

NoSQL Web
Development with

Apache™ Cassandra™

Deepak Vohra

Cengage Learning PTR

NoSQL Web Development with Apache™
Cassandra™

Deepak Vohra

Publisher and General Manager, Cengage
Learning PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Product Manager: Heather Hurley

Project Editor: Kate Shoup

Technical Reviewer: John Yeary

Copy Editor: Kate Shoup

Interior Layout Tech: MPS Limited

Cover Designer: Mike Tanamachi

Proofreader: Kelly Talbot Editing Services

© 2015 Cengage Learning PTR.

CENGAGE and CENGAGE LEARNING are registered trademarks of Cengage
Learning, Inc., within the United States and certain other jurisdictions.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored, or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks, or
information storage and retrieval systems, except as permitted under Section 107
or 108 of the 1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit
all requests online at cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

“Apache”, “Apache Cassandra”, and “Cassandra” are trademarks of the Apache
Software Foundation. Used with permission. No endorsement by The Apache
Software Foundation is implied by the use of these marks. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. Google and the Google logo are
registered trademarks of Google, Inc., used with permission. “Eclipse” is a
trademark of Eclipse Foundation, Inc. “DataStax” is a trademark of DataStax,
Inc. Node.js is a registered trademark of Joyent, Inc. in the United States and
other countries. This book is not formally related to or endorsed by the official
Joyent Node.js project. MongoDB and Mongo are registered trademarks of
MongoDB, Inc. Couchbase is a trademark of Couchbase, Inc. Windows is either
registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries. All other trademarks are the property of their
respective owners.

All images © Cengage Learning unless otherwise noted.

ISBN-13: 978-1-305-57676-6

ISBN-10: 1-305-57676-4

Cengage Learning PTR

20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international. cengage.com/region.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit cengageptr.com.

Visit our corporate website at cengage.com.

eISBN-10: 1-305-57677-2

../../../../../../cengage.com/permissions
../../../../../../cengage.com/region
../../../../../../cengageptr.com/default.htm
../../../../../../cengage.com/default.htm

About the Author

Deepak Vohra is a consultant and a principal member of the NuBean.com software com-
pany. Deepak is a Sun Certified Java Programmer and Web Component Developer, and
he has worked in the fields of XML, Java programming, and Java EE for more than five
years. Deepak is the co-author of Pro XML Development with Java Technology and was the
technical reviewer for WebLogic: The Definitive Guide. Deepak was also the technical
reviewer for Ruby Programming for the Absolute Beginner. Deepak is the author of JDBC
4.0 and Oracle JDeveloper for J2EE Development, Processing XML Documents with Oracle
JDeveloper 11g, EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g, Java EE
Development with Eclipse, and JavaServer Faces 2.0: Essential Guide for Developers.

iii

../../../../../../nubean.com/default.htm

Contents

Introduction

PART I JAVA CLIENTS

Chapter 1 Using Cassandra with Hector
Cassandra Storage Model

Overview of Hector Java Client

Setting the Environment

Creating a Java Project

Creating a Cassandra Cluster Object

Creating a Schema

Creating a Keyspace

Creating a Template

Adding Table Data

Adding a Single Column of Data in a Table
Adding Multiple Columns of Data in a Table

Retrieving Table Data

Querying Single Column

Querying Multiple Columns

Querying with a Slice Query

Querying with the MultigetSliceQuery

Querying with a Range Slices Query

Updating Data

iv

Deleting Table Data

Deleting a Single Column

Deleting Multiple Columns

The HectorClient Class

Summary

Chapter 2 Querying Cassandra with CQL
Overview of CQL

Setting the Environment

Creating a Java Project

Creating a Keyspace

Creating a Column Family

Using the INSERT Statement

Using the SELECT Statement

Creating a Secondary Index

Using the SELECT Statement with the WHERE Clause

Using the UPDATE Statement
Using the BATCH Statement

Using the DELETE Statement

Using the ALTER COLUMNFAMILY Statement

Dropping the Column Family

Dropping the Keyspace

The CQLClient Application

New Features in CQL 3

Compound Primary Key

Conditional Modifications

Summary

Chapter 3 Using Cassandra with DataStax Java Driver
Overview of DataStax Java Driver

Setting the Environment

Creating a Java Project

Creating a Connection

Overview of the Session Class

Creating a Keyspace

Creating a Table

Running the INSERT Statement

Running a SELECT Statement

Creating an Index

Contents v

Selecting with SELECT and a WHERE Filter

Running an Async Query

Running a PreparedStatement Query

Running the UPDATE Statement

Running the DELETE Statement

Running the BATCH Statement

Dropping an Index
Dropping a Table

Dropping a Keyspace

The CQLClient Application

Summary

PART II SCRIPTING LANGUAGES

Chapter 4 Using Apache Cassandra with PHP
An Overview of Phpcassa

Setting the Environment

Installing PHP

Installing Phpcassa

Creating a Keyspace

Creating a Column Family and Connection Pool

Adding Data
Adding Data in a Batch

Retrieving Data

Getting Selected Columns

Getting Columns from Multiple Rows

Getting Column Slices

Getting a Range of Rows and Columns

Updating Data

Deleting Data

Dropping the Keyspace and Column Family

Summary

Chapter 5 Using a Ruby Client with Cassandra
Setting the Environment

Installing a Ruby Client with Cassandra

Creating a Connection

Creating a Keyspace

Creating a Column Family

Adding Data to a Table

vi Contents

Adding Rows in Batch

Retrieving Data from a Table

Selecting a Single Row

Selecting Multiple Rows

Iterating over a Result Set

Selecting a Range of Rows

Using a Random Partitioner
Using an Order-Preserving Partitioner

Getting a Slice of Columns

Updating Data in a Table

Deleting Data in a Table

Updating a Column Family

Dropping a Keyspace

Summary

Chapter 6 Using Node.js with Cassandra
Overview of Node.js Driver for Cassandra CQL

The Client Class

The Connection Class

Event-Driven Logging

Mapping Data Types

Setting the Environment

Creating a Keyspace and a Column Family

Installing Node.js

Installing Node.js driver for Apache Cassandra

Creating a Connection with Cassandra

Adding Data to a Table

Retrieving Data from a Table

Filtering the Query

Querying with a Prepared Statement

Streaming Query Rows

Streaming a Field

Streaming the Result

Updating Data in Table

Deleting a Column
Deleting a Row

Summary

Contents vii

PART III MIGRATION

Chapter 7 Migrating MongoDB to Cassandra
Setting the Environment

Creating a Java Project

Creating a BSON Document in MongoDB

Migrating the MongoDB Document to Cassandra

Summary

Chapter 8 Migrating Couchbase to Cassandra
Setting the Environment

Creating a Java Project

Creating a JSON Document in Couchbase

Migrating the Couchbase Document to Cassandra

Summary

PART IV JAVA EE

Chapter 9 Using Cassandra with Kundera
Setting the Environment

Creating a JPA Project in Eclipse

Creating a JPA Entity Class

Configuring JPA in Persistence.xml

Creating a JPA Client Class

Running JPA CRUD Operations

Creating a Catalog

Finding a Catalog Entry Using the Entity Class

Finding a Catalog Entry Using a JPA Query

Updating a Catalog Entry

Deleting a Catalog Entry

Summary

Chapter 10 Using Spring Data with Cassandra
Overview of the Spring Data Cassandra Project

Setting the Environment

Creating a Maven Project

Configuring the Maven Project

Configuring JavaConfig

Creating a Model

Using Spring Data with Cassandra with Template

viii Contents

Finding Out About the Cassandra Cluster

Running Cassandra CRUD Operations

Save Operations

Find Operations

Exists and Count Operations

Update Operations

Remove Operations
Summary

Contents ix

Introduction

Apache Cassandra is a wide-column data store. Cassandra is a non-relational database,
also called a NoSQL database. Cassandra is based on a flexible schema. The top-level con-
tainer of Cassandra is called a keyspace, which is equivalent to a schema in a relational
database. The top-level data structure for storing data is called a column family or a
table. A column family (or table) consists of columns, a column being the smallest incre-
ment of data. A Cassandra table is similar to a relational database table in that both have
rows and columns. What makes Cassandra different is that the table structure is flexible—
that is, not fixed, as in a relational database. Different rows may have different columns.
While column metadata for the different columns in a table can be specified in a table
definition, the actual data contained in a table is determined by the client application.
The schema is flexible in that a row may not contain a particular column or any column
at all. Or, a row may include columns not defined in the column’s specification. Cassandra
is ranked first among wide-column data stores.

Cassandra is a NoSQL data store based on the wide-column data model. NoSQL databases
are increasingly replacing relational databases because of their inherent advantages of a
flexible schema, ease of use, integration with Web applications, scalability, and integration
with Apache Hadoop. Cassandra is ranked second among NoSQL databases. Cassandra is
ranked 10th among all databases (relational or non-relational).

While several books on Cassandra administration are available, none are available that
cover Cassandra development. This book is about Apache Cassandra Web develop-
ment. It discusses all aspects of using Cassandra in applications. Java, PHP, Ruby, and

x

JavaScript are the most commonly used programming/scripting languages, and this book
discusses using these languages to access Cassandra. This book also discusses migrating
MongoDB server and Couchbase server, two other NoSQL databases, to Cassandra.

The objective of this book is to discuss how a Web developer would develop Web applica-
tions with Apache Cassandra. This book covers all aspects of application development,
including the following:

n Setting the environment for an application

n Creating sample data

n Running a sample application

What This Book Covers
In Chapter 1, “Using Cassandra with Hector,” you learn how to use the Hector Java client
to access Cassandra and create a CRUD (create, read, update, delete) application in the
Eclipse IDE.

Chapter 2, “Querying Cassandra with CQL,” introduces the Cassandra Query Language
(CQL), which is similar in syntax to SQL. It discusses the INSERT, SELECT, UPDATE,
WHERE, BATCH, and DELETE clauses in CQL, with an example. Chapter 2 is based on
CQL 2.

Chapter 3, “Using Cassandra with DataStax Java Driver,” discusses using CQL 3 with the
Datastax Java client in the Eclipse IDE. In addition to CRUD, it discusses the support for
running an Async query and a prepared statement query.

In Chapter 4, “Using Apache Cassandra with PHP,” you learn to use a PHP library for
Cassandra called phpcassa to connect to Cassandra from a PHP application. You will cre-
ate a keyspace and column family and add data to the table with PHP. The chapter also
discusses adding data in a batch. You will fetch data using the different PHP functions for
getting data as multiple columns, column slices, and ranges of columns. The chapter also
discusses updating and deleting Cassandra data in a PHP application.

In Chapter 5, “Using a Ruby Client with Cassandra,” you will use a Ruby client with
Cassandra to create a keyspace and table (column family) and to add data to the table,
including adding data in a batch. You will fetch data in various modes—in single row, in
multiple rows, and in a range of rows. The chapter also introduces the ordered partitioner
before discussion updating and deleting data and updating or dropping a column family
and a keyspace.

Introduction xi

Chapter 6, “Using Node.js with Cassandra,” discusses the Node.js driver for Cassandra for
connecting to Cassandra and running CRUD operations. It discusses filtering a query and
running a prepared query. It also discusses the support for streaming a field and stream-
ing the complete result to a text file.

Chapter 7, “Migrating MongoDB to Cassandra,” discusses migrating a MongoDB docu-
ment store to Cassandra. MongoDB is a BSON (binary JSON) based document model.
First, you will create a document in MongoDB. Then you will use a MongoDB Java client
to access MongoDB, fetch data, and migrate the data to Cassandra using the Hector Java
client.

Chapter 8, “Migrating Couchbase to Cassandra,” discusses migrating data from Couch-
base Server to Cassandra. Couchbase Server is based on the JSON document model.
First, you will create a JSON document in Couchbase using the Couchbase Administra-
tion Console. Then you will access Couchbase Server using the Couchbase Java client
and migrate Couchbase data to Cassandra using the Hector Java client.

Chapter 9, “Using Cassandra with Kundera,” introduces Kundera, a JPA 2.0–complaint
object–data store mapping library for NoSQL data stores. In this chapter, you will create
a JPA project, a JPA entity class, and a JPA client class in the Eclipse IDE. Then you will
configure the object–data store mapping in the persistence.xml file. Finally, you will run
CRUD operations on Cassandra using the JPA application.

In Chapter 10, “Using Spring Data with Cassandra,” you will use Apache Cassandra with
the Spring Data project. You will create a Maven project in the Eclipse IDE to run CRUD
operations on Cassandra with Spring Data.

What You Need for This Book
This book uses Apache Cassandra 2.04. You can download Apache Cassandra 2 from
http://cassandra.apache.org/download/. The latest Cassandra version may be used instead
of the version in this book. This book also uses the Eclipse IDE for Java EE developers,
which you can download from https://www.eclipse.org/downloads/packages/eclipse-ide-
java-ee-developers/lunar.

Apart from Apache Cassandra, which is used in all the chapters, and the Eclipse IDE,
which is used for Java-based applications, the other software required is chapter specific.
For example, for migrating Couchbase Server data, Couchbase Server is required.

This book uses the Windows operating system, but if you have Linux installed, this book
may still be used (though the source code and samples have not been tested with Linux).

xii Introduction

../../../../../../https@www.eclipse.org/downloads/packages/eclipse-idejava-ee-developers/lunar
../../../../../../https@www.eclipse.org/downloads/packages/eclipse-idejava-ee-developers/lunar
../../../../../../cassandra.apache.org/download/default.htm

Slight modifications may be required with the Linux install. For example, the directory
paths on Linux would be different from the Windows directory paths used in this book.

You also need to install Java for Java-based chapters. Java SE 7 is used in this book.

Who This Book Is For
This book’s target audience is NoSQL Web developers who want to learn about using
Apache Cassandra as a data store. This book is suitable for professional NoSQL develo-
pers as well as beginners. This book is also suitable for an intermediate-level or advanced-
level course in NoSQL Web development with Cassandra. The target audience is expected
to have prior, albeit beginner-level to intermediate-level, knowledge about the languages
(Java, PHP, Ruby, and JavaScript) and technologies (Node.js, JPA, Spring Data) used in
this book. This book also requires some familiarity with the Eclipse IDE.

Companion Website Downloads
You may download the companion website files from www.cengageptr.com/downloads.

Introduction xiii

../../../../../../www.cengageptr.com/downloads

This page intentionally left blank

Part I

Java Clients

1

This page intentionally left blank

Chapter 1

UsingCassandrawithHector

Hector is a Java client used to access Cassandra from a Java or Java EE application. Hector
provides several features, which include the following:

n It’s suitable for large-scale production systems.

n It offers support for object-oriented and object-relational mapping (ORM).

n It offers enhanced performance using connection pooling.

n It supports round-robin load balancing and client failover.

n It supports fault tolerance using replication of data to multiple nodes.

n It offers elasticity using automatic discovery of hosts.

n It supports automatic retry of downed hosts.

n It is designed for Cassandra’s data model.

n It is scalable and highly available.

n It is durable, with no single points of failure.

This chapter discusses using the Hector Java client to access Cassandra in the Eclipse IDE.
First, it discusses the Cassandra storage model.

3

Cassandra Storage Model
Cassandra is a NoSQL, highly available, distributed database based on a row/column
structure. NoSQL implies that Cassandra is not a relational database system. Examples of
relational database systems are MySQL server, Oracle database, and DB2 database. Rela-
tional databases store data in a table structure in rows and columns. A relational database
is queried with Structured Query Language (SQL), while a NoSQL database such as Cas-
sandra may be accessed using several different kinds of clients such as Java client, PHP
client, and Ruby client, to name a few.

The top-level namespace in Cassandra is a keyspace. A keyspace is the equivalent of a
database instance in a SQL relational database. An installation of Cassandra may have sev-
eral keyspaces. The top-level data structure for data storage is a column family, which is a
set of key-value pairs. A column family definition consists of columns, with one of the
columns being the primary key column and the other columns being the data columns.
A column is the smallest unit of data stored in Cassandra. It is associated with a name, a
value and a timestamp.

One of the columns in a column family is the primary key, or row key. A primary key is
identified with PRIMARY KEY in a column family definition. Some Cassandra APIs require
the primary key column to be called KEY, which is the default name for the primary key
column. Other Cassandra APIs do not have such a requirement. When an identifier other
than KEY is used for the primary key column, a key alias for the primary key is set auto-
matically. The only requirements to define a new column family are a column family
name and a primary key and its associated type. The storage model used by Cassandra is
shown in Figure 1.1.

Figure 1.1
Cassandra storage model.

As of Cassandra Query Language (CQL) 3, which is similar to SQL, a column family is
also called a table. A key-value pair in a table is also called a record. Column values that

4 Chapter 1 n Using Cassandra with Hector

have the same primary key comprise a row, which makes a column family a container of
rows, as shown in Figure 1.2. A key-value pair in a column family is the primary key and
the row of data (value) associated with a primary key.

Figure 1.2
Column family as a container of rows.

The primary key must be associated with a data type. Each column may optionally be
associated with a data type, which is used during the serialization and de-serialization of
data. The different data types supported by the row KEY values and the data columns
values are called the CQL data types. In fact, a data type may also be associated with a
column name, not just the column values. The different data types supported by CQL
are discussed in Table 1.1.

Table 1.1 CQL Data Types

CQL Data Type Description

ascii A US-ASCII character string.

bigint A 64-bit signed long integer.

blob Arbitrary bytes in hexadecimal form.

boolean A value of true or false.

counter Used to store a counter value. The counter type is unique in that it
should not be assigned to a primary key column and should be used
only in a table with counters and the primary key column. Counters
are a special kind of columns used to store and count. Counters are
stored in dedicated tables.

(Continued)

Cassandra Storage Model 5

Table 1.1 CQL Data Types (Continued)

CQL Data Type Description

decimal A variable-precision decimal.

double A 64-bit IEEE-754 floating point number.

float A 32-bit IEEE-754 floating point number.

inet An IPv4 or IPv6 address string.

int A 32-bit signed integer.

list A collection of one or more ordered elements.

map A JSON-style array of literals.

set A collection of one or more elements.

text A UTF-8 encoded string.

timestamp The date and time in epoch time, encoded as an 8-byte string. The
epoch time is the number of seconds since January 1, 1970 midnight
UTC/GMT (1/1/1970 00:00:00 UTC), not including leap seconds.

timeuuid A type 1 UUID only.

uuid A UUID.

varchar A UTF-8 encoded string.

varint An arbitrary precision integer.

Overview of Hector Java Client
This section discusses the different packages and classes in the Hector Java client API. The
entry points of the Hector API are defined in the me.prettyprint.hector.api package,
which is illustrated in Figure 1.3.

Figure 1.3
Entry points of the Hector API.

6 Chapter 1 n Using Cassandra with Hector

The main interfaces in the me.prettyprint.hector.api package are discussed in Table 1.2.

Table 1.2 Main Interfaces in the me.prettyprint.hector.api Package

Interface Description

Keyspace Defines a keyspace

Cluster Defines a Cassandra cluster of hosts

ColumnFactory A factory to create columns

HColumnFamily<K,N> Defines a column family

ResultStatus Used to track the Cassandra host used for the execution of
an operation and the time taken to execute the operation

The serializers used to convert between bytes and different data types are defined in the
me.prettyprint.cassandra.serializers package, which is illustrated in Figure 1.4.

Figure 1.4
Serializers.

The main classes in the me.prettyprint.cassandra.serializers package are discussed
in Table 1.3.

Table 1.3 Main Classes in the me.prettyprint.cassandra.serializers Package

Class Description

ShortSerializer A serializer used to convert bytes to and from a short value

StringSerializer A serializer used to convert bytes to and from a string value
using UTF-8 encoding

LongSerializer A serializer used to convert bytes to and from a long value

IntegerSerializer A serializer used to convert bytes to and from an integer
value

(Continued)

Overview of Hector Java Client 7

Table 1.3 Main Classes in the me.prettyprint.cassandra.serializers Package
(Continued)

Class Description

FloatSerializer A serializer used to convert bytes to and from a float value

DoubleSerializer A serializer used to convert bytes to and from a double value

BooleanSerializer A serializer used to convert bytes to and from a boolean value

CharSerializer A serializer used to convert bytes to and from a character
value

The service interfaces and classes are defined in the me.prettyprint.cassandra.service

package, which is illustrated in Figure 1.5.

Figure 1.5
Service interfaces.

The main classes in the me.prettyprint.cassandra.service package are discussed in
Table 1.4.

Table 1.4 Main Classes in the me.prettyprint.cassandra.service Package

Class Description

ThriftKsDef Defines a keyspace, including its name, strategy class, and
replication factor

ColumnSliceIterator An iterator for a column slice (Column slices are discussed in
a later section.)

BatchMutation<K> Encapsulates a set of insertions and deletions, but not
updates

CassandraHost Encapsulates information required to connect to a
Cassandra host including pool configuration parameters

8 Chapter 1 n Using Cassandra with Hector

FailoverPolicy The client policy used if a call to a Cassandra host fails

KeyIterator<K> An iterator over each key in a column family

ThriftColumnDef Defines a column

ThriftCfDef Defines a column family

The bean interfaces used to encapsulate columns, column slices, and rows are specified in
the me.prettyprint.hector.api.beans package, which is illustrated in Figure 1.6.

Figure 1.6
Bean interfaces.

The main interfaces in the me.prettyprint.hector.api.beans package are discussed in
Table 1.5.

Table 1.5 Main Interfaces in the me.prettyprint.hector.api.beans Package

Interface Description

Row<K,N,V> A tuple consisting of a key and a column slice

Rows<K,N,V> A set of rows returned by a multi-get query and consisting
of multiple rows

OrderedRows<K,N,V> A set of ordered rows returned by a multi-get query and
consisting of multiple rows

ColumnSlice<N,V> Encapsulates a set of columns

HColumn<N,V> Defines a column

The data definition language operations supported by Hector are specified in the
me.prettyprint.hector.api.ddl package, which is illustrated in Figure 1.7. The package
is used for adding and removing new keyspaces and column families, and for defining
indices.

Overview of Hector Java Client 9

Figure 1.7
DDL classes and interfaces.

The main interfaces and classes in the me.prettyprint.hector.api.ddl package are dis-
cussed in Table 1.6. DDL operations are performed serially. Concurrent DDL operations
are not supported.

Table 1.6 Main Interfaces in the me.prettyprint.hector.api.ddl Package

Class or Interface Description

ColumnDefinition Provides methods for getting the index name and index
type

ColumnFamilyDefinition Provides methods to perform operations such as setting
the keyspace name, column definition, and column type

KeyspaceDefinition Provides methods for getting and adding to the
collection of column family definitions and strategy
options associated with a keyspace

ComparatorType The comparison class used to compare different CQL
data types

The exceptions that a Hector client application could throw are specified in the
me.prettyprint.hector.api.exceptions package, which is illustrated in Figure 1.8.

Figure 1.8
Exceptions.

10 Chapter 1 n Using Cassandra with Hector

The main exception classes are discussed in Table 1.7.

Table 1.7 Main Classes in the me.prettyprint.hector.api.exceptions Package

Class Description

HectorException Base exception class for all Hector-related exceptions.

PoolExhaustedException/
HPoolExhaustedException

Thrown if the client pool is exhausted.
HPoolExhaustedException since 1.01 version of the
API.

HInvalidRequestException Thrown if the request is invalid.

HectorPoolException The exception thrown while getting or returning an
object to a pool.

HCassandraInternalException An internal exception thrown by Cassandra.

HectorSerializationException A serialization exception that could get thrown
during the serialization or deserialization of bytes.

HectorTransportException A Hector transport exception.

The me.prettyprint.hector.api.factory package, which is illustrated in Figure 1.9, con-
tains only the HFactory class, which is a convenience class with static methods to create
keyspaces, column definitions, mutators, columns, and queries, to list a few.

Figure 1.9
Factory Class.

The me.prettyprint.hector.api.mutation package contains classes for mutations (inser-
tions, deletions, and such), and is illustrated in Figure 1.10.

Figure 1.10
Mutation Classes.

Overview of Hector Java Client 11

The me.prettyprint.hector.api.mutation package contains only two classes, which are
discussed in Table 1.8.

Table 1.8 Classes in the me.prettyprint.hector.api.mutation Package

Class Description

MutationResult<K> Encapsulates the result from a mutation

Mutator Used to insert or delete values from a cluster

The different types of queries supported by Hector are defined in the me.prettyprint

.hector.api.query package interfaces, as illustrated in Figure 1.11.

Figure 1.11
Queries.

The main interfaces in the me.prettyprint.hector.api.query package are discussed in
Table 1.9.

Table 1.9 Main Interfaces in the me.prettyprint.hector.api.query Package

Interface Description

Query<T> The base interface for all Hector queries

ColumnQuery<K,N,V> Used for querying a single and standard column

MultigetSliceQuery<K,N,V> Used for making a multi-get query for a slice of
columns

QueryResult<T> The return type for the result of a query

RangeSlicesQuery<K,N,V> A query for a range of column slices

SliceQuery<K,N,V> A query for a slice of columns

12 Chapter 1 n Using Cassandra with Hector

Some of the fields, such as keyspace, column family name, key serializer, and column fam-
ily serializer, are used in every Hector client operation and have to be passed in for every
operation separately. The me.prettyprint.cassandra.service.template package pro-
vides class and interface types to create templates for Hector operations—templates that
may be used repeatedly without having to pass in the fields for each operation separately.
The me.prettyprint.cassandra.service.template package class and interface types are
illustrated in Figure 1.12.

Figure 1.12
Templates.

The class and interfaces in the me.prettyprint.cassandra.service.template package
are discussed in Table 1.10.

Table 1.10 Class and Interfaces in the me.prettyprint.cassandra.service.template
Package

Interface Description

ColumnFamilyResult A common interface to access the result of a query.

ColumnFamilyTemplate Defines a template for specifying fields common to all
column family operations.

ColumnFamilyUpdater A common interface for updating a row.

ThriftColumnFamilyTemplate Thrift-specific implementation of
ColumnFamilyTemplate. (Thrift is a service interface
definition language. Using it, RPC clients and servers
can be built to communicate seamlessly across
programming languages.)

In the next section, you will set the environment to access Cassandra from the Hector Java
client.

Overview of Hector Java Client 13

Setting the Environment
To set the environment, you must download the following software:

n Apache Cassandra apache-cassandra-2.0.4-bin.tar.gz or a later version from
http://cassandra.apache.org/download/.

n Hector Java client hector-core-1.1-4.jar or a later version from http://repo2.maven.
org/maven2/org/hectorclient/hector-core/1.1-4/.

n Eclipse IDE for Java EE developers from https://eclipse.org/downloads/packages/
eclipse-ide-java-ee-developers/kepler.

n Apache Commons Lang 2.6 from http://commons.apache.org/proper/commons-
lang/download_lang.cgi.

n Java SE 6 or later, preferably Java SE 7 or Java SE 8. Java SE 7 is used in this chapter.

Then follow these steps:

1. Install the Eclipse IDE.

2. Extract the Apache Cassandra TAR file to a directory (for example, C:\Cassandra\
apache-cassandra-2.0.4).

3. Add the bin folder, C:\Cassandra\apache-cassandra-2.0.4\bin, to the PATH

environment variable.

4. Start Apache Cassandra server with the following command:
cassandra –f

The Cassandra server starts and begins listening for CQL clients on localhost:9042.
Cassandra also listens for Thrift clients on localhost:9160, as shown in Figure 1.13.

Figure 1.13
Starting the Cassandra server.
Source: Microsoft Corporation.

14 Chapter 1 n Using Cassandra with Hector

../../../../../../cassandra.apache.org/download/default.htm
../../../../../../repo2.maven.org/maven2/org/hectorclient/hector-core/1.1-4/default.htm
../../../../../../repo2.maven.org/maven2/org/hectorclient/hector-core/1.1-4/default.htm
../../../../../../https@eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/kepler
../../../../../../https@eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/kepler
../../../../../../commons.apache.org/proper/commonslang/download_lang.cgi
../../../../../../commons.apache.org/proper/commonslang/download_lang.cgi

Creating a Java Project
In this section, you will develop a Java project in Eclipse to use the Hector Java client with
Cassandra. Follow these steps:

1. Choose File > New > Other in the Eclipse IDE.

2. In the New window, select the Java Project wizard as shown in Figure 1.14. Then
click Next.

Figure 1.14
Selecting the Java Project wizard.
Source: Eclipse Foundation.

3. In the Create a Java Project screen, specify a project name (Hector) and a directory
location for the Java project and click Next. (See Figure 1.15.)

Creating a Java Project 15

Figure 1.15
Configuring a new Java project.
Source: Eclipse Foundation.

4. In the Java Settings dialog box, select the default settings and click Finish, as shown
in Figure 1.16. A Java project is created and is added to the Package Explorer, as
shown in Figure 1.17.

16 Chapter 1 n Using Cassandra with Hector

Figure 1.16
Configuring Java settings.
Source: Eclipse Foundation.

Figure 1.17
The new Java project.
Source: Eclipse Foundation.

5. Add a Java client class to access Cassandra using Hector. To do so, again choose
File > New > Other. This time, however, choose Java > Class in the New window.
Then click Next. (See Figure 1.18.)

Creating a Java Project 17

Figure 1.18
Selecting the Java Class wizard.
Source: Eclipse Foundation.

6. In the New Java Class wizard, select a source folder, specify a package (hector), enter
a class name (HectorClient), and click Finish, as shown in Figure 1.19. A Java class
HectorClient is created, as shown in the Package Explorer in Figure 1.20.

Figure 1.19
Configuring a new Java class.
Source: Eclipse Foundation.

18 Chapter 1 n Using Cassandra with Hector

Figure 1.20
The new Java class.
Source: Eclipse Foundation.

7. To be able to access Cassandra from the Java application using Hector, you need to
add some JAR files to the Java build path of the application. To begin, right-click the
Hector project node in the Package Explorer and select Properties.

8. In the Properties window, select the Java Build Path node. Then select Libraries
and click Add External JARs to add external JAR files. Add the JAR files listed in
Table 1.11.

Table 1.11 JAR Files

JAR File Description

apache-cassandra-2.0.4.jar The Apache Cassandra API

commons-codec-1.2.jar The Apache Commons Codec file, which provides
implementations of common encoders and decoders

commons-lang-2.6.jar The Apache Commons Lang file, which provides methods
for manipulating core classes of the other Java libraries

compress-lzf-0.8.4.jar The Compression Codec for LZF encoding, which provides
encoding/decoding with reasonable compression

guava-15.0.jar Google’s core libraries used in Java projects: collections,
caching, primitives support, concurrency, commons
annotations, string processing, and I/O to list a few

hector-core-1.1-4.jar The Hector client API

libthrift-0.9.1.jar The software framework for scalable cross-language
service development

(Continued)

Creating a Java Project 19

Table 1.11 JAR Files (Continued)

JAR File Description

log4j-1.2.16.jar A logging library for Java

slf4j-api-1.7.2.jar The Simple Logging Framework for Java (slf4j), which
provides abstraction for various logging frameworks

slf4j-log4j12-1.7.2.jar Provides the slf4j-log4j binding

9. The external JAR files required for accessing Cassandra from a Hector Java client
application are shown in the Eclipse IDE Properties wizard. Click OK after adding
the required JAR files, as shown in Figure 1.21.

Figure 1.21
Adding JAR files to the Java build path.
Source: Eclipse Foundation.

20 Chapter 1 n Using Cassandra with Hector

Creating a Cassandra Cluster Object
The me.prettyprint.hector.api.Cluster interface defines a cluster of Cassandra hosts.
To be able to access a Cassandra cluster, you must first create a Cluster instance for a
Cassandra cluster. The HFactory class provides several static methods to get or create a
Cluster instance, as listed in Table 1.12.

Table 1.12 HFactory Class Methods to Create or Get a Cluster

Method Description

createCluster(String clusterName,
CassandraHostConfigurator
cassandraHostConfigurator)

Creates a Cluster instance with the
given cluster name and configurator if
none by the name already exists.

createCluster(String clusterName
CassandraHostConfigurator
cassandraHostConfigurator,
Map<String,String> credentials)

Creates a Cluster instance with the
given cluster name, configurator, and
credentials if none by the name already
exists.

getCluster(String clusterName) Gets a Cluster instance by the given
name.

getOrCreateCluster(String clusterName,
CassandraHostConfigurator
cassandraHostConfigurator)

Gets or creates a Cluster instance with
the specified name and configurator.
Gets from the cache if one already exists.

getOrCreateCluster(String
clusterName, String hostIp)

Gets or creates a Cluster instance with
the specified name and host IP address,
which should be in hostname:port
format. The hostIp argument may also
be provided in ipaddress:port format,
but the hostname:port format is
preferred. Gets from the cache if one
already exists.

In the HectorClient class, create a Cluster instance using the getOrCreateCluster

(String clusterName, String hostIp) method as follows:

Cluster cluster = HFactory.getOrCreateCluster("hector-cluster","localhost:9160");

Alternatively, you may create a Cluster instance as follows:

String clusterName = " hector-cluster";
String host = "localhost:9160";

Creating a Cassandra Cluster Object 21

Cluster cluster = HFactory.getOrCreateCluster(clusterName, new
CassandraHostConfigurator(host));

You’ll add a method createSchema() to create a column family definition in the next sec-
tion. You are not expected to build the HectorClient class from code snippets. Instead,
copy the listing at the end of the discussion.

Creating a Schema
A schema consists of a column family definition and a keyspace definition. The HFactory

class provides several static methods to create a column family definition, as listed in
Table 1.13.

Table 1.13 HFactory Class Methods to Create a Column Family Definition

Method Description

createColumnFamilyDefinition(String
keyspace, String cfName)

Creates a column family by the specified
keyspace name and column family name.
Returns a ColumnFamilyDefinition
instance.

createColumnFamilyDefinition(String
keyspace, String cfName,
ComparatorType comparatorType)

Creates a column family by the specified
keyspace name and column family name
and comparator. Returns a
ColumnFamilyDefinition instance.

createColumnFamilyDefinition(String
keyspace, String cfName,
ComparatorType comparatorType,
List<ColumnDefinition>
columnMetadata)

Creates a column family by the specified
keyspace name, column family name,
comparator, and list of column family
definitions. Returns a
ColumnFamilyDefinition instance.

The HFactory class also provides the methods discussed in Table 1.14 to create a keyspace
definition.

22 Chapter 1 n Using Cassandra with Hector

Table 1.14 HFactory Class Methods to Create a Keyspace Definition

Method Description

createKeyspaceDefinition(String
keyspace)

Creates a KeyspaceDefinition object with
the specified keyspace name.

createKeyspaceDefinition(String
keyspaceName, String strategyClass,
int replicationFactor,
List<ColumnFamilyDefinition> cfDefs)

Creates a KeyspaceDefinition object with
the specified keyspace name, strategy class,
replication factor, and list of column family
definitions. The strategy class refers to the
strategy used for replica placement across
nodes in the cluster. The constant
ThriftKsDef.DEF_STRATEGY_CLASS
specifies org.apache.cassandra.locator.
SimpleStrategy. Replication is the total
number of nodes in which data is placed, not
the number of other nodes in which data is
placed.

Add a method createSchema() to create a column family definition and a keyspace
definition for the schema. Then create a column family definition for a column
family named "catalog", a keyspace named HectorKeyspace, and a comparator named
ComparatorType.BYTESTYPE:

ColumnFamilyDefinition cfDef = HFactory.createColumnFamilyDefinition
("HectorKeyspace", "catalog", ComparatorType.BYTESTYPE);

Using a replication factor of 1, create a KeyspaceDefinition instance from the preceding
column family definition. The replication factor is the number of copies or replicas
of each row of data stored in a cluster node. Specify the strategy class as
org.apache.cassandra.locator.SimpleStrategy using the constant
ThriftKsDef.DEF_STRATEGY_CLASS:

KeyspaceDefinition keyspace = HFactory.createKeyspaceDefinition
("HectorKeyspace", ThriftKsDef.DEF_STRATEGY_CLASS,replicationFactor,
Arrays.asList(cfDef));

Creating a Schema 23

Cassandra supports the strategy classes, which refer to the replica placement strategy class,
discussed in Table 1.15.

Table 1.15 Strategy Classes

Class Description

org.apache.cassandra.locator
.SimpleStrategy

Used for a single data center only. The first
replica is placed on a node as determined by
the partitioner. Subsequent replicas are placed
on the next node/s in a clockwise manner in
the ring of nodes without consideration to
topology. The replication factor is required
only if the SimpleStrategy class is used.

org.apache.cassandra.locator
.NetworkTopologyStrategy

Used with multiple data centers. Specifies how
many replicas to store in each data center.
Attempts to store replicas on different racks
within the same data center because nodes in
the same rack are more likely to fail together.

Having created a keyspace definition, you need to add the keyspace definition to the
Cluster instance. The Cluster interface provides the methods discussed in Table 1.16 to
add a keyspace definition.

Table 1.16 Cluster Interface Methods

Method Description

addKeyspace(KeyspaceDefinition ksdef) Adds a keyspace definition and does not
wait for a schema agreement

addKeyspace(KeyspaceDefinition
ksdef,boolean blockUntilComplete)

Adds a keyspace definition and waits for a
schema agreement

Add the keyspace definition to the Cluster instance. With the blockUntilComplete set to
true, the method blocks until schema agreement is received from the server:

cluster.addKeyspace(keyspace, true);

Adding a keyspace definition to a Cluster instance does not create a keyspace. In the next
section, you will create a keyspace. Invoke the createSchema() method based on whether

24 Chapter 1 n Using Cassandra with Hector

the KeyspaceDefinition is not already defined. The Cluster interface provides a method
describeKeyspace(String) to find out whether a KeyspaceDefinition is already defined.
If the method returns null, the KeyspaceDefinition is not defined.

KeyspaceDefinition keyspaceDef = cluster.describeKeyspace("HectorKeyspace");
if (keyspaceDef == null) {

createSchema();
}

Creating a Keyspace
Having added a keyspace definition, you need to create a keyspace. A keyspace is repre-
sented with the me.prettyprint.hector.api.Keyspace interface. The HFactory class pro-
vides static methods to create a keyspace from a Cluster instance to which a keyspace
definition has been added. Invoke the method createKeyspace(String keyspace, Cluster

cluster) to create a keyspace with the name HectorKeyspace:

private static void createKeyspace() {
keyspace = HFactory.createKeyspace("HectorKeyspace", cluster);
}

Creating a Template
Templates provide a reusable construct containing the fields common to all Hector client
operations. Create an instance of ThriftColumnFamilyTemplate using a class constructor
ThriftColumnFamilyTemplate(Keyspace keyspace, String columnFamily, Serializer<K>

keySerializer, Serializer<N> topSerializer). Use the keyspace instance created in
the preceding section and specify the column family name as "catalog".

ThriftColumnFamilyTemplate template = new ThriftColumnFamilyTemplate<String,
String>(keyspace,"catalog", StringSerializer.get(), StringSerializer.get());

Next, you will add table data to the column family "catalog" in the keyspace
HectorKeyspace.

Adding Table Data
As discussed, the me.prettyprint.hector.api.mutation package provides the Mutator

class to add data. First, you need to create an instance of Mutator using the static method
createMutator(Keyspace keyspace, Serializer<K> keySerializer) in HFactory. Supply
the keyspace instance previously created as well as a StringSerializer instance.

Adding Table Data 25

Mutator<String> mutator = HFactory.createMutator(keyspace,StringSerializer.get());

Column data may be added as a single column or a batch of columns. We will discuss
each of these approaches in the next two sections.

Adding a Single Column of Data in a Table
First, you’ll learn how to add a single column of data. The Mutator class provides the
method discussed in Table 1.17 to add a single column of data.

Table 1.17 Mutator Class Method

Method Description

insert(final K key, final String cf,
final HColumn<N,V> c)

Adds a single column as specified in the
primary key value, column family name, and
HColumn instance. The HColumn instance is
the column to be added.

Add a column with the insert method using primary key column "catalog3" and the
column family name "catalog". Create the HColumn instance using the HFactory static

method createStringColumn(String name,String value).

private static void addTableDataColumn() {
Mutator<String> mutator = HFactory.createMutator(keyspace,
StringSerializer.get());
MutationResult result=mutator.insert("catalog3", "catalog",
HFactory.createStringColumn("journal", "Oracle Magazine"));
System.out.println(result);

}

Output the MutationResult returned by the insert method. The HFactory class also pro-
vides several overloaded createColumn methods that return an HColumn instance. To run
the HectorClient class and invoke the addTableDataColumn() method, add an invocation
of the method in the main method. To run the class, right-click the HectorClient Java file
in Package Explorer and select Run As > Java Application, as shown in Figure 1.22.

26 Chapter 1 n Using Cassandra with Hector

Figure 1.22
Running the HectorClient.java application.
Source: Eclipse Foundation.

A single column is added, as shown by MutationResult. The output in Eclipse, shown in
Figure 1.23, also has the column added, having been retrieved using a column query,
which is discussed later in this chapter.

Figure 1.23
Single column added.
Source: Eclipse Foundation.

In the next section, you will add multiple columns.

Adding a Single Column of Data in a Table 27

Adding Multiple Columns of Data in a Table
The Mutator class provides the method discussed in Table 1.18 to add an HColumn instance
and return the Mutator instance, which may be used again to add another HColumn

instance. You can add a series of HColumn instances by invoking the Mutator instance
sequentially.

Table 1.18 Mutator Class Method to Add a Series of Columns

Method Description

addInsertion(K key, String cf,
HColumn<N,V> c)

Adds an HColumn instance using the specified key
to the specified column family and returns the
Mutator instance, which may be used to invoke the
addInsertion method again. Using the method, a
batch of HColumn instances can be added. The
mutations added to the Mutator instance are not
applied until the execute() method is called.

Add a static method addTableData() to make multiple mutations using the same instance
of Mutator. Add multiple columns to a Mutator instance using the addInsertion invoca-
tions in series.

Mutator<String> mutator = HFactory.createMutator(keyspace,StringSerializer
.get());
mutator.addInsertion("catalog1", "catalog",HFactory.createStringColumn
("journal", "Oracle Magazine")).addInsertion("catalog1","catalog",HFactory.
createStringColumn("publisher","Oracle Publishing")).addInsertion
("catalog1","catalog",HFactory.createStringColumn("edition","November-December
2013")).addInsertion("catalog1","catalog",HFactory.createStringColumn
("title","Quintessential and Collaborative")).addInsertion("catalog1",
"catalog",HFactory.createStringColumn("author", "Tom Haunert"));

Instances of HColumn added using the same KEY constitute a row. The preceding example
creates a row of data with KEY "catalog1" in the "catalog" column family. Another row
with KEY "catalog2" could be added similarly.

mutator.addInsertion("catalog2", "catalog", HFactory.createStringColumn
("journal", "Oracle Magazine"))
.addInsertion("catalog2","catalog",HFactory.createStringColumn
("publisher","Oracle Publishing")).addInsertion("catalog2","catalog",HFactory.
createStringColumn("edition", "November-December 2013")).addInsertion

28 Chapter 1 n Using Cassandra with Hector

("catalog2","catalog",HFactory.createStringColumn("title", "Engineering as a
Service")).addInsertion("catalog2","catalog",HFactory.createStringColumn
("author", "David A. Kelly"));

The mutations added to the Mutator instance are not sent to the Cassandra server yet. To
send them, you invoke the execute() method. This runs the batch of mutations added to
the Mutator instance.

mutator.execute();

Invoke the addTableData() method from the main method and run the HectorClient

class to add data in a batch.

Retrieving Table Data
In this section, you will retrieve the previously added table data. As discussed, the
me.prettyprint.hector.api.query package provides several interfaces representing dif-
ferent types of queries. First, you will query a single column.

Querying Single Column
The ColumnQuery<K,N,V> interface represents a single standard column query. HFactory
provides the methods discussed in Table 1.19 to query a single column.

Table 1.19 HFactory Methods to Query a Single Column

Method Description

createColumnQuery(Keyspace keyspace,
Serializer<K> keySerializer, Serializer<N>
nameSerializer, Serializer<V> valueSerializer)

Returns an instance of
ColumnQuery when supplied
with a keyspace instance and
serializers for key, column
name, and value.

createStringColumnQuery(Keyspace keyspace) Returns a
ColumnQuery<String,
String, String> instance
when supplied with a keyspace
instance. Uses
StringSerializer instances
for key, column name, and
value.

Retrieving Table Data 29

Create a ColumnQuery instance using the static method createStringColumnQuery

(Keyspace keyspace):

ColumnQuery<String, String, String> columnQuery = HFactory.createStringColumn
Query(keyspace);

The ColumnQuery interface provides the methods discussed in Table 1.20 to set the fields
of the query, each of which return a ColumnQuery<K,N,V> instance.

Table 1.20 HFactory Methods to Query a Single Column

Method Description

setKey(K key) Sets the primary key value

setName(N name) Sets the column name

setColumnFamily(String cf) Sets the column family name

Set the column family name to "catalog", the primary key value to "catalog3", and the
column name to "journal":

private static void retrieveTableDataColumnQuery() {
columnQuery.setColumnFamily("catalog").setKey("catalog3").setName

("journal");
}

The QueryResult<T> interface represents the return type from queries, with the type
parameter T being the type of result. After setting the query attributes, invoke the
execute() method to return a QueryResult<HColumn<String, String>> object.

QueryResult<HColumn<String, String>> result = columnQuery.execute();

Next, output the result value using the method get() in the QueryResult interface:

System.out.println(result.get());

Finally, invoke the retrieveTableDataColumnQuery() method from the main method to
output the result of the query, as shown in Figure 1.24.

30 Chapter 1 n Using Cassandra with Hector

Figure 1.24
The result of the query.
Source: Eclipse Foundation.

Querying Multiple Columns
In this section, you will query multiple columns using an instance of
ThriftColumnFamilyTemplate. This provides a reusable template with the common
query attributes set to make repeated Hector queries. You created an instance of
ThriftColumnFamilyTemplate in an earlier section. The ThriftColumnFamilyTemplate

class provides several overloaded methods called queryColumns to query multiple columns
in the same query, as discussed in Table 1.21.

Table 1.21 Overloaded queryColumns Methods to Query Multiple Columns

Method Description

queryColumns(K key) Queries the columns in the row corresponding to
the provided key value.

queryColumns(Iterable<K> keys) Queries the columns in the rows corresponding to
the provided iterable of key values.

(Continued)

Retrieving Table Data 31

Table 1.21 Overloaded queryColumns Methods to Query Multiple Columns (Continued)

Method Description

queryColumns(K key, List<N>
columns)

Queries the columns in the row corresponding to
the provided key value. Only the columns in the
provided list are queried.

queryColumns(Iterable<K> keys,
List<N> columns)

Queries the columns in the rows corresponding to
the provided iterable of key values. Only the
columns in the provided list are queried.

Each of the methods in Table 1.21 returns a ColumnFamilyResult instance. Add a
retrieveTableData() method to query multiple columns. Using the template, query the
columns in the row corresponding to the "catalog1" key.

ColumnFamilyResult<String, String> res = template.queryColumns("catalog1");

The ColumnFamilyResult interface provides several get methods to get the different types
of results, as discussed in Table 1.22.

Table 1.22 ColumnFamilyResult Interface Methods

Method Description

getUUID(N columnName) Returns a UUID value given a column name

getString(N columnName) Returns a string value given a column name

getLong(N columnName) Returns a long value given a column name

getInteger(N columnName) Returns an integer value given a column name

getFloat(N columnName) Returns a float value given a column name

getDouble(N columnName) Returns a double value given a column name

getBoolean(N columnName) Returns a boolean value given a column name

getByteArray(N columnName) Returns a byte[] value given a column name

getDate(N columnName) Returns a date value given a column name

getColumnNames() Returns a collection of column names

getColumn(N columnName) Returns an HColumn instance given a column name

32 Chapter 1 n Using Cassandra with Hector

You can use the hasResults() method to find out whether a ColumnFamilyResult

instance has a result. Output the String column values in the ColumnFamilyResult

instance obtained from the preceding query.

if(res.hasResults()){
String journal = res.getString("journal");
String publisher = res.getString("publisher");
String edition = res.getString("edition");
String title = res.getString("title");
String author = res.getString("author");

System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

}

Similarly, query the columns corresponding with the row with the "catalog2" key and
output the result. Invoke the retrieveTableData() method in the main method and run
the HectorClient class to output the query result, as shown in Figure 1.25.

Figure 1.25
The query result for multiple columns.
Source: Eclipse Foundation.

Querying with a Slice Query
A slice query is a query of only a slice of columns—that is, columns that are either specified
or in a certain range indicated. A set of columns is represented with the ColumnSlice<N,V>

interface. A slice query is represented with the SliceQuery<K,N,V> interface.

Retrieving Table Data 33

The SliceQuery<K,N,V> interface provides the methods discussed in Table 1.23 to set the
attributes of the query.

Table 1.23 SliceQuery Interface Methods

Method Description

setKey(K key) Sets the key value for the row from which the
columns are to be queried.

setColumnNames(N... columnNames) Sets the column names using a vararg method.

setRange(N start, N finish, boolean
reversed, int count)

Sets a range of columns with a start and a finish.
The reversed parameter of type boolean
indicates whether columns are to be queried in
reverse order. The count parameter of type int
indicates the number of columns to query.

setColumnFamily(String cf) Sets the column family to query.

Add a retrieveTableDataSliceQuery() method to the query using a slice query. The
HFactory class provides the method discussed in Table 1.24 to create a SliceQuery

instance.

Table 1.24 HFactory Class Method to Create a SliceQuery Instance

Method Description

createSliceQuery(Keyspace keyspace,
Serializer<K> keySerializer,
Serializer<N> nameSerializer,
Serializer<V> valueSerializer)

Creates a SliceQuery given a Keyspace
instance and serializers for key, column name,
and column value

Using the Keyspace instance previously created, create a SliceQuery<String, String,

String> instance using the createSliceQuery() method. Set the column family as
"catalog" and set the row key as "catalog2". Use StringSerializer instances for the
column name, key, and column value.

SliceQuery<String, String, String> query = HFactory.createSliceQuery(keyspace,
StringSerializer.get(),StringSerializer.get(), StringSerializer.get()).setKey
("catalog2").setColumnFamily("catalog");

34 Chapter 1 n Using Cassandra with Hector

The ColumnSliceIterator class is used to iterate over the columns in a SliceQuery

instance and to retrieve the column values. The ColumnSliceIterator class provides the
constructors discussed in Table 1.25.

Table 1.25 ColumnSliceIterator Class Constructors

Constructor Description

ColumnSliceIterator(SliceQuery<K,N,V>
query, N start, final N finish, boolean
reversed)

The query parameter is the base slice
query to execute. The start and finish
are the start and finish points of the range
of columns. The reversed boolean
indicates whether the columns are to be
queried in reverse order.

ColumnSliceIterator(SliceQuery<K,N,V>
query, N start, final N finish, boolean
reversed, int count)

In addition to the parameters for the
preceding, the method includes the
count parameter for the number of
columns to query.

ColumnSliceIterator(SliceQuery<K,N,V>
query, N start, ColumnSliceFinish
finish, boolean reversed)

In addition to the query attributes
specified for the first method in the table,
the method includes a parameter of type
ColumnSliceFinish, which allows for a
user-defined function that returns a new
finish point.

ColumnSliceIterator(SliceQuery<K,N,V>
query, N start, ColumnSliceFinish
finish, boolean reversed, int count)

In addition to the parameters for the
preceding, the method includes the
count parameter for the number of
columns to query.

Create a ColumnSliceIterator instance using a start for the column name of "\u0000",
which is the smallest value of type char, and using a finish of "\uFFFF", the largest value
of type char. Specify the SliceQuery instance and set the reversed parameter to false.

ColumnSliceIterator<String, String, String> iterator = new
ColumnSliceIterator<String, String, String>(query, "\u0000", "\uFFFF", false);

Then iterate over the columns to get the column name and column value for each of the
columns.

while (iterator.hasNext()) {
HColumn<String, String> column = iterator.next();

Retrieving Table Data 35

System.out.println(column.getName());
System.out.println(column.getValue());

}

Invoke the retrieveTableDataSliceQuery() method from the main method to output
the column names and column values, as shown in Eclipse in Figure 1.26, when the
HectorClient application is run.

Figure 1.26
Query result for SilceQuery.
Source: Eclipse Foundation.

Querying with the MultigetSliceQuery

In the preceding section, you queried multiple columns from only a single row. In this
section, you will query columns from multiple rows. The MultigetSliceQuery<K,N,V>

interface is used for a query over multiple rows. The MultigetSliceQuery<K,N,V> inter-
face provides the methods discussed in Table 1.26 to set and get query fields.

36 Chapter 1 n Using Cassandra with Hector

Table 1.26 MultigetSliceQuery Interface Methods

Method Description

setKeys(K... keys) Sets the row keys using a vararg method

setKeys(Iterable<K> keys) Sets the row keys as an iterable

setColumnNames(N... columnNames) Sets column names using a vararg method

getColumnNames() Gets column names as a collection

setColumnFamily(String cf) Sets the column family name

setRange(N start, N finish, boolean
reversed, int count)

Sets the range of column names and the
number of columns and a boolean arg to
indicate if the column order is to be reversed

All the methods in Table 1.26 return a MultigetSliceQuery instance except the
getColumnNames() method. First, however, you need to create an instance of
MultigetSliceQuery. The HFactory class provides the method discussed in Table 1.27 to
create an instance of MultigetSliceQuery.

Table 1.27 HFactory Class Method to Create a MultigetSliceQuery Instance

Method Description

createMultigetSliceQuery(Keyspace
keyspace, Serializer<K>
keySerializer, Serializer<N>
nameSerializer, Serializer<V>
valueSerializer)

Returns a MultigetSliceQuery instance
when a Keyspace instance and serializers for
key, column name, and column value are
supplied

Add a retrieveTableDataMultigetSliceQuery() method to the query using a multi-get
query. Using the Keyspace instance created earlier and StringSerializer instances, create
an instance of MultigetSliceQuery<String, String, String> using the HFactory method
createMultigetSliceQuery.

MultigetSliceQuery<String, String, String> multigetSliceQuery =
HFactory.createMultigetSliceQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

Retrieving Table Data 37

Next, set the column family as "catalog" and row keys as "catalog1", "catalog2", and
"catalog3".

multigetSliceQuery.setColumnFamily("catalog");
multigetSliceQuery.setKeys("catalog1", "catalog2",
"catalog3");

Set the range of columns with the setRange method. Empty strings for start and finish

imply that all the columns are to be queried. Set the number of columns to get to 5 and set
the reversed boolean to false.

multigetSliceQuery.setRange("", "", false, 5);

Next, invoke the execute() method on the MultigetSliceQuery<String, String,

String> instance to get the query result as a QueryResult<Rows<String, String,

String>> instance.

QueryResult<Rows<String, String, String>> result = multigetSliceQuery.execute();

Get the result value using the get() method in the QueryResult interface. The type of the
result is Rows<String, String, String>. Get each of the Row instances in Rows using the
getByKey(K key) method. The Row<K,N,V> interface is a tuple consisting of a Key and a
column slice.

System.out.println(result.get().getByKey("catalog1"));
System.out.println(result.get().getByKey("catalog2"));
System.out.println(result.get().getByKey("catalog3"));

Invoke the retrieveTableDataMultigetSliceQuery() method from the main method to
output the result of the multigetSliceQuery instance, as shown in Figure 1.27.

Figure 1.27
Query result for the multigetSliceQuery instance.
Source: Eclipse Foundation.

38 Chapter 1 n Using Cassandra with Hector

In another run of the application, set the number of columns in the query to 3.

multigetSliceQuery.setRange("", "", false, 3);

As shown in Figure 1.28, only three of the columns are included in the query result.

Figure 1.28
Query result for multigetSliceQuery instance for three columns.
Source: Eclipse Foundation.

Querying with a Range Slices Query
The MultigetSliceQuery interface discussed in the preceding section sets the row keys for
which columns are to be retrieved explicitly. Alternatively, you can use the
RangeSlicesQuery<K,N,V> interface to set the row keys as a range instead of setting each
key explicitly. For example, if row key values "catalog1", "catalog2", "catalog3",
"catalog4", and "catalog5" are defined, you could set the range to start at "catalog1"

and end at "catalog5" to include all the row key values in between. Some of the methods
in the RangeSlicesQuery<K,N,V> interface are discussed in Table 1.28.

Table 1.28 RangeSlicesQuery Interface Methods

Method Description

setKeys(K start, K end) Sets the row keys

setRowCount(int rowCount) Sets the row count

setColumnNames(N...
columnNames)

Sets the column names

setColumnFamily(String cf) Sets the column family

setRange(N start, N finish,
boolean reversed, int count)

Sets the range of columns with a start and finish, a
boolean to indicate if the order of columns is to be
reversed, and an int count of the columns

Retrieving Table Data 39

Add a retrieveTableDataRangeSlicesQuery() method to use the RangeSlicesQuery<K,N,V>
interface. The HFactory class provides the method discussed in Table 1.29 to create a
RangeSlicesQuery instance.

Table 1.29 HFactory Class Method to Create a RangeSlicesQuery Instance

Method Description

createRangeSlicesQuery(Keyspace
keyspace, Serializer<K>
keySerializer, Serializer<N>
nameSerializer, Serializer<V>
valueSerializer)

Returns a RangeSlicesQuery instance when
supplied with a Keyspace instance and
serializers for key, column name, and
column value

Using StringSerializer instances, create a RangeSlicesQuery<String, String, String>

instance using the HFactory method createRangeSlicesQuery.

RangeSlicesQuery<String, String, String> rangeSlicesQuery =HFactory.
createRangeSlicesQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

Next, set the column family to "catalog" and set the range of keys to start at "catalog1"
and end at "catalog3".

rangeSlicesQuery.setColumnFamily("catalog");
rangeSlicesQuery.setKeys("catalog1", "catalog3");

Set the range of columns to include all the columns as indicated by the empty strings for
start and finish. Set the number of columns to get to 5.

rangeSlicesQuery.setRange("", "", false, 5);

Next, invoke the execute() method on the RangeSlicesQuery<String, String, String>

instance to make the query. The result is returned as a QueryResult<OrderedRows<

String, String, String>> instance.

QueryResult<OrderedRows<String, String, String>> result = rangeSlicesQuery.
execute();

Invoke the get() method on the QueryResult instance to get the result value. Then invoke
the getByKey method on each of the Row instances to get the row retrieved.

System.out.println(result.get().getByKey("catalog1"));
System.out.println(result.get().getByKey("catalog2"));
System.out.println(result.get().getByKey("catalog3"));

40 Chapter 1 n Using Cassandra with Hector

Invoke the retrieveTableDataRangeSlicesQuery() method in the main method and run
the HectorClient class to output the result. The result of the query as output in Eclipse is
shown in Figure 1.29.

Figure 1.29
Query result for a RangeSlicesQuery instance.
Source: Eclipse Foundation.

Updating Data
In this section, you will update row data added previously. The ColumnFamilyUpdater<K,N>

class is used to update a row of data and provides the constructors discussed in Table 1.30.

Table 1.30 ColumnFamilyUpdater Class Constructors

Constructor Description

ColumnFamilyUpdater
(ColumnFamilyTemplate<K,N> template,
ColumnFactory columnFactory)

Creates a ColumnFamilyUpdater instance
with the supplied ColumnFamilyTemplate
instance and ColumnFactory instance

ColumnFamilyUpdater
(ColumnFamilyTemplate<K,N>
Mutator<K> mutator)

Includes a Mutator instance in addition to
the parameters template,
ColumnFactory columnFactory for the
preceding constructor

Updating Data 41

Alternatively, a ColumnFamilyUpdater may be created using a ThriftColumnFamilyTemplate

instance, which provides the methods discussed in Table 1.31 for creating a
ColumnFamilyUpdater.

Table 1.31 ThriftColumnFamilyTemplate Methods to create a ColumnFamilyUpdater

Method Description

createUpdater() Creates a ColumnFamilyUpdater using the query fields in
the template

createUpdater(K key) Creates a ColumnFamilyUpdater using the query fields in
the template and the supplied row key

createUpdater(K key,
Mutator<K> mutator)

Creates a ColumnFamilyUpdater using the query fields in
the template and the supplied row key and Mutator instance

Add an updateTableData() method to update a row of data. Create a
ColumnFamilyUpdater<String, String> instance using the createUpdater(K key) method
with the supplied key—for example, "catalog2".

ColumnFamilyUpdater<String, String> updater = template.createUpdater("catalog2");

The ColumnFamilyUpdater interface provides several methods for setting an updated value
for a column, some of which are listed in Table 1.32.

Table 1.32 ColumnFamilyUpdater Interface Methods

Method Description

setString(N columnName, String value) Sets a string value for a column to update

setUUID(N columnName, UUID value) Sets a UUID value for a column to update

setLong(N columnName, Long value) Sets a long value for a column to update

setInteger(NcolumnName,Integervalue) Sets an integer value for a column to update

setFloat(N columnName, Float value) Sets a float value for a column to update

setDouble(N columnName, Double value) Sets a double value for a column to update

setBoolean(NcolumnName,Booleanvalue) Sets a boolean value for a column to update

setByteArray(N columnName, byte[]
value)

Sets a byte[] value for a column to update

setByteBuffer(N columnName,
ByteBuffer value)

Sets a ByteBuffer value for a column to
update

setDate(N columnName, Date value) Sets a date value for a column to update

42 Chapter 1 n Using Cassandra with Hector

Set the updated values for the columns in the row for key "catalog2".

updater.setString("journal", "Oracle-Magazine");
updater.setString("publisher", "Oracle-Publishing");
updater.setString("edition", "11/12 2013");
updater.setString("title", "Engineering as a Service");
updater.setString("author", "Kelly, David A.");

When a ColumnFamilyUpdater instance has been constructed with the updated values, you
can invoke the update(ColumnFamilyUpdater<K, N> updater) method to update.

try {
template.update(updater);
} catch (HectorException e) {
}

Invoke the updateTableData() method from the main method and run the HectorClient
application to update the row with key "catalog2". Then query row "catalog2" using the
retrieveTableData() method to output the updated values, as shown in Figure 1.30.

Figure 1.30
Updated column values.
Source: Eclipse Foundation.

Updating Data 43

Deleting Table Data
Next, you will delete data from Cassandra database. As when adding row column(s), you
need to create a Mutator instance using a Keyspace instance and a StringSerializer.

Mutator<String> mutator = HFactory.createMutator(keyspace,StringSerializer.get());

As with adding data, you can delete data as a single column or delete multiple columns of
data as a batch.

Deleting a Single Column
The Mutator interface provides the method discussed in Table 1.33 for deleting a column.

Table 1.33 Mutator Interface Method to Delete a Column

Method Description

delete(final K key, final String cf, final N
columnName, final Serializer<N>
nameSerializer)

Deletes a specified column name for a
specified row key in a specified column
family using the specified serializer

Add a deleteTableDataColumn() method to the HectorClient class. Then delete the
"journal" column in the "catalog" column family in the row with key as "catalog3"

and using a StringSerializer.

mutator.delete("catalog3", "catalog", "journal", StringSerializer.get());

Invoke the deleteTableDataColumn() method in the main method and run the
HectorClient application. The delete method returns a MutationResult instance.
Invoke the retrieveTableDataMultigetSliceQuery() method after invoking the
deleteTableDataColumn() method to output the modified row set. The row set output
using the retrieveTableDataMultigetSliceQuery() method before a single column is
deleted is shown in Figure 1.31.

44 Chapter 1 n Using Cassandra with Hector

Figure 1.31
Result of query before deleting a row.
Source: Eclipse Foundation.

Figure 1.32 shows the row set output using the retrieveTableDataMultigetSliceQuery()

method after a single column is deleted. The journal column is not included in the
"catalog3" row because the column has been deleted.

Figure 1.32
Result of query after deleting a row.
Source: Eclipse Foundation.

Deleting Multiple Columns
In this section, you will delete multiple columns from a row. The Mutator interface pro-
vides the overloaded addDeletion methods for deleting multiple columns from a row.
Some of the overloaded addDeletion methods are listed in Table 1.34.

Deleting Table Data 45

Table 1.34 Mutator Interface Methods for Deleting Multiple Columns

Method Description

addDeletion(K key, String cf, N columnName,
Serializer<N> nameSerializer)

Adds a deletion mutation to the
Mutator instance using a specified
key, column family, column name,
and column name serializer

addDeletion(K key, String cf) Adds a deletion mutation to the
Mutator instance using a specified
key and column family

addDeletion(Iterable<K> keys, String cf) Adds a deletion mutation to the
Mutator instance using a specified
iterable of keys and column family

All the addDeletion methods return a Mutator instance, which can be used to invoke the
addDeletion method again to link a batch of deletions. Add a deleteTableData() method
to delete a batch of columns. Then create a Mutator instance from the HFactory class.

Mutator<String> mutator = HFactory.createMutator(keyspace,StringSerializer
.get());

Invoke the addDeletion() method multiple times in sequence to add delete mutations for
the "journal", "publisher", and "edition" columns from the "catalog2" row in the
"catalog" column family. Adding delete mutations with the addDeletion() method
does not delete the columns by itself. Invoke the execute() method to delete the muta-
tions added to the Mutator instance.

mutator.addDeletion("catalog2", "catalog",
"journal",StringSerializer.get()).addDeletion("catalog2", "catalog",
"publisher",
StringSerializer.get())
addDeletion("catalog2", "catalog", "edition",
StringSerializer.get()).execute();

Invoke the deleteTableData() method in the main method and run the HectorClient
application to delete the columns added using the addDeletion() method. If the
retrieveTableData() method is invoked before the batch deletions are applied, the
query result shown in Figure 1.33 is output.

46 Chapter 1 n Using Cassandra with Hector

Figure 1.33
Result of query before batch deletions.
Source: Eclipse Foundation.

If the retrieveTableData() method is invoked after the batch deletions are applied, the
query result shown in Figure 1.34 is output. The "journal", "publisher", and "edition"

columns are shown as deleted.

Figure 1.34
Result of query after batch deletions.
Source: Eclipse Foundation.

The HectorClient Class
The HectorClient class appears in Listing 1.1.

Listing 1.1 The HectorClient Class

package hector;

import java.util.Arrays;
import me.prettyprint.cassandra.serializers.StringSerializer;

The HectorClient Class 47

import me.prettyprint.cassandra.service.ColumnSliceIterator;
import me.prettyprint.cassandra.service.ThriftKsDef;
import me.prettyprint.hector.api.Cluster;
import me.prettyprint.hector.api.Keyspace;
import me.prettyprint.hector.api.beans.HColumn;
import me.prettyprint.hector.api.beans.OrderedRows;
import me.prettyprint.hector.api.beans.Rows;
import me.prettyprint.hector.api.ddl.ColumnFamilyDefinition;
import me.prettyprint.hector.api.ddl.ComparatorType;
import me.prettyprint.hector.api.ddl.KeyspaceDefinition;
import me.prettyprint.hector.api.exceptions.HectorException;
import me.prettyprint.hector.api.factory.HFactory;
import me.prettyprint.hector.api.mutation.MutationResult;
import me.prettyprint.hector.api.mutation.Mutator;
import me.prettyprint.hector.api.query.ColumnQuery;
import me.prettyprint.hector.api.query.MultigetSliceQuery;
import me.prettyprint.hector.api.query.Query;
import me.prettyprint.hector.api.query.QueryResult;
import me.prettyprint.hector.api.query.RangeSlicesQuery;
import me.prettyprint.hector.api.query.SliceQuery;
import me.prettyprint.cassandra.service.template.ColumnFamilyResult;
import me.prettyprint.cassandra.service.template.ColumnFamilyTemplate;
import me.prettyprint.cassandra.service.template.ColumnFamilyUpdater;
import me.prettyprint.cassandra.service.template.ThriftColumnFamilyTemplate;

public class HectorClient {

private static Cluster cluster;
private static Keyspace keyspace;

private static ColumnFamilyTemplate<String, String> template;

public static void main(String[] args) {

cluster = HFactory.getOrCreateCluster("hector_cluster",
"localhost:9160");

KeyspaceDefinition keyspaceDef = cluster
.describeKeyspace("HectorKeyspace");

if (keyspaceDef == null) {
createSchema();

}
createKeyspace();
createTemplate();
addTableData();

48 Chapter 1 n Using Cassandra with Hector

// addTableDataColumn();
// deleteTableDataColumn();
// addTableDataColumn();
// retrieveTableDataColumnQuery();
// updateTableData();
// deleteTableDataColumn();
// retrieveTableDataColumnQuery();
// deleteTableData();
// retrieveTableData();
// retrieveTableDataSliceQuery();
retrieveTableDataMultigetSliceQuery();

}

private static void createSchema() {
int replicationFactor = 1;
ColumnFamilyDefinition cfDef = HFactory.createColumnFamily

Definition(
"HectorKeyspace", "catalog", ComparatorType.

BYTESTYPE);
KeyspaceDefinition keyspace = HFactory.createKeyspaceDefinition(

"HectorKeyspace", ThriftKsDef.DEF_STRATEGY_CLASS,
replicationFactor, Arrays.asList(cfDef));

cluster.addKeyspace(keyspace, true);
}

private static void createKeyspace() {
keyspace = HFactory.createKeyspace("HectorKeyspace", cluster);

}
private static void createTemplate() {

template = new ThriftColumnFamilyTemplate<String, String>
(keyspace,

"catalog", StringSerializer.get(),
StringSerializer.get());

}

private static void addTableData() {
Mutator<String> mutator = HFactory.createMutator(keyspace,

StringSerializer.get());
mutator.addInsertion("catalog1", "catalog",

HFactory.createStringColumn("journal", "Oracle
Magazine"))

.addInsertion(
"catalog1",

The HectorClient Class 49

"catalog",
HFactory.createStringColumn

("publisher",
"Oracle Publishing"))

.addInsertion(
"catalog1",
"catalog",
HFactory.createStringColumn

("edition",
"November-December

2013"))
.addInsertion(

"catalog1",
"catalog",
HFactory.createStringColumn

("title",
"Quintessential and

Collaborative"))
.addInsertion("catalog1", "catalog",

HFactory.createStringColumn
("author", "Tom Haunert"));

mutator.addInsertion("catalog2", "catalog",
HFactory.createStringColumn("journal", "Oracle

Magazine"))
.addInsertion(

"catalog2",
"catalog",
HFactory.createStringColumn

("publisher",
"Oracle Publishing"))

.addInsertion(
"catalog2",
"catalog",
HFactory.createStringColumn

("edition",
"November-December

2013"))
.addInsertion(

"catalog2",
"catalog",
HFactory.createStringColumn

("title",

50 Chapter 1 n Using Cassandra with Hector

"Engineering as a
Service"))

.addInsertion("catalog2", "catalog",
HFactory.createStringColumn

("author", "David A. Kelly"));
mutator.execute();

}

private static void retrieveTableData() {

try {
ColumnFamilyResult<String, String> res = template

.queryColumns("catalog1");
if(res.hasResults()){

String journal = res.getString("journal");
String publisher = res.getString("publisher");
String edition = res.getString("edition");
String title = res.getString("title");
String author = res.getString("author");

System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

}
res = template.queryColumns("catalog2");

if(res.hasResults()){
journal = res.getString("journal");
publisher = res.getString("publisher");
edition = res.getString("edition");
title = res.getString("title");
author = res.getString("author");

System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

}
} catch (HectorException e) {

}
}

The HectorClient Class 51

private static void retrieveTableDataColumnQuery() {
ColumnQuery<String, String, String> columnQuery = HFactory

.createStringColumnQuery(keyspace);
columnQuery.setColumnFamily("catalog").setKey("catalog3")

.setName("journal");
//

columnQuery.setColumnFamily("catalog").setKey("catalog1").setName("journal");
QueryResult<HColumn<String, String>> result = columnQuery.execute

();
System.out.println(result.get());

}

private static void retrieveTableDataSliceQuery() {
SliceQuery<String, String, String> query = HFactory

.createSliceQuery(keyspace, StringSerializer.get(),
StringSerializer.get(),

StringSerializer.get())
.setKey("catalog2").setColumnFamily("catalog");

ColumnSliceIterator<String, String, String> iterator = new
ColumnSliceIterator<String, String,

String>(query, "\u0000", "\uFFFF", false);

while (iterator.hasNext()) {
HColumn<String, String> column = iterator.next();
System.out.println(column.getName());
System.out.println(column.getValue());

}
}

private static void addTableDataColumn() {
Mutator<String> mutator = HFactory.createMutator(keyspace,

StringSerializer.get());
MutationResult result=mutator.insert("catalog3", "catalog",

HFactory.createStringColumn("journal", "Oracle
Magazine"));

System.out.println(result);
}

private static void updateTableData() {
ColumnFamilyUpdater<String, String> updater = template

.createUpdater("catalog2");
updater.setString("journal", "Oracle-Magazine");
updater.setString("publisher", "Oracle-Publishing");

52 Chapter 1 n Using Cassandra with Hector

updater.setString("edition", "11/12 2013");
updater.setString("title", "Engineering as a Service");
updater.setString("author", "Kelly, David A.");

try {
template.update(updater);

} catch (HectorException e) {

}
}

private static void deleteTableDataColumn() {
Mutator<String> mutator = HFactory.createMutator(keyspace,

StringSerializer.get());
mutator.delete("catalog3", "catalog", "journal",

StringSerializer.get());
}

private static void deleteTableData() {
Mutator<String> mutator = HFactory.createMutator(keyspace,

StringSerializer.get());
mutator.addDeletion("catalog2", "catalog", "journal",

StringSerializer.get())
.addDeletion("catalog2", "catalog", "publisher",

StringSerializer.get())
.addDeletion("catalog2", "catalog", "edition",

StringSerializer.get()).execute();
}

private static void retrieveTableDataMultigetSliceQuery() {
MultigetSliceQuery<String, String, String> multigetSliceQuery =

HFactory.createMultigetSliceQuery(keyspace,
StringSerializer.get(),

StringSerializer.get(), StringSerializer.get());
multigetSliceQuery.setColumnFamily("catalog");
multigetSliceQuery.setKeys("catalog1", "catalog2",

"catalog3");
//multigetSliceQuery.setRange("", "", false, 3);
//multigetSliceQuery.setRange("", "", false, 2);
multigetSliceQuery.setRange("", "", false, 5);
QueryResult<Rows<String, String, String>> result =

multigetSliceQuery.execute();
System.out.println(result.get().getByKey("catalog1"));
System.out.println(result.get().getByKey("catalog2"));

The HectorClient Class 53

System.out.println(result.get().getByKey("catalog3"));
}
private static void retrieveTableDataRangeSlicesQuery() {

RangeSlicesQuery<String, String, String> rangeSlicesQuery =
HFactory.createRangeSlicesQuery(keyspace,

StringSerializer.get(),

StringSerializer.get(), StringSerializer.get());
rangeSlicesQuery.setColumnFamily("catalog");
rangeSlicesQuery.setKeys("catalog1", "catalog3");
//rangeSlicesQuery.setRange("", "", false, 5);
//rangeSlicesQuery.setRange("", "", false, 3);
QueryResult<OrderedRows<String, String, String>>

result =

rangeSlicesQuery.execute();
System.out.println(result.get().getByKey

("catalog1"));
System.out.println(result.get().getByKey

("catalog2"));
System.out.println(result.get().getByKey

("catalog3"));
}

}

Summary
This chapter discussed using the Hector Java client to access the Apache Cassandra data-
base and make create, read, update, and delete (CRUD) operations on the database data.
The Hector client supports adding and deleting column data as single columns or a batch
of columns. Hector supports retrieving column data as single columns or a column slice.
Row data may be queried one row at a time or multiple rows in the same query. This
chapter discussed the various interfaces and classes involved in making the CRUD opera-
tions. The next chapter will discuss the Cassandra Query Language (CQL) for querying
Cassandra. You will use the Hector Java client to run the CQL queries.

54 Chapter 1 n Using Cassandra with Hector

Chapter 2

Querying Cassandra
with CQL

If you are transitioning from a relational database and SQL, you will find Cassandra Query
Language (CQL) easy to use for accessing the Cassandra server. CQL has a syntax similar
to SQL and can be used from a command line shell (cqlsh) or from client APIs such as the
Hector API introduced in Chapter 1, “Using Cassandra with Hector.” Although Cassandra
is a NoSQL database, Cassandra’s data model is similar to a relational database with a stor-
age model based on column families, columns, and rows. Instead of querying a relational
database table, you query a column family. Instead of querying relational database
columns and rows, you query Cassandra’s columns and rows. This chapter introduces
CQL using the Hector client API for running CQL statements. Another API that supports
CQL may be used just as well for running the CQL statements.

Overview of CQL
CQL 3 is the latest version of CQL. Being a query language for a non-relational database,
some constructs used in SQL are not supported in CQL—for example, JOINS. CQL 3 iden-
tifiers are case-insensitive unless enclosed in double quotes. CQL 3 keywords are also
case-insensitive. An identifier in CQL is a letter followed by any sequence of letters, digits,
and the underscore. A string literal in CQL is specified with single quotes, and to use a
single quotation mark in a query, it must be delimited, or escaped, with another single
quote. CQL 3 data types were discussed in Chapter 1. The CQL 3 commands are dis-
cussed in Table 2.1.

55

Table 2.1 CQL 3 Commands

Command Description

ALTER TABLE or ALTER
COLUMNFAMILY

Alters column family metadata such as the data
storage type of columns and column family properties.
Also used to add/drop columns.

ALTER KEYSPACE Alters the keyspace attributes. The attributes
supported by a keyspace are replica placement
strategy, strategy options, and durable_writes.
Replica placement strategy was discussed in Chapter 1,
with the two supported types being SimpleStrategy
and NetworkTopologyStrategy. Strategy options are
the configuration options for the chosen replica
placement strategy. The durable_writes attribute
makes data more durable and prevents data loss by
creating a commit log. It is set to true by default.

BATCH Runs multiple data modification language (DML)
statements as a batch.

CREATE TABLE Creates a new column family, also called a table.

CREATE INDEX Creates a secondary index on the specified column in
the specified column family.

CREATE KEYSPACE Creates a keyspace, including the replica placement
strategy.

DELETE Deletes one or more columns from a row.

DROP TABLE Removes a column family.

DROP INDEX Removes a secondary index.

DROP KEYSPACE Removes a keyspace.

INSERT Adds column data to a column family row.

SELECT Retrieves data from a column family.

TRUNCATE Truncates a column family; removes all data from a
column family.

UPDATE Updates column data in a column family.

USE Sets the keyspace to use.

56 Chapter 2 n Querying Cassandra with CQL

For a complete syntax of CQL 3 commands, see http://cassandra.apache.org/doc/cql3/
CQL.html.

Note that not all Java clients support CQL 3. For example, Hector does not support
CQL 3, but supports CQL 2.0 (http://cassandra.apache.org/doc/cql/CQL.html). Subse-
quent sections discuss most CQL 2 statements with an example. Later in the chapter, we
will discuss some of the new features in CQL 3. You will use the CQL 3 commands in
Chapter 3, “Using Cassandra with DataStax Java Driver,” on the DataStax Java driver.

Setting the Environment
You will use Hector Java client to run CQL statements. Download the following software:

n Apache Cassandra apache-cassandra-2.0.4-bin.tar.gz or a later version from
http://cassandra.apache.org/download/

n Hector Java client hector-core-1.1-4.jar or a later version from https://github.com/
hector-client/hector/downloads

n Eclipse IDE for Java EE developers from http://www.eclipse.org/downloads/

n Java SE 7 from http://www.oracle.com/technetwork/java/javase/downloads/
index-jsp-138363.html

Then follow these steps:

1. Install the Eclipse IDE.

2. Extract the Apache Cassandra TAR file to a directory (for example, C:\Cassandra\
apache-cassandra-2.0.4).

3. Add the bin folder, C:\Cassandra\apache-cassandra-2.0.4\bin, to the PATH

environment variable.

4. Start Apache Cassandra server with the following command:
cassandra –f

The Cassandra server starts and begins listening for CQL clients on localhost:9042.
Cassandra listens for Thrift clients on localhost:9160.

Setting the Environment 57

../../../../../../cassandra.apache.org/download/default.htm
../../../../../../www.eclipse.org/downloads/default.htm
../../../../../../www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
../../../../../../www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
../../../../../../https@github.com/hector-client/hector/downloads
../../../../../../https@github.com/hector-client/hector/downloads
../../../../../../cassandra.apache.org/doc/cql/CQL.html
../../../../../../cassandra.apache.org/doc/cql3/CQL.html
../../../../../../cassandra.apache.org/doc/cql3/CQL.html

Creating a Java Project
In this section, you will create a Java project in Eclipse for running CQL statements using
a Hector client. Follow these steps:

1. Select File > New > Other in the Eclipse IDE.

2. In the New window select the Java Project wizard and click Next, as shown in
Figure 2.1.

Figure 2.1
Selecting the Java Project wizard.
Source: Eclipse Foundation.

58 Chapter 2 n Querying Cassandra with CQL

3. In the Create a Java Project screen, specify a project name (for example, CQL), select
the directory location for the project (or choose Use Default Location), select the JRE,
and click Next, as shown in Figure 2.2.

Figure 2.2
Creating a new Java project.
Source: Eclipse Foundation.

4. In the Java Settings screen, select the default settings and click Finish, as shown in
Figure 2.3. A new Java project is created in Eclipse, as shown in the Package Explorer
(see Figure 2.4).

Creating a Java Project 59

Figure 2.3
The Java Settings screen.
Source: Eclipse Foundation.

Figure 2.4
The new Java project in the Package Explorer.
Source: Eclipse Foundation.

60 Chapter 2 n Querying Cassandra with CQL

5. You need to add the same JAR files to the project Java build path as for the Chapter 1
project. To begin, right-click the project node in the Package Explorer and select
Properties.

6. In the Properties for CQL dialog box, select the Java Build Path node and click the
Add External JARs button to add JAR files, as shown in Figure 2.5. Then click OK.

Figure 2.5
Adding JAR files.
Source: Eclipse Foundation.

Creating a Java Project 61

7. Add a Java class for the Hector client application. Select File > New > Other and, in
the New window, select Java > Class, as shown in Figure 2.6. Then click Next.

Figure 2.6
Selecting Java > Class.
Source: Eclipse Foundation.

8. In the New Java Class wizard, select the source folder (CQL/src), specify a package
(cql), and specify a class name (CQLClient). Then select the main method stub to
create and click Finish, as shown in Figure 2.7. The CQLClient Java class is created
and added to the Eclipse Java project, as shown in the Package Explorer in Figure 2.8.

62 Chapter 2 n Querying Cassandra with CQL

Figure 2.7
Creating a new Java class.
Source: Eclipse Foundation.

Figure 2.8
The Java class CQLClient.
Source: Eclipse Foundation.

Creating a Java Project 63

Creating a Keyspace
In CQL 3, the syntax for creating a keyspace is as follows:

CREATE KEYSPACE <keyspace_name> WITH <property1> = {} AND <property2> = {};

The properties supported are discussed in Table 2.2.

Table 2.2 CREATE KEYSPACE Command Properties

Property Type Required Default Value Description

replication Map Yes 1 The replication strategy
and options

durable_writes Simple No true If the data written to
the keyspace is to be
stored in the commit log

If SimpleStrategy is used as the replication strategy, an example of a command to create
a keyspace is as follows:

CREATE KEYSPACE CQLKeyspace
WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 1}
AND durable_writes = false;

The 'replication_factor' sub-option can be used only with SimpleStrategy. If
NetworkTopologyStrategy is used, an example of a command to create a keyspace is as
follows:

CREATE KEYSPACE CQLKeyspace
WITH replication = {'class': 'NetworkTopologyStrategy', 'DC1' : 1, 'DC2' : 1}
AND durable_writes = true;

The DC1 and DC2 refer to the data centers DC1 and DC2. The sub-option values are the
individual replication factors for each data center.

The CQL 2 syntax for creating a keyspace is as follows:

CREATE KEYSPACE <ks_name>
WITH strategy_class = <value>
[AND strategy_options:<option> = <value> [strategy_options:<option> = <value>]];

For example:

CREATE KEYSPACE CQLKeyspace WITH strategy_class = 'SimpleStrategy'
AND strategy_options:replication_factor = 1;

64 Chapter 2 n Querying Cassandra with CQL

If Cassandra CLI (client interface utility) is used to create a keyspace, the syntax of the
CREATE KEYSPACE command is different than that discussed. Cassandra CLI does not
completely support CQL, and the Thrift API is supported. To create a keyspace in Cassan-
dra CLI, start Cassandra CLI with the following command:

cassandra-cli

Run the following command to create a keyspace with the name CQLKeyspace, the replica-
tion strategy SimpleStrategy, and a replication factor of 1:

CREATE KEYSPACE CQLKeyspace WITH placement_strategy= 'org.apache.cassandra.
locator.SimpleStrategy' AND strategy_options={replication_factor:1};

A keyspace CQLKeyspace is created and the output from the command is shown in Figure 2.9.
To use the keyspace run the following command:

use CQLKeyspace;

As indicated by the message output in Figure 2.9, the CQLKeyspace is authenticated.

Figure 2.9
The CQLKeyspace is authenticated.
Source: Microsoft Corporation.

Creating a Column Family
You will use the Hector client to run the CQL statement to create a column family. To begin,
add a createCF() method to the CQLClient class and invoke the method from the main

method. Hector provides the me.prettyprint.cassandra.model.CqlQuery class to run
CQL statements. The constructor for the class is CqlQuery(Keyspace k, Serializer<K>

Creating a Column Family 65

keySerializer,Serializer<N> nameSerializer, Serializer<V> valueSerializer). But,
before you may run CQL statements, you need to create a Cluster instance and a
Keyspace instance as discussed in Chapter 1.

Cluster cluster = HFactory.getOrCreateCluster("cql-cluster", "localhost:9160");
Keyspace keyspace = HFactory.createKeyspace("CQLKeyspace", cluster);

Create a CQLQuery instance using the class constructor with StringSerializer instances
for key, column name, and column value.

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

Next, set the CQL query to create a column family. Set the comparator as UTF8Type, which
implies that columns are sorted based on UTF8Type sorting and columns are displayed as
UTF8Type text. The other supported types are AsciiType, BytesType (the default),
CounterColumnType, IntegerType, LexicalUUIDType and LongType. The default validation
class is set using the default_validation parameter set to UTF8Type and is the validator
to use for column values. The supported types and default setting are the same as for the
comparator.

cqlQuery.setQuery("CREATE COLUMNFAMILY catalog (catalog_id text PRIMARY KEY,
journal text,publisher text,edition text,title text,author text)WITH
comparator=UTF8Type AND default_validation_class=UTF8Type");

Some of the other supported options are discussed in Table 2.3, all of the column family
options being optional. Only the column family name is a required parameter.

Table 2.3 CREATE COLUMNFAMILY Command Options

Parameter Description

caching If keys and/or rows are to be cached. Supported values are
all, keys_only, rows_only, and none.

replicate_on_write If data is to be replicated on write. Set to true by default.
The false value is supported only for counter values, but
is not recommended.

To run the CQL query, invoke the execute() method:

cqlQuery.execute();

66 Chapter 2 n Querying Cassandra with CQL

The CQLClient application to create a column family catalog using the Hector client to
run the CQL statement appears in Listing 2.1.

Listing 2.1 CQLClient Application

package cql;

import me.prettyprint.cassandra.model.CqlQuery;
import me.prettyprint.cassandra.serializers.StringSerializer;
import me.prettyprint.hector.api.Cluster;
import me.prettyprint.hector.api.Keyspace;
import me.prettyprint.hector.api.factory.HFactory;

public class CQLClient {
private static Cluster cluster;
private static Keyspace keyspace;
public static void main(String[] args) {

cluster = HFactory.getOrCreateCluster("cql-cluster",
"localhost:9160");

createKeyspace();
createCF();

}
private static void createKeyspace() {

keyspace = HFactory.createKeyspace("CQLKeyspace", cluster);
}
private static void createCF() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("CREATE COLUMNFAMILY catalog (catalog_id text
PRIMARY KEY,journal text,publisher text,edition text,title text,author text) WITH
comparator=UTF8Type AND default_validation=UTF8Type AND caching=keys_only AND
replicate_on_write=true");

cqlQuery.execute();
}

}

If it’s not already started, start Cassandra, right-click CQLClient, and select Run As > Java
Application as shown in Figure 2.10.

Creating a Column Family 67

Figure 2.10
Running the CQLClient application.
Source: Eclipse Foundation.

The "catalog" column family is created in the CQLKeyspace keyspace. (This keyspace
must be created prior to running the CQL statement to create the column family.) In sub-
sequent sections, you will add other methods to the CQLClient class to run CQL state-
ments and invoke the methods from the main method. The primary key column of the
"catalog" column family is named something other than KEY, which makes it unsuitable
for being specified in the WHERE clause of CQL 2 queries, as you will see in a later section.
To create a primary key column called KEY, run the following CQL query:

cqlQuery.setQuery("CREATE COLUMNFAMILY catalog2 (KEY text PRIMARY KEY,journal
text,publisher text,edition text,title text,author text)");

One of the columns must be a primary key column. If a primary key is not specified, the
following exception is generated:

InvalidRequestException(why:You must specify a PRIMARY KEY)

68 Chapter 2 n Querying Cassandra with CQL

Using the INSERT Statement
In this section, you will run the INSERT CQL statement. The syntax for the INSERT state-
ment with the required clauses is as follows:

INSERT INTO <tablename> (<column1>, <column2>, <column>) VALUES (<value1>,
<value2>, <valueN>)

The number of values must match the number of columns or the following exception is
generated:

InvalidRequestException(why:unmatched column names/values)

However, the number of columns/values may be less than in the schema for the column
family. The primary key column must be specified, as the primary key identifies a row.
Add an insert() method to the CQLClient class and invoke the method from the main

method. Create a CQLQuery object as before.

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

Set the query to add a row to the catalog table using the setQuery(String) method:

cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal, publisher, edition,
title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly')");

Then run the query with the execute() method:

cqlQuery.execute();

Similarly, add another row:

cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal, publisher, edition,
title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert')");
cqlQuery.execute();

The INSERT statement adds a new row if one does not exist and replaces the row if a row
with the same primary key already exists. Run the CQLClient application to invoke the
insert() method and add data to the "catalog" column family. Then add the rows in
Cassandra CLI. To fetch the row with the "catalog1" and "catalog2" keys, run the fol-
lowing commands:

get catalog['catalog1'];
get catalog['catalog2'];

Using the INSERT Statement 69

The output from the command fetches the rows added with the INSERT statement, as
shown in Figure 2.11.

Figure 2.11
Adding rows with the INSERT statement.
Source: Microsoft Corporation.

You add a row to a column family with the name KEY in a similar manner:

cqlQuery.setQuery("INSERT INTO catalog2 (KEY, journal, publisher, edition,title,
author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing', 'November-
December 2013', 'Engineering as a Service','David A. Kelly')");
cqlQuery.execute();

When a row is added, all the columns/values do not have to be specified. For example, the
following CQL query adds a row without the journal column. Flexible schema is one of
the features of the Cassandra database and of NoSQL databases in general.

cqlQuery.setQuery("INSERT INTO catalog (catalog_id, publisher, edition,title,
author) VALUES ('catalog4', 'Oracle Publishing', 'November-December 2013',
'Engineering as a Service','David A. Kelly')");
cqlQuery.execute();

Using the SELECT Statement
In this section, you will query using the SELECT statement. The SELECT statement must
have the following required clauses and keywords:

SELECT <select-clause> FROM <tablename>

The SELECT statement queries one or more columns from one or more rows and returns
the result as a rowset, with each row having the columns specified in the query. Even if a

70 Chapter 2 n Querying Cassandra with CQL

column name not defined in the column family schema is specified in the SELECT state-
ment’s <select-clause>, the column value is returned—a null value for a non-existent
column. The columns whose values are to be selected are specified in the <select-

clause> as comma-separated column names. Alternatively, to select all columns, specify *.
The <tablename> is the column family or table from which to select.

Add a method called select() to the CQLClient application and invoke the method from
the main method. Then create a CQLQuery object as before.

CqlQuery<String, String, String> cqlQuery = new CqlQuery<String, String, String>
(keyspace, StringSerializer.get(), StringSerializer.get(), StringSerializer.get());

As an example, select all columns using *:

cqlQuery.setQuery("select * from catalog");

Invoke the execute() method to run the CQL statement. The result of the query is
returned as a QueryResult<CqlRows<K, N, V>> object.

QueryResult<CqlRows<String, String, String>> result = cqlQuery.execute();

Fetch the result using the get() method and create an Iterator over the result using the
iterator() method.

Iterator iterator = result.get().iterator();

Iterate over the result to fetch individual rows. A row is represented with the Row interface,
and a Row instance consists of a key/column slice tuple. Get the key value using the getKey()

method and get the column slice represented with the ColumnSlice interface using the
getColumnSlice() method. Fetch the collection of columns from the ColumnSlice instance
using the getColumns method. Create another Iterator over the list of columns and iterate
over the columns to fetch individual HColumn instances, which represent the columns in the
column slice. Output the column name using the getName() method from HColumn and out-
put the column value using the getValue() method.

while (iterator.hasNext()) {
Row row = (Row) iterator.next();
String key = (String) row.getKey();
ColumnSlice columnSlice = row.getColumnSlice();
List columnList = columnSlice.getColumns();
Iterator iter = columnList.iterator();
while (iter.hasNext()) {

HColumn column = (HColumn) iter.next();

Using the SELECT Statement 71

System.out.println("Column name: " +
column.getName() + " ");

System.out.println("Column Value: " +
column.getValue());

System.out.println("\n");
}

}

Run the CQLClient application to fetch all the column values from the catalog table. The
catalog1 row columns are output as shown in Figure 2.12.

Figure 2.12
The result of a SELECT statement.
Source: Eclipse Foundation.

The catalog2 row columns are output as shown in Figure 2.13.

72 Chapter 2 n Querying Cassandra with CQL

Figure 2.13
The result of a SELECT statement (continued).
Source: Eclipse Foundation.

The SELECT statement also supports a WHERE clause to filter a query based on the value of
another column.

SELECT <select-clause> FROM <tablename> WHERE <where-clause>

CQL requires that the WHERE clause with the = comparison be used with the table key
alone or an indexed column alone. The column in the = comparison after WHERE must
either be the primary key column called KEY or some other column that has a secondary
index. Before we discuss how to filter a SELECT query using the WHERE clause, let’s add a
secondary index on a column.

Creating a Secondary Index
CQL provides the CREATE INDEX command to create a secondary index on a column
already defined in a column family. For example, the following command will add a
secondary index called titleIndex on column called title in table called catalog.

Creating a Secondary Index 73

All existing data for the column is indexed asynchronously. When new data is added, it is
indexed automatically at the time of insertion.

CREATE INDEX titleIndex ON catalog (title)

Add a createIndex() method to the CQLClient class to create a secondary index on a
column. Then specify and run the preceding CQL query using a CQLQuery instance.

cqlQuery.setQuery("CREATE INDEX titleIndex ON catalog (title)");
cqlQuery.execute();

Invoke the createIndex() method in the main method and run the CQLClient application
to create a secondary index on the title column in the catalog table.

Using the SELECT Statement with the WHERE Clause
As mentioned, CQL requires the column in an = comparison specified in the WHERE clause
to be an indexed column or a primary key column called KEY. If you run a CQL query
using the WHERE clause on a primary key column that is not called KEY or on some other
column that has not been indexed, the following exception is generated:

Caused by: InvalidRequestException(why:No indexed columns present in by-columns
clause with "equals" operator)

The following CQLQuery query would generate the preceding exception because
catalog_id used with the = operator is not an indexed column, and even though it is a
primary key column, it is not called KEY.

cqlQuery.setQuery("SELECT catalog_id, journal, publisher, edition,title,author
FROM catalog WHERE catalog_id='catalog1'");

The same goes for the following query because the journal column used in the = compari-
son is not an indexed column.

cqlQuery.setQuery("SELECT KEY, journal, publisher, edition,title,author FROM
catalog WHERE journal='Oracle Magazine'");

Because you created a secondary index on the title column in the catalog table, you can
use the title column in the = comparison after the WHERE clause:

cqlQuery.setQuery("SELECT catalog_id, journal, publisher, edition,title,author
FROM catalog WHERE title='Engineering as a Service'");

74 Chapter 2 n Querying Cassandra with CQL

For example, if catalog1 is the only column with the title “Engineering as a Service,” then
the preceding query would generate the following result using the same iteration over the
QueryResult<CqlRows<String, String, String>> result returned by the query:

Column name: catalog_id
Column Value: catalog1
Column name: journal
Column Value: Oracle Magazine
Column name: publisher
Column Value: Oracle Publishing
Column name: edition
Column Value: November-December 2013
Column name: title
Column Value: Engineering as a Service
Column name: author
Column Value: David A. Kelly

The SELECT statement with the WHERE clause may also be used with the KEY column in the =

comparison—for example, to select the columns where KEY is catalog1.

cqlQuery.setQuery("SELECT KEY, journal, publisher, edition,title,author FROM
catalog2 WHERE KEY='catalog1'");

The result of the query is shown in Figure 2.14.

Figure 2.14
The result of a SELECT statement with a WHERE query.
Source: Eclipse Foundation.

Using the SELECT Statement with the WHERE Clause 75

Using the UPDATE Statement
The UPDATE statement is used to update the column values of row(s). You update a row
using an UPDATE CQL statement. The syntax of the UPDATE statement is as follows:

UPDATE <tablename> (USING <option> (AND <option>)*)? SET <assignment1> (','
<assignmentN>)* WHERE <where-clause>;

Add a method called update() to the CQLClient class. Then set the CQL UPDATE statement
as the query in the CQLQuery object.

cqlQuery.setQuery("UPDATE catalog USING CONSISTENCY ALL SET 'edition' = '11/12
2013', 'author' = 'Kelley, David A.' WHERE CATALOG_ID = 'catalog1'");

The column in the WHERE clause to select the row must be the primary key column. If
some other column is used, the following exception is generated:

Caused by: InvalidRequestException(why:Expected key 'CATALOG_ID' to be present in
WHERE clause for 'catalog')

UPDATE does not try to determine whether the row identified by the primary key column
exists. If the row does not exist, a row is created. Run a SELECT query after the UPDATE

statement. The result of the query indicates that the columns were updated, as shown in
Figure 2.15.

Figure 2.15
The result of a SELECT statement after an UPDATE statement.
Source: Eclipse Foundation.

76 Chapter 2 n Querying Cassandra with CQL

Using the BATCH Statement
The BATCH statement is used to run a group of modification statements (insertions,
updates, deletions) in a batch as a single statement. Only UPDATE, INSERT, and DELETE

statements may be grouped in a BATCH statement. Running multiple statements as a single
statement saves round trips between the client and the server. The syntax of the BATCH

statement is as follows:

BEGIN BATCH (USING <option> (AND <option>)*)? <modification-stmt> (';'
<modification-stmt>)* APPLY BATCH;

Add a method called batch() to the CQLClient class. Set a BATCH statement in the
CQLQuery object. The BATCH statement includes two INSERT statements and two UPDATE

statements.

cqlQuery.setQuery("BEGIN BATCH USING CONSISTENCY QUORUM UPDATE catalog SET
'edition' = '11/12 2013', 'author' = 'Haunert, Tom' WHERE CATALOG_ID = 'catalog2'
INSERT INTO catalog (catalog_id, journal, publisher, edition,title,author) VALUES
('catalog3','Oracle Magazine', 'Oracle Publishing', 'November-December 2013',
'','') INSERT INTO catalog (catalog_id, journal, publisher, edition,title,author)
VALUES ('catalog4','Oracle Magazine', 'Oracle Publishing', 'November-December
2013', '','') UPDATE catalog SET 'edition' = '11/12 2013' WHERE CATALOG_ID =
'catalog3' APPLY BATCH");

The consistency level cannot be set for individual statements within a BATCH statement. If
the consistency level is set on individual statements, the following error is generated:

Caused by: InvalidRequestException(why:Consistency level must be set on the BATCH,
not individual statements)

Invoke the batch() method from the main method and run the CQLClient class in the
Eclipse IDE. All the statements grouped in the BATCH statement are run and applied.
Next, invoke the select() method after the batch() method to output all the columns
in all the rows. The result of the query, shown here, indicates that the BATCH statement
has been applied.

Result took (38195us) for query (me.prettyprint.cassandra.model.CqlQuery@65b57dc
c) on host: localhost(127.0.0.1):9160
Column name: catalog_id
Column Value: catalog1
Column name: author
Column Value: Kelley, David A.
Column name: edition
Column Value: 11/12 2013

Using the BATCH Statement 77

Column name: journal
Column Value: Oracle Magazine
Column name: publisher
Column Value: Oracle Publishing
Column name: title
Column Value: Engineering as a Service
Column name: catalog_id
Column Value: catalog2
Column name: author
Column Value: Haunert, Tom
Column name: edition
Column Value: 11/12 2013
Column name: journal
Column Value: Oracle Magazine
Column name: publisher
Column Value: Oracle Publishing
Column name: title
Column Value: Quintessential and Collaborative
Column name: catalog_id
Column Value: catalog3
Column name: author
Column Value:
Column name: edition
Column Value: 11/12 2013
Column name: journal
Column Value: Oracle Magazine
Column name: publisher
Column Value: Oracle Publishing
Column name: title
Column Value:
Column name: catalog_id
Column Value: catalog4
Column name: author
Column Value:
Column name: edition
Column Value: November-December 2013
Column name: journal
Column Value: Oracle Magazine
Column name: publisher
Column Value: Oracle Publishing
Column name: title
Column Value:

78 Chapter 2 n Querying Cassandra with CQL

Using the DELETE Statement
The DELETE statement is used to delete columns and rows. The syntax of the DELETE state-
ment is as follows:

DELETE (<selection> (',' <selection>)*)? FROM <tablename> WHERE <where-clause>

The <selection> items refer to the columns to be deleted. The column in the WHERE clause
must be the primary key column. If no column is specified, all the columns are deleted.
The row itself is not deleted because the primary key column is not deleted even if the
primary column is specified in the <selection> items. Add a method called delete() to
CQLClient class. Then set a query to delete the journal and publisher columns from the
catalog table from the row with the primary key "catalog3".

cqlQuery.setQuery("DELETE journal, publisher from catalog WHERE
catalog_id='catalog3'");
cqlQuery.execute();

Next, set a query to delete all columns from the catalog table from the row with the pri-
mary key "catalog4".

cqlQuery.setQuery("DELETE from catalog WHERE catalog_id='catalog4'");
cqlQuery.execute();

To demonstrate that the primary key column cannot be deleted, include the catalog_id

column in the columns to delete:

cqlQuery.setQuery("DELETE catalog_id, journal, publisher, edition, title, author
from catalog WHERE catalog_id='catalog4'");
cqlQuery.execute();

Invoke the delete() method from the main method and run the CQLClient class in the
Eclipse IDE. Then invoke the select() method after the delete() method to query the
rows after deletion. As shown in the Eclipse IDE in Figure 2.16, the journal and
publisher columns are deleted from the catalog3 row, and all the columns have been
deleted from the catalog4 row. The primary key column is not deleted.

Using the DELETE Statement 79

Figure 2.16
The result of a SELECT statement after a DELETE statement.
Source: Eclipse Foundation.

Using the ALTER COLUMNFAMILY Statement
The ALTER COLUMNFAMILY or ALTER TABLE statement is used to alter the column family defi-
nitions to add columns, drop columns, change the type of existing columns, and update
the table options. The syntax of the statement is as follows:

ALTER (TABLE | COLUMNFAMILY) <tablename> <instruction>

The <instruction> supports the alterations using the keywords discussed in Table 2.4.

Table 2.4 ALTER Command Keywords

Keyword Description

ALTER Modifies the column type

ADD Adds a column

DROP Drops a column

WITH Updates table options

Add updateCF() and updateCF2() methods to the CQLClient class. In the updateCF()

method, change the column type of the edition column to int in the catalog table
using statement ALTER COLUMNFAMILY catalog ALTER edition TYPE int.

80 Chapter 2 n Querying Cassandra with CQL

cqlQuery.setQuery("ALTER COLUMNFAMILY catalog ALTER edition TYPE int");
cqlQuery.execute();

Invoke the updateCF() method in the main method and run the CQLClient class. The
edition column type gets changed to int. The value in the edition column is still of
type text. A subsequent select() method returns the value of the edition column as
text. In updateCF2(), change the type of the edition column back to text.

cqlQuery.setQuery("ALTER COLUMNFAMILY catalog ALTER edition TYPE text");
cqlQuery.execute();

If a column type is modified, a column value that was previously addable becomes non-
addable. For example, set the column type of the journal column to int:

cqlQuery.setQuery("ALTER COLUMNFAMILY catalog ALTER journal TYPE int");
cqlQuery.execute();

Next, add a journal column value of type text:

cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal, publisher, edition,
title,author) VALUES ('catalog5','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', '','')");
cqlQuery.execute();

The following exception is generated, indicating that the text value cannot be added to an
int type column:

HInvalidRequestException: InvalidRequestException(why:unable to make int from
'Oracle Magazine')

Dropping the Column Family
The DROP TABLE or DROP COLUMNFAMILY statement may be used to drop a column family,
including all the data in the column family. Add a dropCF() method to the CQLClient

class. Then set the query on a CQLQuery object to be DROP COLUMNFAMILY catalog, which
would drop the catalog column family.

cqlQuery.setQuery("DROP COLUMNFAMILY catalog");
cqlQuery.execute();

Next, invoke the dropCF() method from the main method and run the CQLClient appli-
cation. The catalog column family gets dropped. If only the table data is to be removed
but not the table, use the TRUNCATE statement:

TRUNCATE <tablename>

Dropping the Column Family 81

Dropping the Keyspace
You can use the DROP KEYSPACE statement to drop a keyspace:

DROP KEYSPACE <identifier>

Add a dropKeyspace() method to drop a keyspace. Drop the CQLKeyspace by setting the
CQLQuery object query to DROP KEYSPACE CQLKeyspace.

cqlQuery.setQuery("DROP KEYSPACE CQLKeyspace");
cqlQuery.execute();

Invoke the dropKeyspace() method from the mainmethod and run the CQLClient applica-
tion to drop the CQLKeyspace. The execute()method must be invoked after you set a query
with setQuery(). Queries do not get added to the CQLQuery object so they can be run in a
batch. If a keyspace is used after it has been dropped, the following error is generated:

Caused by: InvalidRequestException(why:Keyspace 'CQLKeyspace' does not exist)

The CQLClient Application
The CQLClient application appears in Listing 2.2. Some of the method invocations in the
main method have been commented out and should be uncommented as required to run
individually or in sequence.

Listing 2.2 The CQLClient Application

package cql;

import java.util.Iterator;
import java.util.List;

import me.prettyprint.cassandra.model.CqlQuery;
import me.prettyprint.cassandra.model.CqlRows;
import me.prettyprint.cassandra.serializers.StringSerializer;
import me.prettyprint.hector.api.Cluster;
import me.prettyprint.hector.api.Keyspace;
import me.prettyprint.hector.api.beans.ColumnSlice;
import me.prettyprint.hector.api.beans.HColumn;
import me.prettyprint.hector.api.beans.Row;
import me.prettyprint.hector.api.factory.HFactory;
import me.prettyprint.hector.api.query.QueryResult;

public class CQLClient {

private static Cluster cluster;
private static Keyspace keyspace;

82 Chapter 2 n Querying Cassandra with CQL

public static void main(String[] args) {
cluster = HFactory.getOrCreateCluster("cql-cluster",

"localhost:9160");
/*Some of the method invocations in the main method have been commented

out and should be uncommented as required to run individually or in sequence. */
createKeyspace();
createCF();

// insert();
// select();
// createIndex();
// selectFilter();
// update();
// select();
// batch();
// select();
// delete();
// update2();
// select();
// updateCF();
// select();
// updateCF2();
// dropCF();
// dropKeyspace();

}
/*Creates a Cassandra keyspace*/

private static void createKeyspace() {
keyspace = HFactory.createKeyspace("CQLKeyspace", cluster);

}
/*Drops a Cassandra keyspace*/
private static void dropKeyspace() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("DROP KEYSPACE CQLKeyspace");
cqlQuery.execute();

}
/*Creates an index*/
private static void createIndex() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("CREATE INDEX titleIndex ON catalog (title)");
cqlQuery.execute();

}

The CQLClient Application 83

/*Creates a column family*/
private static void createCF() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("CREATE COLUMNFAMILY catalog (catalog_id text
PRIMARY KEY,journal text,publisher text,edition text,title text,author text) WITH
comparator=UTF8Type AND default_validation=UTF8Type AND caching=keys_only AND
replicate_on_write=true");

cqlQuery.execute();
cqlQuery.setQuery("CREATE COLUMNFAMILY catalog2 (KEY text PRIMARY

KEY,journal text,publisher text,edition text,title text,author text)");
cqlQuery.execute();

}
/*Adds data to a column family*/
private static void insert() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal,
publisher, edition,title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle
Publishing', 'November-December 2013', 'Engineering as a Service','David
A. Kelly')");

cqlQuery.execute();
cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal,

publisher, edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle
Publishing', 'November-December 2013', 'Quintessential and Collaborative','Tom
Haunert')");

cqlQuery.execute();
cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal,

publisher, edition,title,author) VALUES ('catalog3','Oracle Magazine', 'Oracle
Publishing', 'November-December 2013', 'Engineering as a Service','David A.

Kelly')");
cqlQuery.execute();
cqlQuery.setQuery("INSERT INTO catalog (catalog_id, publisher,

edition,title,author) VALUES ('catalog4', 'Oracle Publishing', 'November-
December 2013', 'Engineering as a Service','David A. Kelly')");

cqlQuery.execute();
cqlQuery.setQuery("INSERT INTO catalog2 (KEY, journal, publisher,

edition,title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly')");

cqlQuery.execute();
}

84 Chapter 2 n Querying Cassandra with CQL

/*Selects data from a column family*/
private static void select() {

CqlQuery<String, String, String> cqlQuery = new CqlQuery<String,
String, String>(

keyspace, StringSerializer.get(), StringSerializer.
get(),

StringSerializer.get());
cqlQuery.setQuery("select * from catalog");
QueryResult<CqlRows<String, String, String>> result = cqlQuery

.execute();
System.out.println(result);
Iterator iterator = result.get().iterator();
while (iterator.hasNext()) {

Row row = (Row) iterator.next();

String key = (String) row.getKey();
ColumnSlice columnSlice = row.getColumnSlice();
List columnList = columnSlice.getColumns();
Iterator iter = columnList.iterator();
while (iter.hasNext()) {

HColumn column = (HColumn) iter.next();
System.out.println("Column name: " +

column.getName() + " ");

System.out.println("Column Value: " +
column.getValue());

System.out.println("\n");
}

}
}

/*Selects data from a column family using a WHERE clause*/
private static void selectFilter() {

CqlQuery<String, String, String> cqlQuery = new CqlQuery<String,
String, String>(

keyspace, StringSerializer.get(), StringSerializer.
get(),

StringSerializer.get());
//cqlQuery.setQuery("SELECT catalog_id, journal, publisher,

edition,title,author FROM catalog WHERE title='Engineering as a Service'");
cqlQuery.setQuery("SELECT journal, publisher, edition,title,

author FROM catalog2 WHERE KEY='catalog1'");

The CQLClient Application 85

//cqlQuery.setQuery("SELECT catalog_id, journal, publisher,
edition,title,author FROM catalog WHERE catalog_id='catalog1'");//Generates
exception

QueryResult<CqlRows<String, String, String>> result = cqlQuery
.execute();

System.out.println(result);
Iterator iterator = result.get().iterator();
while (iterator.hasNext()) {

Row row = (Row) iterator.next();
String key = (String) row.getKey();
ColumnSlice columnSlice = row.getColumnSlice();
List columnList = columnSlice.getColumns();
Iterator iter = columnList.iterator();
while (iter.hasNext()) {

HColumn column = (HColumn) iter.next();
System.out.println("Column name: " +

column.getName() + " ");
System.out.println("Column Value: " +

column.getValue());
System.out.println("\n");

}
}

}
/*Updates a row or rows of data in a column family*/
private static void update() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("UPDATE catalog USING CONSISTENCY ALL SET
'edition' = '11/12 2013', 'author' = 'Kelley, David A.' WHERE CATALOG_ID =
'catalog1'");

cqlQuery.execute();
}
/*Updates a row or rows of data in a column family*/
private static void update2() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("UPDATE catalog USING CONSISTENCY ALL SET
'edition' = 'November-December 2013', 'author' = 'Kelley, David A.' WHERE
CATALOG_ID = 'catalog1'");

cqlQuery.execute();
}

86 Chapter 2 n Querying Cassandra with CQL

/*Deletes columns from a row or rows of data in a column family*/
private static void delete() {

CqlQuery cqlQuery = new CqlQuery<String, String, String>(keyspace,
StringSerializer.get(), StringSerializer.get(),
StringSerializer.get());

cqlQuery.setQuery("DELETE journal, publisher from catalog WHERE
catalog_id='catalog3'");

cqlQuery.execute();
cqlQuery.setQuery("DELETE from catalog WHERE

catalog_id='catalog4'");
cqlQuery.execute();
cqlQuery.setQuery("DELETE catalog_id, journal, publisher, edition,

title, author from catalog WHERE catalog_id='catalog4'");
cqlQuery.execute();

}
/*Runs multiple statements in a batch*/
private static void batch() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("BEGIN BATCH USING CONSISTENCY QUORUM UPDATE
catalog SET 'edition' = '11/12 2013', 'author' = 'Haunert, Tom' WHERE CATALOG_ID =
'catalog2' INSERT INTO catalog (catalog_id, journal, publisher, edition,title,
author) VALUES ('catalog3','Oracle Magazine', 'Oracle Publishing', 'November-
December 2013', '','') INSERT INTO catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog4','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', '','') UPDATE catalog SET 'edition' = '11/12 2013'
WHERE CATALOG_ID = 'catalog3' APPLY BATCH");

cqlQuery.execute();
}
/*Updates a column family*/
private static void updateCF() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("ALTER COLUMNFAMILY catalog ALTER edition TYPE
int");

cqlQuery.execute();
}

/*Updates a column family*/
private static void updateCF2() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

The CQLClient Application 87

cqlQuery.setQuery("ALTER COLUMNFAMILY catalog ALTER edition TYPE
text");

cqlQuery.execute();
cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),

StringSerializer.get(), StringSerializer.get());
cqlQuery.setQuery("ALTER COLUMNFAMILY catalog ALTER journal TYPE

int");
cqlQuery.execute();
/* CF gets updated with column to a type different from column value*/
cqlQuery.setQuery("INSERT INTO catalog (catalog_id, journal,

publisher, edition,title,author) VALUES ('catalog5','Oracle Magazine', 'Oracle
Publishing', 'November-December 2013', '','')");

cqlQuery.execute();
}
/*Drops a column family*/
private static void dropCF() {

CqlQuery cqlQuery = new CqlQuery(keyspace, StringSerializer.get(),
StringSerializer.get(), StringSerializer.get());

cqlQuery.setQuery("DROP COLUMNFAMILY catalog");
cqlQuery.execute();

}
}

New Features in CQL 3
CQL 3 has added support for several new features and is backward-compatible. The key-
word COLUMNFAMILY has been replaced with TABLE. Some of the salient new features are
discussed next.

Compound Primary Key
The CREATE TABLE command has added a provision for a multiple column primary key,
also called a compound primary key. The CREATE COLUMNFAMILY example in this chapter
makes use of a simple primary key—a primary key with only one column. A compound
primary key for the catalog table may be declared as follows:

CREATE TABLE catalog (
catalog_id text,
journal text,
edition text,
title text,

88 Chapter 2 n Querying Cassandra with CQL

author text,
PRIMARY KEY (catalog_id, journal)

);

The preceding statement creates a table using the catalog_id and journal columns to
form a compound primary key. A table that has a compound primary key must have at
least one column that is not included in the primary key.

To run an INSERT statement on a table with a compound primary key, each of the col-
umns in the primary key must be specified. In addition, at least one of the non–primary
key columns must be specified.

The WHERE clause may specify each of the columns in the compound primary key using
AND as follows:

UPDATE catalog SET 'edition' = 'November-December 2013', 'author' = 'Kelley,
David A.' WHERE CATALOG_ID = 'catalog1' AND journal='Oracle Magazine';

If a compound primary key is used in a WHERE clause, key-component columns other than
the first may have a > (greater than) or < (less than) comparison. If all the preceding key-
component columns have been identified with an = comparison, the last key-component
may specify any kind of relation.

Conditional Modifications
The CREATE statements for KEYSPACE, TABLE, and INDEX support an IF NOT EXISTS condi-
tion. In CQL 2.0, the CREATE statement for KEYSPACE, TABLE, and INDEX throws an excep-
tion if the construct already exists.

CREATE KEYSPACE IF NOT EXISTS CQLKeyspace WITH replication = { 'class':
'SimpleStrategy','replication_factor' : 1 };
CREATE TABLE IF NOT EXISTS catalog (catalog_id text PRIMARY KEY,journal text,
publisher text,edition text,title text,author text);

The DROP statements support an IF EXISTS condition:

DROP KEYSPACE IF EXISTS CQLKeyspace;

The INSERT statement supports an IF NOT EXISTS condition. CQL 3 has added the provi-
sion to add a new row only if a row by the same primary key value does not already exist.
The CQL 3 clause to add conditionally is IF NOT EXISTS. In CQL 2, the INSERT statement
was run even if a row by the same primary key was already defined. The following CQL 3
statement adds a row only if a row identified by catalog1 does not exist:

New Features in CQL 3 89

INSERT INTO catalog (catalog_id, journal, publisher, edition,title,author) VALUES
('catalog1','Oracle Magazine', 'Oracle Publishing', 'November-December 2013',
'Engineering as a Service','David A. Kelly') IF NOT EXISTS;

The UPDATE statement supports an IF condition:

UPDATE table_name
USING option1 AND optionN
SET assignment1 , assignmentN
WHERE <where-clause>
IF column_name1 = literal AND column_nameN = literal

The columns in the IF clause may be different from the columns to be updated. The IF

condition incurs a negligible performance overhead, as Paxos is used internally. Paxos is
a consensus protocol for a distributed system.

Summary
This chapter introduced Cassandra Query Language (CQL), including the CQL com-
mands. You used CQL 2 queries with the Hector Java client to add, select, update, and
delete data from a Cassandra column family. You also discovered the salient new features
in CQL 3. The next chapter discusses the DataStax Java driver, which supports CQL 3.

90 Chapter 2 n Querying Cassandra with CQL

Chapter 3

Using Cassandra with
DataStax Java Driver

The DataStax Java driver is designed for CQL 3. The driver provides connection pooling,
node discovery, automatic failover, and load balancing. The driver supports prepared
statements. Queries can be run synchronously or asynchronously. The driver provides a
layered architecture. At the bottom is the core layer, which handles connections to the
Cassandra cluster. The core layer exposes a low-level API on which a higher-level layer
may be built. In this chapter, you will connect with Cassandra server using the DataStax
Java driver and perform create, read, update, delete (CRUD) operations on the database.

Overview of DataStax Java Driver
The main package for the DataStax Java driver core is com.datastax.driver.core. The
main classes in the package are shown in Figure 3.1.

Figure 3.1
DataStax Java Driver Classes.

91

The classes shown in Figure 3.1 are discussed in Table 3.1.

Table 3.1 Classes in the com.datastax.driver.core Package

Class Description

Row A CQL row in a result set.

PreparedStatement Represents a prepared statement—a query with bound variables
that has been prepared by the database.

BoundStatement A prepared statement with values bound to the bind variables.

Cluster The entry point of the driver. Keeps information on the state and
topology of the cluster.

Host Represents a Cassandra node.

Metadata Metadata of the connected cluster.

ResultSet Result set of a query.

ResultSetFuture A future on a result set.

Session Encapsulates connections to a cluster, making it query-able.

Setting the Environment
To set the environment, you must download the following software:

n DataStax Java driver for Apache Cassandra–Core from http://mvnrepository.com/
artifact/com.datastax.cassandra/cassandra-driver-core/2.0.1

n Eclipse IDE for Java EE developers from http://www.eclipse.org/downloads/
moreinfo/jee.php

n Apache Cassandra apache-cassandra-2.0.4-bin.tar.gz or a later version from
http://cassandra.apache.org/download/

n Java SE 7 from http://www.oracle.com/technetwork/java/javase/downloads/
index-jsp-138363.html

n Metrics Core metrics-core-3.0.1.jar from http://mvnrepository.com/artifact/com.
codahale.metrics/metrics-core/3.0.1

92 Chapter 3 n Using Cassandra with DataStax Java Driver

../../../../../../mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/2.0.1
../../../../../../mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/2.0.1
../../../../../../www.eclipse.org/downloads/moreinfo/jee.php
../../../../../../www.eclipse.org/downloads/moreinfo/jee.php
../../../../../../cassandra.apache.org/download/default.htm
../../../../../../www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
../../../../../../www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
../../../../../../mvnrepository.com/artifact/com.codahale.metrics/metrics-core/3.0.1
../../../../../../mvnrepository.com/artifact/com.codahale.metrics/metrics-core/3.0.1

Then follow these steps:

1. Extract the Apache Cassandra TAR file to a directory (for example, C:\Cassandra\
apache-cassandra-2.0.4).

2. Add the bin folder, C:\Cassandra\apache-cassandra-2.0.4\bin, to the PATH

environment variable.

3. Start Apache Cassandra server with the following command:
cassandra –f

Creating a Java Project
In this section, you will use the DataStax Java driver in a Java application for which you
need to create a Java project in Eclipse IDE. Follow these steps:

1. Select File > New > Other.

2. In the New window, select the Java Project wizard as shown in Figure 3.2. Then
click Next.

Figure 3.2
Selecting the Java Project wizard.
Source: Eclipse Foundation.

Creating a Java Project 93

3. In the Create a Java Project screen, specify a project name (Datastax) and choose a
directory location or select the Use Default location checkbox. Then select the default
JRE, which has been set to 1.7, and click Next, as shown in Figure 3.3.

Figure 3.3
Creating a new Java project.
Source: Eclipse Foundation.

4. Select the default options in the Java Settings screen and click Finish, as shown in
Figure 3.4. A Java project is created.

94 Chapter 3 n Using Cassandra with DataStax Java Driver

Figure 3.4
The Java Settings screen.
Source: Eclipse Foundation.

5. Add a Java class to the project. To begin, choose File > New > Other. Then, in the
New dialog box, select Java > Java Class and click Next, as shown in Figure 3.5.

Figure 3.5
Selecting the Java Class wizard.
Source: Eclipse Foundation.

Creating a Java Project 95

6. In the New Java Class wizard, select a source folder (Datastax/src) and specify the
package as datastax. Then specify the Java class name (CQLClient) and click Finish,
as shown in Figure 3.6. A Java class is added to the Java project, as shown in the
Package Explorer in Figure 3.7.

Figure 3.6
Creating a new Java class.
Source: Eclipse Foundation.

Figure 3.7
The new Java class.
Source: Eclipse Foundation.

96 Chapter 3 n Using Cassandra with DataStax Java Driver

7. To be able to access Cassandra from the Java application using DataStax, you need to
add some JAR files to the application’s Java build path. Right-click the Datastax
project node in Package Explorer and select Properties. Then, in the Properties
window, select the Java Build Path node and click the Add External JARs button to
add external JAR files. Finally, add the JAR files listed in Table 3.2.

Table 3.2 JAR Files

JAR File Description

cassandra-driver-core-2.0.0-rc2.jar A driver for Apache Cassandra designed exclusively for
CQL 3.

jackson-core-asl-1.9.2.jar Jackson, a high-performance JSON processor (parser
and generator).

jackson-mapper-asl-1.9.2.jar Data Mapper, a high-performance data-binding
package built on Jackson JSON processor.

lz4-1.2.0.jar Java ports and bindings of the LZ4 compression
algorithm.

guava-15.0.jar Google’s core libraries used in Java projects:
collections, caching, primitives support, concurrency,
common annotations, string processing, and I/O, to list
a few.

metrics-core-3.0.1.jar A Java library for getting metrics in production.
The Metrics Core library required is different from the
version packaged with Cassandra.

netty-3.6.6.Final.jar NIO client server framework for efficient development
of network applications.

log4j-1.2.16.jar A logging library for Java.

slf4j-api-1.7.2.jar Simple Logging Framework for Java (SLF4J), which
provides abstraction for various logging frameworks.

slf4j-log4j12-1.7.2.jar Provides the SLF4J-log4j binding.

8. The external JAR files required for accessing Cassandra from a DataStax Java client
application are shown in the Eclipse IDE Properties wizard. Click OK after adding
the required JAR files, as shown in Figure 3.8.

Creating a Java Project 97

Figure 3.8
The JAR files in the Datastax project.
Source: Eclipse Foundation.

In later sections, you will develop a Java application to connect with the Cassandra server
using the DataStax Java driver and run CQL 3 queries to create, select, update, and delete
data from the server. First, however, we will discuss how to connect with the Cassandra
server.

Creating a Connection
In this section, you will connect to the Cassandra server. To begin, add a connection()

method to the CQLClient application. In the method, create an instance of Cluster,
which is the main entry point for the driver. The Cluster instance maintains a connection
with one of the server nodes to keep information on the state and current topology of the
cluster. The driver discovers all the nodes in the cluster using auto-discovery of nodes,
including new nodes that join later. Build a Cluster.Builder instance, which is a helper
class to build Cluster instances, using the static method builder().

98 Chapter 3 n Using Cassandra with DataStax Java Driver

You need to provide the connection address of at least one of the nodes in the Cassandra
cluster for the DataStax driver to be able to connect with the cluster and discover other
nodes in the cluster using auto-discovery. Using the addContactPoint(String) method of
Cluster.Builder, add the address of the Cassandra server running on the localhost

(127.0.0.1). Next, invoke the build() method to build the Cluster using the configured
address(es). The methods may be invoked in sequence, as you don’t need the intermediary
Cluster.Builder instance.

Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Get the metadata of the cluster using the getMetadata() method. The metadata includes
the nodes in the cluster with their status. Creating a Cluster instance does not by itself
create a connection with the server. Getting metadata requires a connection with the
server for which a connection is established, unless the getMetadata() method is invoked
after the init() or connect() method is invoked, which establishes a connection with the
server. Obtain the cluster name using the getClusterName() method in the Metadata

class. The getAllHosts() method returns a set of all the known hosts in the cluster. Iter-
ate over the set to output the hosts’ data center, address, and rack. The Cluster class pro-
vides the methods discussed in Table 3.3 to connect the Cassandra server.

Table 3.3 Cluster Class Methods

Method Description

connect() Creates a new session on the cluster. A session maintains
multiple connections to the cluster.

connect(String keyspace) Creates a new session on the cluster and sets it to the
specified keyspace.

Next, invoke the connect() method to create a session on the cluster. A session is repre-
sented with the Session class, which holds multiple connections to the cluster. A Session

instance is used to query the cluster. The Session instance provides policies on which
node in the cluster to use for querying the cluster. The default policy is to use a round-
robin on all the nodes in the cluster. Session is also used to handle retries of failed
queries. Session instances are thread-safe, and a single instance is sufficient for an

Creating a Connection 99

application. But a separate Session instance is required if connecting to multiple key-
spaces, as a single Session instance is specific to a particular keyspace only.

Session session = cluster.connect();

The initial CQLClient application to create a connection with the server appears in
Listing 3.1. You will develop the application in upcoming sections to add a keyspace, a
table and run CQL 3 queries.

Listing 3.1 CQLClient Class

package datastax;

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.Host;
import com.datastax.driver.core.Metadata;
import com.datastax.driver.core.Session;

public class CQLClient {

private static Cluster cluster;
private static Session session;
public static void main(String[] args) {

connection();
}
private static void connection() {

cluster = Cluster.builder().addContactPoint("127.0.0.1").
build();

Metadata metadata = cluster.getMetadata();
System.out.printf("Connected to cluster: %s\n",

metadata.getClusterName());
for (Host host : metadata.getAllHosts()) {

System.out.printf("Datacenter: %s; Host: %s; Rack: %s
\n",

host.getDatacenter(), host.getAddress(),
host.getRack());

}
session = cluster.connect();

}
}

100 Chapter 3 n Using Cassandra with DataStax Java Driver

Right-click the CQLClient application and select Run As > Java Application, as shown in
Figure 3.9.

Figure 3.9
Running the CQLClient Java application.
Source: Eclipse Foundation.

A connection with the server is established and the cluster’s data center, host, and rack
information is output, as shown in Figure 3.10.

Figure 3.10
Cluster information.
Source: Eclipse Foundation.

Creating a Connection 101

If the Cassandra server is not running, the following exception is generated when a
connection is attempted:

com.datastax.driver.core.exceptions.NoHostAvailableException: All host(s) tried
for query failed (tried: /127.0.0.1 (com.datastax.driver.core.
TransportException: [/127.0.0.1] Cannot connect))
at com.datastax.driver.core.ControlConnection.reconnectInternal
(ControlConnection.java:179)
at com.datastax.driver.core.ControlConnection.connect(ControlConnection.
java:77)
at com.datastax.driver.core.Cluster$Manager.init(Cluster.java:890)
at com.datastax.driver.core.Cluster$Manager.access$100(Cluster.java:806)
at com.datastax.driver.core.Cluster.getMetadata(Cluster.java:217)
at datastax.CQLClient.connection(CQLClient.java:43)
at datastax.CQLClient.main(CQLClient.java:23)

Overview of the Session Class
The Session class provides several methods to prepare and run queries on the server.
The methods to prepare or run queries are discussed in Table 3.4.

Table 3.4 Session Class Methods

Method Description

prepare(String query) Prepares the CQL 3 query string to return a prepared
statement represented by the PreparedStatement
interface

prepare(RegularStatement
statement)

Prepares the CQL 3 query provided as a regular
statement represented by the RegularStatement
class to return a prepared statement

execute(Statement statement) Executes the query provided as a Statement object to
return a result set represented by the ResultSet
interface

execute(String query) Executes the query provided as a String object to
return a result set

execute(String query,
Object... values)

Executes the query provided as a String object and
uses the specified values to return a result set

executeAsync(Statement
statement)

Executes the query provided as a Statement object
asynchronously to return a result set

102 Chapter 3 n Using Cassandra with DataStax Java Driver

executeAsync(String query) Executes the query provided as a String object
asynchronously to return a result set

executeAsync(String query,
Object... values)

Executes the query provided as a String object and
uses the specified values asynchronously to return a
result set

You need to create a keyspace in which to store tables. In the next section, you will create
a keyspace.

Creating a Keyspace
In this section, you will create a keyspace using the Session object to run a CQL 3 state-
ment. Add a createKeyspace() method to create a keyspace in the CQLClient applica-
tion. CQL 3 has added support to run CREATE statements conditionally, which is only if
the object to be constructed does not already exist. The IF NOT EXISTS clause is used to
create conditionally. Create a keyspace called datastax using replication with the strategy
class SimpleStrategy and a replication factor of 1.

private static void createKeyspace() {
session.execute("CREATE KEYSPACE IF NOT EXISTS datastax WITH

replication "
+ "= {'class':'SimpleStrategy', 'replication_factor':1};");

}

Invoke the createKeyspace() method in the main method and run the CQLClient appli-
cation to create a keyspace.

Creating a Table
Next, you will create a column family, which is called a table in CQL 3. Add a
createTable() method to CQLClient. The CREATE TABLE command also supports IF NOT

EXISTS to create a table conditionally. CQL 3 has added the provision to create a com-
pound primary key—that is, a primary key created from multiple component primary
key columns. In a compound primary key, the first column is called the partition key. To
demonstrate different aspects of using a compound primary key, create three different
tables, catalog, catalog2, and catalog3. Each of the tables has columns catalog_id,
journal, publisher, edition, title, and author. In the catalog table, the compound

Creating a Table 103

primary key is made from the catalog_id and journal columns, with catalog_id being
the partition key. In catalog2, the same two columns are used in the compound key, but
the journal column is used as the partition key. In catalog3, three columns are used
in the compound key: catalog_id, journal, and publisher. Invoke the execute(String)

method to create three tables, catalog, catalog2, and catalog3, as follows:

private static void createTable() {

session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(catalog_id, journal))");
session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog2 (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(journal, catalog_id))");
session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog3 (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(journal, catalog_id, publisher))");
}

Prefix the table name with the keyspace name. Invoke the createTable() method in the
main method and run the CQLClient application to create the three tables.

Running the INSERT Statement
Next, you will add data to the three tables—catalog, catalog2, and catalog3—using the
INSERT statement. Use the IF NOT EXISTS keyword to add rows conditionally. When a
compound primary key is used, all the component primary key columns must be speci-
fied, including the values for the compound key columns. For example, run the following
CQL 3 query using a Session object:

session.execute("INSERT INTO datastax.catalog (catalog_id, publisher, edition,
title,author) VALUES ('catalog1', 'Oracle Publishing', 'November-December 2013',
'Engineering as a Service','David A. Kelly') IF NOT EXISTS");

Because the primary key component column, journal, is not specified in the CQL 3 state-
ment, the following exception is generated.

Exception in thread "main" com.datastax.driver.core.exceptions.
InvalidQueryException: Missing mandatory PRIMARY KEY part journal

Add an insert() method to the CQLClient class and invoke the method in the main

method. Then add three rows identified by the row IDs catalog1, catalog2, and

104 Chapter 3 n Using Cassandra with DataStax Java Driver

catalog3 to each of the tables (catalog, catalog2, and catalog3). For example, the three
rows are added to the catalog table as follows:

private static void insert() {
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher)
VALUES ('catalog3', 'Oracle Magazine','Oracle Publishing') IF NOT EXISTS");
}

Run the CQLClient application to add the three rows of data to each of the tables.

Running a SELECT Statement
Next, you will run a SELECT statement to select columns from a table. Add a select()

method to run SELECT statement(s). First, select all the columns from the catalog table
using * for column selection:

ResultSet results = session.execute("select * from datastax.catalog");

A row in the result set, represented by the ResultSet interface, is represented with the Row

class. Iterate over the result set to output the column value or each of the columns:

private static void select() {
ResultSet results =

session.execute("select * from datastax.catalog");
for (Row row : results) {
System.out.println("Catalog Id: " + row.getString("catalog_id"));
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}

}

Running a SELECT Statement 105

Run the CQLClient application to select the rows from the datastax.catalog table and
output the columns as shown in Figure 3.11.

Figure 3.11
Result output with SELECT statement.
Source: Eclipse Foundation.

CQL 3 has added support for the ORDER BY clause to order the result in ascending order
(ASC) by default. But the ORDER BY clause is supported only if the partition key is restricted
by an EQ or IN. To demonstrate, run the following query with ORDER BY on the catalog_id

column:

ResultSet results = session.execute("select * from datastax.catalog ORDER BY
catalog_id DESC");

This generates the following exception:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: ORDER BY
is only supported when the partition key is restricted by an EQ or an IN.

The catalog_id column is the partition key in the catalog table, so if ORDER BY is to be
used on that table, then the catalog_id column must be restricted with an EQ or IN. But
restricting catalog_id would not be useful to demonstrate ordering of rows, as the result
has only one row. Instead, use the catalog2 table, which has the journal column as the

106 Chapter 3 n Using Cassandra with DataStax Java Driver

partition column. Restrict the journal column and use the ORDER BY clause on the
catalog_id column as follows:

ResultSet results = session.execute("select * from datastax.catalog2 WHERE
journal='Oracle Magazine' ORDER BY catalog_id DESC");

When the application is run, the rows are selected in descending order of the catalog_id—
that is, catalog3, then catalog2, and then catalog1—as indicated by the output in
Figure 3.12.

Figure 3.12
Result for SELECT with ORDER BY.
Source: Eclipse Foundation.

If the compound primary key has more than two columns, the ORDER BY condition must
be used on the second column. To demonstrate, use ORDER BY on the publisher column in
the catalog3 table, which has three columns—journal, catalog_id, and publisher, with
publisher being the third column.

ResultSet results = session.execute("select * from datastax.catalog3 WHERE
journal='Oracle Magazine' ORDER BY publisher");

Running a SELECT Statement 107

When the preceding query is run, the following exception is generated:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Order by
currently only support the ordering of columns following their declared order in the
PRIMARY KEY

To demonstrate the use of ORDER BY with more than two columns in the primary key,
specify the EQ on the partition key, which is journal in catalog3, and the ORDER BY on
catalog_id, which is the second column in the compound primary key:

ResultSet results = session.execute("select * from datastax.catalog3 WHERE
journal='Oracle Magazine' ORDER BY catalog_id");

When the application is run, the rows are selected in ascending order of the catalog_id—
catalog1, then catalog2, followed by catalog3. (Refer to Figure 3.11.)

Next, we will discuss filtering a query with the WHERE clause. The columns used for
filtering in the WHERE clause must be indexed. The primary key column(s) is indexed
automatically, so the primary key column(s) can be used in the WHERE clause as such. If a
non-indexed column is used in the WHERE clause, the following exception is generated:

com.datastax.driver.core.exceptions.InvalidQueryException: No indexed columns
present in by-columns clause with Equal operator

In the next section, you will create a secondary index on a non-primary key column title
in the catalog table.

Creating an Index
A new secondary index on a column in a table is created with the CREATE INDEX command.
Add a createIndex() method in the CQLQuery class and invoke the method in the main

method. Then add a secondary index to the title column using the CREATE INDEX com-
mand. The CREATE INDEX command supports the IF NOT EXISTS clause. The IF NOT EXISTS

clause does not take into consideration whether a previously created index by the same
name is for the same table definition as the new index or a different table definition. For
example, if a previously created index named titleIndex is for some table definition and
a new index named titleIndex is for a different table definition, and the IF NOT EXISTS

clause is used, it would still not create the new index named titleIndex even though

the new index has a different table definition. The IF NOT EXISTS clause should be
used only if a previously created index by the same name could not have been created or
is unlikely to have been created previously for another table with a different table defini-
tion (perhaps a primary key with a single column instead of a compound primary key).

108 Chapter 3 n Using Cassandra with DataStax Java Driver

private static void createIndex() {
session.execute("CREATE INDEX titleIndex ON datastax.catalog (title)");
}

Run the CQLQuery application to create a secondary index on the title column in the
catalog table. If the following exception is generated, it is better to drop the index and
create it again if it is not certain that the index by the same name was created for the
same table as required.

com.datastax.driver.core.exceptions.InvalidQueryException: Index already exists

Selecting with SELECT and a WHERE Filter
You can refine a SELECT query using a WHERE clause. The WHERE clause must specify the
primary key component column(s), which is automatically indexed, or a column with a
secondary index. We will discuss using SELECT with WHERE using different columns. Add
a selectFilter() method to the CQLQuery class and invoke the method in the main

method. In the first example, select all the columns using the title column in the WHERE

clause. The title column has a secondary index defined on it and therefore can be used
in the WHERE clause.

private static void selectFilter() {
ResultSet results = session.execute("SELECT catalog_id, journal,

publisher, edition,title,author FROM datastax.catalog WHERE title='Engineering as
a Service'");

for (Row row : results) {
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}

}

The output from the preceding query is as follows:

Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Engineering as a Service
Author: David A. Kelly

Selecting with SELECT and a WHERE Filter 109

Select all columns from the catalog table where the catalog_id is "catalog2". The
catalog_id is the partition key in the catalog table. Iterate over the result set to output
the columns:

private static void selectFilter() {
ResultSet results = session.execute("SELECT catalog_id, journal,

publisher, edition,title,author FROM datastax.catalog WHERE
catalog_id='catalog2'");

for (Row row : results) {
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString

("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");

}
}

The following output is generated:

Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert

Different versions of the selectFilter() method are included in the code listing for
CQLClient at the end of this chapter with some or all versions commented out. De-
comment the version that is to be tested. If the primary key is a compound key, the parti-
tion key can be used in the WHERE clause without the other primary key component
columns. However, a non-partition key cannot be used alone in a similar manner.
To demonstrate, run the following query:

ResultSet results = session.execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE journal='Oracle Magazine'");

The following exception is generated:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Cannot
execute this query as it might involve data filtering and thus may have unpredictable
performance. If you want to execute this query despite the performance
unpredictability, use ALLOW FILTERING

110 Chapter 3 n Using Cassandra with DataStax Java Driver

To run the preceding query, add ALLOW FILTERING to the SELECT statement:

ResultSet results = session.execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE journal='Oracle Magazine' ALLOW
FILTERING");

The following output is generated with the preceding query:

Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Engineering as a Service
Author: David A. Kelly
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert
Journal: Oracle Magazine
Publisher: null
Edition: null
Title: null
Author: null

All the component columns in a compound primary key can be used in the WHERE clause
in any order, as in the following example:

ResultSet results = session.execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE journal='Oracle Magazine' AND
catalog_id='catalog2'");

This query generates the following output:

Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert

Another example of using the WHERE clause is using the IN clause with a primary key
column:

ResultSet results = session.execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE catalog_id IN ('catalog2',
'catalog3')");

Selecting with SELECT and a WHERE Filter 111

The preceding query generates the following output:

Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert
Journal: Oracle Magazine
Publisher: null
Edition: null
Title: null
Author: null

The IN predicates can be used only on primary key columns. For example, if the IN predi-
cate is used on the title column, which is an indexed column, the following exception is
generated:

Exception in thread "main" com.datastax.driver.core.exceptions.
InvalidQueryException: IN predicates on non-primary-key columns (title) is not yet
supported

In CQL 3, the WHERE clause allows greater than (>) and less than (<) relations on all the
columns other than the first, which still must have the = comparison. In the following
example, the second column in the WHERE clause has the > relation:

ResultSet results = session .execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog2 WHERE journal='Oracle Magazine' AND
catalog_id > 'catalog1'");

The output from the preceding query is as follows:

Catalog Id: catalog2
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert
Catalog Id: catalog3
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: null
Title: null
Author: null

112 Chapter 3 n Using Cassandra with DataStax Java Driver

The last column in a WHERE clause can have any type of relation if all the preceding col-
umns have been specified with the = comparison. In the following example, the last col-
umn has the >= relation with all the preceding columns being identified with the =

comparison:

ResultSet results = session .execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog2 WHERE journal='Oracle Magazine' AND
catalog_id >= 'catalog1'");

The result of the query is as follows:

Catalog Id: catalog1
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Engineering as a Service
Author: David A. Kelly

Catalog Id: catalog2
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert

Catalog Id: catalog3
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: null
Title: null
Author: null

If the primary key is a compound key and the partition key is used in the WHERE clause,
only the EQ and IN relations are supported on the partition key. To demonstrate, use the >

relation on the partition key:

ResultSet results = session.execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE catalog_id > 'catalog1'");

The following exception is generated:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Only EQ
and IN relation are supported on the partition key (unless you use the token()
function) at com.datastax.driver.core.Responses$
Error.asException(Responses.java:96)

Selecting with SELECT and a WHERE Filter 113

Running an Async Query
As discussed, the Session class supports two methods to run the CQL 3 query asynchro-
nously: executeAsync(Query query) and executeAsync(String query). Asynchronously
implies that the method returns immediately and the processing of the application con-
tinues, the result being returned later. The Async methods return a ResultSetFuture

object. A ResultSetFuture object is not a ResultSet object but a future on a ResultSet

object. The ResultSetFuture class provides the methods listed in Table 3.5 to get the
result of the query.

Table 3.5 ResultSetFuture Class Methods to Get Query Result

Method Description

getUninterruptibly() Waits for the query to return and returns its result. More
convenient than and preferable to the get() method
because it waits for the result uninterruptedly and doesn’t
throw InterruptedException or ExecutionException
exceptions.

getUninterruptibly(long
timeout, TimeUnit unit)

Waits for the specified time for the query to return the
result. More convenient than and preferable to the
get(long timeout, TimeUnit unit) method because it
waits for the result uninterruptedly and doesn’t throw
InterruptedException or ExecutionException
exceptions.

get() Waits for the execution to complete and returns its result.
Throws an InterruptedException exception if the
current thread is interrupted before or during the call,
even if the value has been retrieved.

get(long timeout,
TimeUnit unit)

Waits for the execution to complete at most for the
specified time and returns its result. Throws an
InterruptedException exception if the current thread is
interrupted before or during the call, even if the value has
been retrieved.

The ResultSetFuture class provides the methods in Table 3.6 to cancel, or interrupt a
future result set object.

114 Chapter 3 n Using Cassandra with DataStax Java Driver

Table 3.6 ResultSetFuture Class Methods to Cancel or Interrupt a Result Set Future

Method Description

cancel(boolean
mayInterruptIfRunning)

Attempts to cancel the execution of the task. Returns a
Boolean to indicate if the cancellation was successful. The
attempt fails if the task has already completed or has already
been cancelled or could not be cancelled for some other
reason. If invoked before a task has started and if the
cancellation is successful, the task should not start to run.
The mayInterruptIfRunning parameter determines
whether the thread running the task should be interrupted
in an attempt to stop the task.

isCancelled() If the cancel() method returns true, the isCancelled
method also returns true.

interruptTask() The default implementation does not interrupt a task, but a
subclass may override the method to provide an
implementation. If cancel(true) returns true, the
interruptTask() method is invoked automatically.

wasInterrupted() Returns true if the future was cancelled with
mayInterruptIfRunning set to true.

The ResultSetFuture class provides some other methods, which are discussed in
Table 3.7.

Table 3.7 Other Methods in the ResultSetFuture Class

Method Description

set(V value) Sets the value of the future and returns true if the value
could be set successfully.

setException(Throwable
throwable)

Sets the future to having failed with the given exception
and returns true if the exception could be set successfully.
Returns false if the future has already been set or has
been cancelled. The Throwable error set becomes the
result of the future. Sets the state of the future to
AbstractFuture.Sync.COMPLETED and invokes the
listeners if the state has been set successfully. The get()
methods wrap the exception in ExecutionException and
return the error.

(Continued)

Running an Async Query 115

Table 3.7 Other Methods in the ResultSetFuture Class (Continued)

Method Description

addListener(Runnable
listener, Executor exec)

Registers a listener.

isDone() Returns true if the task has completed. Returns true after
the cancel() method has returned.

Add an asyncQuery() method to the CQLClient class and invoke the method from
the main method. Then invoke the executeAsync(String) method to return a
ResultSetFuture object.

ResultSetFuture resultsFuture = session.executeAsync("Select * from
datastax.catalog");

Invoke the getUninterruptibly(long timeout,TimeUnit unit) method on the
ResultSetFuture object with the timeout set to 1,000,000 ms.

ResultSet results = resultsFuture.getUninterruptibly(1000000,TimeUnit.
MILLISECONDS);

Iterate over the ResultSet object to output the result of the query. If getUninterruptibly
throws a TimeoutException, invoke the cancel(true) method to cancel the future.

try {
ResultSet results = resultsFuture.getUninterruptibly(1000000,
TimeUnit.MILLISECONDS);

for (Row row : results) {
System.out.println("Journal: " + row.getString

("journal"));\
System.out.println("Publisher: " + row.getString

("publisher"));
System.out.println("Edition: " + row.getString

("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");

}

116 Chapter 3 n Using Cassandra with DataStax Java Driver

} catch (TimeoutException e) {
resultsFuture.cancel(true);
System.out.println(e);

}

Run the CQLClient application to output the result of the query. The result of the query is
the same as it would be with the synchronous execute() method, as shown in Figure 3.13.

Figure 3.13
Result for async query.
Source: Eclipse Foundation.

Why use the async version? If the query is expected to take an inordinate amount of time,
it may be suitable to use the async version while the processing of the application con-
tinues and to cancel or interrupt the query if required. Next, you’ll see how to cancel a
query result set future after a specified duration. Set the timeout to 1 ms. Then run the

Running an Async Query 117

CQLClient method with the timeout set to 1 ms. Even a short running query may not
return with such a small timeout. As indicated by the TimeoutException in Figure 3.14,
the result set future gets timed out before the result can be retrieved.

Figure 3.14
TimeoutException.
Source: Eclipse Foundation.

Running a PreparedStatement Query
DataStax driver has the provision to create a prepared statement, which is a query with
bind variables. The BoundStatement is used to bind values to the bind variables of a
PreparedStatement. In this section, you will create a prepared statement and subsequently
bind values to the bind variables using a BoundStatement. The BoundStatement class
extends the Query class. You will run the query in the BoundStatement using the
Session class method execute(Query query). Add a preparedStmtQuery() method to the
CQLClient class and invoke the method in the main method. Create a PreparedStatement

using the Session class method prepare(String query).

PreparedStatement stmt = session.prepare("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE title=?");

118 Chapter 3 n Using Cassandra with DataStax Java Driver

The prepared statement has a bind variable for the title column. Create a BoundStatement

from the PreparedStatment object using the BoundStatement(PreparedStatement

statement) constructor.

BoundStatement boundStmt = new BoundStatement(stmt);

The BoundStatement class provides the bind(Object... values) method to bind values to
the bind variables of a PreparedStatement. The values are bound to the bind variables in
the order specified. The first value is bound to the first bind variable, the second value to
the second bind variable. Set the value of the title variable:

boundStmt.bind("Engineering as a Service");

Run the query in the BoundStatement, which extends Query, using the execute(Query

query) method in the Session class. Iterate over the ResultSet using an enhanced for

loop to output the columns.

ResultSet results = session.execute(boundStmt);
for (Row row : results) {

System.out.println("Journal: " + row.getString
("journal"));

System.out.println("Publisher: " + row.getString
("publisher"));

System.out.println("Edition: " + row.getString
("edition"));

System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");

}

The result of running a query with a prepared statement is shown in the Eclipse IDE in
Figure 3.15.

Running a PreparedStatement Query 119

Figure 3.15
Query result with PreparedStatement.
Source: Eclipse Foundation.

Running the UPDATE Statement
The UPDATE statement is used to update the columns in one or more rows based on a rela-
tion specified in the WHERE clause. CQL 3 has added a provision to run the UPDATE condi-
tionally based on the condition in the IF clause. Run the following UPDATE statement to
update the edition and author columns in the catalog1 table based on the condition in
the IF clause:

session.execute("UPDATE datastax.catalog SET edition = '11/12 2013', author =
'Kelley, David A.' WHERE catalog_id = 'catalog1' AND journal='Oracle Magazine' IF
edition='November-December 2013'");

Next, run a SELECT statement to output the modified columns:

ResultSet results = session.execute("SELECT catalog_id, journal, publisher,
edition,title,author FROM datastax.catalog WHERE catalog_id='catalog1'");

for (Row row : results) {
System.out.println("Journal: " + row.getString

("journal"));
System.out.println("Publisher: " + row.getString

("publisher"));

120 Chapter 3 n Using Cassandra with DataStax Java Driver

System.out.println("Edition: " + row.getString
("edition"));

System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");

}

The catalog1 row column values after the update are shown in Eclipse IDE in
Figure 3.16.

Figure 3.16
Query result with updated column values.
Source: Eclipse Foundation.

Because the primary key is a compound primary key, all the component columns in the
primary key must be specified in the WHERE clause. For example, if only the catalog-id

column is specified in the WHERE clause, the following exception is generated:

Exception in thread "main" com.datastax.driver.core.exceptions.
InvalidQueryException: Missing mandatory PRIMARY KEY part journal

Running the UPDATE Statement 121

Running the DELETE Statement
The DELETE statement is used to delete some selected columns from table row(s) or all the
columns from table row(s). With a compound primary key, using the DELETE statement is
somewhat different than if using a single column primary key. The partition key may be
used for the row specification in the WHERE clause to delete the entire row. For example,
the following deletes the catalog1 row:

private static void delete() {
session.execute("DELETE from datastax.catalog WHERE catalog_id='catalog1'");
}

A SELECT query after the deletion outputs only the catalog2 and catalog3 rows:

Catalog Id: catalog2
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert

Catalog Id: catalog3
Journal: Oracle Magazine
Publisher: null
Edition: null
Title: null
Author: null

Although the partition key may be used alone to identify a row in the WHERE clause, the
other columns may not be used individually. To demonstrate, specify only the primary
key component column journal in the WHERE clause:

session.execute("DELETE from datastax.catalog WHERE journal='Oracle Magazine'");

This generates the following exception:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Missing
mandatory PRIMARY KEY part catalog_id

The journal column may be specified in the WHERE clause in addition to the partition key
catalog_id:

session.execute("DELETE from datastax.catalog WHERE catalog_id='catalog1' AND
journal='Oracle Magazine'");

122 Chapter 3 n Using Cassandra with DataStax Java Driver

Individual columns to be deleted may be specified in the DELETE statement, but a primary
key component column cannot be deleted with column specification. To demonstrate,
include the journal column to delete using the following query:

session.execute("DELETE journal, publisher from datastax.catalog WHERE
catalog_id='catalog2'");

This generates the following exception:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Invalid
identifier journal for deletion (should not be a PRIMARY KEY part)

If columns are to be deleted selectively, all the primary key component columns must be
specified in the WHERE clause to identify the row. To demonstrate, run the following query
to delete the publisher and edition columns from the catalog table, but don’t specify
the journal column in the WHERE clause:

session.execute("DELETE publisher, edition from datastax.catalog WHERE
catalog_id='catalog2'");

This generates the following exception:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Missing
mandatory PRIMARY KEY part journal since edition specified

To delete columns selectively, you must specify all the primary key component columns in
the WHERE clause:

session.execute("DELETE publisher, edition from datastax.catalog WHERE
catalog_id='catalog2' AND journal='Oracle Magazine'");

If a SELECT query is run after the deletion, null is output for the deleted columns
publisher and edition for the catalog2 row. (See Figure 3.17.)

Running the DELETE Statement 123

Figure 3.17
Query result after DELETE.
Source: Eclipse Foundation.

If some of the column values have been deleted, a subsequent INSERT with all the columns
specified and with an IF NOT EXISTS condition does not add the new row values, even
though some of the column values have been deleted. For example, if, after the preceding
deletion of two columns, you attempt to run the INSERT statement, the INSERT statement
is not run and the publisher and edition column values stay null.

session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT
EXISTS");

Running the BATCH Statement
The BATCH statement is used to run a batch or group of INSERT, UPDATE, and DELETE state-
ments. Add a batch() method to the CQLQuery class and invoke the method from the
main method. To demonstrate the BATCH statement, create a table catalog4.

124 Chapter 3 n Using Cassandra with DataStax Java Driver

session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog4 (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(journal, catalog_id, publisher))");

Run a BATCH statement to add three rows of data to the catalog4 table.

session.execute("BEGIN BATCH INSERT INTO datastax.catalog4 (catalog_id,
journal, publisher, edition,title,author) VALUES ('catalog1','Oracle Magazine',
'Oracle Publishing', 'November-December 2013', 'Quintessential and
Collaborative','Tom Haunert') INSERT INTO datastax.catalog4 (catalog_id, journal,
publisher, edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle
Publishing', 'November-December 2013', '','') INSERT INTO datastax.catalog4
(catalog_id, journal, publisher, edition,title,author) VALUES
('catalog3','Oracle Magazine', 'Oracle Publishing', 'November-December 2013',
'','') APPLY BATCH");

Run a SELECT query after the BATCH statement. The following rows are output:

Catalog Id: catalog1
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title: Quintessential and Collaborative
Author: Tom Haunert

Catalog Id: catalog2
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title:
Author:

Catalog Id: catalog3
Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: November-December 2013
Title:
Author:

The IF NOT EXISTS condition, which may be used with individual INSERT, UPDATE, and
DELETE statements, cannot be used with the same statements in a BATCH statement, either
applied to individual statements or the batch. To demonstrate, run the following BATCH

statement:

session.execute("BEGIN BATCH INSERT INTO datastax.catalog (catalog_id,
journal, publisher, edition,title,author) VALUES ('catalog2','Oracle Magazine',

Running the BATCH Statement 125

'Oracle Publishing', 'November-December 2013', 'Quintessential and
Collaborative','Tom Haunert') IF NOT EXISTS INSERT INTO datastax.catalog
(catalog_id, journal, publisher, edition,title,author) VALUES
('catalog3','Oracle Magazine', 'Oracle Publishing', 'November-December 2013',
'','') IF NOT EXISTS INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog4','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', '','') IF NOT EXISTS APPLY BATCH");

This generates the following exception:

Caused by: com.datastax.driver.core.exceptions.InvalidQueryException:
Conditional updates are not allowed in batches

Dropping an Index
CQL 3 has added the provision to drop an index conditionally using the IF EXISTS clause.
First, run the USE command to select a keyspace. Then drop the titleIndex conditionally
as follows:

private static void dropIndex() {
session.execute("USE datastax");
session.execute("DROP INDEX IF EXISTS titleIndex");

}

Dropping a Table
CQL 3 has added the provision to drop a table conditionally. For example, drop the
catalog table in the datastax keyspace using the IF EXISTS clause as follows:

private static void dropTable() {
session.execute("DROP TABLE IF EXISTS datastax.catalog");

}

Dropping a Keyspace
Dropping a keyspace may also be done conditionally using the IF EXISTS clause. For
example, drop the datastax keyspace as follows:

private static void dropKeyspace() {
session.execute("DROP KEYSPACE IF EXISTS datastax");

}

The Cassandra cluster connection may be closed using the Cluster.close() method in
the closeConnection() method.

126 Chapter 3 n Using Cassandra with DataStax Java Driver

The CQLClient Application
The CQLClient application used in this chapter appears in Listing 3.2. Sections of the
code that demonstrate different aspects or usages of an API have been commented out
and may be de-commented for testing.

Listing 3.2 The CQLClient Application

package datastax;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

import com.datastax.driver.core.BoundStatement;
import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.Host;
import com.datastax.driver.core.Metadata;
import com.datastax.driver.core.PreparedStatement;
import com.datastax.driver.core.ResultSet;
import com.datastax.driver.core.ResultSetFuture;
import com.datastax.driver.core.Row;
import com.datastax.driver.core.Session;
import com.google.common.util.concurrent.AbstractFuture;

public class CQLClient {

private static Cluster cluster;
private static Session session;

public static void main(String[] args) {
connection();
createKeyspace();
createTable();
insert();
// select();
// dropIndex();
// createIndex();
// selectFilter();
// asyncQuery();
// preparedStmtQuery();
// update();
// delete();
batch();
// dropTable();
// dropKeyspace();
// closeConnection();
}

The CQLClient Application 127

private static void connection() {
cluster = Cluster.builder().addContactPoint("127.0.0.1").build();
Metadata metadata = cluster.getMetadata();
System.out.printf("Connected to cluster: %s\n",
metadata.getClusterName());
for (Host host : metadata.getAllHosts()) {
System.out.printf("Datacenter: %s; Host: %s; Rack: %s\n",
host.getDatacenter(), host.getAddress(), host.getRack());
}

session = cluster.connect();
}
private static void createKeyspace() {
session.execute("CREATE KEYSPACE IF NOT EXISTS datastax WITH replication "
+ "= {'class':'SimpleStrategy', 'replication_factor':1};");
}
private static void createTable() {
session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(catalog_id, journal))");
session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog2 (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(journal, catalog_id))");
session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog3 (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(journal, catalog_id, publisher))");
}
private static void insert() {
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher)
VALUES ('catalog3', 'Oracle Magazine','Oracle Publishing') IF NOT EXISTS");

session.execute("INSERT INTO datastax.catalog2 (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly') IF NOT
EXISTS");

128 Chapter 3 n Using Cassandra with DataStax Java Driver

session.execute("INSERT INTO datastax.catalog2 (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog2 (catalog_id, journal, publisher)
VALUES ('catalog3', 'Oracle Magazine','Oracle Publishing') IF NOT EXISTS");

session.execute("INSERT INTO datastax.catalog3 (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog3 (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT
EXISTS");
session.execute("INSERT INTO datastax.catalog3 (catalog_id, journal, publisher)
VALUES ('catalog3', 'Oracle Magazine','Oracle Publishing') IF NOT EXISTS");

}

private static void select() {

// ResultSet results =
// session.execute("select * from datastax.catalog");
// ResultSet results =
// session.execute("select * from datastax.catalog2 WHERE journal='Oracle
Magazine' ORDER BY catalog_id DESC");
// ResultSet results =
// session.execute("select * from datastax.catalog3 WHERE journal='Oracle
Magazine' ORDER BY publisher");
// generates error
ResultSet results = session
.execute("select * from datastax.catalog3 WHERE journal='Oracle Magazine' ORDER BY
catalog_id");
for (Row row : results) {
System.out.println("Catalog Id: " + row.getString("catalog_id"));
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}
}

The CQLClient Application 129

private static void createIndex() {

session.execute("CREATE INDEX titleIndex ON datastax.catalog (title)");
}

private static void selectFilter() {

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog2 WHERE journal='Oracle Magazine' AND catalog_id > 'catalog1'"
*); for (Row row : results) { System.out.println("Catalog Id: " +
* row.getString("catalog_id")); System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +
* row.getString("author")); System.out.println("\n");
* System.out.println("\n"); }
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE catalog_id > 'catalog1'"
*); for (Row row : results) { System.out.println("Catalog Id: " +
* row.getString("catalog_id")); System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +
* row.getString("author")); System.out.println("\n");
* System.out.println("\n"); }
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog2 WHERE journal='Oracle Magazine' AND catalog_id >= 'catalog1'"
*); for (Row row : results) { System.out.println("Catalog Id: " +
* row.getString("catalog_id")); System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +

130 Chapter 3 n Using Cassandra with DataStax Java Driver

* row.getString("author")); System.out.println("\n");
* System.out.println("\n"); }
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE title='Engineering as a Service'"
*); for (Row row : results) { System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +
* row.getString("author")); System.out.println("\n");
* System.out.println("\n");
*
* }
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE catalog_id='catalog2'"
*);
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE journal='Oracle Magazine' ALLOW FILTERING"
*);
*/

/*

* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE journal='Oracle Magazine' AND catalog_id='catalog2'"
*); for (Row row : results) { System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +
* row.getString("author")); System.out.println("\n");
* System.out.println("\n");
*

The CQLClient Application 131

* }
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE catalog_id IN ('catalog2', 'catalog3')"
*);
*/

/*
* ResultSet results = session .execute(
* "SELECT catalog_id, journal, publisher, edition,title,author FROM

datastax.catalog WHERE title IN ('Quintessential and Collaborative', 'Engineering
as a Service')"
*);
*/

/*
* for (Row row : results) { System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +
* row.getString("author")); System.out.println("\n");
* System.out.println("\n");
* }
*/

}
private static void asyncQuery() {
ResultSetFuture resultsFuture = session
.executeAsync("Select * from datastax.catalog");
try {
ResultSet results = resultsFuture.getUninterruptibly(1000000,
TimeUnit.MILLISECONDS);
for (Row row : results) {
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}

132 Chapter 3 n Using Cassandra with DataStax Java Driver

} catch (TimeoutException e) {

resultsFuture.cancel(true);
System.out.println(e);
}
}

private static void preparedStmtQuery() {
PreparedStatement stmt = session
.prepare("SELECT catalog_id, journal, publisher, edition,title,author FROM
datastax.catalog WHERE title=?");
BoundStatement boundStmt = new BoundStatement(stmt);
boundStmt.bind("Engineering as a Service");
ResultSet results = session.execute(boundStmt);
for (Row row : results) {
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}

}

private static void update() {
session.execute("UPDATE datastax.catalog SET edition = '11/12 2013', author =
'Kelley, David A.' WHERE catalog_id = 'catalog1' AND journal='Oracle Magazine' IF
edition='November-December 2013'");
ResultSet results = session
.execute("SELECT catalog_id, journal, publisher, edition,title,author FROM
datastax.catalog WHERE catalog_id='catalog1'");
for (Row row : results) {
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}
}

The CQLClient Application 133

private static void delete() {
// session.execute("DELETE journal, publisher from datastax.catalog WHERE
catalog_id='catalog2'");//generates
// error

// session.execute("DELETE from datastax.catalog WHERE catalog_id='catalog1'");
// //equivalent
// session.execute("DELETE from datastax.catalog WHERE journal='Oracle
Magazine'");//generates
// error
/*
* session.execute(
* "DELETE from datastax.catalog WHERE catalog_id='catalog1' AND journal='Oracle

Magazine'"
*);//equivalent ResultSet results =
* session.execute("select * from datastax.catalog"); for (Row row :
* results) { System.out.println("Catalog Id: " +
* row.getString("catalog_id")); System.out.println("Journal: " +
* row.getString("journal")); System.out.println("Publisher: " +
* row.getString("publisher")); System.out.println("Edition: " +
* row.getString("edition")); System.out.println("Title: " +
* row.getString("title")); System.out.println("Author: " +
* row.getString("author")); System.out.println("\n");
* System.out.println("\n");
*
* }
*/

/*
* Caused by: com.datastax.driver.core.exceptions.InvalidQueryException:
* Missing mandatory PRIMARY KEY part journal since publisher specified
*/

// session.execute("DELETE publisher, edition from datastax.catalog WHERE
catalog_id='catalog2'");//generates
// error

// session.execute("DELETE publisher, edition from datastax.catalog WHERE
catalog_id='catalog1' AND journal='Oracle Magazine'");
// session.execute("DELETE from datastax.catalog WHERE catalog_id='catalog1'");
// session.execute("DELETE from datastax.catalog WHERE journal='Oracle
Magazine'");//generates
// error
// session.execute("DELETE publisher, edition from datastax.catalog WHERE
catalog_id='catalog2'");

134 Chapter 3 n Using Cassandra with DataStax Java Driver

// session.execute("DELETE publisher, edition from datastax.catalog WHERE
catalog_id='catalog2' AND journal='Oracle Magazine'");
ResultSet results = session.execute("select * from datastax.catalog");
for (Row row : results) {
System.out.println("Catalog Id: " + row.getString("catalog_id"));
System.out.println("Journal: " + row.getString("journal"));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}
}

private static void batch() {
// session.execute("BEGIN BATCH INSERT INTO datastax.catalog (catalog_id,
journal, publisher, edition,title,author) VALUES ('catalog2','Oracle Magazine',
'Oracle Publishing', 'November-December 2013', 'Quintessential and
Collaborative','Tom Haunert') IF NOT EXISTS INSERT INTO datastax.catalog
(catalog_id, journal, publisher, edition,title,author) VALUES
('catalog3','Oracle Magazine', 'Oracle Publishing', 'November-December 2013',
'','') IF NOT EXISTS INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalog4','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', '','') IF NOT EXISTS APPLY BATCH");

session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog4 (catalog_id text,
journal text,publisher text, edition text,title text,author text,PRIMARY KEY
(journal, catalog_id, publisher))");

session.execute("BEGIN BATCH INSERT INTO datastax.catalog4 (catalog_id,
journal, publisher, edition,title,author) VALUES ('catalog1','Oracle Magazine',
'Oracle Publishing', 'November-December 2013', 'Quintessential and
Collaborative','Tom Haunert') INSERT INTO datastax.catalog4 (catalog_id, journal,
publisher, edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle
Publishing', 'November-December 2013', '','') INSERT INTO datastax.catalog4
(catalog_id, journal, publisher, edition,title,author) VALUES
('catalog3','Oracle Magazine', 'Oracle Publishing', 'November-December 2013',
'','') APPLY BATCH");

ResultSet results = session.execute("select * from datastax.catalog4");
for (Row row : results) {
System.out.println("Catalog Id: " + row.getString("catalog_id"));
System.out.println("Journal: " + row.getString("journal"));

The CQLClient Application 135

System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");
System.out.println("\n");
}
}

private static void dropIndex() {
session.execute("USE datastax");
session.execute("DROP INDEX IF EXISTS titleIndex");
}

private static void dropTable() {
session.execute("DROP TABLE IF EXISTS datastax.catalog");
}

private static void dropKeyspace() {
session.execute("DROP KEYSPACE IF EXISTS datastax");
}

private static void closeConnection() {
cluster.close();

}
}

Summary
In this chapter, you used the DataStax Java driver to access the Cassandra server from a
Java application developed in the Eclipse IDE. You used CQL 3 statements to create a key-
space, create a table, insert rows in the table, create an index, select rows and columns
from the table, update table rows, delete table rows and columns, run a batch of state-
ments, drop an index, drop a table, and drop a keyspace. In the next chapter, you will
learn how to use Apache Cassandra with PHP, an open source, object-oriented, server-
side language.

136 Chapter 3 n Using Cassandra with DataStax Java Driver

Part II

Scripting Languages

137

This page intentionally left blank

Chapter 4

Using Apache Cassandra
with PHP

PHP is one of the most commonly used scripting languages, and its usage for developing
websites continues to increase. PHP is an open source, object-oriented, server-side lan-
guage and has the advantages of simplicity with support for all or most operating systems
and Web servers. A few PHP clients for Cassandra are available, including phpcassa,
which is a PHP client library for Apache Cassandra with support for PHP 5.3+. In this
chapter, you will use phpcassa to access Cassandra and perform CRUD operations on
Cassandra from PHP scripts.

An Overview of Phpcassa
Phpcassa provides several namespaces for a PHP client to access Apache Cassandra. A
PHP namespace is an abstraction to encapsulate related, reusable code elements such as
classes, interfaces, functions, and constants. The top-level namespace is phpcassa. The
main classes within the top level namespace are shown in Figure 4.1.

Figure 4.1
Main classes in the top-level namespace phpcassa.

139

The main classes in the phpcassa namespace are discussed in Table 4.1.

Table 4.1 Main Classes in the phpcassa Namespace

Class Description

ColumnFamily Represents a column family in Cassandra.

ColumnSlice Represents a slice/range of columns in a row or multiple rows.

SystemManager Provides information about the state and configuration of a
Cassandra cluster. It also provides a means to view or modify
information about the schema.

UUID Represents a UUID, a unique identifier.

The top-level namespace phpcassa has several sub-namespaces, which are outlined in
Figure 4.2.

Figure 4.2
Sub-namespaces in the top-level namespace phpcassa.

The sub-namespaces in the phpcassa namespace are discussed in Table 4.2.

Table 4.2 Sub-Namespaces in the phpcassa Namespace

Namespace Description

phpcassa\Batch Batch operations classes

phpcassa\Connection Cassandra connection classes

phpcassa\Index Column index classes

phpcassa\Iterator Column family iteration classes

phpcassa\Schema Column family schema classes

phpcassa\Util Utility classes

phpcassa\UUID UUID-related classes

140 Chapter 4 n Using Apache Cassandra with PHP

Each of the namespaces contains classes specific to the namespace. The main classes in the
phpcassa\Batch namespace are shown in Figure 4.3.

Figure 4.3
Main classes in the phpcassa\Batch namespace.

The phpcassa\Batch namespace main classes are discussed in Table 4.3.

Table 4.3 Main Classes in the phpcassa\Batch Namespace

Class Description

AbstractMutator An abstract class with methods common to both Mutator and
CfMutator.

Mutator Groups multiple mutations across one or more rows and column
families into a batch operation. Subclass of AbstractMutator.

CfMutator A sub-class of Mutator for batch operations on a single column
family. Subclass of AbstractMutator.

The phpcassa\Connection namespace provides the ConnectionPool class and the excep-
tions in Figure 4.4.

Figure 4.4
Classes in the phpcassa\Connection namespace.

An Overview of Phpcassa 141

The classes and exceptions in the phpcassa\Connection namespace are discussed in
Table 4.4.

Table 4.4 Main Classes in the phpcassa\Connection Namespace

Class Description

ConnectionPool A connection pool for servers in a cluster. Specific to a keyspace.

MaxRetriesException Thrown if a connection pool has retried an operation as many
times as configured in the $max_retries setting.

NoServerAvailable Thrown if a connection pool is not able to open a connection to
any of the servers after retrying each server twice.

The phpcassa\Index namespace provides the classes in Figure 4.5.

Figure 4.5
Classes in the phpcassa\Index namespace.

The classes in the phpcassa\Index namespace are discussed in Table 4.5.

Table 4.5 Main Classes in the phpcassa\Index Namespace

Class Description

IndexClause Constructs an index clause to be
used to get indexed column slices

IndexExpression Constructs an index expression to
be used in an index clause

The classes in the phpcassa\Schema namespace are outlined in Figure 4.6.

142 Chapter 4 n Using Apache Cassandra with PHP

Figure 4.6
Classes in the phpcassa\Schema namespace.

The classes in the phpcassa\Schema namespace are discussed in Table 4.6.

Table 4.6 Main Classes in the phpcassa\Schema Namespace

Class Description

DataType Provides the different data types

StrategyClass Represents replication strategies for keyspaces

The DataType class provides various data types as string constants. Some of the main data
types are listed in Figure 4.7.

Figure 4.7
Data types in the DataType class.

Some of the main data types in the DataType class are discussed in Table 4.7.

Table 4.7 Data Types in the DataType Class

Class Description

UTF8Type UTF8 data type

Int32Type Int32 data type

(Continued)

An Overview of Phpcassa 143

Table 4.7 Data Types in the DataType Class (Continued)

Class Description

BooleanType Boolean data type

DoubleType Double data type

BytesType Bytes data type

FloatType Float data type

IntegerType Integer data type

LongType Long data type

DateType Date data type.

Setting the Environment
In addition to installing Apache Cassandra server, you must install the following software:

n PHP

n PHP client library for Cassandra

Then follow these steps:

1. Add the bin folder, C:\Cassandra\apache-cassandra-2.0.4\bin, to the PATH

environment variable.

2. Start the Cassandra server with the following command:

cassandra -f

Installing PHP
PHP 5.4 and later versions include a Web server packaged in the PHP installation and do
not require the Web server to be installed separately. To install PHP, follow these steps:

1. Download the latest version of the PHP TAR file from http://php.net/downloads.php.

2. Extract the TAR file to a directory (C:\PHP is used in this chapter) with the
following command:

tar -xzf php-5.4.23.tar.gz

3. Rename the php.ini-development or php.ini-production file in the root directory of
the PHP installation (C:\PHP\php-5.4.24-Win32-VC9-x86) to php.ini.

144 Chapter 4 n Using Apache Cassandra with PHP

../../../../../../php.net/downloads.php

4. Connect to the packaged Web server with the following command from the C:\PHP\
php-5.4.24-Win32-VC9-x86 directory:

php -S localhost:8000

The output from the command indicates that the development server has been started and
is listening on http://localhost:8000. (See Figure 4.8.)

Figure 4.8
Starting the development server.
Source: Microsoft Corporation.

The document root is the directory to which the TAR file is extracted, C:\PHP\
php-5.4.24-Win32-VC9-x86. Any PHP script phpscript.php copied to the document root
directory may be run on the integrated Web server with the URL http://localhost:8000/
phpscript.php. You can copy PHP scripts to a subdirectory of the document root directory
and run them by including the directory path, starting from the document root, in the
URL.

Installing Phpcassa
To install phpcassa, follow these steps:

1. Download the phpcassa library from https://github.com/thobbs/phpcassa. The
Download ZIP downloads the phpcassa-master.zip file.

2. Extract the phpcassa-master.zip file to the C:\PHP\php-5.4.24-Win32-VC9-x86
directory.

3. Create a subdirectory, scripts, in the phpcassa-master directory.

You will add PHP scripts to the phpcassa-master\scripts directory and run the scripts in
the integrated Web server. The URL to run a script phpscript.php in the phpcassa-master\
scripts directory is http://localhost:8000/phpcassa-master/scripts/phpscript.php.

Setting the Environment 145

../../../../../../localhost_3A8000/default.htm
../../../../../../localhost_3A8000/phpscript.php
../../../../../../localhost_3A8000/phpscript.php
../../../../../../https@github.com/thobbs/phpcassa
../../../../../../localhost_3A8000/phpcassa-master/scripts/phpscript.php

Creating a Keyspace
A keyspace is the top-level namespace for storing data in a Cassandra database. First, you
need to create a keyspace in Cassandra. Create a PHP script, createKeyspace.php, in the
phpcassa-master\scripts directory. Include the phpcassa library in the PHP script with
the following statement:

require_once(__DIR__.'/../lib/autoload.php');

Import the ConnectionPool, SystemManager, and StrategyClass classes using use state-
ments. Create a SystemManager object using the following class constructor:

__construct(string $server = 'localhost:9160', array $credentials = NULL, integer
$send_timeout = 15000, integer $recv_timeout = 15000)

The constructor parameters are discussed in Table 4.8.

Table 4.8 SystemManager Constructor Parameters

Parameter Type Description Default Value

$server string 'localhost:9160' The host and port to connect to in
the format host:port. The default
value for host is localhost and the
default value for port is 9160.

$credentials array NULL Username and password credentials
for authorization and
authentication with Cassandra in
the format array("username" =>
username, "password" =>
password).

$send_timeout integer 15000 Socket send timeout in milliseconds.

$recv_timeout integer 15000 Socket receive timeout in
milliseconds.

Create an instance of SystemManager as follows.

$sys = new SystemManager('127.0.0.1');

Create a keyspace using the create_keyspace($keyspace, $attrs) method from the
SystemManager class. The $keyspace parameter is the keyspace name and the $attrs

146 Chapter 4 n Using Apache Cassandra with PHP

parameter is for the attributes of the keyspace. The attributes discussed in Table 4.9 are
supported.

Table 4.9 Keyspace Attributes

Attributes Description

strategy_class The strategy class to use for replication, the default being
SimpleStrategy.

strategy_options The replication strategy options.

replication_factor The number of nodes to replicate to. The default replication
factor is 1. The replication_factor is specified as a strategy
option.

Create a keyspace using Simple_Strategy and a replication_factor of 1:

$sys->create_keyspace('php_catalog', array(
"strategy_class" => StrategyClass::SIMPLE_STRATEGY,
"strategy_options" => array('replication_factor' => '1')));

The PHP script createKeyspace.php appears in Listing 4.1.

Listing 4.1 The createKeyspace.php Script

<?php

require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\SystemManager;
use phpcassa\Schema\StrategyClass;
$sys = new SystemManager('127.0.0.1');
$sys->create_keyspace('php_catalog', array(
"strategy_class" => StrategyClass::SIMPLE_STRATEGY,
"strategy_options" => array('replication_factor' => '1')));
echo 'Keyspace php_catalog created';
?>

With the Cassandra server running and the PHP integrated server started, invoke the
PHP script with the URL http://localhost:8000/phpcassa-master/scripts/createKeyspace.
php. The php_catalog keyspace is created in Cassandra, as shown in Figure 4.9.

Creating a Keyspace 147

../../../../../../localhost_3A8000/phpcassa-master/scripts/createKeyspace.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/createKeyspace.php

Figure 4.9
Creating a keyspace.
Source: Google Inc.

Log in to the Cassandra client with the cassandra-cli batch application. Then run the
following command to use the newly created keyspace php_catalog:

use php_catalog;

As indicated by the output in the Cassandra client, the php_catalog keyspace is authenti-
cated. (See Figure 4.10.)

Figure 4.10
Authenticating a keyspace.
Source: Microsoft Corporation.

Next, you will create a column family in Cassandra.

Creating a Column Family and Connection Pool
A column family or a table is the data structure to store data in Cassandra. To create
a column family, first create a PHP script, createCF.php, in the phpcassa-master\
scripts directory. Include the phpcassa library in the PHP script and import the

148 Chapter 4 n Using Apache Cassandra with PHP

ConnectionPool, SystemManager, and StrategyClass classes as in the preceding section.
Create a SystemManager object using the class constructor, also as in the preceding section.
The SystemManager class provides the following method to create a column family:

create_column_family(string $keyspace, string $column_family, array $attrs = null)

The method parameters are discussed in Table 4.10.

Table 4.10 create_column_family Method Parameters

Parameter Description

$keyspace The keyspace name.

$column_family The column family name.

$attrs The column family attributes. Some of the supported attributes are
column_type, default_validation_class, comparator_type,
and key_validation_class. For regular column families,
column_type defaults to Standard. The default comparator_type
is org.apache.cassandra.db.marshal.AsciiType.

Create a column family called catalog in the php_catalog keyspace using UTF8Type for
comparator_type, key_validation_class, and default_validation_class.

$sys->create_column_family('php_catalog', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "UTF8Type",
"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));

Next, create a ConnectionPool instance using the following class constructor:

__construct(string $keyspace, mixed $servers = NULL, integer $pool_size = NULL,
integer $max_retries = phpcassa\Connection\ConnectionPool::DEFAULT_MAX_RETRIES,
integer $send_timeout = 5000, integer $recv_timeout = 5000, integer $recycle =
phpcassa\Connection\ConnectionPool::DEFAULT_RECYCLE, mixed $credentials = NULL,
boolean $framed_transport = true)

Creating a Column Family and Connection Pool 149

The constructor supports the parameters discussed in Table 4.11.

Table 4.11 ConnectionPool Constructor Parameters

Parameter Type Description Default Value

$keyspace string The keyspace used by all
connections.

No default value;
the only required
parameter

$servers mixed Array of strings for servers with
each string in the format
'host:port'.

NULL, which implies
'localhost:9160'

$pool_size integer The number of open
connections to keep in the pool.

NULL, which implies
max(5, count
($servers) * 2)

$max_retries integer The number of times an
operation is retried before
throwing
MaxRetriesException. A
setting of 0 disables retries. A
setting of -1 is for unlimited
retries.

5

$send_timeout integer Socket send timeout in
milliseconds.

5000

$recv_timeout integer Socket receive timeout in
milliseconds.

5000

$recycle integer A connection is closed and
reopened after the specified
times, the default being 10,000.

10000

$credentials mixed The username and password
credentials specified as array
("username" => username,
"password" => password)

NULL

$framed_transport boolean If framed transport is to be used.
Framed transport is the default
implementation provided by
Thrift. The alternative is
buffered transport. With
buffered transport, an internal
buffer is created to store data.

true

150 Chapter 4 n Using Apache Cassandra with PHP

Create a ConnectionPool instance using the php_catalog keyspace and the '127.0.0.1'

host.

$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));

You created a column family earlier. Create a ColumnFamily instance using the following
class constructor:

_construct($pool, $column_family,$autopack_names=true, $autopack_values=true,
$read_consistency_level=ConsistencyLevel::ONE,$write_consistency_level=
ConsistencyLevel::ONE,$buffer_size=self::DEFAULT_BUFFER_SIZE)

The ColumnFamily class constructors are discussed in Table 4.12.

Table 4.12 ColumnFamily Constructor Parameters

Parameter Type Description Default Value

$pool phpcassa\
Connection\
ConnectionPool

The connection
pool to use as a
ConnectionPool
instance

$column_family string The column family
to use

$autopack_names boolean If column names
are to be converted
automatically to and
from their binary
representation in
Cassandra based on
their comparator type

true

$autopack_values boolean If column values
are to be converted
automatically to and
from their binary
representation in
Cassandra based on
their validator type

true

$read_consistency_
level

ConsistencyLevel The default consistency
level on read operations
on the column family

Consistency
Level::ONE

(Continued)

Creating a Column Family and Connection Pool 151

Table 4.12 ColumnFamily Constructor Parameters (Continued)

Parameter Type Description Default Value

$write_consistency_
level

ConsistencyLevel The default consistency
level on write
operations on the
column family

Consistency
Level::ONE

$buffer_size int The number of rows
to buffer when fetching
many rows to prevent
Cassandra from
overallocating memory
and failing

100

Create a ColumnFamily instance called catalog using the ConnectionPool instance created
earlier and the catalog column family. Default values are used for the other attributes.

$catalog = new ColumnFamily($pool, 'catalog');

The PHP script createCF.php appears in Listing 4.2.

Listing 4.2 The createCF.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
$sys = new SystemManager('127.0.0.1');

$sys->create_column_family('php_catalog', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "UTF8Type",
"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));
$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
echo 'column family catalog created';
?>

152 Chapter 4 n Using Apache Cassandra with PHP

With the Cassandra server running and the PHP integrated server started, invoke the
PHP script with the URL http://localhost:8000/phpcassa-master/scripts/createCF.php.
The catalog column family is created in Cassandra. (See Figure 4.11.)

Figure 4.11
Creating a column family.
Source: Google Inc.

Next, you will add data to the column family created in this section.

Adding Data
Cassandra stores data in rows and columns in a column family. To see how this works,
create a PHP script, add.php, in the phpcassa-master\scripts directory for adding data to
Cassandra. Include the phpcassa library in the PHP script. Import the ConnectionPool,
SystemManager, and StrategyClass classes and create a SystemManager object using the
class constructor. The ColumnFamily class provides the insert() method to add data to
columns in a row. The required parameters of the insert() method are discussed in
Table 4.13.

Table 4.13 insert() Method Parameters

Parameter Type Description

$key string The row primary key in which to add column data

$columns mixed[] An array of columns to add, represented as array
(column_name => column_value)

Adding Data 153

../../../../../../localhost_3A8000/phpcassa-master/scripts/createCF.php

Create a ColumnFamily instance as discussed in the previous section.

$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');

Add two rows of data to rows identified by "catalog1" and "catalog2". Then create an
array of column name/value pairs for the journal, publisher, edition, title, and author

columns.

$catalog->insert('catalog1', array("journal" => "Oracle Magazine", "publisher" =>
"Oracle Publishing","edition" => "November-December 2013", "title" =>
"Quintessential and Collaborative","author" => "Tom Haunert"));
$catalog->insert('catalog2', array("journal" => "Oracle Magazine", "publisher" =>
"Oracle Publishing","edition" => "November-December 2013", "title" => "Engineering
as a Service","author" => "David A. Kelly"));

The PHP script add.php appears in Listing 4.3.

Listing 4.3 The add.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
$sys = new SystemManager('127.0.0.1');
$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$catalog->insert('catalog1', array("journal" => "Oracle Magazine", "publisher" =>
"Oracle Publishing","edition" => "November-December 2013", "title" =>
"Quintessential and Collaborative","author" => "Tom Haunert"));
$catalog->insert('catalog2', array("journal" => "Oracle Magazine", "publisher" =>
"Oracle Publishing","edition" => "November-December 2013", "title" => "Engineering
as a Service","author" => "David A. Kelly"));
echo 'Catalog ids catalog1 and catalog2 added';
//$catalog->remove("catalog1");
//$catalog->remove("catalog2");
?>

With the Cassandra server running and the PHP integrated server started, invoke the
PHP script with the URL http://localhost:8000/phpcassa-master/scripts/add.php. Two
rows of data are added to the column family catalog. (See Figure 4.12.)

154 Chapter 4 n Using Apache Cassandra with PHP

../../../../../../localhost_3A8000/phpcassa-master/scripts/add.php

Figure 4.12
Adding data.
Source: Google Inc.

In this section, you added only a row of data. In the next section, you will add multiple
rows in the same statement. A row of data may be removed with the remove($key)

method. If the same key identifiers are to be used for adding multiple rows, remove the
rows added in this section by running the add.php script with the remove() method invo-
cations commented out.

Adding Data in a Batch
In this section, you will add data to multiple rows in a batch. Create a PHP script,
add_batch.php, in the phpcassa-master\scripts directory for adding data to Cassandra.
Include the phpcassa library in the PHP script. Import the ConnectionPool,
SystemManager, and StrategyClass classes and create a SystemManager object using the
class constructor. The ColumnFamily class provides the insert() method to add data to
columns in a row. The required parameters of the batch_insert method are discussed in
Table 4.14.

Table 4.14 batch_insert Method Parameters

Parameter Description

$rows An array of rows, each of which maps to an array of columns. Of the
format array(key => array(column_name => column_value).

Add the catalog1 and catalog2 rows in a batch using the batch_insert method as
follows:

$catalog->batch_insert(array("catalog1" => array("journal" => "Oracle Magazine",
"publisher" => "Oracle Publishing","edition" => "November-December 2013", "title"
=> "Quintessential and Collaborative","author" => "Tom Haunert"),

Adding Data in a Batch 155

"catalog2" => array("journal" => "Oracle Magazine", "publisher" => "Oracle
Publishing","edition" => "November-December 2013", "title" => "Engineering as a
Service","author" => "David A. Kelly")));

The ColumnFamily class provides the multiget() method to fetch multiple rows of data.
The multiget() method is discussed later in this chapter, in the section, “Getting Col-
umns from Multiple Rows.” In this section, use the multiget() method to fetch the rows
added with the batch_insert method.

$catalogs = $catalog->multiget(array('catalog1', 'catalog2'));

The multiget() method returns mixed array(key => array(column_name =>

column_value)). Iterate over the array to output individual columns.

foreach($catalogs as $catalog_id => $columns) {
echo "Journal: ".$columns["journal"]."\n";
echo "Publisher: ".$columns["publisher"]."\n";

echo "Edition: ".$columns["edition"]."\n";
echo "Title: ".$columns["title"]."\n";
echo "Author: ".$columns["author"]."\n";
echo "
\n";

}

The add_batch.php PHP script appears in Listing 4.4.

Listing 4.4 The add_batch.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
use phpcassa\Schema\StrategyClass;
$sys = new SystemManager('127.0.0.1');

$sys->create_keyspace('batch_catalog', array(
"strategy_class" => StrategyClass::SIMPLE_STRATEGY,
"strategy_options" => array('replication_factor' => '1')));

$sys->create_column_family('batch_catalog', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "UTF8Type",
"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));

156 Chapter 4 n Using Apache Cassandra with PHP

$pool = new ConnectionPool('batch_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$catalog->batch_insert(array("catalog1" => array("journal" => "Oracle Magazine",
"publisher" => "Oracle Publishing","edition" => "November-December 2013", "title"
=> "Quintessential and Collaborative","author" => "Tom Haunert"),
"catalog2" => array("journal" => "Oracle Magazine", "publisher" => "Oracle

Publishing","edition" => "November-December 2013", "title" => "Engineering as a
Service","author" => "David A. Kelly")));
echo 'Catalog ids catalog1 and catalog2 added as a batch ';
echo "
\n";
$catalogs = $catalog->multiget(array('catalog1', 'catalog2'));
foreach($catalogs as $catalog_id => $columns) {
echo "Journal: ".$columns["journal"]."\n";
echo "Publisher: ".$columns["publisher"]."\n";
echo "Edition: ".$columns["edition"]."\n";
echo "Title: ".$columns["title"]."\n";
echo "Author: ".$columns["author"]."\n";
echo "
\n";
}
$sys->drop_keyspace("batch_catalog");
$pool->close();
$sys->close();
?>

With the Cassandra server running and the PHP integrated server started, invoke the
PHP script with the URL http://localhost:8000/phpcassa-master/scripts/add_batch.php.
Two rows of data are added to the column family catalog, and are fetched and output.
(See Figure 4.13.)

Figure 4.13
Adding data in a batch.
Source: Google Inc.

Having added data, you will next retrieve data from Cassandra.

Adding Data in a Batch 157

../../../../../../localhost_3A8000/phpcassa-master/scripts/add_batch.php

Retrieving Data
In this section, you will retrieve data from Cassandra using phpcassa. Create a PHP script,
get.php, in the phpcassa-master\scripts directory for getting data from Cassandra. As in
other sections, include the phpcassa library in the PHP script. Import the ConnectionPool,
SystemManager, and StrategyClass classes, and create a SystemManager object using the
class constructor. The ColumnFamily class provides the following method to get():

get($key,$column_slice=null,$column_names=null,$consistency_level=null)

The parameters of the get() method are discussed in Table 4.15.

Table 4.15 Parameters in the get() Method

Parameter Type Description Default Value

$key string The rowprimary key to fetch.

$column_slice \phpcassa
\ColumnSlice

A slice of columns to fetch.

$column_names mixed[] List of columns to fetch. By
default all columns are
fetched if none are specified.

true

$consistency_level Consistency
Level

The number of nodes that
must respond before the
method returns.

The get() method returns mixed array(column_name => column_value). Get the array of
columns for row key 'catalog1'.

$catalog1= $catalog->get('catalog1');

The following method returns the number of columns in a row:

get_count($key,$column_slice=null,$column_names=null,$consistency_level=null)

The parameters of the get_count() method are discussed in Table 4.16.

158 Chapter 4 n Using Apache Cassandra with PHP

Table 4.16 Parameters in the get_count() Method

Parameter Type Description Default Value

$key string The row key to fetch

$column_slice \phpcassa
\ColumnSlice

The slice of columns to
fetch

null

$column_names mixed[] List of column names
to fetch

null

$consistency_level ConsistencyLevel The number of nodes
that must respond
before the method
returns

null

The get_count() method returns an int value. Get the number of columns in the
'catalog1' row.

echo $catalog->get_count('catalog1');

Get the column values by dereferencing the array using column names. For example, the
column value for the journal column is output as follows:

echo $journal = $catalog1["journal"];

Similarly, get the array of columns in the 'catalog2' row.

$catalog2= $catalog->get('catalog2');

The get.php script appears in Listing 4.5.

Listing 4.5 The get.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
$sys = new SystemManager('127.0.0.1');

$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$catalog1= $catalog->get('catalog1');
echo "catalog1";
echo "
\n";

Retrieving Data 159

echo "Number of Columns in catalog1: ";
echo $catalog->get_count('catalog1');
echo "
\n";

echo "Journal: ";
echo $journal = $catalog1["journal"];
echo "
\n";

echo "Publisher: ";
echo $publisher = $catalog1["publisher"];
echo "
\n";
echo "Edition: ";
echo $edition = $catalog1["edition"];

echo "
\n";
echo "Title: ";
echo $title = $catalog1["title"];
echo "
\n";

echo "Author: ";
echo $author = $catalog1["author"];
echo "
\n";
echo "
\n";

$catalog2= $catalog->get('catalog2');
echo "catalog2";
echo "
\n";

echo "Number of Columns in catalog2: ";
echo $catalog->get_count('catalog2');
echo "
\n";

echo "Journal: ";
echo $journal = $catalog2["journal"];

echo "
\n";
echo "Publisher: ";
echo $publisher = $catalog2["publisher"];
echo "
\n";

echo "Edition: ";
echo $edition = $catalog2["edition"];

echo "
\n";
echo "Title: ";
echo $title = $catalog2["title"];
echo "
\n";

echo "Author: ";
echo $author = $catalog2["author"];

echo "
\n";
?>

160 Chapter 4 n Using Apache Cassandra with PHP

With the Cassandra server running and the PHP integrated server started, invoke the
PHP script with the URL http://localhost:8000/phpcassa-master/scripts/get.php. The two
rows of data are fetched individually and the column values are output. (See Figure 4.14.)

Figure 4.14
Getting data.
Source: Google Inc.

In this section, you fetched all the columns, but all columns don’t have to be fetched. In
the next section, you will fetch only selected columns.

Getting Selected Columns
You will use the same method to fetch selected columns:

get_count($key,$column_slice=null,$column_names=null,$consistency_level=null)

Create a PHP script, get_columns.php, in the phpcassa-master\scripts directory for get-
ting selected columns from Cassandra. Then invoke the get() method with the row key
as 'catalog1'. For the $column_names argument, specify three columns: journal, title,
and author.

$columns = $catalog->get('catalog1', $column_slice=null, $column_names=array
("journal", "title","author"));

Getting Selected Columns 161

../../../../../../localhost_3A8000/phpcassa-master/scripts/get.php

Output the column values using the array dereferencing using the column name.

echo "Journal: ".$columns["journal"].",\n";
echo "Title: ".$columns["title"].",\n";
echo "Author: ".$columns["author"].",\n";

The get_columns.php script appears in Listing 4.6.

Listing 4.6 The get_columns.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
$sys = new SystemManager('127.0.0.1');

$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$columns = $catalog->get('catalog1', $column_slice=null, $column_names=array
("journal", "title","author"));
echo "Journal: ".$columns["journal"].",\n";
echo "Title: ".$columns["title"].",\n";
echo "Author: ".$columns["author"].",\n";
?>

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/get_
columns.php. The three columns of data are fetched and column values are output.
(See Figure 4.15.)

Figure 4.15
Getting data for selected columns.
Source: Google Inc.

In the preceding two sections, you fetched a column from a single row. In the next sec-
tion, you will fetch columns from multiple rows.

162 Chapter 4 n Using Apache Cassandra with PHP

../../../../../../localhost_3A8000/phpcassa-master/scripts/get_columns.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/get_columns.php

Getting Columns from Multiple Rows
The ColumnFamily class provides the following method to fetch columns from multiple
rows:

multiget($keys,$column_slice=null,$column_names=null,$consistency_level=null,
$buffer_size=16)

The parameters of the method are discussed in Table 4.17.

Table 4.17 Parameters in the multiget() Method

Parameter Type Description Default Value

$keys string[] A list of rows specified
as strings to fetch.

$column_slice \phpcassa
\ColumnSlice

A slice of columns to
fetch.

null

$column_names mixed[] A list of columnnames
to fetch.

null

$consistency_level ConsistencyLevel The number of nodes
that must respond
before the method
returns.

$buffer_size int The number of rows
to fetch at a time. If
the rows are large, a
high buffer size
degrades
performance. If the
rows are small, a high
buffer size could
benefit.

16

The multiget() method returns mixed array(key => array(column_name => column_

value)). Create a PHP script, get_multi.php, in the phpcassa-master\scripts directory for
fetching multiple rows from Cassandra. Then invoke the multiget() method with row
arrays for 'catalog1' and 'catalog2'. For the $column_names argument, specify three
columns: journal, title, and author. Iterate over the array returned by the method to
output column values for the title and author columns.

Getting Columns from Multiple Rows 163

foreach($catalogs as $catalog_id => $columns) {
echo "Title: ".$columns["title"]."\n";
echo "Author: ".$columns["author"]."\n";
echo "
\n";

}

The ColumnFamily class provides the following method to get the column count for multi-
ple rows in the same statement:

multiget_count($keys,$column_slice=null,$column_names=null,
$consistency_level=null)

The parameters for the multiget_count() method are the same as for the multiget()

method except that the multiget_count() method does not have $buffer_size as a
parameter. The method returns mixed array(row_key => row_count). Invoke the method
for the 'catalog1' and 'catalog2' rows.

$array= $catalog->multiget_count(["catalog1", "catalog2"]);

Output the array returned using var_dump:

var_dump($array);

The get_multi.php script appears in Listing 4.7.

Listing 4.7 The get_multi.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
$sys = new SystemManager('127.0.0.1');

$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$catalogs = $catalog->multiget(array('catalog1', 'catalog2'));
foreach($catalogs as $catalog_id => $columns) {
echo "Title: ".$columns["title"]."\n";
echo "Author: ".$columns["author"]."\n";
echo "
\n";

}
echo "
\n";

echo "Column Count: ";
$array= $catalog->multiget_count(["catalog1", "catalog2"]);
var_dump($array);

?>

164 Chapter 4 n Using Apache Cassandra with PHP

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/get_
multi.php. The two rows of data are fetched, and two columns of data are output. (See
Figure 4.16.)

Figure 4.16
Getting data for selected columns from multiple rows.
Source: Google Inc.

Getting Column Slices
You did not use all of the parameters in the get() method to fetch columns. Specifically,
you did not use the $column_slice parameter, which fetches only the specified slice of
columns. Next, you will use the $column_slice parameter to fetch a slice of columns. A
slice of columns is represented with the phpcassa\ColumnSlice class. The constructor for
the ColumnSlice class is as follows:

__construct ($start="", $finish="",$count=self::DEFAULT_COLUMN_COUNT,
$reversed=False)

The constructor parameters are discussed in Table 4.18.

Table 4.18 ColumnSlice Class Constructor Parameters

Parameter Type Description Default Value

$start mixed The column to start with. A value of ''
implies the beginning of the row. The
first column is column 1.

''

$finish mixed The column to end with. A value of ''
implies the end of the row.

''

(Continued)

Getting Column Slices 165

../../../../../../localhost_3A8000/phpcassa-master/scripts/get_multi.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/get_multi.php

Table 4.18 ColumnSlice Class Constructor Parameters (Continued)

Parameter Type Description Default Value

$count int The number of columns to fetch. 100

$reversed bool If the column slice is to be reversed. The
start becomes the finish and vice versa.

false

We will discuss ColumnSlice with several examples. Create a PHP script, column_slices.
php, in the phpcassa-master\scripts directory. Then get the columns, starting with the
first column from 'catalog2' row.

$slice = new ColumnSlice(1);
var_dump($catalog->get('catalog2', $slice));

Next, get the column slice starting from the second column and ending with the fifth col-
umn from the 'catalog1' row.

$slice = new ColumnSlice(2, 5);
var_dump($catalog->get('catalog1', $slice));

To demonstrate the $count parameter, get columns from the row 'catalog1'. Although
the start and finish are specified as '', which implies all columns are to be fetched, only
three columns are fetched because the $count is specified as 3. Three columns are fetched
starting from the first column.

$slice = new ColumnSlice('', '', $count=3);
var_dump($catalog->get('catalog1', $slice));

Next, specify start and finish as '' and specify $count as 5. Also set $reversed to true.
Five columns starting from the end are fetched. Because the total number of columns is
five, all columns get fetched.

$slice = new ColumnSlice('', '', $count=5, $reversed=true);
var_dump($catalog->get('catalog1', $slice));

As another example, specify $start as 3 and $finish as ''. Then specify $count as 2 and
set $reversed to true. Two columns, starting from the third column and moving toward
the start of the row, are fetched.

$slice = new ColumnSlice(3, '', $count=2, $reversed=true);
var_dump($catalog->get('catalog1', $slice));

166 Chapter 4 n Using Apache Cassandra with PHP

Because the start and finish index are specified as numbers, the comparator_type for the
column family must be set to LongType.

$sys->create_column_family('catalogks', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "LongType",
"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));

The column_slices.php script appears in Listing 4.8.

Listing 4.8 The column_slices.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\ColumnSlice;
use phpcassa\SystemManager;
use phpcassa\Schema\StrategyClass;
$sys = new SystemManager('127.0.0.1');
$sys->create_keyspace('catalogks', array(

"strategy_class" => StrategyClass::SIMPLE_STRATEGY,
"strategy_options" => array('replication_factor' => '1')

));
$sys->create_column_family('catalogks', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "LongType",
"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));
// Start a connection pool, create our ColumnFamily instance
$pool = new ConnectionPool('catalogks', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$columns = array(1 => "Oracle Magazine", 2 => "Oracle Publishing", 3 => "November-
December 2013", 4 => "Quintessential and Collaborative", 5 => "Tom Haunert");
$catalog->insert('catalog1', $columns);
$columns = array(1 => "Oracle Magazine", 2 => "Oracle Publishing", 3 => "November-
December 2013", 4 => "Engineering as a Service", 5 => "David A. Kelly");$catalog-
>insert('catalog2', $columns);
$slice = new ColumnSlice(1);
var_dump(
$catalog->get('catalog2', $slice));

Getting Column Slices 167

echo "
\n";
echo "
\n";

$slice = new ColumnSlice(2, 5);
var_dump(
$catalog->get('catalog1', $slice));
echo "
\n";
echo "
\n";

$slice = new ColumnSlice('', '', $count=3);
var_dump(
$catalog->get('catalog1', $slice));
echo "
\n";
echo "
\n";

$slice = new ColumnSlice('', '', $count=5, $reversed=true);
var_dump(
$catalog->get('catalog1', $slice));
echo "
\n";
echo "
\n";

$slice = new ColumnSlice(3, '', $count=2, $reversed=true);
var_dump(
$catalog->get('catalog1', $slice));
$sys->drop_keyspace("catalogks");
$pool->close();
$sys->close();
?>

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/
column_slices.php. The results for the various ColumnSlice examples are output. (See Fig-
ure 4.17.)

Figure 4.17
Getting column slices.
Source: Google Inc.

168 Chapter 4 n Using Apache Cassandra with PHP

../../../../../../localhost_3A8000/phpcassa-master/scripts/column_slices.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/column_slices.php

Getting a Range of Rows and Columns
The ColumnFamily class provides yet another method to fetch columns of data from the
server:

get_range($key_start="",$key_finish="",$row_count=self::DEFAULT_ROW_COUNT,
$column_slice=null,$column_names=null, $consistency_level=null,
$buffer_size=null)

It fetches a range of rows and columns. The method parameters are discussed in Table 4.19.

Table 4.19 Parameters in the get_range() Method

Parameter Type Description Default Value

$key_start mixed The start key to fetch rows. ""

$key_finish mixed The finish key to fetch rows. ""

$row_count int The number of rows to
fetch.

100

$column_slice \phpcassa
\ColumnSlice

The column slice to fetch. null

$column_names mixed[] A list of column names to
fetch. By default all columns
are fetched.

null

$consistency_level ConsistencyLevel The number of nodes that
must respond before the
method returns.

null

$buffer_size int The size of the buffer, in
number of rows, to buffer
intermediate results so that
the Cassandra server does
not overallocate memory
and fail.

null

Create a PHP script, get_range.php, in the phpcassa-master\scripts directory. As an
example, specify the range using the default $key_start and $key_finish, which is to
include all the keys. Specify the number of rows to fetch with $row_count as 1000000.
Specifying a large number of rows does not fetch the rows if as many rows aren’t in the
server. Specify the array of columns to fetch as array("1", "2","3", "4","5")), which
fetches columns 1 to 5.

Getting a Range of Rows and Columns 169

$rows = $catalog->get_range("", "", 1000000, null, array("1", "2","3", "4","5"));

The get_range() method returns a phpcassa\Iterator\RangeColumnFamilyIterator,
which may be iterated over using a for loop:

foreach($rows as $key => $columns) {
echo $columns["1"]." ".$columns["2"]." ".$columns["3"]." ".$columns["4"]."

".$columns["5"];
}

If the $key_start and $key_finish are specified to be the same row, only one row is
fetched. For example, the following invocation of get_range() fetches the catalog1 row.

$rows = $catalog->get_range("catalog1", "catalog1", 1000000, null, array
("1", "2","3", "4","5"));

The get_range.php script appears in Listing 4.9.

Listing 4.9 The get_range.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\ColumnSlice;
use phpcassa\SystemManager;
use phpcassa\Schema\StrategyClass;
$sys = new SystemManager('127.0.0.1');
$sys->create_keyspace('ks', array(
"strategy_class" => StrategyClass::SIMPLE_STRATEGY,

"strategy_options" => array('replication_factor' => '1')
));
$sys->create_column_family('ks', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "LongType",
"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));
// Start a connection pool, create our ColumnFamily instance
$pool = new ConnectionPool('ks', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$columns = array(1 => "Oracle Magazine", 2 => "Oracle Publishing", 3 => "November-
December 2013", 4 => "Quintessential and Collaborative", 5 => "Tom Haunert");$
catalog->insert('catalog1', $columns);

170 Chapter 4 n Using Apache Cassandra with PHP

$columns = array(1 => "Oracle Magazine", 2 => "Oracle Publishing", 3 => "November-
December 2013", 4 => "Engineering as a Service", 5 => "David A. Kelly");$catalog-
>insert('catalog2', $columns);
$rows = $catalog->get_range("", "", 1000000, null, array("1", "2","3", "4","5"));

foreach($rows as $key => $columns) {
echo $columns["1"]." ".$columns["2"]." ".$columns["3"]." ".$columns["4"]."

".$columns["5"];
}
//$rows = $catalog->get_range("catalog1", "catalog1", 1000000, null, array("1",
"2","3", "4","5"));
//foreach($rows as $key => $columns) {
// echo $columns["1"]." ".$columns["2"]." ".$columns["3"]." ".$columns["4"]."
".$columns["5"];
//}
$sys->drop_keyspace("ks");
$pool->close();
$sys->close();
?>

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/
get_range.php. All the columns from the two rows in the database are output. (See Fig-
ure 4.18.)

Figure 4.18
Getting data for a range of rows and columns.
Source: Google Inc.

In the example in which $key_start is the same as the $key_finish, only the specified
key, catalog1, is output. (See Figure 4.19.)

Getting a Range of Rows and Columns 171

../../../../../../localhost_3A8000/phpcassa-master/scripts/get_range.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/get_range.php

Figure 4.19
The result when the start key is the same as the finish key.
Source: Google Inc.

Updating Data
In this section, you will update data. Create a PHP script, update.php, in the phpcassa-
master\scripts directory. The insert() method, which you used to add data, may also be
used to update data. In the update.php script, add catalog1 and catalog2 rows to the
catalog_update column family in the catalog_update keyspace. The required keyspace
and column family are created in the script. Create a ConnectionPool and a
ColumnFamily instance as before. Add data using the insert() method. Then invoke the
insert() method again but with slightly modified column values. Output the column
names and values before modification and after modification. The update.php script
appears in Listing 4.10.

Listing 4.10 The update.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
use phpcassa\Schema\StrategyClass;
$sys = new SystemManager('127.0.0.1');
$sys->create_keyspace('catalog_update', array(
"strategy_class" => StrategyClass::SIMPLE_STRATEGY,
"strategy_options" => array('replication_factor' => '1')));

$sys->create_column_family('catalog_update', 'catalog', array(
"column_type" => "Standard",

"comparator_type" => "UTF8Type",

172 Chapter 4 n Using Apache Cassandra with PHP

"key_validation_class" => "UTF8Type",
"default_validation_class" => "UTF8Type"

));
$pool = new ConnectionPool('catalog_update', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$catalog->insert('catalog1', array("journal" => "Oracle Magazine", "publisher"
=> "Oracle Publishing", "edition" => "November December 2013", "title" =>
"Engineering as a Service","author" => "David A. Kelly"));
echo 'Catalog catalog1 before modification ';
echo "
\n";
$columns = $catalog->get('catalog1');

echo "Journal: ".$columns["journal"]."\n";
echo "Publisher: ".$columns["publisher"]."\n";

echo "Edition: ".$columns["edition"]."\n";
echo "Title: ".$columns["title"]."\n";
echo "Author: ".$columns["author"]."\n";
echo "
\n";

$catalog->insert('catalog1', array("journal" => "Oracle-Magazine", "publisher"
=> "Oracle-Publishing","edition" => "November-December-2013", "title" =>
"Engineering as a Service","author" => "Kelly, David A."));

echo 'Catalog catalog1 after modification ';
echo "
\n";
$columns = $catalog->get('catalog1');
echo "Journal: ".$columns["journal"]."\n";
echo "Publisher: ".$columns["publisher"]."\n";

echo "Edition: ".$columns["edition"]."\n";
echo "Title: ".$columns["title"]."\n";
echo "Author: ".$columns["author"]."\n";
echo "
\n";

$sys->drop_keyspace("catalog_update");
$pool->close();
$sys->close();
?>

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/
update.php. All the columns from the two rows in the database are output before and
after the update. (See Figure 4.20.)

Updating Data 173

../../../../../../localhost_3A8000/phpcassa-master/scripts/update.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/update.php

Figure 4.20
Updating data.
Source: Google Inc.

Next, you will delete the data added and also delete the column family and keyspace.

Deleting Data
The ColumnFamily provides the following method to remove columns from a row:

remove($key, $column_names=null, $consistency_level=null)

The method parameters are discussed in Table 4.20.

Table 4.20 Parameters of the remove() Method

Parameter Type Description Default Value

$key string The row key to remove.

$column_names mixed[] The array of columns to
remove. By default all
columns are removed.

null

$consistency_level ConsistencyLevel The number of nodes
that must respond the
method returns.

null

Create a PHP script, delete.php, in the phpcassa-master\scripts directory. Then create a
ColumnFamily instance as before. The remove() method must be invoked for each row
key to remove. Remove the catalog1 and catalog2 rows.

$catalog->remove("catalog1");
$catalog->remove("catalog2");

174 Chapter 4 n Using Apache Cassandra with PHP

The delete.php script appears in Listing 4.11.

Listing 4.11 The delete.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
$sys = new SystemManager('127.0.0.1');
$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));

$catalog = new ColumnFamily($pool, 'catalog');
$catalog->remove("catalog1");
$catalog->remove("catalog2");
//$catalog->remove("catalog3");
//$catalog->remove("catalog4");

//$catalog->remove("catalog5");
echo 'Catalog ids catalog1 and catalog2 removed';
?>

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/delete.
php. The two rows, catalog1 and catalog2, are removed. (See Figure 4.21.)

Figure 4.21
Deleting data.
Source: Google Inc.

Dropping the Keyspace and Column Family
The SystemManager class provides the methods discussed in Table 4.21 to remove a col-
umn family or data from a column family as well as to remove a keyspace.

Dropping the Keyspace and Column Family 175

../../../../../../localhost_3A8000/phpcassa-master/scripts/delete.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/delete.php

Table 4.21 SystemManager Class Methods to Remove a Column Family

Method Description

drop_column_family($keyspace,
$column_family)

Drops a column family from a keyspace

truncate_column_family($keyspace,
$column_family)

Deletes all data from a column family

drop_keyspace(mixed $keyspace) Drops a keyspace

The ColumnFamily class provides the truncate() method to delete all data from a column
family. Create a PHP script, dropCFKeyspace.php, in the phpcassa-master\scripts direc-
tory. Then create a ColumnFamily instance as before.

$sys = new SystemManager('127.0.0.1');
$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');

Next, invoke the truncate() method to remove all data from the column family. Invoke
the drop_keyspace(mixed $keyspace) method to delete the php_catalog keyspace.

$catalog->truncate();
$sys->drop_keyspace("php_catalog");

The dropCFKeyspace.php script appears in Listing 4.12.

Listing 4.12 The dropCFKeyspace.php Script

<?php
require_once(__DIR__.'/../lib/autoload.php');
use phpcassa\Connection\ConnectionPool;
use phpcassa\ColumnFamily;
use phpcassa\SystemManager;
use phpcassa\Schema\StrategyClass;
$sys = new SystemManager('127.0.0.1');
$pool = new ConnectionPool('php_catalog', array('127.0.0.1'));
$catalog = new ColumnFamily($pool, 'catalog');
$catalog->truncate();
$sys->drop_keyspace("php_catalog");
$pool->close();
$sys->close();
echo 'removed Column Family and Keyspace';
?>

176 Chapter 4 n Using Apache Cassandra with PHP

Invoke the PHP script with the URL http://localhost:8000/phpcassa-master/scripts/
dropCFKeyspace.php. The column family is truncated, but is not removed. Subsequently,
the keyspace is removed, which also removes the column family. (See Figure 4.22.)

Figure 4.22
Dropping a keyspace.
Source: Google Inc.

Summary
This chapter discussed the phpcassa PHP client library for Apache Cassandra to connect
to Cassandra server, create a keyspace, create a column family, add data, fetch data,
update data, delete data, and drop the keyspace. In the next chapter, you will use the
Ruby client for Cassandra to access Cassandra and perform similar create, read, update,
delete (CRUD) operations.

Summary 177

../../../../../../localhost_3A8000/phpcassa-master/scripts/dropCFKeyspace.php
../../../../../../localhost_3A8000/phpcassa-master/scripts/dropCFKeyspace.php

This page intentionally left blank

Chapter 5

Using a Ruby Client
with Cassandra

Apache Cassandra stores data in a table format. A relational database also stores data in a
table. The difference is that Cassandra’s table format is not based on a fixed schema.
Rather, it is based on a flexible schema. In a relational database table, each row has the
same columns, column types, and number of columns. In Cassandra, each table row
could have different column types and number of columns.

Ruby is an open source programming language, most commonly used in the Ruby on
Rails framework. This chapter discusses using a Ruby client to access and make data
changes in Cassandra.

Setting the Environment
Download the following software for Ruby:

n RubyInstaller rubyinstaller-1.9.3-p484.exe or a later version from http://rubyinstaller
.org/.

n RubyGems.

n RubyInstaller development kit DevKit-mingw64-64-4.7.2-20130224-1432-sfx.exe
from http://rubyinstaller.org/downloads/. The Development Kit file is different based
on the Ruby version used and the OS architecture (32 bit or 64 bit).

179

../../../../../../rubyinstaller.org/default.htm
../../../../../../rubyinstaller.org/default.htm
../../../../../../rubyinstaller.org/downloads/default.htm

To install Ruby, RubyGems, and the RubyInstaller development kit, follow these steps:

1. Double-click the RubyInstaller application.

2. Choose a setup language in Select Setup Language screen.

3. Accept the license agreement and click Next.

4. Select a destination folder in which to install Ruby. The directory path should
contain no spaces.

5. Select the Add Ruby Executables to Your PATH checkbox and click Next, as shown
in Figure 5.1. Installation begins, as shown in Figure 5.2.

Figure 5.1
Specifying installation location and optional tasks for installing Ruby.
Source: RubyInstaller Contributors.

180 Chapter 5 n Using a Ruby Client with Cassandra

Figure 5.2
Installing Ruby.
Source: RubyInstaller Contributors.

6. When the Ruby installation is complete, click Finish, as shown in Figure 5.3. Add the
Ruby installation bin directory to the PATH user variable for the user logged into the
operating system.

Figure 5.3
Completing the Ruby installation.
Source: RubyInstaller Contributors.

Setting the Environment 181

7. Next, install RubyGems, which is a package-management framework for Ruby. Use
the following command:

gem install rubygems-update

The output from this command indicates that RubyGems has been installed, as
shown in Figure 5.4.

Figure 5.4
Installing RubyGems.
Source: Microsoft Corporation.

8. Install the RubyInstaller development kit, which is a toolkit to build C/C++
extensions for Ruby. To begin, double-click the application to extract the application
files to a directory, the same directory in which RubyGems was installed, as shown in
Figure 5.5.

Figure 5.5
Extracting the development kit.
Source: RubyInstaller Contributors.

9. Run the following two commands to initialize and install the development kit, but
only run the first command initially, as some configuration is required before
running the second command:

ruby dk.rb init

ruby dk.rb install

182 Chapter 5 n Using a Ruby Client with Cassandra

10. The output from the first command, shown in Figure 5.6, indicates that initialization
generates a config.yml file in the same directory from which the first command is
run. Modify the config.yml to add the following line:

- C:/Ruby200-x64

C:/Ruby200-x64 is the directory in which Ruby is installed. Run the subsequent
(second) command after modifying config.yml. The subsequent command enhances
the installed Rubies.

Figure 5.6
Installing DevKit.
Source: Microsoft Corporation.

11. Install Apache Cassandra and start Cassandra with the following command:
cassandra -f

Installing a Ruby Client with Cassandra
In this section, you’ll install the Ruby client for Cassandra. Run the following command
from Windows command prompt:

gem install cassandra

As the output in Figure 5.7 indicates, cassandra 0.23.0 gem is installed.

Installing a Ruby Client with Cassandra 183

Figure 5.7
Installing Ruby client for Cassandra.
Source: Microsoft Corporation.

Creating a Connection
To create a connection with Cassandra using Ruby, create a Ruby script, connection.rb.
Add a require statement to import the default version of the Ruby client library for
Cassandra. Using the class constructor for the Cassandra class, create an instance of
Cassandra. Supply the constructor args (arguments) for the keyspace and servers.

require 'cassandra'
client = Cassandra.new('system','127.0.0.1:9160')

A connection to Cassandra database is created. Some of the attributes provided by the
Cassandra class are listed in Table 5.1.

184 Chapter 5 n Using a Ruby Client with Cassandra

Table 5.1 Cassandra Class Attributes

Attribute Description

keyspace Returns the keyspace

servers Returns the servers array

thrift_client_class Returns the Thrift client class

thrift_client_options Returns the Thrift client options

The Cassandra class also provides some instance methods to get information about the
database, as discussed in Table 5.2.

Table 5.2 Cassandra Class Methods to Get Information About the Cluster

Method Description

cluster_name Returns the cluster name.

keyspaces Returns an array of keyspaces.

partitioner Returns a string for the partitioner used in the cluster. The default
partitioner will be Murmur3Partitioner for Cassandra versions 1.2
and later or RandomPartitioner for versions prior to 1.2.

ring Returns an array of tokens indicating the servers.

inspect Returns a string containing @keyspace,@schema,@servers.

version The Cassandra Thrift version.

Using the Cassandra instance client, invoke some of these attributes and methods. The
connection.rb script appears in Listing 5.1.

Listing 5.1 The connection.rb Script

print client.keyspace
print "\n"
print client.servers
print "\n"
print client.thrift_client_class
print "\n"

Creating a Connection 185

print client.thrift_client_options
print "\n"
print client.keyspaces
print "\n"
print client.version
print "\n"
print client.inspect

Run the script with the following command:

ruby connection.rb

The output from the script is shown in Figure 5.8.

Figure 5.8
Connecting with Cassandra.
Source: Microsoft Corporation.

Creating a Keyspace
Next, you will create a keyspace in the Cassandra database. Create a Ruby script,
createKeyspace.rb, and add the require statement for the Ruby client library for Cassan-
dra. Create an instance of the Cassandra class as in the previous section. Invoke the
disable_node_auto_discovery! method, which is used primarily if the Cassandra cluster
is communicating internally on a different IP address than the IP address on which a
client connects. Create an instance of the Cassandra::Keyspace class.

ks = Cassandra::Keyspace.new

Set the name, strategy_class, ks.strategy_options, and ks.cf_defs attributes for the
Keyspace class instance. To create a Keyspace named catalog, set the name to 'catalog'.
Specify the replica placement strategy for the new keyspace to org.apache.cassandra.

locator.SimpleStrategy using the strategy_class attribute. Set the replication_factor

to 1 with the strategy_options attribute. Set the column family definitions to an empty
array using the cf_defs attribute.

186 Chapter 5 n Using a Ruby Client with Cassandra

ks.name = 'catalog'
ks.strategy_class = 'org.apache.cassandra.locator.SimpleStrategy'
ks.strategy_options={'replication_factor'=>'1'}
ks.cf_defs = []

Add the keyspace to the Cassandra database using the add_keyspace(ks_def) method of
the Cassandra class.

client.add_keyspace(ks)

Add a print statement for the keyspaces, which should include the newly added catalog

keyspace.

print client.keyspaces

The createKeyspace.rb script appears in Listing 5.2.

Listing 5.2 The createKeyspace.rb Script

require 'cassandra'
client = Cassandra.new('system','127.0.0.1:9160')
client.disable_node_auto_discovery!
ks = Cassandra::Keyspace.new
ks.name = 'catalog'
ks.strategy_class = 'org.apache.cassandra.locator.SimpleStrategy'
ks.strategy_options={'replication_factor'=>'1'}
ks.cf_defs = []
client.add_keyspace(ks)
print "\n"
print client.keyspaces

Run the script with the following command:

ruby createKeyspace.rb

A new keyspace called catalog is created and listed in the keyspaces array, as shown in
Figure 5.9.

Figure 5.9
Creating a keyspace.
Source: Microsoft Corporation.

Creating a Keyspace 187

Creating a Column Family
Having added a keyspace to the Cassandra database, you will next add a column family
to the keyspace. Create a Ruby script, createCF.rb. Import the Ruby client library for
Cassandra and create a connection to the Cassandra database as before. Also invoke
the disable_node_auto_discovery! method. A column family is represented with the
Cassandra::ColumnFamily class. Create an instance of the ColumnFamily class using
the Cassandra::ColumnFamily.new class constructor. Specify the :keyspace arg for the
keyspace to be used and the :name arg for the column family to be created. Add a
catalog column family to a catalog keyspace as follows:

cf_def = Cassandra::ColumnFamily.new(:keyspace => "catalog", :name => "catalog")

Add the column family to the Cassandra database using the Cassandra class method
add_column_family(cf_def):

client.add_column_family(cf_def)

Print the column families using the print column_families method:

print client.column_families

The createCF.rb script appears in Listing 5.3.

Listing 5.3 The createCF.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
cf_def = Cassandra::ColumnFamily.new(:keyspace => "catalog", :name => "catalog")
client.add_column_family(cf_def)
print client.column_families

Run the createCF.rb script with the following command:

ruby createCF.rb

The output from the Ruby script lists the newly created catalog column family, as shown
in Figure 5.10.

188 Chapter 5 n Using a Ruby Client with Cassandra

Figure 5.10
Creating a column family.
Source: Microsoft Corporation.

A new column family can be added only to a user-created keyspace. For example, if a new
column family is added to the system keyspace, the following error is generated:

system keyspace is not user-modifiable. (CassandraThrift::
InvalidRequestException)
from C:/Ruby200-x64/lib/ruby/gems/2.0.0/gems/cassandra-0.23.0/vendor/0.8/
gen-rb/cassandra.rb:417:in 'system_add_column_family'

Adding Data to a Table
Having added a column family, you will next add data to the column family (table).
Create a Ruby script, add.rb. Create a connection to the Cassandra database as before.
The Cassandra class provides the insert(column_family, key, hash, options = {})

method to add a row to a database column family. A row is identified by a key. The col-
umns in a row are supplied using a hash of key/value pairs, with each key/value pair
representing the column name and the column value. Add two rows of data identified by
catalog1 and catalog2 using the insert() method. Each row has columns journal,
publisher, edition, title and author.

print client.insert(:catalog, "catalog1", {'journal' => 'Oracle Magazine',
'publisher' => 'Oracle Publishing','edition' => 'November-December 2013', 'title'
=> 'Engineering as a Service', 'author' => 'David A. Kelly'})
print client.insert(:catalog, "catalog2", {'journal' => 'Oracle Magazine',
'publisher' => 'Oracle Publishing','edition' => 'November-December 2013', 'title'
=> 'Quintessential and Collaborative', 'author' => 'Tom Haunert'})

The Cassandra class provides several methods to get information about data in rows—for
example, the number of columns and whether a particular column exists. Some of these
methods are discussed in Table 5.3.

Adding Data to a Table 189

Table 5.3 Cassandra Class Methods to Get Information About Columns and Rows

Method Description

count_columns Returns the number of columns in the specified row

count_range Returns the range count, which is the number of keys in the
range

multi_count_columns Returns the number of columns in the specified rows

get_range_keys Returns an array containing all the keys in the given range

exists? Returns a Boolean (true or false) to indicate if the requested
path exists

Output the number of rows in the catalog column family as follows:

print client.count_range(:catalog)

Output the number of columns in the row identified by the catalog1 key in the catalog

column family:

print client.count_columns(:catalog, "catalog1")

Output the number of columns in the catalog1 and catalog2 rows in the catalog

column family:

print client.multi_count_columns(:catalog, ["catalog1","catalog2"])

Output the range of keys in the catalog column family with key count limited to 2:

print client.get_range_keys(:catalog,:key_count => 2)

Find out whether the journal column in the catalog1 row in the catalog column family
exists:

print client.exists?(:catalog, "catalog1", 'journal')

The add.rb Ruby script appears in Listing 5.4.

Listing 5.4 The add.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!

190 Chapter 5 n Using a Ruby Client with Cassandra

print client.insert(:catalog, "catalog1", {'journal' => 'Oracle Magazine',
'publisher' => 'Oracle Publishing','edition' => 'November-December 2013', 'title'
=> 'Engineering as a Service', 'author' => 'David A. Kelly'})
print client.insert(:catalog, "catalog2", {'journal' => 'Oracle Magazine',
'publisher' => 'Oracle Publishing','edition' => 'November-December 2013', 'title'
=> 'Quintessential and Collaborative', 'author' => 'Tom Haunert'})
print client.count_range(:catalog)
print "\n"

print client.count_columns(:catalog, "catalog1")
print "\n"

print client.multi_count_columns(:catalog, ["catalog1","catalog2"])
print "\n"

print client.get_range_keys(:catalog,:key_count => 2)
print "\n"

print client.exists?(:catalog, "catalog1", 'journal')
print "\n"

Run the add.rb script with the following command:

ruby add.rb

Two rows, catalog1 and catalog2, are added, and the requested information about the
rows and columns is output. The range count for the catalog column family is 2. The
number of columns in the catalog1 row is 5. The number of columns in the catalog1

and catalog2 rows is 5 each. The range of keys in the catalog column family with the
key count limited to 2 is catalog1 and catalog2 output as an array. The journal column
in the catalog1 row exists. The output from add.rb is shown in Figure 5.11.

Figure 5.11
Adding data to Cassandra.
Source: Microsoft Corporation.

You added two rows with the same columns, but different rows may have a different
number of columns, a different order of columns, or different types of columns. The
flexible schema for the Cassandra column family is what makes Cassandra suitable for

Adding Data to a Table 191

heterogeneous data. For example, the following three rows may be added to the same
column family:

print client.insert(:catalog, "catalog1", {'journal' => 'Oracle Magazine',
'publisher' => 'Oracle Publishing','edition' => 'November-December 2013', 'title'
=> 'Engineering as a Service', 'author' => 'David A. Kelly'})
print client.insert(:catalog, "catalog2", {'journal' => 'Oracle Magazine',
'publisher' => 'Oracle Publishing','edition' => 'November-December 2013'})
print client.insert(:catalog, "catalog3", { 'publisher' => 'Oracle Publishing',
'journal' => 1, 'edition' => '11122013'})

Adding Rows in Batch
In this section, you will add rows in a batch. Create a Ruby script, add_batch.rb. The
Cassandra class provides the batch method to make mutations in a batch. A mutation
could be an insert/delete. The batch method takes two options, discussed in Table 5.4.

Table 5.4 Batch Method Options

Option Description

:consistency The consistency level from individual mutations.

:queue_size The maximum number of mutations to send at once. The last batch of
mutations could be less than queue_size. By default, all mutations are
sent as a single batch.

The batch of mutations is sent using the following do end construct in which client is the
connection object to the Cassandra database:

client.batch do
end

As an example, add five rows of data with the keys catalog1, catalog2, catalog3,
catalog4, and catalog5. Then invoke the exists? method to determine whether each of
the rows did get added. The add_batch.rb script appears in Listing 5.5.

Listing 5.5 The add_batch.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
client.batch do

192 Chapter 5 n Using a Ruby Client with Cassandra

client.insert(:catalog, "catalog1", {'journal' => 'Oracle Magazine', 'publisher'
=> 'Oracle Publishing','edition' => 'November-December 2013', 'title' =>
'Engineering as a Service', 'author' => 'David A. Kelly'})
client.insert(:catalog, "catalog2", {'journal' => 'Oracle Magazine', 'publisher'
=> 'Oracle Publishing','edition' => 'November-December 2013', 'title' =>
'Quintessential and Collaborative', 'author' => 'Tom Haunert'})
client.insert(:catalog, "catalog3", {'journal' => 'Oracle Magazine', 'publisher'
=> 'Oracle Publishing','edition' => 'November-December 2013'})
client.insert(:catalog, "catalog4", {'journal' => 'Oracle Magazine', 'publisher'
=> 'Oracle Publishing','edition' => 'November-December 2013'})
client.insert(:catalog, "catalog5", {'journal' => 'Oracle Magazine', 'publisher'
=> 'Oracle Publishing','edition' => 'November-December 2013'})
#client.remove(:catalog, "catalog3")
end
catalog2 catalog3 catalog4 catalog5 catalog1
print client.exists?(:catalog, "catalog1")
print "\n"
print client.exists?(:catalog, "catalog2")
print "\n"
print client.exists?(:catalog, "catalog3")
print "\n"
print client.exists?(:catalog, "catalog4")
print "\n"
print client.exists?(:catalog, "catalog5")

Run the add_batch.rb script with the following command:

ruby add_batch.rb

The output for each of the exists? method invocations is true, as shown in Figure 5.12.

Figure 5.12
Adding data in a batch.
Source: Microsoft Corporation.

With the default (Cassandra>1.2) Murmur3Partitioner, which is similar to the
RandomPartitioner (Cassandra<1.2), the order in which the rows are added is random

Adding Rows in Batch 193

because Murmur3Partitioner/RandomPartitioner distributes rows across the cluster
evenly by the md5 encryption hash. For example, in the preceding example, the order is
not the following:

catalog1 catalog2 catalog3 catalog4 catalog5

Instead, the order in which the rows are added is as follows:

catalog2 catalog3 catalog4 catalog5 catalog1

If the rows are to be added in the order specified, ByteOrderedPartitioner/
OrderPreservingPartitioner must be used.

Next, we will discuss the different partitioners supported by Cassandra and how to set a
non-default partitioner. Cassandra supports the partitioners listed in Table 5.5.

Table 5.5 Cassandra Partitioners

Partitioner Description

RandomPartitioner Distributes rows across the cluster evenly by md5. This
was the default prior to version 1.2 and is retained for
compatibility.

Murmur3Partitioner Similar to RandomPartitioner, but uses the
Murmur3_128 hash function instead of md5. When in
doubt, this is the best option.

ByteOrderedPartitioner Orders rows lexically by key bytes. Allows the scanning of
rows in key order, but the ordering can generate hot
spots for sequential insertion workloads.

OrderPreservingPartitioner An obsolete (deprecated) form of
ByteOrderedPartitioner that stores keys in a
less-efficient format. Works only with keys that are
UTF8-encoded strings.

CollatingOPP Collates according to EN,US (the language code for English-
United States) rules rather than lexical byte ordering. Use
this as an example if you need custom collation.

The partitioner is set with the partitioner key in the C:\Cassandra\apache-cassandra-

2.0.4\conf\cassandra.yaml configuration file. To add rows in the order specified, set
partitioner to OrderPreservingPartitioner or ByteOrderedPartitioner.

partitioner: org.apache.cassandra.dht.OrderPreservingPartitioner

Restart Cassandra after modifying the cassandra.yaml file.

194 Chapter 5 n Using a Ruby Client with Cassandra

Retrieving Data from a Table
The Cassandra class provides the get() method to return a hash (Cassandra::
OrderedHash) representing the element at the column_family:key:[column] path supplied
to the method. The get() method takes the parameters discussed in Table 5.6.

Table 5.6 Parameters for get() Method

Parameter Description

column_family The column family

key The row key

columns The list of columns in the row

sub_columns The list of subcolumns to select

options Options, further describing the data to get

Only the column_family and key are required parameters. The options supported by the
get() method are discussed in Table 5.7.

Table 5.7 get() Method Options

Namespace Description

:count The number of columns to be returned. By default, all columns are
returned.

:start The starting column for selecting a range of columns.

:finish The final value for selecting a range of columns.

:reversed A Boolean indicating whether the columns are to be reversed. Set to
false by default.

:consistency The read consistency.

The column family specified must be valid. For example, try supplying the column family
as catalog_journal. The following error is generated:

'column_family_property': Invalid column family "catalog_journal"
(Cassandra::AccessError)

Retrieving Data from a Table 195

Selecting a Single Row
Create a Ruby script, get.rb. Create a connection with the Cassandra database using an
instance of the Cassandra class. Get the catalog1 row in the catalog column family as
follows:

print client.get(:catalog, "catalog1")

Get the title column in the catalog1 row in the catalog column family as follows:

print client.get(:catalog, "catalog1", 'title')

Get three columns from the catalog1 row in the catalog column family as follows:

print client.get(:catalog, "catalog1",:count => 3)

Get the columns in the catalog2 row in reversed order as follows.

print client.get(:catalog, "catalog2", :reversed=>true)

The get.rb script appears in Listing 5.6.

Listing 5.6 The get.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.get(:catalog, "catalog1")
print "\n"
print client.get(:catalog, "catalog1", 'title')
print "\n"
print client.get(:catalog, "catalog1",:count => 3)
print "\n"
print client.get(:catalog, "catalog2", :reversed=>true)

Run the get.rb script with the following command:

ruby get.rb

The data requested with the get() method is output, as shown in Figure 5.13.

Figure 5.13
Getting data from Cassandra.
Source: Microsoft Corporation.

196 Chapter 5 n Using a Ruby Client with Cassandra

The columns are not output in the order in which they were specified in the get()

method, which is journal, publisher, edition, title, author. Rather, they are output in
an order determined by the comparator. The comparators supported by Cassandra are
discussed in Table 5.8.

Table 5.8 Cassandra Comparators

Namespace Description

AsciiType Based on the US-ASCII bytes.

BytesType Based on the lexical comparison of bytes in each column. The
default.

CounterColumnType Based on a 64-bit signed integer. Distributed counter type
column. Counter type is discussed in Table 1.1 of Chapter 1,
“Using Cassandra with Hector.”

IntegerType Based on generic variable-length integer values.

LexicalUUIDType Based on a 128-bit UUID byte value.

LongType Based on the 64-bit long values.

UTF8Type Based on the UTF-8 encoded strings.

As another demonstration of using comparators, run the following Ruby script,
get_comparator.rb, which adds columns k1, k2, k3, k4, and k5 to five different rows. It
then invokes the get() method to retrieve columns from the row represented with key
"1" and specifies the :start and :finish options as "k1" and "k5", respectively.

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
client.insert(:catalog, "1", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "2", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "3", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "4", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "5", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
print client.get(:catalog, "1", :start=>"k1", :finish=>"k5")

Selecting a Single Row 197

Because the columns are added using the BytesType comparator, which is based on the
lexical comparison of bytes in each column, the columns are added in the order k1, k2,
k3, k4, k5, as shown in Figure 5.14.

Figure 5.14
Adding columns in a lexical order.
Source: Microsoft Corporation.

Selecting Multiple Rows
In this section, you will retrieve multiple rows. For this, the Cassandra class provides
the multi_get() method. The multi_get() method provides the same parameters as
the get() method except the key parameter specifies an array of keys to select. The
multi_get() method supports the same options as the get() method.

Create a Ruby script, get_multi.rb, to get multiple rows. Get rows catalog1 and catalog2

specified as an array from the catalog column family. Set the :reversed option to true.
The get_multi.rb script appears in Listing 5.7.

Listing 5.7 The get_multi.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.multi_get(:catalog, ['catalog1', 'catalog2'], :reversed=>true)

Run the get_multi.rb script to return the two rows, catalog1 and catalog2, as shown in
Figure 5.15.

Figure 5.15
Selecting multiple rows.
Source: Microsoft Corporation.

198 Chapter 5 n Using a Ruby Client with Cassandra

Iterating over a Result Set
The Cassandra class provides the each_key method to iterate through each key in the
given range parameters (the start_key and finish_key parameters). The method just
invokes the Cassandra get_range method. The get_range method parameters, column
family, and options may be specified.

Create a Ruby script, each.rb. Invoke the each_key method with the catalog column fam-
ily as the range parameter. Iterate over each key in the column family and output the key.
The each.rb script appears in Listing 5.8. Before running the script, add some rows by
running the add_batch.rb script.

Listing 5.8 The each.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
client.each_key(:catalog) do |key|
print key
print "\n"
end

Run the each.rb script to output the rows added, as shown in Figure 5.16.

Figure 5.16
Iterating over a result set.
Source: Microsoft Corporation.

Selecting a Range of Rows
This section discusses selecting a range of rows. A range is defined with a start row and an
end row. The Cassandra class provides the get_range() method to select a range of rows.
The parameters supported by the method are discussed in Table 5.9.

Selecting a Range of Rows 199

Table 5.9 Parameters in the get_range() Method

Parameter Description

column_family The column family to select a range of rows

options The options for selecting a range

The options discussed in Table 5.10 are supported by the get_range() method.

Table 5.10 Options supported by the get_range() Method

Option Description

:start_key The starting row for selecting a range. Supported only if
OrderPreservingPartitioner is used.

:finish_key The ending row for selecting a range. Supported only if
OrderPreservingPartitioner is used.

:key_count The total number of keys to select.

:batch_size The total number of rows to select per query until all records have
been selected.

:columns A list of columns to return.

:count The number of columns requested to be returned.

:start The starting value for selecting a slice of columns.

:finish The ending value for selecting a slice of columns.

:reversed A Boolean indicating whether the order of columns is to be reversed.
The order is based on the comparator, as discussed earlier.

:consistency The read consistency.

The get_range() method is a wrapper around the get_range_single() method. If a
:batch_size is specified, the get_range() method is a wrapper around the get_range_

batch() method.

200 Chapter 5 n Using a Ruby Client with Cassandra

Using a Random Partitioner
If the RandomPartitioner or the default Murmur3Partitioner is used to add rows, the
rows are not added in the order specified. When the get_range() method is used to get
rows, the rows are returned in the order added. Next, you will test the effect of the parti-
tioner used in selecting a range of rows. Create a Ruby script, get_range.rb. Then obtain
a range of rows using the get_range() method with the catalog column family as an
argument.

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.get_range(:catalog)

The get_range.rb script returns a range of rows based on the rows added. Test the
get_range.rb script after adding two rows with the add.rb script. The two rows, catalog1
and catalog2, are returned, as shown in Figure 5.17.

Figure 5.17
Getting a range of rows.
Source: Microsoft Corporation.

Next, run the get_range.rb script after running the add_batch.rb script. The rows
catalog1, catalog2, catalog3, catalog4, and catalog5 are returned—not in the lexical
order, but in the order they were added using the Murmur3Partitioner. See Figure 5.18.

Using a Random Partitioner 201

Figure 5.18
Columns added in a non-lexical order with Murmur3Partitioner.
Source: Microsoft Corporation.

The :start_key and :finish_key options cannot be used with the get_range() method
if data has been added with a random order partitioner. For example, specify the
:start_key and :finish_key as follows:

print client.get_range(:catalog, :start_key=>'catalog1', :finish_key=>
'catalog5')

Because the rows are added in the order catalog3, catalog4, catalog5, catalog1,
catalog2, the catalog1 key sorts after the catalog5 key. The following exception is
generated:

start key's token sorts after end key's token. this is not allowed; you probably
should not specify end key at all #except with an ordered partitioner
(CassandraThrift::InvalidRequestException)

The :start_key and :finish_key options may still be used with the get_range() method,
but you must consider the order in which the rows have been added. For example, specify
the :start_key as catalog3 and the :finish_key as catalog1:

print client.get_range(:catalog, :start_key=>'catalog3', :finish_key=>
’catalog1’)

Because the :finish_key sorts after the :start_key, no exception is generated and a result
is returned, as shown in Figure 5.19.

202 Chapter 5 n Using a Ruby Client with Cassandra

Figure 5.19
The :finish_key sorts after the :start_key.
Source: Microsoft Corporation.

As another example, specify the :start_key as catalog2:

print client.get_range(:catalog, :start_key=>'catalog2')

Only the catalog2 row is returned, because it is the last row. (See Figure 5.20.)

Figure 5.20
Getting the last row.
Source: Microsoft Corporation.

The get_range.rb script appears in Listing 5.9.

Listing 5.9 The get_range.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
client.insert(:catalog, "1", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "2", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "3", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
client.insert(:catalog, "4", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})

Using a Random Partitioner 203

client.insert(:catalog, "5", {'k1' => 'v1', 'k2' => 'v2','k3' => 'v3', 'k4' => 'v4',
'k5' => 'v5'})
print client.get_range(:catalog, :start_key=>"1", :finish_key=>"5")

Using an Order-Preserving Partitioner
In this section, you will use an order-preserving partitioner. Set the partitioner to
OrderPreservingPartitioner as discussed earlier. Then run the connection.rb script
with the following statement:

print client.partitioner

The output indicates that the partitioner is OrderPreservingPartitioner, as shown in
Figure 5.21.

Figure 5.21
Outputting the partitioner used as OrderPreservingPartitioner.
Source: Microsoft Corporation.

Remove the previously added rows in the catalog column family as they were added,
using a random-order partitioner. Re-add the rows using the add_batch.rb script. Then
run the get_range.rb script, which appears in Listing 5.10.

Listing 5.10 The get_range.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.get_range(:catalog)

The rows are returned in the order added, catalog1, catalog2, catalog3, catalog4,
catalog5. (See Figure 5.22.)

204 Chapter 5 n Using a Ruby Client with Cassandra

Figure 5.22
Rows added with OrderPreservingPartitioner.
Source: Microsoft Corporation.

You can use the :start_key and :finish_key options to select a specific range of rows.
The following statement returns the same result as the preceding:

print client.get_range(:catalog, :start_key=>'catalog1', :finish_key=>
'catalog5')

As another example, set the :start_key is to catalog3:

print client.get_range(:catalog, :start_key=>'catalog3')

Rows catalog3, catalog4, and catalog5 are returned with the order preserved, as shown
in Figure 5.23.

Figure 5.23
Adding a range of rows with OrderPreservingPartitioner.
Source: Microsoft Corporation.

Using an Order-Preserving Partitioner 205

Getting a Slice of Columns
The Cassandra class provides the methods discussed in Table 5.11 to get a slice of
columns.

Table 5.11 Cassandra Class Methods to Get a Slice of Columns

Method Description

get_columns(column_family, key,
*columns_and_options)

Returns a list of columns from the specified
column family and specified row. You can
specify the specific columns to get with the
columns_and_options parameter, which is
optional. By default, all columns are returned.

multi_get_columns(column_family,
keys, *options)

Returns a hash of columns for the specified keys
from the specified column family. The options
are specified using the options parameter.

Create a Ruby script, get_columns.rb, and invoke the get_columns() method to return
the title, journal, and author columns from the catalog1 row. Then invoke the
multi_get_columns() method to return the title, journal, and author columns from
the catalog1 and catalog2 rows. The get_columns.rb script appears in Listing 5.11.

Listing 5.11 The get_columns.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.get_columns(:catalog, "catalog1", ["title", "journal", "author"])
print "\n"
print client.multi_get_columns(:catalog, ["catalog1", "catalog2"], ["title",
"journal", "author"])

Run the get_columns.rb script to return the slices of columns, as shown in Figure 5.24.

206 Chapter 5 n Using a Ruby Client with Cassandra

Figure 5.24
Getting a slice of columns.
Source: Microsoft Corporation.

Updating Data in a Table
Create a Ruby script, update.rb, to update data in Cassandra. The insert method, which
is used to add data, is also used to update data. Make slight modifications to catalog1 and
catalog2 rows as listed below.

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.insert(:catalog, "catalog1", {'journal' => 'Oracle-Magazine',
'publisher' => 'Oracle-Publishing','edition' => 'November-December 2013', 'title'
=> 'Engineering as a Service', 'author' => 'Kelly, David'})
print client.insert(:catalog, "catalog2", {'journal' => 'Oracle-Magazine',
'publisher' => 'Oracle-Publishing','edition' => 'November-December 2013', 'title'
=> 'Quintessential-and-Collaborative', 'author' => 'Tom Haunert'})

Run the update.rb script. Then run the get.rb script to return the result shown in Figure 5.25.

Figure 5.25
Updating data.
Source: Microsoft Corporation.

Updating Data in a Table 207

Deleting Data in a Table
The Cassandra class provides the remove() method to remove data. The remove() method
takes the parameters discussed in Table 5.12.

Table 5.12 Parameters in the Cassandra Class’s remove() Method

Parameter Description

column_family The column family.

key The row key.

columns The list of columns.

options The options.

sub_columns The sub columns. The super/sub columns are not discussed in the book.

The supported options are discussed in Table 5.13.

Table 5.13 Options Supported by the remove() Method

Option Description

:timestamp The timestamp or the current time by default

:consistency The read consistency

Create a Ruby script, remove.rb, to delete data in the Cassandra database. Then remove the
rows catalog1, catalog2, catalog3, catalog4, and catalog5 by invoking the remove()

method. The remove.rb script appears in Listing 5.12.

Listing 5.12 The remove.rb Script

require 'cassandra'
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
print client.remove(:catalog, 'catalog1')
print client.remove(:catalog, 'catalog2')
print client.remove(:catalog, 'catalog3')
print client.remove(:catalog, 'catalog4')
print client.remove(:catalog, 'catalog5')

208 Chapter 5 n Using a Ruby Client with Cassandra

Run the script with the following command:

ruby remove.rb

The five rows of data are removed.

Updating a Column Family
The Cassandra class provides the update_column_family(cf_def) method to update a
column family. Create a Ruby script, updateCF.rb, to update a column family. Then create
a new column family definition with some of the parameters set to non-default value.
For example, set the :max_compaction_threshold to 16 to replace the default 32. Next,
set :replicate_on_write to false to replace the default true. Invoke the update_

column_family() method to update the column family, and then print all the column
families in the catalog keyspace.

client.update_column_family(cf_def)
print client.column_families

The updateCF.rb script appears in Listing 5.13.

Listing 5.13 The updateCF.rb Script

require 'cassandra'
cf_def = Cassandra::ColumnFamily.new(:keyspace => "catalog", :name => "catalog",
:max_compaction_threshold=>16, :replicate_on_write=>false)
client = Cassandra.new('catalog','127.0.0.1:9160')
client.disable_node_auto_discovery!
cf_def = Cassandra::ColumnFamily.new(:keyspace => "catalog", :name => "catalog",
:max_compaction_threshold=>16, :replicate_on_write=>false)
client.update_column_family(cf_def)
print client.column_families

Run the updateCF.rb script to update the column family and output the updated column
family, as shown in Figure 5.26.

Figure 5.26
Updating the column family.
Source: Microsoft Corporation.

Updating a Column Family 209

Dropping a Keyspace
The Cassandra class provides the drop_keyspace(String keyspace) method to drop a
keyspace. Create a Ruby script, dropKeyspace.rb, to drop the catalog keyspace. Also
include a print statement for the keyspaces attribute after dropping the keyspace. The
dropKeyspace.rb script appears in Listing 5.14.

Listing 5.14 The dropKeyspace.rb Script

require 'cassandra'
client = Cassandra.new('system','127.0.0.1:9160')
client.disable_node_auto_discovery!
client.drop_keyspace('catalog')
print "\n"
print client.keyspaces

Run the script to drop the catalog keyspace. The catalog keyspace is not listed, as shown
in Figure 5.27.

Figure 5.27
Dropping a keyspace.
Source: Microsoft Corporation.

Summary
This chapter discussed using the Ruby client for Cassandra to add, get, update, and
remove data, including adding, updating, and removing keyspaces and column families.
In the next chapter, you will learn how to use Node.js with Cassandra. Node.js is a light-
weight, efficient platform.

210 Chapter 5 n Using a Ruby Client with Cassandra

Chapter 6

Using Node.js with
Cassandra

The client/server paradigm is the most commonly used paradigm in Web applications.
Typically, however, a client/server application requires an application/Web server. Node.js
is a lightweight, efficient platform based on the event-driven model and built on Chrome’s
JavaScript runtime for developing fast, scalable, data-intensive, real-time, network applica-
tions. Node.js is suitable for the cloud environment because Node.js applications can run
on distributed devices. This chapter discusses accessing Cassandra with Node.js and mak-
ing data modifications in the database using the Node.js driver for Cassandra.

Overview of Node.js Driver for Cassandra CQL
The Node.js driver for Cassandra is a JavaScript-based library for accessing Cassandra. It
provides several features such as connection pooling, load balancing, automatic failover,
and support for prepared statements and query batches. The Node.js driver for Cassandra
provides two classes, Client and Connection, as illustrated in Figure 6.1.

Figure 6.1
Classes in the Node.js driver for Cassandra.

211

The classes are discussed in Table 6.1.

Table 6.1 Classes in Node.js

Class Description

Client A Client instance provides a connection pool to a Cassandra cluster
without requiring the explicit opening and closing of connections. The
Client class is the preferred interface for connection to Cassandra.

Connection The Connection class provides a low-level, fine-grained connection to
a Cassandra node. The disadvantage of Connection is that a connection
is required to be opened and closed explicitly.

The Client Class
A Client class function may be created with the class constructor using new

Client(options). The options discussed in Table 6.2 are supported.

Table 6.2 Client Class Options

Option Description

hosts The hosts on Cassandra, presented as an array of strings in
host:port format. The port specification is optional and
defaults to 9042. The only required option.

keyspace The keyspace name.

username The username for authentication.

password The password for authentication.

staleTime The time after which a connection to a node is retried.

maxExecuteRetries The maximum number of times an execute can be retried.
Connection to another node is used if a node becomes
unavailable.

getAConnectionTimeout The maximum time to wait for a connection from a
connection pool, in milliseconds.

poolSize The number of connections in the connection pool for each
host. The default is 1.

212 Chapter 6 n Using Node.js with Cassandra

The Client class provides several methods, as discussed in Table 6.3.

Table 6.3 Client Class Methods

Method Description

connect([callback]) Connects the pool if not already connected, as by default
the connect() method is called internally when a query
is run. The optional callback function is invoked after a
connection is established. If a connection already exists,
the callback parameter is called instantly.

execute(query, [params],
[consistency], callback)

Executes a CQL query. The params are parameters for
the ? placeholders. consistency defaults to quorum,
which is a strong consistency with some tolerance for
failure. The callback takes two args: err and result.

executeAsPrepared(query,
[params], [consistency],
callback)

Executes a prepared statement. The first time the
method is invoked, the query is prepared and run. If the
same query is subsequently run again, the query is not
prepared a second time. Rather, the prepared query is
run. params is the parameters for the placeholders in the
query. The default consistency is quorum. The callback
takes two args: err and result.

executeBatch(queries,
[consistency], [options],
callback)

Executes a batch of queries. Other method parameters
are the same as the preceding method
executeAsPrepared().

eachRow(query, [params],
[consistency],
rowCallback, endCallback)

Prepares and runs a query similarly to
executeAsPrepared(). rowCallback(n, row) is the
callback function after each row is received, with n being
the row index. The row object contains the definition of
the row columns. endCallback(err, rowLength) is run
when all rows have been received or when there has
been an error getting a row.

streamField(query,
[params], [consistency],
rowCallback,
[endCallback])

Prepares and runs a query similarly to eachRow().
Streams the last field of each row. rowCallback(n,
row, streamField) is invoked for each row after the
first chunk of the last field is received. The row object
contains the definition of the row columns except the
last column. streamField is a Readable Streams2
object. endCallback(err, rowLength) is run when all
rows have been received or when there has been an
error getting a row.

(Continued)

Overview of Node.js Driver for Cassandra CQL 213

Table 6.3 Client Class Methods (Continued)

Method Description

stream(query, [params],
[consistency], [callback])

Prepares and runs a query similarly to streamField()
except that the whole row is streamed as a Readable
Streams2 object. When a row can be read from a
stream, a readable event is emitted. callback(err) is
invoked when all rows have been received or when
there has been an error getting a row.

shutdown([callback]) Closes all connections in the pool and closes the pool.
The optional callback parameter is invoked when the
pool is disconnected.

The Connection Class
An instance of the Connection class can be created with the class constructor using new

Connection(options). The options are the same as for the Client class. The Connection

class provides the methods discussed in Table 6.4.

Table 6.4 Connection Class Options

Option Description

open(callback) Opens a connection and authenticates and sets a
keyspace. The optional callback function is invoked
after a connection is established.

close(callback) Closes a connection. The optional callback function is
invoked after a connection is closed.

execute(query, args,
consistency, callback)

Executes a CQL query. The args are parameters for the ?
placeholders. consistency defaults to quorum, which is
a strong consistency with some tolerance for failure.

prepare(query, callback) Prepares a CQL query with an optional callback. Does
not run the query.

executePrepared(queryId,
args, consistency,
callback)

Executes a previously prepared query. A queryId
identifies a query. The args are parameters for the ?
placeholders.

214 Chapter 6 n Using Node.js with Cassandra

Event-Driven Logging
Node.js is event-driven and provides the EventEmitter class in the events module for
emitting events. An example of using EventEmitter would be to first import the events
module using require(). Subsequently, an instance of EventEmitter may be created.

var events=require('events');
var eventEmitter=new events.EventEmitter();
var logEvent= function logEvent(){
console.log('A logging event occurred');
}
eventEmitter.on('log', logEvent);
eventEmitter.emit('log');

You don’t need to create EventEmitter instances because Client and Connection classes
are instances of EventEmitter. The Client and Connection classes emit the log event for
logging. The function that is invoked when a log event occurs may be defined as follows:

var logEvent= function logEvent(level, message){
console.log('log event: %s -- %j', level, message);
}

Register the log event using the on() method and emit the log event using the emit

method:

client.on('log', logEvent);
client.emit('log');

The log level can be info or error.

Mapping Data Types
The Node.js driver for Cassandra provides mapping of JavaScript types to Cassandra data
types, and all Cassandra data types are supported. The mapping from Cassandra data
types to JavaScript data types is discussed in Table 6.5.

Table 6.5 Mapping Cassandra Data Types to JavaScript Data Types

Cassandra Data Type JavaScript Data Type

Bigint Long

List/Set Array

(Continued)

Mapping Data Types 215

Table 6.5 Mapping Cassandra Data Types to JavaScript Data Types (Continued)

Cassandra Data Type JavaScript Data Type

Map Object with keys as properties

Timestamp Date

Decimal and Varint Not parsed, yielded as byte buffers

The mapping from JavaScript data types to Cassandra data types is discussed in Table 6.6.

Table 6.6 Mapping JavaScript Data Types to Cassandra Data Types

JavaScript Data Type Cassandra Data Type

string text

Date timestamp

Number int

Long bigint

Array list

Buffers blob

Setting the Environment
The Node.js driver for Cassandra does not provide an API for creating a keyspace and a
column family. You will create a keyspace and a column family in Cassandra-Cli. In this
section, you will also install Node.js and the Node.js driver for Cassandra.

The following software is required for this chapter:

n Apache Cassandra 2.04 or later

n Node.js

n Node.js driver for Apache Cassandra

Follow these steps:

1. Download Apache Cassandra apache-cassandra-2.0.4-bin.tar.gz (or later version)
from http://cassandra.apache.org/download/.

216 Chapter 6 n Using Node.js with Cassandra

../../../../../../cassandra.apache.org/download/default.htm

2. Extract the tar.gz file to a directory.

3. Add the bin directory from the Apache Cassandra installation to the PATH

environment variable.

Creating a Keyspace and a Column Family
To create a keyspace called catalog_nodejs with a replica placement_strategy of
SimpleStrategy and a replication_factor of 1, run the following command in
Cassandra-Cli:

CREATE KEYSPACE catalog_nodejs
with placement_strategy = 'org.apache.cassandra.locator.SimpleStrategy'
and strategy_options = {replication_factor:1};

The output in Cassandra-Cli indicates that the keyspace has been created, as shown in
Figure 6.2.

Figure 6.2
Creating a keyspace.
Source: Microsoft Corporation.

Next, run the following command in Cassandra-Cli to use the catalog_nodejs keyspace:

USE catalog_nodejs;

Create a column family called nodejscatalog with a UTF8Type Comparator and a UTF8Type

key validation class. The column family definition must include a column called key,
which is the primary key of the table. Also define columns named journal, publisher,
edition, title, and author, all of type UTF8Type. The title column is indexed.

CREATE COLUMN FAMILY nodejscatalog
WITH comparator = UTF8Type

Setting the Environment 217

AND key_validation_class=UTF8Type
AND column_metadata = [
{column_name: key, validation_class: UTF8Type},
{column_name: journal, validation_class: UTF8Type},

{column_name: publisher, validation_class: UTF8Type},
{column_name: edition, validation_class: UTF8Type},
{column_name: title, validation_class: UTF8Type, index_type: KEYS},
{column_name: author, validation_class: UTF8Type}

];

A column family called nodejscatalog is created, as shown in Figure 6.3.

Figure 6.3
Creating a column family.
Source: Microsoft Corporation.

Installing Node.js
To install Node.js, follow these steps:

1. Download the node-v0.10.26-x64.exe application from http://Node.js.org/.

2. Double-click the EXE application to install Node.js. The Node.js version may be
found with the node –version command.

3. To test that Node.js has been installed, run the sample Node.js script provided on
http://Node.js.org/. The sample script creates a Node.js server and responds with a
“Hello” message for every request. Copy the following script to example.js:

var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});

res.end('Hello World\n');

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

218 Chapter 6 n Using Node.js with Cassandra

../../../../../../node.js.org/default.htm
../../../../../../node.js.org/default.htm

4. To run the server, run the example.js script with the following command:

node example.js

The message “Server running at http://127.0.0.1:1337/” indicates that the server is
running, as shown in Figure 6.4.

Figure 6.4
Running the example.js Node.js script.
Source: Microsoft Corporation.

Installing Node.js driver for Apache Cassandra
To install the Node.js driver for Cassandra, run the following command:

npm install node-cassandra-cql

Node.js driver for Cassandra is installed, as shown in Figure 6.5.

Figure 6.5
Installing Node.js Driver for Cassandra.
Source: Microsoft Corporation.

You also need to start Apache Cassandra with the following command:

cassandra -f

Setting the Environment 219

Creating a Connection with Cassandra
As discussed, the Client and Connection classes are used to connect to Cassandra. The
Client class is preferred because it provides a connection pool without the need to explic-
itly open a connection to a node. Create a JavaScript file, connection-cassandra.js, for con-
necting to Cassandra. Import the Node.js driver for Cassandra using the following
statement:

var cql = require('node-cassandra-cql');

Create an instance of the Client class using the class constructor with the hosts: option
set to localhost:9042 and the keyspace option set to catalog_Node.js:

var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_Node.js'});

Although a Client connection pool automatically connects to a Cassandra cluster when a
query is run, a connection may be made explicitly using the connect(callback) method.
The callback function takes an err parameter and may be defined as follows to log an
error message if an error is generated or to output a message if an error is not generated:

function established(err){
if (err)

console.log(err);
else

console.log('Connection with Cassandra established');
}

The other option for creating a connection is the Connection class. Create an instance
of the Connection class with the same two options as arguments, hosts and keyspace, as
for the Client class example:

var client2 = new cql.Connection({hosts: ['localhost:9042'], keyspace:
'catalog_Node.js'});

The Connection class’s similarity with the Client class ends with the constructor use.
While a Client instance is connected to Cassandra without requiring an explicit connec-
tion, the Connection class requires an explicit connection using the open(callback)

method.

client2.open(function established(err){
if (err)

console.log(err);
else

console.log('Connection with Cassandra established');
});

220 Chapter 6 n Using Node.js with Cassandra

The connection-cassandra.js script appears in Listing 6.1.

Listing 6.1 The connection-cassandra.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.connect(function established(err){if (err) console.log(err);
else console.log('Connection with Cassandra established');});
var client2 = new cql.Connection({hosts: ['localhost:9042'], keyspace:

'catalog'});
client2.open(function established(err){if (err) console.log(err);

else console.log('Connection with Cassandra established');});

Run the connection-cassandra.js script with the following command:

node connection-cassandra.js

Output from both the Client and the Connection classes is the message to indicate that a
connection has been established, as shown in Figure 6.6.

Figure 6.6
Establishing a connection with the Client and Connection class.
Source: Microsoft Corporation.

The Cassandra database must be running to be able to connect to it. If the database is not
running, the following error is generated:

{ name: 'PoolConnectionError',
info: 'Represents a error while trying to connect the pool, all the

connections failed.',
individualErrors:
[{ [Error: connect ECONNREFUSED]

code: 'ECONNREFUSED',
errno: 'ECONNREFUSED',
syscall: 'connect' }] }

{ name: 'PoolConnectionError',
info: 'Represents a error while trying to connect the pool, all the

connections failed.',

Creating a Connection with Cassandra 221

individualErrors:
[{ [Error: connect ECONNREFUSED]

code: 'ECONNREFUSED',
errno: 'ECONNREFUSED',
syscall: 'connect' }] }

Adding Data to a Table
In this section, you will add two rows of data to the nodejscatalog column family (table).
Create a JavaScript script, add.js. Create a Client instance to establish a connection pool
with Cassandra.

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});

Invoke the execute(query, [params], [consistency], callback) method to run a CQL3
query to add a row. The CQL query statement is an INSERT statement. consistency is
specified as cql.types.consistencies.quorum, which is also the default. callback takes
an err parameter to log an error message if an error message is generated or, if not, to
log a message to indicate that a table row has been added.

client.execute("INSERT INTO nodejscatalog (key, journal, publisher, edition,
title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly')",

cql.types.consistencies.quorum,
function(err) {

if (err) console.log(err);
else console.log('table row added');

}
);

Similarly, add a second row. The add.js script appears in Listing 6.2.

Listing 6.2 The add.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.execute("INSERT INTO nodejscatalog (key, journal, publisher, edition,
title,author) VALUES ('catalog1','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Engineering as a Service','David A. Kelly')",

cql.types.consistencies.quorum,

222 Chapter 6 n Using Node.js with Cassandra

function(err) {
if (err) console.log(err);
else console.log('table row added');

}
);

client.execute("INSERT INTO nodejscatalog (key, journal, publisher, edition,
title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert')",

cql.types.consistencies.quorum,
function(err) {

if (err) console.log(err);
else console.log('table row added');

}
);

Run the add.js script with the following command:

node add.js

The output message indicates that a table row has been added, as shown in Figure 6.7.

Figure 6.7
Adding a table row.
Source: Microsoft Corporation.

You provided a column value for all the columns in the column family, but the flexible
schema supported by Cassandra does not require each column value in a row except that
the key column value is required. For example, the following CQL query would add a two-
column row excluding the key column, which is required:

client.execute("INSERT INTO nodejscatalog (title,author) VALUES
('catalog1',''Engineering as a Service','David A. Kelly')",

function(err) {
if (err) console.log(err);
else console.log('table row added');

}
);

Adding Data to a Table 223

A column called key is required to add a row with the Node.js driver for Cassandra. If the
key column is not provided, the following error message is generated:

{ name: 'ResponseError',
message: 'Missing mandatory PRIMARY KEY part key',
info: 'Represents a error message from the server',
code: 8704,
isServerUnhealthy: false,
query: 'INSERT INTO nodejscatalog (journal, publisher, edition,title,author)

VALUES (\'Oracle Magazine\', \'Oracle Publishing\', \'November-December 2013\',
\'Engineering as a Service\',\'David A. Kelly\')'
}

Retrieving Data from a Table
Next, you will retrieve data from Cassandra. To do so, create a script, get.js. Then create a
Client instance as before. Run a SELECT CQL query to get a result set. The consistency

and callback functions may be defined as before or omitted. The get.js script appears in
Listing 6.3 below.

Listing 6.3 The get.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_Node.js'});
client.execute("SELECT key, journal, publisher, edition,title,author FROM
Node.jscatalog",

cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else console.log(result);

}
);

Run the get.js script with the following command:

node get.js

The two rows in the nodejscatalog table are retrieved, as shown in Figure 6.8.

224 Chapter 6 n Using Node.js with Cassandra

Figure 6.8
Getting data.
Source: Microsoft Corporation.

Filtering the Query
In the preceding section, you selected all the rows from the nodejscatalog column family.
If necessary, however, you can filter rows using the WHERE clause. Create a JavaScript file,
getfilter.js. Create a connection to Cassandra using a Client class instance. Run a CQL
query using the execute(query, [params], [consistency], callback) method and
include a WHERE clause to select row with the key 'catalog2'. The callback function
takes two args, err and result. If an error is generated, log the error to the console. If
an error is not generated, access the rows returned in the result and output the row prop-
erties, which are the row column values. For example, output the journal column value in
the first row in the result as follows:

result.rows[0].journal

The getfilter.js script appears in Listing 6.4.

Filtering the Query 225

Listing 6.4 The getfilter.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.execute("SELECT key, journal, publisher, edition,title,author FROM
nodejscatalog WHERE key=?",['catalog2'],

cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else {console.log('key: ' +result.rows[0].key);

console.log(' journal: ' +result.rows[0].journal);
console.log(' publisher: ' +result.rows[0].publisher);
console.log(' edition: ' +result.rows[0].edition);
console.log(' title: ' +result.rows[0].title);
console.log(' author: ' +result.rows[0].author);
}

}
);

Run the getfilter.js script with the following command:

node getfilter.js

The row with key catalog2 is retrieved and output in the console, as shown in Figure 6.9.

Figure 6.9
Getting the row with the key catalog2.
Source: Microsoft Corporation.

Querying with a Prepared Statement
A prepared statement is a CQL query with placeholders using ?. When the prepared state-
ment is run, parameter values are provided to substitute the placeholders. The
executeAsPrepared() method in the Client class is used to run a prepared statement.
The first time a CQL query with placeholders (?) is run, the CQL query is prepared, and
a prepared statement is generated for subsequent use to run the same query multiple
times, if required. The advantage of using a prepared statement consisting of placeholders
is that the CQL query does not have to be compiled each time the query is run.

226 Chapter 6 n Using Node.js with Cassandra

Create a JavaScript file, preparedquery.js, to run a prepared statement. Create a Client

instance for a connection with the Cassandra database. Invoke the executeAsPrepared()

method with the prepared statement query as SELECT key, journal, publisher, edition,

title,author FROM nodejscatalog WHERE key=?. This has a placeholder for the key column.
In the first invocation of the executeAsPrepared() method, supply the parameter as
'catalog2'. In the second invocation, supply the parameter as 'catalog1'. Output the
result as in the preceding section. The preparedquery.js script appears in Listing 6.5.

Listing 6.5 The preparedquery.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.executeAsPrepared("SELECT key, journal, publisher, edition,title,author
FROM nodejscatalog WHERE key=?",['catalog2'],

cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else {console.log('key: ' +result.rows[0].key);

console.log(' journal: ' +result.rows[0].journal);
console.log(' publisher: ' +result.rows[0].publisher);
console.log(' edition: ' +result.rows[0].edition);
console.log(' title: ' +result.rows[0].title);
console.log(' author: ' +result.rows[0].author);
}

}
);
client.executeAsPrepared("SELECT key, journal, publisher, edition,title,author
FROM nodejscatalog WHERE key=?",['catalog1'],

cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else {console.log('key: ' +result.rows[0].key);

console.log(' journal: ' +result.rows[0].journal);
console.log(' publisher: ' +result.rows[0].publisher);
console.log(' edition: ' +result.rows[0].edition);
console.log(' title: ' +result.rows[0].title);
console.log(' author: ' +result.rows[0].author);
}

}
);

Querying with a Prepared Statement 227

Run the preparedquery.js script with the following command:

node preparedquery.js

The rows catalog1 and catalog2 are output in the console, as shown in Figure 6.10.

Figure 6.10
Getting the rows catalog1 and catalog2.
Source: Microsoft Corporation.

Streaming Query Rows
The eachRow(query, [params], [consistency], rowCallback, endCallback) method is
used to stream rows as they are received. The rowCallback(n, row) callback function
is invoked after each row is received, and the endCallback(err, rowLength) function is
invoked after all rows have been received. The rowCallback(n, row) function may be
used to output the row and the row number. Row columns are properties of the row

object. For example, the row.title property is the value of the title column. The
endCallback(err, rowLength) callback function may be used to output an error (if any)
or the row length.

Create a JavaScript file, streaming_query_row.js, and create an instance of the Client

class. Invoke the eachRow() method to run the CQL query SELECT key, journal,

publisher, edition,title,author FROM nodejscatalog. In the row callback function,
output the row number and the title and author columns.

function(n, row) {
//the callback will be invoked per each row as soon as they are received
console.log('title: ', n, row.title);
console.log('author: ', n, row.author);

}

228 Chapter 6 n Using Node.js with Cassandra

In the callback function called after all rows have been received, output the error (if any)
or the row length:

function (err, rowLength) {
if (err) console.log(err);
console.log('%d rows where returned', rowLength);

}

The streaming_query_row.js script appears in Listing 6.6.

Listing 6.6 The streaming_query_row.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.eachRow('SELECT key, journal, publisher, edition,title,author FROM
nodejscatalog',

function(n, row) {
//the callback will be invoked per each row as soon as they are received
console.log('title: ', n, row.title);
console.log('author: ', n, row.author);

},
function (err, rowLength) {

if (err) console.log(err);
console.log('%d rows where returned', rowLength);

}
);

Run the streaming_query_row.js script with the following command:

node streaming_query_row.js

The row number and the title and author columns are output for each row. The total
number of rows received is also output after all rows have been received, as shown in
Figure 6.11.

Figure 6.11
Output from streaming query rows.
Source: Microsoft Corporation.

Streaming Query Rows 229

Streaming a Field
Suppose you want to stream the last field in the result to a text file. The streamField

(query, [params], [consistency], rowCallback, [endCallback]) method streams the
last field in a row as the first chunk of the field is received. The callback function
rowCallback(n, row, streamField)—in which n is the row index, row is the row object,
and streamField is the last field to stream—is used to stream the last field. The
rowCallback function is invoked as the first few raw bytes of the last field are received.
streamField is a Readable Streams2 object. The row in the rowCallback function is also
an object similar to the row object in the rowCallback function in the eachRow() method.
The row object does not include the last column/field of the row, however, because the last
column is to be streamed and included in the streamField object.

Create a JavaScript file, streaming_field.js, to stream the last field of row(s) as it is
received. Import the Node.js driver for Cassandra as in other scripts. Also import the
File System module fs.

var fs = require('fs');

The File System module is used to create a WriteStream object to which to stream the last
field. Create a Client instance for a connection to Cassandra. Invoke the streamField

(query, [params], [consistency], rowCallback, [endCallback]) method with the CQL
query as a prepared statement query, SELECT key, journal, publisher, edition, title,

author FROM nodejscatalog WHERE key=?, with a placeholder (?) for the key column. Pro-
vide the key value in the params arg as ['catalog']. Define the rowCallback function to
stream the last field to a text file, output.txt. The streamField object is an instance of the
stream.Readable class, which is an abstraction of a data source. Data is emitted by a
Readable stream, but only after a destination is ready to receive the data. The Readable

class generates the events discussed in Table 6.7.

Table 6.7 Readable Class Events

Event Description

readable When a chunk of data can be read from a stream.

data Represents a chunk of data. When a data event listener is registered
with Readable, which is streamField, the stream emits the chunk
of data to the handler function.

end Emitted when no more data is available in the stream.

close Emitted when the resource is closed. Not emitted by all streams.

error Emitted if an error is generated receiving the data.

230 Chapter 6 n Using Node.js with Cassandra

In the rowCallback function called function(n, row, streamField), create a WriteStream

object from the File System object fs using the createWriteStream() method. Set
output.txt as the destination file.

var writable = fs.createWriteStream('output.txt');

Log the row index and the row object to the console:

console.log(n);
console.log(row);

The Readable class provides the pipe(destination, [options]) method to pipe the
stream to a destination such as a file. The destination must be a Writable Stream, which
is a WriteStream object you created for the output.txt file. The pipe method pulls data out
of the readable stream and pipes it to the writable destination such that the destination is
not overwhelmed by the fast readable stream. Invoke the pipe method on the
streamField object, which is a Readable type, with the writable object as the argument.

streamField.pipe(writable);

Register the data event with the streamField object and provide a callback function to
handle the chunk of data. Log the chunk length to the console.

streamField.on('data', function(chunk) {
console.log('got %d bytes of data', chunk.length);

}

In the endCallback function, log the error message if an error is generated. Alternatively,
log the row length if a row is returned.

function (err, rowLength) {
if (err) console.log(err);
console.log('%d rows where returned', rowLength);

}

The streaming_field.js script appears in Listing 6.7.

Listing 6.7 The streaming_field.js Script

var cql = require('node-cassandra-cql');
var fs = require('fs');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.streamField('SELECT key, journal, publisher, edition, title, author FROM
nodejscatalog WHERE key=?', ['catalog1'],

function(n, row, streamField) {

Streaming a Field 231

//the callback will be invoked per each row as soon as they are received.
var writable = fs.createWriteStream('output.txt');
console.log(n);

console.log(row);
streamField.pipe(writable);
streamField.on('data', function(chunk) {

console.log('got %d bytes of data', chunk.length);
});

//The stream is a Readable Stream2 object
}, function (err, rowLength) {

if (err) console.log(err);
console.log('%d rows were returned', rowLength);

}
);

Run the streaming_field.js script with the following command:

node streaming_field.js

In the console output, the row index is logged as 0. Next, the row object is logged. The
last field in the row, author, is not logged to the console because it is streamed to
the output.txt file. The endCallback function logs that “1 rows were returned.” When the
data event is emitted by the streamField object, the callback function registered for the
data event outputs the bytes of data emitted, as shown in Figure 6.12.

Figure 6.12
Output from streaming a field script.
Source: Microsoft Corporation.

232 Chapter 6 n Using Node.js with Cassandra

The output.txt file is generated in the same directory as the one in which the
streaming_field.js script is run. The output.txt file has only the last field in the catalog1

row, which is David A. Kelly, as shown in Figure 6.13.

Figure 6.13
The field streamed to a text file.
Source: Microsoft Corporation.

Streaming the Result
The stream(query, [params], [consistency], [callback]) method streams each row as
a row becomes available. The method returns a Readable Streams2 object and emits the
readable event when a row can be read from a stream. The readable event is discussed
in Table 6.7. The stream may be piped to a text file.

Create a JavaScript file, streaming_result.js, and import the File System module as in the
previous section. Create a Client instance for a connection with Cassandra. Invoke the
stream method using a CQL query for a prepared statement, SELECT key, journal,

publisher, edition, title, author FROM nodejscatalog WHERE key=?. Provide the
params argument as ['catalog1']. The method returns a stream.Readable object. Regis-
ter the readable event with the Readable object.

client.stream('SELECT key, journal, publisher, edition, title, author FROM
nodejscatalog WHERE key=?', ['catalog1']).on('readable', function () {
}

Streaming the Result 233

In the callback function, create a WriteStream object for a text file output2.txt, which is to
be the destination of the query result steam.

var writable = fs.createWriteStream('output2.txt');

The readable event is emitted as soon as a row is received and parsed. Readable streams
are either in flowing mode or non-flowing mode. The streamField in the previous section
switches to flowing mode when the data event is registered with the stream. The stream
returned by the stream method is in non-flowing mode and switches to flowing mode
when the read() method is invoked on the stream.

var row;
while (row = this.read()) {

}

Invoke the writable.write(chunk, [encoding], [callback]) method to write a chunk of
data to output2.txt.

writable.write(row.journal+' ');
writable.write(row.publisher+ ' ');
writable.write(row.edition+' ');
writable.write(row.title+ ' ');
writable.write(row.author+ ' ');

Log the title and author to the console.

console.log('title %s and author %s', row.title, row.author);

Callback functions for other events emitted by Readable may also be registered with the
Readable stream. For example, a callback function for the end event may be registered to
indicate that a stream has ended. A callback function for the error event may be regis-
tered to indicate an error. The streaming_result.js script appears in Listing 6.8.

Listing 6.8 The streaming_result.js Script

var cql = require('node-cassandra-cql');
var fs = require('fs');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:
'catalog_nodejs'});
client.stream('SELECT key, journal, publisher, edition, title, author FROM
nodejscatalog WHERE key=?', ['catalog1']).on('readable', function () {
var writable = fs.createWriteStream('output2.txt');

234 Chapter 6 n Using Node.js with Cassandra

//readable is emitted as soon a row is received and parsed
var row;
while (row = this.read()) {

writable.write(row.journal+' ');
writable.write(row.publisher+ ' ');
writable.write(row.edition+' ');
writable.write(row.title+ ' ');
writable.write(row.author+ ' ');

console.log('title %s and author %s', row.title, row.author);
}

})
.on('end', function () {

//stream ended, there aren't any more rows
})
.on('error', function (err) {

console.log(err);
//Something went wrong: err is a response error from Cassandra

});

Invoke the streaming_result.js script with the following command:

node streaming_result.js

The title and author columns for row catalog1 are output to the console, as shown in
Figure 6.14.

Figure 6.14
Output from a script to stream a result.
Source: Microsoft Corporation.

The complete row, including the title and author columns, is streamed to an output file,
as shown in Figure 6.15.

Streaming the Result 235

Figure 6.15
A complete row streamed to a text file.
Source: Microsoft Corporation.

Updating Data in Table
In this section, you will update row data. You can use the execute(query, [params],

[consistency], callback) method to run an UPDATE CQL statement. Create a script,
update.js, and create a Client connection as before. Run the prepared statement UPDATE

Node.jscatalog SET edition=? WHERE key=? and provide the params as ['11/12

2013','catalog1']. Output an error (if any) in the callback function or output a message
to indicate that a row has been updated. Then run a CQL query to select the catalog1 row
to find out if the row got updated. The update.js script appears in Listing 6.9.

Listing 6.9 The update.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:

'catalog_Node.js'});
client.execute("UPDATE Node.jscatalog SET edition=? WHERE key=?",['11/12

2013','catalog1'],
cql.types.consistencies.quorum,
function(err) {

if (err) console.log(err);

236 Chapter 6 n Using Node.js with Cassandra

else console.log('table row updated');
}

);
client.execute("SELECT key, journal, publisher, edition,title,author FROM

Node.jscatalog WHERE key=?",['catalog1'],
cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else {console.log('key: ' +result.rows[0].key);

console.log(' journal: ' +result.rows[0].journal);
console.log(' publisher: ' +result.rows[0].publisher);
console.log(' edition: ' +result.rows[0].edition);
console.log(' title: ' +result.rows[0].title);
console.log(' author: ' +result.rows[0].author);
}

}
);

Run the update.js script with the following command:

node update.js

As indicated in the output in Figure 6.16, the catalog1 row is updated.

Figure 6.16
Updating a row.
Source: Microsoft Corporation.

Deleting a Column
You can use the execute(query, [params], [consistency], callback) method to delete
a column from a row. Create a script, deleteColumn.js, and create a connection with the
Cassandra database using a Client instance. Run the CQL prepared statement DELETE

journal FROM Node.jscatalog where key=? with params as catalog1 to delete the journal

column from the catalog1 row. Then run a CQL query to select all columns from the
catalog1 row to find out if a column got deleted. The deleteColumn.js script appears in
Listing 6.10.

Deleting a Column 237

Listing 6.10 The deleteColumn.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:

'catalog_nodejs'});
client.execute("DELETE journal FROM nodejscatalog where key=?",['catalog1'],

cql.types.consistencies.quorum,
function(err) {

if (err) console.log(err);
else {console.log('table column deleted');

client.execute("SELECT * FROM nodejscatalog WHERE key=?",['catalog1'],
cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else {console.log(result);

}
}

);
}

}
);

Run the deleteColumn.js script with the following command:

node deleteColumn.js

As indicated in the output in Figure 6.17, the journal column is null.

Figure 6.17
Deleting a column.
Source: Microsoft Corporation.

238 Chapter 6 n Using Node.js with Cassandra

Deleting a Row
Next, you will delete an entire row using the execute(query, [params], [consistency],

callback) method. Create a script, deleteRow.js, and create a connection with the Cassan-
dra cluster using a Client instance. Run a CQL prepared statement DELETE FROM

Node.jscatalog where key=? with params as catalog1 to delete the row with the key
catalog1. Then run a CQL query to select all columns from the row for the catalog1

key. The deleteRow.js script appears in Listing 6.11.

Listing 6.11 The deleteRow.js Script

var cql = require('node-cassandra-cql');
var client = new cql.Client({hosts: ['localhost:9042'], keyspace:

'catalog_nodejs'});
client.execute("DELETE FROM nodejscatalog where key=?",['catalog1'],

cql.types.consistencies.quorum,
function(err) {

if (err) console.log(err);
else {

console.log('table row deleted');
client.execute("SELECT * FROM nodejscatalog WHERE key=?",['catalog1'],

cql.types.consistencies.quorum,
function(err, result) {

if (err) console.log(err);
else {console.log(result);

}
}

);
}

}
);

Run the deleteRow.js script with the following command:

node deleteRow.js

The row for the key catalog1 is deleted and the subsequent query to select the catalog1

row returns an empty result set, as shown in Figure 6.18.

Deleting a Row 239

Figure 6.18
Deleting a row.
Source: Microsoft Corporation.

Summary
In this chapter, you used the Node.js driver for Apache Cassandra to connect with Cas-
sandra, add data, select data, update data, and delete data. In the next chapter, you will
migrate MongoDB, another NoSQL database, to Apache Cassandra.

240 Chapter 6 n Using Node.js with Cassandra

Part III

Migration

241

This page intentionally left blank

Chapter 7

Migrating MongoDB
to Cassandra

MongoDB is an open source NoSQL database written in C++. MongoDB stores docu-
ments in a JSON-like format called BSON. MongoDB’s BSON format is much different
from the flexible table format of Cassandra. This chapter discusses the procedure to
migrate a BSON document stored in the MongoDB server to a table in a Cassandra
database.

Setting the Environment
To set the environment, you must install the following software:

n MongoDB Windows binaries from http://www.mongodb.org/downloads. Extract the
TGZ or ZIP file to a directory and add C:\MongoDB\mongodb-win32-x86_64-
2008plus-2.4.9\bin to the PATH environment variable.

n MongoDB Java driver JAR from http://central.maven.org/maven2/org/mongodb/
mongo-java-driver/.

n Eclipse IDE for Java EE developers from http://www.eclipse.org/downloads/.

n Apache Commons Lang 2.6 commons-lang-2.6-bin.zip from http://commons.apache.
org/proper/commons-lang/download_lang.cgi. Extract it to the commons-lang-2.6-
bin directory.

243

../../../../../../www.mongodb.org/downloads
../../../../../../central.maven.org/maven2/org/mongodb/mongo-java-driver/default.htm
../../../../../../central.maven.org/maven2/org/mongodb/mongo-java-driver/default.htm
../../../../../../www.eclipse.org/downloads/default.htm
../../../../../../commons.apache.org/proper/commons-lang/download_lang.cgi
../../../../../../commons.apache.org/proper/commons-lang/download_lang.cgi

n Hector Java client hector-core-1.1-4.jar or a later version from http://repo2.maven.
org/maven2/org/hectorclient/hector-core/1.1-4/.

n Apache Cassandra 2.04 from http://cassandra.apache.org/download/.
Add C:\Cassandra\apache-cassandra-2.0.4\bin to the PATH variable.

Start Apache Cassandra server with the following command:

>cassandra -f

Apache Cassandra is started, as shown in Figure 7.1.

Figure 7.1
Starting Apache Cassandra.
Source: Microsoft Corporation.

Start MongoDB server with the following command:

>mongod

244 Chapter 7 n Migrating MongoDB to Cassandra

../../../../../../repo2.maven.org/maven2/org/hectorclient/hector-core/1.1-4/default.htm
../../../../../../repo2.maven.org/maven2/org/hectorclient/hector-core/1.1-4/default.htm
../../../../../../cassandra.apache.org/download/default.htm

MongoDB server is started, as shown in Figure 7.2.

Figure 7.2
Starting MongoDB.
Source: Microsoft Corporation.

Creating a Java Project
In this section, you will create a Java project in Eclipse IDE to migrate a MongoDB docu-
ment to Apache Cassandra. Follow these steps:

1. Select File > New > Other.

2. In the New dialog box, select Java Project or Java > Java Project. Then click Next, as
shown in Figure 7.3.

Creating a Java Project 245

Figure 7.3
Selecting the Java Project wizard.
Source: Eclipse Foundation.

3. In the New Java Project dialog box, specify a project name (MigrateMongoDB),
select the Use Default Location checkbox, select JDK 1.7 as the JRE (Use Default JRE
may already be selected), and click Next, as shown in Figure 7.4.

246 Chapter 7 n Migrating MongoDB to Cassandra

Figure 7.4
Specifying a project name.
Source: Eclipse Foundation.

4. In the Java Settings dialog box, select the default settings. Select Allow Output
Folders for Source Folders. Then click Finish. A Java project, MigrateMongoDB,
is created.

5. Add two Java classes, CreateMongoDBDocument and MongoDBToCassandra. The
CreateMongoDBDocument class is for creating a BSON document in MongoDB and the
MongoDBToCassandra class is for migrating the BSON document from MongoDB to
Apache Cassandra. To add a Java class, select File > New > Other. Then, in the New
dialog box, select Java > Class and click Next. Finally, in the New Java Class wizard,
specify a package name and a class name and click Finish. The directory structure of
the MigrateMongoDB project is shown in Figure 7.5.

Creating a Java Project 247

Figure 7.5
The directory structure of the MigrateMongoDB project.
Source: Eclipse Foundation.

6. Next, you must add some JAR files for Cassandra and MongoDB to the project class
path. Add the JAR files listed in Table 7.1. These JAR files are from the Cassandra
server download, the MongoDB server download, the Hector Java client for
Cassandra, and some third-party JARs.

Table 7.1 JAR Files for Migration

JAR Description

apache-cassandra-2.0.4.jar Apache Cassandra

hector-core-1.1-4.jar High-level Java client for Cassandra

commons-codec-1.5 Provides implementationof commonencoders anddecoders

commons-lang-2.6 Provides extra classes for the manipulation of Java core
classes

guava-15.0 Google’s core libraries used in Java-based projects

libthrift-0.9.1.jar Software framework for scalable cross-language services
development

log4j-1.2.16 Logging library for Java

mongo-java-driver-2.11.3.jar MongoDB Java driver

slf4j-api-1.7.2 Simple Logging Facade for Java (SLF4J), which serves as an
abstraction for various logging frameworks

slf4j-log4j12-1.7.2 An SLF4J abstraction for log4j

248 Chapter 7 n Migrating MongoDB to Cassandra

To add the required JARs, right-click the project node in Package Explorer and select
Properties. Then, in the Properties dialog box, select Java Build Path. Finally, click the
Add External JARs button to add the external JAR files. The JARs added to the migration
project are shown in Figure 7.6.

Figure 7.6
Adding JARs to the Java build path.
Source: Eclipse Foundation.

Creating a BSON Document in MongoDB
You need to add some data to MongoDB to migrate the data to the Cassandra database.
Here, you will create a document in MongoDB using the Java application
CreateMongoDBDocument. The main package for the MongoDB Java driver is com.mongodb.
A MongoDB client to connect to MongoDB server is represented with the MongoClient class.
A MongoClient object provides connection pooling and only one instance is required for the
application. Create a MongoClient instance using the MongoClient(List<ServerAddress>

seeds) constructor. Supply the IPv4 address of the host and port as 27017.

MongoClient mongoClient = new MongoClient(Arrays.asList(new ServerAddress
("localhost", 27017)));

Creating a BSON Document in MongoDB 249

A logical database in MongoDB is represented with the com.mongodb.DB class. Obtain a
com.mongodb.DB instance for the local database, which is a default MongoDB database
instance, using the getDB(String dbname) method in the MongoClient class. MongoDB
stores data in collections. Get all collections from the database instance using the
getCollectionNames() method in com.mongodb.DB class.

Set<String> colls = db.getCollectionNames();

The getCollectionNames() method returns a Set<String> of collections. Iterate over the
collection to output the collection names.

for (String s : colls) {
System.out.println(s);

}

A MongoDB collection is represented with the DBCollection class. Create a new
DBCollection instance using the createCollection(String name,DBObject options)

method in the com.mongodb.Db class. You specify the options to create a collection using
a key/value map represented with the DBObject interface. The options that may be speci-
fied are listed in Table 7.2.

Table 7.2 Options to Create a DBCollection

Option Type Description

capped boolean Enables a cap on the collection. Set to false by default.
If set to true, must also specify the size option.

size int The size of the collection in terms of the number of
documents.

max int The maximum cap in terms of number of documents.

Create a collection called catalog and set the options to null:

DBCollection coll = db.createCollection("catalog", null);

A MongoDB-specific BSON object is represented with the BasicDBObject class, which
implements the DBObject interface. The BasicDBObject class provides the constructors
listed in Table 7.3 to create a new instance.

250 Chapter 7 n Migrating MongoDB to Cassandra

Table 7.3 BasicDBObject Class Constructors

Constructor Description

BasicDBObject() Creates an empty object

BasicDBObject(int size) Creates an object of a specified size

BasicDBObject(Map m) Creates an object from a map

BasicDBObject(String key, Object value) Creates an object with key/value pairs

The BasicDBObject class provides some other utility methods, some of which are listed in
Table 7.4.

Table 7.4 BasicDBObject Class Utility Methods

Method Description

append(String key, Object val) Appends a key/value pair to the object and returns a
new instance

toString() Returns a JSON serialization of the object

Create a BasicDBObject instance using the BasicDBObject(String key, Object value)

constructor and use the append(String key, Object val) method to append key/value
pairs:

BasicDBObject catalog = new BasicDBObject("journal","Oracle
Magazine").append("publisher", "Oracle Publishing").append("edition", "November
December 2013").append("title", "Engineering as a Service").append("author",
"David A. Kelly");

The DBCollection class provides an overloaded insert method to add an instance(s) of
BasicDBObject to a collection. Add the catalog BasicDBObject to the DBCollection

instance for the catalog collection:

coll.insert(catalog);

The DBCollection class also provides an overloaded findOne() method to find a
DBObject instance. Obtain the document added using the findOne() method:

DBObject catalog = coll.findOne();

Creating a BSON Document in MongoDB 251

Output the DBObject object found by iterating over the Set obtained from the DBObject

using the keySet() method. The keySet() method returns a Set<String>. Create an
Iterator from the Set<String> using the iterator() method. While the Iterator has
elements as determined by the hasNext() method, obtain the elements using the next()

method. Each element is a key in the DBObject fetched. Obtain the value for the key
using the get(String key) method in DBObject.

Set<String> set=catalog.keySet();
Iterator iter = set.iterator();
while(iter.hasNext()){
Object obj= iter.next();
System.out.println(obj);
System.out.println(catalog.get(obj.toString()));
}

The CreateMongoDBDocument class appears in Listing 7.1.

Listing 7.1 The CreateMongoDBDocument Class

package mongodb;

import java.net.UnknownHostException;
import java.util.Arrays;
import java.util.Iterator;
import java.util.Set;

import com.mongodb.MongoClient;
import com.mongodb.MongoException;
import com.mongodb.WriteConcern;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
import com.mongodb.DBCursor;
import com.mongodb.ServerAddress;

public class CreateMongoDBDocument {

public static void main(String[] args) {

try {
MongoClient mongoClient = new MongoClient(
Arrays.asList(new ServerAddress("localhost", 27017)));

252 Chapter 7 n Migrating MongoDB to Cassandra

/*for (String s : mongoClient.getDatabaseNames()) {
System.out.println(s);

}
*/
DB db = mongoClient.getDB("local");
/*Set<String> colls = db.getCollectionNames();
for (String s : colls) {

System.out.println(s);
}*/
DBCollection coll = db.createCollection("catalog", null);
/*BasicDBObject catalog = new BasicDBObject("journal",
"Oracle Magazine").append("publisher", "Oracle

Publishing")
.append("edition", "November December 2013")
.append("title", "Engineering as a Service")
.append("author", "David A. Kelly");*/
//coll.insert(catalog);
DBObject catalog = coll.findOne();
//System.out.println(catalog);
Set<String> set=catalog.keySet();
Iterator iter=set.iterator();
while(iter.hasNext()){

Object obj=iter.next();
System.out.println(obj);
System.out.println(catalog.get(obj.toString()));

}
} catch (UnknownHostException e) {

e.printStackTrace();
}

}
}

To run the CreateMongoDBDocument application, right-click the CreateMongoDB-
Document.java file in Package Explorer and select Run As > Java Application, as shown in
Figure 7.7.

Creating a BSON Document in MongoDB 253

Figure 7.7
Running the CreateMongoDBDocument application.
Source: Eclipse Foundation.

A new BSON document is stored in a new collection, catalog, in the MongoDB database.
The document stored is also output as such and as key/value pairs, as shown in Figure 7.8.

Figure 7.8
Storing a document in MongoDB.
Source: Eclipse Foundation.

254 Chapter 7 n Migrating MongoDB to Cassandra

Migrating the MongoDB Document to Cassandra
In this section, you will query the BSON document stored earlier in the MongoDB server
and migrate the BSON document to a Cassandra database. You will use the
MongoDBToCassandra class to migrate the BSON document from the MongoDB server to
Cassandra. Create a MongoClient instance, which is required for migrating, as discussed in
the previous section to add a document.

MongoClient mongoClient = new MongoClient(Arrays.asList(new ServerAddress
("localhost", 27017)));

Create a DB object for the local database instance using the getDB(String dbname) method
in MongoClient. Using the DB instance gets the catalog collection as a DBCollection

object. Create a DBObject instance from the document stored in MongoDB in the previous
section using the findOne() method in the DBCollection class.

DB db = mongoClient.getDB("local");
DBCollection coll = db.getCollection("catalog");
DBObject catalog = coll.findOne();

Next, you will migrate the resulting DBObject to the Cassandra database. Some of the pro-
cedures for migrating MongoDB to Cassandra are the same as for migrating Couchbase to
Cassandra, which is discussed in Chapter 8, “Migrating Couchbase to Cassandra.”

The me.prettyprint.hector.api.Cluster interface represents a cluster of Cassandra
hosts. To access a Cassandra cluster, create a Cluster instance for a Cassandra cluster
using the getOrCreateCluster(String clusterName, String hostIp) method as follows:

Cluster cluster =
HFactory.getOrCreateCluster("migration-cluster","localhost:9160");

Next, create a schema if not already defined. A schema consists of a column family defini-
tion and a keyspace definition. Use the describeKeyspace method in Cluster to obtain a
KeyspaceDefinition object for HectorKeyspace keyspace. If the keyspace definition object
is null, invoke a createSchema() method to create a schema.

KeyspaceDefinition keyspaceDef = cluster.describeKeyspace("HectorKeyspace");
if (keyspaceDef == null) {
createSchema();

}

As discussed in Chapter 1, “Using Cassandra with Hector,” add a createSchema() method
to create a column family definition and a keyspace definition for the schema. Create a

Migrating the MongoDB Document to Cassandra 255

column family definition for a column family named "catalog", a keyspace named
HectorKeyspace, and a comparator named ComparatorType.BYTESTYPE.

ColumnFamilyDefinition cfDef = HFactory.createColumnFamilyDefinition(
" HectorKeyspace", "catalog", ComparatorType.BYTESTYPE);

Use a replicationFactor of 1 to create a KeyspaceDefinition instance from the preced-
ing column family definition. Specify the strategy class as org.apache.cassandra.

locator.SimpleStrategy using the constant ThriftKsDef.DEF_STRATEGY_CLASS.

int replicationFactor = 1;
KeyspaceDefinition keyspace = HFactory.createKeyspaceDefinition(
" HectorKeyspace", ThriftKsDef.DEF_STRATEGY_CLASS,
replicationFactor, Arrays.asList(cfDef));

Add the keyspace definition to the Cluster instance. With blockUntilComplete set to
true, the method blocks until schema agreement is received.

cluster.addKeyspace(keyspace, true);

Adding a keyspace definition to a Cluster instance does not create a keyspace. Having
added a keyspace definition, you need to create a keyspace. Add a createKeyspace()

method to create a keyspace and invoke the method from the main method. A keyspace is
represented with the me.prettyprint.hector.api.Keyspace interface. The HFactory class
provides static methods to create a Keyspace instance from a Cluster instance to which a
keyspace definition has been added. Invoke the createKeyspace(String keyspace,

Cluster cluster) method to create a Keyspace instance with the name HectorKeyspace.

private static void createKeyspace() {
keyspace = HFactory.createKeyspace("HectorKeyspace", cluster);

}

Next, create a template and add a createTemplate() method to it. Invoke the method
from the main method. Templates provide a reusable construct containing the fields com-
mon to all Hector client operations. Create an instance of ThriftColumnFamilyTemplate

using a class constructor ThriftColumnFamilyTemplate(Keyspace keyspace, String

columnFamily,Serializer<K> keySerializer, Serializer<N> topSerializer). Use the
Keyspace instance created earlier and specify the column family name as "catalog".

ThriftColumnFamilyTemplate template = new ThriftColumnFamilyTemplate<String,
String>(keyspace,"catalog", StringSerializer.get(), StringSerializer.get());

Next, you will migrate the data represented with the DBObject instance retrieved from
MongoDB to the column family "catalog" in the keyspace HectorKeyspace. Add a

256 Chapter 7 n Migrating MongoDB to Cassandra

method called migrate() and invoke it from the main method. In the migrate() method,
you will migrate the DBObject object retrieved from the MongoDB BSON document to
Cassandra. In the Hector API, the Mutator class is used to add data. First, you need to
create an instance of Mutator using the static method createMutator(Keyspace

keyspace,Serializer<K> keySerializer) in HFactory. Supply the Keyspace instance pre-
viously created and also supply a StringSerializer instance.

Mutator<String> mutator = HFactory.createMutator(keyspace,
StringSerializer.get());

Obtain a Set object from the DBObject using the keySet() method and create an
Iterator from the Set object.

Set<String> set = catalog.keySet();
Iterator iter = set.iterator();

The Mutator class provides the addInsertion(K key, String cf, HColumn<N, V> c) method
to add an HColumn instance and return the Mutator instance, which may be used again to
add another HColumn instance. You can add a series of HColumn instances by invoking the
Mutator instance sequentially. Using the Iterator obtained from the key set in the
DBObject from MongoDB BSON document, you will add multiple columns to a Mutator

instance using addInsertion() invocations in series.

Using the Iterator and the hasNext() method, obtain a BSON document’s key in the
key/value pairs as an Object. Specify the Key for the Cassandra row as catalog1. The col-
umn family name is catalog. Using the while loop, add multiple columns to a Mutator

instance using addInsertion() invocations in series. Add HColumn<String,String>

instances, which represent columns, using the static method createStringColumn

(String name, String value). By iterating over the key set, obtain the column names
using the obj.toString() method. Obtain the corresponding column value from the
DBObject instance created from the BSON document using the catalog.get(obj.

toString()).toString()) method invocation.

while (iter.hasNext()) {
Object obj = iter.next();
mutator = mutator.addInsertion("catalog1","catalog",
HFactory.createStringColumn(obj.toString(),
catalog.get(obj.toString()).toString()));

}

Migrating the MongoDB Document to Cassandra 257

The mutations added to the Mutator instance are not sent to the Cassandra server until
the execute() method is invoked:

mutator.execute();

The BSON document from MongoDB is migrated to Cassandra. To find the table data
created in Cassandra from the MongoDB BSON document, add a retrieveTableData()

method and invoke it from the main method. In the retrieveTableData() method, use
the ThriftColumnFamilyTemplate instance to query multiple columns with the
queryColumns(K key) method. This queries the columns in the row corresponding to the
provided Key value ColumnFamilyResult instance. Using the template, query the columns
in the row corresponding to "catalog" key.

ColumnFamilyResult<String, String> res = template.queryColumns("catalog");

Obtain and output the String column values in the ColumnFamilyResult instance
obtained from the preceding query.

String journal = res.getString("journal");
String publisher = res.getString("publisher");
String edition = res.getString("edition");
String title = res.getString("title");
String author = res.getString("author");
System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

The MongoDBToCassandra class appears in Listing 7.2.

Listing 7.2 The MongoDBToCassandra Class

package mongodb;
import java.net.UnknownHostException;
import java.util.Arrays;
import java.util.Iterator;
import java.util.Set;

import me.prettyprint.cassandra.serializers.StringSerializer;
import me.prettyprint.cassandra.service.ThriftKsDef;
import me.prettyprint.hector.api.Cluster;
import me.prettyprint.hector.api.Keyspace;
import me.prettyprint.hector.api.ddl.ColumnFamilyDefinition;
import me.prettyprint.hector.api.ddl.ComparatorType;

258 Chapter 7 n Migrating MongoDB to Cassandra

import me.prettyprint.hector.api.ddl.KeyspaceDefinition;
import me.prettyprint.hector.api.exceptions.HectorException;
import me.prettyprint.hector.api.factory.HFactory;
import me.prettyprint.hector.api.mutation.Mutator;
import me.prettyprint.cassandra.service.template.ColumnFamilyResult;
import me.prettyprint.cassandra.service.template.ColumnFamilyTemplate;
import me.prettyprint.cassandra.service.template.ThriftColumnFamilyTemplate;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;
import com.mongodb.ServerAddress;
public class MongoDBToCassandra {

private static DBObject catalog;
private static Cluster cluster;
private static Keyspace keyspace;
private static ColumnFamilyTemplate<String, String> template;
public static void main(String[] args) {

try {
cluster = HFactory.getOrCreateCluster("hector-cluster",

"localhost:9160");
KeyspaceDefinition keyspaceDef = cluster

.describeKeyspace("HectorKeyspace");
if (keyspaceDef == null) {

createSchema();
}
createKeyspace();
createTemplate();
MongoClient mongoClient = new MongoClient(

Arrays.asList(new ServerAddress
("localhost", 27017)));

DB db = mongoClient.getDB("local");
DBCollection coll = db.getCollection("catalog");
catalog = coll.findOne();
migrate();
retrieveTableData();

} catch (UnknownHostException e) {
e.printStackTrace();

}
}
private static void migrate() {

Migrating the MongoDB Document to Cassandra 259

Mutator<String> mutator = HFactory.createMutator(keyspace,
StringSerializer.get());

Set<String> set = catalog.keySet();
Iterator iter = set.iterator();
while (iter.hasNext()) {

Object obj = iter.next();
mutator = mutator.addInsertion(

"catalog1",
"catalog",
HFactory.createStringColumn(obj.toString(),
catalog.get(obj.toString()).toString()));

}
mutator.execute();

}
private static void createSchema() {

int replicationFactor = 1;
ColumnFamilyDefinition cfDef =

HFactory.createColumnFamilyDefinition(
"HectorKeyspace", "catalog",

ComparatorType.BYTESTYPE);
KeyspaceDefinition keyspace = HFactory.createKeyspaceDefinition(

"HectorKeyspace", ThriftKsDef.DEF_STRATEGY_CLASS,
replicationFactor, Arrays.asList(cfDef));

cluster.addKeyspace(keyspace, true);
}
private static void createKeyspace() {

keyspace = HFactory.createKeyspace("HectorKeyspace", cluster);
}
private static void createTemplate() {

template = new ThriftColumnFamilyTemplate<String, String>
(keyspace,

"catalog", StringSerializer.get(),
StringSerializer.get());

}
private static void retrieveTableData() {

try {
ColumnFamilyResult<String, String> res = template

.queryColumns("catalog1");
String journal = res.getString("journal");
String publisher = res.getString("publisher");
String edition = res.getString("edition");
String title = res.getString("title");

260 Chapter 7 n Migrating MongoDB to Cassandra

String author = res.getString("author");
System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

} catch (HectorException e) {
}

}
}

Run the MongoDBToCassandra application in the Eclipse IDE. Right-click MongoDBTo-
Cassandra and select Run As > Java Application, as shown in Figure 7.9.

Figure 7.9
Running the MongoDBToCassandra application.
Source: Eclipse Foundation.

Migrating the MongoDB Document to Cassandra 261

The BSON document from the MongoDB server is migrated to Cassandra. Subsequently,
the Cassandra table column values created for the migrated BSON document are output
in the Eclipse IDE, as shown in Figure 7.10.

Figure 7.10
The MongoDB document is migrated to Cassandra.
Source: Eclipse Foundation.

Summary
In this chapter, you migrated a MongoDB BSON document to Apache Cassandra. You
used the MongoDB Java driver to access MongoDB and the Hector Java driver to access
Cassandra. You used a Java application developed in the Eclipse IDE for the migration.
In the next chapter, you will migrate a JSON document from a Couchbase server to a
Cassandra database.

262 Chapter 7 n Migrating MongoDB to Cassandra

Chapter 8

Migrating Couchbase
to Cassandra

Couchbase server is one of the leading NoSQL databases, and is based on the JSON docu-
ment model. Couchbase’s document model is different from Cassandra’s, as Cassandra is
based on the flexible table (column family) data model. But, it is still feasible to migrate a
Couchbase Server document to Cassandra. In this chapter, you will migrate a JSON docu-
ment from Couchbase Server to Cassandra in the Eclipse IDE.

Setting the Environment
To set the environment, you must install the following software:

n Couchbase Server Community Edition couchbase-server-community_x86_64_2.0.1.
setup.exe from http://www.couchbase.com/download. Double-click the EXE file to
launch the installer for Couchbase database and install it.

n Couchbase Server Java SDK client library Couchbase-Java-Client-1.2.2.zip file from
http://www.couchbase.com/develop/java/previous and extract to
Couchbase-Java-Client-1.2.2 directory.

n Eclipse IDE for Java EE developers from http://www.eclipse.org/downloads/.

n Apache Commons BeanUtils 1.9.0 commons-beanutils-1.9.0-bin.zip file from http://
commons.apache.org/proper/commons-beanutils/download_beanutils.cgi. Extract to
the commons-beanutils-1.9.0-bin directory.

263

../../../../../../www.couchbase.com/download
../../../../../../www.couchbase.com/develop/java/previous
../../../../../../www.eclipse.org/downloads/default.htm
../../../../../../commons.apache.org/proper/commons-beanutils/download_beanutils.cgi
../../../../../../commons.apache.org/proper/commons-beanutils/download_beanutils.cgi

n Apache Commons Collections 3.2.1 from http://archive.apache.org/dist/commons/
collections/binaries/. Extract to the commons-collections-3.2.1-bin directory.

n Apache Commons Lang 2.6 commons-lang-2.6-bin.zip from http://commons.apache.
org/proper/commons-lang/download_lang.cgi. Extract to the commons-lang-2.6-bin
directory.

n Apache Commons Logging 1.1.3 from http://commons.apache.org/proper/
commons-logging/. Extract to the commons-logging-1.1.3-bin directory.

n Json-lib JAR json-lib-2.4-jdk15.jar from http://sourceforge.net/projects/json-lib/files/
json-lib/.

n EZMorph ezmorph-1.0.6.jar from http://sourceforge.net/projects/ezmorph/files/.

n Hector Java client hector-core-1.1-4.jar or a later version from http://repo2.maven.
org/maven2/org/hectorclient/hector-core/1.1-4/.

n Apache Cassandra 2.04 or a later version from http://cassandra.apache.org/
download/. Add C:\Cassandra\apache-cassandra-2.0.4\bin to the PATH variable.

Start Apache Cassandra server with the following command:

>cassandra –f

Creating a Java Project
You will migrate Couchbase Server to Cassandra using a Java application in the Eclipse
IDE. To do so, create a Java project in Eclipse IDE. Follow these steps:

1. Select File > New > Other.

2. In the New dialog box, select Java > Java Project. Then click Next, as shown in
Figure 8.1.

264 Chapter 8 n Migrating Couchbase to Cassandra

../../../../../../archive.apache.org/dist/commons/collections/binaries/default.htm
../../../../../../archive.apache.org/dist/commons/collections/binaries/default.htm
../../../../../../commons.apache.org/proper/commons-lang/download_lang.cgi
../../../../../../commons.apache.org/proper/commons-lang/download_lang.cgi
../../../../../../commons.apache.org/proper/commons-logging/default.htm
../../../../../../commons.apache.org/proper/commons-logging/default.htm
../../../../../../sourceforge.net/projects/json-lib/files/json-lib/default.htm
../../../../../../sourceforge.net/projects/json-lib/files/json-lib/default.htm
../../../../../../sourceforge.net/projects/ezmorph/files/default.htm
../../../../../../repo2.maven.org/maven2/org/hectorclient/hector-core/1.1-4/default.htm
../../../../../../repo2.maven.org/maven2/org/hectorclient/hector-core/1.1-4/default.htm
../../../../../../cassandra.apache.org/download/default.htm
../../../../../../cassandra.apache.org/download/default.htm

Figure 8.1
Selecting Java > Java Project.
Source: Eclipse Foundation.

3. In the New Java Project wizard, specify a project name
(MigrateCouchbaseToCassandra), select JDK 1.7 as the JRE, and click Next, as shown
in Figure 8.2.

Creating a Java Project 265

Figure 8.2
Specifying the project name.
Source: Eclipse Foundation.

4. In the Java Settings dialog box, select the Allow Output Folders checkbox and select
the default output folder MigrateCouchbaseToCassandra/bin. Then click Finish, as
shown in Figure 8.3.

266 Chapter 8 n Migrating Couchbase to Cassandra

Figure 8.3
Configuring Java settings.
Source: Eclipse Foundation.

5. Next, add two Java classes to the Java project—one to create a JSON document in
Couchbase and another to migrate the JSON document to Cassandra. To create the
first class, select File > New > Other. Then, in the New dialog box, select Java > Class
and click Next, as shown in Figure 8.4.

Creating a Java Project 267

Figure 8.4
Selecting Java > Class.
Source: Eclipse Foundation.

6. In the New Java Class wizard, specify a package (cassandra) and the class name
(CreateCouchbaseJSON). Then click Finish, as shown in Figure 8.5.

268 Chapter 8 n Migrating Couchbase to Cassandra

Figure 8.5
Configuring a Java class to store a Couchbase document.
Source: Eclipse Foundation.

7. Repeat steps 5 and 6 to create another Java class, CouchbaseToCassandra, as shown in
Figure 8.6. The directory structure of the MigrateCouchbaseToCassandra Java
project with the two classes is shown in Figure 8.7.

Creating a Java Project 269

Figure 8.6
Configuring a Java class to migrate Couchbase to Cassandra.
Source: Eclipse Foundation.

Figure 8.7
The directory structure of the MigrateCouchbaseToCassandra Java project.
Source: Eclipse Foundation.

270 Chapter 8 n Migrating Couchbase to Cassandra

8. Next, you must add some JAR files to the project class path. Add the JAR files listed
in Table 8.1, which are from the Cassandra server download, Couchbase Server
download, Hector Java client for Cassandra, and some third-party JARs.

Table 8.1 JAR Files for Migration

JAR Description

antlr-3.2.jar Parser generator for structured text or binary files

apache-cassandra-2.0.4.jar Apache Cassandra

apache-cassandra-thrift-2.0.4.jar Apache Cassandra Thrift

compress-lzf-0.8.4.jar Compression codec for LZF encoding

hector-core-1.1-4.jar High-level Java client for Cassandra

commons-beanutils-1.9.0 Utility JAR for Java classes developed with the
JavaBeans pattern

commons-codec-1.5 Provides implementation of common encoders and
decoders

commons-lang-2.6 Provides extra classes for manipulation of Java core
classes

commons-logging-1.1.3 Interface for common logging implementations

couchbase-client-1.2.2 Couchbase Server Java client library

ezmorph-1.0.6 Provides conversion from one object to another and
used to convert between non-JSON objects and JSON
objects

guava-15.0 Google’s core libraries used in Java-based projects

httpcore-4.1.1 Provides a set of HTTP transport components to build
custom client and server HTTP services

httpcore-nio-4.1.1 HTTP core for the event-driven I/O model based on
Java NIO

jackson-core-asl-1.9.2 High-performance JSON processor

jackson-mapper-asl-1.9.2 High-performance data-binding package built on
Jacson JSON processor

(Continued)

Creating a Java Project 271

Table 8.1 JAR Files for Migration (Continued)

JAR Description

jettison-1.1 A collection of Java APIs (STax and DOM) to read and
write JSON

json-lib-2.4-jdk15 Java library to transform between beans,
maps, collections, Java arrays and XML,
and JSON

libthrift-0.9.1.jar Software framework for scalable cross-language
services development

log4j-1.2.16 Logging library for Java

lz4-1.2.0 Fast compression algorithm

netty-3.6.6.Final NIO client server framework to develop
network applications such as protocol servers
and clients

slf4j-api-1.7.2 Simple Logging Façade for Java (SLF4J), which
serves as an abstraction for various logging
frameworks

slf4j-log4j12-1.7.2 An SLF4J abstraction for log4j

spymemcached-2.10.2 Java client for memcached

To add the required JARs, right-click the project node in Package Explorer and select
Properties. Then, in the Properties dialog box, select Java Build Path. Finally, click the
Add External JARs button to add the external JAR files. The JARs added to the migration
project are shown in Figure 8.8.

272 Chapter 8 n Migrating Couchbase to Cassandra

Figure 8.8
JAR files in the Java build path.
Source: Eclipse Foundation.

Creating a JSON Document in Couchbase
The com.couchbase.client.CouchbaseClient class is the client class for Couchbase
Server and is the entry point to access the Couchbase cluster, which may consist of one
or more servers. In the CreateCouchbaseJSON class, you will use the CouchbaseClient

class to create and store a JSON document in Couchbase Server. The CouchbaseClient

class provides three constructors to create an instance. You will use the constructor
CouchbaseClient(java.util.List<java.net.URI> baseList,java.lang.String bucketName,

java.lang.String pwd), in which baseList is the URI List of one or more servers in
the Couchbase cluster. To obtain the server URIs, log in to the Couchbase Server cluster
and select Server Nodes. Then click the Server Node Name link(s) to obtain the server
name, as shown in Figure 8.9.

Creating a JSON Document in Couchbase 273

Figure 8.9
Couchbase server name.
Source: Couchbase Inc.

The server name is 127.0.0.1:8091. By default, Couchbase Server uses http://

localhost:8091/pools to connect to clients. Specify 127.0.0.1. or localhost in the con-
nection URI. Alternatively, use the IPv4 address of the host obtained with the ipconfig /

all command. Create a LinkedList<URI> object and add the URI to the List using the
add() method:

List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://192.168.1.71:8091/pools"));

Couchbase Server stores documents in data buckets. The bucketName parameter specifies
the bucket name to use. The default data bucket is called "default". The default username
for a data bucket is the same as the bucket name. The "default" bucket does not require a
password. Specify password as an empty String.

CouchbaseClient couchbaseClient = new CouchbaseClient(uris, "default", "");
Couchbase server stores documents as JSON. Specify the JSON String to store.
String value = "{\"journal\":\"Oracle Magazine\",\"publisher\":\"Oracle
Publishing\",\"edition\":\"March April 2013\",\"title\":\"Engineering as a
Service\",\"author\":\"David A. Kelly\"}";

The CouchbaseClient class provides overloaded set methods to store/add documents to
Couchbase Server. You will use the set(java.lang.String key,int exp,java.lang.

Object value,PersistTo req) method. The first parameter key of type String is the

274 Chapter 8 n Migrating Couchbase to Cassandra

document key. The second parameter exp of type int is the expiry time. A value of 0 for
exp makes the document persistent without expiration. The value parameter of type
Object is the JSON value to store. The req parameter of type PersistTo is the number
of nodes the document should be persisted to.

OperationFuture<java.lang.Boolean> operationFuture =
couchbaseClient.set("catalog", 0, value, PersistTo.ONE);

The set method returns an OperationFuture<java.lang.Boolean> object that may be
used to find if the document got stored or not.

if (operationFuture.get().booleanValue()) {
System.out.println("Set Succeeded");

} else {
System.err.println("Set failed: " +

operationFuture.getStatus().getMessage());
}

Couchbase Server uses a view processor to process documents stored in the server. A view
processor takes the unstructured or semi-structured data stored in Couchbase Server,
extracts the fields from the document, and indexes the data. As a result, a view of the
data stored in the Couchbase data store is created. A view makes it easier to iterate, select,
and query the data stored in the server. The view processor relies on the data being stored
in JSON format in Couchbase Server. Design documents are used to encapsulate one or
more views. The com.couchbase.client.protocol.views.DesignDocument class repre-
sents a design document. Create a DesignDocument using a class constructor:

DesignDocument designDoc = new DesignDocument("JSONDocument");

The com.couchbase.client.protocol.views.ViewDesign class represents a view to be
stored and retrieved from the Couchbase data store. The ViewDesign class provides two
constructors, both of which take a view name and a map() function as arguments. One
of the constructors also takes a reduce() function as an argument. Specify a view name.

String viewName = "by_name";

A mapping function, map(), must be supplied to map the JSON data stored in Couchbase
Server and the output results of the view. The first argument to the map() function is the
JSON document and the second argument is the metadata associated with the JSON doc-
ument, such as the document name and type. The map() function emits rows (zero or
more) of information using the invocations of the emit() function.

String mapFunction = " function(doc,meta) {\n"
+ " if (meta.type == 'json') {\n"
+ " emit(doc.name, doc);\n"

+ " }\n" + "}";

Creating a JSON Document in Couchbase 275

Create a ViewDesign object using the view name and the map() function:

ViewDesign viewDesign = new ViewDesign(viewName, mapFunction);

Add the ViewDesign object to the DesignDocument class invoking the getViews() method
on the DesignDocument object to obtain the list of ViewDesigns and subsequently invok-
ing the add method on the List object.

designDoc.getViews().add(viewDesign);

Store the DesignDocument class in the cluster using the asyncCreateDesignDoc

(DesignDocument doc) method in the CouchbaseClient class:

HttpFuture<java.lang.Boolean> httpFuture =
couchbaseClient.asyncCreateDesignDoc(designDoc);

You can use the HttpFuture object returned to determine whether the design document
got stored:

if (httpFuture.get().booleanValue()) {
System.out.println("Design Document Store Succeeded");

} else {
System.err.println("Design Document Store failed: "
+ httpFuture.getStatus().getMessage());

}

The CreateCouchbaseJSON class appears in Listing 8.1.

Listing 8.1 The CreateCouchbaseJSON Class

package cassandra;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.URI;
import java.util.LinkedList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import net.spy.memcached.PersistTo;
import net.spy.memcached.internal.OperationFuture;
import com.couchbase.client.CouchbaseClient;
import com.couchbase.client.internal.HttpFuture;
import com.couchbase.client.protocol.views.DesignDocument;
import com.couchbase.client.protocol.views.Query;
import com.couchbase.client.protocol.views.Stale;
import com.couchbase.client.protocol.views.View;

276 Chapter 8 n Migrating Couchbase to Cassandra

import com.couchbase.client.protocol.views.ViewDesign;
import com.couchbase.client.protocol.views.ViewResponse;

public class CreateCouchbaseJSON {
private static CouchbaseClient couchbaseClient;
public static void main(String[] args) {

try{
List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://192.168.1.71:8091/pools"));

CouchbaseClient couchbaseClient = new CouchbaseClient(uris,
"default", "");

String value = "{\"journal\":\"Oracle Magazine\",\"publisher\":
\"Oracle Publishing\",\"edition\":\"March April 2013\",\"title\":\"Engineering
as a Service\",\"author\":\"David A. Kelly\"}";

OperationFuture<java.lang.Boolean> operationFuture =
couchbaseClient

.set("catalog", 0, value, PersistTo.ONE);
if (operationFuture.get().booleanValue()) {

System.out.println("Set Succeeded");
} else {

System.err.println("Set failed: "
+ operationFuture.getStatus().getMessage());

}
DesignDocument designDoc = new DesignDocument("JSONDocument");
String viewName = "by_name";
String mapFunction = " function(doc,meta) {\n"

+ " if (meta.type == 'json') {\n"
+ " emit(doc.name, doc);\n"
+ " }\n" + "}";

ViewDesign viewDesign = new ViewDesign(viewName, mapFunction);
designDoc.getViews().add(viewDesign);

HttpFuture<java.lang.Boolean> httpFuture = couchbaseClient
.asyncCreateDesignDoc(designDoc);
if (httpFuture.get().booleanValue()) {

System.out.println("Design Document Store
Succeeded");

} else {
System.err.println("Design Document Store failed: "

+ httpFuture.getStatus().getMessage());
}

} catch (UnsupportedEncodingException e) {
e.printStackTrace();

Creating a JSON Document in Couchbase 277

} catch (InterruptedException e) {
e.printStackTrace();

} catch (ExecutionException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}
}

}

To create the JSON document in Couchbase Server, run the CreateCouchbaseJSON.java
source file. Right-click the CreateCouchbaseJSON.java file in Package Explorer and select
Run As > Java Application, as shown in Figure 8.10. The output from the application,
shown in Figure 8.11, indicates that the JSON document is stored in the Couchbase Server
and the design document is also stored.

Figure 8.10
Running the CreateCouchbaseJSON application.
Source: Eclipse Foundation.

278 Chapter 8 n Migrating Couchbase to Cassandra

Figure 8.11
Output from the CreateCouchbaseJSON application.
Source: Eclipse Foundation.

Log in to the Couchbase Server Administration Console. Then click Data Buckets and
select the default bucket. The documents for the default bucket are listed. The JSON doc-
ument with the ID catalog is also listed. Click the Edit Document button to edit or display
the document, as shown in Figure 8.12. The JSON for the catalog ID documents is dis-
played, as shown in Figure 8.13.

Figure 8.12
The document with the ID catalog in the Couchbase Server Administration Console.
Source: Couchbase Inc.

Figure 8.13
Displaying the JSON document added to Couchbase Server in the Couchbase Server Administration Console.
Source: Couchbase Inc.

Creating a JSON Document in Couchbase 279

The by_name view is also created. Click Views in the Couchbase Administration Console
(see Figure 8.14) to list the by_name view. The by_name view is displayed.

Figure 8.14
Selecting Views in the Couchbase Administration Console.
Source: Couchbase Inc.

Click the Show button to list the view’s map() and reduce() functions, as shown in Figure 8.15.
The view code, including the map() function, is listed, as shown in Figure 8.16.

Figure 8.15
Selecting Views > by_name > Show in Couchbase Administration Console.
Source: Couchbase Inc.

280 Chapter 8 n Migrating Couchbase to Cassandra

Figure 8.16
The view code for the by_name view.
Source: Couchbase Inc.

Migrating the Couchbase Document to Cassandra
In this section, you will query the JSON document stored earlier in Couchbase Server and
migrate the JSON document to the Apache Cassandra database. You will use the
CouchbaseToCassandra class to migrate the JSON document from Couchbase Server to
the Cassandra database. You added a view encapsulated in a design document to Couch-
base Server; you can use this view to query Couchbase Server. The CouchbaseClient class
provides the query(AbstractView view, Query query) method to query the server.
AbstractView is the abstract superclass to the View class. The Query type parameter
represents the type of query to run. But first, you must create an instance of View and an
instance of Query to supply as arguments to the query() method. Create an instance of
CouchbaseClient as discussed when storing a JSON document in Couchbase Server.

List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://192.168.1.71:8091/pools"));
CouchbaseClient couchbaseClient = new CouchbaseClient(uris, "default", "");

Migrating the Couchbase Document to Cassandra 281

Get access to the view stored in the design document in Couchbase Server using the
getView(java.lang.String designDocumentName, java.lang.String viewName) method,
which takes the design document name and view name as arguments.

View view = couchbaseClient.getView("JSONDocument", "by_name");

Create an instance of Query and invoke the setIncludeDocs(boolean include) method to
include full documents in the result. Optionally, set a limit on the number of documents
returned using the setLimit(int limit) method.

Query query = new Query();
query.setIncludeDocs(true).setLimit(20);
query.setStale(Stale.FALSE);

To disallow results from a stale view, invoke the setStale(Stale stale) method with the
argument as Stale.FALSE. Invoke the query(AbstractView view, Query query) method
using the View instance and Query instance to obtain a result as a ViewResponse object.

ViewResponse result = couchbaseClient.query(view, query);

Get a Map of key/value records in the ViewResponse using the getMap() method:

java.util.Map<java.lang.String, java.lang.Object> map = result.getMap();

Next, you will migrate the resulting Map to the Cassandra database. As discussed in
Chapter 1, “Using Cassandra with Hector,” the me.prettyprint.hector.api.Cluster

interface represents a cluster of Cassandra hosts. To access a Cassandra cluster, first you
need to create a Cluster instance for a Cassandra cluster. Create a Cluster instance using
the getOrCreateCluster(String clusterName, String hostIp) method as follows:

Cluster cluster = HFactory.getOrCreateCluster("migration-cluster",
"localhost:9160");

Next, create a schema if not already defined. A schema consists of a column family defini-
tion and a keyspace definition. Use the describeKeyspace method in Cluster to obtain a
KeyspaceDefinition object for MigrationKeyspace keyspace. If the keyspace definition
object is null, invoke a createSchema() method to create a schema.

KeyspaceDefinition keyspaceDef = cluster.describeKeyspace("MigrationKeyspace");
if (keyspaceDef == null) {
createSchema();

}

As discussed in Chapter 1, add a createSchema() method to create a column family defi-
nition and a keyspace definition for the schema. Create a column family definition for a

282 Chapter 8 n Migrating Couchbase to Cassandra

column family named "catalog", a keyspace named MigrationKeyspace, and a compara-
tor named ComparatorType.BYTESTYPE.

ColumnFamilyDefinition cfDef = HFactory.createColumnFamilyDefinition(
"MigrationKeyspace", "catalog", ComparatorType.BYTESTYPE);

Using a replicationFactor of 1, create a KeyspaceDefinition instance from the preced-
ing column family definition. Specify the strategy class as org.apache.cassandra.

locator.SimpleStrategy using the constant ThriftKsDef.DEF_STRATEGY_CLASS.

int replicationFactor = 1;
KeyspaceDefinition keyspace = HFactory.createKeyspaceDefinition(
"MigrationKeyspace", ThriftKsDef.DEF_STRATEGY_CLASS,
replicationFactor, Arrays.asList(cfDef));

Add the keyspace definition to the Cluster instance. With blockUntilComplete set to
true, the method blocks until schema agreement is received.

cluster.addKeyspace(keyspace, true);

Adding a keyspace definition to a Cluster instance does not create a keyspace. Having
added a keyspace definition, you need to create a keyspace. Add a createKeyspace()

method to create a keyspace and invoke the method from the main method. A keyspace
is represented with the me.prettyprint.hector.api.Keyspace interface. The HFactory

class provides static methods to create a Keyspace instance from a Cluster instance to
which a keyspace definition has been added. Invoke the method createKeyspace

(String keyspace, Cluster cluster) to create a Keyspace instance with the name
MigrationKeyspace.

private static void createKeyspace() {
keyspace = HFactory.createKeyspace("MigrationKeyspace", cluster);

}

Next, create a template and add a createTemplate() method to it. Invoke the method
from the main method. Templates provide reusable constructs containing the fields com-
mon to all Hector client operations. Create an instance of ThriftColumnFamilyTemplate

using a class constructor ThriftColumnFamilyTemplate(Keyspace keyspace, String

columnFamily, Serializer<K> keySerializer, Serializer<N> topSerializer). Use the
Keyspace instance created earlier and specify the column family name as "catalog".

ThriftColumnFamilyTemplate template = new ThriftColumnFamilyTemplate<String,
String>(keyspace,"catalog", StringSerializer.get(), StringSerializer.get());

Next, you will migrate the data retrieved from Couchbase Server to the column family
"catalog" in the keyspace MigrationKeyspace. Add a method called migrate() and

Migrating the Couchbase Document to Cassandra 283

invoke it from the main method. In the migrate() method, you will migrate the Map object
retrieved from the Couchbase JSON document to Cassandra. In the Hector API, the
Mutator class is used to add data. First, you need to create an instance of Mutator using
the static method createMutator(Keyspace keyspace,Serializer<K> keySerializer)

in HFactory. Supply the Keyspace instance previously created and also supply a
StringSerializer instance.

Mutator<String> mutator = HFactory.createMutator(keyspace,
StringSerializer.get());

Next, iterate over the JSON document result Map obtained earlier using an enhanced for

loop.

for (java.util.Map.Entry<String, Object> entry : map.entrySet()) {
}

Next, add code within the for loop. Output the key/value pair(s) in the Map using the
java.util.Map.Entry.getKey() and corresponding getValue() methods.

System.out.println(entry.getKey());
System.out.println(entry.getValue());

An unordered collection of name/value pairs, which constitute a JSON document, is
represented by the net.sf.json.JSONObject class. Its format is a string enclosing a
JSON name/value pair using {}, with , separating the name/value pairs. The values in
name/value pairs may be of one of the following types: String, Boolean, JSONArray,
JSONObject, Number, or JSONNull. Create a JSONObject instance from the JSON object in
the result Map using the JSON-lib. The net.sf.json.JSONSerializer class is used to
transform Java objects to JSON and back. Invoke the toJSON(Object object) method to
create a JSONObject instance from the JSON object in the result Map.

JSONObject json = (JSONObject) JSONSerializer.toJSON(entry
.getValue().toString());

Obtain a Set object from the JSONObject and create an Iterator from the Set object.

Set set = json.keySet();
Iterator iter = set.iterator();

The Mutator class provides the addInsertion(K key, String cf, HColumn<N, V> c) method
to add an HColumn instance and return the Mutator instance, which may be used again to
add another HColumn instance. You can add a series of HColumn instances by invoking the
Mutator instance sequentially. Using the Iterator obtained from the result Map from

284 Chapter 8 n Migrating Couchbase to Cassandra

Couchbase JSON document, you will add multiple columns to a Mutator instance using
addInsertion invocations in series.

Using the Iterator and the hasNext() method, obtain the JSON document as an Object.
Obtain the key for the JSON document from the MapEntry object by invoking the
getKey().toString() methods. The column family name is "catalog". Using the while

loop, add multiple columns to a Mutator instance using addInsertion invocations in
series. Add HColumn<String,String> instances, which represent columns using the
static method createStringColumn(String name, String value). By iterating over the
key set, obtain the column names using the obj.toString() method. Obtain the corre-
sponding column values from the JSONObject instance created from the JSON document
using the json.get(obj.toString()).toString()) method invocation.

while (iter.hasNext()) {
Object obj = iter.next();
mutator = mutator.addInsertion(
entry.getKey().toString(),
"catalog",
HFactory.createStringColumn(obj.toString(),
json.get(obj.toString()).toString()));

}

The mutations added to the Mutator instance are not sent to the Cassandra server until
the execute() method is invoked.

System.out.println(mutator.execute().getHostUsed());

The JSON document from Couchbase Server is migrated to Cassandra. To find the table data
created in Cassandra from the Couchbase JSON document, add a retrieveTableData()

method and invoke it from the main method. In the retrieveTableData() method, use the
ThriftColumnFamilyTemplate instance to query multiple columns with the queryColumns

(K key) method, which queries the columns in the row corresponding to the provided Key

value ColumnFamilyResult instance. Using the template, query the columns in the row cor-
responding to the "catalog" key.

ColumnFamilyResult<String, String> res = template.queryColumns("catalog");

Obtain and output the String column values in the ColumnFamilyResult instance
obtained from the preceding query.

String journal = res.getString("journal");
String publisher = res.getString("publisher");
String edition = res.getString("edition");

Migrating the Couchbase Document to Cassandra 285

String title = res.getString("title");
String author = res.getString("author");
System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

The CouchbaseToCassandra class appears in Listing 8.2.

Listing 8.2 The CouchbaseToCassandra Class

package cassandra;

import java.io.IOException;
import java.net.URI;
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import me.prettyprint.hector.api.Keyspace;
import net.sf.json.JSONObject;
import net.sf.json.JSONSerializer;
import me.prettyprint.cassandra.serializers.StringSerializer;
import me.prettyprint.cassandra.service.ThriftKsDef;
import me.prettyprint.cassandra.service.template.ColumnFamilyResult;
import me.prettyprint.cassandra.service.template.ColumnFamilyTemplate;
import me.prettyprint.cassandra.service.template.ThriftColumnFamilyTemplate;
import me.prettyprint.hector.api.Cluster;
import com.couchbase.client.CouchbaseClient;
import com.couchbase.client.protocol.views.Query;
import com.couchbase.client.protocol.views.Stale;
import com.couchbase.client.protocol.views.View;
import com.couchbase.client.protocol.views.ViewResponse;
import me.prettyprint.hector.api.ddl.ColumnFamilyDefinition;
import me.prettyprint.hector.api.ddl.ComparatorType;
import me.prettyprint.hector.api.ddl.KeyspaceDefinition;
import me.prettyprint.hector.api.exceptions.HectorException;
import me.prettyprint.hector.api.factory.HFactory;
import me.prettyprint.hector.api.mutation.Mutator;

public class CouchbaseToCassandra {
private static CouchbaseClient couchbaseClient;
private static Cluster cluster;

286 Chapter 8 n Migrating Couchbase to Cassandra

private static Keyspace keyspace;
private static ColumnFamilyTemplate<String, String> template;
private static java.util.Map<java.lang.String, java.lang.Object> map;
public static void main(String[] args) {

List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://192.168.1.71:8091/pools"));
try {

couchbaseClient = new CouchbaseClient(uris, "default", "");
View view = couchbaseClient.getView("JSONDocument",

"by_name");
Query query = new Query();
query.setIncludeDocs(true).setLimit(20);
query.setStale(Stale.FALSE);
ViewResponse result = couchbaseClient.query(view, query);

map = result.getMap();
cluster = HFactory.getOrCreateCluster("migration-cluster",
"localhost:9160");
KeyspaceDefinition keyspaceDef = cluster
.describeKeyspace("MigrationKeyspace");
if (keyspaceDef == null) {
createSchema();
}
createKeyspace();
createTemplate();
migrate();
retrieveTableData();

} catch (IOException e) {
e.printStackTrace();

}
}
private static void migrate() {

Mutator<String> mutator = HFactory.createMutator(keyspace,
StringSerializer.get());

for (java.util.Map.Entry<String, Object> entry : map.entrySet()) {
System.out.println(entry.getKey());

System.out.println(entry.getValue());
JSONObject json = (JSONObject) JSONSerializer.toJSON(entry
.getValue().toString());
Set set = json.keySet();
Iterator iter = set.iterator();
while (iter.hasNext()) {

Object obj = iter.next();

Migrating the Couchbase Document to Cassandra 287

mutator = mutator.addInsertion(
entry.getKey().toString(),
"catalog",
HFactory.createStringColumn(obj.toString(),
json.get(obj.toString()).toString()));

}
}

System.out.println(mutator.execute().getHostUsed());
}
private static void createSchema() {

int replicationFactor = 1;
ColumnFamilyDefinition cfDef = HFactory.createColumnFamily

Definition(
"MigrationKeyspace", "catalog", ComparatorType.BYTESTYPE);

KeyspaceDefinition keyspace = HFactory.createKeyspaceDefinition(
"MigrationKeyspace", ThriftKsDef.DEF_STRATEGY_CLASS,

replicationFactor, Arrays.asList(cfDef));
cluster.addKeyspace(keyspace, true);

}
private static void createKeyspace() {

keyspace = HFactory.createKeyspace("MigrationKeyspace", cluster);
}
private static void createTemplate() {

template = new ThriftColumnFamilyTemplate<String, String>
(keyspace,

"catalog", StringSerializer.get(),
StringSerializer.get());

}
private static void retrieveTableData() {

try {
ColumnFamilyResult<String, String> res = template
.queryColumns("catalog");
String journal = res.getString("journal");
String publisher = res.getString("publisher");
String edition = res.getString("edition");
String title = res.getString("title");
String author = res.getString("author");
System.out.println(journal);
System.out.println(publisher);
System.out.println(edition);
System.out.println(title);
System.out.println(author);

288 Chapter 8 n Migrating Couchbase to Cassandra

} catch (HectorException e) {
}

}
}

Run the CouchbaseToCassandra application in the Eclipse IDE. Right-click Couchbase-
ToCassandra and select Run As > Java Application, as shown in Figure 8.17.

Figure 8.17
Running the CouchbaseToCassandra application.
Source: Eclipse Foundation.

The JSON document from Couchbase Server is migrated to Cassandra. Subsequently, the
Cassandra table created for the migrated JSON document is output in the Eclipse IDE, as
shown in Figure 8.18.

Migrating the Couchbase Document to Cassandra 289

Figure 8.18
JSON data migrated from Couchbase to Cassandra.
Source: Eclipse Foundation.

Summary
In this chapter, you migrated a JSON document from Couchbase Server to a Cassandra
database table. First you created a JSON document in Couchbase. Then you used a Java
client for Couchbase to access the Couchbase database and get the JSON document.
Finally, you used the Hector Java client to connect to Cassandra and transfer the JSON
data got from Couchbase to the Cassandra database. The next chapter discusses using
Cassandra with Kundera.

290 Chapter 8 n Migrating Couchbase to Cassandra

Part IV

Java EE

291

This page intentionally left blank

Chapter 9

Using Cassandra
with Kundera

The Java Persistence API (JPA) is the Java API for persistence management and object/
relational mapping in a Java EE/Java SE environment with which a Java domain model
is used to manage a relational database. JPA also provides a query language API with the
Query interface for static and dynamic queries. JPA is designed primarily for relational
databases.

Kundera is a JPA 2.0–compliant object–data store mapping library for NoSQL data stores.
Kundera also supports relational databases and provides NoSQL data store–specific con-
figuration for Apache Cassandra and some other NoSQL databases, including HBase and
MongoDB. Using the Kundera library in the domain model, a NoSQL database can be
accessed using the JPA. In this chapter, you will access Apache Cassandra with Kundera
and run CRUD operations on Cassandra.

Setting the Environment
To set the environment, you must install the following software:

n The Kundera library for Apache Cassandra kundera-cassandra-2.2.1-jar-with-
dependencies.jar from https://github.com/impetus-opensource/Kundera/downloads.

n A persistence framework including support for Java Persistence (JPA) 2.0 JSR 317-
EclipseLink 2.4.2 from http://www.eclipse.org/eclipselink/downloads/index.php#242.
Extract the eclipselink-2.4.2.v20130514-5956486.zip file to a directory.

293

../../../../../../https@github.com/impetus-opensource/Kundera/downloads
../../../../../../www.eclipse.org/eclipselink/downloads/index.php#242

n An implementation of JPA 2.0 eclipselink-2.4.2.jar from http://repo1.maven.org/
maven2/org/eclipse/persistence/eclipselink/2.4.2/eclipselink-2.4.2.jar.

n Apache Cassandra 2.04 or a later version from http://cassandra.apache.org/
download/.

Later versions than those listed may also be used.

You need to create a keyspace for object/relational mapping using Kundera. In
Cassandra-Cli, run the following command to create a keyspace called Kundera using
a replica placement strategy org.apache.cassandra.locator.SimpleStrategy and a
replication_factor of 1.

CREATE KEYSPACE Kundera
with placement_strategy = 'org.apache.cassandra.locator.SimpleStrategy'
and strategy_options = {replication_factor:1};

Next, run the following command in Cassandra-Cli to use the Kundera keyspace:

use Kundera;

The output from the Cassandra-Cli commands is shown in Figure 9.1.

Figure 9.1
Creating a keyspace in Cassandra.
Source: Microsoft Corporation.

You also need to create a column family for object/relational persistence. Run the follow-
ing command in Cassandra-Cli to create a column family called catalog:

CREATE COLUMN FAMILY catalog
WITH comparator = UTF8Type
AND key_validation_class=UTF8Type

294 Chapter 9 n Using Cassandra with Kundera

../../../../../../repo1.maven.org/maven2/org/eclipse/persistence/eclipselink/2.4.2/eclipselink-2.4.2.jar
../../../../../../repo1.maven.org/maven2/org/eclipse/persistence/eclipselink/2.4.2/eclipselink-2.4.2.jar
../../../../../../cassandra.apache.org/download/default.htm
../../../../../../cassandra.apache.org/download/default.htm

AND column_metadata = [
{column_name: catalogId, validation_class: UTF8Type, index_type: KEYS},
{column_name: journal, validation_class: UTF8Type},

{column_name: publisher, validation_class: UTF8Type},
{column_name: edition, validation_class: UTF8Type},
{column_name: title, validation_class: UTF8Type, index_type: KEYS},
{column_name: author, validation_class: UTF8Type}

];

The output from the command is shown in Figure 9.2.

Figure 9.2
Creating a column family in Cassandra.
Source: Microsoft Corporation.

Creating a JPA Project in Eclipse
In this section, you will create a JPA project in the Eclipse IDE for the Kundera Cassandra
application. Follow these steps:

1. Select File > New > Other.

2. In the New dialog box, select JPA > JPA Project. Then click Next, as shown in
Figure 9.3.

Creating a JPA Project in Eclipse 295

Figure 9.3
Selecting JPA > JPA Project.
Source: Eclipse Foundation.

3. In the New JPA Project wizard, specify a project name (Kundera), choose a project
location, select JDK 1.7 as the target runtime, and 2.0 as the JPA version. In the
Configuration drop-down list, select Default Configuration for jdk1.7.0_21 and click
Next, as shown in Figure 9.4.

296 Chapter 9 n Using Cassandra with Kundera

Figure 9.4
Configuring the JPA project.
Source: Eclipse Foundation.

4. In the Java Settings dialog box, choose src in the Source Folders on Build Path box
and set the default output folder to build\classes. These are also the default Java
settings. Then click Next, as shown in Figure 9.5.

Creating a JPA Project in Eclipse 297

Figure 9.5
Configuring Java settings.
Source: Eclipse Foundation.

5. Configure a JPA facet. In the Platform drop-down list, choose EclipseLink 2.4.x. In
the Type drop-down list under JPA Implementation, choose User Library. Then click
the Manage Libraries button to create a new user library, as shown in Figure 9.6.

298 Chapter 9 n Using Cassandra with Kundera

Figure 9.6
Creating a new user library.
Source: Eclipse Foundation.

6. Choose Preferences > User Libraries. Then click New to create a new user library for
EclipseLink 2.4. In New User Library dialog box, specify a user library name
(EclipseLink2.4) and click OK, as shown in Figure 9.7.

Figure 9.7
Specifying new user library name.
Source: Eclipse Foundation.

Creating a JPA Project in Eclipse 299

7. The EclipseLink2.4 user library is created. Click the Add External JARs button,
shown in Figure 9.8, to add the javax.persistence_2.0.5.v201212031355.jar file from
the jpa subfolder of the \\eclipselink-2.4.2.v20130514-5956486\eclipselink\jlib
directory.

Figure 9.8
Adding external JARs to the user library.
Source: Eclipse Foundation.

8. Add the eclipselink-2.4.2.jar file to the EclipseLink2.4 user library and click OK. The
EclipseLink2.4 user library is added to new JPA project, as shown in Figure 9.9. Click
Finish.

300 Chapter 9 n Using Cassandra with Kundera

Figure 9.9
The new user library added to the JPA project.
Source: Eclipse Foundation.

9. An Open Associated Perspective dialog box prompts you to open the JPA
perspective. Click Yes, as shown in Figure 9.10. The EclipseLink2.4 library is added to
the Java build path of the Kundera JPA project, as shown in the Properties for
Kundera dialog box.

Figure 9.10
Select Yes to open the JPA perspective.
Source: Eclipse Foundation.

Creating a JPA Project in Eclipse 301

10. Click the Add External JARs button to add the kundera-cassandra-2.2.1-jar-with-
dependencies.jar file to the Java build path with the Add External JARs button. The
JAR files listed in Table 9.1 are included in the Kundera project’s Java build path.
The libraries and JARs in the Java build path of the Kundera project are shown in
Figure 9.11.

Table 9.1 Kundera Project JAR Files

JAR File Description

kundera-cassandra-2.2.1-jar-with-dependencies.jar Kundera library for Cassandra

javax.persistence_2.0.5.v201212031355.jar JPA 2.0 API

eclipselink-2.4.2.jar JPA 2.0 implementation

Figure 9.11
Libraries and JARs in the Kundera project.
Source: Eclipse Foundation.

302 Chapter 9 n Using Cassandra with Kundera

The Kundera JPA project is created. The JPA project includes a META-INF/
persistence.xml file for configuring properties for the object/relational mapping, as
shown in Figure 9.12.

Figure 9.12
New JPA project.
Source: Eclipse Foundation.

Creating a JPA Entity Class
The domain model for a JPA object/relational mapping application is defined in a JPA
entity class. The domain model class is just a plain old Java object (POJO) that describes
the Java object entity to be persisted, the object properties, and the Cassandra keyspace
and column family to persist to.

In this section, you will create a JPA entity class for object/relational mapping using Kun-
dera and the Cassandra database. Cassandra, though not a relational database, can be used
with object/relational mapping using the Kundera library, which supports mainly NoSQL
databases. Follow these steps:

1. Choose File > New > Other.

2. In the New dialog box, choose JPA > JPA Entity. Then click Next, as shown in
Figure 9.13.

Creating a JPA Entity Class 303

Figure 9.13
Select JPA > JPA Entity.
Source: Eclipse Foundation.

3. In the New JPA Entity wizard, select the Kundera project (a JPA project is required
for a JPA entity), select a source folder (kundera/src), specify a Java package
(kundera), and specify a class name (Catalog). In the Inheritance section, choose the
Entity option button. Then click Next, as shown in Figure 9.14.

304 Chapter 9 n Using Cassandra with Kundera

Figure 9.14
Configuring a JPA entity class.
Source: Eclipse Foundation.

4. In the Entity Properties dialog box, select the Use Default checkbox to select the
default table name, Catalog. Then, under Access Type, leave the default setting,
Field, selected. Finally, click Finish, as shown in Figure 9.15. The Catalog JPA entity
is created.

Creating a JPA Entity Class 305

Figure 9.15
Configuring JPA entity properties.
Source: Eclipse Foundation.

Annotate the Catalog class with an @Entity annotation to indicate that the class is a JPA
entity class. By default, the entity name is the same as the entity class name. Annotate the
class with @Table to indicate the Cassandra table name and schema. The table name is the
column family name catalog. The schema is in Keyspace@persistence-unit format. For
the Kundera keyspace and the kundera persistence unit name, which you will configure in
the next section, the schema is Kundera@kundera.

@Entity(name = "catalog")
@Table(name = "catalog", schema = "Kundera@kundera")

The entity class implements the Serializable interface to serialize a cache-enabled entity
bean to a cache when persisted to a database. To associate a version number with a serial-
izable class by serialization runtime, specify a serialVersionUID variable.

private static final long serialVersionUID = 1L;

306 Chapter 9 n Using Cassandra with Kundera

Annotate the catalogId field with the @Id annotation to indicate that the field is the pri-
mary key of the entity.

@Id
private String catalogId;

The primary key column name in the Cassandra database is assumed to be the name of
the primary key of the entity class. The field annotated with @Id must be one of the fol-
lowing types:

n Java primitive type, such as int or double

n Any primitive wrapper type, such as Integer, Double, String, java.util.Date,
java.sql.Date, java.math.BigDecimal, or java.math.BigInteger

Add fields called journal, publisher, edition, title, and author, and annotate them
with the @Column annotation to indicate that the fields are mapped to columns in the
Cassandra table. (Recall that in Cassandra, a column family is also called a table.)

@Column(name = "journal")
private String journal;

@Column(name = "publisher")
private String publisher;
@Column(name = "edition")
private String edition;

@Column(name = "title")
private String title;

@Column(name = "author")
private String author;

Add get/set methods for each of the fields. The JPA entity class Catalog appears in List-
ing 9.1.

Listing 9.1 The JPA Entity Class

package kundera;

import java.io.Serializable;
import javax.persistence.*;

/**
* Entity implementation class for Entity: Catalog
*
*/

Creating a JPA Entity Class 307

@Entity(name = "catalog")
@Table(name = "catalog", schema = "Kundera@kundera")
public class Catalog implements Serializable {

private static final long serialVersionUID = 1L;
@Id
private String catalogId;
public Catalog() {

super();
}
@Column(name = "journal")
private String journal;
@Column(name = "publisher")
private String publisher;
@Column(name = "edition")
private String edition;
@Column(name = "title")
private String title;
@Column(name = "author")
private String author;
public String getCatalogId() {

return catalogId;
}
public void setCatalogId(String catalogId) {

this.catalogId = catalogId;
}
public String getJournal() {

return journal;
}

public void setJournal(String journal) {
this.journal = journal;

}
public String getPublisher() {

return publisher;
}
public void setPublisher(String publisher) {

this.publisher = publisher;
}
public String getEdition() {

return edition;
}
public void setEdition(String edition) {

308 Chapter 9 n Using Cassandra with Kundera

this.edition = edition;
}
public String getTitle() {

return title;
}
public void setTitle(String title) {

this.title = title;
}
public String getAuthor() {

return author;
}
public void setAuthor(String author) {

this.author = author;
}

}

Configuring JPA in Persistence.xml
A META-INF/persistence.xml configuration file was created when a JPA project was cre-
ated in the Eclipse IDE. In this section, you will configure the object/relational mapping in
the persistence.xml configuration file. Kundera supports some properties, specified in
persistence.xml with the <property/> tag, common to all NoSQL data stores it supports.
These common properties are discussed in Table 9.2.

Table 9.2 Kundera Properties for NoSQL Data Stores

Property Description Required/Optional

kundera.nodes Node(s) on which NoSQL server is
running.

Required

kundera.port NoSQL database port. Required

kundera.keyspace NoSQL database keyspace. Required

kundera.dialect The NoSQL database dialect to
determine the persistence
provider. Valid values are
cassandra, mongodb, and hbase.

Required

kundera.client.lookup.
class

NoSQL database–specific client
class for low-level data store
operations.

Required

(Continued)

Configuring JPA in Persistence.xml 309

Table 9.2 Kundera Properties for NoSQL Data Stores (Continued)

Property Description Required/Optional

kundera.cache.provider.
class

The L2 cache implementation class. Required

kundera.cache.config.
resource

File containing L2 cache
implementation.

Required

kundera.ddl.auto.prepare Specifies an option to
automatically generate schema
and tables for all entities. Valid
options are as follows:

Optional

n create: Drops schema if it
already exists and creates
schema/tables based on entity
definitions.

n create-drop: Same as create,
but drops schema after
operation ends.

n update: Updates schema/tables
based on entity definitions.

n validate: Validates schema/
table based on entity
definitions and throws a
SchemaGenerationException if
validation fails.

kundera.pool.size.max.
active

Upper limit on the number of
object instances managed by the
pool per node.

Optional

kundera.pool.size.max.idle Upper limit on the number of idle
object instances in the pool.

Optional

kundera.pool.size.min.idle Minimum number of idle object
instances in the pool.

Optional

kundera.pool.size.max.
total

Upper limit on the total number of
object instances in the pool from
all nodes combined.

Optional

index.home.dir If Lucene indexes are chosen
instead of the built-in secondary
indexes, the directory path to store
Lucene indexes.

Optional

310 Chapter 9 n Using Cassandra with Kundera

kundera.client.property Name of the NoSQL database–
specific configuration file, which
must be in the class path.

Optional

kundera.batch.size Batch size in integer for bulk
insert/update.

Optional

kundera.username Username to authenticate
Cassandra and MongoDB.

Optional

kundera.password Password to authenticate
Cassandra and MongoDB.

Optional

In the persistence.xml file for the Kundera project, specify the persistence-unit name as
"kundera". Add a <provider/> element set to com.impetus.kundera.KunderaPersistence.

Specify the JPA entity class as kundera.Catalog in the <class/> element. Add <property/>

tags grouped as sub-elements of the <properties/> tag. Then add the properties discussed in
Table 9.3.

Table 9.3 JPA Configuration Properties in Persistence.xml

Property Value

kundera.nodes localhost

kundera.port 9160

kundera.keyspace Kundera

kundera.dialect cassandra

kundera.client.lookup.class com.impetus.client.cassandra.pelops.
PelopsClientFactory

kundera.cache.provider.class com.impetus.kundera.cache.ehcache.
EhCacheProvider

kundera.cache.config.resource /ehcache-test.xml

Configuring JPA in Persistence.xml 311

The persistence.xml configuration file appears in Listing 9.2.

Listing 9.2 The Persistence.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="kundera">
<provider>com.impetus.kundera.KunderaPersistence</provider>
<class>kundera.Catalog</class>

<properties>
<property name="kundera.nodes" value="localhost"/>
<property name="kundera.port" value="9160"/>
<property name="kundera.keyspace" value="Kundera"/>
<property name="kundera.dialect" value="cassandra"/>
<property name="kundera.client.lookup.class"

value="com.impetus.client.cassandra.pelops.PelopsClientFactory" />
<property name="kundera.cache.provider.class"

value="com.impetus.kundera.cache.ehcache.EhCacheProvider"/>
<property name="kundera.cache.config.resource"

value="/ehcache-test.xml"/>
</properties>

</persistence-unit>
</persistence>

Some NoSQL database–specific properties may also be specified in persistence.xml file.
For example, to configure Cassandra-specific properties, add the following property for
the Cassandra-specific configuration file in persistence.xml:

<property name="kundera.client.property" value="kundera-cassandra.xml" />

The name of the Cassandra-specific configuration file, kundera-cassandra.xml, is arbi-
trary. Connection-, schema-, and table-specific properties may be specified. The
connection-specific property that may be specified is cql.version. Some of the schema-
specific properties supported are discussed in Table 9.4.

312 Chapter 9 n Using Cassandra with Kundera

Table 9.4 Schema-Specific Properties in Persistence.xml

Property Description

strategy.class The replica placement strategy class. Valid values are
SimpleStrategy and NetworkTopologyStrategy.

replication.factor The replication factor for replica placement.

durable.writes A Boolean to indicate whether writes are durable. The default
value is true. All writes in Cassandra are written to memory and
in commit logs. A write is considered a success only if it is written
to both memory and the commit log. If the server crashes before
a write to memory is flushed to the data store, the write to the
commit log is applied when the server restarts.

The column family–specific properties supported by Cassandra are discussed in Table 9.5.

Table 9.5 Column Family–Specific Properties

Property Description

default.validation.class Default validation class for row key and columns.

key.validation.class Row key validation class.

comment Comment.

replicate.on.write Replicates write operations to all affected replicas
regardless of consistency. Applies only to counters.

comparator.type Data type used to validate and sort column names.

A sample Cassandra-specific configuration file appears in Listing 9.3.

Listing 9.3 Sample Cassandra-Specific Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<clientProperties>

<datastores>
<dataStore>
<name>cassandra</name>

<connection>

Configuring JPA in Persistence.xml 313

<properties>
<property name="cql.version" value="3.0.0"></property>

</properties>
</connection>
<schemas>

<schema>
<name>KunderaCassandra</name>
<properties>

<property name="strategy.class" value="SimpleStrategy" />
<property name="replication.factor" value="1" />
<property name="durable.writes" value="true" />
</properties>
<tables>

<table>
<name>catalog</name>
<properties>

<property name="default.validation.class"
value="UTF8Type"></property>

<property name="key.validation.class" value="UTF8Type">
</property>

<property name="replicate.on.write" value="true"></property>
<property name="comparator.type" value="UTF8Type"></property>
</properties>

</table>
</tables>

</schema>
</schemas>

</dataStore>
</datastores>

</clientProperties>

The Cassandra-specific configuration file is not required if you are using the default values
for the properties and you have not used any Cassandra-specific configuration files in this
chapter. The Cassandra-specific configuration file listed is provided as a sample if non-
default values are to be configured.

Creating a JPA Client Class
You have configured a JPA project for object/relational mapping to the Cassandra data-
base. Next, you will run some CRUD operations using the JPA API. First, however, you

314 Chapter 9 n Using Cassandra with Kundera

need to create a client class for the CRUD operations. You will use a Java class as a client
class. Follow these steps:

1. Select File > New > Other.

2. In the New dialog box, select Java > Class. Then click Next, as shown in Figure 9.16.

Figure 9.16
Selecting Java > Class.
Source: Eclipse Foundation.

3. In the New Java Class wizard, specify a package (kundera) and a class name
(KunderaClient). Then select the method stub for the main method to add to the
class. Finally, click Finish, as shown in Figure 9.17. The kundera.KunderaClient class
is added to the Kundera project, as shown in Figure 9.18.

Creating a JPA Client Class 315

Figure 9.17
Creating a JPA client class.
Source: Eclipse Foundation.

Figure 9.18
The JPA project with a JPA client class.
Source: Eclipse Foundation.

316 Chapter 9 n Using Cassandra with Kundera

Running JPA CRUD Operations
In the next few sections, you will create a catalog. You have already created a catalog

table; next, you will add data to the catalog table, find a catalog entry, update a catalog
entry, and delete a catalog entry.

Creating a Catalog
In this section, you will add some data to the catalog column family in Cassandra.
Add a method called create() to the KunderaClient class and invoke the method
from the main method so that the method is invoked when the application is run. The
JPA API is defined in the javax.persistence package. The EntityManager interface
is used to interact with the persistence context. The EntityManagerFactory interface
is used to interact with the entity manager factory for the persistence unit. The
Persistence class is used to obtain an EntityManagerFactory object in a Java SE
environment. Create an EntityManagerFactory object using the Persistence class
static method createEntityManagerFactory(java.lang.String persistenceUnitName).
Create an EntityManager instance from the EntityManagerFactory object using the
createEntityManager() method.

EntityManagerFactory emf = Persistence.createEntityManagerFactory("kundera");
em = emf.createEntityManager();

In the create() method, create an instance of the JPA entity class Catalog. Using the set

methods, set the catalogId, journal, publisher, edition, title, and author fields.

Catalog catalog = new Catalog();
catalog.setCatalogId("catalog1");
catalog.setJournal("Oracle Magazine");
catalog.setPublisher("Oracle Publishing");
catalog.setEdition("November-December 2013");
catalog.setTitle("Engineering as a Service");
catalog.setAuthor("David A. Kelly");

Use the persist(java.lang.object entity) method in the EntityManager interface to
make the domain model managed and persistent.

em.persist(catalog);

Running JPA CRUD Operations 317

Similarly, other JPA instances may be persisted.

To run the KunderaClient application, right-click the KunderaClient.java file in the Pack-
age Explorer and select Run As > Java Application, as shown In Figure 9.19.

Figure 9.19
Running the KunderaClient application.
Source: Eclipse Foundation.

Three rows are added to the catalog column family. In Cassandra-Cli, run the following
command to list the entity instances persisted using Kundera to the catalog column
family:

list catalog;

The output lists the three rows added, as shown in Figure 9.20.

318 Chapter 9 n Using Cassandra with Kundera

Figure 9.20
Listing the three rows added to Cassandra.
Source: Microsoft Corporation.

Finding a Catalog Entry Using the Entity Class
The EntityManager class provides several methods for finding an entity instance. In this
section, you will find a Catalog entity instance using the find(java.lang.Class<T>

entityClass, java.lang.Object primaryKey) method in which the first parameter is the
entity class and the second parameter is the primary key for the row to find. Add a
method called findByClass() to the KunderaClient class and invoke the method from
the main method so that the method is invoked when the application is run. Invoke the
find(java.lang.Class<T> entityClass, java.lang.Object primaryKey) method using
Catalog.class as the first argument and "catalog1" as the second argument.

Catalog catalog = em.find(Catalog.class, "catalog1");

Invoke the get methods on the Catalog instance to output the entity fields.

System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());
System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

Run the KunderaClient application in the Eclipse IDE. The column values for the row
with the primary key "catalog1" are output, as shown in Figure 9.21.

Running JPA CRUD Operations 319

Figure 9.21
Column values for row with primary key catalog1.
Source: Eclipse Foundation.

Finding a Catalog Entry Using a JPA Query
The Query interface is used to run a query in the Java Persistence query language and
native SQL. The EntityManager interface provides several methods for creating a Query

instance. In this section, you will run a Java Persistence query language statement
by first creating an instance of Query with the EntityManager method
createQuery(java.lang.String qlString) and then invoking the getResultList()

method on the Query instance. Add a method called query() to the KunderaClient class
and invoke the method from the main method so that the method is invoked when the
application is run. In the query() method, invoke the createQuery(java.lang.String

qlString) method to create a Query instance. Supply the Java Persistence query language
statement as SELECT c FROM Catalog c.

javax.persistence.Query query = em.createQuery("SELECT c FROM Catalog c");

Invoke the getResultList() method on the Query instance to run the SELECT statement
and return a List<Catalog> as the result.

List<Catalog> results = query.getResultList();

Iterate over the List object using an enhanced for statement to output the fields of the
Catalog instance.

for (Catalog catalog : results) {
System.out.println(catalog.getCatalogId());
System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());

320 Chapter 9 n Using Cassandra with Kundera

System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

}

Run the KunderaClient application to output the result of the Java Persistence query lan-
guage query, as shown in Figure 9.22.

Figure 9.22
Output from the Java Persistence query language query.
Source: Eclipse Foundation.

All three rows are output as follows:

catalog1
Oracle Magazine
Oracle Publishing
November-December 2013
Engineering as a Service
David A. Kelly
catalog2
Oracle Magazine
Oracle Publishing

Running JPA CRUD Operations 321

November-December 2013
Quintessential and Collaborative
Tom Haunert
catalog3
Oracle Magazine
Oracle Publishing
November-December 2013

Updating a Catalog Entry
In this section, you will update a catalog entry using the Java Persistence API. The
persist() method in EntityManager may be used to persist an updated entity instance.
Add a method called update() to the KunderaClient class and invoke the method from
the main method so that it is invoked when the application is run. For example, to
update the edition column in the row with the primary key "catalog1", create an
entity instance for the catalog1 row using the find(java.lang.Class<T> entityClass,

java.lang.Object primaryKey) method. Then set the edition field to the updated
value using the setEdition method. Persist the updated Catalog instance using the
persist(java.lang.Object entity) method.

Catalog catalog = em.find(Catalog.class, "catalog1");
catalog.setEdition("Nov-Dec 2013");
em.persist(catalog);

The Java Persistence query language provides the UPDATE clause to update a row. Create a
Query instance using an UPDATE statement and the createQuery(String) method in
EntityManager. Then invoke the executeUpdate() method to execute the UPDATE

statement.

em.createQuery("UPDATE Catalog c SET c.journal =
'Oracle-Magazine'").executeUpdate();

The journal column in all the rows in the catalog column family is updated. Having
applied updates, invoke the query() method to output the updated rows. The updated
rows have the updated values, as shown in Figure 9.23.

322 Chapter 9 n Using Cassandra with Kundera

Figure 9.23
Updating Cassandra data.
Source: Eclipse Foundation.

The complete output for the updated rows is as follows:

catalog1
'Oracle-Magazine'
Oracle Publishing
Nov-Dec 2013
Engineering as a Service
David A. Kelly
catalog2
'Oracle-Magazine’
Oracle Publishing
November-December 2013
Quintessential and Collaborative
Tom Haunert
catalog3
'Oracle-Magazine'
Oracle Publishing
November-December 2013

Running JPA CRUD Operations 323

Deleting a Catalog Entry
In this section, you will remove rows persisted in Cassandra using the Java Persistence
API. The remove(java.lang.Object entity) method in EntityManager may be used to
remove an entity instance. Add a method called delete() to the KunderaClient class
and invoke the method from the main method so that it is invoked when the application
is run. To remove the row with the primary key "catalog1", create an entity instance for
the catalog1 row using the find(java.lang.Class<T> entityClass, java.lang.Object

primaryKey) method. Then invoke the remove(java.lang.Object entity) method to
remove the catalog1 row from Cassandra.

Catalog catalog = em.find(Catalog.class, "catalog1");
em.remove(catalog);

Similarly, rows catalog2 and catalog3 may removed.

catalog = em.find(Catalog.class, "catalog2");
em.remove(catalog);
catalog = em.find(Catalog.class, "catalog3");
em.remove(catalog);

The Java Persistence query language provides the DELETE clause to delete a row. Create a
Query instance using a DELETE statement and the createQuery(String) method in
EntityManager. Then invoke the executeUpdate() method to execute the DELETE

statement.

em.createQuery("DELETE FROM Catalog c").executeUpdate();

All rows are deleted. The DELETE statement does not delete the row itself but deletes
all the columns in the rows. Having performed the deletion, either using the
remove(java.lang.Object entity) method or the DELETE Java Persistence query language
statement, invoke the query() method to output any Catalog instances persisted to
catalog table. Because the catalog table does not contain any persisted Catalog

instances, the NullPointerException is generated as shown in Figure 9.24.

324 Chapter 9 n Using Cassandra with Kundera

Figure 9.24
The NullPointerException after deleting Cassandra data.
Source: Eclipse Foundation.

The rows in the catalog column family may be listed in the Cassandra-Cli with the fol-
lowing command:

list catalog;

Empty rows are listed as the row columns are deleted, as shown in Figure 9.25.

Figure 9.25
Listing empty rows after deleting Cassandra data.
Source: Microsoft Corporation.

The KunderaClient application appears in Listing 9.4.

Listing 9.4 The KunderaClient Application

package kundera;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.persistence.EntityManager;

Running JPA CRUD Operations 325

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;
import javax.persistence.PersistenceUnit;

public class KunderaClient {
private static EntityManager em;
private static EntityManagerFactory emf;
public static void main(String[] args) {

emf = Persistence.createEntityManagerFactory("kundera");
em = emf.createEntityManager();
create();
// findByClass();
// query();
// update();
//delete();

}
private static void create() {

Catalog catalog = new Catalog();
catalog.setCatalogId("catalog1");
catalog.setJournal("Oracle Magazine");
catalog.setPublisher("Oracle Publishing");
catalog.setEdition("November-December 2013");
catalog.setTitle("Engineering as a Service");
catalog.setAuthor("David A. Kelly");
em.persist(catalog);
catalog = new Catalog();
catalog.setCatalogId("catalog2");
catalog.setJournal("Oracle Magazine");
catalog.setPublisher("Oracle Publishing");
catalog.setEdition("November-December 2013");
catalog.setTitle("Quintessential and Collaborative");
catalog.setAuthor("Tom Haunert");
em.persist(catalog);
catalog = new Catalog();
catalog.setCatalogId("catalog3");
catalog.setJournal("Oracle Magazine");
catalog.setPublisher("Oracle Publishing");
catalog.setEdition("November-December 2013");
catalog.setTitle("");
catalog.setAuthor("");
em.persist(catalog);

}

326 Chapter 9 n Using Cassandra with Kundera

private static void findByClass() {
Catalog catalog = em.find(Catalog.class, "catalog1");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());
System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}
private static void query() {

javax.persistence.Query query = em
.createQuery("SELECT c FROM Catalog c");
List<Catalog> results = query.getResultList();
if(results != null) {
for (Catalog catalog : results) {

System.out.println(catalog.getCatalogId());
System.out.println("\n");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());
System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}
}

}
private static void update() {

Catalog catalog = em.find(Catalog.class, "catalog1");
catalog.setEdition("Nov-Dec 2013");
em.persist(catalog);
em.createQuery("UPDATE Catalog c SET c.journal = 'Oracle-

Magazine'")
.executeUpdate();
/*
* em.createQuery(
* "UPDATE Catalog c SET c.author = 'Kelly, David A.' WHERE

c.catalogId='catalog1'"

Running JPA CRUD Operations 327

*) .executeUpdate(); update with WHERE does not get applied.
*/

System.out.println("After updating");
System.out.println("\n");
query();

}
private static void delete() {

Catalog catalog = em.find(Catalog.class, "catalog1");
em.remove(catalog);
catalog = em.find(Catalog.class, "catalog2");
em.remove(catalog);
catalog = em.find(Catalog.class, "catalog3");
em.remove(catalog);
System.out.println("After removing catalog3");
query();
/*
* em.createQuery(
* "DELETE FROM Catalog c WHERE c.title='Engineering As a Service'")
* .executeUpdate(); System.out.println("\n"); //
* System.out.println("After removing catalog1"); query();
*/

// DELETE with WHERE does not get applied.
em.createQuery("DELETE FROM Catalog c").executeUpdate();
System.out.println("\n");
System.out.println("After removing all catalog entries");
query();

}
private static void close() {

em.close();
// emf.close();

}
}

Summary
The JPA is designed for relational databases, but the Kundera library provides object/rela-
tional mapping using the JPA for NoSQL data stores Cassandra, MongoDB, and HBase.
In this chapter, you used the Java Persistence API with Kundera to run CRUD operations
on Cassandra. In the next chapter, you will use the Spring Data project with Apache
Cassandra.

328 Chapter 9 n Using Cassandra with Kundera

Chapter 10

Using Spring Data
with Cassandra

Spring Data is designed for new data access technologies such as non-relational databases.
The Spring Data Cassandra project adds Spring Data functionality to the Cassandra
server. This chapter discusses how to use the Spring Data Cassandra project in Eclipse.

Overview of the Spring Data Cassandra Project
The package for the conversion from Cassandra to Spring Data is org.springdata.

cassandra.convert. The main interfaces and classes in the package are illustrated in
Figure 10.1.

Figure 10.1
Main classes and interfaces in the org.springdata.cassandra.convert package.

The main interfaces and classes in the org.springdata.cassandra.convert package are
discussed in Table 10.1.

329

Table 10.1 Main Classes and Interfaces in the org.springdata.cassandra.convert Package

Class/Interface Description

CassandraConverter Central Cassandra-specific converter interface from
object to row

MappingCassandraConverter CassandraConverter for sophisticated mapping
of domain objects to row

The package for the Spring Data Cassandra configuration is org.springdata.cassandra.

config.java. This package has just one class, AbstractCassandraConfiguration, which is
the base class for Spring Data Cassandra configuration using JavaConfig, as illustrated in
Figure 10.2.

Figure 10.2
The org.springdata.cassandra.config.java package.

The package for the core classes in the Spring Data Cassandra project is org.springdata.

cassandra.core. The package’s main classes and interfaces are illustrated in Figure 10.3.

Figure 10.3
Main classes and interfaces in the org.springdata.cassandra.core package.

The main classes and interfaces in the org.springdata.cassandra.core package are dis-
cussed in Table 10.2.

330 Chapter 10 n Using Spring Data with Cassandra

Table 10.2 Main Classes and Interfaces in the org.springdata.cassandra.core Package

Class/Interface Description

DeleteOperation Base interface for delete operations.

BatchOperation Base interface for batch operations.

CassandraSessionFactoryBean Factory class for configuring a Cassandra session.

CassandraOperations Operations for interacting with Cassandra. Also
used by the SimpleCassandraRepository
interface.

CassandraTemplate Convenience API for all Cassandra operations using
POJOs.

SaveOperation Base interface for save (update) operations.

SaveNewOperation Base interface for save (insert) operations.

GetOperation Base interface for get (select) operations.

The core package for running CQL queries is org.springdata.cassandra.cql.core.
The package has the classes and interfaces shown in Figure 10.4.

Figure 10.4
Classes and interfaces in the org.springdata.cassandra.cql.core package.

The main classes and interfaces in the org.springdata.cassandra.core package are dis-
cussed in Table 10.3.

Table 10.3 Main Classes and Interfaces in the org.springdata.cassandra.core Package

Class/Interface Description

CqlOperations Operations for interacting with Cassandra at the
lowest level using CQL

RingMember Represents a cluster node

(Continued)

Overview of the Spring Data Cassandra Project 331

Table 10.3 Main Classes and Interfaces in the org.springdata.cassandra.core Package
(Continued)

Class/Interface Description

CassandraClusterFactoryBean Factory class for configuring a Cassandra cluster

UpdateOperation Base interface for update operations

SelectOperation Base interface for select operations

SelectOneOperation Base interface for the select operation to get a
single result

QueryOperation Base interface for query operations

The org.springdata.cassandra.mapping package defines the classes, interfaces, and
annotation types for mapping a Spring Data domain object to Cassandra. Some of the
annotation types in the package are illustrated in Figure 10.5.

Figure 10.5
Main annotation types in the org.springdata.cassandra.mapping package.

The annotation types are discussed in Table 10.4.

Table 10.4 Main Annotation Types in the org.springdata.cassandra.mapping Package

Annotation Type Description

Table Domain object to be persisted to a Cassandra table

Id Identifies a primary key ID in a Cassandra table

Column Identifies a column in a Cassandra table

KeyColumn Identifies a primary key column in a Cassandra table

332 Chapter 10 n Using Spring Data with Cassandra

The org.springdata.cassandra.cql.config package defines classes and enums for CQL
configuration. Some of the classes are illustrated in Figure 10.6.

Figure 10.6
Main classes in the org.springdata.cassandra.cql.config package.

The classes are discussed in Table 10.5.

Table 10.5 Main Classes in the org.springdata.cassandra.cql.config Package

Class Description

KeyspaceAttributes Keyspace attributes used to create/validate or drop
the keyspace on startup

PoolingOptions Pooling options such as maximum connections and
minimum/maximum simultaneous requests

Setting the Environment
To set the environment, you must install the following software:

n Eclipse IDE for Java EE developers from http://www.eclipse.org/downloads/packages/
eclipse-ide-java-ee-developers/keplersr2

n Apache Cassandra 2.04 or a later version from http://cassandra.apache.org/
download/

Start Apache Cassandra with the following command:

cassandra –f

Create a Cassandra Keyspace called springdata with Cassandra-Cli. The placement_

strategy option specifies the strategy used for replica placement and the strategy_options

option specifies the replication factor as 1 via the replication_factor property.

Setting the Environment 333

../../../../../../cassandra.apache.org/download/default.htm
../../../../../../cassandra.apache.org/download/default.htm
../../../../../../www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2
../../../../../../www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2

CREATE KEYSPACE springdata
with placement_strategy = 'org.apache.cassandra.locator.SimpleStrategy'
and strategy_options = {replication_factor:1};

Set the springdata keyspace as the working keyspace using the following command:

use springdata;

The output from creating and setting a keyspace is shown in Figure 10.7.

Figure 10.7
Creating a keyspace.
Source: Microsoft Corporation.

Next, create a column family called catalog in Cassandra-Cli. One of the columns must
be named key. The comparator, used for column names, and the key validation class, used
for the primary key value, are set to UTF8Type. The column metadata specifies columns
journal, publisher, edition, title, and author. The validation class for columns,
which is used to validate column values, is set to UTF8Type.

CREATE COLUMN FAMILY catalog
WITH comparator = UTF8Type
AND key_validation_class=UTF8Type
AND column_metadata = [
{column_name: key, validation_class: UTF8Type},
{column_name: journal, validation_class: UTF8Type},

{column_name: publisher, validation_class: UTF8Type},
{column_name: edition, validation_class: UTF8Type},
{column_name: title, validation_class: UTF8Type, index_type: KEYS},
{column_name: author, validation_class: UTF8Type}

];

334 Chapter 10 n Using Spring Data with Cassandra

The output from the command is shown in Figure 10.8.

Figure 10.8
Creating a column family.
Source: Microsoft Corporation.

Creating a Maven Project
Next, you will create a Maven project for Spring Data. Maven is a project management
tool.

First, you need to create a Maven project in the Eclipse IDE. Follow these steps:

1. Select File > New > Other.

2. In the New dialog box, select Maven > Maven Project. Then click Next, as shown in
Figure 10.9.

Creating a Maven Project 335

Figure 10.9
Selecting Maven > Maven Project.
Source: Eclipse Foundation.

3. The New Maven Project wizard starts. Select the Create a Simple Project checkbox
and the Use Default Workspace Location checkbox. Then click Next, as shown in
Figure 10.10.

336 Chapter 10 n Using Spring Data with Cassandra

Figure 10.10
Selecting to create a simple project at the default location.
Source: Eclipse Foundation.

4. In the Configure Project screen, specify a group ID (com.cassandra.core), an artifact
ID (SpringCassandra or spring-cassandra), a version number (1.0), the packaging
used (jar), and a name (SpringCassandra). Then click Finish, as shown in Figure 10.11.
A Maven project (SpringCassandra or spring-cassandra) is created, as shown in
Figure 10.12. (Note that the downloadable project for this chapter is spring-

cassandra rather than SpringCassandra, which is used in the chapter.)

Creating a Maven Project 337

Figure 10.11
Configuring a new Maven project.
Source: Eclipse Foundation.

Figure 10.12
The new Maven project.
Source: Eclipse Foundation.

Configuring the Maven Project
The Maven project includes a pom.xml file to specify the dependencies and build config-
uration for the project. In the pom.xml file, specify the dependencies listed in Table 10.6.

338 Chapter 10 n Using Spring Data with Cassandra

Table 10.6 Maven Project Dependencies

Dependency Group ID Artifact ID Version Description

org.springframework spring-core 3.2.5.RELEASE Spring core

org.springframework spring-context 3.2.5.RELEASE Spring context

org.springdata spring-data-cassandra 1.2.0.BUILD-
SNAPSHOT

Spring Data
Cassandra project
core API

Specify the maven-compiler-plugin and maven-eclipse-plugin plug-ins in the build con-
figuration. The pom.xml file to use the Spring Data Cassandra project appears in Listing 10.1.

Listing 10.1 The pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.cassandra.core</groupId>
<artifactId>SpringCassandra</artifactId>
<version>1.0</version>
<name>SpringCassandra</name>
<repositories>

<repository>
<id>sonatype-nexus-snapshots</id>
<url>https://oss.sonatype.org/content/repositories/snapshots/</url>

</repository>
</repositories>
<dependencies>

<dependency>
<groupId>org.springdata</groupId>
<artifactId>spring-data-cassandra</artifactId>
<version>1.2.0.BUILD-SNAPSHOT</version>

</dependency>
<!-- Spring framework -->
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>

Configuring the Maven Project 339

<version>3.2.5.RELEASE</version>
</dependency>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.2.5.RELEASE</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>

<source>1.6</source>
<target>1.6</target>

</configuration>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<version>2.9</version>
<configuration>

<downloadSources>true</downloadSources>
<downloadJavadocs>true</downloadJavadocs>

</configuration>
</plugin>

</plugins>
</build>

</project>

Configuring JavaConfig
Configure the Spring Data environment with POJOs using JavaConfig. The base class
for Spring Data Cassandra configuration with JavaConfig is org.springdata.cassandra

.config.java.AbstractCassandraConfiguration. In New Java Class wizard, create a Java
class, SpringCassandraApplicationConfig, that extends the org.springdata.cassandra

.config.java.AbstractCassandraConfiguration, class as shown in Figure 10.13.

340 Chapter 10 n Using Spring Data with Cassandra

Figure 10.13
Creating a JavaConfig class.
Source: Eclipse Foundation.

Annotate the class with @Configuration, which indicates that the class is processed by the
Spring container to generate bean definitions and service requests for the beans at run-
time. The SpringCassandraApplicationConfig class must implement the inherited
abstract method keyspace(). Return the keyspace name springdata as a String.
The Spring Cassandra configuration class SpringCassandraApplicationConfig appears
in Listing 10.2.

Listing 10.2 The Spring Configuration Class SpringCassandraApplicationConfig

package com.cassandra.config;

import java.beans.ConstructorProperties;
import org.springdata.cassandra.config.java.AbstractCassandraConfiguration;
import org.springdata.cassandra.convert.CassandraConverter;
import org.springdata.cassandra.convert.MappingCassandraConverter;
import org.springdata.cassandra.core.CassandraOperations;
import org.springdata.cassandra.core.CassandraSessionFactoryBean;

Configuring JavaConfig 341

import org.springdata.cassandra.core.CassandraTemplate;
import org.springdata.cassandra.cql.config.KeyspaceAttributes;
import org.springdata.cassandra.cql.core.CassandraClusterFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.datastax.driver.core.Cluster;

@Configuration
public class SpringCassandraApplicationConfig extends

AbstractCassandraConfiguration {
public static final String KEYSPACE = "springdata";
@Override

protected String keyspace() {
return KEYSPACE;

}
}

Creating a Model
Next, create the model class to use with the Spring Data Cassandra project. A domain
object to be persisted to Cassandra server must be annotated with org.springdata.

cassandra.mapping.Table. In the New Java Class wizard, create a POJO class named
Catalog, as shown in Figure 10.14.

Figure 10.14
Creating a model POJO class named Catalog.
Source: Eclipse Foundation.

342 Chapter 10 n Using Spring Data with Cassandra

Add fields for key, journal, edition, publisher, title, and author and the correspond-
ing get/set methods. Annotate the id field with @Id. Add constructors that may be used
to construct a Catalog instance. The Catalog entity appears in Listing 10.3.

Listing 10.3 The Catalog Entity

package com.cassandra.model;
import org.springframework.data.annotation.Id;
import org.springdata.cassandra.mapping.Table;
@Table(name = "catalog")
public class Catalog {

@Id
private String key;
private String journal;
private String publisher;
private String edition;
private String title;
private String author;

public Catalog() {}

public Catalog(String key, String journal, String publisher,
String edition, String title, String author) {
this.key = key;
this.journal = journal;
this.publisher = publisher;
this.edition = edition;
this.title = title;
this.author = author;

}
public String getKey() {

return key;
}
public void setKey(String key) {

this.key = key;
}
public String getJournal() {

return journal;
}
public void setJournal(String journal) {

this.journal = journal;
}
public String getPublisher() {

Creating a Model 343

return publisher;
}
public void setPublisher(String publisher) {

this.publisher = publisher;
}
public String getEdition() {

return edition;
}
public void setEdition(String edition) {
this.edition = edition;
}
public String getTitle() {

return title;
}
public void setTitle(String title) {

this.title = title;
}
public String getAuthor() {

return author;
}
public void setAuthor(String author) {

this.author = author;
}

}

The directory structure of the SpringCassandra project is shown in Figure 10.15.

Figure 10.15
The directory structure of the SpringCassandra project.
Source: Eclipse Foundation.

344 Chapter 10 n Using Spring Data with Cassandra

Using Spring Data with Cassandra with Template
The common CRUD operations on a Cassandra data source may be performed using the
org.springdata.cassandra.core.CassandraOperations interface. The org.springdata.

cassandra.core.CassandraTemplate class implements the CassandraOperations

interface. In this section, you will run CRUD operations on Cassandra using the
CassandraTemplate class. Create a Java client class (CassandraClient) for the Cassandra
CRUD operations in New Java Class wizard, as shown in Figure 10.16.

Figure 10.16
Creating a Java client class.
Source: Eclipse Foundation.

The directory structure of the SpringCassandra project is shown in Figure 10.17.

Using Spring Data with Cassandra with Template 345

Figure 10.17
The directory structure of SpringCassandra project.
Source: Eclipse Foundation.

You can obtain a CassandraTemplate instance obtained using ApplicationContext. Cre-
ate an ApplicationContext as follows:

ApplicationContext context = new
AnnotationConfigApplicationContext(SpringCassandraApplicationConfig.class);

The getBean(Class requiredType) method returns a named bean of the specified type.
The class type is CassandraOperations.class.

CassandraOperations ops = context.getBean(CassandraOperations.class);

Finding Out About the Cassandra Cluster
The org.springdata.cassandra.cql.core.CqlOperations interface provides the over-
loaded describeRing() method to find the Cassandra cluster topology. Obtain a
CqlOperations instance from the CassandraOperations instance using the
getCqlOperations() method and invoke the describeRing() method to obtain a
List<RingMember> instance. Iterate over the List to output the individual Cassandra node
description.

for (RingMember member : ops.getCqlOperations().describeRing()) {
System.out.println(member.toString());

}

Output the table name used for the specified entity class by the template using the
getTableName(Class<?> entityClass) method in CassandraOperations.

System.out.println("Table name: " + ops.getTableName(Catalog.class));

346 Chapter 10 n Using Spring Data with Cassandra

To run the CassandraClient application, right-click the CassandraClient.java class in
Package Explorer and select Run As > Java Application, as shown in Figure 10.18.

Figure 10.18
Running the CassandraClient application.
Source: Eclipse Foundation.

A description of the Cassandra node connected in the cluster is output, including the host
name, address, data center, and rack. The Cassandra table name used for the Catalog

entity class is also output, as shown in Figure 10.19.

Figure 10.19
Cassandra node description.
Source: Eclipse Foundation.

Finding Out About the Cassandra Cluster 347

Running Cassandra CRUD Operations
You can use the CassandraOperations instance to perform various create, read, update,
delete (CRUD) operations on a domain object stored in the Cassandra server. Add the
methods discussed in Table 10.7 to the CassandraClient class and invoke the methods
from the main method.

Table 10.7 CassandraClient Class Methods

Method Description

saveNew() Adds a new row in Cassandra

saveNewInBatch() Adds multiple rows

findAll() Finds all rows

findAllSpecifiedIds() Finds all rows for specified IDs

findById() Finds a single row by ID

findAllByCql() Finds all rows by CQL

findOneByCql() Finds one row by CQL

countRows() Counts the number of rows

exists() Finds if a specific row ID exists

update() Updates a row

updateInBatch() Updates multiple rows

deleteById() Deletes a row by ID

deleteByIdInBatch() Deletes all rows by ID

delete() Deletes a single row

deleteInBatch() Deletes a batch of rows

In subsequent sections, you will invoke these methods for CRUD operations. Comment
out the method invocations not to be run in an application. For example, to invoke only
the saveNew() method, uncomment the saveNew() method and comment out method
invocations for all other methods when the application is run.

348 Chapter 10 n Using Spring Data with Cassandra

Save Operations
The CassandraOperations interface provides several methods for adding new row(s) to
Cassandra. These are listed in Table 10.8.

Table 10.8 CassandraOperations Interface Methods for Adding New Rows

Method Description

saveNew(T entity) Adds a new row

saveNewInBatch(Iterable<T> entities) Adds a batch of new rows

In the saveNew() method, create an instance of the entity class Catalog.

Catalog catalog1 = new Catalog("catalog1", "Oracle Magazine",
"Oracle Publishing", "November-December 2013",
"Engineering as a Service", "David A. Kelly");

Invoke the saveNew(T entity) method in CassandraOperations to save the Catalog entity
instance.

ops.saveNew(catalog1);

Run the CassandraClient application to invoke the saveNew() method and save a new row
in the catalog table. Then run the following command in Cassandra-Cli:

list catalog;

The output lists the row added, as shown in Figure 10.20.

Figure 10.20
Listing the new row added.
Source: Microsoft Corporation.

Running Cassandra CRUD Operations 349

In the saveNewInBatch() method, use the saveNewInBatch(Iterable<T> entities)

method to save a batch of rows. First create a HashSet instance, in which you will add
the Catalog entity instances.

HashSet<Catalog> entities = new HashSet();

Create instances of the Catalog entity and add the entity instances to the HashSet using
the add(E e) method.

Catalog catalog2 = new Catalog("catalog2", "Oracle Magazine",
"Oracle Publishing", "November-December 2013",
"Quintessential and Collaborative", "Tom Haunert");
Catalog catalog3 = new Catalog("catalog3", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");
Catalog catalog4 = new Catalog("catalog4", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");
Catalog catalog5 = new Catalog("catalog5", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");
Catalog catalog6 = new Catalog("catalog6", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");
entities.add(catalog2);
entities.add(catalog3);
entities.add(catalog4);
entities.add(catalog5);
entities.add(catalog6);

Invoke the saveNewInBatch(Iterable<T> entities) method to save the HashSet. The
batch save is not applied until the saveNewInBatch() method is invoked on the entities.

ops.saveNewInBatch(entities);

Then run the list catalog command in Cassandra-Cli to list the batch of rows added, as
shown in Figure 10.21.

350 Chapter 10 n Using Spring Data with Cassandra

Figure 10.21
Listing the batch of rows added.
Source: Microsoft Corporation.

Find Operations
The CassandraOperations interface provides several methods to find row(s) from Cassan-
dra, as listed in Table 10.9.

Running Cassandra CRUD Operations 351

Table 10.9 CassandraOperations Interface Methods for Finding Rows

Method Description

find(Class<T> entityClass, String cql) Finds a single entity instance using
CQL query

findAll(Class<T> entityClass) Finds all entity instances

findAll(Class<T> entityClass, Iterable<?> ids) Finds entity instances for the
specified row IDs

findById(Class<T> entityClass, Object id) Finds the entity instance for the
specified row ID

In this section, you will find the rows added to Cassandra using the different find meth-
ods in CassandraOperations. In the findAll() method in CassandraClient, invoke the
findAll(Class<T> entityClass) method in CassandraOperations with Catalog.class

as argument. This method will return a list, from which you will get an Iterator to use
over the result set.

Iterator<Catalog> iter = ops.findAll(Catalog.class).iterator();

Using a while loop, iterate over the result set and output the column values for each of the
rows.

while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println(catalog.getKey());
System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());
System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

}

Invoke the findAll() method from the main method to output the rows stored in Cassan-
dra, as shown in Figure 10.22.

352 Chapter 10 n Using Spring Data with Cassandra

Figure 10.22
Finding all rows.
Source: Eclipse Foundation.

In the findAllSpecifiedIds() method in CassandraClient, invoke the findAll(Class<T>

entityClass,Iterable<?> ids) method in CassandraOperations with Catalog.class as
the first argument and a HashSet of row IDs as the second argument. This method will
return a list, from which you will get an Iterator to use over the result set.

HashSet<String> ids = new HashSet();
ids.add("catalog1");
ids.add("catalog2");
Iterator<Catalog> iter = ops.findAll(Catalog.class, ids).iterator();

Using a while loop, iterate over the result set and output the column values for each of the
rows.

while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println(catalog.getKey());
System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());

Running Cassandra CRUD Operations 353

System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

}

Invoke the findAllSpecifiedIds() method from the main method to output the rows
stored in Cassandra, as shown in Figure 10.23. The output for findAllSpecifiedIds()

and findAll is the same because you specified all IDs in findAllSpecifiedIds().

Figure 10.23
Finding Cassandra table rows by all specified IDs.
Source: Eclipse Foundation.

In the findById() method in CassandraClient, invoke the findById(Class<T>

entityClass, Object id) method to find a row with Catalog.class as the first argument
and "catalog1" as the second argument. This method will return a Catalog entity
instance. Output the column values for the row selected.

System.out.println(catalog.getKey());
System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());
System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

354 Chapter 10 n Using Spring Data with Cassandra

Invoke the findById() method from the main method to output the catalog1 row stored
in Cassandra, as shown in Figure 10.24.

Figure 10.24
Finding a Cassandra table row by ID.
Source: Eclipse Foundation.

In the findAllByCql() method in CassandraClient, invoke the find(Class<T>

entityClass, String cql) method in CassandraOperations to select rows using a CQL
query. Specify Catalog.class as the first argument. As the second argument, specify a
CQL query "SELECT * FROM catalog". Then invoke the findAll() method to return an
Iterator for the result set.

Iterator<Catalog> iter = ops.findAll(Catalog.class).iterator();

Using a while loop, iterate over the result set and output the column values for each of the
rows.

while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println(catalog.getKey());
System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());
System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

}

Invoke the findAllByCql() method from the main method to output the rows stored in
Cassandra, as shown in Figure 10.25. The output for findAllByCql() is the same as for
findAllSpecifiedIds() and findAll.

Running Cassandra CRUD Operations 355

Figure 10.25
Finding all table rows by CQL.
Source: Eclipse Foundation.

In the findOneByCql() method in CassandraClient, invoke the findOne(Class<T>

entityClass, String cql) method to find a row with Catalog.class as the first argu-
ment and the CQL query "SELECT * from catalog WHERE key='catalog1'" as the second
argument. Then execute the method to return a Catalog entity instance. Output the col-
umn values for the row selected.

System.out.println(catalog.getKey());
System.out.println(catalog.getJournal());
System.out.println(catalog.getPublisher());
System.out.println(catalog.getEdition());
System.out.println(catalog.getTitle());
System.out.println(catalog.getAuthor());

Invoke the findOneByCql() method from the main method to output the catalog1 row
stored in Cassandra, as shown in Figure 10.26. The output for findOneByCql() is the
same as for findById() because you have specified the same ID, 'catalog1'.

356 Chapter 10 n Using Spring Data with Cassandra

Figure 10.26
Finding one table row by CQL.
Source: Eclipse Foundation.

Exists and Count Operations
The exists(Class<T> entityClass, Object id) method in CassandraOperations finds
whether an entity exists in the Cassandra database. In the exists() method in Cassandra-
Client, invoke the exists(Class<T> entityClass, Object id) method with Catalog.

class as the first argument and "catalog2" as the second argument to find out if the
catalog2 ID exists in the Cassandra table catalog. Invoke the execute() method to run
the operation. The exists(Class<T> entityClass, Object id) method returns a Boolean
object. Invoke the booleanValue() method on the Boolean object to find if the catalog2

row exists.

System.out.println("The catalog entry with id catalog2 exists: "+ ops.exists
(Catalog.class, "catalog2"));

The countAll(Class<T> entityClass) method in CassandraOperations returns Long for
the number of rows for a specified entity. In the countRows() method in CassandraClient,
invoke the countAll(Class<T> entityClass) method with Catalog.class as the
argument.

System.out.println("Number of rows: " + ops.countAll(Catalog.class));

In the next run of the CassandraClient application, invoke the exists() method and the
countRows() method. The output indicates that Cassandra has six rows and that the
catalog2 row exists, as shown in Figure 10.27.

Running Cassandra CRUD Operations 357

Figure 10.27
Finding if a Cassandra table row exists.
Source: Eclipse Foundation.

Update Operations
The CassandraOperations interface provides two methods for updating row(s) to Cassan-
dra, as listed in Table 10.10.

Table 10.10 CassandraOperations Interface Methods for Updating Rows

Method Description

save(T entity) Updates a row

saveInBatch(Iterable<T> entities) Updates a batch of rows

In the update() method in CassandraClient creates an instance of Catalog with the
updated column values.

Catalog catalog1 = new Catalog("catalog1", "Oracle Magazine","Oracle-Publishing",
"11/12 2013", "Engineering as a Service","Kelly, David A.");

Invoke the save(T entity) method to update the catalog1 row.

ops.save(catalog1);

Uncomment the update() method invocation in the main method. When the application
is run, the catalog1 row is updated. Then run the list catalog command in cassandra-
cli to list the updated row catalog1, as shown in Figure 10.28.

358 Chapter 10 n Using Spring Data with Cassandra

Figure 10.28
Listing the updated row.
Source: Microsoft Corporation.

In the updateInBatch() method in CassandraClient, create two instances of Catalog with
the updated column values.

Catalog catalog2 = new Catalog("catalog2", "Oracle Magazine",
"Oracle Publishing", "November-December 2013",
"Quintessential and Collaborative", "Haunert, Tom");

Catalog catalog3 = new Catalog("catalog3", "Oracle Magazine",
"Oracle-Publishing", "Nov-Dec 2013", "", "");

Create a HashSet and add the entity instances to it.

HashSet<Catalog> entities = new HashSet();
entities.add(catalog2);
entities.add(catalog3);

Invoke the saveNewInBatch(Iterable<T> entities) method to save the HashSet object.
Uncomment the updateInBatch() method invocation in the main method. When the
application is run, the catalog2 and catalog3 rows are updated. Next, run the list

catalog command in Cassandra-Cli to list the updated rows catalog2 and catalog3, as
shown in Figure 10.29.

Figure 10.29
Listing table rows updated in batch.
Source: Microsoft Corporation.

Running Cassandra CRUD Operations 359

Remove Operations
CassandraOperations provides several methods for removing row(s) from Cassandra, as
listed in Table 10.11.

Table 10.11 CassandraOperations Interface Methods for Removing Rows

Method Description

delete(T entity) Deletes a single entity instance

deleteAll(Class<T> entityClass) Deletes all entity instances

deleteById(Class<T> entityClass, Object id) Deletes a single instance by ID

deleteByIdInBatch(Class<T> entityClass,
Iterable<?> ids)

Deletes a batch of instances
for specified IDs

deleteInBatch(Iterable<T> entities) Deletes a batch of instances

In the deleteById() method, invoke the deleteById(Class<T> entityClass, Object id)

method with Catalog.class as the first argument and catalog3 as the second argument.

ops.deleteById(Catalog.class, "catalog3");

When the CassandraClient application is run with the deleteById() method invocation
uncommented, the catalog3 row is deleted from the catalog table. Next, run the list

catalog command in Cassandra-Cli to list the catalog3 row columns as deleted, as
shown in Figure 10.30.

Figure 10.30
Listing deleted rows by ID.
Source: Microsoft Corporation.

360 Chapter 10 n Using Spring Data with Cassandra

In the deleteByIdInBatch() method in CassandraClient, invoke the deleteByIdInBatch

(Class<T> entityClass, Iterable<?> ids) method with Catalog.class as the first argu-
ment and a HashSet of IDs consisting of catalog1 and catalog2 as the second argument.

HashSet<String> ids = new HashSet();
ids.add("catalog1");
ids.add("catalog2");
ops.deleteByIdInBatch(Catalog.class, ids);

In the delete() method in CassandraClient, invoke the delete(T entity) with a Catalog

instance for the catalog4 ID as the argument.

Catalog catalog4 = new Catalog("catalog4", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");
ops.delete(catalog4);

When the CassandraClient application is run with the deleteByIdInBatch() method and
delete() method invocations uncommented, the catalog1 and catalog2 rows are deleted
from the catalog table. The catalog4 ID is also deleted. Next, run the list catalog com-
mand in Cassandra-Cli to list the catalog1, catalog2, catalog3, and catalog4 row col-
umns as deleted. (The catalog3 row column was deleted earlier using the deleteById()

method.) See Figure 10.31.

Figure 10.31
Listing rows deleted by ID in a batch.
Source: Microsoft Corporation.

In the deleteInBatch() method in CassandraClient, invoke the deleteInBatch

(Iterable<T>entities) method with a HashSet of entities consisting of catalog5 and
catalog6 as the second argument. Then invoke the execute() method to apply the
deletion.

HashSet<Catalog> entities = new HashSet();
Catalog catalog5 = new Catalog("catalog5", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");
Catalog catalog6 = new Catalog("catalog6", "Oracle Magazine",

Running Cassandra CRUD Operations 361

"Oracle Publishing", "November-December 2013", "", "");
entities.add(catalog5);
entities.add(catalog6);
ops.deleteInBatch(entities);

Next, run the list catalog command in Cassandra-Cli to list the catalog5 and catalog6

row columns as deleted in addition to the other catalog IDs deleted earlier, as shown in
Figure 10.32.

Figure 10.32
Listing rows deleted in batch.
Source: Microsoft Corporation.

The CassandraClient application appears in Listing 10.4.

Listing 10.4 The CassandraClient Application

package com.cassandra.core;

import java.util.HashSet;
import java.util.Iterator;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import com.cassandra.config.SpringCassandraApplicationConfig;
import com.cassandra.model.Catalog;
import org.springdata.cassandra.core.CassandraOperations;
import org.springdata.cql.core.RingMember;

public class CassandraClient {

static CassandraOperations ops;

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(

362 Chapter 10 n Using Spring Data with Cassandra

SpringCassandraApplicationConfig.class);
ops = context.getBean(CassandraOperations.class);

// for (RingMember member : ops.getCqlOperations().describeRing()) {
// System.out.println(member.toString());
// }

System.out.println("Table name: " + ops.getTableName(Catalog.class));
// saveNew();
// saveNewInBatch();
// findAll();
// findAllSpecifiedIds();
// findById();
// findAllByCql();
// findOneByCql();
// countRows();
// exists();
// update();
// updateInBatch();
// deleteById();
// deleteByIdInBatch();
// delete();
// deleteInBatch();

}

private static void saveNew() {
Catalog catalog1 = new Catalog("catalog1", "Oracle Magazine",

"Oracle Publishing", "November-December 2013",
"Engineering as a Service", "David A. Kelly");

ops.saveNew(catalog1);
}

private static void saveNewInBatch() {
HashSet<Catalog> entities = new HashSet();
Catalog catalog2 = new Catalog("catalog2", "Oracle Magazine",

"Oracle Publishing", "November-December 2013",
"Quintessential and Collaborative", "Tom Haunert");

Catalog catalog3 = new Catalog("catalog3", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");

Catalog catalog4 = new Catalog("catalog4", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");

Catalog catalog5 = new Catalog("catalog5", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");

Catalog catalog6 = new Catalog("catalog6", "Oracle Magazine",
"Oracle Publishing", "November-December 2013", "", "");

Running Cassandra CRUD Operations 363

entities.add(catalog2);
entities.add(catalog3);
entities.add(catalog4);
entities.add(catalog5);
entities.add(catalog6);
ops.saveNewInBatch(entities);

}

private static void countRows() {
System.out.println("Number of rows: " + ops.countAll(Catalog.class));

}

private static void exists() {
Catalog catalog3 = new Catalog("catalog1", "Oracle Magazine",

"Oracle Publishing", "November-December 2013", "", "");
//System.out.println("The catalog3 entity exists: "+

ops.exists(catalog3);
//System.out.println("\n");
System.out.println("The catalog entry with id catalog2 exists: " +

ops.exists(Catalog.class, "catalog2"));
}

private static void findAll() {
Iterator<Catalog> iter = ops.findAll(Catalog.class).iterator();
while (iter.hasNext()) {

Catalog catalog = iter.next();
System.out.println(catalog.getKey());
System.out.println("\n");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());
System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}
}

private static void findAllSpecifiedIds() {
HashSet<String> ids = new HashSet();
ids.add("catalog1");

364 Chapter 10 n Using Spring Data with Cassandra

ids.add("catalog2");
Iterator<Catalog> iter = ops.findAll(Catalog.class, ids).iterator();

while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println(catalog.getKey());
System.out.println("\n");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());
System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}
}

private static void findById() {
Catalog catalog = ops.findById(Catalog.class, "catalog1");
System.out.println(catalog.getKey());
System.out.println("\n");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());
System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}

private static void findAllByCql() {
Iterator<Catalog> iter = ops.find(Catalog.class,

"SELECT * FROM catalog").iterator();
while (iter.hasNext()) {

Catalog catalog = iter.next();
System.out.println(catalog.getKey());
System.out.println("\n");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());

Running Cassandra CRUD Operations 365

System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}
}

private static void findOneByCql() {
Catalog catalog = ops.findOne(Catalog.class,

"SELECT * from catalog WHERE key='catalog1'");
System.out.println(catalog.getKey());
System.out.println("\n");
System.out.println(catalog.getJournal());
System.out.println("\n");
System.out.println(catalog.getPublisher());
System.out.println("\n");
System.out.println(catalog.getEdition());
System.out.println("\n");
System.out.println(catalog.getTitle());
System.out.println("\n");
System.out.println(catalog.getAuthor());

}

private static void update() {
Catalog catalog1 = new Catalog("catalog1", "Oracle Magazine",

"Oracle-Publishing", "11/12 2013", "Engineering as a Service",
"Kelly, David A.");

ops.save(catalog1);
}

private static void updateInBatch() {
HashSet<Catalog> entities = new HashSet();
Catalog catalog2 = new Catalog("catalog2", "Oracle Magazine",

"Oracle Publishing", "November-December 2013",
"Quintessential and Collaborative", "Haunert, Tom");

Catalog catalog3 = new Catalog("catalog3", "Oracle Magazine",
"Oracle-Publishing", "Nov-Dec 2013", "", "");

entities.add(catalog2);
entities.add(catalog3);
ops.saveInBatch(entities);

}

366 Chapter 10 n Using Spring Data with Cassandra

private static void deleteById() {
ops.deleteById(Catalog.class, "catalog3");

}

private static void deleteByIdInBatch() {
HashSet<String> ids = new HashSet();
ids.add("catalog1");
ids.add("catalog2");
ops.deleteByIdInBatch(Catalog.class, ids);

}

private static void delete() {
Catalog catalog4 = new Catalog("catalog4", "Oracle Magazine",

"Oracle Publishing", "November-December 2013", "", "");
ops.delete(catalog4);

}

private static void deleteInBatch() {
HashSet<Catalog> entities = new HashSet();
Catalog catalog5 = new Catalog("catalog5", "Oracle Magazine",

"Oracle Publishing", "November-December 2013", "", "");
Catalog catalog6 = new Catalog("catalog6", "Oracle Magazine",

"Oracle Publishing", "November-December 2013", "", "");
entities.add(catalog5);
entities.add(catalog6);
ops.deleteInBatch(entities);

}
}

Summary
In this chapter, you used the Spring Data project for Cassandra to run CRUD operations
in Apache Cassandra using a Maven project.

Summary 367

	Cover
	Contents
	Introduction
	PART I: JAVA CLIENTS
	Chapter 1 Using Cassandra with Hector
	Cassandra Storage Model
	Overview of Hector Java Client
	Setting the Environment
	Creating a Java Project
	Creating a Cassandra Cluster Object
	Creating a Schema
	Creating a Keyspace
	Creating a Template
	Adding Table Data
	Adding a Single Column of Data in a Table
	Adding Multiple Columns of Data in a Table
	Retrieving Table Data
	Updating Data
	Deleting Table Data
	The HectorClient Class
	Summary

	Chapter 2 Querying Cassandra with CQL
	Overview of CQL
	Setting the Environment
	Creating a Java Project
	Creating a Keyspace
	Creating a Column Family
	Using the INSERT Statement
	Using the SELECT Statement
	Creating a Secondary Index
	Using the SELECT Statement with the WHERE Clause
	Using the UPDATE Statement
	Using the BATCH Statement
	Using the DELETE Statement
	Using the ALTER COLUMNFAMILY Statement
	Dropping the Column Family
	Dropping the Keyspace
	The CQLClient Application
	New Features in CQL 3
	Summary

	Chapter 3 Using Cassandra with DataStax Java Driver
	Overview of DataStax Java Driver
	Setting the Environment
	Creating a Java Project
	Creating a Connection
	Overview of the Session Class
	Creating a Keyspace
	Creating a Table
	Running the INSERT Statement
	Running a SELECT Statement
	Creating an Index
	Selecting with SELECT and a WHERE Filter
	Running an Async Query
	Running a PreparedStatement Query
	Running the UPDATE Statement
	Running the DELETE Statement
	Running the BATCH Statement
	Dropping an Index
	Dropping a Table
	Dropping a Keyspace
	The CQLClient Application
	Summary

	PART II: SCRIPTING LANGUAGES
	Chapter 4 Using Apache Cassandra with PHP
	An Overview of Phpcassa
	Setting the Environment
	Creating a Keyspace
	Creating a Column Family and Connection Pool
	Adding Data
	Adding Data in a Batch
	Retrieving Data
	Getting Selected Columns
	Getting Columns from Multiple Rows
	Getting Column Slices
	Getting a Range of Rows and Columns
	Updating Data
	Deleting Data
	Dropping the Keyspace and Column Family
	Summary

	Chapter 5 Using a Ruby Client with Cassandra
	Setting the Environment
	Installing a Ruby Client with Cassandra
	Creating a Connection
	Creating a Keyspace
	Creating a Column Family
	Adding Data to a Table
	Adding Rows in Batch
	Retrieving Data from a Table
	Selecting a Single Row
	Selecting Multiple Rows
	Iterating over a Result Set
	Selecting a Range of Rows
	Using a Random Partitioner
	Using an Order-Preserving Partitioner
	Getting a Slice of Columns
	Updating Data in a Table
	Deleting Data in a Table
	Updating a Column Family
	Dropping a Keyspace
	Summary

	Chapter 6 Using Node.js with Cassandra
	Overview of Node.js Driver for Cassandra CQL
	Event-Driven Logging
	Mapping Data Types
	Setting the Environment
	Creating a Connection with Cassandra
	Adding Data to a Table
	Retrieving Data from a Table
	Filtering the Query
	Querying with a Prepared Statement
	Streaming Query Rows
	Streaming a Field
	Streaming the Result
	Updating Data in Table
	Deleting a Column
	Deleting a Row
	Summary

	PART III: MIGRATION
	Chapter 7 Migrating MongoDB to Cassandra
	Setting the Environment
	Creating a Java Project
	Creating a BSON Document in MongoDB
	Migrating the MongoDB Document to Cassandra
	Summary

	Chapter 8 Migrating Couchbase to Cassandra
	Setting the Environment
	Creating a Java Project
	Creating a JSON Document in Couchbase
	Migrating the Couchbase Document to Cassandra
	Summary

	PART IV: JAVA EE
	Chapter 9 Using Cassandra with Kundera
	Setting the Environment
	Creating a JPA Project in Eclipse
	Creating a JPA Entity Class
	Configuring JPA in Persistence.xml
	Creating a JPA Client Class
	Running JPA CRUD Operations
	Summary

	Chapter 10 Using Spring Data with Cassandra
	Overview of the Spring Data Cassandra Project
	Setting the Environment
	Creating a Maven Project
	Configuring the Maven Project
	Configuring JavaConfig
	Creating a Model
	Using Spring Data with Cassandra with Template
	Finding Out About the Cassandra Cluster
	Running Cassandra CRUD Operations
	Summary

