any value in the range 10K to 100K will be suitable)
A breadboard
Male-to-female and male-to-male jumper cables (also called DuPont cables)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/gpiozero
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085
https://www.adafruit.com/product/1085

Connecting Your Raspberry Pi to the Physical World Chapter 5

[150]

Understanding Raspberry Pi pin numbering
You will have noticed by now that your Raspberry Pi has a lot of pins sticking out of it!
Since Chapter 2, Getting Started with Python and IoT, and all subsequent chapters, we have
referenced these pins by referring to them, for example, as GPIO Pin 23, but what does this
mean? It's time we understand this in more detail.

There are three common ways in which a Raspberry Pi's GPIO pins may be referenced, as
illustrated in Figure 5.1:

Figure 5.1 – GPIO pin numbering schemes

In all of the previous chapters, we've been talking about GPIO pins from the perspective of
PiGPIO, which uses the Broadcom or BCM numbering scheme. BCM is the most common
scheme used in Python-based GPIO libraries, and the GPIO libraries that we will discuss
shortly all use BCM exclusively or by default. However, it is useful to know that other
schemes exist because it will help when reading or debugging code fragments you come
across on the internet and other resources.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[151]

The terms GPIO and pin can be rather loosely used when it comes to
identifying pins. You need to interpret wording such as GPIO 23 or Pin 23
with consideration of the context and scheme in which it is being used.

Let's explore these alternatives as shown in Figure 5.1:

Broadcom/BCM Numbering: This refers to the GPIO numbering of the
Broadcom chip in your Raspberry Pi. With BCM numbering, when we say GPIO
23, we mean GPIO 23 as labeled in a BCM pin-out diagram. This is the scheme
we are using with the GPIOZero and PiGPIO examples presented in this book.
Physical/Board/P1 Header: In this numbering scheme, the physical pin numbers
of the P1 header are used, for instance, BCM GPIO 23 = Physical Pin 16.
WiringPi: This is a popular C GPIO library called WiringPi that introduced its
own pin mapping scheme. Due to the maturity of WiringPi (there is a Python
port), you will come across this scheme from time to time—continuing our
example, BCM GPIO 23 = Physical Pin 16 = WiringPi Pin 4.

There are also other methods and naming used to reference pins and interfaces to be aware
of, and they include the following:

Virtual Filesystem: There is a virtual filesystem mounted at /sys for general
GPIO access,/dev/*i2c for I2C, /dev/*spi* for SPI, and
/sys/bus/w1/devices/* for 1-wire devices.
Alternative Pin Functions: The preceding BCM diagram in Figure 5.1 lists GPIO
pin numbers, together with alternative pin functions such as PWM0, I2C0, and
SPI0 in parentheses. These represent alternative roles a pin can perform beyond
basic digital I/O.
Bus/Channel Numbers: For SPI and I2C interfacing and hardware PWM, it's
common for a library to use the bus or channel number. For example, we can use
BCM GPIO 18 as a general-purpose digital input and output, or we can use it in
its alternate function mode as a hardware PWM output as PWM channel 0.

The pinout.xyz website is a great resource for exploring pin naming,
alternative functions, and scheme mappings.

https://pinout.xyz

Connecting Your Raspberry Pi to the Physical World Chapter 5

[152]

You now have an understanding of the different schemes that can be used to refer to GPIO
pins on a Raspberry Pi. While the BCM scheme tends to be the most common and universal
amongst Python-based GPIO libraries, it is imperative to never just assume that a GPIO
library, code example, and even a breadboard layout or schematic diagram you are
working with uses the BCM scheme to reference GPIO pins. A mismatch between the
scheme used in code and the scheme used to physically wire electronics to the Raspberry
Pi's GPIO pins is a common mistake that causes a circuit not to work.

I often see people (and I've done the same!) blame their wiring or believe
an electronic component must be faulty when their circuit does not work
with a code example they found somewhere online. As a first step toward
diagnosis, check that the pin numbering scheme the code is using matches
the scheme you used to wire the circuit to the Raspberry Pi's GPIO pins.

Now that we understand the use and importance of different GPIO numbering schemes,
let's move on and review popular Python GPIO libraries.

Exploring popular Python GPIO libraries
If you are anything like me, when you first start with a Raspberry Pi, you probably just
want to control things. Today, for many developers, their first point of contact with physical
computing using a Raspberry Pi will be via the official Raspberry Pi website and with the
GPIOZero library. However, after you've been tinkering with simple electronics such as
buttons, LEDs, and motors for a while, you'll want to undertake more complex interfacing.
If you've taken this step—or are about to—you may find yourself in the somewhat
confusing world of GPIO libraries and options. This section is here to help you to navigate
this path by presenting the more popular options.

I maintain a summary and comparison table of Python GPIO libraries
(including additional libraries not listed in the following sections)
at https:/​/​10xiot.​com/​gpio-​comp-​table.

We'll start our GPIO Library overview with GPIOZero.

https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table
https://10xiot.com/gpio-comp-table

Connecting Your Raspberry Pi to the Physical World Chapter 5

[153]

Reviewing GPIOZero – simple interfacing for
beginners
The focus of the GPIOZero library is on simplicity, making it a no-fuss library for beginners
getting into physical computing and interfacing electronics. It achieves ease-of-use by
abstracting away the underlying technical complexity and allows you to write code that
deals with devices and peripherals such as LEDs, buttons, and common sensors, rather than
writing lower-level code that directly manages pins.

Technically, GPIOZero is not actually a full-fledged GPIO library in terms of how it
interacts with GPIO pin hardware. It is a simplifying wrapper around other GPIO libraries
that are employed to do the actual GPIO grunt work. In Chapter 2, Getting Started with
Python and IoT, we saw a push button and LED example in both GPIOZero and PiGPIO that
illustrated this point.

Here are the key highlights of GPIOZero in a nutshell:

Description: High-level GPIO Library designed for beginners
Pros: Easy to learn and use with excellent documentation and many examples
Cons: Limited in scope for use beyond simple electronic interfacing
Website: https:/​/​gpiozero.​readthedocs.​io

Next, we will review RPi.GPIO, a popular low-level GPIO library.

Reviewing RPi.GPIO – a low-level GPIO for
beginners
We mentioned previously that the essence of GPIOZero is writing code that deals with
devices and components. Well, RPi.GPIO takes a different and more classical approach
where we write code that works with and manages GPIO pins directly. RPi.GPIO is a
popular low-level introduction to Raspberry Pi and electronics, so you will find many
examples using it across the internet.

The GPIOZero documentation has a great section on RPi.GPIO, where it explains
equivalent code examples in both GPIOZero and RPi.GPIO. This is a great resource to start
learning lower-level pin level programming concepts.

https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/

Connecting Your Raspberry Pi to the Physical World Chapter 5

[154]

There is also a library named RPIO that was created as a performance
drop-in replacement for RPi.GPIO. RPIO is not currently maintained and
does not work with the Raspberry Pi Model 3 or 4.

Here are the key highlights of RPI.GPIO in a nutshell:

Description: Lightweight low-level GPIO
Pros: Mature library with many code examples to be found on the internet
Cons: Lightweight means that it is not a performance-orientated library and
there's no hardware-assisted PWM
Website: https:/​/​pypi.​python.​org/​pypi/​RPi.​GPIO

Next, we will look at another high-level library designed for controlling complex devices.

Reviewing Circuit Python and Blinka – interfacing
for complex devices
Blinka is a Python compatibility layer for Circuit Python (circuitpython.org), a version of
Python designed for microcontrollers. It's created and championed by the electronics
company Adafruit, which distributes many electronic breakout boards and gadgets.
Adafruit provides quality high-level Circuit Python drivers for many of its product lines,
essentially carrying forward the GPIOZero ease-of-use idea to more complex devices.

We are going to use Blinka and the Circuit Python driver library for an ADS1115 ADC
breakout module later in this chapter to add analog-to-digital capabilities to our Raspberry
Pi.

Here are the key highlights of Blinka in a nutshell:

Summary: High-level library for controlling complex devices
Pros: Makes using supported devices extremely easy irrespective of your level of
experience
Cons: For basic IO, it uses RPi.GPIO, so it has the same basic limitations
Website: https:/​/​pypi.​org/​project/​Adafruit-​Blinka

Next, we will cover Pi.GPIO, a powerful low-level GPIO library.

https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
http://circuitpython.org/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/

Connecting Your Raspberry Pi to the Physical World Chapter 5

[155]

Reviewing PiGPIO – a low-level GPIO library
PiGPIO is considered one of the most complete GPIO library options for the Raspberry Pi in
terms of features and performance. Its core is implemented in C, and there is an official port
available for Python.

Architecturally, PiGPIO is comprised of two parts:

The pigpiod daemon service provides socket and pipe access to the
underlying PiGPIO C library.
The PiGPIO client libraries interact with the pigpiod service using sockets or
pipes. It's this design that makes Remote GPIO features over a network possible
with PiGPIO.

Here are the key highlights of PiGPIO in a nutshell:

Description: An advanced low-level GPIO library
Pros: Number of features available
Cons: Additional setup necessary; simple documentation assumes knowledge of
the underlying concepts
Website (Python Port): http:/​/​abyz.​me.​uk/​rpi/​pigpio/​python.​html

Before we move on to our next library, I want to draw your attention to a feature that is
unique to this library and is very useful—remote GPIO.

Exploring remote GPIO with PiGPIO (and GPIOZero)
Once you have started the pigpiod service on a Raspberry Pi (covered in Chapter 1, Setting
Up Your Development Environment), there are two ways to make your code remote, and by
remote, I mean that your program code can be running on any computer (not just a
Raspberry Pi) and control a remote Raspberry Pi's GPIOs.

Method 1: This method involves passing the remote Raspberry Pi's IP or host address to the
PiGPIO constructor. Using this approach, you can also interface with multiple Raspberry Pi
GPIOs by just creating additional instances of pigpio.pi(). For instance, in the following
example, any methods called on the pi instance will be executed on the 192.168.0.4 host
that has the pigpiod service running:

Python Code.
pi = pigpio.pi('192.168.0.4', 8888) # Remote host and port (8888 is default
if omitted)

http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html

Connecting Your Raspberry Pi to the Physical World Chapter 5

[156]

Method 2: A second method involves setting an environment variable on the computer and
running your Python code (your Python code just needs to use the default PiGPIO
constructor, pi = pigpio.pi()):

In Terminal
(venv) $ PIGPIO_ADDR="192.168.0.4" PIGPIO_PORT=8888 python my_script.py

Remote GPIO can be a great development aid, but will add latency into your code's
interaction with GPIO pins as data is transmitted over the network. This means it may not
be desirable for non-development releases. Button presses, as an example, can feel less
responsive, and for use cases where fast timing is important, remote GPIO may be
impractical.

You may remember from Chapter 2, Getting Started with Python and
IoT, that GPIOZero can use a PiGPIO Pin Factory, and when it does,
GPIOZero automatically gets remote GPIO capabilities for free!

Finally, because it's a unique feature of the PiGPIO library, all of your code must use this
library if we want remote GPIO features. If you install third-party Python libraries to drive
an electronic device and it uses (for example) RPi.GPIO, this device is not remote GPO-
enabled.

Next, we will look at two common lower-level libraries for I2C and SPI communication.

Reviewing SPIDev and SMBus – dedicated SPI
and I2C libraries
When working with I2C and SPI-enabled devices, you will encounter the SPIDev and
SMBus libraries (or comparable alternatives). SPIDev is a popular lower-level Python
library for use with SPI communications, while SMBus2 is a popular lower-level Python
library for use with I2C and SMBus communication. These two libraries are not general-
purpose libraries—they cannot be used for basic digital I/O pin control.

When starting out, it is unlikely that you will want or need to use I2C or SPI libraries such
as these directly. Instead, you will use higher-level Python libraries to work with an SPI- or
I2C-enabled device that, underneath, would be using lower-level libraries like these to
communicate with the physical device.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[157]

Here are the key highlights of SPIDev and SMBus2 in a nutshell:

Description: These are lower-level libraries for SPI and I2C interfacing.
Pros: Using a lower-level library gives you full control over an SPI or I2C device.
Many high-level convenience wrappers only expose the most commonly needed
features.
Cons: Leveraging these lower-level libraries requires you to interpret and
understand how to interface with electronics using low-level data protocols and
bit manipulation techniques.
SPIDev website: https:/​/​pypi.​org/​project/​spidev

SMBus2 website: https:/​/​pypi.​org/​project/​smbus2

To complete this section on GPIO libraries, let me briefly discuss why this book is primarily
based around the PiGPIO library.

Why PiGPIO?
You may have wondered why, of all of the options, I chose to use PiGPIO predominantly in
this book. As a reader of this book, I'm assuming you have a good grounding in
programming and technical concepts, and that working with and learning a library such as
PiGPIO is not beyond your capabilities. PiGPIO is a comprehensive library if you are
intending to extend your learning beyond the basics offered by libraries such as GPIOZero
and RPi.GPIO and build more complex IoT projects in Python.

You will find the PiGPIO API and documentation is broken down into beginner,
intermediate, and advanced sections, so in practice and while learning, you can mix and
match how you use the library API depending on your experience level and needs.

We have now completed our exploration of several popular GPIO libraries and reviewed
their basic architecture and design. Next, we will turn our attention to alternative methods
through which we can connect and control electronics with our Raspberry Pi.

https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/
https://pypi.org/project/smbus2/

Connecting Your Raspberry Pi to the Physical World Chapter 5

[158]

Exploring Raspberry Pi electronic
interfacing options
We've just covered the software side of GPIO, so now we will turn our attention to the
electronics side. The Raspberry Pi provides many standard ways to interface both simple
and complex electronics. Often, your choice of electronic components and modules will
dictate which interfacing technique you need to use, while sometimes you may get a choice.

Irrespective of whether you have a choice, your knowledge of the different options will
help you to understand the how and why behind a circuit and its accompanying code and
help you to diagnose and resolve any issues you may encounter.

In the following section, we will explore the concepts, followed by a practical exercise. We'll
start with digital IO.

Understanding digital IO
Each of the Raspberry Pi GPIO pins can perform digital input and output. Digital simply
means something is either fully on or fully off—there is no middle ground. We've been
working with simple digital IO in previous chapters:

Our LED was either on or off.
Our button was either pressed (on) or non-pressed (off).

You will come across several interchangeable terms used to describe digital states,
including the following:

On = High = True = 1
Off = Low = False = 0

Digital IO is a form of basic IO. Analog IO is another, so we will explore it next.

Understanding analog IO
Whereas digital deals with fully on and off states, analog deals with degrees—on, off, or
somewhere in-between. Think of a window in your house. In a digital world, it could be
fully open (digital high) or fully closed (digital low); however, in reality, it's analog in that
we can open it somewhere between fully closed and fully open, for example, a quarter
open.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[159]

Simple and common examples of analog electronic components include the following:

Potentiometers (also known as pots): This is a dial or slider that produces a
range of resistance values. Real-world examples include volume controls and
header thermostat controls.
Light-Dependent-Resistors (LDRs): These are electronic components to measure
light levels, and you find these in automatic night lights.
Thermistors: These are electronic components for measuring temperature that
you might find in heaters, fridges, or anywhere where temperature is measured.

The Raspberry Pi does not come with analog IO capabilities, so we need to use external
electronics known as an Analog-to-Digital-Converter (ADC) to read analog input, and this
will be a core focus of a practical example later in this chapter in the section
entitled Interfacing with an analog-to-digital converter.

To output an analog signal, we have two options—either use a Digital-to-Analog
Converter (DAC) or use a digital technique known as PWM to produce an analog-style
signal from a digital output. We will not be covering DACs in this book; however, we will
be exploring PWM in depth, which we will do next.

Understanding Pulse-Width Modulation
Pulse-Width Modulation or PWM is a technique to produce an average voltage on a pin
somewhere between fully on (high) and fully off (low) by rapidly pulsing the pin on and
off. In this way, it's a little like providing a pseudo-analog output from a digital pin and is
used for all sorts of control applications, such as altering the brightness of LEDs, motor
speed control, and servo angle control.

PWM is defined by two main characteristics:

Duty cycle: The percentage of time the pin is high
Frequency: The time period during which the duty cycle repeats

As illustrated in Figure 5.2 (and for a set frequency), a 50% duty cycle means the pin is high
half of the time and low half of the time, while a 25% duty cycle means the pin is high only
25% of the time. And while not pictured, a 0% duty cycle would mean the pin is high 0% of
the time (always low), so it's effectively off, while a 100% duty cycle is always high:

Connecting Your Raspberry Pi to the Physical World Chapter 5

[160]

Figure 5.2 – PWM duty cycles

The preceding diagram is taken from https:/​/​en.​wikipedia.​org/​wiki/
File:Duty_​Cycle_​Examples.​png, author, Thewrightstuff. It falls under CC
BY-SA 4.0: https:/​/​creativecommons.​org/​licenses/​by-​sa/​4.​0/​deed.​en.

Using PWM is easy on the Raspberry Pi, although there are alternative approaches for
creating the PWM signal, which we will look at next.

Creating PWM signals
Different GPIO libraries approach PWM signal generation in different ways. Three
common techniques are as follows:

Software PWM: The frequency and duty cycle timing of a PWM signal are
produced in code and can be made available on any GPIO pin. This is the least
accurate method of creating PWM signals because the timing can be adversely
affected by a busy Raspberry Pi CPU.
Hardware-timed PWM: The PWM timing is performed using DMA and
PWM/PCM hardware peripherals. It's highly accurate and is available on any
GPIO pin.
Hardware PWM: Hardware PWM is provided entirely via hardware and is the
most accurate method of creating PWM signals. The Raspberry Pi has two
dedicated hardware PWM channels, labeled PWM0 via GPIO pins 18 and 12 and
PWM1 via GPIO pins 13 and 19 (refer to Figure 5.1).

https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://en.wikipedia.org/wiki/File:Duty_Cycle_Examples.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Connecting Your Raspberry Pi to the Physical World Chapter 5

[161]

It's not enough to just connect something to GPIOs 12, 13, 18, or 19 in
order to get hardware PWM. These GPIOs are the BCM GPIOs that have
PWM listed as their alternative functions. If you want to use hardware
PWM, then two basic requirements must be met. Firstly, the GPIO library
you are using must provide support for hardware PWM. Secondly, you
must use the library and its hardware PWM functionality correctly, which
would be detained in the library API documentation. Pins that share a
common hardware PWM channel both get the same duty cycle and
frequency applied to them, so while there are four hardware PWM pins,
there are only two unique PWM signals.

Which PWM technique to use will always depend on what you are trying to build and how
accurate the PWM signal needs to be. Sometimes, you will have direct control over which
GPIO library (and hence PWM technique) you use for your projects, while other
times—especially when using third-party higher-level Python libraries—you'll be forced to
use whatever PWM techniques the library developer used.

As a general rule, when I am in control of the GPIO library choice, I avoid software PWM
wherever possible. If I'm developing using PiGPIO, then I favor hardware-timed PWM
simply because I can use it on any GPIO pin.

In relation to the GPIO libraries that we covered earlier, their support for PWM is as
follows:

GPIOZero: Inherits the PWM method available from its Pin Factory
implementation
RPi.GPIO: Software PWM only
PiGPIO: Hardware-timed PWM and hardware PWM
Blinka: Hardware PWM only

You can attach external hardware PWM modules to your Raspberry Pi
(usually by I2C) that will give you more hardware PWM outputs.

Now that we've seen three ways that PWM signals can be created, we will look next at SPI,
I2C, and 1-wire interfaces.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[162]

Understanding SPI, I2C, and 1-wire interfaces
Serial Peripheral Interface Circuit (SPI), Inter-Integrated Circuit (I2C), and 1-wire are
standardized communication interfaces and protocols that allow non-trivial electronics to
communicate with each other. These protocols can be employed either directly at a low
level through a bit of manipulation and math, or indirectly by using higher-level party
Python driver modules to work with electronic peripherals, with the latter being more
common for general use cases.

 Examples of devices that work through these protocols include the following:

Analog-to-digital converters (SPI or I2C)
LED lighting strips and LCD displays (SPI or I2C)
Environmental sensors such as temperature sensors (1-wire)

We will explore I2C in more detail later in this chapter when we connect an analog-to-
digital converter to our Raspberry Pi.

Finally, we have serial communication and UART.

Understanding the serial / UART protocol
Universal Asynchronous Receiver/Transmitter (UART) is a serial communication protocol
that has been around for a very long time and in common use before the prevalence of USB.
UART actually refers to the electronic hardware used to implement the serial protocol,
although it can be implemented in pure software.

Today, SPI or I2C tend to be used in preference to UART. GPS receivers are a common
example where serial communication still prevails. If you have ever connected an Arduino
to a PC for flashing or debugging, it's a serial communication protocol that the devices are
using, with UART hardware being present in the Arduino.

We have now learned many of the standard ways that we can use to interface electronics
with our Raspberry Pi, including analog and digital electronics, PWM, wire protocols such
as I2C and SPI, and serial communication. We will start to see many of these interfacing
options in practice and get a feel for what type of electronics use which type of interface as
we proceed through this book.

Next, we will see some of the concepts we have covered so far in this chapter by adding an
analog-to-digital converter to our Raspberry Pi.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[163]

Interfacing with an analog-to-digital
converter
Congratulations on getting this far. I suspect you're itching to get into some code after all
that reading!

We will change pace now and apply some of the knowledge we just covered to add an
ADS1115 analog-to-digital converter to your Raspberry Pi. An example of a typical
ADS1115 breakout module is pictured in Figure 5.3:

Figure 5.3 – ADS1115 breakout module

An ADC is a very handy addition because this alone opens you up to the world of analog
components and gadgets that are otherwise not usable with the Raspberry Pi.

As part of this practical exercise, we are going to connect two potentiometers (also known
as pots) to the ADS1115 and read in their values in Python. We will use these values to
create a PWM signal by varying its duty cycle and frequency. We'll see the effects of
varying these parameters by observing how it affects the LED and how the waveform
changes in a program called PiScope, which is a part of the PiGPIO family of utilities.

We'll revisit potentiometers in more detail in Chapter 6, Electronics 101 for
the Software Engineer.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[164]

To perform the following exercise, remember we need the electronic components listed in
the Technical requirements section at the start of this chapter, including an ADS1115 breakout
module. The ADS1115 is a common and powerful analog-to-digital converter that connects
to its master (in our case, a Raspberry Pi) using I2C.

Here are the core specifications of the ADS1115 pulled from its datasheet that we require
for our exercise:

Working voltage: 2 to 5 volts (so we know it will work with the Raspberry Pi's
3.3-volt logic)
Interface: I2C
Default I2C address: 0x48

The terminals on the ADS1115 are as follows:

Vcc & GND: Power for the device.
SCL: Clock signal, used to synchronize communication between the master and
slave.
SDA: Data signal, used to send data between the Raspberry Pi and the ADS1115.
ADDR: This terminal can be used to change the default address if required.
ALTR: Alert signal for advanced usage (we won't be needing this).
A0 - A3: Analog input channels (we will connect Pots to A0 and A1).

Make sure you have the I2C interface enabled on your Raspberry Pi before
proceeding. We covered the steps to enable interfaces, including I2C, in
Chapter 1, Setting Up Your Development Environment.

First, let's start by building the circuit we require on our breadboard.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[165]

Building the ADS1115 ADC circuit
Let's build our breadboard circuit for this chapter's exercise. We will build our circuits in a
series of steps, starting with placing the core components as illustrated in the following
diagram:

Figure 5.4 – Breadboard ADC circuit (part 1 of 3)

The overall arrangement and placement of discrete components and wires
on a breadboard are not overly important. However, the connections
created between the components and wires are vitally important! If you
need a refresher on breadboards, how they work, and, most importantly,
how the holes are electrically connected, please refer back to Chapter
2, Getting Started with Python and IoT.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[166]

Here is how to lay out the component on your breadboard. The following step numbers
match the numbered black circles in Figure 5.4:

Position the ADS1115 on your breadboard.1.
Position potentiometer VR1 on your breadboard. The illustrated potentiometers2.
are full-size potentiometers. If you have a different size, their leg configuration
may span fewer breadboard holes.
Position the potentiometer VR2 on your breadboard.3.
Position the resistor on your breadboard.4.
Position the LED on your breadboard, paying attention to ensure that5.
its cathode leg shares the same row as the resistor (illustrated at
holes D29 and E29).

Next, we wire up the ADS1115 as illustrated here:

Figure 5.5 – Breadboard ADC circuit (part 2 of 3)

Connecting Your Raspberry Pi to the Physical World Chapter 5

[167]

Here are the steps to follow. This time, the following step numbers match the numbered
black circles in Figure 5.5:

Connect the Raspberry Pi +3.3 volt pin to the breadboard positive power rail.1.
Connect the VDD terminal on the ADS1115 to the breadboard positive power2.
rail.
Connect the GND terminal on the ADS1115 to the breadboard negative power3.
rail.
Connect the Raspberry Pi GND pin to the breadboard negative power rail.4.
Connect the SCL pin on your Raspberry Pi to the SCL terminal on the ADS1115.5.
Connect the SDA pin on your Raspberry Pi to the SDA terminal on the ADS1115.6.

Finally, we wire up the LED, resistor, and potentiometers, as illustrated in the following
diagram:

Figure 5.6 – Breadboard ADC circuit (part 3 of 3)

Connecting Your Raspberry Pi to the Physical World Chapter 5

[168]

Here are the steps to follow. This time, the following step numbers match the numbered
black circles in Figure 5.6:

Connect the A0 terminal on the ADS1115 to the center leg of potentiometer VR1.1.
Connect the A1 terminal on the ADS1115 to the center leg of potentiometer VR2.2.
Connect the upper leg of potentiometer VR1 to the breadboard negative power3.
rail.
Connect the lower leg of potentiometer VR1 to the breadboard positive power4.
rail.
Connect the upper leg of potentiometer VR2 to the breadboard negative power5.
rail.
Connect the lower leg of potentiometer VR2 to the breadboard positive power6.
rail.
Connect the upper leg of the resistor to the breadboard negative power rail.7.
Connect the anode leg of the LED to BCM GPIO 12 / PWM 0 on your Raspberry8.
Pi.

Well done! You have now completed this circuit. For your reference, a semantic
diagram depicting the breadboard circuit is shown in Figure 5.7.

As a reminder, we covered an example on how to read a semantic
diagram back in Chapter 2, Getting Started with Python and IoT.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[169]

I encourage you to trace around this semantic diagram while referring back to the
breadboard layout to understand how the lines and labels on the diagram relate back to the
pictured components and wires on the breadboard. Investing the time to understand how
paired schematic diagrams and breadboard circuits relate to one another will assist and
increase your ability to create breadboard layouts directly from a schematic diagram:

Figure 5.7 – ADC circuit semantic diagram

With the circuit complete, let's check that the ADS1115 can be seen by our Raspberry Pi.

Making sure the ADS1115 is connected to your
Raspberry Pi
I2C devices are identified to their master (that is, our Raspberry Pi) by a unique address,
and the default address for the ADS1115 is 0x48. Since I2C devices are addressed, multiple
devices can share the same I2C channels (pins) on a Raspberry Pi.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[170]

You can change the I2C devices on most IC2 devices if you have multiple
devices sharing the same address. This is the purpose of the ADDR
terminal on the ADS1115, and you can find instructions for its use in the
ADS1115 datasheet.

Raspbian OS contains the i2cdetect utility that queries the Raspberry Pi's I2C interface
for connected devices. Run the following in a Terminal:

$ i2cdetect -y 1

The -y option assumes we answer yes to any prompts. 1 is the I2C bus number. It's always
1 on the Raspberry Pi 3 or 4. We expect to see the output like this:

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00: -- -- -- -- -- -- -- -- -- -- -- -- --

 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 70: -- -- -- -- -- -- -- --

The fact that we see 48 (hex address) is indicative that our Raspberry Pi has detected the
ADS1115. If you do not get this result, check your wiring and make sure I2C has been
enabled as described in Chapter 1, Setting Up Your Development Environment.

Now that we have verified that our ADS1115 is visible to our Raspberry Pi, let's proceed
and read the two potentiometers as analog input.

Reading analog input with the ADS1115
Now that we have our ADS1115 connected to our Raspberry Pi, it's time to learn how to use
it to read in analog values, specifically the analog values created by our two potentiometers.
We will use these analog values shortly to produce a PWM signal, which in turn will
control the brightness of our LED.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[171]

The code we are about to cover can be found in the file
chapter05/analog_input_ads1115.py. Please review this file before continuing.

Start by running the program in a Terminal:1.

(venv) $ python analog_input_ads1115.py

You should receive a stream of output similar to the following (your value and2.
volts numbers will be different):

 Frequency Pot (A0) value=3 volts=0.000 Duty Cycle Pot (A1) value=
9286 volts=1.193
 Frequency Pot (A0) value=3 volts=0.000 Duty Cycle Pot (A1) value=
9286 volts=1.193
 ...truncated...

Turn the two potentiometers and watch the output change—specifically, you will3.
notice the numbers reported for value and volts change. The value and voltage
will be in the following ranges:

value in the range 0 to 26294 (or thereabouts)
voltage in the range 0 to 3.3 volts (or thereabouts)

The output will be as follows:

 Frequency Pot (A0) value=3 volts=0.000 Duty Cycle Pot (A1) value=
9286 volts=1.193
 Frequency Pot (A0) value=4 volts=0.001 Duty Cycle Pot (A1)
value=26299 volts=3.288
 ...truncated...

As we'll discuss more in Chapter 6, Electronics 101 for the Software Engineer, analog input is
about reading voltages, in our case here, between 0 volts/GND (our reference voltage) and
+3.3 volts. The integer value is the raw output of the ADS1115, and what its maximum
value is will depend on how the ADS1115 IC is configured (we're using the defaults). The
voltage value is derived from this raw value using math based on the ADS1115
configuration. All of the gooey details are in the ADS1115 datasheet and the library source
code if you are interested.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[172]

Beneath the surface of a high-level ADC library, many low-level settings
influence how the ADC chip works (just check its datasheet). Different
library authors may implement these settings differently or use different
default settings. What this means in practice is that two libraries for the
same ADC might output different raw values (and some libraries might
not even provide this value to the programmer). So, never make
assumptions about what the expected raw output value will be, and
instead rely on the voltage measurement, which is always the source of
truth.

As you adjust the two potentiometers, do not get worried if the exact ends of these ranges
do not marry up precisely to 0 and 3.3 volts, or if the values randomly twitch a little. This
fuzzy result is expected when we deal with analog electronics.

Next, we will examine the code.

Understanding the code
Now that we have seen the basic operation of our ADS1115 ADC, it's time to have a look at
the accompanying code to understand how we query the ADS1115 in Python to get analog
readings. What we learn below will lay the foundations for the analog interfacing programs
that we will see in part 3 of this book.

We will commence our code walk-through with the imports.

Imports

There are two ways we can use the ADS1115 with our Raspberry Pi with Python:

Read the ADS1115 datasheet and use a lower-level I2C such as SMBus to
implement the data protocol used by the device.
Find a ready-made Python library available through PyPi that we can install
using pip.

There are several ready-made Python modules available to use with the ADS1115. We are
using the Adafruit Binka ADS11x5 ADC library that we installed through
requirement.txt at the start of this chapter:

import board # (1)

import busio

import adafruit_ads1x15.ads1115 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

Connecting Your Raspberry Pi to the Physical World Chapter 5

[173]

Starting at line (1), we see the board and busio imports from Circuit Python (Blinka),
while the last two imports starting with adafruit are from the Adafruit ADS11x5 ADC
library and are used to configure the ADS1115 module and read its analog input, which we
are going to look at next.

ADS1115 setup and configuration

At line (2) in the following code block, we use the busio import to create an I2C interface
with Circuit Python/Blika. The board.SLC and board.SDA parameters indicate we are
using the dedicated I2C channel (alternative functions of GPIO 2 and 3) on the Raspberry
Pi:

Create the I2C bus & ADS object.

i2c = busio.I2C(board.SCL, board.SDA) # (2)

ads = ADS.ADS1115(i2c)

Next, we create an instance of ADS.ADS1115 using the pre-configured I2C interface and
assign it to the ads variable. From this point forward in the code, when we interact with
our ADS1115 module, we will use this instance.

Next, let's consider the global variables.

Global variables

At line (3) in the following code snippet, we start with a few quasi-constants defining the
maximum and minimum voltages we expect to receive through the analog input. When
you ran the code previously, your end range voltages probably were not exactly 0 and 3.3
volts. This occurrence is expected, and it can make a program feel like the Pots do not reach
the ends of their rotation. The value assigned to A_IN_EDGE_ADJ is used to compensate for
this in code. We will revisit this variable in the next section:

A_IN_EDGE_ADJ = 0.002 # (3)

MIN_A_IN_VOLTS = 0 + A_IN_EDGE_ADJ

MAX_A_IN_VOLTS = 3.3 - A_IN_EDGE_ADJ

Next, starting at line (4), we create two AnalogIn instances relating to the A0 and A1 inputs
of the ADS1115 that are connected to our Pots. It's through these variables that we
determine how much a user has rotated our frequency and duty cycle potentiometers:

frequency_ch = AnalogIn(ads, ADS.P0) #ADS.P0 --> A0 # (4)

duty_cycle_ch = AnalogIn(ads, ADS.P1) #ADS.P1 --> A1

Next, we come to the program's entry point where we will read our analog inputs.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[174]

Program entry point

Our program continuously loops, reading our analog input values for each pot and prints
formatted output to the Terminal.

At line (5), we see how to access the integer value from the frequency pot using
frequency_ch.value and the voltage value using frequency_ch.voltage:

if __name__ == '__main__':

 try:

 while True:

 output = ("Frequency Pot (A0) value={:>5} volts={:>5.3f} "

 "Duty Cycle Pot (A1) value={:>5} volts={:>5.3f}")

 output = output.format(frequency_ch.value, # (5)

 frequency_ch.voltage,

 duty_cycle_ch.value,

 duty_cycle_ch.voltage)

 print(output)

 sleep(0.05)

 except KeyboardInterrupt:

 i2c.deinit() # (6)

Finally, notice that the program is wrapped in a try/except block that will capture Ctrl + C
so that we can perform a clean-up using i2c.deinit().

Now that we have seen how to read analog input using our ADS1115, next, we will
integrate the LED.

Using PWM to control an LED
Now we will add the LED into the code, only we'll be doing this differently to what we've
done in previous chapters. The purpose of the LED for this exercise is to visually see the
effects of changing the duty cycle and frequency characteristics of PWM. We will use the
analog inputs of the two Pots to define the PWM duty cycle and frequency.

The code we discuss in this section extends the analog code example we just covered
in chapter05/analog_input_ads1115.py to use PiGPIO to create a hardware PWM
signal.

Two additional source code files are provided with this book that implement hardware-
timed PWM using PiGPIO and software PWM using RPi.GPIO:

chapter05/pwm_hardware_timed.py

chapter05/pwm_software.py

Connecting Your Raspberry Pi to the Physical World Chapter 5

[175]

Their overall code is similar, with the differences being the methods and input parameters
used to invoke PWM. We will revisit these files again in the upcoming section, Visualizing
software and hardware-timed PWM.

The code we are about to cover can be found in the chapter05/pwm_hardware.py file.
Please review this file before continuing:

Run the program in a Terminal and observe the output:1.

(venv) $ python pwm_hardware.py
Frequency 0Hz Duty Cycle 0%
... truncated ...
Frequency 58Hz Duty Cycle 0%
Frequency 59Hz Duty Cycle 0%
... truncated ...

Adjust the Pots until the frequency reads 60 Hz and the duty cycle reads 0%. The2.
LED should not be lit. The LED is unlit because the duty cycle is at 0%, so GPIO
12 (PWM0) is always low. Very slowly turn the duty cycle Pot to increase the
duty cycle and observe the LED slowly increase in brightness. At a 100% duty
cycle, GPIO 12 (PWM0) is always high 100% of the time and the LED is at its full
brightness.

If you are finding that the duty cycle printed on the Terminal does not
reach 0% or 100% at either end of the Pot's movement range, try
increasing the value of A_IN_EDGE_ADJ in your code (try +0.02 for
starters). Also, tweak this adjustment if you experience a similar issue
with the frequency range and dial.

Rotate the duty cycle dial until it reads less than 100% (for example, 98%), and3.
then adjust the frequency dial. The LED blinks on and off at this frequency. As
you lower the frequency toward zero, the LED blinks slower. For most people, at
around 50-60 Hz, the LED will be blinking so fast that it appears to be just on.
Remember that if the duty cycle is 0% or 100%, the frequency dial does not work!
That's because at either end of the duty cycle, the PWM signal is fully off or
on—it's not pulsing and hence frequency has no meaning.

Let's examine the code that makes this work.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[176]

Understanding the code
This example is using the hardware PWM features offered by PiGPIO. The ADS1115-
related code is the same as our previous example, so we will not cover it again here. We'll
start by looking at the additional global variables.

Global variables

At line (1) and (2) in the following code block, we define two variables for the minimum
and maximum duty cycle and frequency values. These values come from the API
documentation for the PiGPIO hardware_PWM() method, which we will see in use shortly:

MIN_DUTY_CYCLE = 0 # (1)

MAX_DUTY_CYCLE = 1000000

MIN_FREQ = 0 # (2)

MAX_FREQ = 60 # max 125000000

We have capped MAX_FREQ to 60 Hz for our demonstration so our human eyes can observe
the effects in the LED.

Next, we have a custom function to map value ranges.

Range mapping function

At line (3), we have a function named map_value():

def map_value(in_v, in_min, in_max, out_min, out_max): # (3)

 """Helper method to map an input value (v_in)
 between alternative max/min ranges."""
 v = (in_v - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
 if v < out_min: v = out_min elif v > out_max: v = out_max
 return v

The purpose of this method is to map an input range of values into another range of values.
For example, we use this function to map the analog input voltage range 0-3.3 volts into a
frequency range 0-60. You will frequently use a value-mapping function like this when
working with analog inputs to map raw analog input values into more meaningful values
for your code.

Next, we are ready to create the PWM signal.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[177]

Generating the PWM signal

This next code fragment is found in the main while loop.

At lines (4) and (5), we are reading in the voltage values from the frequency and duty cycle
Pots, before using the map_value() function to convert the voltage range of 0-3.3 volts into
our desired frequency and duty cycle ranges we saw defined as global variables. Notice
that we are also formatting the duty cycles as a percentage value for display purposes:

frequency = int(map_value(frequency_ch.voltage, # (4)

 MIN_A_IN_VOLTS, MAX_A_IN_VOLTS,

 MIN_FREQ, MAX_FREQ))

duty_cycle = int(map_value(duty_cycle_ch.voltage, # (5)

 MIN_A_IN_VOLTS, MAX_A_IN_VOLTS,

 MIN_DUTY_CYCLE, MAX_DUTY_CYCLE))

duty_cycle_percent = int((duty_cycle/MAX_DUTY_CYCLE) * 100)

pi.hardware_PWM(LED_GPIO_PIN, frequency, duty_cycle) # (6)

At line (6), we use pi.hardware_PWM() to use the Raspberry Pi's PWM hardware to
generate a PWM signal on the LED's pin.

Now that we have seen the effects of varying the frequency and duty cycles on an LED, we
will perform an exercise to visualize a PWM signal with a logic analyzer.

Visually exploring PWM with PiScope
Let's do an exercise and see the PWM waveform in a logic analyzer, which is a piece of
equipment used to visualize electronic signals. While the general principles behind PWM
are technically simple, to aid learning when starting out, it can be helpful to visualize what
a PWM signal looks like and observe how it changes visually as its duty cycle and
frequency change.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[178]

PiGPIO contains a software logic analyzer we can use for this purpose. Now, I need to
point out that it's a basic software logic analyzer and in no way compares to professional-
grade equipment, however, for our example and education, it will work a treat and cost us
nothing.

Let's download, install, and run PiScope. Here are the steps to follow:

First, we must install PiScope. Run the following commands to download,1.
compile, and install PiScope:

Download and install piscope
$ cd ~
$ wget abyz.me.uk/rpi/pigpio/piscope.tar
$ tar xvf piscope.tar
$ cd PISCOPE
$ make hf
$ make install

Run PiScope with the following command:2.

$ piscope

I'd recommend shutting down any resource-heavy applications before starting
PiScope and performing this exercise. The following screenshots do not show all
GPIOs like yours would by default because I've turned some off via the
menu Misc | GPIOs. If you, too, turn off GPIOs from the display, remember to
leave on SDA (GPIO 2) and/or SCL (GPIO 3) for this exercise as this creates a
continuous input signal for PiScope, which keeps the display moving in time.
Without this continuous input, PiScope pauses the display when there is no signal
input so our example will keep pausing the display at the duty cycle or
frequencies of 0, which will make the demonstration feel clunky.

Make sure the chapter05/pwm_hardware.py program is running in a3.
Terminal.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[179]

Slowly turn the duty cycle and frequency dials and observe how the PWM signal4.
changes on row number 12. Keeping our frequency range very low (for example,
0 to 60 Hz) means we can observe the PWM signal easily in the PiScope logic
analyzer:

Figure 5.8 – 25% duty cycle at 10 Hz

The preceding screenshot shows a 25% duty cycle at 10 Hz. If you examine the
last row in the screenshot, you will notice that GPIO 12 is high for 25% of a single
cycle and low for 75%.

The following screenshot shows a 75% duty cycle at 10 Hz. If you examine the last
row in the screenshot, you will notice that GPIO 12 is high for 75% of a single
cycle and low for 25%:

Connecting Your Raspberry Pi to the Physical World Chapter 5

[180]

Figure 5.9 – 75% duty cycle at 10 Hz

We have now seen what a PWM signal waveform looks like visually using PiScope, which
is a free and basic software logic analyzer provided by the developer of PiGPIO. Our
primary purpose behind visualizing PWM signals as an exercise was to provide a visual aid
to help you to understand PWM and its duty cycle and frequency properties.

In practice, when you are starting out and integrating with basic electronics, you probably
won't need a logic analyzer or even the need to visualize signals. However, as you advance
your knowledge and as you need to debug electronic integration problems at the
electronics level, I hope this basic introduction to the use of logic analyzers proves useful
and points you in the right direction for further inquiries.

Next, we'll point you toward the Python source files that demonstrate alternative PWM
techniques.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[181]

Visualizing software and hardware-timed PWM
Our code examples from the previous sections, Using PWM to control an LED, and Visually
exploring PWM with PiScope, both created a PWM signal using your Raspberry Pi's
PWM hardware. Accompanying the code for this chapter and listed in the following table
are alternative implementations that demonstrate the use of hardware-timed and software-
generated PWM signals. You may recall that we discussed these alternatives back in the
section entitled Creating PWM signals:

File Details

pwm_hardware.py

This is hardware PWM using PiGPIO (this is the code we've
seen in this chapter). You must use a PWM hardware GPIO pin
12, 13, 18, or 19.

pwm_hardware_timed.py
This is a hardware-timed PWM using PiGPIO. This will work
with any GPIO pin.

pwm_software.py
This is software PWM using RPi.GPIO (PiGPIO does not
provide software PWM). This will work with any GPIO pin.

Functionally, these examples are the same in that they will change your LED's brightness,
and I predict that you will find that hardware and software PWM perform similarly. As
you turn the frequency Pot's dial, the change to the LED and PiScope will feel smooth,
while the hardware-timed PWM will feel a little chunky. This is because the hardware-
timed frequencies (in PiGPIO) must be 1 of 18 predetermined values so the frequency
progression as you adjust the pot is not incremental and linear, but instead jumps to/from
the next predefined frequency. You'll see these predefined frequencies in an array in
pwm_hardware-timed.py.

As mentioned previously, software PWM is the least reliable method of producing PWM
signals because it is susceptible to distortion if your Raspberry Pi's CPU gets busy.

You can try to create and visualize PWM distortion with these steps:

Run pwm_software.py and set the duty cycle to high (for example, 98%) and the1.
frequency to 60 Hz. Do not use a 100% duty cycle because this is a fully-on
state and you would visually get a horizontal line, not repeating square
waveforms.
Start a resource-intensive program on your Raspberry Pi—something that will2.
put a load on the CPU. For example, try closing and relaunching the Chrome
web browser.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[182]

If you closely observe the LED, it may flicker occasionally as the PWM signal is3.
distorted. Alternatively, you may be able to observe the waveform distort in
PiScope, as indicated by the arrows in the following screenshot. You will notice
the width of the bars is not uniform when that the signal is distorting:

Figure 5.10 – Distortions in the PWM signal, 50% duty cycle at 50 Hz

Well done. You've just completed a detailed practical exercise using an ADS1115 to extend
your Raspberry Pi so that you can also interface it with analog electronics. Along the way,
you also learned how to produce a PWM signal with Python, saw the effects of varying this
signal on an LED, and observed the signal visually with PiScope.

Summary
Well done on getting this far, as there has certainly been a lot to get our heads around! As a
recap, we explored common numbering schemes for referencing GPIO pins and
reviewed popular GPIO libraries for Python. We also looked at the various interfacing
methods used to connect electronics to your Raspberry Pi and performed a practical
exercise to add an ADC to your Raspberry Pi and use it to visually explore PWM concepts
with an LED and the PiScope logic analyzer.

Your understanding of the fundamental concepts we explored and experimented with
during this chapter will help you to understand how your Raspberry Pi interfaces to
electronic components and devices and has provided you with a first-hand appreciation of
how we interact with analog components (for instance, our potentiometers) and complex
devices (that is, our ADS1115). We will be using and building on many of these
fundamentals as we progress through the remainder of this book.

This chapter has been largely software library and code-focused. However, in the next
chapter, Electronics 101 for the Software Engineer, we will turn our attention to electronic
concepts and common circuits that are used to interface electronics to a Raspberry Pi.

Connecting Your Raspberry Pi to the Physical World Chapter 5

[183]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

What serial communication interface allows devices to be daisy-chained?1.
You have an I2C device but do not know its address. How can you find it?2.
You have started using a new GPIO Python library for the first time but can't3.
seem to get any GPIO pins to work. What do you need to check?
You are using PiGPIO on Windows with Remote GPIO to drive a remote4.
Raspberry Pi. Now, you try to install a third-party device driver library but it's
failing to install under Windows However, you find it installed successfully on
the Raspberry Pi. What is the likely problem?
True or false: The Raspberry Pi has pins for both 3.3 volts and 5 volts, so you can5.
use either voltage when working with GPIO pins?
You have created a robot that uses servos. During simple testing, everything6.
seemed fine. However, now that you have finished, you notice the servos
randomly twitch. Why?
When the robot's servos move, you notice a lightning bolt icon on your monitor7.
or display is going blank. Why could this be happening?

Further reading
The GPIOZero website has a range of examples showing functionally equivalent examples
using both GPIOZero and RPi.GPIO. This is a great introductory resource for
understanding lower-level GPIO programming concepts and techniques:

https:/​/​gpiozero.​readthedocs.​io/​en/​stable/​migrating_​from_​rpigpio.​html

The following links contain additional material concerning the interfaces and concepts that
we have discussed in this chapter:

SPI interface: https:/​/​en.​wikipedia.​org/​wiki/​Serial_​Peripheral_​Interface

I2C interface: https:/​/​en.​wikipedia.​org/​wiki/​I%C2%B2C

1-wire interface: https:/ ​/​en. ​wikipedia. ​org/ ​wiki/​1-​Wire

PWM: https:/​/​en.​wikipedia.​org/​wiki/​Pulse-​width_​modulation

Potentiometers: https:/​/​en.​wikipedia.​org/​wiki/​Potentiometer

ADS1115 datasheet: http:/​/​www.​ti.​com/​lit/​gpn/​ads1115

https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://gpiozero.readthedocs.io/en/stable/migrating_from_rpigpio.html
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115
http://www.ti.com/lit/gpn/ads1115

6
Electronics 101 for the Software

Engineer
So far in this book, we've focused mostly on software. In this chapter, we're about to flip
that and focus on electronics. We'll do this by learning about the fundamental electronic
concepts that are the basis for interfacing basic electronic sensors and actuators with your
Raspberry Pi. What we'll learn about in this chapter will provide the foundation for many
of the circuits we'll discuss in Section 3, IoT Playground.

We will begin by covering the essential workshop tools that you will require for working
with electronics, and provide practical tips to help you purchase electronic components.
Next, we'll provide you with guidelines to help keep your Raspberry Pi from being
damaged as you work with its physical GPIO pins. We will also discuss common ways
electronic components fail to help you diagnose circuits that do not work.

We will then get into the electronics! Here, we will look at two important electronic laws –
Ohm's Law and Kirchoff's Law – and work through a practical example to explain why we
used a 200Ω resistor to accompany our LED in the circuits we were using in earlier chapters
(if you need a refresher about this LED circuit, please see Chapter 2, Getting Started with
Python and IoT).

Next, we will explore both digital and analog electronics and discuss the core circuits and
ideas that are used to integrate them with your Raspberry Pi. We will finish this chapter by
learning about logic-level conversion, a practical technique that is used to interface
electronics that operate at different voltages.

The following topics will be covered in this chapter:

Fitting out your workshop
Keeping your Raspberry Pi safe
Three ways electronic components fail
Electronic interfacing principles for GPIO control

Electronics 101 for the Software Engineer Chapter 6

[185]

Exploring digital electronics
Exploring analog electronics
Understanding logic-level conversion

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with a desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. The code
examples should work without the need to modify a Raspberry Pi 3 Model B or use a
different version of Raspbian OS, as long as your Python version is 3.5 or higher.

You can find this chapter's source code in the chapter06 folder in this book's GitHub
repository: https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-​for-
IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for this chapter:

$ cd chapter06 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependency is installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)

The hardware components we will require for this chapter are as follows:

A digital multimeter.
A red LED (datasheet for reference – https:/​/​www.​alldatasheet.​com/
datasheet-​pdf/​pdf/​41462/​SANYO/​SLP-​9131C-​81.​html; click on the PDF option).
Momentary Push Button Switch (SPST).

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html
https://www.alldatasheet.com/datasheet-pdf/pdf/41462/SANYO/SLP-9131C-81.html

Electronics 101 for the Software Engineer Chapter 6

[186]

200 Ω, 1k Ω, 2k Ω, and 51k Ω resistors.
10k Ω potentiometer
4-channel MOSFET-based logic level shifter/converter module. See Figure
6.12 (left-hand side module) for an example.

Fitting out your workshop
Having the right tools and equipment is important to help you put together, build, test, and
diagnose problems in electronic circuits. Here are the bare essentials (besides electronic
components) you're going to need as you journey deeper into electronics and create circuits
like the ones shown in this book:

Soldering iron: You will need a soldering iron (and solder) for odd jobs such as
joining header pins to breakout boards or soldering wires to components so that
they can be plugged into your breadboard.
Solder: Look for a general-purpose 60/40 (60% tin and 40% lead) resin core solder
with a diameter of around 0.5 mm to 0.7 mm.
Solder Sucker/Vacuum: We all make mistakes, so this device helps you remove
solder from a joint and undo your soldering work.
Wet Sponge or Rag: Always keep your soldering iron tip clean by removing
built-up solder – a clean tip promotes clean soldering.
Wire Stripper and Cutters: Keep a set of wire cutters and strippers just for your
electronics work. Chips and burrs in the cutter blades from other uses will
degrade their performance.
Digital Multi Meter (DMM): An entry-level DMM will be suitable for general
work and will include a range of standard features such as voltage, current, and
resistance measurements.
Breadboard: I highly recommend purchasing two full-size breadboards and
joining them together to get more breadboard real-estate. It'll make working with
the breadboard and components much easier.
Dupont (Jumper) Cables: These are the wires used with a breadboard.
They come in various types: male-male, male-female, and female-female. You
will need a mixture of them all.
Loose Header Pins: These are useful for joining Dupont cables together and for
making non-breadboard-friendly components breadboard-friendly.
External Power Supply: This is so you can power circuits externally from your
Raspberry Pi. For the purposes of this book, at a minimum, you will need a
breadboard power supply that can supply 3.3 and 5 volts.

Electronics 101 for the Software Engineer Chapter 6

[187]

Raspberry Pi Case: Make sure you have a case for your Raspberry Pi. A caseless
Raspberry Pi with all those exposed electronics underneath is an accident waiting
to happen.
GPIO Breakout Header: This makes working with a Raspberry Pi and
breadboards much easier.

If you do not already have the aforementioned equipment, keep an eye
out for a soldering iron kit and a breadboard starter kit on sites such as eBay
and Banggood. These kits often come bundled with many of the items
listed.

This list shows the basic tools that we require, but what about the actual electronics and
gadgets to play with? We'll look at that next.

Buying electronic modules and components
A catalogue of all the components and modules used throughout this book is contained in
the Appendix. In this section, I want to provide a few general tips and guidelines to help you
out when purchasing electronic components in case you have not done much of this before.
We will start with a few tips to help you when purchasing loose components.

Purchasing lose components
When it comes to purchasing loose components such as resistors, LEDs, push buttons,
transistors, diodes, and other components (which we will be exploring in Section 3, IoT
Playground – Practical Examples to Interact with the Physical World, of this book), there are
some guidelines that will help you out, as follows:

Source the specific component values and part numbers listed in the Appendix.
Purchase many spares since it's possible that you will damage components while
learning to use them.
If you're purchasing from sites such as eBay or Banggood, carefully review the
details of the item, and preferably zoom in on the images of the parts and check
the part numbers shown. Never rely solely on the title of the listing. Many sellers
add a variety of terms to their titles for search optimization purposes that do not
necessarily relate to the actual item being sold.
Search around sites such as eBay and Banggood for terms such as electronic
starter kit. You may be able to pick up a mixed bundle of loose components in
one transaction.

Electronics 101 for the Software Engineer Chapter 6

[188]

These points also apply when purchasing sensors and modules, which we will talk about
next.

Purchasing open source hardware modules
I'm sure you are aware of open source software, but there is also open source hardware.
This is where the maker of some electronic hardware publishes the design and schematics
publicly so that anyone can make (and sell) the hardware. You will find many breakout
modules (such as the ADS1115 modules we used in Chapter 5, Connecting Your Raspberry
Pi to the Physical World) from various vendors with different (or no) branding. Different
vendors may also make their modules in different colors and, while less common, different
physical layouts.

The core or heart of a module – particularly the more simple ones – is often a single
integrated circuit (IC or chip). As long as the core IC and I/O pins are similar, it's generally
safe to assume that boards will operate the same way.

SparkFun (https:/​/​www.​sparkfun.​com/​) and Adafruit (http:/​/​adafruit.​com/​) are two
companies producing open source hardware that many others clone. A big advantage you
will get when you purchase from these companies is that, often, their products include code
examples, tutorials, and tips on using their products, and the products are of good quality.
Yes, you may pay a little more, but when starting out and especially for more complex
electronics, the investment can save you a lot of time. It's not uncommon to find that
cheaper clones arrive faulty – so you'll need to purchase two or more to hedge your bets.

We have now covered some suggestions and tips to help you fit out your workshop and
buy electronic components. Having the right tools available and learning how to use them
(especially soldering, which will take practice if this is a new skill) is essential to help make
your electronics journey a smooth and productive one. At times, purchasing loose
components can be confusing and sometimes error-prone, especially where subtle
differences in specifications or labeling can have dramatic practical implications, so be
diligent and double-check what you are buying if you are unsure. Finally, as suggested in
the Appendex, purchase spare components. It's no fun having to abruptly stop your learning
midway through a circuit build because a component gets damaged and you need to source
or wait for a replacement to arrive!

Next, we will discuss guidelines to help you keep your Raspberry Pi safe when interfacing
electronics to it.

https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
http://adafruit.com/
http://adafruit.com/
http://adafruit.com/
http://adafruit.com/
http://adafruit.com/
http://adafruit.com/
http://adafruit.com/
http://adafruit.com/

Electronics 101 for the Software Engineer Chapter 6

[189]

Keeping your Raspberry Pi safe
In this section, we will cover guidelines and suggestions to help keep your Raspberry Pi
safe while you are interfacing electronics with it. By being careful and diligent in your
approach, these guidelines will help you minimize any potential for damage to your
Raspberry Pi or electronics components.

Don't worry if some of the electronic-orientated points such as voltages and currents do not
make sense at the moment. We'll be touching on these concepts throughout this chapter,
and during Section 3, IoT Playground – Practical Examples to Interact with the Physical World, of
this book, so more context will be coming:

Never apply more than 3.3 volts to any input GPIO pin. Higher voltages can
cause damage.
Never use more than 8 mA from any single output GPIO pin (they can handle up
to ~16 mA, but by default, stick to 8 mA to ensure reliable GPIO operation). As a
rule of thumb, do not power anything other than LEDs and breakout modules
unless you know what you are doing. In Chapter 7, Turning Things On and Off,
we'll look at circuits that can be used to switch higher current and voltage loads.
Never use more than a combined 50 mA across multiple GPIO pins.
Never use more than 0.5 mA with a GPIO pin configured for input.
Always disconnect the power to your circuits before connecting or disconnecting
them to your Raspberry Pi or making any changes.
Always stop any running programs that are interacting with GPIO pins before
connecting, disconnecting, or working on a circuit.
Always double-check your wiring before applying power to your circuits.
Never substitute random component values in a circuit – they don't have the
correct and expected value shown in the schematic diagram.
If you see a lightning bolt icon on your Raspberry Pi's monitor or the monitor
goes blank when you run your program, that's the Pi telling you that your circuit
is drawing too much power from the Raspberry Pi.
Never directly connect and use inductive loads and mechanical devices such as
motors, relays, or solenoids that use magnates from GPIO pins. They can draw
too much current and cause a phenomenon known as EMF flyback, which can
damage surrounding electronics, including your Raspberry Pi.

The power supply you have for your Raspberry Pi should ideally be 3
amps (15 watts). Many phone chargers are rated less than this, and their
use is a common reason for seeing the lightning bolt icon (or a blank
display) when interfacing simple electronics.

Electronics 101 for the Software Engineer Chapter 6

[190]

When working with electronics, from time to time, components do get damaged or fail.
Let's briefly look at ways this can occur.

Three ways electronic components fail
Working with electronics is different from software. In the software world, we can change
code, break code, debug code, and fix code as many times as we want with no real harm.
We can also freely back up and restore states and data. When working with electronics, we
do not have this luxury. We're in the physical world, and if something gets damaged, it's
final!

Components and circuits made of components, including a Raspberry Pi, can become
damaged and fail in many different ways due to them being connected incorrectly,
oversupplying too much voltage, supplying or sourcing too much current, overheating, and
even mishandling delegate components to the point that they physically break or are
damaged by static electricity from your body.

When a component fails, it can fail in a few different ways:

It fails in a puff of smoke, melts, or otherwise displays a physical sign that it has
been damaged.
It fails silently, with no visual indication of the failure.
It is damaged but continues to work more or less as expected, but then sometime
in the future, it just silently fails without warning.

Failing with a physical sign is the outcome we want because it's obvious what failed and
what needs to be replaced. It also gives us a starting point where we can start diagnosing
our circuits. Silent failures and delayed failures are painful and time-consuming, especially
when starting.

Here are some tips to help you build and debug faulty circuits when you're starting:

Always double-check your circuits before applying power.
Have spare parts at hand. It's much easier to diagnose and test circuits if you
have known good parts you can substitute into the circuit.
If you deem something damaged, then bin it immediately. You don't need faulty
parts getting mixed up with good parts, especially when there is no obvious sign
of damage.

Next, we will discuss core electronic principles that govern why and how components are
chosen in a circuit and illustrate the concepts with our LED circuit.

Electronics 101 for the Software Engineer Chapter 6

[191]

Electronics interfacing principles for GPIO
control
While this book is not a book on electronic theory, there are a few core principles that are
important to have an appreciation for because they impact circuit design and how they
interface with your Raspberry Pi. The goal of this section is to present you with a basic
understanding of why circuits are designed in certain ways and how this relates to GPIO
interfacing. Armed with this basic knowledge, I hope it provides you with the incentive to
explore the core ideas and principles in more depth. You'll find suggested resources in the
Further reading section, at the end of this chapter.

We will start our coverage of electronic principles with what is arguably two of the most
fundamental electrical principles of them all – Ohm's Law and power.

Ohm's Law and power
Ohm's Law is a fundamental electronics principle that explains how voltage, resistance, and
current relate to each other. Together with the principle of power, these are core underlying
principles that explain why certain value components are chosen in circuits.

Ohm's Law is expressed as the following equation:

Here, V is voltage measured in volts, I (capital i) is the current measured in amps, and R is
resistance measured in Ohms, commonly prefixed with Ω, the Greek symbol for Omega.

On the other hand, power is expressed as the following equation:

Here, P is power measured in Watts, I (capital i) is the current measured in amps (same as
in Ohm's Law), and R is resistance measured in Ohms (same as in Ohm's Law).

The take-home principle regarding these equations is that you cannot change a single
parameter in an electronic circuit without affecting another. This means that components
are selected and arranged in a circuit to ensure that the voltage, current, and power is
proportioned appropriately for individual components and the overall operation of the
circuit.

Electronics 101 for the Software Engineer Chapter 6

[192]

If you are new to this world of electronics and this does not sink in straight away, do not
get disheartened! It does take time and practice. In addition to Ohm's Law, we also have
Kirchhoff's Law, which we will be talking about next.

Kirchhoff's circuit laws
Kirchhoff's voltage and current laws are two laws that circuits abide by. They are two laws
essential to electrical engineering, and are stated as follows:

The algebraic sum of all voltages in a loop must equal zero.
The algebraic sum of all currents entering and exiting a node must equal zero.

That's about as deep as we're going to go on these laws. I have mentioned these laws here
because the voltage law is the one we will see in action in the next section, when we
calculate why we've been using a 200 Ohm resistor in earlier chapters for our LED circuits.

With that, we have covered briefly three important electrical principles or laws – Ohm's
Law, power, and Kirchhoff's circuit laws. It's now time to put these principles into practice.
We will do this with an exercise to work out why we have been using a 200Ω series resistor
in our LED circuits.

Why are we using a 200 Ohm resistor for the LED
circuit?
So far in this book, our electronics have mostly evolved around LEDs. I have done this for
good reason. LEDs (and resistors) are easy to use components and provide the basic
building blocks for learning about concepts such as Ohm's Law, power, and Kirchhoff's
voltage law. Master the basics of LED circuits and the calculations that lie behind them and
you will be well on your way to undertaking more complex components and circuits.

Let's go a little deeper with our LED and explore its data properties and see the application
of Ohm's Law, power, and Kirchhoff's voltage law. Through a series of examples, we will
work through a process to explain why the LED circuits you've seen previously in this book
are using a 200 Ohm resistor.

Electronics 101 for the Software Engineer Chapter 6

[193]

The following is a basic LED circuit, similar to what we have been using so far in this book.
If you need a refresher on this circuit, please revisit Chapter 2, Getting Started with Python
and IoT:

Figure 6.1 – LED and resistor circuit

We have been using a typical 5 mm red LED. I've extracted part of its typical technical
specifications here. This distinction of typical and red is emphasized because LED
specifications do vary, depending on their color, maximum luminosity, physical size, and
manufacturer. Even LEDs from the same batch vary.

Here are some of the core specifications relating to our referenced red LED datasheet:

A Forward Voltage Drop (VF) between 1.7 and 2.8 volts, with the typical drop
being 2.1 volts. This is the voltage the LED needs to illuminate. If there is not
enough voltage in the circuit for the LED, it will not illuminate. If there is more
than it requires, that's okay – the LED will just take what it needs.

A maximum continuous Forward Current (IF) of 25 mA. This is the safe current
required to illuminate the LED to its maximum brightness when it's always on,
which, for some LEDs, can be too bright for comfort. Providing less current
means the LED will be dimmer, while providing more can damage the LED. For
our LED and datasheet, when pulsing the LED (for example, using PWM), the
maximum current can go up to (IFP) 100 mA.

What about power? LEDs are components that work on voltage and current. If you look at
the power equation (), you'll see that power is a function of voltage (V) and
current (I). As long as you are working within the current ratings of the LED, you will be
within its power tolerances.

Electronics 101 for the Software Engineer Chapter 6

[194]

If you do not have a matching datasheet for an LED (which is common
when pushing in small quantities), use a voltage drop of 2 volts and a
reference amperage of 20 mA for your calculations. You can also use a
digital multimeter set to the diode setting to measure the forward voltage
for an LED.

Let's move on and see how we arrive at the value for the R1 resistor.

Calculating the resistor value
In the preceding circuit diagram, we have the following parameters:

Supply voltage of 3.3 volts
LED typical forward voltage of 2.1 volts
LED current of 20 mA (test condition for mA is mentioned in the datasheet for
voltage drops)

Here is the process to calculate the resistor value:

Our resistor (labelled R1) needs to drop 1.2 volts, which is a simple application of1.
Kirchhoff's voltage law that we mentioned briefly previously; that is, The algebraic
sum of all voltages in a loop must equal zero. So, if our source voltage is +3.3 volts
and the LED drops 2.1 volts, then the resistor must drop 1.2 volts. This means we
get the following equation:

+3.3V + -2.1V + -1.2V = 0V

We can arrange Ohm's Law algebraically so that we get the following:2.

Using this formula, we calculate our resistor's value:3.

= 60Ω (hence, resistor R1 in the preceding circuit is 60Ω)

Electronics 101 for the Software Engineer Chapter 6

[195]

But this is not 200Ω. Our example so far is a simple LED and resistor circuit connected to a
3.3 volt supply, not a Raspberry Pi. There's more to consider because we need to respect the
current limitations of the Raspberry Pi's GPIO pins, which we'll do next.

Factoring in the Raspberry Pi's current limits
The maximum current we can safely use with a GPIO pin configured for output is 16 mA.
However, there is a configurable aspect of GPIO pins, which means that, by default, we
should not use more than 8 mA per GPIO. This limit can be configured so that it goes up to
16 mA, but this is beyond our scope. Ideally, we want to be moving toward external circuits
when more current is needed rather than pushing the pins higher and higher. We will learn
how to do this in Chapter 7, Turning Things On and Off.

While we want to limit a single GPIO output pin to 8 mA, we should not
exceed a combined total of ~50 mA over multiple GPIO pins. When it
comes to GPIO input pins, we should limit the current to 0.5 mA for safe
operation when connecting an external input device or component.
Connecting an input GPIO pin directly to the Raspberry Pi's +3.3 V or
GND pin is fine as the measured current is approximately 70 microamps.
(We'll learn how to measure current with a multimeter in Chapter
7, Turning Things On and Off.)

Let's modify our calculation and continue with this process:

If we cap the current to 8 mA, we can use our previous equation to arrive at the1.
value for R1:

R1 = 150Ω

A resistor's rated value is never expected to be exact. They have a value2.
tolerance, and if our physical resistor was less than 150Ω, according to Ohm's
Law, we'd increase the current in the circuit and exceed the 8 milliamp limit.

Electronics 101 for the Software Engineer Chapter 6

[196]

Due to this, we will choose a slightly higher value. This might be as simple as
using a rule of thumb, such as selecting a standard resistor value 2 values higher
than 150Ω, or multiplying 150Ω by our resistor's tolerance and selecting the next
highest standard value. Let's use the latter approach, assuming our resistor's
tolerance is ±20% (which, by the way, would be a very poor quality resistor. 5%
and 10% is more common):

150Ω x 1.2 = 180Ω

180Ω just happens to be a standard resistor value, so we can use it, but I don't have one
(and you'll often find that you don't have the exact resistor values you want after
calculations either!). However, I do have a supply of 200Ω resistors, so I will just use one of
these.

For prototyping and tinkering, any resistor from 180Ω up to about 1kΩ will be more than
adequate for our circuit. Just remember that as you increase the resistor's value, you limit
the current, so the LED will be dimmer.

But what about the power going through the resistor and its power rating? We'll calculate
that next.

Calculating the resistor's power dissipation
General-purpose resistors like the ones we're using in our breadboards are commonly rated
to be 1/8 Watt, 1/4 Watt, or 1/2 Watt. If you supply too much power to a resistor, it will burn
out with a puff of smoke and give off a horrible smell.

Here is how we calculate the power dissipation of our 200Ω resistor when we have a 3.3-
volt power source:

The power dissipated by a resistor can be calculated with the following formula.1.
Note that the voltage V is the voltage drop across the resistor in volts, while R is
the resistance in Ohms:

Electronics 101 for the Software Engineer Chapter 6

[197]

Therefore, when we substitute our resistor's voltage drop and resistance value in2.
the formula, we get the following:

= 0.0072 Watts, or 7.2 milliwatts (or mW)

Our power value of 7.2 mW is below even a 0.25 Watt-rated resistor, so a 1/83.
Watt or above resistor is safe in our circuits and will not burn out in a puff of
smoke.

If you think the power equation looks different from the one you saw earlier, you're right.
This is the power equation rewritten to use voltage and resistance. Here's a handy
diagram that I'm sure you will see during your electronics journey that expresses Ohm's
Law and power in different ways:

Figure 6.2 – Ohm's Law power wheel

I'll leave you with a final tip about LEDs, and something to think about.

Electronics 101 for the Software Engineer Chapter 6

[198]

It's the current that alters the LED's brightness. The 25 mA value from the
datasheet is the maximum continuous safe current to drive the LED to its
maximum brightness. Less current is fine; it just means the LED will be
dimmer.

Hang on a minute – in Chapter 5, Connecting Your Raspberry Pi to the Physical World, we
used PWM, which is a pseudo-analog voltage used to change the brightness of the LED.
Pause and think about this for a minute…what's going on? It's simply an application of
Ohm's Law. In our circuit, our resistor was fixed at 200Ω. Hence, by varying the voltage, we
also vary the current and hence the brightness of the LED.

What do you think? Rest assured that's as complex as the math will get in this book. I do,
however, encourage you to repeat these exercises until you are comfortable with the
process. Understanding the basics of electronics (and the calculations that go with it) is the
difference between a hobbyist who just guesses at components using trial and error until a
circuit works and an engineer who can actually build what they need.

Next, we will explore core concepts related to digital electronics.

Exploring digital electronics
Digital I/O essentially means detecting or making a GPIO pin high or low. In this section,
we will explore core concepts and see some examples of digital I/O in operation. We'll then
talk about how this relates to your Raspberry Pi and any digital electronic components you
will interface with it. We will start or digital I/O journey by looking at and playing with
digital output.

Digital output
In simple electrical terms for our Raspberry Pi, when we drive a GPIO pin high, its voltage
measures ~3.3 volts, and when we drive it low, it measures ~0 volts.

Let's observe this using a multimeter:

Different multimeters may have different connections and labeling than
the multimeter illustrated here. Consult your multimeter's manual if you
are unsure how to set it up for measuring voltage.

Electronics 101 for the Software Engineer Chapter 6

[199]

Set your multimeter to its voltage setting and attach it to GPIO 21 and GND, as1.
shown in the following diagram:

Figure 6.3 – Connecting a multimeter to a GPIO pin

Electronics 101 for the Software Engineer Chapter 6

[200]

Run the following code, which you can find in the2.
chapter06/digital_output_test.py file. You will notice that the meter
toggles between about 0 volts and about 3.3 volts. I say about because nothing is
ever really perfect or precise in electronics; there are always tolerances. Here's a
synopsis of the code:

... truncated ...

GPIO_PIN = 21

pi = pigpio.pi()

pi.set_mode(GPIO_PIN, pigpio.OUTPUT) # (1)

try:

 while True: # (2)

 # Alternate between HIGH and LOW

 state = pi.read(GPIO_PIN); # 1 or 0

 new_state = (int)(not state) # 1 or 0

 pi.write(GPIO_PIN, new_state);

 print("GPIO {} is {}".format(GPIO_PIN, new_state))

 sleep(3)

... truncated ...

On line 1, we configured GPIO 21 as an output pin, while on line 2, we started a
while loop that alternates the state of GPIO 21 between high and low (that is, 0
and 1) with a 3-second delay in between each state transition.

As you may have noticed, digital output on our Raspberry Pi is that simple – high or low.
Now, let's consider digital input.

Digital input
Generally, when we think about digital input and voltages for a 3.3-volt device such as the
Raspberry Pi, we think of connecting a pin to the ground (0 volts) to drive it low or connect
it to 3.3 volts to make it high. In most applications, this is exactly what we will strive to do.
However, in truth, there is more to this story because GPIO pins don't just operate at two
discrete voltage levels. Instead, they work within a range of voltages that define an input
pin as being high and low. This applies to the Raspberry Pi and similar computers with
GPIOs, microcontrollers, ICs, and breakout boards.

Electronics 101 for the Software Engineer Chapter 6

[201]

Consider the following diagram, which shows a voltage continuum between 0 and 3.3
volts, as well as three highlighted areas labeled low, floating, and high:

Figure 6.4 – Digital input trigger voltages

This illustration is telling us that if we apply a voltage between 2.0 volts and 3.3 volts, then
the input pin will read as a digital high. Alternatively, if we apply a voltage between 0.8
volts and 0 volts, the pin will read as a digital low. Anything beyond these ranges is a
danger zone and you'll likely damage your Raspberry Pi. While you probably won't be
accidentally applying a negative voltage to a pin, there is a real risk of accidentally
applying more than 3.3 volts to a pin since it is common to be working with 5-volt digital
circuits.

So, what about that gray area in the middle? Are we digital high or digital low? The answer
is that we do not know and can never reliably know. In this range, the pin is said to be
floating.

Let's see the effects of a floating pin. We'll start by creating the following circuit on our
breadboard:

Electronics 101 for the Software Engineer Chapter 6

[202]

Figure 6.5 – Push button circuit

Here are the steps for this. The step numbers here match the numbered black circles shown
in the preceding diagram:

Position the push button on your breadboard.1.
Connect one leg of the push button to a GND pin on your Raspberry Pi. In the2.
diagram, we are connecting the lowermost leg of the push button (shown at
hole E4).
Finally, connect the other leg of the push button (in the diagram, this is the3.
uppermost leg, shown at hole E2) to GPIO 21 on your Rasberry Pi.

With your circuit build now complete, let's test the circuit and see what happens:

Run the following code, which can be found in the1.
chapter06/digital_input_test.py file:

... truncated...

GPIO_PIN = 21

pi = pigpio.pi()

pi.set_mode(GPIO_PIN, pigpio.INPUT) # (1)

... truncated...

try:

 while True: # (2)

Electronics 101 for the Software Engineer Chapter 6

[203]

 state = pi.read(GPIO_PIN)

 print("GPIO {} is {}".format(GPIO_PIN, state))

 sleep(0.02)

except KeyboardInterrupt:

 print("Bye")

 pi.stop() # PiGPIO cleanup.

This code configures GPIO21 as input on line (1). On line (2), using a while loop,
we rapidly read in the GPIO pin's value (1 or 0) and print it to the Terminal.

Touch the wires on the breadboard with your fingers, as well as any exposed2.
metal contacts surrounding the switches. The wires and contacts act like an
antenna picking up electrical noise, and you should see the Terminal output
fluctuating between high (1) and low (0) – this is a floating pin. This also
illustrates a common misconception that a GPIO pin configured for input and
connected to nothing is always low by default.

If your initial thoughts were along the lines of "Wow! I can create a touch switch because of
this," then sorry; you'll be disappointed – it's just not reliable, at least not without additional
electronics.

Next, we will look at two common ways to avoid floating pins.

Using pull-up and pull-down resistors
When a pin is not connected to anything, it's said to be floating. As shown in the preceding
example, it floats around, picking up electrical noise around it from other nearby
components, wires connected to it, and charges coming from yourself.

Referring again to the preceding diagram, when the button is pressed, the circuit completes
and GPIO 21 gets connected to the ground, and hence we can say for certain that the pin is
low. And as we just saw when the button is not pressed, GPIO 21 is floating – it can
fluctuate between high and low due to external noise.

This needs to be rectified, and we can do this two ways – with a resistor or in code.

The resistor solution
If we add an external resistor to the circuit, as shown in the following diagram, then we'll
introduce what is called a pull-up resistor, which serves the purpose of pulling
(meaning connecting) GPIO pin 21 up (meaning connected to a positive voltage) to 3.3 volts:

Electronics 101 for the Software Engineer Chapter 6

[204]

Figure 6.6 – Push button circuit with a pull-up resistor

Here are the steps to create this circuit on your breadboard. The step numbers here match
the numbered black circles shown in the preceding diagram:

Place the push button on your breadboard.1.
Place the resistor (with a value between 50kΩ to 65kΩ) on your breadboard. One2.
end of the resistor shares the same row (shown at hole B5) as the upper
positioned leg of the push button. The other end of the resistor is placed on an
empty row.
Connect the other end of the resistor to a 3.3-volt pin on your Raspberry Pi.3.
Connect the lower leg of the push button to a GND pin on your Raspberry Pi.4.
Finally, connect the row shared by the upper leg of the push button and lower5.
leg of the resistor (shown at hold D5) to GPIO 21 on your Raspberry Pi.

Now that you have created the circuit, here is a brief description of how it works:

When the button is not pressed, the resistor pulls GPIO 21 up to the 3.3-volt pin.
Current flows along this path and the pin will read as a guaranteed digital high.

Electronics 101 for the Software Engineer Chapter 6

[205]

When the button is pressed, the segment of the circuit connecting GPIO 21 to the
ground is created. Because more current flows in this path since it has less (near-
zero) resistance, the GPIO pin is connected to the ground, and thus will read as
low.

Run the same code in chapter06/digital_input_test.py, only this time, when you
touch the wires, the output should not fluctuate.

If your circuit does not work and your wiring is correct, try rotating your
push button 90 degrees on the breadboard.

Why is a 50kΩ to 65kΩ resistor being used in the preceding diagram? Read on – we'll find
out why when we look at a code-based alternative to using our own physical resistors.

The code solution
We can solve our floating pin situation in code by telling our Raspberry Pi to activate and
connect an embedded pull-up resistor to GPIO 21, which, according to the Raspberry PI's
documentation, will be within the range 50kΩ-65kΩ, hence why we stipulated that range in
the circuit shown in the previous diagram.

The following diagram shows a circuit similar to the one shown in the preceding diagram,
but without the physical resistor in the external circuit. I've added a resistor inside the
Raspberry Pi diagram to illustrate the fact that there is a physical resistor hiding away
somewhere in the Raspberry Pi's circuitry, even though we can't see it:

Figure 6.7 – Push button circuit using an embedded pull-up resistor

Electronics 101 for the Software Engineer Chapter 6

[206]

Let's enable a pull-up resistor in code and test this circuit. Here are the steps for you to
follow:

This example uses the push button circuit shown previously in Figure 6.5. Please1.
recreate this circuit on your breadboard before continuing.
Next, edit the chapter06/digital_input_test.py file to enable an internal2.
pull-up resistor, as follows:

#pi.set_pull_up_down(GPIO_PIN, pigpio.PUD_OFF) <<< COMMENT OUT THIS

LINE

pi.set_pull_up_down(GPIO_PIN, pigpio.PUD_UP) <<< ENABLE THIS LINE

Run the chapter06/digital_input_test.py file again. As you press the3.
button, you should see the high/low (0/1) values changing on the Terminal;
however, touching the wires or Terminals of the button should not cause any
interference.

When reading through the preceding code and observing the Terminal output, if the fact
that the Terminal prints 1 when the button is not pressed and 0 when it is pressed (that is,
button pressed = pin low) seems a bit back to front in a programming sense, then you are
right…and wrong. It's because you're looking at the circuit as a programmer. I've done this
on purpose because it is a configuration you will see often. This is known as active low,
which means the button is active (pressed) when the pin is low.

The opposite resistor setup is also possible and equally valid. That is, you can design the
circuit with GPIO 21 pulled to the ground by default, in which case we are employing a
pull-down resistor, whether it be a physical resistor or an embedded one activated in code.
In this scenario, you will then see that when the button is pressed, the pin reads 1 (high),
and it may feel more comfortable in code!

As an exercise, try to change the circuit and code so that it's pull-down by default.

When reading a digital input circuit, you need to read the circuit in
combination with the code that accompanies it, or in respect to the code
you will write. Overlooking how pull-up or pull-down resistors are used
can be the basis for seemingly simple digital input circuits not working.

Now that we understand we can have physical and code-activated pull-up and pull-down
resistors, can we say that one approach is better than the other? The short answer is, yes,
sometimes...external resistors do have an advantage.

Electronics 101 for the Software Engineer Chapter 6

[207]

The advantage of an external pull-up or pull-down resistor is that they are always present.
Code-activated pull-up and pull-downs are only present if two conditions are met:

Your Raspberry Pi is powered on.
You have run the code that activates the pull-up or pull-down. Until this
happens, the pin is floating! We will look at an application where we prefer an
external pull-down resistor in Chapter 7, Turning Things On and Off.

This is not to say that code-activated pull-up and pull-down resistors are inferior, it just
means you need to consider the impact of a floating pin for your circuit when your
Raspberry Pi is off or you are not running code.

We have now covered the basics of digital input and output, which, in many ways, are the
backbone of electronic interfacing. We also learned that there is more going on with digital
input than simply a high/on or low/off state in that threshold voltage levels actually
determine what voltage level is considered a digital high or a digital low for your
Raspberry Pi. In addition to this, we also learned that it is necessary to appropriately
employ a pull-up or pull-down resistor when dealing with digital input so that the input
circuit is reliable and predictable – that is, it's not floating.

Your understanding of digital I/O will be beneficial to you when designing predictable
digital input circuits (floating pins and missing or incorrectly used pull-up or down-down
resistors are common sources of errors when starting out!). Furthermore, your
understanding of threshold digital high/low voltage levels will be valuable when you are
integrating with non-Raspberry Pi devices and electronics. We'll pick up on this digital
voltage theme again later in this chapter, in the Logic-level conversion section.

Now, let's move on from digital and explore analog electronics.

Exploring analog electronics
As we saw in the previous section, digital I/O is all about discrete highs or lows, as
determined by voltage. Analog I/O, on the other hand, is all about degrees of voltage. In
this section, we will explore some core concepts and look at examples of analog I/O in
operation.

Electronics 101 for the Software Engineer Chapter 6

[208]

Analog output
In Chapter 5, Connecting Your Raspberry Pi to the Physical World, we discussed that by using
PWM on a digital output pin, we can create a pseudo-analog output or the appearance of a
variable output voltage. Furthermore, we also saw PWM in use back in Chapter 3,
Networking with RESTful APIs and Web Sockets Using Flask, when we used this concept to
control the brightness of an LED.

In this section, we'll explore the idea underlying PWM just a little further with a short
exercise. Our example is similar to the one we performed for digital output previously, only
this time, we are using PWM to produce a varying voltage on a GPIO pin. Here are the
steps we need to follow:

Connect your multimeter to your Raspberry Pi as we did for digital output1.
in Figure 6.3.
Run the following code, which you can find in the2.
chapter06/analog_pwm_output_test.py file.
As the code runs, your multimeter will step through a range of different voltages.3.
They won't be exact, as per the Terminal screen output shown here, but should
be reasonably close enough to illustrate the intent:

(venv) $ analog_pwm_output_test.py

Duty Cycle 0%, estimated voltage 0.0 volts

Duty Cycle 25%, estimated voltage 0.825 volts

Duty Cycle 50%, estimated voltage 1.65 volts

Duty Cycle 75%, estimated voltage 2.475 volts

Duty Cycle 100%, estimated voltage 3.3 volts

Let's have a look at the code, which is partly replicated here.

It is using PiGPIO's hardware-timed PWM, which is configured on line 1, while a set of
duty cycle percentages are defined on line 2. These are the duty cycle values that our code
will step through on line 3. It's on line 4 that we set the duty cycle for GPIO 21 before
sleeping for 5 seconds so that you can read the value on the Terminal and your multimeter:

... truncated ...

pi.set_PWM_frequency(GPIO_PIN, 8000) # (1)

duty_cycle_percentages = [0, 25, 50, 75, 100] # (2)

max_voltage = 3.3

try:

 while True:

 for duty_cycle_pc in duty_cycle_percentages: # (3)

 duty_cycle = int(255 * duty_cycle_pc / 100)

Electronics 101 for the Software Engineer Chapter 6

[209]

 estimated_voltage = max_voltage * duty_cycle_pc / 100

 print("Duty Cycle {}%, estimated voltage {} volts"

 .format(duty_cycle_pc, estimated_voltage))

 pi.set_PWM_dutycycle(GPIO_PIN, duty_cycle) # (4)

 sleep(5)

... truncated ...

If you ever need to provide a more true form analog output from your Raspberry Pi, then
you might like to explore how you can use a Digital-to-Analog Converter (DAC). They
will typically interface via I2C or SPI, and you will control them via a driver library similar
to the ADS1115 ADC, only you'll be outputting a varying voltage rather than reading one.

Now that we've discussed analog output and seen a simple example of how to create one
using PWM, next, we will look at the input side of analog electronics.

Analog input
In Chapter 5, Connecting Your Raspberry Pi to the Physical World, we learned how to use the
ADS1115 ADC breakout module, and that analog input is all about measuring a voltage
from within a predefined range, which, for our purposes, is between 0 volts and 3.3 volts.
While in digital I/O, we'd say 0 volts measured on a pin means low and 3.3 means high, in
analog I/O, there are no concepts of high or low in this regard.

Many simple analog components and sensors operate on the principle that their resistance
changes in accordance with what they measure. For example, a light dependent resistor, or
LDR, changes its resistance in proportion to the light it detects. However, analog input is all
about measuring voltage. To turn a varying resistance into a varying voltage, we use a
voltage divider circuit.

Voltage dividers
The following diagram shows a simple two-resistor voltage divider circuit. Our resistor
values are fixed for this example to illustrate the basic principle. Notice that we've used 5
volts in this example. The reason for this will be revealed shortly when we cover logic-level
conversion:

Electronics 101 for the Software Engineer Chapter 6

[210]

Figure 6.8 – Measuring voltages across a voltage divider

It's a principle of electronics and resistors that voltage is dropped across series resistors in
proportion to their resistance. In the preceding circuit, R1 is twice as high as R2, so it drops
twice as much voltage. Here is the basic formula, as applied to the preceding circuit (it's
actually the application of Kirchhoff's Law and Ohm's Law again):

Vout = 5 volts x 2000Ω / (1000Ω + 2000Ω)

Vout = 3.33333 volts

We'll see the application of voltage dividers in Section 3, IoT Playground – Practical Examples
to Interact with the Physical World, but for now, to see this principle in practice and to help
cement the concept, apply a digital multimeter across the points marked in the preceding
diagram to verify that the measured voltages are close to what's indicated; that is ~1.6 volts
across R1 (points A and B in the preceding diagram) and ~3.3 volts across R2 (points B and
C). The measurement across R2 (points B and C) is the Vout in the preceding equation.

What about the choice of resistor values? For a voltage divider, the most important part of
the resistor value's choices is their relative ratios to divide the voltage in a way we want.
Beyond that, it comes down to current flow and resistor power ratings – again, these are
applications of Ohm's Law and power.

Remember the potentiometers in Chapter 5, Connecting Your Raspberry Pi to the Physical
World? They're actually voltage dividers! We had the middle wiper connected to AIN1 and
AIN2 of the ADS1115 and when you turned the dial on the potentiometer, what you were
doing was changing the resistance across Terminals A and B relative to the center wiper,
thus creating the variable voltage that's read by the ADS1115.

Electronics 101 for the Software Engineer Chapter 6

[211]

The following diagram shows how a potentiometer relates to a semantic diagram. Points A,
B, and C are comparable to those indicated in the preceding circuit:

Figure 6.9 – A potentiometer is a voltage divider

Let's perform an experiment to see how a potentiometer acts as a voltage divider by
creating the circuit shown here:

Figure 6.10 – A potentiometer circuit

Electronics 101 for the Software Engineer Chapter 6

[212]

Here are the first set of steps to follow. The step numbers here match the numbered black
circles shown in the preceding diagram:

Place the 10kΩ potentiometer on your breadboard. You'll notice that I have1.
marked Terminals A, B, and C so that they match the labeling shown in Figure
6.9.
Connect an outer Terminal (labeled A) of the potentiometer to a 3.3-volt pin on2.
your Raspberry Pi. In this circuit, we are only using our Raspberry Pi as a power
source. You could use an external power supply or a battery if you desired.
Connect the alternate outer Terminal (labeled C) of the potentiometer to a3.
Raspberry Pi GND pin.
Connect the voltage measuring lead from your multimeter to the middle4.
Terminal (labeled B) of the potentiometer.
Connect the com Terminal of your multimeter to GND (which, in our example, is5.
shared by the potentiometer Terminal labeled C).
Turn your multimeter on and select its voltage mode.6.

Now, with your multimeter on, turn the potentiometer's dial and observe the voltage
reading on your multimeter change within the range of ~0 volts and ~3.3 volts.

This now concludes our introduction to analog electronics. We performed a simple exercise
to demonstrate and visualize, with a multimeter, how PWM produces a variable output
voltage. We also learned about voltage dividers, how they work, and why they are a crucial
part of any analog input circuit. We finished by revisiting potentiometers once more and
looking at how they work as varying voltage dividers.

These analog concepts, while relatively short and simple, are two core principles
underlying analog circuits that every electronic engineer – whether you are a professional
or a hobbyist – needs to understand. These concepts – especially voltage dividers – will
feature in many circuits in upcoming chapters (we will be using them in conjunction with
an ADS1115 analog-to-digital converter), so please play around with the preceding
examples and principles to ensure you grasp the basics!

Next, we will discuss logic-level conversion and look at another practical application of
voltage dividers, only this time in the digital input space.

Electronics 101 for the Software Engineer Chapter 6

[213]

Understanding logic-level conversion
There will be occasions when you need to interface with 5-volt devices from your
Raspberry Pi's 3.3-volt GPIO pins. This interfacing may be for the purpose of GPIO input,
output, or bi-directional I/O. The technique used to convert between logic-level voltages is
known as logic-level conversion or logic-level shifting.

There are a variety of techniques that can be used to shift voltages, and we will cover two of
the more common ones in this section. One uses a voltage divider circuit, which we
discussed under the previous heading, while the other uses a dedicated logic-level shifting
module. Our first example of logic-level conversion will be to look at a resistor-based
solution known as a voltage divider.

Voltage dividers as logic-level converters
A voltage divider circuit constructed of appropriately selected resistors can be used to shift
down from 5 volts to 3.3 volts, allowing you to use a 5-volt output from a device as the input
to your 3.3-volt Raspberry Pi pin.

To be crystal clear in your understanding and learning, in this section, we
are dealing with digital electronics, specifically digital input and the
application of a voltage divider within a digital input circuit. For your own
learning and understanding, please ensure that, after completing this
chapter, you are comfortable with the basic practical differences and
application of a voltage divider in both analog and digital circuits.

The following diagram is the same example we saw previously in Figure 6.8, only this time,
it's been drawn within a different context; that is, showing how a 5-volt input can be shifted
down to 3.3 volts:

Electronics 101 for the Software Engineer Chapter 6

[214]

Figure 6.11 – Using a voltage divider as a logic-level shifter

A voltage divider cannot shift up a voltage from 3.3 volts to 5 volts. However, cast your
mind back to our discussion on digital input and Figure 6.4, where we explained how an
input pin reads a digital high as long as the voltage was >= ~2.0 volts. Well, the same often
applies to 5-volt circuits – as long as the input voltage is >= ~2.0 volts (which 3.3 volts is),
the 5-volt logic will register a logic high. The digital low works in the same manner too
when a voltage of <= ~0.8 volts is applied.

This is often the case, though you will need to check the details and datasheet of the 5-volt
device in question. It may mention the minimum voltage explicitly, or may simply mention
that it will work with 3.3-volt logic. If there is no obvious indication of the device
supporting 3.3-volt logic, you can always test it out yourself using 3.3 volts. This is safe to
do because 3.3 volts is less than 5 volts, which means there is no risk of damage. At worst, it
just will not work or work unreliably, in which case you can use a dedicated logic-level
converter. We'll discuss this next.

Logic-level converter ICs and modules
An alternative to a voltage divider circuit is a dedicated logic-level shifter or converter.
They come in IC (chip) form and breadboard-friendly breakout modules. There's no math
involved because they are more or less plug and play, and they include multiple channels
so that they can convert multiple I/O streams simultaneously.

Electronics 101 for the Software Engineer Chapter 6

[215]

The following image shows typical 4-channel (left) and 8-channel (right) logic-level
conversion breakout modules. The 4-channel on the left is built using MOSFETs, while the
8-channel on the right uses a TXB0108 IC. Please note that while we will cover MOSFETs
in Chapter 7, Turning Things On and Off, our focus will be using MOSFETs as switches, not
logic-level conversion applications:

Figure 6.12 – Logic-level converter breakout modules

Logic-level shifter modules also have two halves – a low voltage side and a high voltage side.
In relation to your Raspberry Pi, we connect its 3.3-volt pin and the GPIOs to the low-
voltage side, and then connect another higher voltage circuit (for example, a 5-volt circuit)
to the high-voltage side.

The forthcoming example will be based around a module similar to the 4-
channel MOSFET module pictured previously, which has an LV and HV
Terminal, and two GND Terminals. If you are using a different module,
you may need to consult its datasheet and adjust the wiring appropriately
for use in the example.

Let's see level conversion in action. We will do this by building a circuit and measuring the
voltage. Previously, in the Digital output section, we connected a multimeter directly to a
Raspberry Pi GPIO pin and observed that when the GPIO was high, the multimeter read
~3.3 volts. This time, we will connect our multimeter to the HV side of a logic-level
converter and observe that the multimeter reads ~5 volts when the GPIO pin is high.

We will start by building our circuit, which we will do in two parts:

Electronics 101 for the Software Engineer Chapter 6

[216]

Figure 6.13 – Visualizing 3.3-volt to 5-volt level shifting (part 1 of 2)

Here are the first set of steps to follow, in which we place the components that wire up the
low-voltage side of the logic-level converter. The step numbers here match the numbered
black circles shown in the preceding diagram:

Place your logic-level converter on your breadboard.1.
Connect the LV (low voltage) Terminal of the logic-level converter to the positive2.
side of the left-hand side power rail. We will call this rail the low voltage
rail because it will be connected to the lower of our supply voltages (that is, 3.3
volts). The LV Terminal is the low voltage side power input Terminal for the
logic-level converter.
Connect the positive side of the low voltage rail to a 3.3-volt power pin on your3.
Raspberry Pi.

Electronics 101 for the Software Engineer Chapter 6

[217]

Connect the GND Terminal on the low voltage side of the logical-level converter4.
to the negative rail on the low voltage rail.
Connect the negative rail on the low voltage rail to a GND pin on your Raspberry5.
Pi.
Finally, connect port A1 on the logic-level converter to GPIO 21 on your6.
Raspberry Pi.

Next, we'll wire up the high voltage side of the logic-level converter and connect our
multimeter:

Figure 6.14 – Visualizing 3.3-volt to 5-volt level shifting (part 2 of 2)

Here are the second set of steps to follow. The step numbers here match the numbered
black circles shown in the preceding diagram:

Connect the positive rail on the right-hand side power rail to a 5-volt pin on your1.
Raspberry Pi. We will call this rail the high voltage rail because it will be connected
to the higher of our supply voltages (that is, 5 volts). The HV Terminal is the high
voltage side power input Terminal for the logic-level converter.

Electronics 101 for the Software Engineer Chapter 6

[218]

Connect the negative rail of the high voltage rail to the negative rail of the low2.
voltage rail. You may recall that all GND connections are common across a circuit.
If you need a refresher on this concept, please revisit the Introducing ground
connections and symbols section in Chapter 2, Getting Started with Python and IoT.
Connect the HV Terminal of the logic-level converter to the positive side of the3.
high voltage rail.
Connect the GND Terminal on the high voltage side of the logic-level converter4.
to the negative rail of the high voltage rail.
Connect the voltage-measuring Terminal of your multimeter to port B1 on the5.
logic-level converter.
Connect the com Terminal of your multimeter to the negative rail of the high6.
voltage rail.
Finally, set your multimeter to its voltage mode.7.

Now that we have built our circuit, let's run a Python program and confirm that our
multimeter reads ~5 volts when GPIO 21 is high. Here is what we need to do:

Run the code in the chapter06/digital_output_test.py file – it's the same1.
code we used previously for digital output in the section titled Digital output.
On the low voltage side, our Raspberry Pi is pulsing GPIO 21 between low (02.
volts) and high (3.3 volts) on channel 1 port A1, while on the high voltage side,
our multimeter, which is connected to channel 1 port B1, will alternate between 0
and ~5 volts, illustrating the shift of a 3.3-volt logic-level high to a 5-volt logic-
level high.

The reverse scenario is also possible; that is, if you applied a 5-volt input to the high voltage
side, it will be converted into 3.3 volts on the low voltage side, which can safely be read as
input by a 3.3-volt Raspberry Pi GPIO pin.

Building this reverse scenario is an exercise that you might like to try on your own – you
already have the core knowledge, code, and circuits to achieve this; you just need to wire it
all up! I encourage you to try this, and to get you started, here are some tips:

Place a push button and pull-up resistor on your breadboard, and wire it up to
port B1 on the high voltage side of the logic-level converter. This circuit
(schematically) is identical to what you have seen previously in Figure 6.6, except
that the source will now be 5 volts, and the GPIO pin is now port B1.
To test your circuit, you can use the same digital input code we used previously,
which can be found in the chapter06/digital_input_test.py file.

Electronics 101 for the Software Engineer Chapter 6

[219]

If you get stuck, need a reference breadboard layout, or wish to check your
circuit build, you can find a breadboard layout in
the chapter06/logic_level_input_breadboard.png file.

When using a logic-level converter IC, breakout module, or a voltage-
divider as a level shifter, always test the input/output voltages with your
multimeter before connecting them to an external circuit or your
Raspberry Pi. This check will ensure you have wired the converter
correctly and that the voltages have been shifted as you intended.

Let's conclude our discussion of level conversion by comparing the two approaches we
have looked at.

Comparing voltage dividers and logic-level
converters
Is one approach better than the other? It depends, though I will say that a dedicated
converter will always outshine a basic voltage divider, and they are a lot less fiddly to use
with a breadboard. A voltage divider is cheaper to build but only works in a direct
direction (you'll need two voltage divider circuits to perform bi-directional I/O). They also
have relatively high electrical impedance, meaning that there is a practical delay that occurs
between the variable resistance changing and the measurable voltage changing. This delay
is enough to make a simple voltage divider impractical for circuits where there is fast
switching between high and low states. A dedicated logic-level converter overcomes these
limitations, plus they are multi-channel, bi-directional, faster, and more efficient.

Summary
This chapter commenced with a quick overview of the basic tools and equipment that you
will need as you get further into electronics and the circuits that we will cover in Section 3
(which we'll be commencing in the next chapter). Then, we went through some suggestions
to help keep your Raspberry Pi safe while you are connecting electronics to its GPIO pins,
as well as a few tips when it comes to purchasing components.

Electronics 101 for the Software Engineer Chapter 6

[220]

Then, we explored Ohm's Law (and very briefly Kirchhoff's) before working through the
reasons and calculations as to why our LED circuit was using a 200 Ohm resistor. We
followed this example by looking at the electronic properties of digital circuits, where we
explored logic voltage levels, floating pins, and pull-up and pull-down resistors. We
then looked at analog circuits and worked through an example of a voltage divider circuit.
We concluded this chapter by looking at logic-level conversion and how you can interface a
5-volt logic device with a 3.3-volt logic device such as your Raspberry Pi.

The goal of this chapter was to introduce you to fundamental electronic principles
underpinning basic electronics and, in particular, electronic interfacing to devices such as a
Raspberry Pi. I have endeavored to also explain the basic why behind these principles and
how they influence what components are chosen for a circuit. Armed with this information,
you should now be in a position to better understand how simple circuits are built to work
with your Raspberry Pi.

Furthermore, you can leverage this understanding as your starting point to further develop
and advance your electronic skills. You'll find links to useful electronic-based websites in
the Further reading section, plus we'll see many of these principles in use as we proceed
through Section 3, IoT Playground.

When you're ready to get started, I'll see you in the next chapter – which is also the start of
Section 3, IoT Playground – where we will explore different methods of switching things on
and off.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

You have a circuit that requires a 200Ω resistor, but you only have a 330Ω resistor1.
available. It is safe to use this value?

You substitute a higher value resistor in a circuit but the circuit does not work.2.
With respect to Ohm's Law, what could be the problem?
You calculated a suitable resistor value for a circuit using Ohm's Law, but when3.
you applied power to the circuit, the resistor started to discolor and let off smoke.
Why?
Assuming GPIO 21 is configured via Python as an input pin and it is connected4.
by a wire directly to the +3.3-volt pin, what value will pi.read(21) return?

Electronics 101 for the Software Engineer Chapter 6

[221]

You have a push button set up so that when it's pressed, it connects GPIO 21 to a5.
GND pin. When the button is not pressed, you notice that your program is erratic
and appears to receive a phantom button press. What could the problem be?
You want to connect a device that operates its output pins at 5 volts to a6.
Raspberry Pi GPIO input pin. How can you do this safely?
True or false – A resistor voltage divider circuit can be used to convert a 3.3-volt7.
input into 5 volts for use with a 5-volt logic input device.

Further reading
The following two sites are electronic manufacturers and they both feature a wide range of
entry-to-mid-level tutorials. They focus on the practical aspects of electronics and don't
bombard you with too much theory. Try a search for Raspberry Pi on their sites:

https:/​/​learn.​adafruit.​com

https:/​/​learn.​sparkfun.​com

In relation to the concepts that we have covered in this chapter, here are some specific links
on the aforementioned sites:

All About LEDs: https:/​/​learn.​sparkfun.​com/​tutorials/​light-​emitting-
diodes-​leds

Ohm's Law, Power, and Kirchhoff's Law Primer: https:/​/​learn.​sparkfun.​com/
tutorials/​voltage-​current-​resistance-​and-​ohms-​law

Voltage Dividers: https:/​/​learn.​sparkfun.​com/​tutorials/​voltage-​dividers

Pull-Up/Down Resistors: https:/​/​learn.​sparkfun.​com/​tutorials/​pull-​up-
resistors/​all

Resistors and Color Codes: https:/​/​learn.​sparkfun.​com/​tutorials/​resistors

https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.adafruit.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/pull-up-resistors/all
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors

Electronics 101 for the Software Engineer Chapter 6

[222]

If you want to go deeper, the following two websites are excellent (and free) resources that
cover a diverse range of topics on electronic fundamentals and theory:

https:/​/​www.​allaboutcircuits.​com

https:/​/​www.​electronics-​tutorials.​ws

I recommend spending a few moments just clicking around these sites to get an idea of
what they include. That way, if you come across an electronic term, component, or concept
in this book that you want to explore further, you'll have an idea where to start your
investigation. Here are the two links to begin your exploration:

https:/​/​www.​electronics-​tutorials.​ws/​category/​dccircuits (DC Circuit
Theory)

https:/​/​www.​allaboutcircuits.​com/​textbook/​direct-​current (DC Circuit
Theory)

If you browse through the indexes on these sites, you will find sections including Ohm's
Law, power, Kirchhoff's Laws, voltage dividers, and digital and analog electronics.

https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.electronics-tutorials.ws/category/dccircuits
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/
https://www.allaboutcircuits.com/textbook/direct-current/

3
Section 3: IoT Playground -

Practical Examples to Interact
with the Physical World

This is the section where we cover the Things part of IoT. We will explore and experiment
with a variety of common sensors, actuators, and electronic circuits, which we will use to
interact with the physical world using Python. And along the way, we will see many
practical applications of the core electronics principles that we learned in Section 2. In the
latter part of this section, we will also combine our learning from Section 1 (that is the
Internet part of IoT) to create end-to-end IoT applications using a variety of different
approaches.

This section comprises the following chapters:

Chapter 7, Turning Things On and Off
Chapter 8, Lights, Indicators, and Displaying Information
Chapter 9, Measuring Temperature, Humidity, and Light Levels
Chapter 10, Movement with Servos, Motors, and Steppers
Chapter 11, Measuring Distance and Detecting Movement
Chapter 12, Advanced IoT Programming Concepts – Threads, AsyncIO, and Event
Loops
Chapter 13, IoT Visualization and Automation Platforms
Chapter 14, Tying It All Together – An IoT Christmas Tree

7
Turning Things On and Off

In the previous chapter, we looked at core electronic circuits and concepts that you will use
when interfacing digital and analog circuits with your Raspberry Pi's GPIO pins.

In this chapter, we will cover how to switch things on and off that require more voltage and
current than can be safely used with your Raspberry Pi. When it comes to electronics,
hundreds of different components can be used for controlling and switching. And there are
thousands of different ways they can be configured. We will be focusing on three common
complements—optocouplers, transistors, and relays.

An understanding of how to control and switch electrical circuits on or off is a very
important topic when interfacing with a Raspberry Pi. As we discussed in Chapter 5,
Connecting your Raspberry Pi to the Physical World, Raspberry Pi GPIO pins are only capable
of safely delivering a few milliamps of output current and a fixed 3.3-volts. After
completing this chapter, your knowledge of optocouplers, transistors, and relays will mean
you can start controlling devices that have different current and voltage requirements.

Here is what we will cover in this chapter:

Exploring a relay driver circuit
Determining a load's voltage and current
Using an optocoupler as a switch
Using a transistor as a switch
Using a relay as a switch

Turning Things On and Off Chapter 7

[225]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

You will find this chapter's source code in the chapter07 folder in the GitHub repository
available here: https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-
for-​IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter07 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)

The electronic components we will need for this chapter's exercises are as follows:

1 x 2N7000 MOSFET (sample datasheet: https:/​/ ​www.​alldatasheet. ​com/
datasheet-​pdf/​pdf/​171823/​ONSEMI/​2N7000.​html)
1 x FQP30N06L MOSFET (optional—sample datasheet: https:/​/​www.
alldatasheet.​com/​datasheet-​pdf/​pdf/​52370/​FAIRCHILD/​FQP30N06L.​html)
1 x PC817 optocoupler (sample datasheet https:/​/​www.​alldatasheet.​com/
datasheet-​pdf/​pdf/​547581/​SHARP/​PC817X.​html)
1 x SDR-5VDC-SL-C relay (sample datasheet: https:/​/​www.​alldatasheet.​com/
datasheet-​pdf/​pdf/​1131858/​SONGLERELAY/​SRD-​5VDC-​SL-​C.​html)
1 x 1N4001 diode
2 x 1k Ω and 1 x 100k Ω resistors

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/171823/ONSEMI/2N7000.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/52370/FAIRCHILD/FQP30N06L.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/547581/SHARP/PC817X.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131858/SONGLERELAY/SRD-5VDC-SL-C.html

Turning Things On and Off Chapter 7

[226]

1 x 5mm red LED
1 x Size 130 (R130) DC motor rated 3-6 volts (ideally with a stall current < 800mA)
or alternate DC motor with compatible voltage and current ratings
Digital multimeter capable of measuring current (it'll have an A or mA setting)
2 x External power sources—at a minimum, a 3.3V/5V breadboard-mountable
power supply

Exploring a relay driver circuit
A common introduction to electronic switching is the mechanical relay—a device that
operates like a common switch, only it's turned on and off by applying power to it.
Unfortunately, connecting a relay directly to a Raspberry Pi is dangerous! Relays
commonly require too much current and voltage and (if they do switch) can damage your
Raspberry Pi. So, we need a driver circuit that sits between your Raspberry Pi and the relay.
An example of this circuit is shown in Figure 7.1:

Figure 7.1 – Relay driver circuit

This is the circuit we will build, piece-by-piece during this chapter. This circuit is
representative of the many relay control modules that you will find on eBay, Banggood,
and similar web sites. These boards are certainly convenient to use—when you get them to
work. Unfortunately, all too often, a lack of clear documentation can make getting them to
work fiddly and difficult, especially if you are new to electronics.

Turning Things On and Off Chapter 7

[227]

We are about to build and explore the three sub-circuits depicted in Figure 7.1. This will
help you to understand how optocouplers, transistors, and relays work as switches and
why they are often chained together to control a relay. This knowledge will also help you to
reverse-engineer a pre-made relay control module in case you can't get one working.

Before we look at the optocoupler sub-circuit, we need to first discuss load voltages and
currents.

Determining a load's voltage and current
A load is something that you want to control, or for this chapter, switch on and off. LEDs,
transistors, optocouplers, relays, lights, electric motors, heaters, pumps, automatic garage
doors, and TVs are all examples of a load. If you refer back to Figure 7.1, you will notice the
word Load on the right-hand side of the diagram. This is where you connect the thing you
want to switch on or off.

The transistors, optocouplers, and relays components appear in this aforementioned load list.
Referring back to Figure 7.1, the relay appears as the load to the transistor sub-circuit while
the transistor sub-circuit appears as the load to the optocoupler sub-circuit.

It's important to know two properties about the load you want to control:

What voltage does the load require?
What current does the load require?

Sometimes, these properties can be found on the device itself or in its manual or datasheet.
At other times, they need to be calculated or the load needs to be manually measured.

Knowing these properties is important because they influence which components are
chosen for a circuit, including the specifications for a suitable power supply. We will make
mention of load currents as we build circuits throughout this chapter, so a little more
context is coming. For now, let's look at how to measure the current load of a DC motor.

Measuring the current requirement of a DC motor
Motors are a common item that people want to control, and they serve as an excellent
example in current measurement. Let's perform an exercise to measure the current used by
our DC motor:

Turning Things On and Off Chapter 7

[228]

Figure 7.2 – R130 DC Motor

A typical size 130 (R130) DC motor is shown in the preceding photograph, together with a
set of jumper leads soldered to the motor's terminals so it can be plugged easily into a
breadboard. This motor has a red back, however, other colors are common—especially
clear/white. The color has no bearing on the motor specifications.

As you proceed with the following steps, please consult your multimeter
manual if you are unsure how to place it into current measurement mode.

Here are the steps to follow:

Connect up a circuit as shown in Figure 7.3:1.

Figure 7.3 – Measuring current with a multimeter

Turning Things On and Off Chapter 7

[229]

We are assuming that the motor here is the one mentioned in the Technical
requirements section at the start of the chapter. This motor is small enough to be
powered from a breadboard power supply, which typically can supply between
500mA and 800mA. For larger motors (and other items where you do not know
their ratings and want to measure them), you will require a more capable power
supply.

If you are powering a breadboard power supply from a USB phone
charger, check your power supplies 5-volt output with a multimeter to
make sure it is providing about 5 volts. Low wattage chargers and poor
quality USB cables might not be able to deliver enough power for the
power supply to operate correctly. Ideally, read the datasheet and use the
suggested power adapter, which commonly are 7 to 12 volts and 1 amp.

Make sure your multimeter is set to measure milliamps (mA), and that its red2.
lead is connected to the correct lead input (typically it will be labeled A or mA). If
your DMM has a µA input, do not use it or you may blow your DMM's protection
fuse (the fuse can be replaced).
Apply power to the circuit, and the motor will spin.3.
Your multimeter will display the current draw of the motor. Write down this4.
value. This is known as the continuous or free current and is the current your
motor uses while freely spinning with nothing connected to its shaft.
Disconnect power to the motor.5.
Using a pair of pliers, hold the motor's shaft so it cannot spin.6.
Reapply power to the motor, and quickly observe (and write down) the DMM's7.
reading. This reading is called the stall current. A motor will use the most
current when its shaft has been forcefully stopped from moving.
Disconnect the power to the motor.8.

We have now measured two currents. My readings on an R130 motor were as follows (and
yours will be different):

Continuous or free current: ~110mA to ~200mA—As the motor heats from use, it
will use less; the ~200mA measurement was when the motor was cold. Over one
minute, it dropped to ~110mA.
Stall current: This was ~500mA to ~600mA.

What this means is that our motor will need between 200mA and 600mA milliamps for
normal operation and that any circuit we wish to use with our motor must be able to
realistically handle 600mA so that it will not get damaged if the motor stalls (or we need to
design suitable protection, however, this is beyond our scope).

Turning Things On and Off Chapter 7

[230]

It is interesting to note that there's also a start-up current, which is a
momentary peak current that occurs when the motor starts, but we won't
be able to measure that on a generic DMM.

Now that we have the current draw for our R130 motor, let's collect more current data for a
relay and an LED.

Measuring the current requirement of a relay and
LED
We will also measure the current draw of an LED and the relay we will use in this chapter
when we reach the section titled Using a relay as a switch. You can measure the current draw
using steps 1 to 4 from the preceding section. The setup to perform this measurement for an
LED and resistor pair is illustrated here:

Figure 7.4 – Measuring current through a resistor/LED circuit

This is the basic process we follow:

We attach an LED and a 1kΩ resistor (or a relay) in place of the motor shown in1.
Figure 7.3.
Set your multimeter to milliamps mode.2.
Apply power to the circuit.3.
Measure the amperage on your multimeter.4.

Turning Things On and Off Chapter 7

[231]

Once you have performed (and jotted down) the measurement you receive, remove the
LED and resistor from the breadboard and wire in your relay and perform the same
measurement.

The following diagram shows an SRD-05VDC-SL-C relay and which terminals on your
relay you need to connect. Please note that you will need to solder header pins (pictured) or
wires (a good option is to cut in half a DuPont cable) onto your relay's terminals as it will
not fit directly into a breadboard:

Figure 7.5 – SRD-05VDC-SL-C relay

With a 5V source, you should obtain values similar to these on your multimeter:

5mm red LED in series with a 1000Ω resistor: 3mA (values from Ohms
calculation and rounded up I = (5V - 2.1V) / 1000Ω = 2.9mA)
Relay: 70mA to 90mA (values from the datasheet and confirmed by my own
measurements)

The process for calculating the current for the LED was discussed in Chapter 6, Electronics
101 for the Software Engineer. The only difference is that here we are using a 5-volt source
and a 1kΩ resistor, not 3.3 volts and a 200Ω resistor as we did in that chapter.

Please note that the optocoupler and MOSFET component we will be
using do have a voltage drop aspect to them that does affect current
through the attached load. This impact of these voltage drops are
immaterial for our purposes, so they are not taken into account for the
calculations in this chapter for brevity.

Turning Things On and Off Chapter 7

[232]

You have now learned how to measure the current draw of a DC motor, LED/resistor pair,
and a relay using a multimeter. Knowing the current limitations and expectations of a
device you want to control, and even the sub-circuit you are connecting to, is a vital piece of
information that is required so that you can select suitably rated components when
designing a circuit and choosing a suitable power source.

We will be referencing the measurements you have performed in this section as we explore
optocouplers, MOSFETs, and relays throughout this chapter. Specifically, we will compare
the current ratings of these components (found in their respective datasheets) to our DC
motor, LED/resistor, and relay measurements and consider what components can be used
to directly control which load.

We will start by learning about optocouplers and how to use them as a switch.

Using an optocoupler as a switch
An optocoupler (or optoisolator) is a light-controlled component that is used to electrically
isolate two circuits. An illustration and the schematic symbol of an optocoupler are shown
here:

Figure 7.6 – Optocoupler symbol and component with pins labeled

The two sides of an optocoupler can be described as follows:

An input side: The side we will connect to a Raspberry Pi GPIO pin
An output side: The side we will connect to another circuit

Turning Things On and Off Chapter 7

[233]

Inside an optocoupler on the input side is an internal LED (you will notice the LED symbol
within the optocoupler symbol in Figure 7.6) while on the output side there is
a phototransistor that responds to the LED's light. What this means is that the transfer of
control (that is, switching) from the input side to the outside side is performed by light,
hence, there is no physical electrical connection between the two sides. For us, this means
that any failures or accidents on the output side should not cause damage to our Raspberry
Pi. The PC817 has its isolation rated as 5000 volts, which are well beyond any voltages we
would expect to be used with IoT electronics and devices.

When the input side LED is off, the output side phototransistor is off. However, when the
LED is illuminated (it's inside the optocoupler component, so you will not see it) by
applying current to pins 1 (anode) and 2 (cathode), the phototransistor is activated (on) and
allows current to flow between pins 4 (collector) and 3 (emitter).

Let's create a simple circuit to demonstrate a PC817 optocoupler, which has the following
specifications:

Input side (the LED): This has the following:
Typical forward voltage (VF) is 1.2 volts DC
Maximum forward current (IF) is 50mA DC

Output side (the phototransistor): This has the following:
Maximum collector-emitter voltage (VCEO): 80 volts DC
Maximum collector current (IC): 50mA DC
Collector-Emitter Saturation Voltage VCE(sat) in the range 0.1 to 0.2
volts (basically the voltage drop)

Keeping these specifications in mind, let's begin our circuit build.

Building the optocoupler circuit
We're about to build the circuit illustrated in the following diagram. This circuit uses the
PC817 optocoupler to electrically isolate our Raspberry Pi and the LED subcircuit:

Turning Things On and Off Chapter 7

[234]

Figure 7.7 – Optocoupler circuit

The step numbers here match the numbered black circles in Figure 7.7:

Place the LED into your breadboard, taking care to orientate the LED as1.
illustrated regarding its cathode leg.
Place a 1kΩ resistor into the breadboard. One end of this resistor connects inline2.
with the cathode leg of the LED.
Place the PC817 Optocoupler IC into your breadboard. The white dot on the IC3.
indicates pin number 1 of the IC. Your IC may have or not have the white dot,
however, there should be a distinct marking on the IC to tell you the first pin.
Please refer back to Figure 7.6 for all pin numberings.
Place a 1kΩ resistor into your breadboard. One end of this resistor connects with4.
pin 1 of the PC817.
Connect the anode leg of the LED to the positive rail of the right-hand side power5.
rail.
Connect pin 4 of the PC817 to the other end of the resistor you placed at step 2.6.
Connect pin 3 of the PC817 to the negative rail of the right-hand side power rail.7.

Turning Things On and Off Chapter 7

[235]

Connect the positive output of a 5-volt power supply into the right-hand8.
side positive power rail.
Connect the negative output of a power supply into the right-hand side negative9.
power rail.
Connect the other end of the resistor you placed at step 4 to a 3.3-volt pin on your10.
Raspberry Pi.
Finally, connect pin 2 of the PC817 to GPIO 21 on your Raspberry Pi.11.

In Figure 7.7, you could connect the wires at steps 8 and 9 (which go to the
External Power Supply) directly to your Raspberry Pi's +5-volt pin and a
GND pin. We're only using a small amount of current for the red LED,
however, for higher current loads, you must use an external power
supply. The +5 volt pin on your Raspberry Pi is connected directly to the
power supply you are using to power your Raspberry Pi. Using this
power supply to power your circuits effectively robs current available to
your Raspberry Pi. Take too much, and your Raspberry Pi will reset!
Please note (this is important) that the caveat of this action is that you
lose the electrical isolation offered by the optocoupler because you will
have electrically connected the input and output sides of the optocoupler
together (remember, the input and output sides are not electrically inside
the optocoupler because control is achieved by light).

Now that you have completed the circuit build, we will test the circuit and explore the code
that makes it work.

Controlling the optocoupler with Python
Start by running the code in the chapter07/optocoupler_test.py file, and observe the
LED blink. Following is the part of the code responsible for the blinking:

... truncated ...

 pi.write(GPIO_PIN, pigpio.LOW) # On. # (1)

 print("On")

 sleep(2)

 pi.write(GPIO_PIN, pigpio.HIGH) # Off. # (2)

 print("Off")

 sleep(2)

... truncated ...

Turning Things On and Off Chapter 7

[236]

Here's what's happening:

At line (1), GPIO 21 is low and the internal LED on the input side is on. The
phototransistor on the output side detects this light and is activated, allowing
current to flow between the output side's collector (pin 4) and emitter (pin 3), and
hence our red LED illuminates.
The input side of the PC817 circuit is wired as active low—that's why at line (1),
GPIO 21 is made low to turn the circuit on, and at line (2), GPIO 21 is set to high
to turn the circuit off. Alternative wiring would be active high. If you want to
experiment and change the circuit to be active-high, you would attach the wire
from step 10 in Figure 7.7 to a GND pin (rather than a 3.3-volt pin), and reverse
the pigpio.LOW and pigpio.HIGH statements in the code.

We could have used a lower value resistor for R1 for the input-side LED,
however, a 1kΩ resistor provides more than enough current ((3.3V -
1.2V)/1000Ω = 2.1mA) to the internal LED for the optocoupler circuit to
work. You'll see 1kΩ, 10kΩ, and 100kΩ resistors used in a lot of circuits
simply because these are nice round values. We've also used a 1kΩ

resistor for R2 for the red LED for convenience.

Can you remember from the previous chapter, Chapter 6, Electronics 101 for the Software
Engineer, when we discussed that we should not expect more than 8mA from a Raspberry
Pi GPIO pin? Well, by using a PC817 optocoupler, we can now control up to 50mA by
placing an optocoupler between a GPIO pin and a circuit. Furthermore, we are also not
limited to the 3.3 volts of a GPIO pin since the PC817 can handle up to 80 volts.

Remember that a GPIO pin's primary role is to control something,
not power it, so always think about control and power requirements
independently.

In the previous section, we calculated (or measured) the current draw of our motor, relay,
and an LED. Here is that data in the context of our PC817 optocoupler using a 5-volt power
source on the output side:

The LED and 1kΩ resistor needed a current of 3mA.
The relay needed between 70mA and 90mA.
The motor needed ~500mA to ~600mA (stall current).

Turning Things On and Off Chapter 7

[237]

The LED's 3mA is less than the optocouplers maximum output-side rating of 50mA, so it's
fine to drive the LED directly on the output side. The relay and motor, however, require a
current beyond the limits of the PC817, so using them on the output may result in damage
to the optocoupler.

While we can and do use optoisolators as a digital switch, they are often used as an
isolating barrier to drive other components, which in turn can drive loads requiring higher
currents. We will see this later on when we build the full relay driver circuit from Figure 7.1,
but for now, let's learn how to use a transistor as a digital switch.

Using a transistor as a switch
Transistors are a hands-down most significant electronic component in use today and the
backbone of the digital revolution. They can be used in two basic ways—as an amplifier or
as a digital switch. Our focus is going to be on digital switching, and we will be using a
transistor type known as a Metal-Oxide-Semiconductor-Field-Effect Transistor
(MOSFET), specifically, an N-Channel Enhancement Mode MOSFET—yes, it's a mouthful!

Don't get too caught up on the long technical name or the many forms of transistors that
exist. The simple take-home here is that an N-Channel Enhancement Mode MOSFET works
well as a digital switch that we can control using our Raspberry Pi, or as we will see later,
from another source such as an optocoupler.

FETs are voltage-controlled transistors. Another type of transistor known
as a Bipolar Junction Transistor (BJT) is a current-controlled transistor.
BJTs are perfectly fine to use with a Raspberry Pi but require additional
considerations. You'll find a link in the Further reading section to further
your learning on transistors.

The following exercise will be using a 2N7000, an N-Channel Enhancement Mode MOSFET,
as illustrated in Figure 7.8. The leg names are Source, Gate, and Drain. Two different
packaging styles are also illustrated, the TO92 and TO220. Notice that the arrangement of
the Source, Gate, and Drain legs on the two styles are different:

Turning Things On and Off Chapter 7

[238]

Figure 7.8 – N-Channel Enhancement MOSFET symbol and common package styles

The 2N7000 has the following specifications in its datasheet:

Maximum Drain Source Voltage (VDSS) of 60 volts DC
Maximum Continuous Drain Current (ID) of 200 mA DC
Maximum Pulsed Drain Current (IDM) of 500 mA DC
Gate Threshold Voltage (VGS(th)) in the range of 0.8 to 3 volts DC
Drain Source On Voltage (VDS(on)) in the range of 0.45 to 2.5 volts DC (voltage
drop)

Here is how to interpret these parameters regarding the 2N7000:

It can safely control a load not exceeding 60 volts (VDSS) and a continuous 200mA
(ID), but a pulse of 500mA (IDM) is OK.
It will ideally require a voltage >= 3 volts to switch it on (VGS(th)).
It will consume, on the load-side circuit, a voltage in the range of 0.45 to 2.5 volts
(VDS(on)).

The 2N7000 (and the FQP30N06L that we will discuss shortly) are logic-
level comparable MOSFETs. They are suitable for a Raspberry Pi because
their maximum gate voltage VGS(th) is less than a GPIO pin's 3.3 volts.

Let's get started and build a circuit to use the 2N7000 with our Raspberry Pi.

Turning Things On and Off Chapter 7

[239]

Building the MOSFET circuit
We will build our circuit in two parts, starting with the placement of the components on
our breadboard:

Figure 7.9 – MOSFET transistor circuit (part 1 of 2)

Following are the steps for the first part of our build. The step numbers match the
numbered black circles in Figure 7.9:

Place the MOSFET into your breadboard, taking care to orientate the component1.
the correct way around regarding the Source, Gate, and Drain legs. Our example
layout assumes a 2N7000 MOSFET. Please see Figure 7.8 if you need help to
identify the legs.
Place a 100kΩ resistor into your breadboard. One end of this resistor connects to2.
the Gate leg of the MOSFET.
Place a 1kΩ resistor into the breadboard. One end of this resistor also connects to3.
the Gate leg of the MOSFET.

Turning Things On and Off Chapter 7

[240]

Place the LED into the breadboard, taking care to orientate the component as4.
shown regarding its cathode leg.
Place a 1kΩ resistor into the breadboard. One end of this resistor connects with5.
the cathode leg of the LED.
Place the diode into the breadboard, orientating the component so that the6.
cathode leg (the end of the diode with the band on the casing) is facing toward
the bottom of the breadboard. We will discuss the purpose of this diode shortly.

Now that we have placed the components into our breadboards, let's wire them all up:

Figure 7.10 – MOSFET transistor circuit (part 2 of 2)

Following are the steps for the second part of the build. The step numbers match the
numbered black circles in Figure 7.10:

Connect a GND pin from your Raspberry Pi into the negative rail of the right-1.
hand side power rail.
Connect the negative rails of the right-hand side and left-hand side power rails.2.
Connect the 100kΩ resistor into the negative power rail.3.
Connect the Source leg of the MOSFET into the negative power rail.4.

Turning Things On and Off Chapter 7

[241]

Connect the Drain leg of the MOSFET to the 1kΩ resistor.5.
Connect the anode leg of the LED to the cathode leg of the diode.6.
Connect the anode leg of the LED (and cathode leg of the diode) to the positive7.
power rail on the right-hand side power rail.
Connect the 1kΩ resistor to GPIO 21 on your Raspberry Pi.8.
Connect the positive output terminal on your power supply into the positive rail9.
of the right-hand side power rail.
Connect the negative output terminal on your power supply into the negative10.
rail of the right-hand side power rail.

Well done. That's our circuit build complete. Let's briefly discuss this circuit before we test
it out.

Notice in Figure 7.10 (and Figure 7.1) the 100kΩ resistor R3. This is an external pull-
down resistor that ensures that the Gate leg of the MOSFET is tied to GND (0 volts) when it
is not pulled up to +3.3 volts when GPIO 21 is high. MOSFETs have capacitive charge, so
without a pull-down, the MOSFET may appear sticky and slow when it transitions from on
(GPIO 21 is high) to off (GPIO 21 goes low) as it discharges (note that this circuit is active
high). The pull-down resistor ensures a rapid discharge into the off state. We use an
external pull-down resistor in preference to an in-code activated pull-down to ensures the
MOSFET Gate is pulled down even when the Raspberry Pi is powered off or when code
has not run.

You will also notice that R1 and R3 create a voltage divider. The ratio of 1kΩ and 100kΩ is
suitable to ensure that >3 volts get to the gate leg of the MOSFET to switch it on. If you need
a refresher on pull-down resistors and voltage dividers, we discussed them in Chapter 6,
Electronics 101 for the Software Engineer.

When adding resistors into a circuit—like adding in a pull-down—always
consider with the wider impact of the change. If, for example, the addition
creates a voltage divider due to the presence of an existing resistor, you
then need to access the impact of the change on the surrounding circuit.
For our scenario, this is to ensure enough voltage is reaching the MOSFET
gate leg to turn it on.

After running the code in the next section, try removing R3 and run the code again. I can't
guarantee that you will see anything at your end, but you may observe that the red LED
fizzles out slowly rather than turning off promptly when GPIO 21 goes low and that
it behaves erratically instead of fading in and out smoothly.

Turning Things On and Off Chapter 7

[242]

As with the optocoupler example, you can connect the wire's external
power supply to your Raspberry Pi's +5 pin and a GND pin for this LED
example since its current requirements are low.

With this basic understanding of a MOSFET circuit, let's run and explore a simple Python
program that interacts with our circuit.

Controlling the MOSFET with Python
Run the code in the chapter07/transistor_test.py file, and the red LED will turn on
then off, then fade in and out. Once you have confirmed that your circuit works, let's
continue and look at the code:

...truncated ...

pi.set_PWM_range(GPIO_PIN, 100) # (1)

try:

 pi.write(GPIO_PIN, pigpio.HIGH) # On. # (2)

 print("On")

 sleep(2)

 pi.write(GPIO_PIN, pigpio.LOW) # Off.

 print("Off")

 sleep(2)

We are using PWM in this example. In line (1), we are telling PiGPIO that, for GPIO 21
(GPIO_PIN = 21), we want its duty cycle to be constrained to the value range 0 to 100
(rather than the default 0 to 255). This is an example of how we can change the
granularity of duty cycle values in PiGPIO. We're using 0 to 100 just to make reporting
easier because it maps into 0% to 100% for terminal output.

Next, in line (2), we simply turn the GPIO on and off for a duration to test the transistor
circuit, and we will see the LED turn on then off after a 2-second delay.

In line (3) in the following code, we use PWM to fade in the LED, before fading it out again
at line (4), both times using the duty cycle range set at line (1) in the preceding code block:

 # Fade In.

 for duty_cycle in range(0, 100): # (3)

 pi.set_PWM_dutycycle(GPIO_PIN, duty_cycle)

 print("Duty Cycle {}%".format(duty_cycle))

 sleep(0.01)

 # Fade Out.

Turning Things On and Off Chapter 7

[243]

 for duty_cycle in range(100, 0, -1): # (4)

 pi.set_PWM_dutycycle(GPIO_PIN, duty_cycle)

 print("Dyty Cycle {}%".format(duty_cycle))

 sleep(0.01)

...truncated ...

Let's check whether our relay and motor are safe to use with this transistor circuit, given
our 2N7000 is rated for 200 milliamps:

The relay can be used in place of the LED because it only needs between 70mA
and 90mA.
The motor requires ~200mA to spin freely (continuous current), so it might be
safe...or not? Let's see.

When we tested the motor earlier in this chapter, we anticipated it will need between
~200mA (the continuous current when cold) and ~500mA to ~600mA (the stall
current)—remember these are my measurements, so replace the values with your measurements. So,
in principle, our 2N7000 will be OK as long as the motor is not under load. Realistically, as
soon as we place a load on the motor's shaft, it will require more than 200mA continuous
current. In this respect, the 2N7000 is probably not an ideal transistor for driving this
motor. We need to seek out a MOSFET that can comfortably handle 600mA of continuous
current or more. We'll see the FQP30N06L MOSFET shortly, which can handle this current
and much more.

While the LED faded in and out with the PWM-related code, if you connect the motor into
the circuit in place of the LED/resistor pair, you will notice it revs up then down. You've
just discovered how to use the duty cycle property of PWM to control the speed of a motor!
We will be covering motors in more detail in Chapter 10, Movement with Servos, Motors, and
Steppers.

To use the motor or relay, you must use an external power supply and not
the +5-volt pin on your Raspberry Pi. If you try and use the +5-volt pin,
you may find your Raspberry Pi resets as you run the code.

We do not use PWM with relays because they're too slow to switch and if they do work (at
a very low PWM frequency), it's only wearing them out—but try it anyway to see what
happens; a short test will do no harm (try adjusting the frequency of 8000 in code down to
10, that is, pi.set_PWM_frequency(GPIO_PIN, 10)).

https://cdp.packtpub.com/hands_on_python_programming_for_iot/wp-admin/post.php?post=37&action=edit#post_34
https://cdp.packtpub.com/hands_on_python_programming_for_iot/wp-admin/post.php?post=37&action=edit#post_34
https://cdp.packtpub.com/hands_on_python_programming_for_iot/wp-admin/post.php?post=37&action=edit#post_34

Turning Things On and Off Chapter 7

[244]

In our circuit, there is also the 1N4001 diode D1. This is known as a fly-back or suppression
diode. Its role is to protect the circuit from reverse voltage spikes that can occur in
electromagnetic components such as a relay or motor when they are powered down.
Granted, our LED is not magnetic, however, it does not do any harm having the diode
present.

Anytime you are controlling a component that works on
electromagnetism (also known as an inductive load), always correctly
install a fly-back suppression diode.

In Figure 7.8, we also have an illustration of an FQP30N06L. This is a Power N-Channel
Enhancement Mode MOSFET capable of driving high amperage loads. It has the following
specifications in its datasheet:

Maximum Drain Source Voltage (VDSS) of 60 volts DC
Maximum Continuous Drain Current (ID) of 32A DC (amps not milliamps!)
Maximum Pulsed Drain Current (IDM) of 128A DC
Gate Threshold Voltage (VGS(th)) in the range of 1 to 2.5 volts DC (< 5 volts so it's
logic-level compatible)
Drain Source On Voltage (VSD) maximum of 1.5 volts DC

You can substitute an FQP30N06L (or another N-Channel Enhancement mode logic-level
capable MOSFET) in the preceding circuit and it will work, but keep the following in mind:

The G, D, and S legs of the FQP30N06L are in a different order to the 2N7000 so
you will need to adjust the wiring.
When dealing with higher voltages and currents, it's a good idea to electrically
isolate the MOSFET from the Raspberry Pi using an optocoupler (we'll see this
configuration when we discuss relays next).
At high currents, Power MOSFETs can get very hot—the surrounding
components and wires and even the breadboard can melt, so approach their use
with caution and care.

Higher power MOSFETs can get hot when controlling high power loads
and can be fitted with a heatsink, for example, the FQP30N06L has a metal
top with a hole where the heatsink is attached. The determining factors
and calculations as to when a headsink is required are beyond our scope,
however, if your MOSFET is getting too hot (and you are using it
within its datasheet parameters), then add a heatsink.

Turning Things On and Off Chapter 7

[245]

If you like the idea of controlling higher current loads using MOSFETs, you might like to
research ready-made MOSFET modules on sites such as eBay. You now have the
background after learning about optocouplers and MOSFETs to understand how these
modules are constructed—some just use a MOSFET directly connected to the controlling
device (that is, GPIO pin) as we have just done while others place an optocoupler in
between the controlling device and the MOSFET.

You have learned the basics of using a MOSFET transistor as a digital switch. Next, we will
put that learning together with our learning on optocouplers to build our relay driver
circuit on a breadboard.

Using a relay as a switch
Classic relays are an electro-mechanical component that allows a smaller current device to
switch a higher current device or load on and off. In principle, they are just like the
MOSFET or optocoupler we used previously. So, why have relays? Here are a few reasons:

For high voltage and current loads, they tend to be much cheaper compared to
an equivalent MOSFET.
At high currents, they do not get untouchably hot like a MOSFET.
Similar to an optocoupler, relays also provide electrical isolation between the
input and output circuits.
They are simply electrically controlled switches so they are easy to understand
and use for non-electrical engineers.
They have stood the test of time and proven to be a simple and robust way to
control high loads (even though they eventually will wear out—the SRD-05VDC-
SL-C datasheet lists its rated life expectancy to be 100,000 operations).

There is also a type of relay known as a Solid State Relay (SSR) that has
no moving parts, however, they are typically more expensive than a
comparable mechanical relay.

Our first task is to create our circuit, which we will do next.

Building the relay driver circuit
Let's build our relay driver circuit. We will do this in three parts, starting with the
placements of the components:

Turning Things On and Off Chapter 7

[246]

Figure 7.11 – Relay driver circuit (part 1 of 3)

Following are the steps for the first part of the build. The step numbers match the
numbered black circles in Figure 7.11:

Place the PC817 into your breadboard, taking care that pin 1 of the IC is1.
connected to the left-hand breadboard bank as illustrated.
Place a 1kΩ resistor into your breadboard. One end of the resistor connects to pin2.
1 of the PC817.
Place the MOSFET into your breadboard, taking care to orientate the component3.
the correct way around regarding the Source, Gate, and Drain legs. Our example
layout assumes a 2N7000 MOSFET. Please see Figure 7.8 if you need help to
identify the legs.
Place a 1kΩ resistor into your breadboard. One end of this resistor connects the4.
Gate leg of the MOSFET.
Place a 100kΩ resistor into your breadboard. One end of this resistor also5.
connects the Gate leg of the MOSFET.
Place the diode into your breadboard, taking care to orientate the component as6.
illustrated with the cathode leg (the end of the component with the band)
pointing toward the bottom of the breadboard.

Turning Things On and Off Chapter 7

[247]

Now that you have placed the individual components, next, we will wire up the
components:

Figure 7.12 – Relay driver circuit (part 2 of 3)

Following are the steps for the second part of the build. The step numbers match the
numbered black circles in Figure 7.12:

Connect the resistor you placed at the previous step 2 to a 3.3-volt pin on your1.
Raspberry Pi.
Connect pin 2 of the PC817 to GPIO 21 on your Raspberry Pi.2.
Connect pin 4 of the PC817 to the positive rail of the right-hand side power rail.3.
Connect the Source leg of the MOSFET into the negative rail of the right-hand4.
side power rail.
Connect the 100kΩ resistor that connects into the Drain leg of the MOSFET to5.
the negative rail of the right-hand side power rail.
Connect pin 4 of the PC817 to the cathode leg of the diode.6.
Connect the Drain leg of the MOSFET to the anode leg of the diode.7.

Turning Things On and Off Chapter 7

[248]

Finally, we will connect the power supplies and relay:

Figure 7.13 – Relay driver circuit (part 3 of 3)

Following are the steps for the third and last part of the build. The step numbers match the
numbered black circles in Figure 7.13:

Connect the positive rail of the right-hand side power rail to the positive output1.
terminal of a 5-volt power supply.
Connect the negative rail of the right-hand side power rail to the negative output2.
terminal of a 5-volt power supply.
Connect the anode leg of the diode to one of the relay's coil terminal.3.
Connect the cathode leg of the diode to the relay's other coil terminal.4.
Connect the negative output of a different 5-volt power supply to the com5.
terminal on your relay.

At step 5, you must use two different external power sources for this
circuit because the current requirements of the relay coil and potential
relay load will very likely be too much to borrow (rob) from your
Raspberry Pi's power supply.

Turning Things On and Off Chapter 7

[249]

Connect the positive output terminal of the different 5-volt power supply to the6.
positive input terminal of your load (for example, one of the terminals on a
motor).
Finally, connect the NO (Normally Open) terminal of the relay to the negative7.
input terminal of your load.

Using the NO terminal on the relay means the load will be off by default
and only powered when the relay is engaged, which happens when GPIO
21 is low (remembering this circuit is active-low). If you connect your load
to the NC (Normally Closed) terminal in the relay, the load will be
powered by default, including when your Raspberry Pi is switched off.

Well done! Your completed breadboard circuit, as illustrated in Figure 7.13. This is the
breadboard build that matches the schematic diagram shown at the commencement of this
chapter in Figure 7.1. This breadboard circuit is shown with a 5-volt relay coil power
source and a 5-volt load power source. This circuit, however, can be used with different
power supplies subject to the following pointers:

The choice of resistors and the 2N7000 MOSFET used in this circuit is capable of
driving a 12-volt relay like an SRD-12VDC-SL-C. You'll just need to make sure
the relay coil power source is 12 volts rather than 5 volts.
The load power source is illustrated as 5 volts, however, if your load requires
more voltage (that's within the relay's specifications), it can be increased.

Now that we have a finished circuit, let's run a Python program to control the relay.

Controlling the Relay Driver Circuit with Python
Run the following code, which is in the chapter07/optocoupler_test.py file. The relay
should activate with a click sound, and deactivate after 2 seconds. This is the same code we
used when we created and tested our optocoupler circuit since it's the optocoupler that our
Raspberry Pi is connected to.

We saw earlier when we learned about MOSFETs that we could connect the MOSFET
directly to a GPIO pin and control the relay, without needing an optoisolator. So, why does
the preceding circuit have one?

Turning Things On and Off Chapter 7

[250]

The answer is that our circuit does not technically need one, and there are ready-made relay
modules to be found (though rarer) that do not have an optoisolator. However, there is no
harm in having one present since it does provide a level of electrical isolation protection
just in case the relay control circuit fails or there is a mishap when wiring up the power
supply.

Finally, what about relay modules you can find on sites such as eBay that have more than
one relay? There is just a single relay circuit replicated multiple times—you will typically
be able to count a transistor and optocoupler pair for each relay (although optocouplers and
transistors can come in chip form, that is, multiple optocouplers or optocouplers in a single
package, so on some modules you may just see the chips instead). Also, note that some
modules will use a BJT rather than a MOSFET. If you can read the part numbers on the
components, you can always perform a web search to determine what they are.

To conclude our exploration of turning things on and off, here is a table comparing the
switching components we used in this chapter:

Optocoupler MOSFET Relay
Construction Solid state Solid state Mechanical

Current AC or DC (depending on
optocoupler)

DC only (start your research
with TRIACS for AC) AC and DC

Cost $ - $$ $ (low capacity) to $$$ (high
capacity) $

Gets Really Hot
(Can't touch) No Yes for high current power

MOSFETs No

Control Voltage
/ Current

Low (need to turn off and on
the internal LED)

Low (need to apply voltage to
the Gate)

High (need to energize the relay
coil)

Load Voltage /
Current

Low (for example, PC817
max 50mA)

Low (for example, 2N27000 at
200mA); High (for
example, FQP30N06L at 32A)

High (for example, SRD-05VDC-
SL-C 10A)

Electrical
Isolation Yes No Yes

Example
application

Provides electrical isolation
between a controlling circuit
and the circuit to be
controlled

Allows a low current/voltage
circuit to control a higher
voltage/current circuit

Allows a low current/voltage
circuit to control a higher
voltage/current circuit

Longevity Long life Long life Short life (moving parts will
wear out eventually)

Use PWM Yes Yes
No—a relay will not switch fast
enough, plus you'll only wear
out the relay faster!

Well done on completing this chapter! You now understand multiple ways to control loads
that have voltage and current requirements beyond the 3.3 volt/8mA limits of your
Raspberry Pi's GPIO pins.

Turning Things On and Off Chapter 7

[251]

Summary
In this chapter, we learned how to switch things on and off. We commenced by briefly
reviewing a typical relay driver circuit, before learning how to measure the current
requirements of a DC motor, LED, and relay using a multimeter. Next, we discussed the
properties of an optocoupler and learned at low to use it as a digital switch. Then, we
discussed MOSFETs and discovered how to use them as a switch and for motor speed
control using PWM.

The information, circuits, and exercises you have learned in this chapter will help you to
make informed decisions and make the necessary calculations and measurements to select
suitable components and create circuits that can be used to switch devices on and off and
other loads that demand more current and higher voltages that can be sourced safely from
a Raspberry Pi pin.

Our approach to this chapter was to incrementally explore and build a relay driver circuit,
which provides you with a practical example of how and why switching components are
chained together to control higher power components and/or loads. Also, we learned that
optocouplers can be used to electrically isolate circuits, which can be a useful and practical
technique to help us to isolate and protect our Raspberry Pi from accidental damage should
a circuit fail or be wired incorrectly.

In the next chapter, we turn our attention to different types of LEDs, buzzers, and visual
components we can use to signal or display information to users.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

When it comes to controlling a transistor, how do MOSFET and BJT differ? 1.
You are controlling a motor using a MOSFET, however, you switch off the2.
MOSFET (for example, making the GPIO pin low), but the motor does not turn
off promptly but instead spins down. Why?
You have selected a random MOSFET that you want to control from a Raspberry3.
Pi 3.3-volt GPIO but it does not work. What is some possible cause of the
problem?
Other than switching, what common feature do optocouplers and relays share4.
that transistors do not?

Turning Things On and Off Chapter 7

[252]

What is the difference between an active low and active high GPIO?5.
Why do we prefer a physical pull-down resistor for the MOSFET's Gate leg over6.
an in-code activated pull-down?
For a DC motor, what does the stall current represent?7.
For a DC motor, what is the difference between continuous and free current?8.

Further reading
The following tutorial is a thorough introduction to transistors, their various types, and
applications:

https:/​/​www.​electronics-​tutorials.​ws/​category/​transistor (start with the
MOSFET sections)

https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor
https://www.electronics-tutorials.ws/category/transistor

8
Lights, Indicators, and
Displaying Information

In the previous chapter, we explored and learned how to use an optocoupler, transistor,
and relay circuit and how these three components work together to create a common relay
control module. We also covered how to measure the current usage of a load using a
multimeter so that you can make an informed decision on what method or component
should be used to switch or control an external load.

In this chapter, we will cover two alternative ways of making color with RGB LEDs and
create a simple application to monitor your Raspberry Pi's CPU temperature and display
the result on an OLED display. We will conclude by seeing how we can combine PWM and
buzzers to create sound.

After you complete this chapter, you will have the knowledge, experience, and code
examples that you can adapt to your own projects for those situations you need to display
information to users, make a noise, or simply dazzle them with lights! Furthermore, what
you learn will be adaptable to other types of compatible displays and lighting devices if
you wish to explore these topics further.

We will cover the following topics in this chapter:

Making color with an RGB LED
Controlling a multi-color APA102 LED strip with SPI
Using an OLED display
Making sound with buzzers and PWM

Lights, Indicators, and Displaying Information Chapter 8

[254]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
A minimum of Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

You will find this chapter's source code in the chapter08 folder in the GitHub repository
available here: https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-
for-​IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter08 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio

Pillow: Python Imaging Library (PIL) (https:/​/​pypi.​org/​project/​Pillow)
Luma LED Matrix Library (https:/​/​pypi.​org/​project/​luma.​led_​matrix)
Luma OLED Library (https:/​/​pypi.​org/​project/​luma.​oled)

The electronic components we will need for this chapter's exercises include the following:

1 x passive buzzer (rated for 5 volts)
1 x 1N4001 Diode
1 x 2N7000 MOSFET
2 x 15Ω, 200Ω, 1kΩ & 100kΩ Resistors
1 x RGB LED with a common cathode (datasheet: https:/​/​pdf1.​alldatasheet.
com/​datasheet-​pdf/​view/​292386/​P-​TEC/​PL16N-​WDRGB190503.​html)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pypi.org/project/luma.oled
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/292386/P-TEC/PL16N-WDRGB190503.html

Lights, Indicators, and Displaying Information Chapter 8

[255]

1 x SSD1306 OLED display (with an I2C interface) or another model compatible
with the Luma OLED Python library (datasheet (Driver IC): https:/​/​www.
alldatasheet.​com/​datasheet-​pdf/​pdf/​1179026/​ETC2/​SSD1306.​html)
1 x APA102 RGB LED strip (datasheet (Single APA102 Module): https:/​/​www.
alldatasheet.​com/​datasheet-​pdf/​pdf/​1150589/​ETC2/​APA102.​html)
1 x logic level shifter/converter module
1 x external power supply (for example, a 3.3V/5V breadboard power supply)

Let's make a start by looking at how we can use PWM to set the color of an RGB LED.

Making color with an RGB LED and PWM
In this section, we will learn how to use Pulse-Width Modulation (PWM) together with an
RGB LED to create different colors. As a reminder, PWM is a technique to create a variable
voltage, which when applied to an LED and resistor pair can be used to change the
brightness of an LED. We first discussed PWM and used it to change the brightness of an
LED back in Chapter 2, Getting Started with Python and IoT. We then covered PWM in
greater depth in Chapter 5, Connecting your Raspberry Pi to the Physical World.

An RGB LED is three single-color LEDs (red, green, and blue) in a single package, as
illustrated in Figure 8.1:

Figure 8.1 – RGB LED varieties

https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1179026/ETC2/SSD1306.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1150589/ETC2/APA102.html

Lights, Indicators, and Displaying Information Chapter 8

[256]

You will notice that two types are shown:

Common Cathode: The red, green, and blue LEDs share a common cathode leg,
meaning that the common leg is what connects to the negative or ground voltage
source—cathode = negative.
Common Anode: The red, green, and blue LEDs share a common anode leg,
meaning that the common leg is what connects to the positive voltage
source—anode = positive.

The common leg will be the longest of the four legs. If the longest leg is
closest to the flat side of the LED's casing, it's a common cathode type. On
the other hand, if the longest leg is nearer the lip (and hence furthest from
the flat side), it's a common anode type.

We learned previously in Chapter 5, Connecting Your Raspberry Pi to the Physical World, how
to set the brightness of a single LED using PWM, but what happens if we vary the
brightness of the three individual colors in an RGB LED? We mix the individual colors to
create new colors! Let's create a circuit and start mixing.

Creating the RGB LED circuit
In this section, we will create a simple circuit to control an RGB LED, and we will be using
a common cathode RGB LED (that is, the three individual LEDs share a common GND
connection).

We will start by building the circuit as shown in Figure 8.2 on our breadboard:

Figure 8.2 – Common cathode RGB LED schematic

Lights, Indicators, and Displaying Information Chapter 8

[257]

Following is the accompanying breadboard layout for this schematic that we are about to
build:

Figure 8.3 – Common cathode RGB LED circuit

Here are the steps to follow, which match the numbered black circles in Figure 8.3:

Start by placing the RGB LED into your breadboard, taking care to orientate the1.
LED regarding the positioning of its cathode leg.
Position the 200Ω resistor (R1). One end of this resistor connects to the red leg of2.
the LED.
Position the first 15Ω resistor (R2). One end of this resistor connects to the blue leg3.
of the LED.
Position the second 15Ω resistor (R3). One end of this resistor connects to4.
the green leg of the LED.
Connect a ground pin on your Raspberry Pi to the negative power rail.5.

Lights, Indicators, and Displaying Information Chapter 8

[258]

Connect GPIO 16 on your Raspberry Pi to the other end of the 200Ω resistor (R1)6.
you placed at step 2.
Connect the cathode leg of the RGB LED to the negative power rail.7.
Connect GPIO 20 on your Raspberry Pi to the other end of the 15Ω resistor (R2)8.
you placed at step 3.
Connect GPIO 21 on your Raspberry Pi to the other end of the 15Ω resistor (R3)9.
you placed at step 4.

Before we test our RGB LED circuit, let's briefly recap how we arrived at the 200Ω and 15Ω

resistors in this circuit. The 200Ω resistor (R1) was derived using the same process we
covered in Chapter 6, Electronics 101 for the Software Engineer. The 15Ω resistors for R2 and
R3 are derived using the same process, with the difference being that the typical forward
voltage used in the calculations for the blue and green LED was 3.2-volts. If you study the
sample datasheet, you will notice that the forward voltage for the blue and green LEDs lists
a maximum forward voltage of 4.0 volts. Even at the typical value of 3.2 volts, we are very
close to the 3.3 volts of a Raspberry Pi GPIO pin. If you are unlucky to get an RGB LED
needing more than 3.3 volts for its blue or green LED, it will not work—though I have
never come across one...yet.

Now we are ready to test our RGB LED.

Running and exploring the RGB LED code
Now that you have your circuit ready, let's run our example code. Our example will light
up the LED and make it alternate different colors. Here are the steps to follow:

Run the code in the chapter08/rgbled_common_cathode.py file and you1.
should observe the RGB LED cycling colors. Take note of the first three colors,
which should be red, green, and then blue.

To use a common anode RGB LED, it needs to be wired differently than
shown in Figure 8.2—the common anode leg must go to the +3.3V pin on
your Raspberry Pi, while the GPIO connections remain the same. The
other change is in code where we need to invert the PWM signals—you
will find a file called rgbled_common_anode.py in the chapter08 folder
with the differences commented.

Lights, Indicators, and Displaying Information Chapter 8

[259]

If your first three colors are not red, green, and then blue, your RGB LED may2.
have its legs in a different order than the RGB LED's pictured in Figure 8.1 and
the circuit in Figure 8.2. What you will need to do is change the GPIO pin
numbering in the code (see the following code snippets) and re-run the code
until the color order is correct.
After the red, green, and then blue cycle, the RGB LED will animate a rainbow of3.
colors before the program completes.

Let's discuss the interesting sections of the code and see how it works:

In line (1), we are importing getrgb from the PIL.ImageColor module. getrgb provides
us with a convenient way to convert common color names such as red or hex values such as
#FF0000 into their RGB component values such as (255, 0, 0):

from time import sleep

import pigpio

from PIL.ImageColor import getrgb # (1)

GPIO_RED = 16

GPIO_GREEN = 20

GPIO_BLUE = 21

pi.set_PWM_range(GPIO_RED, 255) # (2)

pi.set_PWM_frequency(GPIO_RED, 8000)

... truncated ...

Starting at line (2), we explicitly configure PWM for each of the GPIO pins (the duty cycle
range of 255 and frequency of 8,000 are the PiGPIO defaults). The PWM duty cycle range of
0 to 255 maps perfectly into the RGB component color value range of 0...255, which we will
see shortly is how we set the individual brightness of each color LED.

In the following code, in line (3), we have the set_color() definition, which is responsible
for setting the color of our RGB LED. The color parameter can be either a common color
name such as yellow, a HEX value such as #FFFF00, or one of the many formats that
getrgb() can parse (see the rgbled_common_cathode.py source file for a list of common
formats):

def set_color(color): # (3)

 rgb = getrgb(color)

 print("LED is {} ({})".format(color, rgb))

 pi.set_PWM_dutycycle(GPIO_RED, rgb[0]) # (4)

 pi.set_PWM_dutycycle(GPIO_GREEN, rgb[1])

 pi.set_PWM_dutycycle(GPIO_BLUE, rgb[2])

Lights, Indicators, and Displaying Information Chapter 8

[260]

In line (4), we see how to use PWM with the individual GPIO pins to set the RBG LED's
color. Continuing with yellow as our example, we see the following:

GPIO_RED is set to a duty cycle of 0.
GPIO_GREEN is set to a duty cycle of 255.
GPIO_BLUE is set to a duty cycle of 255.

A duty cycle value for green and blue of 255 means that these LEDs are fully on and, as we
know, mixing green and blue makes yellow.

As you browse the source file, you will encounter another two functions at lines (6) and (7):

def color_cycle(colors=("red", "green", "blue"), delay_secs=1): # (6)

 # ...truncated...

def rainbow_example(loops=1, delay_secs=0.01): # (7)

 # ...truncated...

Both of these methods delegate to set_color(). color_cycle() loops through the list of
colors provided as its color parameter, while rainbow_example() generates and loops
through a range of colors to produce the rainbow sequence. These functions are what
generated the light sequences when we ran the code in step 1.

Our RGB LED circuit comes with limitations and drawbacks:

Firstly, we need three GPIO pins per RGB LED.
Secondly, we're restricting the current to 8mA with the resistors so we cannot
achieve maximum potential brightness of the individual LEDs (we would need
~20mA for full brightness).

While we could introduce transistors (or an appropriate multi-channel LED driver IC) to
increase the current, our circuit would quickly become cumbersome! Luckily, there is
another way we can create color with LEDs, and that is with addressable LEDs, which we'll
look at next.

Lights, Indicators, and Displaying Information Chapter 8

[261]

Controlling a multi-color APA102 LED strip
with SPI
The APA102 is an addressable multi-color (RGB) LED that is controlled using a Serial
Peripheral Interface (SPI). In simplistic terms, we send instructions to the LED asking it
what color to display rather than individually controlling each of the three red-green-blue
legs of the LED using PWM as we did in the previous example.

If you need a quick refresher on SPI, we covered it back in Chapter 5, Connecting Your
Raspberry Pi to the Physical World. We will also discuss SPI further the context of the
APA102, the Raspberry Pi, and Python after we explore APA102 specific code shortly.

APA102 LEDs can also be connected or chained together to create LED strips or LED
matrices to create dynamic and multi-LED lighting and display solutions. Irrespective of
how the LEDs are arranged, we control them using a common technique where we send
multiple sets of instructions to a chain of APA102 LEDs. Each individual LED consumes
one instruction and passes the rest on to be consumed by upstream LEDs. We will see this
idea in action as we work with an APA102 LED strip shortly.

APA102 LEDs also go by the name Super LEDs, DotStar LEDs, and
sometimes Next Generation NeoPixels. There is also another addressable
LED, the WS2812, also known as a NeoPixel. While similar in principle
and operation, WS2812 RGB LEDs are not compatible with the APA102.

Let's create a circuit and run the code to control our APA102 LED strip.

Lights, Indicators, and Displaying Information Chapter 8

[262]

Creating the APA102 circuit
In this section, we will create our APA102 circuit, as shown in the following diagram. We
will do this on our breadboard in two parts:

Figure 8.4 – APA102 LED strip circuit schematic

Let's get started on the first part, which will be to place the components and wire up the
low-voltage side of a logic level converter:

Figure 8.5 – APA102 LED circuit (part 1 of 2)

Lights, Indicators, and Displaying Information Chapter 8

[263]

Here are the steps to follow. The step numbers match the numbered black circles in Figure
8.5:

Place the logic level converter (logic level shifter) into the1.
breadboard, positioning the low-voltage side toward your Raspberry Pi. Different
logic level converters may have different labeling, however, it should be clear
which is the low-voltage side. In our illustration, one side has an LV (Low
Voltage) terminal while the other has an HV (High Voltage) terminal, which
distinguishes the sides.
Connect the negative rails on the left-hand side and right-hand side power rails.2.
Connect a 3.3-volt pin on your Raspberry Pi to the positive rail of the left-hand3.
side power rail.
Connect the LV terminal on the logic level converter into the positive rail of the4.
left-hand side power rail.
Connect the MOSI (Master Out Slave In) pin on your Raspberry Pi to the A25.
terminal on the logic level converter.
Connect the SLCK (Serial Clock) pin on your Raspberry Pi to the A1 terminal on6.
the logic level converter.
Connect the GND terminal on the logic level converter to the negative rail on the7.
left-hand side power rail.
Connect the negative rail on the left-hand side power rail to a GND pin on your8.
Raspberry Pi.

Lights, Indicators, and Displaying Information Chapter 8

[264]

Now that we have wired the low-voltage side of the logic level converter to our Raspberry
Pi, next we will wire the high-voltage side to the APA102 LED strip. As a reminder,
Raspberry Pi GPIO pins operate at 3.3 volts (hence it's the low voltage) while the APA102
operates at 5 volts (hence it's the high voltage):

Figure 8.6 – APA102 LED circuit (part 2 of 2)

Here are the steps to follow for the second part of our build. The step numbers match the
numbered black circles in Figure 8.6:

Connect the HV terminal of the logic level converter to the positive rail of the1.
right-hand side power rail.
Place a jumper wire from terminal B2 to an unused row on your breadboard (in2.
the illustration, this is shown at hole G16).
Place another jumper wire from terminal B1 to an unused row on your3.
breadboard (in the illustration, this is shown at hole H14).
Connect the GND terminal on the high-voltage side of the logic level converter to4.
the negative rail of the right-hand side power rail.
Connect the positive output of your power supply to the positive rail of the right-5.
hand side power rail.
Connect the negative output of your power supply to the negative rail of the6.
right-hand side power rail.
Connect the VCC terminal or wire of your APA102 LED strip to the positive rail7.
of the right-hand side power rail.

Lights, Indicators, and Displaying Information Chapter 8

[265]

Your APA102 must be connected the correct way around. You will notice
the arrows on the APA102 LED strip shown in Figure 8.4. These arrows
indicate the direction of the data flow. Make sure your APA102 LED strip
arrows match the illustration (that is, the arrows are pointing away from
the breadboard).
If your APA102 does not have the arrows, look at the naming of the
terminals. One side of an LED strip may have CI/DI (I = Input), while the
other side has DO/CO (O = Output). It's the Input side we need to connect
to the logic level converter.

Connect the CI (Clock Input) terminal or wire of your APA102 LED strip to the8.
wire you placed at step 3 that connects back to the B1 terminal of the logic level
converter.
Connect the DI (Data Input) terminal or wire of your APA102 LED strip to the9.
wire you placed at step 2 that connects back to the B2 terminal of the logic level
converter.
Finally, connect the GND terminal or wire of your APA102 LED strip to the10.
negative rail of the right-hand side power rail.

Well done! You have now completed your APA102 LED strip circuit. As you completed
this circuit build, you will have noticed that we are using a logic level converter. This is
because the APA102 requires 5-volt logic to operate properly. The APA102 datasheet
explicitly mentions the minimum logic voltage to be 0.7 VDD, which is 0.7 x 5 volts = 3.5
volts, which is higher than the Raspberry Pi's 3.3-volt logic-level.

If you need a refresher on logic-levels and logic-level conversion, refer
back to Chapter 6, Electronics 101 for the Software Engineer.

Let's consider the situation (in case you were wondering) that 3.3 volts is only slightly less
than 3.5 volts—surely, that's close enough? You can try and control an APA102 with 3.3-
volts, and it may give you some level of success. However, you may also experience some
random effects and confusion—for example, random LEDs not turning on or off as
expected, flickering LEDs, or LEDs displaying with the wrong color. Unfortunately, the
APA102 is one of the 5-volt logic devices that are not 3.3-volt compatible, so we must take
the extra step and use a logic level converter to meet its 3.5-volt minimum logic-level
requirements.

Now that you have built your APA102 circuit, next we will discuss the considerations we
need to think about to power this circuit.

Lights, Indicators, and Displaying Information Chapter 8

[266]

Powering the APA102 circuit
In Chapter 7, Turning Things On and Off, we discussed the importance of knowing the
current requirements of a "load" that you are using. Let's apply that learning to our APA102
LED strip so we can power it correctly. Our example is assuming a LED strip containing 60
LEDs, however, you will need to adjust the calculations based on the number of LEDs on
your strip.

By the way of example, we have the following:

An APA102 LED strip with 60 LEDs.
Each LED uses (on average) a maximum of 25mA (from the datasheet and
confirmed by measurement).
The LED strip consumes approximately 15mA when idle (no LED is lit).

A single RGB LED uses its maximum current when it is set to the color
white, which is when each individual LED (red, green, and blue) are at
their full brightness.

Using the preceding values, we can calculate our expected maximum current requirement
for 60 LEDs, which is just over 1.5 amps:

If we work in the assumption that we are using a breadboard power supply, then if
we conservatively assume that our breadboard power suppler can only supply around
700mA maximum, we cannot realistically turn on all LEDs on a 60 LED strip to full white. If
we do, then (depending on the power supply) it could turn off if its internal overload
protection kicks in, it might go up in a puff of smoke, or it might limit its output current,
which we may observe as the LEDs looking reddish rather than white.

Let's work backward to work out the safe number of LEDs that we can power from a
700mA power supply:

If we then subtract 2 LEDs (50mA) as a small safety buffer, we get 25 LEDs. Remember this
number (or the number you calculate) as we will need it next when we run our example
code.

Lights, Indicators, and Displaying Information Chapter 8

[267]

After calculating the number of safe LEDs you can use with your power supply, we are
now ready to configure and run our Python example.

Configuring and running the APA102 LED strip code
Now that you have your circuit ready and our LED strip's expected current usage, let's
configure and light up our LED strip:

Edit the chapter08/apa102_led_strip.py file and look for the following line1.
near the top of the file. Adjust the number to be the number of safe LEDs you
calculated previously, or the number of LEDs on your strip if it had a suitably
capable power supply:

NUM_LEDS = 60 # (2)

Save your edits and run the code. If everything is connected correctly, you2.
should observe the LEDs on the strip cycle through the colors red, green, and
blue and then perform a few different light sequences.

If your LED strip is not working, check out the APA102 LED strip
troubleshooting tips later in the section.

If your strip does not show red, green, and blue in that order, then you would need to
adjust code to set the correct order—I'll show you where in the code you can adjust the LED
ordering when we come to that section of code shortly.

With our safe number of LEDs now configured in code, let's walk through the code to see
how it works.

APA102 LED strip code walkthrough
Starting at line (1) in the following code, we have the imports. We will be using a Python
deque collection instance (I'll just refer to is as an array for simplicity) to model in-memory
the APA102 LED strip—we will build up and manipulate the order of colors we want each
individual LED on to display in this array before applying it to the LED strip. We then
import the getrgb function from the PIL library for working with color formats (as we did
in the preceding RGB LED example):

...truncated...

from collections import deque # (1)

Lights, Indicators, and Displaying Information Chapter 8

[268]

from PIL.ImageColor import getrgb

from luma.core.render import canvas

from luma.led_matrix.device import apa102

from luma.core.interface.serial import spi, bitbang

Lastly, the three luma imports are for the APA102 LED strip control. Luma is a mature
high-level library for working with a range of common display devices using Python. It has
support for LCDs, LED strips and matrices, and much more, including OLED displays,
which we will cover later in this chapter.

We can only scratch the surface of what can be done with the Luma library in this chapter,
so I encourage you to explore its documentation and range of examples—you'll find links in
the Further reading section at the end of this chapter.

Next, we come to line (3) in the following code, where we assign color_buffer to an
instance of deque that is initialized with the same number of elements as there are LEDs in
our strip. Each element defaults to black (that is, the LED is off):

...truncated...

color_buffer = deque(['black']*NUM_LEDS, maxlen=NUM_LEDS) # (3)

In line (4) in the following code, we start to create our software interface to the APA102.
Here, we are creating a spi() instance representing the default hardware SPI0 interface on
the Raspberry Pi. To use this interface, your APA102 must be connected to the SPI pins on
your Raspberry Pi, which are as follows:

DI connected to MOSI
CI connected to SCLK

In the following code snippet port=0 and device=0 relate to the SPI0 interface:

...truncated...

serial = spi(port=0, device=0, bus_speed_hz=2000000) # (4)

The bus_speed_hz parameter sets the speed of the SPI interface and, for our examples, we
lower it from its default value of 8,000,000 to 2,000,000 just to ensure that your logic level
converter will work. Not all logic level converters are the same, and they will have a
maximum speed at which they can convert logic levels. If the SPI interface operates faster
than the logic level converter can convert, our circuit will not work.

In line (5) in the following code—which is commented out—we have a software alternative
to hardware SPI known as big-banging, which will work on any GPIO pins at the expense
of speed. It's similar to the software versus hardware PWM trade-off we discussed back in
Chapter 5, Connecting Your Raspberry Pi to the Physical World:

Lights, Indicators, and Displaying Information Chapter 8

[269]

...truncated...

serial = bitbang(SCLK=13, SDA=6) # (5)

...truncated...

device = apa102(serial_interface=serial, cascaded=NUM_LEDS) # (6)

In line (6) in the preceding code, we created an instance of the apa102 class specifying the
serial instance we just created, and the number of LEDs in our strip. From this point
forward in code, to interact with our APA102 LED strip, we use the device instance.

To initialize our LED strip, in line (7) in the following code, we call device.clear() and
set the default global contrast to 128 (so, half brightness). You can adjust this level to find a
brightness that you are comfortable with, remembering that more contrast/brightness
means more current usage. Note that previously when we calculated the number of safe
LEDs, the 25mA per LED used in the calculations assumed maximum brightness (that is,
255):

device.clear() # (7)

contrast_level = 128 # 0 (off) to 255 (maximum brightness)

device.contrast(contrast_level)

In line (8) in the following code, we have the set_color() function. We use this function
to set individual or all elements to a specified color in the color_buffer array. This is how
we build up in-memory the color arrangements we want our APA102 LED strip to display:

def set_color(color='black', index=-1): # (8)

 if index == -1:

 global color_buffer

 color_buffer = deque([color]*NUM_LEDS, maxlen=NUM_LEDS)

 else:

 color_buffer[index] = color

Now, we will jump to line (12) in the following code block to the update() function. This
function loops through color_buffer and, using the Luma device instance representing
our APA102, it feeds the device the colors to display using draw.point((led_pos, 0),
fill=color). This is the magic of the Luma library—it shields us from the lower level
APA102 and SPI data and hardware protocols by giving us a very simple software interface
to use.

Lights, Indicators, and Displaying Information Chapter 8

[270]

If you want to learn more about lower level SPI use and protocols, then
APA102 is a good place to start. Start by reading the APA102 datasheet for
its data protocol, then find a simple APA102 module on pypi.org or
GitHub and review its code. There is also an APA102 example that can be
found on the PiGPIO website—a link is included in the Further reading
section.

It's important to remember that update() needs to be called after you make changes to
color_buffer:

def update(): # (12)

 with canvas(device) as draw:

 for led_pos in range(0, len(color_buffer)):

 color = color_buffer[led_pos]

 ## If your LED strip's colors are are not in the expected

 ## order, uncomment the following lines and adjust the indexes

 ## in the line color = (rgb[0], rgb[1], rgb[2])

 # rgb = getrgb(color)

 # color = (rgb[0], rgb[1], rgb[2])

 # if len(rgb) == 4:

 # color += (rgb[3],) # Add in Alpha

 draw.point((led_pos, 0), fill=color)

If, for some reason, you find your LED strip colors are not in the standard red, green, and
blue order then the preceding commented-out section of code can be used to change the
color order. I've never encountered a non-standard APA102, but I have read about
addressable RGB LEDs having non-standard ordering, so I thought I'd just drop that bit of
code in, just in case.

Moving on to lines (9), (10), and (11), we have three functions that simply manipulate
color_buffer:

def push_color(color): # (9)

 color_buffer.appendleft(color)

def set_pattern(colors=('green', 'blue', 'red')): # (10)

 range(0, int(ceil(float(NUM_LEDS)/float(len(colors))))):

 for color in colors:

 push_color(color)

def rotate_colors(count=1): # (11)

 color_buffer.rotate(count)

http://pypi.org

Lights, Indicators, and Displaying Information Chapter 8

[271]

push_color(color) in line (9) pushes a new color into color_buffer at index 0
while set_pattern() in line (10) fills color_buffer with a repeating color pattern
sequence. rotate_colors() in line (11) rotates the colors in color_buffer (and wraps
them around—the last one becomes for the first one). You can rotate backward by using a
count value < 0.

Finally, toward the end of the source code, we have the following functions that provide
the examples you saw when you run the file. These functions use combinations of the
functions discussed previously to control the LED strip:

cycle_colors(colors=("red", "green", "blue"), delay_secs=1)

pattern_example()

rotate_example(colors=("red", "green", "blue"), rounds=2,

delay_secs=0.02)

rainbow_example(rounds=1, delay_secs=0.01)

We will complete our coverage of the APA102 with a few concluding notes on its use of the
SPI interface.

Discussion of APA102 and the SPI interface
If you cast your mind back to Chapter 5, Connecting Your Raspberry Pi to the Physical
World, where we discussed Serial Peripheral Interface (SPI), you may remember that we
mentioned it uses four wires for data transfer. However, if you consider our circuit in
Figure 8.6, we're only using two wires (DI and CI), not four. What's going on?

Here is the SPI mapping for the APA102:

Master-Out-Slave-In (MOSI) on your Raspberry Pi connects to Data In (DI) on
the APA102. Here, your Raspberry Pi is the master sending data to the slave
APA102 LEDs on the strip.
Master-In-Slave-Out (MISO) is not connected because the APA102 does not
need to send data back to the Raspberry Pi.
SCLK on your Raspberry Pi connect to the Clock In (CI) on the APA102.
 Client Enable/Slave Select (CE/SS) is not connected.

The last line CE/SS of importance and worthy of further discussion. A CE/SS channel is
used by a master device to tell a specific slave device that it's about to receive data. It's this
mechanism that allows a single SPI master to control multiple SPI slaves.

Lights, Indicators, and Displaying Information Chapter 8

[272]

But, we're not (and cannot) use CE/SS it with the APA102 because we have nowhere to
connect the CE/SS pins to. The implication of this is that the APA102 is always listing for
instructions from a master, effectively hogging the SPI channel.

If we are using an APA102 (or any device that has no CE/SS), then we cannot connect more
than one SPI device to a master's hardware SPI, unless we take extra steps. Some of the
options are as follows:

Use big-banging on generic GPIO pins if the performance reduction does not
have adverse effects.
Enable hardware SPI1 on your Raspberry Pi. It's not enabled by default and
requires editing /boot/config.txt. You'll find instructions and tips if you
search the web for Raspberry Pi enable SPI1.
Find a logic level converter that includes an enable pin and write code to
manually control this pin as a proxy CE/SS.

We will conclude this section on the APA102 with a few troubleshooting tips.

APA102 LED strip troubleshooting tips
If you cannot get your APA102 to light up or if you find that random LEDs are not turning
on or off or they are displaying unexpected colors or random flickers, try the following:

The APA102 needs 5-volt logic: Make sure you are using a logic level converter
and that is connected the correct way around—HV to 5 volts and LV to 3.3 volts.
Ensure that the DI/CI side of the APA102 is connected to the logic level
converter.
Make sure your power source can supply enough current. As an example, under-
supply of current or voltage can make white look more like red.
Make sure the ground of your power supply is connected to a ground pin on
your Raspberry Pi.
If you are using big banging, move to hardware SPI.
If using the hardware SPI (that is, creating an instance of the spi() class), try the
following:

If you are receiving the error SPI device not found, make sure SPI
has been enabled in the Raspbian OS. We covered this in Chapter
1, Setting Up Your Development Environment.

Lights, Indicators, and Displaying Information Chapter 8

[273]

If you have been using GPIO 8,9, 10, or 11 previously for general
I/O, then either disable and re-enable the SPI interface as per the
preceding point or reboot your Raspberry Pi to reset the hardware
SPI interface.
Try lowering the SPI bus speed in case your logic level converter
cannot keep up—that is, it cannot convert 3.3-volt to 5-volt signals
as fast as the SPI interface is producing them (hint: lower
the bus_speed_hz parameter in serial = spi(port=0,
device=0, bus_speed_hz=2000000) to 1,000,000 or 500,000).
Connect the APA102's DI and CI directly to SDA and SCLK on the
Raspberry Pi. The goal here is to bypass the logic level converter to
rule it out as the problem.

Well done! This was a lengthy and detailed section on the APA102. We covered a lot of
concepts in addition to the APA102 itself, including how to calculate the power
requirements of a LED strip and an introduction to the Luma library, which can be used to
control a host of different lighting and display devices besides the APA102. Then, we
concluded with practical troubleshooting tips in case your APA102 circuit, setup, or code
did not work on the first go.

All of this knowledge and experience will be adaptable to similar lighting projects you
undertake and SPI-based projects in general. In particular, it will be a helpful reference to
calculate the power requirements of lighting projects and troubleshoot circuits and code
when they do not work. It also provides the basic foundations that we will be building on
in the next section where we look at how to interface an OLED display with our Raspberry
Pi.

Using an OLED display
An OLED or Organic LED display is a type of technology used to make screens. Our
example will be using an SSD1306, which is a monochrome 128x64 pixel display, however,
the information will apply to other OLED displays too.

Our sample program will read your Raspberry Pi's CPU temperature and display it on the
OLED display together with a thermometer icon. We will be assuming the OLED will
connect using an I2C interface, however, an SPI interface device should also be compatible
if you use an spi() instance (like in the APA102 example) for the serial object. The
ability to change the interacting method used by the Luma library means you can reuse
existing code with compatible display devices with minimal code changes.

Lights, Indicators, and Displaying Information Chapter 8

[274]

We will commence by connecting the OLED display to the Raspberry Pi and verifying that
it is connected.

Connecting the OLED display
Let's connect your OLED display to your Raspberry Pi, as shown in Figure 8.7:

Figure 8.7 – I2C OLED display circuit

IMPORTANT NOTE ON POWERING YOUR OLED: Our circuit, shown
in Figure 8.6, and the associated discussion uses a 5-volt power supply. If
you consult the SSD1306 OLED datasheet mentioned at the beginning of
this chapter, you will discover that it mentions a minimum supply voltage
of 7 volts. Furthermore, you will find other sources and SSD1306 OLED
modules that indicate different voltage requirements. Please consult the
documentation or place of purchase to obtain the correct operating
voltage for your OLED and adjust the supply voltage as required (steps
7 and 8 in the following list).

You can connect the OLED with the following steps, which correspond to the numbered
black circles in Figure 8.7:

Connect the negative rails on the left-hand side and right-hand side power rails.1.
Connect the SDA1 (Data) pin of your Raspberry Pi into a vacant row on your2.
breadboard.

Lights, Indicators, and Displaying Information Chapter 8

[275]

Connect the SDA (Data) terminal or wire of your OLED display into the same3.
row use used for step 2.
Connect the SCL1 (Clock) pin of your Raspberry Pi into a vacant row on your4.
breadboard.
Connect the SCL (Clock) terminal or wire of your OLED display into the same5.
row use used for step 4.
Connect a GND Pin on your Raspberry Pi to the negative rail of the left-hand6.
side power rail.
Connect the positive output of a 5-volt power supply to the positive rail of the7.
right-hand side power rail.
Connect the negative output of a 5-volt power supply to the negative rail of the8.
right-hand side power rail.
Connect the GND terminal or wire of your OLED display to the negative rail of9.
the right-hand side power rail.
Connect the VCC terminal or wire of your OLED display (it might also be named10.
VDD, Vin, V+, or something similar indicating a voltage input) to the positive rail
of the right-hand side power rail.

Good job! This completes our OLED circuit. As you can see, we are powering the OLED
from a 5-volt power supply, however, the SDA (Data)/SLC (Clock) channels are connected
directly to your Raspberry Pi. Unlike the APA102 LED strip we used in the previous
section, the SSD1306 OLED is 3.3-volt logic compatible, hence, we do not need a logic level
converter to convert logic level voltages on the clock and data channels.

Let's briefly consider the current requirements for the SSD1306 OLED. My testing resulted
in the following current measurements:

Black screen: ~3mA
White screen (every pixel on): ~27mA

At a maximum current usage of ~27mA, you can try connecting the +5V to the Raspberry
Pi's 5-volt pin, but remember this will take reserve current away from your Raspberry Pi
(and it may reset when you run the code if your Raspberry Pi's power supply is not
adequate).

If you need a recap on current measurement using a digital multimeter,
please refer to Chapter 7, Turning Things On and Off.

Lights, Indicators, and Displaying Information Chapter 8

[276]

With your OLED connected to your Raspberry Pi's SDA and SCL pins next, we will verify
that it has been detected by your Raspberry Pi using the i2cdetect utility.

Verifying whether the OLED display is connected
Previously, in Chapter 5, Connecting Your Raspberry Pi to the Physical World, we used the
i2cdetect command-line tool to check whether an I2C device was connected and to verify
its I2C address. Check that your Raspberry Pi can see your OLED display by running the
following in a Terminal:

$ i2cdetect -y 1

If your OLED is connected, you will see the following output, which tells us that the OLED
was detected and has the hex address, 0x3C:

...truncated...

30: -- -- -- -- -- -- -- -- -- -- -- -- 3c -- -- --

...truncated...

If your address is different, that's okay, we just need to adjust the address in code which we
will do next.

Configuring and running the OLED example
The code we are about to explore is contained in the chapter08/oled_cpu_temp.py file.
Please review this file to get an overall view of what it contains before continuing:

If the OLED I2C address you obtained in the preceding was different to 0x3C,1.
find the following line in the source code and update the address parameter to
match your OLED I2C address:

serial = i2c(port=1, address=0x3C)

Run the program, and you should observe the CPU temperature and a2.
thermometer icon drawn on the OLED display.

Once you have configured your OLED display address in code and confirmed the example
works on your OLED, we are ready to review the code and learn how it works.

Lights, Indicators, and Displaying Information Chapter 8

[277]

OLED code walkthrough
Commencing with the imports, in line (1), we import classes from the PIL (Pillow) module,
which we use to create the image we want to render on the OLED display. We also import
several other classes from the Luma module related to our SSD1306 OLED and its I2C
interface (SPI is also imported for reference).

We see how to create an I2C instance in line (2) representing the interface that our OLED is
connected to. Commented out is an SPI alternative. In line (3), we create an instance
of ssd1306 that represents our OLED display and assign it to the device variable. If you
are using a different OLED display than the SSD1306, you will need to identify and adjust
the ssd1306 import line, and the device instance created in line (3):

from PIL import Image, ImageDraw, ImageFont # (1)

from luma.core.interface.serial import i2c, spi

from luma.core.render import canvas

from luma.oled.device import ssd1306

#...truncated...

OLED display is using I2C at address 0x3C

serial = i2c(port=1, address=0x3C) # (2)

#serial = spi(port=0, device=0)

device = ssd1306(serial) # (3)

device.clear()

print("Screen Dimensions (WxH):", device.size)

In line (4), we encounter the get_cpu_temp() function, which calls a command-line utility
to retrieve your Raspberry Pi's CPU temperature before parsing and returning the result
that we will use shortly to construct our display image:

def get_cpu_temp(): # (4)

 temp = os.popen("vcgencmd measure_temp").readline() # Eg 62.5'C

 data = temp.strip().upper().replace("TEMP=", "").split("'")

 data[0] = float(data[0])

 if data[1] == 'F': # To Celsius just in case it ever returns

Fahrenheit

 data[0] = (data[0] - 32) * 5/9

 data[1] = 'C'

 return (data[0], data[1]) # Eg (62.5, 'C')

In the following code in line (5), we define temperature thresholds that influence the icon
we show on our OLED display. We will also use the high threshold to make the OLED
display blink to help to create a visual attention-grabber.

Lights, Indicators, and Displaying Information Chapter 8

[278]

In line (6), we load in three thermometer images and scale them down starting at line (7) to
a size that is workable with the 128x64 pixel dimensions of our SSD1306 OLED:

Temperature thresholds used to switch thermometer icons

temp_low_threshold = 60 # degrees Celsius # (5)

temp_high_threshold = 85 # degrees Celsius

Thermometer icons

image_high = Image.open("temp_high.png") # (6)

image_med = Image.open("temp_med.png")

image_low = Image.open("temp_low.png")

Scale thermometer icons (WxH)

aspect_ratio = image_low.size[0] / image_low.size[1] # (7)

height = 50

width = int(height * aspect_ratio)

image_high = image_high.resize((width, height))

image_med = image_med.resize((width, height))

image_low = image_low.resize((width, height))

Next, we define two variables starting at line (8) in the following. refresh_secs is the rate
at which we check the CPU temperature and update the OLED display while high_alert
is used to flag a breach of the maximum temperature threshold and start the screen
blinking:

refresh_secs = 0.5 # Display refresh rate #(8)

high_alert = False # Used for screen blinking when high temperature

try:

 while True:

 current_temp = get_cpu_temp()

 temp_image = None

 canvas = Image.new("RGB", device.size, "black") # (9)

 draw = ImageDraw.Draw(canvas) # (10)

 draw.rectangle(((0,0),

 (device.size[0]-1, device.size[1]-1)),

 outline="white")

In the while loop, in line (9), we see the use of the PIL module. Here, we are creating a
blank image using the same dimensions as the OLED device (that is, 128x64 for the
SSD1306) and storing it in the canvas variable. In subsequent code, we manipulate this in-
memory canvas image before sending it to the SSD1306 for rendering.

Lights, Indicators, and Displaying Information Chapter 8

[279]

The draw instance created in line (10) is a PIL helper class that we use for drawing on the
canvas. We use this instance for placing a bounding rectangle around the canvas and will
use it later to add text to the canvas. The draw instance can also be used to draw many
other shapes including lines, arcs, and circles. A link to the PIL API documentation can be
found in the Further reading section.

The block of code starting at line (11) in the following is what will make our OLED display
blink when high_alert is True:

 if high_alert: # (11)

 device.display(canvas.convert(device.mode))

 high_alert = False

 sleep(refresh_secs)

 continue

Starting at line (12), we compare the temperature reading we obtained from
get_cpu_temp() to the threshold values defined earlier. Depending on the result, we
change the thermometer image that will be shown, and for a high threshold breach, we
set high_alert = True. Setting high_alert to True will cause the OLED display to
blink on the next loop iteration:

 if current_temp[0] < temp_low_threshold: # (12)

 temp_image = image_low

 high_alert = False

 elif current_temp[0] > temp_high_threshold:

 temp_image = image_high

 high_alert = True

 else:

 temp_image = image_med

 high_alert = False

We start constructing our display starting at line (13) in the following. We
calculate image_xy to be a point at which our thermometer image would be centered on
the display and then offset that point using the image_x_offset and image_x_offset
variables to move the image into the position we want it rendered.

Lights, Indicators, and Displaying Information Chapter 8

[280]

In line (14), we then paste our thermometer image onto the canvas:

Temperature Icon

image_x_offset = -40 # (13)

image_y_offset = +7

image_xy = (((device.width - temp_image.size[0]) // 2) +

 image_x_offset, ((device.height - temp_image.size[1]) // 2)

 + image_y_offset)

canvas.paste(temp_image, image_xy) # (14)

Moving on to line (15) in the following code block, we create the text we want to display on
our OLED screen and use the same technique as for the image to position the text on the
canvas in line (17). Notice the use of draw.textsize() to obtain the pixel dimensions of
the text.

In line (16), we set font = None to use a default system font for the example because I
cannot be entirely sure what fonts you have available on your Raspberry Pi. The line after
line (16) that is commented out shows an example of using a custom font.

Run the fc-list command in a Terminal to see a list of fonts installed on
your Raspberry Pi.

Finally, in line (18), we draw the text on the canvas:

Temperature Text (\u00b0 is a 'degree' symbol) # (15)

text = "{}\u00b0{}".format(current_temp[0], current_temp[1]) # Eg 43'C

font = None # Use a default font. # (16)

font = ImageFont.truetype(font="Lato-Semibold.ttf", size=20)

text_size = draw.textsize(text, font=font) # (17)

text_x_offset = +15

text_y_offset = 0

text_xy = (((device.width - text_size[0]) // 2) + text_x_offset,

((device.height - text_size[1]) // 2) + text_y_offset)

draw.text(text_xy, text, fill="white", font=font) # (18)

Lights, Indicators, and Displaying Information Chapter 8

[281]

We have now reached the tail-end of the while loop. In line (19) in the following code, we
use the device instance that represents the SSD1306 OLED display to display canvas.
The canvas.convert(device.mode) call converts the canvas image that we created into
a format usable by the SSD1306:

Render display with canvas

device.display(canvas.convert(device.mode)) # (19)

sleep(refresh_secs)

Before we complete our exploration of OLEDs, I want to point you to more examples. The
Luma library contains an extensive range of examples covering many aspects of using an
OLED display. A link to the examples can be found in Further reading.

OLED displays are low cost, small in size, and light on power consumption, so you
frequently find them used in battery-operated devices. If you want to explore other display
options for your Raspberry Pi, you might like to investigate the range of Raspberry Pi TFT
displays that are available (just search for that term on sites such as eBay.com or
Banggood.com). These are full-color mini-monitors for your Raspberry Pi, and there are
even touch-screen options available.

This now concludes our coverage of lighting and displays with our Raspberry Pi and
Python. The knowledge you have learned so far will enable you to use and correctly power
your own simple LED lighting projects and leverage a range of OLED displays for those
projects where you wish to display textual and graphical information to users.

To conclude the exercises for this chapter, next, we will revisit Pulse-Width-Modulation
(PWM) briefly and see how we can use it to generate sound.

Making sound with buzzers and PWM
In the final section of this chapter, we will walk through an example of how to make simple
sound and music with PWM. Our sample program is going to play a musical scale on the
buzzer, and we will be using a music score format called Ring Tone Text Transfer
Language (RTTTL), which was developed by Nokia in the pre-smartphone era for creating
ringtones. As we learn, we can use a simple Python library to parse an RTTTL music score
and turn its notes into a PWM frequency and duration that can then be used to associate a
buzzer to create an auditable tune.

Lights, Indicators, and Displaying Information Chapter 8

[282]

To make a sound with PWM, we need a form of a speaker, and we will be using what is
known as a passive buzzer. Buzzers come in two basic forms:

Active buzzers: These buzzers contain an internal oscillator that generates a
single set tone. All you need to do us apply a DC voltage to an active buzzer and
it will make a noise.
Passive buzzers: These do not contain any internal smarts to make them work, so
the oscillating must be done by the controlling device. The upside of this is that
we can set and change the tone as we wish, and we can achieve this using PWM.

Now that we understand a little about how to make sound with buzzers, let's continue and
create our sound-making circuit.

Building the RTTTL circuit
In this section, we will be building a circuit to drive a passive buzzer. This circuit, shown in
Figure 8.8 is very similar to the MOSFET circuit that we covered in Chapter 7, Turning
Things On and Off, only this time with a buzzer connected as the load:

Figure 8.8 – Buzzer driver circuit Schematic

Lights, Indicators, and Displaying Information Chapter 8

[283]

We will start our circuit build by placing the components onto our breadboard:

Figure 8.9 – Buzzer driver circuit (part 1 of 2)

The following step numbers match the numbered black circles in Figure 8.9:

Place the MOSFET onto the breadboard, paying attention to the orientation of the1.
component with regards to the legs. Please see Figure 7.7 in Chapter 7, Turning
Things On and Off, if you need help to identify the MOSFET's legs.
Place the 100kΩ resistor (R2) into your breadboard. One end of this resistor2.
shares the same row as the MOSFET's Gate (G) leg.
Place the 1kΩ resistor (R1) into your breadboard. One end of this resistor also3.
shares the same row as the MOSFET's Gate (G) leg.
Place the diode into your breadboard, with the cathode leg (the leg at the end4.
with the band) pointing toward the end of the breadboard.
Connect the positive wire of your buzzer into the same row shared by the diode's5.
cathode leg.
Connect the negative wire of your buzzer into a vacant breadboard row.6.

Lights, Indicators, and Displaying Information Chapter 8

[284]

Now that we have laid the components, let's wire them up:

Figure 8.10 – Buzzer driver circuit (part 2 of 2)

The following step numbers match the numbered black circles in Figure 8.10:

Connect the negative rail of the left-hand side power rail to the 1kΩ resistor (R2).1.
Connect the Source leg (S) of the MOSFET to the negative rail of the left-hand2.
side power rail.
Connect the negative rail of the left-hand side power rail to a GND pin on your3.
Raspberry Pi.
Connect the end of the 100kΩ resistor (R1) to GPIO 12/PWM0 on your Raspberry4.
Pi. As a reminder, GPIO 12 in its alternative function is channel PWM0, a
hardware PWM pin.
Connect the Drain leg (D) of the MOSFET to the anode leg of the diode.5.
Connect the anode leg of the diode to the negative wire of your buzzer.6.
Connect the buzzer's positive wire/diode's cathode leg into the positive rail of the7.
right-hand side power rail.
Connect the negative rails of the left-hand side and right-hand side power rails.8.

Lights, Indicators, and Displaying Information Chapter 8

[285]

Connect the positive output of the power supply to the positive rail of the right-9.
hand side power rail.
Connect the negative output of the power supply to the negative rail of the right-10.
hand side power rail.

Now that you have completed this circuit build, we will proceed and run our Python
example, which will make some music!

Running the RTTTL music example
Run the code in the chapter08/passive_buzzer_rtttl.py file, and your buzzer will
play a simple musical scale.

The code to perform this is quite simple. In line (1) in the following code, we are using the
rtttl module to parse an RTTTL music score into a series of notes defined by frequency
and duration. Our score is stored in the rtttl_score variable:

from rtttl import parse_rtttl

rtttl_score = parse_rtttl("Scale:d=4,o=4,b=125:8a,8b, # (1)

 8c#,8d,8e,8f#,8g#,8f#,8e,8d,8c#,8b,8a")

Next, in line (2), we loop through the parsed notes in rtttl_score and extract the
frequency and duration:

 for note in rtttl_score['notes']: # (2)

 frequency = int(note['frequency'])

 duration = note['duration'] # Milliseconds

 pi.hardware_PWM(BUZZER_GPIO, frequency, duty_cycle) # (3)

 sleep(duration/1000) # (4)

In line (3), we set the frequency on the buzzer's GPIO pin using PWM, and hold the note for
its duration at line (4) before continuing to the next note.

In line (3), note that we are using PiGPIO's hardware_PWM() and
that BUZZER_GPIO must be a hardware compatible PWM pin. PiGPIO's
hardware-timed PWM (which is available on any GPIO pin) is not suitable
for music creation because it is restricted to a discrete range of
frequencies. If you need a refresher on PWM techniques, revisit Chapter
5, Connecting Your Raspberry Pi to the Physical World.

Lights, Indicators, and Displaying Information Chapter 8

[286]

Making music with RTTTL is very electronic-sounding, so to speak, and is a popular
technique with resource-limited microcontrollers. However, remember that, with our
Raspberry Pi, we have more than enough resources and the built-in hardware to play rich
media such as MP3s.

Try a web search for RTTTL Songs and you'll find many scores for songs,
retro computer games, and TV and movie themes.

If you want to explore playing and controlling MP3s via Python, you'll find many
resources, tutorials, and examples across the web. Unfortunately, there are many ways to
achieve this task (including changes across different versions of Raspbian OS), so it can be a
bit finicky at times getting your Raspberry Pi and Raspbian OS set up and configured
reliably. If you go down this route, my recommendation is to explore playing MP3s and
controlling audio (that is, changing volume) on the command line first. Once you have a
stable and reliable setup, then proceed to explore a Python-based way.

Summary
In this chapter, we learned how to use PWM to set the color of an RGB LED and that a
standalone single RGB LED requires three dedicated GPIO pins to work—one for each of
the colors, red, green, and blue. We then explored another type of RGB LED, the APA102,
which is a 2-wire SPI controllable device that can be chained together to create LED lighting
strips. Next, we learned how to use an OLED display by creating an example application
that displayed your Raspberry Pi's CPU temperature. We concluded with an example of
using PWM together with a passive buzzer to make sound by parsing an RTTTL music
score.

What you have learned in this chapter will allow you to add visual and auditable feedback
to your own projects. You will also be able to extend your learning to other types of
displays with relative ease, as the Luma library we have used is capable of working with a
range of other display types and models in addition to the APA102 LED strip
and SSD1306 OLED devices we used in this chapter.

In the next chapter, we will be looking at components and techniques to measure
environmental conditions including temperature, humidity, and light.

Lights, Indicators, and Displaying Information Chapter 8

[287]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the book:

Your APA102 LED strip is set to show all LEDs as white, but instead, all of the1.
LEDs look reddish. What could be the problem?
What limitation does the APA102 place on SPI?2.
Your APA102 does not work when you use a logic level converter but appears to3.
work when you connect it directly to the MOSI and SCK pins on your Raspberry
Pi (hence bypassing the logic level converter). What are some possible causes of
the problem?
What is the basic process for creating and displaying an image on an OLED4.
display using the Luma OLED library?
What is RTTTL?5.

Further reading
An APA102 is a good choice to commence your learning on lower level data protocol and
communication. After reviewing the APA102 datasheet for its data protocol (see the link
under Technical requirements at the start of this chapter), the next logical step is to review
some lower-level code. The APA102 example for PiGPIO is a one such starting point, but
you'll find others on PyPi.org:

http:/​/​abyz.​me.​uk/​rpi/​pigpio/​examples.​html#Python_​test-​APA102_​py

The Luma suite of libraries offers many high-level modules for integrating common display
with a Raspberry Pi beyond the APA102 and SSD1306 OLED we covered in this chapter.
Furthermore, Luma contains an extensive range of examples:

Luma: https:/​/​pypi.​org/​project/​luma.​core (follow the links for different
display types)
Luma examples on GitHub: https:/​/​github.​com/​rm-​hull/​luma.​examples

http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
http://abyz.me.uk/rpi/pigpio/examples.html#Python_test-APA102_py
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://pypi.org/project/luma.core
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples
https://github.com/rm-hull/luma.examples

Lights, Indicators, and Displaying Information Chapter 8

[288]

Luma uses a PIL (Python Imaging Library)/Pillow comparable API for drawing and
manipulating displays. We specifically used ImageDraw in our OLED example. You will
find the PIL API documentation at the following link:

https:/​/​pillow.​readthedocs.​io

If you would like to explore the RTTTL format further, its Wikipedia site is an excellent
starting point:

RTTTL https:/​/​en.​wikipedia.​org/​wiki/​Ring_​Tone_​Transfer_​Language

https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language
https://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language

9
Measuring Temperature,

Humidity, and Light Levels
In the previous chapter, we explored two methods of making color with RGB LEDs – using
a common RGB LED and with an addressable APA102 RGB LED strip. We also learned
how to use a simple OLED display and how PWM can be used to play music using a
passive buzzer.

In this chapter, we will be looking at some common components and circuits for collecting
environmental data, including temperature, humidity, whether it's dark or light, and how
to detect moisture.

The circuits and code examples we will learn will be useful for building and experimenting
with your own environmental monitoring projects. These circuits can be considered input
or sensor circuits that measure environmental conditions. By way of example, you could
combine the circuit ideas and examples from Chapter 7, Turning Things On and Off, to
switch on a pump to water a plant when the soil is dry, or switch on a low-voltage LED
lamp when it gets dark. In fact, we have an example of a visualization platform in Chapter
13, IoT Visualization and Automation Platforms, where we will capture, record, and visualize
historical temperature and humidity data using one of the circuits from this chapter!

Furthermore, throughout this chapter, we will see practical examples of analog electronics
and associated concepts such as a voltage divider, which we learned about in Chapter 6,
Electronics 101 for the Software Engineer.

Here is what we will cover in this chapter:

Measuring temperature and humidity
Detecting light
Detecting moisture

Measuring Temperature, Humidity, and Light Levels Chapter 9

[290]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on Raspberry Pi 3 Model
B or a different version of Raspbian OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter09 folder in the GitHub repository
available at https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-​for-
IoT.

You will need to execute the following commands in a terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter09 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO Library (https:/​/​pypi.​org/​project/​pigpio)
PiGPIO DHT: DHT11 and DHT22 sensor library (https:/​/​pypi.​org/​project/
pigpio-​dht)
Adafruit ADS1115: ADS1115 ADC library (https:/​/​pypi.​org/​project/
Adafruit-​ADS1x15)

The electronic components we will need for this chapter's exercises are as follows:

1 x DHT11 (lower accuracy) or a DHT22 (higher accuracy) temperature and
humidity sensor
1 x LDR (Light Dependent Resistor, also known as a photocell or photoresistor)
Resistors:

1 x 200 Ω resistor
1 x 10kΩ resistor

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15
https://pypi.org/project/Adafruit-ADS1x15

Measuring Temperature, Humidity, and Light Levels Chapter 9

[291]

1 x 1kΩ resistor
1 x 100kΩ resistor

1 x red LED
1 x ADS1115 analog-to-digital converter module
External power sources – at a minimum, a 3.3 V/5 V breadboard-mountable
power supply.

Measuring temperature and humidity
The measurement of temperature and related environmental properties is a common task,
and there are many different types of sensors available for measuring these properties,
including thermistors (a temperature-dependent resistor), sophisticated breakout modules
that connect via SPI and I2C, and sensor varieties such as the DHT11 or DHT22 sensors,
which we will be using for our example.

All sensors have their relative strengths and weaknesses when it comes to accuracy,
response times (how fast we can rapidly get data from them), and cost.

DHT sensors, as illustrated in Figure 9.1, are inexpensive, durable, and easy to use:

Figure 9.1 – DHT11 and DHT22 temperature and humidity sensors

The DHT11 is a very common low-cost sensor. The DHT22 is its higher-accuracy cousin.
Both are pin-compatible and will be suitable for our example. The pinouts of these sensors
as illustrated in the preceding figure are as follows:

Vcc: 3- to 5-volt power source
Data: Data pin that connects to a GPIO pin

Measuring Temperature, Humidity, and Light Levels Chapter 9

[292]

NC: Not connected, meaning that this pin is not used
GND: Connects to ground

Here are the core similarities and differences between the DHT11 and DHT22:

DHT 11 DHT 22
Operating Voltage 3 to 5 volts 3 to 5 volts
Operating Current µA (microamps) µA (microamps)
Temperature Range 0 to 50° Celsius - 40 to 125° Celsius
Temperature Accuracy ±2% ±0.5%
Humidity Range 20 - 80% 0 - 100%
Humidity Accuracy ±5% ±2% to 5%

Maximum Sampling Rate Faster – once every 1 second
(1Hz)

Slower – once every 2 seconds
(0.5Hz)

As mentioned, the DHT11 and DHT22 sensors are pin-compatible. They differ only in their
measurement accuracy and range. Either sensor will be suitable for the circuit we are about
to create for measuring temperature and humidity.

Creating the DHT11/DHT22 circuit
We will begin by creating the circuit illustrated in Figure 9.2 on our breadboard:

Figure 9.2 – DHT sensor schematic

The following is the breadboard layout for this circuit that we are about to build:

Measuring Temperature, Humidity, and Light Levels Chapter 9

[293]

Figure 9.3 – DHT sensor circuit

Here are the steps to follow, which match the numbered black circles in Figure 9.3:

Place your DHT11 or DHT22 sensor into your breadboard.1.
Place the 10kΩ resistor (R1) into the breadboard. One end of the resistor shares2.
the same row as the DHT sensor's DATA pin. We will discuss this resistor and
why it's marked as optional in Figure 9.2 after we complete the circuit build.
Connect a 3.3-volt pin on your Raspberry Pi to the positive rail of the power rail.3.
Connect the 10kΩ resistor (R1) to the positive power rail.4.
Connect the DHT Vcc pin to the positive power rail.5.
Connect a GND pin on your Raspberry Pi to the negative power rail.6.
Connect the GND pin on the DHT sensor to the negative power rail.7.
Finally, connect the DHT sensor's DATA pin to the GPIO 21 on your Raspberry8.
Pi.

This now completes our DHT sensor circuit build.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[294]

In our circuit, Vcc is connected to 3.3 volts, which makes the DHT data pin
operate at this voltage. DHT11 and DHT22 are rated for 5 volts; however,
if you connected Vcc to 5 volts, the data pin becomes a 5-volt logic pin,
which is not safe for use with the Raspberry Pi's 3.3-volt GPIO pin.

The 10kΩ pull-up resistor is optional because the DHT software library we are using
already enables Raspberry Pi's internal pull-up resistor by default. I've included the pull-up
resistor in the circuit schematic because it's included in the circuit examples in many
DHT11/DHT22 datasheets. If you need a refresher on pull-up resistors, please
revisit Chapter 6, Electronics 101 for the Software Engineer.

In our circuit and for the DHT11/DHT22, the leg labeled NC means Not
Connected. NC is a common abbreviation used to indicate that a leg or
terminal of a sensor, IC, or component is not internally connected to
anything. However, when we are dealing with switches – including relays
– a component leg or terminal labeled NC means the Normally Closed
connection path...so always interpret NC in the context of the component
you are looking at.

Once you have created your circuit, we are ready to run and explore the code to measure
temperature and humidity.

Running and exploring the DHT11/DHT22 code
Run the code found in the chapter09/dht_measure.py file, and the measured
temperature and humidity will be printed to your terminal, similar to the following:

(venv) python DHT_Measure.py

{'temp_c': 21, 'temp_f': 69.8, 'humidity': 31, 'valid': True}

Here, we have the following:

temp_c is the temperature in degrees Celsius.
temp_f is the temperature in degrees Fahrenheit.
humidity is the relative humidity percentage.
valid indicates whether the reading is considered valid by way of an internal
sensor checksum check. Readings where value == False must be abandoned.

The code in the source file is concise and is fully replicated here.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[295]

In line 1, we import the DHT sensor library and instantiate it in line 2. Update the line to
match the DHT11 or DHT22 sensor you are using:

from pigpio_dht import DHT11, DHT22 # (1)

SENSOR_GPIO = 21

sensor = DHT11(SENSOR_GPIO) # (2)

#sensor = DHT22(SENSOR_GPIO)

result = sensor.read(retries=2) # (3)

print(result)

result = sensor.sample(samples=5) # (4)

print(result)

In lines 3 and 4, we use the pigpio-dht library to request a temperature and humidity
measurement from the sensor. A call to read() will query the sensor for measurement and
will keep retrying for retries times if the measurements come back as valid == False.
An alternative method for measurement is the sample() method, which will take many
individual samples of the temperature and humidity and return a normalized
measurement.

The advantage of sample(), especially for the less-accurate DHT11 sensor, is a more
consistent temperature and humidity readings since outlier readings (random spikes) are
removed; however, it does significantly increase the time it takes to read measurements –
refer back to the Maximum Sampling Rate row in the table at the start of this section.

As an example, for a DHT11 with a maximum sampling rate of 1 second, for 5 samples, the
sample(samples=5) call will take approximately 1 second x 5 samples = 5 seconds to return,
while a DHT22 with a 2-second sample rate will take about 10 seconds.

DHT11 and DHT22 are pin-compatible; however, they are not software-
compatible due to the way each sensor encodes its data while mixing up
the software driver and sensor. For example, while a DHT22 sensor using
a DHT11 library will generate results, they will be inaccurate (and it'll be
pretty obvious – for example, saying your room is 650+ degrees Celsius!)

How easy was that! The DHT series are popular low-cost sensors that measure both
temperature and humidity. For those cases where you need to perform more rapid
readings, or you need to mount a sensor in hostile environments, such as in water or
outside, directly exposed to the elements, you will certainly be able to find a sensor for your
needs.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[296]

Here is a quick rundown of the other ways temperature (and similar environmental)
sensors can connect to your Raspberry Pi:

Thermistors are temperature-sensitive resistors that are very small and ideal for
tight spaces, and you can get them in sealed packages for outside and in-liquid
use. You can use them with a voltage-divider circuit (similarly to the Light-
Dependent-Resistor (LDR) we will cover in the next section).
There are many varieties of I2C and SPI sensors available that can be queried fast
and may also have other additional on-board sensors, such as air pressure. These
modules are typically larger and are probably best not exposed directly to the
elements.
1-wire temperature sensors are also compact and easily sealable and have the
advantage that they can have long wires (100 meters plus).

With this, we come to the end of this section on measuring temperature and humidity.
Many environmental monitoring projects require you to measure temperature and
humidity, and using a DHT11 or DHT22 with Raspberry Pi is an easy and cost-effective
way to achieve this. We will revisit our DHT11/22 circuit again in Chapter 13, IoT
Visualization and Automation Platforms, where we will integrate this sensor with an IoT
platform to collect and monitor the temperature and humidity.

Now that we have explored temperature sensors, let's learn how to detect light.

Detecting light
Detecting the presence or absence of light is easily achieved with a special type of resistor
known as an LDR. LDRs are a low-cost light sensor, and we find them in many
applications, from light-activated switches and lamps or as part of the circuit that dims
your alarm clock display when it's dark, to part of alarm circuits on cash boxes and safes.

You may also find LDRs referred to as photoresistors or photocells.

The following figure shows a typical LDR component, together with a few varieties of LDR
schematic symbols. If you examine the symbols, you will notice that they are a resistor
symbol with inward-pointing arrows. You can think of these arrows as representing light
falling on the resistor:

Measuring Temperature, Humidity, and Light Levels Chapter 9

[297]

Figure 9.4 – A physical LDR component and a variety of schematic symbols

An LDR varies its resistance with the relative light it detects. If you placed the terminals of
your multimeter in Ohms mode across an LDR, you will find (roughly after a few seconds)
the following:

When the LDR is in the dark (for example, if you cover it up), its resistance will
typically measure many mega-ohms.
In a normally lit room (for example, on the table with the ceiling lights on), the
LDR's resistance will measure in kilo-ohms.
When an LDR is in bright light (direct sunlight or shining a torch on it), its
resistance will measure a few hundred-ohms or less.

This gives us distinct regions where it becomes possible to work out the presence or
absence of light. With calibration and a little tuning, we can easily identify a point between
dark and light that we can use to trigger an event. For example, you could use an LDR
circuit such as the one we will create next to programmatically control the switching
circuits we created in Chapter 7, Turning Things On and Off.

LDRs are only good at measuring relative light levels – the presence or
absence of light. If you want absolute measurements such as lux levels, or
even to detect color, there is a range of ICs in the I2C or SPI breakout
module form that can achieve this.

Using this basic understanding, we will build our LDR circuit to detect light.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[298]

Creating an LDR light-detecting circuit
As discussed, an LDR varies its resistance in relation to the relative light it detects. To
detect varying resistance with our Raspberry Pi, we need to take a few steps that were
covered in previous chapters:

We need to turn the varying resistance into a varying voltage because our
Raspberry Pi GPIO pins work on voltage, not resistance. This is an application of
Ohms law and a voltage-divider circuit, which we learned about in Chapter 6,
Electronics 101 for the Software Engineer.
Our Raspberry Pi GPIO pins can only read digital signals – for example, a high
(~3.3 volts) or low (~0 volts) signal. To measure a varying voltage, we can attach
an Analog-to-Digital Converter (ADC) such as an ADS1115. We covered the
ADS1115 and accompanying Python code in Chapter 5, Connecting Your
Raspberry Pi to the Physical World.

We are about to create the circuit illustrated in Figure 9.5 on your breadboard. This circuit
and the accompanying code will illuminate the LED when it detects a certain level of
darkness:

Figure 9.5 – LDR circuit with the ADS1115 ADC schematic

We will build our circuit in two parts. For the first part, we will place the components onto
our breadboard, as shown:

Measuring Temperature, Humidity, and Light Levels Chapter 9

[299]

Figure 9.6 – LDR circuit with ADS1115 ADC circuit (part 1 of 2)

Here are the steps to follow, which match the numbered black circles in Figure 9.6:

Place the LDR onto the breadboard.1.
Place a 10kΩ resistor (R1) onto the breadboard. One end of this resistor shares the2.
same row as one of the LDR.
Place the ADS1115 ADC onto the breadboard.3.
Place a 200kΩ resistor (R2) onto the breadboard.4.
Place an LED onto the breadboard, paying careful attention to connect the LED's5.
cathode leg to the same row shared by one of the legs of the 200kΩ resistor.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[300]

Now that we have placed our components, we will wire them up:

Figure 9.7 – LDR circuit with ADS1115 ADC circuit (part 2 of 2)

Here are the steps to follow; this time they match the numbered black circles in Figure 9.7:

Connect the positive rail of the power rail to the LDR.1.
Connect a 3.3-volt pin from your Raspberry Pi to the positive rail of the power2.
rail.
Connect a GND pin from your Raspberry Pi to the negative tail of the power rail.3.
Connect the negative power rail to the 10kΩ resistor (R1).4.
Connect the Vdd terminal of the ADS1115 to the positive power rail.5.
Connect the GND terminal of the ADS1115 to the negative power rail.6.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[301]

Connect the junction of the LDR and 10kΩ resistor (R1) to port A0 on the7.
ADS1115 (can you see how the LDR and resistor are creating a voltage divider,
with the varying voltage output now attached to A0?).
Connect the Raspberry Pi's SDA pin to the ADS1115 SDA terminal.8.
Connect the Raspberry Pi's SCL pin to the ADS1115 SCL terminal.9.
Connect the negative power rail to the 200kΩ resistor.10.
Connect the anode leg of the LED to your Raspberry Pi's GPIO 21 pin.11.

I hope you were able to see the voltage divider that was formed by the LDR and the 10kΩ

resistor R1. We will cover the reasoning behind the 10kΩ resistor later in the chapter in the
section titled LDR configuration summary.

As the light detected by the LDR varies, its resistance varies. The effect of this is to alter the
relative ratios of R1 (fixed resistor) and the LDR's resistance (varying resistance), which in
turn changes the voltage measured at the interception of the LDR and R1 (that's where A
(analog-in) of our ADS1115 is attached to measure this varying voltage).

Don't place your LED too close to your LDR. When it illuminates, the LED
is a source of light that is detectable by the LDR, and it could interfere
with your LDR readings in the code.

Now that you have created the LDR circuit, we will calibrate and run our example code.

Running the LDR example code
We are about to run two programs:

chapter09/ldr_ads1115_calibrate.py, which will help us calibrate our
LDR readings
chapter09/ldr_ads1115.py, which monitors the light level and switches on
the LED when the light falls below a configurable level

Measuring Temperature, Humidity, and Light Levels Chapter 9

[302]

First, we should check that the ADS1115 is connected correctly and can be seen by your
Raspberry Pi. Run the i2cdetect command in a Terminal. If your output does not include
a number (for example 48), then please verify your wiring:

$ i2cdetect -y 1
... truncated ...
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
... truncated ...

We first covered the ADS1115 analog-to-digital converter and the
i2cdetect utility in Chapter 5, Connecting Your Raspberry Pi to the
Physical World.

Let's run the examples, starting with the calibration program:

Run the code found in the chapter09/ldr_ads1115_calibrate.py file, and1.
follow the instructions that appear on your terminal, which are as follows:

Place the LDR in the light and press Enter: Use the1.
ambient room light for this exercise, and be careful that you are not
casting a shadow over the LDR. When you are building your
application, you will want to use the source of light that makes sense
for your purposes, be it direct sunlight, room light, or shining a bright
torch into the LDR, for example.
Place the LDR in the dark and press Enter: I'd suggest2.
completely covering the LDR with a dark cloth or cup. Using your
finger is not always ideal as a sensitive LDR may still detect a level of
light through your finger:

(venv) python ldr_ads1115_calibrate.py

Place LDR in the light and press Enter

Please wait...

Place LDR in dark and press Enter

Please wait...

File ldr_calibration_config.py created with:

This file was automatically created by

ldr_ads1115_calibrate.py

Number of samples: 100

MIN_VOLTS = 0.6313

MAX_VOLTS = 3.2356

Measuring Temperature, Humidity, and Light Levels Chapter 9

[303]

The calibration program takes a number of samples (by default, 100) from the
ADS1115 in both the dark and light conditions and calculates the average reading.
Next, the program writes the results (also shown in the terminal) into
the ldr_calibration_config.py file. This is a Python source file for our
example, imported into our actual LDR and LED example, as we will see in the
next step.

Run the program found in the chapter09/ldr_ads1115.py file, and observe2.
the output on the terminal, which displays the voltage read by the ADS1115:

LDR Reading volts=0.502, trigger at 0.9061 +/- 0.25,

triggered=False

Hopefully, the output should read triggered = False, and the LED should be
off. If this is not the case, try repeating the calibration process in step 1, or read on
and you'll discover how to adjust the trigger point in code.

Gradually move your hand nearer and nearer to the LDR restrict the amount of3.
light reaching it. As you move your hand, you will notice the voltage reading
on the terminal change, and at a certain voltage level, the trigger point will be
reached and the LED will illuminate:

LDR Reading volts=1.116, trigger at 0.9061 +/- 0.25,

triggered=False

LDR Reading volts=1.569, trigger at 0.9061 +/- 0.25, triggered=True

What you are witnessing is the function of the voltage divider varying the voltage as the
LDR's resistance changes in response to the light it detects. This voltage is then read by the
ADS1115.

You may have noticed that the voltage produced is not the full range of ~0 volts to ~3.3
volts as it was when we used a potentiometer with our ADS1115 back in Chapter 5,
Connecting Your Raspberry Pi to the Physical World. Our restricted range is a side-effect and
limitation of our fixed resistor (R1) and varying-resistance (LDR) circuit, which cannot vary
resistance to the extremes necessary to reach ~0 or ~3.3 volts. You will encounter this
restriction in voltage divider circuits since they will by design include a fixed resistor
value. By contrast, our potentiometers are two variable resistors creating a voltage divider,
and we can effectively zero-out (get close to 0 Ω) one side of the divider, depending on
which direction we turn the potentiometer's dial, allowing us to get near to both 0 volts and
3.3 volts.

Now that we have seen this code running, let's see how it works.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[304]

LDR code walkthrough
A bulk of the code in both chapter09/ldr_ads1115_calibrate.py
and chapter09/ldr_ads1115_calibrate.py is the boilerplate code to set up and
configure the ADS1115 and set up the LED using PiGPIO. We will not recover the common
code here. If you need a refresher on the ADS1115-related code, please review the exercise
found in Chapter 5, Connecting Your Raspberry Pi to the Physical World.

Let's look at the Python code that makes our LDR work.

In line 1, we see that we are importing the ldr_calibration_config.py file that we
created with our calibration program previously.

Next, in line 2, we are assigning the calibration values to the LIGHT_VOLTS (the voltage
detected by the ADS1115 when the LDR was in the light) and DARK_VOLTS (the voltage
detected when you covered up the LDR) variables:

import ldr_calibration_config as calibration # (1)

... truncated ...

LIGHT_VOLTS = calibration.MAX_VOLTS # (2)

DARK_VOLTS = calibration.MIN_VOLTS

TRIGGER_VOLTS = LIGHT_VOLTS - ((LIGHT_VOLTS - DARK_VOLTS) / 2) # (3)

TRIGGER_BUFFER = 0.25 # (4)

In line 3, we create a trigger point. This is a voltage point we will use later in code to switch
on and off the LED.

You can adjust and experiment with the formula or value of
TRIGGER_VOLTS to change the lighting condition that causes the code to
trigger.

The TRIGGER_BUFFER variable at line 4 is used to create a buffer or lag in our trigger, better
known in electronic terms as hysteresis. This value creates a small window range where the
detected voltage can vary without causing a trigger or un-trigger event. Without
this hysteresis, the trigger (and LED) would turn on and off rapidly as the detected voltage
oscillates around the TRIGGER_VOLTS trigger voltage.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[305]

To experience this effect practically, set TRIGGER_BUFFER = 0 and you will find that as
you move your hand above the LDR, the LED is very sensitive to on and off, and at a
certain point may even appear to blink. As you increase the value of TRIGGER_BUFFER, you
will notice that the hand movement required to switch the LED becomes on and off greater.

Moving on, in line 5, we come to the code that determines whether our trigger point has
been reached. The update_trigger() function compares the voltage detected by the
ADS1115 to the TRIGGER_VOLTS value adjusted for TRIGGER_BUFFER, and updates
the triggered global variable if the triggering point is breached:

 triggered = False # (5)

 def update_trigger(volts):

 global triggered

 if triggered and volts > TRIGGER_VOLTS + TRIGGER_BUFFER:

 triggered = False

 elif not triggered and volts < TRIGGER_VOLTS - TRIGGER_BUFFER:

 triggered = True

Near the end of the source file, we have a while loop in line 6. We are reading in the
ADS1115 detected voltage, updating the global triggered variable, before printing the
results to the terminal:

trigger_text = "{:0.4f} +/- {}".format(TRIGGER_VOLTS, TRIGGER_BUFFER)

 try:

 while True: # (6)

 volts = analog_channel.voltage

 update_trigger(volts)

 output = "LDR Reading volts={:>5.3f}, trigger at {},

triggered={}"

 .format(volts, trigger_text, triggered)

 print(output)

 pi.write(LED_GPIO, triggered) # (7)

 sleep(0.05)

Finally, in line 7, we toggle the LED on or off depending on the value of triggered.

Now that we have seen how we detect light with our LDR circuit and Python code, I want
to briefly cover how the series resistor is chosen for the LDR circuit.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[306]

LDR configuration summary
You may have realized while working with the LDR circuit and code that there are a few
tunable parameters that influence how the circuit and code work, and did you wonder why
we used a 10kΩ resistor?

No two LDRs will give the same resistance-to-light measurement and their resistance-to-
light range is not linear. The implication of this is that your LDR, plus the lighting
conditions you plan to use it in, can influence a suitable fixed resistor value.

Here is a rough guide to selecting an appropriate fixed resistor:

If you want the LDR to be more sensitive in darker conditions, use a higher
value resistor (for example, try 100kΩ).
If you want your LDR to be more sensitive in brighter conditions, use a lower
value resistor (for example, try 1kΩ).

Remember that these are just suggestions, so feel free to try different resistances for your
own needs. Plus, whenever you change the value of the fixed resistor, rerun the calibration
code.

There is also a formula known as Axel Benz that can be used to calculate a reference
resistance value for an analog component such as an LDR. The formula is expressed as
follows:

The parameters in the formula are as follows:

Rref is the value of the fixed resistor, R1.
Rmax is the maximum resistance of the LDR (when in dark). A typical value might
be 10 Ω.
Rmin is the minimum resistance of the LDR (when in bright light). A typical value
might be 10M Ω.

So, if we use the typical values, we get the 10kΩ value we used for R1:

Measuring Temperature, Humidity, and Light Levels Chapter 9

[307]

Measure the extremes on your LDR with a multimeter and see what value
you calculate. Do not be surprised if your measurements vary widely
from the typical 10kΩ. When you consider we are working with an LDR
ohmic range of ~10 Ω to ~10,000,000 Ω, the difference may still only be a
fraction of a percent!

We also saw previously in the code that two variables influence how our code triggers:

Change the value of TRIGGER_VOLTS to change the point at which the code
triggers – for example, turns on or off the LED.
Change the value of TRIGGER_BUFFER to alter how sensitive the trigger is to
changing light conditions.

Finally, remember that an LDR detects light logarithmically, not linearly – for example, as
you gradually lower your hand or an object over the LDR to restrict light, the voltages
reported by the LDR will not necessarily change in proportion to the amount of light you
are restricting. This is a reason why we need to change the fixed resistor value if we want
the LDR to be more sensitive in darker or brighter conditions.

You can experiment with replacing the fixed resistor, R1, with a variable
resistor (for example, replace the fixed 10kΩ with a 20kΩ variable resistor
set to 10kΩ. We choose 20kΩ because we can adjust it above and below
10kΩ. A 10kΩ variable resistor would only let us adjust down resistance).
After code calibration at 10kΩ and defining a trigger point in code, you
can then fine-tune the trigger point by adjusting the variable resistor.

This concludes our discussion of LDRs. We have seen how to build a simple LDR circuit
together with an ADS1115 ADC, and how to detect light with Python. You could use this
simple circuit and accompanying code for any project where the detection of light or
darkness is the desired input trigger – for example, a light-activated switch.

Next, we will learn how to detect moisture.

Detecting moisture
Guess what...we have already done the grunt work to detect moisture! It's just another
application of the LDR circuit and code, only we replace the LDR with probes.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[308]

For this exercise, you can create a set of probes using two pieces of wire (with the ends
stripped), and attach them in place of the LDR, as shown in Figure 9.8. This is the same
circuit we built in the previous section and showed in Figure 9.7, only this time, we have
replaced the LDR with two wires. Let's make this slight change now:

Figure 9.8 – Moisture detection circuit

Here are the steps to follow, which match the numbered black circles in Figure 9.8:

Remove the LDR from the breadboard.1.
Place a wire (with both ends stripped) into a breadboard row that previously2.
connected to one of the LDR's legs (in the illustration, this new wire connects
back to 3.3 volts on your Raspberry Pi).
Place another wire (with both ends stripped) into a breadboard row that3.
previously connected the LDR's other leg (in the illustration, this new wire
connects to the row shared by the 10kΩ resistor (R1)).

Measuring Temperature, Humidity, and Light Levels Chapter 9

[309]

This small change – replacing the LDR with bare wires – turns our circuit into a basic
moisture-detecting circuit. Let's try the circuit out!

In the chapter09 folder, you will find two files, named moisture_calibrate.py and
moisture_ads1115.py. These files are almost identical to the LDR file set we used in the
previous section, except I've changed the wording and variable names from Light/Dark to
Wet/Dry. The core differences are marked by comments in the respective files.

Given the similarity, we will not cover these source files and the moisture circuit in detail;
however, for reference, these are the steps to follow:

Ensure the probe is dry.1.
Run moisture_calibrate.py and follow the instructions to perform a voltage2.
calibration.
Run moisture_ads1115.py.3.
Check that the terminal output indicates trigger=False (the code triggers on4.
the wet condition).
Place the probe in a cup of water (yes, it's safe to do this) and observe the voltage5.
reading on the terminal change (It's also OK if the probes get shorted accidentally
as it will not cause any damage).
With the probes immersed in water, check whether the terminal output6.
reads trigger=True (probe wet condition).
If the trigger is still True, you will need to adjust the value of TRIGGER_VOLTS in7.
the code.

You can also place the probe in dry dirt and observe the voltage readings.
Slowly wet the dirt and the voltage reading should change. We now have
the basis of a program to tell you when your plant needs watering!

So, why does this work? Simple – water is a conductor of electricity and is behaving like a
resistor between our two probes.

Different water in different parts of the world and from different sources –
for example, tap versus bottle – may conduct electricity differently. This
means you might need to play with the value of the R1 resistor if your
circuit is not responding well with the 10kΩ resistor. In addition, you can
also experiment with the distance between the probe wires and their size.

We will conclude our discussion on moisture detection by comparing what we have just
created with an off-the-shelf moisture detector that you can purchase.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[310]

Comparing detection options
How do our simple circuit and wire probes compare to a water/moisture detection module that
you can find on retail sites such as eBay? These products typically contain a probe of some
sort, plus a small electronic module. A picture of one of these modules, plus a few probes,
are shown here:

Figure 9.9 – Moisture detection module and probes

The three probes pictured each have two terminals and are simply an exposed copper trace
on a circuit board, analogous to the exposed wires we saw in our circuit in Figure 9.8. A key
difference is that these probes expose a larger surface area and are therefore more sensitive.
Furthermore, they are also likely to be less prone to corrosion (at least in the short-to-
medium term) than two stripped wires.

You can connect these probes directly to the exposed wires in our circuit
shown in Figure 9.8 to expand and enhance the detection capabilities of
the circuit!

Let's discuss the electronic module (zoomed in and labeled in Figure 9.9 on the right-hand
side).

Measuring Temperature, Humidity, and Light Levels Chapter 9

[311]

In addition to a Vcc/Vin and a GND terminal, these modules often (not always, but often)
have two output terminals or pins, which are as follows:

An analog output (in our example, this is labeled A)
A digital output (labeled S)

Please note that I am not providing instructions on how to connect the
previously pictured module to your Raspberry Pi, but rather, I will keep
the discussion general. There are many variations of these modules
available and while their operation is similar, there can be differences in
how they need to be wired. At this stage of the book, if you are
comfortable with the basic principles of analog versus digital, voltage
dividers, and ADC, you have all you need to understand and make an
informed decision on how to interface these modules to a device such as a
Raspberry Pi. A good starting place will be your modules' datasheet or
any information provided at the place of purchase.

The analog output is a pass-through to the probe. You connect it directly into a voltage
divider circuit and measure a varying voltage with an ADC such as the ADS1115 – the
exact scenario we created in Figure 9.8. If you use the analog pass-through, you are
bypassing all the other circuitry on the module (hence why you can just connect the probes
directly into our example circuit).

The digital output is what uses the module circuitry. A typical module circuit includes, at a
minimum, an integrated circuit known as a voltage comparator, a fixed resistor, and a
variable resistor, which is a trigger-point trim adjustment. The fixed resistor together with
the probe creates a voltage divider. The voltage comparator is responsible for monitoring
the voltage across the voltage divider and triggering the digital output (for example,
transition from LOW to HIGH) at a point determined by trim adjustment. An example of a
trim adjustment variable resistor can be seen in Figure 9.9.

If this voltage comparison and triggering sounds a little familiar, you are correct. This
module with its voltage comparator and configurable trigger point is, in principle, a purely
electronic version of the LDR and moisture circuits and Python code we have created. And
yes, you could use the LDR in one of these modules instead of a probe!

Measuring Temperature, Humidity, and Light Levels Chapter 9

[312]

So, to conclude, what's better – using an ADS1115 and voltage divider type circuit such as
that shown in Figure 9.8, or using a module such as that pictured in Figure 9.9? There is no
one best answer; however, the following points will help you make your own decision:

Using a circuit such as that in Figure 9.8 is an analog approach. The raw voltage
detected by the sensor is passed directly to your Raspberry Pi. One simple
advantage of this approach is that you have full control over a trigger point in
code. You could, as an example, remotely adjust the trigger point from a web
page. The downside of this approach is that you need a more complex circuit that
involves an ADS1115 and a voltage divider.
Using a module such as that pictured in Figure 9.9 as a digital approach promotes
a simpler interfacing circuit to your Raspberry Pi in that you can connect the
digital output terminal directly to a GPIO pin (as long as the digital output of the
module 3.3-volts). The caveat is that you must have physical access to the
module and the adjustment trim to change the trigger point.

Summary
In this chapter, we learned how to measure temperature and humidity using the common
DHT11 and/or DHT22 sensors. We also looked at how to use an LDR to detect light, and
this allowed us to explore voltage divider circuits and ADCs in greater detail. We
concluded by retrofitting our LDR circuit so that we could detect moisture.

The example circuits and code we covered in this chapter provide practical examples of
measuring environmental conditions with readily available sensors and simple circuits.
Your understanding of these sensors and circuits now means you can adapt the examples
for your own environmental monitoring projects, including using them as input triggers
together with Python to control other circuits.

We also saw new practical applications of voltage divider circuits and how they are used in
analog circuits to turn variable resistance into a variable voltage for use with an ADC.
These examples and your understanding of them represent an important skill that you can
adapt and use with other analog-based sensors.

In the next chapter, we will learn how to go deeper into DC motor control and learn how to
control a servo.

Measuring Temperature, Humidity, and Light Levels Chapter 9

[313]

Questions
As we conclude, here is a list of questions for you to test your knowledge of this chapter's
material. You will find the answers in the Assessments section of the book:

Can you list two differences between a DHT11 and DHT22 temperature and1.
humidity sensor?
Why is the external 10kΩ pull-up resistor optional in our DHT11/22 circuit?2.
Describe the basic electronic principle used with an LDR to measure light.3.
How can you make an LDR more or less sensitive to certain lighting conditions?4.
You have created an LDR circuit and calibrated the Python code. Now, you5.
change the LDR and find that the voltages readings and in-code trigger point
behave slightly differently. Why?
Why does placing two wires in water work as a basic moisture detector when6.
used with a voltage divider and ADS1115 circuit?

10
Movement with Servos, Motors,

and Steppers
In the previous chapter, we covered how to measure temperature, humidity, light, and
moisture. In this chapter, we will turn our attention to the control of motors and servos,
which are common devices for creating physical movement and motion. The core concepts,
circuits, and code you will learn in this chapter will open up a world of physical
automation and robotics using your Raspberry Pi.

We will be learning how Pulse Width Modulation (PWM) is used to set the angle of a
servo, and how we use an H-Bridge IC to control the direction and speed of a DC motor.
We will look at stepper motors and how they can be controlled for precise movement.

Here is what we will cover in this chapter:

Using PWM to rotate a servo
Using an H-Bridge IC to control a motor
Introduction to stepper motor control

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on Raspberry Pi 3 Model
B or a different version of Raspbian OS as long as your Python version is 3.5 or higher.

Movement with Servos, Motors, and Steppers Chapter 10

[315]

You will find this chapter's source code in the chapter10 folder in the GitHub repository
available at https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-​for-
IoT.

You will need to execute the following commands in a terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter10 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependency is installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)

The electronic components we will need for this chapter's exercises are as follows:

1 x MG90S hobby servo (or an equivalent 3-wire 5-volt hobby servo). Reference
datasheet: https:/​/​www.​alldatasheet.​com/​datasheet-​pdf/​pdf/​1132104/​ETC2/
MG90S.​html

1 x L293D integrated circuit (IC) (make sure it has the D – that is, L293D, not
L293). Reference datasheet: https:/​/​www.​alldatasheet.​com/​datasheet-​pdf/
pdf/​89353/​TI/​L293D.​html

1 x 28BYJ-48 stepper motor (5 volts, 64 steps, 1:64 gearing). Note: 28BYJ-48 comes
in 5-volt and 12-volt varieties and different configuration steps and
gearings. Reference datasheet: https:/​/​www.​alldatasheet.​com/​datasheet-​pdf/
pdf/​1132391/​ETC1/​28BYJ-​48.​html

2 x size 130 (R130) DC motor rated 3-6 volts (ideally with a stall current < 800
mA), or alternate DC motor with compatible voltage and current ratings
External power source – at a minimum, a 3.3 V/5 V breadboard-mountable power
supply

Let's commence by learning how to use a servo with our Raspberry Pi, Python, and
PiGPIO.

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132104/ETC2/MG90S.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/89353/TI/L293D.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132391/ETC1/28BYJ-48.html

Movement with Servos, Motors, and Steppers Chapter 10

[316]

Using PWM to rotate a servo
Common servomotors, or servos, are internally geared motors that allow you to rotate its
shaft to a precise angle within a 180-degree arc. They are a core component of industrial
robots, and toys alike, and we're all familiar with hobby servos found in toys such as radio-
controlled cars, planes, and drones.

Pictured in Figure 10.1 are a full-size hobby-style servo, a micro servo, and a set of header
pins, which are useful to help connect a servo to a breadboard, which we will need to do
later in this section as we build our circuit:

Figure 10.1 – Servos

The great feature of servos is that they are essentially a Plug'n'Play style device – after we
connect them to the power supply, we just need to send them a PWM signal that encodes
the angle we want the servo to rotate to, and presto! We're done. No ICs, no transistors, or
any other external circuitry. What's even better is that servo control is so common that
many GPIO libraries – including PiGPIO – include convenience methods for their control.

Let's start our servo exploration by connecting one to our Raspberry Pi.

Connecting a servo to your Raspberry Pi
Our first task for our servo example is to wire it up to a power source and our Raspberry Pi.
A schematic representing this wiring is shown here:

Figure 10.2 – Servo wiring schematic

Movement with Servos, Motors, and Steppers Chapter 10

[317]

Let's get started wiring our servo using a breadboard, as shown:

Figure 10.3 – Servo breadboard layout

Before we step through the wiring procedure, first I want to briefly discuss the wire colors
coming out of a servo. While servo wire colors are somewhat standard, they can vary
between different manufacturers and servos. Use the following pointers when connecting
your servo at steps 4, 5, and 6. If your servo has colored wires that I do not list in the
following list, you will need to consult the datasheet for your servo.

Common servo wire colors are as follows:

The brown or black wire connects to GND
The red wire connects to +5-volts
The orange, yellow, white, or blue wire is the signal/PWM input wire that
connects to a GPIO pin

Movement with Servos, Motors, and Steppers Chapter 10

[318]

Here are the steps to follow to create your breadboard build. The step numbers match the
numbers in the black circles in Figure 10.3:

Connect the left-hand side and right-hand side negative power rails together.1.
Connect a GND pin on your Raspberry Pi to the left-hand side negative power2.
rail.
Connect the servo into the breadboard. As mentioned previously and shown3.
in Figure 10.1, you will need a set of header pins (or alternatively, male-to-male
jumper cables) to connect your servo to your breadboard.
Connect the black wire (negative/GND) from the servo to the negative rail of the4.
right-hand side power rail.
Connect the red wire (5-volt power) from the servo to the positive rail of the5.
right-hand side power rail.
Connect the signal wire from the servo to GPIO 21 on your Raspberry Pi.6.
Connect the positive output terminal of a 5-volt power supply to the positive rail7.
of the right-hand side power rail.
Connect the negative output terminal of the power supply to the negative rail of8.
the right-hand side power rail.

You will need to use an external 5-volt power source (steps 7 and 8) to power your servo. A
small servo such as an MG90S uses ~200mA as it rotates with no load on the shaft/horn (the
horn is the arm connected to the shaft of the servo), and ~400+mA maximum current if you
attach a heavy load to the horn or you forcefully stop a rotation. Drawing this current
directly from your Raspberry Pi's 5-volt pin may be enough to cause it to reset.

Many cheap car-like toys have a hard left/right mock servo for their
steering mechanisms. It might look like a servo on the outside, but in
truth, it's just a basic DC motor with some gears and a spring that create
the hard left/right steering angle. It's the spring that returns the servo to
center when the motor is not engaged. If you do not have granular control
over the angle, it's not a true servo.

Before we get into some code, we'll take a quick look at how PWM is used to control a
servo. This will give you some background on what's happening when we get to the code.

Movement with Servos, Motors, and Steppers Chapter 10

[319]

How a servo is controlled using PWM
Servos typically require around a 50 Hz PWM signal (some variation around 50 Hz is okay,
but we'll stick with 50 Hz as this is the common reference point), and a pulse width
between 1.0 milliseconds and 2.0 milliseconds that determines the angle of rotation. The
relation between pulse widths, duty cycles, and angle is illustrated in Figure 10.4. Don't
worry if all this does not sink in just yet. It should become more clear as we see our servo in
action and review our servo-related code in the next section:

Figure 10.4 – Servo's pulse width, duty cycle, and angles

We have not covered pulse width in relation to our earlier coverage of PWM; however, it's
just another way of describing the duty cycle.

Here is an example:

If we have a PWM signal at 50 Hz (that is, 50 cycles per second), then this means
that 1 PWM cycle takes 1 / 50 = 0.02 seconds, or 20 ms.
Thus, a pulse width of 1.5 ms expressed as a duty cycle is 1.5 ms / 20 ms = 0.075,
multiplied by 100 gives us a duty cycle of 7.5%.

To work backward, we have the following:

A duty cycle of 7.5% divided by 100 is 0.075. Then, 0.075 x 20 ms = 1.5 ms – that is,
a 1.5 ms pulse width.

Movement with Servos, Motors, and Steppers Chapter 10

[320]

If you'd prefer a formula to relate pulse width, frequency, and duty cycle, here it is:

To convert back, we have the following:

Okay, enough with the math. Let's run and review the Python code to make our servo
move.

Running and exploring the servo code
The code we are about to run can be found in the chapter10/servo.py file. I recommend
reviewing the source code before proceeding so that you have an overall idea about what
the file contains.

When you run the code found in the chapter10/servo.py file, your servo should rotate
left and then right several times.

Let's look at the code, starting with some pulse width variables defined at line 1:

LEFT_PULSE = 1000 # Nano seconds # (1)

RIGHT_PULSE = 2000

CENTER_PULSE = ((LEFT_PULSE - RIGHT_PULSE) // 2) + RIGHT_PULSE # Eg 1500

These pulse widths represent our servo's extreme left and right rotation.

Note that the LEFT_PULSE and RIGHT_PULSE values are in nanoseconds,
as this is the unit used by the PiGPIO servo functions.

These values of LEFT_PULSE = 1000 and RIGHT_PULSE = 2000 are the perfect world
values that you will see sighted often. In reality, you may need to make slight adjustments
to these variables to get the full rotation out of your servo. For example, my test servo
needed the LEFT_PULSE = 600 and RIGHT_PULSE = 2450 values to achieve full
rotation. You'll know if you have adjusted too far if your servo motor stays engaged and
makes a groaning noise when it is at full left or right rotation. If this happens, disconnect
power immediately to prevent damage to the servo and readjust your values.

Movement with Servos, Motors, and Steppers Chapter 10

[321]

If your serve rotates backward – for example, it rotates to the left when
you expect it to rotate to the right – swap the values for LEFT_PULSE and
RIGHT_PULSE. Or, just turn your servo upside down.

At line 2, we define the MOVEMENT_DELAY_SECS= 0.5 variable, which we need later to add
a delay between servo movements:

 # Delay to give servo time to move

 MOVEMENT_DELAY_SECS = 0.5 # (2)

As you work with servos and send them a PWM rotation signal, you will find that they
behave asynchronously. That is, the code does not block until the servo finishes its rotation.
If we intend to make many rapid servo movements that you want to complete in full, we
must add a short delay to ensure the servo has time to complete the rotation. An example of
this is found in the sweep() function we will cover shortly. The delay of 0.5 seconds is only
a suggestion, so feel free to experiment with different numbers.

Starting at line 3, we define three basic functions to control our servo:

 def left(): # (3)

 pi.set_servo_pulsewidth(SERVO_GPIO, LEFT_PULSE)

 def center():

 pi.set_servo_pulsewidth(SERVO_GPIO, CENTER_PULSE)

 def right():

 pi.set_servo_pulsewidth(SERVO_GPIO, RIGHT_PULSE)

The left() function simply sets the PWM pulse width to LEFT_PULSE on the servo's GPIO
pin using the PiGPIO set_servo_pulsewidth() method. This is a
convenience function for servo control offered by PiGPIO as a practical alternative to using
the set_PWM_dutycycle() and set_PWM_frequency() methods that we have seen in
many previous chapters. We'll say more about these methods after we've reviewed the
code.

The center() and right() functions perform their respective equivalent action
to left().

If you rotate your servo to a specified angle and try to move the horn with your hand, you
will notice that the servo resists the change. This is because the servo is continuously
receiving (at a rate of 50 Hz) the last pulse set via set_servo_pulsewidth(), so it resists
any attempt to change its set position.

Movement with Servos, Motors, and Steppers Chapter 10

[322]

In the previous section, when we wired the servo to your Raspberry Pi,
we mentioned the servo's maximum current of ~400+mA. The preceding
paragraph is an example where this maximum current is drawn by the
servo. When the servo is receiving its pulse width instruction, it resists
any force to change its position, resulting in more current usage. It is
similar in principle to the stall current of a DC motor we discussed back in
Chapter 7, Turning Things On and Off.

If you set the servo's pulse width to zero, as we do in the idle() function shown at line 4,
you will now find that you can freely rotate the servo by hand with little force. When my
test servo was idle (or at rest), it used approximately 6.5 mA:

 def idle(): # (4)

 pi.set_servo_pulsewidth(SERVO_GPIO, 0)

So far, we've seen how to make the servo rotate to the left, center, and right, but what if we
want to rotate it to a particular angle? Easy(-ish), we just need a little math, as shown in the
angle() function at line 5:

 def angle(to_angle): # (5)

 # Restrict to -90..+90 degrees

 to_angle = int(min(max(to_angle, -90), 90))

 ratio = (to_angle + 90) / 180.0 # (6)

 pulse_range = LEFT_PULSE - RIGHT_PULSE

 pulse = LEFT_PULSE - round(ratio * pulse_range) # (7)

 pi.set_servo_pulsewidth(SERVO_GPIO, pulse)

The angle() function takes an angle in the range -90 to +90 degrees (0 degrees being
center), works out the ratio of our input angle relative to the 180-degree range of our servo
at line 6, before deriving the corresponding pulse width at line 7. This pulse width is then
sent to the servo and it will adjust its angle accordingly.

Finally, we encounter the sweep() function at line 10. This is the function that provided the
left/right sweeping movement of the servo when you ran this code:

 def sweep(count=4): # (10)

 for i in range(count):

 right()

 sleep(MOVEMENT_DELAY_SECS)

 left()

 sleep(MOVEMENT_DELAY_SECS)

Movement with Servos, Motors, and Steppers Chapter 10

[323]

In this function, we see the use of sleep(MOVEMENT_DELAY_SECS), which is necessary to
give the servo time to complete each rotation request due to the asynchronous nature of
servos. If you were to comment out the two sleep() calls, you will find that the servo
rotates to the left and stops. This happens because as the for loop iterates (without
sleep()), each left() call overrides the previous right() call, and so on, and
it's left() that is called last before the loop completes.

We've just seen how to control a servo using PiGPIO and its servo-
orientated PWM function, set_servo_pulsewidth(). If you are
interested in how a servo implementation looks with the
set_PWM_frequency() and set_PWM_dutycycle() functions, you'll
find a file in the chapter10 folder named servo_alt.py. It's
functionally equivalent to the servo.py code we have just covered.

This now concludes our servo examples. The knowledge you have learned together with
the code examples will provide you with everything you need to start using servos in your
own projects! Our focus has been on using angular motion servos; however, the core of
what you have learned will also be adaptable with some trial and error and experimenting
(mostly around identifying the correct pulse widths) for use with a continuous rotation servo,
which I'll briefly mention in the next section.

Let's conclude our discussion of servos with a brief consideration of the different types of
servos.

Different types of servos
Our example used a common 3-wire, 180-degree angular servo. While this is a very
common type of servo, there are other variations as well, including continuous rotation
servos, servos with more than three wires, and special purpose servos:

Continuous rotation servos: Have 3 wires and work on the same PWM
principles as a 3-wire angular servo, except the PWM pulse width determines the
rotational direction (clockwise/counter-clockwise) and speed of the servo.

Due to their internal control circuitry and gearing, continuous rotation
servos are a convenient low-speed/high-torque alternative to a DC motor
and H-Bridge controller (which we will be covering in the next section).

Movement with Servos, Motors, and Steppers Chapter 10

[324]

4-wire servos: These come with one set of three wires and a fourth loose wire.
This fourth wire is an analog output of the servo that can be used to detect the
angle. It's useful if you need to know your servo's resting angle when you start
your program.

Servos track their position using an embedded potentiometer. This fourth
wire is attached to such a potentiometer.

Special purpose or heavy-duty industrial use servos: Have different wiring
configurations and usage requirements – for example, they may not have the
internal circuitry to decode PWM signals and require the user to supply and
create the circuit to perform this function.

We have now learned how common hobby-style servos work, and also discovered how to
set their angle of rotation in Python using PWM. In the next section, we will learn more
about DC motors and how to control them using an IC known as an H-Bridge.

Using an H-Bridge IC to control a motor
In Chapter 7, Turning Things On and Off, we learned how to use a transistor to turn a DC
motor on and off, and we also saw how to control the motor's speed using PWM. One
limitation of our single transistor circuit was that the motor only rotated in one direction. In
this section, we will explore a way to let us spin our motor in both the forward and
backward directions – using what is known as an H-Bridge circuit.

The H in H-Bridge comes from the perception that a basic H-Bridge circuit
schematic (created from four individual transistors) make a letter H.

If you search around sites such as eBay for an H-Bridge module, you will identify many
ready-made modules for the same purpose that we will cover in this section. What we will
do is build a replica module on our breadboard. Once you have your breadboard replica
working and understand how it works, you will be in a position to understand the
construction of these ready-made modules.

Movement with Servos, Motors, and Steppers Chapter 10

[325]

We can create an H-Bridge to drive our motor in a few ways:

Just use a pre-built module (modules and ICs may also be called or labeled motor
drivers, or motor controllers). This is the easiest way.

Create an H-Bridge circuit using discrete components – for example, four
transistors, many diodes, a handful of resistors, and a lot of wire to connect them
all. This is the hardest way.

Use an IC (that internally combines all the necessary discrete parts).

A servo, just like we used in the previous section, is made up of a DC
motor connected to an H-Bridge-style circuit that allows the motor to
move forward and backward to create the servo's left and right rotation.

We will opt for the last option and use an L293D, which is a common and low-cost H-
Bridge IC that we can use to build a motor controller circuit.

Here are the basic specifications for the L293D extracted from its datasheet:

Continuous current of 600 mA, 1.2 A peak/pulsed. As a reminder, we explored
motors and current use in Chapter 7, Turning Things On and Off.
It can control a motor with a voltage between 4.5 volts and 36 volts.
It includes internal fly-back diodes, so we do not need to add our own. This is
what the D means in L293D. If you need a refresher on fly-back diodes, please
also see Chapter 7, Turning Things On and Off.
It comprises two channels, so it is capable of driving two DC motors
simultaneously.

If you are looking to purchase a different motor driver IC for a project (for
example, if you need one with more current), remember to check the
datasheet to see whether it has fly-back diodes embedded, or else you will
need to provide your own.

Let's build our circuit to control our motors.

Movement with Servos, Motors, and Steppers Chapter 10

[326]

Building the motor driver circuit
In this section, we will build our H-Bridge circuit that we will use to control two DC
motors. The following schematic describes the circuit we will create. While this circuit looks
busy, most of our work will be simply connecting the legs of the L293D IC to our Raspberry
Pi, power source, and motors:

Figure 10.5 – L293D and motor schematic diagram

As there are a lot of wire connections to get through, we will build this circuit on our
breadboard in four parts.

We will be using an IC in our circuit build. Many ICs (including the
L293D) are sensitive to static electricity discharge (ESD), and if exposed
to static discharge, they can be damaged. As a general rule, you should
avoid touching the pins/legs of an IC with your fingers so that any static
charge you have in your body does not get discharged to the IC.

Movement with Servos, Motors, and Steppers Chapter 10

[327]

Let's get started with the first part, as illustrated in the following diagram:

Figure 10.6 – L293D breadboard layout (Part 1 of 3)

Here are the steps to follow to start our breadboard build. The step numbers match the
numbers in black circles in Figure 10.6:

Start by placing the L293D IC in your breadboard, making sure that that IC is1.
orientated correctly with pin/leg 1 facing toward the top of your breadboard. Pin
1 of an IC is commonly indicated by a small circular indentation or dot beside the
pin. In our illustration, this dot is white for visibility; however, it'll most likely be
the same color as the casing on your IC. In the absence of a dot, there is also
commonly a cutout section on one end of an IC. Pin 1 is the top-left pin when you
hold the IC with the cutout facing away from you.
Connect a 5-volt pin on your Raspberry Pi to the positive rail of the left-hand side2.
power rail.
Connect a GND pin on your Raspberry Pi to the negative rail of the left-hand3.
side power rail.
Connect GPIO 18 to pin 1 of the L293D.4.
Connect GPIO 23 to pin 2 of the L293D.5.
Connect GPIO 24 to pin 7 of the L293D.6.

Movement with Servos, Motors, and Steppers Chapter 10

[328]

Connect a jumper lead to pin 3 of the L293D. The other end of this lead (labeled7.
Output 1Y) is not connected to anything for the moment.
Connect a jumper lead to pin 6 of the L293D. The other end of this lead (labeled8.
Output 2Y) is not connected to anything for the moment.
Using a jumper wire, connect pin 4 and pin 5 on the L293D together.9.
Finally, connect pin 4 and pin 5 of the L293D to the negative rail of the left-hand10.
side power rail.

The bulk of the work we just performed involved the wiring of channel 1 of the L293D. As a
reminder, the L293D has two output channels, which, for the content in this section, means
we can control two DC motors.

If you refer back to Figure 10.6, you will notice the wires (placed at steps 7 and 8) comprise
the output for channel 1. Later in this section, we will attach a motor to these wires.
Furthermore, in the diagram, you will notice that GPIOs 18, 23, and 24 are labeled as
Channel 1 Control GPIOs. We will learn how these GPIOs are used to control the larger
channel 1 motor when we discuss the code that accompanies this circuit.

Moving on, the next part of our build largely involves wiring up channel 2 of the L293D.
This is more or less a mirror of the wiring we just performed:

Figure 10.7 – L293D breadboard layout (Part 2 of 3)

Movement with Servos, Motors, and Steppers Chapter 10

[329]

Here are the steps to follow to complete the second part of our breadboard build. The step
numbers match the numbers in black circles in Figure 10.7:

Connect pin 16 of the L293D to the positive rail of the left-hand side power rail.1.
This 5-volt connection to pin 16 provides the power for the IC's internal circuitry –
it is not the power source for the channel outputs (that is our motors). We will
connect the external power source to the IC in part 3 of the build for powering
the channels' motors.
Connect GPIO 16 to pin 9 of the L293D.2.
Connect GPIO 20 to pin 10 of the L293D.3.
Connect GPIO 21 to pin 15 of the L293D.4.
Connect a jumper lead to pin 14 of the L293D. The other end of this lead (labeled5.
Output 4Y) is not connected to anything for the moment.
Connect a jumper lead to pin 11 of the L293D. The other end of this lead (labeled6.
Output 3Y) is not connected to anything for the moment.
Using a jumper wire, connect pin 12 and pin 13 on the L293D together.7.
Finally, connect pin 12 and pin 13 of the L293D to the negative rail of the right-8.
hand side power rail.

Now that we have wired the channel 2 output, our third task is to connect the external
power supply:

Figure 10.8 – L293D breadboard layout (Part 3 of 3)

Movement with Servos, Motors, and Steppers Chapter 10

[330]

Here are the steps to follow to complete the third part of our breadboard build. The step
numbers match the numbers in black circles in Figure 10.8:

Connect the positive output terminal of your power supply to the positive rail of1.
the right-hand side power rail.
Connect the negative output terminal of your power supply to the negative rail2.
of the right-hand side power rail.
Connect pin 8 of the L293D to the positive rail of the right-hand side power rail.3.
Pin 8 of the L293D provides the input power used to drive the output channels.
Finally, using a jumper wire, connect the negative rails of the left-hand side and4.
right-hand side power rails.

This is our breadboard layout complete. However, there is one final task where we connect
our motors. Following the example in the following diagram, you can connect a motor to
each output channel:

Figure 10.9 – L293D motor connections

Well done! That was a lot of wiring. I imagine that the tangle of wires you now have on
your breadboard does not look nearly as graceful as the illustrations! Please do take the
time to double-check your wirings for this circuit, as an incorrectly placed wire will prevent
the circuit from working as intended.

During our circuit build, in part 3, step 3, we connected an external 5-volt power source to
pin 8 of the L293D. This is the power used to drive each output channel, and hence our
motors. If you ever wish to use motors that require a voltage different to 5 volts, you can
alter this supply voltage to suit your needs, subject to the condition that the source voltage
for the L293D must be within the range of 4.5 volts to 36 volts. Also remember (as
mentioned at the start of this section) that your motors should not draw more than a 600
mA continuous current (fully on) or 1.2 A peak current (for instance, when using PWM,
which we will cover when we get to the code).

Movement with Servos, Motors, and Steppers Chapter 10

[331]

If you read a datasheet for the L293D, it may be entitled Quadruple Half-H
Drivers. Datasheets for driver type ICs can have all sorts of different titles
and wordings. The important point here is that to drive our motor
forward and backward, we require a full H-Bridge circuit, hence, for the
L293D: Quad=4 and half=0.5, so 4 x 0.5 = 2 – that is, 2 full H-Bridges –
therefore, we can control 2 motors.

Once you have created your breadboard circuit and connected your motors, we will run the
example code and discuss how it works.

Running the example H-Bridge code to control a
motor
Now that you have created your H-Bridge driver circuit and connected your motors, let's
run the code that will make the motors spin.

There are two files for this section, and they can be found in chapter10/motor_class.py
and chapter10/motor.py. Run the code found in chapter10/motor.py and your
motors will turn on, change speeds, and change direction.

Place a piece of tape on the shaft of your motors to make it easier to see
when they rotate and in what direction.

When you have confirmed that your circuit works with the example code, we
will next proceed and discuss the code. Since the L293D can drive two motors, the common
code has been abstracted out into motor_class.py, which is imported and used by
motor.py to drive our two individual motors.

We'll start by looking at motor.py.

motor.py
Starting at line 1, we import PiGPIO and the Motor class defined in the motor_class.py
file, before defining several variables describing how we are connecting the L293D to our
Raspberry Pi's GPIO pins:

import pigpio # (1)

from time import sleep

from motor_class import Motor

Movement with Servos, Motors, and Steppers Chapter 10

[332]

Motor A

CHANNEL_1_ENABLE_GPIO = 18 # (2)

INPUT_1Y_GPIO = 23

INPUT_2Y_GPIO = 24

Motor B

CHANNEL_2_ENABLE_GPIO = 16 # (3)

INPUT_3Y_GPIO = 20

INPUT_4Y_GPIO = 21

Referring back to Figure 10.3 and Figure 10.4, if we consider the Motor A (channel 1) side of
the circuits, we see that the logic pins are connected to GPIOs 23 and 24 at line 2
– INPUT_1Y_GPIO = 23 and INPUT_2Y_GPIO = 24. These logic pins (together with the
enable pin that we will cover shortly) are used to set the state and rotational direction of the
motor. The truth table for these states is shown as follows.

This table was sourced from the L293D datasheet and reformatted and supplemented to
match our code and circuit:

Row # Enable GPIO Logic 1 GPIO Logic 2 GPIO Motor Function

1 HIGH or > 0% duty
cycle Low High Turns right

2 HIGH or > 0% duty
cycle High Low Turns left

3 HIGH or > 0% duty
cycle Low Low Break

4 HIGH or > 0% duty
cycle High High Break

5 LOW or 0% duty
cycle N/A N/A Motor off

The L293D has two enable pins – one for each channel (that is, one for each motor) – for
instance, CHANNEL_1_ENABLE_GPIO = 18 at line 3 in the preceding code. The enable pins
are like a master switch for each channel. When the enable pin is set high, it turns the
associated channel on, thus applying power to the motor. Alternatively, we can control the
speed of a motor if we instead pulse the enable pin using PWM. We'll see the code that
works with the logic and enables pins shortly when we explore the motor_class.py file.

Movement with Servos, Motors, and Steppers Chapter 10

[333]

Next, we will create a single instance of pigpio.pi(), as shown in line 4, and then we will
create two instances of Motor to represent our two physical motors:

pi = pigpio.pi() # (4)

motor_A = Motor(pi, CHANNEL_1_ENABLE_GPIO, INPUT_1Y_GPIO, INPUT_2Y_GPIO)

motor_B = Motor(pi, CHANNEL_2_ENABLE_GPIO, INPUT_3Y_GPIO, INPUT_4Y_GPIO)

After we have created the motor_A and motor_B classes, we perform a few actions with
these class to control the motors, as shown in the following code, starting at line 5 – this is
what you witnessed in the previous section when you ran the code:

 print("Motor A and B Speed 50, Right")

 motor_A.set_speed(50) # (5)

 motor_A.right()

 motor_B.set_speed(50)

 motor_B.right()

 sleep(2)

 #... truncated ...

 print("Motor A Classic Brake, Motor B PWM Brake")

 motor_A.brake() # (6)

 motor_B.brake_pwm(brake_speed=100, delay_millisecs=50)

 sleep(2)

Take note of the braking at line 6 and observe the motors. Did one motor brake better than
the other? We will discuss this further when we cover the two brake functions toward the
end of the next section.

Let's move on and look at motor_class.py. This is where the code that integrates our
Raspberry Pi with the L293D is found.

motor_class.py
First, we see the Motor class definition and its constructor:

class Motor:

 def __init__(self, pi, enable_gpio, logic_1_gpio, logic_2_gpio):

 self.pi = pi

 self.enable_gpio = enable_gpio

 self.logic_1_gpio = logic_1_gpio

 self.logic_2_gpio = logic_2_gpio

 pi.set_PWM_range(self.enable_gpio, 100) # speed is 0..100 # (1)

Movement with Servos, Motors, and Steppers Chapter 10

[334]

 # Set default state - motor not spinning and

 # set for right direction.

 self.set_speed(0) # Motor off # (2)

 self.right()

At line 1, we are defining the PiGPIO PWM duty cycle range for the enable pin to be in the
range 0..100. This defines the maximum range value (that is, 100) that we can use with
the set_speed() function that we'll come to shortly.

The range 0..100 means we have 101 discrete integer PWM steps, which maps
conveniently to a 0% to 100% duty cycle. If you specify a higher number, this does not
mean more duty cycles (or more motor speed); it just changes the granularity of the steps –
for example, the default PWM range of 0..255 gives us 256 discrete steps, where 255 =
100% duty cycle.

Remember what we're about to discuss covers one channel (one motor) of
the L293D IC circuit. Everything we cover applies to the other channel too
– it's just the GPIO pins and IC pins that change.

Our constructor finishes by initializing the motor to be off (zero speed) and defaults the
motor to the right rotational direction, as shown in the preceding code at line 2.

Next, we encounter several functions that we use to make our motor(s) spin. We see at line
3 and line 4 the right() and left() methods, which alter the high/low states of the logic
pins of the L293D, according to rows 1 and 2 in the preceding table:

 def right(self, speed=None): # (3)

 if speed is not None:

 self.set_speed(speed)

 self.pi.write(self.logic_1_gpio, pigpio.LOW)

 self.pi.write(self.logic_2_gpio, pigpio.HIGH)

 def left(self, speed=None): # (4)

 if speed is not None:

 self.set_speed(speed)

 self.pi.write(self.logic_1_gpio, pigpio.HIGH)

 self.pi.write(self.logic_2_gpio, pigpio.LOW)

Movement with Servos, Motors, and Steppers Chapter 10

[335]

We can check whether our motor is set to rotate left or right by querying the current states
of the logic pins, as shown in is_right() at line 5. Notice that the queried GPIO states
in is_right() match the states set in right():

 def is_right(self): # (5)

 return not self.pi.read(self.logic_1_gpio) # LOW

 and self.pi.read(self.logic_2_gpio) # HIGH

We see the use of set_PWM_dutycycle() in the set_speed() method in the following
code at line 6, where we set the speed of our motor by pulsing the enable pin of the L293D.
Pulsing the enable pin is done using the same basic principles we used back in Chapter 7,
Turning Things On and Off, when we pulsed a transistor to set our motor's speed:

 def set_speed(self, speed): # (6)

 assert 0<=speed<=100

 self.pi.set_PWM_dutycycle(self.enable_gpio, speed)

You can stop the motor by setting the speed to 0, which effectively is cutting off the motor's
power (0% duty cycle = pin low).

Moving forward, we find two methods named brake() and brake_pwm() at lines 7 and 8,
which can be used to stop the motor quickly. The difference between braking and stopping a
motor by cutting its power (that is, set_speed(0)) is that set_speed(0) allows the motor
to slow down gradually over time – which is the state at row 5 in the preceding table:

 def brake(self): # (7)

 was_right = self.is_right() # To restore direction after braking

 self.set_speed(100)

 self.pi.write(self.logic_1_gpio, pigpio.LOW)

 self.pi.write(self.logic_2_gpio, pigpio.LOW)

 self.set_speed(0)

 if was_right:

 self.right()

 else:

 self.left()

When you ran this code in the previous section, and if you experiment with the two brake
functions on your own, my guess is that you will find brake() does not work well (if at
all), while the brake_pwm() function does:

 def brake_pwm(self, brake_speed=100, delay_millisecs=50): # (8)

 was_right = None # To restore direction after braking

 if self.is_right():

 self.left(brake_speed)

 was_right = True

Movement with Servos, Motors, and Steppers Chapter 10

[336]

 else:

 self.right(brake_speed)

 was_right = False

 sleep(delay_millisecs / 1000)

 self.set_speed(0)

 if was_right:

 self.right()

 else:

 self.left()

Let's discuss why we have defined two different braking methods and why one works
better than the other.

The implementation of brake() is the classic way a motor brake is implemented,
where both logic GPIOs are set high or low together, as in rows 3 or 4 in the preceding
table. The catch, however, is that the performance of this logic can vary depending on the
IC you are using (how it's constructed internally), your motor, and the voltage and current
use are using. For our example, we are using a small motor (with no load on its shaft), small
voltage and currents, and an L293D IC. The net of all this is that classic braking does not
work well, if at all.

We're using the L293D IC because of its popularity, availability, and low
cost. It's been in production for many years, and you will have no problem
finding example circuits and code based around this IC for all sorts of
applications. It's not the most efficient IC, however. This is a contributing
factor in classic braking not working in some scenarios.

The break_pwm(reverse_speed, delay_secs) implementation takes a different and
more reliable approach to braking by applying a small and opposite voltage to the motor.
You can use the brake_speed and delay_millisecs parameters to tune the braking if
required – too little speed and delay and the brake will not work, too much and the motor
will reverse direction.

Have you noticed that at full speed (that is, set_speed(100)), your
motor spins slower than if it were connected directly to 5 volts? There is a
~2 voltage drop inherent in the L293D. Even though Vcc1 (motor power
source) is connected to 5 volts, the motor is not getting this full 5 volts (it's
more like ~3 volts). If you are using a variable power supply (that is, not a
3.3 V/5 V breadboard power supply), you can increase the input voltage
to Vcc1 to around 7 volts. This will then see the motor getting around 5
volts (you can use your multimeter to verify this).

Movement with Servos, Motors, and Steppers Chapter 10

[337]

Congratulations! You have just learned how to operate a servo and master the control of a
DC motor in terms of speed and the direction of braking. The circuits, code, and skills you
have just acquired can be adapted to many applications where you need to create motion
and angular movement – for example, a robotic car or arm. You could even use these skills
to retrofit motorized toys and other motorized gadgets and make them controllable by your
Raspberry Pi.

If you would like to extend your knowledge further, you might like to explore how to
create an H-Bridge circuit from individual components – such as transistors, resistors, and
diodes. While there are various ways to accomplish this circuit, we covered the core basics
in terms of concepts and components between this chapter and our use of transistors back
in Chapter 7, Turning Things On and Off.

Well done! We covered a lot in this section as we learned how to use an L293D H-Bridge to
make a DC motor spin, reverse direction, and brake. In the next section, we will look at an
alternative use of the L293D and see how to use it to control a stepper motor.

Introduction to stepper motor control
Stepper motors are a unique type of motor in terms of their precision and torque. Similar to
a DC motor, a stepper motor can rotate in both directions continuously, while they can be
precisely controlled similar to a servo.

In the following diagram is a 28BYJ-48 stepper motor, together with headpins that can be
used to connect the motor to a breadboard:

Figure 10.10 – 28BYJ-48 stepper motor

Movement with Servos, Motors, and Steppers Chapter 10

[338]

Stepper motor theory and practice can get complex quickly! There are different forms and
types of stepper motors and many variables, such as stride angles and gearing, that all need
to be accounted for, plus various ways to wire and control them. We can't possibly cover all
these parameters here, nor can we go into the low-level details of how stepper motors
work.

Instead, we will cover the practical operation of a common and readily available stepper
motor, a 28BYJ-48. Once you understand the basic principles as they apply to
a 28BYJ-48, you will be well-positioned to broaden your knowledge of stepper motors.

Controlling stepper motors can be confusing and fiddly when you first
start using them. Unlike DC motors and servos, you need to appreciate
how stepper motors work at both a mechanical and code level to control
them.

The basic specifications for our reference 28BYJ-48 are as follows:

5 volts (make sure your stepper is 5 volts because the 28BYJ-48 also comes in 12
volts).
A stride angle of 64, a 1:64 gearing ratio, giving 64 x 64 = 4,096 steps per 360
degree revolution.

Using the stride angle, gearing ratio, and sequence, we can calculate the number of logical
steps needed to rotate our stepper motor 360 degrees: 64 x 64 / 8 = 512 steps.

Next, we will connect our stepper motor to our Raspberry Pi.

Movement with Servos, Motors, and Steppers Chapter 10

[339]

Connecting the stepper motor to the L293D
circuit
To connect our stepper motor to our Raspberry Pi, we are going to reuse our L293D circuit,
as shown in Figure 10.8 in the previous section. Here is what we need to do:

Figure 10.11 – 28BYJ-48 stepper motor wiring connection

The following steps match the numbering shown in Figure 10.11. Remember that we are
starting with the circuit you completed previously in the section entitled Building the motor
driver circuit and shown in Figure 10.8:

In steps 2 through 5, we will connect the stepper motor in our breadboard
circuit. A suggestion is to use header pins (as pictured in Figure 10.10) to
connect your motor to a run of vacant rows on your breadboard, and then
connect the output wires from the L293D to the appropriate row matching
the wire colors mentioned in the steps.

If you have not done so already, disconnect the two DC motors from the existing1.
circuit.
Connect the orange wire of your stepper motor to the wire labeled Output 4Y2.
in Figure 10.8.
Connect the yellow wire of your stepper motor to the wire labeled Output 3Y3.
in Figure 10.8.

Movement with Servos, Motors, and Steppers Chapter 10

[340]

Connect the pink wire of your stepper motor to the wire labeled Output 2Y4.
in Figure 10.8.
Connect the blue wire of your stepper motor to the wire labeled Output 1Y5.
in Figure 10.8.

In our example scenario, we are using our L293D H-Bridge to drive our stepper motor as a
bipolar stepper motor. You will come across the terms bipolar and unipolar in relation to
stepper motors. These terms relate to how the motor is wired, and this influences how you
will control them. A discussion of the differences between bipolar and unipolar stepper
motors can quickly get complex; however, a simplified distinction at this stage of learning
is as follows:

A bipolar stepper motor requires a driving circuit that is capable of reversing the
current flow.
A unipolar stepper motor does not require a circuit that is capable of reversing the
current flow.

In our example with bipolar wiring, we use an H-Bridge circuit because it is capable of
reversing current flow to a coil (for example, this is how we made our DC motor reverse
direction in the previous section).

The ULN2003 IC is a popular, low-cost Darlington transistor array (with
built-in fly-back diodes); you could also use it to drive your stepper motor
as a unipolar stepper motor. In this setup, you would use the red wire
connected to +5 volts because the ULN2003 is unable to reverse current.

With our stepper motor connected, we can continue on to control it with code.

Running and exploring the stepper motor code
The code we are about to run can be found in the chapter10/stepper.py file. I
recommend reviewing the source code before proceeding so that you have an overall idea
of what the file contains.

When you run the code found in the chapter10/stepper.py file, your stepper motor
should rotate a complete 360 degrees in one direction, and then back again.

Place a piece of tape on the shaft of your stepper motor to make it easier to
see when it rotates and in what direction.

Movement with Servos, Motors, and Steppers Chapter 10

[341]

Starting at the top of the source file, we define all our GPIO variables, including our enable
pins at line 1, plus variables starting at line 2 relating to our stepper motor coil wires. These
wires must be identified and ordered correctly, as coil wire order matters!

CHANNEL_1_ENABLE_GPIO = 18 # (1)

CHANNEL_2_ENABLE_GPIO = 16

INPUT_1A_GPIO = 23 # Blue Coil 1 Connected to 1Y # (2)

INPUT_2A_GPIO = 24 # Pink Coil 2 Connected to 2Y

INPUT_3A_GPIO = 20 # Yellow Coil 3 Connected to 3Y

INPUT_4A_GPIO = 21 # Orange Coil 4 Connected to 4Y

STEP_DELAY_SECS = 0.002 # (3)

We will see later in code the use of STEP_DELAY_SECS at line 3 to add a slight delay in
between coil steps. A higher delay will result in a slower rotation of the stepper motor's
shaft; however, too small a number and the shaft may not rotate at all or the rotation may
be erratic and stutter. Feel free to experiment with different delay values to suit your needs.

Next, starting at line 4, we group our coil GPIOs into a Python list (array) and initialize
these GPIOs as outputs at line 5. We're storing the GPIOs in a list because we will be
iterating over these GPIOs later when we use the rotate() function. We also have the
off() function at line 6 that we use to turn off all the coils:

coil_gpios = [# (4)

 INPUT_1A_GPIO,

 INPUT_2A_GPIO,

 INPUT_3A_GPIO,

 INPUT_4A_GPIO

]

Initialise each coil GPIO as OUTPUT.

for gpio in coil_gpios: # (5)

 pi.set_mode(gpio, pigpio.OUTPUT)

def off():

 for gpio in coil_gpios: # (6)

 pi.write(gpio, pigpio.LOW) # Coil off

off() # Start with stepper motor off.

Movement with Servos, Motors, and Steppers Chapter 10

[342]

At line 7, we're setting the two enable GPIO pins HIGH in code because we are reusing the
circuit from our previous DC motor control example. The alternative non-code approach
would be to connect the L293D EN1 and EN2 pins directly to +5 volts (that is, pull them
HIGH manually):

Enable Channels (always high)

pi.set_mode(CHANNEL_1_ENABLE_GPIO, pigpio.OUTPUT) # (7)

pi.write(CHANNEL_1_ENABLE_GPIO, pigpio.HIGH)

pi.set_mode(CHANNEL_2_ENABLE_GPIO, pigpio.OUTPUT)

pi.write(CHANNEL_2_ENABLE_GPIO, pigpio.HIGH)

Starting at line 8, we define two stepping sequences in a multi-dimension (2 x 2) array
named COIL_HALF_SEQUENCE and COIL_FULL_SEQUENCE, and we thus encounter the
parts of the code where it starts to become obvious that stepper motor control is more
complex than DC motor or servo control!

A stepping sequence defines how we must turn on (energize) and off (not energized) each
coil in the stepper motor to make it step. Each row in the sequence has four elements, each
relating to a coil:

COIL_HALF_SEQUENCE = [# (8)

 [0, 1, 1, 1],

 [0, 0, 1, 1], # (a)

 [1, 0, 1, 1],

 [1, 0, 0, 1], # (b)

 [1, 1, 0, 1],

 [1, 1, 0, 0], # (c)

 [1, 1, 1, 0],

 [0, 1, 1, 0]] # (d)

COIL_FULL_SEQUENCE = [

 [0, 0, 1, 1], # (a)

 [1, 0, 0, 1], # (b)

 [1, 1, 0, 0], # (c)

 [0, 1, 1, 0]] # (d)

A sequence with eight steps is known as a half-step sequence, while a full-step sequence has
four rows and is a subset of the half-sequence (match up the (a), (b), (c), and (d) rows in the
preceding code).

A half-sequence will give you more resolution (for example, 4,096 steps for a 360-degree
revolution), while a full-step sequence will give you half the resolution (2,048 steps) but
twice the stepping speed.

Movement with Servos, Motors, and Steppers Chapter 10

[343]

A stepping sequence for a stepper can usually be found in its datasheet – but not always, as
our reference 28BYJ-48 datasheet mentioned in the Technical requirements section proves, so
sometimes some research may be necessary.

If a stepper motor is not rotating, but it is making a sound and vibrating,
it's a sign that the stepping sequence and coil order is incorrectly matched.
This is a common frustration with stepper motors when you try to just
connect them blindly and hope they work. To avoid this trial-and-error
approach, take the time to identify your stepper motor type and how it is
being wired (for example, bipolar or unipolar), and work out the coil
numbering and what a suitable coil stepping sequence looks like.
Consulting your stepper motor's datasheet is the best place to start.

Next, at line 9, we defined the global variable, sequence = COIL_HALF_SEQUENCE, to use
a half-step sequence when stepping our motor. You can change this to sequence =
COIL_FULL_SEQUENCE to use a full-step sequence – all other code remains the same:

sequence = COIL_HALF_SEQUENCE # (9)

#sequence = COIL_FULL_SEQUENCE

At line 10, we have the rotate(steps) method, which is where all the magic happens, so
to speak. Examining and understanding what this method does is the key to understanding
how to control our stepper motor. The steps parameter can be a positive or a negative
number to rotate the stepper motor in the reverse direction:

For rotate() to keep track of the sequence row it is on.

sequence_row = 0

def rotate(steps): # (10)

 global sequence_row

 direction = +1

 if steps < 0:

 direction = -1

The core of the rotate() function is within the two for loops, starting at line 11:

rotate(steps) continued...

 for step in range(abs(steps)): # (11)

 coil_states = sequence[sequence_row] # (12)

 for i in range(len(sequence[sequence_row])):

 gpio = coil_gpios[i] # (13)

 state = sequence[sequence_row][i] # (14)

 pi.write(gpio, state) # (15)

 sleep(STEP_DELAY_SECS)

Movement with Servos, Motors, and Steppers Chapter 10

[344]

As the code loops for step iterations, we get the next coil state's form,
sequence[sequence_row], at line 12 (for example, [0, 1, 1, 1]), before looping
through and getting the corresponding coil GPIO at line 13, and its HIGH/LOW state at line
14. At line 15, we set the HIGH/LOW state of the coil with pi.write(), which makes our
motor move (that is, step), before sleeping for a short delay.

Next, starting at line 16, the sequence_row index is updated based on the direction of
rotation (that is, whether the steps parameter was positive or negative):

rotate(steps) continued...

 sequence_row += direction # (16)

 if sequence_row < 0:

 sequence_row = len(sequence) - 1

 elif sequence_row >= len(sequence):

 sequence_row = 0

At the end of this block of code, if there are more steps to complete, the code then goes back
to line 11 for the next for steps in ... iteration.

Finally, at line 17, we come to the part of the code that made our stepper motor rotate when
we ran the example. Remember, if you switch line 9 to be sequence =
COIL_FULL_SEQUENCE, then the number of steps will be 2048:

if __name__ == '__main__':

 try: #(17)

 steps = 4096 # Steps for HALF stepping sequence.

 print("{} steps for full 360 degree rotation.".format(steps))

 rotate(steps) # Rotate one direction

 rotate(-steps) # Rotate reverse direction

 finally:

 off() # Turn stepper coils off

 pi.stop() # PiGPIO Cleanup

Congratulations! You have just completed a crash course on stepper motor control.

I understand that if you are new to steppers, there is some multi-dimensional thinking
required and that you have been introduced to many concepts and terms that we have not
been able to cover in detail. Stepper motors will take time to understand; however, once
you grasp the basic process of controlling one stepper motor, then you are well on your
way to understanding the broader concepts in more detail.

Movement with Servos, Motors, and Steppers Chapter 10

[345]

There are many stepper motor tutorials and examples scattered across the
internet. The goal of many examples is to just make the stepper motor
work, and it's not always clearly explained how this is being achieved due
to the underlying complexity. As you read up on stepper motors and
explore code examples, remember that the definition of a step can vary
greatly and depends on the context in which it is being used. This is a
reason why two examples may cite significantly different step numbers
for the same stepper motor.

Summary
In this chapter, you learned how to use three common types of motors to create complex
movement with your Raspberry Pi – a servo motor for creating an angular moment, a DC
motor with an H-Bridge driver to create direction movement and speed control, and a
stepper motor for precision movement. If you have grasped the general concepts of each of
these types of motors, then you deserve a pat on the back! This is an achievement. While
motors are simple in principle and their movement is something we take for granted daily
in everyday appliances and toys, as you have discovered, there is a lot going on behind the
scenes to make that movement occur.

What you have learned in this chapter, together with the example circuits and code,
provides you with a foundation that you can use to start building your own applications
where movement and motion are required. A simple and fun project could be to create a
program to control a robotic car or robotic arm – you'll find DIY kits and robotic parts for
cars and arms on sites such as eBay.

In the next chapter, we will explore ways we can measure distance and detect movement
with our Raspberry Pi, Python, and various electronic components.

Questions
As we conclude, here is a list of questions for you to test your knowledge of this chapter's
material. You will find the answers in the Assessments section of the book:

Your servo does not rotate fully to the left or right. Why is this and how can you1.
fix this?
Your servo is groaning at one or both of its extreme left/right positions. Why?2.
What advantage does an H-Bridge provide over a single transistor when3.
controlling DC motors?

Movement with Servos, Motors, and Steppers Chapter 10

[346]

You are using an L293D H-Bridge IC. You follow the instructions as per the4.
datasheet but cannot get your motor to brake. Why?
Why do your 5-volt motors spin slower when connected to an H-Bridge using an5.
L293D compared to connecting the motor directly to a 5-volt source?
You have a stepper motor that will not work – it vibrates, but will not turn. What6.
could be the problem?
Can you drive a stepper motor directly from four Raspberry Pis' GPIO pins?7.

11
Measuring Distance and

Detecting Movement
Welcome to our final core electronics-based chapter. In the previous chapter, we learned
how to control three different forms of motors in complex ways. In this chapter, we will
direct our attention to detecting movement and measuring the distance with our Raspberry
Pi and electronics.

Detecting movement is very useful for automation projects such as turning on lights when
you walk into a room or building, an alarm system, building counters, or detecting
revolutions of a shaft. We will be looking at two techniques for movement detection,
including a Passive Infrared (PIR) sensor that uses heat detection to detect the presence of
a person (or animal), and a digital Hall-effect sensor that detects the presence of a magnetic
field (or, more liberally, we can say that the Hall-effect sensor can detect when a magnet
moves past it).

Distance measurement is also useful for many projects, from collision detection circuits to
measuring water tank levels. We will be looking at two forms of distance measurement,
including the use of an ultrasonic sound sensor that can measure distances of around 2
centimeters to 4 meters, and also an analog Hall-effect sensor that can measure the
proximity of a magnetic field down to millimeters.

Here is what we will cover in this chapter:

Detecting movement with a PIR sensor
Measuring distance with an ultrasonic sensor
Detecting movement and distance with Hall-effect sensors

Measuring Distance and Detecting Movement Chapter 11

[348]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on Raspberry Pi 3 Model
B or a different version of Raspbian OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter11 folder in the GitHub repository
available at https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-​for-
IoT.

You will need to execute the following commands in a terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter11 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
ADS1X15: The ADS11x5 ADC library (https:/​/​pypi.​org/​project/​adafruit-
circuitpython-​ads1x15)

The electronic components we will need for this chapter's exercises are as follows:

1 x 1kΩ resistor
1 x 2kΩ resistor
1 x HC-SR501 PIR sensor (datasheet: https:/​/​www.​alldatasheet.​com/
datasheet-​pdf/​pdf/​1131987/​ETC2/​HC-​SR501.​html)
1 x A3144 Hall-effect sensor (non-latching) (datasheet: https:/​/​www.
alldatasheet.​com/​datasheet-​pdf/​pdf/​55092/​ALLEGRO/​A3144.​html)
1 x AH3503 Hall-effect sensor (ratiometric) (datasheet: https:/​/​www.
alldatasheet.​com/​datasheet-​pdf/​pdf/​1132644/​AHNJ/​AH3503.​html)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1131987/ETC2/HC-SR501.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1132644/AHNJ/AH3503.html

Measuring Distance and Detecting Movement Chapter 11

[349]

1 x HC-SR04 or HC-SR04P ultrasonic distance sensor (datasheet: https:/​/
tinyurl.​com/​HCSR04DS)
A small magnet for use with the Hall-effect sensors

There are two variations of the HC-SR04 available. The more
common HC-SR04, which outputs 5-volt logic and the HC-SR04P, which
can operate at between 3 volts and 5.5 volts. Either module will be suitable
for the exercise in this chapter.

Detecting movement with a PIR sensor
A PIR sensor is a device that can detect infrared light (heat) emitted by an object (for
example, a person). We see these types of sensors all around us in applications such as
security systems and automatic doors and lights that react to our presence. The passive in
PIR means the sensor just detects movement. To detect what moved and how, you would
need an active infrared device, such as a thermal camera.

PIR sensors come in a few different forms and varieties; however, their basic usage is the
same – they act as a simple digital switch. When they do not detect movement, they output
a digital LOW, and when movement is detected, they output a digital HIGH.

Shown in the following figure is the HC-SR501 PIR sensor module that we will be using for
our example. Pictured are the top of the module, the underside, and a common schematic
symbol for a PIR sensor:

Figure 11.1 – HC-SR501 PIR sensor module

https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS
https://tinyurl.com/HCSR04DS

Measuring Distance and Detecting Movement Chapter 11

[350]

Some PIR sensors, including our HC-SR501, have an onboard setting and calibration
adjustments on them. These adjustments are used to change the sensitivity range and
triggering mode of the sensor. To use a PIR device without on-board calibration means we
would need to handle sensitivity adjustments ourselves in code.

In regard to the HC-SR501, its terminals are as follows:

GND: Connection to ground.
Vcc: Connection to a power source between 5 volts and 20 volts.
Data: Digital output that we connect to a GPIO pin. When the PIR detects
movement, this pin goes HIGH; otherwise, it remains LOW in the absence of
movement. The HC-SR501 outputs a 3.3-volt signal, even though it requires a 5-
to 20-volt power source. As we will see next, the onboard sensitivity adjust, timing
adjust trims, and trigger mode jumper influence how, when, and for how long this
data pin remains HIGH when movement is detected.

The HC-SR501 onboard settings are as follows:

Sensitivity Adjust: Changes the effective movement sensing range between
about 3 meters to about 7 meters. Use a small screwdriver to rotate this setting's
dial.
Time Delay Adjust: How long the data terminal remains HIGH after movement is
detected. The adjustment range is approximately 5 seconds to 300 seconds. Use a
small screwdriver to rotate this setting's dial.
Trigger Mode Jumper: In the presence of continued movement detection, this
jumper setting means that after the time delay expires (as set by Time Delay
Adjust), the data terminal will do the following:

Remain HIGH. This is the repeatable trigger setting, set by placing
the jumper into the H position.
Revert to LOW. This is the single-shot setting, set by placing the
jumper into the L position.

The best settings for your PIR will depend on how you intend to use it and the environment
in which you deploy your sensor. My suggestion is to play around with the setting
adjustments after you complete the circuit build and run the example code in the
subsequent sections to get a feel for how changing the settings affects the operation of the
sensor. Remember to consult the HC-SR501 datasheet for more information on the sensor
and its onboard settings.

Let's wire up our PIR sensor and connect it to our Raspberry Pi.

Measuring Distance and Detecting Movement Chapter 11

[351]

Creating the PIR sensor circuit
In this section, we will connect our PIR sensor to our Raspberry Pi. The following is the
schematic diagram of the circuit we are about to build. As you can see, it has relatively
straightforward wiring from the perspective of the PIR sensor:

Figure 11.2 – PIR sensor module circuit

Let's connect it to our Raspberry Pi as illustrated in the following figure:

Figure 11.3 – PIR sensor circuit breadboard layout

Measuring Distance and Detecting Movement Chapter 11

[352]

Here are the steps to follow to create your breadboard build. The step numbers match the
numbers in black circles in Figure 11.3:

Connect each terminal of your PIR sensor to your breadboard. You will need1.
three male-to-male jumper cables.
Connect a 5-volt pin on your Raspberry Pi to the same breadboard row used by2.
the PIR's Vcc terminal. PIR sensors only use a little current, so it will be okay to
connect the 5-volt Vcc pin directly to your Raspberry Pi.
Connect a GND pin on your Raspberry Pi to the same breadboard row used by3.
the PIR's GND terminal.
Connect GPIO 21 on your Raspberry Pi to the same breadboard row used by the4.
PIR's data terminal.

IMPORTANT: Our reference HC-SR501 PIR sensor requires >4.5 volts for
its power (Vcc), and outputs 3.3 volts on its Sig output pin. If you are
using a different PIR sensor, then consult its datasheet and check the
output pin voltage. If it is >3.3 volts, you will need to use a voltage divider
or logic level shifter. We will cover this exact scenario in the next section
when we couple a voltage divider with an HC-SR04 sensor to convert its
5-volt output into a Raspberry Pi-friendly 3.3 volts.

Once you have created your circuit, we will proceed and run our PIR example code, which
will let us detect movement.

Running and exploring the PIR sensor code
The code for out PIR circuit is found in the chapter11/hc-sr501.py file. Please review
the source code before proceeding to get a broad understanding of what this file contains.

The HC-SR501 datasheet stipulates that the sensor needs around 1 minute
after power-on to initialize and stabilize itself. If you try and use the
sensor before it becomes stable, you may receive a few erroneous triggers
when you start the program.

Run the hc-sr501.py file in a terminal. When the HC-SR501 detects movement, the
program will print Triggered on the terminal, or Not Triggered when no movement is
detected, as shown in the following output:

(venv) $ python hc-sr501.py

PLEASE NOTE - The HC-SR501 Needs 1 minute after power on to initialize

itself.

Measuring Distance and Detecting Movement Chapter 11

[353]

Monitoring environment...

Press Control + C to Exit

Triggered.

Not Triggered.

... truncated ...

If your program is not responding as expected, try adjusting one or more of the Sensitivity
Adjustment, Time Delay Adjustment, or Trigger Mode Jumper settings that we discussed
earlier in the section titled Detecting movement with a PIR sensor.

You can consider the HC-SR501 as a basic switch. It's either on (HIGH) or off (LOW), just like
a common push-button switch. In fact, our code is similar to the PiGPIO button example
presented in the Responding to a button press with PiGPIO section back in Chapter 2, Getting
Started with Python and IoT. We'll just brush over the core code parts here; however, if you
need a deeper explanation or a refresher, please revisit the PiGPIO sections in Chapter 2,
Getting Started with Python and IoT.

Let's discuss the example code. Firstly, we start on line 1 by setting up our GPIO pin as an
input pin with pull-down enabled, while on line 2, we have debouncing enabled. Our HC-
SR501 module won't actually require the pull-down to be activated in code, nor will it
require the debouncing; however, I've added it in for completeness:

... truncated ...

GPIO = 21

Initialize GPIO

pi.set_mode(GPIO, pigpio.INPUT) # (1)

pi.set_pull_up_down(GPIO, pigpio.PUD_DOWN)

pi.set_glitch_filter(GPIO, 10000) # microseconds debounce # (2)

Next, on line 3, we define the callback_handler() function, which will get called
whenever the GPIO pin changes its HIGH/LOW state:

def callback_handler(gpio, level, tick): # (3)

 """ Called whenever a level change occurs on GPIO Pin.

 Parameters defined by PiGPIO pi.callback() """

 global triggered

 if level == pigpio.HIGH:

 triggered = True

 print("Triggered")

 elif level == pigpio.LOW:

 triggered = False

 print("Not Triggered")

Measuring Distance and Detecting Movement Chapter 11

[354]

Finally, on line 4, we register our callback function. It's the second parameter,
pigpio.EITHER_EDGE, that causes callback_handler() to be called whenever GPIO
changes to HIGH or LOW:

Register Callback

callback = pi.callback(GPIO, pigpio.EITHER_EDGE, callback_handler) # (4)

For comparison, in Chapter 2, Getting Started with Python and IoT, for our push-button
example, this parameter was pigpio.FALLING_EDGE, meaning the callback only got called
when the button was pressed, and not when it was released.

As we have seen, a PIR sensor can only detect the proximity of an object – for example, is
someone near our sensor? – but it cannot give us an indication of how far or near that object
is.

We've now learned how to create and connect a simple PIR sensor circuit to our Raspberry
Pi, and how to use it to detect movement in Python. Armed with this knowledge, you can
now start building your own motion detection projects, such as turning things on and off
when someone or some animal is detected, by combining the examples from Chapter 7,
Turning Things On and Off, or as an important part of your own alarm and monitoring
system.

Next, we will look at a sensor that is capable of estimating distance.

Measuring distance with an ultrasonic
sensor
In the previous section, we learned how to detect movement with a PIR sensor. As we
discovered, our PIR sensor was a digital device that signaled movement detection by
making its output a digital HIGH.

It's time to learn how to measure distance with our Raspberry Pi. There are a variety of
sensors that are capable of performing this task, and they commonly either work with
sound or light. Our example will be based around the popular HC-SR04 ultrasonic distance
sensor (it works on sound), as pictured in the following figure:

Measuring Distance and Detecting Movement Chapter 11

[355]

Figure 11.4 – HC-SR04 ultrasonic distance sensor module

A place where you commonly find ultrasonic distance sensors is modern car bumper bars
(they're often little round circles, which is a different form factor than the HC-SR04 pictured
in the preceding figure). These sensors calculate the distance between your car and a
nearby object and, for example, make a beeper inside your car beep faster and faster as you
get closer and closer to the object

Another common application is for measuring liquid levels, such as in a water tank. In this
scenario, a (waterproof) ultrasonic sensor measures the distance from, for example, the top
of the tank to the water level (the sound pulse bounces off the water). The measured
distance can then be translated into an estimate of how full the tank is.

Let's take a closer look at our HC-SR04 sensor. The core specifications from the reference
HC-SR04 datasheet are as follows:

Power voltage 5 volts (HC-SR04) or 3 volts to 5.5 volts (HC-SR04P)
Logic voltage 5 volts (HC-SR04) or 3 volts to 5.5 volts (HC-SR04P)
Working current 15 mA, resting current 2 mA
Effective measurement range 2 cm–4 m, with an accuracy of +/- 0.3 cm
A trigger pulse width of 10 µs (10 microseconds). We'll revisit this pulse width
and discuss it more in the section titled HC-SR04 distance measurement process.

The SC-SR04 has two round cylinders. They are as follows:

T or TX: A transmitter that produces ultrasonic sound pulses
R or RX: A receiver that detects ultrasonic sound pulses

We will discuss how the transmitter and receiver pair work to measure distance in the next
section.

Measuring Distance and Detecting Movement Chapter 11

[356]

The HC-SR04 has four terminals, which are as follows:

Vcc: The power source (a Raspberry Pi 5-volt pin will be okay given the max
current of 15 mA).
GND: Connection to ground.
TRIG: Trigger input terminal – when HIGH, the sensor sends out ultrasonic
pulses.
ECHO: Echo output terminal – this pin goes HIGH when TRIG is made HIGH, then
transitions to LOW when it detects an ultrasonic pulse.

We will discuss the use of the TRIG and ECHO terminals in the section titled HC-SR04
distance measurement process.

Now that we understand the basic use of an ultrasonic distance sensor and the basic
properties and layout of the HC-SR04, let's discuss how it works.

How an ultrasonic distance sensor works
Let's see how the transmitter (TX) and receiver (RX) work together to measure distance.
The basic operating principle of an ultrasonic sensor is illustrated in the following figure:

Figure 11.5 – Ultrasonic distance sensor operation

Measuring Distance and Detecting Movement Chapter 11

[357]

Here is what happens:

First, the sensor sends out an ultrasonic pulse from the transmitter (TX).1.
If there is an object in front of the sensor, this pulse is bounced off the object and2.
returns to the sensor, and is detected by the receiver (RX).
By measuring the time between transmitting a pulse and receiving it back, we3.
can calculate the distance between the sensor and the object.

With this high-level understanding of how the sensor works, next, we will go deeper and
discuss how to use the TRIG and ECHO terminals on the HC-SR04 together in a process to
estimate distance.

HC-SR04 distance measurement process
In this section, we will cover the process used to measure distance with the HC-SR04. Don't
get concerned if this does not make immediately sense. I've provided the details here as
background material, as this is the logical process that is implemented by our example
program to make the sensor work. You will also find the process documented in the
sensor's datasheet.

We measure distance with the HC-SR04 through the correct use and monitoring of the
TRIG and ECHO pins. The process looks like this:

Pull the TRIG pin HIGH for 10 microseconds. Pulling TRIG HIGH also makes the1.
ECHO pin HIGH.
Start a timer.2.
Wait for either of the following to happen:3.

ECHO to go LOW
38 milliseconds to elapse (from the datasheet, this is the time for >4
meters)

Stop the timer.4.

If 38 milliseconds have passed, we conclude that there is no object in front of the sensor (at
least within the effective range of 2 centimeters to 4 meters). Otherwise, we take the elapsed
time divided by 2 (because we want the time interval between the sensor and the object, not
the sensor to the object and back to the sensor), and then using basic physics, calculate the
distance between the sensor and the object using the following formula:

Measuring Distance and Detecting Movement Chapter 11

[358]

Here, we have the following:

d is the distance in meters.
v is the velocity in meters per second, for which we use the speed of sound,
which is approximately 343 meters per second at 20°C (68°F).
t is the time in seconds.

The HC-SR04 will only estimate distance. There are several parameters
that influence its accuracy. Firstly, as hinted previously, the speed of
sound varies in accordance with temperature. Secondly, the sensor has a
resolution of ± 0.3 cm. Furthermore, the size of the object being measured,
the angle of the object relative to the sensor, and even the material it is
made of can all impact the ECHO timing result and thus the calculated
distance.

With this basic understanding of how to use the HC-SR04 to estimate distance, let's build
our circuit to connect an HC-SR04 to our Raspberry Pi.

Building the HC-SR04 circuit
It's time to build our HC-SR04 circuit. A schematic of our circuit is shown in the following
figure. This wiring will be suitable for both an HC-SR04 or HC-SR04P module:

Figure 11.6 – HC-SR04 (5-volt logic ECHO pin) circuit

As a reminder, the HC-SR04 module (or an HC-SR04P wired like this to a 5-volt source) is a
5-volt logic module, and hence you will notice the voltage divider in the circuit created by
the two resistors to convert 5 volts into 3.3 volts. If you need a refresher on voltage dividers,
we covered them in detail in Chapter 6, Electronics 101 for the Software Engineer.

Measuring Distance and Detecting Movement Chapter 11

[359]

Let's build this circuit on our breadboard:

Figure 11.7 – HC-SR04 circuit breadboard layout (part 1 of 2)

Here are the steps to follow to create the first part of your breadboard build. The step
numbers match the numbers in black circles in Figure 11.7:

Place a 1kΩ resistor (R1) into your breadboard.1.
Place a 2kΩ resistor (R2) into your breadboard. A leg of this second resistor2.
shares the same row as a leg of the first resistor. In the illustration, this can be
seen in row 21 on the right-hand side bank.
Connect the left-hand side and right-hand side negative power rails together.3.
Connect a GND pin on your Raspberry Pi to the negative rail of the left-hand4.
side power rail.
Connect the second leg 2kΩ resistor (R2) to the negative rail of the right-hand5.
side power rail.
Connect the GND terminal on your HC-SR04 sensor to the negative rail of the6.
right-hand side power rail.
Connect the Vcc terminal on your HC-SR04 sensor to the positive rail of the7.
right-hand side power rail.

Measuring Distance and Detecting Movement Chapter 11

[360]

Make sure the R1 and R2 resistors are connected as shown in the
preceding figure – that is, R1 (1kΩ) is connected to the ECHO pin on the
HC-SR04. The voltage divider created by R1 and R2 shifts an ECHO pin
HIGH of 5 volts into ~3.3 volts. If you installed the resistors back to front,
the 5 volts get shifted to ~1.67 volts, which is not enough to register a logic
HIGH on your Raspberry Pi.

Now that we have laid out our basic components and performed a few preliminary wiring
connections, let's complete our build:

Figure 11.8 – HC-SR04 circuit breadboard layout (part 2 of 2)

Here are the steps to follow. The step numbers match the numbers in black circles in Figure
11.8:

Connect GPIO 20 on your Raspberry Pi to the Trig terminal on your HC-SR041.
sensor.
Connect GPIO 21 on your Raspberry Pi to the junction of the 1kΩ (R1) and 2kΩ2.
(R2) resistors. This connection is shown in the illustration at hole F21.
Connect the Echo terminal of your HC-SR04 sensor to the 1kΩ resistor (R1). This3.
connection is shown at hole J17.

Measuring Distance and Detecting Movement Chapter 11

[361]

Connect the positive terminal of a 5-volt power source to the positive rail of the4.
right-hand side power rail.
Connect the negative terminal of a 5-volt power source to the negative rail of the5.
right-hand side power rail.

As mentioned, our circuit build will work with both the HC-SR04 and HC-SR04P modules.
If you do have the HC-SR04P module, there is a simpler wiring option available to you that
you may like to try on your own. Since the HC-SR04P will work at 3.3 volts, here is what
you can do:

Connect Vcc to a 3.3-volt power source or a 3.3-volt pin on your Raspberry Pi.
Connect the ECHO terminal directly to GPIO 21.
GND still connects to GND, and TRIG still connects directly to GPIO 20.

Since this configuration is powered at 3.3 volts, the logic output on the ECHO terminal is
also 3.3 volts and is therefore safe to connect directly to a Raspberry Pi GPIO pin.

Great! Now that our circuit is complete, next we will run our example program and use the
HC-SR04 to measure distance and learn about the code that makes this happen.

Running and exploring the HC-SR04 example
code
The example code for the HC-SR04 can be found in the chapter11/hc-sr04.py file.
Please review the source code before proceeding to get a broad understanding of what this
file contains.

Place a solid object in front of the HC-SR04 (about 10 cm) and run the code in a terminal. As
you move the object nearer or further from the sensor, the distance printed in the terminal
will change, as indicated here:

(venv) python hc-sr04.py

Press Control + C to Exit

9.6898cm, 3.8149"

9.7755cm, 3.8486"

10.3342cm, 4.0686"

11.5532cm, 4.5485"

12.3422cm, 4.8591"

...

Let's review the code.

Measuring Distance and Detecting Movement Chapter 11

[362]

Firstly, we define the TRIG_GPIO and ECHO_GPIO pins on line 1, and the VELOCITY
constant for the speed of sound at line 2. We're using 343 meters per second.

Our code is using 343 m/s for the speed of sound, while the datasheet
suggests the value 340 m/s. You will also find other HC-SR04 examples
and libraries that use slightly different values. These differences are one
reason why different code samples and libraries may produce slightly
different readings for the same sensor-to-object distance.

On line 3, we define TIMEOUT_SECS = 0.1. The value of 0.1 is a number greater than 38
milliseconds (from the datasheet). Any time greater than this and we conclude that there is
no object in front of our HC-SR04 sensor and return the SENSOR_TIMEOUT value, rather
than a distance in the get_distance_cms() function, which we will come to shortly:

TRIG_GPIO = 20 # (1)

ECHO_GPIO = 21

Speed of Sound in meters per second

at 20 degrees C (68 degrees F)

VELOCITY = 343 # (2)

Sensor timeout and return value

TIMEOUT_SECS = 0.1 # based on max distance of 4m # (3)

SENSOR_TIMEOUT = -1

Next, starting on line 4, we find several variables used to help measure the timing of the
sensor's ultrasonic pulse and if we have a successful reading:

For timing our ultrasonic pulse

echo_callback = None # (4)

tick_start = -1

tick_end = -1

reading_success = False

echo_callback will contain a GPIO callback reference for later clean-up purposes,
while tick_start and tick_end hold the start and end timings used to calculate the
elapsed time for an ultrasonic pulse-echo. The term tick is used to be consistent with
PiGPIO timing functions, which we will come to shortly. reading_success is True only
when we have a distance reading before TIMEOUT_SECS elapses.

Measuring Distance and Detecting Movement Chapter 11

[363]

We use the trigger() function shown on line 5 to start our distance measurement. We
simply apply the process set out in the datasheet on line 6 – that is, we make the TRIG pin
HIGH for 10 μs:

def trigger(): # (5)

 global reading_success

 reading_success = False

 # Start ultrasonic pulses

 pi.write(TRIG_GPIO, pigpio.HIGH) # (6)

 sleep(1 / 1000000) # Pause 10 microseconds

 pi.write(TRIG_GPIO, pigpio.LOW)

The get_distance_cms() function shown at line 7 is our primary function that kicks off
the distance measurement process by making a call to trigger(), before waiting from line
8 until we have either a successful reading (that is, reading_success = True) or
TIMEOUT_SECS elapses, in which case, we return SENSOR_TIMEOUT. While we are waiting,
a callback handler named echo_handler() is monitoring the ECHO_GPIO pin in the
background for a successful read. We will discuss echo_handler() later in this section:

def get_distance_cms() # (7)

 trigger()

 timeout = time() + TIMEOUT_SECS # (8)

 while not reading_success:

 if time() > timeout:

 return SENSOR_TIMEOUT

 sleep(0.01)

When we have a successful reading, our function continues. On line 9, we take the
tick_start and tick_end variables (which will now have values set by the echo callback
handler) and calculate the elapsed time. Remember, we're dividing the elapsed time at line
9 by 2 because we want the timing from the sensor to the object, not the complete ultrasonic
pulse round trip from the sensor to the object, back to the sensor:

... get_distance_cms() continued

 # Elapsed time in microseconds.

 #Divide by 2 to get time from sensor to object.

 elapsed_microseconds =

 pigpio.tickDiff(tick_start, tick_end) / 2 # (9)

 # Convert to seconds

 elapsed_seconds = elapsed_microseconds / 1000000

 # Calculate distance in meters (d = v * t)

Measuring Distance and Detecting Movement Chapter 11

[364]

 distance_in_meters = elapsed_seconds * VELOCITY # (10)

 distance_in_centimeters = distance_in_meters * 100

 return distance_in_centimeters

It is on line 10 where we apply the formula, d = v × t, which we discussed previously, to
work out the distance between the sensor and an object.

Next, we encounter the echo_handler() function on line 11, which monitors the
ECHO_GPIO pin for changes in state:

def echo_handler(gpio, level, tick): # (11)

 global tick_start, tick_end, reading_success

 if level == pigpio.HIGH:

 tick_start = tick # (12)

 elif level == pigpio.LOW:

 tick_end = tick # (13)

 reading_success = True

Applying the process set out in the datasheet, we are capturing the time between sending a
pulse at line 12 when ECHO_GPIO goes HIGH and receiving it back on line 13
when ECHO_GPIO goes LOW. If we have detected ECHO_GPIO as LOW before the timeout
(back on line 8), we set reading_success = True so that get_distance_cms() knows
we have a valid reading.

Finally, we register the echo_handler() callback with PiGPIO on line 14. The
pigpio.EITHER_EDGE parameter means we want this callback to be called whenever
ECHO_GPIO transitions to either a HIGH or LOW state:

echo_callback =

 pi.callback(ECHO_GPIO, pigpio.EITHER_EDGE, echo_handler) # (14)

Well done! You've just wired up, tested, and learned how to use the HC-SR04 sensor
together with PiGPIO to estimate distances. The circuit and code examples you have just
learned could be adapted and used to measure water tank levels, or even as collision
detection for a robot (a very common application of an HC-SR04 in amateur robotics), or in
any other project you dream up where distance plays a part.

Next, we will briefly explore Hall-effect sensors and learn how they can be used to detect
movement and relative distances.

Measuring Distance and Detecting Movement Chapter 11

[365]

Detecting movement and distance with Hall-
effect sensors
Our final practical example in this chapter will illustrate the use of a Hall-effect sensor.
Hall-effect sensors are simple components that detect the presence (or absence) of a
magnetic field. In contrast to a PIR or distance sensor, you can use a Hall-effect sensor
together with a magnet to monitor small-range – and even very rapid – movements. For
example, you could attach a small magnet to the shaft of a DC motor and use a Hall-effect
sensor to determine the motor's revolutions per minute.

Another common application of a Hall-effect sensor is in mobile phones and tablets. Some
phone and tables covers and cases have a small magnet in them. As you open or close the
case, your device detects the presence or absence of this magnet with a Hall-effect sensor
and automatically turns on or off the display for you.

Hall-effect sensors come in three types, described as follows:

Non-latching switch types (digital): They output a digital state (that is, HIGH or
LOW) in the presence of magnetism and the opposite digital state in its absence.
Whether the signal is HIGH or LOW in the presence of magnetism all depends on
the sensor and whether it's active LOW or active HIGH (please refer to Chapter 6,
Electronics 101 for the Software Engineer, if you need a refresher on the concepts of
active LOW and active HIGH).
Latching switch types (digital): They output (and latch to) LOW (or HIGH) when
one pole (for example, south) of a magnet is detected, and return to HIGH (or
LOW) (unlatch) when the alternative pole (for example, north) is detected.
Ratiometric types (analog): They output a varying voltage depending on how
close they are to a magnetic field.

Some readers may be familiar with a component called a reed switch,
which is a magnetically controlled switch. At a glance, they seem similar
in basic principle and operation to a non-latching Hall-effect sensor. Here
are the important differences – unlike a classic reed switch, Hall-effect
sensors are a solid-state device (no moving parts), they can be
switched/triggered very, very rapidly (thousands of times a second), and
they require an appropriate circuit to make them work.

Measuring Distance and Detecting Movement Chapter 11

[366]

Our examples will use the A3144 (non-latching digital switch) and AH3503 (analog
ratiometric) Hall-effect sensors. These specific parts have been chosen due to their
availability and low cost; however, the general principles we will discuss will also be
applicable to other Hall-effect sensors.

A picture of an A3144 Hall-effect sensor and common schematic symbols are shown in the
following figure:

Figure 11.9 – Hall-effect sensor and symbols

You will notice that the far-right symbol has four protruding outputs because some Hall-
effect sensors do have four legs. You can expect the outputs of this symbol to be annotated
in a schematic diagram appropriate for the sensor it refers to. We will be sticking to the
three-legged type sensor and the corresponding three outputs symbol.

The legs of our components are as follows:

Vcc: 5-volt source power.
GND: Ground connection.
Out: 5-volt signal output. Note that the A3144 is active LOW, meaning that in the
presence of a magnetic field, the Out leg becomes LOW.

The Out leg will behave differently depending on the type of Hall-effect sensor:

Latching and non-latching switching types: The Out leg will output either
digital LOW or a digital HIGH.
Ratiometric type: The output will be a varying voltage (that is, an analog
output). Note that the range of varying voltage will not be the full range between
0 to 5 volts, but more likely a range of only a few hundredths of a volt.

Now that we understand the leg configurations of a Hall-effect sensor, let's build our
circuit.

Measuring Distance and Detecting Movement Chapter 11

[367]

Creating a Hall-effect sensor circuit
We will be building the following circuit on our breadboards. Similar to our HC-SR04
example and circuit in Figure 11.5, we need to use a voltage divider since our Hall-effect
sensor outputs 5-volt logic, which we need to shift down to 3.3 volts:

Figure 11.10 – Hall-effect sensor circuit

You will notice that the output of this circuit is dualistic and will depend on which sensor
you are using:

For a non-latching switch or latching switch type Hall-effect sensor, you will
connect the circuit directly to GPIO 21 since the sensor will output a digital
HIGH/LOW signal.
For a ratiometric type Hall-effect sensor, you will need to connect the sensor to
your Raspberry Pi via your ADS1115 analog-to-digital converter since the sensor
outputs a varying analog voltage.

I have not included the ADS1115 wiring in Figure 11.9 or in the following
stepped breadboard layouts. We have already seen how to connect an
analog output to our Raspberry Pi using the ADS1115 in previous
chapters – refer to Chapter 5, Connecting Your Raspberry Pi to the Physical
World, and/or Chapter 9, Measuring Temperature, Humidity, and Light
Levels, for example circuits and code using the ADS1115.

Measuring Distance and Detecting Movement Chapter 11

[368]

Let's construct this circuit on our breadboard. This layout is for a switching-type Hall-effect
sensor:

Figure 11.11 – Hall-effect sensor circuit breadboard layout

Here are the steps to follow to complete your breadboard build. The step numbers match
the numbers in black circles in Figure 11.10:

Place your A3144 Hall-effect sensor into your breadboard, paying careful1.
attention to its orientation regarding its legs. Please refer to Figure 11.8 if you
need help identifying the component's legs.
Place a 1kΩ resistor (R1) into your breadboard.2.
Place a 2kΩ resistor (R2) into your breadboard. A leg of this second resistor3.
shares the same row as a leg of the first resistor. In the illustration, this can be
seen in row 17 on the left-hand side bank.
Connect a 5-volt pin from your Raspberry Pi to the positive rail of the left-hand4.
side power rail.

Measuring Distance and Detecting Movement Chapter 11

[369]

Connect a GND pin from your Raspberry Pi to the negative rail of the left-hand5.
side power rail.
Connect the Hall-effect sensor's Vcc leg to the positive power rail.6.
Connect the Hall-effect sensor's GND leg to the negative power rail.7.
Connect the Hall-effect sensor's Out leg to the 1kΩ resistor (R1). In the8.
illustration, this is shown at hole E13.
Connect the junction of the 1kΩ (R1) and 2kΩ (R2) resistors to GPIO 21 on your9.
Raspberry Pi.
Connect the left of the 2kΩ resistor (R2) to the negative power rail.10.

To use the AH3503 ratiometric type Hall-effect sensor at step 1 in this
circuit, the wire at step 9 will instead need to be connected to an input port
(for example, A0) of an ADS1115 module.

Now that we have built our Hall-effect sensor circuit, get a magnet ready, as we're ready to
run our example code and see how a magnet triggers the sensor.

Running and exploring the Hall-effect sensor
code
You will find the code for Hall-effect sensors in the
chapter11/hall_effect_digital.py file for switch and latching switch type Hall-effect
sensors and the chapter11/hall_effect_analog.py file for ratiometric type Hall-effect
sensors.

What you will find when you review these two files is the following:

chapter11/hall_effect_digital.py is functionally identical to the PIR code
example we covered previously in this chapter in the section titled Running and
exploring the PIR sensor code. Both the PIR and non-latching/latching Hall-effect
sensors are digital switches. The only difference is that our reference Hall-effect
sensor is active LOW.
chapter11/hall_effect_analog.py is similar to other analog-to-digital
examples we have seen using the ADS1115 ACD, including the circuit wiring
and code from Chapter 5, Connecting Your Raspberry Pi to the Physical World.

Measuring Distance and Detecting Movement Chapter 11

[370]

The varying voltage range outputted by the AH3503 ratiometic Hall-effect
sensor and measured by your ADC via the voltage divider is likely to be
in the range of a few hundred millivolts.

As you run the example code, move a magnet past your Hall-effect sensor. The magnet will
need to be close to the casing of the sensor; however, it will not need to physically touch the
sensor. How close will all depend on the strength of your magnet.

If you cannot get your circuit and code to work, try rotating your magnet
to reverse the north/south pole that passes past the sensor. Also note that
for a latching type Hall-effect sensor, it is common for one pole of the
magnet to latch (trigger) the sensor, while the opposite pole will
unlatch (un-trigger) the sensor.

Due to the code similarities, we won't cover the code again here. However, I would like to
say that at this point in the book, you now have both the digital and analog base circuits
and code available for you to connect up and use any simple analog or digital component.
As noted already in this chapter, just be wary of the voltages and currents needed to power
the component, and especially what the output voltage is, because if it is more than 3.3
volts, you will need to use a voltage divider or level-shifter.

Summary
In this chapter, we looked at ways to detect movement and estimate distance with our
Raspberry Pi. We learned how to use a PIR sensor to detect broad movements, and how a
switch-type Hall-effect sensor can be used to detect the movement of a magnetic field. We
also discovered how to use an ultrasonic range sensor to estimate absolute distance on a
larger scale, and how to use a ratiometric-type Hall-effect sensor to measure relative
distances on a small scale.

All our circuits and examples in this chapter have been input focused – telling our
Raspberry Pi that some event has occurred, such as the detection of a person moving or that
a distance is being measured.

You are in a great position now to combine input circuits such as those covered in this
chapter (and also in Chapter 9, Measuring Temperature, Humidity, and Light Levels), with
output-based circuits and examples from Chapter 7, Turning Things On and Off, Chapter 8,
Lights, Indicators, and Displaying Information, and Chapter 10, Movement with Servos, Motors,
and Steppers, to create end-to-end projects that can both control and measure the
environment!

Measuring Distance and Detecting Movement Chapter 11

[371]

Don't forget about what we learned in Chapter 2, Getting Started with Python and IoT,
Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask, and Chapter 4,
Networking with MQTT, Python, and the Mosquitto MQTT Broker. These three chapters
provide you with the foundations for creating web interfaces and integration to external
systems that can control and monitor the environment.

Many of the electronic and code examples presented so far in this book have evolved
around a single sensor or actuator. In the next chapter, we will explore several Python-
based design patterns that are useful when building more complex automation and IoT
projects that involve multiple sensors and/or actuators that need to communicate with one
another.

Questions
As we conclude, here is a list of questions for you to test your knowledge of this chapter's
material. You will find the answers in the Assessments section of the book:

Can a PIR sensor detect the direction that an object is moving?1.
What are some factors that can affect the measurement accuracy of an ultrasonic2.
distance sensor?
How does the output of a latching or non-latching Hall-effect sensor differ from3.
the output of a ratiometric Hall-effect sensor?
In relation to this PiGPIO function call, callback = pi.callback(GPIO,4.
pigpio.EITHER_EDGE, callback_handler), what does the
pigpio.EITHER_EDGE parameter mean?
In a 5-volt to 3.3-volt resistor-based voltage divider consisting of a 1k Ω and5.
2k Ω resistor, why is important to connect the two resistor values the correct way
around in a circuit?
Both the HC-SR04 ultrasonic distance sensor and the HC-SR501 PIR sensor were6.
powered using 5 volts connected to their respective Vcc pins. Why did we use a
voltage divider with the HC-SR04 to drop the output from 5 volts to 3.3 volts, but
not with the HC-SR501?

12
Advanced IoT Programming

Concepts - Threads, AsyncIO,
and Event Loops

In the previous chapter, we learned how to detect movement with a PIR sensor, as well as
measure distances and detect movement with ultrasonic sensors and Hall-effect sensors.

In this chapter, we will discuss alternative ways of structuring our Python programs when
we are working with electronic sensors (input devices) and actuators (output devices). We
will cover the classic event-loop approach to programming, before moving on to more
advanced approaches, including the use of threads in Python, the publisher/subscriber
model, and finally, asynchronous I/O programming with Python.

I guarantee you that there are many, many blog posts and tutorials across the internet
covering these topics; however, what we will cover in this chapter will be uniquely focused
on practical electronic interfacing. Our approach in this chapter will involve creating a
simple circuit with a push-button, a potentiometer, and two LEDs that we will make flash
at different rates, and presenting four different coding approaches to make the circuit work.

Here is what we will cover in this chapter:

Building and testing our circuit
Exploring an event-loop approach
Exploring a threaded approach
Exploring a publisher-subscriber alternative
Exploring an AsyncIO approach

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[373]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on Raspberry Pi 3 Model
B or a different version of Raspbian OS as long as your Python version is 3.5 or higher.

You will find this chapter's source code in the chapter12 folder in the GitHub repository
available at https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-​for-
IoT.

You will need to execute the following commands in a terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter12 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
ADS1X15: The ADS1x15 ADC library (https:/​/​pypi.​org/​project/​adafruit-
circuitpython-​ads1x15)
PyPubSub: In-process messaging and events (https:/​/​pypi.​org/ ​project/
PyPubSub)

The electronic components we will need for this chapter's exercises are as follows:

2 x red LEDs
2 x 200 Ω resistors
1 x push-button switch
1 x ADS1115 module
1 x 10k Ω potentiometer

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[374]

To maximize your learning in this chapter, there are some assumptions made regarding
pre-existing knowledge and experience:

From an electronic interfacing perspective, I will assume that you have read the
preceding 11 chapters of this book and are comfortable working with the PiGPIO
and ADS1115 Python libraries featured throughout this book.
From a programming perspective, I am assuming existing knowledge of Object-
Oriented Programming (OOP) techniques and how they are implemented in
Python.
Familiarity with the concepts event-loop, threads, publisher-subscriber, and
synchronous versus asynchronous paradigms will also be advantageous.

If any of the preceding topics are unfamiliar, you will find many online tutorials available
covering these topics in great detail. Please see the Further reading section at the end of the
chapter for suggestions.

Building and testing our circuit
I'm going to present the circuit and programs for this chapter in the form of a practical
exercise. Let's pretend for a moment that we have been asked to design and build a gizmo
that has the following requirements:

It has two LEDs that blink.
A potentiometer is used to adjust the rate that the LED(s) blink.
When the program starts, both LEDs will blink at the same rate determined by
the position of the potentiometer.
A blinking rate of 0 seconds means an LED is off, while the maximum blinking
rate of 5 seconds means an LED is on for 5 seconds, then off for 5 seconds, before
repeating the cycle.
A push-button is used to select which LED changes its blinking rate when the
potentiometer is adjusted.
When the push-button is pressed and held for 0.5 seconds, all LEDs synchronize
to the same rate, determined by the potentiometer's position.
Ideally, the program code should easily scale to support more LEDs with
minimal coding effort.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[375]

Here is a scenario illustrating the gizmo's use:

After applying power (and the program starts), all LEDs start to blink at a rate of1.
2.5 seconds because the potentiometer's dial is at the midpoint (50%) of its
rotation.
The user adjusts the potentiometer to make the first LED blink at a rate of 42.
seconds.
Next, the user briefly presses and releases the push-button so that the3.
potentiometer will change the second LED's blinking rate.
Now, the user adjusts the potentiometer so that the second LED blinks at a rate of4.
0.5 seconds.
Finally, the user presses and holds the button down for 0.5 seconds to make both5.
the first and second LED blink in unison at a rate of 0.5 seconds (the rate set by the
potentiometer at step 4).

Now for the challenge I mentioned – before we get into this chapter's circuit and code, I
challenge you to stop reading now and try to create a circuit and write a program that
implements the preceding requirements.

You will find a short video demonstrating these requirements at https:/​/
youtu.​be/​seKkF61OE8U.

I anticipate that you will encounter challenges and have questions about the best approach
to take. There is no one best approach; however, by having your own implementation –
whether it works or not – you will have something to compare and contrast with the four
solutions that I will present during this chapter. I'm confident that if you have a go yourself
first, then you will gain a deeper understanding and more insight. Hey, perhaps you'll
create an even better solution!

If you need suggestions to help get you started, here they are:

We first covered LEDs and push-buttons in Chapter 2, Getting Started with
Python and IoT.
We first covered potentiometers and analog input using an ADS1115 module
in Chapter 5, Connecting Your Raspberry Pi to the Physical World.

When you are ready, we will look at a circuit that fulfills the aforementioned requirements.

https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U
https://youtu.be/seKkF61OE8U

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[376]

Building the reference circuit
In Figure 12.1 is a circuit that meets the requirements we just listed. It has a push-button, a
potentiometer in the form of a voltage divider connected to an ADS1115 analog-to-digital
converter, and two LEDs connected by current limiting resistors. Adding additional LEDs
will be as simple as wiring more LED and resistors pairs between GND and a free GPIO
pin:

Figure 12.1 – Reference circuit schematic

If you have not already created a similar circuit on your own, we will create this circuit now
on your breadboard. We will build this circuit in three parts. Let's get started:

Figure 12.2 – Reference circuit (part 1 of 3)

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[377]

Here are the steps to follow to create the first part of our breadboard build where we place
the components. The step numbers match the numbers in black circles in Figure 12.2:

Place the ADS1115 module into your breadboard.1.
Place the potentiometer into your breadboard.2.
Place an LED into your breadboard, taking care to orientate the LED's legs as3.
illustrated.
Place a second LED into your breadboard, taking care to orientate the LED's legs4.
as illustrated.
Place a 200Ω resistor (R1) into your breadboard. One end of this resistor shares5.
the same row as the anode leg of the LED placed in step 3.
Place another 200Ω resistor (R2) into your breadboard. One end of this resistor6.
shares the same row as the anode leg of the second LED you placed in step 5.
Place the push-button into your breadboard.7.

Now that we have placed the components into the breadboard, let's start wiring them:

Figure 12.3 – Reference circuit (part 2 of 3)

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[378]

Here are the steps to follow to continue with the second part of our breadboard build. The
step numbers match the numbers in black circles in Figure 12.3:

Connect a 3.3-volt pin from your Raspberry Pi to the positive rail of the left-hand1.
side power rail.
Connect the Vdd terminal of the ADS1115 to the positive rail of the left-hand side2.
power rail.
Connect the GND terminal of the ADS1115 to the negative rail of the left-hand3.
side power rail.
Connect the SCL terminal of the ADS1115 to the SCL pin on your Raspberry Pi.4.
Connect the SDA terminal of the ADS1115 to the SDA pin on your Raspberry Pi.5.
Connect a GND pin on your Raspberry Pi to the negative rail of the left-hand6.
side power rail.
Connect an outer terminal of the potentiometer to the positive rail of the left-7.
hand side power rail.
Connect another outer terminal of the potentiometer to the negative rail of the8.
left-hand side power rail.
Connect the center terminal of the potentiometer to port A0 of the ADS1115.9.

Can you recall that the potentiometer in this configuration is creating a variable voltage
divider? If not, you may want to revisit Chapter 6, Electronics 101 for the Software Engineer.
Furthermore, if you would like a detailed refresher on the ADS1115 module, please refer
to Chapter 5, Connecting your Raspberry Pi to the Physical World.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[379]

Let's continue with our build:

Figure 12.4 – Reference circuit (part 3 of 3)

Here are the steps to follow to continue with the final part of our breadboard build. The
step numbers match the numbers in black circles in Figure 12.4:

Connect GPIO 26 from your Raspberry Pi to the 200 Ω resistor (R1).1.
Connect GPIO 19 from your Raspberry Pi to the second 200 Ω resistor (R2).2.
Connect GPIO 21 from your Raspberry Pi to one leg of the push-button.3.
Connect the two cathode legs of the LEDs together.4.
Connect the cathode legs of the LEDs to the negative rail of the left-hand side5.
power rail.
Connect the second leg of the push-button to the negative rail of the left-hand6.
side power rail.

Now that we have finished our circuit build, we are ready to run the sample code to make
the circuit work.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[380]

Running the examples
This chapter comes with four different versions of code that can work with the circuit
shown previously in Figure 12.1. You will find the code in the chapter12 folder organized
by version:

chapter12/version1_eventloop is an event-loop-based example.
chapter12/version2_thread is a thread and callback-based example.
chapter12/version3_pubsub is a publisher-subscriber-based example.
chapter12/version4_asyncio is an Asynchronous IO (AsyncIO)-based
example.

All versions are functionally equivalent; however, they differ in their code structure and
design. We will discuss each version in greater detail after we test our circuit.

Here are the steps to follow to run each version (starting with version 1) and test the circuit:

Change to the version1_eventloop folder.1.
Briefly look over the main.py source file, and any additional Python files in the2.
folder, to get a feel for what they contain and how the program is structured.
Run main.py in a terminal (remember to switch into the chapter's virtual3.
environment first).

At this point, if you receive errors regarding I2C or ADS11x5, remember
that there is the i2cdetect tool, which can be used to confirm that an I2C
device such as the ADS1115 is correctly connected and visible to your
Raspberry Pi. Refer to Chapter 5, Connecting Your Raspberry Pi to the
Physical World, for more information.

Turn the potentiometer dial and observe the first LED's blinking rate changes.4.
Press the button briefly.5.
Turn the potentiometer dial and observe the second LED's blinking rate changes.6.
Press and hold the button for 0.5 seconds, and observe that both LEDs now blink7.
in unison at the same rate.

The following is an example of the terminal output you will receive:

(venv) $ cd version1_eventloop

(venv) $ python main.py

INFO:Main:Version 1 - Event Loop Example. Press Control + C To Exit.

INFO:Main:Setting rate for all LEDs to 2.5

INFO:Main:Turning the Potentiometer dial will change the rate for LED #0

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[381]

INFO:Main:Changing LED #0 rate to 2.6

INFO:Main:Changing LED #0 rate to 2.7

INFO:Main:Turning the Potentiometer dial will change the rate for LED #1

INFO:Main:Changing LED #1 rate to 2.6

INFO:Main:Changing LED #1 rate to 2.5

Truncated

INFO:Main:Changing LED #1 rate to 0.5

INFO:Main:Changing rate for all LEDs to 0.5

Press Ctrl + C in your terminal to exit the program.8.
Repeat steps 1 through 8 for version2_threads, version3_pubsub, and9.
version4_asyncio.

You have just tested and glanced at the source code of four different programs (perhaps
five, if you challenged yourself to create your own) that all achieve exactly the same end
result but in different ways.

Now it's time to understand how these programs are built. Let's begin with the event-loop
version of the program.

Exploring the event-loop approach
We will start our code exploration by discussing an event-loop-based approach to building
the sample gizmo that we just tested in the previous section.

The code for the event-loop-based approach can be found in the
chapter12/version1_eventloop folder. You will find one file named main.py. Please
take the time now to stop and read through the code contained in main.py to get a basic
understanding of how the program is structured and how it works. Alternatively, you
could add breakpoints or insert print() statements into the code and run it again to
understand how it works.

How did it go, and what did you notice? If you thought yuck or got lost in the web of loops,
if statements, and state variables, then well done! This means you have invested the time
to consider this approach and how the code is constructed.

What I mean by an event-loop approach is demonstrated in the code by the while True:
loop abbreviated on line 1:

chapter12/version1_eventloop

#

Setup and initialization code goes before while loop.

#

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[382]

if __name__ == "__main__":

 # Start of "Event Loop"

 while True: # (1)

 #

 # ... Main body of logic and code is within the while loop...

 #

 sleep(SLEEP_DELAY)

Granted, I could have used functions and even external classes to reduce the quantity (and
possibly enhance the readability) of the code within the while loop, however, the overall
design paradigm remains the same – the body of the program control is sitting in a
perpetual loop.

If you are familiar with Arduino programming, you will be
intimately familiar with this approach to programming. That's why I titled
this section event-loop due to the similarity of approach and the popularity
of the term. Notwithstanding, note that the term event-loop has a wider
context within Python, as we will see when we look at the AsyncIO
(version 4) of our program.

You may have realized that this event-loop approach to programming has been used by
many of the examples throughout this book. Three examples are as follows:

When we wanted a timed event such as blinking an LED (Chapter 2, Getting
Started with Python and IoT)
Polling the DHT 11 or DHT 22 temperature/humidity sensor (Chapter 9,
Measuring Temperature, Humidity, and Light Levels)
Polling the ADS1115 analog-to-digital converter connected to a Light-
Dependent-Resistor (LDR) (also Chapter 9, Measuring Temperature, Humidity,
and Light Levels)

In this context, for a single focused example, event-loops make sense. They even make
sense purely for convenience when you're hacking about and trying out new ideas and
learning about a new actuator or sensor. However, as demonstrated by our
version1_eventloop/main.py program, as soon as you add in multiple components
(such as a potentiometer, two LEDs, and a push-button) and want to make them work
together for a definite purpose, the code gets complex fast.

For instance, consider the following code on line 3, which is responsible for blinking all the
LEDs, and remember that this block of code is evaluated once per loop iteration and is
responsible for blinking every LED:

 #

 # Blink the LEDs.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[383]

 #

 now = time() # (3)

 for i in range(len(LED_GPIOS)):

 if led_rates[i] <= 0:

 pi.write(LED_GPIOS[i], pigpio.LOW) # LED Off.

 elif now >= led_toggle_at_time[i]:

 pi.write(LED_GPIOS[i], not pi.read(LED_GPIOS[i])) # Toggle LED

 led_toggle_at_time[i] = now + led_rates[i]

Compare this to a vanilla alternative (similar to what we will see in other approaches),
which at a moment's glance is significantly easier to understand:

 while True:

 pi.write(led_gpio, not pi.read(led_gpio)) # Toggle LED GPIO High/Low

 sleep(delay)

If you also consider the following block of code, starting on line 2, which is responsible for
detecting button presses, then you find nearly 40 lines of code (in the actual main.py file)
just to detect what the button is doing:

while True:

 button_pressed = pi.read(BUTTON_GPIO) == pigpio.LOW # (2)

 if button_pressed and not button_held:

 # Button has been pressed.

 # ... Truncated ...

 elif not button_pressed:

 if was_pressed and not button_held:

 # Button has been released

 # ... Truncated ...

 if button_hold_timer >= BUTTON_HOLD_SECS and not button_held:

 # Button has been held down

 # ... Truncated ...

 # ... Truncated ...

You will count multiple variables at play – button_pressed, button_held,
was_pressed, and button_hold_timer – that are all evaluated at every while loop
iteration and are there primarily to detect a button-hold event. I'm sure you can appreciate
that writing and debugging this code like this can be tedious and error-prone.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[384]

We could have used a PiGPIO callback to handle button presses outside of
the while loop, or even a GPIO Zero Button class. Both approaches
would help reduce the complexity of the button-handling logic. Likewise,
maybe we could have mixed in a GPIO Zero LED class to handle the LED
blinking. However, if we did, our example would not be a purely event-
loop-based example.

Now, I'm not saying that event-loops are a bad or wrong approach. They have their uses,
they are needed, and, in essence, we create one every time we use a while loop or another
looping construct – so the base ideal is everywhere, but it's just not an ideal approach to
building complex programs, because this approach makes them harder to understand,
maintain, and debug.

Whenever you find that your program is heading down this event-loop path, stop and
reflect, because it might be time to consider refactoring your code to employ a different –
and more maintainable – approach, such as a threaded/callback approach, which we will
look at next.

Exploring a threaded approach
Now that we have explored an event-loop-based approach to creating our program, let's
consider an alternative approach built using threads, callbacks, and OOP and see how this
approach improves code readability and maintainability and promotes code reuse.

The code for the threaded-based approach can be found in the
chapter12/version2_threads folder. You will find four files – the main program,
main.py, and three class definitions: LED.py, BUTTON.py, and POT.py.

Please take the time now to stop and read through the code contained in main.py to get a
basic understanding of how the program is structured and how it works. Then, proceed to
review LED.py, BUTTON.py, and POT.py.

How did it go, and what did you notice? I'd guess that you found this version of the
program (while reading through main.py) much quicker and easier to understand and
noticed that there is no cumbersome and complex while loop, but instead a pause() call,
which is necessary to stop our program from exiting, as summarized on line 3:

chapter12/version2_threads/main.py

if __name__ == "__main__": # (3)

 # Initialize all LEDs

 # ... Truncated ...

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[385]

 # No While loop!

 # It's our BUTTON, LED and POT classes and the

 # registered callbacks doing all the work.

 pause()

In this program example, we have employed object-oriented techniques and
componentized our program using three classes:

A button class (BUTTON.py), which takes care of all the button logic
A potentiometer class (POT.py), which takes care of all the potentiometer and
analog-to-digital conversion logic
A LED class (LED.py), which is responsible for making a single LED flash

By using an OOP approach, our main.py code is greatly simplified. Its role is now to create
and initialize class instances and house the callback handlers and logic that make our
program work.

Consider the following OOP approach for our push-button:

chapter12/version2_threads/main.py

Callback Handler when button is pressed, released or held down.

def button_handler(the_button, state):

 global led_index

 if state == BUTTON.PRESSED: # (1)

 #... Truncated ...

 elif state == BUTTON.HOLD: # (2)

 #... Truncated

Creating button Instance

button = BUTTON(gpio=BUTTON_GPIO,

 pi=pi,

 callback=button_handler)

Compared to the button-handing code from the event-loop example, this is greatly
simplified and much more readable – it's pretty explicit where and how this code is
responding to the button pressed at line 1 and button holds on line 2.

Let's consider the BUTTON class, which is defined in the BUTTON.py file. This class is an
enhancing wrapper around a PiGPIO callback function that turns the HIGH/LOW states of the
button's GPIO pin into PRESSED, RELEASED, and HOLD events, as summarized in the
following code at line 1 in BUTTON.py:

chapter12/version2_threads/BUTTON.py

def _callback_handler(self, gpio, level, tick): # PiGPIO Callback # (1)

 if level == pigpio.LOW: # level is LOW -> Button is pressed

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[386]

 if self.callback: self.callback(self, BUTTON.PRESSED)

 # While button is pressed start a timer to detect

 # if it remains pressed for self.hold_secs

 timer = 0 # (2)

 while (timer < self.hold_secs) and not self.pi.read(self.gpio):

 sleep(0.01)

 timer += 0.01

 # Button is still pressed after self.hold_secs

 if not self.pi.read(self.gpio):

 if self.callback: self.callback(self, BUTTON.HOLD)

 else: # level is HIGH -> Button released

 if self.callback: self.callback(self, BUTTON.RELEASED)

Compared to the button-handling code of the event-loop example, we did not introduce
and interrogate multiple state variables to detect the button-hold event, but instead, this
logic is reduced to a simple and linear approach at line 2.

Next, as we consider the POT class (defined in POT.py) and LED class (defined in
LED.py), we will see threads come into our program.

Did you know that even in a multi-threaded Python program, only one
thread is active at a time? While it seems counter-intuitive, it was a design
decision known as the Global Interpreter Lock (GIL) made back when
the Python language was first created. If you want to learn more about the
GIL and the many other forms of achieving concurrency with Python, you
will find resources in the Further reading section of this chapter.

The following is the thread run method for the POT class, which can be found in
the POT.py source file, and illustrates, starting on line 1, the approach of intermediately
polling the ADS1115 ADC to determine the potentiometer's position. We've seen this
polling example several times already throughout this book, starting back in Chapter 5,
Connecting Your Raspberry Pi to the Physical World, where we first discussed analog-to-digital
conversion, the ADS1115 module, and potentiometers:

 # chapter12/version2_threads/POT.py

 def run(self):

 while self.is_polling: # (1)

 current_value = self.get_value()

 if self.last_value != current_value: # (2)

 if self.callback:

 self.callback(self, current_value) # (3)

 self.last_value = current_value

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[387]

 timer = 0

 while timer < self.poll_secs: # Sleep for a while

 sleep(0.01)

 timer += 0.01

 # self.is_polling has become False and the Thread ends.

 self.__thread = None

The difference with our code here is that we are monitoring the ADC for voltage changes
on line 2 (for example, when a user turns the potentiometer), and turning them into a
callback on line 3, which you will have seen handled in main.py when you reviewed the
source code in that file.

Let's now discuss how we are implementing the version2 LED-related code. As you are
aware, the basic code pattern for blinking an LED on and off at a defined rate involves a
while loop and a sleep statement. This is the approach taken in the LED class, as seen in
the run() method on line 3 in LED.py:

chapter12/version2_threads/LED.py

 def run(self): # (3)

 """ Do the blinking (this is the run() method for our Thread) """

 while self.is_blinking:

 # Toggle LED On/Off

 self.pi.write(self.gpio, not self.pi.read(self.gpio))

 # Works, but LED responsiveness to rate chances can be sluggish.

 # sleep(self.blink_rate_secs)

 # Better approach - LED responds to changes in near real-time.

 timer = 0

 while timer < self.blink_rate_secs:

 sleep(0.01)

 timer += 0.01

 # self.is_blinking has become False and the Thread ends.

 self._thread = None

I am sure you will agree that this is easier to understand than the approach taken by the
event-loop approach we discussed in the previous section. It is important to remember,
however, that the event-loop approach was working with and altering the blinking rate of
all LEDs together in a single block of code, and within a single thread – the program's main
thread.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[388]

Notice the two sleep approaches shown in the preceding code. While the
first approach using sleep(self.blink_rate_secs) is common and
tempting, the caveat is that it blocks the thread for the full duration of the
sleep. As a result, the LED will not respond to rate changes immediately
and will feel sluggish to a user when they turn the potentiometer. The
second approach, commended #Better approach, alleviates this issue
and allows the LED to respond to rate changes in (near) real time.

Our version2 program example using the LED class with its own internal thread now
means that we have multiple threads – one per LED – all making the LEDs blink
independently to one another.

Can you think of any potential problems this may introduce? Okay, it might be obvious if
you have read through the version2 source files – it's the synchronization of all LEDs to
blink at the same rate in unison when the button is held for 0.5 seconds!

By introducing multiple threads, we have introduced multiple timers (that is, the sleep()
statement), so each thread is blinking on its own independent schedule, and not from a
common reference point in terms of a starting timebase.

This means that if we simply called led.set_rate(n) on multiple LEDs, while they
would all blink on and off at the rate n, they would not necessarily blink in unison.

A simple solution to this issue is to synchronize the turning off of all LEDs before we start
them blinking at the same rate. That is, we start them blinking from a common state (that is,
off), and start them blinking together.

This approach is shown in the following code snippet starting at line 1 in LED.py. The core
of the synchronization is achieved by the led._thread.join() statements on line 2:

 # chapter12/version2_threads/LED.py

 @classmethod # (1)

 def set_rate_all(cls, rate):

 for led in cls.instances: # Turn off all LEDs.

 led.set_rate(0)

 for led in cls.instances:

 if led._thread:

 led._thread.join() # (2)

 # We do not get to this point in code until all

 # LED Threads are complete (and LEDS are all off)

 for led in cls.instances: # Start LED's blinking

 led.set_rate(rate)

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[389]

This is a good first pass at synchronization, and for practical purposes, it works well for our
situation. As mentioned, all we are doing is ensuring our LEDs start blinking together from
an off state at the same time (well, very, very, very close to the same time, subject to the
time taken for Python to iterate through the for loops).

Try commenting out led._thread.join() and the embodying for loop
on line 2 in the preceding code and run the program. Make the LEDs blink
at different rates, then try to synchronize them by holding down the
button. Does it always work?

However, it must be noted that we are still dealing with multiple threads and independent
timers to make our LEDs blink, so the potential for a time drift to occur is present. If this
ever presented a practical issue, we would then need to explore alternative
techniques to synchronize the time in each thread, or we could create and use a single class
to manage multiple LEDs together (basically using the approach from the event-loop
example, only refactoring it into a class and a thread).

The takeaway here regarding threads is that when you introduce threads to your
applications, you can introduce timing issues that may be designed around or
synchronized.

If your first pass at a prototype or new program involves an event-loop-
based approach (as I often do), then as you refactor that code out into
classes and threads, always think about any timing and synchronizing
issues that may arise. Discovering synchronization-related bugs by
accident during testing (or worse, when in production) is frustrating as
they can be hard to reliably replicate, and could result in the need for
extensive rework.

We've just seen how to create our sample gizmo program using OOP techniques, threads,
and callbacks. We've seen how this approach results in easier to read and maintain code,
and we also discovered the additional requirement and effort needed to synchronize
threaded code. Next, we will look at the third variation of our program, which is based
around a publisher-subscriber model.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[390]

Exploring the publisher-subscriber
alternative
Now that we have seen an approach to creating our program using threads, callbacks, and
OOP techniques, let's consider a third approach using a publisher-subscriber model.

The code for the publisher-subscriber approach can be found in
the chapter12/version3_pubsub folder. You will find four files – the main program,
main.py, and three class definitions: LED.py, BUTTON.py, and POT.py.

Please take the time now to stop and read through the code contained in main.py to get a
basic understanding of how the program is structured and how it works. Then, proceed to
review LED.py, BUTTON.py, and POT.py.

What you will have noticed is that the overall program structure (especially the class files)
is very similar to the version2 thread/callback example that we covered in the previous
heading.

You may also have realized that this approach is very similar in concept to the
publisher/subscribing method employed by MQTT, which we discussed in detail in
Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker. The main
difference is that in our current version3 example, our publisher-subscribing context is
confined just to our program run-time environment, not a network-distributed set of
programs, which was the scenario for our MQTT examples.

I have implemented the publishing-subscribing layer in version3 using the PyPubSub
Python library, which is available from pypi.org and is installed using pip. We will not
discuss this library in any detail, as the overall concepts and use of this type of library
should already be familiar to you, and if not, I have no doubt that you will immediately
understand what's going on once you review the version3 source code files (if you have
not already done so).

There are alternative PubSub libraries available for Python through
PyPi.org. The choice to use PyPubSub for this example was due to the
quality of its documentation and the examples provided there. You will
find a link to this library in the Technical requirements section at the start of
this chapter.

https://pypi.org

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[391]

Due to the similarity of the version2 (threaded approach) and version3 (publisher-
subscriber approach) examples, we will not discuss each code file in detail, other than to
point out that the core differences:

In version2 (threaded), this is how our led, button, and pot class instances
communicate with one another:

We registered callback handlers in main.py on the button
and pot class instances.
button and pot send events (for example, a button press or
potentiometer adjustment) via this callback mechanism.
We interacted with the LED class instances directly using
the set_rate() instance method and the set_rate_all() class
method.

In version3 (publisher-subscriber), here is the intra-class communication
structure and design:

Every class instance is very loosely coupled.
There are no callbacks.
We do not interact with any class instances directly after they are
created and registered with PyPubSub.
All communication between classes and threads occurs using the
messaging layer provided by PyPubSub.

Now, to be honest, our gizmo program does not benefit from a publisher-subscriber
approach. My personal preference is to adopt the callback version for a small program like
this one. However, I have provided the publisher-subscriber alternative implementation as
a point of reference so that you have this alternative to consider for your own needs.

Where a publisher-subscriber approach shines is in more complex programs where you
have many components (and here I mean software components, not necessarily electronics
components) that need to share data and can do so in an asynchronous PubSub-style
nature.

We're presenting the coding and design approaches in this chapter in four
very discrete and focused examples. In practice, however, it's common to
combine these approaches (and other design patterns) in a hybrid and
mixed fashion when creating your programs. Remember, the approach or
combination of approaches to use is whatever makes the most sense for
what you are trying to achieve.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[392]

As we have just discussed, and you will have seen as you reviewed the version3 code, a
publisher-subscriber approach to our gizmo program is a simple variation of the thread
and callback approach, where instead of using callbacks and interacting with class
instances directly, we standardize all code communication to a messaging layer. Next, we
will look at our final approach to coding our gizmo program, this time taking the AsyncIO
approach.

Exploring an AsyncIO approach
So far in this chapter, we have seen three different programming approaches to achieving
the same end goal. Our fourth and final approach will be built using the AsyncIO libraries
offered by Python 3. As we will see, this approach shares similarities and differences with
our previous approaches, and also adds an extra dimension to our code and how it
operates.

Speaking from my own experience, this approach can feel complex, cumbersome, and
confusing the first time you experience asynchronous programming in Python. Yes, there is
a steep learning curve to asynchronous programming (and we can only barely scratch the
surface in this section). However, as you learn to master the concepts and gain practical
experience, you may start to discover that it is an elegant and graceful way to create
programs!

If you are new to asynchronous programming in Python, you will find
curated tutorial links in the Further reading section to deepen your
learning. It is my intention in this section to give you a simple working
AsyncIO program that focuses on electronic interfacing, which you can
use as a reference as you learn more about this style of programming.

The code for the asynchronous-based approach can be found in the
chapter12/version4_asyncio folder. You will find four files – the main program,
main.py, and three class definitions: LED.py, BUTTON.py, and POT.py.

Please take the time now to stop and read through the code contained in main.py to get a
basic understanding of how the program is structured and how it works. Then proceed to
review LED.py, BUTTON.py, and POT.py.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[393]

If you are also a JavaScript developer – particularly Node.js – you will
already know that JavaScript is an asynchronous programming language;
however, it looks and feels very different from what you are seeing in
Python! I can assure you that the principles are the same. Here is a key
reason why they feel very different – JavaScript is asynchronous by default.
As any experienced Node.js developer knows, we often have to go to
(often extreme) lengths in code to make parts of our code behave
synchronously. The opposite is true for Python – it's synchronous by default,
and we need to extend extra programming effort to make parts of our
code behave asynchronously.

As you read through the source code files, I want you to think about our version4
AsyncIO program as having elements of both the version1 event-loop-based program and
the version2 threaded/callback program. Here is a summary of the key differences and
similarities:

The overall program structure is very similar to the version2 thread/callback
example.
At the end of main.py, we have a few new lines of code that we have not seen in
this book before – for example, loop = asyncio.get_event_loop().
Like the version2 program, we have used OOP techniques to factor our
components into classes, which also have a run() method – but notice how there
is no thread instance in these classes and no code related to starting a thread.
In the class definition files, LED.py, BUTTON.py, and POT.py, we have the async
and await keywords sprinkled around and in the run() function, and a delay of
0 seconds in the while loop – that is, asyncio.sleep(0) – so we're not really
sleeping at all!
In BUTTON.py, we are no longer using the PiGPIO callback to monitor a button
being pressed, but instead polling the button GPIO in a while loop.

The Python 3 AsyncIO library has evolved significantly over time (and
still is evolving), with new API conventions, the addition of higher-level
functionality. and deprecated functions. Due to this evolution, code can
get out of date with the latest API conventions quickly, and two code
examples illustrating the same underlying concepts can be using
seemingly different APIs. I highly recommend you glance through the
latest Python AsyncIO library API documentation as it will give you hints
and examples of newer versus older API practices, which may help you
better interpret code examples.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[394]

I will explain how this program works by walking you through the high-level program
flow in a simplified way. When you can grasp the general idea of what is happening, you
are well on your way to understanding asynchronous programming in Python.

You will also find a file named
chapter12/version4_asyncio/main_py37.py. This is a Python 3.7+
version of our program. It uses an API available since Python 3.7. If you
look through this file, the differences are clearly commented.

At the end of the main.py file, we see the following code:

if __name__ == "__main__":

 # truncated

 # Get (create) an event loop.

 loop = asyncio.get_event_loop() # (1)

 # Register the LEDs.

 for led in LEDS:

 loop.create_task(led.run()) # (2)

 # Register Button and Pot

 loop.create_task(pot.run()) # (3)

 loop.create_task(button.run()) # (4)

 # Start the event loop.

 loop.run_forever() # (5)

An asynchronous program in Python evolves around the event-loop. We see this created at
line 1 and started at line 5. We'll come back to the registrations occurring in between at lines
2, 3, and 4 momentarily.

The overall principle of this asynchronous event-loop is similar to our version1 event-loop
example; however, the semantics are different. Both versions are single-threaded, and both
sets of code do go around in a loop. In version1, this was very explicit because our main
body of code was contained in an outer while loop. In our asynchronous version4, it's
more implicit, and has a core difference – it's non-blocking if programmed correctly, and as
we will see soon, this is the purpose of the await asyncio.sleep() calls in the class
run() methods.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[395]

As mentioned, we have registered our class run() methods with the loop on lines 2, 3, and
4. After we start the event-loop on line 5, here is what happens in simplified terms:

The first LED's run() function (shown in the following code) is called:1.

version4_asyncio/LED.py

async def run(self):

 """ Do the blinking """

 while True: # (1)

 if self.toggle_at > 0 and

 (time() >= self.toggle_at): # (2)

 self.pi.write(self.gpio, not self.pi.read(self.gpio))

 self.toggle_at += self.blink_rate_secs

 await asyncio.sleep(0) # (3)

It enters the while loop on line 1 and toggles the LED on or off from line 2,2.
depending on the blinking rate.
Next, it gets to line 3, await asyncio.sleep(0), and yields control. At this3.
point, the run() method is effectively paused, and another while loop iteration
does not start.
Control is passed over the second LED's run() function, and it runs through it's4.
while loop once until it reaches await asyncio.sleep(0). It then yields
control.
Now, the pot instance's run() method (shown in the following code) gets a turn5.
to run:

async def run(self):

 """ Poll ADC for Voltage Changes """

 while True:

 # Check if the Potentiometer has been adjusted.

 current_value = self.get_value()

 if self.last_value != current_value:

 if self.callback:

 self.callback(self, current_value)

 self.last_value = current_value

 await asyncio.sleep(0)

The run() method performs one iteration of the while loop until it6.
reaches await asyncio.sleep(0). It then yields control.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[396]

Control is passed to the button instance's run() method (partly shown in the7.
following code), which has multiple await asyncio.sleep(0) statements:

async def run(self):

 while True:

 level = self.pi.read(self.gpio) # LOW(0) or HIGH(1)

 # Waiting for a GPIO level change.

 while level == self.__last_level:

 await asyncio.sleep(0)

 # ... truncated ...

 while (time() < hold_timeout_at) and \

 not self.pi.read(self.gpio):

 await asyncio.sleep(0)

 # ... truncated ...

 await asyncio.sleep(0)

As soon as the button's run() method reaches any instance of await8.
asyncio.sleep(0), it yields control.
Now, all our registered run() methods have had a chance to run, so the first9.
LED's run() method will take control again and perform one while loop
iteration until it reaches await asyncio.sleep(0). Again, at this point it
yields control and the second LED's run() method gets another turn to run...and
the process continues over and over, with each run() method getting a turn to
run in a round-robin fashion.

Let's tie up a few loose ends where you will likely have questions:

What about the button's run() function with its many await
asyncio.sleep(0) statements?

When control is yielded at any await asyncio.sleep(0) statement, the
function yields at this point. The next time the run() button gets control, the code
will continue from the next statement beneath the await
asyncio.sleep(0) statement that yielded.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[397]

Why is the sleep delay 0 seconds?

Awaiting a zero-delay sleep is the simplest way to yield control (and please note
that it is the sleep() function from the asyncio library, not the sleep()
function from the time library). However, you can await any asynchronous
method, but this is beyond the scope for our simple example.

I have used zero-second delays for this example for simplicity in explaining how
the program works, but you can use non-zero delays. All this means is that the
yielding run() function would sleep for this period – the event-loop will not give
it a turn to run until this period expires.

What about the async and await keywords – how do I know where to use
them?

This certainly comes with practice; however, here are the basic design rules:

If you are registering a function (for example, run()) with the
event-loop, the function must start with the async keyword.
Any async function must contain at least one await statement.

Writing and learning asynchronous programs takes practice and experimentation. One of
the initial design challenges you will face is knowing where to put await statements (and
how many), and how long you should yield control for. I encourage you to play with the
version4 code base, add in your own debugging print() or logging statements, and just
experiment and tinker until you get a feel for how it all fits together. At some point, you'll
have that aha moment, and at that point, you have just opened the door to further explore
the many advanced features offered by the Python AsyncIO libraries.

Now that we have seen how an asynchronous program is structured and behaves at
runtime, I want to give you something to experiment with and ponder.

An asynchronous experiment
Let's try an experiment. Maybe you've wondered how version4 (AsyncIO) is a bit like our
version1 (event-loop) code, only it's been refactored into classes just like the version2
(threaded) code. So, couldn't we just refactor the code in the version1 while loop into
classes, create and call a function them (for example, run()) in the while loop, and not
bother with all the asynchronous stuff and its extra library and syntax?

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[398]

Let's try. You will find a version just like this in the chapter12/version5_eventloop2
folder. Try running this version, and see what happens. You'll find that the first LED blinks,
the second one is always on, and that the button and potentiometer do not work.

Can you work out why?

Here's the simple answer: in main.py, once the first LED's run() function is called, we're
stuck in its while loop forever!

The call to sleep() (from the time library) does not yield control; it just halts the LED's
run() method for the duration before the next while loop iteration occurs.

Hence, this is an example of why we say synchronous programs are blocking (no yielding
of control), and why asynchronous programs are non-blocking (they yield control and give
other code a chance to run).

I hope you have enjoyed our exploration of four alternative ways of structuring electronic-
interfacing programs – and one way we shouldn't. Let's conclude by recapping what we
have learned in this chapter.

Summary
In this chapter, we looked at four different way of structuring a Python program that
interface with electronics. We learned about an event-loop approach to programming, two
variations on a thread-based approach – callbacks and a publisher-subscriber model – and
finished by looking at how an AsyncIO approach to programming works.

Each of the four examples we covered was very discrete and specific in its approach. While
we briefly discussed the relative benefits and pitfalls of each approach along the way, it's
worth remembering that in practice, your projects will likely use a mixture of these (and
potentially other) approaches, depending on the programming and interfacing goals you
are trying to achieve.

In the next chapter, we will turn our attention toward IoT platforms and present a
discussion of the various options and alternatives that are available for building IoT
programs.

Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops Chapter 12

[399]

Questions
As we conclude, here is a list of questions for you to test your knowledge of this chapter's
material. You will find the answers in the Assessments section of the book:

When is a publisher-subscriber model a good design approach?1.
What is the Python GIL, and what implication does it present for classic2.
threading?
Why is a pure event-loop usually a poor choice for complex applications?3.
Is an event-loop approach a bad idea? Why or why not?4.
What is the purpose of the thread.join() function call?5.
You have used a thread to poll your new analog component via an analog-to-6.
digital converter. However, you find that your code behaves sluggishly to
changes in the component. What could be the problem?
Which is the superior approach to designing an IoT or electronic interfacing7.
application in Python – using an event-loop, a thread/callback, the publisher-
subscriber model, or an AsyncIO-based approach?

Further reading
The realpython.com website has a range of excellent tutorials covering all things
concurrency in Python, including the following:

What is the Python GIL? https:/​/ ​realpython.​com/​python-​gil

Speed Up Your Python Program with Concurrency: https:/​/​realpython.​com/
python-​concurrency

An Intro to Threading in Python: https:/​/​realpython.​com/​intro-​to-​python-
threading

Async IO in Python: A Complete Walkthrough: https:/​/​realpython.​com/
async-​io-​python

The following are relevant links from the official Python (3.7) API documentation:

Threading: https:/​/​docs.​python.​org/​3.​7/​library/​threading.​html

The AsyncIO library: https:/​/​docs.​python.​org/​3.​7/​library/​asyncio.​htm

Developing with AsyncIO: https:/​/​docs.​python.​org/​3.​7/​library/​asyncio-
dev.​html

Concurrency in Python: https:/​/​docs.​python.​org/​3.​7/​library/​concurrency.
html

https://realpython.com
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-gil
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/python-concurrency
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/intro-to-python-threading
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://realpython.com/async-io-python
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio.htm
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/asyncio-dev.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html

13
IoT Visualization and
Automation Platforms

In the previous chapter, we looked at alternative approaches to structuring a Python
program that interfaces with electronics. This included an event loop approach, two thread-
based approaches showing the use of callbacks and a publisher-subscriber model, and an
asynchronous I/O approach.

In this chapter, we will be discussing IoT and automation platforms that you can use with
your Raspberry Pi. The terms IoT platform and automation platform are very broad concepts,
so for the purpose of this chapter, what I mean by these terms is any software service –
cloud-based or locally installable – that provides you with a ready-made ecosystem to
create powerful, flexible, and fun IoT-based projects.

Our primary focus will be on the If-This-Then-That (IFTTT) automation platform, which I
suspect many of you will have some familiarity with, and the ThingSpeak platform for data
visualization. I have chosen these two services because they both offer a free pricing tier
and allow us to create and explore simple demonstrations and examples that you can build
upon. However, besides these, I'll also discuss a few other IoT and automation platforms
that I have experience with that will allow you to build even more powerful IoT solutions.

The following topics will be covered in this chapter:

Triggering an IFTTT Applet from your Raspberry Pi
Actioning your Raspberry Pi from an IFTTT Applet
Visualizing data with the ThingSpeak platform
Other IoT and automation platforms for further exploration

Let's get started!

IoT Visualization and Automation Platforms Chapter 13

[401]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with a desktop and recommended software)
Python version 3.5 at a minimum

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS, as long as your Python version is 3.5 or
higher.

You will find this chapter's source code in the chapter13 folder in this book's GitHub
repository, which is available here: https:/​/​github.​com/​PacktPublishing/​Practical-
Python-​Programming-​for-​IoT.

You will need to execute the following commands in a Terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter13 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

The following dependencies will be installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
The Paho MQTT library: https:/​/​pypi.​org/​project/​paho-​mqtt

The Requests HTTP library: https:/​/​pypi.​org/​project/​requests

The PiGPIO-based DHT library: https:/​/​pypi.​org/​project/​pigpio-​dht

The electronic components we will need for this chapter's exercises are as follows:

1 x DHT11 (lower accuracy) or a DHT22 (higher accuracy) temperature and
humidity sensor
1 x red LED
Resistors:

1 x 200Ω resistor
1 x 10kΩ resistor (optional)

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht
https://pypi.org/project/pigpio-dht

IoT Visualization and Automation Platforms Chapter 13

[402]

Triggering an IFTTT Applet from your
Raspberry Pi
Many of you may already be familiar with the If-This-Than-That (IFTTT) web service
(ifttt.com), where you can create simple workflow automation chains called Applets. An
Applet responds to changes in one web service (the This), which then triggers an action on
another web service (the That).

Here are some common examples of Applet configurations (called Recipes):

Send yourself an email whenever a particular Twitter hashtag is published.
Turn a smart light bulb on or off at a certain time of the day.
Open your internet-connected garage door using your phone's GPS when you
are approaching your house.
Log how long you spend in the office in a spreadsheet.
...and thousands upon thousands of other examples!

As we will learn in this section and the next, our Raspberry Pi can assume the role of both
the This or the That, to either trigger an Applet or perform an action in response to a
triggered Applet.

The following is a visual representation of what we will cover in this section; that is,
making our Raspberry Pi assume the This role in an IFTTT workflow:

Figure 13.1 – Raspberry Pi assuming the This role in an IFTTT Applet workflow

Our forthcoming Python example will monitor the current temperature (the This), and at a
specific temperature will request a special IFTTT Webhook URL. This URL request triggers
our Applet, which then sends out an email (the That). We will discuss Webhooks in greater
detail shortly when we build our first IFTTT Applet.

First, we need to create and test our example circuit, which we will do next.

https://ifttt.com

IoT Visualization and Automation Platforms Chapter 13

[403]

Creating the temperature monitoring circuit
For this example, we will be reusing the DHT11/DHT22 temperature circuit we created in
Chapter 9, Measuring Temperature, Humidity, and Light Levels.

Here is what we need to do:

Build the circuit illustrated in Figure 9.2.1.
Connect the data pin to GPIO 24 (in Chapter 9, Measuring Temperature, Humidity,2.
and Light Levels, we used GPIO 21, but we will use GPIO 21 for a LED later in this
chapter).

Once you have built your circuit, we can continue and build our first IFTTT Applet.

Creating and configuring an IFTTT Applet
To create our IFTTT Applet, there are many steps that we need to follow. Many of these
steps are simple and generic, irrespective of the type of Applet you are creating. While we
will step through these generic steps, we won't go into them in great detail, as I am sure
you will be more than capable of understanding what is going on during the process.
Instead, what we will focus on is the unique steps and sections of IFTTT that relate to
integrating our Raspberry Pi.

Please note that the https:/​/​ifttt.​com/​ free pricing tier limits the
number of Applet that you can have active at once. At the time of writing,
the maximum was three active Applets. We will be creating four Applets
in this and the next chapter combined, so you will need to archive at least
one Applet on IFTTT as you work through the next chapter in order to
stay on the IFTTT free pricing tier.

Here are the steps we need to follow:

Log into or create your IFTTT account. If you do not already have an IFTTT1.
account, please visit ifttt.com/join and follow the on-screen instructions.

We are performing these steps on the IFTTT website, ifttt.com. The
process to follow for the IFTTT phone and tablet apps will be different.

Once logged into IFTTT, click on your profile avatar icon (shown highlighted2.
with a square in the following screenshot) to reveal a menu:

https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/join
https://ifttt.com

IoT Visualization and Automation Platforms Chapter 13

[404]

Figure 13.2 – Profile avatar icon

Next, click the Create option in the profile menu, as shown here:3.

Figure 13.3 – Profile menu

The next page you will be presented with will be the Create your own page.4.
Here, click the + icon between the words If and This:

Figure 13.4 – The Create your own page – part 1

IoT Visualization and Automation Platforms Chapter 13

[405]

Now, you will be asked to Choose a service. The service we need to choose to5.
integrate with our Raspberry Pi is called the WebHook service, as shown here:

Figure 13.5 – The Choose a service page

Once you have found and identified the Webhook service, click on the 6.
Webhooks icon to continue.
The next page you will be presented with will be the Choose a trigger page, as7.
shown in the following screenshot. Here, click on the Receive a web request
option:

Figure 13.6 – The Choose trigger page

Next, you will be presented with the Complete trigger fields page, as shown8.
here:

IoT Visualization and Automation Platforms Chapter 13

[406]

Figure 13.7 – The Complete trigger fields page

The Event Name field is of importance for our Raspberry Pi integration. In the
Python code that we will cover shortly, we must ensure that the event name that's
used by the code matches what we type into this page. For our example, we are
naming our event RPITemperature.

After entering RPITemperature into the Event Name box, click the Create 9.
trigger button to continue.

A Webhooks's Event Name is its unique identifier (for your IFTTT
account). If you are creating many Webhooks, then you will need to use a
different Event Name to distinguish between them.

Next, you will be presented with the Create Your Own page once more. This10.
time, you'll see that the This is now the Webhook icon:

Figure 13.8 – The Create your own page – part 2

We are now halfway through configuring our IFTTT Applet. Now that we have
configured our Webhook trigger, we need to configure our action, which will be
to send an email. After creating the emailing action, we will revisit the Webhook
trigger and discover the URL and parameters that are used to trigger this
Webhook event.

IoT Visualization and Automation Platforms Chapter 13

[407]

Next, click on the + icon between the words Then and That. You will see the11.
Choose action service page. On this page, search for Email and click on the
Email icon:

Figure 13.9 – The Choose action service page

When you see the Choose action page shown in the following screenshot, select12.
the Send me an email option:

Figure 13.10 – The Choose action page

IoT Visualization and Automation Platforms Chapter 13

[408]

Next, you will be presented with the Complete action fields page. Please fill in13.
the Subject and Body text fields, as shown in the following screenshot. You will
find an example email that was produced by this action later in this chapter:

Figure 13.11 – The Complete action fields page

In the preceding screenshot, you will notice that some of the text is surrounded by
gray boxes; for example, Value1 and OccuredAt. These are known as
ingredients and are replaced dynamically when the Applet is triggered. As we will
see shortly in code, we will be replacing the Value1, Value2, and
Value3 ingredients with the current temperature, humidity, and a message,
respectively.

When you have filled in the Subject and Body text fields, click the Create action14.
button.

IoT Visualization and Automation Platforms Chapter 13

[409]

Finally, click on the Finish button on the Review and finish page, as shown here:15.

Figure 13.12 – The Review and finish page

Congratulations! You've just created an IFTTT Applet that sends an email when we trigger
it using our Raspberry Pi. But how do we do that? That's what we will learn about in the
next section.

Triggering an IFTTT Webhook
Now that we have created our IFTTT Applet, we need to take a few more steps to learn
how to trigger our Webhook. These steps boil down to knowing where to navigate to
within IFTTT to discover your unique Webhook URL.

Here are the steps we need to follow:

First, we need to navigate to the Webhooks page. There are a couple of ways we1.
can do this, and I'll leave it up to you which route you take:

Navigate your web browser to the Webhook services URL; that
is, ifttt.com/maker_webhook.

https://ifttt.com/maker_webhooks

IoT Visualization and Automation Platforms Chapter 13

[410]

Alternatively, the navigation steps to take to get to this web page
are as follows:

Click on the profile avatar icon (as shown previously in1.
Figure 13.2).
In the menu that appears, choose the My Services item2.
(refer to Figure 13.3).
On the page that appears, find and click on the3.
Webhooks item.

Irrespective of the path you take, you will see the page shown in the following
screenshot:

Figure 13.13 – The Webhooks page

IoT Visualization and Automation Platforms Chapter 13

[411]

Click on the Documentation button located in the top-right corner of the page.2.
You will be presented with the Webhook documentation page shown here:

Figure 13.14 – The Webhook documentation page

Please note that in the preceding example page, I have filled in the {Event}
and JSON Body fields so that they can be referenced during our
discussion. Your fields will be initially empty.

This page holds the key pieces of information that we need in order to integrate this
Webhook trigger with our Raspberry Pi. Here are the key parts of this page:

Your key: This is your account's Webhook API key and forms part of your
unique Webhook URL.

IoT Visualization and Automation Platforms Chapter 13

[412]

GET or POST request URL: Your unique Webhook URL. The unique
combination of your API key and Event Name is what associates the URL with a
triggerable IFTTT event. To integrate with our Raspberry Pi, this is the URL we
need to construct and request. We'll cover this shortly in code.
Event name: The name of the event you want to trigger.
JSON body: Each triggerable Webhook can contain a maximum of three data
parameters presented in JSON format, and they must be named value1, value2,
and value3.
cURL command-line example: Run this example in a Terminal to trigger the
RPITemperature event (and you will receive an email).
The Test It button: Clicking this button will trigger the RPITemperature event
(and you will receive an email).

Now that we have created our IFTTT Applet and discovered where to find the Webhook
URL and how it is constructed, we can now delve into the Python code that will trigger our
IFTTT Applet.

Triggering an IFTTT Applet in Python
We're about to explore a simple application based around the DHT 11/DHT 22 circuits and
code we first saw in Chapter 9, Measuring Temperature, Humidity, and Light Levels. You can
find this code in the chapter13/ifttt_dht_trigger_email.py file.

This code will monitor the temperature using a DHT 11 or DHT 22 sensor, and if a pre-
configured high or low threshold is breached, the code will invoke your IFTTT Webhook
URL, which will then send you an email, similar to the one shown in the following
screenshot. This corresponds to the email subject and body text you configured in the
previous section, in step 13:

Figure 13.15 – Example IFTTT email

IoT Visualization and Automation Platforms Chapter 13

[413]

Before we can run our sample application code, there are a few configuration steps we need
to perform. Let's take a look:

Open the chapter13/ifttt_dht_trigger_email.py file for editing.1.
Locate the following segment of code indicated by lines (1) and (2). Confirm that2.
your DHT sensor is connected to the appropriate GPIO pin and that the correct
DHT11 or DHT22 instance is being used based on the sensor that you have:

DHT Temperature/Humidity Sensor GPIO.

GPIO = 24 # (1)

Configure DHT sensor - Uncomment appropriate line

based on the sensor you have.

dht = DHT11(GPIO, use_internal_pullup=True, timeout_secs=0.5) # (2)

#dht = DHT22(GPIO, use_internal_pullup=True, timeout_secs=0.5)

Now, locate the following segments of code, indicated by lines (3), (4), and (5),3.
and update the USE_DEGREES_CELSIUS, HIGH_TEMP_TRIGGER,
and LOW_TEMP_TRIGGER variables to values that make sense in your location:

USE_DEGREES_CELSIUS = True # False to use Fahrenheit # (3)

HIGH_TEMP_TRIGGER = 20 # Degrees # (4)

LOW_TEMP_TRIGGER = 19 # Degrees # (5)

Your IFTTT Applet will be triggered and send an email when the temperature
reaches HIGH_TEMP_TRIGGER degrees or drops to LOW_TEMP_TRIGGER
degrees. The reason for high and low temperature triggers is to create a small
temperature buffer to prevent the code triggering multiple emails if the
temperature were to oscillate above and below a single value.

Next, locate the following section of code starting at line (6) and update the4.
details shown – specifically your IFTTT API key, which we identified in the
previous section in step 2:

EVENT = "RPITemperature" # (6)

API_KEY = "<ADD YOUR IFTTT API KEY HERE>"

That's all our configuration done. You'll notice line (7), which is where we construct the
IFTTT Webhook URL using our API key and event name:

URL = "https://maker.ifttt.com/trigger/{}/with/key/{}".format(EVENT,

API_KEY) # (7)

IoT Visualization and Automation Platforms Chapter 13

[414]

The remaining code in the file polls the DHT11 or DHT22 sensor, compares the reading to
the HIGH_TEMP_TRIGGER and HIGH_TEMP_TRIGGER values, and if the temperature has
been breached, constructs a requests object and calls the IFTTT Webhook URL to trigger
your Applet. We will not cover that code here since it should be self-explanatory based on
your previous experience with the DHT11/DHT22 sensors and the Python requests
library.

With our code configured, it's time to run the program in a Terminal. You will receive an
output similar to the following:

(venv) $ python ifttt_dht_trigger_email.py

INFO:root:Press Control + C To Exit.

INFO:root:Sensor result {'temp_c': 19.6, 'temp_f': 67.3, 'humidity': 43.7,

'valid': True}

INFO:root:Sensor result {'temp_c': 20.7, 'temp_f': 69.3, 'humidity': 42.9,

'valid': True}

INFO:root:Temperature 20.7 is >= 20, triggering event RPITemperature

INFO:root:Response Congratulations! You've fired the RPITemperature event

INFO:root:Successful Request.

Our example here also shows the IFTTT Applet being triggered when the temperature goes
above 20 degrees.

This now completes our IFTTT example using our Raspberry Pi in the This role to trigger an
IFTTT Applet. The basic process we covered illustrates how easy this is to achieve! We sent
an email, but you can follow the same overall process to create other IFTTT recipes that
trigger other actions, such as turning on smart lights and appliances, adding rows to
Google spreadsheets, and creating a Facebook post. You might like to check out https:/​/
ifttt.​com/​discover for a host of ideas and possibilities. Remember that from our
perspective and our learning, it's a Webhook trigger we can use from our Raspberry Pi to
action ideas like these. Have fun!

Next, we will look at the opposite scenario to see how we can action our Raspberry Pi.

Actioning your Raspberry Pi from an IFTTT
Applet
The previous section taught us how to trigger an IFTTT Applet from our Raspberry Pi. In
this section, we will learn how to action our Raspberry Pi from an IFTTT Applet.

https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover

IoT Visualization and Automation Platforms Chapter 13

[415]

For our example, we will create an IFTTT Applet that will trigger when an email is
received. We'll use the subject of this email to control an LED that is connected to a GPIO
pin.

We will be using an IFTTT Webhook service, as we did previously, only this time the
Webhook service will be installed on the That side of our Applet and will request a URL
that we specify. This basic idea is illustrated in the following diagram:

Figure 13.16 – Raspberry Pi assuming the That role in an IFTTT Applet

Let's look at two possible methods we can use with the IFTTT Webhook service to request a
URL that can then be seen by our Raspberry Pi's Python code.

Method 1 – using the dweet.io service as an
intermediary
One method to integrate the IFTTT with our Raspberry Pi is to use the dweet.io service. We
covered dweet.io, along with Python examples, in Chapter 2, Getting Started with Python
and IoT.

In brief, here is how we will use dweet.io alongside IFTTT and our Python code:

In our IFTTT Webhook, we'll use a dweet.io URL to publish a dweet (containing1.
an instruction to turn the LED on, off, or make it blink).
Our Raspberry Pi will run Python code to retrieve the dweet published by the2.
IFTTT Webhook.
Our code will then control the LED based on the command specified in the3.
dweet.

This is the method we will use for our example. The advantage of this method is that we do
not need to worry about configuring firewalls and port forwarding rules on your router.
Plus, it means we can run the example in environments – for example, at work – where
router configurations may not be practical or even possible.

IoT Visualization and Automation Platforms Chapter 13

[416]

The code that we will be using for this dweet.io-based integration can be found in the
chapter13/dweet_led.py file, which is an exact copy of the
chapter02/dweet_led.py file from Chapter 2, Getting Started with Python and IoT.

Method 2 – creating a Flask-RESTful service
To use this method, we would need to create a RESTful service, similar to what we did
in Chapter 3, Networking with RESTful APIs and Web Socket Services Using Flask (the code
that can be found in chapter02/flask_api_server.py, which changes the brightness of
a LED (rather than setting it to on/off/blinking), would be a great starting point).

We would also need to expose our Raspberry Pi to the public internet, which would require
us to open a port and create a port forwarding rule in our local firewall or router. Then,
together with our public IP (or domain name), we could construct a URL and use this
directly with the IFTTT Webhook service.

For prototyping ideas and creating demos, a simple alternative to opening
up firewalls and creating port forwarding rules could be to use a service
such as Local Tunnels (localtunnel.github.io/www) or ngrok
(ngrok.com), which can help you expose a device to the internet.

Since this method requires configuration and setup on your end that is beyond what we can
practically do as part of this chapter, we will stick with the dweet.io approach shown in the
previous section.

Next, we will create a circuit that we can use with our second IFTTT Applet, which we will
build shortly.

Creating the LED circuit
Our forthcoming example will require an LED, as well as a series resistor connected to a
GPIO pin (GPIO 21, for our example). I'm confident that, given the number of times we've
built LED circuits already in this book, you could wire this up on your own with no
problems! (And in case you do need a reminder, see Figure 2.7 in Chapter 2, Getting Started
with Python and IoT.)

Keep the DHT 11/DHT 22 circuit you created for our first IFTTT Applet
example because we will reuse this circuit again later in this chapter.

https://localtunnel.github.io/www/
https://ngrok.com/

IoT Visualization and Automation Platforms Chapter 13

[417]

When you have your circuit ready, we will continue and run our sample program.

Running the IFTTT and LED Python program
In this section, we will run our program and obtain a unique thing name and URL for use
with the dweet.io service.

Here are the steps to follow:

Run the code that can be found in the chapter13/dweet_led.py file in a1.
Terminal. You will receive an output similar to the following (your thing name
and therefore your URLs will be different):

(venv) $ python dweet_led.py

INFO:main:Created new thing name 749b5e60

LED Control URLs - Try them in your web browser:

 On : https://dweet.io/dweet/for/749b5e60?state=on

 Off : https://dweet.io/dweet/for/749b5e60?state=off

 Blink : https://dweet.io/dweet/for/749b5e60?state=blink

As we mentioned previously, chapter13/dweet_led.py is an exact copy of the
same program we discussed in Chapter 2, Getting Started with Python and IoT. If
you need more context around how this program works, please revisit that
chapter and the code discussion contained therein.

Keep your Terminal open with the program running as we will need to copy one2.
of the URLs in the next section. We'll also need the program running to test our
upcoming integration.

Next, we will create another IFTTT Applet to integrate with this program via dweet.io.

Creating the IFTTT Applet
We are about to create another IFTTT Applet. The overall process is very similar to the one
we followed for the Applet we created previously, except our Raspberry Pi (via Webhook
integration) will be at the That end of the Applet, as shown in Figure 13.16.

IoT Visualization and Automation Platforms Chapter 13

[418]

Here are the steps we need to follow to create our next Applet. I've left out many of the
common screenshots this time around due to their similarity with our previous IFTTT
Applet creation process:

Once logged into IFTTT, click on your profile avatar icon and select Create from1.
the drop-down menu.
On the If + This Then Than page, press the + icon.2.
In the Choose a service page, search for and select the Email service.3.
On the Choose trigger page, select Send IFTTT an email tagged (make sure it's4.
the option with the word in it tagged).
On the next page, enter LED as the Tag input and click the Create trigger button:5.

Figure 13.17 – The Complete trigger fields page

On the If <email icon> This Then + Than page, press the + icon.6.
On the Choose action service page, search for and select the Webhooks service.7.
Next, on the Choose action page, select Make a web request.8.

IoT Visualization and Automation Platforms Chapter 13

[419]

The next page you'll come across is called Complete action fields. This is where9.
we'll use the dweet URL that our program printed to the Terminal in the
previous section:

Figure 13.18 – The Complete action fields page

IoT Visualization and Automation Platforms Chapter 13

[420]

Here are the sub-steps you need to follow to complete the fields on this page:

Copy the On URL from your Terminal (for example,1.
https://dweet.io/dweet/for/749b5e60?state=on – noting that
your thing name will be different).
Paste this URL into the IFTTT URL field.2.
In the URL field, delete the word on (so the URL is now3.
https://dweet.io/dweet/for/749b5e60?state=).
Click the Add ingredient button (under the URL field) and choose4.
Subject (so that the URL is now
https://dweet.io/dweet/for/749b5e60?state={{Subject}}).
The other fields can be left as their default values.5.
Click the Create action button:6.

Figure 13.19 – The Complete action fields page

Finally, on the Review and finish page, click the Finish button.7.

IoT Visualization and Automation Platforms Chapter 13

[421]

Well done! We've now created our second Applet. Next, we will use this Applet to control
our LED by sending an email instructing the LED to turn on, off, or blink.

Controlling the LED from an email
Now that we have created our Applet to control our LED using an email, it's time to test
out the integration.

Here are the steps to create the email:

Make sure the program in the chapter13/dweet_led.py file is still running in1.
your Terminal.
Open your favorite email program and create a new email.2.
Use trigger@applet.ifttt.com as the email's To address.3.

When sending a trigger email to IFTTT, it must come from the same email
address that you use with IFTTT (you can visit https:/​/​ifttt.​com/
settings to check your email address).

As the subject, use one of the following to control the LED:4.

#LED On

#LED Off

#LED Blink

IFTTT strips off the #LED tag, so our dweet_led.py program only
receives the text On, Off, or Blink. The leading space is stripped off in our
Python code.

https://ifttt.com/settings
https://ifttt.com/settings
https://ifttt.com/settings
https://ifttt.com/settings
https://ifttt.com/settings
https://ifttt.com/settings
https://ifttt.com/settings
https://ifttt.com/settings

IoT Visualization and Automation Platforms Chapter 13

[422]

The following screenshot shows an example email that will make the LED blink:

13.20 – Trigger email example

Send the email.5.
Wait a moment and the LED will change state.6.

Now that we've learned how to control our LED via email using IFTTT, let's quickly cover a
few troubleshooting tips.

IoT Visualization and Automation Platforms Chapter 13

[423]

IFTTT troubleshooting
If your IFTTT Applets do not appear to be triggering and actioning, here are a few
troubleshooting avenues for you to explore and try:

In dweet_led.py, try the following:
Turn on debug logging; for
example, logger.setLevel(logging.DEBUG).
Change the dweet retrieval method located near the end of the
source file. If you are using stream_dweets_forever(),
try poll_dweets_forever() instead, since it is more resilient to
transient connectivity issues.

On the IFTTT website, you can inspect the activity log for any Applet by doing
the following:

Navigating to the My Services option under the profile menu1.
Selecting a service (for example, Webhooks)2.
Selecting the Applet you want to inspect3.
Clicking the Settings button4.
Clicking the View activity button and/or trying the Check now button5.

You can also check the following IFTTT resources:
Common errors and troubleshooting tips, available at https:/​/​help.
ifttt.​com/​hc/​en-​us/​articles/​115010194547-​Common-​errors-
and-​troubleshooting-​tips

Troubleshooting Applets & Services, available at https:/​/​help.
ifttt.​com/​hc/​en-​us/​categories/​115001569887-
Troubleshooting-​Applets-​Services.

IFTTT also has a Best Practices page available at https:/​/​help.​ifttt.​com/
hc/​en-​us/​categories/​115001569787-​Best-​Practices where you can
learn more about the platform.

https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/articles/115010194547-Common-errors-and-troubleshooting-tips
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569887-Troubleshooting-Applets-Services
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices
https://help.ifttt.com/hc/en-us/categories/115001569787-Best-Practices

IoT Visualization and Automation Platforms Chapter 13

[424]

As we discussed in the Triggering an IFTTT Applet from your Raspberry Pi section, for IFTTT
triggers, you can adopt the same overall process we just covered for actioning your
Raspberry Pi from any IFTTT recipe. Again, check out https:/​/​ifttt.​com/​discover for
some ideas, and this time, remember that from our perspective, we use a Webhook action in
our IFTTT recipes to control our Raspberry Pi. Here's an example – use Google Assistant to
voice control your Raspberry Pi! Oh, wait a moment – we'll be doing this in the next
chapter, Chapter 14, Tying It All Together – An IoT Christmas Tree!

We've now explored how to integrate our Raspberry Pi with IFTTT in two ways – as the
This role to trigger an Applet and in the That role, whereby we can action our Raspberry Pi
from a triggered Applet. Next, we will look at a way to create an IoT dashboard that we can
use to visualize data.

Visualizing data with the ThingSpeak
platform
We have just learned how to create simple automation using the IFTTT platform. In this
section, we will integrate with the ThingSpeak platform to visually display temperature
and humidity data that we'll collect using our DHT 11 or DHT 22 sensors. We will be using
the DHT 11/DHT 22 circuit we created earlier in this chapter.

ThingSpeak (thingspeak.com) is a data visualization, aggregation, and analysis platform.
We will be focusing on the data visualization aspect, and specifically on how to integrate
our Raspberry Pi into this platform.

I've chosen ThingSpeak for our example in this section for a couple of reasons – it's simple
and easy to set up and integrate with, and for simple data visualizations like the ones we
will be doing, it's free. There are many other visualization platforms available, and they all
have their own unique features, pricing structures, and complexities. I've included a few
suggestions in the Other IoT and automation platforms for further exploration section for you to
explore.

If you wish to explore the aggregation and analysis features in more
depth, you can find many quality examples, tutorials, and documentation
by just searching for ThingSpeak. As a suggestion, start your investigation
at https:/​/​au.​mathworks.​com/​help/​thingspeak.

https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://ifttt.com/discover
https://thingspeak.com
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak
https://au.mathworks.com/help/thingspeak

IoT Visualization and Automation Platforms Chapter 13

[425]

An example of the dashboard we will be creating can be seen in the following screenshot.
Notice the Channel Settings and API Keys items shown in the Tab bar – we will be
referring to these tabs shortly:

Figure 13.21 – The ThingSpeak channel dashboard

IoT Visualization and Automation Platforms Chapter 13

[426]

Our first stop before we can integrate our Raspberry Pi and send data to ThingSpeak is to
configure the platform for our integration.

Configuring the ThinkSpeak platform
Configuring ThinkSpeak is relatively simple – in fact, it's one of the most straightforward
platforms in its class I have come across. Here are the steps that we need to follow:

First, you will need to create a ThingSpeak account for yourself. Visit their1.
website, thingspeak.com, and click on the Sign Up button.
Once you have created your ThinkSpeak account and logged into the platform,2.
you should land on the My Channels page; that is, https:/​/​thingspeak.​com/
channels.

In the ThingSpeak ecosystem, a channel is a virtual place where we store
our data, dashboards, and visualizations. It's analogous to a workspace.

Next, we need to create a new channel by clicking on the New Channel button:3.

Figure 13.22 – ThingSpeak channel configuration

https://thingspeak.com
https://thingspeak.com/channels
https://thingspeak.com/channels
https://thingspeak.com/channels
https://thingspeak.com/channels
https://thingspeak.com/channels
https://thingspeak.com/channels
https://thingspeak.com/channels
https://thingspeak.com/channels

IoT Visualization and Automation Platforms Chapter 13

[427]

On the New Channel page, enter the following details:

Name: Environmental Data (or any name of your choice)
Field1: temperature
Field2: humidity

You can leave all the other fields as their default values.

If you need to review or change your channel settings later, they can be
found on the Channel Settings tab, as shown previously in Figure 13.19.

Once you have filled in the fields, scroll to the bottom of the page and click the4.
Save Channel button. You will be presented with a page similar to the one
pictured in Figure 13.19, except it will be blank with no data.

To add the two gauges seen in Figure 13.19, to this page, do the following:

Press the Add Widgets button.1.
Select the Gauge icon and press Next.2.
In the Configure widget parameters dialog, type in a name for the3.
gauge (for example, temperature) and select the appropriate field
number (Field1 for temperature, Field2 for humidity, respectively).
You can adjust and experiment with the other parameters as you4.
desire to set max/min ranges, coloring, and other display properties for
your gauge.
Repeat the process for the second gauge.5.

Don't worry if the gauges (or charts) display Field value unavailable.
This is correct since we have not sent any temperature or humidity data to
ThingSpeak yet.

Now, it's time to obtain an API key and channel ID, which we will need in order5.
to configure our forthcoming Python code. Click on to the API Keys tab:

IoT Visualization and Automation Platforms Chapter 13

[428]

Figure 13.21 – The API Keys tab

Here is the information we need to collect for our Python program:

Write API Key (because we will be writing data to the platform)
Channel ID (this is listed on all ThinkSpeak pages, near the top)

Now that we have created and configured a simple ThinkSpeak channel and collected our
API key and Channel ID, we can move onto our Python code.

Configuring and running the ThinkSpeak Python
program
We have provided two sample programs that integrate with ThinkSpeak. They are as
follows:

chapter13/thingspeak_dht_mqtt.py: An example that uses MQTT to send
data into a ThinkSpeak channel.

chapter13/thingspeak_dht_http.py: An example that uses the Python
requests library to make RESTful API calls that send data to a ThinkSpeak
channel.

IoT Visualization and Automation Platforms Chapter 13

[429]

The core concepts of these two programs were discussed in earlier chapters. For your
reference, they are as follows:

MQTT: We discussed the Paho-MQTT library in Chapter 4, Networking with
MQTT, Python, and the Mosquitto MQTT Broker. A key difference for this chapter
is that we are using the Paho-MQTT simplifying client wrapper to publish MQTT
messages instead of a full life cycle example.
We covered RESTful APIs and the requests library in Chapter 2, Getting Started
with Python and IoT.
The code related to the DHT 11/DHT 22 temperature and humidity sensor was
covered in Chapter 9, Measuring Temperature, Humidity, and Light Levels.

Let's configure these programs, run them, and see the data appear in ThingSpeak. We'll
walk through the example code provided in chapter13/thingspeak_dht_mqtt.py;
however, the overall process will be the same for chapter13/thingspeak_dht_http.py:

Open the chapter13/thingspeak_dht_mqtt.py file for editing.1.
Near the top of the file, identify the following code starting at line (1) and2.
confirm your DHT sensor is connected to the correct GPIO pin and that the
correct sensor instance is enabled in code:

DHT Temperature/Humidity Sensor

GPIO = 24 # (1)

#dht = DHT11(GPIO, use_internal_pullup=True, timeout_secs=0.5)

dht = DHT22(GPIO, use_internal_pullup=True, timeout_secs=0.5)

Next, identify the following code segment starting at line (2) and update it with3.
your ThingSpeak write API key, Channel ID, and time zone. Note
that CHANNEL_ID is only used in the MQTT integration (so it does not appear in
the thingspeak_dht_http.py file):

ThingSpeak Configuration

WRITE_API_KEY = "" # <<<< ADD YOUR WRITE API KEY HERE # (2)

CHANNEL_ID = "" # <<<< ADD YOUR CHANNEL ID HERE

See for values

https://au.mathworks.com/help/thingspeak/time-zones-reference.html

TIME_ZONE = "Australia/Melbourne"

Save your file and run the program. You should receive an output similar to the4.
following:

(venv) $ python thing_speak_dht_mqtt.py

INFO:root:Collecting Data and Sending to ThingSpeak every 600

IoT Visualization and Automation Platforms Chapter 13

[430]

seconds. Press Control + C to Exit

INFO:root:Sensor result {'temp_c': 25.3, 'temp_f': 77.5,

'humidity': 43.9, 'valid': True}

INFO:root:Published to mqtt.thingspeak.com

Within seconds, you should see your data appear on your ThingSpeak5.
dashboard!

Congratulations! With that, you have created a ThingSpeak dashboard to visualize data
that's been collected by your Raspberry Pi. Visualizing data is a frequent requirement for
many monitoring IoT projects, whether it be simple indicator displays such as gauges or
producing historic graphs to visualize trends. How you approach visualization for your
data all depends on your requirements; however, the one thing that's common to all these
requirements is that there are many ready-to-go services such as ThingSpeak to help you
achieve this as an alternative to custom coding dashboard and visualization applications
yourself.

Now, I will conclude this chapter with a brief discussion of other popular IoT platforms
that you may like to explore and use in your future projects.

Other IoT and automation platforms for
further exploration
So far in this chapter, we have seen IFTTT and ThingSpeak in action, as well as how to
integrate them with our Raspberry Pi. We saw how to use IFTTT to create simple
workflows and how we can visualize data with ThingSpeak – two very different ideas, but
nonetheless, they are both IoT platforms.

Both these platforms are immensely powerful and offer a wide range of features and
possibilities beyond what we can cover in a single chapter, so I do encourage you to seek
out their documentation and examples to advance your learning.

There are many other IoT platforms, applications, and frameworks that are available. This
section will provide a short, curated list based on my experience. They all fit in nicely with
this book's Python- and Raspberry Pi-based themes.

IoT Visualization and Automation Platforms Chapter 13

[431]

Zapier
We've already seen IFFF in action. IFTTT is more consumer-focused in terms of the services
that it supports, plus as we have seen, we are limited to a single This trigger and a single
That action.

Zappier is very similar in principle to IFTTT, but with a more business-orientated focus,
including a range of services and integrations not available with IFTTT (there will be
services and integrations that are unique to IFTTT also). Furthermore, Zapier is also capable
of much more complex workflows for triggering events and actions.

You will find it relatively simple to reimplement our two IFTTT examples from this chapter
in Zappier.

Website: https:/​/​zapier.​com.

IFTTT platform
In this chapter, we used IFTTT as an end user and performed our integrations using
Webhooks. If you are a business wishing to create gadgets you want to expose as first-class
IFTTT services, then you should check out the IFTTT platform.

Website: https:/​/​platform.​ifttt.​com.

ThingsBoard IoT platform
ThingsBoard is an open source IoT platform that you can download and host on your
Raspberry Pi. On the surface, it will allow you to build dashboards and data visualizations,
just as we did in ThingSpeak. Compared to ThingSpeak, you will find that ThingsBoard has
a steeper learning curve when it comes to creating your first dashboard; however, you will
also find that it offers a more extensive set of widgets and customization options. Plus,
unlike ThingSpeak, which can only consume data, ThingsBoard allows you to embed
controls into a dashboard that lets you interact with your Raspberry Pi using MQTT.

From experience, working your way through the ThingsBoard documentation and tutorials
(many are available as videos) is a must if you want to learn how to use this platform since
on your first visit to its UI, it's not immediately obvious what you need to do.

https://zapier.com
https://zapier.com
https://zapier.com
https://zapier.com
https://zapier.com
https://zapier.com
https://zapier.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com
https://platform.ifttt.com

IoT Visualization and Automation Platforms Chapter 13

[432]

Here are a few specific resources from their website:

Raspberry Pi installation instructions: https:/​/​thingsboard.​io/​docs/​user-
guide/​install/​rpi (don't worry if it says Raspberry Pi 3; it will still work on a 4)
Getting started guide: https:/​/​thingsboard.​io/​docs/​getting-​started-
guides/​helloworld

While there are no Python-specific examples in the getting started guide, there are
Mosquito MQTT examples and cURL examples that demonstrate the RESTful API. A
suggestion would be to use the two ThingSpeak code examples presented in this chapter as
a starting point and adopt them to use the ThingBoard-specific MQTT and/or RESTful
APIs.

Website: https:/​/​thingsboard.​io.

Home Assistant
Home Assistant is a pure Python home automation suite. Out of the box, Home Assistant
can connect with a wide range of internet-enabled devices such as lights, doors, fridges,
and coffee machines – to mention only a few.

Home Assistant gets a mention here, not only because it is built with Python, but because it
allows us to integrate directly with the host Raspberry Pi's GPIO pins, as well as with a
remote Raspberry Pi's GPIO pins using PiGPIO's remote GPIO feature. Plus, there are
MQTT and RESTful API integration options available.

While simple in concept and end user operation, there is a highish learning curve (and a
fair amount of experimentation needed) when it comes to configuring Home Assistant
since most of the integrations are performed by manually editing YAML Ain't Markup
Language (YAML) files directly.

In relation to GPIO integrations, I have selected some resources from their website to get
you started. I recommend reading the glossary first as it will help you better understand
the Home Assistant terminology and therefore help you better understand other parts of
the documentation:

Installation: There are a variety of ways that Home Assistant can be installed. For
testing the platform and building a GPIO integration, I suggest the "Virtual
Environment" option, documented at https:/​/​www.​home-​assistant.​io/ ​docs/
installation/​virtualenv.

https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/user-guide/install/rpi
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io/docs/getting-started-guides/helloworld
https://thingsboard.io
https://thingsboard.io
https://thingsboard.io
https://thingsboard.io
https://thingsboard.io
https://thingsboard.io
https://thingsboard.io
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv
https://www.home-assistant.io/docs/installation/virtualenv

IoT Visualization and Automation Platforms Chapter 13

[433]

Glossary: https:/​/​www.​home-​assistant.​io/​docs/​glossary.
Available Raspberry Pi integrations: https:/​/​www.​home-​assistant.​io/
integrations/​#search/​Raspberry%20Pi.

Website: https:/​/​www.​home-​assistant.​io.

Amazon Web Services (AWS)
Another suggestion is Amazon Web Services, specifically two services – IoT Core and
Elastic Beanstalk. These options will provide you with immense flexibility and a near-
endless number of options when it comes to creating IoT applications. IoT Core is
Amazon's IoT platform where you can create dashboards, workflows, and integrations,
while Elastic Beanstalk is their cloud platform where you can host your own programs –
including Python – in the cloud.

Amazon Web Services is an advanced development platform, so you will need to invest
weeks into learning how it works and how to build and deploy applications using it, but I
can promise you that you will learn a lot during the process! Plus, their documentation and
tutorials are very high quality.

Amazon IoT Core: https:/​/​aws.​amazon.​com/​iot-​core.

Amazon Elastic Beanstalk: https:/​/​aws.​amazon.​com/​elasticbeanstalk.

Microsoft Azure, IBM Watson, and Google Cloud
Finally, I do want to mention these other IT giants, who all offer their own cloud and IoT
platforms. My suggestion regarding AWS is purely due to my more in-depth experience
with this platform. The comparative platforms offered by Microsoft, IBM, and Google are
also high quality and backed with excellent documentation and tutorials, so if your
personal preference is with one of these providers, you are still in good hands.

https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/docs/glossary
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io/integrations/#search/Raspberry%20Pi
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://www.home-assistant.io
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/iot-core
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk

IoT Visualization and Automation Platforms Chapter 13

[434]

Summary
In this chapter, we explored and learned how to use our Raspberry Pi with both the IFTTT
and ThinkSpeak IoT platforms. We created two IFTTT examples where our Raspberry Pi
performed the This role in an IFTTT Applet to start an IFTTT workflow. We also saw how
to use our Raspberry Pi in the That role so that it can be actioned by an IFTTT Applet. Next,
we covered an example of how to integrate with the ThinkSpeak IoT platform to visualize
temperature and humidity data collected by our Raspberry Pi. Finally, we discussed other
IoT platform options that you may like to investigate and experiment with.

We certainly only covered the basics of what is possible with visualization and automation
platforms in this chapter. I encourage you to seek our further IFTTT examples and ideas
you can experiment with, and also explore the other platforms that we mentioned. And
remember, while every platform will be different and have its own integration
considerations, the commonly accepted standards to achieve integration boil down to
RESTful APIs and MQTT, both of which you now have experience with!

In the next chapter, we will cover a comprehensive end-to-end example to pull together
many of the concepts and examples that we have covered throughout this book.

Questions
As we conclude this chapter, here is a list of questions for you to test your knowledge
regarding this chapter's material. You will find the answers in the Assessments section of the
Appendix:

With our first IFTTT Applet, where we monitored the temperature, why did we1.
use a different high and low temperature value to trigger our Applet and send an
email?
What was the advantage of using an intermediary service such as dweet.io with2.
our IFTTT Webhook service?
What are some of the core differences between IFTTT and Zapier?3.
Can you control your Raspberry Pi from a ThingSpeak dashboard?4.
In relation to data, what is the limitation of the IFTTT Webhook service when5.
used as an action (that is, on the That side of an applet)?
You want to prototype the switching on and off of an over-the-counter smart6.
light bulb based on a Raspberry Pi's GPIO pin state. What platforms could you
use?

14
Tying It All Together - An IoT

Christmas Tree
Welcome to our final chapter! We will round out this book by pulling together various
topics and ideas from earlier chapters to build a multifaceted IoT program. Specifically, we
will be building an internet-controllable Christmas tree, an IoTree, if you don't mind the
pun!

Our approach in this chapter will be to reuse two circuits from previous chapters to create
Christmas tree lighting (using an APA102 LED strip) and a rocking mechanism to make the
tree shake (we will use a servo) and jingle (well, it'll jingle as it shakes if you decorate the
tree with bells!). We will then revisit and adapt our learning about RESTful APIs and
MQTT to create two ways in which we can control the lighting and servo over a network or
the internet. We will then revisit dweet.io and If-This-Then-That (IFTTT) and build IFTTT
Applets to control the tree via email and your voice using Google Assistant!

Here is what we will cover in this chapter:

Overview of the IoT Christmas tree
Building the IoTree circuit
Configuring, running, and using the Tree API service
Configuring, running, and using the Tree MQTT service
Integrating the IoTree with dweet.io
Integrating with email and Google Assistant via IFTTT
Ideas and suggestions to extend your IoTree

Tying It All Together - An IoT Christmas Tree Chapter 14

[436]

Technical requirements
To perform the exercises in this chapter, you will need the following:

Raspberry Pi 4 Model B
Raspbian OS Buster (with desktop and recommended software)
Minimum Python version 3.5

These requirements are what the code examples in this book are based on. It's reasonable to
expect that the code examples should work without modification on a Raspberry Pi 3
Model B or a different version of Raspbian OS as long as your Python version is 3.5 or
higher.

To complete the section titled Integration with Google Assistant, at a minimum, you will need
the following prerequisites:

A Google account (if you have a Gmail email account, that's all you need)
An Android phone or the Google Assistant app for iOS

You will find this chapter's source code in the chapter14 folder in the GitHub repository
available here: https:/​/​github.​com/​PacktPublishing/​Practical-​Python-​Programming-
for-​IoT.

You will need to execute the following commands in a terminal to set up a virtual
environment and install the Python libraries required for the code in this chapter:

$ cd chapter14 # Change into this chapter's folder
$ python3 -m venv venv # Create Python Virtual Environment
$ source venv/bin/activate # Activate Python Virtual Environment
(venv) $ pip install pip --upgrade # Upgrade pip
(venv) $ pip install -r requirements.txt # Install dependent packages

https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT
https://github.com/PacktPublishing/Practical-Python-Programming-for-IoT

Tying It All Together - An IoT Christmas Tree Chapter 14

[437]

The following dependencies are installed from requirements.txt:

PiGPIO: The PiGPIO GPIO library (https:/​/​pypi.​org/​project/​pigpio)
Flask-RESTful: A Flask extension for creating RESTful API services (https:/​/
pypi.​org/​project/​Flask-​RESTful)
The Paho MQTT client: https:/​/​pypi.​org/​project/​paho-​mqtt

Pillow: Python Imaging Library (PIL) (https:/​/​pypi.​org/​project/​Pillow)
The Luma LED Matrix library: https:/​/​pypi.​org/​project/​luma.​led_​matrix

Requests: A high-level Python library for making HTTP requests (https:/​/
pypi.​org/​project/​requests)
PyPubSub: In-process messaging and events (https:/​/​pypi.​org/ ​project/
PyPubSub)

The electronic components we will need for this chapter's exercises are as follows:

1 x MG90S hobby servo (or equivalent 3-wire, 5-volt hobby servo)
1 x APA102 RGB LED strip
1 x logic level shifter module
External power supply (at a minimum a 3.3 V/5 V breadboard-mountable power
supply)

A video showing this tree in action is available at https:/​/​youtu.​be/
15Xfuf_​99Io. Please note that this tree uses RGB LEDs and an alternating
blinking animation for the lights. We'll be using an APA102 LED strip in
this chapter that is capable of creating more animation effects. The demo
tree can also play a tune, which we will not cover in this chapter (although
you'll easily be able to add that feature if you wish by adopting the RTTTL
example from Chapter 8, Lights, Indicators, and Displaying Information).

https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/pigpio
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/Flask-RESTful
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/paho-mqtt
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/luma.led_matrix
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/requests
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://pypi.org/project/PyPubSub
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io
https://youtu.be/15Xfuf_99Io

Tying It All Together - An IoT Christmas Tree Chapter 14

[438]

Overview of the IoT Christmas tree
Before we commence our chapter by building circuits and looking at code, let's take a
moment to understand what our IoTree will do and how we will be building it. The
tree pictured in Figure 14.1 is representative of what you could create after completing this
chapter:

Figure 14.1 – IoTree example

Now, I'll need to let you know up front that we're only covering the electronics and
programming of the IoTree. You'll need to apply your initiative and bring your maker skills
to the table to build the tree and bring it to life. I suggest using a small table-top Christmas
tree since part of our build involves a servo to shake the tree. Our hobby-grade servo is
powerful enough to shake a small tree; however, it's unlikely that it could shake a full-size
Christmas tree (you'll need to research and get a more powerful servo if you aspire to
upgrade our build to a larger tree – and please send me a picture if you do!).

Our base-level tree will comprise the following electronic components:

An APA102 LED light strip for the tree lights (we covered the APA102 LED strip
in Chapter 8, Lights, Indicators, and Displaying Information).
A servo to make the tree shake and jingle – for this, you will need some bell
ornaments on the tree that will jingle when the tree shakes (we covered servos in
Chapter 10, Movement with Servos, Motors, and Steppers).

Tying It All Together - An IoT Christmas Tree Chapter 14

[439]

Programmatically and structurally, our tree program will be drawing on the following
concepts we've learned about:

The dweet.io service: First covered in Chapter 2, Getting Started with Python and
IoT, and revisited in Chapter 13, IoT Visualization and Automation Platforms
RESTful API with Flask-RESTful: From Chapter 3, Networking with RESTful
APIs and Web Sockets Using Flask
Message Queue Telemetry Transport (MQTT): Covered in Chapter 4,
Networking with MQTT, Python, and the Mosquitto MQTT Broker.
A thread and Publisher-Subscriber (PubSub) approach to IoT programs:
Covered in Chapter 12, Advanced IoT Programming Concepts – Threads, AsyncIO,
and Event Loops
The IFTTT IoT platform: Covered in Chapter 13, IoT Visualization and
Automation Platforms

As we proceed through this chapter, we are going to assume you have an understanding of
the concepts from each of the aforementioned chapters, and that you have performed the
exercises presented in each chapter, including building the circuits and understanding the
circuit and code-level concepts that make the circuits work.

Our first task will be to build the circuit needed for our IoTree, which we will do next.

Building the IoTree circuit
It's time to get building! Please construct the circuit illustrated in Figure 14.2:

Figure 14.2 – IoTree circuit schematic diagram

Tying It All Together - An IoT Christmas Tree Chapter 14

[440]

This circuit hopefully looks familiar. It's a combination of two circuits that we have seen
before:

The APA102 (with a logic level shifter) circuit from Figure 8.4, in Chapter 8,
Lights, Indicators, and Displaying Information
The servo circuit from Figure 10.2, in Chapter 10, Movement with Servos, Motors,
and Steppers

Please consult these respective chapters if you need step-by-step instructions on building
this circuit on your breadboard.

Please remember that you will need to use an external power supply to
power your APA102 and servo, as they will draw too much current to use
the 5-volt pin on your Raspberry Pi.

When you have completed your circuit build, next let's briefly discuss three programs that
can be used to control this circuit.

Three IoTree service programs
There are three separate programs to accompany our IoTree, each taking a slightly different
approach to work with our lights and servo. The programs are as follows:

The Tree API service (found in the chapter14/tree_api_service folder):
This program provides a RESTful API created with Flask-RESTful to control the
lights and servo. It also includes a basic HTML and JavaScript web app that uses
the API. We will discuss the Tree API service further in the section titled
Configuring, running, and using the Tree API service.
The Tree MQTT service (found in
the chapter14/tree_mqtt_service folder): This program will allow us to
control the lights and servo by publishing MQTT messages. We will discuss the
Tree MQTT service further in the section titled Configuring, running, and using the
Tree MQTT service.
The dweet integration service (found in
the chapter14/dweet_integration_service folder): This program receives
dweets and republishes them as MQTT messages. We can use this program
together with the Tree MQTT service program to control our lights and servo
using dweet.io, which thus provides us with an easy way to integrate our IoTree
with a service such as IFTTT. We will discuss the dweet integration service more
in the section titled Integrating the IoTree with dweet.io.

Tying It All Together - An IoT Christmas Tree Chapter 14

[441]

Now that we have briefly discussed the programs that make up this chapter's examples,
let's configure and run our Tree API service and use it to make the lights and servo work.

Configuring, running, and using the Tree
API service
The Tree API service program provides a RESTful API service for controlling our IoTree's
APA102 LED strip and servo. You can find the Tree API service program in
the chapter14/tree_api_service folder. It contains the following files:

README.md: The full API documentation with examples for the Tree API service
program.
main.py: This is the program's main entry point.
config.py: Program configuration.
apa102.py: A Python class that integrates with the APA102 LED strip. The core
of this code is very similar to the APA102 Python code we explored back
in Chapter 8, Lights, Indicators, and Displaying Information, only now it is
structured as a Python class, uses a thread to run light animations, plus has a few
other small additions, such as code to make the LEDs blink.
apa102_api.py: Flask-RESTful resource classes that provide the APA102 API. It
draws upon the Flask-RESTful code and examples from Chapter 3, Networking
with RESTful APIs and Web Sockets Using Flask.
servo.py: A Python class for controlling the servo. It draws upon the servo code
we covered back in Chapter 10, Movement with Servos, Motors, and Steppers.
servo_api.py: Flask-RESTful resource classes that provide the servo API.
templates: This folder contains the example web app's index.html file.
static: This folder contains the static JavaScript libraries and an image used by
the web app.

Tying It All Together - An IoT Christmas Tree Chapter 14

[442]

A diagram depicting the Tree API service program architecture is shown in Figure 14.3:

Figure 14.3 – Tree API service architecture block diagram

Here is the high-level operation of the Tree API service for the API request shown by the
dotted line in the preceding diagram:

An external client makes a POST request to the /lights/colors endpoint at #1.1.
The request is handled by the Flask framework/server at #2. (The Flask and2.
Flask-RESTful setup can be found in main.py.)
The /lights/* endpoint is routed to the appropriate Flask-RESTful resource at3.
#3 (APA102 – that is, the light – resources are defined in apa102_api.py). The
endpoint setup and resource registration with Flask-RESTful are found in
main.py.
At #4, the appropriate resource is invoked (in this example, it will be4.
ColorControl.post()), which then parses and validates the query string
parameters (that is, colors=red%20blue&pattern=yes).
Finally, at #5, ColorControl.post() then calls the appropriate methods in an5.
instance of APA102 (defined in apa102.py, and set up in main.py) that directly
interfaces with and updates the physical APA102 LED strip with the repeating
pattern of red and blue.

Tying It All Together - An IoT Christmas Tree Chapter 14

[443]

Now that we have an understanding of how our Tree API service works, before we can run
our Tree API service, first we need to check its configuration. We'll do that next.

Configuring the Tree API service
The Tree API service configuration is found in
the chapter14/tree_api_service/config.py file. There are many configuration
options in this file, and they mostly relate to the configuration of the APA102 (discussed
in Chapter 8, Lights, Indicators, and Displaying Information) and the servo (discussed
in Chapter 10, Movement with Servos, Motors, and Steppers). You will find this file and the
configuration options well commented.

The default configuration will be adequate for running an example locally on your
Raspberry Pi; however, the one configuration parameter you should check is
APA102_NUM_LEDS = 60. If your APA102 LED strip contains a different number of LEDs,
please update this configuration appropriately.

Let's run the Tree API service program and create some light (and movement)!

Running the Tree API service
It's now time to run the Tree API service program and send it RESTful API requests to
make it work. Here are the steps to run and test our Tree API service:

Change into the chapter14/tree_api_service folder and start the main.py1.
script, as shown:

Terminal 1

(venv) $ cd tree_api_service

(venv) $ python main.py

* Serving Flask app "main" (lazy loading)

... truncated ...

INFO:werkzeug: * Running on http://0.0.0.0:5000/ (Press CTRL+C to

quit)

Next, open a second terminal and run the following curl command to set the2.
repeating light pattern sequence to red, blue, black:

Terminal 2
$ curl -X POST
"http://localhost:5000/lights/color?colors=red,blue,black&pattern=y
es"

Tying It All Together - An IoT Christmas Tree Chapter 14

[444]

Also in Terminal 2, run this next command to start making the lights animate:3.

Terminal 2
$ curl -X POST
"http://localhost:5000/lights/animation?mode=left&speed=5"

Other animation modes you can use for the mode parameter, in addition to left,
include right, blink, rainbow, and stop. The speed parameter takes a value
between 1 and 10.

To clear or reset the LED strip, run the following command, again in Terminal 2:4.

Terminal 2
$ curl -X POST "http://localhost:5000/lights/clear"

To make the servo sweep (that is, to make the tree shake), run the following5.
command in Terminal 2:

Terminal 2
$ curl -X POST "http://localhost:5000/servo/sweep"

The servo should sweep back and forth a number of times. If you want to make
the servo sweep more times or need to increase its range of movement, then you
can adjust the SERVO_SWEEP_COUNT and SERVO_SWEEP_DEGREES configuration
parameters in the chapter14/tree_api_service/config.py file.

If you find your LEDs dimming, flickering, or otherwise behaving
erratically when you make the servo move, or your servo twitches as you
change the APA102 LEDs, chances are that your external power supply
cannot deliver enough current to run both the LEDs and servo
simultaneously. As in interim measure, if you don't have another power
supply, try reducing the number of LEDs (APA102_NUM_LEDS in
config.py) and/or reducing the LED contrast
(APA102_DEFAULT_CONTRAST, also in config.py). This will lower the
current requirements of the LED strip.

Finally, let's run the web app and control our IoTree from a web browser by6.
opening a web browser on your Raspberry Pi desktop and navigating to the URL
http://localhost:5000. You should see a web page similar to the one
pictured here:

Tying It All Together - An IoT Christmas Tree Chapter 14

[445]

Figure 14.4 – Example IoTree web app

Try the following actions:

Click on colors in the color bar and watch that color get pushed to the APA102
LED strip.
Click the Pattern Fill button to fill the APA102 LED strip with the selected colors.
Click Left to start an animation.

The JavaScript behind this web app (found in
chapter14/tree_api_service/templates/index.html) is simply calling our IoTree
API similar to what we have already done using curl, only it's doing it using jQuery.
jQuery and JavaScript are beyond the scope of this book; however, they are briefly touched
on in Chapter 3, Networking with RESTful APIs and Web Sockets Using Flask.

You will find the full set of API documentation for the IoTree with
curl examples in the chapter14/tree_api_service/README.md file.

Tying It All Together - An IoT Christmas Tree Chapter 14

[446]

Our RESTful API implementation provides the basic API endpoints that we need for this
chapter; however, I am more than confident that you will be able to expand and adapt this
example for your own projects or add new functionality to your IoTree. I'll provide
suggestions on how you can expand your IoTree based on what you have learned in this
book toward the end of the chapter in the section titled Ideas and suggestions to extend your
IoTree.

Now that we have run and seen how to control our IoTree's lights and servo with a RESTful
API, next we will look at an alternative service implementation that will allow us to control
our IoTree using MQTT.

Configuring, running, and using the Tree
MQTT service
The Tree MQTT service program provides an MQTT interface for controlling our tree's
APA102 LED strip and servo by publishing MQTT messages to MQTT topics. You can find
the Tree MQTT service program in the chapter14/tree_mqtt_service folder, and it
contains the following files:

README.md: A full list of MQTT topics and message formats for controlling your
IoTree.
main.py: This is the program's main entry point.
config.py: Program configuration.
apa102.py: This is an exact copy of
the chapter14/tree_api_service/apa102.py. file
servo.py: This is an exact copy of
the chapter14/tree_api_service/servo.py file.
mqtt_listener_client.py: This is a class that connects to an MQTT broker
and subscribes to a topic that will receive messages to control the APA102 and
servo. When MQTT messages are received, they are turned into a PubSub
message and published using the PyPubSub library, which we discussed
in Chapter 12, Advanced IoT Programming Concepts - Threads, AsyncIO, and Event
Loops.
apa102_controller.py: This code receives PubSub messages sent
by mqtt_listener_client.py and updates the APA102 LED strip as
appropriate.
servo_controller.py: This code receives PubSub messages sent
by mqtt_listener_client.py and controls the servo.

Tying It All Together - An IoT Christmas Tree Chapter 14

[447]

A diagram depicting the Tree MQTT service program architecture is shown in Figure 14.5:

Figure 14.5 – Tree MQTT service architecture block diagram

Here is the high-level operation of the Tree MQTT service for the MQTT
publication depicted by the dotted line in the preceding diagram:

A red blue message is published on to the tree/lights/pattern topic at #1.1.
The message is received by the Paho-MQTT client at #2. The topic and message is2.
parsed in the on_message() method in mqtt_listener_client.py and
mapped into a local PubSub topic pattern using
the MQTT_TO_PUBSUB_TOPIC_MAPPINGS mapping dictionary found in
config.py.
The mapped message and parsed data are dispatched using the PyPubSub3.
library at #3.

Tying It All Together - An IoT Christmas Tree Chapter 14

[448]

The PyPubSub subscription in apa102_controller.py receives the pattern4.
topic and its payload data at #4
apa102_controller.py handles the message and data at #5 and calls the5.
appropriate methods on an APA102 instance (defined in apa102.py) that
directly interfaces and updates the physical APA102 LED strip with the repeating
pattern of red and blue.

In case you are wondering, the decision to use PyPubSub and re-dispatch MQTT messages
in mqtt_listener_client.py was a design decision based on my personal preferences to
decouple MQTT-related code and hardware control-related code, with the goal of making
the application easier to read and maintain. An alternative – and equally valid – approach
could have been to use apa102.py and servo.py within mqtt_listener_client.py in
direct response to the MQTT messages received.

Now that we have an understanding of how our Tree MQTT service works, before we can
run our Tree MQTT service, first we need to check its configuration. We'll do that next.

Configuring the Tree MQTT service
The Tree MQTT service configuration is found in
the chapter14/tree_mqtt_service/config.py file. Similar to the Tree API service,
they mostly relate to the configuration of the APA102 and the servo. You will also find this
file and its configuration options well commented.

The default configuration will be adequate for running an example locally on your
Raspberry Pi; however, just as we did for the Tree API service configuration, please check
and update the APA102_NUM_LEDS = 60 parameter as appropriate.

If you also needed to change any of the APA102_DEFAULT_CONTRAST,
SERVO_SWEEP_COUNT, or SERVO_SWEEP_DEGREES parameters while running the Tree API
example, please also update these values now for the MQTT example.

Once you have made any necessary changes to the configuration, we will proceed and run
our Tree MQTT service program and publish MQTT messages to make our IoTree work.

Tying It All Together - An IoT Christmas Tree Chapter 14

[449]

Running the Tree MQTT service program
It's now time to run the Tree MQTT service program and publish MQTT messages that will
control our IoTree. Here are the steps to run and test our Tree MQTT service:

We must have the Mosquitto MQTT broker service installed and running on our1.
Raspberry Pi, plus the Mosquitto MQTT clients tools. Please refer to Chapter 4,
Networking with MQTT, Python, and the Mosquitto MQTT Broker, if you need to
check your installation.
Change into the chapter14/tree_mqtt_service folder and start2.
the main.py script, as shown:

Terminal 1

(venv) $ cd tree_mqtt_service

(venv) $ python main.py

INFO:root:Connecting to MQTT Broker localhost:1883

INFO:MQTTListener:Connected to MQTT Broker

Next, open a second terminal and send an MQTT message using the following3.
command:

Terminal 2
$ mosquitto_pub -h "localhost" -t "tree/lights/pattern" -m "red
blue black"

The LED strip will light up with the repeating color pattern – red, blue, black
(black means that the LED is off).

Try experimenting with the --retain or -r retained message
option to mosquirro_pub. If you publish a retained message, it gets re-
delivered to your Tree MQTT services when it connects to the MQTT
broker and subscribes to the tree/# topic. This provides a way for your
IoTree to restore its last state in between restarts.

Now, run the following command in Terminal 2 to make the LED strip animate:4.

Terminal 2
$ mosquitto_pub -h "localhost" -t "tree/lights/animation" -m "left"

To clear or reset the LED strip, run the following command, again in Terminal 2:5.

Terminal 2
$ mosquitto_pub -h "localhost" -t "tree/lights/clear" -m ""

Tying It All Together - An IoT Christmas Tree Chapter 14

[450]

In this example (and also the next one in step 6), we don't have any
message content; however, we still need to pass an empty message with
the -m "" option (or, alternatively, -n); otherwise, mosquitto_pub will
abort.

Finally, try the following to sweep the servo:6.

Terminal 2
$ mosquitto_pub -h "localhost" -t "tree/servo/sweep" -m ""

The servo will sweep back and forth according to the values set
for SERVO_SWEEP_COUNT or SERVO_SWEEP_DEGREES in
chapter14/tree_mqtt_service/config.py.

You will find the full set of MQTT topics and message formats that are
recognized by the Tree MQTT service, complete with mosquitto_pub
examples, in the chapter14/tree_mqtt_service/README.md file.

Similar to our RESTful API example, our MQTT example provides the minimum
functionality that we need for this chapter but does provide a basic framework that you can
expand on for your own future projects, or if you extend your IoTree's features.

Now that we have run and seen how to control our IoTree's lights and servo with MQTT,
let's look at an integration service that we can use to couple our Tree MQTT service with
dweet.io.

Integrating the IoTree with dweet.io
The dweet integration service, found in the chatper14/dweet_integration_service
folder, is a Python-based integration service that receives dweets and re-publishes them as
messages to MQTT topics. This service provides us with a simple approach to integrate a
service such as IFTTT with our Tree MQTT service program.

The dweet integration service is made up of the following files:

main.py: The main program entry point.
config.py: The configuration parameters.
thing_name.txt: Where your thing name is saved. This file will be created
when you first start the program.
dweet_listener.py: The core program code.

Tying It All Together - An IoT Christmas Tree Chapter 14

[451]

The core of our dweet service is found in the dweet_listener.py file. If you inspect this
file, you will notice that it is almost identical to the dweet_led.py file covered in both
Chapter 2, Getting Started with Python and IoT, and Chapter 13, IoT Visualization and
Automation Platforms (except it's now wrapped as a Python class).

The core difference is found in the process_dweet() method, shown at line (1) in the
following code, where instead of directly controlling a LED, we instead intercept the dweet
and then re-publish it to MQTT topics:

def process_dweet(self, dweet): # (1)

 # ...Truncated...

 # command is "<action> <data1> <data2> ... <dataN>"

 command = dweet['command'].strip()

 # ...Truncated...

 # elements (List) <action>,<data1>,<data2>,...,<dataN>

 elements = command.split(" ")

 action = elements[0].lower()

 data = " ".join(elements[1:])

 self.publish_mqtt(action, data) # (2)

The publish_mqtt() method, shown at line (2) in the preceding code and at line (3) in the
following code, then turns our parsed command string into an MQTT topic based on the
ACTION_TOPIC_MAPPINGS setting found in
chapter14/dweet_mqtt_service/config.py and publishes the message:

 def publish_mqtt(self, action, data): # (3)

 if action in self.action_topic_mappings:

 # Map Action into MQTT Topic

 # (Eg mode --> tree/lights/mode).

 # See config.py for mappings.

 topic = self.action_topic_mappings[action]

 retain = topic in self.mqtt_topic_retain_message # (4)

 # ... truncated ...

 publish.single(topic, data, qos=0, # (5)

 client_id=self.mqtt_client_id,

 retain=retain, hostname=self.mqtt_host,

 port=self.mqtt_port)

 # ... truncated ...

Tying It All Together - An IoT Christmas Tree Chapter 14

[452]

Notice, at line (5), that we are using a Paho-MQTT publish.single() convenience
method, rather that than the fully fledged MQTT client approach we used in Chapter 4,
Networking with MQTT, Python, and the Mosquitto MQTT Broker (and that was also used in
the Tree MQTT service program).

At the moment, I just want to point out line (4), where we set the retain variable (also
notice its use in publish.single()). We will discuss this message retention more in the
following section when we discuss the service configuration file.

A diagram depicting the Tree service program architecture is shown in Figure 14.6:

Figure 14.6 – dweet integration service architecture block diagram

Here is the high-level operation of the dweet integration service for the request shown by
the blue dotted line in the preceding diagram:

A dweet is created at #1.1.
dweet_listener.py receives the dweet at #2 and parses the data contained in2.
the command parameter. The action contained within the commend is mapped
into an MQTT topic using the ACTION_TOPIC_MAPPINGS mapping
dictionary found in config.py.
A message is published to the MQTT broker to the mapped MQTT topic at #3.3.
The message's retained flag is set according to
the TOPIC_RETAIN_MESSAGE mapping dictionary found in config.py.

After the publication of the MQTT message, if your Tree MQTT service is running and
connected to the same MQTT broker, it will receive the MQTT message and update your
IoTree accordingly.

Now that we have an understanding of how our dweet integration service works, before
we can run our dweet integration service, first we need to check its configuration. We'll do
that next.

Tying It All Together - An IoT Christmas Tree Chapter 14

[453]

Configuring the Tree MQTT service
The dweet integration service configuration is found in
the chapter14/dweet_integration_service/config.py file. There are a number of
configuration options relating to how the service works, and the defaults will be adequate
for running this service locally on your Raspberry Pi where you also have your Mosquitto
MQTT broker running. The configuration parameters are well commented in this file;
however, I will make mention of the ACTION_TOPIC_MAPPINGS
and TOPIC_RETAIN_MESSAGE parameters:

ACTION_TOPIC_MAPPINGS = {

 "clear": "tree/lights/clear",

 "push": "tree/lights/push",

 ... truncated ...

}

The dweet integration service maps dweeted commands into MQTT topics. It's
the ACTION_TOPIC_MAPPINGS configuration parameter that determines how commands
are mapped into MQTT topics. We'll discuss this idea of commands in the next section.

The MQTT topics mapped and used by the dweet integration service must
match those used by a Tree MQTT service. The default configurations for
each service use the same topics.

The TOPIC_RETAIN_MESSAGE configuration shown in the following code determines which
MQTT topics will have their message's retained flag set. It's this configuration (True or
False) that is used to set the retained parameter on single.publish(), as we pointed
out in the previous section:

TOPIC_RETAIN_MESSAGE = {

 "tree/lights/clear": False,

 "tree/lights/animation": True,

 ... truncated ...

}

Now that we have discussed the configuration file, let's start our dweet integration service
and send it dweets that will control our IoTree.

Tying It All Together - An IoT Christmas Tree Chapter 14

[454]

Running the dweet integration service program
Our dweet integration service works by receiving dweets in a predefined format and turns
them into MQTT topics and messages as per the configuration parameters we discussed in
the previous section. We'll discuss this dweet format shortly as we run and test the dweet
integration service. Here are the steps we need to follow:

Firstly, make sure you have the Tree MQTT service program from the previous1.
section running in a terminal. It is the Tree MQTT service that will receive and
process the MQTT messages published by the dweet integration service.
Next, navigate to the chapter14/dweet_integration_service folder in a2.
new terminal and start the main.py program, as shown (remember your thing
name will be different):

(venv) $ cd dweet_service

(venv) $ python main.py

INFO:DweetListener:Created new thing name ab5f2504

INFO:DweetListener:Dweet Listener initialized. Publish command

dweets to 'https://dweet.io/dweet/for/ab5f2504?command=...'

Copy and paste the following URLs into a web browser to control your IoTree.3.
Use the thing name shown in your output in place of the <thing_name> text:

https://dweet.io/dweet/for/<thing_name>?command=patt

ern%20red%20blue%20black

https://dweet.io/dweet/for/<thing_name>?command=anim

ation%20left

https://dweet.io/dweet/for/<thing_name>?command=spee

d%2010

https://dweet.io/dweet/for/<thing_name>?command=clea

r

https://dweet.io/dweet/for/<thing_name>?command=swee

p

It may take a few moments between calling one of these URLs and it being
received by your dweet integration service.

As you will see in the command parameter in the preceding URLs, the format of our dweets
is <action> <data1> <data2> <dataN>.

Tying It All Together - An IoT Christmas Tree Chapter 14

[455]

You will find the full set of dweet command strings recognized by the
default configuration in config.py, complete with example URLs, in
the chapter14/dweet_integration_service/README.md file.

Well done! We've just created a simple integration service using dweet.io and MQTT and
learned a simple and non-invasive approach that allows us to control our tree over the
internet that did not require you to make any network or firewall configurations.

When designing an IoT project and considering how data is moved around the internet and
networks, it's common to find that you need to design and build some form of integration
to bridge systems that are built on different transport mechanisms. Our example in this
section illustrates a scenario where we bridge an MQTT service (our IoTree MQTT service)
with a polling-based RESTful API service (dweet.io). While every integration has its own
requirements, hopefully this example has provided you with a rough roadmap and
approach that you can adapt and build upon in the future when you encounter these
scenarios.

Now that we have our dweet integration service running and have tested that it's working,
let's see how we can use it together with the IFTTT platform.

Integrating with email and Google Assistant
via IFTTT
Now comes the really fun part – let's make our tree controllable over the internet. As a
spoiler, I'm not going to hold your hand through this integration because the core concepts
on using dweet.io and IFTTT together were explained in detail in Chapter 13, IoT
Visualization and Automation Platforms. In particular, we learned how to integrate our
Raspberry Pi with IFTTT and email to control a LED.

What I will do, however, is give you screenshots of my IFTTT configuration so that you can
verify what you set up. Plus, as a bonus, I'll also give you a tip and screenshot on how to
integrate with Google Assistant so that you can voice-control your IoTree!

Tying It All Together - An IoT Christmas Tree Chapter 14

[456]

At the time of writing, IFTTT has a Google Assistant service that can take
arbitrary spoken text (in IFTTT lingo, an ingredient). I did check out Alexa
integration but unfortunately, the Alexa IFTTT service could not take
arbitrary input and so was not compatible with our example.

First, we will look at a few pointers on how to integrate our IoTree with email.

Integration with email
The process for integrating with email or Twitter is the same as what we covered
in Chapter 13, IoT Visualization and Automation Platforms, with the following changes:

Rather than using LED as the hashtag (the Complete Trigger Fields Page step in1.
IFTTT), use TREE. This way, your email subject can be something such as #TREE
pattern red blue or #TREE animation blink.
When configuring the That webhook service, you need to use the dweet URL2.
printed on the terminal previously when you ran the dweet integration service.
An example from my configuration is shown in the following figure. Remember
the thing name in your URL will be different:

Figure 14.7 – Webhook configuration

Tying It All Together - An IoT Christmas Tree Chapter 14

[457]

Once you have completed setting up your IFTTT Applet, try emailing3.
trigger@applet.ifttt.com with the following subject:

#TREE pattern red blue black

#TREE animation left

A few moments after emailing or tweeting the #TREE pattern red blue
black command, your tree's lights will change to these colors in a repeating pattern.
Similarly, a few moments after emailing or tweeting #TREE animation left, your tree
lights will start animating.

Remember, you will need to have both the Tree MQTT service and dweet
integration service running in terminals for this example to work. It may
also take a few moments after sending an email or posting a tweet before
your IoTree changes.

Once you have been able to control your IoTree with email, next we'll look at the steps
necessary to add voice control using Google Assistant.

Integration with Google Assistant
Let's make our IoTree voice-controllable using Google Assistant.

Google Assistant comes in many other forms, including Google Home,
Google Nest, and Google Mini. These products will also work with the
IFTTT Google Assistant integration and your IoTree as long as they are
signed in to the same Google Account you use with IFTTT.

To create our integration, we need to link your Google account with the IFTTT Google
Assistant service and call a dweet.io URL when it receives commands. Here are the high-
level steps to follow:

Log in to your IFTTT account.1.
Create a new Applet.2.
For the This part of the Applet, use Google Assistant Service.3.
Next, you will be asked to connect and allow IFTTT to use your Google account.4.
Follow the on-screen instructions to connect IFTTT and your Google account.

Tying It All Together - An IoT Christmas Tree Chapter 14

[458]

Now it's time to select the Google Assistant trigger. Choose Say a phrase with a5.
text ingredient. A sample trigger configuration is shown in Figure 14.8:

Figure 14.8 – Google Assistant trigger example

It's the $ sign in Tree $ shown in the preceding screenshot that gets turned into an
IFTTT ingredient that we will use with our webhook service (which we'll see in a
later step).

With this trigger configuration, you can say commands such as the following to
control your IoTree:

"Tree pattern red blue black"
"Set tree animation blink"
"Tree clear"

It's time to configure the That part of the IFTTT Applet. Search for and select6.
WebHook.
Configuration of the webhook service is the same as the process we covered7.
previously under the Integration with email heading in step 2, and as shown in
Figure 14.7.

Tying It All Together - An IoT Christmas Tree Chapter 14

[459]

Continue and complete the creation of your IFTTT Applet.8.
Ask your Google Assistant the following commands:9.

"Tree pattern red blue black"
"Tree animation blink"
"Tree clear"
"Tree sweep" (or "tree jingle")
Or any other command documented in the
chapter14/dweet_integration_service/README.md file

Remember, it may take a moment after Google Assistant acknowledges
your request for your IoTree to start changing.

Here is a screenshot of my Google Assistant dialog on my iPhone:

Figure 14.9 – Google Assistant dialog to control the IoTree

Tying It All Together - An IoT Christmas Tree Chapter 14

[460]

If the integration is working, Google Assistant will respond with "Ok, Updating Tree"(or
whatever text you used at step 5), and moments later, your IoTree will respond.

The important thing to remember is that we must speak commands
exactly as they are interpreted by the dweet integration service – for
example, as they would appear in the command parameter to a dweet
URL, such
as https://dweet.io/dweet/for/<thing_name>?command=pattern
red blue black.

Remember to prefix them with the word "Tree" (or "Set Tree"). This text is what triggers
your IFTTT Applet. Just speaking a command alone will not trigger your Applet.

If you use an Android phone or the Google Assistant app for iOS, you will
be able to see how your spoken words are turned into textual commands,
which can help you troubleshoot commands that are not working or are
misunderstood.

You've just learned how to create three IFTTT integrations to control your IoTree using
email and your voice, and you can easily adapt the same basic ideas and processes to
control and automate other electronic circuits we've seen in this book.

Furthermore, as we discussed in Chapter 13, IoT Visualization and Automation Platforms,
IFTTT provides many triggers and actions that you can combine to build automation
workflow Applets. Between this chapter and the previous one, you have now created
several Applets, so I have every confidence that you'll be able to explore the IFTTT
ecosystem and create all sorts of interesting Applets that work together with your
Raspberry Pi.

Before we conclude this chapter (and the book!), I want to leave you with a few ideas and
experiments you can conduct to further expand your IoTree's capabilities.

Ideas and suggestions to extend your IoTree
The code and electronics we have used throughout this chapter have given us a foundation
that we can build upon. This might be to extend your IoTree, or as the basis for other IoT
projects.

Tying It All Together - An IoT Christmas Tree Chapter 14

[461]

Here are a few suggestions you can try:

Add and integrate a PIR sensor that plays an RTTTL tune whenever anyone
walks past your IoTree. After all, what electronic Christmas gadget is complete
unless it drives everyone crazy by playing tunes over and over and over and
over...
Add and integrate an RGB LED to the top of the tree (maybe inside a transparent
star), or use RGB LEDs in place of – or together with – the APA102 LED strip.
Build multiple IoTrees. If you use MQTT, they'll synchronize!
Try to build a WebSocket integration and an accompanying web app.
The current dweet Google Assistant integration requires you to speak commands
exactly. Can you create an upgrade that is a little fuzzier – that is, that can parse
spoken text and work out what command is spoken?
We used dweet.io (together with MQTT) in our IFTTT examples, so we did not
have to worry about firewall configurations. You might want to investigate
opening up a firewall port at your place or investigate services such as
LocalTunnels (https:/​/​localtunnel.​github.​io/​www) or ngrok (https:/​/​ngrok.
com). These approaches will allow you to use IFTTT webhooks to directly
communicate with your IoTree's RESTful API. However, do remember that our
RESTful API examples are not secured – they are not using HTTPS and there is
no authentication mechanism such as a username and password to restrict access
to the APIs, so you might want to also research how to secure a Flask-based API
and perform these upgrades first.

Obviously, these are just a few of my suggestions. We've covered many circuits during our
journey, so use your imagination and see what you come up with – and have fun!

Summary
Congratulations! We have now reached the end of the chapter and the end of the book!

In this chapter, we ran through the electronics and tested programs that control those
electronics that create the basis of an IoT Christmas tree. We've seen a RESTful API that can
control our IoTree's lights and servo, as well as a comparable MQTT implementation. We
also looked at a dweet.io-to-MQTT integration service, which we coupled with IFTTT to
provide a mechanism to control out IoTree using email and Google Assistant.

https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://localtunnel.github.io/www
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com

Tying It All Together - An IoT Christmas Tree Chapter 14

[462]

Throughout our journey in this book, we have covered many concepts and technologies,
including a variety of networking techniques, electronic and interfacing fundamentals, and
a range of practical examples using sensors and actuators with your Raspberry Pi. We have
also looked at automation and visualization platforms and finished off, in this chapter, with
one example of tying our learnings together.

I had a couple of core intentions in mind when I wrote this book. One of my intentions was
to share and explain the reasons behind how we connect sensors and actuators to a
Raspberry Pi, and why we accompany them with additional components such as resistors to
create voltage dividers. My second core intention was to provide you with a variety of
networking techniques and options that are applicable to IoT projects.

I believe that the software and hardware fundamentals, together with practical examples
you have learned throughout our journey, will provide you with many skills and insights
to not only help you design and build your own complex IoT projects but to also
understand, at a fundamental level, how existing IoT projects work at a software,
networking and electronics level.

It is my sincere hope that you have enjoyed this book, learned a lot, and picked up many
practical tips along the way! All the best on your IoT journey, and I hope you create some
amazing things!

Questions
As we conclude, here is a list of questions for you to test your knowledge of this chapter's
material. You will find the answers in the Assessments section of the Appendix:

Why, in our MQTT service example, did we use PyPubSub to re-dispatch MQTT1.
messages?

Why is using the Google Assistant app on a phone (or tablet) useful during2.
development when integrating with or debugging an IFTTT Google Assistant
Applet?
You are working on an existing weather monitoring project that uses MQTT as3.
its network transport layer to connect many distributed devices. You have been
asked to integrate the application with an IFTTT service. How do you do this?
You want to build multiple IoTrees and have them all work together in unison.4.
What are two approaches you can take to achieve this outcome?

Tying It All Together - An IoT Christmas Tree Chapter 14

[463]

Why did we use the free dweet.io service in this chapter? Would you use this5.
approach in a commercial IoT project?
We want to test a RESTful API service from the command line. What command-6.
line tool can we use?
What feature of MQTT can you use to have IoTrees initialize automatically when7.
their Raspberry Pis are powered on or rebooted?
Further to Question 7, what are some of the considerations you will need to make8.
regarding the Mosquitto MQTT broker setup and deployments to achieve this
outcome?

http://dweet.io

Assessments

Chapter 1
To keep your project-specific Python packages and dependencies isolated from1.
other projects and the system-level Python packages.
No. You can always regenerate a virtual environment and reinstall packages.2.
To keep a list of all the Python packages (and versions) that your Python projects3.
rely on. Having a maintained requirements.txt file allows you to reinstall all
packages easily with the command pip install -r requirements.txt.
Make sure you are using the absolute path to the Python interpreter that is in the4.
bin folder of your virtual environment.
It activates a virtual environment so that all users of Python and pip are5.
sandboxed to the virtual environment.
deactivate. If you type exit (and we all do it sometimes!), it exits the Terminal6.
window or closes your remote SSH session! Grrrrr.
Yes, just change into the projects folder and activate the virtual environment.7.
Python IDLE, but remember you need to use python -m idlelib.idle8.
[filename] & in a virtual environment.
Check that the I2C interface has been enabled in Raspbian.9.

Chapter 2
Sort by answer number so that you do not damage other components or the1.
resistor... unless you understand how the different values will affect the
electronic circuit and it's safe to do so.
False. GPIO Zero is a wrapper on top of other GPIO libraries. It's designed to be2.
easy to use for beginners by hiding away lower-level GPIO interfacing details.
False. In many scenarios, you are better off using mature higher-level packages3.
as they will help speed up development. The Python API documentation also
recommends this approach.
No. An LED has positive (anode) and negative (cathode) terminals (legs) and4.
must be connected the correct way around.

Assessments

[465]

There's a chance that there is a mismatch between the devices' time zone5.
handling.
signal.pause()6.

Chapter 3
We can create and configure an instance of RequestParser. We use this instance1.
in our controller's handler methods such as .get() or .post() to validate the
client's request.
WebSockets – a client and server built using Web Sockets can initiate a request to2.
one another in either direction. This is in contrast to a RESTful API service where
only the client can initiate a request to the server.
Flask-SocketIO does not include an in-built validation class like Flask-RESTful.3.
You have to perform input validation manually. Alternatively, you could also
find a suitable third-party Python module to use from PyPi.org.
The templates folder is the default location where the Flask framework looks4.
for template files. It's in this location where we store our HTML pages and
templates.
We should initialize event listeners and the web page content in the document5.
ready function, which is called once the web page has been completely loaded.
The command is curl. It is installed by default on most Unix-based operating6.
systems.
Changing the value property changes the PWM duty cycle for the LED. We7.
visualize this as changing the brightness of the LED.

Chapter 4
MQTT, or Message Queue Telemetry Protocol, is a lightweight messaging1.
protocol frequently used in distributed IoT networks.
Check the QoS levels, making sure they are either level 1 or 2.2.
A Will message will be published on behalf of a client if that client abruptly3.
disconnects from the broker without cleanly closing the connection first.
Both the published message and subscribing clients must use at least QoS level 1,4.
which ensures messages are delivered one or more times.

Assessments

[466]

Ideally, nothing should need to change in your Python code other than perhaps5.
the broker host and port because MQTT is an open standard. The proviso is that
the new broker is configured similarly to the broker being replaced – for
example, both brokers are configured similarly to provide message retention or
durable connection features to clients.
You should subscribe to topics in an on successful connection-type handler. This6.
way, if the client loses its broker connection, it can automatically reestablish topic
subscriptions when it reconnects.

Chapter 5
SPI (Serial Peripheral Interface Circuit). LED strips and matrices are common1.
examples.
You can refer to the device's official datasheet, or use the command-line tool2.
i2cdetect, which lists the addresses of all connected I2C devices.
Make sure you are using the correct pin numbering scheme expected by the3.
library, and/or make sure you have configured the library to use the scheme you
prefer if the library provides this option.
The driver library is not built upon PiGPIO and therefore does not support4.
remote GPIO.
False. All GPIO pins are rated for 3.3 volts. Connecting any voltage higher than5.
this can damage your Raspberry Pi.
The library you are using to drive the servo is most likely using software PWM to6.
generate the PWM signals for the servo. Software PWM signals can be distorted
when the Raspberry Pi's CPU gets busy.
If you are powering the servos from the 5-volt pin of your Raspberry Pi, it'll7.
indicate that you are drawing too much power, effectively robbing the power
from the Raspberry Pi. Ideally, the servos should be powered from an external
power source.

Chapter 6
Generally speaking, yes. It's safe to try because a higher resistance results in a1.
lower current in the circuit (Ohm's law) and 330Ω is relatively close to the desired
200Ω resistor.
The higher resistance has resulted in less current to the point that there is not2.
enough current for the circuit to operate reliably.

Assessments

[467]

The amount of power to be dissipated by the resistor exceeds the resistor's power3.
rating. In addition to using Ohm's law to determine a resistor value, you also
need to calculate the expected power dissipation of the resistor and ensure that
the resistor's power rating (in watts) exceeds your calculated value.
1 (one). An input GPIO pin connected to +3.3 volts is a logical high.4.
GPIO 21 is floating. It's not pulled up to +3.3 volts by a physical resistor or via5.
code using a function call such as pi.set_pull_up_down(21,
pigpio.PUD_UP).
You must use a logic level converter. This could be a simple resistor-based6.
voltage divider, a dedicated logic level converter IC or module, or any other form
that can appropriately shift down 5 volts to 3.3 volts.
False. A resistor voltage divider can only step down a voltage. However,7.
remember that it may be possible to drive a 5-volt logic device using 3.3 volts as
long as the 5-volt device registers 3.3 volts as a logical high.

Chapter 7
MOSFETs are voltage-controlled components, while BJTs are current-controlled1.
components.
You do not have a pull-down resistor on the MOSFET's gate leg, so it's left2.
floating. The MOSFET discharges slowly and this is reflected as the motor is
spinning down. Using a pull-down resistor ensures the MOSFET discharges
promptly and becomes off.
(a) Make sure the G, S, and D legs are connected correctly because different3.
package styles (for example, T092 versus TP220) have their legs ordered
differently.
(b) You also want to make sure that the MOSFET is logic-level compatible so that
it can be controlled using a 3.3-volt voltage source.
(c) Ensure that the voltage divider created between the pull-down resistor and
the current limiting resistor allows >~3 volts into the MOSFET's gate leg.
Optocouplers and relays electrically isolate the input and output sides of a4.
circuit. Transistors are in-circuit, and while they allow a low-current device to
control a larger current device, both devices are still both electrically connected
(for example, you will see a common ground connection).
Active low is where you make a GPIO low to turn on or activate the connected5.
circuit. Active high is the opposite, in that we make the GPIO pin high to activate
the connected circuit.

Assessments

[468]

Code activated pull-down only becomes pull-down when the code is run, so the6.
MOSFET gate is basically left floating until the code is run.
The stall current is the current used by the motor when its staff has been, well,7.
stalled – for example, forcefully stopped from turning. This is the maximum
current that a motor will draw.
There is no difference – they are two terms used interchangeably to describe the8.
current a motor uses when it is spinning freely with no load attached to the
motor's shaft.

Chapter 8
Check that your power supply can deliver enough current (and voltage) to your1.
LED strip. Current requirements increase in proportion with the number of LEDs
you want to illuminate, and the color and brightness they are set to. An
insufficient current can mean that the internal red/green/blue LEDs are not
illuminated correctly and thus the colors are not as you expected.
The absence of a Slave Select or Client Enable pin means that the APA102 takes2.
full control of the SPI interface. This means that you cannot connect more than
one SPI slave to an SPI pin (unless you employ additional electronics).
First, check that your logic level converter is connected correctly. Secondly, it's3.
possible that the logic level converter cannot convert logic levels fast enough to
keep up with the SPI interface. Try lowering the SPI bus speed.
We use the PIL (Python Imaging Library) to create an in-memory image4.
representing what we want to display. We then send this image to the OLED
display for rendering.
RTTTL means Ring Tone Text Transfer Language, which is a ring-tone music5.
format created by Nokia.

Chapter 9
The DHT22 is a more accurate sensor, and it is capable of sensing a greater range1.
of temperatures and humanities.
The external pull-up resistor is optional because our Raspberry Pi can use its2.
internal embedded pull-up resistor.

Assessments

[469]

An LDR is a light-sensitive resistor. When used as part of a voltage-divider3.
circuit, we turn the varying resistance into a varying voltage. This voltage can
then be detected by an analog-to-digital converter such as the ADS1115, which is
connected to your Raspberry Pi.
Try varying the resistance of the fixed resistor in the voltage-divider circuit. Try4.
higher-value resistances to make the LDR more sensitive in darker conditions.
Try lower-resistance values to make the LDR more sensitive to brighter
conditions.
No two LDRs are identical when it comes to the resistances they measure. If you5.
swap out an LDR in a circuit, re-calibrate the code just to be sure.
Water conducts electricity. It acts as a resistor between the two probe wires. This6.
resistance is converted to a voltage by the voltage divider, and this is detectable
by the ADS1115 ADC.

Chapter 10
We typically find default reference pulse widths of 1 ms for left, and 2 ms for1.
rights used for the servos. In reality, the servos may need slightly adjusted pulse
widths to reach their extreme rotation positions.
You are applying a pulse width that is trying to rotate your servo beyond its2.
physical limits.
An H-bridge allows us to also change the rotation of a motor and apply a brake3.
to quickly stop the motor spinning.
Many factors affect the reliability of braking, including the IC and your motor.4.
You can adopt PWM-style braking as an alternative braking technique.
Vibrating but not turning is often the symptom of a mismatch between the coil5.
energizing order and the coil stepping sequence. You need to identify and ensure
the stepper motor's coils are connected correctly and match the stepping
sequence. Consulting your stepper motor's datasheet is the best place to start.
The L293D has a voltage drop of around 2 volts, so your motor is only getting6.
around 3 volts. To compensate for this voltage drop, you would need a power
source of 7 volts.
No. The GPIO pins only supply 3.3 volts. While this might be just enough to7.
rotate a 5-volt stepper motor, the current requirements of a stepper motor will
exceed the safe limits of the Raspberry Pi GPIO pins.

Assessments

[470]

Chapter 11
No. A passive infrared (PIR) sensor can only detect abstract movement. You will1.
need an active-type infrared sensor or a device like a thermal camera (and a lot
more complex code) to extract richer movement information.
An ultrasonic sensor measures the round-trip timing of ultrasonic pulses, which2.
is then used to calculate distance. Factors that affect the ultrasonic pulse timing
or the speed-of-sound constant used therefore affect the calculated distance.
Some examples include temperature since this affects the speed of sound, the
material of the detected object (for example, does it absorb sound?), the size of
the object, and its angle relative to the sensor.
Both latching and non-latching Hall effect sensors output a digital signal – their3.
output pin is either HIGH or LOW. In contrast, ratiometric Hall effect sensors
output an analog signal (varying voltage) relative to how close they are to a
magnetic field.
The callback_handler function will be called whenever GPIO transitions4.
to either a HIGH or LOW state.
So that the relative voltage drop across the resistor that sits between the 5-volt5.
source and the voltage-divider output (between the two resistors) is 3.3 volts,
that is, 5 volts * 2kΩ/(1kΩ + 2kΩ) = ~3.3 volts. If you reversed the resistor values
in the circuit, the voltage-divider output would be ~1.7 volts, that is, 5 volts *
1kΩ/(1kΩ + 2kΩ) = ~1.7 volts.
After consulting the datasheet for the HC-SR501 PIR sensor, we learn that its6.
output pin always works at 3.3 volts even though it's powered from 5 volts, thus
we did not need a voltage divider. (Note that, in practice, we ideally would also
confirm this by our measurement.)

Chapter 12
A publish-subscribe approach promotes a highly decoupled approach to1.
programming. This can be beneficial when you have many components (for
example, sensors) publishing data that simply needs to be consumed elsewhere
in your program.
GIL stands for Global Interpreter Lock. It's a design aspect of the Python2.
programming language that means only one thread ever has access to the Python
interpreter at a time.

Assessments

[471]

A pure event loop (for example, one long while loop) can get complex as your3.
program grows. The need for many state variables and non-
trivial and intervening conditional tests (for example, if statements) can make the
program logic hard to follow and debug.
No. Every approach has its purpose. Event loops are fine when they are small4.
and focused. It's only when they become large and are performing multiple
actions that they become complex.
When you are programming with threads, calling join() on another thread5.
joins that thread to your current thread. Your current thread then blocks until all
joined threads run methods complete. This is a simple way of synchronizing the
completion of multiple threads.
Perhaps you are using a sleep statement (from the time library), such6.
as sleep(duration), which blocks for the full duration. Try using the approach
in the following example, which will allow your program to remain responsive
to a change in the value of duration:

duration = 1 # 1 second

timer = 0

while timer < duration:

 timer += 0.01

 sleep(0.01)

No approach is superior. There is always more than one way to reach your7.
programming goal in Python. The best approach, or combination of approaches,
all depends on your project and what you are trying to achieve. The best
approach can also be the one that is best for you based on your personal
preferences and preferred programming style.

Chapter 13
We used different temperatures to create a buffer so that we would not generate1.
multiple triggers (and multiple emails) if the temperature hovered around a
single temperature value.
Using an intermediary meant we did not need to worry about a firewall, port2.
forwarding, and other configurations necessary to expose your Raspberry Pi to
the public internet.
IFTTT is more consumer-focused, while Zapper is more business-focused in3.
terms of the integrations it provides. Zapper will also allow you to create a more
complex workflow, trigger, and action scenarios.

Assessments

[472]

No. ThingSpeak only consumes data to display on a dashboard. Some platforms,4.
such as ThingBoard, will allow you to send data back to a device for the
purposes of controlling that device.
There is a maximum of three JSON properties available – Value1, Value2, and5.
Value3.
From ease and speed of development perspectives, IFTTT or Zapper would be a6.
good choice, but you could certainly use AWS or one of the other major IoT
platforms, or even Home Assistant.

Chapter 14
The use of PyPubSub was a design decision to decouple MQTT-related code and1.
logic from hardware control code and logic, with the goal of making the code
cleaner and easier to maintain.
The commands you speak when using the Google Assistant app are shown on2.
your device as text, so it's easy to see how Google Assistant heard your spoken
commands, and what was sent as textual commands to your IFTTT Applet.
You will need to build an integration service that marshals data between MQTT3.
and the RESTful APIs (or, alternatively, identify a thirty-party service that does
this – for example, check out https:/​/​io.​adafruit.​com and their IFTTT
service). IFTTT offers RESTful webhooks as an option to build custom
integrations, however, it does not offer an MQTT option.
One option is to use MQTT, just like the example we covered in this chapter. If4.
you connect multiple IoTrees using MQTT to a central MQTT broker, they all
receive instructions together. A second option could be to build a WebSockets-
based service and application (we covered this approach in Chapter 3,
Networking with RESTful APIs and Web Sockets Using Flask).
We used the free dweet.io service for practical convenience so what we did not5.
have to worry about firewalls, port forwarding, and router configurations at your
place (just in case this is something you are not experienced with). The
free dweet.io service offers no security or privacy, so it is undesirable for many
projects. If you like the idea of dweet.io, there is dweetpro.io, a paid alternative
that offers security and many other features that are not available in the free
version.
CURL is a popular command-line tool that can be used to test RESTful APIs.6.
Postman (getpostman.com) is a popular GUI tool that can also be used for the
same purpose.

https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
https://io.adafruit.com
http://dweet.io
http://dweet.io
http://dweet.io
https://dweetpro.io
https://getpostman.com

Assessments

[473]

If you use the retained message features of the MQTT broker, each IoTree will7.
receive the last message (for example, what color pattern to show) when it
connects and therefore can initialize itself. We covered retained messages
in Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker.
If your MQTT broker is running on the same Raspberry Pi as an IoTree and you8.
restart this Raspberry Pi, all retained messages will be lost unless the Mosquitto
MQTT broker has persistence enabled in its configuration. (Our configuration
from Chapter 4, Networking with MQTT, Python, and the Mosquitto MQTT Broker,
ensured persistence is enabled).

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Internet of Things with MQTT

Tim Pulver

ISBN: 978-1-78934-178-2

Explore MQTT programming with Arduino
Discover how to make your prototypes talk to each other
Send MQTT messages from your smartphone to your prototypes
Discover how you can make websites interact with your prototypes
Learn about MQTT servers, libraries, and apps
Explore tools such as laser cutting and 3D printing in order to build robust
prototype cases

https://www.packtpub.com/product/hands-on-internet-of-things-with-mqtt/9781789341782

Other Books You May Enjoy

[475]

Internet of Things Projects with ESP32

Agus Kurniawan

ISBN: 978-1-78995-687-0

Understand how to build a sensor monitoring logger
Create a weather station to sense temperature and humidity using ESP32
Build your own Wi-Fi wardriving with ESP32. Use BLE to make interactions
between ESP32 and Android
Understand how to create connections to interact between ESP32 and mobile
applications
Learn how to interact between ESP32 boards and cloud servers
Build an IoT Application-based ESP32 board

https://www.packtpub.com/product/internet-of-things-projects-with-esp32/9781789956870

Other Books You May Enjoy

[476]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

1
1-wire interfaces 162
1-wire temperature sensors 296

2
200 Ohm resistor
 Raspberry Pi's, limitations 195, 196
 resistor value, calculating 194, 195
 resistor's power dissipation, calculating 196, 198
 using, for LED circuit 192

4
4-wire servos 324

A
active buzzers 282
Adafruit-Blinka
 URL 154
Adafruit
 URL 188
ADS1115 ADC circuit
 building 165, 166, 167, 168, 169
ADS1115 connection, with Raspberry Pi
 checking 169, 170
Amazon Elastic Beanstalk
 reference link 433
Amazon IoT Core
 URL 433
Amazon Web Services (AWS) 433
analog electronic components
 examples 159
analog electronics
 analog input 209
 analog output 208, 209
 exploring 207
analog input, reading with ADS1115

 about 170, 171, 172
 ADS1115 configuration 173
 ADS1115 setup 173
 code 172
 global variables 173
 imports 172, 173
 program entry point 174
analog input
 about 209
 voltage divider 209, 210, 212
analog IO 158, 159
analog output 208, 209
Analog-to-Digital-Converter (ADC)
 about 159, 298
 interfacing with 163, 164
anode 45
APA102 circuit
 creating 262, 263, 264, 265
 powering 266
APA102 LED strip code
 configuring 267
 overview 267, 268, 269, 270, 271
 running 267
APA102 LED strip troubleshooting
 tips 272
APA102
 interface 271, 272
Asynchronous IO (AsyncIO) 380
AsyncIO approach
 experiment 397, 398
 exploring 392, 393, 394, 395, 396, 397

B
Bipolar Junction Transistor (BJT) 237
bipolar stepper motor 340
breadboard prototype circuit
 breadboard 40, 41, 42

[478]

 creating 39, 40
 LED, connecting 45, 46, 47
 LED, positioning 45, 46, 47
 push button, connecting 42, 43, 44
 push button, positioning 42, 43, 44
 resistor, connecting 47, 48, 49
 resistor, positioning 47, 48, 49

C
cathode 45
chips 41
Circuit Python + Blinka
 highlights 154
 reviewing 154
Circuit Python
 URL 154
circuit
 building 374
 detection options, comparing 310, 311, 312
 moisture, detecting 307, 308, 309
 testing 375
Client Enable/Slave Select (CE/SS) 271
color
 making, with PWM 255
 making, with RGB LED 255
Common Anode 256
Common Cathode 256
continuous current 229
continuous rotation servos 323
core modules, Python Paho-MQTT client library
 client 131
 publisher 131
 subscriber 131
current data, LED
 measuring 230, 231, 232
current data, relay
 measuring 230, 231, 232
current load, DC motor
 measuring 227, 228, 229

D
DC motor
 current load, measuring 227, 228, 229
debounce threshold 63
DHT11 circuit

 creating 292, 293
DHT11 code
 executing 294, 295
 exploring 294, 295
DHT11 sensors
 versus DHT22 sensors 292
DHT22 circuit
 creating 292, 293
DHT22 code
 executing 294, 295
 exploring 294, 295
DHT22 sensors
 versus DHT11 sensors 292
digital electronics
 digital input 200, 201, 202
 digital output 198, 200
 exploring 198
 pull-down resistor, using 203
 pull-up resistor, using 203
digital input 200, 201, 202
digital IO 158
digital output 198, 200
Digital-to-Analog Converter (DAC) 159, 209
distance
 detecting, with Hall-effect sensors 365, 366
 measuring, with ultrasonic sensor 354, 355
Dupont cables 39
durable connections
 about 124
 creating 126, 127, 128
dweet integration service program
 running 454, 455
dweet.io service
 using, as intermediary 415
dweet.io
 IoTree, integrating with 450, 452

E
electrical short 46
electricity discharge (ESD) 326
electronic components
 failing 190
electronic principles
 200 Ohm resistor, using for LED circuit 192, 193
 interfacing, for GPIO control 191

[479]

 Kirchhoff's circuit laws 192
 Ohm's Law and power 191
electronic schematic diagram
 ground connections 54
 ground symbols 54, 55
 LED and resistor schematic connection, reading

52, 54
 push button schematic connection, reading 50,

52

 reading 49, 50
electronics
 components, purchasing 187
 modules and components, buying 187
 open source hardware modules, purchasing 188
 workshop tools 186, 187
email
 LED, controlling from 421, 422
event-loop approach
 exploring 381, 382, 384
example H-Bridge code, running to control motor
 about 331
 motor.py 331, 332, 333
 motor_class.py 333, 334, 335, 336, 337

F
Flask microservices framework 80
Flask-RESTful service
 creating 416
Flask-RESTful
 used, for creating RESTful API service 80, 81
Flask-SocketIO
 used, for creating Web Socket service 96
free current 229

G
get() class method 88
getState() function 92
Global Interpreter Lock (GIL) 386
Google Cloud 433
GPIO control
 used, for interfacing electronic principles 191
GPIO interface
 configuring, on Raspberry PI 31, 32, 33
GPIO libraries
 with PWM support 161

GPIO pin numbering schemes 151
GPIOZero example
 versus PiGPIO example 60, 61
GPIOZero
 about 134
 highlights 153
 reviewing 153
 URL 153
 used, to make LED blink 56, 57

H
H-Bridge IC
 used, for controlling motor 324, 325
Hall-effect sensor circuit
 creating 367, 368, 369
Hall-effect sensor code
 exploring 369, 370
 running 369, 370
Hall-effect sensors
 distance, detecting 365
 latching switch types (digital) 365
 movement, detecting 365, 366
 non-latching switch types (digital) 365
 ratiometric types (analog) 365
hardware-timed PWM
 visualizing 181, 182
HC-SR04 circuit
 building 358, 359, 360, 361
HC-SR04 distance measurement process 357,

358

HC-SR04 example code
 exploring 361, 362, 364
 running 361, 362, 364
HC-SR04
 terminals 356
HC-SR501
 onboard settings 350
 terminals 350
heavy-duty industrial use servos 324
Home Assistant
 about 432
 reference link 433

[480]

I
IBM Watson 433
If-This-Then-That (IFTTT)
 about 400
 IoTree, integrating with email and Twitter via

455, 456, 457
 IoTree, integrating with Google Assistant via

455, 457, 459, 460
 URL 402
IFTTT Applet
 configuring 403, 404, 405, 406, 407, 408, 409
 creating 403, 404, 405, 406, 407, 408, 409,

417, 418, 420
 Raspberry Pi, actioning from 414, 415
 references 423
 running 417
 temperature monitoring circuit, creating 403
 triggering, from Raspberry Pi 402
 triggering, in Python 412, 413, 414
 troubleshooting 423, 424
 Webhook, triggering 409, 411, 412
IFTTT platform
 about 431
 URL 431
init_led() method 86
Integrated Circuits (ICs) 41, 188
Inter-Integrated Circuit (I2C) 162
interfacing
 with analog-to-digital converter 163, 164
IoT and automation platforms
 Amazon Web Services (AWS) 433
 exploring 430
 Google Cloud 433
 Home Assistant 432
 IBM Watson 433
 IFTTT platform 431
 Microsoft Azure 433
 ThingsBoard IoT platform 431
 Zapier 431
IoT Christmas tree
 configuring 438, 439
IoT program
 creating 67
 dweeting button, implementing 74

 extending 74
 get_lastest_dweet() method 70, 71
 imports 69
 main program entry point 73
 PiGPIO LED, using as class 75
 poll_dweets_forever() method 72
 process_dweet() method 72, 73
 Python server, running 68
 Python server, testing 68
 resolve_thing_name() method, using 70
 server code 68
 variable definition 69
IoTree circuit
 building 439, 440
 service programs 440
IoTree
 extending, ideas and suggestions 460
 integrating, with dweet.io 450, 452
 integrating, with email and Twitter via IFTTT

455, 456, 457
 integrating, with Google Assistant via IFTTT 455,

457, 459

J
JavaScript imports 92
JQuery
 used, for registering event handlers 94

K
Kirchhoff's circuit laws 192

L
L293D circuit
 stepper motor, connecting to 339
latching switch types (digital) 365
LDR code
 working 304, 305
LDR configuration
 summary 306, 307
LDR example code
 executing 302, 303
LDR light-detecting circuit
 creating 298, 299, 300, 301
LED circuit
 200 Ohm resistor, using 192, 193

[481]

 creating 416
LED flash, with GPIOZero
 about 56, 57
 code, using 58
 imports 57
 Pin Factory configuration, setting 58
LED flash, with PiGPIO
 about 58
 imports 59
 pin configuration 59
 while loop, using 60
LED Python program
 running 417
LED, Python code
 global variables 135
 implementing 134
 init_mqtt() method 138
 main entry point 139
 on_connect() MQTT callback method 136, 137
 on_disconnect() MQTT callback method 136,

137

 on_message() MQTT callback method 137
 Paho MQTT client, importing 134
 set_led_level(data) method 135
LED
 controlling, from email 421, 422
 controlling, with MQTT 132
 controlling, with Python 132
 current data, measuring for 230, 231, 232
 flashing, in Python 56
 flashing, with GPIOZero 56, 57
 flashing, with PiGPIO 58
 MQTT example, executing 133
LEDControl class 87
Light-Dependent-Resistor (LDR) 159, 209, 296,

382

light
 detecting 296, 297
 LDR code, working 304, 305
 LDR configuration, summary 306, 307
 LDR example code, executing 301, 303
 LDR light-detecting circuit, creating 298, 299,

300, 301
load's current
 determining 227

load's voltage
 determining 227
LocalTunnels
 URL 461
logic-level conversion
 about 213
 ICs and modules 214, 215, 216, 217, 218
 versus voltage divider 219
 voltage divider, using 213, 214

M
Master-In-Slave-Out (MISO) 271
Master-Out-Slave-In (MOSI) 271
Message Queue Telemetry Transport (MQTT)
 about 112
 broker service, using 130, 131
 example 114, 115, 116
 messages, publishing 116, 117, 118
 messages, retaining for late delivery 124
 messages, subscribing 116, 117, 118
 Quality of Service (QoS), applying to messages

121, 122, 123, 124
 topics and wildcards, exploring 118, 120
 used, for controlling LED 132
 Will message 128, 129, 130
Metal-Oxide-Semiconductor-Field-Effect Transistor

(MOSFET) 237
Microsoft Azure 433
MOSFET circuit
 building 239, 240, 241
 controlling, with Python 242, 243, 244, 245
Mosquitto MQTT broker
 installing 112, 113, 114
motor driver circuit
 building 326, 327, 328, 329, 330, 331
motor
 controlling, H-Bridge IC used 324, 325
movement
 detecting, with Hall-effect sensors 365, 366
 detecting, with PIR sensor 349, 350
multi-color APA102 LED strip
 controlling, with SPI 261

[482]

N
ngrok
 URL 461
non-latching switch types (digital) 365
Not Connected (NC) 294

O
Ohm's Law and power 191
OLED code
 overview 277, 278, 279, 280, 281
OLED display
 connecting 274, 275, 276
 connection, verifying 276
 using 273
OLED example
 configuring 276
 running 276
optocoupler circuit
 building 233, 234, 235
 controlling, with Python 235, 237
optocoupler
 using, as switch 232, 233

P
passive buzzers 282
PiGPIO daemon
 configuring 33
PiGPIO examples
 versus GPIOZero examples 60, 61
PiGPIO
 highlights 155
 need for 157
 remote GPIO, exploring with 155, 156
 reviewing 155
 URL 155
pip 24
 used, for installing Python GPIO packages 19,

20, 21, 22, 23
PIR sensor circuit
 creating 351, 352
PIR sensor code
 exploring 352, 353, 354
 running 352, 353, 354
PIR sensor

 movement, detecting 349, 350
post() class method 88, 89
postUpdate() function 93
power rails 41
publisher-subscriber approach
 exploring 390, 391
pull-down resistor
 using 203
pull-up resistor
 code solution 205, 206, 207
 resistor solution 203, 204, 205
 using 203
Pulse-Width Modulation (PWM)
 about 90, 159, 160
 characteristics 159
 color, making 255
 exploring, visually with PiScope 177, 179, 180
 sound, creating with 281
 used, for controlling servo 319
 used, for rotating servo 316
push button, integrating with GPIOZero
 about 61
 callback handler, using 62
 configuration 63
 imports 62
 main thread, preventing from termination 64
push button, integrating with PiGPIO
 about 64
 callback handler 65, 66, 67
 pin configuration 65
push button
 integrating, in Python 61
PWM signals
 creating 160
PWM, using to control LED
 about 174, 175
 code 176
 global variables 176
 PWM signal, creating 177
 range mapping function 176
PyPi
 reference link 19
Python GPIO libraries
 Circuit Python + Blinka 154
 exploring 152

[483]

 GPIOZero 153
 PiGPIO 155
 RPi.GPIO 153
 SMBus 156
 SPIDev 156
Python GPIO packages
 installing, with pip 19, 20, 21, 22, 23, 24
Python installation 14, 15
Python Paho MQTT client library 131, 132
Python script execution, alternative methods
 about 27
 Python script, executing at boot 29, 30, 31
 Python scripts, executing outside of virtual

environments 28
 sudo, using within virtual environments 27, 28
Python virtual environment
 setting up 16, 17, 18, 19
Python Web Socket server code
 about 98
 Flask API, instance variables 99
 Flask-RESTful API, instance variables 99
 handlers, connecting 99, 100
 handlers, disconnecting 99, 100
 imports 98
 LED handler 100
 running 96, 97, 98
 server, starting 101, 102
 testing 96, 97, 98
 web page, serving 99
Python
 IFTTT Applet, triggering in 412, 413, 414
 LED, flashing 56
 MOSFET circuit, controlling with 242, 243, 244,

245

 optocoupler circuit, controlling with 235, 237
 push button, integrating 61
 Relay Driver Circuit, controlling with 249, 250
 used, for controlling LED 132

Q
Quality of Service (QoS) 121

R
Raspberry Pi pin numbering 150, 151, 152
Raspberry Pi, electronic interfacing options

 1-wire interfaces 162
 analog IO 158, 159
 digital IO 158
 exploring 158
 Inter-Integrated Circuit (I2C) 162
 Pulse-Width Modulation (PWM) 159, 160
 Serial Peripheral Interface (SPI) 162
 Universal Asynchronous Receiver/Transmitter

(UART) protocol 162
Raspberry Pi
 about 189
 actioning, from IFTTT Applet 414, 415
 GPIO interface, configuring on 31, 32, 33
 IFTTT Applet, triggering from 402
 servo, connecting to 316, 318
ratiometric types (analog) 365
reference circuit
 building 376, 377, 378, 379
 running, examples 380
relay driver circuit
 building 245, 246, 247, 248, 249
Relay Driver Circuit
 controlling, with Python 249, 250
relay driver circuit
 exploring 226, 227
relay
 current data, measuring for 230, 231, 232
 using, as switch 245
remote GPIO
 exploring, wtih PiGPIO 155, 156
RESTful API client web page, client-side code
 event handlers, registering with JQuery 94
 getState() function 92
 JavaScript imports 92
 postUpdate() function 93
 updateControls() function 93
 web page HTML 95
RESTful API client web page
 adding 91
 client-side code 91
RESTful API server, server code
 Flask instance variables 85
 Flask-RESTful API instance variables 85
 get() class method 88
 global variables 85

[484]

 imports 84
 init_led() method 86
 LEDControl class 87
 LEDController registration 89, 90
 post() class method 88, 89
 starting 89, 90
 web page, serving 86, 87
RESTful API server
 running 81, 82, 83, 84
 server code 84
 testing 81, 82, 83, 84
RESTful API service
 creating, with Flask-RESTful 80, 81
RESTful API
 versus Web Socket servers 106, 107
retained message
 about 124
 publishing 124, 125
RGB LED circuit
 creating 256, 257, 258
 limitations 260
RGB LED code
 exploring 258, 259
 running 260
RGB LED
 color, making 255
Ring Tone Text Transfer Language (RTTTL) 281
RPi.GPIO
 highlights 154
 reviewing 153
 URL 154
RTTTL circuit
 building 282, 283, 284
RTTTL music example
 running 285, 286

S
SC-SR04
 cylinders 355
sensors
 DHT11/DHT22 circuit, creating 292, 293
 DHT11/DHT22 code, executing 294, 295
 DHT11/DHT22 code, exploring 294, 295
 temperature and humidity, measuring 291, 292
Serial Peripheral Interface (SPI)

 about 162
 interface 271, 272
 multi-color APA102 LED strip, controlling 261
service programs, IoTree circuit
 about 440
 dweet integration service 440
 Tree API service 440
 Tree MQTT service 440
servo code
 exploring 320, 321, 323
 running 320, 321, 323
servos
 4-wire servos 324
 connecting, to Raspberry Pi 316, 318
 continuous rotation servos 323
 controlling, PWM used 319
 heavy-duty industrial use servos 324
 rotating, PWM used 316
Single Pole, Single Throw (SPT) 42
SMBus
 highlights 157
 reviewing 156
 URL 157
Socket.IO
 URL 96
software-timed PWM
 visualizing 181, 182
SparkFun
 URL 188
SPIDev
 highlights 157
 reviewing 156
 URL 157
stall current 229
stepper motor code
 exploring 340, 341, 342, 344
 running 340, 341, 342, 344
stepper motor control 337, 338
stepper motor
 connecting, to L293D circuit 339

T
tactile push button 43
thermistors 296
ThingsBoard IoT platform

 about 431
 URL 432
ThingSpeak platform
 data, visualizing with 424, 425, 426
ThinkSpeak platform
 configuring 426, 427, 428
ThinkSpeak Python program
 configuring 428, 429, 430
 running 428, 429, 430
threaded approach
 exploring 384, 385, 386, 387, 388, 389
timeout 63
transistor
 using, as switch 237, 238
Tree API service
 configuring 441, 442, 443
 running 441, 442, 443, 445
 using 441, 442
Tree MQTT program
 running 449, 450
Tree MQTT service
 configuring 446, 448, 453
 dweet integration service program, running 454,

455

 running 446, 448
 using 446, 448

U
ultrasonic distance sensor
 working 356, 357
ultrasonic sensor
 distance, measuring 354, 355
unipolar stepper motor 340
Universal Asynchronous Receiver/Transmitter

(UART) protocol 162
updateControls() function 93

V
virtual environment
 anatomy 24, 26

voltage divider
 versus logic-level conversion 219

W
web page HTML 95
Web Socket client web page, client-side code
 disconnect handlers 103
 imports 103
 jQuery document ready callback 104, 105
 LED handler 104
 Socket.IO connect 103
 web page HTML 105
Web Socket client web page
 adding 102
 client-side code 102
Web Socket servers
 versus RESTful API 106, 107
Web Socket service
 creating, with Flask-SocketIO 96
web-based MQTT client, JavsScript code
 about 140
 broker, connecting to 142, 143
 global variables 141
 JQuery document ready function 144
 onConnectionLost handler method 143
 onMessageArrived handler method 143
 Paho JavaScript MQTT client 141, 142
 Paho MQTT JavaScript client library, importing

140

web-based MQTT client
 building 140
Will message 128

Y
YAML Ain't Markup Language (YAML) 432

Z
Zapier
 about 431
 URL 431

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Programming with Python and the Raspberry Pi
	Chapter 1: Setting Up your Development Environment
	Technical requirements
	Understanding your Python installation
	Setting up a Python virtual environment
	Installing Python GPIO packages with pip
	Anatomy of a virtual environment

	Alternative methods of executing a Python script
	Using sudo within virtual environments
	Executing Python scripts outside of their virtual environments
	Running a Python script at boot

	Configuring the GPIO interface on our Raspberry Pi
	Configuring the PiGPIO daemon

	Summary
	Further reading

	Chapter 2: Getting Started with Python and IoT
	Technical requirements
	Creating a breadboard prototype circuit
	Understanding the breadboard
	Positioning and connecting the push button
	Positioning and connecting the LED
	Positioning and connecting the resistor

	Reading an electronic schematic diagram
	Reading the push button schematic connection
	Reading the LED and resistor schematic connection
	Introducing ground connections and symbols

	Exploring two ways to flash an LED in Python
	Blinking with GPIOZero
	Imports
	Pin Factory configuration
	Blinking the LED

	Blinking with PiGPIO
	Imports
	PiGPIO and pin configuration
	Blinking the LED

	Comparing the GPIOZero and PiGPIO examples

	Exploring two ways to integrate a push button in Python
	Responding to a button press with GPIOZero
	Imports
	Button pressed handler
	Button configuration
	Preventing the main thread from terminating

	Responding to a button press with PiGPIO
	Button pin configuration
	Button pressed handler

	Creating your first IoT program
	Running and testing the Python server
	Understanding the server code
	Imports
	Variable definitions
	The resolve_thing_name() method
	The get_lastest_dweet() method
	The poll_dweets_forever() method
	The process_dweet() method
	The main program entry point

	Extending your IoT program
	Implementing a dweeting button
	PiGPIO LED as a class

	Summary
	Questions
	Further reading

	Chapter 3: Networking with RESTful APIs and Web Sockets Using Flask
	Technical requirements
	Introducing the Flask microservices framework
	Creating a RESTful API service with Flask-RESTful
	Running and testing the Python server
	Understanding the server code
	Imports
	Flask and Flask-RESTful API instance variables
	Global variables
	The init_led() method
	Serving a web page
	The LEDControl class
	The get() class method
	The post() class method
	LEDController registration and starting the server

	Introduction to PWM

	Adding a RESTful API client web page
	Understanding the client-side code
	JavaScript imports
	The getState() function
	The postUpdate() function
	The updateControls() function
	Registering event handlers with jQuery
	The web page HTML

	Creating a Web Socket service with Flask-SocketIO
	Running and testing the Python server
	Server code walkthrough
	Imports
	Flask and Flask-RESTful API instance variables
	Serving a web page
	Connecting and disconnecting handlers
	LED handler
	Starting the server

	Adding a Web Socket client web page
	Understanding the client-side code
	Imports
	Socket.IO connect and disconnect handlers
	The on LED handler
	The document ready function
	The web page HTML

	Comparing the RESTful API and Web Socket servers
	Summary
	Questions
	Further reading

	Chapter 4: Networking with MQTT, Python, and the Mosquitto MQTT Broker
	Technical requirements
	Installing the Mosquitto MQTT broker
	Learning MQTT by example
	Publishing and subscribing MQTT messages
	Exploring MQTT topics and wildcards
	Applying Quality of Service to messages
	Retaining messages for later delivery
	Publishing a retained message
	Creating durable connections

	Saying goodbye with a Will
	Using MQTT broker services

	Introducing the Python Paho-MQTT client library
	Controlling an LED with Python and MQTT
	Running the LED MQTT example
	Understanding the code
	Imports
	Global variables
	The set_led_level(data) method
	The on_connect() and on_disconnect() MQTT callback methods
	The on_message() MQTT callback method
	The init_mqtt() method
	Main entry point

	Building a web-based MQTT client
	Understanding the code
	Imports
	Global variables
	The Paho JavaScript MQTT client
	Connecting to the broker
	The onConnectionLost and onMessageArrived handler methods
	JQuery document ready function

	Summary
	Questions
	Further reading

	Section 2: Practical Electronics for Interacting with the Physical World
	Chapter 5: Connecting Your Raspberry Pi to the Physical World
	Technical requirements
	Understanding Raspberry Pi pin numbering
	Exploring popular Python GPIO libraries
	Reviewing GPIOZero – simple interfacing for beginners
	Reviewing RPi.GPIO – a low-level GPIO for beginners
	Reviewing Circuit Python and Blinka – interfacing for complex devices
	Reviewing PiGPIO – a low-level GPIO library
	Exploring remote GPIO with PiGPIO (and GPIOZero)

	Reviewing SPIDev and SMBus – dedicated SPI and I2C libraries
	Why PiGPIO?

	Exploring Raspberry Pi electronic interfacing options
	Understanding digital IO
	Understanding analog IO
	Understanding Pulse-Width Modulation
	Creating PWM signals

	Understanding SPI, I2C, and 1-wire interfaces
	Understanding the serial / UART protocol

	Interfacing with an analog-to-digital converter
	Building the ADS1115 ADC circuit
	Making sure the ADS1115 is connected to your Raspberry Pi
	Reading analog input with the ADS1115
	Understanding the code
	Imports
	ADS1115 setup and configuration
	Global variables
	Program entry point

	Using PWM to control an LED
	Understanding the code
	Global variables
	Range mapping function
	Generating the PWM signal

	Visually exploring PWM with PiScope
	Visualizing software and hardware-timed PWM

	Summary
	Questions
	Further reading

	Chapter 6: Electronics 101 for the Software Engineer
	Technical requirements
	Fitting out your workshop
	Buying electronic modules and components
	Purchasing lose components
	Purchasing open source hardware modules

	Keeping your Raspberry Pi safe
	Three ways electronic components fail
	Electronics interfacing principles for GPIO control
	Ohm's Law and power
	Kirchhoff's circuit laws
	Why are we using a 200 Ohm resistor for the LED circuit?
	Calculating the resistor value
	Factoring in the Raspberry Pi's current limits
	Calculating the resistor's power dissipation

	Exploring digital electronics
	Digital output
	Digital input
	Using pull-up and pull-down resistors
	The resistor solution
	The code solution

	Exploring analog electronics
	Analog output
	Analog input
	Voltage dividers

	Understanding logic-level conversion
	Voltage dividers as logic-level converters
	Logic-level converter ICs and modules
	Comparing voltage dividers and logic-level converters

	Summary
	Questions
	Further reading

	Section 3: IoT Playground - Practical Examples to Interact with the Physical World
	Chapter 7: Turning Things On and Off
	Technical requirements
	Exploring a relay driver circuit
	Determining a load's voltage and current
	Measuring the current requirement of a DC motor
	Measuring the current requirement of a relay and LED

	Using an optocoupler as a switch
	Building the optocoupler circuit
	Controlling the optocoupler with Python

	Using a transistor as a switch
	Building the MOSFET circuit
	Controlling the MOSFET with Python

	Using a relay as a switch
	Building the relay driver circuit
	Controlling the Relay Driver Circuit with Python

	Summary
	Questions
	Further reading

	Chapter 8: Lights, Indicators, and Displaying Information
	Technical requirements
	Making color with an RGB LED and PWM
	Creating the RGB LED circuit
	Running and exploring the RGB LED code

	Controlling a multi-color APA102 LED strip with SPI
	Creating the APA102 circuit
	Powering the APA102 circuit
	Configuring and running the APA102 LED strip code
	APA102 LED strip code walkthrough
	Discussion of APA102 and the SPI interface
	APA102 LED strip troubleshooting tips

	Using an OLED display
	Connecting the OLED display
	Verifying whether the OLED display is connected
	Configuring and running the OLED example
	OLED code walkthrough

	Making sound with buzzers and PWM
	Building the RTTTL circuit
	Running the RTTTL music example

	Summary
	Questions
	Further reading

	Chapter 9: Measuring Temperature, Humidity, and Light Levels
	Technical requirements
	Measuring temperature and humidity
	Creating the DHT11/DHT22 circuit
	Running and exploring the DHT11/DHT22 code

	Detecting light
	Creating an LDR light-detecting circuit
	Running the LDR example code
	LDR code walkthrough
	LDR configuration summary

	Detecting moisture
	Comparing detection options

	Summary
	Questions

	Chapter 10: Movement with Servos, Motors, and Steppers
	Technical requirements
	Using PWM to rotate a servo
	Connecting a servo to your Raspberry Pi
	How a servo is controlled using PWM
	Running and exploring the servo code
	Different types of servos

	Using an H-Bridge IC to control a motor
	Building the motor driver circuit
	Running the example H-Bridge code to control a motor
	motor.py
	motor_class.py

	Introduction to stepper motor control
	Connecting the stepper motor to the L293D circuit
	Running and exploring the stepper motor code

	Summary
	Questions

	Chapter 11: Measuring Distance and Detecting Movement
	Technical requirements
	Detecting movement with a PIR sensor
	Creating the PIR sensor circuit
	Running and exploring the PIR sensor code

	Measuring distance with an ultrasonic sensor
	How an ultrasonic distance sensor works
	HC-SR04 distance measurement process
	Building the HC-SR04 circuit
	Running and exploring the HC-SR04 example code

	Detecting movement and distance with Hall-effect sensors
	Creating a Hall-effect sensor circuit
	Running and exploring the Hall-effect sensor code

	Summary
	Questions

	Chapter 12: Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops
	Technical requirements
	Building and testing our circuit
	Building the reference circuit
	Running the examples

	Exploring the event-loop approach
	Exploring a threaded approach
	Exploring the publisher-subscriber alternative
	Exploring an AsyncIO approach
	An asynchronous experiment

	Summary
	Questions
	Further reading

	Chapter 13: IoT Visualization and Automation Platforms
	Technical requirements
	Triggering an IFTTT Applet from your Raspberry Pi
	Creating the temperature monitoring circuit
	Creating and configuring an IFTTT Applet
	Triggering an IFTTT Webhook
	Triggering an IFTTT Applet in Python

	Actioning your Raspberry Pi from an IFTTT Applet
	Method 1 – using the dweet.io service as an intermediary
	Method 2 – creating a Flask-RESTful service
	Creating the LED circuit
	Running the IFTTT and LED Python program
	Creating the IFTTT Applet
	Controlling the LED from an email
	IFTTT troubleshooting

	Visualizing data with the ThingSpeak platform
	Configuring the ThinkSpeak platform
	Configuring and running the ThinkSpeak Python program

	Other IoT and automation platforms for further exploration
	Zapier
	IFTTT platform
	ThingsBoard IoT platform
	Home Assistant
	Amazon Web Services (AWS)
	Microsoft Azure, IBM Watson, and Google Cloud

	Summary
	Questions

	Chapter 14: Tying It All Together - An IoT Christmas Tree
	Technical requirements
	Overview of the IoT Christmas tree
	Building the IoTree circuit
	Three IoTree service programs

	Configuring, running, and using the Tree API service
	Configuring the Tree API service
	Running the Tree API service

	Configuring, running, and using the Tree MQTT service
	Configuring the Tree MQTT service
	Running the Tree MQTT service program

	Integrating the IoTree with dweet.io
	Configuring the Tree MQTT service
	Running the dweet integration service program

	Integrating with email and Google Assistant via IFTTT
	Integration with email
	Integration with Google Assistant

	Ideas and suggestions to extend your IoTree
	Summary
	Questions

	Assessments
	Other Books You May Enjoy
	Index

