JSONIqg
The SQL of NoSQL

Ghislain Fourny

JSONIig: The SQL of NoSQL
by Ghislain Fourny

Abstract

JSONIq is a query and processing language specifically designed for the popular JSON data
model. The main ideas behind JSONiq are based on lessons learned in more than 30 years of
relational query systemsand morethan 15 years of experience with designing and implementing
query languages for semi-structured data. As a result, JSONiq is an expressive and highly
optimizable language to query and update any kind of JSONiq store or resource. It enables
developers to leverage the same productive high-level language across a variety of NoSQL
products. This book gives a complete introduction to the JSONiqg language. It does so by
giving examplesfor all types of expressions and functions. Those examples can beimmediately
used because they work standalone, which alows the interested reader to start diving into the
language.

Table of Contents

O [oo (0 o1 To o E PP SO PTTR PSP 1
NoSQL - Why Are Relational Databases Not Good Enough?.............cccoeevvvennee. 1
WY JSONIT? .ottt ettt ettt e et e e e e e e eaans 2
How to Run the Queries in ThiSBOOK?cc.uiiiiiiiiiiiiii e 3
ACKNOWIEAGEMENES ...t 3

I. JISON and the JSONiq Data MOGE!ccouuiiiiiiiiiieiiiec e 5
2. THE JSON SYNLAX ..eevtneieiiiiee ettt ettt e et eeene s 7

JSON SEINGS .. eevvneeeeit ettt e 7
JSON NUMDENS ...t 8
JSON BOOIBANS ...ttt et 9
JSON NUIT < 9
JSON ODJECES ..ttt ettt e e 9

3. The JSONiq Data MOElccoviiiiiiiiiii e 11
JSONiqg Values: Items and SEQUENCESccuvuieiiiiiieeiiiiiee et 11
OBJECLS ..ttt 13
ATTEYS ot 13
ATOIMICS ..ttt e e et e e et e e e et e e e enb e ees 14

4. The JSONIQ TYPE SYSIEM ..uniiiiiiieeeee et 15
[EEM TYPS ettt e 16
ATOMIC TYPES .ottt ettt e e e eena e 16

JSON Item Types : Object Types and Array TYPES.......ccvuuveevernnnnn. 18

The Most General 1tem TYPE.uviiiiiiiieiiii e 19

SEOUENCE TYPES oveeieieieii ettt ettt e 20

[1. Construction of Items and JSON NaVigationc.uuiveieuiinieiiiiiieeieiiineeeeiiee 23

5. CONSLIUCLiON Of 1TEMSiiiiei e e 25

ALOMIC LITEralS .o 25
SUNG LITEIalS ..o 25

NUMDEr LItEralS. ... 25

Boolean and NUll LiteralScc.oveiiiiiiiiiic e, 27

OBJECE CONSITUCLONS ...ttt ettt 27
ATTaY CONSITUCTONS ...veceieiii ettt et 29
CompPOSING CONSITUCLOISeeeerieeeeetiie ettt e e 29

B. COECIIONS ...ttt et e e e eees 33
Collections Used Throughout ThiSBOOKccccuiviiiiiiiiiiiiiiineeiiiinne, 33

7. ISON NEVIGELION ...eeertieeeiii et e ettt e et e et e e e et eeeena e eees 37
ObJECt NAVIGALTION ...v.ieiiiiii et 37
ATTEY UNDOXING ..ttt 40
SequUENCE FIENNG .oovvnieeii e 41
ATTEY NAVIGALTON .ottt e 42

1. JSONIQ EXPIESSIONS .. cvvuiiiiieiiiieei et e e e e e e e e e e e e e e e e e et e et e e eaneeaanaas 45
S 2 F S Tol @ o= = (o) 1 N 47
CoNStruction Of SEQUENCEScuuuiiiii e e e e e e 47
COMME OPEIALON ...vueniieie e 47

REANGE OPEIELON . euieiiiiie e 48
Parenthesized EXPreSSiONScvvuieiiieiiii e e e e 48
ATTAMELICS Loe i 49
String CONCAENALIONuuiiiiiii e e e e e e e anns 50
(001410 = =0 o 50
Empty Sequence BEhaviorooevuiiiiiiiiiii e 52
oo N 52
Propositional LOGICuivuniiiiieiiie e e ee e e e e eens 53
First-Order Logic (Quantified Variables)cccoeeevviviiiieiinnennnnn. 54

BUIItIN FUNCLIONSuiiiiiiie e 55

9. Control FIOW EXPIrESSIONSucivueiiieeiieeeiieee e e e e e e e e e e e eaaaeeeen 57
Conditional EXPrESSIONScccvuieiiiieiiiieeeiieeeiiee s ee e e e e eei e e eanns 57
ST (o g =0 (=S o] < PP 59
Try-CatCh EXPreSSIONScvvviieiieeii e e e e e e 60

O = N @] B (0 (= o] = 63
VaBDIES .ovni e 63

FOI ClaUSES ..oovviieeeii e 64
WHEIE ClAUSES ...oevvieeiii ettt e e et e e et e eeeee 70
OFder ClAUSES ...evvneeeiii ettt e e e eaenns 72
GrOUD ClAUSESvuiiiii e e e e e e e e e e e aeas 76

I O == PP 81
COUNE ClBLISES ...vveeeiiit ettt e e et e e e 83

M OPEIBION ..ivuieiiei e 84
Composing FLWOR EXPreSSIONScccvuiiiinieiiieiiiieeiiieeeieesineeenneenens 85
Ordered and Unordered EXPreSSioNScccvvveieieiiinieiiieeiieeeineeeneeeen 86

11. Expressions Dealing With TYPESuvvviiiiii i, 89
INStANCE-Of EXPIrESSIONSuuiivieiiieeiiee e e e e e e e e e e e e e e e ean e eees 89
= 0 (=S [0] P 89
Castable EXPreESSIONSccvvueiiieiiii e e e e e e e e e e e e e aes 90

Cast EXPIESSIONSuviiiii e e e e 91
TYPESWITCh EXPreSSIONS ... cvviciiiieeie e e e 92

V. Prolog, Modules and FUNCLIONSccoouiiiiiiciiie e e 95
A o LN 97
RS 1< = PP UPTPPRPT 97
Default Ordering Modecocoviiiiiiiiiieeee e 97

Default Ordering Behaviour for Empty Sequences..........cooccuuven. 98

Default Decimal FOrmMatoovveviiiiiiiiinieeiii e 99

Globa Variablesooiiiiiiic 100
User-Defined FUNCLIONScovviiiicc e 101

G 1Y T L1 = SUPPRTRPPN 105

7 g Tox o] o = VP 107

V. AAVANCEA NOLESuuiiiiicii e e e e et e e e eaa s 115
LT 0 (0] £ PP 117

16. Equality VS, TAENTILY ...cvvneiieci e 119

17. SEQUENCES VS, ATTAYS 1uuieiiiiitieie it re ettt e e e e e e e 121

18. NUll vS. EMPLY SEOUENCEovviiiieei e 125

19, RE I ENCE e 129

Vi

Chapter 1. Introduction

The possible solutions to a given problem emerge as the leaves of a tree, each node
representing a point of deliberation and decision.
—Niklaus Wirth

NoSQL - Why Are Relational
Databases Not Good Enough?

Relational databaseshave existed for decades. The entity-relationship model isvery powerful
and with it, it is possible to model almost any structured data. SQL is the widely accepted
standard for these databases. It supports the relational algebra operators like join, project,
select, filter.

In the last decade, several companies saw the amount of datathey needed to store and handle
increase dramatically. They soon encountered problems scaling up and out. In his foreword
on the "MongoDB Definitive Guide," Jeremy Zawodny explained it convincingly: once you
add more replicas and shards, you realize you are stuck in the original schema you designed
unless you invest considerable effort.

In order to solve thisissue, a new generation of data stores appeared. They often share the
same set of design principles:

» Thelines of arelationa table are replaced with hierarchical data (semi-structured data,
akatrees), while tables become collections of trees.

» Thesetrees are primarily associated with and indexed by an ID or akey.

» Schemasare not mandatory, i.e., treeswithin acollection need not share the same structure
(heterogeneity).

» Somedata stores see atree asakind of black box (key/value stores) while some other data
storesuse XML (like eXist) and more recently JSON (like MongoDB) syntax to represent
trees.

These new technologies are often referred to as"NoSQL."

Why JSONig?

Why JSONig?

NoSQL has avery broad meaning and, while the general principles are similar between data
stores, each data store has a specific format for the values (or trees) and a query language
tailored for the data store.

JSONIiqg was developed with the idea that many data stores share the same design principles
(e.g., callections of trees) so that it should be possibly to query them in aunified and portable

way.

JSONIq is a query and processing language specifically designed for the popular JSON
data model. The main ideas behind JSONiq are based on lessons learned in more than 30
years of relational query systems and more than 15 years of experience with designing and
implementing query languages for semi-structured data like XML and RDF.

The main source of inspiration behind JSONiq is XQuery, which has been proven so far
a successful and productive query language for semi-structured data (in particular XML).
JSONiq borrowed a large numbers of ideas from XQuery like the structure and semantics
of aFLWOR construct, the functional aspect of the language, the semantics of comparisons
in the face of data heterogeneity, the declarative, snapshot-based updates. However, unlike
XQuery, JSON is not concerned with the peculiarities of XML like mixed content, ordered
children, the confusion between attributes and elements, the compl exities of namespaces and
QNames, or the complexities of XML Schema, and so on.

The power of the XQuery's FLWOR construct and the functional aspect combined with the
simplicity of the JSON data model results in a clean, sleek, and easy to understand data
processing language. Asamatter of fact, JSONiq isalanguagethat can do morethan queries:
it can describe powerful data processing programs from transformations, selections, joins
of heterogeneous data sets, data enrichment, information extraction, information cleaning,
and so on.

Technically, the main characteristics of JISONiq (and XQuery) are the following:

* It is a set-oriented language. While most programming languages are designed to
manipulate one object at atime, JSONiq is designed to process sets (actually, sequences)
of data objects.

« Itisafunctional language. A JSONiq program is an expression; the result of the program
istheresult of the evaluation of the expression. Expressions have fundamental rolein the
language: every language construct isan expression and expressionsare fully composable.

It is a declarative language. A program specifies what is the result being calculated,
and does not specify low level algorithms like the sort algorithm. Neither does it specify

How to Run the
Queriesin This Book?

whether an algorithm is executed in main memory or whether it is executed on a single
machine or parallelized on several machines; or what access patterns (aka indexes) are
being used during the evaluation of the program. Such implementation decisions should
be taken automatically by an optimizer, based on the physical characteristics of the data
and of the hardware environment -- just like atraditional database would do. The language
has been designed from day one with optimizability in mind.

* Itisdesignedfor nested, heterogeneous, semi-structured data. Datastructuresin JISON can
be nested with arbitrary depth, do not have a specific type pattern (i.e. are heterogeneous),
and may or may not have one or more schemas that describe the data. Even in the case
of aschema, such a schema can be open and/or simply partially describe the data. Unlike
SQL, which is designed to query tabular, flat, homogeneous structures. JSONiq has been
designed from scratch as a query language for nested and heterogeneous data.

How to Run the Queries in This Book?

Our first implementation of JSONig was done in the Zorba NoSQL processor, which is
developed jointly between Oracle, 28msec, and the FLWOR Foundation. The home page
is http://zorba.io/ and a sandbox is available on http://try.zorba.io/. You can run most of
the queries shown in the examples of this book in this sandbox (not the ones accessing
collections).

28msec provides aplatform called 28.i0, which is specifically tailored for executing JSONiq
queries against an existing MongoDB database. Y ou can run all example queriesin the Try-
It-Now sandbox at http://28.io/, in which the collections fags and answer's are prepopul ated
with lots of data and additional sample queries.

If you obtained this book shortly after its publication, you should be aware that the array
unboxing syntax may not be released yet, asit isrecent. If array unboxing does not work, try
$a() instead of $a[] and $a(2) instead of $af[] [2] .

Acknowledgements

Thedesign and implementation of JSONiq isateam effort involving Dana Florescu (Oracle),
Jonathan Robie (EMC), Matthias Brantner (28msec), Markos Zaharioudakis (Oracle), Till
Westmann (Oracle) and myself (28msec).

This book was carefully reviewed by Matthias Brantner, Federico Cavalieri (28msec) and
Paul J. Lucas (28msec). Many thanks to them!

A significant part of the introduction ("Why JSONiq?") was written by Dana Florescu.

Part I. JSON and the
JSONIig Data Model

Chapter 2. The JSON Syntax

The JSONiq query language was specifically designed for querying and processing JSON.

As stated on its home page http://mwww.json.org/, JSON is a “lightweight data-interchange
format. It iseasy for humansto read and write. It is easy for machinesto parse and generate.”

JSON itself isonly about syntax: astring may or may not match the JSON grammar. If it does,
then it is well-formed JSON. The JSON syntax is made of the following building blocks:
objects, arrays, strings, numbers, booleans and nulls. Let us begin with aquick overview of
all these building blocks.

JSON Strings

Strings are double-quoted. To put it simply, they are sequences of Unicode characters with
absolutely no restriction:

llfooll'
"What NoSQL sol utions are out there?"

However, syntactically, some of these characters must be escaped with backslashes (escape
sequence). This includes double quotes, escaped as \" -- because otherwise they could be
confused with the end of a string -- and backslahes themselves, escaped as \\ -- because
otherwise you would not know if you mean a backdlash character, or if you are escaping the
following character.

"What \"NoSQ.\" solutions are out there?"

Finally, all Unicode control characters (null, new line, form feed, delete...) are not allowed
directly and must be built with an escape sequence. Any Unicode character, including control
characters, can be built with \u followed by the four hexadecimal digitsthat identify it within
Unicode. The most frequent control characters even have their own shortcuts: \n (new line),
\t (tab), \r (carriage return), \b (backspace), \f (form feed). The slash can also be obtained with
V/, athough it is fine too if it appears aone. This is useful in JSON-hosting environments
where slashes are special.

JSON Numbers

"What \"NoSQ.\" solutions are out there:\n"
" MapReduce\ uO00OAMONgODB\ n\ u0085"

JSON Numbers

Numbers cover the entire decimal space. There is no range restriction. Although there is
no formal distinction in JSON, numbers can be grouped into three subcategories. These
subcategories play an important role in JSONiq.

* Integers, possibly with anegative sign and not beginning with aleading 0 (except 0 itself):

0

9

42

-96
123456789012345678901234567890123456789012345

» "Plain" decimals, with a dot, both followed and preceded by at least by one digit (no
leading dot):

0.3
9.6

42.2346902834
-96. 01345023400

» Decimalsinscientific notation, i.e., aplain decimal followed by an E (case does not matter)
and by a power of ten (an integer with an optional sign):

0. 3e0

9. 6E+24
42.2346902834e-2

-96. 01345023400E- 02345

JSON Booleans

JSON Booleans

Booleans cover the two logical truth valuestrue and false, unquoted. Thereisnot much more
to say about them...

true
fal se

JSON Null

Null is a special value that can be used to denote the absence of value.

nul |

JSON Objects

Objects are unordered sets of key/value pairs. A key isany JSON string as described above.
A valueisany JSON building block.

According to the JSON RFC, keys (the strings) should be unique within the same object --
and JSONiq does consider them unique.

Y ou can see in the following examples that values can be also nested objects or arrays.

{
"_id" @ "511C7/C5C9A277C22D138802D",
"question_id" : 4419499,
"last_edit_date" : "2012-12-17T00: 02: 31",
"creation_date" : "2010-12-11T23:15:19",
"last_activity_date" : "2012-12-17T00: 02: 31",
"score" : 15,
"accepted_answer _id" : 4421601,
"title" : "MySQL and NoSQL: Help ne to choose the right o
ne",
"tags" : ["php", "nysql", "nosgl", "cassandra"],

JSON Objects

"view count" : 3972,
"owner" : {
“user_id" : 279538,
"di spl ay_name" : "cedivad",
"reputation" : 430,
"user _type" : "registered",
"profile_image" : "http://ww. gravatar.confavatar/b77fa
dd2ba791134ac40a9c184beleda?d=i denti con&anp; r =PG’,
"l'ink" : "http://stackoverfl ow. confusers/ 279538/ cedi vad

}l
"l'ink" : "http://stackoverfl ow. conif questions/ 4419499/ nysq
| - and- nosql - hel p- me-t o- choose-t he-ri ght-one”,

"is_answered" : true

}

"accept_rate" : 74

In the NoSQL world, top-level JISON objects are often referred to as JSON documents.

10

Chapter 3. The JSONig Data
Model

Having a JISON document as pure syntax is not very useful in itself, except to send it over
anetwork or to store it in a document store of course. To make use of it in adatabase or in
other processing environments, you need to bring it to a higher level of abstraction and give
semantics to the building blocks. Thisiswhat a Data Model isfor.

We now introduce the JSONiq data model.

Let us begin with some good news first: the JSON syntax that we have just introduced is a
subset of JSONig. Concretely, this means that any of these syntactic JSON building blocks
can be copy-and-pasted, and executed as a JSSONiq query. The output will be the counterpart
of this JSON building block in the Data Model. So, if you are familiar with JSON, then you
already know some JSONig.

JSONIig Values: Items and Sequences

In JSONig, the JSON building blocks described in the former section, on a more abstract
level, are referred to as items. JSONiq manipulates sequences of these items. Hence, a
JSONiq value is asequence of items. So, in particular, a JSONiq query returns sequences of
items. Actualy, even inside a JSONiq query, sequences of items are passed around between
the JSONiq building blocks internal to a query (called expressions).

Let us copy-and-paste a JISON Object and execute it as JSONiq:

Example 3.1. A sequence of just oneitem.

{ "foo" : "bar" }
Results:
{

"foo" : "bar"
}

The above query generates a sequence of one item, an object item in this case. The result
displayed above is the output of this query when run with the Zorba query processor, which
is one of the JSONiq implementations.

11

JSONiq Values:
Items and Sequences

Commas are all you need to begin building your own sequences. Y ou can mix and match!

Example 3.2. A sequence of variousitems.
"foo", 2, true, { "foo", "bar" }, null, [1, 2, 3]

Results:

"foo"

2

true

"foo"

"bar"

nul |

[1, 2, 3]

There are three golden rules about sequences that are useful to keep in mind.

Rule #1: Sequences are flat and cannot be nested. This makes streaming possible, which is
very powerful.

Example 3.3. Sequences ar e flat.

(("foo", 2), ((true, 4, null), 6))

Results:

"foo"
2
true
4
nul |
6

Rule #2: A sequence can be empty. The empty sequence can be constructed with empty
parentheses.

Example 3.4. The empty sequence.

Objects

0

Results:

Rule #3: A sequence of just one item is considered the same as this item itself. Whenever
we say that an expression returns or takes one item, we really mean that it takes a singleton
seguence of oneitem.

Example 3.5. A sequence of one item.

("foo")

JSONiq classifies the items mentioned above in three categories:
» Objects: the counterparts of the syntactic JSON objects.
 Arrays. the counterparts of the syntactic JSON arrays.

» Atomics:. the counterparts of JSON strings, JSON numbers, JSON booleans and JSON
nulls - but with avery rich type system which includes dates, for example.

Objects

An object represents a JSON object: an unordered collection of string/item pairs.
Each pair consists of an atomic of type string and of an item which can be in any category.

No two pairs have the same name. Because of this, theword field isalso used to refer to pairs.

Arrays

An array represents a JSON array: an ordered list of items -- itemsin any category.

An array can be seen as a sequence that is wrapped in one single item. And since an array
isan item, arrays can nest -- like in JSON.

13

Atomics

Atomics

An atomic is anon-structured value that is annotated with atype.

JSONiq defines many useful builtin atomic types. For now, let usintroduce those that have a
JSON counterpart. Note that JSON numbers correspond to three different typesin JSONig.

* string: al JSON strings.
* integer: all JISON numbers that are integers (no dot, no exponent), infinite range.
* decimal: all JSON numbers that are decimals (no exponent), infinite range.

* double: IEEE double-precision 64-bit floating point numbers (corresponds to JSON
numbers with an exponent).

» boolean: the JISON booleans true and false.
e null: the JSON null.

JSONiq also offers many other types of atomics. Here is a little appetizer that showcases
constructing a date and a duration (365 days), and adding them.

Example 3.6. Atomics with the types date and dayTimeDuration.
dat e("2013-06-21") + dayTi neDurati on("P365D")

Results:

"2014- 06- 21"

14

Chapter 4. The JSONIiq Type
System

JSONig manipulates semi-structured data: in general, JSONiq allows you, but does not
require you to specify types. So you have as much or as little type verification as you wish.

Likein Javaor C++, it ispossible to create a variable with a given static type:

Example 4.1. Specifying atype.

let $x as integer := 16

return $x * $x

Results:

256

Likein JavaScript, it is possible to create a variable without explicitly giving any static type.

JSONiq is till strongly typed, so that you will be told if there is a type inconsistency or
mismatch in your programs.

Example 4.2. Not specifying a type.

let $x := 16
return $x * $x
Results:

256

Variablesare explained in the section called “Variables’ in Chapter 10, FLWOR Expressions
more in details.

JSONiq supports types at the sequence level. They are called sequence types, and the syntax
for designing types is called the sequence type syntax. The type "integer" that was shown in

15

Item Types

Example 4.1, “ Specifying atype.” matches singleton sequences of one atomic item of type
integer.

We say that asequence matches asequencetype (or that a sequence type matches a sequence)
if the sequence is in the value space of the sequence type. Since an item is a particular
(singleton) sequence, we also can say that an item matches an item type or conversely.

Whenever you do not specify the type of avariable or the type signature of a function, the
most general type for any sequence of items, item*, is assumed. But it is not forbidden for
the processor to be smart and warn you if it can detect that a type issue can arise at runtime.

Thereare many JSONiq expressions (cast, instance of, ...) which perform type operations and
that make use of the sequence type syntax. In the remainder of this section, we will introduce
seguence types using an "instance of" expression that returns true or false depending on
whether or not thetype on theright sideis matched by the value on theleft side-- likein Java.

Example 4.3. Theinstance of operator.
16 i nstance of integer

Results:

true

ltem Types
Atomic Types

Atomic types are organized in atree hierarchy.
JSONiq defines the following build-in types that have a direct relation with JSON:
* dtring: the value spaceis all strings made of Unicode characters.

All string literals build an atomic that matches string.

* integer: the value spaceis that of all mathematical integral numbers (N), with an infinite
range. Thisis a subtype of decimal, so that all integers also match the item type decimal.

All integer literals build an atomic that matches integer.

16

Atomic Types

« decimal: the value space isthat of all mathematical decimal numbers (D), with an infinite
range.

All decimal literals build an atomic that matches decimal.
« double: the value spaceisthat of all IEEE double-precision 64-hit floating point numbers.
All double literals build an atomic that matches double.
* boolean: the value space contains the booleans true and false.
All boolean literals build an atomic that matches boolean.
» null: the value spaceis a singleton and only contains null.
All null literals build an atomic that matches null.
» atomic: all atomic types.

All literals build an atomic that matches atomic.

Example 4.4. Atomic types

16 i nstance of integer,

16 i nstance of decinal,

16. 6 i nstance of decimal,
16. 6e10 i nstance of doubl e,
"foo" instance of string,
true instance of bool ean,
null instance of null,
"foo" instance of atomc

Results:

true
true
true
true
true
true
true
true

17

JSON Item Types : Object
Typesand Array Types

JSONiq also supports further atomic types, which were borrowed from XML Schema 1.1.
These datatypesare aready used asaset of atomic datatypes by the other two semi-structured
data formats of the Web: XML and RDF, as well as by the corresponding query languages:
XQuery and SPARQL, soitisnatura for acomplete JSON data model to reuse them.
 Further number types: long, int, short, byte, float.

» Date or timetypes: date, dateTime, dateTimeStamp, gDay, gMonth, gMonthDay, gY ear,
gYearMonth, time.

* Duration types. duration, dayTimeDuration, yearMonthDuration.
* Binary types: base64Binary, hexBinary.
* An URI type: anyURI.

Atomicitemsthat have these builtin atomic types can only be built with aconstructor -- again
similar to JavaScript.

Example 4.5. Further builtin atomic types.

dat e("2013-06-18") instance of date,

dat eTi me("2013- 06-21T05: 00: 00Z") instance of dateTi ne,
time("05:00:00") instance of tine,

| ong("1234567890123") instance of |ong

Results:

true
true
true
true

JSON Item Types : Object Types and Array
Types
All objects match the item type object as well as json-item.

All arrays match the item type array as well as json-item.

18

The Most General Item Type.

Atomics do not match json-item.

Example 4.6. Further builtin atomic types.

{ "foo" : "bar" } instance of object,

{ "foo" : "bar" } instance of json-item
{} instance of object,

[1, 2, 3, 4] instance of array,

[1, 2, 3, 4] instance of json-item

Results:

true
true
true
true
true

The Most General Item Type.

All items match the item type item.

Example 4.7. The most general item type: item.

{ "foo" : "bar" } instance of item
[1, 2, 3, 4] instance of item
"foo" instance of item

42 instance of item

fal se instance of item

null instance of item

Results:

true
true
true
true
true

19

Sequence Types

true

Sequence Types

All sequences match the sequence type item®*.

Example 4.8. The most general sequence type: item*.

{ "foo" : "bar" } instance of itent,

() instance of itenr,

([2, 2, 371, 2, { "foo" : "bar" }, 4)
i nstance of itent

Results:

true
true
true

But sequencetypes can be much more precisethanthat. In general, asequencetypeismade of
an item type, as presented above, followed by an occurrence indicator among the following:

» * gtands for a sequence of any length (zero or more)
 + stands for a non-empty sequence (one or more)
» ?gtandsfor an empty or a singleton sequence (zero or one)

» The absence of indicator stands for a singleton sequence (one).

Example 4.9. Further sequencetypes.

{ "foo" : "bar" } , {}) instance of object*,
) instance of object*,

[1, 2, 3], {}) instance of json-itemt,

1, 2, 3] instance of array?,
) instance of array?,
foo" instance of string

(
(
(
[
(

20

Sequence Types

Results:

true
true
true
true
true
true

Thereisalso aspecia type that matches only empty sequences, denoted () as well:

Example 4.10. Empty sequence type: ()
() instance of ()

Results:

true

21

22

Part Il. Construction of
ltems and JSON Navigation

Chapter 5. Construction of
ltems

As we just saw, the items (objects, arrays, strings, ...) mentioned in Chapter 2, The JSON
Syntax are constructed exactly asthey are constructed in JSON. In away, any JSON building
block is also a well-formed JSONiq query which just "returns itself* (more precisely: its
counterpart in the JSONiq Data Model).

Atomic Literals

String Literals

The syntax for creating strings is identical to that of JSON. No surprise here. JSON's
backslash escaping is supported, and like in JSON, double quotes are required and single
guotes are forbidden.

Example5.1. String literals.

"foo",

"This is a line\nand this is a new |ine",
"\ u0001",

"This is a nested \"quote\""

Results:

Ilfooll

"This is a line

and this is a new |line"

" "
"This is a nested "quote""

Number Literals.

The syntax for creating numbersisidentical to that of JSON.

25

Number Literas.

Example 5.2. Number literals (integer, decimal and double literals)

42,
3. 14,
-6. 022E23

Results:

42
3.14
-6. 022E23

WEell, not quite. Actually, JSONiq alows a more flexible superset. In particular;
* leading Os are allowed
» adecimal literal can begin or end with adot

e anumber may begin with a+ sign

Example5.3. A more general literal syntax.

042,

. 1415926535,
42. ,

+6. 022E23

Results:

42

0. 1415926535
42

6. 022E23

Remember that JSONiq distinguishes between integers (no dot, no scientific notation),
decimals (dot but no scientific notation), and doubles (scientific notation). As expected, an
integer literal creates an atomic of type integer, and so on. No surprises either.

26

Boolean and Null Literas

Boolean and Null Literals

There is not much to say actually -- boolean literals build boolean atomics, the null literal
builds anull atomic, so no worries here, the world isin order.

Example 5.4. Boolean and null literals.

true,
fal se,
nul |

Results:

true
fal se
nul |

Object Constructors

The syntax for creating objectsisalsoidentical to that of JSON. Y ou can usefor an object key
any string literal, and for an object value any literal, object constructor or array constructor.

Example 5.5. Object constructors.

{},
{ "foo" : "bar" },
{ "foo" : [1, 2, 3, 4, 5, 6] 1},
{ "foo" : true, "bar" : false },
{ "this is a key" : { "value" : "a value" } }
Resullts:
{
}
{
"foo" : "bar"
}

27

Object Constructors

{
"foo" : [1, 2, 3, 4, 5 6]
}
{
"foo" : true,
"bar" : false
}
{
"this is a key" : {
"value" : "a val ue"
}
}

Again, JSONiq is more flexible here. Like in JavaScript, if your key is simple enough (like
alphanumerics, underscores, dashes, these kinds of things), you are welcome to omit the
guotes. The stringsfor which quotes are not mandatory are called unquoted names. Thisclass
of strings can be used for unquoted keys, but also in later sections for variable and function
names, and for module aliases.

Example 5.6. Object constructorswith unquoted keys.

{ foo : "bar" },
{ foo: [1, 2, 3, 4, 5 6] },

{ foo : "bar", bar : "foo" },
{ "but you need the quotes here" : null }
Results:
{
"foo" : "bar"
}
{
"foo" : [1, 2, 3, 4, 5, 6]
}
{
"foo" : "bar",
"bar" : "foo"
}
{
"but you need the quotes here" : nul

28

Array Constructors

}
Array Constructors

The syntax for creating arrays is identical to that of JISON (do you sense a growing feeling
that we are repeating ourselves? But it feels so good to say it): square brackets, comma
separated values.

Example5.7. Empty array constructors.

5 61,
.14, "Go"], { "foo" : "bar" }, true]

[]
[1, 2, 3, 4, 5, 6]
["foo", [3.14, "Go"], { "foo" : "bar" }, true]

Square brackets are mandatory. Things can only be pushed so far.

Composing Constructors

Of course, JSONiqg would not be very interesting if all you could do is copy and paste JSON
documents. So now is time to get to the meat.

Because JSONiq expressions are fully composable, in objects and arrays constructors, you
can put way morethan just atomic literal's, object constructorsand array constructors: you can
put any JSONiq expression. An expression is the JSONiq building block. Y ou already know
some (literals, constructors, comma, cast, instance of) and plenty more will be introduced
in the next part (arithmetics, logic, comparison, if-then-else, try-catch, FLWORS that allow
you to join, select, group, filter, project, stream in windows, ...)

In order to illustrate composability, the following examples use afew of the many operators
you can use:

» "to" for creating sequences of consecutive integers,

» "||" for concatenating strings,

29

Composing Constructors

e "+" for adding numbers,
» " for appending sequences (yes, you already know this one).
So here we go.

In an array, the operand expression inside the square bracket will evaluated to a sequence of
items, and these items will be copied and become members of the newly created array.

Example 5.8. Composable array constructors.

[1to 10 1],
["foo" || "bar", 1to 3, 2 + 2]
Results:

[1, 2, 3, 4, 5 6, 7,8 9, 10]
["foobar", 1, 2, 3, 4]

In an object, the expression you use for the key must evaluate to an atomic - if it is not a
string, it will just get cast to it.

An error israised if the key expression is not an atomic.

Example 5.9. Composable object keys.

{ "foo" || "bar" : true },
{1+1: "foo" }

Results:
{
"foobar" : true
}
{
"2" : "foo"
}

And do not worry about the value expression: if it is empty, null will be used asavalue, and
if it contains two items or more, they will be wrapped into an array.

30

Composing Constructors

Example 5.10. Composable object values.

{ "foo" : 1 + 11},
{ "foo" : (), "bar" : (1, 2) }

Results:
{
"foo" : 2
}
{
"foo" : null,

"bar" : [1, 2]
}

The{]| [} constructor can be used to merge several objects.

Example5.11. Merging object constructor.

{l { Ilfooll : n bar n }, { n bar n : Ilfooll } | }
Results:
{
"foo" : "bar",
"pbar" : "foo"
}

An error israised if the operand expression does not evaluate to a sequence of objects.

31

32

Chapter 6. Collections

Even though you can build your own JSON values with JSONiq by copying-and-pasting
JSON documents, most of the time, your JSON data will be in a collection.

We now introduce collections, because collections are perfect to illustrate the JSON
navigation syntax which will be introduced in the next section.

Collections are sequences of objects, identified by a name which isastring.

Adding or deleting collections from the set of known collections to a query processor, and
loading the data in a collection are implementation-dependent and outside of the scope of
this book.

We will just assume that there is a function named collection() that returns all objects
associated with the provided collection name.

Example 6.1. Getting all objectsfrom a collection.

col l ection("one-object")

Results:
{

"question" : "What NoSQL technol ogy should I use?"
}

Collections Used Throughout This
Book

For illustrative purposes, we will assume that we have the following collections:

* collection("one-object™)

Example 6.2. The object in the one-aobject collection.

col l ecti on("one-object")

33

Collections Used

Throughout This Book
Results:
{
"question” : "What NoSQ technol ogy should I use?"
}

collection("fags') - thisis a collection of StackOverflow FAQs.

Example 6.3. One object from the fags collection.

collection("faqs")[1]

Results:
{
"_id" @ "511C7C5C9A277C22D138802D",
"question_id" : 4419499,
"l ast_edit_date" : "2012-12-17T00: 02: 31",
"creation_date" : "2010-12-11T23:15:19",
"last_activity_date" : "2012-12-17T00: 02: 31",
"score" : 15,
"accepted_answer _id" : 4421601,
"title” : "MySQ and NoSQL: Help me to choose the right o
ne",
"tags" : ["php", "nysqgl", "nosgl", "cassandra"],
"view count" : 3972,
"owner" : {
"user_id" : 279538,
"di spl ay_nanme" : "cedivad",
"reputation” : 430,
"user _type" : "registered",
"profile_image" : "http://ww.gravatar.confavatar/b77fa
dd2ba791134ac40a9c184beleda?d=i dent i con&anp; r =PG",
"link" : "http://stackoverfl ow conf users/ 279538/ cedi vad
"accept _rate" : 74
}

"link" : "http://stackoverfl ow. conf questi ons/ 4419499/ nysq

Collections Used
Throughout This Book

| - and- nosql - hel p- ne-t o-choose-t he-right-one",
"is_answered" : true

}

« collection("answers") - this is a collection of StackOverflow answers (to the previous
FAQs).

Example 6.4. One object from the answer s collection.
col l ection("answers")[1]

Results:

{
"_id" : "511C7C5D9A277C22D13880C3",
"question_id" : 37823,
"answer id" : 37841,

"creation_date" : "2008-09-01T12: 14: 38",
"l ast _activity date" : "2008-09-01T12: 14: 38",
"score" @ 7,
"is_accepted" : false,
"owner" : {
"user _id" : 2562,
"di spl ay_nane" : "Ubiguchi",
"reputation" : 1871,
"user _type" : "registered",
"profile_inmage" : "http://ww.gravatar.coni avat ar/ 00b87
a917ec763c0c051dc6b8c06f 402?d=i dent i con&anp; r =PG',
"l'ink" : "http://stackoverfl ow. confusers/ 2562/ ubi guchi"
}

}

Many queries in this book can be directly input into 28.i0's try-it-now sandbox, as these
collections are preloaded (thisis real-world data).

35

36

Chapter 7. JSON Navigation

Likein JavaScript or SQL or Java, it is possible to navigate through data.
JSONiq supports:

» Looking up the value of afield (given its string key) in an object.

» Looking up theitem at a given position (integer) in an array.
 Extracing al members of an array as a sequence of items.

* Filtering items from a sequence, retaining only the items that match a given criterium.

Object Navigation

The simplest way to navigate an object is similar to JavaScript. This will work as soon as
you do not push it too much: aphanumerical characters, dashes, underscores. The rule for
unquoted namesis similar to keysin object constructions, and to variable names. The empty
sequence isreturned if no key isfound with the specified name.

Example 7.1. Object lookup.

{

"question" : "What NoSQ. technol ogy should I use?"
}. questi on,
{

"question" : "What NoSQ. technol ogy should I use?"
}. answer
Results:

"What NoSQ. technol ogy should |I use?"

Since JSONIq expressions are composable, you can also use any expression for the left-hand
side. Y ou might need parentheses depending on the precedence.

Example 7.2. Lookup on a single-object collection.

37

Object Navigation

col l ection("one-object").question

Results:
"What NoSQL technol ogy should I use?"
The dot operator does an implicit mapping on the left-hand-side, i.e., it applies the lookup

in turn on each item. Lookup on any item which is not an object (arrays and atomics) results
in the empty sequence.

Example 7.3. Object lookup with an iteration on several objects.

({ "foo" : "bar" }, { "foo" : "bar2" }).foo,
{ "ids" : collection("faqgs").question_id }
Results:

“bar"

“bar 2"

{

"ids" 1 [4419499, 282783, 4720508, 5453872, 6183352]
}

Example 7.4. Object lookup on non-objects.

"foo". foo,
({
"question” : "What NoSQL technol ogy should I use?"
}l
["question", "answer"],
{ "question” : "answer" },

"question").question

Results:

"What NoSQ. technol ogy should |I use?"
"answer"

38

Object Navigation

Of course, unquoted keys will not work for strings that are not unquoted names, e.g., if the
field contains a dot or begins with a digit. Then you will need quotes. If you use a more
general expression on the right-hand side of the dot, it must always have parentheses.

Example 7.5. Quotes and parentheses for object lookup.

{

"my question" : "Wat NoSQ. technol ogy should | use?"
}."my question",

"my question" : "Wat NoSQ. technol ogy should | use?"
}.("my " || "question")
Results:

"What NoSQL technol ogy should | use?"
"What NoSQL technol ogy should | use?"

Thevaluereturned by the right-hand side expression is cast to string. An error israised upon

failure. This value may be the empty sequence, in which case the object lookup also returns
the empty sequence.

Example 7.6. Object lookup with a nested expression.

{
"question" : "What NoSQL technol ogy should I use?"
-0,
{
"1" : "What NoSQ. technol ogy should I use?"
}- (1),
{
"1" : "What NoSQ. technol ogy should I use?"
}.or1t
Results:

"What NoSQL technol ogy should I use?"
"What NoSQL technol ogy should I use?"

39

Array Unboxing

Variables, or a context item reference, do not need parentheses. Variables are introduced in
the section called “Variables’, but here is a sneak peek:

Example 7.7. Object lookup with a variable.

let $field :="ny " || "question"
return {
"nmy question" : "What technol ogy should | use?"
}.$field
Results:

"What technol ogy should | use?”

Array Unboxing

The itemsin an array (which is an item) can be extracted as a sequence of items with the
[] postfix operator.

The argument must be (a singleton sequence of) one array or the empty sequence (in which
case the empty sequenceis returned as well.

Example 7.8. Array unboxing.

[
"What NoSQL technol ogy should | use?",
"What is the bottleneck in MapReduce?"

111,

for $a in collection("fags").tags
return $af],

O]

Results:

"What NoSQL technol ogy should I use?"
"What is the bottl eneck in MapReduce?"

n phpn

40

Sequence Filtering

"nysgql "
"nosql "

"cassandra"

"sql "

"dat abase"

"nosql "
"non-rel ati onal - dat abase"
"nosql "

"couchdb”

"cassandra"

"redis"

"dat abase"
"full-text-search”
"nosql "

"couchdb”

"riak"

"dat abase"

"view'

"nosql "

"couchdb”

Sequence Filtering

A predicate allows filtering a sequence, keeping only items that fulfill it.

The predicate is evaluated once for each item in the left-hand-side sequence. The predicate
expression can use $$ to refer to the item being processed, called the context item.

If the predicate evaluates to an integer, it is matched against the item position in the left-
hand side sequence automatically.

Example7.9. Predicate expression for pickingan item at agiven position.

(1 to 10)[5],

(
"What NoSQL technol ogy should I use?"
"What is the bottleneck in MapReduce?"
)[2]
Results:

41

Array Navigation

5
"What is the bottl eneck in MapReduce?"

Otherwise, the result of the predicate is converted to a boolean.

All items for which the converted predicate result evaluates to true are then output.

Example 7.10. Predicate expression for filtering.

(
"What NoSQL technol ogy should | use?",

"What is the bottleneck in MapReduce?"
)y[contai ns($$, "NoSQ")],

(1 to 10)[$$ nmod 2 eq 0]

Results:

"What NoSQL technol ogy should I use?"

P00 R~DN

0

Array Navigation

Once you know how to unbox an array and to filter a sequence, array lookup comesfor free.
It feels very much like opening a box of Swiss chocolate and then picking your favorite:

* Unbox the array with [].

* Pick the $i-th item in the sequence using a predicate with an integer [$i].

Example 7.11. Array lookup.

["question", "answer"][][2],

{

guestions: |

42

Array Navigation

"What NoSQL technol ogy should | use?",
{ "fag"” : "What is the bottleneck in MapReduce?" }

]
}.questions[][2].faq

Results:

"answer"
"What is the bottleneck in MapReduce?"

43

Part IlIl. JISONIqg Expressions

Chapter 8. Basic Operations

Now that we have shown how expressions can be composed, we can begin the tour of all
JSONiq expressions. First, we introduce the most basic operations.

Construction of Sequences

Comma Operator

The commaallows you to concatenate two sequences, or even singleitems. Thisoperator has
thelowest precedence of all, so do not forget the parenthesesif you would like to change this.

Also, the comma operator is associative -- in particular, sequences do not nest. Y ou need to
use arraysin order to nest.

Example 8.1. Comma.

1, 2, 3, 4, 5,

{ "foo" : "bar" }, [1 1],
1+1, 2+ 2,

(1, 2, (3, 4), 5

Results:

0P WNPE

"foo" : "bar"

1]

47

Range Operator

3
4
5

Range Operator

With the binary operator "to", you can generate larger sequences with just two integer
operands.

If the left operand is greater than the right operand, an empty sequence is returned.

If an operand eval uatesto something el se than asingleinteger, an error israised. Thereisone
exception with the empty sequence, which behaves in a particular way for most operations
(see below).

Example 8.2. Range operator.

1to 10,
10 to 1

Results:

P OO0O~NOORM~WNEE

0

Parenthesized Expressions

Expressions take precedence on one another. For example, addition has a higher precedence
than the comma. Parentheses allow you to change precedence.

If the parentheses are empty, the empty sequenceis produced.

48

Arithmetics

Example 8.3. Empty sequence.

(2+3) *5,
0)

Results:

25

Arithmetics

JSONIq supports the basic four operations, aswell integer division and modulo. Y ou should
keep in mind that, asis the case in most programming languages, multiplicative operations
have precedence over additive operations. Parentheses can override it, as explained above.

Example 8.4. Basic arithmetic operations with precedence override.
1* (2+3) +7idiv2- (-8 nod?2

Results:
8

Dates, times and durations are also supported in a natural way.

Example 8.5. Using basic operations with dates.
date("2013-05-01") - date("2013-04-02")

Results:
" P29D"
If any of the operandsis a sequence of more than one item, an error is raised.

If any of the operandsis not a number, adate, atime or aduration, or if the operands are not
compatible (say a number and atime), an error is raised.

49

String Concatenation

Do not worry if the two operands do not have the same number type, JSONiq will do the
adequate conversions.

Example 8.6. Basic arithmetic oper ations with different, but compatible
number types

2.3e4 + 5

Results:

23005

String Concatenation

Two strings or more can be concatenated using the concatenation operator. An empty
seguence istreated like an empty string.

Example 8.7. String concatenation.

"Captain" || [] "Kirk",
"Captain" || () || "Kirk"
Results:

"Captain Kirk"
" Capt ai nKi r k"

Comparison

Atomics can be compared with the usual six comparison operators (equality, non-equality,
lower-than, greater-than, lower-or-equal, greater-or-equal), and with the same two-letter
symbols asin MongoDB.

Comparison is only possible between two compatible types, otherwise, an error is raised.

Example 8.8. Equality comparison.

50

Comparison

1+ 1eq 2
11t 2
Resuilts:

true
true

null can be compared for equality or inequality to anything - it isonly equal to itself so that

false is returned when comparing if for equality with any non-null atomic. True is returned
when comparing it with non-equality with any non-null atomic.

Example 8.9. Equality and non-equality comparison with null.

1 eq null,
"foo" ne null,
null eq null
Resullts:

fal se

true

true

For ordering operators (It, le, gt, ge), null is considered the smallest possible value (like in
JavaScript).

Example 8.10. Ordering comparison with null.

null It 1

Results:
true

Comparisons and logic operators are fundamental for a query language and for the
implementation of a query processor as they impact query optimization greatly. The current

51

Empty Sequence Behavior

comparison semantics for them is carefully chosen to have the right characteristics as to
enabl e optimization.

Empty Sequence Behavior

In range operations, arithmetics and comparisons, if an operand is the empty sequence, then
the result is the empty sequence as well.

Example 8.11. The empty sequence used in basic operations.

() to 10,
1to (),
1+ (),

() eq 1,
() ge 10

Results:

Logic

JSONiq logics support is based on two-valued logics: thereisjust true and false and nothing
else

Non-boolean operands get automatically converted to either true or false, or an error is
raised. The boolean() function performs amanual conversion. Therulesfor conversion were
designed in such away that it feels "natural”. Here they are:

* Anempty sequence is converted to false.
A singleton sequence of one null is converted to false.

A singleton sequence of one string is converted to true except the empty string which is
converted to false.

» A singleton sequence of one number is converted to true except zero or NaN which are
converted to false.

» Operand singleton sequences of any other item cannot be converted and an error israised.

» Operand sequences of more than one item cannot be converted and an error is raised.

52

Propositional Logic

Example 8.12. Conversion to booleans.

"enpty- sequence" : bool ean(()),
"null" : boolean(null),
"non-enpty-string" : bool ean("foo"),
"enpty-string" : boolean(""),

"zero" : bool ean(0),

"not-zero" : bool ean(1e42)

}

null and "foo"

Results:

{
"enpty-sequence" : false
"nul " : fal se,
“non-enmpty-string" : true,
"enpty-string" : false
"zero" : false,
"not-zero" : true

}

fal se

Propositional Logic
JSONiq supports the most famous three boolean operations. conjunction, disjunction,
and negation. Negation has the highest precedence, then conjunction, then disjunction.
Comparisons have a higher precedence than all logical operations. Parentheses can override.

Example 8.13. Logics with booleans.

true and (true or not true),
1+1eq?2o0r not 1+1eq3

Results:

true

53

First-Order Logic
(Quantified Variables)

true

A sequence with more than one item, or singleton objects and arrays cannot be converted to
aboolean. An error israised if it is attempted.

Unlikein C++ or Java, you cannot rely on the order of eval uation of the operands of aboolean
operation. The following query may return true or may raise an error.

Example 8.14. Non-deter minism in presence of errors.
true or (1 div 0)

Results:

true

First-Order Logic (Quantified Variables)

Given a sequence, it is possible to perform universal or existential quantification on a
predicate.

Example 8.15. Universal and existential quantifiers.

every $i in 1l to 10
satisfies $i gt O,

some $i in-5to05, $ in1lto 10
satisfies $i eq $j

Results:

true
true

Variables can be annotated with atype. If no typeis specified, item* isassumed. If the type
does not match, an error is raised.

Example 8.16. Existential quantifier with type checking.

Builtin Functions

some $i as integer in -5to 5, $j as integer
inlto 10
satisfies $i eq 9$j

Results:

true

Builtin Functions

The syntax for function callsis similar to many other languages.

Like in C++ (namespaces) or Java (packages, classes), functions live in namespacesthat are
URIs.

Although it is possible to fully write the name of a function, namespace included, it can be
cumbersome. Hence, for convenience, a namespace can be associated with a prefix that acts
as a shortcut.

JSONiq supports three sorts of functions:
* Builtin functions: these have no prefix and can be called without any import.

 Local functions: they are defined in the prolog, to be used in the main query. They have
the prefix local:. Chapter 12, Prologs describes how to define your own local functions.

» Imported functions: they are defined in a library module. They have the prefix
corresponding to the alias to which the imported module has been bound to. Chapter 13,
Modules describes how to define your own modules.

For now, we only introduce how to call builtin functions -- these are the simplest, since they
do not need any prefix or explicit namespace.

Example 8.17. A builtin function call.

keys({ "foo" : "bar", "bar" : "foo" }),
concat ("foo", "bar")

Results:

"foo"

55

Builtin Functions

"bar"
"foobar"

Some builtin functions perform aggregation and are particularly convenient:

Example 8.18. A builtin function call.

sum(1l to 100),
avg(1l to 100),
count((1 to 100)[$$ nod 5 eq 0])

Results:

5050
50.5
20

Remember that JSONiqisastrongly typed language. Functions have signatures, for example
sum() expects a sequence of humbers. An error israised if the actual types do not match the
expected types.

Also, calling a function with two parameters is different from calling a function with one
parameter that is a sequence with two items. For the latter, extra parentheses must be added
to make sure that the sequence is taken as a single parameter.

Example 8.19. Calling a function with a sequence.

count ((1, 2, 3, 4))

Results:

4

56

Chapter 9. Control Flow
Expressions

JSONiq supports control flow expressions such as conditional expressions (if then else),
switch, and typeswitch. At least the first two should be familiar to any programmer.

Conditional Expressions

A conditional expression allowsyou to pick the one or the other val ue depending on aboolean
value.

Example 9.1. A conditional expression.

if (1 +1eq?2)

then { "foo" : "yes" }
else { "foo" : "false" }
Results:
{

"foo" : "yes"
}

Thebehavior of theexpressioninsidetheif issimilar to that of logical operations (two-valued
logics), meaning that non-boolean values get converted to a boolean. The exists() builtin
function can be useful to know if a sequence is empty or not.

Example 9.2. A conditional expression.

if (null) then { "foo" : "yes" }
else { "foo" : "no" },
if (1) then { "foo" : "yes" }
else { "foo" : "no" },
if (0) then { "foo" : "yes" }
else { "foo" : "no" },
if ("foo") then { "foo" : "yes" }
else { "foo" : "no" },

57

Conditional Expressions

if ("") then { "foo" : "yes" }
else { "foo" : "no" },
if (()) then { "foo" : "yes" }
else { "foo" : "no" },
if (exists(collection("fags"))) then { "foo" : "yes" }
else { "foo" : "no" }
Results:
{
"foo" : "no"
}
{
"foo" : "yes"
}
{
"foo" : "no"
}
{
"foo" : "yes"
}
{
"foo" : "no"
}
{
"foo" : "no"
}
{
"foo" : "yes"
}

Note that the else clause is mandatory (but can be the empty sequence)

Example 9.3. A conditional expression.

if (141 eq 2) then { "foo" : "yes" } else ()

Results:

{

Switch expressions

}
Switch expressions

Switch expressions are very similar to C++. A switch expression evaluates the expression
inside the switch. If itisan atomic, it comparesit in turn to the provided atomic values (with
the semantics of the eq operator) and returns the value associated with the first matching
case clause.

foo" : "yes

Example 9.4. A switch expression.

switch ("foo")
case "bar" return "foo"
case "foo" return "bar"
default return "none"

Results:

"bar"

If the provided value is not an atomic, an error israised (thisis also similar to C++).
If the value does not match any of the expected values, the default is used.

Note that the default clause is mandatory (but can be the empty sequence)

Example 9.5. A switch expression.

switch ("no-match")
case "bar" return "foo"
case "foo" return "bar"
default return "none"

Results:
"none"

The case clauses support composability of expressions as well - an opportunity to remind
you about the precedence of the comma.

59

Try-Catch expressions

Example 9.6. A switch expression.

switch (2)
case 1 + 1 return "foo"
case 2 + 2 return "bar"
default return "none",
switch (true)
case 1 + 1 eq 2 return "1 + 1 is 2"
case 2 + 2 eq 5 return "2 + 2 is 5"
default return "none of the above is true"

Results:

"foo"
"1 +1is 2"

Try-Catch expressions

A try catch expression evaluates the expression inside the try block and returns its resulting
value.

However, if an error is raised during this evaluation, the catch clause is evaluated and its
result value returned.

Example 9.7. A try catch expression.
try { 1 div 0O} catch * { "Caught!" }

Results:
"Caught ! "

Only errors raised within the lexical scope of the try block are caught.

Example 9.8. An error outside of atry-catch expression (failing).

let $x := 1 div O

60

Try-Catch expressions

return try { $x }
catch * { "Caught!" }
Error:

di vi sion by zero

Errors that are detected statically within the try block, for example syntax errors, are still
reported statically.

Note that this applies also if the engine is capable of detecting a type error statically, while
another engine might only discover it at runtime and catch it. Y ou should keep thisin mind,
and only use try-catch expressions as a safety net.

Example 9.9. A try catch expression with a syntax error (failing).

try { x } catch * { "Caught!" }

Error:

i nval i d expression: syntax error, a path expression cannot
begin with an axis step

Example 9.10. A try catch expression with atypeerror (no guarantee of
failureor success).

try { "foo" + "bar" } catch * { "Caught!" }

Results:

"Caught!"

61

62

Chapter 10. FLWOR
Expressions

FLWOR expressions are probably the most powerful JSONiq construct and correspond to
SQL's SELECT-FROM-WHERE statements, but they are more general and more flexible.
In particular, clauses can amost appear in any order (apart that it must begin with afor or
let clause, and end with areturn clause).

Let us begin with abit of theory on how they work.

A clause binds values to some variables according to its own semantics, possibly several
times. Each time, a tuple of variable bindings (mapping variable names to sequences) is
passed on to the next clause.

Thisgoesall the way down, until the return clause. The return clause is eventually evaluated
for each tuple of variable bindings, resulting in a sequence of items for each tuple. It is not
to be confused with Java or C++ return statements, as it does not exit or break the loop.

These sequences of items are concatenated, in the order of the incoming tuples, and the
obtained sequence is returned by the FLWOR expression.

We are now giving practical examples with a hint on how it maps to SQL -- but first, we
need to introduce variable syntax.

Variables

Vaues can be bound to variables within a certain scope. Variable references always begin
with adollar sign: $foo.

The scope of a variable declared in a FLWOR clause comprises all further clauses of the
FLWOR expression up to the return clause.

Variables are immutables, but variable bindings can be hidden with a binding to avariable
with the same name.

Variables can be declared by FLWOR expressions as shown in this chapter, but also as global
variables (the section called “Global Variables’) or in typeswitch expressions (the section
called “ Typeswitch Expressions”).

There is a special variable which is called the context item and which is denoted with $$.
Y ou already saw it in the section called “ Sequence Filtering” in Chapter 7, JSON Navigation.

63

For Clauses

For Clauses

For clauses alow iteration on a sequence.

For each incoming tuple, the expression in the for clause is evaluated to a sequence. Each
item in this sequenceisin turn bound to the for variable. A tupleis hence produced for each
incoming tuple, and for each item in the sequence produced by the for clause for this tuple.

For example, the following for clause:

for $x in 1 to 3

producesthe following stream of tuples. The tuplesthemselves are for explanatory purposes,
they are not part of the datamodel. The syntax is also ad-hoc and is used for illustrating.

$x 1
$x : 2
$x : 3

The order in which items are bound by the for clause can be relaxed with unordered
expressions, as described later in this section.

The following query, using afor and areturn clause, is the counterpart of SQL's "SELECT
display_name FROM answers'. $x is bound in turn to each item in the answers collection.

Example 10.1. A for clause.

for $x in collection("answers")
return $x. owner. di spl ay_nane

Results:

"Ubi guchi "

"Rob Vel s"
"Victor Nicollet
"descent 89"

64

For Clauses

"JasonSnit h"
"JasonSnit h"
"JasonSnit h"
"JasonSnit h"

For clause expressions are composable, there can be several of them.

Example 10.2. Two for clauses.

for $x in (1, 2
for $y in (1, 2,
return 10 * $x +

Results:

11
12
13
21
22
23
31
32
33

Example 10.3. A for clause with two variables.

for $x in (1, 2, 3), $y in (1, 2, 3)
return 10 * $x + $y

Results:

11
12
13
21
22
23
31

65

For Clauses

32
33

A for variable is visible to subsegquent bindings.

Example 10.4. Two for clauses.

for $x in (

~N A
0 Ul N
© o w

[
[
[
$y in $x[]
return $y,

for $x in collection("fags")[size($$.tags) eq 5],

$y in $x.tags[]

return {
"id" : $x.question_id,
"tag" : Sy

}

Results:

1

2

3

4

5

6

7

8

9

{
"id" : 5453872,
"tag" : "database”

}

{
"id" : 5453872,
"tag" : "full-text-search”

}

{

"id" : 5453872,

For Clauses

t ag "nosql "
}
{
"id" : 5453872,
"tag" : "couchdb"
}
{
"id" : 5453872,
"tag" "riak"
}

It isalso possible to bind the position of the current item in the sequence to avariable.

Example 10.5. A for clause with a position variable.

for $x at $position in collection("answers")

return {
"old id" : $x.answer_id,
"new id" : $position

}

Results:

{
"old id" 37841,
"new i d" 1

}

{
"old id" 37844,
"new i d" 2

}

{
"old id" 4419542,
"new i d" 3

}

{
"old id" 4419578,
"new i d" 4

}

{
"old id" 4720977,

67

For Clauses

"new id" : 5

}

{
"old id" : 5454583,
"new id" : 6

}

{
"old id" : 6195094,
"new id" : 7

}

{
"old id" : 6210422,
"new id" : 8

}

JSONiq supports joins. For example, the counterpart of "SELECT q.title AS question,
g.question_id FROM fag g JOIN answers a ON g.question_id = a.question_id" is:

Example 10.6. A regular join.
for $question in collection("fags"),

$answer in collection("answers")
[$$. question_id eq $question.question_id]

return { "question" : $question.title,
“answer score" : $answer.score }

Resullts:
{

"question” : "MySQ and NoSQL: Help me to choose the right
one",

"answer score" : 17
}
{

"question” : "MySQ and NoSQL: Help me to choose the right
one",

"answer score" : 1
}
{

"question” : "Redis, CouchDB or Cassandra?",

"answer score" : 34

68

For Clauses

}

{
"question” : "Full-text search in NoSQL dat abases",
"answer score" : 6

}

{
"question” : "Find CouchDB docs missing an arbitrary field
"answer score" : O

}

{
"question” : "Find CouchDB docs missing an arbitrary field
"answer score" : 1

}

Note how JSONiq handles semi-structured datain a flexible way.

Outer joinsare also possible with "allowing empty", i.e., output will aso be produced if there
is no matching answer for a question. The following query is the counterpart of "SELECT
g.title AS question, g.question_id FROM fag q LEFT JOIN answers a ON g.question_id =
a.question_id".

Example 10.7. An outer join.
for $question in collection("faqgs"),

$answer allowi ng enpty in collection("answers")
[$$. question_id eq $question.question_id]

return { "question" : $question.title,
"answer score" : $answer.score }

Results:
{

"question” : "MySQ and NoSQL: Help me to choose the right
one",

"answer score" : 17
}
{

"question” : "MySQ and NoSQL: Help me to choose the right
one",

69

Where Clauses

"answer score" : 1

}

{
"question” : "The Next-gen Dat abases",
"answer score" : nul

}

{
"question” : "Redis, CouchDB or Cassandra?",
"answer score" : 34

}

{
"question” : "Full-text search in NoSQL dat abases",
"answer score" : 6

}

{
"question” : "Find CouchDB docs missing an arbitrary field
"answer score" : O

}

{
"question” : "Find CouchDB docs missing an arbitrary field
"answer score" : 1

}

Where Clauses

Where clauses are used for filtering.

For each incoming tuple, the expression in the where clause is evaluated to a boolean
(possibly converting an atomic to a boolean). If this boolean is true, the tuple is forwarded
to the next clause, otherwise it is dropped.

Thefollowing query correspondsto "SELECT g.title as question, g.question_id asid FROM
fag WHERE CONTAINS(question, 'NoSQL")".

Example 10.8. A where clause.
for $question in collection("fags")

where contains($question.title, "NoSQ")
return {

70

Where Clauses

"question" : $question.title,
"id" : $question.question_id
}
Results:
{
"question" : "MySQ and NoSQ.: Help me to choose the right
one",
"id" : 4419499
}
{
"question" : "Full-text search in NoSQ databases",
"id" : 5453872
}

JSONiq can do joins with where clauses, too:

Example 10.9. A join with a where clause.

for $question in collection("fags"),
$answer in collection("answers")
wher e $question. question_id eq $answer. question_id

return {
"question" : $question.title,
"answer score" : $answer.score
}
Results:
{
"question” : "MySQ and NoSQL: Help me to choose the right
one",
"answer score" : 17
}
{
"question” : "MySQ and NoSQL: Help me to choose the right
one",
"answer score" : 1
}

71

Order Clauses

{
"question” : "Redis, CouchDB or Cassandra?",
"answer score" : 34
}
{
"question” : "Full-text search in NoSQL dat abases",
"answer score" : 6
}
{
"question” : "Find CouchDB docs missing an arbitrary field
"answer score" : O
}
{
"question” : "Find CouchDB docs missing an arbitrary field
"answer score" : 1
}

Order Clauses

Order clauses are for reordering tuples.

For each incoming tuple, the expression in the where clause is evaluated to an atomic. The
tuples are then sorted based on the atomics they are associated with, and then forwarded to
the next clause.

Like for ordering comparisons, null values are always considered the smallest.

The following query is the counterpart of SQL's"SELECT a.display_name, a.score FROM
answersa ORDER BY adisplay_name”.

Example 10.10. An order by clause.

for $answer in collection("answers")
order by $answer.owner. di spl ay_nane

return {
"owner" : S$answer.owner.di spl ay_nane,
"score" : $answer.score

72

Order Clauses

Resullts:

{
"owner" : "JasonSmith",
"score" : 34

}

{
"owner" : "JasonSmith",
"score" : 6

}

{
"owner" : "JasonSmith",
"score" : O

}

{
"owner" : "JasonSmith",
"score" : 1

}

{
"owner" : "Rob Wells",
"score" : 4

}

{
"owner" : "Ubiguchi",
"score" : 7

}

{
"owner" : "Victor Nicollet",
"score" : 17

}

{
"owner" : "descent 89",
"score" : 1

}

Multiple sorting criteria can be given - they are treated with the semantics of alexicographic
order, that is, incoming tuples are first sorted according to the first criterion, and in case of
equality the second criterion is used, etc.

Example 10.11. An order by clause with two criteria.

73

Order Clauses

for $answer

in collection("answers")

order by $answer.owner. di spl ay_nane,

return {
"owner"
"score"
}
Resullts:
{
"owner"
"score"
}
{
"owner"
"score"
}
{
"owner"
"score"
}
{
"owner"
"score"
}
{
"owner"
"score"
}
{
"owner"
"score"
}
{
"owner"
"score"
}
{
"owner"
"score"

$answer . score

$answer . owner . di spl ay_nane,
$answer . score

"JasonSm t h",
0

"JasonSm t h",
1

"JasonSm t h",
6

"JasonSm t h",

34

"Rob Wells",
4

"Ubi guchi ",
7

"Victor Nicollet",
17

"descent 89",
1

74

Order Clauses

}

For each criterion, it can be specified whether the order is ascending or descending. Empty
seguences are alowed and it can be chosen whether to put them first (even before null) or
last (even after null).

Example 10.12. An order by clause with ordering options.

for $answer in collection("answers")
order by $answer. owner. di spl ay_nane
descendi ng enpty greatest,
$answer . score ascendi ng

return {
“owner" : $answer.owner. di spl ay_nane,
"score" : $answer.score

}

Resullts:

{
"owner" : "descent 89",
"score" : 1

}

{
"owner" : "Victor Nicollet",
"score" : 17

}

{
"owner" : "Ubiguchi",
"score" : 7

}

{
"owner" : "Rob Wells",
"score" : 4

}

{
"owner" : "JasonSmith",
"score" : O

}

{

75

Group Clauses

"owner" : "JasonSmith",
"score" : 1

}

{
"owner" : "JasonSmith",
"score" . 6

}

{
"owner" : "JasonSmith",
"score" : 34

}

An error israised if the expression does not evaluate to an atomic or to the empty sequence.

Group Clauses

Grouping is aso supported, likein SQL.

For each incoming tuple, the expression in the group clause is evaluated to an atomic. The
value of thisatomiciscalled agrouping key. Theincoming tuples are then grouped according
to the grouping key -- one group for each value of the grouping key.

For each group, atupleisoutput, in which:

» Each grouping variable (appearing in the group clause) is bound to the group's key
corresponding to this variable.

» Each other (non-grouping) variableisbound to the sequence obtained by concatenating all
origina values of the variable within the group. Aggregations can then be done on these
variablesin further clauses.

Hereisan example:
for $i in (1, 2),

$j in (3, 4)
group by $j

The first for clause produces four tuples (this is again an ad-hoc syntax for illustrative
purposes):

76

Group Clauses

"$iti 1, "§j" o3
"$it L, US|t : 4
"$it i 2, "§" o3
"$it 2, St : 4

Then the group clause groups according the value of $j. There are two distinct values (3 and
4), so that thisresultsin two groups.

Goup 1 (key $: 3)

$i 1, $: 3

$i 2, $: 3

Goup 2 (key $: 4)

$i 1, $: 4

$i 2, $: 4

In each output tuple, $ is the grouping variable and is bound to the key of the group. $i is
non-grouping and is bound to the sequence of all values in the group.

$i (1, 2, $: 3
$i (1, 2), $: 4

The following query is equivalent to "SELECT question_id FROM answers GROUP BY
guestion_id".

Example 10.13. A group by clause.

for $answer in collection("answers")

group by $question := $answer.question_id
return { "question" : $question }
Results:
{
"question" : 5453872
}
{

"question" : 6183352

7

Group Clauses

"question" : 4720508

"question" : 4419499

{
"question" : 37823

}

The following query is equivaent to "SELECT question_id, COUNT(*) FROM answers
GROUP BY question_id".

Example 10.14. A group by clause using count aggr egation.

for $answer in collection("answers")

group by $guestion := $answer.question_id

return {
"question" : $question,
"count" : count ($answer)

}

Results:

{
"question" : 5453872,
"count" : 1

}

{
"question" : 6183352,
"count" : 2

}

{
"question" : 4720508,
"count" : 1

}

{

"question" : 4419499,
"count" : 2

Group Clauses

{
"question" : 37823,

"count" : 2

}

The following query is equivalent to "SELECT question_id, AV G(score) FROM answers
GROUP BY question_id".

Example 10.15. A group by clause using aver age aggr egation.

for $answer in collection("answers")

group by $question := $answer. question_id
return {
"question" : $question,
"average score" : avg($answer.score)
}
Results:
{
"question" : 5453872,
"average score" : 6
}
{
"question" : 6183352,
"average score" : 0.5
}
{
"question" : 4720508,
"average score" : 34
}
{
"question" : 4419499,
"average score" : 9
}
{
"question" : 37823,
"average score" : 5.5
}

JSONig's group by is more flexible than SQL and is fully composable.

79

Group Clauses

Example 10.16. A group by clause with a nested expression.

for $answer in collection("answers")

group by $guestion := $answer.question_id

return {
"question" : $question,
"scores" : [$answer.score]

}

Results:

{
"question" : 5453872,
"scores" : [6]

}

{
"question" : 6183352,
"scores" : [0, 1]

}

{
"question" : 4720508,
"scores" : [34]

}

{
"question" : 4419499,
"scores" : [17, 1]

}

{
"question" : 37823,
"scores" : [7, 4]

}

Unlike SQL, JSONiq does not need a having clause, because awhere clause works perfectly
after grouping as well.

Thefollowing query isthe counterpart of "SELECT question_id, COUNT(*) FROM answers
GROUP BY question_id HAVING COUNT(*) > 1"

Example 10.17. A group by clause with a post-grouping condition.

Let Clauses

for $answer in collection("answers")

group by $question := $answer.question_id

wher e count ($answer) gt 1

return {
"question" : $question,
"count" : count ($answer)

}

Results:

{
"question" : 6183352,
"count" : 2

}

{
"question" : 4419499,
"count" : 2

}

{
"question" : 37823,
"count" : 2

}

Let Clauses

L et bindings can be used to define aliases for any sequence, for convenience.
For eachincoming tuple, theexpressionin thelet clauseisevaluated to asegquence. A binding

is added from this sequence to the let variable in each tuple. A tuple is hence produced for
each incoming tuple.

Example 10.18. A let clause.

for $answer in collection("answers")

let $qid := $answer.question_id
group by $question := $qid
[et $count := count ($answer)
where $count gt 1
return {

"question" : $question,

81

Let Clauses

"count" : $count

}

Resullts:

{
"question" : 6183352,
"count" : 2

}

{
"question" : 4419499,
"count" : 2

}

{
"question" : 37823,
"count" : 2

}

Note that it is perfectly fine to reuse a variable name and hide a variable binding.

Example 10.19. A let clause reusing the same variable name.

for $answer in collection("answers")
let $qgid := $answer.question_id
group by $qgid
| et $count := count($answer)
where $count gt 1
[et $count := sunf

collection("faqs")

[$$.question_id eq $qid]!size($$.tags)

)

return {
"question" : collection("faqgs")

[$$. question_id eq $qgid].title,

"count" : $count

}

Results:

{

82

Count Clauses

"question” : "Find CouchDB docs missing an arbitrary field
"count" : 4
}
{
"question” : "MySQ and NoSQL: Help me to choose the right
one",
"count" : 4
}
{
"question” : null,
"count” : O
}

Count Clauses

For each incoming tuple, a binding from the position of this tuple in the tuple stream to the
count variable is added. The new tuple is then forwarded to the next clause.

Example 10.20. A count clause.
for $question in collection("fags")

order by size($question.tags)
count $count

return {
"id" : $count,
"fag" : $question.title
}
Results:
{
“id" o1,
"fag" : "MySQL and NoSQL: Help me to choose the right one"
}
{
“id" o2,
"fag" : "The Next-gen Dat abases"
}

83

Map Operator

}

“id" 3,

"fag" : "Redis, CouchDB or Cassandra?"

“id" o 4,

"fag" : "Find CouchDB docs missing an arbitrary field"
“id" : 5

"fag" : "Full-text search in NoSQL dat abases™”

Map Operator

JSONIq provides ashortcut for afor-return construct, automatically binding each itemin the
|eft-hand-side sequence to the context item.

Example 10.21. A simple map.

(1

to 10) ! ($$ * 2)

Results:

Example 10.22. An equivalent query.

for $i in 1 to 10
return $i * 2

Composing FLWOR
Expressions

Composing FLWOR Expressions

Likeall other expressions, FLWOR expressions can be composed. In the following example,
a predicate expression is nested in an existential quantifier, nested in the where clause of a
FLWOR, nested in a function call, nested in a FLWOR, nested in a function call, nested in
an array constructor. The examples looks for users who got an answer not accepted, but for
whom there were at least two questions for which they gave an answer with a better score.

Example 10.23. Nested FLWORs.

[

di stinct-val ues(
for $answer in collection("answers")
et $oid := $answer.owner.user_id
wher e count (
for $question in collection("fags")
wher e
sonme $ot her - answer
in collection("answers")
[$$. question_id eq
$questi on. question_id
and
$$. owner . user _id eq $oid]
satisfies
$ot her - answer . score gt $answer.score
return $question

85

Ordered and
Unordered Expressions

) ge 2
where not $answer.is_accepted
return $answer.owner. di spl ay_nane
)
]

Results:

["JasonSmith"]

Ordered and Unordered Expressions

By default, the order in which afor clause bindsitsitemsisimportant.

This behaviour can be relaxed in order give the optimizer more leeway. An unordered
expression relaxes ordering by for clauses within its operand scope:

Example 10.24. An unordered expression.

unor dered {
for $answer in collection("answers")
where $answer.score ge 4
count $c
where $c le 2
return $answer

Results:

{
"_id" @ "511C7/C5D9A277C22D13880C3",

"question_id" : 37823,
"answer _id" : 37841,

"creation_date" : "2008-09-01T12: 14: 38",
"last_activity_date" : "2008-09-01T12: 14: 38",
"score" : 7,

"is_accepted" : false,

"owner" : {

"user_id" : 2562,

86

Ordered and
Unordered Expressions

"di spl ay_nanme" : "Ubi guchi",

"reputation” : 1871,

"user _type" : "registered"

"profile_image" : "http://ww. gravatar.coni avatar/00b87a
917ec763c0c051dc6b8c06f 402?d=i dent i con&anp; r =PG'

"l'ink" : "http://stackoverfl ow. confusers/ 2562/ ubi guchi "

}

}

{
"_id" @ "511C/C5D9A277C22D13880C4",

"question_id" : 37823,
"answer _id" : 37844,
"creation_date" : "2008-09-01T12: 16: 40"
"last_activity_date" : "2008-09-01T12: 16: 40"
"score" : 4,
"is_accepted" : false
"owner" : {
"user_id" : 2974,
"di spl ay_nanme" : "Rob Wells",
"reputation" : 17543,
"user _type" : "registered"
"profile_image" : "http://ww. gravatar.conif avatar/ 876928
1d99f 8f e9c208f d6a926c383d1?d=i dent i con&anp; r =PG',
"l'ink" : "http://stackoverfl ow. confusers/2974/rob-wells"

"accept_rate" : 94
}
}

An ordered expression can be used to reactivate ordering behaviour in a subscope.

Example 10.25. An ordered expression.

unor dered {
for $question in collection("fags")
wher e exi sts(
ordered {
for $answer at $i in collection("answers")
where $i eq 5
wher e $answer. question_id
eq $question.question_id

87

Ordered and
Unordered Expressions

return $answer
}
)
return $question

}

Results:

{
"_id" : "511C7C5C9A277C22D138808A",

"question_id" : 4720508,
"creation_date" : "2011-01-18T04: 32: 30"
"last _activity_date" : "2011-01-19T06: 46: 34",
"score" : 13,
"accepted_answer _id" : 4720977,
"title" : "Redis, CouchDB or Cassandra?"
"tags" : ["nosqgl", "couchdb", "cassandra", "redis"],
"view count" : 5620
"owner" : {
"user _id" : 216728,
"di spl ay_nane" : "nornagon"
“reputation" : 3114,
"user _type" : "registered",
"profile_image" : "http://ww.gravatar.confavatar/13f271
99f 9bf 9c9f 1261dc8a49630a6b?d=i dent i con&anp; r =PG'
"link" : "http://stackoverfl ow com users/ 216728/ nor nagon

})
"link" : "http://stackoverfl ow. com questions/ 4720508/ redis

-couchdb- or - cassandr a"
"is_answered" : true

}

"accept _rate" : 86

Chapter 11. Expressions
Dealing with Types

We have dready introduced the sequence type syntax. It is now time to introduce the
expressions that deal with types.

Instance-of Expressions

A quick glimpse on this expression was already given. An instance expression can be used
to tell whether a sequence matches a given sequence type, likein Java.

Example 11.1. Instance of expression.

1 instance of integer

1 instance of string,

"foo" instance of string,

{ "foo" : "bar" } instance of object,

({ "foo" : "bar" }, { "bar" : "foo" })
i nstance of json-itemt,

[1, 2, 3] instance of array?,

() instance of ()

Results:

true
fal se
true
true
true
true
true

Treat Expressions

A treat expression just forwards its operand value, but only after checking that a JSONiq
value matches a given sequence type. If it isnot the case, an error is raised.

89

Castable Expressions

Example 11.2. Treat as expression.

1 treat as integer,

"foo" treat as string,

{ "foo" : "bar" } treat as object,

({ "foo" : "bar" }, { "bar" : "foo" })
treat as json-itemt,

[1, 2, 3] treat as array?,

() treat as ()

Results:
1
"foo"
{
"foo" : "bar"
}
{
"foo" : "bar"
}
{
"bar" : "foo"
}
[1, 2, 3]

Example 11.3. Treat asexpression (failing).
1 treat as string

Error:

"xs:integer" cannot be treated as type xs:string

Castable Expressions

A castable expression checks whether a JSONiq value can be cast to agiven atomic type and
returns true or false accordingly. It can be used before actually casting to that type.

90

Cast Expressions

The question mark allows for an empty sequence.

Example 11.4. Castable as expression.

"1" castabl e as integer,

"foo" castable as integer,

"2013-04- 02" castable as date,

() castable as date,

("2013-04-02", "2013-04-03") castable as date,
() castable as date?

Results:

true
fal se
true
fal se
fal se
true

Cast Expressions

A cast expression casts a (single) JSONiq value to a given atomic type. The resulting value
is annotated with this type.

Also here, the question mark allows for an empty sequence. An error israised if the cast is
unsuccessful.

Example 11.5. Cast as expression.

"1" cast as integer,
"2013-04- 02" cast as date,
() cast as date?,
"2013-04- 02" cast as date?

Results:

1

91

Typeswitch Expressions

"2013-04- 02"
"2013-04- 02"

Example 11.6. Cast as expression (failing).

("2013-04-02", "2013-04-03") cast as date,
"foo" cast as integer,
() cast as date

Error:

sequence of nobre than one itemcan not be cast to type with
quantifier '"1' or "'?

Typeswitch Expressions

A typeswitch expressions tests if the value resulting from the first operand matches a given
list of types. The expression corresponding to the first matching case isfinally evaluated. If
there is no match, the expression in the default clause is evaluated.

Example 11.7. Typeswitch expression.

typeswi tch("foo")
case integer return "integer"
case string return "string"
case object return "object"
default return "other"

Results:

"string"

In each clause, it is possible to bind the value of the first operand to avariable.

Example 11.8. Typeswitch expression.

typeswitch("foo")

92

Typeswitch Expressions

case $i as integer return $i + 1
case $s as string return $s || "
case $0 as object return [$0]
default $d return $d

f oo

Results:
"f oof 00"

The vertical bar can be used to allow several types in the same case clause.

Example 11.9. Typeswitch expression.

typeswi tch("foo")
case $a as integer | string
return { "integer or string" : $a }
case $0 as object
return [$o]
default $d
return $d

Results:

{

"integer or string"

}

94

Part IV. Prolog,
Modules and Functions

Chapter 12. Prologs

This section introduces prologs, which allow declaring functions and global variables that
can then be used in the main query. A prolog aso allows setting some default behaviour.

The prolog appears before the main query and is optional . It can contain setters and module
imports, followed by function and variable declarations.

Module imports are explained in the next chapter.

Setters.

Setters allow to specify adefault behaviour for various aspects of the language.

Default Ordering Mode

This specifies the default behaviour of for clauses, i.e., if they bind tuples in the order in
which items occur in the binding sequence. It can be overriden with ordered and unordered
expressions.

Example 12.1. A default ordering setter.

decl are ordering unordered;
for $answer in collection("answers")

return {
"owner" : S$answer.owner.di spl ay_nane,
"score" : $answer.score

}

Resullts:

{
"owner" : "Ubiguchi",
"score" . 7

}

{
"owner" : "Rob Wells",
"score" : 4

}

97

Default Ordering Behaviour
for Empty Sequences

{
"owner" : "Victor Nicollet",
"score" : 17

}

{
"owner" : "descent 89",
"score" : 1

}

{
"owner" : "JasonSmith",
"score" : 34

}

{
"owner" : "JasonSmith",
"score" . 6

}

{
"owner" : "JasonSmith",
"score" : O

}

{
"owner" : "JasonSmith",
"score" : 1

}

Default Ordering Behaviour for Empty
Sequences

This specifies whether empty sequences come first or last in an ordering clause. It can be
overriden by the corresponding directives in such clauses.

Example 12.2. A default ordering for empty sequences.

decl are default order enpty |east;

for $x in ({ "foo" : "bar" }, {})
order by $x.foo

return $x

Results:

98

Default Decimal Format

{
}
{
"foo" : "bar"

}
Default Decimal Format

This specifies a default decimal format for the builtin function format-number().

Example 12.3. A default decimal for mat setter.

decl are default deci mal -f or mat
deci nal - separator = ","
groupi ng-separator =" ";
format - nunber (12345. 67890, "# ###, ##")

Results:

"12 345, 68"

Namespaces

Variables and functions live in namespaces that are URIs -- the semantics is similar to that
of C++ namespaces. For convenience, namespaces are associated with amuch shorter alias,
and this alias can be used as a prefix to avariable or afunction.

Until now, we only dealt with main queries. In main queries, the namespace alias local: is
predefined so that global variables and functions that are local to the main query can use
this alias, for example local: myvariable or local: myfunction(). This alias is associated with
a namespace, but which namespace it is not relevant for writing queries.

For variables, theaiasisoptional -- variables not prefixed with an aliaslivein no namespace.

For functions, the absence of aliasisonly allowed for builtin functions. Builtin functionslive
in their own special namespace.

Other namespaces and aliases can be defined as well with imported library modules. Thisis
defined in Chapter 13, Modules.

99

Global Variables

Global Variables

Variables can be declared global. Global variables are declared in the prolog.

Example 12.4. Global variable.

decl are vari abl e $obj
:={ "foo" : "bar" };
decl are vari abl e $nunbers
= (1, 2, 3, 4, 5);

$obj ,
[$nunbers]
Results:
{

"foo" : "bar"
}

[1, 2, 3, 4, 5]

Y ou can specify a sequence type for avariable. If the type does not match, an error israised.
In general, you do not need to worry too much about variable types except if you want to
make sure that what you bind to avariableis really what you want. In most cases, the engine
will take care of typesfor you.

Example 12.5. Global variable with a type.

decl are variabl e $obj as obj ect
= { "foo" : "bar" };
$obj

Results:

{

"foo" : "bar"

}

An external variable allows you to pass a value from the outside environment, which can be
very useful. Each implementation can choose its own way of passing a value to an external

100

User-Defined Functions

variable. A default valuefor an external variable can also be supplied in case noneisprovided
from outside.

Example 12.6. An external global variable with a default value.

decl are variabl e $obj external
.= { "foo" : "bar" };
$obj

Results:

{

"foo" : "bar"

}

In these examples, global variables have no prefix. They can also be prefixed with the
predefined aliaslocal:, but them they must be prefixed both in the declaration and when used.

Example 12.7. An external global variablewith thelocal: alias.

decl are variabl e $l ocal :obj external := { "foo" : "bar" };
$l ocal : obj
Resullts:
{
IIfOOII : n bar n
}

Global variablesthat are imported from other modules are prefixed with the alias associated
with the imported module, aswill be explained in Chapter 13, Modules.

User-Defined Functions

Y ou can define your own functions in the prolog.

Unlike variables, user-defined functions must be prefixed, because unprefixed functions are
the builtin functions.

101

User-Defined Functions

In the prolog of a main query, these user-defined functions must be prefixed with the
predefined alias local:, both in the declaration and when called.

Remember that types are optional, and if you do not specify any, item* is assumed, both for
parameters and for the return type.

Example 12.8. Some user-defined functions.

decl are function | ocal:say-hello-1($x)

{
"Hello, " || $x || "!I"

b

declare function | ocal:say-hello-2($x as string)

{

“Hello, " || $x || "!I"
1
declare function | ocal:say-hello-3($x as string)
as string
{
“"Hello, " || $x || "!I"
1

| ocal : say-hello-1("M ster Spock"),
| ocal : say-hell 0-2("M ster Spock"),
| ocal : say-hell 0-3("M ster Spock")

Results:

"Hell o, Mster Spock!"
"Hell o, Mster Spock!"
"Hell o, Mster Spock!"

If you do specify types, an error is raised in case of a mismatch

Example 12.9. A type mismatch for a user-defined function (failing).

decl are function | ocal:say-hello($x as string)

{

102

User-Defined Functions

"Hello, " || $x || "!"
s

| ocal : say- hel | o(1)

Error:

Xs:integer can not be pronpted to paraneter type xs:string
of function |ocal:say-hello()

103

104

Chapter 13. Modules

Y ou can group functions and variables in separate units, called library modules.

Up to now, everything we encountered were main modules, i.e., aprolog followed by amain
query.

A library module does not contain any query - just functions and variables that can be
imported by other modules.

A library module must be assigned to anamespace. For convenience, thisnamespaceisbound
to an alias in the module declaration. All variables and functions in a library module must
be prefixed with this alias.

Example 13.1. A library module.

nodul e namespace ny =
"http://ww. exanpl e. com ny- nodul e";

decl are variable $ny:variable := { "foo" : "bar" };
decl are variable $nmy:n := 42;

declare function ny:function($i as integer)
{

$i * S
1

Once you have defined a library module, you can import it in any other module (library
or main). An alias must be given to the module namespace (my). Variables and functions
from that module can be accessed by prefixing their names with this alias. The alias may
be different than the internal alias defined in the imported module -- only the namespace
really matters.

Example 13.2. Importing alibrary moduleinto a main module.

i mport nodul e namespace ot her =
"http://ww. exanpl e. com ny- nodul e";
ot her: functi on($ot her: n)

105

Results:
1764

An engine may come with a number of builtin library modules. For example, there is the
standardized math module.

Example 13.3. Using the math module.

i mport nodul e namespace math =
"http://ww. w3. or g/ 2005/ xpat h- functi ons/ mat h";
mat h: pi (),
mat h: pow(2, 30),
mat h: exp(1),
mat h: expl0(2),
mat h: [og(1),
mat h: [0g10(2),
mat h: sqrt (4),
mat h: si n(mat h: pi ())

Results:

3. 1415926535897931

1. 073741824E9
2.7182818284590451

100

0

0. 3010299956639812

2

1.2246467991473532E- 16

106

Chapter 14. Function Library

JSONiq provides arich set of builtin functions. We now introduce them, mostly by giving
examples of usage.

Example 14.1. Functions on JSON data.

keys({ "foo" : 1, "bar" : 2 }),

menbers(["mercury", "venus", "earth", "mars"]),
par se-j son(

“{ \"foo\" : \"bar\" }"

) ’

size([1 to 10]),

serialize({ "foo" : "bar" })

Results:

"foo"
"bar"
"mercury"
"venus"
"earth"
"mars"

"foo" : "bar”

10
"{ "foo" : "bar" }"

Example 14.2. Miscellaneous functions.

col l ection("one-object"),
bool ean("fo00"),
if (1 +1ne?2) then error() else true

Results:

{

107

"question” : "What NoSQL technol ogy should I use?"
}
true
true

Example 14.3. Functions on numbers.

abs(-2.3),

ceiling(-2.3),

floor(-2.3),

round(-2. 3),

round- hal f-to-even(-2.5145, 3),
nunmber (" 3. 14"),

format-integer (1234567, "000' 111' 222' 333"),
for mat - nunber (1234567. 8901234, "#, ###. 123")

Results:

2.3

-2

-3

-2

-2.514

3. 14
"000' 001" 234' 567"
"1, 234, 567. 890"

Example 14.4. Functionson strings (1/2).

codepoi nts-to-string((78, 111, 83, 81, 76)),
string-to-codepoi nts("NoSQ"),
codepoi nt - equal (
"NoSQL",
"\ uOO4E\ u006F\ u0053\ uO051\ u004C!
).
upper -case("NoSQ."),
| ower - case("NoSQ"),
transl ate("NoSQ.", "oN', "On"),
resol ve-uri ("types", "http://ww.jsoniq.org/"),

108

encode-for-uri ("1 + 1is 2"),
iri-to-uri(

"http://ww. exanpl e. com chuchi chéschtli"),

escape-htm -uri (
"http://ww. exanpl e. coml chuchi chéaschtli™)

Results:

"NoSQL"
78

111

83

81

76

true

" NOSQL"

"nosqgl "

"nosSQL"

“http://ww.jsoniq.org/types"
"19209%2BY2019%20i s¥202"
"http://ww. exanpl e. com chuchi ch%C3%Adscht|i ™
"http://ww. exanpl e. com chuchi ch%C3%Adscht|i ™

Example 14.5. Functions on strings (2/2).

concat ("foo", 1, true, "bar", ()),
string-join((1 to 10) ! string($%), "-"),
string-1ength("123456789"),
contai ns("NoSQ.", "SQ"),
starts-w th("NoSQ.", "No"),
ends-wi t h("NoSQL", "SQ"),
substring("123456789", 5),
substring-before("NoSQ", "SQ"),
substring-after("NoSQ", "o"),
mat ches(" NoSQL", "No[A-Z] +"),
replace("NoSQ.", "No([A-Z])", "Yes$l"),
t okeni ze(

"Go Boldly Where No Man Has Gone Before",

109

Results:

"fooltruebar”
"1-2-3-4-5-6-7-8-9-10"
9

true

true

true

"56789"

" No"

"sQL”

true

"YesSQL"

" Go"

"Bol dl y"
"Wher e"

" No"

" NVRn"

"Has"

" CGone"

" Bef or e"

Example 14.6. Functions on sequences (1/2).

empty(("foo", "bar")),

exi sts(("foo", "bar")),

head(("foo", "bar")),

tail (("foo", "bar")),

[insert-before(("foo", "bar"), 1, "foobar")],
remove(("foo", "bar"), 1),

[reverse(l to 10)],

[subsequence(l to 10, 2, 4)],
unordered(("foo", "bar"))

Results:

fal se
true
n f 00II

110

"bar"

["foobar", "foo", "bar"]

"bar"

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
[2, 3, 4, 5]

"foo"

"bar"

Example 14.7. Functions on sequences (2/2).

di stinct-val ues(

("foo", "bar", "foo", "bar", "foo0")
),
i ndex- of (
("foo", "bar", "foo", "bar", "foo"),
"foo"),

deep- equal (
{ "foo" : [1to 10] 1},
{ lower-case("FOO') : [1, 2, 3, 4, 5, 6, 7, 8 9, 10] }
),
zero-or-one("foo"),
one-or-nore(("foo", "bar")),
exact | y-one("foo")

Results:

"foo"
"bar"
1

3

5
true
"foo"
"foo"
"bar"
"foo"

Example 14.8. Aggregation functions.

111

count (1 to 100),
avg(1l to 100),
max(1 to 100),
mn(l to 100),
sum(1l to 100)

Results:

100
50.5
100
1
5050

Example 14.9. Environment.

current-dateTime(),
current-date(),
current-time(),
inmplicit-tinmezone()

Results:

"2013-06-10T15: 23: 24. 163953+02: 00"
"2013-06-10+02: 00"

"15:23: 24.163953+02: 00"

"PT2H"

Example 14.10. Constructors.

date("2013-06-21"),

time("17: 00: 00"),

dat eTi ne("2013-06-21T17: 00: 00Z"),

dat eTi ne("2013-06-21T17: 00: 00+01: 00"),
duration("P2DT1H30ML5S"),

hexBi nary("511C7C5C9A277C22D138802F")

Results:

112

"2013-06-21"

"17:00: 00"

"2013-06-21T17: 00: 00Z"
"2013-06-21T17: 00: 00+01: OO"
" P2DT1H30ML5S"
"511C7C5COA277C22D138802F"

113

114

Part V. Advanced Notes

Chapter 15. Errors

Builtin expressions, operators and functions may raise errors under various conditions. An
example is a mismatching type.

The evaluation of a JSONiq expression either returns a sequence of items, or raises an error.
Errors can be reported statically, or dynamically (at runtime).

Errors can aso be raised by hand.

Example 15.1. Raising an error (failing).
error()

Error:

Lazy evaluation and optimizations with regard to errors are allowed. Raising errors is not
always deterministic, as in some cases the processor might (but is not required to) stop
evaluating the operands of an expression if it determines that only one possible value can be
returned by that expression. The following expression may return true, or may raise an error.

Example 15.2. Non-deterministic behavior (no guarantee of failure or
success).

true or error()

Results:

true

117

118

Chapter 16. Equality vs. Identity

Asin most languages, one can distinguish between physical equality and logical equality.

Atomics can only be compared logically. Their physically identity is totally opaque to you.

Example 16.1. Logical comparison of two atomics.
legl

Results:

true

Example 16.2. Logical comparison of two atomics.
1 eq 2

Results:

fal se

Example 16.3. Logical comparison of two atomics.
"foo" eq "bar"

Results:

fal se

Example 16.4. L ogical comparison of two atomics.

"fOO" ne n bar n

119

Results:
true

Two objects or arrays can be tested for logical equality as well, using deep-equal(), which
performs a recursive comparison.

Example 16.5. Logical comparison of two JSON items.
deep-equal ({ "foo" : "bar" }, { "foo" : "bar" })

Results:

true

Example 16.6. Logical comparison of two JSON items.
deep-equal ({ "foo" : "bar" }, { "bar" : "foo" })

Results:
fal se

The physical identity of objects and arrays is not exposed to the user in the core JSONiq
language itself. Some library modules might be able to revedl it, though.

120

Chapter 17. Sequences vs.
Arrays

Even though JSON supports arrays, JSONiq uses a different construct as its first class
citizens: sequences. Any value returned by or passed to an expression is a sequence.

The main difference between sequences and arrays is that sequences are completely flat,
meaning they cannot contain other sequences.

Since sequences are flat, expressions of the JSONiq language just concatenate them to form
bigger sequences.

Thisis very useful to stream and optimize -- for example, the runtime of the Zorba engine
is iterator-based.

Example 17.1. Flat sequences.

((1, 2), (3, 4)

Results:

1

2

3

4

Arrays on the other side can contain nested arrays, like in JSON.
Example 17.2. Nesting arrays.

[[1 2], 03 4]]

Results:
[[2], [3 4]]

Many expressions return single items - actually, they really return a singleton sequence, but
a singleton sequence of one item is considered the same as the item itself.

121

Example 17.3. Singleton sequences.
1+1

Results:
2

Thisisdifferent for arrays: asingleton array isdistinct fromits unique member, likein JSSON.

Example 17.4. Singleton sequences.
[1+ 1]

Results:

[2]

Anarray isasingleitem. A (non-singleton) sequenceisnot. Thiscan beobserved by counting
the number of itemsin a sequence.

Example 17.5. count() on an array.
count ([1, "foo", [1, 2, 3, 4], { "foo" : "bar" }])

Results:

1

Example 17.6. count() on a sequence.
count((1, "foo", [1, 2, 3, 4], { "foo" : "bar" }))

Results:

4

122

Other than that, arrays and sequences can contain exactly the same members (atomics, arrays,
objects).

Example 17.7. Membersof an array.

[1, "foo", [1, 2, 3, 4], { "foo" : "bar" }]
Results:
[1, "foo", [1, 2, 3, 4], { "foo" : "bar" }]

Example 17.8. Member s of a sequence.

(1, "foo", [1, 2, 3, 4], { "foo" : "bar" })

Results:

1

"foo"

[1, 2, 3, 4]
{

"foo" : "bar"

}

Arrays can be converted to sequences, and vice-versa.

Example 17.9. Converting an array to a sequence.

[1, "foo", [1, 2, 3, 4], { "foo" : "bar" }][]

Results:

1

"foo"

[1, 2, 3, 4]
{

"foo" : "bar"

123

}

Example 17.10. Converting a sequenceto an array.

[(2, "foo", [1, 2, 3, 41, { "foo" : "bar" })]
Results:
[1, "foo", [1, 2, 3, 4], { "foo" : "bar" }]

124

Chapter 18. Null vs. Empty
Sequence

Null and the empty sequence are two different concepts.

Null is an item (an atomic value), and can be a member of an array or of a sequence, or
the value associated with akey in an object. Empty sequences cannot, as they represent the
absence of any item.

Example 18.1. Null valuesin an array
[null, 1, null, 2]

Results:

[null, 1, null, 2]

Example 18.2. Null valuesin an object

{ "foo" : null }
Results:
{

"foo" : null
}

Example 18.3. Null valuesin a sequence
(null, 1, null, 2)
Results:

nul |
1

125

nul |
2

If an empty sequence is found as an object value, it is automatically converted to null.

Example 18.4. Automatic conversion to null.

{ "foo" @ () }
Resullts:
{

"foo" : null
}

In an arithmetic opration or a comparison, if an operand is an empty sequence, an empty
sequence is returned. If an operand is a null, an error is raised except for equality and
inequality.

Example 18.5. Empty sequencein an arithmetic operation.
() + 2

Results:

Example 18.6. Null in an arithmetic operation (failing).
null + 2

Error:

arithmetic operation not defined between types "js:null" an
d "xs:integer"

Example 18.7. Null and empty sequencein an arithmetic operation.

126

nul |+ ()

Results:

Example 18.8. Empty sequencein a comparison.

() eq 2

Results:

Example 18.9. Null in a comparison.

null eq 2

Results:

fal se

Example 18.10. Null in a comparison.

null It 2

Results:

true

Example 18.11. Null and the empty sequence in a comparison.

null eq ()

Results:

127

Example 18.12. Null and the empty sequence in a comparison.

null It ()

Results:

128

Chapter 19. Reference

A great part of JSONiq is directly inherited from XQuery -- everything that is orthogonal
to XML.

If you would like to know more about JSONiq, you can browse http://mmw.jsonig.org/.

If you areinterested in knowing the semantics of the expressions morein depth, you can find
most of them on the X Query 3.0 specification at http://mww.w3.or g/ TR/xquery-30.

If you are interested in knowing the semantics of the builtin functions more in depth, you
can find most of them on the XPath and XQuery Functions and Operators 3.0 specification
at http: //mww.w3.or g/ TR/xpath-functions-30.

129

130

	JSONiq
	Table of Contents
	Chapter 1. Introduction
	NoSQL - Why Are Relational Databases Not Good Enough?
	Why JSONiq?
	How to Run the Queries in This Book?
	Acknowledgements

	Part I. JSON and the JSONiq Data Model
	Chapter 2. The JSON Syntax
	JSON Strings
	JSON Numbers
	JSON Booleans
	JSON Null
	JSON Objects

	Chapter 3. The JSONiq Data Model
	JSONiq Values: Items and Sequences
	Objects
	Arrays
	Atomics

	Chapter 4. The JSONiq Type System
	Item Types
	Atomic Types
	JSON Item Types : Object Types and Array Types
	The Most General Item Type.

	Sequence Types

	Part II. Construction of Items and JSON Navigation
	Chapter 5. Construction of Items
	Atomic Literals
	String Literals
	Number Literals.
	Boolean and Null Literals

	Object Constructors
	Array Constructors
	Composing Constructors

	Chapter 6. Collections
	Collections Used Throughout This Book

	Chapter 7. JSON Navigation
	Object Navigation
	Array Unboxing
	Sequence Filtering
	Array Navigation

	Part III. JSONiq Expressions
	Chapter 8. Basic Operations
	Construction of Sequences
	Comma Operator
	Range Operator

	Parenthesized Expressions
	Arithmetics
	String Concatenation
	Comparison
	Empty Sequence Behavior
	Logic
	Propositional Logic
	First-Order Logic (Quantified Variables)

	Builtin Functions

	Chapter 9. Control Flow Expressions
	Conditional Expressions
	Switch expressions
	Try-Catch expressions

	Chapter 10. FLWOR Expressions
	Variables
	For Clauses
	Where Clauses
	Order Clauses
	Group Clauses
	Let Clauses
	Count Clauses
	Map Operator
	Composing FLWOR Expressions
	Ordered and Unordered Expressions

	Chapter 11. Expressions Dealing with Types
	Instance-of Expressions
	Treat Expressions
	Castable Expressions
	Cast Expressions
	Typeswitch Expressions

	Part IV. Prolog, Modules and Functions
	Chapter 12. Prologs
	Setters.
	Default Ordering Mode
	Default Ordering Behaviour for Empty Sequences
	Default Decimal Format

	Namespaces
	Global Variables
	User-Defined Functions

	Chapter 13. Modules
	Chapter 14. Function Library

	Part V. Advanced Notes
	Chapter 15. Errors
	Chapter 16. Equality vs. Identity
	Chapter 17. Sequences vs. Arrays
	Chapter 18. Null vs. Empty Sequence

	Chapter 19. Reference

