

Getting Started with NoSQL

Your guide to the world and technology of NoSQL

Gaurav Vaish

 BIRMINGHAM - MUMBAI

Getting Started with NoSQL

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1150313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-4-988

www.packtpub.com

Cover Image by Will Kewley (william.kewley@kbbs.ie)

Credits

Author
Gaurav Vaish

Reviewer
Satish Kowkuntla

Acquisition Editor
Robin de Jonh

Commissioning Editor
Maria D’souza

Technical Editors
Worrell Lewis

Varun Pius Rodrigues

Project Coordinator
Amigya Khurana

Proofreader
Elinor Perry-Smith

Indexer
Rekha Nair

Graphics
Aditi Gajjar

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

About the Author

Gaurav Vaish works as Principal Engineer with Yahoo! India. He works primarily
in three domains—cloud, web, and devices including mobile, connected TV, and the
like. His expertise lies in designing and architecting applications for the same.

Gaurav started his career in 2002 with Adobe Systems India working in their
engineering solutions group.

In 2005, he started his own company Edujini Labs focusing on corporate training
and collaborative learning.

He holds a B. Tech. in Electrical Engineering with specialization in Speech Signal
Processing from IIT Kanpur.

He runs his personal blog at www.mastergaurav.com and www.m10v.com.

This book would not have been complete without support from my
wife, Renu, who was a big inspiration in writing. She ensured that
after a day’s hard work at the office when I sat down to write the
book, I was all charged up. At times, when I wanted to take a break
off, she pushed me to completion by keeping a tab on the schedule.
And she ensured me great food or a cup of tea whenever I needed it.

This book would not have the details that I have been able to provide
had it not been timely and useful inputs from Satish Kowkuntla,
Architect at Yahoo! He ensured that no relevant piece of information
was missed out. He gave valuable insights to writing the correct
language keeping the reader in mind. Had it not been for him, you
may not have seen the book in the shape that it is in.

About the Reviewer

Satish Kowkuntla is a software engineer by profession with over 20 years of
experience in software development, design, and architecture. Satish is currently
working as a software architect at Yahoo! and his experience is in the areas of web
technologies, frontend technologies, and digital home technologies. Prior to Yahoo!
Satish has worked in several companies in the areas of digital home technologies,
system software, CRM software, and engineering CAD software. Much of his career
has been in Silicon Valley.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online
digital book library. Here, you can access, read and search across Packt’s entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Dedicated to Renu Chandel, my wife.

Table of Contents
Preface 1
Chapter 1: An Overview of NoSQL 7
Defining NoSQL 7
History 8
What NoSQL is and what it is not 9
Why NoSQL? 11
List of NoSQL Databases 11
Summary 12
Chapter 2: Characteristics of NoSQL 13
Application 13
RDBMS approach 14
Challenges 18
NoSQL approach 20
Summary 23
Chapter 3: NoSQL Storage Types 25
Storage types 25
Column-oriented databases 26
Advantages 27
Example 28
Document store 29
Advantages 31
Examples 32
Key-value store 41
Advantages 42
Examples 42
Graph store 43
Advantages 44
Examples 45
Multi-storage type databases 46

Table of Contents

[ii]

Comparing the models 47
Summary 49
Chapter 4: Advantages and Drawbacks 51
Transactional application 52
Entity schema requirements 52
Data access requirements 52
What NoSQL can do 52
What NoSQL cannot do 53
Decision 53
Computational application 53
Entity schema requirements 53
Data access requirements 54
What NoSQL can do 54
What NoSQL cannot do 55
Decision 55
Web-scale application 56
Entity schema requirements 56
Data access requirements 57
What NoSQL can do 57
What NoSQL cannot do 57
Decision 57
Summary 58
Chapter 5: Comparative Study of NoSQL Products 59
Comparison 60
Technical comparison 60
Implementation language 60
Engine types 61
Speed 62
Features 67
Limits 67
Bulk operations 68
Query options 73
Security 75
Access management 75
Encryption 77
Multitenancy 78
RDBMS related features 79
Deployment and maintenance 79
Availability 79
Maintenance 81

Table of Contents

[iii]

Tools 82
Protocol 83
Nontechnical comparison 84
Source and license 84
Community and vendor support 86
Summary 87
Chapter 6: Case Study 89
Application definition 89
Requirement analysis 90
Implementation using MongoDB 90
Features and constraints 91
Setup 91
Database design 92
Database queries 92
Database modeling 93
Schema definition 94
Writing queries 96
Queries for a single entity, simple result 96
Queries for a single entity, Aggregate 97
Queries for one-to-one relationship 98
Queries for one-to-many relationship 98
Queries for many-to-many relationship 101
Miscellaneous queries 103
Model refinements 106
References using a non-ID property 106
Denormalization and document embedding 108
Cache document approach 112
Miscellaneous changes 113
Summary 114
Appendix: Taxonomy 115
Vocabulary 115
Relationship between CAP, ACID, and NoSQL 118
Index 119

Preface
This book takes a deep dive in NoSQL as technology providing a comparative
study on the data models, the products in the market, and with RDBMS using
scenario-driven case studies

Relational databases have been used to store data for decades while SQL has been
the de-facto language to interact with RDBMS. In the last few years, NoSQL has
been a growing choice especially for large, web-scale applications. Non-relational
databases provide the scale and speed that you may need for your application.

However, making a decision to start with or switch to NoSQL requires more insights
than a few benchmarks—knowing the options at hand, advantages and drawbacks,
scenarios where it suits the most, and where it should be avoided are very critical to
making a decision.

This book is a from-the-ground-up guide that takes you from the very definition
to a real-world application. It provides you step-by-step approach to design and
implement a NoSQL application that will help you make clear decisions on database
choice, database model choice, and the related parameters. The book is suited for a
developer, an architect, as well as a CTO.

What this book covers
Chapter 1, Overview and Architecture, gives you a head-start into NoSQL. It helps you
understand what NoSQL is and is not, and also provides you with insights into the
question – "Why NoSQL?"

Chapter 2, Characteristics of NoSQL, takes a dig into the RDBMS problems that NoSQL
attempts to solve and substantiates it with a concrete scenario.

Preface

[2]

Chapter 3, NoSQL Storage Types, explores various storage types available in the
market today with a deep dive – comparing and contrasting them, and identifying
what to use when.

Chapter 4, Advantages and Drawbacks, brings out the advantages and drawbacks of
using NoSQL by taking a scenario-based approach to understand the possibilities
and limitations.

Chapter 5, Comparative Study of NoSQL Products, does a detailed comparative study of
ten NoSQL databases on about 25 parameters, both technical and non-technical.

Chapter 6, Case Study, takes you through a simple application implemented using
NoSQL. It covers various scenarios possible in the application and approaches that
can be used with NoSQL database.

Appendix, Taxonomy, introduces you to the common and not-so-common terms that
we come across while dealing with NoSQL. It will also enable you to read through
and understand the literature available on the Internet or otherwise.

What you need for this book
To run the examples in the book the following software will be required:

• Operating System—Ubuntu or any other Linux variant is preferred
• CouchDB will be required to take a dig into document store in Chapter 3,

NoSQL Storage Types
• Java SDK, Eclipse, Google App Engine SDK, and Objectify will be required

to cover the examples of column-oriented databases in Chapter 3, NoSQL
Storage Types

• Redis will be required to cover the examples of key-value store in Chapter 3,
NoSQL Storage Types

• Neo4J will be required to cover the examples of graph store in Chapter 3,
NoSQL Storage Types

• MongoDB to run through the case study covered in Chapter 3, NoSQL
Storage Types

The latest versions are preferable.

Preface

[3]

Who this book is for
This book is a great resource for someone starting with NoSQL and indispensable
literature for technology decision makers—be it architect, product manager or CTO.

It is assumed that you have a background in RDBMS modeling and SQL and have
had exposure to at least one of the programming languages—Java or JavaScript.

It is also assumed that you have at least heard about NoSQL and are interested
to explore the same but nothing beyond that. You are not expected to know the
meaning and purpose of NoSQL—this book provides all inputs from the groundup.

Whether you are a developer or an architect or a CTO of a company, this book is an
indispensable resource for you to have in your library.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Do you remember the JOIN query that you wrote to collate the data across multiple
tables to create your final view?"

A block of code is set as follows:

 "_id": "98ef65e7-52e4-4466-bacc-3a8dc0c15c79",
 "firstName": "Gaurav",
 "lastName": "Vaish",
 "department": "f0adcbf5-7389-4491-9c42-f39a9d3d4c75",
 "homeAddress": {
 "_id": "fa62fd39-17f8-4a16-80d6-71a5b71d758d",
 "line1": "123, 45th Main"
 "city" : "NoSQLLand",
 "country": "India",
 "zipCode": "123456"
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 "_id": "98ef65e7-52e4-4466-bacc-3a8dc0c15c79",
 "firstName": "Gaurav",
 "lastName": "Vaish",

Preface

[4]

 "department": "f0adcbf5-7389-4491-9c42-f39a9d3d4c75",
 "homeAddress": {
 "_id": "fa62fd39-17f8-4a16-80d6-71a5b71d758d",
 "line1": "123, 45th Main"
 "city" : "NoSQLLand",
 "country": "India",
 "zipCode": "123456"
 }

Any command-line input or output is written as follows:

curl –X PUT –H "Content-Type: application/json" \

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/5689_graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

An Overview of NoSQL
Now that you have got this book in your hand, you must be both excited and
anxious about NoSQL. In this chapter, we get a head-start on:

• What NoSQL is
• What NoSQL is not
• Why NoSQL
• A list of NoSQL databases

For over decades, relational databases have been used to store what we know
as structured data. The data is sub-divided into groups, referred to as tables. The
tables store well-defined units of data in terms of type, size, and other constraints.
Each unit of data is known as column while each unit of the group is known as
row. The columns may have relationships defined across themselves, for example
parent-child, and hence the name relational databases. And because consistency is
one of the critical factors, scaling horizontally is a challenging task, if not impossible.

About a decade earlier, with the rise of large web applications, research has poured
into handling data at scale. One of the outputs of these researches is non-relational
database, in general referred to as NoSQL database. One of the main problems that a
NoSQL database solves is scale, among others.

Defining NoSQL
According to Wikipedia:

In computing, NoSQL (mostly interpreted as "not only SQL") is a broad
class of database management systems identified by its non-adherence to the
widely used relational database management system model; that is, NoSQL
databases are not primarily built on tables, and as a result, generally do not
use SQL for data manipulation.

An Overview of NoSQL

[8]

The NoSQL movement began in the early years of the 21st century when the world
started its deep focus on creating web-scale database. By web-scale, I mean scale to
cater to hundreds of millions of users and now growing to billions of connected
devices including but not limited to mobiles, smartphones, internet TV, in-car
devices, and many more.

Although Wikipedia treats it as "not only SQL", NoSQL originally started off as a
simple combination of two words—No and SQL—clearly and completely visible in
the new term. No acronym. What it literally means is, "I do not want to use SQL".
To elaborate, "I want to access database without using any SQL syntax". Why? We
shall explore the in a while.

Whatever be the root phrase, NoSQL today is the term used to address to the class
of databases that do not follow relational database management system (RDBMS)
principles, specifically being that of ACID nature, and are specifically designed to
handle the speed and scale of the likes of Google, Facebook, Yahoo, Twitter, and
many more.

History
Before we take a deep dive into it, let us set our context right by exploring some key
landmarks in history that led to the birth of NoSQL.

From Inktomi, probably the first true search engine, to Google, the present
world leader, the computer scientists have well recognized the limitations of the
traditional and widely used RDBMS specifically related to the issues of scalability,
parallelization, and cost, also noting that the data set is minimally cross-referenced
as compared to the chunked, transactional data, which is mostly fed to RDBMS.

Specifically, if we just take the case of Google that gets billions of requests a month
across applications that may be totally unrelated in what they do but related in how
they deliver, the problem of scalability is to be solved at each layer—right from data
access to final delivery. Google, therefore, had to work innovatively and gave birth
to a new computing ecosystem comprising of:

• GFS: Distributed filesystem
• Chubby: Distributed coordination system
• MapReduce: Parallel execution system
• Big Data: Column oriented database

Chapter 1

[9]

These systems were initially described in papers released from 2003 to 2006 listed
as follows:

• Google File System, 2003: http://research.google.com/archive/
gfs.html

• Chubby, 2006: http://research.google.com/archive/chubby.html
• MapReduce, 2004: http://research.google.com/archive/

mapreduce.html

• Big Data, 2006: http://research.google.com/archive/bigtable.html

These and other papers led to a spike in increased activities, specially in open source,
around large scale distributed computing and some of the most amazing products
were born. Some of the initial products that came up included:

• Lucene: Java-based indexing and search engine (http://lucene.
apache.org)

• Hadoop: For reliable, scalable, distributed computing (http://hadoop.
apache.org)

• Cassandra: Scalable, multi-master database with no single point of failure
(http://cassandra.apache.org)

• ZooKeeper: High performance coordination service for distributed
applications (http://zookeeper.apache.org)

• Pig: High level dataflow language and execution framework for parallel
computation (http://pig.apache.org)

What NoSQL is and what it is not
Now that we have a fair idea on how this side of the world evolved, let us examine at
what NoSQL is and what it is not.

NoSQL is a generic term used to refer to any data store that does not follow the
traditional RDBMS model—specifically, the data is non-relational and it does not use
SQL as the query language. It is used to refer to the databases that attempt to solve
the problems of scalability and availability against that of atomicity or consistency.

NoSQL is not a database. It is not even a type of database. In fact, it is a term used to
filter out (read reject) a set of databases out of the ecosystem. There are several distinct
family trees available. In Chapter 4, Advantages and Drawbacks, we explore various types
of data models (or simply, database types) available under this umbrella.

An Overview of NoSQL

[10]

Traditional RDBMS applications have focused on ACID transactions:

• Atomicity: Everything in a transaction succeeds lest it is rolled back.
• Consistency: A transaction cannot leave the database in an inconsistent state.
• Isolation: One transaction cannot interfere with another.
• Durability: A completed transaction persists, even after applications restart.

Howsoever indispensible these qualities may seem, they are quite incompatible
with availability and performance on applications of web-scale. For example, if a
company like Amazon were to use a system like this, imagine how slow it would be.
If I proceed to buy a book and a transaction is on, it will lock a part of the database,
specifically the inventory, and every other person in the world will have to wait until
I complete my transaction. This just doesn’t work!

Amazon may use cached data or even unlocked records resulting in inconsistency.
In an extreme case, you and I may end up buying the last copy of a book in the store
with one of us finally receiving an apology mail. (Well, Amazon definitely has a
much better system than this).

The point I am trying to make here is, we may have to look beyond ACID to
something called BASE, coined by Eric Brewer:

• Basic availability: Each request is guaranteed a response—successful or
failed execution.

• Soft state: The state of the system may change over time, at times without
any input (for eventual consistency).

• Eventual consistency: The database may be momentarily inconsistent but
will be consistent eventually.

Eric Brewer also noted that it is impossible for a distributed computer system to
provide consistency, availability and partition tolerance simultaneously. This is
more commonly referred to as the CAP theorem.

Note, however, that in cases like stock exchanges or banking where transactions
are critical, cached or state data will just not work. So, NoSQL is, definitely, not a
solution to all the database related problems

Chapter 1

[11]

Why NoSQL?
Looking at what we have explored so far, does it mean that we should look at
NoSQL only when we start reaching the problems of scale? No.

NoSQL databases have a lot more to offer than just solving the problems of scale
which are mentioned as follows:

• Schemaless data representation: Almost all NoSQL implementations offer
schemaless data representation. This means that you don’t have to think too
far ahead to define a structure and you can continue to evolve over time—
including adding new fields or even nesting the data, for example, in case of
JSON representation.

• Development time: I have heard stories about reduced development
time because one doesn’t have to deal with complex SQL queries. Do you
remember the JOIN query that you wrote to collate the data across multiple
tables to create your final view?

• Speed: Even with the small amount of data that you have, if you can deliver
in milliseconds rather than hundreds of milliseconds—especially over
mobile and other intermittently connected devices—you have much higher
probability of winning users over.

• Plan ahead for scalability: You read it right. Why fall into the ditch and
then try to get out of it? Why not just plan ahead so that you never fall into
one. Or in other words, your application can be quite elastic—it can handle
sudden spikes of load. Of course, you win users over straightaway.

List of NoSQL Databases
The buzz around NoSQL still hasn’t reached its peak, at least to date. We see more
offerings in the market over time. The following table is a list of some of the more
mature, popular, and powerful NoSQL databases segregated by data model used:

Document Key-Value XML Column Graph
MongoDB Redis BaseX BigTable Neo4J
CouchDB Membase eXist Hadoop /

HBase
FlockDB

RavenDB Voldemort Cassandra InfiniteGraph
Terrastore MemcacheDB SimpleDB

Cloudera

An Overview of NoSQL

[12]

This list is by no means comprehensive, nor does it claim to be. One of the positive
points about this list is that most of the databases in the list are open source and
community driven.

Chapter 4, Advantages and Drawbacks, provides an in-depth study of the various
popular data models used in NoSQL databases.

Chapter 6, Case Study, does an exhaustive comparison of some of these databases
along various key parameters including, but not limited to, data model, language,
performance, license, price, community, resources, extensibility, and many more.

Summary
In this chapter, we learned about the fundamentals of NoSQL—what it is all about
and more critically, what it is not. We took a splash in the history to appreciate
the reasons and science behind it. You are recommended to explore the web for
historical events around this to take a deep dive in appreciating it.

NoSQL is not a solution to each and every application. It is worth noting that most
of the products do throw away the traditional ACID nature giving way to BASE
infrastructure. Having said that, some products standout—CouchDB and Neo4j, for
example, are ACID compliant NoSQL databases.

Adopting NoSQL is not only a technological change but also change in mindset,
behaviour and thought process meaning that if you plan to hire a developer to work
with NoSQL, he/she must understand the new models.

In the next chapter, we will have a quick look at the taxonomy and jack up our
vocabulary before we dive deeply into NoSQL.

Characteristics of NoSQL
For decades, software engineers have been developing applications with relational
databases in mind. The literature, architectures, frameworks, and toolkits have all
been written keeping in mind the relational structure between the entities.

The famous entity-relationship diagrams, or more commonly known as ER
diagrams, form the basis for database design. And for quite some time now,
engineers have used object-relational mapping (O/RM) tools to help them model
relationships—is-a, has, one-to-one, one-to-many, many-to-many, et al.—between
the objects that the software architects are great at defining.

With the new scenarios and problems at hand for the new applications, specifically for
web or mobile-based social applications with a lot of user generated content, people
realized that NoSQL databases would be a stronger fit than RDBMS databases.

In this chapter, we explore the traditional approach towards database, the challenges
presented thereby, and the solutions provided by NoSQL for these challenges. We
substantiate the ecosystem with a simple application as an example.

Application
ACME Foods is a grocery shop that wants to automate its inventory management. In
this simplistic case, the process involves keeping an up-to-date status of its inventory
and escalating to procurement, if levels are low.

Characteristics of NoSQL

[14]

RDBMS approach
The traditional approach—using RDBMS—takes the following route:

• Identify actors: The first step in the traditional approach is to identify
various actors in the application. The actors can be internal or external to
the application.

• Define models: Once the actors are identified, the next step is to create
models. Typically, there is many-to-one mapping between actors and
models, that is, one model may represent multiple actors.

• Define entities: Once the models and the object-relationships—by way of
inheritance and encapsulation—are defined, the next step is to define the
database entities. This requires defining the tables, columns, and column
types. Special care has to be taken noting that databases allow null values
for any column types, whereas programming languages may not allow,
databases may have different size constraints as compared to really required,
or a language allows, and much more.

• Define relationships: One of more important steps is to be able to well
define the relationship between the entities. The only way to define
relationships across tables is by using foreign keys. The entity relationships
correspond to inheritance, one-to-one, one-to-many, many-to-many, and
other object relationships.

• Program database and application: Once these are ready, engineers program
database in PL/SQL (for most databases) or PL/pgSQL (for PostgreSQL)
while software engineers develop the application.

• Iterate: Engineers may provide feedback to the architects and designers
about the existing limitations and required enhancements in the models,
entities, and relationships.

Mapping the steps to our example as follows:

• Few of the actors identified include buyer, employee, purchaser,
administrator, office address, shipping address, supplier address, item in
inventory, and supplier.

• They may be mapped to a model UserProfile and there may be subclasses
as required—Administrator and PointOfSalesUser. Some of the
other models include Department, Role, Product, Supplier, Address,
PurchaseOrder, and Invoice.

• Simplistically, a database table may map each actor to a model.

Chapter 2

[15]

• Foreign keys will be used to define the object relationships—one-to-many
between Department and UserProfile, many-to-many between Role and
UserProfile, and PurchaseOrder and Product.

• One would need simple SQL queries to access basic information while
queries collating data across tables will need complex JOINs.

• Based on the inputs received later in time, one or more of these may need to
be updated. New models and entities may evolve over time.

At a high level, the following entities and their relationships can be identified:

Characteristics of NoSQL

[16]

A department contains one or more users. A user may execute one or more sales
orders each of which contains one or more products and updates the inventory.
Items in inventory are provided by suppliers, which are notified if inventory level
drops below critical levels. Representational class diagram may be closer to the one
shown in the next figure:

These actors, models, entities, and relationships are only
representative. In the real application, the definitions will
be more elaborate and relationships more dense.

Chapter 2

[17]

Let us take a quick look at the code that will take us there.

To start with, the models may shape as follows:

class UserProfile {
 int _id;
 UserType type;
 String firstName;
 String lastName;
 Department department;
 Collection<Role> roles;
 Address homeAddress;
 Address officeAddress;
}

class Address {
 String _id;
 String line1;
 String line2;
 String city;
 Country country;
 String zipCode;
}

enum Country {
 Australia, Bahrain, Canada, India, USA
}

The SQL statements used to create the tables for the previous models are:

CREATE TABLE Address(
 _id INT NOT NULL AUTO_INCREMENT,
 line1 VARCHAR(64) NOT NULL,
 line2 VARCHAR(64),
 city VARCHAR(32) NOT NULL,
 country VARCHAR(24) NOT NULL, /* Can be normalized */
 zipCode VARCHAR(8) NOT NULL,
 PRIMARY_KEY (_id)
);

Characteristics of NoSQL

[18]

CREATE TABLE UserProfile(
 _id INT NOT NULL AUTO_INCREMENT,
 firstName VARCHAR(32) NOT NULL,
 lastName VARCHAR(32) NOT NULL DEFAULT '',
 departmentId INT NOT NULL,
 homeAddressId INT NOT NULL,
 officeAddressId INT NOT NULL,
 PRIMARY_KEY (_id),
 FOREIGN_KEY (officeAddressId) REFERENCES Address(_id),
 FOREIGN_KEY (homeAddressId) REFERENCES Address(_id)
);

The previous definitions are only
representative but give an idea of what
it requires to work in RDMBS world.

Challenges
The aforementioned approach sounds great, however, it has a set of challenges. Let us
explore some of the possibilities that ACME Foods has or may encounter in future:

• The technical team faces a churn and key people maintaining the
database—schema, programmability, business continuity process a.k.a.
availability, and other aspects—leave. The company has a new engineering
team and, irrespective of its expertise, has to quickly ramp up with existing
entities, relationships, and code to maintain.

• The company wishes to expand their web presence and enable online orders.
This requires either creating new user-related entities or enhancing the
current entities.

• The company acquires another company and now needs to integrate the two
database systems. This means refining models and entities. Critically, the
database table relationships have to be carefully redefined.

• The company grows big and has to handle hundreds of millions of queries a
day across the country. More so, it receives a few million orders. To scale, it
has tied up with thousands of suppliers across locations and must provide
away to integrate the systems.

• The company ties up with a few or several customer facing companies and
intends to supply services to them to increase their sales. For this, it must
integrate with multiple systems and also ensure that its application must be
able to scale up to the combined needs of these companies, especially when
multiple simultaneous orders are received in depleting inventory.

Chapter 2

[19]

• The company plans to provide API integration for aggregators to retrieve
and process their data. More importantly, it must ensure that the API must
be forward compatible meaning that in future if it plans to change their
internal database schema for whatever reasons, it must—if at all—minimally
impact the externally facing API and schema for data-exchange.

• The company plans to leverage social networking sites, such as Facebook,
Twitter, and FourSquare. For this, it seeks to not only use the simple widgets
provided but also gather, monitor, and analyze statistics gathered.

The preceding functional requirements can be translated into the following technical
requirements as far as the database is concerned:

• Schema flexibility: This will be needed during future enhancements and
integration with external applications —outbound or inbound. RDBMS are
quite inflexible in their design.
More often than not, adding a column is an absolute no-no, especially if the
table has some data and the reason lies in the constraint of having a default
value for the new column and that the existing rows, by default, will have
that default value. As a result you have to scan through the records and
update the values as required, even if it can be automated. It may not be
complex always, but frowned upon especially when the number of rows is
large or number of columns to add is sufficiently large. You end up creating
new tables and increase complexity by introducing relationships across the
tables.

• Complex queries: Traditionally, the tables are designed denormalized
which means that the developers end up writing complex so-called JOIN
queries which are not only difficult to implement and maintain but also take
substantial database resources to execute.

• Data update: Updating data across tables is probably one of the more
complex scenarios especially if they are to be a part of the transaction.
Note that keeping the transaction open for a long duration hampers the
performance.
One also has to plan for propagating the updates to multiple nodes across
the system. And if the system does not support multiple masters or writing
to multiple nodes simultaneously, there is a risk of node-failure and the
entire application moving to read-only mode.

Characteristics of NoSQL

[20]

• Scalability: More often than not, the only scalability that may be required is
for read operations. However, several factors impact this speed as operations
grow. Some of the key questions to ask are:

 ° What is the time taken to synchronize the data across physical
database instances?

 ° What is the time taken to synchronize the data across datacenters?
 ° What is the bandwidth requirement to synchronize data? Is the data

exchanged optimized?
 ° What is the latency when any update is synchronized across servers?

Typically, the records will be locked during an update.

NoSQL approach
NoSQL-based solutions provide answers to most of the challenges that we put
up. Note that if ACME Grocery is very confident that it will not shape up as we
discussed earlier, we do not need NoSQL. If ACME Grocery does not intend to grow,
integrate, or provide integration with other applications, surely, the RDBMS will
suffice. But that is not how anyone would like the business to work in the long term.

So, at some point in time, sooner or later, these questions will arise.

Let us see what NoSQL has to offer against each technical question that we have:

• Schema flexibility: Column-oriented databases (http://en.wikipedia.
org/wiki/Column-oriented_DBMS) store data as columns as opposed to
rows in RDBMS. This allows flexibility of adding one or more columns as
required, on the fly. Similarly, document stores that allow storing semi-
structured data are also good options.

• Complex queries: NoSQL databases do not have support for relationships
or foreign keys. There are no complex queries. There are no JOIN statements.
Is that a drawback? How does one query across tables?
It is a functional drawback, definitely. To query across tables, multiple
queries must be executed. Database is a shared resource, used across
application servers and must not be released from use as quickly as possible.
The options involve combination of simplifying queries to be executed,
caching data, and performing complex operations in application tier.

Chapter 2

[21]

A lot of databases provide in-built entity-level caching. This means that as
and when a record is accessed, it may be automatically cached transparently
by the database. The cache may be in-memory distributed cache for
performance and scale.

• Data update: Data update and synchronization across physical instances are
difficult engineering problems to solve.
Synchronization across nodes within a datacenter has a different set of
requirements as compared to synchronizing across multiple datacenters. One
would want the latency within a couple of milliseconds or tens of milliseconds
at the best. NoSQL solutions offer great synchronization options.
MongoDB (http://www.mongodb.org/display/DOCS/
Sharding+Introduction), for example, allows concurrent
updates across nodes (http://www.mongodb.org/display/DOCS/
How+does+concurrency+work), synchronization with conflict resolution and
eventually, consistency across the datacenters within an acceptable time that
would run in few milliseconds. As such, MongoDB has no concept of isolation.
Note that now because the complexity of managing the transaction may
be moved out of the database, the application will have to do some hard
work. An example of this is a two-phase commit while implementing
transactions (http://docs.mongodb.org/manual/tutorial/
perform-two-phase-commits/).
Do not worry or get scared. A plethora of databases offer Multiversion
concurrency control (MCC)to achieve transactional consistency
(http://en.wikipedia.org/wiki/Multiversion_concurrency_control).
Surprisingly, eBay does not use transactions at all (http://www.infoq.com/
interviews/dan-pritchett-ebay-architecture). Well, as Dan Pritchett
(http://www.addsimplicity.com/), Technical Fellow at eBay
puts it, eBay.com does not use transactions. Note that PayPal does use
transactions.

• Scalability: NoSQL solutions provider greater scalability for obvious
reasons. A lot of complexity that is required for transaction oriented RDBMS
does not exist in ACID non-compliant NoSQL databases.

Interestingly, since NoSQL do not provide cross-table references and there
are no JOIN queries possible, and because one cannot write a single query to
collate data across multiple tables, one simple and logical solution is to—at
times—duplicate the data across tables. In some scenarios, embedding the
information within the primary entity—especially in one-to-one mapping
cases—may be a great idea.

Characteristics of NoSQL

[22]

Revisiting our earlier case of Address and UserProfile, if we use the document
store, we can use JSON format to structure the data so that we do not need cross-
table queries at all.

An example of how the data may look like is given as follows:

//UserProfile

{
 "_id": "98ef65e7-52e4-4466-bacc-3a8dc0c15c79",
 "firstName": "Gaurav",
 "lastName": "Vaish",
 "department": "f0adcbf5-7389-4491-9c42-f39a9d3d4c75",
 "homeAddress": {
 "_id": "fa62fd39-17f8-4a16-80d6-71a5b71d758d",
 "line1": "123, 45th Main"
 "city" : "NoSQLLand",
 "country": "India",
 "zipCode": "123456"
 }
}

We explore various NoSQL database classes—based on
data models provided—in Chapter 3, NoSQL Storage Types.

It is not that the new companies start with NoSQL straightaway. One can start
with RDBMS and migrate to NoSQL—just keep in mind that it is not going to be
trivial. Or better still, start with NoSQL. Even better, start with a mix of RDBMS and
NoSQL. As we will see later, there are scenarios where it may be best to have a mix
of the two databases.

A big case in consideration here is that of Netflix. The company moved from Oracle
RDBMS to Apache Cassandra (http://www.slideshare.net/hluu/netflix-
moving-to-cloud), and they could achieve over a million writes per second. Yes!
That is 1,000,000 writes per second (http://techblog.netflix.com/2011/11/
benchmarking-cassandra-scalability-on.html) across the cluster with over
10,000 writes per second per node while maintaining the average latency at less than
0.015 milliseconds! And the total cost of setting it all up and running on Amazon EC2
Cloud was at around $60 per hour—not per node but for a cluster of 48 nodes. Per
node cost is only $1.25 per hour inclusive of the storage capacity of 12.8 Terra-bytes,
network read bandwidth of 22 Mbps, and write bandwidth of 18.6Mbps.

Chapter 2

[23]

The preceding case-in-hand should not undermine
the power of and features provided by Oracle RDBMS
database. I have always considered it as one of the best
commercial solutions available in RDBMS space.

Summary
In this chapter we explored key characteristics of NoSQL and what they have to offer
in depth vis-à-vis RDBMS databases.

We looked at typical approach used while working with and the challenges at hand
when dealing with traditional RDMBS approach. We also looked how a large set of
functional requirement lead to structured, small set of technical problems and how
NoSQL databases solve these problems.

It is important to note that NoSQL is not a solution to all the problems that one will
ever come across while working with RDBMS though it does provide answers to
most of questions. Having said that, NoSQL may not be the ideal solution in specific
cases, especially in financial applications where what matters is immediate and
momentous consistency and not mere eventual consistency.

In the next chapter, we will explore various data models available in NoSQL databases.

NoSQL Storage Types
Great. At this point, we have a very good understanding of what NoSQL databases
have to offer and what challenges they solve.

The NoSQL databases are categorized on the basis of how the data is stored. Because
of the need to provide curated information from large volumes, generally in near
real-time, NoSQL mostly follows a horizontal structure. They are optimized for
insert and retrieve operations on a large scale with built-in capabilities for replication
and clustering. Some of the functionalities of SQL databases like functions, stored
procedures, and PL may not be present in most of the databases.

In this chapter, we explore various storage types provided by these databases,
comparing and contrasting them, and more critically identifying what to use when.

This chapter refers to several commonly understood standards and rules used
today with RDBMS; for example table schema, CRUD operations, JOIN, VIEW,
and a few more.

Storage types
There are various storage types available in which the content can be modeled for
NoSQL databases. In subsequent sections, we will explore the following storage
types:

• Column-oriented
• Document Store
• Key Value Store
• Graph

NoSQL Storage Types

[26]

Column-oriented databases
The column-oriented databases store data as columns as opposed to rows that
is prominent in RDBMS. The details can be found at http://www.scribd.com/
doc/92371275/Column-Oriented-DB-Systems and http://dbmsmusings.
blogspot.in/2009/09/tour-through-hybrid-columnrow-oriented.html.

Column stores have been in development since early
DBMS days. TAXIR, a biology information-retrieval-focused
application, was the first application using column-oriented
stores way back in 1969.

A relational database shows the data as two-dimensional tables comprising of rows
and columns but stores, retrieves, and processes it one row at a time, whereas a
column-oriented database stores data as columns.

For example, assume that the following data is to be stored:

EmployeeID FirstName LastName Age Salary
SM1 Anuj Sharma 45 10000000
MM2 Anand 34 5000000
T3 Vikas Gupta 39 7500000
E4 Dinesh Verma 32 2000000

In RDBMS, the data may be serialized and stored internally as follows:

SM1,Anuj,Sharma,45,10000000
MM2,Anand,,34,5000000
T3,Vikas,Gupta,39,7500000
E4,Dinesh,Verma,32,2000000

However, in column-oriented databases, the data will be stored internally as follows:

SM1,MM2,T3,E4
Anuj,Anand,Vikas,Dinesh
Sharma,,Gupta,Verma,
45,34,39,32
10000000,5000000,7500000,2000000

http://www.scribd.com/doc/92371275/Column-Oriented-DB-Systems
http://www.scribd.com/doc/92371275/Column-Oriented-DB-Systems

Chapter 3

[27]

The preceding representation is over simplified. Databases typically
will have more sophisticated and optimized mechanisms to store
data. Tasks like partitioning, caching, indexing, and ability to create
OLAP cubes, and others affect the underlying physical organization
of the data within the system.

Online transaction processing (OLTP) focused relational databases are row
oriented. Online analytical processing (OLAP) systems that require processing
of data need column-oriented access. Having said that, OLTP operations may also
require column-oriented access when working on a subset of columns and operating
on them.

Data access to these databases is typically done by using either a proprietary protocol
in case of commercial solutions or open standard binary (for example, Remote
Method Invocation). The transport protocol is generally binary.

Some of the databases that fall under this category include:

• Oracle RDBMS Columnar Expression
• Microsoft SQL Server 2012 Enterprise Edition
• Apache Cassandra
• HBase
• Google BigTable (available as part of Google App Engine branded Datastore)

Advantages
Most of the solutions, such as Apache Cassandra, HBase, and Google Datastore,
allow adding columns over time without having to worry about filling in default
values for the existing rows for the new columns. This gives flexibility in model
and entity design allowing one to account for new columns in future for unforeseen
scenarios and new requirements.

There are advantages when working with a subset of the available columns. For
example, computing maxima, minima, averages and sums, specifically on large
datasets, is where these column-oriented data stores outshine in performance.

Similarly, when new values are applied for either all rows at once or with same-
column filters, these databases will allow partial data access without touching
unrelated columns and be much faster in execution.

NoSQL Storage Types

[28]

Since columns will be of uniform type and mostly (except in cases of variable-length
strings) of the same length, there are possibilities of efficient storage in terms of size.
Such as a column with the same values across rows (for example, the department of
a user profile or whether a user's profile is public or private or even a user's age), the
same or similar adjacent values can be compressed efficiently.

Example
In the following example, you will find sample code for working with Google's
Datastore (can be found at https://developers.google.com/appengine/docs/
java/datastore/) on Google App Engine using the Objectify (http://code.
google.com/p/objectify-appengine/) library:

public class UserProfile
{
 @Id String employeeID;
 String firstName;
 String lastName;
 String age;
 long salary;
}

ObjectifyService.register(UserProfile.class);
Objectify ofy = ObjectifyService.begin();

//Adding records

UserProfile up1 = new UserProfile(...);
UserProfile up2 = new UserProfile(...);

ofy.put(up1, up2);

//Retrieve by Id

UserProfile upg = ofy.get(UserProfile.class, "SM1");

//Filter all profiles by first name

Iterator<UserProfile> profiles
 = ofy.query(UserProfile.class)
 .filter("firstName", "Alice");

Chapter 3

[29]

//Query all profiles by age greater than 30, ordered by salary

Iterator<UserProfile> agedProfiles
 = ofy.query(UserProfile.class)
 .filter("age >", 30)
 .order("salary");

Document store
Also referred to as document-oriented database, a document store allows the
inserting, retrieving, and manipulating of semi-structured data. Most of the
databases available under this category use XML, JSON, BSON, or YAML, with
data access typically over HTTP protocol using RESTful API or over Apache Thrift
protocol for cross-language interoperability.

Compared to RDBMS, the documents themselves act as records (or rows), however,
it is semi-structured as compared to rigid RDBMS.

For example, two records may have completely different set of fields or columns.
The records may or may not adhere to a specific schema (like the table definitions
in RDBMS). For that matter, the database may not support a schema or validating
a document against the schema at all.

Even though the documents do not follow a strict schema, indexes can be created
and queried. Here are some examples of document content using JSON:

One document may provide an employee whose whole details are not
completely known:

{
 "EmployeeID": "SM1",
 "FirstName" : "Anuj",
 "LastName" : "Sharma",
 "Age" : 45,
 "Salary" : 10000000
}

A second document may have complete details about another employee:

{
 "EmployeeID": "MM2",
 "FirstName" : "Anand",
 "Age" : 34,
 "Salary" : 5000000,
 "Address" : {

NoSQL Storage Types

[30]

 "Line1" : "123, 4th Street",
 "City" : "Bangalore",
 "State" : "Karnataka"
 },
 "Projects" : [
 "nosql-migration",
 "top-secret-007"
]
}

A third document may have information about one of the office locations:

{
 "LocationID" : "Bangalore-SDC-BTP-CVRN",
 "RegisteredName" : "ACME Software Development Ltd"
 "RegisteredAddress" : {
 "Line1" : "123, 4th Street",
 "City" : "Bangalore",
 "State" : "Karnataka"
 },
}

If you notice the preceding examples, the first two documents are somewhat similar
with the second document having more details as compared to the first. However,
if you look at the third document, the content has no correlation to the first two
documents whatsoever—this is about an office location rather than an employee.

The EmployeeID or LocationID may not be the document ID. The databases provide
access using RESTful APIs wherein the document ID is part of the URL itself or is
provided within the body of the request. Having said that, it is not mandatory that
the document content should not contain its ID. In fact, one of the best practices
states that the document ID must be embedded in the document somewhere and
preferably in a standard location. For example, the modified content may be:

{
 "docId": "SM1",
 ...
}

{
 "docId": "MM2",
 ...
}

{
 "docId": "Bangalore-SDC-BTP-CVRN",
 ...
}

Chapter 3

[31]

Document-oriented databases provide this flexibility—dynamic or changeable
schema or even schemaless documents. Because of the limitless flexibility provided
in this model, this is one of the more popular models implemented and used.

Some of popular databases that provide document-oriented storage include:

• MongoDB
• CouchDB
• Jackrabbit
• Lotus Notes
• Apache Cassandra
• Terrastore
• Redis
• BaseX

Advantages
The most prominent advantage, as evident in the preceding examples, is that
content is schemaless, or at best loosely defined. This is very useful in web-based
applications where there is a need for storing different types of content that may
evolve over time. For example, for a grocery store, information about the users,
inventory and orders can be stored as simple JSON or XML documents. Note that
"document store" is not the same as "blob store" where the data cannot be indexed.

Based on the implementation, it may or may not be possible to retrieve or update a
record partially. If it is possible to do so, there is a great advantage. Note that stores
based on XML, BSON, JSON, and YAML would typically support this. XML-based
BaseX can be really powerful, while integrating multiple systems working with XML
given that it supports XQuery 3.0 and XSLT 2.0.

Searching across multiple entity types is far more trivial compared to doing so in
traditional RDBMS or even in column-oriented databases. Because, now, there is no
concept of tables—which is essentially nothing more than a schema definition—one
can query across the records, irrespective of the underlying content or schema or in
other words, the query is directly against the entire database. Note that the databases
allow for the creation of indexes (using common parameters or otherwise and evolve
over time).

JSON-based stores are easy to define what I call projections. Each top-level key
for the JSON object may be the entity's projection across other parts of the system
thereby allowing the schema to evolve over time with backward compatibility.

NoSQL Storage Types

[32]

Examples
To start with, let us have a look at a JSON-based document demonstrating the
advantages that we just discussed:

{
 "me": {
 "id" : "document-uuid",
 "version" : "1.0.0.0",
 "create_time" : "2011-11-11T11:11:11Z",
 "last_update" : "2012-12-12T12:12:12Z"
 },
 "type": "UserProfile",
 "personal": {
 "firstName" : "Alice",
 "lastName" : "Matthews",
 "date_of_birth": "1901-01-01T01:01:01Z"
 },
 "financial": {
 "bank" : { ... },
 "trading" : { ... },
 "credit-history" : { ... }
 },
 "criminal": {
 }
}

The document structure has been carefully designed as the following:

• The me attribute is the basic information about the record. It comprises the
unique id of the document which never changes, version that must be
updated each time the record changes, creation_time marking when the
record was created, and last_update indicating when the record was last
updated. This can be mandatory for sanity.

• The type attribute specifies the entity type represented in this document.
This, again, can be made mandatory.

• Other attributes such as personal, financial, criminal, and few more can
be added over time.

• It is these attributes that I refer to as projections that provide context-specific
data. These contexts don't need to be initially defined and generally evolve
over time. The advantage, as we see, is that all the data associated with the
entity resides in one record—the document—and redundancy can help
speeding up the queries.

Chapter 3

[33]

• Databases like MongoDB allow to the creation of schemaless entities so that
one can get rid of the type attribute and support views that can be used to
query across various entity types similar to what JOIN does in SQL.

The next example demonstrates the use of JSON with CouchDB and how these
concepts can be put into action. Since CouchDB has no concept of tables and
anything that you add is a simple, unstructured but legal JSON document, we keep
the document the same as before and concentrate on how and what operations can
be performed on the data.

CouchDB provides a RESTful HTTP interface with the standard HTTP methods
mapping to the data operations—GET (retrieve), POST (create or update, implicit
/ implied ID), PUT (create or update, explicit/specified ID), DELETE (delete). We
assume that the CouchDB HTTP server is up and running on localhost at default
port 5984.

We will explore CRUD operations along with basic database operations. For ease of
operations, we use the command line program curl (http://curl.haxx.se/docs/
manpage.html) to execute the HTTP requests. Notice how CouchDB makes use of
the ID, revision, and looseness in schema:

1. Creating a database named ShoppingDB:
curl –X PUT http://localhost:5984/ShoppingDB

You will get the following response:

{ "ok": true }

2. Get a summary of the database:
curl http://localhost:5984/ShoppingDB

{

 "db_name" : "ShoppingDB"

 "doc_count": 0

 // Removed other attributes for brevity

}

3. Assuming that the content is stored in the data.json file, adding the
document to the store using document-uuid as the ID as provided in the
document. Technically speaking, the document-uuid can be any unique
identifier—as simple as 123.

NoSQL Storage Types

[34]

It is important to note that, if not provided, MongoDB automatically
generates an ID for each document inserted. The field name is _id.

curl –X PUT –H "Content-Type: application/json" \

 http://localhost:5984/ShoppingDB/document-uuid \

 -d @data.json

You will get the following response:

{

 "ok": true,

 "id": "document-uuid",

 "rev": "1-Revision-UUID"

}

4. Retrieving the document:
curl http://localhost:5984/ShoppingDB/document-uuid

You will get the following response:

{

 "_id": "document-uuid",

 "_rev": "1-Revision-UUID",

 "me": {

 "id": "document-uuid",

 ...

 }

 ...

}

The remaining document was removed for brevity. The content is nothing
but whatever was inserted.

5. Update the document. Note that the revision that is being updated is
required and that it has been updated:
curl –X PUT –H "Content-Type: text/json" \

 http://localhost:5984/ShoppingDB/document-uuid

 -d '{ "name": "Alice Taylor", "_rev": "1-Revision-UUID" }'

Chapter 3

[35]

You will get the following response:

{

 "ok": true,

 "id": "document-uuid",

 "rev": "2-Revision-UUID"

}

6. Deleting the document is as simple as executing a DELETE method on the
document ID:
curl –X DELETE http://localhost:5984/ShoppingDB/document-uuid

You will get the following response:

{ "ok": true }

7. These were simple operations, and looked mostly trivial. The fun and
unleashing power starts when, for example, one needs to execute a—
probably hypothetical—query to fetch all documents across the database that
has an attribute title or expertise that contains NoSQL without worrying
about the capitalization. Let title be a simple string and expertise be an
array in the JSON document.

The case in hand is profiles may have their technical expertise listed or there
may be a company whose name contains the string.
This—we know—is quite a daunting task in any database that has the
notion of tables because then searching across tables and then presenting in
a unified manner is next to impossible. However theoretical or hypothetical
this query may be, it demonstrates the power behind such an implementation
of NoSQL database.
CouchDB does support views and the output of the view is also a JSON
document with the language for implementing the logic to define the view
is JavaScript and the functions are referred to as map and reduce functions
(http://en.wikipedia.org/wiki/Mapreduce). The function takes
the document (JSON object) as a parameter and emits out a JSON object
representing the output of the view and a unique ID to identify the record
(can be any valid JavaScript type).

NoSQL Storage Types

[36]

The map function emits out the value that will be consumed by the reduce
function (we use the document ID as the ID of the record returned):

function(doc) {
 var pattern = /nosql/i;
 if(pattern.test(doc.title)) {
 emit(doc['_id'], doc);
 } else if(doc.expertise && doc.expertise.length) {
 pattern = /,nosql,/i;
 if(pattern.test(',' + doc.expertise.join(',') + ',')) {
 emit(doc['_id'], doc);
 }
 }
}

The reduce function gives the final data that can be consumed in the business
application layer. Following are some reduce functions:

 ° Returns the complete document:
function(key, value, rereduce) {
 return value;
}

 ° Returns the id and address attribute from the document:
function(key, value, rereduce) {
 return {
 "_id": value["_id"],
 "address": value["address"]
 };
}

 ° Returns all attributes other than the address attribute:

function(key, value, rereduce) {
 delete value.address;
 return value;
}

Chapter 3

[37]

The next example demonstrates using JSON with MongoDB that allows segregation
of records using the notion of collections (similar to tables in SQL). MongoDB,
interestingly, does not need a database to be created before data insertion is done. As
the official documentation reads:

... MongoDB does not require that you do so (create a database). As soon
as you insert something, MongoDB creates the underlying collection
(similar to databases in RDBMS world) and database. If you query a
collection that does not exist, MongoDB treats it as an empty collection
(means, you never get errors). (Found at http://www.mongodb.org/
display/DOCS/Tutorial).

The emphasis is mine.

Since MongoDB does not provide RESTful interface over HTTP out of the box, we
execute the code on the MongoDB console.

1. Even though not mandatory, here is how to create a collection:
> db.createCollection("userprofile");

2. Inserting a record into userprofile collection (document stripped
for brevity):

Note that the document does not contain the type
attribute since MongoDB supports the notion of
collection, which is nothing but type.

> db.userprofile.insert({
 "me": {
 "id": "document-uuid",
 ...
 },
 "personal": {
 "firstName": "Alice",
 ...
 }
});

While working with MongoDB, it is always a good idea to
have the record ID in the document itself, like for our case
it is me => id.

NoSQL Storage Types

[38]

3. To update a record, use the update method that expects two arguments.
The first argument is a query to filter the record to be updated. The second
argument provides details about the updated values. These steps are similar
to that in SQL for an UPDATE statement where the first argument is similar to
the WHERE clause and the second argument similar to the SET clause:
> db.userprofile.update({
 "me.id": "uuid-to-search-for"
 }, {
 "$set": {
 "personal.lastName": "Taylor"
 }
 }
);

Notice that MongoDB treats dot (.) as a separator to
traverse within the object. As such, it is advisable not
to use dot in attribute names.
Treat firstName as a legal attribute while name.
first as an attribute name to be avoided.

4. To retrieve records, we can use any of the attributes:
> db.userprofile.find({
 "personal.firstName": "Bob"
 }
);

5. To delete a record or records, all that is required is to be able to query for
appropriate attribute or attributes. For example, to remove profiles whose
age is greater than 30 and the city of thier personal address is Madrid:
> db.userprofile.remove({
 "personal.age": { $gt: 30 },
 "personal.address.city": "Madrid"
 }
);

6. After exploring some of these basic operations, let us get into some complex,
real-world scenarios of querying the data, configuring specific indexes, and
returning partial document.

Chapter 3

[39]

To start with, let us reintroduce the problem that we discussed earlier
while dealing with CouchDB, that is, querying for "NoSQL" in title as
well as expertise, and look at the solution that MongoDB has to offer.
Additionally, now that we understand that the collection—userprofile—is
merely a collection of documents, we can safely rename it to shoppingDB for
incorporating the larger scope that we operate with in subsequent examples:

> db.shoppingDB.find({
 $or: [
 { "title": /NoSql/i },
 { "expertise": /NoSql/i }
]
 }
);

In another scenario, let us assume that profiles have sales—an array of
objects corresponding to monthly sales since the time the user joined the
company with each object having information about the month and sales
figures. What we want to query is all the profiles that cross the sales of
500,000 in their first month of joining:

//Sample document
{
 "me": { ... },
 "sales": [{ "month": 201201", "value": 100000 }, ...]
}

//The query

> db.shoppingDB.find({
 "sales.0.value >= ": 500000
 }
);

If you notice in the query the first argument to the find method, you notice
a strange syntax—sales.0.value. The interpretation is, for the array sales,
take the item at index 0 and for that item, pickup the value for the property
value, and if the value if greater than or equal to 500000, select the item.
For complete details on dot notation in query, have a look at http://docs.
mongodb.org/manual/core/document/#dot-notation.

NoSQL Storage Types

[40]

Let us now explore the other side of the query—the results. So far whatever
we searched for, we received the complete documents. Let us take some cases
where we need only a part of the document—similar to creating a view in
CouchDB. To do so, we make use of the optional second parameter wherein
we can specify the document fragment to be included or excluded.
In the first case, we select only personal => firstName and sales:

> db.shoppingDB.find({ ... }, {
 "personal.firstName": 1,
 "sales": 1
 }
);

In the next case, we select all fields except criminal record:

> db.shoppingDB.find({ ... }, {
 "criminal": 0
 }
);

In the last case, we select only the last five sales elements across all the
documents (cool!):

> db.shoppingDB.find({ }, {
 "sales": { $slice: -5 }
 }
);

Note that even though MongoDB supports collections, it does
not enforce restrictions on the schema. This essentially means
that MongoDB is akin to having multiple instances of CouchDB
running under a single umbrella.

Chapter 3

[41]

Key-value store
A Key-value store is very closely related to a document store—it allows the storage
of a value against a key. Similar to a document store, there is no need for a schema to
be enforced on the value. However, there a are few constraints that are enforced by a
key-value store (http://ayende.com/blog/4459/that-no-sql-thing-document-
databases):

• Unlike a document store that can create a key when a new document is
inserted, a key-value store requires the key to be specified

• Unlike a document store where the value can be indexed and queried, for a
key-value store, the value is opaque and as such, the key must be known to
retrieve the value

If you are familiar with the concept of maps or associative arrays (http://
en.wikipedia.org/wiki/Associative_array) or have worked with hash tables
(http://en.wikipedia.org/wiki/Hash_table), then you already have worked
with a in-memory key-value store.

The most prominent use of working with a key-value store is for in-memory
distributed or otherwise cache. However, implementations do exist to provide
persistent storage.

A few of the popular key value stores are:

• Redis (in-memory, with dump or command-log persistence)
• Memcached (in-memory)
• MemcacheDB (built on Memcached)
• Berkley DB
• Voldemort (open source implementation of Amazon Dynamo)

NoSQL Storage Types

[42]

Advantages
Key-value stores are optimized for querying against keys. As such, they serve great
in-memory caches. Memcached and Redis support expiry for the keys—sliding or
absolute—after which the entry is evicted from the store.

At times, one can generate the keys smartly—say, bucketed UUID—and can query
against ranges of keys. For example, Redis allows retrieving a list of all the keys
matching a glob-style pattern.

While the time complexity for this operation (search for
keys matching a pattern) is O(N), the constant times are
fairly low. For example, Redis running on an entry level
laptop can scan a 1 million key database in 40 milliseconds.
(source found at http://redis.io/commands/keys).

Though the key-value stores cannot query on the values, they can still understand
the type of value. Stores like Redis support different value types—strings, hashes,
lists, sets, and sorted sets. Based on the value types, advanced functionalities can be
provided. Some of them include atomic increment, setting/updating multiple fields
of a hash (equivalent of partially updating the document), and intersection, union,
and difference while working with sets.

Examples
Let us explore some basic data operations using the Redis (http://redis.io
database). Note that there is no concept of database or table in Redis:

• Set or update value against a key:

SET company "My Company" //String
HSET alice firstName "Alice" //Hash – set field value
HSET alice lastName "Matthews" //Hash – set field value
LPUSH "alice:sales" "10" "20" //List create/append
LSET "alice:sales" "0" "4" //List update
SADD "alice:friends" "f1" "f2" //Set – create/update
SADD "bob:friends" "f2" "f1" //Set – create/update

Having done that, let us explore some interesting operations on sets and lists:

Chapter 3

[43]

• Set operations:
//Intersection – Get mutual friends of Alice and Bob
SINTER "alice:friends" "bob:friends"

//Difference – Friends in Alice's list absent in Bob's
SDIFF "alice:friends" "bob:friends"

//Union – All friends that need invitation in their marriage
SUNION "alice:friends" "bob:friends"

• List operations:

//Pop the first item, or return null

POP "key:name"

//Blocking pop – pop the first item, or wait until timeout or next
is available (check across lists – l1, l2, l3)

BLPOP l1 l2 l3

//Pop item from list1, append to list2 and return the value

RPOPLPUSH list1 list2

Key-value stores are not designed for applications that need
indexes on the values. Because of optimization on key-queries,
implementations like Memcached or Redis are great candidates
for distributed, scalable, in-memory cache.

Graph store
Graph databases represent a special category of NoSQL databases where
relationships are represented as graphs. There can be multiple links between two
nodes in a graph—representing the multiple relationships that the two nodes share.

The relationships represented may include social relationships between people,
transport links between places, or network topologies between connected systems.

NoSQL Storage Types

[44]

Graphical representation of a graph may look similar to the following graph
(http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html):

records data in

organize

have

Graph

Nodes

Properties

Relationships

have

records data in

Graph databases are fairly new in the market with only a few proven solutions
out there:

• Neo4j
• FlockDB (from Twitter)

Advantages
An article found at http://www.infoq.com/articles/graph-nosql-neo4j quotes
the advantages as follows:

Graph theory has seen a great usefulness and relevance in many problems across
various domains. The most applied graph theoretic algorithms include various
types of shortest path calculations, geodesic paths, centrality measures like
PageRank, eigenvector centrality, closeness, betweenness, HITS, and many others.

Chapter 3

[45]

Graph databases can be considered as special purpose NoSQL databases optimized
for relation-heavy data. If there is no relationship among the entities, there is no
usecase for graph databases.

The one advantage that graph databases have is easy representation, retrieval
and manipulation of relationships between the entities in the system.

It is not uncommon to store data in a document store and relationships in a
graph database.

Examples
The following code demonstrates how to create a simple relationship between two
nodes with Neo4J:

//Assume that we get the underlying database service somehow
GraphDatabaseService db = ...

Node node1 = db.createNode();
node1.setProperty("documentId", "alice");

Node node2 = db.createNode();
node2.setProperty("documentId", "bob");

RelationType friendRel = new RelationType() {
 public String name() { return "friend"; }
};

Relationship reln = node1.createRelationshipTo(node2,
 friendRel);
reln.setProperty("initatedBy", "alice");
reln.setProperty("createdOn", "1980-01-01T07:30+0530");

The next example demonstrates how to retrieve all adjacent nodes against a
relationship and pivot node:

//Define an index

Index<Node> nodeIndex = db.index().forNodes("nodes");

//While creating a node, add it to the index
nodeIndex.add(node1, "documentId",
 (String) node1.getProperty("documentId"));

//Search for a specific node

NoSQL Storage Types

[46]

Node aliceNode = nodeIndex.get("documentId, "alice").single();

//Get all friend relationships
Iterable<Relationship> rels =
 aliceNode.getRelationships(friendRel);

//Get friends on the other side of the relationship

for(Relationship r: rels)
{
 Node friendNode = r.getEndNode();
 assert "bob".equals(friendNode.getProperty("documentId"))
}

Use graph databases to store the relationships. Do not use
them for complete data store; the performance may degrade.
Neo4j is full ACID-compliant database—something that one
may want while dealing with relationships.

Multi-storage type databases
Apart from the databases that we discussed earlier, following is a list of databases
that support multiple storage types, giving you flexibility:

• OrientDB: Supports document store, key-value as well as graph. The official
website is http://www.orientdb.org.

• ArangoDB: Universal database with support for document store, key-value
and graph models. Official website is http://www.arangodb.org.

• Aerospike: A very interesting database that is a hybrid between RDBMS
and NoSQL store. It supports document store, key-value, graph as well as
RDBMS. Source code can be found at https://github.com/JakSprats/
Alchemy-Database.

Chapter 3

[47]

Comparing the models
Now that we have explored the popular storage or data models, let us compare them
on key parameters of features:

Feature Column
Oriented

Document Store Key Value
Store

Graph

Table-like schema
support (columns) Yes No No Yes

Complete update/
fetch Yes Yes Yes Yes

Partial update/
fetch Yes Yes Yes No

Query/Filter on
value Yes Yes No Yes

Aggregates across
rows Yes No No No

Relationships
between entities No No No Yes

Cross-entity view
support No Yes No No

Batch fetch Yes Yes Yes Yes
Batch update Yes Yes Yes No

Note that although we have Yes as well as No across the columns, the difference
between the various models is getting blurred over time.

For example, a couple of years back the key-value stores would consider values are
opaque blobs where as today they support granular query and update today.

Similarly, earlier document stores allowed ID-based CRUD operations but databases
such as MongoDB support bulk updates today.

The key question is—what model to use in what scenario?

NoSQL Storage Types

[48]

Well, if you have just landed from RDBMS world, modeling with
column-oriented databases may give you quick hands-on experience with NoSQL
modeling. One more real-world case is when you have more need to work with
aggregate values as compared to individual values—for example, social-heavy
applications. If you intend to work with the Google App Engine—well, you have
no choice but to use this model. Facebook uses HBase to power their messages
infrastructure while Yahoo! uses the same to store document fingerprint to detect
near-duplications (http://wiki.apache.org/hadoop/Hbase/PoweredBy).

Document-oriented store systems are one type that can serve you across the
application types including where you have a heavy need for aggregates across
the entities. MapReduce-based implementations give you amazing control over
querying the data such as working with JSON using nested properties, and with
XML using XQuery; and creating response structures such as creating aggregates,
and custom views across entity types. Companies like Facebook (HBase), Netflix,
Twitter, and eBay (Cassandra) have given tremendous impetus to the evolution of
document stores and it continues to lead the pack by a huge margin (http://www.
datastax.com/cassandrausers).

Key-value stores are great options similar to document-oriented stores. The
only missing feature is querying against the value. However, with time, this
differentiation seems to be headed for blurriness. One case where key-value stores
win hands-down is distributed in-memory cache. Extensive use of Memcached and
Redis prove the same.

Graph databases are particularly useful in defining relationships across entities at
database level as opposed to in other models where the relationships are only visible
at application level. Twitter has open sourced FlockDB that it uses exclusively to
store social graphs (https://github.com/twitter/flockdb).

However, if you are designing the database for the lightweight shopping application,
the RDBMS approach is the perfect fit for the same.

Chapter 3

[49]

Summary
In this chapter we discussed key data models available while working with NoSQL
databases. We looked at some of the key features available with these models. These
models, however, are not exhaustive. There are some other models also available:

• Object databases
• Multidimensional databases
• Multi-value databases

Last but not the least, we compared these models across some key parameters and
looked at some common scenarios describing which model to use.

Although NoSQL databases are great, they may not always be a good choice always.
In the next chapter we take a deeper dive, to identify what fits into which scenario.

Advantages and Drawbacks
Having understood the modeling options available in NoSQL along with the RDBMS
knowledge that we already had, we are now in a position to understand the pros and
cons of using NoSQL.

In this chapter, we will take three different representative application requirements
and discuss advantages and disadvantages of using NoSQL, and conclude whether
or not to use NoSQL in that specific scenario.

We will analyze by understanding the database requirements, identifying the
advantages and drawbacks, and finally coming to a conclusion on NoSQL use
as follows:

• Entity schema requirements: What is the density of relationships across
entities, whether or not the schema change over time and if so, what is
the frequency

• Data access requirements: Should the data be always consistent or can be
eventually consistent (say, after 10 ms or 10 days or whatever), would the
data access be more horizontal (row-wise) or vertical (column-wise)

• What NoSQL can do: What does NoSQL have to offer in the given scenario
• What NoSQL cannot do: Where NoSQL fails or leaves a lot of work to be

done at the application tier in the given scenario.
• Whether or not to use NoSQL: If NoSQL is a good choice, which data model

fits best with it.

At a broad level, I have classified the applications into the following categories:

• Relational-data driven, transaction-heavy applications
• Data-driven, computation-heavy applications
• Web-scale, data-driven applications where minor latencies are acceptable

Advantages and Drawbacks

[52]

Transactional application
This type of application has data that is highly relational in nature. Important
application characteristics are:

• The application relies on the consistency and integrity of the data
• The concurrency (usage) is relatively lower

 ° Lower is a relative adjective—all that we are looking for here is that
the application can be served by a single database instance without
any replication or load-balance requirements

 ° It may choose to have mirrors or replication for automatic failover
or otherwise but the application talks to a maximum of one
instance—may switch over in case of failover

An example of this is the application at the point-of-sales at a grocery shop or an
enterprise resource management application. The key here is data consistency.

Entity schema requirements
For a transactional application, general requirements for the entity schema include:

• Highly structured definition—properties, types, and constraints, if applicable
• Ability to define relationships—parent versus child keys
• Schema does not evolve or vary too much over time.

Data access requirements
From a data access perspective, we would have the following requirements:

• Consistency—any read should return latest updated data
• More often than not, the entire record (row) will be retrieved
• Cross-entity (table) data access may be frequent

What NoSQL can do
For a transactional application, NoSQL can help as follows:

• Column-oriented database helps define structure. If need be, it can be
changed over time.

• Document-oriented database can help implement JOIN or create views.

Chapter 4

[53]

What NoSQL cannot do
Using NoSQL will result in a few limitations for a transactional application:

• Inability to define relationships
• Absence of transactions (Neo4j is an exception)
• Unavailability of ACID properties in operations (CouchDB and Neo4j are

the exceptions)
• Using Cassandra or CouchDB can be overkill if we compare them to, for

example, MySQL or PostgreSQL—they do not unleash their true power
in a single-machine installation

• Absence of support for JOIN and cross-entity query, though document-
oriented stores support it by way of MapReduce but the efforts may be
substantial as the queries get complex

Decision
Choose RDBMS rather than NoSQL. The disadvantages outweigh the advantages.

Computational application
This type of application does a lot of computation in the application. Key
characteristics of this application type are:

• Most of the operations are along a given set of properties across the records
• The data stored may still be relational but the computation-centric data

definitely has sparse relations, if any

An example of this type of application is a survey application or a sales record
management application. The key here is that the computation is across the records
but on a subset of the properties or columns available (the subset in an extreme
case can be 100 percent of the available columns). Also, a survey application would
require ability to define custom fields and operations.

Entity schema requirements
For a computational application, general requirements on the entity schema include:

• Structured schema definition—properties, types, and constraints, if
applicable.

• Schema does not evolve or vary too much over time.

Advantages and Drawbacks

[54]

Data access requirements
From a data access perspective, we would have the following requirements:

• Partial record access.
• Vertical, that is, column-wise processing.

For example, for an entity holding the data of daily revenues and expenses at
a given location of operation, one would compute across the revenue column
and/or expense column more often than working on the entire row.

• Cross-entity data access is infrequent.
For example, to create the final balance sheet for a location, I may use the
location ID once to get the details about the location.

• Consistency—data should be consistent. However, in some cases, minor
latencies are allowed.

For example, since the reports may be generated daily rather than in real-
time, the user is happy working with day-old data.

What NoSQL can do
For a computational application, NoSQL can help as follows:

• Column-oriented databases would help define rigorous schema. Document
or key-value databases can still be used.
For example, JSON formats can be used to define a formal schema. Just that
these stores cannot enforce the schema.

• They (column-oriented, key-value as well as document stores) can provide
speed and scale while fetching partial data.

• Document stores coupled with MapReduce processing can help performing
computation right up close to the data-tier thereby substantially increasing
the speed of execution. You do not want unnecessary data to be floating
across the network.

• Document stores can help implement JOIN or create views.

Chapter 4

[55]

What NoSQL cannot do
Using NoSQL will result in a few limitations for a computational application:

• Defining relationships can be tricky. Except for graph databases, these
relationships must be maintained in application.

• Because relationships do not exist in the database, data can be inconsistent—
even if momentarily.

Decision
The list of tasks that are possible in NoSQL are also possible with RDBMS. The only
brownie point that NoSQL gets here, which can turn out to be a big differentiator,
is the speed and scale at which data can be partitioned horizontally and fetched
property-wise.

RDBMS systems do allow the filtering of queries such as the one given in the
following:

SELECT revenue, expense FROM location_finance WHERE location_id=1234

However, internally RDBMS systems are tuned to fetch the entire row at the time
from the underlying physical store and then apply the filter—especially the columns
selected using the SELECT statement.

On the other hand, NoSQL databases—especially column-oriented
databases—are highly optimized to retrieve partial records and can result in a
dramatic performance difference against RDBMS while dealing with hundreds of
millions or billions of records.

To conclude, it is a tough choice between RDBMS and NoSQL databases in this case.
If the application is, say, an enterprise application wherein the number of records
will be limited to around, for example, a hundred million or lower, RDBMS can
just serve it right, though NoSQL can also be used. For any size less than a million
records, NoSQL can have overheads in terms of setup and tuning; while for over a
few hundred million records, RDBMS will taper down in performance.

Advantages and Drawbacks

[56]

Web-scale application
This last application type is probably more relevant today in consumer applications,
whether they are completely web-based or mobile-native apps or a combination
of both.

Some of the key characteristics of this type of application are:

• The application should be able to scale because of the enormous volume
of content that it operates on, the sheer number of users, and the vast
geography where the users access it because of which one datacenter
is unfeasible.

• The users of this application may be fine working with non-real-time,
relatively stale data. The staleness may range from few tens of milliseconds
to few days, but the latest data may definitely not be available within the
fraction of millisecond.

• The schema may evolve over time as the application allows integration with
other applications.

• Since the data can never be completely normalized or denormalized, the
relationships will exist.

An example of this application is a web analytics application or a social
microblogging platform. The key here is the scale of operation and staleness of data.

Another set of examples includes SaaS-based enterprise-grade applications such as
CRM or ERP. One brilliant example of this is SalesForce—it is a SaaS application that
allows you to integrate the data of your schema.

Entity schema requirements
For a web-scale application, general requirements on the entity schema include:

• Structured schema definition
• The ability to change schema over time without affecting existing records in

any manner—in extreme case, latent schema
• Relationships may be optional at database layer and can be pushed to

application layer mainly because of the low density

Chapter 4

[57]

Data access requirements
From a data access perspective, we would have the following requirements:

• Partial record access
• Speed of operation execution—CRUD
• Inconsistent data—for a short moment—is tolerable

What NoSQL can do
For a web-scale application, NoSQL can help as follows:

• Everything already covered in the previous scenario.
Document stores would be a fantastic choice for latent schema.

• It can provide scale of operations because it does not implement ACID
operations but mostly provide BASE properties.

What NoSQL cannot do
I do not see any requirement that NoSQL cannot fulfill in this case. Note that we do
not have ACID constraints—one of the main reasons why NoSQL was invented.

Decision
Use NoSQL. The choice of the type of store (data model) can vary depending upon
the actual underlying requirement:

• In case of SaaS applications where the schema has to be flexible to
incorporate user-specific attributes, document stores are the optimal choice.
Examples of this subtype include applications such as CRM, ERP—mainly
enterprise-targeted applications where each end consumer (organization)
may have their own specific schema.

• In case of applications like e-learning or other social applications, whose
underlying schema changes and evolves at a fast pace and would need the
ability to change schema over time but still be under the tight control of the
application developer, column-oriented database is a great choice.

Advantages and Drawbacks

[58]

• In the case of social applications that need ability to integrate with other
application, it may want to use a mix of column-oriented and document-
oriented store to mitigate the risk of complete schema overhaul of unforeseen
data format of a new application that becomes a rage and this application
must integrate with the new application in the market.

• To store relationships, graph databases may be an addendum to the
actual data store. For example, Twitter uses graph database, FlockDB
(https://github.com/twitter/flockdb), to store relationships while
it uses Cassandra for real-time analytics (http://www.slideshare.net/
kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011),
and most likely HBase for persistent store.

Note that for Twitter, the latency requirement is
less than 100 ms, as given in the presentation.

Summary
In this chapter, we did a comparative analysis of RDBMS versus NoSQL and the
various models available in our quest to figure out what is the most suitable option,
given a specific scenario.

Note however that these scenarios are only representational. In the application that
you may be working on, you may still have to apply more brains to come up with
the final solution. It is also possible that the final solution is a composite choice; one
part data being in RDBMS while the other being in NoSQL store.

In the next chapter, we will compare the various databases and solutions available
in the market. So, assuming that you plan to go ahead with at least some part of the
data in a NoSQL store, the next chapter is a must read for you.

Comparative Study of
NoSQL Products

Thus far we have looked at NoSQL from a purely technical perspective, comparing
it with RDBMS as a technology choice. We also dug deep into understanding the
various data models available while working with NoSQL.

In this chapter, we will do a comparative study of the various products available in
the market for implementing NoSQL—both open source as well as commercial.

Specifically, we compare the following products:

• Amazon SimpleDB: http://aws.amazon.com/simpledb
• BaseX: http://www.basex.org
• Cassandra: http://cassandra.apache.org
• CouchDB: http://couchdb.apache.org
• Google Datastore: http://developers.google.com/appengine
• HBase: http://hbase.apache.org
• MemcacheDB: http://memcachedb.org
• MongoDB: http://www.mongodb.com
• Neo4j: http://www.neo4j.org
• Redis: http://redis.io

This chapter is structured such that we first explore each point for comparison and
then compare it across the products.

Comparative Study of NoSQL Products

[60]

Comparison
Choosing a technology does not merely involve a technical comparison. Several
other factors related to documentation, maintainability, stability and maturity,
vendor support, developer community, license, price, and the future of the product
or the organization behind it also play important roles. Having said that, I must also
add that technical comparison should continue to play a pivotal role.

We will start a deep technical comparison of the previously mentioned products and
then look at the semi-technical and non-technical aspects for the same.

Technical comparison
From a technical perspective, we compare on the following parameters:

• Implementation language
• Engine types
• Speed

Implementation language
One of the more important factors that come into play is how can, if required, the
product be extended; the programming language in which the product itself is
written determines a large part of it. Some of the database may provide a different
language for writing plugins but it may not always be true:

• Amazon SimpleDB: It is available in cloud and has a client SDK for Java,
.NET, PHP, and Ruby. There are libraries for Android and iOS as well.

• BaseX: Written in Java. To extend, one must code in Java.
• Cassandra: Everything in Java.
• CouchDB: Written in Erlang. To extend use Erlang.
• Google Datastore: It is available in cloud and has SDK for Java, Python,

and Go.
• HBase: It is Java all the way.
• MemcacheDB: Written in C. Uses the same language to extend.
• MongoDB: Written in C++. Client drivers are available in several languages

including but not limited to JavaScript, Java, PHP, Python, and Ruby.
• Neo4j: Like several others, it is Java all the way.
• Redis: Written in C. So you can extend using C.

Chapter 5

[61]

Great, so the first parameter itself may have helped you shortlist the products
that you may be interested to use based on the developers available in your team
or for hire. You may still be tempted to get smart people onboard and then build
competency based on the choice that you make, based on subsequent dimensions.

Note that for the databases written in high-level languages like Java, it may still be
possible to write extensions in languages like C or C++ by using interfaces like JNI
or otherwise.

Amazon SimpleDB provides access via the HTTP protocol and has SDK in multiple
languages. If you do not find an SDK for yourself, say for example, in JavaScript for
use with NodeJS, just write one.

However, life is not open with Google Datastore that allows access only via its cloud
platform App Engine and has SDKs only in Java, Python, and the Go languages.
Since the access is provided natively from the cloud servers, you cannot do much
about it. In fact, the top requested feature of the Google App Engine is support for
PHP (See http://code.google.com/p/googleappengine/issues/list).

Engine types
Engine types define how you will structure the data and what data design expertise
your team will need. As we discussed in Chapter 4, Advantages and Drawbacks NoSQL
provides multiple options to choose from.

Database Column oriented Document store Key value store Graph
Amazon SimpleDB No No Yes No
BaseX No Yes No No
Cassandra Yes Yes No No
CouchDB No Yes No No
Google Datastore Yes No No No
HBase Yes No No No
MemcacheDB No No Yes No
MongoDB No Yes No No
Neo4j No No No Yes
Redis No Yes Yes No

You may notice two aspects of this table – a lot of No and multiple Yes against
some databases. I expect the table to be populated with a lot more Yes over the next
couple of years. Specifically, I expect the open source databases written in Java to be
developed and enhanced actively providing multiple options to the developers.

Comparative Study of NoSQL Products

[62]

Speed
One of the primary reasons for choosing a NoSQL solution is speed. Comparing and
benchmarking the databases is a non-trivial task considering that each database has
its own set of hardware and other configuration requirements.

Having said that, you can definitely find a whole gambit of benchmark results
comparing one NoSQL database against the other with details of how the tests were
executed.

Of all that is available, my personal choice is the Yahoo! Cloud Serving
Benchmark (YCSB) tool. It is open source and available on Github at
https://github.com/brianfrankcooper/YCSB. It is written in Java and clients are
available for Cassandra, DynamoDB, HBase, HyperTable, MongoDB, Redis apart
from several others that we have not discuss in this book.

Before showing some results from the YCSB, I did a quick run on a couple of easy-to-
set-up databases myself. I executed them without any optimizations to just get a feel
of how easy it is for software to incorporate it without needing any expert help.

I ran it on MongoDB on my personal box (server as well as the client on the same
machine), DynamoDB connecting from a High-CPU Medium (c1.medium) box, and
MySQL on the same High-CPU Medium box with both server and client on the same
machine. Detailed configurations with the results are shown as follows:

Server configuration:

Parameter MongoDB DynamoDB MySQL
Processor 5 EC2 Compute Units N/A 5 EC2 Compute Units
RAM 1.7 GB with Apache

HTTP server running
(effective free: 200 MB,
after database is up
and running)

N/A 1.7GB with Apache
HTTP server
running (effective
free: 500MB, after
database is up and
running)

Hard disk Non-SSD N/A Non-SSD
Network configuration N/A US-East-1 N/A
Operating system Ubuntu 10.04, 64 bit N/A Ubuntu 10.04, 64 bit
Database version 1.2.2 N/A 5.1.41
Configuration Default Max write:

500,
Max read:
500

Default

Chapter 5

[63]

Client configuration:

Parameter MongoDB DynamoDB MySQL
Processor 5 EC2 Compute

Units
5 EC2 Compute
Units

5 EC2 Compute
Units

RAM 1.7GB with Apache
HTTP server
running (effective
free: 200MB, after
database is up and
running)

1.7GB with Apache
HTTP server
running (effective
free: 500MB, after
database is up and
running)

1.7GB with Apache
HTTP server
running (effective
free: 500MB after
database is up and
running)

Hard disk Non-SSD Non-SSD Non-SSD
Network
configuration

Same Machine as
server

US-East-1 Same Machine as
server

Operating system Ubuntu 10.04, 64 bit Ubuntu 10.04, 64 bit Ubuntu 10.04, 64 bit
Record count 1,000,000 1,000 1,000,000
Max connections 1 5 1
Operation count
(workload a)

1,000,000 1,000 1,000,000

Operation count
(workload f)

1,000,000 100,000 1,000,000

Results:

Workload Parameter MongoDB DynamoDB MySQL
Workload-a
(load)

Total time 290 seconds 16 seconds 300 seconds

Speed
(operations/
second)

2363 to 4180
(approximately
3700)
Bump at 1278

50 to 82
(operations/
second)

3135 to 3517
(approximately
3300)

Insert latency 245 to 416
microseconds
(approximately
260)
Bump at 875
microseconds

12 to 19
milliseconds

275 to 300
microseconds
(approximately
290)

Comparative Study of NoSQL Products

[64]

Workload Parameter MongoDB DynamoDB MySQL
Workload-a (run) Total time 428 seconds 17 seconds 240 seconds

Speed 324 to 4653 42 to 78 3970 to 4212
Update latency 272 to 2946

microseconds
13 to 23.7
microseconds

219 to 225.5
microseconds

Read latency 112 to 5358
microseconds

12.4 to 22.48
microseconds

240.6 to 248.9
microseconds

Workload-f (load) Total time 286 seconds Did not
execute

295 seconds

Speed 3708 to 4200 3254 to 3529
Insert latency 228 to 265

microseconds
275 to 299
microseconds

Workload-f (run) Total time 412 seconds Did not
execute

1022 seconds

Speed 192 to 4146 224 to 2096
Update latency 219 to 336

microseconds
216 to 233
microseconds,
with two bursts
at 600 and 2303
microseconds

Read latency 119 to 5701
microseconds

1360 to 8246
microseconds

Read Modify
Write (RMW)
latency

346 to 9170
microseconds

1417 to 14648
microseconds

Do not read too much into these numbers as they are a result of the default
configuration, out-of-the-box setup without any optimizations.

Some of the results from YCSB published by Brian F. Cooper
(http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf) are shown next.

For update-heavy, 50-50 read-update:

Chapter 5

[65]

For read-heavy, under varying hardware:

There are some more from Sergey Sverchkov at Altoros (http://altoros.com/
nosql-research) who published their white paper recently.

Comparative Study of NoSQL Products

[66]

For update-heavy, 50-50 read-update:

For read-heavy, 95-5 read-update:

To conclude, there is no perfect NoSQL solution. As you will notice from the results,
each database has its own profile and works amazingly under a set of conditions but
may give horrendous results in other scenarios. A database that works awesomely
in a read-heavy scenario may not be an optimal choice in an application that is
write-heavy. Similarly, hardware configurations may affect some databases while
others may operate independently allowing linear scaling out.

Chapter 5

[67]

There are some more results from http://www.cubrid.org/blog/dev-platform/
nosql-benchmarking/, comparing MongoDB, Cassandra, and HBase—just in case
you are interested in exploring some more.

Features
Next we will compare the databases on the basis of various features like query
language, support for bulk operations, record-size limits, limits on indexes, and
anything related.

Limits
Most of the databases have limits on one or the other parameters that we will
explore next.

• Amazon SimpleDB: Earlier it had a limit of 1000 bytes per value. As of
today, unknown—most likely limited to few MBs. It can hold up to 10 GB
or 1 billion records per domain. See this old but relevant discussion http://
bit.ly/SWuj8y at stackoverflow.

• BaseX: BaseX stores complete XML documents, has a massive limit of 512GB,
and allows for storage of a maximum of 229 files. An amazing illustration
of the largest files created by its users—including Twitter, Wikipedia,
MedLine—is available at http://docs.basex.org/wiki/Statistics. The
largest file stored is about 420 GB. This limit is only per database instance.
You can always cluster and increase your limits (except single file size).

• Cassandra: All data for one row must fit in one physical disk. Each column
value should not be larger than 2 GB (231 bytes). Maximum number of
columns per row is 2 billion (2 x 109), implying that each record may be no
larger than 262 bytes. The column name has an additional limit of 64 KB.
See the official documentation on limitations at http://wiki.apache.org/
cassandra/CassandraLimitations. Note that versions prior to 0.7 had
smaller limitations.

• CouchDB: Interestingly, the official document at http://wiki.apache.
org/couchdb/Frequently_asked_questions#How_Much_Stuff_can_I_
Store_in_CouchDB.3F says that the practical limits are unknown (read:
never hit till date). Another discussion at http://stackoverflow.com/
questions/11019360/couchdb-document-size-limits points that the
configuration puts a limit of 4 GB, but again that may only be a default limit.

Comparative Study of NoSQL Products

[68]

• Google Datastore: Maximum entity (row) size is only 1 MB while maximum
transaction size is 10 MB. For a given entity, the maximum number of
indexes is 20,000 and the maximum number of bytes in any index allowed
is 2 MB. See official documentation at https://developers.google.com/
appengine/docs/python/datastore/overview#Quotas_and_Limits.

• HBase: Per-record value must fit in the physical disk. However, cell value
size is limited to 20 MB.

• MemcacheDB: Maximum object size is 1 MB.
• MongoDB: Maximum document size is 16 MB. Well, use GridFS API to store

larger documents—practically unlimited size. Any composite/compound
index may not have more than 31 fields while a single collection cannot
have more than 64 indexes and each index cannot be larger than 1 KB. See
http://docs.mongodb.org/manual/reference/limits/ for all details.

• Neo4j: Documentation says that theoretically there are no limits. The default
limit values are imposed only because of the typically available hardware.
See http://docs.neo4j.org/chunked/stable/capabilities-capacity.
html#capabilities-data-size for details.

• Redis: String value is limited to 512 MB while the upper limit on the size
of the value for a key in general is 2 GB. Read http://redis.io/topics/
data-types for details.

Bulk operations
By bulk operations, I refer to operations that involve multiple entities in a single go.
In a typical SQL-based system, I can execute DELETE FROM my_table where _id=1
or _id=2 allowing the deletion of multiple records at one go. Similarly for read,
insert, and update operations.

Bulk read
It is interesting to note that not all databases support bulk reading of the records,
that is a counterpart of the SQL statement SELECT col1 FROM my_table where
col2='val2' may not exist for all NoSQL databases.

Document-oriented databases typically will support retrieval by a single record
ID; and so will key-value stores. Column-oriented databases will, in general, allow
multi-record read through one query.

Chapter 5

[69]

Database Supported Example
SimpleDB Yes https://sdb.amazonaws.com/

?Action=Select

&SelectExpression=select%20col1%20from%20
my_table%20where %20col2%20%2D%20%27val2%27

BaseX Yes for $doc in collection()

where value-of($doc//col2) = 'val2'

return $doc//col1

Cassandra Yes select col1 from my_table

where col2='val2'

CouchDB Yes function map(doc) {

 if(doc.col2 == 'val2') {

 emit(doc._id, doc.col1);

 }

}

function reduce(k, v, rr) {

 return v;

}

Datastore Yes q = new Query('my_table').setFilter(

 new FilterPredicate('col2',

 FilerOperator.EQUAL, 'val2'));

datastoreSvc.prepare(q).asIterable();

HBase Yes scan = new Scan().addColumn("col2".
getBytes(), "val2".getBytes());

results = htable.getScanner(scan);

MemcacheDB No N/A
MongoDB Yes db.my_table.find({ 'col2': 'val2' }, {

'col1': 1 });

Neo4j No Use Batch REST API. See http://docs.neo4j.org/
chunked/snapshot/rest-api-batch-ops.html.

Redis No N/A

Comparative Study of NoSQL Products

[70]

Bulk insert
By bulk insert I mean inserting multiple records using one command. The SQL
counterpart of the same is shown as follows:

INSERT INTO my_table(_id, col1, col2) VALUES('_id1', 'v1', 1), ('_
id2', 'v2', 2)

It is very unlikely that databases that have only a HTTP-RESTful interface will
support this since the record ID is part of the URL and document is part of the POST-
body and multi-parts are not supported, at least not today. Having said that, it may
still be supported in some more interesting ways, for example look at the SimpleDB
option.

Database Supported Example
SimpleDB Yes

(Max 25
items, 256
attributes)

https://sdb.amazonaws.com/

?Action=BatchPutAttributes

&Item.1.ItemName=_id1

&Item.1.Attribute.1.Name=col1

&Item.1.Attribute.1.Value=v1

BaseX Yes N/A. Could not find any reference to multiple documents
at http://docs.basex.org/wiki/Commands#ADD.

Cassandra Yes CQL is very similar to SQL. Use standard SQL INSERT
command syntax. See http://cassandra.apache.
org/doc/cql/CQL.html#INSERT.

CouchDB Yes curl -d '{"docs":[{"key":"baz","name":"bazz
el"},

 {"key":"bar","name":"barry"}]}'

-X POST

http://127.0.0.1:5984/my_db/_bulk_docs

Datastore Yes List<Entity> entities = ...

datastoreSvc.put(entities);

HBase Yes Since HBase follows MapReduce, the solution comprises
of a lot of code. See http://archive.cloudera.com/
cdh/3/hbase/bulk-loads.html.

MemcacheDB No N/A
MongoDB Yes db.my_table.insert ([{ "_id": "doc1" },

 { "_id": "doc2" }]);

Neo4j Yes Use Batch REST API. See http://docs.neo4j.org/
chunked/snapshot/rest-api-batch-ops.html.

Redis No N/A

Chapter 5

[71]

Bulk update
Bulk update refers to the feature wherein multiple records may be updated using a
single operation. Using SQL, we will execute:

UPDATE my_table SET(col1='new_value') WHERE col2 >= 3

Note that UPDATE is quite different from INSERT even though both change the state
of the store. The UPDATE operation requires a record to exist. Even though a database
may not support bulk insert, it is likely that it still may support bulk updates.

Database Supported Example
SimpleDB Yes

(Max 25
items, 256
attributes)

https://sdb.amazonaws.com/

?Action=BatchPutAttributes

&Item.1.ItemName=_id1

&Item.1.Attribute.1.Name=col1

&Item.1.Attribute.1.Value=v1

BaseX Yes Use XQUF to update multiple documents at one go.
http://docs.basex.org/wiki/Update.

Cassandra Yes CQL is very similar to SQL. Use the standard SQL UPDATE
command syntax. See http://cassandra.apache.
org/doc/cql/CQL.html#UPDATE.

CouchDB Yes Use Bulk Document API to first fetch required and then
update them, or Update Handlers if the IDs are known. See
http://stackoverflow.com/a/8011725/332210.

Datastore Yes List<Entity> entities = ...

datastoreSvc.put(entities);

HBase Yes HTableInterface ht = ...

List<Put> items = ...

ht.put(items);

MemcacheDB No N/A
MongoDB No db.collection.update({ 'col2': {$gte: 3 } },

 { $set: { 'col1': 'new value' } }, false,
true);

Neo4j Yes Use Batch REST API. See http://docs.neo4j.org/
chunked/snapshot/rest-api-batch-ops.html.

Redis No N/A

Comparative Study of NoSQL Products

[72]

Bulk delete
Similar to the other bulk operations, the question is whether or not it is possible to
delete multiple documents by issuing a single command. In SQL world, we execute
the following statement:

DELETE FROM my_table WHERE _id='_id1'

Most of the NoSQL databases do support bulk delete operations.

Database Supported Example
SimpleDB Yes https://sdb.amazonaws.com/

?Action=BatchDeleteAttributes

&Item.1.ItemName=_id1

BaseX Yes <delete path='xml-doc-prefix' />

Cassandra Yes CQL can be used to delete not only rows but also
columns from multiple rows.
DELETE col1 FROM my_table WHERE _id='id1'
to delete specific column.
DELETE FROM my_table WHERE id='_id1' to
delete the entire row.

CouchDB Yes As http://bit.ly/SUtPP8 points, a deleted
document has attribute "_deleted": true. You can
use batch update to batch delete documents. See also
http://bit.ly/VSUXBb.

Datastore Yes
(Keys only)

List<Key> keys = ...

datastoreSvc.delete(keys);

HBase Yes HTableInterface ht = ...

List<Delete> items = ...

ht.delete(items);

MemcacheDB No N/A
MongoDB Yes db.my_table.remove({ '_id': 'id1' });

Neo4j No Use Batch REST API. See http://docs.neo4j.org/
chunked/snapshot/rest-api-batch-ops.html.

Redis Yes
(Keys only)

DEL key1 key2

HDEL key1 key2

Chapter 5

[73]

Query options
What is a database if we cannot search it without having to know the primary key
or the record ID. If you are just moving out from the RDBMS databases, you will be
very much used to:

• Defining custom indexes for faster searches
• Searching across tables to create the final result using JOIN
• Creating complex views that will act as pseudo tables that can be

queried upon

Get by ID
All databases support it. No questions asked.

Composite indexes
Now, this is a tricky requirement. Most of these databases allow searching across
multiple attributes or columns or properties. Whether or not they allow defining
custom composite index is a different question altogether.

Here, we are talking about searching within a table or model type. Note that since
each database has its own terminology for defining the model structure, I will refer
to it as model type (the tables in SQL world, entity for Datastore, and so on).

Database Query with filters Custom index
SimpleDB Yes No
BaseX Yes No
Cassandra Yes Yes

CouchDB Yes No
Datastore Yes Yes
HBase Yes Yes
MemcacheDB No No
MongoDB Yes Yes
Neo4j Yes Yes
Redis No No

Comparative Study of NoSQL Products

[74]

Datastore does not allow non-equality comparison on more than one property.

If you look at the preceding table, you will notice that the key value stores,
specifically, do not support filter queries.

Datastore mandates you to define a custom index before you can use it.
Single-property queries are always supported unless the property is marked
non-indexed, however, a query spanning multiple properties requires an explicit
index to be created.

For document-oriented databases, multi-property queries are always supported
irrespective of whether or not custom index definitions are allowed or required.
MongoDB requires custom index definition for faster access whereas CouchDB
always indexes it for you.

Cassandra uses the notion of what are known as secondary indexes for filter queries,
while HBase supports using Hypertable (HTableInterface).

Views
Great, now that we know which database supports query by properties other than the
key and support creating custom indexes before querying them, it is now time to look
at if and how the different databases support querying across multiple model types.

While working with RDBMS/SQL, we use JOIN statements to create queries
spanning across multiple tables.

The following is a table lists all possibilities.

Database Cross-type query Custom view definition
SimpleDB Yes No
BaseX Yes No
Cassandra Yes No

CouchDB Yes Yes
Datastore No No
HBase Yes No
MemcacheDB No No
MongoDB Yes No
Neo4j Yes No

Databases that do not support query filters can definitely not support cross-type
queries since that requires non-ID field-based queries.

Chapter 5

[75]

Among others, Datastore specifically does not support cross-type queries which means
you cannot do things that you were so used to while working with RDBMS/SQL.

Document-oriented databases that are agnostic of the underlying document schema
are the ones that do and will support cross-type queries, mainly because as far as
the underlying database is concerned, it does not have any notion of type or schema.
Each piece of content is—simply put—a semi-structured document that can be
indexed and searched.

CouchDB is the only database in our list that supports creating custom view
definition that persists as well. Note that other document-oriented databases
support indexing—either implicit or explicit—but do not support creating named
views that can be queried upon. Additionally, these views do not compare to
RDBMS views. CouchDB views do not have any schema prescribed and are a
result of the reduce-step in the operation. As such, the performance benefit is not
comparable to as in RDBMS views. More details on CouchDB views are available at
http://wiki.apache.org/couchdb/HTTP_view_API.

Security
The next aspect that we compare is security. Well, no database has been
implemented without keeping security in mind but then each database defines
various aspects of security in its own way.

Access management
Under access management, we compare the following:

• Authentication
• Authorization

Authentication
Well, a basic requirement for any database server is authentication and authorized
access. Let's look at what access mechanisms are available with each database:

Database Authentication support
SimpleDB Each request requires a access key and HMAC-based signature to

validate the requests.
BaseX Gives commands – CREATE USER, ALTER USER, DROP USER.

It has a simple username- and password-based login.
Cassandra Uses a username/password combo. Passwords can, optionally, be

MD5-hashed. But always kept in a text file.

Comparative Study of NoSQL Products

[76]

Database Authentication support
CouchDB Provides RESTful access to manage users.

Authentication can be either HTTP-Basic or Cookie-based.
Since Version 0.11, OAuth authentication is supported.
See http://bit.ly/UhKHwc.

Datastore No authentication. Runs directly from Google App Engine.
HBase Kerberos-based authentication is supported.
MemcacheDB N/A
MongoDB Username/password combo. Admin is a special user.

The REST API for admin must be either disabled or firewalled as it
does not provide any security.

Neo4j Provides an API-based highly flexible authentication support.
Allows you to write custom logic.

Redis N/A

Authorization or role-based access
Role-based access allows you to configure what permissions each account or group
of accounts is granted. You do not want all users to always have administrative
privileges. A comparison table enlisting options available with each database is
shown next.

In general there can be the following permissions associated with an account:

• None (N) – akin to disabled account.
• Read (R) – can only read data, per database or collection.
• Write (W) – can read as well as write (includes insert, edit, and delete), per

database or collection.
• Create (C) – can read, write, and also create table, per database or collection.
• Database Admin (D) – can administer a specific database or collection.
• Server Admin (A) – can RWC and also add database or collection, administer

accounts and permissions. Can do everything possible with the server.

Database Authorization support
SimpleDB No. Each AccessKey that can be authenticated has all

privileges.
BaseX Can configure one or more of NRWCA permissions with any

account. Can configure at database level.

Chapter 5

[77]

Database Authorization support
Cassandra Can configure permissions at keyspace (akin to tables) or

column-family level. Permissions are restricted to R/W.
CouchDB Can configure permissions at database level. Permissions

available – RDA. See http://bit.ly/SOZ3Fj.
Datastore N/A
HBase Supports configuring access control lists. Permissions available

– RWCA. See http://bit.ly/TDwRGf and http://bit.
ly/RO28b3.

MemcacheDB N/A
MongoDB Permissions available at server level. No collection-level

permissions available. Permissions available are RA.
Neo4j API-based authorization gives you complete control over what

you wan—can be as fine-grained or coarse-grained as you
need. See http://bit.ly/RO2uyj.

Redis N/A

Encryption
Access control is only one form of security that one would require. In real
enterprises, there is a definitive need for stronger security. Specifically, one may
want encryption support. Data stored and/or data transferred may need to be
encrypted while synchronizing across data centers.

Database Store encryption Protocol encryption
SimpleDB No No
BaseX No No
Cassandra No Yes

Internode access uses TLS/SSL
CouchDB No Yes

(http://bit.ly/POrAx6 and
http://bit.ly/TACUcl)

Datastore No No
HBase No No

(http://bit.ly/VVmx0O)
MemcacheDB No No
MongoDB

Yes
Yes

(http://bit.ly/RO40R1)

Comparative Study of NoSQL Products

[78]

Database Store encryption Protocol encryption
Neo4j Yes

(http://bit.ly/XwvX3m)
Yes

Redis No No

Third-party tools like zNcrypt support store-level encryption. See list of supported
applications at http://www.gazzang.com/support/supported-applications.

I do not personally endorse this product.
Do evaluate before you use it.

Multitenancy
Multitenancy allows you to scale your database to classify and segregate data
across multiple applications or organizations without having a need for a
separate installation.

According to Wikipedia:

Multitenancy refers to a principle in software architecture where a single instance
of the software runs on a server, serving multiple client organizations (tenants).

The question is, at database level, what does multitenancy really mean?
There are two ways that your application using one of these databases can
be multitenant:

• The application is multitenant irrespective of the underlying database. It is
so by the way underlying model and entities are defined. For example, portal
servers like SharePoint and Liferay are multitenant within a single database.

• The entities are not modeled keeping multitenancy deployment, for example
in case of legacy applications wherein you may just want to rewrite the
data-access layer rather than the data-processing (business logic) layer. In
this case, you want support for multiple databases or collections within one
server installation.

When I say multitenant database, I refer to the second option.

Database Multitenancy support
SimpleDB No
BaseX Yes
Cassandra Yes

Chapter 5

[79]

Database Multitenancy support
CouchDB Yes
Datastore No
HBase No
MemcacheDB No
MongoDB Yes
Neo4j Yes
Redis No

SimpleDB and Datastore are multitenant by very nature of cloud deployment.
However, within one instance, there is no further subclassification. So, you
cannot use the second approach, mentioned previously, to make your application
multitenant. In fact, it will not even be required for database to support it.

RDBMS related features
One of the more common queries that I have seen people having is support for
counterparts for the RDBMS features, specifically support for JOIN, VIEW, and
transactions (ACID).

Well, as we discussed in previous chapters, that is not really what NoSQL has been
invented for. But nevertheless, the vendors and community have striven to provide
some of these in as much capacity as possible.

We have already discussed about JOIN (cross-type queries) and VIEW earlier.

As far as transaction support is concerned, I have not read or heard any database
writing or talking about it except for Neo4j. See http://bit.ly/TAHcAs for the
official documentation of Neo4j on transaction support.

Deployment and maintenance
Let us shift our focus from core development to service engineering and explore
the parameters of support and features under availability, automatic failover,
replication, backup, restore, recovery from crash, and so on.

Availability
A database is a shared resource used by a cluster of application servers. As such,
it becomes highly desirable that it supports clustering, load balancing, and automatic
failover.

Comparative Study of NoSQL Products

[80]

The table listing what is available with which database is shown as follows:

Database Clustering Load balancing Automatic failover
SimpleDB N/A N/A N/A
BaseX NO [1] No No
Cassandra Yes [2] Yes [3] Yes [4]

CouchDB No [5] Yes [6] Yes
Datastore N/A N/A N/A
HBase Yes [7] Yes [8,9] Yes
MemcacheDB Yes [10] No No [11]
MongoDB Yes [12] Yes [13] Yes [14]
Neo4j Yes [15] Yes [16] Yes
Redis No [17] NO No

For cloud-hosted databases, such as SimpleDB and Datastore, we are not much
concerned about the internal service engineering aspects as long as the database is
available from the application.

References used in the preceding table are as follows:

• [1] http://www.mail-archive.com/basex-talk@mailman.uni-konstanz.
de/msg01477.html

• [2] http://www.datastax.com/docs/0.8/cluster_architecture/
cluster_planning

• [3] http://wiki.apache.org/cassandra/Operations#Load_balancing
• [4] http://prettyprint.me/2010/03/03/load-balancing-and-

improved-failover-in-hector/

• [5] http://guide.couchdb.org/draft/clustering.html
• [6] http://guide.couchdb.org/draft/balancing.html
• [7] http://hbase.apache.org/replication.html
• [8] http://hbase.apache.org/book/architecture.html#arch.

overview.nosql

• [9] http://hstack.org/why-were-using-hbase-part-1/
• [10] http://osdir.com/ml/memcachedb/2009-03/msg00027.html
• [11] http://www.couchbase.com/forums/thread/load-balance-

memcached

• [12] http://docs.mongodb.org/manual/core/sharding/
• [13] http://stackoverflow.com/questions/5500441/mongodb-load-

balancing

Chapter 5

[81]

• [14] http://www.mongodb.org/display/DOCS/Replica+Sets
• [15] http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html
• [16] http://docs.neo4j.org/chunked/stable/ha-haproxy.html
• [17] http://redis.io/topics/cluster-spec

Maintenance
Next in line are the backup options – full and incremental, and database import/
export options.

Database Full backup Incremental backup Import/export
SimpleDB N/A N/A N/A
BaseX Yes [1] No No
Cassandra Yes [2] Yes [2] Yes [3]

CouchDB Yes [4] Yes [5] No[6]
Datastore N/A N/A N/A
HBase Yes [7] Yes [8] Yes [9]
MemcacheDB Yes [10] No No
MongoDB Yes [11] No[12] Yes [13]
Neo4j Yes [14] Yes [14] No
Redis Yes [15, 16] No No

The table has been compiled using the following references:

• [1] http://docs.basex.org/wiki/Commands#CREATE_BACKUP
• [2] http://www.datastax.com/docs/1.0/operations/backup_restore
• [3] http://wiki.apache.org/cassandra/Operations#Import_.2BAC8_

export

• [4] http://wiki.apache.org/couchdb/How_to_make_filesystem_
backups

• [5] http://comments.gmane.org/gmane.comp.db.couchdb.user/11410
• [6] http://www.rossbates.com/2009/07/data-migration-for-couchdb/
• [7] http://hbase.apache.org/book/ops.backup.html
• [8] http://www.slideshare.net/neallee/hbase-incremental-backup
• [9] http://hbase.apache.org/book/ops_mgt.html#export
• [10] http://www.docunext.com/wiki/MemcacheDB#Backing_Up_

MemcacheDB_Data

Comparative Study of NoSQL Products

[82]

• [11] http://www.mongodb.org/display/DOCS/Backups
• [12] http://www.mongodb.org/display/DOCS/Backups#Backups-

IncrementalBackups

• [13] http://docs.mongodb.org/manual/administration/import-
export/

• [14] http://docs.neo4j.org/chunked/stable/operations-backup.html
• [15] http://redis.io/topics/persistence
• [16] http://redis4you.com/articles.php?id=010&name=Redis+save+an

d+backup+script

Tools
Working with API and libraries is great, but how about some easy to use, quick to
start tools? It does not matter if the tool is an official tool from the team or a third-
party tool, as long as one exists, I have documented it.

The following table summarizes the support for various kinds of tools – Command
Line Interface (CLI) aka shell, GUI tools, and web-based management.

Database CLI Desktop GUI Web
Windows Mac Linux

SimpleDB Yes [1] Yes [25] Yes [25] Yes [25] N/A
BaseX Yes [2] Yes [3] Yes [3] Yes [3] No
Cassandra Yes [4, 8] Yes [5] Yes [5] Yes [5] Yes [6, 7]

CouchDB Yes [9]
(CURL)

Yes [9, 10] Yes [9] Yes [9]
Yes [9]
(CURL)

Datastore No No No No No
HBase

Yes [11] Yes [12] Yes [12] Yes [12]
Yes [13]
(Built-in)

MemcacheDB Yes [14] No No No No
MongoDB Yes [15] Yes [16, 18] Yes [16, 17] Yes [16] Yes [19]
Neo4j Yes [20] No No No Yes [21]
Redis Yes [22] Yes [23] Yes [23] Yes [23] Yes [24]

References:

• [1] http://code.google.com/p/amazon-simpledb-cli/
• [2] http://docs.basex.org/wiki/Standalone_Mode

Chapter 5

[83]

• [3] http://docs.basex.org/wiki/Graphical_User_Interface
• [4] http://wiki.apache.org/cassandra/CassandraCli
• [5] http://code.google.com/a/apache-extras.org/p/cassandra-gui/
• [6] http://wiki.apache.org/cassandra/Administration%20Tools
• [7] https://github.com/hmsonline/virgil
• [8] http://wiki.apache.org/cassandra/NodeTool
• [9] http://wiki.apache.org/couchdb/Related_Projects
• [10] http://kanapeside.com/
• [11] http://wiki.apache.org/hadoop/Hbase/Shell
• [12] http://sourceforge.net/projects/hbasemanagergui/
• [13] http://hbaseexplorer.wordpress.com/hbaseexplorer/
• [14] https://github.com/andrewgross/memcache-cli
• [15] http://www.mongodb.org/display/DOCS/mongo+-

+The+Interactive+Shell

• [16] http://www.mongodb.org/display/DOCS/Admin+UIs
• [17] http://mongohub.todayclose.com/
• [18] http://www.mongovue.com/
• [19] http://www.mongodb.org/display/DOCS/Http+Interface
• [20] http://docs.neo4j.org/chunked/stable/shell.html
• [21] http://docs.neo4j.org/chunked/stable/tools-webadmin.html
• [22] http://redis.io/topics/quickstart
• [23] http://bit.ly/VW7owf
• [24] http://webd.is/
• [25] http://www.razorsql.com/features/simpledb_features.html

Protocol
The final technical bit that I will touch upon is transport protocol that is used for data
transfer—between the server and the client. For the sake of simplicity, I will classify
the protocols under the following heads:

• HTTP: Standard protocol. May or may not support RESTful interface, but
that is fine. The message format is expected to be text (JSON or XML or
otherwise).

• TCP: The TCP protocol that optimizes bandwidth consumption (binary) or
otherwise (text). If it's binary, it is generally non-interoperable except using
the provided drivers or tools.

Comparative Study of NoSQL Products

[84]

• Thrift: Also known as the Apache Thrift protocol. It is an Interface
Definition Language (IDL) to implement services that can be consumed
from across the languages. Originally developed by Facebook, it is now
maintained by the Apache Foundation. As per the Apache Thrift website:

The Apache Thrift software framework, for scalable cross-language
services development, combines a software stack with a code genera-
tion engine to build services that work efficiently and seamlessly
between C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#,
Cocoa, JavaScript, Node.js, Smalltalk, OCaml and Delphi, and other
languages.

Database Protocol
SimpleDB H
BaseX TCP-Text
Cassandra Thrift

CouchDB HTTP
Datastore N/A
HBase Thrift
MemcacheDB TCP-Binary
MongoDB TCP-Binary
Neo4j Multiple
Redis TCP-Binary

Nontechnical comparison
Let us shift gears a bit and look at some nontechnical parameters to compare
the databases.

Source and license
License plays a critical role in taking a final business decision on choosing a database.
While commercial license—with or without source code—had been the norm
especially in the enterprise application where the main drivers were vendor support
and protection of intellectual property, things have started to change in recent times.

Chapter 5

[85]

Because of strong vendor and community support, companies have started to
adopt open source libraries and applications. Given comparable metrics on other
parameters, the final decision boils down to the license.

Distributable applications prefer Apache, BSD, MIT, X11, and other compatible
licenses while in-the-cloud applications also use GPL-licensed code. AGPL is a
license to fret unless there is dual licensing available for commercial license to
protect intellectual properties.

Database Commercial OSS Commercial OSS Open License
SimpleDB N/A N/A N/A N/A
BaseX N/A Yes No BSD
Cassandra N/A Yes No

CouchDB No Yes No
Datastore N/A N/A N/A N/A
HBase No Yes No
MemcacheDB No Yes No BSD-like
MongoDB Yes No Yes G
Neo4j Yes No Yes GPL, G
Redis N/A Yes No BSD

In SimpleDB and Datastore, neither the source code nor the binaries are available,
hence the concept of license, as we are evaluating, is not applicable.

OSS Commercial refers to the licenses that allow you to develop commercial
applications while protecting your intellectual property by not forcing you to
contribute the code back to the community, while OSS Open refers to the license
that asks you to contribute the code back to the community to ensure that everyone
benefits at large (like the way you did by forking the code from the community).

The last column shows the actual license under which the code is available.

In the databases that we have covered in this chapter, three of them—Cassandra,
CouchDB, and HBase—are maintained by the Apache Foundation and use one of the
most liberal open source licenses – Apache License v2.

Source code of MongoDB is available under dual licenses – AGPL and commercial.
Should you wish to use MongoDB in your applications, distributed or otherwise, do
not forget to buy a commercial license.

Comparative Study of NoSQL Products

[86]

Community and vendor support
Last but not least, we compare these databases on the key parameter of support
availability. This can be further subclassified into two parts:

• Community: A strong community means a lot. It shows that a lot of people
are using it, which in turn implies that it is a good option. It results in faster
response time to the queries, you no longer have to depend on the developers
or a vendor to always respond.

• Vendor support: A vendor providing complete solution support means a lot
to the company whose core competency is not technology. Imagine a travel
or a finance company having to spend more time in trying to get around
provisioning a database to suit their conditions rather than on implementing
the actual business layer of the application.

I have classified community support into four broad categories:

• Forums: Open discussion forums and mailing lists which one can subscribe,
ask questions, and get a response from the community.

• Users: Number of users discussing on the forum. I am interested in Monthly
Active Users (MAU).

• Discussions: Number of discussions on the forums.
• StackOverflow: Whether there is a tag for the databases or not, and if so,

total number of questions tagged.

The sizing has been done as follows:

• Small
 ° One, or at best, a couple of discussion forums
 ° Activity from less than 100 users a month
 ° Total discussions that are less than 300 per month
 ° Total number of questions tagged and responded to that are

less than 1,000

• Medium
 ° Three discussion forums
 ° Activity from over 100 but less than 1,000 users a month
 ° Total discussions that are less than 3,000 per month
 ° Total number of questions tagged and responded to that are

less than 5,000

Chapter 5

[87]

• Large

 ° A value bigger than that in large on any each parameter

Database Forum User Discussion StackOverflow Vendor
Tag Size

SimpleDB S S S Yes S Yes
BaseX S S S Yes S Yes
Cassandra M M M Yes M Yes

CouchDB M M M Yes M Yes
Datastore S M M Yes M Yes
HBase M M M Yes M Yes
MemcacheDB Defunct S S Yes S No
MongoDB M L L Yes L Yes
Neo4j S M M Yes S Yes
Redis S S S Yes S Yes

The Tag column indicates whether or not StackOverflow has a special category for
this database.

Summary
In this chapter, we did a detailed comparative study of a subset of NoSQL databases
available in the market on various parameters—both technical and nontechnical.

Note that this comparison holds good at the time of writing this book. As databases
evolve and get contributions especially from the open source community, the
comparison tables are bound to change.

As a result of the feature enhancements, expect an upsurge in the community size
and more vendors to start providing solutions and support.

The next and the last chapter of the book will give you the run down of a case
study showing how to effectively use and implement NoSQL in your application or
organization.

Case Study
So, with all the text that you have read so far, do you feel confident enough to go
ahead with implementing your next application using NoSQL?

If you have even the slightest of doubts, this chapter is for you.

In this chapter, we will run through a simple application, from the concept to the final
implementation. We implement the application using MongoDB—a document store.

There is no particular reason for choosing MongoDB except
that it is easy to set up and quick to go. As such, we spend less
time in exploring and setting up the database and rather focus
and spend more time on the actual implementation.

The purpose of this walk-through is multifold:

• First, we look at how to attack the problem.
• Next, we look at—based on the database choice—what constraints we are

working against.
• Then, we identify the tools that we need to have.
• Subsequently, we do the database design, the same old stuff of schema

definition, normalization, denormalization. Be ready for some surprises here.
• Finally, we look at the actual code to implement it.

Application definition
People have been keeping a log of their daily activities for ages. With the advent of
the internet, they got a new place to write and share. We call this Weblog or, simply,
blog. A blog comprised of of posts, typically shown in reverse chronology.

Case Study

[90]

For our case study, we will create a simple blog application that supports the
following:

• Showing up latest posts, with support for pagination, in reverse chronology
and a specific post.

• Writing new posts, editing, and deleting the same.
 ° Support for multiple authors in a blog

• Hierarchical categories. Map posts to a specific category.
• Flat, nonhierarchical tags. Map post to multiple tags.
• Support for comments on individual posts.
• Support for custom plugins that may have custom data requirements.

Requirement analysis
We can translate these user features into the following technical requirements as far
as the database and schema is concerned:

• Multitenant, high scalable database
• More reads than writes to the databases
• Role-based access to the application—extensible model
• Extensible schema
• Support to store searchable text, computable numeric, and raw-binary

data store
• Data access may require cross-entity access (aka JOIN)

Note that these technical requirements are only representational, they will help us
focus on the database than the actual application.

Implementation using MongoDB
The first database that we use to implement the store for the application is MongoDB.
The engine type is document store with JSON as the underlying structure.

Chapter 6

[91]

Features and constraints
Given next are some of the features available with MongoDB:

• Document-oriented store with latent schema
• Uses the binary JSON (BSON) format
• Typed values – string, int, double, boolean, date, bytearray, object, array
• Support for multiple databases, known as collections
• Support for map-reduce (useful in batch processing and aggregations)
• Support for ad hoc queries using user-defined functions (in JavaScript)
• Master-slave replications, load-balancing using sharding

MongoDB has its own set of challenges. Some of them are given next (http://
blog.engineering.kiip.me/post/20988881092/a-year-with-mongodb, http://
blog.iprofs.nl/2011/11/25/is-mongodb-a-good-alternative-to-rdbms-
databases-like-oracle-and-mysql/):

• Field name's storage is not optimized. It is advised to use short names. See
http://www.mongodb.org/display/DOCS/Optimizing+Storage+of+Small
+Objects for some guidelines.

• Indexes are memory heavy (http://qr.ae/1QSdm).
• Unreliable – if it crashes during an update, you lose all data (http://

qr.ae/1QSdm).
• Map-reduce is not blazingly fast.
• Imposed limit of 24,000 namespaces (collections and indexes) per database

(http://blog.serverdensity.com/notes-from-a-production-mongodb-
deployment/).

Setup
Download MongoDB server from http://www.mongodb.org/downloads. Although
there are Java drivers available, they are not very friendly as the queries still use the
native BSON syntax. Let us use Mongoose, the official driver from 10gen. You can
download it from http://mongoosejs.com/docs/index.html. It requires Node.js
that can be downloaded from http://nodejs.org/download.

For the purpose of our case study, we will name the collection – blog. Note that in
MongoDB, it is not required to create a collection before it is used.

Case Study

[92]

Database design
One of the tenets of database modeling for NoSQL is that you design less based on
the data entities and their relationships and more on the basis of queries that you
would run against the database.

There are a few things that you will probably need to unlearn and forget;
normalization, foreign keys, and JOIN.

One thing that you will need to learn, practice, and master is appropriate granularity
of denormalization. Whenever in doubt, ask yourself a simple question, "What do I
want to fetch?" and you will be very close to the denormalization granularity.

Database queries
Defining database queries is a critical step before modeling. You don"t have to know
of the distant future but it"s always better to know as many queries as possible at the
start of a development cycle.

At a high level, queries will be required for the following:

• Post-related queries:
 ° Retrieve a list of all posts in reverse chronology or the latest N posts
 ° Add or edit one post, with support for revision history
 ° Delete one or more posts
 ° Retrieve details of one post including categories, tags, and comments

• Category-related queries:
 ° Retrieve all categories hierarchically
 ° Add or edit a category
 ° Delete one or more categories
 ° Link or delink one or more posts against a category

• Tag-related queries:

 ° Mostly same as for category except that the tags are not hierarchical
 ° Link or delink one or more posts against one or more categories

I have deliberately omitted user- and role-related queries including CRUD
operations for a user and associating roles for a user for brevity.

Along with the queries mentioned earlier, we need to support extensible schema
requirements for new plugins that the application must support.

Chapter 6

[93]

Database modeling
Now that we have a fair idea of our queries, it is time to define the database entities.
It is important to note that though we may end up with data redundancy, the degree
of denormalization granularity will not be single handedly driven by queries. The
data model supported by the database also plays a key role.

Using the query requirements mentioned earlier, we can come up with the following
basic entities to support core functionality:

• Post and PostRevision
• Comment
• Category
• Tag

PostRevision keeps track of versions of a post. One of these revisions is visible to
the users.

We will look at supporting plugin-specific data in a while.

The following relationships exist for the entities:

• One-to-many between Post and Comment
• One-to-many between Post and PostRevision
• Many-to-one between Post and Category
• Many-to-many between Post and Category

With the relationships in mind for these entities, we get the structure as follows:

Case Study

[94]

All entities are assumed to have a unique identifier. MongoDB uses the _id field
for the unique identifier for the entity. It can either be provided or autogenerated. I
prefer use an autogenerated identifier as opposed to that provided while working
with MongoDB. See the discussion at http://snmaynard.com/.

Schema definition
With document-store we have great leverage over the entity schema. Although
MongoDB supports latent schema, it makes a definite sense to start with a schema
and update it over time as the need may be.

// Entity Tag
var entityTag = {
 name: String,
 slug: String
};
// Entity Category
var entityCategory = {
 name: String,
 slug: String,
 parent: { type: Schema.Types.ObjectId, ref: "Category" }
};
// Entity Comment
var entityComment = {
 author: String,
 text: String,
 creationTime: { type: Date, "default": Date.now },
 post: { type: Schema.Types.ObjectId, ref: "Post" }
};

The Post entity can be defined in one of the following two ways:

• Comprising only of references to PostRevision indicating which revision is
the published revision

• Comprising of copy of content from PostRevision, duplicating the records

The former approach optimizes the storage space whereas the latter approach
reduces the time to retrieve the published posts so that the load time of the pages is
reduced. PostRevision, on the other hand, has a reference to the main Post against
which the revisions are created.

Chapter 6

[95]

I would take up the latter approach, sacrificing space in favor of speed. Based on this,
the structure of Post and PostRevision is shown as follows, with the portion of the
schema duplicating the post-related content highlighted:

 // Entity Post
var entityPost = {
 title: String,
 slug: String,
 author: String,
 creationTime: { type: Date, "default": Date.now },
 lastUpdateTime: { type: Date, "default": Date.now },
 text: String,
 category: { type: Schema.Types.ObjectId,
 ref: "Category" },
 tags: [{ type: Schema.Types.ObjectId,
 ref: "Category" }]

};
// Entity PostRevision
var entityPostRevision = {
 updateTime: { type: Date, "default": Date.now },
 author: String,
 text: String,
 hits: int,
 post: { type: Schema.Types.ObjectId, ref: "Post" }
};

With these schema definitions, we now need to register them with Mongoose:

// Register schemas using Mongoose
var db = require("mongoose"),
 Schema = db.Schema;

var schemaTag = new Schema(entityTag),
 schemaCategory = new Schema(entityCategory),
 schemaComment = new Schema(entityComment),
 schemaPost = new Schema(entityPost),
 schemaPostRevision = new
 Schema(PentityostRevision);

var Tag = db.model(schemaTag),
 Category = db.model(schemaCategory),
 Comment = db.model(schemaComment),
 Post = db.model(schemaPost),
 PostRevision = db.model(schemaPostRevision);

Case Study

[96]

Even though it looks complex, it actually gives you a lot of power. The driver is
obtained and stored in the db variable. The model method of the driver registers
the Schema and provides helper methods and properties (autogenerated). We will
explore them as we go along with the case study.

Note that Mongoose will ensure a _id field that will be an autogenerated primary
key, unless specified otherwise.

Writing queries
Let us analyze writing queries for the following scenarios:

• A simple query involving one entity. The result set may comprise one or
more records.

• A query involving one entity with a subset of columns that may be used for
aggregate results (for example, count, sum, average, and so on) or otherwise.

• A query across entities with one-to-one relationship.
• A query across entities with one-to-many relationship.
• A query across entities with many-to-many relationship.

Queries for a single entity, simple result
Let us look at the code for the CRUD operations on a Tag entity:

// Insert a new record
var t = new Tag({
 name: "NoSQL",
 slug: "nosql"
});
// Auto-generated method save, async call
t.save(function(err, tag) {
 if(err) {
 //handle rror
 }
});
// Update the tag
t.name = "No SQL";
t.save(function(err, tag) { });
// Retrieve by id
id = db.Types.ObjectId.fromString("abcdef0123456789abcdefab");
Tag.findById(id, function(err, tag) {

});

Chapter 6

[97]

// Delete a tag
t = getTagToDelete();
t.remove(function(err, resp) { });
// Delete a tag, given its slug
var s = getSlugToRemove();
Tag.remove({ "slug": s }, function(err, resp) { });

Queries for a single entity, Aggregate
The query to get a count of all tags and to get count of all posts for a given tag is
as follows:

// Simple count, all tags
Tag.count(function(err, count) {
 console.log("Total number of tags: " + count);
});
// Count of posts for a given tag
var t = getTagToSearchFor();
Post.count({ tags: t },
 function(err, count) {
 console.log("Total posts for tag " + t.name
 + " is: " + count);
});
// Total hits for a post
Post.findOne({ "slug": "beginiing-nosql-database" },
 function(err, post) {
 if(!err && post) {
 PostRevision.find({ "post": post }).
 .select({ count: 1 })
 .function(e, postRevisions) {
 var totalHits = 0;
 if(!e && postRevisions) {
 postRevisions.forEach(function(p) {
 totalHits += (p.hits || 0);
 });
 }
 });
 }
});

Case Study

[98]

Older versions of MongoDB do not perform well with the
count command. It is advisable to not use this command
frequently. The ticket on this issue—https://jira.
mongodb.org/browse/SERVER-1752—is closed. The
fix, however, will be available from v2.3.2, which is not a
production release as of the writing of this book.

Queries for one-to-one relationship
Well, in our case study, we do not have any one-to-one relationship. While working
with NoSQL, it is always advisable to merge the one-to-one relationship entities.
Since most of the databases allow the adding of properties or columns on demand,
extending schema is mostly trivial.

Queries for one-to-many relationship
In the blog application, one category may have multiple posts. Similarly, we can
have multiple revisions and comments for a given post. At a high level, we have the
following two scenarios in this category:

• One-to-many: All posts within a category, comments for a post, and all
revisions for a post

• Many-to-one perspective: Category of a post, post associated with a
particular comment, and main post for a revision

Note that we have a reference to Category in Post and of Post in PostRevision. We
can use this to filter the Post or PostRevision data. The code will be as given next:

// Retrieve all posts for category with slug, say, "nosql"
Category.findOne({ "slug": "nosql"},
 function(err, category) {
 if(!err) {
 Post.find({ "category": category },
 function(e, posts) {
 for(var p in posts) {
 console.log("Post: " + p.title);
 }
 });
 }
});
// Retrieve category associated with a post
var id = getIdOfPost();
Post.findById(id, function(err, post) {

Chapter 6

[99]

 if(!err) {
 var c = post.category;
 console.log(p.title + " belongs to " + c.title);
 }
});

As you see, retrieval queries require two finds—one for the category and second
for the actual post—in the first case. Reason is that the category information is not
duplicated in the post records. So, we first get the category reference and then the list
of posts in that particular category.

Can we do better? We will explore this question in the Model refinements section
given later in the chapter.

Let us now see the queries required to update the details associated with category
and posts. We will explore the following scenarios:

• Changing the category of a post
• Changing the details of a category for a given post
• Deleting all posts or posts within a date-range inside a category
• Deleting a category and moving all posts to a default category

// Move a post to a different category
var cat = getNewCategoryToMoveTo();

Post.findById("0123456789abcdef01234567",
 function(err, post) {
 if(!err) {
 post.category = cat;
 post.save(function(err, savedPost) { });
 }
});
// Change the details of category associated with a post
var postSlug = getSlugOfPostToChange();

Post.findOne({ "slug": postSlug }).
 .populate("category")
 .exec(function(err, post) {
 if(!err) {
 var c = post.category;
 c.name = "NoSQL Databases";
 c.slug = "nosql-databases";
 c.save(function(e, cat) { });
 }

Case Study

[100]

});
// Add a post and associate it with a new category
var catDatabases = getParentCategory();
var cat = new Category({
 name: "Non-Relational Database",
 slug: "non-relational-database"
 parent: catDatabases
});

cat.save(function(e, c) {
 if(!e) {
 var post = new Post({
 title: "What are non-relational datbases",
 slug: "what-are-non-relational-databases",
 text: "Main content of the post",
 category: c,
 author: "Gaurav Vaish",
 tags: [tag1, tag2, tag3]
 });
 post.save(function(e, savedPost) { });
 }
});
// Delete all posts within a category
var catId = getCategoryId();
Category.findById(catId, function(err, category) {
 if(!err) {
 Post.remove({ "category": category },
 function(err, response) {
 });
 }
});
// Delete a category
// and move all related posts to a default category
var oldCat = getCategoryToDelete();
var newCat = getDefaultCategory();

Post.find({ "category": oldCat }, function(e, posts) {
 posts.forEach(function(p) {
 p.category = newCat;
 });
 //Mongoose-hack. See http://bit.ly/13n6UCN
 oldCat.remove();
 Post.collection.insert(posts, function(e, r) { });
});

Chapter 6

[101]

Queries for many-to-many relationship
Many-to-many relationship exists between the Tag and Post entities.

Various queries related to tags and posts are given next:

// Retrieving all posts for a tag, given its slug
Tag.findOne({ "slug": "nosql-engines" },
 function(err, tag) {
 Post.find({ "tag": tag }, function(err, posts) {
 posts.forEach(function(p, i) {
 console.log("%d: %s", i, p.title);
 });
 });
});
// Retrieve all associated tags for a post, given its slug
Post.findOne({ "slug": "starting-with-no-sql" })
 .populate("tags")
 .exec(function(err, post) {
 if(!err) {
 console.log("Post: " + post.title);
 post.tags.forEach(function(tag) {
 console.log(" Tag: " + tag.name);
 });
 }
});
// Inserting a post and associating tags
Tag.find({ "tags": { $in: ["nosql", "benefits"] } },
 function(err, tags) {
 var post = new Post({
 "title": "Benefits of NoSQL",
 "slug": "benefits-of-nosql",
 "tags": tags
 });
 post.save(function(err, post) {
 if(!err) {
 console.log("post saved successfully");
 }
 });
});
// Associating a new, non-existent, tag to a post
var tag = new Tag({
 name: "Technology",
 slug: "technology"
});

Case Study

[102]

tag.save(function(err, savedTag) {
 if(!err) {
 Post.findOne({ slug: "benefits-of-nosql" })
 .populate("tags")
 .exec(function(err, post) {
 if(!err && post) {
 post.tags.push(savedTag);
 post.save(function(err, savedPost) { });
 }
 });
 }
});
// Disassociating a tag from a post
Tag.findOne({ "slug": "future-technologies" },
 function(err, tag) {
 if(!err && tag) {
 Post.findOne({ "slug": "benefits-of-nosql",
 function(err, post) {
 var idx = post.tags.indexOf(tag._id);
 post.tags.removeAt(idx);
 post.save(function(e, savedPost) { });
 });
 }
});
// Deleting a tag and updating all associated posts
Tag.findOne({ "slug": "sql-arena" },
 function(err, tag) {
 if(!err && tag) {
 var id = tag._id;
 Post.find({ "tags": tag },
 function(e, posts) {
 posts.forEach(function(p) {
 p.removeAt(p.indexOf(id));
 });
 Post.collection.insert(posts,
 function(e, savedPosts) {
 });
 tag.remove(function(e) { });
 });
 }
});

Chapter 6

[103]

Miscellaneous queries
The queries that we have explored so far have tried to address the relational nature
of the data and how to query a non-relational database.

Let us investigate some more queries that may be required in general for this
application and what changes may be required, either in the model or otherwise, to
support effective execution of these queries.

Pagination
On the landing page, we do not want to show all the posts but limit them to a
maximum number. Similarly, we may want to create archive pages—annual and
monthly—which requires limiting retrieval by creation date. Additionally, the posts
must be sorted in reverse chronology.

In yet another scenario of pagination, we may want to show only two latest
comments for a post and load all comments only on demand, say, when a user clicks
on a "Show More" link or otherwise.

• Limiting result set size: All databases, NoSQL or otherwise, support limiting
the records returned by a query. MongoDB provides the limit function
(http://bit.ly/ZDRYvh) that controls the number of records returned.

• Skipping records: MongoDB provides the skip function (http://bit.ly/
ZLUEKZ) to control from where it begins returning results. Though available,
this method is best avoided. According to the official documentation:

The cursor.skip() method is often expensive because it requires the
server to walk from the beginning of the collection or index to get
the offset or skip position before beginning to return results.
As offset increases, cursor.skip() will become slower and more
CPU intensive. With larger collections, cursor.skip() may become
IO bound.

Consider using range-based pagination for these kinds of tasks. That
is, query for a range of objects, using logic within the application
to determine the pagination rather than the database itself. This ap-
proach features better index utilization, if you do not need to easily
jump to a specific page.

Case Study

[104]

• Sorting result set: Not all NoSQL databases provide support for sorting
the result set. For example, CouchDB always returns data sorted by key.
Cassandra, on the other hand, supports sorting at configuration level, which
means that you cannot sort a column that is not preconfigured for sorting
http://bit.ly/Xr3Jox. Cassandra configuration to support sorting will be
similar to the code shown as follows:

//Cassandra ColumnFamily configuration for sorting
<Keyspace Name="Post">
 <ColumnFamily Name="CreationTime"
 CompareWith="TimeUUIDType" />
 <ColumnFamily Name="Author "
 CompareWith="UTF8Type" />
</Keyspace>

As far as MongoDB is concerned, it provides the sort function to sort the
result set. However, one must be careful not to sort a large result based
on a property that is not indexed http://docs.mongodb.org/manual/
reference/method/cursor.sort/. It would be advisable to first limit the
result set and then sort the subset.
Having said that, we can get into a more complex scenario where we may
want to show limited records by first sorting. The best that can be done is to
ensure that the property or properties on which the sorting is required must
be indexed.
Coming back to our scenario of supporting pagination while viewing the
posts that must be shown in reverse chronology, the final code is as follows:

// Pagination: Show 5 posts per page
// Define and ensure indexes
Post.collection.ensureIndex({ lastUpdateTime: -1 });
// Show posts on the main page – latest 5 posts
Post.find()
 .sort({ lastUpdateTime: -1 })
 .limit(5)
 .exec(function(e, posts) {
 if(!e) {
 posts.forEach(function(p) {
 console.log(p.title);
 });
 }
});
// Showing 5 posts on nth page
var n = getPageNumber();

Chapter 6

[105]

Post.find()
 .sort({ lastUpdateTime: -1 })
 .skip((n – 1) * 5)
 .limit(5)
 .exec(function(e, posts) {
 if(!e) {
 posts.forEach(function(p) {
 console.log(p.title);
 });
 }
});
// Retrieving all comments with the associated post
var pslug = getPostSlug();

Post.findOne({ slug: pslug }, function(e, p) {
 if(!e && p) {
 Comment.find({ post: p }, function(e, comments) {
 });
 }
});

Limiting items in an array in result set
In our current schema, we do not really have a use case to limit the number of items in
an array in result set. We will revisit this when we discuss refinements to the models.

Plugin and dynamic data support
The scariest part of designing a store for an application that supports plugin
model is extensibility of the schema itself with, optional, support for query across
its properties.

With a document store, this becomes simpler to do. Each plugin can define
its own schema and store data in the format appropriate for consumption.

Mongoose provides a Schema.Types.Mixed data type http://bit.ly/12jACJr to
support latent schema.

At a high level, plugin schema may be similar to the following:

// Schema for Plug-in
var entityPlugin = {
 pluginId: String, // unique id for the plugin
 owner: String, // the plugin owner
 pluginData: Schema.Types.Mixed
};

Case Study

[106]

// Making any changes to mixed value requires care
var pluginObj = new Plugin({
 pluginId: "com.m10v.blog.plugins.p1",
 owner: "Gaurav Vaish",
 pluginData: {
 "prop1": ["value", "1"]
 }
});
// Initial save, results in insert
pluginObj.save();
// Update the value
pluginObj.pluginData["prop2"] = { "something": "new" };
// Must mark this property as modified, save again
pluginObj.markModified("pluginData");
pluginObj.save();

Model refinements
As you notice in one-to-many and many-to-many relationship scenarios, we need to
fire multiple queries. The primary reason is that we still have a strong normalized
structure with cross-entity references using IDs.

References using non-ID property
In our application, we would typically have slug from incoming request—of the
post, tag, or category. Since the slug uniquely identifies the item, we can use the
slug as the record identified (value of the _id property). We, however, lose a couple
of things:

• The _id property is immutable. MongoDB does not allow any change in its
value. The only way out is by deleting existing records and creating a new
one. Generally, slug is closely related to the title of the post or name of the
category or tag. As such, we lose the ability to change them.

• By default, the autogenerated value has the timestamp of record creation in
its leading 12 bits. As such, sorting by _id automatically sorts in order of the
creation time—useful for sorting posts in reverse chronology. Choosing a
type that is not ObjectId means we need to create another property to hold
the information and ensure that it is indexed.

Because of these two key considerations, it is generally not advisable to use the
custom _id property but to use default instead.

So, to get the latest posts in a category or for a tag, what can we do better?

Chapter 6

[107]

How about storing the tag or category slug in the post record itself? Whenever we
get the slug from incoming requests, we do not have to first fetch the tag or category
and then get all the posts.

Some of the scenarios mentioned in this section
are inspired by the presentation Schema Design
By Example, Emily Stolfo. Original presentation is
available at http://bit.ly/YX9Bax.

The updated code with these changes reflected therein will be as follows:

// Post – no creationTime, updated types of category, tags
var entityPost = {
 title: String,
 slug: String,
 author: String,
 lastUpdateTime: { type: Date, "default": Date.now },
 text: String,
 category: { type: String },
 tags: [String]
};
Post.collection.ensureIndex({ category: -1 },
 { unique: true },
 function(e) {
});
// Get all posts in a category
var slug = getCategorySlugFromRequest();
Post.find({ category: slug }, function(e, posts) {
 if(!e && posts) {
 posts.forEach(function(p) {
 console.log(p.title + " posted at "
 p._id.getTimestamp());
 });
 }
});
// Change category of a post
var catSlug = getSlugOfNewCategory();
// Note that post can be searched by using any method
// findOne, findById or find for multiple posts
Post.findById(idOfPost, function(e, post) {
 if(!e && post) {
 post.category = catSlug;
 post.save();
 }

Case Study

[108]

});
// Delete a category and move orphan posts to default
var oldCat = getSlugOfCategoryToDelete();
var newCat = getSlugOfDefaultCategory();
Post.find({ category: oldCat }, function(e, posts) {
 if(!e && posts) {
 posts.forEach(function(p) {
 p.category = newCat;
 });
 Post.collection.insert(posts, function(e) { });
 Category.findOne({ slug, oldCat },
 function(e, c) {
 c.remove();
 });
 }
});

Similar code will apply for working with tags.

We are able to use slug instead of id for two reasons.
Firstly, slug is unique. Secondly, slug is the only
information that we get from an incoming request on
category or tag pages. Had we a different scenario, different
inputs available, our approach may have been different.

Denormalization and document embedding
When a user visits a post page, comments must also be shown—either latest few or
all. From the incoming request, we have access to the post slug.

We need to fire two queries to retrieve this information because Post and Comment
are stored in separate documents (see the following code):

// Retrieving all comments with the associated post
var pslug = getPostSlug();
Post.findOne({ slug: pslug }, function(e, p) {
 if(!e && p) {
 Comment.find({ post: p }, function(e, comments) {
 });
 }
});

Chapter 6

[109]

Complete document embedding
We can denormalize and embed the comments along with the post so that when
comments can be retrieved with the post in a single query.

To implement this, the updated schema of the Post entity will be as shown in the
following code snippet:

// Entity Post
var entityPost = {
 title: String,
 slug: String,
 author: String,
 lastUpdateTime: { type: Date, "default": Date.now },
 text: String,
 category: String,
 tags: [String]
 comments: [{
 time: Date,
 author: String,
 comment: String
 }]
};

Notice that the comments property is no longer an array of many ObjectId, but a
well-defined document structure. This approach is also referred to as subdocument
because the item in a document with a schema of its own but part of a larger
document is referred to as its parent document.

With this schema, the updated queries will be as follows:

// Retrieve a post with comments
var pslug = getSlugFromRequest();
Post.findOne({ slug: pslug }, function(e, post) {
 if(!e && post) {
 var comments = post.comments;
 }
});
// Add a comment
var newComment = getCommentJSONToAdd();
Post.findOne({ slug: pslug }, function(e, post) {
 if(!e && post) {
 post.comments.push(newComment);
 post.markModified("comments");
 post.save();

Case Study

[110]

 }
});
// Comments Pagination: Retrieve latest 5 comments
Post.findOne({ slug: pslug })
 .slice("comments", -5)
 .exec(function(e, post) {

});
// Comments Pagination: Show Nth set of comments
Post.findOne({ slug: pslug })
 .slice("comments", [- 5*N, 5])
 .exec(function(e, post) {

});

Key advantages of this approach are:

• Single query for all CRUD operations related to a post and its comments
• All comments and post are co-located in the cluster—faster query
• All operations, because they are done in a single query, are atomic

Though this approach looks awesome, there is a risk of the document quickly
growing large and hitting the document size limit.

Partial document embedding
One of the options to solve the previous problem is to decouple Post and
Comments but keep all comments at one place. So, we come up with a different
entity—Comments—and update the schema of Post to reflect the changes.

// Entity Comments
var entityComments = {
 postSlug: String,
 entries: [{
 name: String,
 time: Date,
 comment: String
 }]
};
var entityPost = {
 //Other properties are same, only comments changes
 comments: { type: Schema.Types.ObjectId,
 ref: "Comments" }
};
// Pagination: Latest 5 comments for a post
Comments.findOne({ postSlug: pslug })

Chapter 6

[111]

 .slice("entries", -5)
 .exec(function(e, c) {
});
// Pagination: Nth set of comments
Comments.findOne({ postSlug: pslug })
 .slice("entries", [-5*N, 5])
 .exec(function(e, c) {
});
// Inserting a new comment
var commentObj = getJSONForNewComment();
Comments.findOne({ postSlug: pslug },
 function(e, c) {
 c.entries.push(commentObj);
});

This approach ensures fixed Post document size (barring the actual content size
restriction) as well as atomic commits to the related Comments record.

There are a few disadvantages to this approach:

• Comments records still can hit the document size limit.
• Comments can be stored in a separate physical location in the cluster as

compared to the associated Post. Query, as such, can be slower.

Bucketing
In both the approaches of document embedding discussed earlier, we run into the
risk of hitting document size limit. Using the earlier denormalized form means
slower retrievals because records can be anywhere in the cluster and non-atomic
commits because all records are independent.

How about using a mix of the two? What I mean is, store multiple comments in one
record but limit the number of comments—we store no more than a fixed number of
comments per record—say, 10.

Make one change to the Comments schema, add a commentCount property that keeps
a track of number of actual comments in the record:

// Entity Post
var entityComments = {
 postSlug: String,
 commentCount: int,
 entries: [{
 name: String,
 time: Date,
 comment: String

Case Study

[112]

 }]
};
// Inserting a new comment – use upsert
var commentObj = getJSONForNewComment();
Comments.update({
 postSlug: slug,
 commentCount: { $lt: 10 }, {
 $inc: { commentCount: 1 },
 $push: { entries: commentObj },
 }, {
 upsert: true
 }
 function(e, c) {
});

Note that we not only have been able to limit the document size but also achieve
atomicity while adding a new comment that can result in either updating an existing
record or creating a new record.

We still have storage fragmentation but a controlled one this time.

As another optimization, you may want to update the Post record with the reference
of the Comments record updated or created. This will help retrieving the latest
comments given in a post without searching across the comments collection.

Cache document approach
A feature that I would want on my blog is latest comments across posts. It will give
the viewers a picture about what is being currently discussed on my blog. Similarly, I
may want to show latest comments by a specific user.

If we use completely normalized form where each comment is stored separately,
this is a trivial problem to solve. However, because using one comment per record
can result in slow retrieval, we want to solve this problem by using the embedded
document approach.

// Latest comments in normalized form

Comment.find()
 .sortBy({ _id: -1 })
 .limit(10).exec(function(e, comments) {
});

// Latest comments by a user

Chapter 6

[113]

Comment.find({ author: name })
 .sortBy({ _id: -1 })
 .imit(10).exec(function(e, comments) {
});

One of the options to solve this problem is to keep the latest comments in cache that
can be updated; better to persist with this so that they doesn"t get evicted if not used
for long.

We can have records to keep these frequently queried and less-frequently updated
data. Specifically for comments, there can be one document that keeps a list of the
latest comments added. If we need to show 10 latest comments, it may have more
than 10, even 100 comments. A representative structure may be:

// Cache document definition
var entityCacheDoc = {
 _id: String,
updateTime: Date,
 validity: Date,
 value: [{ }]
};
// Retrieving latest 5 comments from cache document
CacheDoc.findById("comments")
 .slice("value", -5)
 .exec(function(e, doc) {
});

The following steps are required to maintain this structure:

• When adding a comment, add it to Comments as well as the CacheDoc
collection

• When retrieving the latest comments to show, use the CacheDoc collection
• Run a job at optimal frequency, based on the frequency at which new

comments are created, that will cleanup the comments in CacheDoc

Miscellaneous changes
The last scenario that we will look into is retrieving comments by a specific user.

In embedded document mode, searching for comments by a specific user can be a
very costly affair. The code to search for all comments is:

//Search for comments by a user
Post.find({ "comments.author": name })
 .select({ comments: 1 })
 .exec(function(e, posts) {
});

Case Study

[114]

This works perfectly fine. The only problem is performance. If, on an average, there
are 100 comments per post and an author commented on 5 posts, 500 comments
will be scanned. One way to solve this problem is create another set of documents
that will have reference to comments made by a user per post—that"s redundancy,
commonly used with NoSQL.

In case of normalized comments where we have one comment per record, scanning
for comments by a user is extremely efficient. Note that this has severe performance
drawbacks as noticed earlier.

As with any storage system, it is impossible to optimize all the parameters. You can
trade-off one against the other.

Summary
In this chapter we took a pragmatic view of working with NoSQL. The scenarios
covered —single entity query, aggregates, one-to-one, one-to-many, and many-to-
many relationships—should give you a strong head start implementing NoSQL for
your application.

We learnt two key aspects of modeling for NoSQL—denormalization of data
and modeling for queries. Denormalization ensures that cross-entity accesses
(aka JOIN) are reduced while query-driven modeling ensures that you do not
invent new fancy techniques while writing queries rather than use the models
directly. The latter approach not only ensures simplified and maintainable queries
but also faster execution.

We explored various approaches of modeling in document store and went deep into
pros and cons of each approach, what they offer and where they negatively impact
the application.

More often than not, the applications where NoSQL is desirable have a lot more
reads than writes. Apart from caching the responses at the HTTP layer, using cache
documents is also a useful approach where the caches can not only be persisted but
also queried and partially updated.

You may have to use one approach for one entity and another for a different entity.
Pick the ones that suit you best in your specific case. Just to reiterate, the answer may
work in SQL as well.

Taxonomy
The taxonomy introduces you to common and not-so-common terms that we
come across while dealing with NoSQL. This also enables you to read through and
understand the literature available on the Internet or otherwise.

Vocabulary
In this section, we will glance through the vocabulary that you need to understand;
and take a deep dive into NoSQL databases later in the book.

Data store: A store that keeps the data persisted so that it can be retrieved even after
application ends or computer restarts.

Database: A data store that keeps and allows access to the data in a structured manner.

Database Management System (DBMS): A software application that controls
working (creation, access, maintenance, and general purpose use) with a database.

Relational DBMS (RDBMS): A software application that not only stores the data but
also the relation between them. RDBMS is based on the relational model developed
by Edgar Frank Codd in 1970. RDBMS uses the notion of tables, columns, and rows
to manipulate the data, and of foreign keys to specify the relationships.

Structured Query Language (SQL): A special-purpose programming language to
interact with RDBMS.

Taxonomy

[116]

Foreign key constraint: This is a referential constraint between two tables. It is a
column or a set of columns in one table referred to as the child table that refers to a
column or a set of columns in another table referred to as the parent table. The values
in a row of the child table must be one of the values in the rows of the parent table
for the corresponding column or columns.

NoSQL: A class of DBMS that does not use SQL. Specifically, the NoSQL databases
do not store any relationships across the data in itself. They must be manipulated at
the application level., if at all.

Normalization: The process of organizing the records (tables and columns) to
minimize the redundancy. The process typically involves splitting the data across
multiple tables and defining relationships between them. Edgar F. Codd, the
inventor of the relational model, introduced this concept in 1970.

Normal Form: The structure of database left after the process of normalization is
referred to as Normal Form. Codd introduced the first Normal Form (1NF) in 1970.
Subsequently, he defined the second and the third Normal Forms (2NF and 3NF) in
1971. Together with Raymond F. Boyce, he created Boyce-Codd Normal Form (BCNF
or 3.5NF) in 1974. Each Normal Form is progressively built upon the previous one
and adds stronger rules to remove redundancy.

Denormalization: The inverse of normalization, this process increases the speed of
data access by grouping related data, introducing duplicity and redundancy.

Primary key: A key to uniquely identify a record or row in a table in database—
relational or otherwise. Primary keys are indexed by a DBMS to allow faster access.

Transaction: Group of operations in database that must all succeed or cause the
entire group to rollback for database to operate meaningfully.

CRUD: Four key operations with the records of a database—create, retrieve, update,
and delete.

Appendix

[117]

Atomicity, Consistency, Isolation, Durability (ACID): ACID is the set of properties
that database transactions should have.

JavaScript Object Notation (JSON): JSON is a compact format to represent objects.
It was originally specified by Douglas Crockford and outlined in RFC 4627. Though
a subset of the JavaScript language specification, JSON is a language-independent
format and the parsers and serializers are available in most of the languages today.
Most of the NoSQL databases support JSON for entity representation.

Multi-Version Concurrency Control (MVCC): It is a mechanism to provide
concurrent access. For ACID compliance, MVCC helps implement isolation. It is
used by RDBMS database PostgreSQL as well as NoSQL databases like CouchDB
and MongoDB.

Basic availability: Each query or request must be responded to with either a success
or failed result. More the successful results, the better the system.

Soft state: The state of the system may change over time, at times without input.
The few the changes without input, the better the system.

Eventual consistency: The system may be momentarily inconsistent but will be
consistent eventually. The duration of eventuality is left to the system. It may range
from microseconds to tens of milliseconds to even seconds. The shorter the duration,
the better the system.

BASE: The set of properties—basic availability, soft state, and eventual
consistency—that a distributed database can inhibit.

CAP theorem: Also known as the Brewer’s theorem, states that it is impossible for
a distributed computer system to simultaneously provide consistency, availability,
and partition tolerance, maximum two of the three can be provided at any given
point in time.

Taxonomy

[118]

Relationship between CAP, ACID,
and NoSQL

Void

Impossible

Partition Tolerance:
Infinite Scalability

NoSQL
Databases

Clustered
Databases

Consistency:
ACID Transactions

Availability:
Total Redundancy

Though there is no rule that NoSQL databases cannot provide ACID transactions,
their very purpose is defeated. That’s why you see them providing availability and
horizontal scaling.

Having said that, CouchDB and Neo4j are two examples of NoSQL databases that
provide strong consistency and are ACID compliant.

Because of the need for speed with eventual (not immediate) consistency,
denormalization may be brought in to increase redundancy at the cost of space and
immediate consistency.

Index
Symbols
_id property 106

A
access management

authentication 75
role-based access(authorization) 76, 77

account permissions
Create (C) 76
Database Admin (D) 76
None (N) 76
Read (R) 76
Server Admin (A) 76
Write (W) 76

ACID 10
address attribute 36
Aerospike 46
Amazon SimpleDB 59
application

computational 53
defining 89
supported cases 90
technical requirements 90
transactional 52
web-scale 56

application store implementation
MongoDB, using 90

application store implementation,
MongoDB used

constraints 91
database design 92
database modelling 93
database queries 92
features 91

model requirements 106
setup 91
writing queries, analyzing 96

ArangoDB 46
Atomicity, Consistency, Isolation, Durabil-

ity. See ACID

B
BASE 10, 117
BaseX 59
Big Data 8
bucketing 111, 112
bulk operations

about 68
bulk delete 72
bulk insert 70
bulk read 68, 69
bulk update 71

C
cache document approach 112, 113
CAP theorem 117
Cassandra 9, 59
challenges

about 18
complex queries 19
data update 19
scalability 20
schema flexibility 19

Chubby 8
CLI 82
column 7

[120]

column-oriented databases
about 26
advantages 27
example 26, 28
list 27

Command Line Interface. See CLI
commentCount property 111
community support

discussion 86
forums 86
large size 87
medium size 86
small size 86
stack overflow 86
users 86

computational application
characteristics 53
data requirements 54
decision 55
entity schema requirements 53
NoSQL help 54
NoSQL limitation 55

CouchDB 59
CRUD 116

D
database 115
database design

about 92
database modelling 93, 94
queries 92
schema definition 94, 96

database limits
Amazon SimpleDB 67
BaseX 67
Cassandra 67
CouchDB 67
Google Datastore 68
HBase 68
MemcacheDB 68
MongoDB 68
Neo4j 68
Redis 68

Database Management System. DBMS
database modeling

result set, sorting 93

data store 115
DBMS 115
DELETE 33
denormalization 116
document embedding

about 108
complete process 109, 110
partial process 110, 111

document store
about 29, 30
advantages 31
design 32
example 32-40
list 31

E
Engine types 61
entity-relationship diagrams.

See ER diagrams
ER diagrams 13
eventual consistency 117

F
find method 39
FlockDB 58
foreign key constraint 116

G
GET 33
GFS 8
Google Datastore 59
Graph store

about 43
advantages 44, 45
examples 45, 46
FlockDB 44
Neo4j 44

H
Hadoop 9
HBase 59
HTTP 83

I

[121]

IDL 84
Interface Definition Language. See IDL

J
JavaScript Object Notation. See JSON
JSON 117

K
Key-value store

about 41
advantages 42
Berkley DB 41
example 42, 43
Memcached 41
MemcacheDB 41
Redis 41
Voldemort 41

L
Lucene 9

M
map and reduce functions 35
MapReduce 8
MAU 86
MCC 21
me attribute 32
MemcacheDB 59
miscellaneous queries

about 103
arrays, limiting 105
dynamic data support 105
pagination 103, 104
plugin 105

model refinements
about 106
cache document approach 112, 113
denormalization 108-111
document embedding 108-111
miscellaneous changes 113, 114
references, non-ID property used 106-108

models
comparing 47, 48

MongoDB
about 37, 59, 91
setup 91
used, for store application implementation

90, 91
Monthly Active Users. See MAU
multi-storage type databases

Aerospike 46
ArangoDB 46
OrientDB 46

multitenancy 78
Multiversion concurrency control. See MCC
Multi-Version Concurrency Control. See

MVCC
MVCC 117

N
Neo4j 59
nontechnical comparison

community 86
license 85
source 85
vendor support 86

normal form 116
normalization 116
NoSQL

advantages 51
application, categories 51
characteristics 13
computing ecosystem 8
databases 11
defining 8
drawbacks 51
history 8
need for 11
overview 7
storage types 25

NoSQL approach
about 20
complex queries 20
data update 21
scalability 21
schema flexibility 20

[122]

O
object-relational mapping. See O/RM
OLAP 27
OLTP 27
Online analytical processing. See OLAP
Online transaction processing. See OLTP
OrientDB 46
O/RM 13

P
pagination

about 103
records, skipping 103
result set size, limiting 103
result set, sorting 104

parent document 109
Pig 9
POST 33
primary key 116
projections 31
protocol

HTTP 83
TCP 83
Thrift 84

PUT 33

Q
queries

for a single entity, Aggregate 97, 98
for a single entity, simple result 96
for many-to-many relationship 101
for one-to-one relationship 98
miscellaneous queries 103
one-to-many relationship 98, 99
written analysis 96

Query options
about 73
composite indexes 73
Get by ID 73
views 74

R
RDBMS 8, 115
RDBMS approach

about 14-17
actors, identifying 14
class diagram 16
entities, defining 14
iteration 14
modes, defining 14
relationships, defining 14

Redis 59
relational database management system.

See RDBMS
Relational DBMS. See RDBMS
relationship

between CAP and ACID 118
between CAP and NoSQL 118

Remote Method Invocation 27
row 7

S
security

access management 75
encryption 77
multitenancy 78

soft state 117
SQL 115
storage types

about 25
column-oriented databases 26
document store 29
graph store 43
Key-value store 41
multi-storage type databases 46

Structured Query Language. See SQL
subdocument 109

T
tables 7
TCP 83
technical comparison

availability 79, 80
database limits 67
engine types 61
features 67
language implementation 60, 61
maintenance 81
protocol 83
RDBMS related features 79

[123]

security 75
speed 62-66
tools 82

Thrift 84
transaction 116
transactional application

characteristics 52
data access requirements 52
decision 53
entity schema requirements 52
NoSQL help 52
NoSQL limitations 53

U
update method 38

V
vocabulary

ACID 117
BASE 117
basic availability 117
CAP theorem 117
CRUD 116
database 115
data store 115
DBMS 115
denormalization 116
Foreign key constraint 116
JSON 117
MVCC 117
normal form 116
normalization 116
NoSQL 116
primary key 116
RDBMS 115
soft state 117
SQL 115
transaction 116

W
web-scale application

characteristics 56
data access requirements 57
decision 57, 58
entity schema requirements 56
NoSQL help 57
NoSQL limitation 57

Y
Yahoo! Cloud Serving Benchmark.

See YCSB
YCSB 62

Z
ZooKeeper 9

Thank you for buying
Getting Started with NoSQL

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PHP and MongoDB Web
Development Beginner's Guide
ISBN: 978-1-849513-62-3 Paperback: 292 pages

Combine the power of PHP and MongoDB to build
dynamic web 2.0 applications

1. Learn to build PHP-powered dynamic
web applications using MongoDB as the
data backend

2. Handle user sessions, store real-time site
analytics, build location-aware web apps, and
much more, all using MongoDB and PHP

3. Full of step-by-step instructions and practical
examples, along with challenges to test and
improve your knowledge

Cassandra High Performance
Cookbook
ISBN: 978-1-849515-12-2 Paperback: 310 pages

Over 150 recipes to design and optimize large-scale
Appache Cassandra deployments

1. Get the best out of Cassandra using this
efficient recipe bank

2. Configure and tune Cassandra components to
enhance performance

3. Deploy Cassandra in various environments and
monitor its performance

4. Well illustrated, step-by-step recipes to make
all tasks look easy!

Please check www.PacktPub.com for information on our titles

CouchDB and PHP Web
Development Beginner's Guide
ISBN: 978-1-849513-58-6 Paperback: 304 pages

Get your PHP application from conception to
deployment by leveraging CouchDB's robust features

1. Build and deploy a flexible Social Networking
application using PHP and leveraging key
features of CouchDB to do the heavy lifting

2. Explore the features and functionality
of CouchDB, by taking a deep look into
Documents, Views, Replication, and much
more.

3. Conceptualize a lightweight PHP framework
from scratch and write code that can easily port
to other frameworks

HBase Administration Cookbook
ISBN: 978-1-849517-14-0 Paperback: 332 pages

Master HBase configuration and administration for
optimum database performance

1. Complete guide to building Facebook
applications in PHP

2. Fully illustrated with fun, functional step-by-
step examples

3. Covers recent platform additions: Facebook
JavaScript, Facebook AJAX

4. Create data-driven applications, employ
multimedia, and more

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Overview of NoSQL
	Defining NoSQL
	History

	What NoSQL is and what it is not
	Why NoSQL?
	List of NoSQL Databases
	Summary

	Chapter 2: Characteristics of NoSQL
	Application
	RDBMS approach
	Challenges
	NoSQL approach
	Summary

	Chapter 3: NoSQL Storage Types
	Storage types
	Column-oriented databases
	Advantages
	Example

	Document store
	Advantages
	Examples

	Key-value store
	Advantages
	Examples

	Graph store
	Advantages
	Examples

	Multi-storage type databases

	Comparing the models
	Summary

	Chapter 4: Advantages and Drawbacks
	Transactional application
	Entity schema requirements
	Data access requirements
	What NoSQL can do
	What NoSQL cannot do
	Decision

	Computational application
	Entity schema requirements
	Data access requirements
	What NoSQL can do
	What NoSQL cannot do
	Decision

	Web-scale application
	Entity schema requirements
	Data access requirements
	What NoSQL can do
	What NoSQL cannot do
	Decision

	Summary

	Chapter 5: Comparative Study of NoSQL Products
	Comparison
	Technical comparison
	Implementation language
	Engine types
	Speed
	Features
	Limits
	Bulk operations
	Query options

	Security
	Access management
	Encryption
	Multitenancy

	RDBMS related features
	Deployment and maintenance
	Availability
	Maintenance

	Tools
	Protocol

	Nontechnical comparison
	Source and license
	Community and vendor support

	Summary

	Chapter 6: Case Study
	Application definition
	Requirement analysis
	Implementation using MongoDB
	Features and constraints
	Setup
	Database design
	Database queries
	Database modeling
	Schema definition

	Writing queries
	Queries for a single entity, simple result
	Queries for a single entity, Aggregate
	Queries for one-to-one relationship
	Queries for one-to-many relationship
	Queries for many-to-many relationship
	Miscellaneous queries

	Model refinements
	References using non-ID property
	Denormalization and document embedding
	Cache document approach
	Miscellaneous changes

	Summary

	Appendix: Taxonomy
	Vocabulary
	Relationship between CAP, ACID,
and NoSQL

	Index

