

What Readers Are Saying About
Seven Databases in Seven Weeks, Second Edition

Choosing a database is perhaps one of the most important architectural decisions
a developer can make. Seven Databases in Seven Weeks provides a fantastic tour
of different technologies and makes it easy to add each to your engineering toolbox.

➤ Dave Parfitt
Senior Site Reliability Engineer, Mozilla

By comparing each database technology to a tool you’d find in any workshop, the
authors of Seven Databases in Seven Weeks provide a practical and well-balanced
survey of a very diverse and highly varied datastore landscape. Anyone looking
to get a handle on the database options available to them as a data platform
should read this book and consider the trade-offs presented for each option.

➤ Matthew Oldham
Director of Data Architecture, Graphium Health

Reading this book felt like some of my best pair-programming experiences. It
showed me how to get started, kept me engaged, and encouraged me to experiment
on my own.

➤ Jesse Hallett
Open Source Mentor

This book will really give you an overview of what’s out there so you can choose
the best tool for the job.

➤ Jesse Anderson
Managing Director, Big Data Institute

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

Luc Perkins
with Eric Redmond

and Jim R. Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nancy Rapoport
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-253-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments vii
Preface ix

1. Introduction 1
It Starts with a Question 2
The Genres 3
Onward and Upward 8

2. PostgreSQL 9
That’s Post-greS-Q-L 9
Day 1: Relations, CRUD, and Joins 10
Day 2: Advanced Queries, Code, and Rules 21
Day 3: Full Text and Multidimensions 36
Wrap-Up 50

3. HBase 53
Introducing HBase 54
Day 1: CRUD and Table Administration 55
Day 2: Working with Big Data 67
Day 3: Taking It to the Cloud 82
Wrap-Up 88

4. MongoDB 93
Hu(mongo)us 93
Day 1: CRUD and Nesting 94
Day 2: Indexing, Aggregating, Mapreduce 110
Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS 124
Wrap-Up 132

5. CouchDB 135
Relaxing on the Couch 135

Day 1: CRUD, Fauxton, and cURL Redux 137
Day 2: Creating and Querying Views 145
Day 3: Advanced Views, Changes API, and Replicating Data 158
Wrap-Up 174

6. Neo4J 177
Neo4j Is Whiteboard Friendly 177
Day 1: Graphs, Cypher, and CRUD 179
Day 2: REST, Indexes, and Algorithms 189
Day 3: Distributed High Availability 202
Wrap-Up 207

7. DynamoDB 211
DynamoDB: The “Big Easy” of NoSQL 211
Day 1: Let’s Go Shopping! 216
Day 2: Building a Streaming Data Pipeline 233
Day 3: Building an “Internet of Things” System
Around DynamoDB 246
Wrap-Up 255

8. Redis 259
Data Structure Server Store 259
Day 1: CRUD and Datatypes 260
Day 2: Advanced Usage, Distribution 274
Day 3: Playing with Other Databases 289
Wrap-Up 303

9. Wrapping Up 305
Genres Redux 305
Making a Choice 309
Where Do We Go from Here? 309

A1. Database Overview Tables 311
A2. The CAP Theorem 315

Eventual Consistency 316
CAP in the Wild 317
The Latency Trade-Off 317

Bibliography 319
Index 321

Contents • vi

Acknowledgments
A book with the size and scope of this one is never the work of just the authors,
even if there are three of them. It requires the effort of many very smart people
with superhuman eyes spotting as many mistakes as possible and providing
valuable insights into the details of these technologies.

We’d like to thank, in no particular order, all of the folks who provided their
time and expertise:

Jesse HallettJerry SievertDave Parfitt

Nick CapitoBen RadyMatthew Oldham

Sean MoubryJesse Anderson

Finally, thanks to Bruce Tate for his experience and guidance.

We’d also like to sincerely thank the entire team at the Pragmatic Bookshelf.
Thanks for entertaining this audacious project and seeing us through it. We’re
especially grateful to our editor, Jackie Carter. Your patient feedback made
this book what it is today. Thanks to the whole team who worked so hard to
polish this book and find all of our mistakes.

For anyone we missed, we hope you’ll accept our apologies. Any omissions
were certainly not intentional.

From Eric: Dear Noelle, you’re not special; you’re unique, and that’s so much
better. Thanks for living through another book. Thanks also to the database
creators and committers for providing us something to write about and make
a living at.

From Luc: First, I have to thank my wonderful family and friends for making
my life a charmed one from the very beginning. Second, I have to thank a
handful of people who believed in me and gave me a chance in the tech industry
at different stages of my career: Lucas Carlson, Marko and Saša Gargenta,
Troy Howard, and my co-author Eric Redmond for inviting me on board to

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

prepare the most recent edition of this book. My journey in this industry has
changed my life and I thank all of you for crucial breakthroughs.

From Jim: First, I want to thank my family: Ruthy, your boundless patience
and encouragement have been heartwarming. Emma and Jimmy, you’re two
smart cookies, and your daddy loves you always. Also, a special thanks to all
the unsung heroes who monitor IRC, message boards, mailing lists, and bug
systems ready to help anyone who needs you. Your dedication to open source
keeps these projects kicking.

Acknowledgments • viii

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Preface
If we use oil extraction as a metaphor for understanding data in the contem-
porary world, then databases flat-out constitute—or are deeply intertwined
with—all aspects of the extraction chain, from the fields to the refineries,
drills, and pumps. If you want to harness the potential of data—which has
perhaps become as vital to our way of life as oil—then you need to understand
databases because they are quite simply the most important piece of modern
data equipment.

Databases are tools, a means to an end. But like any complex tool, databases
also harbor their own stories and embody their own ways of looking at the
world. The better you understand databases, the more capable you’ll be of
tapping into the ever-growing corpus of data at our disposal. That enhanced
understanding could lead to anything from undertaking fun side projects to
embarking on a career change or starting your own data-driven company.

Why a NoSQL Book
What exactly does the term NoSQL even mean? Which types of systems does
the term include? How will NoSQL impact the practice of making great soft-
ware? These were questions we wanted to answer—as much for ourselves as
for others.

Looking back more than a half-decade later, the rise of NoSQL isn’t so much
buzzworthy as it is an accepted fact. You can still read plenty of articles about
NoSQL technologies on HackerNews, TechCrunch, or even WIRED, but the
tenor of those articles has changed from starry-eyed prophecy (“NoSQL will
change everything!”) to more standard reporting (“check out this new Redis
feature!”). NoSQL is now a mainstay and a steadily maturing one at that.

But don’t write a eulogy for relational databases—the “SQL” in “NoSQL”—just
yet. Although NoSQL databases have gained significant traction in the tech-
nological landscape, it’s still far too early to declare “traditional” relational
database models as dead or even dying. From the release of Google’s BigQuery

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

and Spanner to continued rapid development of MySQL, PostgreSQL, and
others, relational databases are showing no signs of slowing down. NoSQL
hasn’t killed SQL; instead, the galaxy of uses for data has expanded, and
both paradigms continue to grow and evolve to keep up with the demand.

So read this book as a guide to powerful, compelling databases with similar
worldviews—not as a guide to the “new” way of doing things or as a nail in the
coffin of SQL. We’re writing a second edition so that a new generation of data
engineers, application developers, and others can get a high-level understand-
ing and deep dive into specific databases in one place.

Why Seven Databases
This book’s format originally came to us when we read Bruce Tate’s exemplary
Seven Languages in Seven Weeks [Tat10] many years ago. That book’s style of
progressively introducing languages struck a chord with us. We felt teaching
databases in the same manner would provide a smooth medium for tackling
some of these tough NoSQL questions while also creating conceptual bridges
across chapters.

What’s in This Book
This book is aimed at experienced application developers, data engineers,
tech enthusiasts, and others who are seeking a well-rounded understanding
of the modern database landscape. Prior database experience is not strictly
required, but it helps.

After a brief introduction, this book tackles a series of seven databases
chapter by chapter. The databases were chosen to span five different database
genres or styles, which are discussed in Chapter 1, Introduction, on page 1.
In order, the databases covered are PostgreSQL, Apache HBase, MongoDB,
Apache CouchDB, Neo4J, DynamoDB, and Redis.

Each chapter is designed to be taken as a long weekend’s worth of work, split
up into three days. Each day ends with exercises that expand on the topics
and concepts just introduced, and each chapter culminates in a wrap-up
discussion that summarizes the good and bad points about the database.
You may choose to move a little faster or slower, but it’s important to grasp
each day’s concepts before continuing. We’ve tried to craft examples that
explore each database’s distinguishing features. To really understand what
these databases have to offer, you have to spend some time using them, and
that means rolling up your sleeves and doing some work.

Preface • x

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Although you may be tempted to skip chapters, we designed this book to be
read linearly. Some concepts, such as mapreduce, are introduced in depth
in earlier chapters and then skimmed over in later ones. The goal of this book
is to attain a solid understanding of the modern database field, so we recom-
mend you read them all.

What This Book Is Not
Before reading this book, you should know what it won’t cover.

This Is Not an Installation Guide
Installing the databases in this book is sometimes easy, sometimes a bit of
a challenge, and sometimes downright frustrating. For some databases, you’ll
be able to use stock packages or tools such as apt-get (on many Linux systems)
or Homebrew (if you’re a Mac OS user) and for others you may need to compile
from source. We’ll point out some useful tips here and there, but by and large
you’re on your own. Cutting out installation steps allows us to pack in more
useful examples and a discussion of concepts, which is what you really came
for anyway, right?

Administration Manual? We Think Not
In addition to installation, this book will also not cover everything you’d find
in an administration manual. Each of these databases offers myriad options,
settings, switches, and configuration details, most of which are well covered
online in each database’s official documentation and on forums such as
StackOverflow. We’re much more interested in teaching you useful concepts
and providing full immersion than we are in focusing on the day-to-day
operations. Though the characteristics of the databases can change based
on operational settings—and we discuss these characteristics in some chapters
—we won’t be able to go into all the nitty-gritty details of all possible configu-
rations. There simply isn’t space!

A Note to Windows Users
This book is inherently about choices, predominantly open source software
on *nix platforms. Microsoft environments tend to strive for an integrated
environment, which limits many choices to a smaller predefined set. As such,
the databases we cover are open source and are developed by (and largely
for) users of *nix systems. This is not our own bias so much as a reflection
of the current state of affairs.

report erratum • discuss

What This Book Is Not • xi

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Consequently, our tutorial-esque examples are presumed to be run in a *nix
shell. If you run Windows and want to give it a try anyway, we recommend
setting up Bash on Windows1 or Cygwin2 to give you the best shot at success.
You may also want to consider running a Linux virtual machine.

Code Examples and Conventions
This book contains code in a variety of languages. In part, this is a conse-
quence of the databases that we cover. We’ve attempted to limit our choice
of languages to Ruby/JRuby and JavaScript. We prefer command-line tools
to scripts, but we will introduce other languages to get the job done—such
as PL/pgSQL (Postgres) and Cypher (Neo4J). We’ll also explore writing some
server-side JavaScript applications with Node.js.

Except where noted, code listings are provided in full, usually ready to be
executed at your leisure. Samples and snippets are syntax highlighted accord-
ing to the rules of the language involved. Shell commands are prefixed by $
for *nix shells or by a different token for database-specific shells (such as >
in MongoDB).

Credits
Apache, Apache HBase, Apache CouchDB, HBase, CouchDB, and the HBase
and CouchDB logos are trademarks of The Apache Software Foundation. Used
with permission. No endorsement by The Apache Software Foundation is
implied by the use of these marks.

Online Resources
The Pragmatic Bookshelf’s page for this book3 is a great resource. There you’ll
find downloads for all the source code presented in this book. You’ll also find
feedback tools such as a community forum and an errata submission form
where you can recommend changes to future releases of the book.

Thanks for coming along with us on this journey through the modern database
landscape.

Luc Perkins, Eric Redmond, and Jim R. Wilson
April 2018

1. https://msdn.microsoft.com/en-us/commandline/wsl/about
2. http://www.cygwin.com/
3. http://pragprog.com/book/pwrdata/seven-databases-in-seven-weeks

Preface • xii

report erratum • discuss

https://msdn.microsoft.com/en-us/commandline/wsl/about
http://www.cygwin.com/
http://pragprog.com/book/pwrdata/seven-databases-in-seven-weeks
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 1

Introduction
The non-relational database paradigm—we’ll call it NoSQL throughout this
book, following now-standard usage—is no longer the fledgling upstart that
it once was. When the NoSQL alternative to relational databases came on the
scene, the “old” model was the de facto option for problems big and small.
Today, that relational model is still going strong and for many reasons:

• Databases such as PostgreSQL, MySQL, Microsoft SQL Server, and Oracle,
amongst many others, are still widely used, discussed, and actively
developed.

• Knowing how to run SQL queries remains a highly sought-after skill for
software engineers, data analysts, and others.

• There remains a vast universe of use cases for which a relational database
is still beyond any reasonable doubt the way to go.

But at the same time, NoSQL has risen far beyond its initial upstart status
and is now a fixture in the technology world. The concepts surrounding it,
such as the CAP theorem, are widely discussed at programming conferences,
on Hacker News, on StackOverflow, and beyond. Schemaless design, massive
horizontal scaling capabilities, simple replication, new query methods that
don’t feel like SQL at all—these hallmarks of NoSQL have all gone mainstream.
Not long ago, a Fortune 500 CTO may have looked at NoSQL solutions with
bemusement if not horror; now, a CTO would be crazy not to at least consider
them for some of their workloads.

In this book, we explore seven databases across a wide spectrum of database
styles. We start with a relational database, PostgreSQL, largely for the sake of
comparison (though Postgres is quite interesting in its own right). From there,
things get a lot stranger as we wade into a world of databases united above
all by what they aren’t. In the process of reading this book, you will learn the

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

various capabilities that each database presents along with some inevitable
trade-offs—rich vs. fast queryability, absolute vs. eventual consistency, and
so on—and how to make deeply informed decisions for your use cases.

It Starts with a Question
The central question of Seven Databases in Seven Weeks is this: what database
or combination of databases best resolves your problem? If you walk away
understanding how to make that choice, given your particular needs and
resources at hand, we’re happy.

But to answer that question, you’ll need to understand your options. To that
end, we’ll take you on a deep dive—one that is both conceptual and practical
—into each of seven databases. We’ll uncover the good parts and point out
the not so good. You’ll get your hands dirty with everything from basic CRUD
operations to fine-grained schema design to running distributed systems in
far-away datacenters, all in the name of finding answers to these questions:

• What type of database is this? Databases come in a variety of genres, such
as relational, key-value, columnar, document-oriented, and graph. Popular
databases—including those covered in this book—can generally be grouped
into one of these broad categories. You’ll learn about each type and the
kinds of problems for which they’re best suited. We’ve specifically chosen
databases to span these categories, including one relational database
(Postgres), a key-value store (Redis), a column-oriented database (HBase),
two document-oriented databases (MongoDB, CouchDB), a graph database
(Neo4J), and a cloud-based database that’s a difficult-to-classify hybrid
(DynamoDB).

• What was the driving force? Databases are not created in a vacuum. They
are designed to solve problems presented by real use cases. RDBMS
databases arose in a world where query flexibility was more important
than flexible schemas. On the other hand, column-oriented databases
were built to be well suited for storing large amounts of data across sev-
eral machines, while data relationships took a backseat. We’ll cover use
cases for each database, along with related examples.

• How do you talk to it? Databases often support a variety of connection
options. Whenever a database has an interactive command-line interface,
we’ll start with that before moving on to other means. Where programming
is needed, we’ve stuck mostly to Ruby and JavaScript, though a few other
languages sneak in from time to time—such as PL/pgSQL (Postgres) and
Cypher (Neo4J). At a lower level, we’ll discuss protocols such as REST

Chapter 1. Introduction • 2

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

(CouchDB) and Thrift (HBase). In the final chapter, we present a more complex
database setup tied together by a Node.js JavaScript implementation.

• What makes it unique? Any database will support writing data and reading
it back out again. What else it does varies greatly from one database to
the next. Some allow querying on arbitrary fields. Some provide indexing
for rapid lookup. Some support ad hoc queries, while queries must be
planned for others. Is the data schema a rigid framework enforced by the
database or merely a set of guidelines to be renegotiated at will? Under-
standing capabilities and constraints will help you pick the right database
for the job.

• How does it perform? How does this database function and at what cost?
Does it support sharding? How about replication? Does it distribute data
evenly using consistent hashing, or does it keep like data together? Is
this database tuned for reading, writing, or some other operation? How
much control do you have over its tuning, if any?

• How does it scale? Scalability is related to performance. Talking about
scalability without the context of what you want to scale to is generally
fruitless. This book will give you the background you need to ask the right
questions to establish that context. While the discussion on how to scale
each database will be intentionally light, in these pages you’ll find out
whether each database is geared more for horizontal scaling (MongoDB,
HBase, DynamoDB), traditional vertical scaling (Postgres, Neo4J, Redis),
or something in between.

Our goal is not to guide a novice to mastery of any of these databases. A full
treatment of any one of them could (and does) fill entire books. But by the
end of this book, you should have a firm grasp of the strengths of each, as
well as how they differ.

The Genres
Like music, databases can be broadly classified into one or more styles. An
individual song may share all of the same notes with other songs, but some
are more appropriate for certain uses. Not many people blast Bach’s Mass in
B Minor from an open convertible speeding down the 405. Similarly, some
databases are better than others for certain situations. The question you
must always ask yourself is not “Can I use this database to store and refine
this data?” but rather, “Should I?”

In this section, we’re going to explore five main database genres. We’ll also
take a look at the databases we’re going to focus on for each genre.

report erratum • discuss

The Genres • 3

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

It’s important to remember most of the data problems you’ll face could be solved
by most or all of the databases in this book, not to mention other databases.
The question is less about whether a given database style could be shoehorned
to model your data and more about whether it’s the best fit for your problem
space, your usage patterns, and your available resources. You’ll learn the art
of divining whether a database is intrinsically useful to you.

Relational
The relational model is generally what comes to mind for most people with
database experience. Relational database management systems (RDBMSs)
are set-theory-based systems implemented as two-dimensional tables with
rows and columns. The canonical means of interacting with an RDBMS is to
write queries in Structured Query Language (SQL). Data values are typed and
may be numeric, strings, dates, uninterpreted blobs, or other types. The types
are enforced by the system. Importantly, tables can join and morph into new,
more complex tables because of their mathematical basis in relational (set)
theory.

There are lots of open source relational databases to choose from, including
MySQL, H2, HSQLDB, SQLite, and many others. The one we cover is in
Chapter 2, PostgreSQL, on page 9.

PostgreSQL

Battle-hardened PostgreSQL is by far the oldest and most robust database
we cover. With its adherence to the SQL standard, it will feel familiar to anyone
who has worked with relational databases before, and it provides a solid point
of comparison to the other databases we’ll work with. We’ll also explore some
of SQL’s unsung features and Postgres’s specific advantages. There’s some-
thing for everyone here, from SQL novice to expert.

Key-Value
The key-value (KV) store is the simplest model we cover. As the name implies,
a KV store pairs keys to values in much the same way that a map (or
hashtable) would in any popular programming language. Some KV implemen-
tations permit complex value types such as hashes or lists, but this is not
required. Some KV implementations provide a means of iterating through the
keys, but this again is an added bonus. A file system could be considered a
key-value store if you think of the file path as the key and the file contents
as the value. Because the KV moniker demands so little, databases of this
type can be incredibly performant in a number of scenarios but generally
won’t be helpful when you have complex query and aggregation needs.

Chapter 1. Introduction • 4

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

As with relational databases, many open source options are available. Some
of the more popular offerings include memcached, Voldemort, Riak, and two
that we cover in this book: Redis and DynamoDB.

Redis

Redis provides for complex datatypes such as sorted sets and hashes, as well
as basic message patterns such as publish-subscribe and blocking queues.
It also has one of the most robust query mechanisms for a KV store. And by
caching writes in memory before committing to disk, Redis gains amazing
performance in exchange for increased risk of data loss in the case of a
hardware failure. This characteristic makes it a good fit for caching noncritical
data and for acting as a message broker. We leave it until the end so we can
build a multidatabase application with Redis and others working together in
harmony.

DynamoDB

DynamoDB is the only database in this book that is both not open source
and available only as a managed cloud service.

No More Riak?

The first edition of Seven Databases in Seven Weeks had a chapter on Riak. For the
second edition, we made the difficult decision to retire that chapter and replace it
with the chapter on DynamoDB that you see here. There are a number of reasons
for this choice:

• Cloud-hosted databases are being used more and more frequently. We would be
doing the current NoSQL landscape a disservice by not including a public cloud
database service. We chose DynamoDB for reasons that we’ll go over in that
chapter.

• Because we wanted to include DynamoDB (a key-value store) and stick with the
“seven” theme, something had to give. With Redis, we already had a key-value
store covered.

• Somewhat more somberly, for commercial reasons that we won’t discuss here,
the future of Riak as an actively developed database and open source project
is now fundamentally in doubt in ways that are true of no other database in
this book.

Riak is an extremely unique, intriguing, and technologically impressive database,
and we strongly urge you to explore it in other venues. The official docs are a good
place to start.a

a. http://docs.basho.com

report erratum • discuss

The Genres • 5

http://docs.basho.com
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Columnar
Columnar, or column-oriented, databases are so named because the important
aspect of their design is that data from a given column (in the two-dimensional
table sense) is stored together. By contrast, a row-oriented database (like an
RDBMS) keeps information about a row together. The difference may seem
inconsequential, but the impact of this design decision runs deep. In column-
oriented databases, adding columns is quite inexpensive and is done on a
row-by-row basis. Each row can have a different set of columns, or none at
all, allowing tables to remain sparse without incurring a storage cost for null
values. With respect to structure, columnar is about midway between rela-
tional and key-value.

In the columnar database market, there’s somewhat less competition than
in relational databases or key-value stores. The two most popular are HBase
(which we cover in Chapter 3, HBase, on page 53) and Cassandra.

HBase

This column-oriented database shares the most similarities with the relational
model of all the nonrelational databases we cover (though DynamoDB comes
close). Using Google’s BigTable paper as a blueprint, HBase is built on Hadoop
and the Hadoop Distributed File System (HDFS) and designed for scaling
horizontally on clusters of commodity hardware. HBase makes strong consis-
tency guarantees and features tables with rows and columns—which should
make SQL fans feel right at home. Out-of-the-box support for versioning and
compression sets this database apart in the “Big Data” space.

Document
Document-oriented databases store, well, documents. In short, a document
is like a hash, with a unique ID field and values that may be any of a variety
of types, including more hashes. Documents can contain nested structures,
and so they exhibit a high degree of flexibility, allowing for variable domains.
The system imposes few restrictions on incoming data, as long as it meets
the basic requirement of being expressible as a document. Different document
databases take different approaches with respect to indexing, ad hoc querying,
replication, consistency, and other design decisions. Choosing wisely between
them requires that you understand these differences and how they impact
your particular use cases.

The two major open source players in the document database market are
MongoDB, which we cover in Chapter 4, MongoDB, on page 93, and CouchDB,
covered in Chapter 5, CouchDB, on page 135.

Chapter 1. Introduction • 6

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

MongoDB

MongoDB is designed to be huge (the name mongo is extracted from the word
humongous). Mongo server configurations attempt to remain consistent—if
you write something, subsequent reads will receive the same value (until the
next update). This feature makes it attractive to those coming from an RDBMS
background. It also offers atomic read-write operations such as incrementing
a value and deep querying of nested document structures. Using JavaScript
for its query language, MongoDB supports both simple queries and complex
mapreduce jobs.

CouchDB

CouchDB targets a wide variety of deployment scenarios, from the datacenter
to the desktop, on down to the smartphone. Written in Erlang, CouchDB has
a distinct ruggedness largely lacking in other databases. With nearly incor-
ruptible data files, CouchDB remains highly available even in the face of inter-
mittent connectivity loss or hardware failure. Like Mongo, CouchDB’s native
query language is JavaScript. Views consist of mapreduce functions, which are
stored as documents and replicated between nodes like any other data.

Graph
One of the less commonly used database styles, graph databases excel at
dealing with highly interconnected data. A graph database consists of nodes
and relationships between nodes. Both nodes and relationships can have
properties—key-value pairs—that store data. The real strength of graph
databases is traversing through the nodes by following relationships.

In Chapter 6, Neo4J, on page 177, we discuss the most popular graph database
today.

Neo4J

One operation where other databases often fall flat is crawling through self-
referential or otherwise intricately linked data. This is exactly where Neo4J
shines. The benefit of using a graph database is the ability to quickly traverse
nodes and relationships to find relevant data. Often found in social networking
applications, graph databases are gaining traction for their flexibility, with
Neo4j as a pinnacle implementation.

Polyglot
In the wild, databases are often used alongside other databases. It’s still
common to find a lone relational database, but over time it is becoming popular

report erratum • discuss

The Genres • 7

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

to use several databases together, leveraging their strengths to create an
ecosystem that is more powerful, capable, and robust than the sum of its
parts. This practice, known as polyglot persistence, is covered in Chapter 9,
Wrapping Up, on page 305.

Onward and Upward
Five years after the initial edition of this book, we’re still in the midst of a
Cambrian explosion of data storage options. It’s hard to predict exactly what
will evolve out of this explosion in the coming years but we can be fairly certain
that the pure domination of any particular strategy (relational or otherwise)
is unlikely. Instead, we’ll see increasingly specialized databases, each suited
to a particular (but certainly overlapping) set of ideal problem spaces. And
just as there are jobs today that call for expertise specifically in administrating
relational databases (DBAs), we are going to see the rise of their nonrelational
counterparts.

Databases, like programming languages and libraries, are another set of tools
that every developer should know. Every good carpenter must understand
what’s in their tool belt. And like any good builder, you can never hope to be
a master without a familiarity of the many options at your disposal.

Consider this a crash course in the workshop. In this book, you’ll swing some
hammers, spin some power drills, play with some nail guns, and in the end
be able to build so much more than a birdhouse. So, without further ado,
let’s wield our first database: PostgreSQL.

Chapter 1. Introduction • 8

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 2

PostgreSQL
PostgreSQL is the hammer of the database world. It’s commonly understood,
often readily available, and sturdy, and it solves a surprising number of
problems if you swing hard enough. No one can hope to be an expert builder
without understanding this most common of tools.

PostgreSQL (or just “Postgres”) is a relational database management system
(or RDBMS for short). Relational databases are set-theory-based systems in
which data is stored in two-dimensional tables consisting of data rows and
strictly enforced column types. Despite the growing interest in newer database
trends, the relational style remains the most popular and probably will for
quite some time. Even in a book that focuses on non-relational “NoSQL”
systems, a solid grounding in RDBMS remains essential. PostgreSQL is quite
possibly the finest open source RDBMS available, and in this chapter you’ll
see that it provides a great introduction to this paradigm.

While the prevalence of relational databases can be partially attributed to
their vast toolkits (triggers, stored procedures, views, advanced indexes), their
data safety (via ACID compliance), or their mind share (many programmers
speak and think relationally), query pliancy plays a central role as well. Unlike
some other databases, you don’t need to know in advance how you plan to
use the data. If a relational schema is normalized, queries are flexible. You
can start storing data and worrying about how exactly you’ll use it later on,
even changing your entire querying model over time as your needs change.

That’s Post-greS-Q-L
PostgreSQL is by far the oldest and most battle-tested database in this book.
It has domain-specific plug-ins for things like natural language parsing,
multidimensional indexing, geographic queries, custom datatypes, and much
more. It has sophisticated transaction handling and built-in stored procedures

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

So, What’s with the Name?

PostgreSQL has existed in the current project incarnation since 1995, but its roots
go back much further. The project was originally created at UC Berkeley in the early
1970s and called the Interactive Graphics and Retrieval System, or “Ingres” for short.
In the 1980s, an improved version was launched post-Ingres—shortened to “Postgres.”
The project ended at Berkeley proper in 1993 but was picked up again by the open
source community as Postgres95. It was later renamed to PostgreSQL in 1996 to
denote its rather new SQL support and has retained the name ever since.

for a dozen languages, and it runs on a variety of platforms. PostgreSQL has
built-in Unicode support, sequences, table inheritance, and subselects, and
it is one of the most ANSI SQL-compliant relational databases on the market.
It’s fast and reliable, can handle terabytes of data, and has been proven to
run in high-profile production projects such as Skype, Yahoo!, France’s Caisse
Nationale d’Allocations Familiales (CNAF), Brazil’s Caixa Bank, and the
United States’ Federal Aviation Administration (FAA).

You can install PostgreSQL in many ways, depending on your operating sys-
tem.1 Once you have Postgres installed, create a schema called 7dbs using the
following command:

$ createdb 7dbs

We’ll be using the 7dbs schema for the remainder of this chapter.

Day 1: Relations, CRUD, and Joins
While we won’t assume that you’re a relational database expert, we do assume
that you’ve confronted a database or two in the past. If so, odds are good that
the database was relational. We’ll start with creating our own schemas and
populating them. Then we’ll take a look at querying for values and finally
explore what makes relational databases so special: the table join.

Like most databases you’ll read about, Postgres provides a back-end server
that does all of the work and a command-line shell to connect to the running
server. The server communicates through port 5432 by default, which you
can connect to the shell using the psql command. Let’s connect to our 7dbs
schema now:

$ psql 7dbs

1. http://www.postgresql.org/download/

Chapter 2. PostgreSQL • 10

report erratum • discuss

http://www.postgresql.org/download/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

PostgreSQL prompts with the name of the database followed by a hash mark
(#) if you run as an administrator and by a dollar sign ($) as a regular user.
The shell also comes equipped with perhaps the best built-in documentation
that you will find in any console. Typing \h lists information about SQL com-
mands and \? helps with psql-specific commands, namely those that begin
with a backslash. You can find usage details about each SQL command in
the following way (the output that follows is truncated):

7dbs=# \h CREATE INDEX
Command: CREATE INDEX
Description: define a new index
Syntax:
CREATE [UNIQUE] INDEX [CONCURRENTLY] [name] ON table [USING method]

({ column | (expression) } [opclass] [ASC | DESC] [NULLS ...
[WITH (storage_parameter = value [, ...])]
[TABLESPACE tablespace]
[WHERE predicate]

Before we dig too deeply into Postgres, it would be good to familiarize yourself
with this useful tool. It’s worth looking over (or brushing up on) a few common
commands, such as SELECT and CREATE TABLE.

Starting with SQL

PostgreSQL follows the SQL convention of calling relations TABLEs, attributes
COLUMNs, and tuples ROWs. For consistency, we will use this terminology,
though you may occasionally encounter the mathematical terms relations,
attributes, and tuples. For more on these concepts, see "Mathematical Rela-
tions" in the text on page 12.

Working with Tables

PostgreSQL, being of the relational style, is a design-first database. First you
design the schema; then you enter data that conforms to the definition of
that schema.

On CRUD

CRUD is a useful mnemonic for remembering the basic data management operations:
Create, Read, Update, and Delete. These generally correspond to inserting new records
(creating), modifying existing records (updating), and removing records you no longer
need (deleting). All of the other operations you use a database for (any crazy query
you can dream up) are read operations. If you can CRUD, you can do just about any-
thing. We’ll use this term throughout the book.

report erratum • discuss

Day 1: Relations, CRUD, and Joins • 11

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Mathematical Relations

Relational databases are so named because they contain relations (tables). Tables
are sets of tuples (rows) that map attributes to atomic values—for example, {name:
'Genghis Khan', died_at_age: 65}. The available attributes are defined by a header, which is
a tuple of attributes mapped to some domain or constraining type (columns, for
example {name: string, age: int}). That’s the gist of the relational structure.

Implementations are much more practically minded than the names imply, despite
sounding so mathematical. So why bring them up? We’re trying to make the point
that relational databases are relational based on mathematics. They aren’t relational
because tables “relate” to each other via foreign keys. Whether any such constraints
exist is beside the point.

The power of the model is certainly in the math, even though the math is largely hidden
from you. This magic allows users to express powerful queries while the system optimizes
based on predefined patterns. RDBMSs are built atop a set theory branch called rela-
tional algebra—a combination of selections (WHERE ...), projections (SELECT ...), Cartesian
products (JOIN ...), and more, as shown in the figure that follows.

 WHERESELECT x.name FROM People x.died_at_age IS NULLx

 (((People)))name died_at_age= x

rename
People to xselect where

died_at_age is nullreturn only
names

You can imagine relations as arrays of arrays, where a table is an array of rows, each
of which contains an array of attribute/value pairs. One way of working with tables at
the code level would be to iterate across all rows in a table and then iterate across each
attribute/value pair within the row. But let’s be real: that sounds like a real chore.
Fortunately, relational queries are much more declarative—and fun to work with—than
that. They’re derived from a branch of mathematics known as tuple relational calculus,
which can be converted to relational algebra. PostgreSQL and other RDBMSs optimize
queries by performing this conversion and simplifying the algebra. You can see that
the SQL in the diagram that follows is the same as in the previous diagram.

{ t : {name} | x : {name, died_at_age} (x People x.died_at_age = t.name = x.name)}

free variable result

 WHERESELECT x.name FROM People x.died_at_age IS NULLx

with attributes name
and died_at_age tuple x is in

relation People and died_at_age
is null and the tuples' attribute

name values are equal

there exists
a tuple x

for a free variable t
with an attribute name

Chapter 2. PostgreSQL • 12

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Creating a table involves giving the table a name and a list of columns with
types and (optional) constraint information. Each table should also nominate
a unique identifier column to pinpoint specific rows. That identifier is called
a PRIMARY KEY. The SQL to create a countries table looks like this:

CREATE TABLE countries (
country_code char(2) PRIMARY KEY,
country_name text UNIQUE

);

This new table will store a set of rows, where each is identified by a two-
character code and the name is unique. These columns both have constraints.
The PRIMARY KEY constrains the country_code column to disallow duplicate country
codes. Only one us and one gb may exist. We explicitly gave country_name a
similar unique constraint, although it is not a primary key. We can populate
the countries table by inserting a few rows.

INSERT INTO countries (country_code, country_name)
VALUES ('us','United States'), ('mx','Mexico'), ('au','Australia'),

('gb','United Kingdom'), ('de','Germany'), ('ll','Loompaland');

Let’s test our unique constraint. Attempting to add a duplicate country_name
will cause our unique constraint to fail, thus disallowing insertion. Constraints
are how relational databases such as PostgreSQL ensure kosher data.

INSERT INTO countries
VALUES ('uk','United Kingdom');

This will return an error indicating that the Key (country_name)=(United Kingdom)
already exists.

We can validate that the proper rows were inserted by reading them using
the SELECT...FROM table command.

SELECT *
FROM countries;

country_code | country_name
--------------+---------------
us | United States
mx | Mexico
au | Australia
gb | United Kingdom
de | Germany
ll | Loompaland

(6 rows)

report erratum • discuss

Day 1: Relations, CRUD, and Joins • 13

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

According to any respectable map, Loompaland isn’t a real place, so let’s
remove it from the table. You specify which row to remove using the WHERE
clause. The row whose country_code equals ll will be removed.

DELETE FROM countries
WHERE country_code = 'll';

With only real countries left in the countries table, let’s add a cities table. To
ensure any inserted country_code also exists in our countries table, we add the
REFERENCES keyword. Because the country_code column references another table’s
key, it’s known as the foreign key constraint.

CREATE TABLE cities (
name text NOT NULL,
postal_code varchar(9) CHECK (postal_code <> ''),
country_code char(2) REFERENCES countries,
PRIMARY KEY (country_code, postal_code)

);

This time, we constrained the name in cities by disallowing NULL values. We
constrained postal_code by checking that no values are empty strings (<> means
not equal). Furthermore, because a PRIMARY KEY uniquely identifies a row, we
created a compound key: country_code + postal_code. Together, they uniquely
define a row.

Postgres also has a rich set of datatypes, by far the richest amongst the
databases in this book. You’ve just seen three different string representations:
text (a string of any length), varchar(9) (a string of variable length up to nine
characters), and char(2) (a string of exactly two characters). With our schema
in place, let’s insert Toronto, CA.

INSERT INTO cities
VALUES ('Toronto','M4C1B5','ca');

ERROR: insert or update on table "cities" violates foreign key constraint
"cities_country_code_fkey"

DETAIL: Key (country_code)=(ca) is not present in table "countries".

This failure is good! Because country_code REFERENCES countries, the country_code
must exist in the countries table. As shown in the figure on page 15, the REFER-
ENCES keyword constrains fields to another table’s primary key. This is called
maintaining referential integrity, and it ensures our data is always correct.

It’s worth noting that NULL is valid for cities.country_code because NULL represents
the lack of a value. If you want to disallow a NULL country_code reference, you
would define the table cities column like this: country_code char(2) REFERENCES
countries NOT NULL.

Chapter 2. PostgreSQL • 14

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

 country_code | country_name

--------------+---------------

 us | United States

 mx | Mexico

 au | Australia

 uk | United Kingdom

 de | Germany

 name | postal_code | country_code

----------+-------------+--------------

 Portland | 97205 | us

Now let’s try another insert, this time with a U.S. city (quite possibly the
greatest of U.S. cities).

INSERT INTO cities
VALUES ('Portland','87200','us');

INSERT 0 1

This is a successful insert, to be sure. But we mistakenly entered a postal_code
that doesn’t actually exist in Portland. One postal code that does exist and
may just belong to one of the authors is 97206. Rather than delete and reinsert
the value, we can update it inline.

UPDATE cities
SET postal_code = '97206'
WHERE name = 'Portland';

We have now Created, Read, Updated, and Deleted table rows.

Join Reads

All of the other databases you’ll read about in this book perform CRUD
operations as well. What sets relational databases like PostgreSQL apart is
their ability to join tables together when reading them. Joining, in essence,
is an operation taking two separate tables and combining them in some way
to return a single table. It’s somewhat like putting together puzzle pieces to
create a bigger, more complete picture.

The basic form of a join is the inner join. In the simplest form, you specify two
columns (one from each table) to match by, using the ON keyword.

SELECT cities.*, country_name
FROM cities INNER JOIN countries /* or just FROM cities JOIN countries */

ON cities.country_code = countries.country_code;

country_code | name | postal_code | country_name
--------------+----------+-------------+---------------
us | Portland | 97206 | United States

The join returns a single table, sharing all columns’ values of the cities table
plus the matching country_name value from the countries table.

report erratum • discuss

Day 1: Relations, CRUD, and Joins • 15

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You can also join a table like cities that has a compound primary key. To test
a compound join, let’s create a new table that stores a list of venues.

A venue exists in both a postal code and a specific country. The foreign key
must be two columns that reference both cities primary key columns. (MATCH
FULL is a constraint that ensures either both values exist or both are NULL.)

CREATE TABLE venues (
venue_id SERIAL PRIMARY KEY,
name varchar(255),
street_address text,
type char(7) CHECK (type in ('public','private')) DEFAULT 'public',
postal_code varchar(9),
country_code char(2),
FOREIGN KEY (country_code, postal_code)

REFERENCES cities (country_code, postal_code) MATCH FULL
);

This venue_id column is a common primary key setup: automatically increment-
ed integers (1, 2, 3, 4, and so on). You make this identifier using the SERIAL
keyword. (MySQL has a similar construct called AUTO_INCREMENT.)

INSERT INTO venues (name, postal_code, country_code)
VALUES ('Crystal Ballroom', '97206', 'us');

Although we did not set a venue_id value, creating the row populated it.

Back to our compound join. Joining the venues table with the cities table requires
both foreign key columns. To save on typing, you can alias the table names
by following the real table name directly with an alias, with an optional AS
between (for example, venues v or venues AS v).

SELECT v.venue_id, v.name, c.name
FROM venues v INNER JOIN cities c

ON v.postal_code=c.postal_code AND v.country_code=c.country_code;

venue_id | name | name
----------+------------------+----------

1 | Crystal Ballroom | Portland

You can optionally request that PostgreSQL return columns after insertion
by ending the query with a RETURNING statement.

INSERT INTO venues (name, postal_code, country_code)
VALUES ('Voodoo Doughnut', '97206', 'us') RETURNING venue_id;

id
- - - -

2

This provides the new venue_id without issuing another query.

Chapter 2. PostgreSQL • 16

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The Outer Limits

In addition to inner joins, PostgreSQL can also perform outer joins. Outer joins
are a way of merging two tables when the results of one table must always be
returned, whether or not any matching column values exist on the other table.

It’s easiest to give an example, but to do that, we’ll create a new table named
events. This one is up to you. Your events table should have these columns: a
SERIAL integer event_id, a title, starts and ends (of type timestamp), and a venue_id
(foreign key that references venues). A schema definition diagram covering all
the tables we’ve made so far is shown in the following figure.

After creating the events table, INSERT the following values (timestamps are
inserted as a string like 2018-02-15 17:30) for two holidays and a club we do
not talk about:

event_idvenue_idendsstartstitle

122018-02-15 19:30:002018-02-15 17:30:00Fight Club
22018-04-01 23:59:002018-04-01 00:00:00April Fools Day
32018-12-25 23:59:002018-02-15 19:30:00Christmas Day

Let’s first craft a query that returns an event title and venue name as an inner
join (the word INNER from INNER JOIN is not required, so leave it off here).

SELECT e.title, v.name
FROM events e JOIN venues v

ON e.venue_id = v.venue_id;

title | name
--------------+------------------
Fight Club | Voodoo Doughnut

INNER JOIN will return a row only if the column values match. Because we can’t
have NULL venues.venue_id, the two NULL events.venue_ids refer to nothing. Retrieving

report erratum • discuss

Day 1: Relations, CRUD, and Joins • 17

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

all of the events, whether or not they have a venue, requires a LEFT OUTER JOIN
(shortened to LEFT JOIN).

SELECT e.title, v.name
FROM events e LEFT JOIN venues v
ON e.venue_id = v.venue_id;

title | name
------------------+----------------
Fight Club | Voodoo Doughnut
April Fools Day |
Christmas Day |

If you require the inverse, all venues and only matching events, use a RIGHT
JOIN. Finally, there’s the FULL JOIN, which is the union of LEFT and RIGHT; you’re
guaranteed all values from each table, joined wherever columns match.

Fast Lookups with Indexing
The speed of PostgreSQL (and any other RDBMS) lies in its efficient manage-
ment of blocks of data, reduced disk reads, query optimization, and other
techniques. But those only go so far in fetching results quickly. If we select
the title of Christmas Day from the events table, the algorithm must scan every
row for a match to return. Without an index, each row must be read from
disk to know whether a query should return it. See the following.

An index is a special data structure built to avoid a full table scan when
performing a query. When running CREATE TABLE commands, you may have
noticed a message like this:

CREATE TABLE / PRIMARY KEY will create implicit index "events_pkey" \
for table "events"

PostgreSQL automatically creates an index on the primary key—in particular
a B-tree index—where the key is the primary key value and where the value
points to a row on disk, as shown in the top figure on page 19. Using the
UNIQUE keyword is another way to force an index on a table column.

You can explicitly add a hash index using the CREATE INDEX command, where
each value must be unique (like a hashtable or a map).

CREATE INDEX events_title
ON events USING hash (title);

Chapter 2. PostgreSQL • 18

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

 LARP Club | 2 | 1

 April Fools Day | | 2

 Christmas Day | | 3

1

2

3

"events" Table"events.id" hash Index

SELECT * FROM events WHERE event_id = 2;

For less-than/greater-than/equals-to matches, we want an index more flexible
than a simple hash, like a B-tree, which can match on ranged queries (see
the following figure).

1 137 701 1000 1907000... 3600

2 3 ... 136 138 139 ... 700140 141 ... 2108901

< < < < > < < >

...

Table

Index

 1 | April Fools Day | ... 2 | Book Signing | ... 3 | Christmas Day | 2108901 | Root Canal

1

2

4

1 2 3 2108901

Table Scan

Index Scan

 2108900 | Candy Fest!

2108900

3

2108900

SELECT * FROM some_table WHERE some_number >= 2108900;

Consider a query to find all events that are on or after April 1.

SELECT *
FROM events
WHERE starts >= '2018-04-01';

event_id | title | starts | ...
----------+------------------+---------------------+-----

2 | April Fools Day | 2018-04-01 00:00:00 | ...
3 | Christmas Day | 2018-12-25 00:00:00 | ...

report erratum • discuss

Day 1: Relations, CRUD, and Joins • 19

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

For this, a tree is the perfect data structure. To index the starts column with
a B-tree, use this:

CREATE INDEX events_starts
ON events USING btree (starts);

Now our query over a range of dates will avoid a full table scan. It makes a
huge difference when scanning millions or billions of rows.

We can inspect our work with this command to list all indexes in the schema:

7dbs=# \di

It’s worth noting that when you set a FOREIGN KEY constraint, PostgreSQL will
not automatically create an index on the targeted column(s). You’ll need to
create an index on the targeted column(s) yourself. Even if you don’t like using
database constraints (that’s right, we’re looking at you, Ruby on Rails devel-
opers), you will often find yourself creating indexes on columns you plan to
join against in order to help speed up foreign key joins.

Day 1 Wrap-Up
We sped through a lot today and covered many terms. Here’s a recap:

DefinitionTerm

A domain of values of a certain type, sometimes called an
attribute

Column

An object comprised of a set of column values, sometimes called
a tuple

Row

A set of rows with the same columns, sometimes called a relationTable

The unique value that pinpoints a specific rowPrimary key

A data constraint that ensures that each entry in a column in
one table uniquely corresponds to a row in another table (or
even the same table)

Foreign key

Create, Read, Update, DeleteCRUD

Structured Query Language, the lingua franca of a relational
database

SQL

Combining two tables into one by some matching columnsJoin

Combining two tables into one by some matching columns or
NULL if nothing matches the left table

Left join

A data structure to optimize selection of a specific set of columnsIndex

Chapter 2. PostgreSQL • 20

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

DefinitionTerm

A good standard index; values are stored as a balanced tree
data structure; very flexible; B-tree indexes are the default in
Postgres

B-tree index

Another good standard index in which each index value is
unique; hash indexes tend to offer better performance for

Hash index

comparison operations than B-tree indexes but are less flexible
and don’t allow for things like range queries

Relational databases have been the de facto data management strategy for
forty years—many of us began our careers in the midst of their evolution.
Others may disagree, but we think that understanding “NoSQL” databases
is a non-starter without rooting ourselves in this paradigm, even if for just a
brief sojourn. So we looked at some of the core concepts of the relational
model via basic SQL queries and undertook a light foray into some mathemat-
ical foundations. We will expound on these root concepts tomorrow.

Day 1 Homework

Find

1. Find the PostgreSQL documentation online and bookmark it.

2. Acquaint yourself with the command-line \? and \h output.

3. We briefly mentioned the MATCH FULL constraint. Find some information
on the other available types of MATCH constraints.

Do

1. Select all the tables we created (and only those) from pg_class and examine
the table to get a sense of what kinds of metadata Postgres stores about
tables.

2. Write a query that finds the country name of the Fight Club event.

3. Alter the venues table such that it contains a Boolean column called active
with a default value of TRUE.

Day 2: Advanced Queries, Code, and Rules
Yesterday we saw how to define tables, populate them with data, update and
delete rows, and perform basic reads. Today we’ll dig even deeper into the
myriad ways that PostgreSQL can query data. We’ll see how to group similar
values, execute code on the server, and create custom interfaces using views

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 21

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

and rules. We’ll finish the day by using one of PostgreSQL’s contributed
packages to flip tables on their heads.

Aggregate Functions
An aggregate query groups results from several rows by some common criteria.
It can be as simple as counting the number of rows in a table or calculating
the average of some numerical column. They’re powerful SQL tools and also
a lot of fun.

Let’s try some aggregate functions, but first we’ll need some more data in our
database. Enter your own country into the countries table, your own city into
the cities table, and your own address as a venue (which we just named My
Place). Then add a few records to the events table.

Here’s a quick SQL tip: Rather than setting the venue_id explicitly, you can
sub-SELECT it using a more human-readable title. If Moby is playing at the
Crystal Ballroom, set the venue_id like this:

INSERT INTO events (title, starts, ends, venue_id)
VALUES ('Moby', '2018-02-06 21:00', '2018-02-06 23:00', (

SELECT venue_id
FROM venues
WHERE name = 'Crystal Ballroom'

)
);

Populate your events table with the following data (to enter Valentine’s Day
in PostgreSQL, you can escape the apostrophe with two, such as Heaven''s Gate):

title | starts | ends | venue
-----------------+---------------------+---------------------+---------------
Wedding | 2018-02-26 21:00:00 | 2018-02-26 23:00:00 | Voodoo Doughnut
Dinner with Mom | 2018-02-26 18:00:00 | 2018-02-26 20:30:00 | My Place
Valentine's Day | 2018-02-14 00:00:00 | 2018-02-14 23:59:00 |

With our data set up, let’s try some aggregate queries. The simplest aggregate
function is count(), which is fairly self-explanatory. Counting all titles that
contain the word Day (note: % is a wildcard on LIKE searches), you should
receive a value of 3.

SELECT count(title)
FROM events
WHERE title LIKE '%Day%';

To get the first start time and last end time of all events at the Crystal Ball-
room, use min() (return the smallest value) and max() (return the largest value).

Chapter 2. PostgreSQL • 22

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

SELECT min(starts), max(ends)
FROM events INNER JOIN venues

ON events.venue_id = venues.venue_id
WHERE venues.name = 'Crystal Ballroom';

min | max
---------------------+---------------------
2018-02-06 21:00:00 | 2018-02-06 23:00:00

Aggregate functions are useful but limited on their own. If we wanted to count
all events at each venue, we could write the following for each venue ID:

SELECT count(*) FROM events WHERE venue_id = 1;
SELECT count(*) FROM events WHERE venue_id = 2;
SELECT count(*) FROM events WHERE venue_id = 3;
SELECT count(*) FROM events WHERE venue_id IS NULL;

This would be tedious (intractable even) as the number of venues grows. This
is where the GROUP BY command comes in handy.

Grouping
GROUP BY is a shortcut for running the previous queries all at once. With GROUP
BY, you tell Postgres to place the rows into groups and then perform some
aggregate function (such as count()) on those groups.

SELECT venue_id, count(*)
FROM events
GROUP BY venue_id;

venue_id | count
----------+-------

1 | 1
2 | 2
3 | 1
4 | 3

It’s a nice list, but can we filter by the count() function? Absolutely. The GROUP
BY condition has its own filter keyword: HAVING. HAVING is like the WHERE clause,
except it can filter by aggregate functions (whereas WHERE cannot).

The following query SELECTs the most popular venues, those with two or more
events:

SELECT venue_id
FROM events
GROUP BY venue_id
HAVING count(*) >= 2 AND venue_id IS NOT NULL;

venue_id | count
----------+-------

2 | 2

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 23

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You can use GROUP BY without any aggregate functions. If you call SELECT...
FROM...GROUP BY on one column, you get only unique values.

SELECT venue_id FROM events GROUP BY venue_id;

This kind of grouping is so common that SQL has a shortcut for it in the
DISTINCT keyword.

SELECT DISTINCT venue_id FROM events;

The results of both queries will be identical.

GROUP BY in MySQL

If you tried to run a SELECT statement with columns not defined under a GROUP BY in
MySQL, you would be shocked to see that it works. This originally made us question
the necessity of window functions. But when we inspected the data MySQL returns
more closely, we found it will return only a random row of data along with the count,
not all relevant results. Generally, that’s not useful (and quite potentially dangerous).

Window Functions
If you’ve done any sort of production work with a relational database in the
past, you are likely familiar with aggregate queries. They are a common SQL

staple. Window functions, on the other hand, are not quite so common (Post-
greSQL is one of the few open source databases to implement them).

Window functions are similar to GROUP BY queries in that they allow you to
run aggregate functions across multiple rows. The difference is that they allow
you to use built-in aggregate functions without requiring every single field to
be grouped to a single row.

If we attempt to select the title column without grouping by it, we can expect
an error.

SELECT title, venue_id, count(*)
FROM events
GROUP BY venue_id;

ERROR: column "events.title" must appear in the GROUP BY clause or \
be used in an aggregate function

We are counting up the rows by venue_id, and in the case of Fight Club and
Wedding, we have two titles for a single venue_id. Postgres doesn’t know which
title to display.

Chapter 2. PostgreSQL • 24

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Whereas a GROUP BY clause will return one record per matching group value,
a window function, which does not collapse the results per group, can return
a separate record for each row. For a visual representation, see the following
figure.

 venue_id | count

----------+-------

 1 | 1

 2 | 2

 2 | 2

 3 | 1

 | 3

 | 3

 | 3

SELECT venue_id, count(*)

 OVER (PARTITION BY venue_id)

FROM events

ORDER BY venue_id;

SELECT venue_id, count(*)

FROM events

GROUP BY venue_id

ORDER BY venue_id;

venue_id | count

----------+-------

 1 | 1

 2 | 2

 3 | 1

 | 3

Let’s see an example of the sweet spot that window functions attempt to hit.

Window functions return all matches and replicate the results of any aggregate
function.

SELECT title, count(*) OVER (PARTITION BY venue_id) FROM events;

title | count
-------------+-------
Moby | 1
Fight Club | 1
House Party | 3
House Party | 3
House Party | 3

(5 rows)

We like to think of PARTITION BY as akin to GROUP BY, but rather than grouping
the results outside of the SELECT attribute list (and thus combining the
results into fewer rows), it returns grouped values as any other field (calcu-
lating on the grouped variable but otherwise just another attribute). Or in
SQL parlance, it returns the results of an aggregate function OVER a PARTITION
of the result set.

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 25

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Transactions
Transactions are the bulwark of relational database consistency. All or nothing,
that’s the transaction motto. Transactions ensure that every command of a
set is executed. If anything fails along the way, all of the commands are rolled
back as if they never happened.

PostgreSQL transactions follow ACID compliance, which stands for:

• Atomic (either all operations succeed or none do)

• Consistent (the data will always be in a good state and never in an incon-
sistent state)

• Isolated (transactions don’t interfere with one another)

• Durable (a committed transaction is safe, even after a server crash)

We should note here that consistency in ACID is different from consistency
in CAP (covered in Appendix 2, The CAP Theorem, on page 315).

Unavoidable Transactions

Up until now, every command we’ve executed in psql has been implicitly wrapped in
a transaction. If you executed a command, such as DELETE FROM account WHERE total < 20;
and the database crashed halfway through the delete, you wouldn’t be stuck with
half a table. When you restart the database server, that command will be rolled back.

We can wrap any transaction within a BEGIN TRANSACTION block. To verify
atomicity, we’ll kill the transaction with the ROLLBACK command.

BEGIN TRANSACTION;
DELETE FROM events;

ROLLBACK;
SELECT * FROM events;

The events all remain. Transactions are useful when you’re modifying two
tables that you don’t want out of sync. The classic example is a debit/credit
system for a bank, where money is moved from one account to another:

BEGIN TRANSACTION;
UPDATE account SET total=total+5000.0 WHERE account_id=1337;
UPDATE account SET total=total-5000.0 WHERE account_id=45887;

END;

If something happened between the two updates, this bank just lost five
grand. But when wrapped in a transaction block, the initial update is rolled
back, even if the server explodes.

Chapter 2. PostgreSQL • 26

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Stored Procedures
Every command we’ve seen until now has been declarative in the sense that
we‘ve been able to get our desired result set using just SQL (which is quite
powerful in itself). But sometimes the database doesn‘t give us everything we
need natively and we need to run some code to fill in the gaps. At that point,
though, you need to decide where the code is going to run. Should it run in
Postgres or should it run on the application side?

If you decide you want the database to do the heavy lifting, Postgres offers
stored procedures. Stored procedures are extremely powerful and can be used
to do an enormous range of tasks, from performing complex mathematical
operations that aren’t supported in SQL to triggering cascading series of
events to pre-validating data before it‘s written to tables and far beyond. On
the one hand, stored procedures can offer huge performance advantages. But
the architectural costs can be high (and sometimes not worth it). You may
avoid streaming thousands of rows to a client application, but you have also
bound your application code to this database. And so the decision to use
stored procedures should not be made lightly.

Caveats aside, let’s create a procedure (or FUNCTION) that simplifies INSERTing
a new event at a venue without needing the venue_id. Here‘s what the procedure
will accomplish: if the venue doesn’t exist, it will be created first and then
referenced in the new event. The procedure will also return a Boolean indicat-
ing whether a new venue was added as a helpful bonus.

What About Vendor Lock-in?

When relational databases hit their heyday, they were the Swiss Army knife of tech-
nologies. You could store nearly anything—even programming entire projects in
them (for example, Microsoft Access). The few companies that provided this software
promoted use of proprietary differences and then took advantage of this corporate
reliance by charging enormous license and consulting fees. This was the dreaded
vendor lock-in that newer programming methodologies tried to mitigate in the 1990s
and early 2000s.

The zeal to neuter the vendors, however, birthed maxims such as no logic in the
database. This is a shame because relational databases are capable of so many varied
data management options. Vendor lock-in has not disappeared. Many actions we
investigate in this book are highly implementation-specific. However, it’s worth
knowing how to use databases to their fullest extent before deciding to skip tools
such as stored procedures solely because they’re implementation-specific.

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 27

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

postgres/add_event.sql
CREATE OR REPLACE FUNCTION add_event(

title text,
starts timestamp,
ends timestamp,
venue text,
postal varchar(9),
country char(2))

RETURNS boolean AS $$
DECLARE

did_insert boolean := false;
found_count integer;
the_venue_id integer;

BEGIN
SELECT venue_id INTO the_venue_id
FROM venues v
WHERE v.postal_code=postal AND v.country_code=country AND v.name ILIKE venue
LIMIT 1;

IF the_venue_id IS NULL THEN
INSERT INTO venues (name, postal_code, country_code)
VALUES (venue, postal, country)
RETURNING venue_id INTO the_venue_id;

did_insert := true;
END IF;

-- Note: this is a notice, not an error as in some programming languages
RAISE NOTICE 'Venue found %', the_venue_id;

INSERT INTO events (title, starts, ends, venue_id)
VALUES (title, starts, ends, the_venue_id);

RETURN did_insert;
END;
$$ LANGUAGE plpgsql;

You can import this external file into the current schema using the following
command-line argument (if you don’t feel like typing all that code).

7dbs=# \i add_event.sql

This stored procedure is run as a SELECT statement.

SELECT add_event('House Party', '2018-05-03 23:00',
'2018-05-04 02:00', 'Run''s House', '97206', 'us');

Running it should return t (true) because this is the first use of the venue
Run’s House. This saves a client two round-trip SQL commands to the database
(a SELECT and then an INSERT) and instead performs only one.

The language we used in the procedure we wrote is PL/pgSQL (which stands
for Procedural Language/PostgreSQL). Covering the details of an entire

Chapter 2. PostgreSQL • 28

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/postgres/add_event.sql
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Choosing to Execute Database Code

This is the first of a number of places where you’ll see this theme in this book: Does
the code belong in your application or in the database? It’s often a difficult decision,
one that you’ll have to answer uniquely for every application.

In many cases, you’ll improve performance by as much as an order of magnitude.
For example, you might have a complex application-specific calculation that requires
custom code. If the calculation involves many rows, a stored procedure will save you
from moving thousands of rows instead of a single result. The cost is splitting your
application, your code, and your tests across two different programming paradigms.

programming language is beyond the scope of this book, but you can read
much more about it in the online PostgreSQL documentation.2

In addition to PL/pgSQL, Postgres supports three more core languages for
writing procedures: Tcl (PL/Tcl), Perl (PL/Perl), and Python (PL/Python). People
have written extensions for a dozen more, including Ruby, Java, PHP, Scheme,
and others listed in the public documentation. Try this shell command:

$ createlang 7dbs --list

It will list the languages installed in your database. The createlang command
is also used to add new languages, which you can find online.3

Pull the Triggers
Triggers automatically fire stored procedures when some event happens, such
as an insert or update. They allow the database to enforce some required
behavior in response to changing data.

Let’s create a new PL/pgSQL function that logs whenever an event is updated
(we want to be sure no one changes an event and tries to deny it later). First,
create a logs table to store event changes. A primary key isn’t necessary here
because it’s just a log.

CREATE TABLE logs (
event_id integer,
old_title varchar(255),
old_starts timestamp,
old_ends timestamp,
logged_at timestamp DEFAULT current_timestamp

);

2. http://www.postgresql.org/docs/9.0/static/plpgsql.html
3. http://www.postgresql.org/docs/9.0/static/app-createlang.html

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 29

http://www.postgresql.org/docs/9.0/static/plpgsql.html
http://www.postgresql.org/docs/9.0/static/app-createlang.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Next, we build a function to insert old data into the log. The OLD variable
represents the row about to be changed (NEW represents an incoming row,
which we’ll see in action soon enough). Output a notice to the console with
the event_id before returning.

postgres/log_event.sql
CREATE OR REPLACE FUNCTION log_event() RETURNS trigger AS $$
DECLARE
BEGIN

INSERT INTO logs (event_id, old_title, old_starts, old_ends)
VALUES (OLD.event_id, OLD.title, OLD.starts, OLD.ends);
RAISE NOTICE 'Someone just changed event #%', OLD.event_id;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

Finally, we create our trigger to log changes after any row is updated.

CREATE TRIGGER log_events
AFTER UPDATE ON events
FOR EACH ROW EXECUTE PROCEDURE log_event();

So, it turns out our party at Run’s House has to end earlier than we hoped.
Let’s change the event.

UPDATE events
SET ends='2018-05-04 01:00:00'
WHERE title='House Party';

NOTICE: Someone just changed event #9

And the old end time was logged.

SELECT event_id, old_title, old_ends, logged_at
FROM logs;

event_id | old_title | old_ends | logged_at
---------+-------------+---------------------+------------------------

9 | House Party | 2018-05-04 02:00:00 | 2017-02-26 15:50:31.939

Triggers can also be created before updates and before or after inserts.4

Viewing the World
Wouldn’t it be great if you could use the results of a complex query just like
any other table? Well, that’s exactly what VIEWs are for. Unlike stored proce-
dures, these aren’t functions being executed but rather aliased queries. Let’s
say that we wanted to see only holidays that contain the word Day and have
no venue. We could create a VIEW for that like this:

4. http://www.postgresql.org/docs/9.0/static/triggers.html

Chapter 2. PostgreSQL • 30

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/postgres/log_event.sql
http://www.postgresql.org/docs/9.0/static/triggers.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

postgres/holiday_view_1.sql
CREATE VIEW holidays AS

SELECT event_id AS holiday_id, title AS name, starts AS date
FROM events
WHERE title LIKE '%Day%' AND venue_id IS NULL;

Creating a view really is as simple as writing a query and prefixing it with
CREATE VIEW some_view_name AS. Now you can query holidays like any other table.
Under the covers it’s the plain old events table. As proof, add Valentine’s Day
on 2018-02-14 to events and query the holidays view.

SELECT name, to_char(date, 'Month DD, YYYY') AS date
FROM holidays
WHERE date <= '2018-04-01';

name | date
------------------+--------------------
April Fools Day | April 01, 2018
Valentine's Day | February 14, 2018

Views are powerful tools for opening up complex queried data in a simple
way. The query may be a roiling sea of complexity underneath, but all you
see is a table.

If you want to add a new column to the holidays view, it will have to come from
the underlying table. Let’s alter the events table to have an array of associated
colors.

ALTER TABLE events
ADD colors text ARRAY;

Because holidays are to have colors associated with them, let’s update the VIEW
query to contain the colors array.

CREATE OR REPLACE VIEW holidays AS
SELECT event_id AS holiday_id, title AS name, starts AS date, colors
FROM events
WHERE title LIKE '%Day%' AND venue_id IS NULL;

Now it’s a matter of setting an array or color strings to the holiday of choice.
Unfortunately, we cannot update a VIEW directly.

UPDATE holidays SET colors = '{"red","green"}' where name = 'Christmas Day';

ERROR: cannot update a view
HINT: You need an unconditional ON UPDATE DO INSTEAD rule.

Looks like we need a RULE instead of a view.

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 31

http://media.pragprog.com/titles/pwrdata/code/postgres/holiday_view_1.sql
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Storing Views on Disk with Materialized Views

Though VIEWs like the holidays view mentioned previously are a convenient abstraction,
they don’t yield any performance gains over the SELECT queries that they alias. If you
want VIEWs that do offer such gains, you should consider creating materialized views,
which are different because they’re stored on disk in a “real” table and thus yield
performance gains because they restrict the number of tables that must be accessed
to exactly one.

You can create materialized views just like ordinary views, except with a CREATE MATE-
RIALIZED VIEW rather than CREATE VIEW statement. Materialized view tables are populated
whenever you run the REFRESH command for them, which you can automate to run
at defined intervals or in response to triggers. You can also create indexes on materi-
alized views the same way that you can on regular tables.

The downside of materialized views is that they do increase disk space usage. But in
many cases, the performance gains are worth it. In general, the more complex the
query and the more tables it spans, the more performance gains you’re likely to get
vis-à-vis plain old SELECT queries or VIEWs.

What RULEs the School?
A RULE is a description of how to alter the parsed query tree. Every time Post-
gres runs an SQL statement, it parses the statement into a query tree (gener-
ally called an abstract syntax tree).

Operators and values become branches and leaves in the tree, and the tree
is walked, pruned, and in other ways edited before execution. This tree is
optionally rewritten by Postgres rules, before being sent on to the query
planner (which also rewrites the tree to run optimally), and sends this final
command to be executed. See how SQL gets executed in PostgreSQL in the
figure on page 33.

In fact, a VIEW such as holidays is a RULE. We can prove this by taking a look at
the execution plan of the holidays view using the EXPLAIN command (notice Filter
is the WHERE clause, and Output is the column list).

EXPLAIN VERBOSE
SELECT *
FROM holidays;

QUERY PLAN

Seq Scan on public.events (cost=0.00..1.01 rows=1 width=44)

Output: events.event_id, events.title, events.starts, events.colors
Filter: ((events.venue_id IS NULL) AND

((events.title)::text ~~ '%Day%'::text))

Chapter 2. PostgreSQL • 32

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

postgres server

Parser Rewrite Planner

Rules

Views

Query Trees

Query
Tree

Where the query
is optimized before

execution

Converts an SQL
string into a
Query Tree

Modi�es the
Query Tree based

on Rules

(New)
Query
Tree

User De�ned

psql client

SQL
String

Results

Execution

Compare that to running EXPLAIN VERBOSE on the query from which we built
the holidays VIEW. They’re functionally identical.

EXPLAIN VERBOSE
SELECT event_id AS holiday_id,

title AS name, starts AS date, colors
FROM events
WHERE title LIKE '%Day%' AND venue_id IS NULL;

QUERY PLAN

Seq Scan on public.events (cost=0.00..1.04 rows=1 width=57)

Output: event_id, title, starts, colors
Filter: ((events.venue_id IS NULL) AND

((events.title)::text ~~ '%Day%'::text))

So, to allow updates against our holidays view, we need to craft a RULE that tells
Postgres what to do with an UPDATE. Our rule will capture updates to the holidays
view and instead run the update on events, pulling values from the pseudore-
lations NEW and OLD. NEW functionally acts as the relation containing the values
we’re setting, while OLD contains the values we query by.

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 33

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

postgres/create_rule.sql
CREATE RULE update_holidays AS ON UPDATE TO holidays DO INSTEAD

UPDATE events
SET title = NEW.name,

starts = NEW.date,
colors = NEW.colors

WHERE title = OLD.name;

With this rule in place, now we can update holidays directly.

UPDATE holidays SET colors = '{"red","green"}' where name = 'Christmas Day';

Next, let’s insert New Years Day on 2013-01-01 into holidays. As expected, we
need a rule for that too. No problem.

CREATE RULE insert_holidays AS ON INSERT TO holidays DO INSTEAD
INSERT INTO ...

We’re going to move on from here, but if you’d like to play more with RULEs,
try to add a DELETE RULE.

I’ll Meet You at the Crosstab
For our last exercise of the day, we’re going to build a monthly calendar of
events, where each month in the calendar year counts the number of events
in that month. This kind of operation is commonly done by a pivot table. These
constructs “pivot” grouped data around some other output, in our case a list
of months. We’ll build our pivot table using the crosstab() function.

Start by crafting a query to count the number of events per month each year.
PostgreSQL provides an extract() function that returns some subfield from a
date or timestamp, which aids in our grouping.

SELECT extract(year from starts) as year,
extract(month from starts) as month, count(*)

FROM events
GROUP BY year, month
ORDER BY year, month;

To use crosstab(), the query must return three columns: rowid, category, and value.
We’ll be using the year as an ID, which means the other fields are category (the
month) and value (the count).

The crosstab() function needs another set of values to represent months. This
is how the function knows how many columns we need. These are the values
that become the columns (the table to pivot against). So let’s create a table
to store a list of numbers. Because we‘ll only need the table for a few opera-
tions, we‘ll create an ephemeral table, which lasts only as long as the current
Postgres session, using the CREATE TEMPORARY TABLE command.

Chapter 2. PostgreSQL • 34

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/postgres/create_rule.sql
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CREATE TEMPORARY TABLE month_count(month INT);
INSERT INTO month_count VALUES (1),(2),(3),(4),(5),

(6),(7),(8),(9),(10),(11),(12);

Now we’re ready to call crosstab() with our two queries.

SELECT * FROM crosstab(
'SELECT extract(year from starts) as year,

extract(month from starts) as month, count(*)
FROM events
GROUP BY year, month
ORDER BY year, month',

'SELECT * FROM month_count'
);

ERROR: a column definition list is required for functions returning "record"

Oops. An error occurred. This cryptic error is basically saying that the function
is returning a set of records (rows) but it doesn’t know how to label them. In
fact, it doesn’t even know what datatypes they are.

Remember, the pivot table is using our months as categories, but those
months are just integers. So, we define them like this:

SELECT * FROM crosstab(
'SELECT extract(year from starts) as year,

extract(month from starts) as month, count(*)
FROM events
GROUP BY year, month
ORDER BY year, month',

'SELECT * FROM month_count'
) AS (

year int,
jan int, feb int, mar int, apr int, may int, jun int,
jul int, aug int, sep int, oct int, nov int, dec int

) ORDER BY YEAR;

We have one column year (which is the row ID) and twelve more columns
representing the months.

year | jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
2018 | | 5 | | 1 | 1 | | | | | | | 1

Go ahead and add a couple more events on another year just to see next
year’s event counts. Run the crosstab() function again, and enjoy the calendar.

Day 2 Wrap-Up
Today finalized the basics of PostgreSQL. What we’re starting to see is that
Postgres is more than just a server for storing vanilla datatypes and querying

report erratum • discuss

Day 2: Advanced Queries, Code, and Rules • 35

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

them. Instead, it’s a powerful data management engine that can reformat
output data, store weird datatypes such as arrays, execute logic, and provide
enough power to rewrite incoming queries.

Day 2 Homework

Find

1. Find the list of aggregate functions in the PostgreSQL docs.

2. Find a GUI program to interact with PostgreSQL, such as pgAdmin,
Datagrip, or Navicat.

Do

1. Create a rule that captures DELETEs on venues and instead sets the active
flag (created in the Day 1 homework) to FALSE.

2. A temporary table was not the best way to implement our event calendar
pivot table. The generate_series(a, b) function returns a set of records, from
a to b. Replace the month_count table SELECT with this.

3. Build a pivot table that displays every day in a single month, where each
week of the month is a row and each day name forms a column across
the top (seven days, starting with Sunday and ending with Saturday) like a
standard month calendar. Each day should contain a count of the number
of events for that date or should remain blank if no event occurs.

Day 3: Full Text and Multidimensions
We’ll spend Day 3 investigating the many tools at our disposal to build a
movie query system. We’ll begin with the many ways PostgreSQL can search
actor/movie names using fuzzy string matching. Then we’ll discover the cube
package by creating a movie suggestion system based on similar genres of
movies we already like. Because these are all contributed packages, the
implementations are special to PostgreSQL and not part of the SQL standard.

Often, when designing a relational database schema, you’ll start with an entity
diagram. We’ll be writing a personal movie suggestion system that keeps track
of movies, their genres, and their actors, as modeled in the figure on page 37.

Before we begin the Day 3 exercises, we’ll need to extend Postgres by installing
the following contributed packages: tablefunc, dict_xsyn, fuzzystrmatch, pg_trgm, and
cube. You can refer to the website for installation instructions.5

5. http://www.postgresql.org/docs/current/static/contrib.html

Chapter 2. PostgreSQL • 36

report erratum • discuss

http://www.postgresql.org/docs/current/static/contrib.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

*movie_id
title
genres[]

movies
name
position

genres

*actor_id
name

actors

has
and belongs

to many

Run the following command and check that it matches the output below to
ensure your contrib packages have been installed correctly:

$ psql 7dbs -c "SELECT '1'::cube;"
cube

(1)
(1 row)

Seek out the online docs for more information if you receive an error message.

Let’s first build the database. It’s often good practice to create indexes on
foreign keys to speed up reverse lookups (such as what movies this actor is
involved in). You should also set a UNIQUE constraint on join tables like
movies_actors to avoid duplicate join values.

postgres/create_movies.sql
CREATE TABLE genres (

name text UNIQUE,
position integer

);

CREATE TABLE movies (
movie_id SERIAL PRIMARY KEY,
title text,
genre cube

);

CREATE TABLE actors (
actor_id SERIAL PRIMARY KEY,
name text

);

CREATE TABLE movies_actors (
movie_id integer REFERENCES movies NOT NULL,
actor_id integer REFERENCES actors NOT NULL,
UNIQUE (movie_id, actor_id)

);

report erratum • discuss

Day 3: Full Text and Multidimensions • 37

http://media.pragprog.com/titles/pwrdata/code/postgres/create_movies.sql
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CREATE INDEX movies_actors_movie_id ON movies_actors (movie_id);
CREATE INDEX movies_actors_actor_id ON movies_actors (actor_id);
CREATE INDEX movies_genres_cube ON movies USING gist (genre);

You can download the movies_data.sql file as a file alongside the book and pop-
ulate the tables by piping the file into the database. Any questions you may
have about the genre cube will be covered later today.

Fuzzy Searching
Opening up a system to text searches means opening your system to inaccu-
rate inputs. You have to expect typos like “Brid of Frankstein.” Sometimes,
users can’t remember the full name of “J. Roberts.” In other cases, we just
plain don’t know how to spell “Benn Aflek.“ We’ll look into a few PostgreSQL
packages that make text searching easy.

It’s worth noting that as we progress, this kind of string matching blurs the
lines between relational queries and searching frameworks such as Lucene6

and Elasticsearch.7 Although some may feel that features like full-text search
belong with the application code, there can be performance and administrative
benefits of pushing these packages to the database, where the data lives.

SQL Standard String Matches

PostgreSQL has many ways of performing text matches but the two major
default methods are LIKE and regular expressions.

I Like LIKE and ILIKE

LIKE and ILIKE are the simplest forms of text search (ILIKE is a case-insensitive
version of LIKE). They are fairly universal in relational databases. LIKE compares
column values against a given pattern string. The % and _ characters are
wildcards: % matches any number of any characters while _ matches exactly
one character.

SELECT title FROM movies WHERE title ILIKE 'stardust%';

title

Stardust
Stardust Memories

If we want to be sure the substring stardust is not at the end of the string,
we can use the underscore (_) character as a little trick.

6. http://lucene.apache.org/
7. https://www.elastic.co/products/elasticsearch

Chapter 2. PostgreSQL • 38

report erratum • discuss

http://lucene.apache.org/
https://www.elastic.co/products/elasticsearch
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

SELECT title FROM movies WHERE title ILIKE 'stardust_%';

title

Stardust Memories

This is useful in basic cases, but LIKE is limited to simple wildcards.

Regex

A more powerful string-matching syntax is a regular expression (regex).
Regexes appear often throughout this book because many databases support
them. There are entire books dedicated to writing powerful expressions—the
topic is far too wide and complex to cover in depth here. Postgres conforms
(mostly) to the POSIX style.

In Postgres, a regular expression match is led by the ~ operator, with the
optional ! (meaning not matching) and * (meaning case insensitive). To count
all movies that do not begin with the, the following case-insensitive query will
work. The characters inside the string are the regular expression.

SELECT COUNT(*) FROM movies WHERE title !~* '^the.*';

You can index strings for pattern matching the previous queries by creating
a text_pattern_ops operator class index, as long as the values are indexed in
lowercase.

CREATE INDEX movies_title_pattern ON movies (lower(title) text_pattern_ops);

We used the text_pattern_ops because the title is of type text. If you need to index
varchars, chars, or names, use the related ops: varchar_pattern_ops, bpchar_pat-
tern_ops, and name_pattern_ops.

Bride of Levenshtein

Levenshtein is a string comparison algorithm that compares how similar two
strings are by how many steps are required to change one string into another.
Each replaced, missing, or added character counts as a step. The distance
is the total number of steps away. In PostgreSQL, the levenshtein() function is
provided by the fuzzystrmatch contrib package. Say we have the string bat and
the string fads.

SELECT levenshtein('bat', 'fads');

The Levenshtein distance is 3 because in order to go from bat to fads, we
replaced two letters (b=>f, t=>d) and added a letter (+s). Each change incre-
ments the distance. We can watch the distance close as we step closer (so to
speak). The total goes down until we get zero (the two strings are equal).

report erratum • discuss

Day 3: Full Text and Multidimensions • 39

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

SELECT levenshtein('bat', 'fad') fad,
levenshtein('bat', 'fat') fat,
levenshtein('bat', 'bat') bat;

fad | fat | bat
-----+-----+-----

2 | 1 | 0

Changes in case cost a point, too, so you may find it best to convert all strings
to the same case when querying.

SELECT movie_id, title FROM movies
WHERE levenshtein(lower(title), lower('a hard day nght')) <= 3;

movie_id | title
----------+--------------------

245 | A Hard Day's Night

This ensures minor differences won’t over-inflate the distance.

Try a Trigram

A trigram is a group of three consecutive characters taken from a string. The
pg_trgm contrib module breaks a string into as many trigrams as it can.

SELECT show_trgm('Avatar');

show_trgm

{" a"," av","ar ",ata,ava,tar,vat}

Finding a matching string is as simple as counting the number of matching
trigrams. The strings with the most matches are the most similar. It’s useful
for doing a search where you’re okay with either slight misspellings or even
minor words missing. The longer the string, the more trigrams and the more
likely a match—they’re great for something like movie titles because they have
relatively similar lengths. We’ll create a trigram index against movie names
to start, using Generalized Index Search Tree (GIST), a generic index API made
available by the PostgreSQL engine.

CREATE INDEX movies_title_trigram ON movies
USING gist (title gist_trgm_ops);

Now you can query with a few misspellings and still get decent results.

SELECT title
FROM movies
WHERE title % 'Avatre';

title

Avatar

Chapter 2. PostgreSQL • 40

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Trigrams are an excellent choice for accepting user input without weighing
queries down with wildcard complexity.

Full-Text Fun
Next, we want to allow users to perform full-text searches based on matching
words, even if they’re pluralized. If a user wants to search for certain words
in a movie title but can remember only some of them, Postgres supports
simple natural language processing.

TSVector and TSQuery

Let’s look for a movie that contains the words night and day. This is a perfect
job for text search using the @@ full-text query operator.

SELECT title
FROM movies
WHERE title @@ 'night & day';

title

A Hard Day's Night
Six Days Seven Nights
Long Day's Journey Into Night

The query returns titles like A Hard Day’s Night, despite the word Day being
in possessive form and the fact that the two words are out of order in the
query. The @@ operator converts the name field into a tsvector and converts
the query into a tsquery.

A tsvector is a datatype that splits a string into an array (or a vector) of tokens,
which are searched against the given query, while the tsquery represents a
query in some language, like English or French. The language corresponds
to a dictionary (which we’ll see more of in a few paragraphs). The previous
query is equivalent to the following (if your system language is set to English):

SELECT title
FROM movies
WHERE to_tsvector(title) @@ to_tsquery('english', 'night & day');

You can take a look at how the vector and the query break apart the values
by running the conversion functions on the strings outright.

SELECT to_tsvector('A Hard Day''s Night'),
to_tsquery('english', 'night & day');

to_tsvector | to_tsquery
---------------------------+-----------------
'day':3 'hard':2 'night':5 | 'night' & 'day'

report erratum • discuss

Day 3: Full Text and Multidimensions • 41

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The tokens on a tsvector are called lexemes and are coupled with their positions
in the given phrase.

You may have noticed the tsvector for A Hard Day’s Night did not contain the
lexeme a. Moreover, simple English words such as a are missing if you try to
query by them.

SELECT *
FROM movies
WHERE title @@ to_tsquery('english', 'a');

NOTICE: text-search query contains only stop words or doesn't \
contain lexemes, ignored

Common words such as a are called stop words and are generally not useful
for performing queries. The English dictionary was used by the parser to
normalize our string into useful English components. In your console, you
can view the output of the stop words under the English tsearch_data directory.

$ cat `pg_config --sharedir`/tsearch_data/english.stop

We could remove a from the list, or we could use another dictionary like simple
that just breaks up strings by nonword characters and makes them lowercase.
Compare these two vectors:

SELECT to_tsvector('english', 'A Hard Day''s Night');

to_tsvector

'day':3 'hard':2 'night':5

SELECT to_tsvector('simple', 'A Hard Day''s Night');

to_tsvector
--
'a':1 'day':3 'hard':2 'night':5 's':4

With simple, you can retrieve any movie containing the lexeme a.

Other Languages

Because Postgres is doing some natural language processing here, it only
makes sense that different configurations would be used for different lan-
guages. All of the installed configurations can be viewed with this command:

7dbs=# \dF

Dictionaries are part of what Postgres uses to generate tsvector lexemes (along
with stop words and other tokenizing rules we haven’t covered called parsers
and templates). You can view your system’s list here:

7dbs=# \dFd

Chapter 2. PostgreSQL • 42

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You can test any dictionary outright by calling the ts_lexize() function. Here we
find the English stem word of the string Day’s.

SELECT ts_lexize('english_stem', 'Day''s');

ts_lexize

{day}

Finally, the previous full-text commands work for other languages, too. If you
have German installed, try this:

SELECT to_tsvector('german', 'was machst du gerade?');

to_tsvector

'gerad':4 'mach':2

Because was (what) and du (you) are common, they are marked as stop words
in the German dictionary, while machst (doing) and gerade (at the moment)
are stemmed.

Indexing Lexemes

Full-text search is powerful. But if we don’t index our tables, it’s also slow.
The EXPLAIN command is a powerful tool for digging into how queries are
internally planned.

EXPLAIN
SELECT *
FROM movies
WHERE title @@ 'night & day';

QUERY PLAN

Seq Scan on movies (cost=0.00..815.86 rows=3 width=171)

Filter: (title @@ 'night & day'::text)

Note the line Seq Scan on movies. That’s rarely a good sign in a query because
it means a whole table scan is taking place; each row will be read. That usu-
ally means that you need to create an index.

We’ll use Generalized Inverted iNdex (GIN)—like GIST, it’s an index API—to
create an index of lexeme values we can query against. The term inverted
index may sound familiar to you if you’ve ever used a search engine like
Lucene or Sphinx. It’s a common data structure to index full-text searches.

CREATE INDEX movies_title_searchable ON movies
USING gin(to_tsvector('english', title));

With our index in place, let’s try to search again.

report erratum • discuss

Day 3: Full Text and Multidimensions • 43

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

EXPLAIN
SELECT *
FROM movies
WHERE title @@ 'night & day';

QUERY PLAN

Seq Scan on movies (cost=0.00..815.86 rows=3 width=171)

Filter: (title @@ 'night & day'::text)

What happened? Nothing. The index is there, but Postgres isn’t using it
because our GIN index specifically uses the english configuration for building
its tsvectors, but we aren’t specifying that vector. We need to specify it in the
WHERE clause of the query.

EXPLAIN
SELECT *
FROM movies
WHERE to_tsvector('english',title) @@ 'night & day';

That will return this query plan:

QUERY PLAN
--
Bitmap Heap Scan on movies (cost=20.00..24.26 rows=1 width=171)

Recheck Cond: (to_tsvector('english'::regconfig, title) @@
'''night'' & ''day'''::tsquery)
-> Bitmap Index Scan on movies_title_searchable

(cost=0.00..20.00 rows=1 width=0)
Index Cond: (to_tsvector('english'::regconfig, title) @@
'''night'' & ''day'''::tsquery)

EXPLAIN is important to ensure indexes are used as you expect them. Otherwise,
the index is just wasted overhead.

Metaphones

We’ve inched toward matching less specific inputs. LIKE and regular expressions
require crafting patterns that can match strings precisely according to their
format. Levenshtein distance allows you to find matches that contain minor
misspellings but must ultimately be very close to the same string. Trigrams
are a good choice for finding reasonable misspelled matches. Finally, full-text
searching allows natural language flexibility in that it can ignore minor words
such as a and the and can deal with pluralization. Sometimes we just don’t
know how to spell words correctly but we know how they sound.

We love Bruce Willis and would love to see what movies he’s in. Unfortunately,
we can’t remember exactly how to spell his name, so we sound it out as best
we can.

Chapter 2. PostgreSQL • 44

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

SELECT *
FROM actors
WHERE name = 'Broos Wils';

Even a trigram is no good here (using % rather than =).

SELECT *
FROM actors
WHERE name % 'Broos Wils';

Enter the metaphones, which are algorithms for creating a string representa-
tion of word sounds. You can define how many characters are in the output
string. For example, the seven-character metaphone of the name Aaron
Eckhart is ARNKHRT.

To find all films with actors with names sounding like Broos Wils, we can query
against the metaphone output. Note that NATURAL JOIN is an INNER JOIN that
automatically joins ON matching column names (for example, movies.actor_id=
movies_actors.actor_id).

SELECT title
FROM movies NATURAL JOIN movies_actors NATURAL JOIN actors
WHERE metaphone(name, 6) = metaphone('Broos Wils', 6);

title

The Fifth Element
Twelve Monkeys
Armageddon
Die Hard
Pulp Fiction
The Sixth Sense

:

If you peek at the online documentation, you’ll see the fuzzystrmatch module
contains other functions: dmetaphone() (double metaphone), dmetaphone_alt() (for
alternative name pronunciations), and soundex() (a really old algorithm from
the 1880s made by the U.S. Census to compare common American surnames).

You can dissect the functions’ representations by selecting their output.

SELECT name, dmetaphone(name), dmetaphone_alt(name),
metaphone(name, 8), soundex(name)

FROM actors;

name | dmetaphone | dmetaphone_alt | metaphone | soundex
----------------+------------+----------------+-----------+--------
50 Cent | SNT | SNT | SNT | C530
Aaron Eckhart | ARNK | ARNK | ARNKHRT | A652
Agatha Hurle | AK0R | AKTR | AK0HRL | A236

report erratum • discuss

Day 3: Full Text and Multidimensions • 45

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

There is no single best function to choose, and the optimal choice depends
on your dataset and use case.

Combining String Matches
With all of our string searching ducks in a row, we’re ready to start combining
them in interesting ways.

One of the most flexible aspects of metaphones is that their outputs are just
strings. This allows you to mix and match with other string matchers.

For example, we could use the trigram operator against metaphone() outputs
and then order the results by the lowest Levenshtein distance. This means
“Get me names that sound the most like Robin Williams, in order.”

SELECT * FROM actors
WHERE metaphone(name,8) % metaphone('Robin Williams',8)
ORDER BY levenshtein(lower('Robin Williams'), lower(name));

actor_id | name
----------+-----------------

4093 | Robin Williams
2442 | John Williams
4479 | Steven Williams
4090 | Robin Shou

Be warned, though, that unbridled exploitation of this flexibility can yield
funny results.

SELECT * FROM actors WHERE dmetaphone(name) % dmetaphone('Ron');

This will return a result set that includes actors like Renée Zellweger, Ringo
Starr, and Randy Quaid.

The combinations are vast, limited only by your experimentations.

Genres as a Multidimensional Hypercube
The last contributed package we investigate is cube. We’ll use the cube datatype
to map a movie’s genres as a multidimensional vector. We will then use
methods to efficiently query for the closest points within the boundary of a
hypercube to give us a list of similar movies.

As you may have noticed in the beginning of Day 3, we created a column
named genres of type cube. Each value is a point in 18-dimensional space with
each dimension representing a genre. Why represent movie genres as points
in n-dimensional space? Movie categorization is not an exact science, and
many movies are not 100 percent comedy or 100 percent tragedy—they are
something in between.

Chapter 2. PostgreSQL • 46

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

In our system, each genre is scored from (the totally arbitrary numbers) 0 to
10 based on how strong the movie is within that genre—with 0 being nonex-
istent and 10 being the strongest.

Star Wars, for example, has a genre vector of (0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0).
The genres table describes the position of each dimension in the vector. We can
decrypt its genre values by extracting the cube_ur_coord(vector,dimension) using
each genres.position. For clarity, we filter out genres with scores of 0.

SELECT name,
cube_ur_coord('(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)', position) as score

FROM genres g
WHERE cube_ur_coord('(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)', position) > 0;

name | score
-----------+-------
Adventure | 7
Fantasy | 7
SciFi | 10

We will find similar movies by finding the nearest points. To understand why
this works, we can envision two movies on a two-dimensional genre graph,
like the graph shown below. If your favorite movie is Animal House, you’ll
probably want to see The 40-Year-Old Virgin more than Oedipus—a story
famously lacking in comedy. In our two-dimensional universe, it’s a simple
nearest-neighbor search to find likely matches.

Tr
ag

ed
y

Comedy

Oedipus

The 40 Year
Old Virgin

Gone with
the Wind

Animal
House

We can extrapolate this into more dimensions with more genres, be it 2, 3,
or 18. The principle is the same: a nearest-neighbor match to the nearest
points in genre space will yield the closest genre matches.

The nearest matches to the genre vector can be discovered by the cube_dis-
tance(point1, point2). Here we can find the distance of all movies to the Star Wars
genre vector, nearest first.

report erratum • discuss

Day 3: Full Text and Multidimensions • 47

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

SELECT *,
cube_distance(genre, '(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)') dist

FROM movies
ORDER BY dist;

We created the movies_genres_cube cube index earlier when we created the tables.
However, even with an index, this query is still relatively slow because it
requires a full-table scan. It computes the distance on every row and then
sorts them.

Rather than compute the distance of every point, we can instead focus on
likely points by way of a bounding cube. Just like finding the closest five towns
on a map will be faster on a state map than a world map, bounding reduces
the points we need to look at.

We use cube_enlarge(cube,radius,dimensions) to build an 18-dimensional cube that
is some length (radius) wider than a point.

Let’s view a simpler example. If we built a two-dimensional square one unit
around a point (1,1), the lower-left point of the square would be at (0,0), and
the upper-right point would be (2,2).

SELECT cube_enlarge('(1,1)',1,2);

cube_enlarge

(0, 0),(2, 2)

The same principle applies in any number of dimensions. With our bounding
hypercube, we can use a special cube operator, @>, which means contains.
This query finds the distance of all points contained within a five-unit cube
of the Star Wars genre point.

SELECT title,
cube_distance(genre, '(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)') dist

FROM movies
WHERE cube_enlarge('(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)'::cube, 5, 18)

@> genre
ORDER BY dist;

title | dist
--+------------------
Star Wars | 0
Star Wars: Episode V - The Empire Strikes Back | 2
Avatar | 5
Explorers | 5.74456264653803
Krull | 6.48074069840786
E.T. The Extra-Terrestrial | 7.61577310586391

Chapter 2. PostgreSQL • 48

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Using a subselect, we can get the genre by movie name and perform our cal-
culations against that genre using a table alias.

SELECT m.movie_id, m.title
FROM movies m, (SELECT genre, title FROM movies WHERE title = 'Mad Max') s
WHERE cube_enlarge(s.genre, 5, 18) @> m.genre AND s.title <> m.title
ORDER BY cube_distance(m.genre, s.genre)
LIMIT 10;

movie_id | title
----------+----------------------------

1405 | Cyborg
1391 | Escape from L.A.
1192 | Mad Max Beyond Thunderdome
1189 | Universal Soldier
1222 | Soldier
1362 | Johnny Mnemonic
946 | Alive
418 | Escape from New York

1877 | The Last Starfighter
1445 | The Rocketeer

This method of movie suggestion is not perfect, but it’s an excellent start. We
will see more dimensional queries in later chapters, such as two-dimensional
geographic searches in MongoDB (see GeoSpatial Queries, on page 130).

Day 3 Wrap-Up
Today we jumped headlong into PostgreSQL’s flexibility in performing string
searches and used the cube package for multidimensional searching. Most
importantly, we caught a glimpse of the nonstandard extensions that put
PostgreSQL at the top of the open source RDBMS field. There are dozens (if
not hundreds) more extensions at your disposal, from geographic storage to
cryptographic functions, custom datatypes, and language extensions. Beyond
the core power of SQL, contrib packages make PostgreSQL shine.

Day 3 Homework

Find

1. Find the online documentation listing all contributed packages bundled
into Postgres. Read up on two that you could imagine yourself using in
one of your projects.

2. Find the online POSIX regex documentation (it will also come in handy
in future chapters).

report erratum • discuss

Day 3: Full Text and Multidimensions • 49

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Do

1. Create a stored procedure that enables you to input a movie title or an
actor’s name and then receive the top five suggestions based on either
movies the actor has starred in or films with similar genres.

2. Expand the movies database to track user comments and extract keywords
(minus English stopwords). Cross-reference these keywords with actors’
last names and try to find the most talked-about actors.

Wrap-Up
If you haven’t spent much time with relational databases, we highly recom-
mend digging deeper into PostgreSQL, or another relational database, before
deciding to scrap it for a newer variety. Relational databases have been the
focus of intense academic research and industrial improvements for more
than forty years, and PostgreSQL is one of the top open source relational
databases to benefit from these advancements.

PostgreSQL’s Strengths
PostgreSQL’s strengths are as numerous as any relational model: years of
research and production use across nearly every field of computing, flexible
queryability, and very consistent and durable data. Most programming lan-
guages have battle-tested driver support for Postgres, and many programming
models, like object-relational mapping (ORM), assume an underlying relational
database.

But the real crux of the matter is the flexibility of the join. You don’t need to
know how you plan to actually query your model because you can always
perform some joins, filters, views, and indexes—odds are good that you will
always have the ability to extract the data you want. In the other chapters of
this book that assumption will more or less fly out the window.

Chapter 2. PostgreSQL • 50

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

PostgreSQL is fantastic for what we call “Stepford data” (named for The
Stepford Wives, a story about a neighborhood where nearly everyone was
consistent in style and substance), which is data that is fairly homogeneous
and conforms well to a structured schema.

Furthermore, PostgreSQL goes beyond the normal open source RDBMS
offerings, such as powerful schema constraint mechanisms. You can write
your own language extensions, customize indexes, create custom datatypes,
and even overwrite the parsing of incoming queries. And where other open
source databases may have complex licensing agreements, PostgreSQL is
open source in its purest form. No one owns the code. Anyone can do pretty
much anything they want with the project (other than hold authors liable).
The development and distribution are completely community supported. If
you are a fan of free(dom) software, you have to respect their general resistance
to cashing in on an amazing product.

PostgreSQL’s Weaknesses
Although relational databases have been undeniably the most successful
style of database over the years, there are cases where it may not be a great fit.

Postgres and JSON

Although we won‘t delve too deeply into it here given that we cover two other databases
in this book that were explicitly created to handle unstructured data, we‘d be remiss
in not mentioning that Postgres has offered support for JSON since version 9.3.
Postgres offers two different formats for this: JSON and JSONB (the json and jsonb
types, respectively). The crucial difference between them is that the json type stores
JSON as text while jsonb stores JSON using a decomposed binary format; json is opti-
mized for faster data input while jsonb is optimized for faster processing.

With Postgres, you can perform operations like this:

CREATE TABLE users (
username TEXT,
data JSON

);
INSERT INTO users VALUES ('wadeboggs107', '{ "AVG": 0.328, "HR": 118, "H": 3010 }');
SELECT data->>'AVG' AS lifetime_batting_average FROM users;

lifetime_batting_average

0.328

If your use case requires a mixture of structured and unstructured (or less structured)
datatypes—or even requires only unstructured datatypes—then Postgres may provide
a solution.

report erratum • discuss

Wrap-Up • 51

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Partitioning is not one of the strengths of relational databases such as Post-
greSQL. If you need to scale out rather than up—multiple parallel databases
rather than a single beefy machine or cluster—you may be better served
looking elsewhere (although clustering capabilities have improved in recent
releases). Another database might be a better fit if:

• You don’t truly require the overhead of a full database (perhaps you only
need a cache like Redis).

• You require very high-volume reads and writes as key values.

• You need to store only large BLOBs of data.

Parting Thoughts
A relational database is an excellent choice for query flexibility. While Post-
greSQL requires you to design your data up front, it makes no assumptions
about how you use that data. As long as your schema is designed in a fairly
normalized way, without duplication or storage of computable values, you
should generally be all set for any queries you might need to create. And if
you include the correct modules, tune your engine, and index well, it will
perform amazingly well for multiple terabytes of data with very small resource
consumption. Finally, to those for whom data safety is paramount, Post-
greSQL’s ACID-compliant transactions ensure your commits are completely
atomic, consistent, isolated, and durable.

Chapter 2. PostgreSQL • 52

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 3

HBase
Apache HBase is made for big jobs, like a nail gun. You would never use
HBase to catalog your corporate sales list or build a to-do list app for fun,
just like you’d never use a nail gun to build a doll house. If the size of your
dataset isn’t many, many gigabytes at the very least then you should probably
use a less heavy-duty tool.

At first glance, HBase looks a lot like a relational database, so much so that
if you didn’t know any better, you might think that it is one. In fact, the most
challenging part of learning HBase isn’t the technology; it’s that many of the
words used in HBase are deceptively familiar. For example, HBase stores data
in buckets it calls tables, which contain cells that appear at the intersection
of rows and columns. Sounds like a relational database, right?

Wrong! In HBase, tables don’t behave like relations, rows don’t act like records,
and columns are completely variable and not enforced by any predefined
schema. Schema design is still important, of course, because it informs the
performance characteristics of the system, but it won’t keep your house in
order—that task falls to you and how your applications use HBase. In general,
trying to shoehorn HBase into an RDBMS-style system is fraught with nothing
but peril and a certain path to frustration and failure. HBase is the evil twin,
the bizarro doppelgänger, if you will, of RDBMS.

On top of that, unlike relational databases, which sometimes have trouble
scaling out, HBase doesn’t scale down. If your production HBase cluster has
fewer than five nodes, then, quite frankly, you’re doing it wrong. HBase is not
the right database for some problems, particularly those where the amount
of data is measured in megabytes, or even in the low gigabytes.

So why would you use HBase? Aside from scalability, there are a few reasons.
To begin with, HBase has some built-in features that other databases lack,

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

such as versioning, compression, garbage collection (for expired data), and
in-memory tables. Having these features available right out of the box means
less code that you have to write when your requirements demand them. HBase
also makes strong consistency guarantees, making it easier to transition from
relational databases for some use cases. Finally, HBase guarantees atomicity
at the row level, which means that you can have strong consistency guarantees
at a crucial level of HBase’s data model.

For all of these reasons, HBase really shines as the cornerstone of a large-
scale online analytics processing system. While individual operations may
sometimes be slower than equivalent operations in other databases, scanning
through enormous datasets is an area where HBase truly excels. For genuinely
big queries, HBase often outpaces other databases, which helps to explain
why HBase is often used at big companies to back heavy-duty logging and
search systems.

Introducing HBase
HBase is a column-oriented database that prides itself on its ability to provide
both consistency and scalability. It is based on Bigtable, a high-performance,
proprietary database developed by Google and described in the 2006 white
paper “Bigtable: A Distributed Storage System for Structured Data.”1 Initially
created for natural language processing, HBase started life as a contrib
package for Apache Hadoop. Since then, it has become a top-level Apache
project.

Luc says:

Hosted HBase with Google Cloud Bigtable
As you’ll see later in this chapter, HBase can be tricky to administer. Fortunately,
there’s now a compelling option for those who want to utilize the power of HBase with
very little operational burden: Google’s Cloud Bigtable, which is part of its Cloud
Platform suite of products. Cloud Bigtable isn’t 100% compatible with HBase but as
of early 2018 it’s very close—close enough that you may be able to migrate many
existing HBase applications over.

If you find the basic value proposition of, for example, Amazon’s cloud-based
DynamoDB compelling and you think HBase is a good fit for a project, then Cloud
Bigtable might be worth checking out. You can at least be assured that it’s run by
the same company that crafted the concepts behind HBase (and the folks at Google
do seem to know a thing or two about scale).

1. http://research.google.com/archive/bigtable.html

Chapter 3. HBase • 54

report erratum • discuss

http://research.google.com/archive/bigtable.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

On the architecture front, HBase is designed to be fault tolerant. Hardware
failures may be uncommon in individual machines but, in large clusters,
node failure is the norm (as are network issues). HBase can gracefully
recover from individual server failures because it uses both write-ahead log-
ging, which writes data to an in-memory log before it’s written (so that nodes
can use the log for recovery rather than disk), and distributed configuration,
which means that nodes can rely on each other for configuration rather than
on a centralized source.

Additionally, HBase lives in the Hadoop ecosystem, where it benefits from its
proximity to other related tools. Hadoop is a sturdy, scalable computing platform
that provides a distributed file system and MapReduce capabilities. Wherever
you find HBase, you’ll find Hadoop and other infrastructural components that
you can use in your own applications, such as Apache Hive, a data warehousing
tool, and Apache Pig, a parallel processing tool (and many others).

Finally, HBase is actively used and developed by a number of high-profile
companies for their “Big Data” problems. Notably, Facebook uses HBase for
a variety of purposes, including for Messages, search indexing, and stream
analysis. Twitter uses it to power its people search capability, for monitoring
and performance data, and more. Airbnb uses it as part of their realtime
stream processing stack. Apple uses it for...something, though they won‘t
publicly say what. The parade of companies using HBase also includes the
likes of eBay, Meetup, Ning, Yahoo!, and many others.

With all of this activity, new versions of HBase are coming out at a fairly rapid
clip. At the time of this writing, the current stable version is 1.2.1, so that’s
what you’ll be using. Go ahead and download HBase, and we’ll get started.

Day 1: CRUD and Table Administration
Today’s goal is to learn the nuts and bolts of working with HBase. You’ll get
a local instance of HBase running in standalone mode (rather than in dis-
tributed mode), and then you’ll use the HBase shell to create and alter tables
and to insert and modify data using basic CRUD-style commands. After that,
you’ll explore how to perform some of those operations programmatically by
using the HBase Java API in JRuby. Along the way, you’ll uncover some HBase
architectural concepts, such as the relationship between rows, column fami-
lies, columns, and values in a table. Just bear in mind that these concepts
in HBase are subtly different from their counterparts in relational databases.

According to most HBase admins out there, a fully operational, production-
quality HBase cluster should really consist of no fewer than five nodes. But

report erratum • discuss

Day 1: CRUD and Table Administration • 55

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

this bulky of a setup would be overkill for our needs (and for our laptops).
Fortunately, HBase supports three running modes:

• Standalone mode is a single machine acting alone.
• Pseudo-distributed mode is a single node pretending to be a cluster.
• Fully distributed mode is a cluster of nodes working together.

For most of this chapter, you’ll be running HBase in standalone mode. Yet
even that can be a bit of a challenge, especially compared to other databases
in this book, such as Redis or MongoDB. So although we won’t cover every
aspect of installation and administration, we’ll give some relevant troubleshoot-
ing tips where appropriate.

Configuring HBase
Before you can use HBase, you need to provide it with some configuration,
as HBase doesn’t really have an “out-of-the-box” mode. Configuration settings
for HBase are kept in a file called hbase-site.xml, which can be found in the
${HBASE_HOME}/ conf directory. Note that HBASE_HOME is an environment variable
pointing to the directory where you’ve installed HBase. Make sure to set this
variable now, preferably in your .bash_profile or similar file so that it persists
across shell sessions.

Initially, this hbase-site.xml file contains just an empty <configuration> tag. You can
add any number of property definitions to your configuration using this format:

<property>
<name>some.property.name</name>
<value>A property value</value>

</property>

The hbase-default.xml File

Another way of installing HBase is to clone the project directory locally using Git,
either from the Apache repository at http://git.apache.org/hbase.git or from the mirror
repository on GitHub at https://github.com/apache/hbase.

If you install HBase this way, you’ll find an hbase-default.xml file in the hbase-com-
mon/src/main/resources subdirectory. This is a very handy file that lists all of the available
configurable parameters for HBase—and there are many!—along with default values
and descriptions for each parameter.

You can also see the contents of this file in your browser on GitHub.a

a. https://github.com/apache/hbase/blob/master/hbase-common/src/main/resources/hbase-default.xml

Chapter 3. HBase • 56

report erratum • discuss

http://git.apache.org/hbase.git
https://github.com/apache/hbase
https://github.com/apache/hbase/blob/master/hbase-common/src/main/resources/hbase-default.xml
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

By default, HBase uses a temporary directory to store its data files. This
means you’ll lose all your data whenever the operating system decides to
reclaim the disk space. To keep your data around, you should specify a non-
ephemeral storage location. Set the hbase.rootdir property to an appropriate
path like so:

<property>
<name>hbase.rootdir</name>
<value>file:///path/to/hbase</value>

</property>

Here’s an example configuration:

<property>
<name>hbase.rootdir</name>
<value>file://</value>

</property>

To start HBase, open a terminal (command prompt) and run this command:

$ ${HBASE_HOME}/bin/start-hbase.sh

To shut down HBase at any time, use the stop-hbase.sh command in the same
directory.

If anything goes wrong, take a look at the most recently modified files in the
${HBASE_HOME}/logs directory. On *nix-based systems, the following command
will pipe the latest log data to the console as it’s written:

$ cd ${HBASE_HOME}
$ find ./logs -name "hbase-*.log" -exec tail -f {} \;

The HBase Shell
The HBase shell is a JRuby-based command-line program you can use to interact
with HBase. In the shell, you can add and remove tables, alter table schemas,
add or delete data, and perform a bunch of other tasks. Later, we’ll explore
other means of connecting to HBase, but for now the shell will be our home.

With HBase running, open a terminal and fire up the HBase shell:

$ ${HBASE_HOME}/bin/hbase shell

To confirm that it’s working properly, try asking it for version information.
That should output a version number and hash, and a timestamp for when
the version was released.

hbase> version
1.2.1, r8d8a7107dc4ccbf36a92f64675dc60392f85c015, Wed Mar 30 11:19:21 CDT 2016

report erratum • discuss

Day 1: CRUD and Table Administration • 57

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You can enter help at any time to see a list of available commands or to get
usage information about a particular command.

Next, execute the status command to see how your HBase server is holding up.

hbase> status
1 active master, 0 backup masters, 1 servers, 0 dead, 2.0000 average load

If an error occurs for any of these commands or if the shell hangs, a connection
problem could be to blame. HBase does its best to automatically configure
its services based on your network setup, but sometimes it gets it wrong. If
you’re seeing these symptoms, check the HBase network settings.

HBase Network Settings

By default, HBase tries to make its services available to external clients, but in our
case, we only need to connect from the same machine. So it might help to add some
or all of the following properties to your hbase-site.xml file (your mileage may vary). Note
that the values in the following table will help only if you plan to connect locally and
not remotely:

valueproperty name

lohbase.master.dns.interface

127.0.0.1hbase.master.info.bindAddress

127.0.0.1hbase.regionserver.info.bindAddress

lohbase.regionserver.dns.interface

lohbase.zookeeper.dns.interface

The properties tell HBase how to establish connections for the master server and
region servers (both of which we’ll discuss later) and for ZooKeeper (which HBase
uses as a configuration service). The properties with the value “lo” refer to the so-
called loopback interface. On *nix systems, the loopback interface is not a real network
interface (like your Ethernet or wireless cards) but rather a software-only interface
for the computer to use to connect to itself. The bindAddress properties tell HBase which
IP address to try to listen on.

Creating a Table
Most programming languages have some concept of a key/value map. Java-
Script has objects, Ruby has hashes, Go has maps, Python has dictionaries,
Java has hashmaps, and so on. A table in HBase is basically a big map—well,
more accurately, a map of maps.

In an HBase table, keys are arbitrary strings that each map to a row of data.
A row is itself a map in which keys are called columns and values are stored

Chapter 3. HBase • 58

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

as uninterpreted arrays of bytes. Columns are grouped into column families,
so a column’s full name consists of two parts: the column family name and
the column qualifier. Often these are concatenated together using a colon (for
example, family:qualifier).

Here’s what a simple HBase table might look like if it were a Python dictionary:

hbase_table = { # Table
'row1': { # Row key

'cf1:col1': 'value1', # Column family, column, and value
'cf1:col2': 'value2',
'cf2:col1': 'value3'

},
'row2': {

More row data
}

}

queried_value = hbase_table['row1']['cf1:col1'] # 'value1'

For a more visual illustration, take a look at the following diagram.

row keys column family column family

"first"
"red": "#F00"
"blue": "#00F"
"yellow": "#FF0"

"square": "4"

"second"
"triangle": "3"
"square": "4"

row

row

"color" "shape"

In this figure, we have a hypothetical table with two column families: color and
shape. The table has two rows—denoted by dashed boxes—identified by their
row keys: first and second. Looking at just the first row, you see that it has three
columns in the color column family (with qualifiers red, blue, and yellow) and one
column in the shape column family (square). The combination of row key and col-
umn name (including both family and qualifier) creates an address for locating
data. In this example, the tuple first/color:red points us to the value '#F00'.

report erratum • discuss

Day 1: CRUD and Table Administration • 59

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Now let’s take what you’ve learned about table structure and use it to do
something fun—you’re going to make a wiki! There are lots of juicy info bits
you might want to associate with a wiki, but you’ll start with the bare mini-
mum. A wiki contains pages, each of which has a unique title string and
contains some article text.

Use the create command to make our wiki table in the HBase shell:

hbase> create 'wiki', 'text'
0 row(s) in 1.2160 seconds

Here, we’re creating a table called wiki with a single column family called text.
The table is currently empty; it has no rows and thus no columns. Unlike a
relational database, in HBase a column is specific to the row that contains
it. Columns don’t have to be predefined in something like a CREATE TABLE dec-
laration in SQL. For our purposes here, though, we’ll stick to a schema, even
though it isn’t predefined. When we start adding rows, we’ll add columns to
store data at the same time.

Visualizing our table architecture, we arrive at something like the following
figure.

row keys column family

"first page's title" "": "Text of first page"

"second page's title"

row

"text"(wiki page titles)

(page)

row

(page)
"": "Text of second page"

By our own convention, we expect each row to have exactly one column
within the text family, qualified by the empty string (''). So, the full column
name containing the text of a page will be 'text:'.

For our wiki table to be useful, it’s of course going to need content, so let’s
add some!

Chapter 3. HBase • 60

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Inserting, Updating, and Retrieving Data
Our wiki needs a Home page, so we’ll start with that. To add data to an HBase
table, use the put command:

hbase> put 'wiki', 'Home', 'text:', 'Welcome to the wiki!'

This command inserts a new row into the wiki table with the key 'Home', adding
'Welcome to the wiki!' to the column called 'text:'. Note the colon at the end of the
column name. This is actually a requirement in HBase if you don’t specify
a column family in addition to a column (in this case, you’re specifying no
column family).

We can query the data for the 'Home' row using get, which requires two param-
eters: the table name and the row key. You can optionally specify a list of
columns to return. Here, we’ll fetch the value of the text: column:

hbase> get 'wiki', 'Home', 'text:'
COLUMN CELL
text: timestamp=1295774833226, value=Welcome to the wiki!

1 row(s) in 0.0590 seconds

Notice the timestamp field in the output. HBase stores an integer timestamp
for all data values, representing time in milliseconds since the epoch (00:00:00
UTC on January 1, 1970). When a new value is written to the same cell, the
old value hangs around, indexed by its timestamp. This is a pretty awesome
feature, and one that is unique to HBase amongst the databases in this book.
Most databases require you to specifically handle historical data yourself,
but in HBase, versioning is baked right in!

Finally, let’s perform a scan operation:

hbase> scan 'wiki'

Scan operations simply return all rows in the entire table. Scans are powerful
and great for development purposes but they are also a very blunt instrument,
so use them with care. We don’t have much data in our wiki table so it’s per-
fectly fine, but if you’re running HBase in production, stick to more precise
reads or you’ll put a lot of undue strain on your tables.

Putting and Getting
The put and get commands allow you to specify a timestamp explicitly. If using
milliseconds since the epoch doesn’t strike your fancy, you can specify another
integer value of your choice. This gives you an extra dimension to work with if
you need it. If you don’t specify a timestamp, HBase will use the current time
when inserting, and it will return the most recent version when reading.

report erratum • discuss

Day 1: CRUD and Table Administration • 61

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Luc says:

Rows Are Like Mini Databases
Rows in HBase are a bit tough to fully understand at first because rows tend to be
much more “shallow” in other databases. In relational databases, for example, rows
contain any number of column values but not metadata such as timestamps, and
they don’t contain the kind of depth that HBase rows do (like the Python dictionary
in the previous example).

I recommend thinking of HBase rows as being a tiny database in their own right.
Each cell in the database can have many different values associated with it (like a
mini timeseries database). When you fetch a row in HBase, you’re not fetching a set
of values; you’re fetching a small world.

Altering Tables
So far, our wiki schema has pages with titles, text, and an integrated version
history but nothing else. Let’s expand our requirements to include the following:

• In our wiki, a page is uniquely identified by its title.
• A page can have unlimited revisions.
• A revision is identified by its timestamp.
• A revision contains text and optionally a commit comment.
• A revision was made by an author, identified by name.

Visually, our requirements can be sketched as you see in the following figure.

In this abstract representation of our requirements for a page, we see that each
revision has an author, a commit comment, some article text, and a timestamp.
The title of a page is not part of a revision because it’s the identifier we use to

Chapter 3. HBase • 62

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

denote revisions belonging to the same page and thus cannot change. If you did
want to change the title of a page, you’d need to write a whole new row.

Mapping our vision to an HBase table takes a somewhat different form, as
illustrated in the figure that follows.

keys family

"first page" "": "..."

"second page"

row

"text"(title)

(page)

row

(page)
"": "..."

family

"author": "..."

"revision"

"comment": "..."

"author": "..."
"comment": "..."

Our wiki table uses the title as the row key and will group other page data into
two column families called text and revision. The text column family is the same as
before; we expect each row to have exactly one column, qualified by the empty
string (''), to hold the article contents. The job of the revision column family is
to hold other revision-specific data, such as the author and commit comment.

Defaults

We created the wiki table with no special options, so all the HBase default
values were used. One such default value is to keep only three VERSIONS of
column values, so let’s increase that. To make schema changes, first we have
to take the table offline with the disable command.

hbase> disable 'wiki'
0 row(s) in 1.0930 seconds

Now we can modify column family characteristics using the alter command.

hbase> alter 'wiki', { NAME => 'text', VERSIONS =>
hbase* org.apache.hadoop.hbase.HConstants::ALL_VERSIONS }
0 row(s) in 0.0430 seconds

Here, we’re instructing HBase to alter the text column family’s VERSIONS
attribute. There are a number of other attributes we could have set, some of

report erratum • discuss

Day 1: CRUD and Table Administration • 63

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

which we’ll discuss in Day 2. The hbase* line means that it’s a continuation
of the previous line.

Altering a Table

Operations that alter column family characteristics can be very expensive
because HBase has to create a new column family with the chosen specifica-
tions and then copy all the data over. In a production system, this may incur
significant downtime. For this reason, the sooner you settle on column family
options the better.

With the wiki table still disabled, let’s add the revision column family, again
using the alter command:

hbase> alter 'wiki', { NAME => 'revision', VERSIONS =>
hbase* org.apache.hadoop.hbase.HConstants::ALL_VERSIONS }
0 row(s) in 0.0660 seconds

Just as before, with the text family, we’re only adding a revision column family
to the table schema, not individual columns. Though we expect each row to
eventually contain a revision:author and revision:comment, it’s up to the client to
honor this expectation; it’s not written into any formal schema. If someone
wants to add a revision:foo for a page, HBase won’t stop them.

Moving On

With these additions in place, let’s reenable our wiki:

hbase> enable 'wiki'
0 row(s) in 0.0550 seconds

Now that our wiki table has been modified to support our growing require-
ments list, we can start adding data to columns in the revision column family.

Adding Data Programmatically
As you’ve seen, the HBase shell is great for tasks such as manipulating tables.
Sadly, the shell’s data insertion support isn’t the best. The put command
allows you to set only one column value at a time, and in our newly updated
schema, we need to add multiple column values simultaneously so they all
share the same timestamp. We’re going to need to start scripting.

The following script can be executed directly in the HBase shell because the
shell is also a JRuby interpreter. When run, it adds a new version of the text
for the Home page, setting the author and comment fields at the same time.
JRuby runs on the Java virtual machine (JVM), giving it access to the HBase
Java code. These examples will not work with non-JVM Ruby.

Chapter 3. HBase • 64

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

hbase/put_multiple_columns.rb
import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'

def jbytes(*args)
args.map {|arg| arg.to_s.to_java_bytes}

end

table = HTable.new(@hbase.configuration, "wiki")

p = Put.new(*jbytes("Home"))

p.add(*jbytes("text", "", "Hello world"))
p.add(*jbytes("revision", "author", "jimbo"))
p.add(*jbytes("revision", "comment", "my first edit"))

table.put(p)

The import lines bring references to useful HBase classes into the shell. This
saves us from having to write out the full namespace later. Next, the jbytes()
function takes any number of arguments and returns an array converted to
Java byte arrays, as the HBase API methods demand.

After that, we create a local variable (table) pointing to our wiki table, using
the @hbase administration object for configuration information.

Next, we stage a commit operation by creating and preparing a new instance
of a Put object, which takes the row to be modified. In this case, we’re sticking
with the Home page we’ve been working with thus far. Finally, we add() properties
to our Put instance and then call on the table object to execute the put operation
we’ve prepared. The add() method has several forms; in our case, we used the
three-argument version: add(column_family, column_qualifier, value).

Why Column Families?

You may be tempted to build your whole structure without column families.
Why not just store all of a row’s data in a single column family? That solution
would be simpler to implement. But there are downsides to avoiding column
families. One of them is that you’d miss out on fine-grained performance
tuning. Each column family’s performance options are configured indepen-
dently. These settings affect things such as read and write speed and disk
space consumption.

The other advantage to keep in mind is that column families are stored in
different directories. When reading row data in HBase, you can potentially
target your reads to specific column families within the row and thus avoid
unnecessary cross-directory lookups, which can provide a speed boost,
especially in read-heavy workloads.

report erratum • discuss

Day 1: CRUD and Table Administration • 65

http://media.pragprog.com/titles/pwrdata/code/hbase/put_multiple_columns.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

All operations in HBase are atomic at the row level. No matter how many
columns are affected, the operation will have a consistent view of the partic-
ular row being accessed or modified. This design decision helps clients reason
intelligently about the data.

Our put operation affects several columns and doesn’t specify a timestamp,
so all column values will have the same timestamp (the current time in mil-
liseconds). Let’s verify by invoking get.

hbase> get 'wiki', 'Home'
COLUMN CELL
revision:author timestamp=1296462042029, value=jimbo
revision:comment timestamp=1296462042029, value=my first edit
text: timestamp=1296462042029, value=Hello world

3 row(s) in 0.0300 seconds

As you can see, each column value listed previously has the same timestamp.

Day 1 Wrap-Up
Today, you got a firsthand look at a running HBase server. You learned how
to configure it and monitor log files for troubleshooting. And using the HBase
shell you performed basic administration and data manipulation tasks.

In providing a basic data model for a wiki storage engine, you explored schema
design in HBase. You learned how to create tables and manipulate column
families. Designing an HBase schema means making choices about column
family options and, just as important, our semantic interpretation of features
such as timestamps and row keys.

You also started poking around in the HBase Java API by executing JRuby
code in the shell. In Day 2, you’ll take this a step further, using the shell to
run custom scripts for big jobs such as data import.

At this point, we hope you’ve been able to uncouple your thinking from rela-
tional database terms such as table, row, and column. By all means, don’t forget
those terms; just suspend their meaning in your head for a while longer, as the
difference between how HBase uses these terms and what they mean in other
systems will become even starker as we delve deeper into HBase’s features.

Day 1 Homework
HBase documentation online generally comes in two flavors: extremely tech-
nical and nonexistent. There are some decent “getting started” guides out
there, but there’s a chance you may need to spend some time trawling through
Javadoc or source code to find answers.

Chapter 3. HBase • 66

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Find

1. Figure out how to use the shell to do the following:

• Delete individual column values in a row
• Delete an entire row

2. Bookmark the HBase API documentation for the version of HBase you’re
using.

Do

1. Create a function called put_many() that creates a Put instance, adds any
number of column-value pairs to it, and commits it to a table. The signa-
ture should look like this:

def put_many(table_name, row, column_values)
your code here

end

2. Define your put_many() function by pasting it in the HBase shell, and then
call it like so:

hbase> put_many 'wiki', 'Some title', {
hbase* "text:" => "Some article text",
hbase* "revision:author" => "jschmoe",
hbase* "revision:comment" => "no comment" }

Day 2: Working with Big Data
With Day 1’s table creation and manipulation under our belts, it’s time to
start adding some serious data to our wiki table. Today, you’ll script against
the HBase APIs, ultimately streaming Wikipedia content right into our wiki!
Along the way, you’ll pick up some performance tricks for making faster import
jobs. Finally, you’ll poke around in HBase’s internals to see how it partitions
data into regions, achieving a series of both performance and disaster recovery
goals.

Importing Data, Invoking Scripts
One common problem people face when trying a new database system is how
to migrate data into it. Handcrafting Put operations with static strings, as you
did in Day 1, is all well and good, but you can do better.

Fortunately, pasting commands into the shell is not the only way to execute
them. When you start the HBase shell from the command line, you can

report erratum • discuss

Day 2: Working with Big Data • 67

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

specify the name of a JRuby script to run. HBase will execute that script as
though it were entered directly into the shell. The syntax looks like this:

$ ${HBASE_HOME}/bin/hbase shell <your_script> [<optional_arguments> ...]

Because we’re interested specifically in “Big Data,” let’s create a script for
importing Wikipedia articles into our wiki table. The WikiMedia Foundation,
which oversees Wikipedia, Wictionary, and other projects, periodically pub-
lishes data dumps we can use. These dumps are in the form of enormous
XML files. Here’s an example record from the English Wikipedia:

<page>
<title>Anarchism</title>
<id>12</id>
<revision>

<id>408067712</id>
<timestamp>2011-01-15T19:28:25Z</timestamp>
<contributor>
<username>RepublicanJacobite</username>
<id>5223685</id>

</contributor>
<comment>Undid revision 408057615 by [[Special:Contributions...</comment>
<text xml:space="preserve">{{Redirect|Anarchist|the fictional character|

...
[[bat-smg:Anarkėzmos]]

</text>
</revision>

</page>

Because we have such incredible foresight, the individual items in these XML
files contain all the information we’ve already accounted for in our schema:
title (row key), text, timestamp, and author. We ought to be able to write a
script to import revisions without too much trouble.

Streaming XML
First things first: We’ll need to parse the huge XML files in a streaming fashion,
so let’s start with that. The basic outline for parsing an XML file in JRuby,
record by record, looks like this:

hbase/basic_xml_parsing.rb
import 'javax.xml.stream.XMLStreamConstants'

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

while reader.has_next

type = reader.next

Chapter 3. HBase • 68

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/hbase/basic_xml_parsing.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

if type == XMLStreamConstants::START_ELEMENT
tag = reader.local_name
do something with tag

elsif type == XMLStreamConstants::CHARACTERS
text = reader.text
do something with text

elsif type == XMLStreamConstants::END_ELEMENT
same as START_ELEMENT

end

end

Breaking this down, there are a few parts worth mentioning. First, we produce
an XMLStreamReader and wire it up to java.lang.System.in, which means it will be
reading from standard input.

Next, we set up a while loop, which will continuously pull out tokens from the
XML stream until there are none left. Inside the while loop, we process the
current token. What happens then depends on whether the token is the start
of an XML tag, the end of a tag, or the text in between.

Streaming Wikipedia
Now we can combine this basic XML processing framework with our previous
exploration of the HTable and Put interfaces you explored previously. Here is
the resultant script. Most of it should look familiar, and we will discuss a few
novel parts.

hbase/import_from_wikipedia.rb
require 'time'

import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'
import 'javax.xml.stream.XMLStreamConstants'

def jbytes(*args)
args.map { |arg| arg.to_s.to_java_bytes }

end

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

document = nil
buffer = nil
count = 0

table = HTable.new(@hbase.configuration, 'wiki')
table.setAutoFlush(false)

while reader.has_next
type = reader.next

report erratum • discuss

Day 2: Working with Big Data • 69

http://media.pragprog.com/titles/pwrdata/code/hbase/import_from_wikipedia.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

if type == XMLStreamConstants::START_ELEMENT

case reader.local_name
when 'page' then document = {}
when /title|timestamp|username|comment|text/ then buffer = []
end

elsif type == XMLStreamConstants::CHARACTERS

buffer << reader.text unless buffer.nil?

elsif type == XMLStreamConstants::END_ELEMENT

case reader.local_name
when /title|timestamp|username|comment|text/
document[reader.local_name] = buffer.join

when 'revision'
key = document['title'].to_java_bytes
ts = (Time.parse document['timestamp']).to_i

p = Put.new(key, ts)
p.add(*jbytes("text", "", document['text']))
p.add(*jbytes("revision", "author", document['username']))
p.add(*jbytes("revision", "comment", document['comment']))
table.put(p)

count += 1
table.flushCommits() if count % 10 == 0
if count % 500 == 0

puts "#{count} records inserted (#{document['title']})"
end

end
end

end

table.flushCommits()
exit

A few things to note in the preceding snippet:

• Several new variables were introduced:

– document holds the current article and revision data.

– buffer holds character data for the current field within the document
(text, title, author, and so on).

– count keeps track of how many articles you’ve imported so far.

• Pay special attention to the use of table.setAutoFlush(false). In HBase, data is
automatically flushed to disk periodically. This is preferred in most
applications. By disabling autoflush in our script, any put operations you
execute will be buffered until you call table.flushCommits(). This allows you
to batch writes together and execute them when it’s convenient for you.

Chapter 3. HBase • 70

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

• If the start tag is a <page>, then reset document to an empty hash. Otherwise,
if it’s another tag you care about, reset buffer for storing its text.

• We handle character data by appending it to the buffer.

• For most closing tags, you just stash the buffered contents into the document.
If the closing tag is a </revision>, however, you create a new Put instance,
fill it with the document’s fields, and submit it to the table. After that, you
use flushCommits() if you haven’t done so in a while and report progress to
stdout.

Compression and Bloom Filters
We’re almost ready to run the script; we just have one more bit of houseclean-
ing to do first. The text column family is going to contain big blobs of text
content. Reading those values will take much longer than values like Hello
world or Welcome to the wiki! from Day 1. HBase enables us to compress that data
to speed up reads:

hbase> alter 'wiki', {NAME=>'text', COMPRESSION=>'GZ', BLOOMFILTER=>'ROW'}
0 row(s) in 0.0510 seconds

HBase supports two compression algorithms: Gzip (GZ) and Lempel-Ziv-
Oberhumer (LZO). The HBase community highly recommends using LZO over
Gzip pretty much unilaterally, but here we’re using Gzip. Why is that?

The problem with LZO for our purposes here is the implementation’s license.
While open source, LZO is not compatible with Apache’s licensing philosophy,
so LZO can’t be bundled with HBase. Detailed instructions are available online
for installing and configuring LZO support. If you want high-performance
compression, use LZO in your own projects.

A Bloom filter is a really cool data structure that efficiently answers the
question “Have I ever seen this thing before?” and is used to prevent expensive
queries that are doomed to fail (that is, to return no results). Originally
developed by Burton Howard Bloom in 1970 for use in spell-checking appli-
cations, Bloom filters have become popular in data storage applications for
determining quickly whether a key exists.

HBase supports using Bloom filters to determine whether a particular column
exists for a given row key (BLOOMFILTER=>'ROWCOL') or just whether a given row
key exists at all (BLOOMFILTER=>'ROW'). The number of columns within a column
family and the number of rows are both potentially unbounded. Bloom filters
offer a fast way of determining whether data exists before incurring an
expensive disk read.

report erratum • discuss

Day 2: Working with Big Data • 71

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

How Do Bloom Filters Work?

Without going too deep into implementation details, a Bloom filter manages a stati-
cally sized array of bits initially set to 0. Each time a new blob of data is presented
to the filter, some of the bits are flipped to 1. Determining which bits to flip depends
on generating a hash from the data and turning that hash into a set of bit positions.

Later, to test whether the filter has been presented with a particular blob in the past,
the filter figures out which bits would have to be 1 and checks them. If any are 0,
then the filter can unequivocally say “no.” If all of the bits are 1, then it reports “yes.”
Chances are it has been presented with that blob before, but false positives are
increasingly likely as more blobs are entered.

This is the trade-off of using a Bloom filter as opposed to a simple hash. A hash will
never produce a false positive, but the space needed to store that data is unbounded.
Bloom filters use a constant amount of space but will occasionally produce false
positives at a predictable rate based on saturation. False positives aren’t a huge deal,
though; they just mean that the filter says a value is likely to be there, but you will
eventually find out that it isn’t.

Engage!
Now that we’ve dissected the script a bit and added some powerful capabilities
to our table, we’re ready to kick off the script. Remember that these files are
enormous, so downloading and unzipping them is pretty much out of the
question. So, what are we going to do?

Fortunately, through the magic of *nix pipes, we can download, extract, and
feed the XML into the script all at once. The command looks like this:

$ curl https://url-for-the-data-dump.com | bzcat | \
${HBASE_HOME}/bin/hbase shell import_from_wikipedia.rb

Note that you should replace the preceding dummy URL with the URL of a
WikiMedia Foundation dump file of some kind.2 You should use [project]-latest-
pages-articles.xml.bz2 for either the English Wikipedia (~12.7 GB)3 or the English
Wiktionary (~566 MB).4 These files contain all of the most recent revisions of
pages in the Main namespace. That is, they omit user pages, discussion pages,
and so on.

Plug in the URL and run it! You should start seeing output like this shortly:

2. https://dumps.wikimedia.org/enwiki/latest
3. https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
4. https://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2

Chapter 3. HBase • 72

report erratum • discuss

https://dumps.wikimedia.org/enwiki/latest
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

500 records inserted (Ashmore and Cartier Islands)
1000 records inserted (Annealing)
1500 records inserted (Ajanta Caves)

The script will happily chug along as long as you let it or until it encounters
an error, but you’ll probably want to shut it off after a while. When you’re
ready to kill the script, press Ctrl+C . For now, though, let’s leave it running
so we can take a peek under the hood and learn about how HBase achieves
its horizontal scalability.

Introduction to Regions and Monitoring Disk Usage
In HBase, rows are kept in order, sorted by the row key. A region is a chunk
of rows, identified by the starting key (inclusive) and ending key (exclusive).
Regions never overlap, and each is assigned to a specific region server in the
cluster. In our simplistic standalone server, there is only one region server,
which will always be responsible for all regions. A fully distributed cluster
would consist of many region servers.

So, let’s take a look at your HBase server’s disk usage, which will give us
insight into how the data is laid out. You can inspect HBase’s disk usage by
opening a command prompt to the data/default directory in the hbase.rootdir
location you specified earlier and executing the du command. du is a standard
*nix command-line utility that tells you how much space is used by a direc-
tory and its children, recursively. The -h option tells du to report numbers in
human-readable form.

Here’s what ours looked like after about 68 MB worth of pages (out of over
560 MB total or about 160,000 pages) had been inserted and the import was
still running:

$ du -h
4.0K ./wiki/.tabledesc

0B ./wiki/.tmp
0B ./wiki/1e157605a0e5a1493e4cc91d7e368b05/.tmp
0B ./wiki/1e157605a0e5a1493e4cc91d7e368b05/recovered.edits

11M ./wiki/1e157605a0e5a1493e4cc91d7e368b05/revision
64M ./wiki/1e157605a0e5a1493e4cc91d7e368b05/text
75M ./wiki/1e157605a0e5a1493e4cc91d7e368b05
75M ./wiki
75M .

This output tells us a lot about how much space HBase is using and how it’s
allocated. The lines starting with /wiki describe the space usage for the wiki
table. The long-named subdirectory 1e157605a0e5a1493e4cc91d7e368b05 represents
an individual region (the only region so far). Under that, the directories /text

report erratum • discuss

Day 2: Working with Big Data • 73

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

and /revision correspond to the text and revision column families, respectively.
Finally, the last line sums up all these values, telling us that HBase is using
75 MB of disk space. We can safely ignore the .tmp and recovered.edits for now.

One more thing. In the directory that you specified using the hbase.rootdir
variable, you’ll find three folders named MasterProcWALs, WALs, and oldWALs. These
folders hold write-ahead log (WAL) files. HBase uses write-ahead logging to
provide protection against node failures. This is a fairly typical disaster
recovery technique. For instance, write-ahead logging in file systems is called
journaling. In HBase, logs are appended to the WAL before any edit operations
(put and increment) are persisted to disk.

For performance reasons, edits are not necessarily written to disk immediately.
The system does much better when I/O is buffered and written to disk in
chunks. If the region server responsible for the affected region were to crash
during this limbo period, HBase would use the WAL to determine which
operations were successful and take corrective action. Without a WAL, a
region server crash would mean that that not-yet-written data would be
simply lost.

Writing to the WAL is optional and enabled by default. Edit classes such as
Put and Increment have a setter method called setWriteToWAL() that can be used
to exclude the operation from being written to the WAL. Generally you’ll want
to keep the default option, but in some instances it might make sense to
change it. For example, if you’re running an import job that you can rerun
any time, such as our Wikipedia import script, you might prioritize the per-
formance benefit of disabling WAL writes over disaster recovery protection.

Regional Interrogation
If you let the script run long enough, you’ll see HBase split the table into
multiple regions. Here’s our du output again, after about 280 MB worth of
data (roughly 2.1 million pages) has been written to the wiki table:

$ du -h
4.0K ./wiki/.tabledesc

0B ./wiki/.tmp
0B ./wiki/48576fdcfcb9b29257fb93d33dbeda90/.tmp
0B ./wiki/48576fdcfcb9b29257fb93d33dbeda90/recovered.edits

132M ./wiki/48576fdcfcb9b29257fb93d33dbeda90/revision
145M ./wiki/48576fdcfcb9b29257fb93d33dbeda90/text
277M ./wiki/48576fdcfcb9b29257fb93d33dbeda90

0B ./wiki/bd36620826a14025a35f1fe5e928c6c9/.tmp
0B ./wiki/bd36620826a14025a35f1fe5e928c6c9/recovered.edits

134M ./wiki/bd36620826a14025a35f1fe5e928c6c9/revision
113M ./wiki/bd36620826a14025a35f1fe5e928c6c9/text

Chapter 3. HBase • 74

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

247M ./wiki/bd36620826a14025a35f1fe5e928c6c9
1.0G ./wiki
1.0G .

The biggest change is that the old region (1e157605a0e5a1493e4cc91d7e368b05) is
now gone and has been replaced by two new regions (48576fd... and bd36620....
In our stand-alone server, all the regions are served by our single server, but
in a distributed environment these would be parceled across multiple region
servers.

This raises a few questions, such as “How do the region servers know which
regions they’re responsible for serving?” and “How can you find which region
(and, by extension, which region server) is serving a given row?”

If we drop back into the HBase shell, we can query the hbase:meta to find out
more about the current regions. hbase:meta is a special table whose sole purpose
is to keep track of all the user tables and which region servers are responsible
for serving the regions of those tables.

hbase> scan 'hbase:meta', { COLUMNS => ['info:server', 'info:regioninfo'] }

Even for a small number of regions, you should get a lot of output. Let’s just
focus on the rows that begin with wiki for now. Here’s a fragment of ours, for-
matted and truncated for readability:

ROW
wiki,,1487399747176.48576fdcfcb9b29257fb93d33dbeda90.

COLUMN+CELL
column=info:server, timestamp=..., value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1487399747533, value={

ENCODED => 48576fdcfcb9b29257fb93d33dbeda90,
NAME => 'wiki,,1487399747176.48576fdcfcb9b29257fb93d33dbeda90.',
STARTKEY => '', ENDKEY => 'lacrimamj'}

ROW
wiki,lacrimamj,1487399747176.bd36620826a14025a35f1fe5e928c6c9.

COLUMN+CELL
column=info:server, timestamp=..., value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1487399747533, value={

ENCODED => bd36620826a14025a35f1fe5e928c6c9,
NAME => 'wiki,lacrimamj,1487399747176.bd36620826a14025a35f1fe5e928c6c9.',
STARTKEY => 'lacrimamj',
ENDKEY => ''}

Both of the regions listed previously are served by the same server, localhost.local-
domain:35552. The first region starts at the empty string row ('') and ends with
'lacrimamj'. The second region starts at 'lacrimamj' and goes to '' (that is, to the
end of the available keyspace).

report erratum • discuss

Day 2: Working with Big Data • 75

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

STARTKEY is inclusive, while ENDKEY is exclusive. So, if you were looking for the
'Demographics of Macedonia' row, you’d find it in the first region.

Because rows are kept in sorted order, we can use the information stored in
hbase:meta to look up the region and server where any given row should be
found. But where is the hbase:meta table stored?

It turns out that the hbase:meta table can also be split into regions and served
by region servers just like any other table would be. If you run the load script
as long as we have, this may or may not happen on your machine; you may
have this table stored in only one region. To find out which servers have which
parts of the hbase:meta table, look at the results of the preceding scan query but
pay attention to the rows that begin with hbase:namespace.

ROW
hbase:namespace,,1486625601612.aa5b4cfb7204bfc50824dee1886103c5.

COLUMN+CELL
column=info:server, timestamp=..., value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1486625602069, value={

ENCODED => aa5b4cfb7204bfc50824dee1886103c5,
NAME => 'hbase:namespace,,1486625601612.aa5b4cfb7204bfc50824dee1886103c5.',
STARTKEY => '',
ENDKEY => ''}

In this case, the entire keyspace (beginning with '' and ending with '') is stored
in the aa5b4cfb7204bfc50824dee1886103c5, which is on disk on our machine in the
data/hbase/namespace/aa5b4cfb7204bfc50824dee1886103c5 subdirectory of our HBase
data folder (your region name will vary).

Describe Your Tables

To see other metadata associated with an HBase table, use the describe command,
like so:

hbase> describe 'wiki'
hbase> describe 'hbase:meta'

This will tell you whether the table is currently enabled and provide a lot of information
about each column family in the table, including any Bloom filters that you’ve applied,
which compression is used, and so on.

The assignment of regions to region servers, including hbase:meta regions, is
handled by the master node, often referred to as HBaseMaster. The master server
can also be a region server, performing both duties simultaneously.

When a region server fails, the master server steps in and reassigns respon-
sibility for regions previously assigned to the failed node. The new stewards

Chapter 3. HBase • 76

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

of those regions would look to the WAL to see what, if any, recovery steps are
needed. If the master server fails, responsibility defers to any of the other
region servers that step up to become the master.

Scanning One Table to Build Another
Once you’ve stopped the import script from running, we can move on to the
next task: extracting information from the imported wiki contents.

Wiki syntax is filled with links, some of which link internally to other articles
and some of which link to external resources. This interlinking contains a
wealth of topological data. Let’s capture it!

Our goal is to capture the relationships between articles as directional links,
pointing one article to another or receiving a link from another. An internal
article link in wikitext looks like this: [[<target name>|<alt text>]], where
<target name> is the article to link to, and <alt text> is the alternative text to
display (optional).

For example, if the text of the article on Star Wars contains the string
"[[Yoda|jedi master]]", we want to store that relationship twice—once as an
outgoing link from Star Wars and once as an incoming link to Yoda. Storing
the relationship twice means that it’s fast to look up both a page’s outgoing
links and its incoming links.

To store this additional link data, we’ll create a new table. Head over to the
shell and enter this:

hbase> create 'links', {
NAME => 'to', VERSIONS => 1, BLOOMFILTER => 'ROWCOL'

},{
NAME => 'from', VERSIONS => 1, BLOOMFILTER => 'ROWCOL'

}

In principle, we could have chosen to shove the link data into an existing
column family or merely added one or more additional column families to the
wiki table rather than create a new one. When you create a separate table,
this has the advantage that the tables have separate regions, which in turn
means that the cluster can more effectively split regions as necessary.

The general guidance for column families in the HBase community is to try
to keep the number of families per table down. You can do this either by
combining more columns into the same families or by putting families in dif-
ferent tables entirely. The choice is largely decided by whether and how often
clients will need to get an entire row of data (as opposed to needing just a few
column values).

report erratum • discuss

Day 2: Working with Big Data • 77

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

For the wiki application we’ve been developing, the text and revision column families
need to be on the same table so when you put new revisions in, the metadata
and the text share the same timestamp. The links content, by contrast, will never
have the same timestamp as the article from which the data came. Further,
most client actions will be interested either in the article text or in the extracted
information about article links but probably not in both at the same time. So,
splitting out the to and from column families into a separate table makes sense.

Constructing the Scanner
With the links table created, we’re ready to implement a script that’ll scan all
the rows of the wiki table. Then, for each row, it’ll retrieve the wikitext and parse
out the links. Finally, for each link found, it’ll create incoming and outgoing
link table records. The bulk of this script should be pretty familiar to you by
now. Most of the pieces are recycled, and we’ll discuss the few novel bits.

hbase/generate_wiki_links.rb
import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'
import 'org.apache.hadoop.hbase.client.Scan'
import 'org.apache.hadoop.hbase.util.Bytes'

def jbytes(*args)
return args.map { |arg| arg.to_s.to_java_bytes }

end

wiki_table = HTable.new(@hbase.configuration, 'wiki')
links_table = HTable.new(@hbase.configuration, 'links')
links_table.setAutoFlush(false)

scanner = wiki_table.getScanner(Scan.new)

linkpattern = /\[\[([^\[\]\|\:\#][^\[\]\|:]*)(?:\|([^\[\]\|]+))?\]\]/
count = 0

while (result = scanner.next())
title = Bytes.toString(result.getRow())
text = Bytes.toString(result.getValue(*jbytes('text', '')))
if text

put_to = nil
text.scan(linkpattern) do |target, label|
unless put_to

put_to = Put.new(*jbytes(title))
put_to.setWriteToWAL(false)

end

target.strip!
target.capitalize!

label = '' unless label
label.strip!

Chapter 3. HBase • 78

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/hbase/generate_wiki_links.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

put_to.add(*jbytes("to", target, label))
put_from = Put.new(*jbytes(target))
put_from.add(*jbytes("from", title, label))
put_from.setWriteToWAL(false)
links_table.put(put_from)

end
links_table.put(put_to) if put_to
links_table.flushCommits()

end

count += 1
puts "#{count} pages processed (#{title})" if count % 500 == 0

end

links_table.flushCommits()
exit

A few things to note in this script:

• First, we grab a Scan object, which we’ll use to scan through the wiki table.

• Extracting row and column data requires some byte wrangling but gener-
ally isn’t too bad either.

• Each time the linkpattern appears in the page text, we extract the target
article and text of the link and then use those values to add to our Put
instances.

• Finally, we tell the table to execute our accumulated Put operations. It’s
possible (though unlikely) for an article to contain no links at all, which
is the reason for the if put_to clause.

• Using setWriteToWAL(false) for these puts is a judgment call. Because this
exercise is for educational purposes and because you could simply rerun
the script if anything went wrong, we’ll take the speed bonus and accept
our fate should the node fail.

Running the Script
If you’re ready to throw caution to the wind, run the script.

${HBASE_HOME}/bin/hbase shell generate_wiki_links.rb

It should produce output like this:

500 pages processed (10 petametres)
1000 pages processed (1259)
1500 pages processed (1471 BC)
2000 pages processed (1683)
...

report erratum • discuss

Day 2: Working with Big Data • 79

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

As with the previous script, you can let it run as long as you like, even to
completion. If you want to stop it, press Ctrl+C .

You can monitor the disk usage of the script using du as we’ve done before.
You’ll see new entries for the links table we just created, and the size counts
will increase as the script runs.

Examining the Output
We just created a scanner programmatically to perform a sophisticated task.
Now we’ll use the shell’s scan command to simply dump part of a table’s
contents to the console. For each link the script finds in a text: blob, it will
indiscriminately create both to and from entries in the links table. To see the
kinds of links being created, head over to the shell and scan the table.

hbase> scan 'links', STARTROW => "Admiral Ackbar", ENDROW => "It's a Trap!"

You should get a whole bunch of output. Of course, you can use the get
command to see the links for just a single article.

hbase> get 'links', 'Addition'
COLUMN CELL
from:+ timestamp=1487402389072, value=
from:0 timestamp=1487402390828, value=
from:Addition timestamp=1487402391595, value=
from:Appendix:Basic English word list timestamp=1487402393334, value=
...

The structure of the wiki table is highly regular, with each row consisting of
the same columns. As you recall, each row has text:, revision:author, and revi-
sion:comment columns. The links table has no such regularity. Each row may
have one column or hundreds. And the variety of column names is as diverse
as the row keys themselves (titles of Wikipedia articles). That’s okay! HBase
is a so-called sparse data store for exactly this reason.

To find out just how many rows are now in your table, you can use the count
command.

hbase> count 'wiki', INTERVAL => 100000, CACHE => 10000
Current count: 100000, row: Nov-Zelandon
Current count: 200000, row: adiudicamur
Current count: 300000, row: aquatores
Current count: 500000, row: coiso
...
Current count: 1300000, row: occludesti
Current count: 1400000, row: plendonta
Current count: 1500000, row: receptarum
Current count: 1900000, row: ventilators
2179230 row(s) in 17.3440 seconds

Chapter 3. HBase • 80

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Because of its distributed architecture, HBase doesn’t immediately know how
many rows are in each table. To find out, it has to count them (by performing
a table scan). Fortunately, HBase’s region-based storage architecture lends
itself to fast distributed scanning. So, even if the operation at hand requires
a table scan, we don’t have to worry quite as much as we would with other
databases.

Day 2 Wrap-Up
Whew, that was a pretty big day! You learned how to write an import script
for HBase that parses data out of a stream of XML. Then you used those
techniques to stream Wikipedia dumps directly into your wiki table.

You learned more of the HBase API, including some client-controllable perfor-
mance levers such as setAutoFlush(), flushCommits(), and setWriteToWAL(). Along those
lines, we discussed some HBase architectural features such as disaster
recovery, provided via the write-ahead log.

Speaking of architecture, you discovered table regions and how HBase divvies
up responsibility for them among the region servers in the cluster. We scanned
the hbase:meta table to get a feel for HBase internals.

Finally, we discussed some of the performance implications of HBase’s sparse
design. In so doing, we touched on some community best practices regarding
the use of columns, families, and tables.

Day 2 Homework

Find

1. Find a discussion or article describing the pros and cons of compression
in HBase.

2. Find an article explaining how Bloom filters work in general and how they
benefit HBase.

3. Aside from the algorithm, what other column family options relate to
compression?

4. How does the type of data and expected usage patterns inform column
family compression options?

Do

Expanding on the idea of data import, let’s build a database containing
nutrition facts.

report erratum • discuss

Day 2: Working with Big Data • 81

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Download the MyPyramid Raw Food Data set from Data.gov5 and extract the
zipped contents to Food_Display_Table.xml.

This data consists of many pairs of <Food_Display_Row> tags. Inside these, each
row has a <Food_Code> (integer value), <Display_Name> (string), and other facts
about the food in appropriately named tags.

1. Create a new table called foods with a single column family to store the
facts. What should you use for the row key? What column family options
make sense for this data?

2. Create a new JRuby script for importing the food data. Use the streaming
XML parsing style we used earlier for the Wikipedia import script and
tailor it to the food data. Pipe the food data into your import script on the
command line to populate the table.

3. Using the HBase shell, query the foods table for information about your
favorite foods.

Day 3: Taking It to the Cloud
On Days 1 and 2, you got quite a lot of hands-on experience using HBase in
standalone mode. Our experimentation so far has focused on accessing a
single local server. But in reality, if you choose to use HBase, you’ll want to
have a good-sized cluster in order to realize the performance benefits of its
distributed architecture. And nowadays, there’s also an increasingly high
chance that you’ll want to run it in the cloud.

Here on Day 3, let’s turn our attention toward operating and interacting with
a remote HBase cluster. First, you’ll deploy an HBase cluster on Amazon Web
Services’ Elastic MapReduce platform (more commonly known as AWS and
EMR, respectively) using AWS’s command-line tool, appropriately named aws.
Then, you’ll connect directly to our remote HBase cluster using Secure Shell
(SSH) and perform some basic operations.

Initial AWS and EMR Setup
EMR is a managed Hadoop platform for AWS. It enables you to run a wide
variety of servers in the Hadoop ecosystem—Hive, Pig, HBase, and many
others—on EC2 without having to engage in a lot of the nitty-gritty details
usually associated with managing those systems.

5. https://www.cnpp.usda.gov/Innovations/DataSource/MyFoodapediaData.zip

Chapter 3. HBase • 82

report erratum • discuss

https://www.cnpp.usda.gov/Innovations/DataSource/MyFoodapediaData.zip
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Warning! AWS Isn’t Free

Whenever you’re using AWS—or any other cloud provider—always keep in mind that
you’re using paid services. The exercise that you’re about to go through will probably
be free for you, but it may end up costing a few units of whatever your local currency
happens to be. You’re free to leave the cluster running, especially if you want to do
the Day 3 homework in the next section, but we recommend terminating it whenever
you’re done so that you don’t rack up unwanted costs. To do so at any time, use the
terminate-clusters command (more on setting a CLUSTER_ID environment variable later in
this section):

$ aws emr terminate-clusters \
--cluster-ids ${CLUSTER_ID}

You can also set up a usage-based alarm using AWS’s CloudWatch service in case
you want some extra assurance that you won’t end up with any unpleasant billing
surprises.a

a. http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_
charges_with_cloudwatch.html

Before you can get started spinning up an HBase cluster, you’ll need to sign
up for an AWS account.6 Once you’ve created an account, log into the IAM
service in the AWS console7 and create a new user by clicking Add User.

During the user creation process, select “Programmatic access” and then click
“Attach existing policies directly.” Select the following policies: IAMFullAccess,
AmazonEC2FullAccess, and AmazonElasticMapReduceFullAccess. Then, fetch your AWS
access key and secret key from a different section of the console.8 With that
information in hand, install the aws tool using pip and then run aws --version to
ensure that the tool installed properly. To configure the client, just run:

$ aws configure

This will prompt you to enter your access key and secret key and two other
pieces of information: a default region name (basically which AWS datacenter
you’d like to use) and a default output format. Input us-east-1 and json respec-
tively (though feel free to select a different region if you’d like; the authors
happen to be partial to us-west-1 in Oregon). To make sure that your setup is
now in place, run aws emr list-clusters, which lists the clusters you’ve created in
EMR. That should return an empty list:

6. http://aws.amazon.com/
7. https://console.aws.amazon.com/iam
8. https://console.aws.amazon.com/iam

report erratum • discuss

Day 3: Taking It to the Cloud • 83

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_
http://charges_with_cloudwatch.html
http://aws.amazon.com/
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

{
"Clusters": []

}

In AWS, your ability to perform actions is based on which roles you possess as a
user. We won’t delve into service access control here. For our purposes, you just
need to create a set of roles that enable you to access EMR and to spin up, manage,
and finally access clusters. You can create the necessary roles with one convenient
built-in command:

$ aws emr create-default-roles

Once your HBase cluster is up and running in a little bit, you’ll need to be able
to access it remotely from your own machine. In AWS, direct access to remote
processes is typically done over SSH. You’ll need to create a new SSH key pair,
upload it to AWS, and then specify that key pair by name when you create your
cluster. Use these commands to create a key pair in your ~/.ssh directory and
assign it restrictive permissions:

$ aws ec2 create-key-pair \
--key-name HBaseShell \
--query 'KeyMaterial' \
--output text > ~/.ssh/hbase-shell-key.pem

$ chmod 400 ~/.ssh/hbase-shell-key.pem

Now you have a key pair stored in the hbase-shell-key.pem file that you can use later
to SSH into your cluster. To ensure that it’s been successfully created:

$ aws ec2 describe-key-pairs
{

"KeyPairs": [
{

"KeyName": "HBaseShell",
"KeyFingerprint": "1a:2b:3c:4d:1a:..."

}
]

}

Creating the Cluster
Now that that initial configuration detour is out of the way, you can get your
hands dirty and create your HBase cluster.

$ aws emr create-cluster \
--name "Seven DBs example cluster" \
--release-label emr-5.3.1 \
--ec2-attributes KeyName=HBaseShell \
--use-default-roles \
--instance-type m1.large \
--instance-count 3 \
--applications Name=HBase

Chapter 3. HBase • 84

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

That’s a pretty intricate shell command! Let’s break down some of the non-
obvious parts.

• --release-label specifies which release of EMR you’re working with.

• --ec2-attributes specifies which key pair you want to use to create the cluster
(which will enable you to have SSH access later).

• --instance-type specifies which type of machine you want your cluster to
run on.

• --instance-count is the number of machines you want in the cluster (by default,
3 instances will mean one master node and two slave nodes).

• --use-default-roles means that you’re using the default roles you created a
minute ago.

• --applications determines which Hadoop application you’ll install (just HBase
for us).

If create-cluster is successful, you should get a JSON object back that displays
the ID of the cluster. Here’s an example ID:

{
"ClusterId": "j-1MFV1QTNSBTD8"

}

For convenience, store the cluster ID in your environment so it’s easier to use
in later shell commands. This is always a good practice when working with
AWS on the command line, as almost everything has a randomly generated
identifier.

$ export CLUSTER_ID=j-1MFV1QTNSBTD8

You can verify that the cluster has been created by listing all of the clusters
associated with your user account.

$ aws emr list-clusters

That command should now return a JSON object like this:

{
"Clusters": [

{
"Status": {

"Timeline": {
"CreationDateTime": 1487455208.825

},
"State": "STARTING",
"StateChangeReason": {}

},

report erratum • discuss

Day 3: Taking It to the Cloud • 85

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

"NormalizedInstanceHours": 0,
"Id": "j-1MFV1QTNSBTD8",
"Name": "Seven DBs example cluster"

}
]

}

At this point, your cluster has been created but it will take a while to actually
start, usually several minutes. Run this command, which checks every five
seconds for the current status of the cluster (you should see "STARTING" at
first):

$ while true; do
aws emr describe-cluster \
--cluster-id ${CLUSTER_ID} \
--query Cluster.Status.State
sleep 5

done

Again, this could take a while, so take a coffee break, read some EMR docu-
mentation, whatever you feel like. Once the the state of the cluster turns to
"WAITING", it should be ready to go. You can now inspect all three machines
running in the cluster (one master and two slave nodes):

$ aws emr list-instances \
--cluster-id ${CLUSTER_ID}

Each instance has its own configuration object associated with it that tells
you each instance’s current status (RUNNING, TERMINATED, and so on), DNS name,
ID, private IP address, and more.

Enabling Access to the Cluster
You have just one last step before you can access your HBase cluster via
SSH. You need to authorize TCP ingress into the master node of the cluster.
To do that, you need to get an identifier for the security group that it
belongs to:

$ aws emr describe-cluster \
--cluster-id ${CLUSTER_ID} \
--query Cluster.Ec2InstanceAttributes.EmrManagedMasterSecurityGroup

That should return something like sg-bd63e1ab. Set the SECURITY_GROUP_ID envi-
ronment variable to that value. Now, you need to run a command that
instructs EC2 (which controls the machines running the cluster) to allow TCP
ingress on port 22 (used for SSH) from the IP address of your current machine,
which you can set as an environment variable.

Chapter 3. HBase • 86

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ export MY_CIDR=$(dig +short myip.opendns.com @resolver1.opendns.com.)/32
$ aws ec2 authorize-security-group-ingress \

--group-id ${SECURITY_GROUP_ID} \
--protocol tcp \
--port 22 \
--cidr $MY_CIDR

Finally, you can SSH into the cluster with the handy emr ssh command and
point to your local SSH keys and the correct cluster:

$ aws emr ssh \
--cluster-id ${CLUSTER_ID} \
--key-pair-file ~/.ssh/hbase-shell-key.pem

Once the SSH connection is established, you should see a huge ASCII banner
whiz by before you’re dropped into a remote shell. Now you can open the
HBase shell:

$ hbase shell

If you then see a shell prompt like hbase(main):001:0> pop up in your CLI, you’ve
made it! You’re now using your own machine as a portal into an HBase
cluster running in a datacenter far away (or maybe close by; pretty cool either
way). Run a couple other HBase commands from previous exercises for fun:

hbase(main):001:0> version
hbase(main):002:0> status
hbase(main):003:0> create 'messages', 'text'
hbase(main):004:0> put 'messages', 'arrival', 'text:', 'HBase: now on AWS!'
hbase(main):005:0> get 'messages', 'arrival'

As we mentioned before, always bear in mind that AWS costs money. The
exercise that you went through today most likely cost less than a latté at the
corner coffee shop. You’re free to leave the cluster running, especially if you
want to do the Day 3 homework in the next section. You can shut your cluster
down at any time using the terminate-clusters command:

$ aws emr terminate-clusters \
--cluster-ids ${CLUSTER_ID}

Day 3 Wrap-Up
Today you stepped outside of your own machine and installed an HBase
cluster in an AWS datacenter, connected your local machine to the remote
cluster, played with some of the HBase shell commands that you learned on
Day 1, and learned a bit about interacting with AWS services via the command
line. This will come in handy when you work with Amazon’s DynamoDB and
a variety of other AWS services.

report erratum • discuss

Day 3: Taking It to the Cloud • 87

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Day 3 Homework

For today’s homework, open up the AWS documentation for the Find section.
For the Do section, leave your HBase cluster running on EMR with the HBase
shell open. Just remember to terminate the cluster when you’re done!

Find

1. Use the help interface aws for the CLI tool to see which commands are
available for the emr subcommand. Read through the help material for
some of these commands to get a sense of some of the capabilities offered
by EMR that we didn’t cover in today’s cluster building exercise. Pay
special attention to scaling-related commands.

2. Go to the EMR documentation at https://aws.amazon.com/documentation/emr and
read up on how to use Simple Storage Service (S3) as a data store for
HBase clusters.

Do

1. In your HBase shell that you’re accessing via SSH, run some of the cluster
metadata commands we explored on Day 2, such as scan 'hbase:meta'. Make
note of anything that’s fundamentally different from what you saw when
running HBase locally in standalone mode.

2. Navigate around the EMR section of your AWS browser console9 and find
the console specific to your running HBase cluster. Resize your cluster
down to just two machines by removing one of the slave nodes (known
as core nodes). Then increase the cluster size back to three (with two
slave/core nodes).

3. Resizing a cluster in the AWS console is nice, but that’s not an automat-
able approach. The aws CLI tool enables you to resize a cluster program-
matically. Consult the docs for the emr modify-instance-groups command by
running aws emrmodify-instance-groups help to find out how this works. Remove
a machine from your cluster using that command.

Wrap-Up
HBase is a juxtaposition of simplicity and complexity. Its data storage model
is pretty straightforward, with a lot of flexibility and just a few built-in schema
constraints. A major barrier to understanding HBase, though, stems from the

9. https://console.aws.amazon.com/elasticmapreduce

Chapter 3. HBase • 88

report erratum • discuss

https://aws.amazon.com/documentation/emr
https://console.aws.amazon.com/elasticmapreduce
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

fact that many terms are overloaded with baggage from the relational world
(such as table and column). Schema design in HBase typically boils down to
deciding on the performance characteristics that you want to apply to your
tables and columns, which is pretty far afield from the relational world, where
things usually hinge upon table design.

HBase’s Strengths
Noteworthy features of HBase include a robust scale-out architecture and
built-in versioning and compression capabilities. HBase’s built-in versioning
capability can be a compelling feature for certain use cases. Keeping the ver-
sion history of wiki pages is a crucial feature for policing and maintenance,
for instance. By choosing HBase, you don’t have to take any special steps to
implement page history—you get it for free. No other database in this book
offers that out of the box.

On the performance front, HBase is meant to scale out. If you have huge
amounts of data, measured in many terabytes or more, HBase may be for
you. HBase is rack aware, replicating data within and between datacenter
racks so that node failures can be handled gracefully and quickly.

The HBase community is pretty awesome. There’s almost always somebody
on the #hbase IRC channel,10 on HBase’s dedicated Slack channel,11 or on
the mailing list12 ready to help with questions and get you pointed in the right
direction.

HBase’s Weaknesses
Although HBase is designed to scale out, it doesn’t scale down. The HBase
community seems to agree that five nodes is the minimum number you’ll
want to use. Because it’s designed to be big, it can also be harder to adminis-
trate (though platforms like EMR, which you saw in Day 3, do provide some
good managed options). Solving small problems isn’t what HBase is about,
and nonexpert documentation is tough to come by, which steepens the
learning curve.

Additionally, HBase is almost never deployed alone. Instead, it is usually
used in conjunction with other scale-ready infrastructure piece. These include

10. irc://irc.freenode.net/#hbase
11. https://apache-hbase.slack.com/
12. http://hbase.apache.org/mail-lists.html

report erratum • discuss

Wrap-Up • 89

irc://irc.freenode.net/#hbase
https://apache-hbase.slack.com/
http://hbase.apache.org/mail-lists.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Hadoop (an implementation of Google’s MapReduce), the Hadoop distributed
file system (HDFS), Zookeeper (a headless service that aids internode coordi-
nation), and Apache Spark (a popular cluster computing platform). This
ecosystem is both a strength and a weakness; it simultaneously provides an
ever-expanding set of powerful tools, but making them all work in conjunction
with one another across many machines—sometimes in the thousands—can
be quite cumbersome.

One noteworthy characteristic of HBase is that it doesn’t offer any sorting or
indexing capabilities aside from the row keys. Rows are kept in sorted order
by their row keys, but no such sorting is done on any other field, such as
column names and values. So, if you want to find rows by something other
than their key, you need to either scan the table or maintain your own index
(perhaps in a separate HBase table or in an external system).

Another missing concept is datatypes. All field values in HBase are treated
as uninterpreted arrays of bytes. There is no distinction between, say, an
integer value, a string, and a date. They’re all bytes to HBase, so it’s up to
your application to interpret the bytes, which can be tricky, especially if you’re
used to relational access patterns like object-relational mappers (ORMs).

HBase on CAP
With respect to CAP, HBase is decidedly CP (for more information on the CAP
theorem, see Appendix 2, The CAP Theorem, on page 315). HBase makes strong
consistency guarantees. If a client succeeds in writing a value, other clients
will receive the updated value on the next request. Some databases allow you
to tweak the CAP equation on a per-operation basis. Not so with HBase. In
the face of reasonable amounts of partitioning—for example, a node failing—
HBase will remain available, shunting the responsibility off to other nodes in
the cluster. However, in the pathological case, where only one node is left
alive, HBase has no choice but to refuse requests.

The CAP discussion gets a little more complex when you introduce cluster-
to-cluster replication, an advanced feature we didn’t cover in this chapter. A
typical multicluster setup could have clusters separated geographically by
some distance. In this case, for a given column family, one cluster is the
system of record, while the other clusters merely provide access to the repli-
cated data. This system is eventually consistent because the replication
clusters will serve up the most recent values they’re aware of, which may not
be the most recent values in the master cluster.

Chapter 3. HBase • 90

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Parting Thoughts
HBase can be quite a challenge at first. The terminology is often deceptively
reassuring, and the installation and configuration are not for the faint of
heart. On the plus side, some of the features HBase offers, such as versioning
and compression, are quite unique. These aspects can make HBase quite
appealing for solving certain problems. And of course, it scales out to many
nodes of commodity hardware quite well. All in all, HBase—like a nail gun—
is a pretty big tool, so watch your thumbs.

report erratum • discuss

Wrap-Up • 91

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 4

MongoDB
MongoDB is in many ways like a power drill. Your ability to complete a task
is framed largely by the components you choose to use (from drill bits of
varying size to sander adapters). MongoDB’s strength lies in its versatility,
power, ease of use, and ability to handle jobs both large and small. Although
it’s a much newer invention than the hammer, it is a tool that builders reach
for more and more often.

First publicly released in 2009, MongoDB (often just called Mongo) quickly
became one of the most widely used NoSQL databases in existence, and
remains somewhere very close to the top—if not right at the top—of that list
today. MongoDB was designed as a scalable database—the name Mongo
comes from “humongous”—with performance and easy data access as core
design goals. It is a document database, which allows you to store objects
nested to whichever depth you’d like, and you can query that nested data in
an ad hoc fashion. It enforces no schema (similar to HBase but unlike Post-
gres), so documents can contain fields or types that no other document in
the collection contains (whether that’s advisable is another matter).

But don’t think that MongoDB’s flexibility makes it a toy. There are some
huge production MongoDB deployments out there, such as Foursquare,
Comcast, Adobe, and CERN, where it’s used to collect data from the Large
Hadron Collider.

Hu(mongo)us
Mongo hits a sweet spot between the powerful queryability of a relational
database and the distributed nature of other databases, like HBase. Project
founder Dwight Merriman has said that MongoDB is the database he wishes
he’d had at DoubleClick, where as the CTO he had to house large-scale data
while still being able to satisfy ad hoc queries.

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Mongo is a JSON document database (though technically data is stored in a
binary form of JSON known as BSON). A Mongo document can be likened to
a relational table row without a schema, whose values can nest to an arbitrary
depth. To get an idea of what a JSON document is, check this out:

In some ways, document databases have an opposite workflow compared to
relational databases. Relational databases such as PostgreSQL assume you
know what data you wish to store without necessarily knowing how you want
to use it; what’s important is how you store it. The cost of query flexibility is
paid upfront on storage. Document databases require you to make some
assumptions on how you wish to use your data, but few assumptions on what
exactly you wish to store. You can make fundamental “schema” changes on-
the-fly, but you may have to pay for your design decisions later on.

Mongo is an excellent choice for an ever-growing class of web projects with
large-scale data storage requirements but very little budget to buy big-iron
hardware. Thanks to its lack of structured schema, Mongo can grow and
change along with your data model. If you’re in a web startup with dreams
of enormity or are already large with the need to scale servers horizontally,
consider MongoDB.

Day 1: CRUD and Nesting
We’ll spend today working on some CRUD operations and finish up by per-
forming nested queries in MongoDB. As usual, we won’t walk you through
the installation steps, but if you visit the Mongo website,1 you can download
a build for your OS or find instructions on how to build from source. If you
have OS X, we recommend installing via Homebrew (brew install mongodb). If you
use a Debian/Ubuntu variant, try MongoDB’s own apt-get package.

1. https://www.mongodb.com/download-center#community

Chapter 4. MongoDB • 94

report erratum • discuss

https://www.mongodb.com/download-center#community
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Eric says:

On the Fence
I was on the fence about using a document database until I actually spent time on
teams using document stores in production. Coming from the relational database
world, I found Mongo to be an easy transition with its ad hoc queries, and its ability
to scale out mirrored my own web-scale dreams in ways that many relational stores
couldn’t. But beyond the structure, I trusted Mongo’s development team. They read-
ily admitted that Mongo wasn’t perfect, but their clear plans (and general adherence
to those plans) were based on general web infrastructure use cases, rather than
idyllic debates on scalability and replication. This pragmatic focus on usability should
shine as you use MongoDB. A trade-off of this evolutionary behavior is that there are
several paths to performing any given function in Mongo.

To prevent typos, Mongo requires you to first create the directory where mongod
will store its data. A common location is /data/db. Ensure the user you run the
server under has permission to read and write to this directory. If it’s not
already running, you can fire up the Mongo service by running mongod.

Command-Line Fun
To create a new database named book, first run this command in your terminal.
It will connect to the MySQL-inspired command-line interface.

$ mongo book

Typing help in the console is a good start. We’re currently in the book database,
but you can view others via show dbs and switch databases with the use
command.

Creating a collection in Mongo is as easy as adding an initial record to the
collection. Because Mongo is schemaless, there is no need to define anything
up front; merely using it is enough. What’s more, our book database doesn’t
really exist until we first add values into it. The following code creates/inserts
a towns collection:

> db.towns.insert({
name: "New York",
population: 22200000,
lastCensus: ISODate("2016-07-01"),
famousFor: ["the MOMA", "food", "Derek Jeter"],
mayor : {

name : "Bill de Blasio",
party : "D"

}
})

report erratum • discuss

Day 1: CRUD and Nesting • 95

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

In the previous section, we said documents were JSON (well, really BSON
under the hood), so we add new documents as JSON (as we will do later on
with CouchDB and, to a lesser extent, DynamoDB).

With the show collections command, you can verify the collection now exists.

> show collections

towns

We just created the towns collection by storing an object in it. We can list the
contents of a collection via find(). We formatted the output here for readability,
but yours may just output as a single wrapped line.

> db.towns.find()

{
"_id" : ObjectId("59093bc08c87e2ff4157bd9f"),
"name" : "New York",
"population" : 22200000,
"lastCensus" : ISODate("2016-07-01T00:00:00Z"),
"famousFor" : ["the MOMA", "food", "Derek Jeter"],
"mayor" : {

"name" : "Bill de Blasio",
"party" : "I"

}
}

Unlike a relational database, Mongo does not support server-side joins. A
single JavaScript call will retrieve a document and all of its nested content,
free of charge.

You may have noticed that the JSON output of your newly inserted town
contains an _id field of type ObjectId. This is akin to SERIAL incrementing a
numeric primary key in PostgreSQL. The ObjectId is always 12 bytes, composed
of a timestamp, client machine ID, client process ID, and a 3-byte incremented
counter. The figure on page 97 shows how bytes are laid out.

What’s great about this autonumbering scheme is that each process on every
machine can handle its own ID generation without colliding with other mongod
instances. This design choice exhibits Mongo’s generally distributed nature.

JavaScript

Mongo’s native tongue is JavaScript. You’ll use it when doing things as com-
plex as mapreduce queries or as simple as asking for help.

> db.help()
> db.towns.help()

Chapter 4. MongoDB • 96

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

0 1 2 3
time

4 5 6
mid

7 8
pid

9 10 11
inc

4d 0a d9 75 e3bb 30 77 32 66 f3 9f

These commands will list available functions related to the given object. db is
a JavaScript object that contains information about the current database.
db.x is a JavaScript object representing a collection (named x). Commands are
just JavaScript functions.

> typeof db
object
> typeof db.towns
object
> typeof db.towns.insert
function

If you want to inspect the source code for a function, call it without parameters
or parentheses (think more Python than Ruby).

> db.towns.insert
function (obj, options, _allowDot) {

if (!obj)
throw Error("no object passed to insert!");

var flags = 0;

// etc.
}

Let’s populate a few more documents into our towns collection by creating our
own JavaScript function.

mongo/insertCity.js
function insertCity(

name, population, lastCensus,
famousFor, mayorInfo

) {
db.towns.insert({

name: name,
population: population,
lastCensus: ISODate(lastCensus),
famousFor: famousFor,
mayor : mayorInfo

});
}

report erratum • discuss

Day 1: CRUD and Nesting • 97

http://media.pragprog.com/titles/pwrdata/code/mongo/insertCity.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You can just paste the code for the function into the shell. Then we can call it.

> insertCity("Punxsutawney", 6200, '2016-01-31',
["Punxsutawney Phil"], { name : "Richard Alexander" }

)
> insertCity("Portland", 582000, '2016-09-20',

["beer", "food", "Portlandia"], { name : "Ted Wheeler", party : "D" }
)

We should now have three towns in our collection, which you can confirm by
calling db.towns.find() as before.

Mongo Data Through a Visual Lens

All of the practical exercises for Mongo in this chapter will involve accessing it either
through the Mongo shell or through JavaScript code. If you’re more inclined to visual
representations of data—and the systems around data—you may want to explore
more UI-driven tools. One very notable Mongo-specific tool is Robo 3T,a previously
known as Robomongo, which is a desktop app that enables you to visualize MongoDB
datasets, monitor servers, engage in user management, edit data directly, and so on.

The authors themselves are largely disinclined toward UI-driven tools like this for
databases, but Robo 3T is extremely well done, and if a nice UI brings you closer to
grasping Mongo or any other database, we say go for it.

a. https://robomongo.org/

Reading: More Fun in Mongo
Earlier, we called the find() function without params to get all documents. To
access a specific one, you only need to set an _id property. _id is of type ObjectId,
and so to query, you must convert a string by wrapping it in an ObjectId(str)
function.

> db.towns.find({ "_id" : ObjectId("59094288afbc9350ada6b807") })
{

"_id" : ObjectId("59094288afbc9350ada6b807"),
"name" : "Punxsutawney",
"population" : 6200,
"lastCensus" : ISODate("2016-01-31T00:00:00Z"),
"famousFor" : ["Punxsutawney Phil"],
"mayor" : { "name" : "Richard Alexander" }

}

The find() function also accepts an optional second parameter: a fields object
we can use to filter which fields are retrieved. If we want only the town name
(along with _id), pass in name with a value resolving to 1 (or true).

Chapter 4. MongoDB • 98

report erratum • discuss

https://robomongo.org/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

> db.towns.find({ _id : ObjectId("59094288afbc9350ada6b807") }, { name : 1 })
{

"_id" : ObjectId("59093e9eafbc9350ada6b803"),
"name" : "Punxsutawney"

}

To retrieve all fields except name, set name to 0 (or false or null).

> db.towns.find({ _id : ObjectId("59094288afbc9350ada6b807") }, { name : 0 })
{

"_id" : ObjectId("59093e9eafbc9350ada6b803"),
"population" : 6200,
"lastCensus" : ISODate("2016-01-31T00:00:00Z"),
"famousFor" : ["Punxsutawney Phil"]

}

As in PostgreSQL, in Mongo you can construct ad hoc queries on the basis of field
values, ranges, or a combination of criteria. To find all towns that begin with the
letter P and have a population less than 10,000, you can use a Perl-compatible
regular expression (PCRE)2 and a range operator. This query should return the
JSON object for Punxsutawney, but including only the name and population fields:

> db.towns.find(
{ name : /^P/, population : { $lt : 10000 } },
{ _id: 0, name : 1, population : 1 }

)
{ "name" : "Punxsutawney", "population" : 6200 }

Conditional operators in Mongo follow the format of field : { $op : value }, where $op
is an operation like $ne (not equal to) or $gt (greater than). You may want a terser
syntax, like field < value. But this is JavaScript code, not a domain-specific query
language, so queries must comply with JavaScript syntax rules (later today you’ll
see how to use the shorter syntax in a certain case, but we’ll skip that for now).

The good news about the querying language being JavaScript is that you can
construct operations as you would objects. Here, we build criteria where the
population must be between 10,000 and 1 million people.

> var population_range = {
$lt: 1000000,
$gt: 10000

}
> db.towns.find(

{ name : /^P/, population : population_range },
{ name: 1 }

)
{ "_id" : ObjectId("59094292afbc9350ada6b808"), "name" : "Portland" }

2. http://www.pcre.org/

report erratum • discuss

Day 1: CRUD and Nesting • 99

http://www.pcre.org/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

In addition to number ranges, we can also retrieve date ranges. For example,
we can find all names with a lastCensus greater than or equal to June 1,
2016, like this:

> db.towns.find(
{ lastCensus : { $gte : ISODate('2016-06-01') } },
{ _id : 0, name: 1 }

)
{ "name" : "New York" }
{ "name" : "Portland" }

Notice how we again suppressed the _id field in the output explicitly by setting
it to 0.

Digging Deep
Mongo loves nested array data. You can query by matching exact values:

> db.towns.find(
{ famousFor : 'food' },
{ _id : 0, name : 1, famousFor : 1 }

)
{ "name" : "New York", "famousFor" : ["the MOMA", "food", "Derek Jeter"] }
{ "name" : "Portland", "famousFor" : ["beer", "food", "Portlandia"] }

as well as matching partial values:

> db.towns.find(
{ famousFor : /moma/ },
{ _id : 0, name : 1, famousFor : 1 }

)
{ "name" : "New York", "famousFor" : ["the MOMA", "food"] }

or query by all matching values:

> db.towns.find(
{ famousFor : { $all : ['food', 'beer'] } },
{ _id : 0, name:1, famousFor:1 }

)
{ "name" : "Portland", "famousFor" : ["beer", "food", "Portlandia"] }

or the lack of matching values:

> db.towns.find(
{ famousFor : { $nin : ['food', 'beer'] } },
{ _id : 0, name : 1, famousFor : 1 }

)
{ "name" : "Punxsutawney", "famousFor" : ["Punxsutawney Phil"] }

Chapter 4. MongoDB • 100

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

But the true power of Mongo stems from its ability to dig down into a document
and return the results of deeply nested subdocuments. To query a subdocu-
ment, your field name is a string separating nested layers with a dot. For
instance, you can find towns with mayors from the Democratic Party:

> db.towns.find(
{ 'mayor.party' : 'D' },
{ _id : 0, name : 1, mayor : 1 }

)
{ "name" : "New York", "mayor" : { "name" : "Bill de Blasio", "party" : "D" } }
{ "name" : "Portland", "mayor" : { "name" : "Ted Wheeler", "party" : "D" } }

or those with mayors who don’t have a party:

> db.towns.find(
{ 'mayor.party' : { $exists : false } },
{ _id : 0, name : 1, mayor : 1 }

)
{ "name" : "Punxsutawney", "mayor" : { "name" : "Richard Alexander" } }

The previous queries are great if you want to find documents with a single
matching field, but what if you need to match several fields of a subdocument?

elemMatch

We’ll round out our dig with the $elemMatch directive. Let’s create another col-
lection that stores countries. This time we’ll override each _id to be a string
of our choosing rather than an auto-generated identifier.

> db.countries.insert({
_id : "us",
name : "United States",
exports : {

foods : [
{ name : "bacon", tasty : true },
{ name : "burgers" }

]
}

})
> db.countries.insert({

_id : "ca",
name : "Canada",
exports : {

foods : [
{ name : "bacon", tasty : false },
{ name : "syrup", tasty : true }

]
}

})

report erratum • discuss

Day 1: CRUD and Nesting • 101

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

> db.countries.insert({
_id : "mx",
name : "Mexico",
exports : {

foods : [{
name : "salsa",
tasty : true,
condiment : true

}]
}

})

To validate the countries were added, we can execute the count function,
expecting the number 3.

> db.countries.count()
3

Let’s find a country that not only exports bacon but exports tasty bacon.

> db.countries.find(
{ 'exports.foods.name' : 'bacon', 'exports.foods.tasty' : true },
{ _id : 0, name : 1 }

)
{ "name" : "United States" }
{ "name" : "Canada" }

But this isn’t what we wanted. Mongo returned Canada because it exports
bacon and exports tasty syrup. $elemMatch helps us here. It specifies that if a
document (or nested document) matches all of our criteria, the document
counts as a match.

> db.countries.find(
{

'exports.foods' : {
$elemMatch : {

name : 'bacon',
tasty : true

}
}

},
{ _id : 0, name : 1 }

)
{ "name" : "United States" }

$elemMatch criteria can utilize advanced operators, too. You can find any
country that exports a tasty food that also has a condiment label:

Chapter 4. MongoDB • 102

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

> db.countries.find(
{

'exports.foods' : {
$elemMatch : {

tasty : true,
condiment : { $exists : true }

}
}

},
{ _id : 0, name : 1 }

)
{ "name" : "Mexico" }

Mexico is just what we wanted.

Boolean Ops

So far, all of our criteria are implicitly and operations. If you try to find a
country with the name United States and an _id of mx, Mongo will yield no
results.

> db.countries.find(
{ _id : "mx", name : "United States" },
{ _id : 1 }

)

However, searching for one or the other with $or will return two results. Think
of this layout like prefix notation: OR A B.

db.countries.find(
{

$or : [
{ _id : "mx" },
{ name : "United States" }

]
},
{ _id:1 }

)
{ "_id" : "us" }
{ "_id" : "mx" }

There are so many operators in Mongo that we can’t cover them all here, but
we hope this has given you a taste of MongoDB’s powerful querying capabili-
ties. The table on page 104 is not a complete list of the commands but it does
cover a good chunk of them.

report erratum • discuss

Day 1: CRUD and Nesting • 103

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

DescriptionCommand

Match by any PCRE-compliant regular expression string (or
just use the // delimiters as shown earlier)

$regex

Not equal to$ne

Less than$lt

Less than or equal to$lte

Greater than$gt

Greater than or equal to$gte

Check for the existence of a field$exists

Match all elements in an array$all

Match any elements in an array$in

Does not match any elements in an array$nin

Match all fields in an array of nested documents$elemMatch

or$or

Not or$nor

Match array of given size$size

Modulus$mod

Match if field is a given datatype$type

Negate the given operator check$not

You can find all the commands on the MongoDB online documentation or
grab a cheat sheet from the Mongo website. We will revisit querying in the
days to come.

Updating
We have a problem. New York and Punxsutawney are unique enough, but
did we add Portland, Oregon, or Portland, Maine (or Texas or the others)?
Let’s update our towns collection to add some U.S. states.

The update(criteria,operation) function requires two parameters. The first is a cri-
teria query—the same sort of object you would pass to find(). The second
parameter is either an object whose fields will replace the matched document(s)
or a modifier operation. In this case, the modifier is to $set the field state with
the string OR.

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ $set : { "state" : "OR" } }

);

Chapter 4. MongoDB • 104

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You may wonder why the $set operation is even required. Mongo doesn’t think
in terms of attributes; it has only an internal, implicit understanding of
attributes for optimization reasons. But nothing about the interface is at-
tribute-oriented. Mongo is document-oriented. You will rarely want something
like this (notice the lack of $set operation):

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ state : "OR" }

);

This would replace the entire matching document with the document you
gave it ({ state : "OR" }). Because you didn’t give it a command like $set, Mongo
assumes you just want to switch them up, so be careful.

We can verify our update was successful by finding it (note our use of findOne()
to retrieve only one matching object).

db.towns.findOne({ _id : ObjectId("4d0ada87bb30773266f39fe5") })

{
"_id" : ObjectId("4d0ada87bb30773266f39fe5"),
"famousFor" : [

"beer",
"food",
"Portlandia"

],
"lastCensus" : "Thu Sep 20 2017 00:00:00 GMT-0700 (PDT)",
"mayor" : {

"name" : "Sam Adams",
"party" : "D"

},
"name" : "Portland",
"population" : 582000,
"state" : "OR"

}

You can do more than $set a value. $inc (increment a number) is a pretty useful
one. Let’s increment Portland’s population by 1,000.

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ $inc : { population : 1000} }

)

There are more directives than this, such as the $ positional operator for
arrays. New operations are added frequently and are updated in the online
documentation. The list on page 106 includes the major directives.

report erratum • discuss

Day 1: CRUD and Nesting • 105

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

DescriptionCommand

Sets the given field with the given value$set

Removes the field$unset

Adds the given field by the given number$inc

Removes the last (or first) element from an array$pop

Adds the value to an array$push

Adds all values to an array$pushAll

Similar to push, but won’t duplicate values$addToSet

Removes matching values from an array$pull

Removes all matching values from an array$pullAll

References
As we mentioned previously, Mongo isn’t built to perform joins. Because of
its distributed nature, joins in Mongo would be pretty inefficient operations.
Still, it’s sometimes useful for documents to reference each other. In these
cases, the Mongo community suggests that you use a construct like { $ref :
"collection_name", $id : "reference_id" }. For example, we can update the towns collection
to contain a reference to a document in countries.

> db.towns.update(
{ _id : ObjectId("59094292afbc9350ada6b808") },
{ $set : { country: { $ref: "countries", $id: "us" } } }

)

Now you can retrieve Portland from your towns collection.

> var portland = db.towns.findOne(
{ _id : ObjectId("59094292afbc9350ada6b808") }

)

Then, to retrieve the town’s country, you can query the countries collection
using the stored $id.

> db.countries.findOne({ _id: portland.country.$id })

Better yet, in JavaScript, you can ask the town document the name of the
collection stored in the fields reference.

> var portlandCountryRef = portland.country.$ref;
> db[portlandCountryRef].findOne({ _id: portland.country.$id })

The last two queries are equivalent; the second is just a bit more data-driven.

Chapter 4. MongoDB • 106

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Spelling Bee Warning

Mongo, and schemaless databases in general, are not very friendly when it comes to
misspellings. If you haven’t run across this problem yet, you probably will at some
point, so be warned. You can draw parallels between static and dynamic programming
languages. You define static up front, while dynamic will accept values you may not
have intended, even nonsensical types like person_name = 5.

Documents are schemaless, so Mongo has no way of knowing if you intended to insert
pipulation into your city or meant to query on lust_census; it will happily insert those fields
or return no matching values. This can get you in trouble later on when you try to find
a document that matches the condition population > 10000 and the result set is incomplete
because Mongo doesn’t even know that the object was intended to have a population field.

This is less of a problem when you use Mongo in a more programmatic and less ad-hoc
way, as we’re doing here. But keep in mind that flexibility has its price. Caveat emptor.

Deleting
Removing documents from a collection is simple. Just replace the find() function
with a call to remove(), and all documents that match given the criteria will be
removed. It’s important to note that the entire matching document will be
removed, not just a matching element or a matching subdocument.

We recommend running find() to verify your criteria before running remove().
Mongo won’t think twice before running your operation. Let’s remove all
countries that export bacon that isn’t tasty.

> var badBacon = {
'exports.foods' : {

$elemMatch : {
name : 'bacon',
tasty : false

}
}

}
> db.countries.find(badBacon)
{

"_id" : ObjectId("4d0b7b84bb30773266f39fef"),
"name" : "Canada",
"exports" : {

"foods" : [
{

"name" : "bacon",
"tasty" : false

},

report erratum • discuss

Day 1: CRUD and Nesting • 107

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

{
"name" : "syrup",
"tasty" : true

}
]

}
}

Everything looks good. Let’s remove it.

> db.countries.remove(badBacon)
> db.countries.count()
2

Now when you run count(), verify we are left with only two countries. If so, our
parameter-targeted delete was successful!

Reading with Code
Let’s close out this day with one more interesting query option: code. You can
request that MongoDB run a decision function across your documents. We
placed this last because it should always be a last resort. These queries run
quite slowly, you can’t index them, and Mongo can’t optimize them. But
sometimes it’s hard to beat the power of custom code.

Let’s say that we’re looking for a city with a population between 6,000 and
600,000 people.

> db.towns.find(function() {
return this.population > 6000 && this.population < 600000;

})

That should return Portland and Punxsutawney. Mongo even has a shortcut
for simple decision functions.

> db.towns.find("this.population > 6000 && this.population < 600000")

You can run custom code with other criteria using the $where clause. In this
example, the query also filters for towns famous for groundhogs named Phil.

db.towns.find({
$where: "this.population > 6000 && this.population < 600000",
famousFor: /Phil/

})

A word of warning: Mongo will blindly run this function against each document
despite there being no guarantee that the given field exists in every document.
For example, if you assume a population field exists and population is missing
in even a single document, the entire query will fail because the JavaScript
cannot properly execute. Be careful when you write custom JavaScript

Chapter 4. MongoDB • 108

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

functions, be comfortable using JavaScript before attempting custom code,
and in general avoid these sorts of operations in production.

Day 1 Wrap-Up
Today we took a peek at our first document database, MongoDB. We saw how
we can store nested structured data as JSON objects and query that data to
any depth. You learned that a document can be envisioned as a schemaless
row in the relational model, keyed by a generated _id. A set of documents is
called a collection in Mongo, similar to a table in PostgreSQL but also quite
different.

Unlike the previous styles we’ve encountered, with collections of sets of simple
datatypes, Mongo stores complex, denormalized documents, stored and
retrieved as collections of arbitrary JSON structures. Mongo tops off this
flexible storage strategy with a powerful query mechanism unconstrained by
any predefined schema.

Its denormalized nature makes a document database a superb choice for
storing data with unknown qualities, while other styles (such as relational or
columnar) prefer, or sometimes even demand, that you know your data
models in advance and require schema migrations to add or edit fields.

Day 1 Homework

Find

1. Bookmark the online MongoDB documentation and read up on something
you found intriguing today.

2. Look up how to construct regular expressions in Mongo.

3. Acquaint yourself with command-line db.help() and db.collections.help() output.

4. Find a Mongo driver in your programming language of choice (Ruby, Java,
PHP, Go, Elixir, and so on).

Do

1. Print a JSON document containing { "hello" : "world" }.

2. Select a town via a case-insensitive regular expression containing the
word new.

3. Find all cities whose names contain an e and are famous for food or beer.

4. Create a new database named blogger with a collection named articles. Insert
a new article with an author name and email, creation date, and text.

report erratum • discuss

Day 1: CRUD and Nesting • 109

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

5. Update the article with an array of comments, containing a comment with
an author and text.

6. Run a query from an external JavaScript file that you create yourself.

Day 2: Indexing, Aggregating, Mapreduce
Increasing MongoDB’s query performance is the first item on today’s docket,
followed by some more powerful and complex grouped queries. Finally, we’ll
round out the day with some data analysis using mapreduce.

Indexing: When Fast Isn’t Fast Enough
One of Mongo’s useful built-in features is indexing in the name of enhanced
query performance—something, as you’ve seen, that’s not available on all
NoSQL databases. MongoDB provides several of the best data structures for
indexing, such as the classic B-tree as well as other additions, such as two-
dimensional and spherical GeoSpatial indexes.

For now, we’re going to do a little experiment to see the power of MongoDB’s
B-tree index by populating a series of phone numbers with a random country
prefix (feel free to replace this code with your own country code). Enter the
following code into your console. This will generate 100,000 phone numbers
(it may take a while), between 1-800-555-0000 and 1-800-565-0000.

mongo/populatePhones.js
populatePhones = function(area, start, stop) {

for(var i = start; i < stop; i++) {
var country = 1 + ((Math.random() * 8) << 0);
var num = (country * 1e10) + (area * 1e7) + i;
var fullNumber = "+" + country + " " + area + "-" + i;
db.phones.insert({
_id: num,
components: {

country: country,
area: area,
prefix: (i * 1e-4) << 0,
number: i

},
display: fullNumber

});
print("Inserted number " + fullNumber);

}
print("Done!");

}

Chapter 4. MongoDB • 110

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/mongo/populatePhones.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Run the function with a three-digit area code (like 800) and a range of seven-
digit numbers (5,550,000 to 5,650,000—please verify your zeros when typing).

> populatePhones(800, 5550000, 5650000) // This could take a minute
> db.phones.find().limit(2)

{ "_id" : 18005550000, "components" : { "country" : 1, "area" : 800,
"prefix" : 555, "number" : 5550000 }, "display" : "+1 800-5550000" }

{ "_id" : 88005550001, "components" : { "country" : 8, "area" : 800,
"prefix" : 555, "number" : 5550001 }, "display" : "+8 800-5550001" }

Whenever a new collection is created, Mongo automatically creates an index
by the _id. These indexes can be found in the system.indexes collection. The fol-
lowing query shows all indexes in the database:

> db.getCollectionNames().forEach(function(collection) {
print("Indexes for the " + collection + " collection:");
printjson(db[collection].getIndexes());

});

Most queries will include more fields than just the _id, so we need to make
indexes on those fields.

We’re going to create a B-tree index on the display field. But first, let’s verify
that the index will improve speed. To do this, we’ll first check a query without
an index. The explain() method is used to output details of a given operation.

> db.phones.find({display: "+1 800-5650001"}).
explain("executionStats").executionStats

{
"executionTimeMillis": 52,
"executionStages": {

"executionTimeMillisEstimate": 58,
}

}

Your output will differ from ours here and only a few fields from the output
are shown here, but note the executionTimeMillisEstimate field—milliseconds to
complete the query—will likely be double digits.

We create an index by calling ensureIndex(fields,options) on the collection. The fields
parameter is an object containing the fields to be indexed against. The options
parameter describes the type of index to make. In this case, we’re building a
unique index on display that should just drop duplicate entries.

> db.phones.ensureIndex(
{ display : 1 },
{ unique : true, dropDups : true }

)

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 111

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Now try find() again, and check explain() to see whether the situation improves.

> db.phones.find({ display: "+1 800-5650001" }).
explain("executionStats").executionStats

{
"executionTimeMillis" : 0,
"executionStages": {

"executionTimeMillisEstimate": 0,
}

}

The executionTimeMillisEstimate changed from 52 to 0—an infinite improvement
(52 / 0)! Just kidding, but the query is now orders of magnitude faster.
Mongo is no longer doing a full collection scan but instead walking the tree
to retrieve the value. Importantly, scanned objects dropped from 109999 to
1—since it has become a single unique lookup.

explain() is a useful function, but you’ll use it only when testing specific query
calls. If you need to profile in a normal test or production environment, you’ll
need the system profiler.

Let’s set the profiling level to 2 (level 2 stores all queries; profiling level 1
stores only slower queries greater than 100 milliseconds) and then run find()
as normal.

> db.setProfilingLevel(2)
> db.phones.find({ display : "+1 800-5650001" })

This will create a new object in the system.profile collection, which you can read
as any other table to get information about the query, such as a timestamp
for when it took place and performance information (such as executionTimeMillis-
Estimate as shown). You can fetch documents from that collection like any
other:

> db.system.profile.find()

This will return a list of objects representing past queries. This query, for
example, would return stats about execution times from the first query in
the list:

> db.system.profile.find()[0].execStats
{

"stage" : "EOF",
"nReturned" : 0,
"executionTimeMillisEstimate" : 0,
"works" : 0,
"advanced" : 0,
"needTime" : 0,

Chapter 4. MongoDB • 112

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

"needYield" : 0,
"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0

}

Like yesterday’s nested queries, Mongo can build your index on nested values.
If you wanted to index on all area codes, use the dot-notated field representa-
tion: components.area. In production, you should always build indexes in the
background using the { background : 1 } option.

> db.phones.ensureIndex({ "components.area": 1 }, { background : 1 })

If we find() all of the system indexes for our phones collection, the new one should
appear last. The first index is always automatically created to quickly look
up by _id, and the other two we added ourselves.

> db.phones.getIndexes()
[

{
"v" : 2,
"key" : {
"_id" : 1

},
"name" : "_id_",
"ns" : "book.phones"

},
{

"v" : 2,
"unique" : true,
"key" : {
"display" : 1

},
"name" : "display_1",
"ns" : "book.phones"

},
{

"v" : 2,
"key" : {
"components.area" : 1

},
"name" : "components.area_1",
"ns" : "book.phones",
"background" : 1

}
]

Our book.phones indexes have rounded out quite nicely.

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 113

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

We should close this section by noting that creating an index on a large col-
lection can be slow and resource-intensive. Indexes simply “cost” more in
Mongo than in a relational database like Postgres due to Mongo’s schemaless
nature. You should always consider these impacts when building an index
by creating indexes at off-peak times, running index creation in the back-
ground, and running them manually rather than using automated index
creation. There are plenty more indexing tricks and tips online, but these are
the basics that may come in handy the most often.

Mongo’s Many Useful CLI Tools

Before we move on to aggregation in Mongo, we want to briefly tell you about the
other shell goodies that Mongo provides out-of-the-box in addition to mongod and
mongo. We won’t cover them in this book but we do strongly recommend checking
them out, as they together make up one of the most amply equipped CLI toolbelts in
the NoSQL universe.

DescriptionCommand

Exports data from Mongo into .bson files. That can mean entire collections
or databases, filtered results based on a supplied query, and more.

mongodump

Manipulates large GridFS data files (GridFS is a specification for BSON
files exceeding 16 MB).

mongofiles

Polls operation logs from MongoDB replication operations.mongooplog

Restores MongoDB databases and collections from backups created
using mongodump.

mongorestore

Displays basic MongoDB server stats.mongostat

Exports data from Mongo into CSV (comma-separated value) and JSON
files. As with mongodump, that can mean entire databases and collections
or just some data chosen on the basis of query parameters.

mongoexport

Imports data into Mongo from JSON, CSV, or TSV (term-separated value)
files. We’ll use this tool on Day 3.

mongoimport

Performs user-defined performance tests against a MongoDB server.mongoperf

Short for “MongoDB shard,” this tool provides a service for properly
routing data into a sharded MongoDB cluster (which we will not cover
in this chapter).

mongos

Displays usage stats for each collection stored in a Mongo database.mongotop

Converts BSON files into other formats, such as JSON.bsondump

For more in-depth info, see the MongoDB reference documentation.a

a. https://docs.mongodb.com/manual/reference/program

Chapter 4. MongoDB • 114

report erratum • discuss

https://docs.mongodb.com/manual/reference/program
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Aggregated Queries
MongoDB includes a handful of single-purpose aggregators: count() provides
the number of documents included in a result set (which we saw earlier), dis-
tinct() collects the result set into an array of unique results, and aggregate()
returns documents according to a logic that you provide.

The queries we investigated yesterday were useful for basic data extraction,
but any post-processing would be up to you to handle. For example, say you
wanted to count the phone numbers greater than 5599999 or provide nuanced
data about phone number distribution in different countries—in other words,
to produce aggregate results using many documents. As in PostgreSQL, count()
is the most basic aggregator. It takes a query and returns a number (of
matching documents).

> db.phones.count({'components.number': { $gt : 5599999 } })
50000

The distinct() method returns each matching value (not a full document) where
one or more exists. We can get the distinct component numbers that are less
than 5,550,005 in this way:

> db.phones.distinct('components.number',
{'components.number': { $lt : 5550005 } })

[5550000, 5550001, 5550002, 5550003, 5550004]

The aggregate() method is more complex but also much more powerful. It enables
you to specify a pipeline-style logic consisting of stages such as: $match filters
that return specific sets of documents; $group functions that group based on
some attribute; a $sort() logic that orders the documents by a sort key; and
many others.3

You can chain together as many stages as you’d like, mixing and matching
at will. Think of aggregate() as a combination of WHERE, GROUP BY, and ORDER BY
clauses in SQL. The analogy isn’t perfect, but the aggregation API does a lot
of the same things.

Let’s load some city data into Mongo. There’s an included mongoCities100000.js
file containing insert statements for data about nearly 100,000 cities. Here’s
how you can execute that file in the Mongo shell: c

> load('mongoCities100000.js')
> db.cities.count()
99838

3. https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 115

https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Here’s an example document for a city:

{
"_id" : ObjectId("5913ec4c059c950f9b799895"),
"name" : "Sant Julià de Lòria",
"country" : "AD",
"timezone" : "Europe/Andorra",
"population" : 8022,
"location" : {

"longitude" : 42.46372,
"latitude" : 1.49129

}
}

We could use aggregate() to, for example, find the average population for all
cities in the Europe/London timezone. To do so, we could $match all documents
where timezone equals Europe/London, and then add a $group stage that pro-
duces one document with an _id field with a value of averagePopulation and an
avgPop field that displays the average value across all population values in the
collection:

> db.cities.aggregate([
{

$match: {
'timezone': {

$eq: 'Europe/London'
}

}
},
{

$group: {
_id: 'averagePopulation',
avgPop: {

$avg: '$population'
}

}
}

])
{ "_id" : "averagePopulation", "avgPop" : 23226.22149712092 }

We could also match all documents in that same timezone, sort them in
descending order by population, and then $project documents that only contain
the population field:

> db.cities.aggregate([
{

// same $match statement the previous aggregation operation
},

Chapter 4. MongoDB • 116

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

{
$sort: {
population: -1

}
},
{

$project: {
_id: 0,
name: 1,
population: 1

}
}

])

You should see results like this:

{ "name" : "City of London", "population" : 7556900 }
{ "name" : "London", "population" : 7556900 }
{ "name" : "Birmingham", "population" : 984333 }
// many others

Experiment with it a bit—try combining some of the stage types we’ve already
covered in new ways—and then delete the collection when you’re done, as
we’ll add the same data back into the database using a different method on
Day 3.

> db.cities.drop()

This provides a very small taste of Mongo’s aggregation capabilities. The
possibilities are really endless, and we encourage you to explore other stage
types. Be forewarned that aggregations can be quite slow if you add a lot of
stages and/or perform them on very large collections. There are limits to how
well Mongo, as a schemaless database, can optimize these sorts of operations.
But if you’re careful to keep your collections reasonably sized and, even better,
structure your data to not require bold transformations to get the outputs
you want, then aggregate() can be a powerful and even speedy tool.

Server-Side Commands
In addition to evaluating JavaScript functions, there are several pre-built
commands in Mongo, most of which are executed on the server, although
some require executing only under the admin database (which you can access
by entering use admin). The top command, for example, will output access details
about all collections on the server.

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 117

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

> use admin
> db.runCommand("top")
{

"totals" : {
"note" : "all times in microseconds",
"admin.system.roles" : {
"total" : {
"time" : 3666,
"count" : 1

},
// etc
}

}

You can also list all commands that are currently available (let’s switch back to the
book database first because the admin database provides a different set of commands):

> use book
> db.listCommands()

When you run listCommands(), you may notice a lot of commands we’ve used
already. In fact, you can execute many common commands through the run-
Command() method, such as counting the number of phones. However, you
may notice a slightly different output.

> db.runCommand({ "find" : "someCollection" })
{

"cursor" : {
"id" : NumberLong(0),
"ns" : "book.someCollection",
"firstBatch" : []

},
"ok" : 1

}

Here, we see that this function returns an object containing a cursor and an
ok field. That’s because db.phones.find() is a wrapper function created for our
convenience by the shell’s JavaScript interface, whereas runCommand() is an
operation executed on the server. Remember that we can play detective on
how a function such as find() works by leaving off the calling parentheses.

> db.phones.find
function (query, fields, limit, skip, batchSize, options) {

var cursor = new DBQuery(this._mongo,
// other query parameters
options || this.getQueryOptions());

// some cursor-building logic

return cursor;
}

Chapter 4. MongoDB • 118

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

So what about the DBQuery object? How much more can we find out about it?

> DBQuery
function DBQuery() {

[native code]
}

Okay, looks like Mongo isn’t going to reveal too much about that. No matter:
this way of diving into function definitions is a great way to both explore
Mongo conceptually and to get a better sense of what’s happening inside of
your queries and operations.

Diversion

We took this quick diversion into function definitions for two reasons:

• To drive home the idea that most of the magic you execute in the mongo console
is executed on the server, not the client, which just provides some convenient
wrapper functions.

• We can leverage the concept of executing server-side code for our own purposes
to create something in MongoDB that’s similar to the stored procedures we saw
in PostgreSQL.

Any JavaScript function can be stored in a special collection named system.js. This is
just a normal collection; you save the function by setting the name as the _id and a
function object as the value.

> db.system.js.save({
_id: 'getLast',
value: function(collection) {

return collection.find({}).sort({'_id':1}).limit(1)[0];
}

})

Now you can use that function by loading it into the current namespace:

> use book
> db.loadServerScripts()
> getLast(db.phones).display
+1 800-5550010

Mapreduce (and Finalize)
Mapreduce operations are designed for performing computations over large
datasets. Every mapreduce operation is split into two basic steps. First, a
map step performs some series of filtering and/or sorting operation, winnowing
the original dataset down into some subset. Then, a reduce step performs
some kind of operation on that subset. An example mapreduce operation
would be finding all baseball players in Major League history with the first

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 119

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

name Dave (the map step) and then finding the cumulative batting average
for all of those Daves (the reduce step).

In MongoDB, the map step involves creating a mapper function that calls an
emit() function. The benefit of this approach is you can emit more than once per
document. The reduce() function accepts a single key and a list of values that
were emitted to that key. Finally, Mongo provides an optional third step called
finalize(), which is executed only once per mapped value after the reducers are
run. This allows you to perform any final calculations or cleanup you may need.

Because we already know the basics of mapreduce, we’ll skip the intro wading-
pool example and go right to the high-dive. Let’s generate a report that counts
all phone numbers that contain the same digits for each country. First, we’ll
store a helper function that extracts an array of all distinct numbers (under-
standing how this helper works is not imperative to understanding the overall
mapreduce).

mongo/distinctDigits.js
distinctDigits = function(phone){

var number = phone.components.number + '',
seen = [],
result = [],
i = number.length;

while(i--) {
seen[+number[i]] = 1;

}

for (var i = 0; i < 10; i++) {
if (seen[i]) {
result[result.length] = i;

}
}

return result;
}

db.system.js.save({_id: 'distinctDigits', value: distinctDigits})

Load the file in the mongo command line. If the file exists in the same directory
you launched mongo from, you need only the filename; otherwise, a full path
is required.

> load('distinctDigits.js')

Now we can get to work on the mapper. As with any mapreduce function,
deciding what fields to map by is a crucial decision because it dictates the
aggregated values that you return. Because our report is finding distinct
numbers, the array of distinct values is one field. But because we also need

Chapter 4. MongoDB • 120

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/mongo/distinctDigits.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

to query by country, that is another field. We add both values as a compound
key: {digits : X, country : Y}.

Our goal is to simply count these values, so we emit the value 1 (each docu-
ment represents one item to count). The reducer’s job is to sum all those 1s
together.

mongo/map1.js
map = function() {

var digits = distinctDigits(this);
emit({

digits: digits,
country: this.components.country

}, {
count : 1

});
}

mongo/reduce1.js
reduce = function(key, values) {

var total = 0;
for (var i = 0; i < values.length; i++) {

total += values[i].count;
}
return { count : total };

}

results = db.runCommand({
mapReduce: 'phones',
map: map,
reduce: reduce,
out: 'phones.report'

})

Because we set the collection name via the out parameter (out: 'phones.report'),
you can query the results like any other. It’s a materialized view that you can
see in the show tables list.

> db.phones.report.find({'_id.country' : 8})
{

"_id" : { "digits" : [0, 1, 2, 3, 4, 5, 6], "country" : 8 },
"value" : { "count" : 19 }

}
{

"_id" : { "digits" : [0, 1, 2, 3, 5], "country" : 8 },
"value" : { "count" : 3 }

}
{

"_id" : { "digits" : [0, 1, 2, 3, 5, 6], "country" : 8 },
"value" : { "count" : 48 }

}

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 121

http://media.pragprog.com/titles/pwrdata/code/mongo/map1.js
http://media.pragprog.com/titles/pwrdata/code/mongo/reduce1.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

{
"_id" : { "digits" : [0, 1, 2, 3, 5, 6, 7], "country" : 8 },
"value" : { "count" : 12 }

}
has more

Type it to continue iterating through the results. Note that the unique emitted
keys are under the field _ids, and all of the data returned from the reducers
is under the field value.

If you prefer that the mapreducer just output the results, rather than out-
putting to a collection, you can set the out value to { inline : 1 }, but bear in
mind that there is a limit to the size of a result you can output. As of Mongo
2.0, that limit is 16 MB.

Reducers can have either mapped (emitted) results or other reducer results
as inputs. Why would the output of one reducer feed into the input of
another if they are mapped to the same key? Think of how this would look if
run on separate servers, as shown in the figure that follows.

mongos

mongod 1 mongod 2

map map map

reduce

map map map

reduce

reduce

db.runCommand({'mapReduce'...})

Each server must run its own map() and reduce() functions and then push those
results to be merged with the service that initiated the call, gathering them
up. Classic divide and conquer. If we had renamed the output of the reducer

Chapter 4. MongoDB • 122

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

to total instead of count, we would have needed to handle both cases in the
loop, as shown here:

mongo/reduce2.js
reduce = function(key, values) {

var total = 0;
for(var i = 0; i < values.length; i++) {

var data = values[i];
if('total' in data) {
total += data.total;

} else {
total += data.count;

}
}
return { total : total };

}

However, Mongo predicted that you might need to perform some final changes,
such as renaming a field or some other calculations. If you really need the
output field to be total, you can implement a finalize() function, which works
the same way as the finalize function under group().

Day 2 Wrap-Up
On Day 2, we’ve expanded our query power by including several aggregate
queries: count(), distinct(), and topped off by aggregate(). To speed up the response
time of these queries, we used MongoDB’s indexing options. When more
power is required, the ever-present mapReduce() is available.

Day 2 Homework

Find

1. Find a shortcut for admin commands.

2. Find the online documentation for queries and cursors.

3. Find the MongoDB documentation for mapreduce.

4. Through the JavaScript interface, investigate the code for three collections
functions: help(), findOne(), and stats().

Do

1. Implement a finalize method to output the count as the total.

2. Install a Mongo driver for a language of your choice, and connect to the
database. Populate a collection through it, and index one of the fields.

report erratum • discuss

Day 2: Indexing, Aggregating, Mapreduce • 123

http://media.pragprog.com/titles/pwrdata/code/mongo/reduce2.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS
Mongo has a powerful ability to store and query data in a variety of ways. But
then again, other databases can do those things, too. What makes document
databases unique is their ability to efficiently handle arbitrarily nested,
schemaless data documents. Thus far, we’ve run Mongo as a single server.
But if you were to run Mongo in production, you’d want to run it as a cluster
of machines, which would provide for much higher availability and enable
you to replicate data across servers, shard collections into many pieces, and
perform queries in parallel.

Replica Sets
Mongo was meant to scale out, not to run in standalone mode. It was built
for data consistency and partition tolerance, but sharding data has a cost: If
one part of a collection is lost, the whole thing is compromised. What good is
querying against a collection of countries that contains only the Western
Hemisphere or only Asia? Mongo deals with this implicit sharding weakness
in a simple manner: duplication. You should rarely run a single Mongo
instance in production and instead replicate the stored data across multiple
services.

Rather than muck with our existing database, today we’ll start from scratch
and spawn a few new servers. Mongo’s default port is 27017, so we’ll start
up each server on other ports. Remember that you must create the data
directories first, so create three of them:

$ mkdir ./mongo1 ./mongo2 ./mongo3

Next, we’ll fire up the Mongo servers. This time we’ll add the replSet flag with
the name book and specify the ports.

$ mongod --replSet book --dbpath ./mongo1 --port 27011

Chapter 4. MongoDB • 124

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Open another terminal window and run the next command, which launches
another server, pointing to a different directory, available on another port.
Then open a third terminal to start the third server.

$ mongod --replSet book --dbpath ./mongo2 --port 27012
$ mongod --replSet book --dbpath ./mongo3 --port 27013

Notice that you get lots of this noise on the output, with error messages like this:

[initandlisten] Did not find local voted for document at startup

That’s a good thing because we haven’t yet initialized our replica set and
Mongo is letting us know that. Fire up a mongo shell to one of the servers, and
execute the rs.initiate() function.

$ mongo localhost:27011
> rs.initiate({

_id: 'book',
members: [

{_id: 1, host: 'localhost:27011'},
{_id: 2, host: 'localhost:27012'},
{_id: 3, host: 'localhost:27013'}

]
})
> rs.status().ok
1

Notice we’re using a new object called rs (replica set) instead of db (database).
Like other objects, it has a help() method you can call. Running the status()
command will let us know when our replica set is running, so just keep
checking the status for completion before continuing. If you watch the three
server outputs, you should see that one server outputs this line:

Member ... is now in state PRIMARY

And two servers will have the following output:

Member ... is now in state SECONDARY

PRIMARY will be the master server. Chances are, this will be the server on port
27011 (because it started first); however, if it’s not, go ahead and fire up a
console to the primary. Just insert any old thing on the command line, and
we’ll try an experiment.

> db.echo.insert({ say : 'HELLO!' })

After the insert, exit the console, and then let’s test that our change has been
replicated by shutting down the master node; pressing Ctrl+C is sufficient. If
you watch the logs of the remaining two servers, you should see that one of
the two has now been promoted to master (it will output the Member ... is now in

report erratum • discuss

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 125

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

state PRIMARY line). Open a console into that machine (for us it was local-
host:27012), and db.echo.find()() should contain your value.

We’ll play one more round of our console-shuffle game. Open a console into
the remaining SECONDARY server by running mongo localhost:27013. Just to be sure,
run the isMaster() function. Ours looked like this:

> db.isMaster().ismaster
false
> db.isMaster().primary
localhost:27012

In this shell, let’s attempt to insert another value.

> db.echo.insert({ say : 'is this thing on?' })
WriteResult({ "writeError" : { "code" : 10107, "errmsg" : "not master" } })

This message is letting us know that we can neither write to a secondary node
nor read directly from it. There is only one master per replica set, and you
must interact with it. It is the gatekeeper to the set.

Replicating data has its own issues not found in single-source databases. In
the Mongo setup, one problem is deciding who gets promoted when a master
node goes down. Mongo deals with this by giving each mongod service a vote,
and the one with the freshest data is elected the new master. Right now, you
should still have two mongod services running. Go ahead and shut down the
current master (aka primary node). Remember, when we did this with three
nodes, one of the others just got promoted to be the new master. Now the last
remaining node is implicitly the master.

Go ahead and relaunch the other servers and watch the logs. When the nodes
are brought back up, they go into a recovery state and attempt to resync their
data with the new master node. “Wait a minute!?” we hear you cry. “So, what
if the original master had data that did not yet propagate?” Those operations
are dropped. A write in a Mongo replica set isn’t considered successful until
most nodes have a copy of the data.

The Problem with Even Nodes

The concept of replication is easy enough to grasp: You write to one MongoDB
server, and that data is duplicated across others within the replica set. If one
server is unavailable, then one of the others can be promoted and serve
requests. But a server can be unavailable in more ways than a server crash.
Sometimes, the network connection between nodes is down (such as a network
partition, thinking back to the P in CAP). In that case, Mongo dictates that
the majority of nodes that can still communicate now constitute the network.

Chapter 4. MongoDB • 126

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

MongoDB expects an odd number of total nodes in the replica set. Consider
a five-node network, for example. If connection issues split it into a three-
node fragment and a two-node fragment, the larger fragment has a clear
majority and can elect a master and continue servicing requests. With no
clear majority, a quorum couldn’t be reached.

To see why an odd number of nodes is preferred, consider what might happen
to a four-node replica set. Say a network partition causes two of the servers
to lose connectivity from the other two. One set will have the original master,
but because it can’t see a clear majority of the network, the master steps
down. The other set will similarly be unable to elect a master because it, too,
can’t communicate with a clear majority of nodes. Both sets are now unable
to process requests and the system is effectively down. Having an odd number
of total nodes would have made this particular scenario—a fragmented network
where each fragment has less than a clear majority—less likely to occur.

Some databases (such as CouchDB) are built to allow multiple masters, but
Mongo is not, and so it isn’t prepared to resolve data updates between them.
MongoDB deals with conflicts between multiple masters by simply not
allowing them.

Because it’s a CP system, Mongo always knows the most recent value; the
client needn’t decide. Mongo’s concern is strong consistency on writes, and
preventing a multimaster scenario is not a bad method for achieving it.

Voting and Arbiters

You may not always want to have an odd number of servers replicating data. In that
case, you can either launch an arbiter (generally recommended) or increase voting
rights on your servers (generally not recommended). In Mongo, an arbiter is a voting
but nonreplicating server in the replica set. You launch it just like any other server
but on configuration set a flag, like this: {_id: 3, host: 'localhost:27013', arbiterOnly : true}.
Arbiters are useful for breaking ties, like the U.S. Vice President in the Senate. By
default, each mongod instance has a single vote.

Sharding
One of the core goals of Mongo is to provide safe and quick handling of very
large datasets. The clearest method of achieving this is through horizontal
sharding by value ranges—or just sharding for brevity. Rather than a single
server hosting all values in a collection, some range of values is split, or
sharded, onto other servers. For example, in our phone numbers collection,
we may put all phone numbers less than 1-500-000-0000 onto Mongo server

report erratum • discuss

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 127

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

A and put numbers greater than or equal to 1-500-000-0001 onto server B.
Mongo makes this easier by autosharding, managing this division for you.

Let’s launch a couple of (nonreplicating) mongod servers. Like replica sets,
there’s a special parameter necessary to be considered a shard server (which
just means this server is capable of sharding).

$ mkdir ./mongo4 ./mongo5
$ mongod --shardsvr --dbpath ./mongo4 --port 27014
$ mongod --shardsvr --dbpath ./mongo5 --port 27015

Now you need a server to actually keep track of your keys. Imagine you created
a table to store city names alphabetically. You need some way to know that,
for example, cities starting with A through N go to server mongo4 and O
through Z go to server mongo5. In Mongo, you create a config server (which
is just a regular mongod) that keeps track of which server (mongo4 or mongo5)
owns what values. You’ll need to create and initialize a second replica set for
the cluster’s configuration (let’s call it configSet).

$ mkdir ./mongoconfig
$ mongod --configsvr --replSet configSet --dbpath ./mongoconfig --port 27016

Now enter the Mongo shell for the config server by running mongo localhost:27016
and initiate the config server cluster (with just one member for this example):

> rs.initiate({
_id: 'configSet',
configsvr: true,
members: [

{
_id: 0,
host: 'localhost:27016'

}
]

})
{ "ok" : 1}
> rs.status().ok
1

Finally, you need to run yet another server called mongos, which is the single
point of entry for our clients. The mongos server will connect to the mongoconfig
config server to keep track of the sharding information stored there. You point
mongos to the replSet/server:port with the --configdb flag.

$ mongos --configdb configSet/localhost:27016 --port 27020

A neat thing about mongos is that it is a lightweight clone of a full mongod
server. Nearly any command you can throw at a mongod you can throw at a

Chapter 4. MongoDB • 128

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

mongos, which makes it the perfect go-between for clients to connect to multiple
sharded servers. The following picture of our server setup may help.

Now let’s jump into the mongos server console in the admin database by running
mongo localhost:27020/admin. We’re going to configure some sharding.

> sh.addShard('localhost:27014')
{ "shardAdded" : "shard0000", "ok" : 1 }
> sh.addShard('localhost:27015')
{ "shardAdded" : "shard0001", "ok" : 1 }

With that setup, now we have to give it the database and collection to shard
and the field to shard by (in our case, the city name).

> db.runCommand({ enablesharding : "test" })
{ "ok" : 1 }
> db.runCommand({ shardcollection : "test.cities", key : {name : 1} })
{ "collectionsharded" : "test.cities", "ok" : 1 }

mongos vs. mongoconfig
You may wonder why Mongo separates the config server and the mongos point of entry
into two different servers. In production environments, they will generally live on
different physical servers. The config server (which can itself be replicated across
multiple servers) manages the sharded information for other sharded servers, while
mongos will likely live on your local application server where clients can easily connect
(without needing to manage which shards to connect to).

With all that setup out of the way, let’s load some data. If you download the
book code, you’ll find a 12 MB data file named mongoCities100000.json that con-
tains data for every city in the world with a population of more than 1,000
people. Download that file, and run the following import script that imports
the data into your mongos server:

report erratum • discuss

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 129

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ mongoimport \
--host localhost:27020 \
--db test \
--collection cities \
--type json \
mongoCities100000.json

If the import is successful, you should see imported 99838 documents in the output
(not quite 100,000 cities as the filename would suggest, but pretty close).

GeoSpatial Queries
Mongo has a neat trick built into it. Although we’ve focused on server setups
today, no day would be complete without a little bit of razzle-dazzle, and that’s
Mongo’s ability to quickly perform geospatial queries. First, connect to the
mongos sharded server.

$ mongo localhost:27020

The core of the geospatial secret lies in indexing. It’s a special form of indexing
geographic data called geohash that not only finds values of a specific value
or range quickly but finds nearby values quickly in ad hoc queries. Conve-
niently, at the end of our previous section, we installed a lot of geographic
data. So to query it, step 1 is to index the data on the location field. The 2d
index must be set on any two value fields, in our case a hash (for example,
{ longitude:1.48453, latitude:42.57205 }), but it could easily have been an array (for
example [1.48453, 42.57205]).

> db.cities.ensureIndex({ location : "2d" })

Now, we can use an aggregation pipeline (think back to Day 2) to assemble
a list of all cities close to Portland, OR sorted in descending order by popula-
tion (displaying the name of the city, the population, and the distance from
the 45.52/-122.67 latitude/longitude point).

> db.cities.aggregate([
{

$geoNear: {
near: [45.52, -122.67],
distanceField: 'dist'

}
},
{

$sort: {
population: -1

}
},
{

Chapter 4. MongoDB • 130

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$project: {
_id: 0,
name: 1,
population: 1,
dist: 1

}
}

])
{ "name" : "Portland", "population" : 540513, "dist" : 0.007103984797274343 }
{ "name" : "Vancouver", "population" : 157517, "dist" : 0.11903458741054997 }
{ "name" : "Salem", "population" : 146922, "dist" : 0.6828926855663344 }
{ "name" : "Gresham", "population" : 98851, "dist" : 0.2395159760851125 }
// many others

As you can see, Mongo’s aggregation API provides a very nice interface for working
with schemaless geospatial data. We’ve only scratched the surface here (no pun
intended), but if you’re interested in exploring the full potential of MongoDB, we
strongly encourage you to dig more deeply.4

GridFS
One downside of a distributed system can be the lack of a single coherent filesystem.
Say you operate a website where users can upload images of themselves. If you
run several web servers on several different nodes, you must manually replicate
the uploaded image to each web server’s disk or create some alternative central
system. Mongo handles this scenario using a distributed filesystem called GridFS.

Mongo comes bundled with a command-line tool for interacting with GridFS. The
great thing is that you don’t have to set up anything special to use it. If you list
the files in the mongos managed shards using the command mongofiles, you get an
empty list.

$ mongofiles -h localhost:27020 list

connected to: localhost:27020

But upload any file...

$ echo "here's some file data" > just-some-data.txt
$ mongofiles -h localhost:27020 put just-some-data.txt
2017-05-11T20:03:32.272-0700 connected to: localhost:27020
added file: my-file.txt

...and voilà! If you list the contents of mongofiles, you’ll find the uploaded name.

$ mongofiles -h localhost:27020 list

2017-05-11T20:04:39.019-0700 connected to: localhost:27020
just-some-data.txt 22

4. https://docs.mongodb.com/manual/core/2dsphere

report erratum • discuss

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 131

https://docs.mongodb.com/manual/core/2dsphere
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Back in your mongo console, you can see the collections Mongo stores the data in.

> show collections
cities
fs.chunks
fs.files

Because they’re just plain old collections, they can be replicated or queried
like any other. Here we’ll look up the filename of the text file we imported.

> db.fs.files.find()[0].filename
just-some-data.txt

Day 3 Wrap-Up
This wraps up our investigation of MongoDB. Today we focused on how Mongo
enhances data durability with replica sets and supports horizontal scaling with
sharding. We looked at good server configurations and how Mongo provides the
mongos server to act as a relay for handling autosharding between multiple nodes.
Finally, we toyed with some of Mongo’s built-in tools, such as geospatial queries
and GridFS.

Day 3 Homework

Find

1. Read the full replica set configuration options in the online docs.

2. Find out how to create a spherical geo index.

Do

1. Mongo has support for bounding shapes (namely, squares and circles).
Find all cities within a 50-mile radius around the center of London.5

2. Run six servers: three servers in a replica set, and each replica set is one
of two shards. Run a config server and mongos. Run GridFS across them
(this is the final exam).

Wrap-Up
We hope this taste of MongoDB has piqued your fancy and showed you how
it earns the moniker of the “humongous” database. We covered a lot in a
single chapter, but as usual, we only clawed at the surface.

5. https://docs.mongodb.com/manual/reference/operator/query/geoWithin/

Chapter 4. MongoDB • 132

report erratum • discuss

https://docs.mongodb.com/manual/reference/operator/query/geoWithin/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Mongo’s Strengths
Mongo’s primary strength lies in its ability to handle huge amounts of data
(and huge amounts of requests) by replication and horizontal scaling. But it
also has an added benefit of a very flexible data model. You don’t ever need
to conform to a schema and can simply nest any values you would generally
join using SQL in an RDBMS.

Finally, MongoDB was built to be easy to use. You may have noticed the
similarity between Mongo commands and SQL database concepts (minus the
server-side joins). This is not by accident and is one reason Mongo has so
much mind share amongst people who have defected from the relational
database camp. It’s different enough to scratch a lot of developer itches but
not so different that it becomes a weird and scary monster.

Mongo’s Weaknesses
Mongo encourages denormalization of schemas (by not having any) and that
can be a bit too much for some to swallow. Some developers find the cold,
hard constraints of a relational database reassuring. It can be dangerous to
insert any old value of any type into any collection. A single typo can cause
hours of headache if you don’t think to look at field names and collection
names as a possible culprit. Mongo’s flexibility is generally not important if
your data model is already fairly mature and locked down.

Because Mongo is focused on large datasets, it works best in large clusters,
which can require some effort to design and manage. Unlike some clustered
databases where adding new nodes is a transparent and relatively painless
process, setting up a Mongo cluster requires a little more forethought.

Parting Thoughts
Mongo is an excellent choice if you are currently using a relational database
to store your data using ORM-style patterns. We often recommend it to
developers steeped in frameworks such as Ruby on Rails and Django because
they can then perform validations and field management through the models
at the application layer and because schema migrations become a thing of
the past (for the most part). Adding new fields to a document is as easy as
adding a new field to your data model, and Mongo will happily accept the new
terms. We find Mongo to be a much more natural answer to many common
problem scopes for application-driven datasets than relational databases.

report erratum • discuss

Wrap-Up • 133

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 5

CouchDB
Ratchet wrenches are light and convenient tools you carry around for a range
of jobs, big and small. As with power drills, you can swap out variously sized
bits like sockets or screws. Unlike a power drill that needs to be plugged into
120 volts of AC power, however, a wrench is happy to rest in your pocket and
run on elbow grease. Apache CouchDB is like that. Able to scale down as well
as up, it fits problem spaces of varying size and complexity with ease.

CouchDB is the quintessential JSON- and REST-based document-oriented
database. First released all the way back in 2005, CouchDB was designed
with the web in mind and all the innumerable flaws, faults, failures, and
glitches that come with it. Consequently, CouchDB offers a robustness
unmatched by most other databases. Whereas other systems tolerate occa-
sional network drops, CouchDB thrives even when connectivity is only rarely
available.

Like MongoDB, CouchDB stores documents—JSON objects consisting of key-
value pairs where values may be any of several types, including other objects
nested to any depth. What you don’t get, though, is ad hoc querying. Instead,
indexed views produced by incremental mapreduce operations are the principal
way you discover documents.

Relaxing on the Couch
CouchDB lives up to its tag line: relax. Instead of focusing on working well
only in massive clusters running on hundreds of nodes, CouchDB aims to
support a variety of deployment scenarios from the datacenter down to the
smartphone. You can run CouchDB on your Android phone, on your MacBook,
and in your datacenter. Written in Erlang, CouchDB is built tough—the only
way to shut it down is to kill the process! With its append-only storage model,
your data is virtually incorruptible and easy to replicate, back up, and restore.

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CouchDB is document oriented, using JSON as its storage and communication
language. All calls to CouchDB happen through its REST interface. Replication
can be one way (from one database to another) or bidirectional (back and
forth between databases), and ad hoc (triggered at will) or continuous (triggered
at periodic intervals). CouchDB gives you a lot of flexibility to decide how to
structure, protect, and distribute your data.

Frontend-to-Backend Syncing with PouchDB

The past few years have seen a dramatic increase in interest in web apps that remain
usable even when the user is offline. One of the core difficulties behind building such
offline-friendly applications is the data synchronization problem. If a user uses an
app offline for an hour and makes a wide variety of changes, what happens when
their connection comes back and the discrepancy between client and server state
needs to be resolved?

PouchDB is a very interesting tool that has emerged from the CouchDB ecosystem
to address this problem. PouchDB is an open source database created in JavaScript
that acts as a client-side, in-browser data store that automatically synchronizes data
with CouchDB on the backend.

We won‘t cover PouchDB in this book, but we do find it to be a compelling solution
to a problem that‘s widely encountered but has very few ready-made solutions. If
you‘re looking to use CouchDB as a backend for web apps, you‘d be remiss not to
take a look.

Comparing CouchDB and MongoDB
One of the big questions we wanted to address in this book is “What’s the
difference between CouchDB and MongoDB?” On the surface, CouchDB and
MongoDB—which we covered in Chapter 4, MongoDB, on page 93—can seem
quite similar. They’re both document-oriented databases with an affinity for
JavaScript that use JSON for data transport. There are many differences,
though, ranging from project philosophy to implementation to scalability
characteristics. We’ll cover many of these as we explore the beautiful simplic-
ity of CouchDB.

During our three-day tour, we’ll explore many of CouchDB’s compelling fea-
tures and design choices. We’ll start, as always, with individual CRUD com-
mands and then move on to indexing through mapreduce views. As we’ve
done with other databases, we’ll import some structured data and then use
it to explore some advanced concepts. Finally, we’ll develop some simple event-
driven client-side applications using Node.js and learn how CouchDB’s master-
master replication strategy deals with conflicting updates. Let’s get to it!

Chapter 5. CouchDB • 136

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Day 1: CRUD, Fauxton, and cURL Redux
Today we’re going to kick-start our CouchDB exploration by using CouchDB’s
friendly Fauxton web interface to perform basic CRUD operations. After that,
we’ll revisit cURL to make REST calls. All libraries and drivers for CouchDB
end up sending REST requests under the hood, so it makes sense to start by
understanding how they work.

Settling into CouchDB with Fauxton
CouchDB comes with a useful web interface called Fauxton (it was called
Futon in pre-2.0 releases). Once you have CouchDB installed and running,
open a web browser to http://localhost:5984/_utils/. This will open the landing page
shown in the figure that follows.

Before we can start working with documents, we need to create a database
to house them. We’re going to create a database to store data about musicians
along with album and track data from those artists’ discographies. Click the
Create Database button. In the pop-up, enter music and click Create. This
will redirect you automatically to the database’s page. From here, we can
create new documents or open existing ones.

Welcome to the Admin Party!

In Fauxton, you may notice the Admin Party! button on the left-hand sidebar naviga-
tion panel. You can use this interface to create admin users with specified usernames
and passwords. Until you do this, all users of your database are admins, which means
they can do just about whatever they want, including deleting databases and running
expensive replication operations. We won’t create an admin user in this chapter, but
if you were running CouchDB in production, you would be well advised to do so.

report erratum • discuss

Day 1: CRUD, Fauxton, and cURL Redux • 137

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

On the music database’s page, click the plus sign next to All Documents and
then New Doc. This will take you to a new page, as you can see in the figure
that follows.

Just as in MongoDB, a document consists of a JSON object containing key-
value pairs called fields. All documents in CouchDB have an _id field, which
must be unique and can never be changed. You can specify an _id explicitly,
but if you don’t, CouchDB will generate one for you. In our case, the default
is fine, so click Create Document to finish.

Immediately after saving the document, CouchDB will assign it an additional
field called _rev. The _rev field will get a new value every time the document
changes. The format for the revision string consists of an integer followed by
a dash and then a pseudorandom unique string. The integer at the beginning
denotes the numerical revision, in this case 1.

The _id and _rev fields names are reserved in CouchDB. To update or delete
an existing document, you must provide both an _id and the matching _rev. If
either of these do not match, CouchDB will reject the operation. This is how
it prevents conflicts—by ensuring that only the most recent document revisions
are modified.

There are no transactions or locking in CouchDB. To modify an existing
record, you first read it out, taking note of the _id and _rev. Then you request
an update by providing the full document, including the _id and _rev. All
operations are first come, first served. By requiring a matching _rev, CouchDB
ensures that the document you think you’re modifying hasn’t been altered
behind your back while you weren’t looking.

With the document page still open, modify the JSON object, which should
have just one _id. Enter a key/value pair with a key of name and a value of
The Beatles. Then click the Save Changes button. Your JSON object should
look like this:

Chapter 5. CouchDB • 138

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

{
"_id": "2ac58771c197f70461056f7c7e00c0f9",
"name": "The Beatles"

}

CouchDB is not limited to storing string values. It can handle any JSON
structure nested to any depth. Modify the JSON again, setting the value of a
new albums key to the following (this is not an exhaustive list of the Beatles’
albums):

[
"Help!",
"Sgt. Pepper's Lonely Hearts Club Band",
"Abbey Road"

]

After you click Create Document, it should look like the figure that follows.

There’s more relevant information about an album than just its name, so let’s
add some. Modify the albums field and replace the value you just set with this:

[{
"title": "Help!",
"year": 1965

},{
"title": "Sgt. Pepper's Lonely Hearts Club Band",
"year": 1967

},{
"title": "Abbey Road",
"year": 1969

}]

After you save the document, this time you should be able to expand the
albums value to expose the nested documents underneath. It should resemble
the figure on page 140.

report erratum • discuss

Day 1: CRUD, Fauxton, and cURL Redux • 139

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Clicking the Delete Document button would do what you might expect; it
would remove the document from the music database. But don’t do it just yet.
Instead, let’s drop down to the command line and take a look at how to
communicate with CouchDB over REST.

Performing RESTful CRUD Operations with cURL
All communication with CouchDB is REST-based, and this means issuing
commands over HTTP. Here we’ll perform some basic CRUD operations before
moving on to the topic of views. To start, open a command prompt and run
the following (which includes setting the root URL for CouchDB as an envi-
ronment variable for the sake of convenience):

$ export COUCH_ROOT_URL=http://localhost:5984
$ curl ${COUCH_ROOT_URL}
{

"couchdb": "Welcome",
"version": "2.0.0",
"vendor": {

"name": "The Apache Software Foundation"
}

}

Issuing GET requests (cURL’s default) retrieves information about the thing
indicated in the URL. Accessing the root as you just did merely informs you
that CouchDB is up and running and what version is installed. Next, let’s get
some information about the music database we created earlier (output formatted
here for readability):

Chapter 5. CouchDB • 140

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ curl "${COUCH_ROOT_URL}/music/"
{

"db_name": "music",
"update_seq": "4-g1AA...aZxxw",
"sizes": {

"file": 24907,
"external": 193,
"active": 968

},
"purge_seq": 0,
"other": {

"data_size": 193
},
"doc_del_count": 0,
"doc_count": 1,
"disk_size": 24907,
"disk_format_version": 6,
"data_size": 968,
"compact_running": false,
"instance_start_time": "0"

}

This returns some information about how many documents are in the
database, how long the server has been up, how many operations have been
performed, disk size, and more.

Reading a Document with GET
To retrieve a specific document, append its _id to the database URL like so:

$ curl "${COUCH_ROOT_URL}/music/2ac58771c197f70461056f7c7e0001f9"
{

"_id": "2ac58771c197f70461056f7c7e0001f9",
"_rev": "8-e1b7281f6adcd82910c6473be2d4e2ec",
"name": "The Beatles",
"albums": [

{
"title": "Help!",
"year": 1965

},
{
"title": "Sgt. Pepper's Lonely Hearts Club Band",
"year": 1967

},
{
"title": "Abbey Road",
"year": 1969

}
]

}

report erratum • discuss

Day 1: CRUD, Fauxton, and cURL Redux • 141

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

In CouchDB, issuing GET requests is always safe. CouchDB won’t make any
changes to documents as the result of a GET. To make changes, you have to
use other HTTP commands such as PUT, POST, and DELETE.

Creating a Document with POST
To create a new document, use POST. Make sure to specify a Content-Type
header with the value application/json; otherwise, CouchDB will refuse the request.

$ curl -i -XPOST "${COUCH_ROOT_URL}/music/" \
-H "Content-Type: application/json" \
-d '{ "name": "Wings" }'

HTTP/1.1 201 Created
Cache-Control: must-revalidate
Content-Length: 95
Content-Type: application/json
Date: Sun, 30 Apr 2017 23:15:42 GMT
Location: http://localhost:5984/music/2ac58771c197f70461056f7c7e002eda
Server: CouchDB/2.0.0 (Erlang OTP/19)
X-Couch-Request-ID: 92885ae1d3
X-CouchDB-Body-Time: 0

{
"ok": true,
"id": "2ac58771c197f70461056f7c7e002eda",
"rev": "1-2fe1dd1911153eb9df8460747dfe75a0"

}

The HTTP response code 201 Created tells us that our creation request was
successful. The body of the response contains a JSON object with useful
information, such as the _id and _rev values.

Updating a Document with PUT
The PUT command is used to update an existing document or create a new
one with a specific _id. Just like GET, the URL for a PUT URL consists of the
database URL followed by the document’s _id.

$ curl -i -XPUT \
"${COUCH_ROOT_URL}/music/2ac58771c197f70461056f7c7e002eda" \
-H "Content-Type: application/json" \
-d '{

"_id": "74c7a8d2a8548c8b97da748f43000f1b",
"_rev": "1-2fe1dd1911153eb9df8460747dfe75a0",
"name": "Wings",
"albums": ["Wild Life", "Band on the Run", "London Town"]

}'
HTTP/1.1 201 Created
Cache-Control: must-revalidate
Content-Length: 95

Chapter 5. CouchDB • 142

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Content-Type: application/json
Date: Sun, 30 Apr 2017 23:25:13 GMT
ETag: "2-17e4ce41cd33d6a38f04a8452d5a860b"
Location: http://localhost:5984/music/2ac58771c197f70461056f7c7e002eda
Server: CouchDB/2.0.0 (Erlang OTP/19)
X-Couch-Request-ID: 6c0bdfffa5
X-CouchDB-Body-Time: 0

{
"ok": true,
"id": "2ac58771c197f70461056f7c7e002eda",
"rev": "2-17e4ce41cd33d6a38f04a8452d5a860b"

}

Unlike MongoDB, in which you modify documents in place, with CouchDB
you always overwrite the entire document to make any change. The Fauxton
web interface you saw earlier may have made it look like you could modify a
single field in isolation, but behind the scenes it was rerecording the whole
document when you hit Save Changes.

As we mentioned earlier, both the _id and _rev fields must exactly match the
document being updated, or the operation will fail. To see how, try executing
the same PUT operation again.

HTTP/1.1 409 Conflict
Cache-Control: must-revalidate
Content-Length: 58
Content-Type: application/json
Date: Sun, 30 Apr 2017 23:25:52 GMT
Server: CouchDB/2.0.0 (Erlang OTP/19)
X-Couch-Request-ID: 5b626b9060
X-CouchDB-Body-Time: 0

{"error":"conflict","reason":"Document update conflict."}

You’ll get an HTTP 409 Conflict response with a JSON object describing the
problem. This is how CouchDB enforces consistency.

Removing a Document with DELETE
Finally, you can use the DELETE operation to remove a document from the
database.

$ curl -i -XDELETE \
"${COUCH_ROOT_URL}/music/2ac58771c197f70461056f7c7e002eda" \
-H "If-Match: 2-17e4ce41cd33d6a38f04a8452d5a860b"

HTTP/1.1 200 OK
Cache-Control: must-revalidate
Content-Length: 95
Content-Type: application/json
Date: Sun, 30 Apr 2017 23:26:40 GMT

report erratum • discuss

Day 1: CRUD, Fauxton, and cURL Redux • 143

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

ETag: "3-42aafb7411c092614ce7c9f4ab79dc8b"
Server: CouchDB/2.0.0 (Erlang OTP/19)
X-Couch-Request-ID: c4dcb91db2
X-CouchDB-Body-Time: 0

{
"ok": true,
"id": "2ac58771c197f70461056f7c7e002eda",
"rev": "3-42aafb7411c092614ce7c9f4ab79dc8b"

}

The DELETE operation will supply a new revision number, even though the
document is gone. It’s worth noting that the document wasn’t really removed
from disk, but rather a new empty document was appended, flagging the
document as deleted. Just like with an update, CouchDB does not modify
documents in place. But for all intents and purposes, it’s deleted.

Day 1 Wrap-Up
Now that you’ve learned how to do basic CRUD operations in Fauxton and
cURL, you’re ready to move on to more advanced topics. On Day 2, we’ll dig
into creating indexed views, which will provide other avenues for retrieving
documents than just specifying them by their _id values.

Day 1 Homework

Find

1. Find the CouchDB HTTP API reference documentation online.

2. We’ve already used GET, POST, PUT, and DELETE. What other HTTP methods
are supported?

Do

1. Use cURL to PUT a new document into the music database with a specific
_id of your choice.

2. Use cURL to create a new database with a name of your choice, and then
delete that database also via cURL.

3. CouchDB supports attachments, which are arbitrary files that you can
save with documents (similar to email attachments). Again using cURL,
create a new document that contains a text document as an attachment.
Lastly, craft and execute a cURL request that will return just that docu-
ment’s attachment.

Chapter 5. CouchDB • 144

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Day 2: Creating and Querying Views
In CouchDB, a view is a window into the documents contained in a database.
Views are the principal way that documents are accessed in all but trivial
cases, such as those individual CRUD operations you saw on Day 1. Today,
you’ll discover how to create the functions that make up a view. You’ll also
learn how to perform ad hoc queries against views using cURL. Finally, you’ll
import music data, which will make the views more salient and demonstrate
how to use couchrest, a popular Ruby library for working with CouchDB.

Accessing Documents Through Views
A view consists of mapper and reducer functions that are used to generate
an ordered list of key-value pairs. Both keys and values can be any valid
JSON. The simplest view is called _all_docs. It is provided out-of-the-box for all
databases and contains an entry for each document in the database, keyed
by its string _id.

To retrieve all of the things in the database, issue a GET request for the _all_
docs view.

$ curl "${COUCH_ROOT_URL}/music/_all_docs"
{

"total_rows": 1,
"offset": 0,
"rows": [

{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "2ac58771c197f70461056f7c7e0001f9",
"value": {

"rev": "7-d37c47883f4d30913c6a38644410685d"
}

}
]

}

You can see in the previous output the one document we’ve created so far.
The response is a JSON object that contains an array of rows. Each row is an
object with three fields:

• id is the document’s _id.
• key is the JSON key produced by the mapreduce functions.
• value is the associated JSON value, also produced through mapreduce.

In the case of _all_docs, the id and key fields match, but for custom views this
will almost never be the case.

report erratum • discuss

Day 2: Creating and Querying Views • 145

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

By default, views will include only metadata for documents in the value field
rather than each document’s content. To retrieve all of the document’s fields,
add the include_docs=true URL parameter.

$ curl "${COUCH_ROOT_URL}/music/_all_docs?include_docs=true"
{

"total_rows": 1,
"offset": 0,
"rows": [

{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "2ac58771c197f70461056f7c7e0001f9",
"value": {

"rev": "7-d37c47883f4d30913c6a38644410685d"
},
"doc": {

"_id": "2ac58771c197f70461056f7c7e0001f9",
"_rev": "7-d37c47883f4d30913c6a38644410685d",
"name": "The Beatles",
"albums": [

{
"title": "Help!",
"year": 1965

},
{
"title": "Sgt. Pepper's Lonely Hearts Club Band",
"year": 1967

},
{
"title": "Abbey Road",
"year": 1969

}
]

}
}

]
}

Here you can see that the other properties, name and albums, have been added
to the value object in the output. With this basic structure in mind, let’s make
our own views.

Writing Your First View
Now that we’ve gotten a rough overview of how views work, let’s try creating
our own views. To start, we’ll reproduce the behavior of the _all_docs view, and
after that, we’ll make increasingly complex views to extract deeper information
from our documents for indexing.

Chapter 5. CouchDB • 146

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

To create a view, open a browser to Fauxton1 as we did in Day 1. Next, open
the music database by clicking the link. Click the plus symbol next to Design
Documents and then click New View. That should bring you to a page that
resembles the figure that follows.

The code in the Map Function box on the right should look like this:

function(doc) {
emit(_doc.id, 1);

}

Change the emitter function to emit(null, doc). If you click the Options button
in the upper right and then click Run Query, CouchDB will execute this
function once for each document in the database, passing in that document
as the doc parameter each time. This will generate a result that looks like the
figure on page 148.

The secret to this output, and all views, is the emit() function (this works just
like the MongoDB function of the same name). emit takes two arguments: the
key and the value. A given map function may call emit one time, many times,
or no times for a given document. In the previous case, the map function
emits the key-value pair null/doc. As you see in the output table, the key is
indeed null, and the value is the same object you saw on Day 1 when we
requested it directly from cURL.

To make a mapper that achieves the same thing as _all_docs, we need to emit
something a little different. Recall that _all_docs emits the document’s _id field
for the key and a simple object containing only the _rev field for the value.

1. http://localhost:5984/_utils/

report erratum • discuss

Day 2: Creating and Querying Views • 147

http://localhost:5984/_utils/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

With that in mind, change the Map Function code to the following, and then
click Run.

function(doc) {
emit(doc._id, { rev: doc._rev });

}

The output table should now resemble the following JSON payload, echoing
the same key-value pair we saw earlier when enumerating records via _all_docs:

{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "2ac58771c197f70461056f7c7e0001f9",
"value": {
"rev": "8-e1b7281f6adcd82910c6473be2d4e2ec"

},
"_id": "2ac58771c197f70461056f7c7e0001f9"

}

Chapter 5. CouchDB • 148

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Saving a View as a Design Document
When using CouchDB in production, you should store your views in design
documents. A design document is a real document in the database, just like
the Beatles document we created earlier. As such, it can show up in views
and be replicated to other CouchDB servers in the usual fashion. To save a
design document in Fauxton, click the Create Document and Build Index
button, and then fill in the Design Document and Index name fields.

Design documents always have IDs that start with _design/ and contain one or
more views. The index name distinguishes this view from others housed in
the same design document. Deciding which views belong in which design
documents is largely application-specific and subject to taste. As a general
rule, you should group views based on what they do relative to your data.
You’ll see examples of this as we create more interesting views.

Finding Artists by Name
Now that we’ve covered the basics of view creation, let’s develop an application-
specific view. Recall that our music database stores artist information,
including a name field that contains the band’s name. Using the normal GET
access pattern or the _all_docs view, we can access documents by their _id values,
but we’re more interested in looking up bands by name.

In other words, today we can look up the document with _id equal to
2ac58771c197f70461056f7c7e0001f9, but how do we find the document with name
equal to The Beatles? For this, we need a view. In Fauxton, head back to the
New View page, enter artists as the name of the design document and by_
name as the name of the view. Then enter the following Map Function code
and click Create Document and Build Index.

couchdb/artistsByNameMapper.js
function(doc) {

if ('name' in doc) {
emit(doc.name, doc._id);

}
}

This function checks whether the current document has a name field and, if
so, emits the name and document _id as the relevant key-value pair. This
should produce a table like this:

ValueKey

"2ac58771c197f70461056f7c7e0001f9""The Beatles"

report erratum • discuss

Day 2: Creating and Querying Views • 149

http://media.pragprog.com/titles/pwrdata/code/couchdb/artistsByNameMapper.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Finding Albums by Name
Finding artists by name is pretty useful, but we can do more. This time, let’s
make a view that lets us find albums. This will be the first example where
the map function will emit more than one result per document.

Return to the New View page once again (by clicking the plus sign next to
Design Documents). Set the design doc name to albums and the index name
to by_name; then enter the following mapper and click Create Document and
Build Index:

couchdb/albumsByNameMapper.js
function(doc) {

if ('name' in doc && 'albums' in doc) {
doc.albums.forEach(function(album){
var

key = album.title || album.name,
value = { by: doc.name, album: album };

emit(key, value);
});

}
}

This function checks whether the current document has a name field and an
albums field. If so, it emits a key-value pair for each album where the key is
the album’s title or name and the value is a compound object containing the
artist’s name and the original album object. The row field should contain an
array with these key/value pairs:

ValueKey

{by: "The Beatles", album: {title: "Abbey Road", year: 1969}}"Abbey Road"

{by: "The Beatles", album: {title: "Help!", year: 1965}}"Help!"

{by: "The Beatles", album: {title: "Sgt. Pepper's Lonely Hearts
Club Band", year: 1967}}

"Sgt. Pepper's Lonely Hearts Club
Band"

Just as we did with the Artists By Name view, click the Create Document and
Build Index button. This time, for Design Document, enter albums, and for
the index name enter by_name. Click Save to persist the change. Now let’s
see how to query these documents.

Querying Our Custom Artist and Album Views
Now that we have a couple of custom design documents saved, let’s jump
back to the command line and query them with the curl command. We’ll start
with the Artists By Name view. On the command line, execute the following:

Chapter 5. CouchDB • 150

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/couchdb/albumsByNameMapper.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ curl "${COUCH_ROOT_URL}/music/_design/artists/_view/by_name"
{

"total_rows": 1,
"offset": 0,
"rows": [

{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "The Beatles",
"value": "2ac58771c197f70461056f7c7e0001f9"

}
]

}

To query a view, construct the path /<database_name>/_design/<design_doc>/_view/
<view_name>, replacing the parts as appropriate. In our case, we’re querying
the by_name view in the artists design document of the music database. No surprise
here that the output includes our one document, keyed by the band name.

Next, let’s try to find albums by name:

$ curl "${COUCH_ROOT_URL}/music/_design/albums/_view/by_name"
{

"total_rows": 3,
"offset": 0,
"rows": [

{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "Abbey Road",
"value": {

"by": "The Beatles",
"album": {

"title": "Abbey Road",
"year": 1969

}
}

},
{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "Help!",
"value": {

"by": "The Beatles",
"album": {

"title": "Help!",
"year": 1965

}
}

},
{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "Sgt. Pepper's Lonely Hearts Club Band",

report erratum • discuss

Day 2: Creating and Querying Views • 151

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

"value": {
"by": "The Beatles",
"album": {

"title": "Sgt. Pepper's Lonely Hearts Club Band",
"year": 1967

}
}

}
]

}

CouchDB will ensure that the records are presented in alphanumerical order by
the emitted keys. In effect, this is the indexing that CouchDB offers. When
designing your views, it’s important to pick emitted keys that will make sense
when ordered. Requesting a view in this fashion returns the whole set, but what
if you want just a subset? One way to do that is to use the key URL parameter.
When you specify a key, only rows with that exact key are returned.

$ curl '${COUCH_ROOT_URL}/music/_design/albums/_view/by_name?key="Help!"'
{

"total_rows": 3,
"offset": 1,
"rows": [

{
"id": "2ac58771c197f70461056f7c7e0001f9",
"key": "Help!",
"value": {

"by": "The Beatles",
"album": {

"title": "Help!",
"year": 1965

}
}

}
]

}

Notice the total_rows and offset fields in the response. The total_rows field counts the
total number of records in the view, not just the subset returned for this request.
The offset field tells us how far into that full set the first record presented appears.
Based on these two numbers and the length of the rows, we can calculate how
many more records there are in the view on both sides. Requests for views can
be sliced a few other ways beyond the keys parameter, but to really see them in
action, we’re going to need more data.

Importing Data Into CouchDB Using Ruby
Importing data is a recurring problem that you’ll face no matter what database
you end up using. CouchDB is no exception here. In this section, we’ll use

Chapter 5. CouchDB • 152

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Ruby to import structured data into our music database. Through this, you’ll
see how to perform bulk imports into CouchDB, and it will also give us a nice
pool of data to work with when we create more advanced views.

We’ll use music data from Jamendo.com,2 a site devoted to hosting freely licensed
music. Jamendo provides all their artist, album, and track data in a structured
XML format, making it ideal for importing into a document-oriented database
such as CouchDB. Download a GZIPped version of the XML:

$ curl -O https://imgjam.com/data/dbdump_artistalbumtrack.xml.gz

The XML file is over 200 MB. To parse Jamendo’s XML file, we’ll use the libxml-
ruby gem.

Rather than writing our own Ruby-CouchDB driver or issuing HTTP requests
directly, we’ll use a popular Ruby gem called couchrest that wraps these calls into
a convenient Ruby API. We’ll be using only a few methods from the API, but if
you want to continue using this driver for your own projects, you can check out
the documentation.3 On the command line, install the necessary gems:

$ gem install libxml-ruby couchrest

Just as we did for Wikipedia data in Chapter 3, HBase, on page 53, we’ll use
a streaming XML parser to process documents sequentially for insert as
they’re streamed in through standard input. Here’s the code:

couchdb/import_from_jamendo.rb
require 'libxml'
require 'couchrest'

include LibXML

class JamendoCallbacks
include XML::SaxParser::Callbacks

def initialize
@db = CouchRest.database!("http://localhost:5984/music")
@count = 0
@max = 10000 # maximum number to insert
@stack = []
@artist = nil
@album = nil
@track = nil
@tag = nil
@buffer = nil

end

2. http://www.jamendo.com/
3. http://rdoc.info/github/couchrest/couchrest/master/

report erratum • discuss

Day 2: Creating and Querying Views • 153

http://media.pragprog.com/titles/pwrdata/code/couchdb/import_from_jamendo.rb
http://www.jamendo.com/
http://rdoc.info/github/couchrest/couchrest/master/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

def on_start_element(element, attributes)
case element
when 'artist'
@artist = { :albums => [] }
@stack.push @artist

when 'album'
@album = { :tracks => [] }
@artist[:albums].push @album
@stack.push @album

when 'track'
@track = { :tags => [] }
@album[:tracks].push @track
@stack.push @track

when 'tag'
@tag = {}
@track[:tags].push @tag
@stack.push @tag

when 'Artists', 'Albums', 'Tracks', 'Tags'
ignore

else
@buffer = []

end
end

def on_characters(chars)
@buffer << chars unless @buffer.nil?

end

def on_end_element(element)
case element
when 'artist'
@stack.pop
@artist['_id'] = @artist['id'] # reuse Jamendo's artist id for doc _id
@artist[:random] = rand
@db.save_doc(@artist, false, true)
@count += 1
if !@max.nil? && @count >= @max

on_end_document
end
if @count % 500 == 0

puts " #{@count} records inserted"
end

when 'album', 'track', 'tag'
top = @stack.pop
top[:random] = rand

when 'Artists', 'Albums', 'Tracks', 'Tags'
ignore

else
if @stack[-1] && @buffer

@stack[-1][element] = @buffer.join.force_encoding('utf-8')
@buffer = nil

Chapter 5. CouchDB • 154

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

end
end

end

def on_end_document
puts "TOTAL: #{@count} records inserted"
exit(0)

end
end

parser = XML::SaxParser.io(ARGF)
parser.callbacks = JamendoCallbacks.new
parser.parse

A few things that you should make note of:

1. At the very beginning of the script, we bring in all of the gems we need.

2. The standard way to use LibXML is by defining a callbacks class. Here
we define a JamendoCallbacks class to encapsulate our SAX handlers for
various events.

3. The first thing our class does during initialization is connect to our local
CouchDB server using the couchrest API and then create the music database
(if it doesn’t exist already). After that, it sets up some instance variables for
storing state information during the parse. Note that if you set the @max
parameter to nil, all documents will be imported, not just the first 100.

4. Once parsing has started, the on_start_element() method will handle any
opening tags. Here we watch for certain especially interesting tags, such
as <artist>, <album>, <track>, and <tag>. We specifically ignore certain con-
tainer elements—<Artists>, <Albums>, <Tracks>, and <Tags>—and treat all
others as properties to be set on the nearest container items.

5. Whenever the parser encounters character data, we buffer it to be added
as a property to the current container element (the end of @stack).

6. Much of the interesting stuff happens in the on_end_element() method. Here,
we close out the current container element by popping it off the stack. If the
tag closes an <artist> element, we take the opportunity to save off the document
in CouchDB with the @db.save_doc() method. For any container element, we
also add a random property containing a freshly generated random number.
We’ll use this later when selecting a random track, album, or artist.

7. Ruby’s ARGF stream combines standard input and any files specified on
the command line. We feed this into LibXML and specify an instance of
our JamendoCallbacks class to handle the tokens—start tags, end tags, and
character data—as they’re encountered.

report erratum • discuss

Day 2: Creating and Querying Views • 155

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

To run the script, pipe the unzipped XML content into the import script:

$ zcat < dbdump_artistalbumtrack.xml.gz | ruby import_from_jamendo.rb
TOTAL: 10000 records inserted

The script will begin importing 10,000 records (you can adjust the limit by
changing the value of the @max variable in the script). When the import has
finished, drop back down to the command line and we’ll see how our views
look. First, let’s pull up a few artists. The limit URL parameter specifies that
we want only that number of documents in the response (or less).

$ curl "${COUCH_ROOT_URL}/music/_design/artists/_view/by_name?limit=5"
{"total_rows":10001,"offset":0,"rows":[
{"id":"5385","key":" A.n.K.h // ","value":"5385"},
{"id":"354581","key":" E2U","value":"354581"},
{"id":"457184","key":" EL VECINO","value":"457184"},
{"id":"338059","key":" ENIGMA63","value":"338059"},
{"id":"378976","key":" John Ov3rblast","value":"378976"}
]}

The previous request started at the very beginning of the list of artists. To
jump to the middle, we can use the startkey parameter:

$ curl "${COUCH_ROOT_URL}/music/_design/artists/_view/by_name?\
limit=5&startkey=%22C%22"
{"total_rows":10001,"offset":1320,"rows":[
{"id":"363267","key":"C-74","value":"363267"},
{"id":"357962","key":"c-dio","value":"357962"},
{"id":"350911","key":"C-Jay L'infidel J.B","value":"350911"},
{"id":"1188","key":"c-nergy","value":"1188"},
{"id":"832","key":"C. Glen Williams","value":"832"}
]}

Previously, we started with artists whose names began with C. Specifying an
endkey provides another way to limit the returned content. Here we specify
that we want artists only between C and D:

$ curl "${COUCH_ROOT_URL}/music/_design/artists/_view/by_name?\
startkey=%22C%22&endkey=%22D%22&limit=5"
{"total_rows":10001,"offset":1320,"rows":[
{"id":"363267","key":"C-74","value":"363267"},
{"id":"357962","key":"c-dio","value":"357962"},
{"id":"350911","key":"C-Jay L'infidel J.B","value":"350911"},
{"id":"1188","key":"c-nergy","value":"1188"},
{"id":"832","key":"C. Glen Williams","value":"832"}
]}

To get the rows in reverse order, use the descending URL parameter. Be sure
to reverse your startkey and endkey as well.

Chapter 5. CouchDB • 156

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ curl "${COUCH_ROOT_URL}/music/_design/artists/_view/by_name?\
startkey=%22D%22&endkey=%22C%22&limit=5&descending=true"
{"total_rows":10001,"offset":8174,"rows":[
{"id":"1689","key":"czskamaarù","value":"1689"},
{"id":"341426","key":"CZAQU","value":"341426"},
{"id":"360640","key":"Cystoflo","value":"360640"},
{"id":"355941","key":"CYRUS DA VIRUS","value":"355941"},
{"id":"427004","key":"Cyrix Project","value":"427004"}
]}

A number of other URL parameters are available for modifying view requests,
but these are the most common and are the ones you’ll reach for the most often.
Some of the URL parameters have to do with grouping, which comes from the
reducer part of CouchDB mapreduce views. You’ll explore these tomorrow.

Day 2 Wrap-Up
Today we covered some good ground. You learned how to create basic views in
CouchDB and save them into design documents. You explored different ways
of querying views to get subsets of the indexed content. Using Ruby and a pop-
ular gem called couchrest, we imported structured data and used it to support
our views. Tomorrow, we’ll expand on these ideas by creating more advanced
views by adding reducers then move on to other APIs that CouchDB supports.

Day 2 Homework

Find

1. We’ve seen that the emit() method can output keys that are strings. What
other types of values does it support? What happens when you emit an
array of values as a key?

2. Find a list of available URL parameters (like limit and startkey) that can be
appended to view requests and what they do.

Do

1. The import script import_from_jamendo.rb assigned a random number to each
artist by adding a property called random. Create a mapper function that
will emit key-value pairs where the key is the random number and the
value is the band’s name. Save this in a new design document named
_design/random with the index name artist.

2. Craft a cURL request that will retrieve a random artist.

Hint: You’ll need to use the startkey parameter, and you can produce a ran-
dom number on the command line using `ruby -e 'puts rand'`.

report erratum • discuss

Day 2: Creating and Querying Views • 157

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

3. The import script also added a random property for each album, track, and
tag. Create three additional views in the _design/random design document
with the index names album, track, and tag to match the earlier artist view.

Day 3: Advanced Views, Changes API,
and Replicating Data
In Days 1 and 2, you learned how to perform basic CRUD operations and
interact with views for finding data. Building on this experience, today we’ll
take a closer look at views, dissecting the reduce part of the mapreduce
equation. After that, we’ll develop some Node.js applications in JavaScript to
leverage CouchDB’s unique Changes API. Lastly, we’ll discuss replication and
how CouchDB handles conflicting data.

Creating Advanced Views with Reducers
Mapreduce-based views provide the means by which we can harness
CouchDB’s indexing and aggregation facilities. In Day 2, all our views consisted
solely of mappers. Now we’re going to add reducers to the mix, developing
new capabilities against the data we imported from Jamendo in Day 2.

One great thing about the Jamendo data is its depth. Artists have albums, which
have tracks; tracks, in turn, have attributes, including tags. We’ll now turn our
attention to tags to see whether we can write a view to collect and count them.
First, return to the New View page, set the design doc name to tags and the
index name to by_name, and then enter the following map function:

couchdb/tagsByNameMapper.js
function(doc) {

(doc.albums || []).forEach(function(album){
(album.tracks || []).forEach(function(track){
(track.tags || []).forEach(function(tag){

emit(tag.idstr, 1);
});

});
});

}

This function digs into the artist document and then down into each album,
each track, and finally each tag. For each tag, it emits a key-value pair con-
sisting of the tag’s idstr property (a string representation of the tag, like "rock")
and the number 1.

With the map function in place, click on the Reduce selector and choose
CUSTOM. Enter the following in the text field:

Chapter 5. CouchDB • 158

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/couchdb/tagsByNameMapper.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

couchdb/simpleCountReducer.js
function(key, values, rereduce) {

return sum(values);
}

This code merely sums the numbers in the values list—which we’ll talk about
momentarily once we’ve run the view. The output should be a series of JSON
objects containing key/value pairs like this:

ValueKey

1"17sonsrecords"

1"17sonsrecords"

1"17sonsrecords"

1"17sonsrecords"

1"17sonsrecords"

1"acid"

1"acousticguitar"

1"acousticguitar"

1"action"

1"action"

This shouldn’t be too surprising. The value is always 1 as we indicated in the
mapper, and the Key fields exhibit as much repetition as there is in the tracks
themselves. Notice, however, the Options button in the upper-right corner.
Check the Reduce box, click Run Query, and then look at the table again. It
should now look something like this:

ValueKey

5"17sonsrecords"

1"acid"

2"acousticguitar"

2"action"

3"adventure"

1"aksband"

1"alternativ"

3"alternativ"

28"ambient"

17"autodidacta"

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 159

http://media.pragprog.com/titles/pwrdata/code/couchdb/simpleCountReducer.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

What happened? In short, the reducer reduced the output by combining like
mapper rows in accordance with our Reducer Function. The CouchDB
mapreduce engine works conceptually like the other mapreducers we’ve seen
before (like MongoDB’s Mapreduce (and Finalize), on page 119). Specifically,
here’s a high-level outline of the steps CouchDB takes to build a view:

1. Send documents off to the mapper function.

2. Collect all the emitted values.

3. Sort emitted rows by their keys.

4. Send chunks of rows with the same keys to the reduce function.

5. If there was too much data to handle all reductions in a single call, call
the reduce function again but with previously reduced values.

6. Repeat recursive calls to the reduce function as necessary until no
duplicate keys remain.

Reduce functions in CouchDB take three arguments: key, values, and rereduce.
The first argument, key, is an array of tuples—two element arrays containing
the key emitted by the mapper and the _id of the document that produced it.
The second argument, values, is an array of values corresponding to the keys.

The third argument, rereduce, is a Boolean value that will be true if this invo-
cation is a rereduction. That is, rather than being sent keys and values that
were emitted from mapper calls, this call is sent the products of previous
reducer calls. In this case, the key parameter will be null.

Stepping Through Reducer Calls

Let’s work through an example based on the output we just saw. Consider
documents (artists) with tracks that have been tagged as “ambient.” The
mappers run on the documents and emit key-value pairs of the form
“ambient”/1. At some point, enough of these have been emitted that CouchDB
invokes a reducer. That call might look like this:

reduce(
[["ambient", id1], ["ambient", id2], ...], // keys are the same
[1, 1, ...], // values are all 1
false // rereduce is false

)

Recall that in our reducer function we take the sum() of values. Because they’re
all 1, the sum will simply be the length—effectively a count of how many
tracks have the “ambient” tag. CouchDB keeps this return value for later
processing. For the sake of this example, let’s call that number 10.

Chapter 5. CouchDB • 160

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Some time later, after CouchDB has run these kinds of calls several times,
it decides to combine the intermediate reducer results by executing a rereduce:

reduce(
null, // key array is null
[10, 10, 8], // values are outputs from previous reducer calls
true // rereduce is true

)

Our reducer function again takes the sum() of values. This time, the values add
up to 28. Rereduce calls may be recursive. They go on as long as there is
reduction to be done, which means until all the intermediate values have
been combined into one.

Most mapreduce systems, including the ones used by other databases we’ve
covered in this book such as MongoDB, throw away the output of mappers
and reducers after the work is done. In those systems, mapreduce is seen as
a means to an end—something to be executed whenever the need arises, each
time starting from scratch. Not so with CouchDB.

Once a view is codified into a design document, CouchDB will keep the
intermediate mapper and reducer values until a change to a document would
invalidate the data. At that time, CouchDB will incrementally run mappers
and reducers to correct for the updated data. It won’t start from scratch,
recalculating everything each time. This is the genius of CouchDB views.
CouchDB is able to use mapreduce as its primary indexing mechanism by
not tossing away intermediate data values.

Watching CouchDB for Changes
CouchDB’s incremental approach to mapreduce is an innovative feature,
to be sure; it’s one of many that set CouchDB apart from other databases.
The next feature we will investigate is the Changes API. This interface pro-
vides mechanisms for watching a database for changes and getting updates
instantly.

The Changes API makes CouchDB a perfect candidate for a system of record.
Imagine a multidatabase system where data is streaming in from several
directions and other systems need to be kept up-to-date. Examples might
include a search engine backed by Lucene or ElasticSeach or a caching layer
implemented using memcached or Redis. You could have different maintenance
scripts kick off in response to changes too—performing tasks such as database
compaction and remote backups. In short, this simple API opens up a world
of possibilities. Today we’ll learn how to harness it.

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 161

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

To make use of the API, we’re going to develop some simple client applications
using Node.js.4 Because Node.js is event-driven and code for it is written in
JavaScript, it’s a natural fit for integrating with CouchDB. If you don’t already
have Node.js, head over to the Node.js site and install the latest stable version
(we use version 7.4.0).

The three flavors of the Changes API are polling, long-polling, and continuous.
We’ll talk about each of these in turn. As always, we’ll start with cURL to get
close to the bare metal and then follow up with a programmatic approach.

cURLing for Changes

The first and simplest way to access the Changes API is through the polling
interface. Head to the command line, and try the following (the output is
truncated for brevity; yours will differ):

$ curl "${COUCH_ROOT_URL}/music/_changes"
{

"results":[{
"seq":"10057-g1.....FqzAI2DMmw",
"id":"370255",
"changes":[{"rev":"1-a7b7cc38d4130f0a5f3eae5d2c963d85"}]

},{
"seq":"10057-g1.....A0Y9NEs7RUb",
"id":"370254",
"changes":[{"rev":"1-2c7e0deec3ffca959ba0169b0e8bfcef"}]

},{
... many more records ...

},{
"seq":"10057-g1.....U9OzMnILy7J",
"id":"357995",
"changes":[{"rev":"1-aa649aa53f2858cb609684320c235aee"}]

}],
"last_seq":100

}

When you send a GET request for _changes with no other parameters, CouchDB
will respond with everything it has. Just like accessing views, you can specify
a limit parameter to request just a subset of the data, and adding include_docs=true
will cause full documents to be returned.

Typically you won’t want all the changes from the beginning of time. You’re
more likely to want the changes that have occurred since you last checked.
For this, use the since parameter, specifying a sequence ID (pull one from the
output of the last cURL command):

4. http://nodejs.org/

Chapter 5. CouchDB • 162

report erratum • discuss

http://nodejs.org/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ curl "${COUCH_ROOT_URL}/music/_changes?since=10057-g1.....FqzAI2DMmw"
{

"results":[{
"seq":"10057-g1.....U9OzMnILy7J",
"id":"357995",
"changes":[{"rev":"1-aa649aa53f2858cb609684320c235aee"}]

}],
"last_seq":100

}

Using this method, the client application would check back periodically to
find out whether any new changes have occurred, taking application-specific
actions accordingly.

Polling is a fine solution if you can cope with long delays between updates.
If updates are relatively rare, then you can use polling without encountering
any serious drawbacks. For example, if you were pulling blog entries, polling
every five minutes might be just fine.

If you want updates quicker, without incurring the overhead of reopening
connections, then long polling is a better option. When you specify the URL
parameter feed=longpoll, CouchDB will leave the connection open for some time,
waiting for changes to happen before finishing the response. Try this:

$ curl "${COUCH_ROOT_URL}/music/_changes?feed=longpoll&\
since=10057-g1.....FqzAI2DMmw"
{"results":[

You should see the beginning of a JSON response but nothing else. If you
leave the terminal open long enough, CouchDB will eventually close the con-
nection by finishing it:

],
"last_seq":9000}

From a development perspective, writing a driver that watches CouchDB for
changes using polling is equivalent to writing one for long polling. The differ-
ence is essentially just how long CouchDB is willing to leave the connection
open. Now let’s turn our attention to writing a Node.js application that
watches and uses the change feed.

Polling for Changes with Node.js

Node.js is a strongly event-driven system, so our CouchDB watcher will adhere
to this principle as well. Our driver will watch the changes feed and emit
change events whenever CouchDB reports changed documents. To get started,
we’ll look at a skeletal outline of our driver, talk about the major pieces, and
then fill in the feed-specific details.

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 163

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Without further ado, here’s the outline of our watcher program, as well as a
brief discussion of what it does:

couchdb/watchChangesSkeleton.js
var http = require('http'),

events = require('events');

/**
* create a CouchDB watcher based on connection criteria;
* follows the Node.js EventEmitter pattern, emits 'change' events.
*/

exports.createWatcher = function(options) {

var watcher = new events.EventEmitter();

watcher.host = options.host || 'localhost';
watcher.port = options.port || 5984;
watcher.last_seq = options.last_seq || 0;
watcher.db = options.db || '_users';

watcher.start = function() {
// ... feed-specific implementation ...

};

return watcher;

};

// start watching CouchDB for changes if running as main script
if (!module.parent) {

exports.createWatcher({
db: process.argv[2],
last_seq: process.argv[3]

})
.on('change', console.log)
.on('error', console.error)
.start();

}

So what’s happening in this watcher? A few things to pay attention to:

• exports is a standard object provided by the CommonJS Module API that
Node.js implements. Adding the createWatcher() method to exports makes it
available to other Node.js scripts that might want to use this as a library.
The options argument allows the caller to specify which database to watch
as well as override other connection settings.

• createWatcher() produces an EventEmitter object that the caller can use to listen
for change events. With an EventEmitter, you can listen to events by calling
its on() method and trigger events by calling its emit() method.

• watcher.start() is responsible for issuing HTTP requests to watch CouchDB
for changes. When changes to documents happen, watcher should emit

Chapter 5. CouchDB • 164

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/couchdb/watchChangesSkeleton.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

them as change events. All of the feed-specific implementation details will
be in here.

• The last chunk of code at the bottom specifies what the script should do if
it’s called directly from the command line. In this case, the script will invoke
the createWatcher() method then set up listeners on the returned object that
dump results to standard output. Which database to connect to and what
sequence ID number to start from can be set via command-line arguments.

So far, there’s nothing specific to CouchDB at all in this code. It’s all just
Node.js’s way of doing things. With the skeleton in place, let’s add the code
to connect to CouchDB via long polling and emit events. The following is just
the code that goes inside the watcher.start() method. Written inside the previous
outline (where the comment says feed-specific implementation), the new
complete file should be called watchChangesLongpolling.js.

couchdb/watchChangesLongpollingImpl.js
var httpOptions = {

host: watcher.host,
port: watcher.port,
path: '/' +

watcher.db +
'/_changes' +
'?feed=longpoll&include_docs=true&since=' +
watcher.last_seq

};

http.get(httpOptions, function(res) {
var buffer = '';

res.on('data', function (chunk) {
buffer += chunk;

});
res.on('end', function() {

var output = JSON.parse(buffer);
if (output.results) {
watcher.last_seq = output.last_seq;
output.results.forEach(function(change){

watcher.emit('change', change);
});
watcher.start();

} else {
watcher.emit('error', output);

}
})

})
.on('error', function(err) {

watcher.emit('error', err);
});

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 165

http://media.pragprog.com/titles/pwrdata/code/couchdb/watchChangesLongpollingImpl.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Here are some things to look out for in the long polling script:

• The first thing this script does is set up the httpOptions configuration object
in preparation for the request. The path points to the same _changes URL
we’ve been using, with feed set to longpoll and include_docs=true.

• After that, the script calls http.get(), a Node.js library method that fires off
a GET request according to our settings. The second parameter to http.get
is a callback that will receive an HTTPResponse. The response object emits
data events as the content is streamed back, which we add to the buffer.

• Finally, when the response object emits an end event, we parse the buffer
(which should contain JSON). From this we learn the new last_seq value,
emit a change event, and then reinvoke watcher.start() to wait for the next
change.

To run this script in command-line mode, execute it like this (output truncated
for brevity):

$ node watchChangesLongpolling.js music
{ seq: '...',

id: '370255',
changes: [{ rev: '1-a7b7cc38d4130f0a5f3eae5d2c963d85' }],
doc:
{ _id: '370255',

_rev: '1-a7b7cc38d4130f0a5f3eae5d2c963d85',
albums: [[Object]],
id: '370255',
name: '""ATTIC""',
url: 'http://www.jamendo.com/artist/ATTIC_(3)',
mbgid: '',
random: 0.4121620435325435 } }

{ seq: '...',
id: '370254',
changes: [{ rev: '1-2c7e0deec3ffca959ba0169b0e8bfcef' }],
doc:
{ _id: '370254',

_rev: '1-2c7e0deec3ffca959ba0169b0e8bfcef',
... many more entries ...

Hurrah, our app works! After outputting a record for each document, the
process will keep running, polling CouchDB for future changes.

Feel free to modify a document in Fauxton directly or increase the @max value
on import_from_jamendo.rb and run it again. You’ll see those changes reflected on
the command line. Next you’ll see how to go full steam ahead and use the
continuous feed to get even snappier updates.

Chapter 5. CouchDB • 166

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Watching for Changes Continuously

The polling and long polling feeds produced by the _changes service both produce
proper JSON results. The continuous feed does things a little differently.
Instead of combining all available changes into a results array and closing the
stream afterward, it sends each change separately and keeps the connection
open. This way, it’s ready to return more JSON-serialized change notification
objects as changes become available.

To see how this works, try the following, supplying a value for since (output
truncated for readability):

$ curl "${COUCH_ROOT_URL}/music/_changes?since=...feed=continuous"
{"seq":"...","id":"357999","changes":[{"rev":"1-0329f5c885...87b39beab0"}]}
{"seq":"...","id":"357998","changes":[{"rev":"1-79c3fd2fe6...1e45e4e35f"}]}
{"seq":"...","id":"357995","changes":[{"rev":"1-aa649aa53f...320c235aee"}]}

Eventually, if no changes have happened for a while, CouchDB will close the
connection after outputting a line like this:

{"last_seq":100}

The benefit of this method over polling or long polling is the reduced overhead
that accompanies leaving the connection open. There’s no time lost reestab-
lishing the HTTP connections. On the other hand, the output isn’t straight
JSON, which means it’s a bit more of a chore to parse. Also, it’s not a good
fit if your client is a web browser. A browser downloading the feed asyn-
chronously might not receive any of the data until the entire connection fin-
ishes (better to use long polling in this case).

Filtering Changes

As you’ve just seen, the Changes API provides a unique window into the goings-
on of a CouchDB database. On the plus side, it provides all the changes in a
single stream. However, sometimes you may want just a subset of changes,
rather than the fire hose of everything that has ever changed. For example,
you may be interested only in document deletions or maybe only in documents
that have a particular quality. This is where filter functions come in.

A filter is a function that takes in a document (and request information) and
makes a decision about whether that document ought to be allowed through
the filter. This is gated by the return value. Let’s explore how this works. Most
artist documents we’ve been inserting into the music database have a country
property that contains a three-letter code. Say you’re interested only in bands
from Russia (RUS). Your filter function might look like the following:

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 167

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

function(doc) {
return doc.country === "RUS";

}

If we added this to a design document under the key filters, we’d be able to
specify it when issuing requests for _changes. But before we do, let’s expand
the example. Rather than always wanting Russian bands, it’d be better if we
could parameterize the input so the country could be specified in the URL.

Here’s a parameterized country-based filter function:

function(doc, req) {
return doc.country === req.query.country;

}

Notice this time how we’re comparing the document’s country property to a
parameter of the same name passed in the request’s query string. To see this
in action, let’s create a new design document just for geography-based filters
and add it:

$ curl -XPUT "${COUCH_ROOT_URL}/music/_design/wherabouts" \
-H "Content-Type: application/json" \
-d '{"language":"javascript","filters":{"by_country":

"function(doc,req){return doc.country === req.query.country;}"
}}'

{
"ok":true,
"id":"_design/wherabouts",
"rev":"1-c08b557d676ab861957eaeb85b628d74"

}

Now we can make a country-filtered changes request:

$ curl "${COUCH_ROOT_URL}/music/_changes?\
filter=wherabouts/by_country&\
country=RUS"
{"results":[
{"seq":10,"id":"5987","changes":[{"rev":"1-2221be...a3b254"}]},
{"seq":57,"id":"349359","changes":[{"rev":"1-548bde...888a83"}]},
{"seq":73,"id":"364718","changes":[{"rev":"1-158d2e...5a7219"}]},
...

Because filter functions may contain arbitrary JavaScript, more sophisticated
logic can be put into them. Testing for deeply nested fields would be similar
to what we did for creating views. You could also use regular expressions for
testing properties or compare them mathematically (for example, filtering by
a date range). There’s even a user context property on the request object
(req.userCtx) that you can use to find out more about the credentials provided
with the request.

Chapter 5. CouchDB • 168

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

We’ll revisit Node.js and the CouchDB Changes API in Chapter 8, Redis, on
page 259 when we build a multidatabase application. For now, though, it’s
time to move on to the last distinguishing feature of CouchDB we’re going to
cover: replication.

Replicating Data in CouchDB
CouchDB is all about asynchronous environments and data durability.
According to CouchDB, the safest place to store your data is on many nodes in
your cluster (you can configure how many), and CouchDB provides the tools to
do so. Some other databases we’ve looked at maintain a single master node to
guarantee consistency. Still others ensure it with a quorum of agreeing nodes.
CouchDB does neither of these; instead, it supports something called multi-
master or master-master replication.

Each CouchDB server is equally able to receive updates, respond to requests,
and delete data, regardless of whether it’s able to connect to any other server.
In this model, changes are selectively replicated in one direction, and all data
is subject to replication in the same way.

Replication is the last major topic in CouchDB that we’ll be discussing. First
you’ll see how to set up ad hoc and continuous replication between databases.
Then you’ll work through the implications of conflicting data and how to make
applications capable of handling these cases gracefully.

To begin, click the Replication link on the left side of the page. It should open
a page that looks like the figure that follows.

In the “Replicate changes from” dialog, choose music from the left drop-down
menu and enter music-repl in the right-side slot. Leave the Continuous
checkbox unchecked, check the Create Target box, and then click Replicate.
This should produce an event message in the event log below the form followed

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 169

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

by a big green banner at the top of the page saying that the replication oper-
ation has begun.

To confirm that the replication request worked, go back to the Fauxton
Databases page. There should now be a new database called music-repl with
the same number of documents as the music database. If it has fewer, give it
some time and refresh the page—CouchDB may be in the process of catching
up. Don’t be concerned if the Update Seq values don’t match. That’s because
the original music database had deletions and updates to documents, whereas
the music-repl database had only insertions to bring it up to speed.

Creating Conflicts

Next, we’ll create a conflict and then explore how to deal with it. Keep the
Replicator page handy because we’re going to be triggering ad hoc replication
between music and music-repl frequently. Drop back to the command line, and
enter this to create a document in the music database:

$ curl -XPUT "${COUCH_ROOT_URL}/music/theconflicts" \
-H "Content-Type: application/json" \
-d '{ "name": "The Conflicts" }'

{
"ok":true,
"id":"theconflicts",
"rev":"1-e007498c59e95d23912be35545049174"

}

On the Replication page, click Replicate to trigger another synchronization.
We can confirm that the document was successfully replicated by retrieving
it from the music-repl database.

$ curl "${COUCH_ROOT_URL}/music-repl/theconflicts"
{

"_id":"theconflicts",
"_rev":"1-e007498c59e95d23912be35545049174",
"name":"The Conflicts"

}

Next, let’s update it in music-repl by adding an album called Conflicts of Interest.

$ curl -XPUT "${COUCH_ROOT_URL}/music-repl/theconflicts" \
-H "Content-Type: application/json" \
-d '{

"_id": "theconflicts",
"_rev": "1-e007498c59e95d23912be35545049174",
"name": "The Conflicts",
"albums": ["Conflicts of Interest"]

}'

Chapter 5. CouchDB • 170

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

{
"ok":true,
"id":"theconflicts",
"rev":"2-0c969fbfa76eb7fcdf6412ef219fcac5"

}

And create a conflicting update in music proper by adding a different album:
Conflicting Opinions.

$ curl -XPUT "${COUCH_ROOT_URL}/music/theconflicts" \
-H "Content-Type: application/json" \
-d '{

"_id": "theconflicts",
"_rev": "1-e007498c59e95d23912be35545049174",
"name": "The Conflicts",
"albums": ["Conflicting Opinions"]

}'
{

"ok":true,
"id":"theconflicts",
"rev":"2-cab47bf4444a20d6a2d2204330fdce2a"

}

At this point, both the music and music-repl databases have a document with an
_id value of theconflicts. Both documents are at version 2 and derived from the
same base revision (1-e007498c59e95d23912be35545049174). Now the question is,
what happens when we try to replicate between them?

Fine-Grained Data Replication in CouchDB 2.0

With early versions of CouchDB, if you set up a multi-node CouchDB cluster, all
documents were stored on all nodes in the cluster. CouchDB 2.0 brought a native
clustering capability that enables you to store documents on only some nodes in the
cluster and to determine, at write time, how many nodes should store the document,
enabling you to choose a replication factor for data.

We won’t cover this or related issues such as sharding, but if you plan on using
CouchDB in production, you should check out some theoretical documentationa to
see how it works and receive guidance in making intelligent decisions about replication.

a. http://docs.couchdb.org/en/latest/cluster/theory.html

Resolving Conflicts

With our document now in a conflicting state between the two databases,
head back to the Replication page and kick off another replication. If you were

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 171

http://docs.couchdb.org/en/latest/cluster/theory.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

expecting this to fail, you may be shocked to learn that the operation succeeds
just fine. So how did CouchDB deal with the discrepancy?

It turns out that CouchDB basically just picks one and calls that one the
winner. Using a deterministic algorithm, all CouchDB nodes will pick the
same winner when a conflict is detected. However, the story doesn’t end there.
CouchDB stores the unselected “loser” documents as well so that a client
application can review the situation and resolve it at a later date.

To find out which version of our document won during the last replication,
we can request it using the normal GET request channel. By adding the conflicts=
true URL parameter, CouchDB will also include information about the conflict-
ing revisions.

$ curl "${COUCH_ROOT_URL}/music-repl/theconflicts?conflicts=true"
{

"_id":"theconflicts",
"_rev":"2-cab47bf4444a20d6a2d2204330fdce2a",
"name":"The Conflicts",
"albums":["Conflicting Opinions"],
"_conflicts":[

"2-0c969fbfa76eb7fcdf6412ef219fcac5"
]

}

So, we see that the second update won. Notice the _conflicts field in the response.
It contains a list of other revisions that conflicted with the chosen one. By
adding a rev parameter to a GET request, we can pull down those conflicting
revisions and decide what to do about them.

$ curl "${COUCH_ROOT_URL}/music-repl/theconflicts?rev=2-0c969f..."
{

"_id":"theconflicts",
"_rev":"2-0c969fbfa76eb7fcdf6412ef219fcac5",
"name":"The Conflicts",
"albums":["Conflicts of Interest"]

}

The takeaway here is that CouchDB does not try to intelligently merge con-
flicting changes. How you should merge two documents is highly application
specific, and a general solution isn’t practical. In our case, combining the two
albums arrays by concatenating them makes sense, but one could easily think
of scenarios where the appropriate action is not obvious.

For example, imagine you’re maintaining a database of calendar events. One
copy is on your smartphone; another is on your laptop. You get a text message
from a party planner specifying the venue for the party you’re hosting, so you

Chapter 5. CouchDB • 172

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

update your phone database accordingly. Later, back at the office, you receive
another email from the planner specifying a different venue. So you update
your laptop database and then replicate between them.

CouchDB has no way of knowing which of the two venues is "correct." The
best it can do is make them consistent, keeping the old value around so you
can verify which of the conflicting values should be kept. It would be up to
the application to determine the right user interface for presenting this situ-
ation and asking for a decision.

Day 3 Wrap-Up
And so ends our tour of CouchDB. Here in Day 3, you started out by learning
how to add reducer functions to your mapreduce-generated views. After that,
we took a deep dive into the Changes API, including a jaunt into the world of
event-driven server-side JavaScript development with Node.js. Lastly, we took
a brief look at how you can trigger replication between databases and how
client applications can detect and correct for conflicts.

Day 3 Homework

Find

1. What native reducers are available in CouchDB? What are the benefits
of using native reducers over custom JavaScript reducers?

2. How can you filter the changes coming out of the _changes API on the
server side?

3. Like everything in CouchDB, the tasks of initializing and canceling repli-
cation are controlled by HTTP commands under the hood. What are the
REST commands to set up and remove replication relationships between
servers?

4. How can you use the _replicator database to persist replication relationships?

Do

1. Create a new module called watchChangesContinuous.js based on the skeletal
Node.js module described in the section Polling for Changes with Node.js,
on page 163.

2. Implement watcher.start() such that it monitors the continuous _changes feed.
Confirm that it produces the same output as watchChangesLongpolling.js.

Hint: If you get stuck, you can find an example implementation in the
downloads that accompany this book.

report erratum • discuss

Day 3: Advanced Views, Changes API, and Replicating Data • 173

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

3. Documents with conflicting revisions have a _conflicts property. Create a
view that emits conflicting revisions and maps them to the doc _id.

Wrap-Up
Throughout this chapter, you’ve seen how to do a pretty wide range of tasks
with CouchDB, from performing basic CRUD operations to building views out
of mapreduce functions. You saw how to watch for changes, and you explored
how to develop nonblocking event-driven client applications. Finally, you
learned how to perform ad-hoc replication between databases and how to
detect and resolve conflicts. Despite all of this content, there’s still a lot we
didn’t cover, but now it’s time to wrap things up before heading off to our
next database.

CouchDB’s Strengths
CouchDB is a robust and stable member of the NoSQL community. Built on
the philosophy that networks are unreliable and hardware failure is imminent,
CouchDB offers a heartily decentralized approach to data storage. Small
enough to live in your smartphone and big enough to support the enterprise,
CouchDB affords a variety of deployment situations.

CouchDB’s Weaknesses
Of course, CouchDB isn’t well suited for everything. CouchDB’s mapreduce-
based views, while novel, can’t perform all the fancy data slicing you’d expect
from a relational database. In fact, you shouldn’t be running ad-hoc queries
at all in production. As with many other NoSQL databases, CouchDB always
works best when you have a very good sense of what you’re going to need in
advance. In some databases, that means knowing the key or “address” of an
object; in CouchDB, that means knowing all of your queries in advance. If
your use case doesn’t allow for that kind of foreknowledge, then you may
want to look elsewhere.

Parting Thoughts
CouchDB’s attention to robustness in the face of uncertainty makes it a great
choice if your system must stand up to the harsh realities of the wild Internet.
By leveraging standard “webisms” like HTTP/REST and JSON, CouchDB fits
in easily wherever web technologies are prevalent, which is increasingly
everywhere. Inside the walled garden of a datacenter, CouchDB can still make
sense if you commit to managing conflicts when they arise or if you utilize
some more recently added clustering features.

Chapter 5. CouchDB • 174

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

There are plenty of other features that make CouchDB unique and special
that we didn’t have time to cover. A short list would include ease of backups,
binary attachments to documents, and CouchApps, a system for developing
and deploying web apps directly through CouchDB with no other middleware.
Having said that, we hope we’ve provided enough of an overview to whet your
appetite for more. Try CouchDB for your next data-driven web app; you won’t
be disappointed!

report erratum • discuss

Wrap-Up • 175

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 6

Neo4J
A bungee cord is a helpful tool because you can use it to tie together the most
disparate of things, no matter how awkwardly shaped or ill fitting they may
be. In a lot of ways, Neo4j is the bungee cord of databases, a system intended
not so much to store information about things as to tie them together and
record their connections with each other.

Neo4j is a member of a family of databases known as graph databases because
it stores data as a graph (in the mathematical sense). Neo4j is known for
being “whiteboard friendly” because virtually any diagram that you can draw
using boxes and lines on a whiteboard can be stored in Neo4j.

Neo4j focuses more on the relationships between values than on the common-
alities among sets of values (such as collections of documents or tables of
rows). In this way, it can store highly variable data in a natural and straight-
forward way.

On one side of the scale spectrum, Neo4j is small enough to be embedded
into nearly any application; on the other side of the spectrum, Neo4j can run
in large clusters of servers using master-slave replication and store tens of
billions of nodes and as many relationships. In other words, Neo4j can handle
just about any size problem that you can throw at it.

Neo4j Is Whiteboard Friendly
Imagine you need to create a wine suggestion engine in which wines are catego-
rized by different varieties, regions, wineries, vintages, and designations. Imagine
that you also need to keep track of things like articles describing those wines
written by various authors and to enable users to track their favorite wines.

If you were using a relational model, you might create a category table and
a many-to-many relationship between a single winery’s wine and some

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

combination of categories and other data. But this isn’t quite how humans
mentally model data. In the following figure, compare this wine suggestion
schema in relational UML:

to this wine suggestion data on a whiteboard:

There’s an old saying in the relational database world: on a long enough
timeline, all fields become optional. Neo4j handles this implicitly by providing
values and structure only where necessary. If a wine blend has no vintage,
add a bottle year and point the vintages to the blend node instead. In graph
databases such as Neo4j there is simply no schema to adjust.

Over the next three days you’ll learn how to interact with Neo4j through a
web console, using a querying language called Cypher, then via a REST interface,
and finally through search indexes. You’ll work with some simple graphs as
well as some larger graphs with graph algorithms. Finally, on Day 3, you’ll
take a peek at the enterprise tools that Neo4j provides for mission-critical
applications, from full ACID-compliant transactions to high-availability clus-
tering and incremental backups.

In this chapter, we’ll use the Neo4j 3.1.4 Enterprise Edition. Most of the
actions you perform on Days 1 and 2 can actually use the GPL Community
edition, but we’ll require some enterprise functionality for Day 3: Distributed
High Availability. You can download a free trial version of the Enterprise
Edition from the Neo4j website.

Chapter 6. Neo4J • 178

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Day 1: Graphs, Cypher, and CRUD
Today we’re really going to jump in with both feet. In addition to exploring
the Neo4j web interface, we’ll get deep into graph database terminology and
CRUD. Much of today will be learning how to query a graph using a querying
language called Cypher. The concepts here differ significantly from other
databases we’ve looked at so far, which have largely taken a document- or
record-based view of the world. In Neo4j, nodes inside of graphs act like
documents because they store properties, but what makes Neo4j special is
that the relationship between those nodes takes center stage.

But before we get to all that, let’s start with the web interface to see how Neo4j
represents data in graph form and how to navigate that graph. After you’ve
downloaded and unzipped the Neo4j package, cd into the Neo4j directory and
start up the server like this:

$ bin/neo4j start

To make sure you’re up and running, try curling this URL:

$ curl http://localhost:7474/db/data/

Like CouchDB, the default Neo4j package comes equipped with a fully featured
web administration tool and data browser, which is excellent for experimen-
tation. Even better, it has one of the coolest graph data browsers we’ve ever
seen. This is perfect for getting started because graph traversal can feel very
awkward at first try.

Neo4j’s Web Interface
Launch a web browser and navigate to the administration page.1

You’ll be greeted by a colorful dashboard like the one in the figure on page 180.

In the Connect to Neo4j component, sign in using the default username and
password (enter neo4j for both). That will open up a command-line-style
interface at the top of the page (distinguished by the $ on the far left). Type
in :server connect to connect to the database.

You can enter :help commands at any time for an in-depth explanation of the
existing commands. :help cypher will bring up a help page with instructions for
specific Cypher commands (more on Cypher, the querying language we’ll be
using through this web interface, in a moment).

1. http://localhost:7474/browser/

report erratum • discuss

Day 1: Graphs, Cypher, and CRUD • 179

http://localhost:7474/browser/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Nodes and Relationships: A Note on Terminology

A node in a graph database is not entirely unlike the nodes we talked about in prior
chapters. Previously, when we spoke of a node, we meant a physical server in a net-
work. If you viewed the entire network as a huge interconnected graph, a server node
was a point, or vertex, between the server relationships, or edges.

In Neo4j, a node is conceptually similar: It’s a vertex between edges that may hold
data. That data is stored as a set of key-value pairs (as in many other non-relational
databases we’ve talked about).

Neo4j via Cypher
There are several ways that you can interact with Neo4j. In addition to client
libraries in a wide variety of programming languages (as with the other
databases in this book), you can also interact with Neo4j via a REST API (more
on this in Day 2), and via two querying languages created with Neo4j exclu-
sively in mind: Gremlin and Cypher. While Gremlin has some interesting
properties, Cypher is now considered standard.

Cypher is a rich, Neo4j-specific graph traversal language. In Cypher, as in
mathematical graph theory, graph data points are called nodes. Unlike in
graph theory, however, graphs in Cypher consist of nodes rather than vertices
(as they are called in graph theory) and connections between nodes are called
relationships (rather than edges). Statements used to query Neo4j graphs in
Cypher typically look something like this:

Chapter 6. Neo4J • 180

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ MATCH [some set of nodes and/or relationships]
WHERE [some set of properties holds]
RETURN [some set of results captured by the MATCH and WHERE clauses]

In addition to querying the graph using MATCH, you can create new nodes and
relationships using CREATE, update the values associated with nodes and rela-
tionships using UPDATE, and much more. That’s fairly abstract, but don’t worry
—you’ll get the hang of it via examples over the course of the next few sections.

At the moment, our not-so-exciting Neo4j graph consists of no nodes and no
relationships. Let’s get our hands dirty and change that by adding a node for a
specific wine to our graph. That node will have a few properties: a name property
with a value of Prancing Wolf, a style property of ice wine, and a vintage property of
2015. To create this node, enter this Cypher statement into the console:

$ CREATE (w:Wine {name:"Prancing Wolf", style: "ice wine", vintage: 2015})

In the section of the web UI immediately below the console, you should see
output like that in the figure that follows.

At the top, you’ll see the Cypher statement you just ran. The Rows tile shows
you the nodes and/or relationships that you created in the last Cypher
statement, and the Code tile provides in-depth information about the action
you just completed (mostly info about the transaction that was made via
Neo4j’s REST API).

At any time, we can access all nodes in the graph, kind of like a SELECT * FROM
entire_graph statement:

$ MATCH (n)
RETURN n;

At this point, that will return just one solitary node. Let’s add some others.
Remember that we also want to keep track of wine-reviewing publications in
our graph. So let’s create a node representing the publication Wine Expert
Monthly:

$ CREATE (p:Publication {name: "Wine Expert Monthly"})

report erratum • discuss

Day 1: Graphs, Cypher, and CRUD • 181

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

In the last two statements, Wine and Publication were labels applied to the nodes,
not types. We could create a node with the label Wine that had a completely
different set of properties. Labels are extremely useful for querying purposes,
as you’ll see in a bit, but Neo4j doesn’t require you to have predefined types.
If you do want to enforce types, you’ll have to do that at the application level.

So now we have a graph containing two nodes but they currently have no
relationship with one another. Because Wine Expert Monthly reports on this
Prancing Wolf wine, let’s create a reported_on relationship that connects the
two nodes:

$ MATCH (p:Publication {name: "Wine Expert Monthly"}),
(w:Wine {name: "Prancing Wolf", vintage: 2015})

CREATE (p)-[r:reported_on]->(w)

In this statement, we’ve MATCHed the two nodes that we want to connect via
their labels (Wine and Publication) and their name property, created a reported_on
relationship and stored that in the variable r, and finally RETURNed that rela-
tionship. You can see the end result in the figure that follows.

If you click on the relationship between the nodes in the web UI, you can see
the ID of the relationship is 0. You can use Neo4j’s REST interface to access
information about the relationship at http://localhost:7474/db/data/relationship/0 or
via Cypher by running:

$ MATCH ()-[r]-()
WHERE id(r) = 0
RETURN r

Chapter 6. Neo4J • 182

report erratum • discuss

http://localhost:7474/db/data/relationship/0
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Relationships, like nodes, can contain properties and can be thought of as
objects in their own right. After all, we don’t want to know simply that a
relationship exists; we want to know what constitutes that relationship. Let’s
say that we want to specify which score Wine Expert Monthly gave the
Prancing Wolf wine. We can do that by adding a rating property to the relation-
ship that we just created.

$ MATCH ()-[r]-()
WHERE id(r) = 0
SET r.rating = 97
RETURN r

We also could’ve specified the rating when creating the relationship, like this:

$ MATCH (p:Publication {name: "Wine Expert Monthly"}),
(w:Wine {name: "Prancing Wolf"})

CREATE (p)-[r:reported_on {rating: 97}]->(w)

At this point, if you display the entire graph again using MATCH (n) RETURN n;
and click on the relationship, you’ll see that rating: 97 is now a property of the
reported_on relationship. Another bit of info that we want to note is that the
Prancing Wolf wine is made from the Riesling grape. We could insert this info
by adding a grape_type: Riesling property to the Prancing Wolf node, but let’s do
things in a more Neo4j-native fashion instead by creating a new node for the
Riesling grape type and adding relationships to wines of that type:

$ CREATE (g:GrapeType {name: "Riesling"})

Let’s add a relationship between the Riesling node and the Prancing Wolf
node using the same method:

$ MATCH (w:Wine {name: "Prancing Wolf"}),(g:GrapeType {name: "Riesling"})
CREATE (w)-[r:grape_type]->(g)

Now we have a three-node graph: a wine, a type of grape, and a publication.

report erratum • discuss

Day 1: Graphs, Cypher, and CRUD • 183

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

So far, we’ve created and updated both nodes and relationships. You can also
delete both from a graph. The following are three Cypher statements that will
create a new node, establish a relationship between that node and one of our
existing nodes, delete the relationship, and then delete the node (you can’t delete
a node that still has relationships associated with it):

$ CREATE (e: EphemeralNode {name: "short lived"})
$ MATCH (w:Wine {name: "Prancing Wolf"}),

(e:EphemeralNode {name: "short lived"})
CREATE (w)-[r:short_lived_relationship]->(e)

$ MATCH ()-[r:short_lived_relationship]-()
DELETE r

$ MATCH (e:EphemeralNode)
DELETE e

Our wine graph is now back to where it was before creating the short lived node.
Speaking of deletion, if you ever want to burn it all down and start from scratch
with an empty graph, you can use the following command at any time to delete
all nodes and relationships. But beware! This command will delete the entire
graph that you’re working with, so run it only if you’re sure that you’re ready to
move on from a graph’s worth of data for good.

$ MATCH (n)
OPTIONAL MATCH (n)-[r]-()
DELETE n, r

Now that you know how to start from scratch, let’s continue building out our wine
graph. Wineries typically produce more than one wine. To express that relationship
in an RDBMS, we might create a separate table for each winery and store wines that
they produce as rows. The most natural way to express this in Neo4j would be—you
guessed it—to represent wineries as nodes in the graph and create relationships
between wineries and wines. Let’s create a node for Prancing Wolf Winery and add
a relationship with the Prancing Wolf wine node that we created earlier:

$ CREATE (wr:Winery {name: "Prancing Wolf Winery"})
$ MATCH (w:Wine {name: "Prancing Wolf"}),

(wr:Winery {name: "Prancing Wolf Winery"})
CREATE (wr)-[r:produced]->(w)

We’ll also add two more wines produced by Prancing Wolf Winery—a Kabinett
and a Spätlese—and also create produced relationships and specify that all of the
Prancing Wolf wines are Rieslings.

$ CREATE (w:Wine {name:"Prancing Wolf", style: "Kabinett", vintage: 2002})
$ CREATE (w:Wine {name: "Prancing Wolf", style: "Spätlese", vintage: 2010})
$ MATCH (wr:Winery {name: "Prancing Wolf"}),(w:Wine {name: "Prancing Wolf"})

CREATE (wr)-[r:produced]->(w)
$ MATCH (w:Wine),(g:GrapeType {name: "Riesling"})

CREATE (w)-[r:grape_type]->(g)

Chapter 6. Neo4J • 184

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

This will result in a graph that’s fully fleshed out, like the one shown in the
figure that follows.

1: Wine Expert Monthly

0: Prancing Wolf Ice Wine 2007

5: Prancing Wolf Spatlese 2007

4: Prancing Wolf Kabinett 2007

2: riesling grape_type
grape_type

grape_type
produced

produced

produced

reported_on

3: Prancing Wolf Winery

Schemaless Social
In addition to knowing about wines, wineries, and publications, we want our
wine graph to have a social component—that is, we want to know about the
people affiliated with these wines and their relationships with one another.
To do that, we just need to add more nodes. Suppose that you want to add
three people, two who know each other and one stranger, each with their own
wine preferences.

Alice has a bit of a sweet tooth so she’s a big fan of ice wine.

$ CREATE (p:Person {name: "Alice"})
$ MATCH (p:Person {name: "Alice"}),

(w:Wine {name: "Prancing Wolf", style: "ice wine"})
CREATE (p)-[r:likes]->(w)

Tom likes Kabinett and ice wine and trusts anything written by Wine Expert
Monthly.

$ CREATE (p: Person {name: "Tom"})
$ MATCH (p:Person {name: "Tom"}),

(w:Wine {name: "Prancing Wolf", style: "ice wine"})
CREATE (p)-[r:likes]->(w)

$ MATCH (p:Person {name: "Tom"}),
(pub:Publication {name: "Wine Expert Monthly"})

CREATE (p)-[r:trusts]->(pub)

Patty is friends with both Tom and Alice but is new to wine and has yet to
choose any favorites.

$ CREATE (p:Person {name: "Patty"})
$ MATCH (p1:Person {name: "Patty"}),

(p2:Person {name: "Tom"})
CREATE (p1)-[r:friends]->(p2)

$ MATCH (p1:Person {name: "Patty"}),
(p2:Person {name: "Alice"})

CREATE (p1)-[r:friends]->(p2)

report erratum • discuss

Day 1: Graphs, Cypher, and CRUD • 185

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Note that without changing any fundamental structure of our existing graph,
we were able to superimpose behavior beyond our original intent. The new
nodes are related, as you can see in the following figure.

8: Patty trustsfriends

friends

likes

likes

likes

re
porte

d_on

4: Prancing Wolf Kabinett 2002

0: Prancing Wolf Ice Wine 2007

1: Wine Expert Monthly7: Tom

6: Alice

Stepping Stones
Thus far, we’ve mostly been performing simple, almost CRUD-like operations
using Cypher. You can do a lot with these simple commands, but let’s dive
in and see what else Cypher has to offer. First, let’s explore Cypher’s syntax
for querying all relationships that a node has with a specific type of node.
The --> operator lets us do that. First, let’s see all nodes associated with Alice:

$ MATCH (p:Person {name: "Alice"})-->(n)
RETURN n;

Now let’s see all of the people that Alice is friends with, except let’s return
only the name property of those nodes:

$ MATCH (p:Person {name: "Alice"})-->(other: Person)
RETURN other.name;

That should result in two returned values: Patty and Tom. Now let’s say that
we want to see which nodes with the label Person are in the graph, but
excluding Patty (boo, Patty!). Note the <> operator, which is used instead of
!= in Cypher:

$ MATCH (p:Person)
WHERE p.name <> 'Patty'
RETURN p;

Thus far, all of our queries have sought out nodes adjacent to one another.
But we also said at the beginning of the chapter that Neo4j is an extremely
scalable database capable of storing tons of nodes and relationships. Cypher
is absolutely up to the task of dealing with far more complex relationships
than the ones we’ve seen thus far. Let’s add some nodes that aren’t directly
related to Patty (for Alice’s friend Ahmed and Tom’s friend Kofi) and then
query for a relationship.

Chapter 6. Neo4J • 186

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ CREATE (p1:Person {name: "Ahmed"}), (p2:Person {name: "Kofi"});
$ MATCH (p1:Person {name: "Ahmed"}),(p2:Person {name: "Alice"})

CREATE (p1)-[r:friends]->(p2);
$ MATCH (p1:Person {name: "Kofi"}),(p2:Person {name: "Tom"});

CREATE (p1)-[r:friends]->(p2);

Cypher lets us query for friends of friends of Alice like this:

$ MATCH
(fof:Person)-[:friends]-(f:Person)-[:friends]-(p:Person {name: "Patty"})

RETURN fof.name;

As expected, this returns two values: Ahmed and Kofi.

Indexes, Constraints, and "Schemas" in Cypher
Neo4j doesn’t enable you to enforce hard schemas the way that relational
databases do, but it does enable you to provide some structure to nodes in
your graphs by creating indexes and constraints for specified labels.

As with many other databases in this book, you can provide a nice speed-up
for computationally expensive queries by creating indexes on labels and
properties associated with that label. Remember that each Wine in our graph
has a name property. You can create an index on that type/property combina-
tion like this:

$ CREATE INDEX ON :Wine(name);

You can easily remove indexes at any time:

$ DROP INDEX ON :Wine(name);

Indexes are super easy to use in Neo4j because you don’t really have to do
much to use them. Once you’ve established an index for nodes with a specific
label and property, you can continue to query those nodes as you did before,
and Neo4j will figure out the rest. This query, which returns all nodes with
the label Wine, would look exactly the same before and after creating an index
on Wine/name:

$ MATCH (w:Wine {name: 'Some Name'})
RETURN w;

While indexes can help speed up queries, constraints can help you sanitize
your data inputs by preventing writes that don’t satisfy criteria that you
specify. If you wanted to ensure that every Wine node in your graph had a
unique name, for example, you could create this constraint:

$ CREATE CONSTRAINT ON (w:Wine) ASSERT w.name IS UNIQUE;

report erratum • discuss

Day 1: Graphs, Cypher, and CRUD • 187

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Functions in Cypher

In the Postgres chapter, we covered stored procedures, which enable you to write
functions in Postgres—and highly complex ones at that—that can be used to process
data. Stored procedures shift responsibility for data processing to the database rather
than keeping it in the application, which is sometimes a good idea, sometimes not.

Neo4j offers a wide variety of Cypher functions that work just liked stored procedures.
These built-in functions can be used to manipulate strings and other types, calculate
spatial distances, perform mathematical calculations, and much more. Using these
functions can help you maintain a nice balance between in-database and application-
side data crunching.

Check out the Cypher documentation for a full listing.a You’ll find functions such as
filter() for applying complex filtering operations, abs() for calculating the absolute value
of integers, range() for generating a range of integers, and more. You can also write
your own functions in Java and call those functions from Cypher, but that won’t be
covered in this book.

a. http://neo4j.com/docs/developer-manual/current/cypher/functions/

Now, if you try to create two Wine nodes with the same name, you’ll get an
error:

$ CREATE (w:Wine {name: "Daring Goat", style: "Spätlese", vintage: 2008});
$ CREATE (w:Wine {name: "Daring Goat", style: "Riesling", vintage: 2006});
WARNING: Node 219904 already exists...

Even better, when you create a constraint, Neo4j will automatically check
your existing data to make sure that all nodes with the given label conform
to the constraint. Like indexes, constraints can be removed using a DROP
statement, though make sure to include the entire constraint statement:

$ DROP CONSTRAINT ON (w:Wine) ASSERT w.name IS UNIQUE;

Keep in mind that you cannot apply a constraint to a label that already has
an index, and if you do create a constraint on a specific label/property pair,
an index will be created automatically. So usually you’ll only need to explicitly
create a constraint or an index.

If you want to see the status of a label’s “schema,” you can see that information
in the shell:

$ schema ls -l :Wine
Indexes

ON :Wine(name) ONLINE (for uniqueness constraint)

Constraints
ON (wine:Wine) ASSERT wine.name IS UNIQUE

Chapter 6. Neo4J • 188

report erratum • discuss

http://neo4j.com/docs/developer-manual/current/cypher/functions/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Although Neo4j isn’t fundamentally schema-driven the way that relational
databases are, indexes and constraints will help keep your queries nice and
fast and your graph sane. They are an absolute must if you want to run Neo4j
in production.

Day 1 Wrap-Up
Today we began digging into the graph database Neo4j and the Cyper querying
language—and what a different beast we’ve encountered! Although we didn’t
cover specific design patterns per se, our brains are now buzzing with the
strange and beautiful possibilities opened up by the graph database worldview.
Remember that if you can draw it on a whiteboard, you can store it in a graph
database.

Day 1 Homework

Find

1. Browse through the Neo4j docs at https://neo4j.com/docs and read more about
Cypher syntax. Find some Cypher features mentioned in those docs that
we didn’t have a chance to use here and pick your favorite.

2. Experiment with an example graph consisting of movie-related data by
going back to the browser console at http://localhost:7474/browser, typing :play
movie-graph into the web console, and following the instructions.

Do

1. Create a simple graph describing some of your closest friends, your rela-
tionships with them, and even some relationships between your friends.
Start with three nodes, including one for yourself, and create five relation-
ships.

Day 2: REST, Indexes, and Algorithms
Today we’ll start with Neo4j’s REST interface. First, we’ll use the REST inter-
face to create and index nodes and relationships, and to execute full-text
search. Then we’ll look at a plugin that lets us execute Cypher queries on the
server via REST, freeing our code from the confines of the web console.

Taking a REST
Just like HBase, Mongo, and CouchDB, Neo4j ships with a REST interface.
One reason all of these databases support REST is that it allows language-
agnostic interactions in a standard connection interface. You can connect to

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 189

https://neo4j.com/docs
http://localhost:7474/browser
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Neo4j—which requires Java to work—from a separate machine that isn’t
running Java at all.

Before beginning today’s exercises, check to make sure that the REST server
is running by issuing a curl command to the base URL. It runs on the same
port as the web admin tool you used yesterday, at the /db/data/ path (note the
slash at the end).

$ curl http://localhost:7474/db/data/
{

"extensions" : { },
"node" : "http://localhost:7474/db/data/node",
"relationship" : "http://localhost:7474/db/data/relationship",
"node_index" : "http://localhost:7474/db/data/index/node",
"relationship_index" : "http://localhost:7474/db/data/index/relationship",
"extensions_info" : "http://localhost:7474/db/data/ext",
"relationship_types" : "http://localhost:7474/db/data/relationship/types",
"batch" : "http://localhost:7474/db/data/batch",
"cypher" : "http://localhost:7474/db/data/cypher",
"indexes" : "http://localhost:7474/db/data/schema/index",
"constraints" : "http://localhost:7474/db/data/schema/constraint",
"transaction" : "http://localhost:7474/db/data/transaction",
"node_labels" : "http://localhost:7474/db/data/labels",
"neo4j_version" : "3.0.7"

}

If the server is running, this request will return a nice JSON object describing
the URLs that you can use for other commands, such as node-, relationship-,
and index-related actions.

Creating Nodes and Relationships Using REST

It’s as easy to create nodes and relationships over REST in Neo4j as in
CouchDB or Mongo. Creating a node requires a POST to the /db/data/node path
with JSON data. As a matter of convention, it pays to give each node a name
property. This makes viewing any node’s information easy: just call name.

$ curl -i -XPOST http://localhost:7474/db/data/node \
-H "Content-Type: application/json" \
-d '{

"name": "P.G. Wodehouse"
"genre": "British Humour"

}'

When posted, you’ll get the node path in the header and a body of metadata
about the node (both are truncated here for brevity). All of this data is retriev-
able by calling GET on the given header Location value (or the self property in
the metadata).

Chapter 6. Neo4J • 190

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

HTTP/1.1 201 Created
Location: http://localhost:7474/db/data/node/341
Content-Type: application/json; charset=UTF-8

{
"extensions" : { },
"metadata" : {

"id" : 341,
"labels" : []

},
"paged_traverse" : "...",
"outgoing_relationships": "...",
"data" : {

"name" : "P.G. Wodehouse",
"genre" : "British Humour"

}
}

If you just want to fetch the node properties (not the metadata), you can GET
that by appending /properties to the node URL or even an individual property
by further appending the property name.

$
$ curl http://localhost:7474/db/data/node/9/properties/genre
"British Humour"

One node doesn’t do us much good, so go ahead and create another one with
these properties: ["name" : "Jeeves Takes Charge", "style" : "short story"].

Because P. G. Wodehouse wrote the short story “Jeeves Takes Charge,” we
can make a relationship between them.

$ curl -i -XPOST http://localhost:7474/db/data/node/9/relationships \
-H "Content-Type: application/json" \
-d '{

"to": "http://localhost:7474/db/data/node/10",
"type": "WROTE",
"data": {"published": "November 28, 1916"}

}'

A nice thing about the REST interface is that it actually reported on how to
create a relationship early in the body metadata’s create_relationship property.
In this way, the REST interfaces tend to be mutually discoverable.

Finding Your Path

Through the REST interface, you can find the path between two nodes by
posting the request data to the starting node’s /paths URL. The POST request
data must be a JSON string denoting the node you want the path to, the type
of relationships you want to follow, and the path-finding algorithm to use.

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 191

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

For example, we’re looking for a path following relationships of the type WROTE
from node 1 using the shortestPath algorithm and capping out at a depth of 10.

$ curl -X POST http://localhost:7474/db/data/node/9/paths \
-H "Content-Type: application/json" \
-d '{

"to": "http://localhost:7474/db/data/node/10",
"relationships": {"type": "WROTE"},
"algorithm": "shortestPath",
"max_depth": 10

}'
[{

"start" : "http://localhost:7474/db/data/node/9",
"nodes" : [

"http://localhost:7474/db/data/node/9",
"http://localhost:7474/db/data/node/10"

],
"length" : 1,
"relationships" : ["http://localhost:7474/db/data/relationship/14"],
"end" : "http://localhost:7474/db/data/node/10"

}]

The other path algorithm choices are allPaths, allSimplePaths, and dijkstra. You can
find information on these algorithms in the online documentation,2 but detailed
coverage is outside the scope of this book.

Indexing

Like other databases we’ve seen, Neo4j supports fast data lookups by con-
structing indexes. We briefly mentioned indexing toward the end of Day 1.
There is a twist, though. Unlike other database indexes where you perform
queries in much the same way as without one, Neo4j indexes have a different
path because the indexing service is actually a separate service.

The simplest index is the key-value or hash style. You key the index by some
node data, and the value is a REST URL, which points to the node in the
graph. You can have as many indexes as you like, so we’ll name this one
authors. The end of the URL will contain the author name we want to index
and pass in node 1 as the value (or whatever your Wodehouse node was).

$ curl -X POST http://localhost:7474/db/data/index/node/authors \
-H "Content-Type: application/json" \
-d '{

"uri": "http://localhost:7474/db/data/node/9",
"key": "name",
"value": "P.G.+Wodehouse"

}'

2. https://neo4j.com/blog/graph-search-algorithm-basics/

Chapter 6. Neo4J • 192

report erratum • discuss

https://neo4j.com/blog/graph-search-algorithm-basics/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Retrieving the node is simply a call to the index, which you’ll notice doesn’t
return the URL we specified but rather the actual node data.

$ curl http://localhost:7474/db/data/index/node/authors/name/P.G.+Wodehouse

Besides key-value, Neo4j provides a full-text search inverted index, so you
can perform queries like this: “Give me all books that have names beginning
with Jeeves.” To build this index, you need to build it against the entire dataset,
rather than our one-offs earlier. Neo4j incorporates Lucene to build our
inverted index.

$ curl -X POST http://localhost:7474/db/data/index/node \
-H "Content-Type: application/json" \
-d '{

"name": "fulltext",
"config": {"type": "fulltext", "provider": "lucene"}
}'

The POST will return a JSON response containing information about the newly
added index.

{
"template": "http://localhost:7474/db/data/index/...",
"provider": "lucene",
"type": "fulltext"

}

Now if you add Wodehouse to the full-text index, you get this:

$ curl -X POST http://localhost:7474/db/data/index/node/fulltext \
-H "Content-Type: application/json" \
-d '{

"uri": "http://localhost:7474/db/data/node/9",
"key": "name",
"value" : "P.G.+Wodehouse"

}'

Then a search is as easy as a Lucene syntax query on the index URL.

$ curl http://localhost:7474/db/data/index/node/fulltext?query=name:P*

Indexes can also be built on edges like we did previously; you just have to
replace the instances of node in the URLs with relationship—for example,
http://localhost:7474/db/data/index/relationship/published/date/1916-11-28.

REST and Cypher

We spent much of Day 1 using Cypher and the first half of today using the
REST interface. If you wondered which you should use, fear not. The Neo4j
REST interface has a Cypher plugin (which is installed by default in the version

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 193

http://localhost:7474/db/data/index/relationship/published/date/1916-11-28
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

of Neo4j we’re using).3 You can send through REST any commands you could
in the Cypher console. This allows you the power and flexibility of both tools
in production. This is a great combination because Cypher is better geared
toward powerful queries, where REST is geared toward deployment and lan-
guage flexibility.

The following code will return the names of all relationships. You only need to
send the data to the plugin URL as a JSON string value, under the field query.

$ curl -X POST \
http://localhost:7474/db/data/cypher \
-H "Content-Type: application/json" \
-d '{

"query": "MATCH ()-[r]-() RETURN r;"
}'

{
"columns" : ["n.name"],
"data" : [["Prancing Wolf"], ["P.G. Wodehouse"]]

}

From here on out, code samples will use Cypher (as on Day 1) because it has
a much more clean and compact syntax. The REST interface is a good thing
to bear in mind, though, for use cases in which it would be beneficial to set
up an HTTP client to fetch information from Neo4j.

Big Data
Up until now, we’ve dealt with very small datasets, so now it’s time to see
what Neo4j can do with some big data. We’ll explore a dataset covering
information about over 12,000 movies and over 40,000 actors, 6,000 directors,
and others involved in those movies.

This dataset has been made available4 by the good folks at Neo4j, who have
conveniently made the data directly digestible by Neo4j; thus, we don’t need
to convert it from CSV, XML, or some other format.

First, let’s download the dataset as a Zip file, unzip it, and add it to the /data
folder in our Neo4j directory:

$ cd /path/to/neo4j
$ curl -O <copy URL from footnote 4>
$ unzip cineasts_12k_movies_50k_actors_2.1.6.zip
$ mv cineasts_12k_movies_50k_actors.db data/movies.db

3. http://neo4j.com/docs/developer-manual/3.0/http-api/#http-api-transactional
4. http://example-data.neo4j.org/files/cineasts_12k_movies_50k_actors_2.1.6.zip

Chapter 6. Neo4J • 194

report erratum • discuss

http://neo4j.com/docs/developer-manual/3.0/http-api/#http-api-transactional
http://example-data.neo4j.org/files/cineasts_12k_movies_50k_actors_2.1.6.zip
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

That dataset was generated to work with version 2.1.6 of Neo4j, but we’re
using a much later version (3.0.7). We’ll need to make one small configuration
change to enable it to work with our version. In the /conf folder there’s a file
called neo4j.conf, and inside that file there’s a line that looks like this:

#dbms.allow_format_migrations=true

Delete the # at the beginning of the line. That will instruct Neo4j to automat-
ically migrate the format to fit our version. Now, fire up the Neo4j shell,
specifying our movies.db database and the config file we just modified:

$ bin/neo4j-shell -path data/movies.db -config conf/neo4j.conf

This is our first encounter with the Neo4j shell. It’s somewhat like the web
console we used earlier in this chapter, but with the crucial difference that
it returns raw values rather than pretty charts. It is a more direct and no-
frills way to interact with Neo4j and better to use once you have gotten the
hang of the database. When the shell fires up, you should see a shell prompt
like this:

neo4j-sh (?)$

You can enter help to get a list of available shell commands. At any time in
the shell, you can either enter one of those commands or a Cypher query.

Our shell session is already pointing to our movie database, so let’s see what
nodes are there:

neo4j> MATCH (n) RETURN n;

Whoa! That’s a lot of nodes, 63,042 to be exact (you can obtain that result
by returning count(n) instead of just n). We warned you that this is a Big Data
section! Let’s make some more specific queries now. First, let’s see what types
of relationships exist:

neo4j> MATCH ()-[r]-() RETURN DISTINCT type(r);
+------------+
| type(r) |
+------------+
| "ACTS_IN" |
| "DIRECTED" |
| "RATED" |
| "FRIEND" |
+------------+
4 rows

Here, the ()-[r]-() expresses that we don’t care what the nodes look like; we just
want to know about the relationship between them, which we’re storing in
the variable r. You can also see that in Cypher you use type(r) instead of, say,

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 195

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

r.type to get the relationship type (because types are a special attribute of
relationships). As you can see, there are four types of relationships present
in the database. Now, let’s look at all the nodes and see both which labels
are applied to them and how many nodes are characterized by that label:

$ MATCH (n) RETURN DISTINCT labels(n), count(n);
+--+
| labels(n) | count(*) |
+--+
["Person","Actor","Director"]	846
["Person","User"]	45
["Person","Actor"]	44097
["Person","Director"]	5191
[]	1
["Movie"]	12862
+--+
6 rows

As you can see, all nodes that aren’t movies have the Person label (or no label);
of those, all Persons are either Actors, Directors, Users (the folks who put the dataset
together), or a Director and Actor (we’re looking at you, Clint Eastwood). Let’s
perform some other queries to explore the database.

Let’s see everyone who’s both an actor and a director, and then get the count
of people who share that distinction:

> MATCH (p:Actor:Director) RETURN p.name;
> MATCH (p:Actor:Director) RETURN count(p.name);

Now let’s see who directed the immortal Top Gun:

> MATCH (d:Director)-[:DIRECTED]-(m:Movie {title: "Top Gun"}) RETURN d.name;

Let’s see how many movies the legendary Meryl Streep has acted in:

> MATCH (a:Actor {name: "Meryl Streep"})-[:ACTS_IN]-(m:Movie)
RETURN count(m);

Finally, let’s get a list of actors who have appeared in over fifty movies:

> MATCH (a: Actor)-[:ACTS_IN]->(m:Movie)
WITH a, count(m) AS movie_count
WHERE movie_count > 50
RETURN a.name; # only 6 actors!

Now that we’ve played with this specific dataset a little bit, let’s solve a more
challenging algorithmic problem that uses Neo4j more like the high-powered
graph database that it really is. What’s the most common algorithmic problem
in showbiz? You may have guessed already...

Chapter 6. Neo4J • 196

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Six Degrees of...
...you guessed it: Kevin Bacon. We’re going to solve the six degrees of Kevin
Bacon problem here so that you can memorize some of the key results and
be a big hit at your next dinner party. More specifically, we want to know how
many actors are within six degrees of Mr. Bacon, what percentage of the
actors in the database have that distinction, what the shortest "path" from
an actor to Kevin Bacon happens to be, and so on. You’ll find some similar
Neo4j exercises online but this one utilizes a very large dataset that can
generate more true-to-life results.

What you may find in this exercise is that Cypher has a lot already baked
into the language. To get the results we’re after, we won’t need to write a
sophisticated algorithm on the client side or traverse a node tree or anything
like that. We just need to learn a little bit more about how Cypher works.

In the last section, you saw that you can make very specific queries about
nodes and relationships. Let’s find out which Movies nodes Kevin Bacon has
the relationship ACTED_IN with (let’s see the number of movies first and then
list the titles):

> MATCH (Actor {name:"Kevin Bacon"})-[:ACTS_IN]-(m:Movie) RETURN count(m);
> MATCH (Actor {name:"Kevin Bacon"})-[:ACTS_IN]-(m:Movie) RETURN m.title;

Only thirty movies in our database! Amazing that such a not-exceedingly
prolific actor is so well connected in Hollywood. But remember, the magic of
Kevin Bacon is not the number of movies he’s been in; it’s the variety of actors
he’s shared the screen with. Let’s find out how many actors share this distinc-
tion (this query will make more sense later):

> MATCH (Actor {name: "Kevin Bacon"})-[:ACTS_IN]->(Movie)
<-[:ACTS_IN]-(other:Actor)

RETURN count(DISTINCT other);
+----------+
| count(a) |
+----------+
| 304 |
+----------+

Still not a huge number, but remember this is only one degree of Kevin Bacon.
Here, we can see that you can actually reverse the direction of the relationship
arrow in a query, which is quite useful in more complex queries like this.

Now let’s find out how many actors are two degrees from Kevin Bacon. From
the previous expression, it’s not entirely clear how to write that query because
we’d need to make that relationship chain much more complex, resulting in

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 197

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Be Wary of Repetition

You may have noticed the DISTINCT expression in many of these Cypher queries. This
is extremely important in Cypher queries because it enables you to exclude redundant
results. Running the previous query without using DISTINCT results in a count of 313,
which suggests that there are a few actors who are within two degrees of Kevin Bacon
more than once. Quite the distinction (no pun intended)!

For some datasets, these discrepancies may be much larger, skewing the results
beyond recognition and usefulness. When dealing with graphs, this is something that
can really bite you, so if your results ever seem off, checking for redundancy is a good
place to start.

a mess of arrows and brackets. Fortunately, Cypher provides us with some
syntactical sugar for this using star notation (*).

> MATCH (Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..2]-(other:Actor)
RETURN count(DISTINCT other);

+----------+
| count(a) |
+----------+
| 304 |
+----------+

Two things to be aware of. First, there’s no Movie label anywhere here. That’s
because Actors can only have ACTS_IN relationships with Movies, so we can
safely leave that part out. Second, note that that’s the same result as before
(a count of 313), so something is not quite right. It turns out that this Cypher
star notation is a bit tricky because each "jump" between nodes counts. So
you’ll need to think of this query in terms of a four-jump chain (actor-movie-
actor-movie-actor) and rewrite the query:

> MATCH (Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..4]-(other:Actor)
RETURN count(DISTINCT other);

+-----------------------+
| count(DISTINCT other) |
+-----------------------+
| 9096 |
+-----------------------+

If you use 5 instead of 4 in that query, you’ll get the same result and for the
same reason. You need to make an actor-to-movie jump to include more
actors in the result set.

As you can see, the quotient between 2 degrees and 1 degree is about 79, so
the web of relationships fans out very quickly. Calculating 3 degrees yields
31,323. Counting 4 degrees takes minutes and might even time out on your

Chapter 6. Neo4J • 198

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

machine, so we don’t recommend running that query unless you need a (long)
hot chocolate break.

Thus far, we’ve only really been counting nodes that share some trait, though
our ability to describe those traits has been enhanced. We’re still not equipped
to answer any of our initial questions, such as how many degrees lie between
Kevin Bacon and other actors, what percentage of actors lie within N degrees,
and so on.

To get traction into those questions, we need to begin querying for path data,
as we did in the REST exercises. Once again, Cypher comes through in the
clutch for us with its shortestPath function, which enables you to easily calculate
the distance between two nodes. You can specify the relationship type you’re
interested in specifically or just use * if the relationship type doesn’t matter.

We can use the shortestPath function to find the number of degrees separating
Kevin Bacon and another dashing actor, Sean Penn, using this query:

> MATCH (
bacon:Actor {name: "Kevin Bacon"}),
(penn:Actor {name: "Sean Penn"}

),
p=shortestPath((bacon)-[:ACTS_IN*]-(penn))
RETURN length(p);

+---------------+
| length(p) / 2 |
+---------------+
| 2 |
+---------------+

But wait a second. According to IMDB, Messieurs Bacon and Penn starred
together in Mystic River. So why does it take 2 degrees to connect these two
when it should be one? Well, it turns out that Mystic River isn’t in our
database.

> MATCH (m:Movie {name: "Mystic River"})
RETURN count(DISTINCT m);

+-------------------+
| count(DISTINCT m) |
+-------------------+
| 0 |
+-------------------+

Looks like our database is lacking some crucial bits of cinema. So maybe
don’t use these results to show off at your next dinner party just yet; you
might want to find a more complete database for that. But for now, you know
how to calculate shortest paths, so that’s a good start. Try finding the number
of degrees between some of your favorite actors.

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 199

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Another thing we’re interested in beyond the shortest path between any two actors
is the percentage of actors that lie within N degrees. We can do that by using a
generic other node with the Actor label and counting the number of shortest paths
that are found within a number of degrees. We’ll start with 2 degrees and divide
the result by the total number of actors, making sure to specify that we don’t
include the original Kevin Bacon node in the shortest path calculation (or we’ll
get a nasty and long-winded error message).

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..2]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p);

+----------+
| count(p) |
+----------+
| 304 |
+----------+

Just as expected, the same result as before. What happened there is that Neo4j
traversed every relationship within 1 degree of Kevin Bacon and found the number
that had shortest paths. So in this case, p returns a list of many shortest paths
between Kevin Bacon and many actors rather than just a single shortest path to
one actor. Now let’s divide by the total number of actors (44,943) and add an
extra decimal place to make sure we get a float:

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..2]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p) / 44943.0;

+----------------------+
| count(p) / 44943.0 |
+----------------------+
| 0.006764123445252876 |
+----------------------+

That’s a pretty small percentage of actors. But now re-run that query using 4
instead of 2 (to symbolize 2 degrees rather than 1):

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..4]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p) / 44943.0;

+--------------------+
| count(p) / 44943.0 |
+--------------------+
| 0.2023674432058385 |
+--------------------+

Chapter 6. Neo4J • 200

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Already up to 20 percent within just 1 extra degree. Running the same query
gets you almost 70 percent for 3 degrees, a little over 90 percent for 4 degrees,
93 percent for 5, and about 93.4 percent for a full 6 degrees. So how many
actors have no relationship with Kevin Bacon whatsoever in our database? We
can find that out by not specifying an N for degrees and just using any degree:

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p) / 44943.0;

+--------------------+
| count(p) / 44943.0 |
+--------------------+
| 0.9354960728033287 |
+--------------------+

Just a little bit higher than the percentage of actors within 6 degrees, so if
you’re related to Kevin Bacon at all in our database, then you’re almost cer-
tainly within 6 degrees.

Day 2 Wrap-Up
On Day 2, we broadened our ability to interact with Neo4j by taking a look
at the REST interface. You saw how, using the Cypher plugin, you can execute
Cypher code on the server and have the REST interface return results. We
played around with a larger dataset and finally finished up with a handful of
algorithms for diving into that data.

Day 2 Homework

Find

1. Bookmark the documentation for the Neo4j REST API.

2. Bookmark the API for the JUNG project and the algorithms it implements.

3. Find a binding or REST interface for your favorite programming language.

Do

1. Turn the path-finding portion of the Kevin Bacon algorithm into its own
step. Then implement a general-purpose Groovy function (for example,
def actor_path(g, name1, name2) {...}) that accepts the graph and two names and
compares the distance.

2. Choose and run one of the many JUNG algorithms on a node (or the
dataset, if the API demands it).

report erratum • discuss

Day 2: REST, Indexes, and Algorithms • 201

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

3. Install your driver of choice, and use it to manage your company graph
with the people and the roles they play, with edges describing their
interactions (reports to, works with). If your company is huge, just try
your close teams; if you’re with a small organization, try including some
customers. Find the most well-connected person in the organization by
closest distance to all other nodes.

Day 3: Distributed High Availability
Let’s wrap up our Neo4j investigation by learning how to make Neo4j more
suitable for mission-critical, production uses. We’ll see how Neo4j keeps data
stable via ACID-compliant transactions. Then we’ll install and configure a
Neo4j high availability (HA) cluster to improve availability when serving high-
read traffic. Then we’re going to look into backup strategies to ensure that
our data remains safe.

Transactions and Only Transactions with Cypher

Neo4j is an Atomic, Consistent, Isolated, Durable (ACID) transaction database, similar
to PostgreSQL. This makes it a good option for important data that you may have
otherwise picked a relational database for. Just like transactions you’ve seen before,
Neo4j transactions are all-or-nothing operations. When a transaction starts, every
following operation will succeed or fail as an atomic unit—failure of one means failure
of all. Much like specifying BEGIN and COMMIT delimiters as in Postgres, Cypher enables
you to do the same thing in the Cypher shell using :begin and :commit (the debts to the
SQL world should be quite clear here!).

If you’re using Cypher from a non-shell client, all queries are automatically treated
as transactions and thus completely succeed or completely fail. Explicit transaction
logic is necessary only in the shell.

Chapter 6. Neo4J • 202

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

High Availability
High availability mode is Neo4j’s answer to the question, “Can a graph
database scale?” Yes, but with some caveats. A write to one slave is not
immediately synchronized with all other slaves, so there is a danger of losing
consistency (in the CAP sense) for a brief moment (making it eventually con-
sistent). HA will lose pure ACID-compliant transactions. It’s for this reason
that Neo4j HA is touted as a solution largely for increasing capacity for reads.

Just like Mongo, the servers in the cluster will elect a master that holds primary
responsibility for managing data distribution in the cluster. Unlike in Mongo,
however, slaves in Neo4j accept writes. Slave writes will synchronize with the
master node, which will then propagate those changes to the other slaves.

HA Cluster

To use Neo4j HA, we must first set up a cluster. Previously, Neo4j clusters
relied on ZooKeeper as an external coordination mechanism, which worked
well but required a lot of additional administration, as ZooKeeper would have
to be run separately. That has changed in more recent versions. Now, Neo4j
clusters are self-managing and self-coordinating. Clusters can choose their
own master/slave setup and re-coordinate when servers go offline.

You can see an illustration of this in the following figure, which shows a 4-
node Neo4j cluster.

Nodes 1, 2, and 3 are currently online and replicating to one another properly,
while node 4 is offline. When node 4 comes back online, it will re-enter as a
slave node. If node 1, the current master node, went offline, the other nodes
would automatically elect a leader (without the help of an external coordinating
service). This is a fairly standard HA setup in the industry today, and the

report erratum • discuss

Day 3: Distributed High Availability • 203

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

engineers behind Neo4j have done administrators a great service by enabling
a ZooKeeper-free HA setup.

Building and Starting the Cluster

To build a cluster, we’re going to run three instances of Neo4j Enterprise ver-
sion 3.1.4. You can download a copy from the website for your operating system
(be sure you select the correct edition)5 and then unzip it and create two more
copies of the directory. Let’s name them neo4j-1.local, neo4j-2.local, and neo4j-3.local.

$ tar fx neo4j-enterprise-3.1.4-unix.tar.gz
$ mv neo4j-enterprise-3.1.4 neo4j-1.local
$ cp -R neo4j-1.local neo4j-2.local
$ cp -R neo4j-1.local neo4j-3.local

Now we have three identical copies of our database. Normally, you would
unpack one copy per server and configure the cluster to be aware of the other
servers. In order to build a local cluster, we need to make a few small config-
uration changes and start the nodes one by one. Each node contains a
conf/neo4j.conf configuration file. At the top of that file in the folder for node 1,
neo4j-1.local, add this:

dbms.mode=HA
dbms.memory.pagecache.size=200m
dbms.backup.address=127.0.0.1:6366
dbms.backup.enabled=true
ha.server_id=1
ha.initial_hosts=127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003
ha.host.coordination=127.0.0.1:5001
ha.host.data=127.0.0.1:6363
dbms.connector.http.enabled=true
dbms.connector.http.listen_address=:7474
dbms.connector.bolt.enabled=true
dbms.connector.bolt.tls_level=OPTIONAL
dbms.connector.bolt.listen_address=:7687
dbms.security.auth_enabled=false

Copy and paste the same thing into the other two nodes’ config files, except in-
crease the following values by 1 for each node (producing three separate values
for each—for example, 7474, 7475, and 7476 for dbms.connector.http.listen_address):

• ha.server_id
• ha.host.coordination
• ha.host.data
• dbms.connector.http.listen_address
• dbms.connector.bolt.listen_address

5. http://neo4j.org/download/

Chapter 6. Neo4J • 204

report erratum • discuss

http://neo4j.org/download/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

So, ha.server_id should have values of 1, 2, and 3 on the different nodes,
respectively, and so on for the other configs. This is to ensure that the nodes
aren’t attempting to open up the same ports for the same operations. Now
we can start each node one by one (the order doesn’t matter):

$ neo4j-1.local/bin/neo4j start
$ neo4j-2.local/bin/neo4j start
$ neo4j-3.local/bin/neo4j start

You can watch the server output of any of the three running nodes by tailing
the log file.

$ tail -f neo4j-3.local/logs/neo4j.log

If the cluster has been set up successfully, you should see something like this:

2017-05-08 03:38:06.901+0000 INFO Started.
2017-05-08 03:38:07.192+0000 INFO Mounted REST API at: /db/manage
2017-05-08 03:38:07.902+0000 INFO Remote interface available at https://...

You should also be able to use three different Neo4j browser consoles at
http://localhost:7474, as before, but also on ports 7475 and 7476. Don’t use the
browser console for now, though. We’re going to experiment with the cluster
via the CLI instead.

Verifying Cluster Status

We now have three different nodes running alongside one another in a cluster,
ready to do our bidding. So let’s jump straight in and write some data to make
sure that things are being properly replicated across the cluster.

Jump into the Cypher shell (as we did on Day 2) for the first node:

$ neo4j-1.local/bin/cypher-shell
Connected to Neo4j 3.1.4 at bolt://localhost:7687 as user neo4j.
Type :help for a list of available commands or :exit to exit the shell.
Note that Cypher queries must end with a semicolon.
neo4j>

Now let’s write a new data node to our cluster and exit the Cypher shell for
node 1...

neo4j> CREATE (p:Person {name: "Weird Al Yankovic"});
neo4j> :exit

...and then open up the shell for node 2...

$ neo4j-2.local/bin/cypher-shell -u neo4j -p pass

report erratum • discuss

Day 3: Distributed High Availability • 205

http://localhost:7474
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

...and finally see which data nodes are stored in the cluster:

neo4j> MATCH (n) RETURN n;
(:Person {name: "Weird Al Yankovic"})

And there you have it: Our data has been successfully replicated across nodes.
You can try the same thing on node 3 if you’d like.

Master Election

In HA Neo4j clusters, master election happens automatically. If the master ser-
ver goes offline, other servers will notice and elect a leader from among them-
selves. Starting the previous master server again will add it back to the cluster,
but now the old master will remain a slave (until another server goes down).

High availability allows very read-heavy systems to deal with replicating a
graph across multiple servers and thus sharing the load. Although the cluster
as a whole is only eventually consistent, there are tricks you can apply to
reduce the chance of reading stale data in your own applications, such as
assigning a session to one server. With the right tools, planning, and a good
setup, you can build a graph database large enough to handle billions of
nodes and edges and nearly any number of requests you may need. Just add
regular backups, and you have the recipe for a solid production system.

Backups
Backups are a necessary aspect of any professional database use. Although
backups are effectively built in when using replication in a highly available
cluster, periodic backups—nightly, weekly, hourly, and so on—that are stored
off-site are always a good idea for disaster recovery. It’s hard to plan for a
server room fire or an earthquake shaking a building to rubble.

Neo4j Enterprise offers a tool called neo4j-admin that performs a wide variety
of actions, including backups.

The most powerful method when running an HA server is to craft a full
backup command to copy the database file from the cluster to a date-stamped
file on a mounted drive. Pointing the copy to every server in the cluster will
ensure you get the most recent data available. The backup directory created
is a fully usable copy. If you need to recover, just replace each installation’s
data directory with the backup directory, and you’re ready to go.

You must start with a full backup. Let’s back up our HA cluster to a directory
that ends with today’s date (using the *nix date command). The neo4j-admin
command can be run from any server and you can choose any server in the
cluster when using the --from flag. Here’s an example command:

Chapter 6. Neo4J • 206

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ neo4j-1.local/bin/neo4j-admin backup \
--from 127.0.0.1:6366 \
--name neo4j-`date +%Y.%m.%d`.db \
--backup-dir /mnt/backups

Once you have done a full backup, you can choose to do an incremental
backup by specifying an existing .db database directory as the target directory.
But keep in mind that incremental backups only work on a fully backed-up
directory, so ensure the previous command is run on the same day or the
directory names won’t match up.

Day 3 Wrap-Up
Today we spent some time keeping Neo4j data stable via ACID-compliant
transactions, high availability, and backup tools.

It’s important to note that all of the tools we used today require the Neo4j
Enterprise edition, and so use a dual license—GPL/AGPL. If you want to keep
your server closed source, you should look into switching to the Community
edition or getting an OEM from Neo Technology (the company behind Neo4j).
Contact the Neo4j team for more information.

Day 3 Homework

Find

1. Find the Neo4j licensing guide.

2. Answer the question, “What is the maximum number of nodes supported?”
(Hint: It’s in Questions & Answers in the website docs.)

Do

1. Replicate Neo4j across three physical servers.

2. Set up a load balancer using a web server such as Apache or Nginx, and
connect to the cluster using the REST interface. Execute a Cypher script
command.

3. Experiment further with the neo4j-admin tool. Acquire a solid understanding
of three subcommands beyond backup.

Wrap-Up
Neo4j is a top open source implementation of the (relatively rare) class of
graph databases. Graph databases focus on the relationships between data,
rather than the commonalities among values. Modeling graph data is simple.

report erratum • discuss

Wrap-Up • 207

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You just create nodes and relationships between them and optionally hang
key-value pairs from them. Querying is as easy as declaring how to walk the
graph from a starting node.

Neo4j’s Strengths
Neo4j is one of the finest examples of open source graph databases. Graph
databases are perfect for unstructured data, in many ways even more so than
document databases. Not only is Neo4j typeless and schemaless, but it puts
no constraints on how data is related. It is, in the best sense, a free-for-all.
Currently, Neo4j can support 34.4 billion nodes and 34.4 billion relationships,
which is more than enough for most use cases. (Neo4j could hold more than
15 nodes for each of Facebook’s 2.2 billion users in a single graph.)

The Neo4j distributions provide several tools for fast lookups with Lucene,
the Cypher querying language, and the REST interface. Beyond ease of use,
Neo4j is fast. Unlike join operations in relational databases or map-reduce
operations in other databases, graph traversals are constant time. Like data
is only a node step away, rather than joining values in bulk and filtering the
desired results, which is how most of the databases we’ve seen operate. It
doesn’t matter how large the graph becomes; moving from node A to node B
is always one step if they share a relationship. Finally, the Enterprise edition
provides for highly available and high read-traffic sites by way of Neo4j HA.

Neo4j’s Weaknesses
Neo4j does have a few shortcomings. We found its choice of nomenclature
(node rather than vertex and relationship rather than edge) to add complexity
when communicating. Although HA is excellent at replication, it can only
replicate a full graph to other servers. It cannot currently shard subgraphs,
which still places a limit on graph size (though, to be fair, that limit measures
in the tens of billions). Finally, if you are looking for a business-friendly open
source license (like MIT), Neo4j may not be for you. Although the Community
edition (everything we used in the first two days) is GPL, you’ll probably need
to purchase a license if you want to run a production environment using the
Enterprise tools (which includes HA and backups).

Neo4j on CAP
The term “high availability cluster" should be enough to give away Neo4j’s
strategy. Neo4j HA is available and partition tolerant (AP). Each slave will
return only what it currently has, which may be out of sync with the master
node temporarily. Although you can reduce the update latency by increasing

Chapter 6. Neo4J • 208

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

a slave’s pull interval, it’s still technically eventually consistent. This is why
Neo4j HA is recommended for read-mostly requirements.

Parting Thoughts
Neo4j’s simplicity can be off-putting if you’re not used to modeling graph data.
It provides a powerful open-source API with years of production use and yet
it hasn’t gotten the same traction as other databases in this book. We chalk
this up to lack of knowledge because graph databases mesh so naturally with
how humans tend to conceptualize data. We imagine our families as trees,
or our friends as graphs; most of us don’t imagine personal relationships as
self-referential datatypes. For certain classes of problems, such as social
networks, Neo4j is an obvious choice. But you should give it some serious
consideration for non-obvious problems as well—it just may surprise you
how powerful and easy it is.

report erratum • discuss

Wrap-Up • 209

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 7

DynamoDB
Earth movers are epic pieces of machinery, able to shuffle around massive
bits of dirt and other materials with great ease. DynamoDB is a bit like the
rented earth mover of NoSQL databases. You don’t have to build it yourself
or fix it when it’s broken; you just have to drive it and pay for your usage.
But it’s complex to handle so you’ll need to make very intelligent decisions
about how to use it lest you end up incurring unexpected costs or jamming
the engine.

DynamoDB is a cloud-based database available through Amazon Web Services
(AWS), the cloud computing division of e-commerce giant Amazon (the same
Amazon from which you may have purchased this book). You may know AWS
as the creator of a dizzying, ever-expanding array of widely used cloud services,
from the Simple Storage Service (S3) to the Elastic Compute Cloud (EC2) and
far beyond (there could be over 100 services by the time you read this).

Despite the emergence of serious competitors, such as Microsoft Azure and
Google Cloud Platform, AWS remains the leader of the Infrastructure-as-a-
Service (IaaS) paradigm that has brought cloud computing to the masses,
and DynamoDB is AWS’s most significant contribution—thus far—to the
world of NoSQL. The cloud has opened vast new horizons for everyone from
lone-wolf developers to Fortune 500 companies, and any book on the NoSQL
paradigm would be incomplete without this pioneering cloud database.

DynamoDB: The “Big Easy” of NoSQL
Six out of the seven databases that we cover in this book are easy enough to
run on your laptop. But running systems such as HBase, CouchDB, and
others in production—and using them for applications handling massive
workloads—is a much different matter. Even databases that are a famously
easy to operate at smaller scale, such as Redis, present major challenges in

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

production environments, usually requiring skilled (and expensive!) admins
and operations specialists on hand.

DynamoDB is a different story—and an outlier in this book. You don’t have
to install it, start it, or maintain it. You can sign up for an AWS account,
create a DynamoDB table, and just go. As you’ll see, DynamoDB does require
some operations-style thinking and preparation, but you’ll never need to
provide it an XML configuration à la HBase or set up a complex cluster à la
Mongo. DynamoDB is a database that runs itself and yet is capable of fulfilling
some of your most ambitious “webscale” dreams, offering consistently fast
performance no matter how much data you’re storing.

So just how “webscale” are we talking here? Some facts:

• You can store as many items as you want in any DynamoDB table (more
on tables and items later).

• Each item (the equivalent of a row in an SQL database) can hold as many
attributes as you want, although there is a hard size limit of 400 KB per
item (that limit will likely grow in the future).

• If you get data modeling right, which will occupy a decent chunk of this
chapter, you should experience very little performance degradation even
when your tables store petabytes of data.

• Over 100,000 AWS customers currently use DynamoDB.

• DynamoDB handles well over a trillion total requests a day (across all
AWS customers).

But DynamoDB isn’t interesting just because it’s big and cloud-based and
managed by experts you don’t have to hire and fire. It’s also a system very
much worth learning in its own right, providing a familiar yet unique data
model and an array of features you won’t find in any of the other databases
in this book. While some folks may be reticent to trust a cloud database that’s
managed by someone else, a variety of forward-thinking tech companies,
including Airbnb, Adobe, Siemens, and Comcast, have taken the plunge and
use DynamoDB as one of the core databases driving their platforms.

DynamoDB and the (Almost) Ops-Free Lifestyle
If you’re running a database yourself or as part of a team, you can expect
many of the following to keep you awake at night: ensuring speedy, predictable
performance; handling unforeseeable hardware outages and network failures;
scaling out disk capacity to meet unexpected spikes in demand; and enabling
application developers to quickly get up and running using your database.

Chapter 7. DynamoDB • 212

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

On top of that, DBAs with a background in NoSQL aren’t exactly a dime a
dozen, so hiring, training, and scaling out a team of DBAs for Mongo, HBase,
or another NoSQL database is nothing to sneeze at. DynamoDB doesn’t
completely rid your life of these kinds of issues, but if you use it right it can
take an enormous bite out of them.

There are also a number of secondary reasons why you might want to consider
DynamoDB:

• You can use it in any of AWS’s many datacenters across the entire globe.
As of July 2017, AWS offers DynamoDB in forty-two Availability Zones
(AZs) in sixteen geographic regions, with plans to expand into at least
eight more AZs in three additional regions.

• All data in DynamoDB is stored on high-performing Solid State Disks
(SSDs) and automatically replicated across multiple availability zones
within an AWS region (which guarantees redundancy even within a single
region).

• You can expect genuine downtime out of DynamoDB only in the rare event
that an entire AWS datacenter goes down.

Datacenter outages are the Achilles heel of the cloud, and a very real risk
that you should keep in mind. We’ve all experienced Netflix, Instagram, and
other widely used services going down for hours at a time due to outages in
Amazon’s massive us-east-1 datacenter in Northern Virginia. AWS and
DynamoDB aren’t perfect, but their track record is exceedingly good, if not
downright pristine. Using a database like DynamoDB won’t grant you a
completely ops-free lifestyle, but it may just enable you to refocus a huge
chunk of your attention and resources onto other things, and for that reason
alone it’s worth a look.

The Core Storage Concepts: Tables, Items, and More
DynamoDB’s data model is a bit tricky to define using standard “NoSQL”
categories. It strongly resembles the data model of a key-value store such as
Redis in that it wasn’t really built to provide the rich queryability of an RDBMS
such as Postgres. Although DynamoDB does have some interesting querying
features, which we’ll learn about shortly, it really soars when you know what
you’re looking for in advance, which is a hallmark of key-value stores. If you’re
building an application that uses DynamoDB, you should always strive to
architect it so that your data is associated with certain “natural” keys that
allow for easy discoverability—for example, the ability to find user data on
the basis of unique usernames.

report erratum • discuss

DynamoDB: The “Big Easy” of NoSQL • 213

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Not to Be Confused with Dynamo

Technologically, DynamoDB originally drew heavily on concepts derived from a dis-
tributed, eventually consistent storage system called Dynamo created to address Amazon’s
own data storage problems (and massive ones at that). Amazon’s theoretical research into
the distributed database domain resulted in the so-called “Dynamo paper” (actually titled
Dynamo: Amazon’s Highly Available Key-value Store),a which exerted a seminal influence
on widely used NoSQL databases such as Riak, Cassandra, and Voldemort.

It’s unclear how faithful DynamoDB is to the concepts in the Dynamo paper, as Amazon
keeps most under-the-hood implementation details under wraps, but the paper itself is
a treasure trove of rich theoretical explorations of distributed database concepts.
Throughout this book, we’ll be careful to always use the term DynamoDB to distinguish
the public-facing AWS service from the internal Dynamo and its associated paper.

a. http://dl.acm.org/citation.cfm?id=1294281

There are aspects of DynamoDB’s data model, however, that are reminiscent
of RDBMSs such as Postgres. The first point of overlap is that all data in
DynamoDB is stored in tables that you have to create and define in advance,
though tables have some flexible elements and can be modified later. You can
create, modify, and delete DynamoDB tables at will using an interface called
the control plane. If you’re used to interfaces like Postgres’s psql, which we
explored in Chapter 2, PostgreSQL, on page 9, then the control plane should
be familiar to you.

The second point of overlap is that you store items inside of tables. Items
roughly correspond to rows in RDBMSs; they consist of one or more attributes,
which roughly correspond to RDBMS columns. Earlier in the book, you learned
about databases such as Mongo and Couch that have no concept whatsoever
of predefined tables. DynamoDB requires you to define only some aspects of
tables, most importantly the structure of keys and local secondary indexes,
while retaining a schemaless flavor.

The last point of overlap with RDBMSs is that DynamoDB enables you to
query data based on secondary indexes rather than solely on the basis of a
primary key (think back to secondary indexes in Postgres). This means that
you can perform queries in DynamoDB that are essentially equivalent to SQL
queries like these:

/* Remember: you can't actually use SQL syntax with DynamoDB;
these examples are just for show */

SELECT * FROM chevys WHERE make = "nova";
SELECT * FROM pro_sports_teams WHERE city = "cleveland";
SELECT * FROM presidents WHERE first_name = "Jethro"; /* OOPS! None found! */

Chapter 7. DynamoDB • 214

report erratum • discuss

http://dl.acm.org/citation.cfm?id=1294281
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

You can even perform range queries:

SELECT * FROM pearl_jam_albums WHERE
title <= "Ten";

SELECT * FROM john_cusack_films WHERE
title BETWEEN "Better Off Dead" AND "High Fidelity";

SELECT * FROM oscar_wilde_quotes WHERE
quote LIKE 'I have nothing to declare%';

DynamoDB’s Consistency Model

Now that we have a basic outline of DynamoDB’s “key-value plus” data model, a
question naturally emerges: How does DynamoDB fit in with the so-called CAP theorem
that we discussed in the last chapter? Are we dealing with an eventually consistent
database that may turn up stale data from time to time (such as CouchDB and others
in the NoSQL landscape)? Or are we dealing with a strongly consistent, ACID-compli-
ant, transactional database that only ever returns the most up-to-date value that
we’re seeking?

The answer: Yes, please! Everybody gets a car! DynamoDB actually supports both
consistency models. Even better, you can specify which consistency model you want
on a per-read basis.

So when you query DynamoDB, your application can say either...

• I want the most up-to-date value, even if it costs me some extra latency or,
heaven forbid, the value isn’t currently available at all, or

• I’ve got a tight schedule, so give me what you’ve got right now, even if it’s a bit
stale.

Always bear in mind, however, that “stale” in the universe of DynamoDB doesn’t mean
hours; it probably means milliseconds, and the trade-off may be acceptable in plenty of
cases (make sure to run it by your CTO, though). The flexibility, however, is nice, and
the ability to query the same data using both models can really come in handy.

The downside of strongly consistent reads, as in other systems, is that they may not
be available in case of network, hardware, or other outages. Death, taxes, and the
CAP theorem: there’s no escaping them. The only real “solution” is to use strong
consistency only when truly necessary and to design your application to be prepared
to deal with an unresponsive database (rare as it may be with DynamoDB). Consistent
reads also “cost” twice as much in terms of read capacity than non-consistent reads.

Another important thing to note about consistency is that DynamoDB supports only
item-level consistency, which is analogous to row-level consistency in RDBMSs. There
are no atomic operations across items, which means no consistency for batch opera-
tions. And when you run queries against indexes or whole tables, do not ever expect
that the result set will be 100 percent up-to-date. Item-level consistency is a good
thing to have, but if consistency across items is a necessity for your use case, you
should explore other databases.

report erratum • discuss

DynamoDB: The “Big Easy” of NoSQL • 215

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

As you can see, these kinds of querying capabilities take DynamoDB beyond
what you’d find in a more straightforward key-value store (like the one you’ll
see in the next chapter, on Redis). So we’ll call DynamoDB’s data model key-
value plus for short to account for these borrowings from the relational
paradigm.

In spite of these SQL-flavored capabilities, though, there are firm limits to
the DynamoDB/RDBMS parallels. Most importantly, if you need querying
capabilities that go beyond the simple ones in the previous example, you’ll
have to implement them on the application side, or just use a different
database (or use other cloud services in conjunction with DynamoDB, as we’ll
do on Day 3). Furthermore, DynamoDB has no concept of things like joins
between tables; the table is the highest level at which data can be grouped
and manipulated, and any join-style capabilities that you need will have to
be implemented on the application side, which has its own downsides.

So that provides a little bit of background, historical and technological, for
DynamoDB. It’s time to dig much deeper using real interactions with the
database.

Day 1: Let’s Go Shopping!
Fun fact: Dynamo—the database that inspired the later DynamoDB—was
originally built with the very specific purpose of serving as the storage system
for Amazon’s famous shopping cart. When you’re building a shopping cart
application, the absolute, unbreakable categorical imperative guiding your
database should be this: do not lose data under any circumstances. Losing
shopping cart data means losing money directly. If a user puts a $2,500
mattress in their Amazon shopping cart and the database suddenly forgets
that, then that’s money potentially lost, especially if the data is lost just before
checkout.

Multiply a mistake like that times thousands or even millions and you get a
clear sense of why Amazon needed to build a fault-tolerant, highly available
database that never loses data. The good news is that you get to reap the
benefits of Amazon’s efforts and use DynamoDB to your own ends in your
own applications.

As a first practical taste of DynamoDB, we’ll set up a DynamoDB table that
could act as the database for a simple shopping cart application. This table
will be able to store shopping cart items (it looks like Amazon’s use of the
“item” terminology was no accident). We’ll perform basic CRUD operations
against this table via the command line.

Chapter 7. DynamoDB • 216

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

But first, a stern warning: DynamoDB is not free! It is a paid service. AWS
offers a free tier for virtually all of its services so that you can kick the tires
without immediately incurring costs, but make sure to check the pricing
guide1 before you start going through the examples in this book. We won’t
make super intensive use of AWS services, so it should cost you at most a
few dollars, but due diligence may just save you from an unpleasant end-of-
the-month surprise.

Before you can get started with this section, you’ll need to create an AWS
account for yourself using the AWS console.2 That part is pretty self-
explanatory. Don’t worry about familiarizing yourself with the AWS console
for now, as most of the examples in this chapter will use the command line.
Once you’ve signed up with AWS and can access your user console (which
shows you all of AWS’s currently available services on the landing page),
download the official AWS CLI tool using pip, the Python package manager:

$ sudo pip install aws

If you run aws --version and get a version string like aws-cli/1.11.51 Python/2.7.10
Darwin/16.1.0 botocore/1.5.14, you should be ready to go. All of the aws tool’s com-
mands are of the form aws [service] [command], where service can be dynamodb, s3,
ec2, and so on. To see the commands and options available for DynamoDB
specifically, run aws dynamodb help.

Once the CLI tool is installed, you’ll need to configure it by running the following:

$ aws configure

Running DynamoDB Locally

If you ever decide to develop a full-fledged application of your own using DynamoDB,
you might want to check out DynamoDB Local,a which is a version of DynamoDB
that you can run on your own machine that’s fully API compatible with hosted
DynamoDB. It’s available as a Java JAR and works on Windows, Mac OS, and Linux.

We won’t use DynamoDB Local for the exercises here because we’ll need to use the
hosted version in conjunction with other AWS services, but it’s a very nice thing to
have in your development toolbelt.

a. https://aws.amazon.com/blogs/aws/dynamodb-local-for-desktop-development

1. https://aws.amazon.com/pricing
2. https://console.aws.amazon.com

report erratum • discuss

Day 1: Let’s Go Shopping! • 217

https://aws.amazon.com/blogs/aws/dynamodb-local-for-desktop-development
https://aws.amazon.com/pricing
https://console.aws.amazon.com
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

That will prompt you to input the AWS access key ID and secret access key
for your account and enable you to choose a default AWS region when using
the tool (us-east-1 is the default) and output format for CLI commands (json is
the default).

The DynamoDB control plane is the set of commands used to manage tables.
Our first action using the control plane will be to see which tables are associ-
ated with our account:

$ aws dynamodb list-tables
{

"TableNames": []
}

As expected, there are no tables associated with our account, so let’s make
a very simple shopping cart table in which each item has just one attribute:
an item name stored as a string.

$ aws dynamodb create-table \
--table-name ShoppingCart \
--attribute-definitions AttributeName=ItemName,AttributeType=S \
--key-schema AttributeName=ItemName,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

DynamoDB’s Almost Schemaless Data Model

In the create-table operation, it seems like the ShoppingCart table is being created with a
strict schema according to which items in the table can have only an ItemName attribute.
But DynamoDB doesn’t work that way. Whenever you create a table, you only have
to define attributes that function as keys (sometimes referred to as key attributes).

So we could store items in our shopping cart table that have any number of other
properties (brand name, year manufactured, ISBN, whatever) if we wanted to, without
having to specify those attributes when we create the table. The only restriction on
our ShoppingCart table is that each item must have an ItemName.

But there’s a catch here: although schema restraints apply only to key attributes, you
can’t query for attributes that aren’t specified as keys or indexes when you create the
table (more on indexes later). So if you started storing items with a brand name attribute
in the ShoppingCart table, you wouldn’t be able to discover items by brand name. If you
wanted to do that, you’d have to create a new table and add the brand name as a key
or index. And so even though schema design doesn’t force you into a straitjacket, you
should make that decision very carefully.

This is in contrast to a database like Mongo, which is schemaless but allows you to
query for whatever fields you want at any time.

Chapter 7. DynamoDB • 218

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The output of that command should be a JSON object describing our newly
created table:

{
"TableDescription": {

"TableArn": "arn:aws:dynamodb:...:table/ShoppingCart",
"AttributeDefinitions": [

{
"AttributeName": "ItemName",
"AttributeType": "S"

}
],
"ProvisionedThroughput": {

"NumberOfDecreasesToday": 0,
"WriteCapacityUnits": 1,
"ReadCapacityUnits": 1

},
"TableSizeBytes": 0,

"TableName": "ShoppingCart",
"TableStatus": "CREATING",
"KeySchema": [

{
"KeyType": "HASH",
"AttributeName": "ItemName"

}
],
"ItemCount": 0,
"CreationDateTime": 1475032237.808

}
}

We could get that same output using the describe-table command at any time
(except that the TableStatus parameter will change to ACTIVE very quickly after
creation):

$ aws dynamodb describe-table \
--table-name ShoppingCart

So now we’ve reserved a little nook and cranny in an AWS datacenter to hold
our shopping cart data. But that create-table command is probably still a bit
cryptic because there are some core concepts we haven’t gone over yet. Let’s
start with supported data types.

DynamoDB’s Data Types
DynamoDB’s type system is, in essence, a stripped-down version of the type
system that you’d find in a relational database. DynamoDB offers simple
types such as Booleans, strings, and binary strings, but none of the more
purpose-specific types that you’d find in, say, Postgres (such as currency

report erratum • discuss

Day 1: Let’s Go Shopping! • 219

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

values or geometric types). DynamoDB offers these five scalar types, which
can be thought of as its atomic types:

JSON ExampleDescriptionSymbol Type

"S": "this is a string"A typical string like you’d find in
most programming languages.

SString

"N": "98", "N":"3.141592"Any integer or float. Sent as a
string for the sake of compatibility
between client libraries.

NNumber

"B": "4SrNYKrcv4wjJczEf6u+
TgaT2YaWGgU76YPhF"

Base64-encoded binary data of
any length (within item size limits).

BBinary

"BOOL": falsetrue or false.BOOLBoolean

"NULL": trueA null value. Useful for missing
values.

NULLNull

Warning! No Empty Strings

String values cannot be empty in DynamoDB. You must provide some kind of place-
holder when using strings, perhaps something like "nil" or "empty". This is frankly one
of the oddest things about DynamoDB and something to always bear in mind when
building applications using it.

In addition to the scalar types, DynamoDB also supports a handful of set
types and document types (list and map):

JSON ExampleDescriptionSymbol Type

"SS": ["Larry", "Moe"]A set of strings.SSString set

"NS": ["42", "137"]A set of numbers.NSNumber set

"BS": ["TGFycnkK",
"TW9lCg=="]

A set of binary strings.BSBinary set

"L": [{"S": "totchos"},
{"N": "741"}]

A list that can consist of data of
any scalar type, like a JSON array.
You can mix scalar types as well.

LList

"M": {"FavoriteBook":
{"S": "Old Yeller"}}

A key-value structure with strings
as keys and values of any type,
including sets, lists, and maps.

MMap

Chapter 7. DynamoDB • 220

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Set types act just like sets in most programming languages. All items in a set
must be unique, which means that attempting to add the string "totchos" to a
string set that already included it would result in no change to the set.

JSON in DynamoDB

And last but certainly not least, DynamoDB also allows you to store any valid JSON
as an item attribute. So if your application’s data model uses data types that are
JSON serializable/deserializable, then you can store those types directly rather than
wrangling them into the supported types you just saw. Keep two things in mind,
though: Individual items can’t be larger than 400 KB, so don’t go too crazy using
DynamoDB as a store for large JSON objects or BLOBs; and you can’t query inside
of JSON objects (your application will need to supply that logic).

DynamoDB’s set of supported data types is fairly limited compared to what you would
find in an RDBMS such as Postgres but quite rich in comparison with something like
HBase, which only holds binary data and makes the application responsible for all
serialization and deserialization.

Here’s an example put operation that uses JSON:

$ aws dynamodb put-item --table-name Books \
--item '{
"Title": {"S": "Moby Dick"},
"PublishYear": {"N": "2012"},
"ISBN": {"N": "98765"},
"PublisherInfo": {

"Name": "Something"
}

}'

Basic Read/Write Operations
Now that you have a better sense of what actually goes on in tables and inside
of items, you can begin actually working with data. Let’s add a few items to
our shopping cart using the put-item command:

$ aws dynamodb put-item --table-name ShoppingCart \
--item '{"ItemName": {"S": "Tickle Me Elmo"}}'

$ aws dynamodb put-item --table-name ShoppingCart \
--item '{"ItemName": {"S": "1975 Buick LeSabre"}}'

$ aws dynamodb put-item --table-name ShoppingCart \
--item '{"ItemName": {"S": "Ken Burns: the Complete Box Set"}}'

As you can see, when we need to add data using the command line we need
to send it across the wire as JSON. We now have three items in our shopping

report erratum • discuss

Day 1: Let’s Go Shopping! • 221

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

cart. We can see a full listing using the scan command (which is the equivalent
of an SQL SELECT * FROM ShoppingCart statement):

$ aws dynamodb scan \
--table-name ShoppingCart

{
"Count": 3,
"Items": [

{
"ItemName": {

"S": "1975 Buick LeSabre"
}

},
{
"ItemName": {

"S": "Ken Burns: the Complete Box Set"
}

},
{
"ItemName": {

"S": "Tickle Me Elmo"
}

}
],
"ScannedCount": 3,
"ConsumedCapacity": null

}

Scan operations involve all of the items in a table. It’s perfectly fine to use
them when you’re not storing much data, but they tend to be very expensive
options, so in a production table you should use them only if your use case
absolutely requires processing every item in a table (and if you do require
this, you may need to rethink your application logic!).

So how do you fetch, update, or delete specific items? This is where keys
come in. In DynamoDB tables, you need to specify in advance which fields
in the table are going to act as keys. In our case, our table has only one field,
so the ItemName attribute will need to act as our key. But DynamoDB doesn’t
infer this automatically. This line in our create-table command specified the
key: --key-schema AttributeName=ItemName,KeyType=HASH.

What happened here is that we told DynamoDB that we wanted the ItemName
attribute to act as a key of type HASH. This means that we’re using ItemName
the way that we’d use keys in a standard key-value store like Redis: we simply
provide DynamoDB with the “address” of the item and the database knows
where to find it. In the next section, you’ll see why keys in DynamoDB can
also be much more complex—and powerful—than this.

Chapter 7. DynamoDB • 222

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

For now, we can fetch specific items from our shopping cart, by key, using
the --key flag:

$ aws dynamodb get-item --table-name ShoppingCart \
--key '{"ItemName": {"S": "Tickle Me Elmo"}}'

{
"Item": {

"ItemName": {
"S": "Tickle Me Elmo"

}
}

}

As discussed in the intro to this chapter, DynamoDB enables you to specify
whether or not you want to perform a consistent read on every request using
the --consistent-read flag when you make a get-item request. This GET request
would guarantee item-level consistency:

$ aws dynamodb get-item --table-name ShoppingCart \
--key '{"ItemName": {"S": "Tickle Me Elmo"}}' \
--consistent-read

But let’s be honest: Tickle Me Elmo isn’t exactly all the rage these days so
let’s eliminate that from our cart (though we may regret it if Tickle Me Elmos
experience a spike in resale value). We can do that on the basis of the hash
key as well:

$ aws dynamodb delete-item --table-name ShoppingCart \
--key '{"ItemName": {"S": "Tickle Me Elmo"}}'

If we run the same scan operation as before, the Count field in the returned
JSON will indicate that we now only have two items in our shopping cart.

Two Key Types, Many Possibilities
DynamoDB is, at root, a key-value store. But it’s a special key-value store in
that it provides two types of key that you can choose on a table-by-table basis.
You can use either a hash key (aka partition key) by itself or you can use a
composite key that combines a hash key and a range key (aka sort key), as
shown in the figure on page 224.

A hash key can be used to find items the same way you perform lookups in
key-value databases such as HBase and Redis. You provide DynamoDB with
a key and it checks the table to see if there’s an item associated with the key.
Imagine fetching information about NFL teams that have won the Super Bowl
using the year as the hash key. Or imagine retrieving information about an

report erratum • discuss

Day 1: Let’s Go Shopping! • 223

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

employee from a human resources database using the employee’s Social
Security Number as the hash key.

A combination partition and sort key, however, enables you to find items on
the basis of the hash key if you know it in advance or to find multiple items
via a range query.

Imagine a table storing information about books in which each book item has
two properties: a title (string) and the year published (number). In this case,
you could use the title as a hash key and the year published as a range key,
which would enable you to fetch book data if you already know the title or if
you only know a range of years that you’re interested in.

Here’s an example aws command that creates a table with that key combination:

$ aws dynamodb create-table \
--table-name Books \
--attribute-definitions AttributeName=Title,AttributeType=S \

AttributeName=PublishYear,AttributeType=N \
--key-schema AttributeName=Title,KeyType=HASH \

AttributeName=PublishYear,KeyType=RANGE \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

A book like Moby Dick has been published many times since its initial run.
The structure of our Book table would enable us to store many items with a
title of Moby Dick and then fetch specific items on the basis of which year the
edition was published. Let’s add some items to the table:

$ aws dynamodb put-item --table-name Books \
--item '{

"Title": {"S": "Moby Dick"},
"PublishYear": {"N": "1851"},
"ISBN": {"N": "12345"}

}'

Chapter 7. DynamoDB • 224

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ aws dynamodb put-item --table-name Books \
--item '{

"Title": {"S": "Moby Dick"},
"PublishYear": {"N": "1971"},
"ISBN": {"N": "23456"},
"Note": {"S": "Out of print"}

}'
$ aws dynamodb put-item --table-name Books \

--item '{
"Title": {"S": "Moby Dick"},
"PublishYear": {"N": "2008"},
"ISBN": {"N": "34567"}

}'

You may have noticed that we supplied an ISBN attribute for each item without
specifying that in the table definition. That’s okay because remember that we
only need to specify key attributes when creating tables. This gives DynamoDB
its relative schemalessness, which you can also see at work in the second
item we created, which has a Note attribute while the others do not.

To see which books were published after the year 1980, for example, we could
use a range query:

$ aws dynamodb query --table-name Books \
--expression-attribute-values '{

":title": {"S": "Moby Dick"},
":year": {"N": "1980"}

}' \
--key-condition-expression 'Title = :title AND PublishYear > :year'

{
"Count": 1,
"Items": [

{
"PublishYear": {

"N": "2008"
},
"ISBN": {

"N": "34567"
},
"Title": {

"S": "Moby Dick"
}

}
],
"ScannedCount": 1,
"ConsumedCapacity": null

}

With the query command, the --expression-attribute-values flag enables us to provide
values for variables that we want to use as JSON. The --key-condition-expression

report erratum • discuss

Day 1: Let’s Go Shopping! • 225

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

flag enables us to provide an actual query string strongly reminiscent of SQL,
in this case Title = :title AND PublishYear > :year (which becomes Title = "Moby Dick" AND
PublishYear > 1900 via interpolation).

If you’ve used a SQL driver for a specific programming language, then you’ve
probably constructed parameterized queries like this. As output, we got one
of three books currently in the Books table, as expected.

Whenever you provide key condition expressions, you must match directly
on the hash key (in this case Title = :title) and then you can optionally provide
a query for the range key using one of these operators: =, >, <, >=, <=, BETWEEN,
or begins_with. A BETWEEN a AND b expression is the direct equivalent of >= a AND
<= b and begins_with enables you to create an expression like begins_with(Title, :str)
where :str could be a string.

But what if we wanted our result set to include only, say, ISBN data? After
all, we know that all the books are titled Moby Dick, so we may not need that
as part of our result set. We can tailor that result set using attribute projection.
On the command line, you can perform attribute projection using the --projection-
expression flag, which enables you to specify a list of attributes that you want
returned for each item. This query would return only the ISBN for each edition
of Moby Dick published after 1900:

$ aws dynamodb query --table-name Books \
--expression-attribute-values \

'{":title": {"S": "Moby Dick"},":year": {"N": "1900"}}' \
--key-condition-expression \

'Title = :title AND PublishYear > :year' \
--projection-expression 'ISBN'

{
"Count": 2,
"Items": [

{
"ISBN": {

"N": "23456"
}

},
{

"ISBN": {
"N": "34567"

}
}

],
"ScannedCount": 2,
"ConsumedCapacity": null

}

Chapter 7. DynamoDB • 226

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

If the attribute isn’t defined for a specific item, then an empty object will be
returned. Remember that only one of our book items has a Note attribute.
Here’s the result set when projecting for that attribute:

$ aws dynamodb query --table-name Books \
--expression-attribute-values \

'{":title": {"S": "Moby Dick"},":year": {"N": "1900"}}' \
--key-condition-expression \

'Title = :title AND PublishYear > :year' \
--projection-expression 'Note'

{
"Count": 2,
"Items": [

{
"Note": {

"S": "Out of print"
}

},
{}

],
"ScannedCount": 2,
"ConsumedCapacity": null

}

Note the empty object, {}, returned for one of the Items.

As you can see in this section, choosing the right key setup for any DynamoDB
table is extremely important because that will determine how your application
is able to discover the items it’s looking for. A good rule of thumb is this: If
your application is built to know in advance where an item lives, then use
just a hash key. An example here would be a user info database where you
find items based on usernames already known to the application.

Spreading the Data Around: Partitioning in DynamoDB
Behind the scenes, DynamoDB’s system for distributing item data across
servers—partitions in DynamoDB parlance—is likely very complex. But from
your perspective as a user it’s really fairly simple. You can see a basic visual
illustration of data partitioning in the figure on page 228.

When you start writing data to a DynamoDB table, it begins filling in a first
partition (partition 1 in the diagram). Eventually, that partition will fill up
and data will start being distributed to partition 2, then at some point to
partition 3, and so on out to N partitions. That N can be pretty much as large
as you want; AWS provides no guidelines for limits to the number of partitions.
The logic will simply repeat itself until you stop feeding data to the table.

report erratum • discuss

Day 1: Let’s Go Shopping! • 227

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

How DynamoDB makes decisions about when to redistribute data between
partitions isn’t something that Amazon makes transparent to the user. It just
works. The only thing you have to worry about is ensuring as even a distribu-
tion of partition keys as possible, as laid out in the next section.

So just how big are these partitions? That’s determined by how much provi-
sioned throughput you specify for the table. Think back to the read- and
write-capacity units you specified in the create-table operation for the ShoppingCart
table. There, one read capacity unit and one write capacity unit were specified.
That provided the initial space allocation for the table. DynamoDB will add
new partitions either when that first partition fills up or when you change
your provisioned throughput settings in a way that’s incompatible with the
current settings.

Location, Location, Location
As in any key-value store with limited querying capabilities, where you store
things is an essential concern in DynamoDB and one that you should plan
for from the get-go because it will have a huge impact on performance—and
always remember that speedy, reliable performance is essentially the whole
point of using DynamoDB.

As laid out in the previous section, DynamoDB uses a partition-based scheme
for managing data within tables. You create a table and begin writing to it;
over time, data is spread around across N partitions in an optimized way.
But even though partitioning is automated, there are still some guidelines
that you should follow when using tables.

The tricky part of partitioning is it’s possible to create an uneven distribution
of items across partitions. For a basic illustration, see the figure on page 229.

DynamoDB always performs best—in terms of read and write speed—when
access to partition keys is balanced. In this illustration, the size of each

Chapter 7. DynamoDB • 228

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

upward-facing arrow shows how intensively each partition is accessed. Parti-
tions 2 and 4 here take significantly more traffic than partitions 1, 3, and 5,
making partitions 2 and 4 so-called “hotspots.” The presence of hotspots is
likely to detract from performance for all partitions and should be avoided
whenever possible.

In general, you can crystallize best practices for DynamoDB performance into
just a few basic maxims.

First, if you’re using a hash key as your partition key, you should always
strive for a data model in which the application knows the key in advance
because this will enable you to target the item directly rather than relying on
range and other queries. You should make the hash key something meaningful
—for example, the username of each user in a CRM table, the device ID for
each sensor in an “Internet of Things” table (more on that in Day 2), or a
UUID-based transaction identifier in an inventory table. When working with
key-value stores, this is simply the nature of the beast, and DynamoDB is no
different here.

Second, because the partition key determines where data is stored, you should
use partition keys that don’t cluster around just a few values. If you had a
partition key with only a few possible values, for example good, bad, and ugly,
you would produce hotspots around those values.

Third, in cases where you need to use a composite key—a hash key plus a
range key—you should opt for fewer partition keys and more range keys. This
is best illustrated with an example. Let’s say that you’re a video game company

report erratum • discuss

Day 1: Let’s Go Shopping! • 229

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

that makes the game Bonestorm. Bonestorm has over a million players and
you want to store daily total stats for each player on each day that they play
the game. You could use username/date composite keys that look like this:

h4x0rjimduggan:04012017
h4x0rjimduggan:05032017
pitythefool:11092016
pitythefool:07082016

A less-optimal strategy here would be to make the date the hash key and
usernames the sort key. Because there are far more users than there are
dates—by a favor of thousands—the number of items with the same hash
key would be much higher.

As is always the case with key-value stores, even a “key-value plus” store like
DynamoDB, your application needs to be smart about how it stores data and
how keys are structured. One of the great things about RDBMSs that we’ve
discovered after years of experimenting with NoSQL databases is just how
flexible they can be. DynamoDB is more flexible than other key-value stores
—composite keys provide for that—but careful planning, before you write
even your first items, is nonetheless essential.

Tables Within Tables: Indexes in DynamoDB
The last core component of DynamoDB that we’ll explore on Day 1 is indexing.
Indexes are essentially mini tables that enable you to look up data more effi-
ciently. Indexes in DynamoDB work much like they do in relational systems,
storing lists of keys for objects based on some set of criteria.

Indexes usually offer a crucial performance boost because they prevent you
from needing to run some of your more expensive queries. Instead of scanning
an entire table and then selecting a subset of the results, which is almost
never a good idea, you can query or scan the index instead. The price you pay
for indexes is that they take up additional disk space. Whether or not that
price is worth the performance boost depends on your use case and is difficult
to decide in advance without knowing a lot of particulars. In DynamoDB,
indexes come in two flavors: local and global.

Local Secondary Indexes

Local secondary indexes (LSIs) let you query or scan attributes outside of your
primary hash and sort key. The “local” in “local secondary index” means among
items sharing a partition key. You can see an example of this in the following
figure. Here, a local secondary index is created for the High Score attribute.

Chapter 7. DynamoDB • 230

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The LSI on the High Score attribute here means that we can perform scans or
queries related to high scores for a specific user.

Here’s an example range query for the HighScore attribute that shows all of the
dates on which the player h4x0rjimduggan scored over 800 points:

$ aws dynamodb query --table-name BonestormData \
--expression-attribute-values \

'{":user": {"S": "h4x0rjimduggan"},":score": {"N": "800"}}' \
--key-condition-expression \

'Username = :user AND HighScore > :score' \
--projection-expression 'Date'

Always bear in mind that LSIs can’t be modified after a table has been created,
so be extra careful to plan for them in advance (or, even better, thoroughly
test different indexing models in development).

Global Secondary Indexes

Global secondary indexes (GSIs) are indexes that aren’t restricted to items
with the same partition key. The “global” here essentially means “any attribute
in the table.” See the figure on page 232 for an example. You can find any
items in the table using the Avatar attribute.

Here’s an example query that finds all items for which the Avatar field equals
Lion and returns the Username and Date for each of those items:

$ aws dynamodb query --table-name BonestormData \
--expression-attribute-values \

'{":avatar": {"S": "Lion"}}' \
--key-condition-expression \

'Avatar = :avatar' \
--projection-expression 'Username, Date'

report erratum • discuss

Day 1: Let’s Go Shopping! • 231

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

An important thing to note is that GSIs can be modified after a table has been
created, whereas LSIs cannot. This makes it somewhat less crucial to get
your GSIs right from the get-go, but it’s still never a bad idea to make a
thorough indexing plan in advance.

Day 1 Wrap-Up
Here on Day 1 we did a lot of conceptual exploration, from supported data
types to indexing to the core philosophy of DynamoDB, but we didn’t really
do anything all that exciting with DynamoDB. That will change on Day 2,
when we’ll embark on one of the most ambitious practical projects in this
book, building a streaming data pipeline that ties together multiple AWS
services to create a streaming data pipeline that uses DynamoDB as a persis-
tent data store.

Day 1 Homework

Find

1. DynamoDB does have a specific formula that’s used to calculate the
number of partitions for a table. Do some Googling and find that formula.

2. Browse the documentation for the DynamoDB streams feature.3

3. We mentioned limits for things like item size (400 KB per item). Read the
Limits in DynamoDB documentation4 to see which other limitations apply
when using DynamoDB so that you don’t unknowingly overstep any
bounds.

3. http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
4. http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Chapter 7. DynamoDB • 232

report erratum • discuss

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Do

1. Using the formula you found for calculating the number of partitions used
for a table, calculate how many partitions would be used for a table
holding 100 GB of data and assigned 2000 RCUs and 3000 WCUs.

2. If you were storing tweets in DynamoDB, how would you do so using
DynamoDB’s supported data types?

3. In addition to PutItem operations, DynamoDB also offers update item opera-
tions that enable you to modify an item if a conditional expression is satis-
fied. Take a look at the documentation for conditional expressions5 and
perform a conditional update operation on an item in the ShoppingCart table.

Day 2: Building a Streaming Data Pipeline
On Day 1, we made some solid progress on understanding the core concepts
of DynamoDB, from how DynamoDB partitions data to the data types that it
supports to secondary indexes. We worked through some simple table man-
agement commands and some basic CRUD operations on that table to see
the concepts in action.

We were exposed to some features that set DynamoDB apart from other, more
strict key-value stores, but those features are mostly garnishes. The main
dish is DynamoDB’s unique blend of extreme scalability, predictably solid
performance as you scale out, and freedom from operational burdens.

On Day 2, we’ll build something that can take full advantage of those features
in a way that we couldn’t in our Day 1 CRUD exercises. We’ll build a
streaming data pipeline that pumps sensor data into DynamoDB (we’ll use a
Ruby script to act as mock sensors). Those mock sensors will populate our
table with three pieces of data per “reading”:

• An identifier for the sensor—for example, sensor-1 or temp-a1b2c3
• A timestamp for the reading in Unix time (this will allow for easier sorting)
• The current temperature picked up by the sensor—for example, 81.4 or 73.2

But instead of writing to DynamoDB directly, we’ll use a streaming data service
called Kinesis that’s built for handling massive write throughput; messages
passing through Kinesis will be written to DynamoDB using functions deployed
to AWS’s Lambda service.

It may seem a bit odd to focus on connecting AWS services in a chapter
devoted to DynamoDB. But it’s important to note that cloud databases are

5. http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 233

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

rarely used as standalone tools. Cloud providers typically offer lots and lots
of services that can run in the same datacenter as your database, built to
supplement one another. To use multiple services together is to go with the
grain of cloud computing.

A Data Model for Sensor Data
The data pipeline that we build later today will be capable of handling lots of
streaming data, to the tune of many megabytes per second. But before we
open up that pipeline, we need to make some big choices about our data
model. For reasons we went over on Day 1, getting data modeling right is
everything in DynamoDB and any missteps can get you into trouble, especially
in a big production system.

Getting Our Keys Right

Keys are extremely important in DynamoDB because they not only act as
“addresses” for items, as in systems like Redis, in DynamoDB they also
determine how your data is distributed between partitions, which in turn
affects the write/read performance of the table.

We’ll call our DynamoDB table SensorData, and it will consist of the following
columns:

• The hash key will be a ReadingId attribute that will be randomly generated.
This will ensure that our partition keys are evenly distributed across
partitions. There will be no range key, as each item will have a different
partition key; range keys can only sort across items with the same partition
key, and in this case a range key for a single partition key would be
nonsensical.

• The ID of the device emitting the data (sensor1, factory-sensor-1337, and so on).

• A timestamp number expressing the current Unix time.

• The temperature for the reading.

When creating DynamoDB tables via the command line, you can either use
flags (as for the previous ShoppingCart table) or you can use a JSON specification.
The spec for our SensorData table will be complex enough that using CLI flags
will be too unwieldy. So we’ll do it this way instead:

$ aws dynamodb create-table \
--cli-input-json file://sensor-data-table.json

And here’s the JSON spec itself:

Chapter 7. DynamoDB • 234

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

dynamodb/sensor-data-table.json
{

"TableName": "SensorData",
"KeySchema": [

{
"AttributeName": "SensorId",
"KeyType": "HASH"

},
{
"AttributeName": "CurrentTime",
"KeyType": "RANGE"

}
],
"AttributeDefinitions": [

{
"AttributeName": "SensorId",
"AttributeType": "S"

},
{
"AttributeName": "CurrentTime",
"AttributeType": "N"

},
{
"AttributeName": "Temperature",
"AttributeType": "N"

}
],
"LocalSecondaryIndexes": [

{
"IndexName": "TemperatureIndex",
"KeySchema": [

{
"AttributeName": "SensorId",
"KeyType": "HASH"

},
{

"AttributeName": "Temperature",
"KeyType": "RANGE"

}
],
"Projection": {

"ProjectionType": "ALL"
}

}
],
"ProvisionedThroughput": {

"ReadCapacityUnits": 2,
"WriteCapacityUnits": 2

}
}

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 235

http://media.pragprog.com/titles/pwrdata/code/dynamodb/sensor-data-table.json
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Keep in mind that this data model is highly specific to our use case. Many use
cases may involve more complex column structures, more secondary indexes,
more attributes, and so on. The important thing is making sure that you go
through a similar decision-making process whenever you use DynamoDB;
missteps here will cost you, and we do mean actual money.

Navigating Trade-offs in Performance Tuning

As we’ve stressed before, you simply shouldn’t use DynamoDB if you’re after
anything but extremely good performance at massive scale. But as with any
complex system, performance and scalability in DynamoDB are not guaran-
teed. There’s a wide variety of missteps that will ensure that you have a deeply
sub-optimal experience, spend too much money, or both.

On Day 1, we talked about performance optimization from the standpoint of
data modeling and how the distribution of primary keys is very important. In
this section, the focus will be more operational. DynamoDB provides a small
handful of knobs you can adjust that can have a big impact on performance.
These knobs are the closest thing you get to “ops” in DynamoDB, but they
aren’t terribly complex. You just need to keep a few basic principles in view.

Throughput is the central concept here. When we created the ShoppingCart table
on Day 1, we used this command but didn’t provide much explanation of the
--provisioned-throughput flag:

$ aws dynamodb create-table --table-name ShoppingCart \
--attribute-definitions AttributeName=ItemName,AttributeType=S \
--key-schema AttributeName=ItemName,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

Read capacity and write capacity units are handled differently in DynamoDB.
Write capacity units (WCUs) are measured in units of 1 KB per second while
read capacity units (RCUs) are measured in units of 4 KB per second. You
can set both read and write throughput on a per-table basis. For workloads
that are more write heavy, you could provision just one RCU and many WCUs,
or vice versa for read-heavy workloads.

We won’t delve too far into DynamoDB throughput tuning here. Just keep a
few things in mind:

• Strive to match the RCUs and WCUs in a table to balance between read and
write intensity. Perform regular checks—Amazon offers numerous services
to help with this, such as CloudWatch—to ensure that you haven’t over-
or under-provisioned throughput on either the read or the write side.
Perhaps even set up an automated system to re-provision when necessary.

Chapter 7. DynamoDB • 236

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

• Considerations about read and write throughput include secondary
indexes, both local and global. Throughput should be provisioned based
on the size of index entries, not the size of the actual table items.

• Strongly consistent reads are about twice as expensive as eventually
consistent reads.

If you’re ever concerned about costs, the DynamoDB console on the AWS
website provides an interface that you can use to get cost estimates, as shown
in the figure that follows.

Throughput settings for a table are not fixed for all time and can be updated
at will. For our purposes here, 1 unit of RCU and WCU will suffice for our
table. But we couldn’t let you proceed beyond this section without mentioning
this second, essential element of DynamoDB performance.

Now that we have a SensorData table ready to accept writes, we can get back
to building our streaming sensor data pipeline.

DynamoDB Auto Scaling

An alternative to manually setting parameters like RCUs and WCUs is to use
DynamoDB’s Auto Scaling feature.

$ aws application-autoscaling register-scalable-target \
--service-namespace dynamodb \
--resource-id "table/ShoppingCart" \
--scalable-dimension "dynamodb:table:WriteCapacityUnits" \
--min-capacity 5 \
--max-capacity 10 \
--role-arn arn:aws:iam::123456654321:policy/MyAutoscalingPolicy

It’s a Streaming World
Data streams are best understood in contrast to data batches. When you
process a batch—maybe a huge CSV file or a massive Postgres table—you

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 237

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

take a well-defined mass of data and apply some kind of logic to it, for
example selecting all values that satisfy a WHERE clause in an SQL query or
parsing all the values in a column in an Excel spreadsheet.

When you process a stream of data, however, you don’t know in advance how
many items will pass through the stream for processing. Instead, you design
some kind of processing logic, open up a pipe, and handle things as they
come through. Although there’s still plenty of room for batch processing in
today’s data landscape, streaming models have become more popular with
the predominance of realtime inputs from devices such as smartphones and,
in our case, sensors.

A Realtime, Streaming, Functional Data Pipeline
For today’s practical exercise, we’ll use a combination of three AWS services
—DynamoDB, Lambda, and Kinesis—to build a data pipeline that’s capable
of accepting lots of incoming data, processing it, and finally storing it in
DynamoDB.

Amazon’s Kinesis is a service that enables you to manage data streams that
you can pipe to any number of destinations, from S3 buckets to Redshift
warehouses to, in our case, AWS Lambda functions (more on that in a minute).
You can think of Kinesis as a managed, cloud-only version of Apache Kafka,
and if you’ve worked with Kafka then some of the core primitives driving
Kinesis may be familiar to you already: topics, producers, consumers, records,
and so on. Not a perfect analogy, but it should suffice for our exercise.

Lambda is a Functions-as-a-Service (FaaS) platform that enables you to
manage functions that run in Amazon datacenters without any concern for
running servers or managing infrastructure. The popularity of Lambda has
spawned the so-called “serverless” paradigm of computing, which is a bit of
misnomer in that Lambda functions do, of course, run on servers, but the
fact that you simply write functions that process inputs however you’d like
and upload them to AWS makes it at least feel serverless.

What we build today will ultimately look like the figure on page 239.

Data will flow through a Kinesis stream to a Lambda function that then pro-
cesses the data. The Lambda processing step writes the incoming data to a
DynamoDB table. Once we’ve built this, we’ll feed some example data into
Kinesis using the aws CLI tool to test things and then start pumping sensor
data in.

Chapter 7. DynamoDB • 238

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Before you start going through the CLI examples here, do two things. First,
cd into the code/dynamodb folder for the DynamoDB chapter. Then, create a
Kinesis stream using the aws tool:

$ export STREAM_NAME=temperature-sensor-data
$ aws kinesis create-stream \

--stream-name ${STREAM_NAME} \
--shard-count 1

When creating this stream, we gave it a name and specified a shard count.
The shard count essentially determines how much parallel processing power
you want your stream to have. More shards means more power but also more
cost, so we’ll use just one shard for our example here as it’s all we’ll really
need. Now let’s have a look at how AWS sees our stream:

$ aws kinesis describe-stream \
--stream-name ${STREAM_NAME}

{
"StreamDescription": {

"RetentionPeriodHours": 24,
"StreamName": "iot-temperature-data",
"Shards": [],
"StreamARN": "arn:aws:kinesis:...:stream/iot-temperature-data",
"EnhancedMonitoring": [

{
"ShardLevelMetrics": []

}
],
"StreamStatus": "CREATING"

}
}

At first, the status of the stream will be CREATING, but within a few seconds
the status should change to ACTIVE. Once that happens, you can write some

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 239

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

data to the stream. Each record that you write to Kinesis needs to contain
two things: a partition key and a binary large object (BLOB) of data. The
partition key determines which shard the record is written to (as with
DynamoDB’s partitioning system). Set the STREAM_ARN environment variable
to the StreamARN shown in the output, which should begin with arn:aws:kinesis.

Here’s an example write to the temperature-sensor-data stream that we just created:

$ aws kinesis put-record \
--stream-name ${STREAM_NAME} \
--partition-key sensor-data \
--data "Baby's first Kinesis record"

{
"ShardId": "shardId-000000000000",
"SequenceNumber": "4957192301...3577493926"

}

Don’t worry too much about partitions, shards, and the returned JSON here,
as we won’t delve too deeply into Kinesis in this book. The important thing
to know for now is that our stream is ready to accept incoming records and
pass them along to the Lambda function that we’ll create later.

Now one essential piece of our pipeline is in place, but there are more puzzle
pieces we need to connect. Kinesis is a powerful system but it’s really just a
fancy pipe. It doesn’t actually process or write data, so we can’t use it to
actually store items in DynamoDB. We’ll need to create a processing layer
that ingests records from Kinesis and actually does something with them.

Up until very recently, the default way to create this kind of processing layer
in AWS would be to write an application that can handle incoming streams
of data and run that application on Elastic Compute Cloud (EC2) servers.
That’s a perfectly reasonable approach, but it requires you to fire up and
manage servers. We can avoid that by using Lambda, which requires us to
simply write some code, run some basic CLI commands, and let AWS do
the work.

First, we need to write our function. Lambda supports several languages for
Lambda functions, but let’s use JavaScript because its callback-based logic
is a natural fit for Lambda (and perhaps even an inspiration for Lambda!).
Here is the code for our handler:

dynamodb/ProcessKinesisRecords.js
var AWS = require('aws-sdk');
var DynamoDB = new AWS.DynamoDB({

apiVersion: '2012-08-10',
region: 'us-east-1',

});

Chapter 7. DynamoDB • 240

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/dynamodb/ProcessKinesisRecords.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

exports.kinesisHandler = function(event, context, callback) {
// We only need to handle one record at a time
var kinesisRecord = event.Records[0];

// The data payload is base 64 encoded and needs to be decoded to a string
var data =

Buffer.from(kinesisRecord.kinesis.data, 'base64').toString('ascii');
// Create a JSON object out of that string
var obj = JSON.parse(data);
var sensorId = obj.sensor_id,

currentTime = obj.current_time,
temperature = obj.temperature;

// Define the item to write to DynamoDB
var item = {

TableName: "SensorData",
Item: {
SensorId: {

S: sensorId
},
CurrentTime: {

// Remember that all numbers need to be input as strings
N: currentTime.toString()

},
Temperature: {

N: temperature.toString()
}

}
};

// Perform a put operation, logging both successes and failures
DynamoDB.putItem(item, function(err, data) {

if (err) {
console.log(err, err.stack);
callback(err.stack);

} else {
console.log(data);
callback(null, data);

}
});

}

When writing any Lambda handler function, you are given three JavaScript
objects to work with when your function is triggered:

• The event object contains the data that has been passed to the function,
in our case the JSON object written to Kinesis.

• The context object holds information about the environment in which the
function is running.

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 241

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

• The callback object signals that the operation is finished. If called with a
single argument, that means that the function returns an error; if called
with null and a string, then the function is deemed successful and the
string represents the success message.

The event object that our function receives from Kinesis is a JSON object with
a Records field that will hold the data for each record. In our pipeline, Kinesis
will only deliver a single record at a time. For each record that arrives, we’ll
put an item to our SensorData table.

Before we can stitch Kinesis and Lambda together, however, we need to create
an AWS security role that enables us to do that. Role management in AWS is
handled by a service called Identity and Access Management, or IAM. If you’ve
managed users, roles, and groups in database systems such as Postgres, the
concepts here are quite similar. The following set of commands will:

• Create the role using a JSON document that you can peruse in the lambda-
kinesis-role.json file.

• Attach a policy to that role that will enable Kinesis to pass data to Lambda.

• Store the ARN for this role in an environment variable.

$ export IAM_ROLE_NAME=kinesis-lambda-dynamodb
$ aws iam create-role \

--role-name ${IAM_ROLE_NAME} \
--assume-role-policy-document file://lambda-kinesis-role.json

$ aws iam attach-role-policy \
--role-name ${IAM_ROLE_NAME} \
--policy-arn \

arn:aws:iam::aws:policy/service-role/AWSLambdaKinesisExecutionRole
$ aws iam attach-role-policy \

--role-name ${IAM_ROLE_NAME} \
--policy-arn \

arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess

Now you need to get the ARN for that role. Run this command and set the
ROLE_ARN environment variable to the proper Arn, which should begin with
arn:aws:iam:

$ aws iam get-role --role-name ${IAM_ROLE_NAME}

In order to upload our function to Lambda, we need to create a Zip file out
of it and then upload the zipped payload using the create-function command:

$ zip ProcessKinesisRecords.zip ProcessKinesisRecords.js
$ aws lambda create-function \

--region us-east-1 \
--function-name ProcessKinesisRecords \

Chapter 7. DynamoDB • 242

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

--zip-file fileb://ProcessKinesisRecords.zip \
--role ${ROLE_ARN} \
--handler ProcessKinesisRecords.kinesisHandler \
--runtime nodejs6.10

{
"CodeSha256": "LdmN2sMF5kwdZiRbIYAtdhs4J8pX39Qa6EhvGdGAcOQ=",
"FunctionName": "kinesis-dynamodb-processor",
"CodeSize": 530,
"MemorySize": 128,
"FunctionArn": "arn:aws:lambda:...",
"Version": "$LATEST",
"Role": "arn:aws:iam:...",
"Timeout": 3,
"LastModified": "2017-04-13T04:07:36.833+0000",
"Handler": "kinesisHandler",
"Runtime": "nodejs4.3",
"Description": ""

}

If you have any modifications that you want to make to the function on your
own, you can update it at any time by creating a new Zip file and using the
update-function-code command:

$ zip ProcessKinesisRecords.zip ProcessKinesisRecords.js
$ aws lambda update-function-code \

--function-name ProcessKinesisRecords \
--zip-file fileb://ProcessKinesisRecords.zip

We can run a test invocation of the new function using a mock input from a
text file and storing the output in another text file (that you can peruse on
your own):

$ aws lambda invoke \
--invocation-type RequestResponse \
--function-name ProcessKinesisRecords \
--payload file://test-lambda-input.txt \
lambda-output.txt

{
"StatusCode": 200

}

Success! We’ve triggered a Lambda function using a mock data input payload
mimicking a Kinesis stream. Lambda then handled the data, turned it into a
DynamoDB item, and made a successful write. What’s missing now is that
Kinesis isn’t yet able to trigger and pass data to our Lambda function. For
that, we need to create a source mapping that tells AWS that we want our iot-
temperature-data to trigger our ProcessKinesisRecords Lambda function whenever a
record passes into the stream. This command will create that mapping:

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 243

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$ aws lambda create-event-source-mapping \
--function-name ProcessKinesisRecords \
--event-source-arn ${KINESIS_STREAM_ARN} \
--starting-position LATEST

{
"UUID": "0f56a8c7-de6d-4a77-b536-9ec87be5a065",
"StateTransitionReason": "User action",
"LastModified": 1492057092.585,
"BatchSize": 100,
"EventSourceArn": "arn:aws:kinesis:...",
"FunctionArn": "arn:aws:lambda:...",
"State": "Creating",
"LastProcessingResult": "No records processed"

}

You can see a description of the event source mapping:

$ aws lambda list-event-source-mappings
{

"EventSourceMappings": [
{

"UUID": "0f56a8c7-de6d-4a77-b536-9ec87be5a065",
"StateTransitionReason": "User action",
"LastModified": 1492057140.0,
"BatchSize": 100,
"State": "Enabled",
"FunctionArn": "arn:aws:lambda:...",
"EventSourceArn": "arn:aws:kinesis:...",
"LastProcessingResult": "No records processed"

}
]

}

If the value of State isn’t yet Enabled, wait a few seconds and that should change.

At this point, the pipeline is in place. Records that are written to the temperature-
sensor-stream stream in Kinesis will be processed by a Lambda function, which
will write the results to the SensorData table in DynamoDB. Just to be sure,
let’s put a record to the stream and see what happens:

$ export DATA=$(
echo '{

"sensor_id":"sensor-1",
"temperature":99.9,"current_time":123456789

}' | base64)
$ aws kinesis put-record \

--stream-name ${STREAM_NAME} \
--partition-key sensor-data \
--data ${DATA}

Chapter 7. DynamoDB • 244

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

That should return a JSON object with a ShardId and SequenceNumber as before.
But let’s see if that mock temperature sensor reading ended up in DynamoDB:

$ aws dynamodb scan --table-name SensorData
{

"Count": 1,
"Items": [

{
"CurrentTime": {

"N": "123456789"
},
"Temperature": {

"N": "99.9"
},
"SensorId": {

"S": "sensor-1"
}

}
]

}

Success again! Our pipeline is now all set up and ready to handle sensor data
inputs. On Day 3, we’ll begin pumping data into Kinesis and letting Lambda
do its magic.

Day 2 Homework

Find

1. Read some documentation for the DynamoDB Streams feature (not to be
confused with Kinesis).6 Think of a compelling use case for this feature.

2. Find one or more DynamoDB client libraries for your favorite programming
language. Explore how to perform CRUD operations using that library.

3. DynamoDB supports object expiry using time to live (TTL). Find some
documentation on TTL in DynamoDB and think of some use cases for it.

Do

1. One way to improve the performance of Kinesis is to write records to dif-
ferent partitions. Find some documentation on partitioning in Kinesis
and think of a stream partitioning scheme that would work with our
sensor data model (rather than writing all records to the sensor-data
partition).

6. http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

report erratum • discuss

Day 2: Building a Streaming Data Pipeline • 245

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

2. Modify various elements of our data pipeline—the SensorData table definition,
the Lambda function, and so on—to enable sensors to write humidity-
related data to the pipeline (as a percentage). Make sure that all of these
components line up properly!

Day 3: Building an “Internet of Things” System
Around DynamoDB
On Day 2, we delved into DynamoDB‘s streaming feature and turned our
DynamoDB database from a fairly standard cloud storage mechanism into a
much more dynamic processing system consisting of a Kinesis-Lambda-
DynamoDB system. What we didn’t do on Day 2 was provide any data inputs
beyond some CLI test runs. On Day 3, we’ll provide some “Internet of Things”-
style data from mock sensors.

The term “Internet of Things” (aka IoT) is kind of like “Big Data” or “the Cloud.”
Its use is controversial because there’s a lot of buzz surrounding it, and what
it points to isn’t so much something that already exists as much as it is a set
of emerging technological possibilities. The “things” in the expression can
refer to everything from moisture sensors in your refrigerator to a heart-rate
monitor you wear on your wrist—essentially anything that isn‘t a “normal”
computer (laptop, smartphone, cloud server) and is capable of producing data
and transmitting it to some part of the Internet.

The interesting thing about the IoT from the perspective of this book is that
things like sensors can produce tons of data, especially when aggregating
across many data-producing devices. Imagine a 50-acre vineyard with moisture
and temperature sensors hooked up every few feet along the rows of vines, or
a high-tech manufacturing facility where each machine in an assembly line is
feeding all kinds of data to some centralized source. In both cases, these devices
might be sending data every few hours or they might be sending it more than
once a second. IoT data usually comes in small chunks (maybe just a few
sensor readings at a time), but those small chunks can really add up.

DynamoDB is a good choice for an IoT database because it’s built to handle not
just huge data sets but data sets whose size can’t be determined in advanced.
The downside of DynamoDB, as we discussed before, is that it isn’t built for
complex queries of the type you’d be able to run on a relational database. For
our needs here, though, DynamoDB’s “key-value plus” querying system will do
just fine. Our tables will be fairly simple, and range queries will enable us to use
DynamoDB as a powerful timeseries database. Any processing logic we need
to apply beyond this can happen on the application side if we need it to.

Chapter 7. DynamoDB • 246

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Mock Data Inputs
In a real sensor data setup, you would likely use a protocol like Message
Queue Telemetry Transport (MQTT)7 as a device messaging protocol to feed
data into a streaming data pipeline like ours, perhaps in conjunction with a
broker interface like Amazon’s IoT service.8

Here, we’ll do something a bit simpler that doesn’t require having actual
sensor devices on hand. We’ll use a Ruby script that auto-generates temper-
ature data and writes that data to our data pipeline as JSON.

dynamodb/upload-sensor-data.rb
require 'aws-sdk'
require 'random-walk'
require 'time'

STREAM_NAME = 'temperature-sensor-data'

Make sure that both a sensor ID and number of iterations are entered
if ARGV.length != 2

abort("Must specify a sensor ID as the first arg and N as the second")
end

@sensor_id = ARGV[0]
@iterator_limit = ARGV[1].to_i

The Kinesis client object. Supply a different region if necessary
@kinesis_client = Aws::Kinesis::Client.new(region: 'us-east-1')

An array used to generate random walk values
@temp_walk_array = RandomWalk.generate(6000..10000, @iterator_limit, 1)

The iterator starts at 0
@iterator = 0

def write_temp_reading_to_kinesis
Generate a random current temperature from the walk array
current_temp = @temp_walk_array[@iterator] / 100.0

The JSON payload for the reading
data = {

:sensor_id => @sensor_id,
:current_time => Time.now.to_i,
:temperature => current_temp,

}

The record to write to Kinesis
kinesis_record = {

:stream_name => STREAM_NAME,
:data => data.to_json,

7. http://mqtt.org
8. https://aws.amazon.com/iot

report erratum • discuss

Day 3: Building an “Internet of Things” System Around DynamoDB • 247

http://media.pragprog.com/titles/pwrdata/code/dynamodb/upload-sensor-data.rb
http://mqtt.org
https://aws.amazon.com/iot
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

We'll use just a single partition key here
:partition_key => 'sensor-data',

}

Write the record to Kinesis
@kinesis_client.put_record(kinesis_record)

puts "Sensor #{@sensor_id} sent a temperature reading of #{current_temp}"

@iterator += 1

Exit if script has iterated N times
if @iterator == @iterator_limit

puts "The sensor has gone offline"
exit(0)

end
end

while true
write_temp_reading_to_kinesis
Pause 2 seconds before supplying another reading
sleep 2

end

In order to run the script, you’ll need to install the random-walk and aws-sdk gems:

$ gem install random-walk aws-sdk

This script requires you to specify a sensor identifier, such as sensor-1 or
whatever you’d like, as well as the number of times that you’d like the script
to write data to the pipeline. To make the temp-sensor-1 sensor write 1,000 times
to the pipeline:

$ ruby upload-sensor-data.rb temp-sensor-1 1000

A randomized temperature reading will be written to the pipeline every 2
seconds until it’s gone through the supplied number of iterations. The tem-
perature readings will be between 60 and 100 degrees and based on a random
walk pattern, which means that the readings will follow a lightly meandering
path rather than being truly random. A four-step random walk pattern would
produce a series like 47.2, 47.3, 47.7, 47.6 as opposed to something like 47.2,
68.9, 50.3, 32.1. The script will also supply a Unix timestamp to each reading
(which we can later use to run range queries).

Open up multiple shell sessions and run the script for multiple device IDs.
Or use this command, which will write 1,000 sensor readings each for 10
sensors labeled sensor-1, sensor-2, and so on.

$ for n in {1..10}; do
ruby upload-sensor-data.rb sensor-${n} 1000 &

done

Chapter 7. DynamoDB • 248

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Let that run for as long as you’d like. You can shut down all the running
mock sensors at any time:

$ pgrep -f upload-sensor-data | xargs kill -9

Scan the SensorData table a few times to see the number of items steadily
increasing:

$ aws dynamodb scan --table-name SensorData

As the table fills up, scan operations will become increasingly slow. Now would
be a good time to explore local secondary index queries. Remember that when
we created the SensorData table we created a local secondary index for the
Temperature attribute. Get two timestamp values for two temperature readings
—the first and the 201st—like this:

$ T1=$(aws dynamodb scan --table-name SensorData \
--query Items[0].CurrentTime.N | tr -d '"')

$ T2=$(aws dynamodb scan --table-name SensorData \
--query Items[200].CurrentTime.N | tr -d '"')

Then run this query, substituting the values for T1 and T2 (make sure to use
the larger of the two values for t2).

$ aws dynamodb query --table-name SensorData \
--expression-attribute-values '{

":t1": {"N": "..."},
":t2": {"N": "..."},
":sensorId": {"S": "sensor-1"}

}' \
--key-condition-expression \

'SensorId = :sensorId AND CurrentTime BETWEEN :t1 AND :t2' \
--projection-expression 'Temperature'

That should return all the Temperature values for the sensor-1 sensor between
the two timestamps (feel free to substitute a different name if you used a dif-
ferent naming scheme).

Now see how many items are currently in the table:

$ aws dynamodb scan --table-name SensorData \
--query Count

At this point, you may be up to several hundreds of items. Let the count get
above 1,000 or so and then stop the sensors using the kill -9 command we
used before. At that point, there will be plenty of data in the SensorData table
to move on to the next exercise.

report erratum • discuss

Day 3: Building an “Internet of Things” System Around DynamoDB • 249

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

An SQL Querying Interface
Our mock sensors have now streamed over 1,000 entries into our DynamoDB
table. We’ve seen one way of accessing that data, which is fetching sensor
readings based on a time range. This is a cool capability, but if we wanted to
gather more meaningful metrics for our sensor data, we’d need a more pow-
erful interface. What if you had, say, data analysts or climate scientists on
your team that needed to perform much more complex queries or mathemat-
ical calculations using that sensor data?

One way that you can do this on AWS is to use plain old SQL. Now, don’t get
too excited just yet, because you can’t perform SQL queries over DynamoDB
tables directly—at least not yet—but what you can do instead is transfer data
stored in DynamoDB tables into an S3 (Simple Storage Service) bucket using
a service called Data Pipeline and then run SQL queries directly against that
data using another AWS service called Athena.

Time for Another Pipeline

Amazon’s Data Pipeline service enables you to create batch jobs that efficiently
move data between Amazon services (including S3, the Redshift data ware-
housing service, and many more). You can write your own pipeline logic from
scratch or you can use a template for ease of use. Fortunately for us, there’s
a predefined Export DynamoDB table to S3 pipeline definition that will make
this very simple. Ultimately, our streaming pipeline plus querying interface
will look like the architecture in the figure that follows.

Chapter 7. DynamoDB • 250

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

To begin, you’ll need to create a new S3 bucket to store JSON data from the
SensorData table in DynamoDB. You can call this bucket whatever you’d like,
so long as it’s globally unique (as in unique among all AWS users). Perhaps
call it sensor-data, and add your local username and use the aws tool to create
the bucket, like this:

$ export BUCKET_NAME=s3://sensor-data-$USER
$ aws s3 mb ${BUCKET_NAME}

To set up the pipeline, go to the Date Pipeline page in the AWS console9 and
select Create new pipeline, as you can see in the figure that follows.

When the pipeline creation page pops up, do the following:

• Give the pipeline any name you’d like.

• Under Source, select Build using a template and then the Export DynamoDB
table to S3 template.

• Under Source DynamoDB table name , specify the SensorData table, and
under Output s3 folder, input the name of the S3 bucket that you created.

• Leave the DynamoDB read throughput ratio value as is and supply the
AWS region (we’ve been using us-east-1 thus far in these examples but
yours may differ).

• Under Run in the Schedule section, select on pipeline activation. Disable
logging in the next section and select Default under Security/Access.

Now click Activate. That will bring you back to the data pipeline console. The
pipeline job will go through several phases, beginning with WAITING. Behind
the scenes, Data Pipeline is actually spinning up, using, and finally shutting
down an Elastic MapReduce cluster to perform the data transfer (think back
to Day 3 of the HBase chapter when we spun up our own EMR cluster to run
HBase). The job should finish within a few minutes. Once it’s done, every

9. https://console.aws.amazon.com/datapipeline

report erratum • discuss

Day 3: Building an “Internet of Things” System Around DynamoDB • 251

https://console.aws.amazon.com/datapipeline
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

item in the SensorData table will be kept in a single file in S3, with each sensor
reading as a JSON object on a separate line in the file.

Querying the Data Using Athena

Athena is an AWS service that enables you to query data files stored in S3
using plain SQL queries. We’ll use Athena to get some aggregate metrics out
of the data stored in our SensorData table. Go to the Athena console10 and click
on Query Editor. This is the interface that you can use to create tables and
run queries. Run this query to create a sensor_data table (substituting the
appropriate name for the S3 bucket that you created).

CREATE EXTERNAL TABLE sensor_data (
sensorid struct<s:string>,
currenttime struct<n:bigint>,
temperature struct<n:float>

)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
with serdeproperties ('paths'='SensorId,CurrentTime,Temperature')
LOCATION 's3://YOUR-S3-BUCKET/';

A few things to note here. First, we’re using data structures called structs as
columns. That’s because the JSON object for each item in our DynamoDB
table looks like this:

{
"SensorId": {

"S": "..."
},
"CurrentTime": {

"N": "..."
},
"Temperature": {

"N": "..."
}

}

Structs will enable us to easily handle this nested JSON data. Second, the
ROW FORMAT information simply specifies that we’re querying files storing JSON
as well as which JSON fields we’re interested in (SensorId and so on). Finally,
the LOCATION points to our S3 bucket (don’t forget the slash at the end).

The data from DynamoDB should all be in one file in a subfolder of the S3
bucket you created. The name of the subfolder is based on the current date
and time. To see the name of that subfolder:

$ aws s3 ls ${BUCKET_NAME}/

10. https://console.aws.amazon.com/athena

Chapter 7. DynamoDB • 252

report erratum • discuss

https://console.aws.amazon.com/athena
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Now, list the contents of that subfolder:

$ aws s3 ls ${BUCKET_NAME}/SUBFOLDER/

You’ll see that there are three files: a data file with a name like 5d2bf1ba-829e-
402f-a9a4-2849b974be01, a manifest file, and a _SUCCESS file. Delete the latter two
files, as they only contain metadata from Data Pipeline and will interfere with
our Athena queries:

$ aws s3 rm ${BUCKET_NAME}/SUBFOLDER/manifest
$ aws s3 rm ${BUCKET_NAME}/SUBFOLDER/_SUCCESS

Now come back to the Athena console because you’re ready to run queries
against the (now-sanitized) S3 folder. Let’s start with fetching 10 rows at
random (see the figure that follows):

SELECT * FROM sensor_data LIMIT 10;

Here are some other queries that you can run:

/* List the sensors for which you have data */
SELECT DISTINCT sensorid.s AS SensorId FROM sensor_data;
/* Get the number of readings from a specific sensor */
SELECT COUNT(*) AS NumberOfReadings FROM sensor_data

WHERE sensorid.s = 'some-sensor-id';
/* Find the average temperature measured by a specific sensor */
SELECT AVG(temperature.n) AS AverageTemp FROM sensor_data

WHERE sensorid.s = 'some-sensor-id';
/* Find the average temperature across all sensors */
SELECT AVG(temperature.n) AS AverageTempAllSensors FROM sensor_data;
/* Find the average temperature from a specific sensor */
SELECT AVG(temperature.n) AS AverageTemp FROM sensor_data

WHERE sensorid.s = 'some-sensor-id';
/* Find the maximum temperature across all sensors */
SELECT MAX(temperature.n) AS MaxTemp FROM sensor_data;
/* Find the standard deviation for temperature across all sensors */
SELECT STDDEV(temperature.n) AS StdDev FROM sensor_data;

report erratum • discuss

Day 3: Building an “Internet of Things” System Around DynamoDB • 253

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Production Ready? Not Quite

The system that we’ve built here—the Kinesis/Lambda/DynamoDB pipeline
plus Athena querying layer—has served us well in exploring these services,
but you wouldn’t want to use it as a production system. Why? Because it’s
built on the assumption that there’s only one table.

In reality, data in DynamoDB is often spread across many tables, while
querying that data involves knowing in which tables the right data lives (one
could call this tertiary indexing but the authors are unaware of this usage in
the wild!). For our sensor data use case, that may involve, for example, storing
data from different days in different tables and automatically writing new
sensor data to the correct table.

To make a setup like that work, you could auto-infer the table name from the
current date in the Lambda function, like this:

var date = new Date().toJSON().slice(0,10).replace(/-/g, '-');
var tableName = `sensor-data-${date}`;
var item = {

TableName: tableName,
Item: {

// item data
}

}

The name of each table in this setup would be of the form sensor-data-YYYY-MM-
DD. You could create DynamoDB tables for specific dates in advance, along
with S3 buckets for holding JSON data and Athena external table definitions
for those different buckets. This would, in turn, enable you to run queries
across DynamoDB tables and thus to gather metrics across days. A query
like this, for example, would find the average temperature for all sensors
across two days’ worth of readings:

SELECT (
(SELECT SUM(temperature.n) FROM sensor_data_05_01_2017) +

(SELECT SUM(temperature.n) FROM sensor_data_05_02_2017)
) / (
(SELECT COUNT(temperature.n) FROM sensor_data_05_01_2017) +

(SELECT COUNT(temperature.n) FROM sensor_data_05_02_2017)
);

What a ride! We just combined five AWS services—DynamoDB, Kinesis,
Lambda, DataPipeline, and Athena, plus some helper services like IAM—into
a cohesive platform for sensor data.

Chapter 7. DynamoDB • 254

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Day 3 Homework

Find

1. We added a global secondary index to our SensorData table, which increased
our disk space usage. Read some documentation11 to see how much space
GSIs use.

2. The Athena service enables you to use a broad palette of SQL commands
for running queries against S3 buckets—but not all the commands you
may be used to. Do some Googling and find out which commands are and
aren’t supported.

Do

1. Exercise 1 in the homework for Day 2 called for modifying the data pipeline
to handle humidity readings from our mock sensors. Modify the sensor
data input script from Day 3 so that each sensor reading contains a
humidity reading. Make sure to use a random walk logic to keep those
readings relatively un-volatile. Then create a new external table in Athena
that can run queries against that new data model.

2. In the last section of Day 3, we stated that the data pipeline we built isn’t
quite production ready because we have only one table and that a better
system would store data from different days in different tables. Begin
building that system to the best of your ability, given what you’ve learned
so far.

Wrap-Up
This chapter has been quite a ride! We explored not just the very interesting
and powerful DynamoDB but also a broad swathe of AWS offerings, and we
built a pretty darned scalable data pipeline for use in a far-away datacenter.
DynamoDB presents us not just with a relatively ops-free experience but
always with a data model that sits in a nice middle point between the granu-
larity of SQL and the minimalism of most NoSQL data models.

DynamoDB’s Strengths
The strengths of DynamoDB have been on display throughout this chapter. It
enables you to skip all the installation and setup steps and get started building
immediately. And if you build something small, there are few intrinsic limits to

11. http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

report erratum • discuss

Wrap-Up • 255

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

how big it can get (if, of course, you have the budget for it). DynamoDB can
be tricky in places, especially when it comes to things like capacity provision-
ing, planning for indexes, and coming up with a data model that enables you
to take advantage of DynamoDB’s performance and scalability. But getting
past the tricky parts unlocks a lot of possibilities.

Although DynamoDB requires you to give up some of the querying power of
relational databases, its data and querying models provide some powerful
constructs, such as indexes and range queries, that you won’t find in a lot
of NoSQL databases. And if you run into barriers, such as the inability to
write SQL-style queries for tables, you may be able to use an external service
to fill in the gaps, as we did on Day 3. Beyond all of this, DynamoDB’s feature
set continues to expand, as does the constellation of services surrounding
DynamoDB in the AWS ecosystem.

DynamoDB’s Weaknesses
The drawbacks presented by DynamoDB are directly reminiscent of other
NoSQL databases. Despite some interesting querying and modeling constructs,
you’re probably better off using Postgres or another relational database unless
you know for sure that you’re dealing with a DynamoDB-shaped problem (or
maybe an HBase-shaped problem, or Mongo, and so on). Even if you have a
use case that truly calls for a big NoSQL database, you may have trouble
getting your data model to mesh well with DynamoDB’s partitioning system.
And as always, there’s the cost. Any database you use is going to cost money
somehow, but DynamoDB and others don’t always make financial sense.
There may be times when it makes sense to run databases yourself, maybe
on your own hardware and maybe in the cloud. Caveat emptor.

Parting Thoughts
Cloud databases aren’t everyone’s cup of tea. They require a lot of trust—trust
in massive systems whose internals you can’t see and trust in the future
economic prospects of cloud providers themselves. These and other drawbacks
are real, but there are some major upsides, as we hope to have shown in this
chapter. We urge anybody with a strong interest in databases to give them a
try. Even if you don’t ever have a use case that requires a database like
DynamoDB, we think that they’re greatly empowering for developers and just
downright fun. They turn your humble little laptop into a very powerful
orchestration platform.

Chapter 7. DynamoDB • 256

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

DynamoDB is a good place to start but we focused on it here mostly due to
its influence and market share. There are many other options. If you want
a DynamoDB-style experience with a SQL favor, have a look at Google’s
BigQuery or Amazon’s Redshift. For globally distributed databases, try Google
Cloud Spanner, CockroachDB, or FaunaDB. We reckon that the database
landscape is starting to lean strongly in the direction of the cloud and the
ops-free lifestyle. The next edition of this book may even feature several cloud
databases.

report erratum • discuss

Wrap-Up • 257

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 8

Redis
Redis is like grease. It’s most often used to lubricate moving parts and keep
them working smoothly by reducing friction and speeding up their overall
function. Whatever the machinery of your system, it could very well be
improved with a bit poured over it. Sometimes the answer to your problem
is simply a judicious use of more Redis.

First released in 2009, Redis (REmote DIctionary Service) is a simple-to-use
key-value store with a sophisticated set of commands. And when it comes to
speed, Redis is hard to beat. Reads are fast and writes are even faster, han-
dling upwards of 100,000 SET operations per second by some benchmarks.
Redis creator Salvatore Sanfilippo (aka antirez) refers to his project as a “data
structure server” to capture its nuanced handling of complex datatypes and
other features. Exploring this super-fast, more-than-just-a-key-value-store
will round out our view of the modern database landscape.

Data Structure Server Store
It can be a bit difficult to classify exactly what Redis is. At a basic level, it’s
a key-value store, of course, but that simple label doesn’t really do it justice.
Redis supports advanced data structures, though not to the degree that a
document-oriented database would. It supports set-based query operations
but not with the granularity or type support you’d find in a relational database.
And, of course, it’s fast, trading durability for raw speed.

In addition to being an advanced data structure server, Redis can also be
used as a blocking queue (or stack) and a publish-subscribe system. It features
configurable expiry policies, durability levels, and replication options. All of
this makes Redis more of a toolkit of useful data structure algorithms and
processes than a member of any specific database genre.

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Redis’s expansive list of client libraries makes it a drop-in option for many
programming languages. It’s not simply easy to use; it’s a joy. If an API is UX
for programmers, then Redis should be in the Museum of Modern Art alongside
the Mac Cube.

In Days 1 and 2, we’ll explore Redis’s features, conventions, and configuration.
Starting with simple CRUD operations, like always, we’ll quickly move on to
more advanced operations involving more powerful data structures: lists,
hashes, sets, and sorted sets. We’ll create transactions and manipulate data
expiry characteristics. We’ll use Redis to create a simple message queue and
explore its publish-subscribe functionality. Then we’ll dive into Redis’s
configuration and replication options, learning how to strike an application-
appropriate balance between data durability and speed.

Databases are often and increasingly used in concert with each other. Redis
is introduced last in this book so that we can use it in just such a manner.
In Day 3, we’ll build our capstone system, a rich multidatabase music solution
including Redis, CouchDB, Neo4J, and Postgres—using Node.js to cement it
together.

Day 1: CRUD and Datatypes
Because the command-line interface (CLI) is of such primary importance to
the Redis development team—and loved by users everywhere—we’re going to
spend Day 1 looking at many of the 160+ commands available. Of primary
importance are Redis’s sophisticated datatypes and how they can query in
ways that go far beyond simply “retrieve the value of this key.”

Getting Started
Redis is available through a few package builders such as Homebrew for Mac
but is also rather painless to build from source.1 We’ll be working off version
3.2.8. Once you have it installed, you can start up the server by calling this:

$ redis-server

It won’t run in the background by default, but you can make that happen by
appending &, or you can just open another terminal. Next, run the command-
line tool, which should connect to the default port 6379 automatically.

$ redis-cli

After you connect, let’s try to ping the server.

1. http://redis.io

Chapter 8. Redis • 260

report erratum • discuss

http://redis.io
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis 127.0.0.1:6379> PING
PONG

If you cannot connect, you’ll receive an error message. Typing help will display
a list of help options. Type help followed by a space and then start typing any
command. If you don’t know any Redis commands, just start pressing Tab
to cycle through your options.

redis 127.0.0.1:6379> help
redis-cli 3.2.8
To get help about Redis commands type:

"help @<group>" to get a list of commands in <group>
"help <command>" for help on <command>
"help <tab>" to get a list of possible help topics
"quit" to exit

Today we’re going to use Redis to build the back end for a URL shortener,
such as tinyurl.com or bit.ly. A URL shortener is a service that takes a really
long URL and maps it to a shorter version on their own domain—like mapping
http://supercalifragilisticexpialidocious.com to http://bit.ly/VLD. Visiting that short URL
redirects users to the longer, mapped URL, which saves the visitors from text
messaging long strings and also provides the short URL creator with some
statistics, such as a count of visits.

In Redis, we can use SET to key a shortcode like 7wks to a value like
http://www.sevenweeks.org. SET always requires two parameters: a key and a value.
Retrieving the value just needs GET and the key name.

redis 127.0.0.1:6379> SET 7wks http://www.sevenweeks.org/
OK
redis 127.0.0.1:6379> GET 7wks
"http://www.sevenweeks.org/"

To reduce traffic, we can also set multiple values with MSET, like any number
of key-value pairs. Here we map Google.com to gog and Yahoo.com to yah.

redis 127.0.0.1:6379> MSET gog http://www.google.com yah http://www.yahoo.com
OK

Correlatively, MGET grabs multiple keys and returns values as an ordered list.

redis 127.0.0.1:6379> MGET gog yah
1) "http://www.google.com/"
2) "http://www.yahoo.com/"

Although Redis stores strings, it recognizes integers and provides some simple
operations for them. If we want to keep a running total of how many short
keys are in our dataset, we can create a count and then increment it with the
INCR command.

report erratum • discuss

Day 1: CRUD and Datatypes • 261

http://supercalifragilisticexpialidocious.com
http://bit.ly/VLD
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis 127.0.0.1:6379> SET count 2
OK
redis 127.0.0.1:6379> INCR count
(integer) 3
redis 127.0.0.1:6379> GET count
"3"

Although GET returns count as a string, INCR recognized it as an integer and
added one to it. Any attempt to increment a non-integer ends poorly.

redis 127.0.0.1:6379> SET bad_count "a"
OK
redis 127.0.0.1:6379> INCR bad_count
(error) ERR value is not an integer or out of range

If the value can’t be resolved to an integer, Redis rightly complains. You can
also increment by any integer (INCRBY) or decrement (DECR, DECRBY).

Transactions
You’ve seen transactions in previous databases (Postgres and Neo4j), and
Redis’s MULTI block atomic commands are a similar concept. Wrapping two
operations like SET and INCR in a single block will complete either successfully
or not at all. But you will never end up with a partial operation.

Let’s key another shortcode to a URL and also increment the count all in one
transaction. We begin the transaction with the MULTI command and execute
it with EXEC.

redis 127.0.0.1:6379> MULTI
OK
redis 127.0.0.1:6379> SET prag http://pragprog.com
QUEUED
redis 127.0.0.1:6379> INCR count
QUEUED
redis 127.0.0.1:6379> EXEC
1) OK
2) (integer) 4

When using MULTI, the commands aren’t actually executed when we define
them (similar to Postgres transactions). Instead, they are queued and then
executed in sequence.

Similar to ROLLBACK in SQL, you can stop a transaction with the DISCARD com-
mand, which will clear the transaction queue. Unlike ROLLBACK, it won’t revert
the database; it will simply not run the transaction at all. The effect is identi-
cal, although the underlying concept is a different mechanism (transaction
rollback vs. operation cancellation).

Chapter 8. Redis • 262

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Complex Datatypes
So far, we haven’t seen much complex behavior. Storing string and integer
values under keys—even as transactions—is all fine and good, but most
programming and data storage problems deal with many types of data. Storing
lists, hashes, sets, and sorted sets natively helps explain Redis’s popularity,
and after exploring the complex operations you can enact on them, you may
find you agree.

These collection datatypes can contain a huge number of values (up to 2^32
elements or more than 4 billion) per key. That’s more than enough for all
Facebook accounts to live as a list under a single key (though maybe not for
much longer!).

While some Redis commands may appear cryptic, they generally follow a
repeated pattern. SET commands begin with S, hashes with H, and sorted sets
with Z. List commands generally start with either an L (for left) or an R (for
right), depending on the direction of the operation (such as LPUSH).

Hashes

Hashes are like nested Redis objects that can take any number of key-value
pairs. Let’s use a hash to keep track of users who sign up for our URL-
shortening service.

Hashes are nice because they help you avoid storing data with artificial key
prefixes. (Note that we will use colons [:] within our keys. This is a valid
character that often logically separates a key into segments. It’s merely a
matter of convention, with no deeper meaning in Redis.)

redis 127.0.0.1:6379> MSET user:luc:name "Luc" user:luc:password s3cret
OK
redis 127.0.0.1:6379> MGET user:luc:name user:luc:password
1) "Luc"
2) "s3cret"

Instead of separate keys, we can create a hash that contains its own key-
value pairs.

redis 127.0.0.1:6379> HMSET user:luc name "Luc" password s3cret
OK

We only need to keep track of the single Redis key to retrieve all values of
the hash.

redis 127.0.0.1:6379> HVALS user:luc
1) "Luc"
2) "s3cret"

report erratum • discuss

Day 1: CRUD and Datatypes • 263

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Or we can retrieve all hash keys.

redis 127.0.0.1:6379> HVALS user:luc
1) "name"
2) "password"

Or we can get a single value by passing in the Redis key followed by the hash
key. Here we get just the password.

redis 127.0.0.1:6379> HGET user:luc password
"s3cret"

Unlike the document databases MongoDB and CouchDB, hashes in Redis
cannot nest (nor can any other complex datatype such as lists). In other words,
hashes can store only string values and not, say, sets or nested hashes.

More hash-specific commands exist to delete hash fields (HDEL), increment an
integer field value by some count (HINCRBY), retrieve the number of fields in a
hash (HLEN), get all keys and values (HGETALL), set a value only if the key doesn’t
yet exist (HSETNX), and more.

Lists

Lists contain multiple ordered values that can act both as queues (first value
in, first value out) and as stacks (last value in, first value out). They also have
more sophisticated actions for inserting somewhere in the middle of a list,
constraining list size, and moving values between lists.

Because our URL-shortening service can now track users, we want to allow
them to keep a wishlist of URLs they’d like to visit. To create a list of short-
coded websites we’d like to visit, we set the key to USERNAME:wishlist and push
any number of values to the right (end) of the list.

redis 127.0.0.1:6379> RPUSH eric:wishlist 7wks gog prag
(integer) 3

Like most collection value insertions, the Redis command returns the number
of values pushed. In other words, we pushed three values into the list so it
returns 3. You can get the list length at any time with LLEN.

Using the list range command LRANGE, we can retrieve any part of the list by
specifying the first and last positions. All list operations in Redis use a zero-
based index. A negative position means the number of steps from the end.

redis 127.0.0.1:6379> LRANGE eric:wishlist 0 -1
1) "7wks"
2) "gog"
3) "prag"

Chapter 8. Redis • 264

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

LREM removes from the given key some matching values. It also requires a
number to know how many matches to remove. Setting the count to 0 as we
do here just removes them all:

redis 127.0.0.1:6379> LREM eric:wishlist 0 gog

Setting the count greater than 0 will remove only that number of matches,
and setting the count to a negative number will remove that number of
matches but scan the list from the end (right side).

To remove and retrieve each value in the order we added them (like a queue),
we can pop them off from the left (head) of the list.

redis 127.0.0.1:6379> LPOP eric:wishlist
"7wks"

To act as a stack, after you RPUSH the values, you would RPOP from the end of
the list. All of these operations are performed in constant time (meaning that
the size of the list shouldn’t impact performance).

On the previous combination of commands, you can use LPUSH and RPOP to
similar effect (a queue) or LPUSH and LPOP to be a stack.

Suppose we wanted to remove values from our wishlist and move them to
another list of visited sites. To execute this move atomically, we might try
wrapping pop and push actions within a multiblock. In Ruby, these steps
might look something like this (you can’t use the CLI here because you must
save the popped value, so we’ll use the redis-rb gem):

redis.multi do
site = redis.rpop('eric:wishlist')
redis.lpush('eric:visited', site)

end

Because the multi block queues requests, the above won’t work. This is really
a feature of lists, not a bug because it prevents concurrent access to list
members. Fortunately, Redis provides a single command for popping values
from the tail of one list and pushing to the head of another. It’s called RPOPLPUSH
(right pop, left push).

redis 127.0.0.1:6379> RPOPLPUSH eric:wishlist eric:visited
"prag"

If you find the range of the wishlist, prag will be gone; it now lives under visited.
This is a useful mechanism for queuing commands.

report erratum • discuss

Day 1: CRUD and Datatypes • 265

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

If you looked through the Redis docs to find RPOPRPUSH, LPOPLPUSH, and LPOPRPUSH
commands, you may be dismayed to learn they don’t exist. RPOPLPUSH is your
only option, and you must build your list accordingly.

Blocking Lists

Now that our URL shortener is taking off, let’s add some social activities—like
a real-time commenting system—where people can post about the websites
they have visited.

Let’s write a simple messaging system where multiple clients can push com-
ments and one client (the digester) pops messages from the queue. We’d like
the digester to just listen for new comments and pop them as they arrive.
Redis provides a few blocking commands for this sort of purpose.

First, open another terminal and start another redis-cli client. This will be our
digester. The command to block until a value exists to pop is BRPOP. It requires
the key to pop a value from and a timeout in seconds, which we’ll set to five
minutes.

redis 127.0.0.1:6379> BRPOP comments 300

Then switch back to the first console and push a message to comments.

redis 127.0.0.1:6379> LPUSH comments "Prag is a great publisher!"

If you switch back to the digester console, two lines will be returned: the key
and the popped value. The console will also output the length of time it spent
blocking.

1) "comments"
2) "Prag is a great publisher!"
(7.88s)

There’s also a blocking version of left pop (BLPOP) and left push (BRPOPLPUSH).
BLPOP will remove the first element in a list or block (just like BRPOP removed
the last element) while BRPOPLPUSH is a blocking version of RPOPLPUSH.

Sets

Our URL shortener is shaping up nicely, but it would be nice to be able to
group common URLs in some way.

Sets are unordered collections with no duplicate values and are an excellent
choice for performing complex operations between two or more key values,
such as unions or intersections.

If we wanted to categorize sets of URLs with a common key, we could add
multiple values with SADD.

Chapter 8. Redis • 266

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis 127.0.0.1:6379> SADD news nytimes.com pragprog.com
(integer) 2

Redis added two values. We can retrieve the full set, in no particular order,
using the SMEMBERS command.

redis 127.0.0.1:6379> SMEMBERS news
1) "pragprog.com"
2) "nytimes.com"

Let’s add another category called tech for technology-related sites.

redis 127.0.0.1:6379> SADD tech pragprog.com apple.com
(integer) 2

To find the intersection of websites that both provide news and are technology
focused, we use the SINTER command.

redis 127.0.0.1:6379> SINTER news tech
1) "pragprog.com"

Just as easily, we can remove any matching values in one set from another.
To find all news sites that are not tech sites, use SDIFF:

redis 127.0.0.1:6379> SDIFF news tech
1) "nytimes.com"

We can also build a union of websites that are either news or tech. Because
it’s a set, any duplicates are dropped.

redis 127.0.0.1:6379> SUNION news tech
1) "apple.com"
2) "pragprog.com"
3) "nytimes.com"

That set of values can also be stored directly into a new set (SUNIONSTORE desti-
nation key [key ...]).

redis 127.0.0.1:6379> SUNIONSTORE websites news tech
redis 127.0.0.1:6379> SMEMBERS websites
1) "pragprog.com"
2) "nytimes.com"
3) "apple.com"

This also provides a useful trick for cloning a single key’s values to another
key, such as SUNIONSTORE news_copy news. Similar commands exist for storing
intersections (SINTERSTORE) and diffs (SDIFFSTORE).

Just as RPOPLPUSH moved values from one list to another, SMOVE does the same
for sets; it’s just easier to remember. And like LLEN finds the length of a list,
SCARD (set cardinality) counts the set; it’s just harder to remember.

report erratum • discuss

Day 1: CRUD and Datatypes • 267

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Because sets are not ordered, there are no left, right, or other positional
commands. Popping a random value from a set just requires SPOP key, and
removing values is SREM key value [value ...].

Unlike lists, there are no blocking commands for sets. With no blocking or
positional commands, sets are a subpar choice for some Redis use cases such
as message queues, but they’re nonetheless great for all kinds of operations
over collections.

Sorted Sets

Whereas other Redis datatypes we’ve looked at so far easily map to common
programming language constructs, sorted sets take something from each of
the previous datatypes. They are ordered like lists and are unique like sets.
They have field-value pairs like hashes, but their fields are numeric scores
that denote the order of the values rather than plain strings. You can think
of sorted sets as similar to a random access priority queue. This power has
a trade-off, however. Internally, sorted sets keep values in order, so inserts
can take log(N) time to insert (where N is the size of the set), rather than the
constant time complexity of hashes or lists.

Next, we want to keep track of the popularity of specific shortcodes. Every
time someone visits a URL, the score gets increased. Like a hash, adding a
value to a sorted set requires two values after the Redis key name: the score
and the member.

redis 127.0.0.1:6379> ZADD visits 500 7wks 9 gog 9999 prag
(integer) 3

To increment a score, we can either re-add it with the new score, which just
updates the score but does not add a new value, or increment by some
number, which will return the new value.

redis 127.0.0.1:6379> ZINCRBY visits 1 prag
"10000"

You can decrement also by setting a negative number for ZINCRBY.

Ranges

To get values from our visits set, we can issue a range command, ZRANGE,
which returns by position, just like the list datatype’s LRANGE command. Except
in the case of a sorted set, the position is ordered by score from lowest to
highest. So, to get the top two scoring visited sites (zero-based), use this:

Chapter 8. Redis • 268

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis 127.0.0.1:6379> ZRANGE visits 0 1
1) "gog"
2) "7wks"

To get the scores of each element as well, append WITHSCORES to the previous
code. To get them in reverse, insert the word REV, as in ZREVRANGE.

redis 127.0.0.1:6379> ZREVRANGE visits 0 -1 WITHSCORES
1) "prag"
2) "10000"
3) "7wks"
4) "500"
5) "gog"
6) "9"

But if we’re using a sorted set, it’s more likely we want to range by score,
rather than by position. ZRANGEBYSCORE has a slightly different syntax from
ZRANGE. Because the low and high range numbers are inclusive by default, we
can make a score number exclusive by prefixing it with an opening paren: (.
So this will return all scores where 9 <= score <= 10,000:

redis 127.0.0.1:6379> ZRANGEBYSCORE visits 9 9999
1) "gog"
2) "7wks"

But the following will return 9 < score <= 10,000:

redis 127.0.0.1:6379> ZRANGEBYSCORE visits (9 9999
1) "7wks"

We can also range by both positive and negative values, including infinities.
This returns the entire set.

redis 127.0.0.1:6379> ZRANGEBYSCORE visits -inf inf
1) "gog"
2) "7wks"
3) "prag"

You can list them in reverse, too, with ZREVRANGEBYSCORE.

redis 127.0.0.1:6379> ZREVRANGEBYSCORE visits inf -inf
1) "prag"
2) "7wks"
3) "gog"

Along with retrieving a range of values by rank (index) or score, ZREMRANGE-
BYRANK and ZREMRANGEBYSCORE, respectively, remove values by rank or score.

report erratum • discuss

Day 1: CRUD and Datatypes • 269

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Unions

Just like the set datatype, we can create a destination key that contains the
union or intersection of one or more keys. This is one of the more complex
commands in Redis because it must not only join the keys—a relatively simple
operation—but also merge (possibly) differing scores. The union operation
looks like this:

ZUNIONSTORE destination numkeys key [key ...]
[WEIGHTS weight [weight ...]] [AGGREGATE SUM|MIN|MAX]

destination is the key to store into, and key is one or more keys to union. numkeys
is simply the number of keys you’re about to join, while weight is the optional
number to multiply each score of the relative key by (if you have two keys,
you can have two weights, and so on). Finally, aggregate is the optional rule
for resolving each weighted score and summing by default, but you can also
choose the min or max between many scores.

Let’s use this command to measure the importance of a sorted set of short-
codes. First, we’ll create another key that scores our shortcodes by votes.
Each visitor to a site can vote if they like the site or not, and each vote adds
a point.

redis 127.0.0.1:6379> ZADD votes 2 7wks 0 gog 9001 prag
(integer) 3

We want to figure out the most important websites in our system as some
combination of votes and visits. Votes are important, but to a lesser extent,
website visits also carry some weight (perhaps people are so enchanted by
the website, they simply forget to vote). We want to add the two types of scores
together to compute a new importance score while giving votes a weight of
double importance—multiplied by two.

redis 127.0.0.1:6379> ZUNIONSTORE imp 2 visits votes WEIGHTS 1 2 AGGREGATE SUM
(integer) 3
redis 127.0.0.1:6379> ZRANGEBYSCORE imp -inf inf WITHSCORES
1) "gog"
2) "9"
3) "7wks"
4) "504"
5) "prag"
6) "28002"

This command is powerful in other ways, too. For example, if you need to
double all scores of a set, you can union a single key with a weight of 2 and
store it back into itself.

Chapter 8. Redis • 270

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis 127.0.0.1:6379> ZUNIONSTORE votes 1 votes WEIGHTS 2
(integer) 2
redis 127.0.0.1:6379> ZRANGE votes 0 -1 WITHSCORES
1) "gog"
2) "0"
3) "7wks"
4) "4"
5) "prag"
6) "18002"

Sorted sets contain a similar command (ZINTERSTORE) to perform intersections.

Expiry
Another common use case for a key-value system like Redis is as a fast-access
cache for data that’s more expensive to retrieve or compute. In just about any
cache, ensuring that keys expire after a designated time period is essential
to keeping the key set from growing unboundedly.

Marking a key for expiration requires the EXPIRE command, an existing key,
and a time to live (in seconds). Here we set a key and set it to expire in ten
seconds. We can check whether the key EXISTS within ten seconds and it
returns a 1 (true). If we wait to execute, it will eventually return a 0 (false).

redis 127.0.0.1:6379> SET ice "I'm melting..."
OK
redis 127.0.0.1:6379> EXPIRE ice 10
(integer) 1
redis 127.0.0.1:6379> EXISTS ice
(integer) 1
redis 127.0.0.1:6379> EXISTS ice
(integer) 0

Setting and expiring keys is so common that Redis provides a shortcut com-
mand called SETEX.

redis 127.0.0.1:6379> SETEX ice 10 "I'm melting..."

You can query the time a key has to live with TTL. Setting ice to expire as shown
earlier and checking its TTL will return the number of seconds left (or -2 if
the key has already expired or doesn’t exist, which is the same thing).

redis 127.0.0.1:6379> TTL ice
(integer) 4

At any moment before the key expires, you can remove the timeout by running
PERSIST key.

redis 127.0.0.1:6379> PERSIST ice

report erratum • discuss

Day 1: CRUD and Datatypes • 271

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

For marking a countdown to a specific time, EXPIREAT accepts a Unix timestamp
(as seconds since January 1, 1970) rather than a number of seconds to count
up to. In other words, EXPIREAT is for absolute timeouts, and EXPIRE is for relative
timeouts.

A common trick for keeping only recently used keys is to update the expire
time whenever you retrieve a value. This is the most recently used (MRU)
caching algorithm to ensure that your most recently used keys will remain
in Redis, while the unused keys will just expire as normal.

Database Namespaces
So far, we’ve interacted only with a single namespace. Sometimes we need to
separate keys into multiple namespaces. For example, if you wrote an inter-
nationalized key-value store, you could store different translated responses
in different namespaces. The key greeting could be set to “guten Tag” in a
German namespace and “bonjour” in French. When a user selects their lan-
guage, the application just pulls all values from the namespace assigned.

In Redis nomenclature, a namespace is called a database and is keyed by
number. So far, we’ve always interacted with the default namespace 0 (also
known as database 0). Here we set greeting to the English hello.

redis 127.0.0.1:6379> SET greeting hello
OK
redis 127.0.0.1:6379> GET greeting
"hello"

But if we switch to another database via the SELECT command, that key is
unavailable.

redis 127.0.0.1:6379> SELECT 1
OK
redis 127.0.0.1:6379[1]> GET greeting
(nil)

And setting a value to this database’s namespace will not affect the value of
the original.

redis 127.0.0.1:6379[1]> SET greeting "guten Tag"
OK
redis 127.0.0.1:6379[1]> SELECT 0
OK
redis 127.0.0.1:6379> GET greeting
"hello"

Chapter 8. Redis • 272

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Because all databases are running in the same server instance, Redis lets
us shuffle keys around with the MOVE command. Here we move greeting to
database 2:

redis 127.0.0.1:6379> MOVE greeting 2
(integer) 2
redis 127.0.0.1:6379> SELECT 2
OK
redis 127.0.0.1:6379[2]> GET greeting
"hello"

This can be useful for running different applications against a single Redis
server while still allowing these multiple applications to trade data between
each other.

And There’s More
Redis has plenty of other commands for actions such as renaming keys
(RENAME), determining the type of a key’s value (TYPE), and deleting a key-value
(DEL). There’s also the painfully dangerous FLUSHDB, which removes all keys
from this Redis database, and its apocalyptic cousin, FLUSHALL, which removes
all keys from all Redis databases. We won’t cover all commands here, but we
recommend checking out the online documentation for the full list of Redis
commands (and we must say, the Redis documentation is truly a joy to read
and interact with).

Day 1 Wrap-Up
The datatypes of Redis and the complex queries it can perform make it much
more than a standard key-value store. It can act as a stack, queue, or priority
queue; you can interact with it as you would an object store (via hashes); and
Redis even can perform complex set operations such as unions, intersections,
and subtractions (diff). It provides many atomic commands as well as a
transaction mechanism for multistep commands. Plus, it has a built-in ability
to expire keys, which is useful as a cache.

Day 1 Homework

Find

Find the complete Redis commands documentation, as well as the Big-O
notated (O(x)) time complexity under the command details.

report erratum • discuss

Day 1: CRUD and Datatypes • 273

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Do

1. Install your favorite programming language driver and connect to the
Redis server. Insert and increment a value within a transaction.

2. Using your driver of choice, create a program that reads a blocking list
and outputs somewhere (console, file, Socket.io, and so on) and another
that writes to the same list.

Day 2: Advanced Usage, Distribution
Day 1 introduced us to Redis as a data structure server. Today, we’ll build
on that foundation by looking at some of the advanced functions provided by
Redis, such as pipelining, the publish-subscribe model, system configuration,
and replication. Beyond that, we’ll look at how to create a Redis cluster, store
a lot of data quickly, and use an advanced technique involving Bloom filters.

A Simple Interface
At 80,000 lines of source code, Redis is a fairly small project compared to
most databases. But beyond code size, it has a simple interface that accepts
the very strings we have been writing in the console.

Telnet

We can interact without the command-line interface by streaming commands
through TCP on our own via telnet and terminating the command with a
carriage return line feed (CRLF, or \r\n). Run Ctrl+] at any time to exit.

redis/telnet.sh
$ telnet localhost 6379
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SET test hello
+OK
GET test

Chapter 8. Redis • 274

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/telnet.sh
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

$5
hello
SADD stest 1 99
:2
SMEMBERS stest
*2
$1
1
$2
99

Here we see four Redis commands as inputs (you should be able to identify
them quickly) and their corresponding outputs. We can see that our input is
the same as we provided in the Redis console, but the console has cleaned
up the responses a bit. To give a few examples:

• Redis streams the OK status prefixed by a + sign.

• Before it returned the string hello, it sent $5, which means “the following
string is five characters.”

• After we add two set items to the test key, the number 2 is prefixed by :
to represent an integer (two values were added successfully).

Finally, when we requested two items, the first line returned begins with an
asterisk and the number 2—meaning there are two complex values about to
be returned. The next two lines are just like the hello string but contain the
string 1, followed by the string 99.

Pipelining

We can also stream our own strings one at a time by using the BSD netcat
(nc) command, which is already installed on many Unix machines. With netcat,
we must specifically end a line with CRLF (telnet did this for us implicitly).
We also sleep for a second after the ECHO command has finished to give some
time for the Redis server to return. Some nc implementations have a -q option,
thus negating the need for a sleep, but not all do, so feel free to try it.

$ (echo -en "ECHO hello\r\n"; sleep 1) | nc localhost 6379
$5
hello

We can take advantage of this level of control by pipelining our commands,
or streaming multiple commands in a single request.

$ (echo -en "PING\r\nPING\r\nPING\r\n"; sleep 1) | nc localhost 6379
+PONG
+PONG
+PONG

report erratum • discuss

Day 2: Advanced Usage, Distribution • 275

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

This can be far more efficient than pushing a single command at a time and
should always be considered if it makes sense to do so—especially in trans-
actions. Just be sure to end every command with \r\n, which is a required
delimiter for the server.

publish-subscribe
On Day 1, we were able to implement a rudimentary blocking queue using the
list datatype. We queued data that could be read by a blocking pop command.
Using that queue, we made a very basic queue according to a publish-subscribe
model. Any number of messages could be pushed to this queue, and a single
queue reader would pop messages as they were available. This is powerful but
limited. Under many circumstances we want a slightly inverted behavior, where
several subscribers want to read the announcements of a single publisher who
sends a message to all subscribers, as shown in the following figure. Redis
provides some specialized publish-subscribe (or pub-sub) commands.

Publisher

Subscriber A Subscriber B

Message 1 Message 1

Let’s improve on the commenting mechanism we made before using blocking
lists, by allowing a user to post a comment to multiple subscribers (as opposed
to just one). We start with a subscriber that listens on a key for messages
(the key will act as a channel in pub-sub nomenclature). This will cause the
CLI to output Reading messages... and then block while the subscriber listens for
incoming messages.

redis 127.0.0.1:6379> SUBSCRIBE comments
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "comments"
3) (integer) 1

With two subscribers, we can publish any string we want as a message to
the comments channel. The PUBLISH command will return the integer 2, meaning
two subscribers received it.

Chapter 8. Redis • 276

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis 127.0.0.1:6379> PUBLISH comments "Check out this shortcoded site! 7wks"
(integer) 2

Both of the subscribers will receive a multibulk reply (a list) of three items:
the string “message,” the channel name, and the published message value.

1) "message"
2) "comments"
3) "Check out this shortcoded site! 7wks"

When your clients no longer want to receive correspondence, they can execute
the UNSUBSCRIBE comments command to disconnect from the comments channel
or simply UNSUBSCRIBE alone to disconnect from all channels. However, note
that in the redis-cli console you will have to press Ctrl+C to break the connection.

Server Info
Before getting into changing Redis’s system settings, it’s worth taking a quick
look at the INFO command because changing settings values will alter some
of these values as well. INFO outputs a list of server data, including version,
process ID, memory used, and uptime.

redis 127.0.0.1:6379> INFO
Server
redis_version:3.2.8
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:b533f811ec736a0c
redis_mode:standalone
...

You may want to revisit this command again in this chapter because it pro-
vides a useful snapshot of this server’s global information and settings. It
even provides information on durability, memory fragmentation, and replica-
tion server status.

Redis Configuration
So far, we’ve only used Redis with its out-of-the-box configuration. But much
of Redis’s power comes from its configurability, allowing you to tailor settings
to your use case. The redis.conf file that comes with the distribution—found in
/etc/redis on *nix systems or /usr/local/etc on Mac OS—is fairly self-explanatory,
so we’re going to cover only a portion of the file. We’ll go through a few of the
common settings in order.

report erratum • discuss

Day 2: Advanced Usage, Distribution • 277

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

daemonize no
port 6379
loglevel verbose
logfile stdout
database 16

By default, daemonize is set to no, which is why the server always starts up in
the foreground. This is nice for testing but not very production friendly.
Changing this value to yes will run the server in the background while setting
the server’s process ID in a pid file.

The next line is the default port number for this server, port 6379. This can
be especially useful when running multiple Redis servers on a single machine.

loglevel defaults to verbose, but it’s good to set it to notice or warning in production
to cut down on the number of log events. logfile outputs to stdout (standard
output, the console), but a filename is necessary if you run in daemonize mode.

database sets the number of Redis databases we have available. We saw how
to switch between databases. If you plan to only ever use a single database
namespace, it’s not a bad idea to set this to 1 to prevent unwanted databases
from being accidentally created.

Durability

Redis has a few persistence options. First is no persistence at all, which will
simply keep all values in main memory. If you’re running a basic caching
server, this is a reasonable choice since durability always increases latency.

One of the things that sets Redis apart from other fast-access caches like
memcached2 is its built-in support for storing values to disk. By default, key-
value pairs are only occasionally saved. You can run the LASTSAVE command
to get a Unix timestamp of the last time a Redis disk write succeeded, or you
can read the last_save_time field from the server INFO output.

You can force durability by executing the SAVE command (or BGSAVE, to asyn-
chronously save in the background).

redis 127.0.0.1:6379> SAVE

If you read the redis-server log, you will see lines similar to this:

[46421] 10 Oct 19:11:50 * Background saving started by pid 52123
[52123] 10 Oct 19:11:50 * DB saved on disk
[46421] 10 Oct 19:11:50 * Background saving terminated with success

2. http://www.memcached.org/

Chapter 8. Redis • 278

report erratum • discuss

http://www.memcached.org/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Another durability method is to alter the snapshotting settings in the config-
uration file.

Snapshotting

We can alter the rate of storage to disk by adding, removing, or altering one
of the save fields. By default, there are three, prefixed by the save keyword
followed by a time in seconds and a minimum number of keys that must
change before a write to disk occurs. For example, to trigger a save every 5
minutes (300 seconds) if any keys change at all, you would write the following:

save 300 1

The configuration has a good set of defaults. The set means if 10,000 keys
change, save in 60 seconds; if 10 keys change, save in 300 seconds, and any
key changes will be saved in at least 900 seconds (15 minutes).

save 900 1
save 300 10
save 60 10000

You can add as many or as few save lines as necessary to specify precise
thresholds.

Append-Only File

Redis is eventually durable by default, in that it asynchronously writes values
to disk in intervals defined by our save settings, or it is forced to write by
client-initiated commands. This is acceptable for a second-level cache or
session server but is insufficient for storing data that you need to be durable,
like financial data. If a Redis server crashes, our users might not appreciate
having lost money.

Redis provides an append-only file (appendonly.aof) that keeps a record of all
write commands. This is like the write-ahead logging we saw in Chapter 3,
HBase, on page 53. If the server crashes before a value is saved, it executes
the commands on startup, restoring its state; appendonly must be enabled by
setting it to yes in the redis.conf file.

appendonly yes

Then we must decide how often a command is appended to the file. Setting
always is the more durable because every command is saved. It’s also slow,
which often negates the reason people have for using Redis. By default,
everysec is enabled, which saves up and writes commands only once a second.
This is a decent trade-off because it’s fast enough, and worst case you’ll lose
only the last one second of data. Finally, no is an option, which just lets the

report erratum • discuss

Day 2: Advanced Usage, Distribution • 279

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

OS handle flushing. It can be fairly infrequent, and you’re often better off
skipping the append-only file altogether rather than choosing it.

appendfsync always
appendfsync everysec
appendfsync no

Append-only has more detailed parameters, which may be worth reading
about in the config file when you need to respond to specific production issues.

Security

Although Redis is not natively built to be a fully secure server, you may run
across the requirepass setting and AUTH command in the Redis documentation.
These can be safely ignored because they are merely a scheme for setting a
plaintext password. Because a client can try nearly 100,000 passwords a
second, it’s almost a moot point, beyond the fact that plaintext passwords
are inherently unsafe anyway. If you want Redis security, you’re better off
with a good firewall and SSH security.

Interestingly, Redis provides command-level security through obscurity, by
allowing you to hide or suppress commands. Adding this to your config will
rename the FLUSHALL command (remove all keys from the system) into some
hard-to-guess value like c283d93ac9528f986023793b411e4ba2:

rename-command FLUSHALL c283d93ac9528f986023793b411e4ba2

If you attempt to execute FLUSHALL against this server, you’ll be hit with an
error. The secret command works instead.

redis 127.0.0.1:6379> FLUSHALL
(error) ERR unknown command 'FLUSHALL'
redis 127.0.0.1:6379> c283d93ac9528f986023793b411e4ba2
OK

Or better yet, we can disable the command entirely by setting it to a blank
string in the configuration.

rename-command FLUSHALL ""

You can set any number of commands to a blank string, allowing you a
modicum of customization over your command environment.

Tweaking Parameters

There are several more advanced settings for speeding up slow query logs,
encoding details, making latency tweaks, and importing external config files.
Keep in mind, though, if you run across some documentation about Redis
virtual memory, simply ignore it, as that feature was removed in version 2.6.

Chapter 8. Redis • 280

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

To aid in testing your server configuration, Redis provides an excellent
benchmarking tool. It connects locally to port 6379 by default and issues
10,000 requests using 50 parallel clients. We can execute 100,000 requests
with the -n argument.

$ redis-benchmark -n 100000
====== PING (inline) ======

100000 requests completed in 0.89 seconds
50 parallel clients
3 bytes payload
keep alive: 1

99.91% <= 1 milliseconds
100.00% <= 1 milliseconds
32808.40 requests per second
...

Other commands are tested as well, such as SADD and LRANGE, with the more
complex commands generally taking more time.

Master-Slave Replication
As with other NoSQL databases we’ve seen (such as MongoDB and Neo4j),
Redis supports master-slave replication. One server is the master by default
if you don’t set it as a slave of anything. Data will be replicated to any number
of slave servers.

Making slave servers is easy. We first need a copy of our redis.conf file.

$ cp redis.conf redis-s1.conf

The file will remain largely the same but with the following changes:

port 6380
slaveof 127.0.0.1 6379

If all went according to plan, you should see something similar to the following
in the slave server’s log when you start it:

$ redis-server redis-s1.conf

34648:S 28 Apr 06:42:22.496 * Connecting to MASTER 127.0.0.1:6379
34648:S 28 Apr 06:42:22.496 * MASTER <-> SLAVE sync started
34648:S 28 Apr 06:42:22.497 * Non blocking connect for SYNC fired the event.
34648:S 28 Apr 06:42:22.497 * Master replied to PING, replication can...
34648:S 28 Apr 06:42:22.497 * Partial resynchronization not possible...
34648:S 28 Apr 06:42:22.497 * Full resync from master: 4829...1f88a68bc:1
34648:S 28 Apr 06:42:22.549 * MASTER <-> SLAVE sync: receiving 76 bytes...
34648:S 28 Apr 06:42:22.549 * MASTER <-> SLAVE sync: Flushing old data
34648:S 28 Apr 06:42:22.549 * MASTER <-> SLAVE sync: Loading DB in memory
34648:S 28 Apr 06:42:22.549 * MASTER <-> SLAVE sync: Finished with success

report erratum • discuss

Day 2: Advanced Usage, Distribution • 281

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

And you should see the string 1 slaves output in the master log.

redis 127.0.0.1:6379> SADD meetings "StarTrek Pastry Chefs" "LARPers Intl."

If we connect the command line to our slave, we should receive our meet-
ing list.

redis 127.0.0.1:6380> SMEMBERS meetings
1) "StarTrek Pastry Chefs"
2) "LARPers Intl."

In production, you’ll generally want to implement replication for availability
or backup purposes and thus have Redis slaves on different machines.

Data Dump
So far, we’ve talked a lot about how fast Redis is, but it’s hard to get a feel
for it without playing with a bit more data.

Let’s insert a large dummy dataset into our Redis server. You can keep the
slave running if you like, but a laptop or desktop might run quicker if you’re
running just a single master server. We’re going to autogenerate a list of keys
and values of arbitrary size, where the keys will be key1, key2, and so on, while
the values will be value1, and so on.

You’ll first need to install the redis Ruby gem.

$ gem install redis

There are several ways to go about inserting a large dataset, and they get
progressively faster but more complex.

The simplest method is to simply iterate through a list of data and execute
SET for each value using the standard redis-rb client. In our case, we don’t
really care what the data looks like, as we just want to look at performance,
so we’ll insert our randomized data.

redis/data_dump.rb
require 'redis'
#%w{hiredis redis/connection/hiredis}.each{|r| require r}

the number of set operations to perform will be defined as a CLI arg
TOTAL_NUMBER_OF_ENTRIES = ARGV[0].to_i

$redis = Redis.new(:host => "127.0.0.1", :port => 6379)
$redis.flushall
count, start = 0, Time.now

(1..TOTAL_NUMBER_OF_ENTRIES).each do |n|
count += 1

Chapter 8. Redis • 282

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/data_dump.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

key = "key#{n}"
value = "value#{n}"

$redis.set(key, value)

stop iterating when we reach the specified number
break if count >= TOTAL_NUMBER_OF_ENTRIES

end
puts "#{count} items in #{Time.now - start} seconds"

Run the script, specifying the number of SET operations. Feel free to experiment
with lower or higher numbers. Let’s start with 100,000.

$ ruby data_dump.rb 100000
100000 items in 5.851211 seconds

If you want to speed up insertion—and are not running JRuby—you can
optionally install the hiredis gem. It’s a C driver that is considerably faster than
the native Ruby driver. Just uncomment the %w{hiredis redis/connection/hire-
dis}.each{|r| require r} statement at the top in order to load the driver and then
re-run the script. You may not see a large improvement for this type of CPU-
bound operation, but we highly recommend hiredis for production Ruby use.

You will, however, see a big improvement with pipelinined operations. Here
we batch 1,000 lines at a time and pipeline their insertion. You may see time
reductions of 500 percent or more.

redis/data_dump_pipelined.rb
require 'redis'
#%w{hiredis redis/connection/hiredis}.each{|r| require r}

TOTAL_NUMBER_OF_ENTRIES = ARGV[0].to_i
BATCH_SIZE = 1000

perform a single batch update for each number
def flush(batch)

$redis.pipelined do
batch.each do |n|
key, value = "key#{n}", "value#{n}"
$redis.set(key, value)

end
end
batch.clear

end

$redis = Redis.new(:host => "127.0.0.1", :port => 6379)
$redis.flushall

batch = []
count, start = 0, Time.now

report erratum • discuss

Day 2: Advanced Usage, Distribution • 283

http://media.pragprog.com/titles/pwrdata/code/redis/data_dump_pipelined.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

(1..TOTAL_NUMBER_OF_ENTRIES).each do |n|
count += 1

push integers into an array
batch << n

watch this number fluctuate between 1 and 1000
puts "Batch size: #{batch.length}"

if the array grows to BATCH_SIZE, flush it
if batch.size == BATCH_SIZE

flush(batch)
end

break if count >= TOTAL_NUMBER_OF_ENTRIES
end
flush any remaining values
flush(batch)

puts "#{count} items in #{Time.now - start} seconds"

$ ruby data_dump_pipelined.rb 100000
100000 items in 1.061089 seconds

This reduces the number of Redis connections required, but building the
pipelined dataset has some overhead of its own. You should try it out with
different numbers of batched operations when pipelining in production. For
now, experiment with increasing the number of items and re-run the script
using the hiredis gem for an even more dramatic performance increase.

Redis Cluster
Beyond simple replication, many Redis clients provide an interface for building
a simple ad hoc distributed Redis cluster. The Ruby client supports a consis-
tent-hashing managed cluster.

To get started with building out a managed cluster, we need another server.
Unlike the master-slave setup, both of our servers will take the master (default)
configuration. We copied the redis.conf file and changed the port to 6380. That’s
all that’s required for the servers.

redis/data_dump_cluster.rb
require 'redis'
require 'redis/distributed'

TOTAL_NUMBER_OF_ENTRIES = ARGV[0].to_i

$redis = Redis::Distributed.new([
"redis://localhost:6379/",
"redis://localhost:6380/"

])
$redis.flushall
count, start = 0, Time.now

Chapter 8. Redis • 284

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/data_dump_cluster.rb
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

(1..TOTAL_NUMBER_OF_ENTRIES).each do |n|
count += 1

key = "key#{n}"
value = "value#{n}"

$redis.set(key, value)

break if count >= TOTAL_NUMBER_OF_ENTRIES
end
puts "#{count} items in #{Time.now - start} seconds"

Bridging between two or more servers requires only some minor changes to
our existing data dump client. First, we need to require the redis/distributed file
from the redis gem.

require 'redis/distributed'

Then replace the Redis client with Redis::Distributed and pass in an array of
server URIs. Each URI requires the redis scheme, server (localhost in our case),
and port.

$redis = Redis::Distributed.new([
"redis://localhost:6379/",
"redis://localhost:6380/"

])

Running the client is the same as before.

$ ruby data_dump_cluster.rb 10000
100000 items in 6.614907 seconds

We do see a performance decrease here because a lot more work is being done
by the client, since it handles computing which keys are stored on which
servers. You can validate that keys are stored on separate servers by
attempting to retrieve the same key from each server through the CLI.

$ redis-cli -p 6379 --raw GET key537
$ redis-cli -p 6380 --raw GET key537

Only one client will be able to GET the value of value537. But as long as you
retrieve keys set through the same Redis::Distributed configuration, the client
will access the values from the correct servers.

Bloom Filters
A good way to improve the performance of just about any data retrieval system
is to simply never perform queries that you know are doomed to fail and find
no data. If you know that you dropped your car keys in your house, it’s
senseless to scour your neighbor’s house in search of them. You should start

report erratum • discuss

Day 2: Advanced Usage, Distribution • 285

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

your search operation at home, maybe starting with the couch cushions.
What matters is that you can safely exclude some search avenues that you
know will be fruitless.

A Bloom filter enables you to do something similar with database queries.
These filters are probabilistic data structures that check for the nonexistence
of an item in a set, first covered in Compression and Bloom Filters, on page
71. Although Bloom filters can return false positives, they cannot return a
false negative. This is very useful when you need to quickly discover whether
a value does not exist in a system. If only they made Bloom filters for lost
car keys!

Bloom filters succeed at discovering nonexistence by converting a value to a
very sparse sequence of bits and comparing that to a union of every value’s
bits. In other words, when a new value is added, it is OR’d against the current
Bloom filter bit sequence. When you want to check whether the value is
already in the system, you perform an AND against the Bloom filter’s sequence.
If the value has any true bits that aren’t also true in the Bloom filter’s corre-
sponding buckets, then the value was never added. In other words, this value
is definitely not in the Bloom filter. The following figure provides a graphic
representation of this concept.

To get started writing our own Bloom filter, we need to install a new gem:

$ gem install bloomfilter-rb

Ruby wunderkind Ilya Grigorik created this Redis-backed Bloom filter, but the
concepts are transferable to any language. Let’s have a look at a script that
looks a bit like our previous data dump script but with a few key differences.

For our example here, we’ll download a text file containing the entire text of
Moby Dick from Project Gutenberg3 and assemble a list of all words in the
text (including a lot of repeat words such as “the” and “a”). Then, we’ll loop
through each word, check if it’s already in our Bloom filter, and insert it into
the filter if it isn’t there already.

3. https://www.gutenberg.org/

Chapter 8. Redis • 286

report erratum • discuss

https://www.gutenberg.org/
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis/bloom_filter.rb
require 'bloomfilter-rb'

bloomfilter = BloomFilter::Redis.new(:size => 1000000)
bloomfilter.clear

we'll read the file data and strip out all the non-word material
text_data = File.read(ARGV[0])
clean_text = text_data.gsub(/\n/, ' ').gsub(/[,-.;'?"()!*]/, '')

clean_text.split(' ').each do |word|
word = word.downcase

next if bloomfilter.include?(word)
puts word
bloomfilter.insert(word)

end

puts "Total number of words: #{text_data.length}"
puts "Number of words in filter: #{bloomfilter.size}"

Let’s download the text using cURL and run the script:

$ curl -o moby-dick.txt https://www.gutenberg.org/files/2701/old/moby10b.txt
$ ruby bloom_filter.rb moby-dick.txt > output.txt

Open up the output.txt and scroll through the contents. Each word in this file
has not yet been added to the filter. At the top of the list, you’ll find a lot of
common words like the, a, and but. At the bottom of the list, you’ll see the
word “orphan,” which is the very last word in the Epilogue, which explains
why it hadn’t been added to the filter yet! Some other fairly esoteric words
toward the end include “ixion,” “sheathed,” “dirgelike,” and “intermixingly.”

What essentially happened here is that the more frequently used words were
more likely to get filtered out early, whereas less common words or words
used only once were filtered out later. The upside with this approach is the
ability to detect duplicate words. The downside is that a few false positives
will seep through—the Bloom filter may flag a word we have never seen before.
This is why in a real-world use case you would perform some secondary check,
such as a slower database query to a system of record, which should happen
only a small percentage of the time, presuming a large enough filter size,
which is computable.4

SETBIT and GETBIT

As mentioned earlier, Bloom filters function by flipping certain bits in a sparse
binary field. The Redis Bloom filter implementation we just used takes advantage
of two Redis commands that perform just such actions: SETBIT and GETBIT.

4. http://en.wikipedia.org/wiki/Bloom_filter

report erratum • discuss

Day 2: Advanced Usage, Distribution • 287

http://media.pragprog.com/titles/pwrdata/code/redis/bloom_filter.rb
http://en.wikipedia.org/wiki/Bloom_filter
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Like all Redis commands, SETBIT is fairly descriptive. The command sets a
single bit (either 1 or 0) at a certain location in a bit sequence, starting from
zero. It’s a common use case for high-performance multivariate flagging—it’s
faster to flip a few bits than write a set of descriptive strings.

If we want to keep track of the toppings on a hamburger, we can assign each
type of topping to a bit position, such as ketchup = 0, mustard = 1, onion =
2, lettuce = 3. So, a hamburger with only mustard and onion could be repre-
sented as 0110 and set in the command line:

redis 127.0.0.1:6379> SETBIT my_burger 1 1
(integer) 0
redis 127.0.0.1:6379> SETBIT my_burger 2 1
(integer) 0

Later, a process can check whether my burger should have lettuce or mustard.
If zero is returned, the answer is false—one if true.

redis 127.0.0.1:6379> GETBIT my_burger 3
(integer) 0
redis 127.0.0.1:6379> GETBIT my_burger 1
(integer) 1

The Bloom filter implementation takes advantage of this behavior by hashing
a value as a multibit value. It calls SETBIT X 1 for each on position in an insert()
(where X is the bit position) and verifies existence by calling GETBIT X on the
include?() method—returning false if any GETBIT position returns 0.

Bloom filters are excellent for reducing unnecessary traffic to a slower under-
lying system, be it a slower database, limited resource, or network request.
If you have a slower database of IP addresses and you want to track all new
users to your site, you can use a Bloom filter to first check whether the IP
address exists in your system. If the Bloom filter returns false, you know the
IP address has yet to be added and can respond accordingly. If the Bloom
filter returns true, this IP address may or may not exist on the back end and
requires a secondary lookup to be sure. This is why computing the correct
size is important—a well-sized Bloom filter can reduce (but not eliminate) the
error rate or the likelihood of a false positive.

Day 2 Wrap-Up
Today we rounded out our Redis investigation by moving beyond simple
operations into squeezing every last bit of speed out of an already very fast
system. Redis provides for fast and flexible data structure storage and simple
manipulations as we saw in Day 1, but it’s equally adept at more complex
behaviors by way of built-in publish-subscribe functions and bit operations.

Chapter 8. Redis • 288

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

It’s also highly configurable, with many durability and replication settings
that conform to whatever your needs may be. Finally, Redis also supports
some nice third-party enhancements, such as Bloom filters and clustering.

This concludes major operations for the Redis data structure store. Tomorrow
we’re going to do something a bit different, by using Redis as the cornerstone
of a polyglot persistence setup along with CouchDB and Neo4j.

Day 2 Homework

Find

1. Find out what messaging patterns are, and discover how many Redis can
implement.

2. Read some documentation on Sentinel,5 a system used to manage high-
availability Redis clusters.

Do

1. Run the data dump script with all snapshotting and the append-only file
turned off. Then try running with appendfsync set to always, noting the speed
difference.

2. Using your favorite programming language’s web framework, try to build
a simple URL-shortening service backed by Redis with an input box for
the URL and a simple redirect based on the URL. Back it up with a Redis
master-slave replicated cluster across multiple nodes as your back end.

Day 3: Playing with Other Databases
Today we’re wrapping up our final database chapter by inviting some other
databases from the book to the Redis party. Amongst the databases we’ve
gone over in this book, Redis is the most lightweight and modular, capable
of enhancing just about any complex data setup without imposing a ton of
engineering and ops overhead. Redis will hold a starring role in today’s exercise
by making our interaction with other databases faster and easier.

We’ve learned throughout this book that different databases have different
strengths, so many modern systems have moved toward a polyglot persistence
model, where many databases each play a role in the system. You will learn
how to build one of these projects using CouchDB as the system of record
(the canonical data source), Neo4j to handle data relationships, and Redis

5. http://objectrocket.com/blog/how-to/introduction-to-redis-sentinel

report erratum • discuss

Day 3: Playing with Other Databases • 289

http://objectrocket.com/blog/how-to/introduction-to-redis-sentinel
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

to help with data population and caching. Consider this your final exam for
the book.

Note that our choice of databases for this last project should not be seen as the
authors’ endorsement of any specific set of databases, languages, or frame-
works over another but rather a showcase of how multiple databases can
work together, leveraging the capabilities of each in pursuit of a single goal.

A Polyglot, Persistent Service
Our polyglot persistence service will act as the backend for a web interface
that provides information about bands. We want to store a list of musical
band names, the artists who performed in those bands, and any number of
roles each artist played in the band, from lead singer to backup keytar player
to people who just dance (like the guy in Mighty Mighty Bosstones). Each of
the three databases—Redis, CouchDB, and Neo4j—will handle a different
aspect of our band data management system.

Redis plays three important roles in our system: It assists in populating data
to CouchDB, it acts as a cache for recent Neo4j changes, and it enables quick
lookup for partial value searches. Its speed and ability to store multiple data
formats make it well suited for data population, and its built-in expiry policies
are perfect for handling cached data.

CouchDB is our system of record (SOR), or authoritative data source.
CouchDB’s document structure is an easy way to store band data because
it allows for nested artist and role information, and we will take advantage of
the changes API6 in CouchDB to keep our third data source in sync.

Neo4j is our relationship store. Although querying the CouchDB SOR directly
is perfectly reasonable, a graph database affords us a simplicity and speed
in walking node relationships that other databases have a difficult time
matching. We’ll store relationships between bands, band members, and the
roles the members play.

Each database has a specific role to play in our system, but they don’t natively
communicate with another, which means that we need to build a translation
layer between them. We’ll use Node.js to populate the databases, communicate
between them, and act as a simple front-end server. Because gluing multiple
databases together requires a bit of code, this last day will include much more
code than we have seen so far in this book.

6. http://docs.couchdb.org/en/latest/api/database/changes.html

Chapter 8. Redis • 290

report erratum • discuss

http://docs.couchdb.org/en/latest/api/database/changes.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The Rise of Polyglot Persistence

Like the growing phenomenon of polyglot programming, polyglot persistence is now
well established in most corners of the database universe.

If you are unfamiliar with the practice, polyglot programming is what happens when
a team uses more than one programming language in a single project. Contrast this
with the convention of using one general-purpose language throughout a project or
even an entire company (you may have heard of “Java shops” or “Ruby shops”).
Polyglot programming is useful because each language has different inherent
strengths. A language like Scala may be better suited for large “Big Data” processing
tasks, whereas a language like Ruby may be friendlier for shell scripts. Used together,
they create a synergy. The rise of so-called microservice architectures, in which services
written in different languages interact with each other to form complex, unified sys-
tems, is a logical outcome of polyglot programming.

Similar to its language-centric cousin, polyglot persistence happens when you use
the strengths of many kinds of database in the same system, as opposed to relying
on a single database (often a relational database). A basic variant of this is already
quite common: using a key-value store (such as Redis) that acts as a cache for queries
against a relatively slower relational database (such as PostgreSQL). Relational
models, as we’ve seen in previous chapters, are ill-suited for a growing host of prob-
lems, such as graph traversal. But even these new databases shine only as a few
stars in the full galaxy of requirements.

Why the sudden interest in polyglot everything? Nearly a decade ago, Martin Fowler
noteda that having a single central database that multiple applications could use as a
source of truth was a common pattern in software design. This once-popular database
integration pattern has given way to a middleware layer pattern, where multiple appli-
cations instead communicate to a service layer over HTTP or a lighter protocol, such
as Thrift or Protocol Buffers. This frees up the middleware service itself to rely on any
number of databases or, in the case of polyglot persistence, many types of database.

a. http://martinfowler.com/bliki/DatabaseThaw.html

Population
The first item of business is to populate our databases with the necessary
data. We take a two-phased approach here, by first populating Redis and
then populating our CouchDB SOR. We’ll be using a large dataset holding
information about bands, including the names of those bands, band members,
which role each band member played, and more. This dataset contains a lot
of information, but we’re interested only in extracting the member or artist
name, the group or band name, and their roles in that band stored as a comma-
separated list. For example, John Cooper played in the band Skillet as the
Lead vocalist, Acoustic guitar player, and Bassist.

report erratum • discuss

Day 3: Playing with Other Databases • 291

http://martinfowler.com/bliki/DatabaseThaw.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

First, download the file holding the dataset:

$ curl -O [data-file-url]

Replace [data-file-url] with the URL in the footnote below.7

This file contains a lot of information, but we are interested only in extracting
the member or artist name, the group or band name, and their roles in that band
stored as a comma-separated list. For example, John Cooper played in the
band Skillet as the Lead vocalist, Acoustic guitar player, and Bassist.

/m/0654bxy John Cooper Skillet Lead vocalist,Acoustic guitar,Bass 1996

Ultimately we want to structure John Cooper and the other members of
Skillet into a single CouchDB document like the following, stored at the URL
http://localhost:5984/bands/Skillet:

{
"_id": "Skillet",
"name": "Skillet"
"artists": [

{
"name": "John Cooper",
"role": [

"Acoustic guitar",
"Lead vocalist",
"Bass"

]
},
...
{
"name": "Korey Cooper",
"role": [

"backing vocals",
"Synthesizer",
"Guitar",
"Keyboard instrument"

]
}

]
}

This file contains well over 100,000 band members and more than 30,000
bands. That’s not many, but it’s a good starting point to build your own sys-
tem. Note that not all roles are documented for each artist. This is an
incomplete dataset, but we can deal with that later.

7. https://raw.githubusercontent.com/coderoshi/NCNRCSBuzzSpec/master/group_membership.tsv

Chapter 8. Redis • 292

report erratum • discuss

https://raw.githubusercontent.com/coderoshi/NCNRCSBuzzSpec/master/group_membership.tsv
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Phase 1: Data Transformation

You may wonder why we bother populating Redis and don’t just dive right
into populating CouchDB. Acting as an intermediary, Redis adds structure
to the flat TSV data so that subsequent insertion into another database is
fast. Because our plan is to create a single record per band name, Redis allows
us to make a single pass through our TSV file (which lists the same band for
each band member—each band member is represented in a line). Adding
single members directly to CouchDB for each line in the file can cause update
thrashing, where two band member lines attempt to create/update the same
band document at the same time, forcing the system to reinsert when one of
them fails CouchDB’s version check.

The catch with this strategy is that you’re limited to the constraints of Redis
to hold an entire dataset in RAM—though this limit could be overcome by the
simple consistent-hashing cluster you saw on Day 2.

With our data file in hand, ensure you have Node.js installed as well as the
Node Package Manager (npm). Once that’s all done, we need to install three
NPM projects: redis, csv, and hiredis (the optional Redis C-driver you learned
about on Day 2 that can greatly speed up Redis interactions).

$ npm install hiredis redis csv-parser cradle

Then, check that your Redis server is running on the default port 6379, or
alter each script’s createClient() function to point to your Redis port.

You can populate Redis by running the following Node.js script in the same
directory as your TSV file, which we assume is named group_membership.tsv. (All
of the JavaScript files we’ll look at are fairly verbose, so we don’t show them
in their entirety. All of the code can be downloaded from the Pragmatic
Bookshelf website. Here we’ll just stick to the meat of each file.) Download
and run the following file:

$ node prePopulate.js

This script basically iterates through each line of the TSV and extracts the
artist name, the band name, and the roles they play in that band. Then it
adds those values to Redis (skipping any blank values).

The format of each Redis band key is "band:Band Name". The script will add this
artist name to the set of artist names. So, the key "band:Beatles" will contain
the set of values ["John Lennon", "Paul McCartney", "George Harrison", "Ringo Starr"]. The
artist keys will also contain the band name and similarly contain a set of
roles. "artist:Beatles:Ringo Starr" will contain the set ["Drums"].

report erratum • discuss

Day 3: Playing with Other Databases • 293

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The other code just keeps track of how many lines we’ve processed and outputs
the results to the screen.

redis/prePopulate.js
var stream = csv({

separator: '\t',
newline: '\n'

});

fs.createReadStream(tsvFilename)
.pipe(stream)
.on('data', function(data) {

var
artist = data['member'],
band = data['group'],
roles = buildRoles(data['role']);

if (artist === '' || band === '') {
trackLineCount();
return true;

}

redisClient.sadd('band:' + band, artist);

if (roles.length > 0) {
roles.forEach(function(role) {

redisClient.sadd(`artist:${band}:${artist}`, role);
});

}

trackLineCount();
})
.on('end', function(totalLines) {

console.log(`Total lines processed: ${processedLines}`);
redisClient.quit();

});

You can test that the code has been populating Redis by launching redis-cli
and executing RANDOMKEY. We should expect a key prefixed by band: or artist:…
any value but (nil) is good.

Now that Redis is populated, proceed immediately to the next section. You
could lose data if you turn Redis off, unless you chose to set a higher durabil-
ity than the default or initiated a SAVE command.

Phase 2: SOR Insertion

CouchDB will play the role of our system of record (SOR). If any data conflicts
arise between Redis, CouchDB, or Neo4j, CouchDB wins. A good SOR should
contain all of the data necessary to rebuild any other data source in its
domain.

Chapter 8. Redis • 294

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/prePopulate.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Eric says:

Nonblocking Code
Before starting this book, we were only passingly familiar with writing event-driven
nonblocking applications. Nonblocking means precisely that: rather than waiting for
a long-running process to complete, the main code will continue executing. Whatever
you need to do in response to a blocking event you put inside a function or code block
to be executed later. This can be by spawning a separate thread or, in our case,
implementing a reactor pattern event-driven approach.

In a blocking program, you can write code that queries a database, waits, and loops
through the results.

results = database.some_query()
for value in results

do something with each value
end
this is not executed until after the results are looped...

In an event-driven program, you would pass in the loop as a function/code block.
While the database is doing its thing, the rest of the program can continue running.
Only after the database returns the result does the function/code block get executed.

database.some_query do |results|
for value in results
do something with each value

end
end
this continues running while the database performs its query...

It took us quite some time to realize the benefits here. The rest of the program can
run rather than sitting idle while it waits on the database, sure, but is this common?
Apparently so, because when we began coding in this style, we noticed an order-of-
magnitude decrease in latency.

We try to keep the code as simple as we can, but interacting with databases in a non-
blocking way is an inherently complex process. But as we learned, it’s generally a very
good method when dealing with databases. Nearly every popular programming language
has some sort of nonblocking library. Ruby has EventMachine, Python has Twisted,
Java has the NIO library, C# has Interlace, and, of course, JavaScript has Node.js.

Ensure CouchDB is running on the default port 5984, or change the require
('http').createClient(5984, 'localhost') line in the following code to the port number
you require. Redis should also still be running from the previous section.
Download and run the following file:

$ node populateCouch.js

Because phase 1 was all about pulling data from a TSV and populating Redis,
this phase is all about pulling data from Redis and populating CouchDB. You

report erratum • discuss

Day 3: Playing with Other Databases • 295

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

don’t use any special drivers for CouchDB because it’s a simple REST interface
and Node.js has a simple built-in HTTP library.

In the following block of code, we perform a Redis KEYS bands:* to get a list of
all band names in our system. If we had a really big dataset, we could add
more scoping (for example, bands:A* to get only band names starting with a,
and so on). Then, for each of those bands we fetch the set of artists and
extract the band name from the key by removing the prefix bands: from the
key string.

redis/populateCouch.js
redisClient.keys('band:*', function(err, bandKeys) {

totalBands = bandKeys.length;
var

readBands = 0,
bandsBatch = [];

bandKeys.forEach(function(bandKey) {
// substring of 'band:'.length gives us the band name
var bandName = bandKey.substring(5);
redisClient.smembers(bandKey, function(err, artists) {

Next, we get all of the roles for every artist in this band, which Redis returns
as an array of arrays (each artists role is its own array). You can do this by
batching up Redis SMEMBERS commands into an array called roleBatch and exe-
cuting them in a single MULTI batch. Effectively, that would be executing a
single pipelined request like this:

MULTI
SMEMBERS "artist:Beatles:John Lennon"
SMEMBERS "artist:Beatles:Ringo Starr"

EXEC

From there, a batch of 50 CouchDB documents is made. We build a batch of
50 because we then send the entire set to CouchDB’s /_bulk_docs command,
allowing us very, very fast insertion.

redis/populateCouch.js
redisClient.

multi(roleBatch).
exec(function(err, roles) {

var
i = 0,
artistDocs = [];

// build the artists sub-documents
artists.forEach(function(artistName) {
artistDocs.push({ name: artistName, role : roles[i++] });

});

Chapter 8. Redis • 296

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/populateCouch.js
http://media.pragprog.com/titles/pwrdata/code/redis/populateCouch.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

// add this new band document to the batch to be executed later
bandsBatch.push({
_id: couchKeyify(bandName),
name: bandName,
artists: artistDocs

});

With the population of the bands database, we now have in a single location
all of the data our system requires. We know the names of many bands, the
artists who performed in them, and the roles they played in those bands.

Now would be a good time to take a break and play around with our newly
populated bands system of record in CouchDB at http://localhost:5984/_utils/
database.html?bands.

Relationship Store
Next on the docket is our Neo4j service that we’ll use to track relationships
between artists and the roles they play. We could certainly query CouchDB
outright by creating views, but we are rather limited on complex queries based
on relationships. If Wayne Coyne from the Flaming Lips loses his theremin
before a show, he could ask Charlie Clouser from Nine Inch Nails, who also
plays a theremin. Or we could discover artists who have many overlapping
talents, even if they performed different roles in different bands—all with a
simple node walk.

With our initial data in place, now we need to keep Neo4j in sync with
CouchDB should any data ever change on our system of record. So, we’ll kill
two birds by crafting a service that populates Neo4j with any changes to
CouchDB since the database was created.

We also want to populate Redis with keys for our bands, artists, and roles so
we can quickly access this data later. Happily, this includes all data that
we’ve already populated in CouchDB, thus saving us a separate initial Neo4j
and Redis population step.

Ensure that Neo4j is running on port 7474, or change the appropriate create-
Client() function to use your correct port. CouchDB and Redis should still be
running. Download and run the following file. This file will continue running
until you shut it down.

$ node graphSync.js

This server just uses the continuous polling example we saw in the CouchDB
chapter to track all CouchDB changes. Whenever a change is detected, we
do two things: populate Redis and populate Neo4j. This code populates Redis

report erratum • discuss

Day 3: Playing with Other Databases • 297

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

by cascading callback functions. First it populates the band as "band-name:Band
Name". It follows this pattern for artist name and roles.

This way, we can search with partial strings. For example, KEYS band-name:Bea*
could return this: Beach Boys, Beastie Boys, Beatles, and so on.

redis/graphSync.js
function feedBandToRedis(band) {

redisClient.set(`band-name:${band.name}`, 1);
band.artists.forEach(function(artist) {

redisClient.set(`artist-name:${artist.name}`, 1);
artist.role.forEach(function(role){
redisClient.set(`role-name:${role}`, 1);

The next block is how we populate Neo4j. We created a driver that you can
download as part of this book’s code, named neo4jCachingClient.js. It just uses
Node.js’s HTTP library to connect to the Neo4j REST interface with a bit of
rate-limiting built in so the client doesn’t open too many connections at once.
Our driver also uses Redis to keep track of changes made to the Neo4j graph
without having to initiate a separate query. This is our third separate use for
Redis—the first being as a data transformation step for populating CouchDB,
and the second we just saw earlier, to quickly search for band values.

This code creates band nodes (if they need to be created), then artist nodes
(if they need to be created), and then roles. Each step along the way creates
a new relationship, so The Beatles node will relate to John, Paul, George, and
Ringo nodes, who in turn each relate to the roles they play.

redis/graphSync.js
function feedBandToNeo4j(band, progress) {

var
lookup = neo4jClient.lookupOrCreateNode,
relate = neo4jClient.createRelationship;

lookup('bands', 'name', band.name, 'Band', function(bandNode) {
progress.emit('progress', 'band');
band.artists.forEach(function(artist) {
lookup('artists', 'name', artist.name, 'Artist', function(artistNode) {

progress.emit('progress', 'artist');
relate(bandNode.metadata.id, artistNode.self, 'member', function() {

progress.emit('progress', 'member');
});
artist.role.forEach(function(role){

lookup('roles', 'role', role, 'Role', function(roleNode) {
progress.emit('progress', 'role');
relate(artistNode.metadata.id, roleNode.self, 'plays', function() {

progress.emit('progress', 'plays');

Chapter 8. Redis • 298

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/graphSync.js
http://media.pragprog.com/titles/pwrdata/code/redis/graphSync.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Let this service keep running in its own window. Every update to CouchDB
that adds a new artist or role to an existing artist will trigger a new relationship
in Neo4j and potentially new keys in Redis. As long as this service runs, they
should be in sync.

Open your CouchDB web console and open a band. Make any data change
you want to the database: add a new band member (make yourself a member
of the Beatles!), or add a new role to an artist. Keep an eye on the graphSync
output. Then fire up the Neo4j console and try finding any new connections
in the graph. If you added a new band member, they should now have a
relationship with the band node or new role if that was altered. The current
implementation does not remove relationships—though it would not be a
complete modification to add a Neo4j DELETE operation to the script.

The Service
This is the part we’ve been building up to. We’re going to create a simple web
application that allows users to search for a band. Any band in the system
will list all of the band members as links, and any clicked band member link
will list some information about the artist—namely, the roles they play. In
addition, each role the artist plays will list every other artist in the system
who also plays that role.

For example, searching for Led Zeppelin would give you Jimmy Page, John
Paul Jones, John Bonham, and Robert Plant. Clicking Jimmy Page will list
that he plays guitar and also many other artists who play guitar, like The
Edge from U2.

To simplify our web app creation a bit, we’ll need two more node packages:
bricks (a simple web framework) and mustache (a templating library).

$ npm install bricks mustache neo4j-driver

As in the previous sections, ensure you have all of the databases running,
and then start up the server. Download and run the following code:

$ node band.js

The server is set to run on port 8080, so if you point your browser to
http://localhost:8080/, you should see a simple search form.

Let’s take a look at the code that will build a web page that lists band infor-
mation. Each URL performs a separate function in our little HTTP server. The
first is at http://localhost:8080/band and accepts any band name as a parameter.

report erratum • discuss

Day 3: Playing with Other Databases • 299

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

redis/bands.js
appServer.addRoute("^/band$", function(req, res) {

var
bandName = req.param('name'),
bandNodePath = couchUtil.couchKeyify(bandName),
membersCypherQuery =
`MATCH (Band {name: "${bandName}"})-[:member*1..3]-(b:Band)` +
`RETURN DISTINCT b LIMIT 10`;

getCouchDoc(bandNodePath, res, function(couchDoc) {
var artists = couchDoc && couchDoc['artists'];

cypher(membersCypherQuery, function(bandsGraphData) {
var bands = [];
bandsGraphData.data.forEach(function(band) {

bands.push(band[0].data.name);
});

var values = { band: bandName, artists: artists, bands: bands };

var template = `
<h2>{{band}} Band Members</h2>

{{#artists}}
{{name}}
{{/artists}}

<h3>You may also like</h3>

{{#bands}}
{{.}}
{{/bands}}

`;

writeTemplate(res, template, values);
});

If you enter the band Nirvana in the search form, your URL request will be
http://localhost:8080/band?name=Nirvana. This function will render an HTML page
(the overall template is in an external file named template.html). This web page
lists all artists in a band, which it pulls directly from CouchDB. It also lists
some suggested bands, which it retrieves from a Gremlin query against the
Neo4j graph. The Gremlin query is like this for Nirvana:

g.V.filter{it.name=="Nirvana"}.out("member").in("member").dedup.name

Or in other words, from the Nirvana node, get all unique names whose
members are connected to Nirvana members. For example, Dave Grohl played
in Nirvana and the Foo Fighters, so Foo Fighters will be returned in this list.

Chapter 8. Redis • 300

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/bands.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

The next action is the http://localhost:8080/artist URL. This page will output infor-
mation about an artist.

redis/bands.js
appServer.addRoute("^/artist$", function(req, res) {

var
artistName = req.param('name'),
rolesCypherQuery = `MATCH (Artist {name: "${artistName}"})` +
`-[:plays]-(r:Role) RETURN r`,

bandsCypherQuery = `MATCH (Artist {name: "${artistName}"})` +
`-[:member]-(b:Band) RETURN b`;

cypher(rolesCypherQuery, function(rolesGraphData) {
cypher(bandsCypherQuery, function(bandsGraphData) {

var
roles = [],
bands = [];

rolesGraphData.data.forEach(function(role) {
roles.push(role[0].data.role);

});

bandsGraphData.data.forEach(function(band) {
bands.push(band[0].data.name);

});

var values = { artist: artistName, roles: roles, bands: bands };

var template = `
<h3>{{artist}} Performs these Roles</h3>

{{#roles}}
{{.}}
{{/roles}}

<h3>Play in Bands</h3>

{{#bands}}
{{.}}
{{/bands}}

`;
writeTemplate(res, template, values);

});
});

Two Gremlin queries are executed here. This first outputs all roles a member
plays, and the second is a list of bands that person played in. For example,
Jeff Ward (http://localhost:8080/artist?name=Jeff%20Ward) would be listed as playing
the role Drummer and in the bands Nine Inch Nails and Ministry.

report erratum • discuss

Day 3: Playing with Other Databases • 301

http://media.pragprog.com/titles/pwrdata/code/redis/bands.js
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

A cool feature of the previous two pages is that we render links between these
values. The artist list in the /bands page links to the chosen /artist page, and
vice versa. But we could make searching a bit easier.

redis/bands.js
appServer.addRoute("^/search$", function(req, res) {

var query = req.param('term');

redisClient.keys(`band-name:${query}*`, function(error, keys) {
var bands = [];
keys.forEach(function(key){
bands.push(key.replace("band-name:", ''));

});
res.write(JSON.stringify(bands));
res.end();

Here we just pull all keys from Redis that match the first part of the string,
such as "Bea*" as described previously. The function then outputs the data as
JSON. The template.html file links to the jQuery code necessary to make this
function as an autocomplete feature on the rendered search box.

Expanding the Service

This is a fairly little script for all of the bare-bones work we’re doing here. You
may find many places you want to extend. Notice that the band suggestion
is only first-order bands (bands the current band’s members have performed
in); you can get interesting results by writing a query to traverse second-order
bands, like this: g.V.filter{it.name=='Nine Inch Nails'}.out('member').in('member').dedup.
loop(3){ it.loops <= 2 }.name.

You may also note that we do not have a form where someone can update
band information. Adding this functionality could be fairly simple because
we already wrote CouchDB population code in the populateCouch.js script, and
populating CouchDB will automatically keep Neo4j and Redis eventually
consistent as long as the graph_sync.js service is running.

If you enjoy playing with this kind of polyglot persistence, you could take this
even further. You could add a PostgreSQL data warehouse8 to transform this
data into a star schema—allowing for different dimensions of analysis, such as
most commonly played instrument or average numbers of total members in a
band vs. total instruments. You could add a CouchDB server to store information
about the music associated with each band, an HBase server to build a messag-
ing system that enables users to keep track of their historical likes/dislikes,
or a MongoDB extension to add a geographic element to this service.

8. http://en.wikipedia.org/wiki/Data_warehouse

Chapter 8. Redis • 302

report erratum • discuss

http://media.pragprog.com/titles/pwrdata/code/redis/bands.js
http://en.wikipedia.org/wiki/Data_warehouse
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Or, redesign this project entirely with a different language, web framework,
or dataset. There are as many opportunities to extend this project as there
are combinations of databases and technologies to create it—a Cartesian
product of all open source.

Day 3 Wrap-Up
Today was a big day—so big, in fact, we wouldn’t be surprised if it took several
days to complete. But this is a little taste of the future of data management
systems, as the world strolls away from the one large relational database model
to a several specialized databases model. We also glued these databases together
with some nonblocking code, which, though not a focus of this book, also
seems to be where database interaction is headed in the development space.

The importance of Redis in this model should not be missed. Redis certainly
doesn’t provide any functionality these databases don’t supply individually, but
it does supply speedy data structures. We were able to organize a flat file into
a series of meaningful data structures, which is an integral part of both data
population and transportation. And it did this in a fast and simple-to-use way.

Even if you’re not sold on the whole polyglot persistence model, you should
certainly consider Redis for any system.

Day 3 Homework

Do

1. Alter the importer steps to also track a band member’s start and end
dates with the band. Track that data in the artist’s CouchDB subdocu-
ment. Display this information on the artist’s page.

2. Add MongoDB into the mix by storing a few music samples into GridFS,
whereby users can hear a song or two related to a band. If any song exists
for a band, add a link to the web app.

Wrap-Up
The Redis key-value (or data structure) store is light and compact, with a
variety of uses. It’s akin to one of those multitools composed of a knife, can
opener, and other bits and bobs like a corkscrew—Redis is good to have
around for solving a variety of odd tasks. Above all, Redis is fast, simple, and
as durable as you choose. While rarely a standalone database, Redis is a
perfect complement to any polyglot ecosystem as an ever-present helper for
transforming data, caching requests, or managing messages by way of its
blocking commands.

report erratum • discuss

Wrap-Up • 303

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Redis’s Strengths
The obvious strength of Redis is speed, like so many key-value stores of its
ilk. But more than most key-value stores, Redis provides the ability to store
complex values such as lists, hashes, and sets, and retrieve them based on
operations specific to those datatypes. Beyond even a data structure store,
however, Redis’s durability options allow you to trade speed for data safety
up to a fairly fine point. Built-in master-slave replication is another nice way
of ensuring better durability without requiring the slowness of syncing an
append-only file to disk on every operation. Additionally, replication is great
for very high-read systems.

Redis’s Weaknesses
Redis is fast largely because it resides in memory. Some may consider this
cheating because, of course, a database that never hits the disk will be fast.
A main memory database has an inherent durability problem; namely, if you
shut down the database before a snapshot occurs, you can lose data. Even
if you set the append-only file to disk sync on every operation, you run a risk
with playing back expiry values because time-based events can never be
counted on to replay in exactly the same manner—though, in fairness, this
case is more hypothetical than practical.

Redis also does not support datasets larger than your available RAM (Redis
is removing virtual memory support), so its size has a practical limitation.
Although there is a Redis Cluster currently in development to grow beyond
a single machine’s RAM requirements, anyone wanting to cluster Redis must
currently roll their own with a client that supports it (like the Ruby driver we
used in Day 2).

Parting Thoughts
Redis is chock-full of commands—more than 120 of them. Most commands are
straightforward enough to understand by their names alone, once you get used
to the idea that seemingly random letters will be removed (for example, INCRBY)
or that mathematical precision can sometimes be more confusing than helpful
(for example, ZCOUNT, or sorted set count, vs. SCARD, or set cardinality).

Redis is already becoming an integral part of many systems. Several open
source projects rely on Redis, from Resque, a Ruby-based asynchronous job
queueing service, to session management in the Node.js project SocketStream.
Regardless of the database you choose as your SOR, you should certainly
add Redis to the mix.

Chapter 8. Redis • 304

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

CHAPTER 9

Wrapping Up
Now that we’ve made it through the databases, congratulations are in order!
We hope that you’ve gained an appreciation for these seven challenging
databases and their unique worldviews. If you use one in a project, we’ll be
happy. And if you decide to use multiple databases, as you saw at the end of
the Redis chapter, we’ll be ecstatic. We believe that the future of data man-
agement lies in the polyglot persistence model (using more than one database
in a project), while the approach that sees a single general-purpose RDBMS
as the only available design pattern slowly drifts away.

Let’s take this opportunity to see where our seven databases fit together in
the greater database ecosystem. By this point, we have explored the details
of each and mentioned a few commonalities and differences. You’ll see how
they contribute to the vast and expanding landscape of data storage options.

Genres Redux
You’ve seen that how databases store their data can be largely divided into
five genres: relational, key-value, columnar, document, and graph. Let’s take
a moment and recap their differences and see what each style is good for and
not so good for—when you’d want to use them and when to avoid them.

Relational
This is the most common classic database pattern. Relational database
management systems (RDBMSs) are set-theory-based systems implemented
as two-dimensional tables with rows and columns. Relational databases
strictly enforce type and are generally numeric, strings, dates, and uninter-
preted blobs, but as you saw, PostgreSQL provides extensions such as array
or cube.

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Good For:

Because of the structured nature of relational databases, they make sense
when the layout of the data is known in advance but how you plan to use
that data later may not be. Or, in other words, you pay the organizational
complexity up front to achieve query flexibility later. Many business problems
are aptly modeled this way, from orders to shipments and from inventory to
shopping carts. You may not know in advance how you’ll want to query the
data later—how many orders did we process in February?—but the data is
quite regular in nature, so enforcing that regularity is helpful.

Not-So-Good For:

When your data is highly variable or deeply hierarchical, relational databases
aren’t the best fit. Because you must specify a schema up front, data problems
that exhibit a high degree of record-to-record variation will be problematic.
Consider developing a database to describe all the creatures in nature. Creat-
ing a full list of all features to account for (hasHair, numLegs, laysEggs, and
so on) would be intractable. In such a case, you’d want a database that places
fewer restrictions in advance on what you can put into it.

Key-Value
The key-value (KV) store was the simplest model we covered. KV maps simple
keys—sometimes to simple values like strings, and sometimes to more complex
values, like a huge hashtable. Because of their relative simplicity, this genre
of database has the most flexibility of implementation. Hash lookups are fast,
so in the case of Redis, speed was its primary concern. Hash lookups are also
easily distributed, and so DynamoDB took advantage of this in its partitioning
scheme. Of course, its simplicity can be a downside for any data with strict
or complex modeling requirements.

Good For:

With little or no need to maintain indexes, key-value stores are often designed
to be horizontally scalable, extremely fast, or both. They’re particularly suited
for problems where the data are not highly related. For example, in a web
application, users’ session data meet this criteria; each user’s session activity
will be different and largely unrelated to the activity of other users.

Not-So-Good For:

Often lacking indexes and scanning capabilities, KV stores won’t help you if
you need to be able to perform queries on your data, other than basic CRUD
operations (Create, Read, Update, Delete).

Chapter 9. Wrapping Up • 306

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Columnar
Columnar databases (aka column-oriented or column family) share many
similarities with both KV and RDBMS stores. As with a key-value database,
values are queried by matching keys. Like relational, their values are groups
of zero or more columns, though each row is capable of populating however
many it wants. Unlike either, columnar databases store like data by columns,
rather than keeping data together by rows. Columns are inexpensive to add,
versioning is trivial, and there is no real storage cost for unpopulated values.
You saw how HBase is a classic implementation of this genre.

Good For:

Columnar databases have been traditionally developed with horizontal scala-
bility as a primary design goal. As such, they’re particularly suited to “Big
Data” problems, living on clusters of tens, hundreds, or thousands of nodes.
They also tend to have built-in support for features such as compression and
versioning. The canonical example of a good columnar data storage problem
is indexing web pages. Pages on the web are highly textual (which means that
they benefit from compression), they tend to be somewhat interrelated, and
they change over time (which means that they benefit from versioning).

Not-So-Good For:

Different columnar databases have different features and therefore different
drawbacks. But one thing they have in common is that it’s best to design
your schema based on how you plan to query the data. This means you should
have some idea in advance of how your data will be used, not just what it’ll
consist of. If data usage patterns can’t be defined in advance—for example,
fast ad hoc reporting—then a columnar database may not be the best fit.

Document
Document databases allow for any number of fields per object and even allow
objects to be nested to any depth as values of other fields. The common rep-
resentation of these objects is as JavaScript Object Notation (JSON), adhered
to by both MongoDB and CouchDB—though this is by no means a conceptual
requirement. Because documents don’t relate to each other like relational
databases, they are relatively easy to shard and replicate across several
servers, making distributed implementations fairly common. MongoHQ tends
to tackle availability by supporting the creation of datacenters that manage
huge datasets for the web. Meanwhile, CouchDB focuses on being simple and
durable, where availability is achieved by master-master replication of fairly
autonomous nodes. There is high overlap between these projects.

report erratum • discuss

Genres Redux • 307

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Good For:

Document databases are suited to problems involving highly variable domains.
When you don’t know in advance what exactly your data will look like, docu-
ment databases are a good bet. Also, because of the nature of documents,
they often map well to object-oriented programming models. This means less
impedance mismatch when moving data between the database model and
application model.

Not-So-Good For:

If you’re used to performing elaborate join queries on highly normalized rela-
tional database schemas, you’ll find the capabilities of document databases
lacking. A document should generally contain most or all of the relevant
information required for normal use. So while in a relational database you’d
naturally normalize your data to reduce or eliminate copies that can get out
of sync, with document databases, denormalized data is the norm.

Graph
Graph databases are an emerging class of database that focuses more on the
interrelation between data nodes than on the actual values stored in those
nodes. Neo4j, our open source example, is growing in popularity for many
social network applications. Unlike other database styles that group collections
of like objects into common buckets, graph databases are more free-form—
queries consist of following edges shared by two nodes or, aka traversing nodes.
As more projects use them, graph databases are growing the straightforward
social examples to occupy more nuanced use cases, such as recommendation
engines, access control lists, and geographic data.

Good For:

Graph databases seem to be tailor-made for networking applications. The pro-
totypical example is a social network, where nodes represent users who have
various kinds of relationships to each other. Modeling this kind of data using
any of the other styles is often a tough fit, but a graph database would accept
it with relish. They are also perfect matches for an object-oriented system. If
you can model your data on a whiteboard, you can model it in a graph.

Not-So-Good For:

Because of the high degree of interconnectedness between nodes, graph
databases are generally not suitable for network partitioning. Spidering the
graph quickly means you can’t afford network hops to other database nodes,
so graph databases don’t scale out well. It’s likely that if you use a graph

Chapter 9. Wrapping Up • 308

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

database, it’ll be one piece of a larger system, with the bulk of the data stored
elsewhere and only the relationships maintained in the graph.

Making a Choice
As we said at the beginning, data is like oil. We sit upon a vast ocean of data,
yet until it’s refined into information, it’s unusable (and with a more crude
comparison, no pun intended, there’s a lot of money in data these days). The
ease of collecting and ultimately storing, mining, and refining the data out
there starts with the database you choose.

Deciding which database to choose is often more complex than merely consid-
ering which genre maps best to a given domain’s data. Though a social graph
may seem to clearly function best with a graph database, if you’re Facebook,
you simply have far too much data to choose one. You are more likely going
to choose a “Big Data” implementation, such as HBase or DynamoDB. This
will force your hand into choosing a columnar or key-value store. In other
cases, though you may believe a relational database is clearly the best option
for bank transactions, it’s worth knowing that Neo4j also supports ACID
transactions, expanding your options.

These examples serve to point out that there are other avenues beyond genre
to consider when choosing which database—or databases—best serve your
problem scope. As a general rule, as the size of data increases, the capacity
of certain database styles wane. Column-oriented database implementations
are often built to scale across datacenters and support the largest “Big Data”
sets, while graphs generally support the smallest. This is not always the case,
however. DynamoDB is a large-scale key-value store meant to automatically
shard data across hundreds or thousands of nodes without any need for user
administration, while Redis was built to run on one—with the possibility of
a few master-slave replicas or client-managed shards.

There are several more dimensions to consider when choosing a database, such
as durability, availability, consistency, scalability, and security. You have to
decide whether ad hoc queryability is important or if mapreduce will suffice.
Do you prefer to use an HTTP/REST interface, or are you willing to require
a driver for a custom binary protocol? Even smaller scope concerns, such as
the existence of bulk data loaders, might be important for you to think about.

Where Do We Go from Here?
Scaling problems associated with modern applications now fall largely in the
realm of data management. We have reached a point in the evolution of

report erratum • discuss

Making a Choice • 309

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

applications where the choice of framework, operating system, programming
language, and so on matters less than ever. Hardware and storage get
cheaper by the day and tools like virtual machines, the cloud, and containers
make interoperation between servers and runtime operations ever more
seamless, to the point where once-epochal decisions about languages and
platforms are often driven as much by preference as by necessity.

But for reasons we‘ve laid out throughout this book, database choices are
different. Someday those choices may revolve around whims and preferences,
but we won‘t get there for quite some time. If you want to scale your applica-
tion in this day and age, you should think long and hard about which
database, or databases, you choose, as that aspect of your application could
end up being more of a bottleneck and break point than the languages, plat-
forms, operating systems, and other tools you use. One of the core purposes
of this book was to help you make this choice wisely.

Although the book has come to a close, we trust your interest in polyglot
persistence and the world of non-relational databases is wide open. The next
steps from here are to pursue in detail the databases that piqued your interest
or continue learning about other NoSQL options, such as Cassandra,
ArangoDB, Titan, or Google Cloud Datastore.

It’s time to get your hands dirty.

Chapter 9. Wrapping Up • 310

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

APPENDIX 1

Database Overview Tables
This book contains a wealth of information about each of the seven databases
we discuss: PostgreSQL, HBase, MongoDB, CouchDB, Neo4j, DynamoDB,
and Redis. In the pages that follow, you’ll find tables that tally up these
databases along a number of dimensions to present an overview of what’s
covered in more detail elsewhere in the book. Although the tables are not a
replacement for a true understanding, they should provide you with an at-a-
glance sense of what each database is capable of, where it falls short, and
how it fits into the modern database landscape.

Data RelationsDatatypesVersionGenre

PredefinedPredefined
and typed

9.1RelationalPostgreSQL

NonePredefined
and typed

1.4.1ColumnarHBase

NoneTyped3.6DocumentMongoDB

NoneTyped2.1.1DocumentCouchDB

Ad hoc
(Edges)

Untyped3.1.4
Enterprise

GraphNeo4j

Predefined
tables (plus

TypedAPI version
2012-08-10

Key-value (or
“key-value plus,”

DynamoDB

support for arbi-
trary fields)

for reasons
explained in
chapter 7)

NoneSemi-typed4.0Key-valueRedis

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

HTTP/REST
Interface
Protocol

Written in
Language

Standard
Object

NoCustom over
TCP

CTablePostgreSQL

YesThrift, HTTPJavaColumnsHBase

SimpleCustom over
TCP

C++JSONMongoDB

YesHTTPErlangJSONCouchDB

YesHTTPJavaHashNeo4j

YesJSON over
HTTP

UnknownTableDynamoDB

NoSimple text
over TCP

C/C++StringRedis

DurabilityScalableMapreduceAd Hoc Query

ACIDCluster (via
add-ons)

NoSQLPostgreSQL

Write-ahead
logging

DatacenterHadoopWeakHBase

Write-ahead
journaling,
Safe mode

DatacenterJavaScriptCommands,
mapreduce

MongoDB

Crash-onlyDatacenter
(via BigCouch)

JavaScriptTemporary
views

CouchDB

ACIDCluster (via
HA)

No (in the
distributed
sense)

Graph walk-
ing, Cypher,
search

Neo4j

ACIDMulti-datacen-
ter

NoLimited range
of SQL-style
queries

DynamoDB

Append-only
log

Cluster (via
master-slave)

NoCommandsRedis

Appendix 1. Database Overview Tables • 312

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Very Large
FilesBulk LoadVersioning

Secondary
Indexes

BLOBsCOPY
command

NoYesPostgreSQL

NoNoYesNoHBase

GridFSmongoimportNoYesMongoDB

AttachmentsBulk Doc APIYesYesCouchDB

NoNoNoYes (via
Lucene)

Neo4j

Lewak
(deprecated)

NoYesYesDynamoDB

NoNoNoNoRedis

ConcurrencyShardingReplication
Requires
Compaction

Table/row
writer lock

Add-ons (e.g.,
PL/Proxy)

Master-slaveNoPostgreSQL

Consistent per
row

Yes via HDFSMaster-slaveNoHBase

Write lockYesMaster-slave
(via replica
sets)

NoMongoDB

Lock-free
MVCC

Yes (with
filters in
BigCouch)

Master-masterFile rewriteCouchDB

Write lockNoMaster-slave
(in Enterprise
Edition)

NoNeo4j

Vector-clocksYesPeer-based,
master-master

NoDynamoDB

NoneAdd-ons (e.g.,
client)

Master-slaveSnapshotRedis

report erratum • discuss

Appendix 1. Database Overview Tables • 313

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

MultitenancySecurityTriggersTransactions

YesUsers/groupsYesACIDPostgreSQL

NoKerberos via
Hadoop
security

NoYes (when
enabled)

HBase

YesUsersNoNoMongoDB

YesUsersUpdate
validation or
Changes API

NoCouchDB

NoNoneTransaction
event handlers

ACIDNeo4j

NoNonePre/post-
commits

NoDynamoDB

NoPasswordsNoMulti opera-
tion queues

Redis

WeaknessesMain Differentiator

Distributed availabilityBest of OSS RDBMS modelPostgreSQL

Flexible growth, query-abilityVery large-scale, Hadoop
infrastructure

HBase

Embed-abilityEasily query Big DataMongoDB

Query-abilityDurable and embeddable
clusters

CouchDB

BLOBs or terabyte scaleFlexible graphNeo4j

Query-abilityHighly availableDynamoDB

Complex dataVery, very fastRedis

Appendix 1. Database Overview Tables • 314

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

APPENDIX 2

The CAP Theorem
Understanding the five database genres is important when deciding on which
database to use in a particular case, but there’s one other major thing that
you should always bear in mind. A recurring theme in this book has been
the CAP theorem, which lays bare an unsettling truth about how distributed
database systems behave in the face of network instability.

CAP proves that you can create a distributed database that can have one or
more of the following qualities: It can be consistent (writes are atomic and all
subsequent requests retrieve the new value), available (the database will
always return a value as long as a single server is running), and/or partition
tolerant (the system will still function even if server communication is tem-
porarily lost—that is, a network partition). But the catch is that any given
system can be at most two of these things at once, and never all three.

In other words, you can create a distributed database system that is consistent
and partition tolerant (a “CP” system), a system that is available and partition
tolerant (an “AP” system), or a system that is consistent and available (the
much more rare CA system that is not partition tolerant—which basically
means not distributed). Or a system can have only one of those qualities (this
book doesn’t cover any databases like that, and you’re unlikely to encounter
such a database in wide use). But at the end of the day it simply isn’t possible
to create a distributed database that is consistent and available and partition
tolerant at the same time, and anyone who says that they’ve “solved CAP” is
saying that they’ve defied the laws of physics and thus should not be trusted.

The CAP theorem is pertinent when considering a distributed database because
it forces you to decide what you are willing to give up. The database you choose
will lose either availability or consistency. Partition tolerance is strictly an
architectural decision (depending on whether you want a distributed database).
It’s important to understand the CAP theorem to fully grok your options. The

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

trade-offs made by the database implementations in this book are largely
influenced by it.

A CAP Adventure, Part I: CAP

Imagine the world as a giant distributed database system. All of the land in the world
contains information about certain topics, and as long as you’re somewhere near
people or technology, you can find an answer to your questions.

Now, for the sake of argument, imagine you are a passionate Beyoncé fan and the
date is September 5, 2016. Suddenly, while at your friend’s beach house party cele-
brating the release of Beyoncé’s hot new studio album, a freak tidal wave sweeps
across the dock and drags you out to sea. You fashion a makeshift raft and wash up
on a desert island days later. Without any means of communication, you are effectively
partitioned from the rest of the system (the world). There you wait for five long years...

One morning in 2021, you are awakened by shouts from the sea. A salty old schooner
captain has discovered you! After five years alone, the captain leans over the bow
and bellows: “How many studio albums does Beyoncé have?”

You now have a decision to make. You can answer the question with the most recent
value you have (which is now five years old). If you answer his query, you are available.
Or, you can decline to answer the question, knowing that because you are partitioned,
your answer may not be consistent with the current state of the world. The captain
won’t get his answer, but the state of the world remains consistent (if he sails back
home, he can get the correct answer). In your role of queried node, you can either
help keep the world’s data consistent or be available, but not both.

Eventual Consistency
Distributed databases must be partition tolerant, so the choice between
availability and consistency can be difficult. However, while CAP dictates that
if you pick availability you cannot have true consistency, you can still provide
eventual consistency.

The idea behind eventual consistency is that each node is always available
to serve requests. As a trade-off, data modifications are propagated in the
background to other nodes. This means that at any time the system may be
inconsistent, but the data is still largely accurate.

The Internet’s Domain Name Service (DNS) is a prime example of an eventually
consistent system. You register a domain, and it may take a few days to
propagate to all DNS servers across the Internet. But at no time is any partic-
ular DNS server unavailable (assuming you can connect to it, that is).

Appendix 2. The CAP Theorem • 316

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

A CAP Adventure, Part II: Eventual Consistency

Let’s rewind two years, back to 2009. You’ve been on the island for three years at
this point, and you spot a bottle in the sand—precious contact with the outside world.
You uncork it and rejoice! You’ve just received an integral piece of knowledge…

The number of studio albums Beyoncé has is of utmost importance to the world’s
aggregate knowledge. It’s so important, in fact, that every time she releases a new
album, someone writes the current date and the number on a piece of paper. They
place that paper in a bottle and throw it out to sea. If someone, like yourself, is par-
titioned from the rest of the world on a desert island, they can eventually have the
correct answer.

Skip forward to the present. When the ship captain asks, “How many studio albums
does Beyoncé have?” you remain available and answer “three.” You may be inconsistent
with the rest of the world, but you are reasonably certain of your answer, having not
yet received another bottle.

The story ends with the captain rescuing you, and you return home to find her new
album and live happily ever after. As long as you remain on land, you needn’t be
partition tolerant and can remain consistent and available until the end of your days.

CAP in the Wild
The databases in this book largely occupy one corner or another of the CAP
trade-off triangle. Redis, PostgreSQL, and Neo4J are consistent and available
(CA); they don’t distribute data and so partitioning is not an issue (though
arguably, CAP doesn’t make much sense in non-distributed systems). MongoDB
and HBase are generally consistent and partition tolerant (CP). In the event of
a network partition, they can become unable to respond to certain types of
queries (for example, in a Mongo replica set you flag slaveok to false for reads).
In practice, hardware failure is handled gracefully—other still-networked nodes
can cover for the downed server—but strictly speaking, in the CAP theorem
sense, they are unavailable. Finally, CouchDB is available and partition tolerant
(AP). Even though two or more CouchDB servers can replicate data between
them, CouchDB doesn’t guarantee consistency between any two servers.

It’s worth noting that most of these databases can be configured to change
CAP type (Mongo can be CA, CouchDB can be CP), but here we’ve noted their
default or common behaviors.

The Latency Trade-Off
There is more to distributed database system design than CAP, however. For
example, low latency (speed) is a chief concern for many architects. If you read

report erratum • discuss

CAP in the Wild • 317

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

the Amazon Dynamo1 paper, you’ll notice a lot of talk about availability but
also Amazon’s latency requirements. For a certain class of applications, even
a small latency change can translate to a large costs. Yahoo’s PNUTS database
famously gives up both availability on normal operation and consistency on
partitions in order to squeeze a lower latency out of its design.2 It’s important
to consider CAP when dealing with distributed databases, but it’s equally
important to be aware that distributed database theory does not stop there.

1. http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
2. http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

Appendix 2. The CAP Theorem • 318

report erratum • discuss

http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Bibliography

[Tat10] Bruce A. Tate. Seven Languages in Seven Weeks. The Pragmatic Bookshelf,
Raleigh, NC, 2010.

report erratum • discuss

http://pragprog.com/titles/pwrdata/errata/add
http://forums.pragprog.com/forums/pwrdata

Index

SYMBOLS
! (exclamation point), regular

expressions in PostgreSQL
queries, 39

% (percent sign), wildcard in
PostgreSQL, 22, 38

' (apostrophe), escaping in
PostgreSQL, 22

* (asterisk)
Cypher, 197
regular expressions in

PostgreSQL queries, 39

--> operator, Cypher, 186

. (dot operator), nesting in
MongoDB, 101, 113

: (colon)
in HBase, 58, 61
Redis hashes, 263

< operator, DynamoDB, 226

<= operator, DynamoDB, 226

<> operator, Cypher, 186

= operator, DynamoDB, 226

> operator, DynamoDB, 226

>= operator, DynamoDB, 226

@> (cube operator), Post-
greSQL, 48

@@ full-text query operator,
PostgreSQL, 41

\?, PostgreSQL commands, 11

_ (underscore), wildcard in
PostgreSQL, 38

~ (tilde), regular expressions
in PostgreSQL queries, 39

A
abs(), Cypher, 188

absolute values, Cypher, 188

abstract syntax trees, Post-
greSQL, 32

access key, AWS, 83, 218

ACID compliance
defined, 26
Neo4j, 202
PostgreSQL, 26

$addToSet, MongoDB, 105

admins, in CouchDB, 137

Adobe, 93, 212

aggregate, Redis, 270

aggregate functions, Post-
greSQL, 22–25

aggregate queries, MongoDB,
115–117, 130

aggregate unions, Redis, 270

aggregate(), MongoDB, 115–
117, 130

Airbnb, 55, 212

alarm, AWS usage, 83

algebra, relational, 12

aliasing, table names in Post-
greSQL, 16

$all, MongoDB, 103

allPaths, Neo4j, 192

allSimplePaths, Neo4j, 192

_all_docs, CouchDB, 145, 149

alter, HBase, 63

ALTER TABLE, PostgreSQL, 31

always option, append-only file
in Redis, 279

Amazon, see also AWS; Dy-
namoDB

Data Pipeline service,
250–254

Dynamo, 214, 216, 317
Redshift, 257

Amazon Web Services,
see AWS; DynamoDB

Apache, see also CouchDB;
Hadoop; HBase

Hive, 55
Kafka, 238
Pig, 55
Spark, 89

apostrophe ('), escaping in
PostgreSQL, 22

append-only file, Redis, 279,
304

append-only storage model,
CouchDB, 135

appendfsync, Redis, 289

appendonly.aof file, Redis, 279,
304

Apple, 55

applications
Hadoop flag, 85
nonblocking, 295
offline-friendly, 136

--applications option, 85

apt-get, xi, 94

arbiterOnly(), MongoDB, 127

arbiters, MongoDB servers,
127

ARGF stream, 155

ARN, AWS security roles, 242

arrays
converting Java argu-

ments to in HBase, 65
nesting in MongoDB,

100–104, 113
updating MongoDB, 105

asterisk (*)
Cypher, 197
regular expressions in

PostgreSQL queries, 39

Athena
querying DynamoDB,

250–254
SQL commands, 255

atomicity, see also ACID
compliance

defined, 26
HBase, 53, 66

attachments, CouchDB, 144

attribute projection, Dy-
namoDB, 226

attributes
DynamoDB, 212, 214,

218, 221, 226
HBase columns, 63
key, 218
MongoDB, 105
PostgreSQL, 11, 20
projection, 226
as term, 12

AUTH, Redis, 280

Auto Scaling, DynamoDB,
237

auto-inferring table names
with Lambda, 254

AUTO_INCREMENT, MySQL, 16

autoflushing, disabling in
HBase, 70

autosharding, MongoDB, 127

availability
in CAP theorem, 315–318
database selection and,

309

AWS, see also DynamoDB
about, 211
access and secret keys,

83, 218
account creation, 217
Athena, 250–255
CLI tool, 217
console, 217
costs, 83, 87, 217, 237
datacenters, 213, 238
HBase on, 82–87
help files, 88

Identity and Access Man-
agement (IAM), 242

resources on, 88
roles, 84, 242
setup, 82
streaming with Lambda,

233, 238–254
terminating, 83, 87
usage alarm, 83

aws tool, 82, 88, 217

aws-sdk gem, 248

B
B (binary), DynamoDB, 220

B-tree indexes
MongoDB, 110–115
PostgreSQL, 18, 21

background option, MongoDB,
113

backup, HA Neo4j clusters, 206

Bash, xii

:begin, Cypher, 202

BEGIN TRANSACTION, PostgreSQL,
26

begins_with(), DynamoDB, 226

benchmarking tool, Redis,
281

BETWEEN, DynamoDB, 226

BGSAVE, Redis, 278

Big Data, see also HBase
columnar databases, 307
DynamoDB, 309
Neo4j, 194–201

Big-O notated (O(x)) time
complexity, 273

BigQuery, ix, 6, 257

Bigtable, 54

“Bigtable: A Distributed Stor-
age System for Structured
Data”, 54

binary datatype, DynamoDB,
220

binary sets, DynamoDB, 220

bindAddress, HBase, 58

BLOBs, Kinesis streams, 239

blocking queues, Redis, 259,
265, 276

Bloom filters
about, 72, 286
HBase, 71, 81
Redis, 285–288

Bloom, Burton Howard, 71

bloomfilter-rb gem, 286

BLPOP, Redis, 266

BOOL, DynamoDB, 220

Booleans
DynamoDB, 220
MongoDB, 103

bounding cube, 48

bounding shapes, 132

bpchar_pattern_ops, PostgreSQL,
39

bricks package, 299

browsers, continuous watch-
ers in CouchDB, 167

BRPOP, Redis, 266

BRPOPLPUSH, Redis, 266

BS (binary strings), Dy-
namoDB, 220

BSON, 94, 96, 114

bsondump, MongoDB, 114

buffer
CouchDB watcher, 166
HBase variable, 70

buffers
CouchDB watcher, 166
importing XML into

CouchDB, 155
streaming XML in HBase,

70

/_bulk_docs, CouchDB, 296

C
C drivers, 283

C#, Interlace, 295

calculus, tuple relational, 12

callback object, Lambda func-
tions, 242

callbacks
encapsulating SAX han-

dler, 155
Lambda functions, 242

CAP theorem
about, 315–318
CouchDB, 317
DynamoDB, 215
HBase, 90, 317
MongoDB, 317
Neo4j, 208, 317
PostgreSQL, 317
Redis, 317

case, PostgreSQL queries, 39–
40

Cassandra, 6

cells, HBase, 53

CERN, 93

Index • 322

Changes API, CouchDB, 161–
169, 290

_changes field, CouchDB, 162,
166, 168

channels, publish-subscribe
with Redis, 276

chars, indexing in Post-
greSQL, 39

--cli-input-json flag, 234

cloning, key values in Redis,
267

Cloud Spanner, 257

cloud-based databases, see
also DynamoDB

Cloud Bigtable, 54
costs, 83
as genre, 2
HBase example, 82–87
increase in, 5
multiple services and,

233
trade-offs, 256

CloudWatch, 83, 236

clusters
CouchDB replication, 171
HBase, 55, 83–88, 90
MongoDB, 114
Neo4j high availability

mode, 203–208
Redis, 284–285, 289, 304

CockroachDB, 257

code
for this book, xii, 293
executing fuzzy search in

database, 38
executing in PostgreSQL

database, 27–30
executing in database,

reasons to, 29
nonblocking applications,

295
reading in MongoDB, 108

collections, MongoDB
CRUD operations, 94–

109
indexing, 110–115
listing, 96
vs. Postgres tables, 109
verifying, 96

colon (:)
in HBase, 58, 61
Redis hashes, 263

column families, HBase
advantages, 65
compression, 81
defined, 58

modifying, 63
number per table, 77

column qualifier, HBase, 58

columnar databases, see al-
so HBase

about, 6, 307, 309
as genre, 2, 6, 307

columns
HBase, 53, 58–60, 63, 79
PostgreSQL, 11, 20

Comcast, 93, 212

:commit, Cypher, 202

CommonJS Module API, 164

composite key, DynamoDB,
223, 229–230, 234

compound keys, PostgreSQL,
14, 16

compression
columnar databases, 307
HBase, 71, 81, 89

conditionals
DynamoDB, 233
MongoDB, 99

--configdb flag, MongoDB, 128

conflicts, CouchDB, 138,
170–174

_conflicts field, CouchDB, 172,
174

connections
breaking Redis, 277
CouchDB fault tolerance,

135
HBase, 58
PostgreSQL schema, 10
Redis, 260, 277
as selection criteria, 2

consistency, see also ACID
compliance

in CAP theorem, 315–318
CouchDB, 143
database selection and,

309
defined, 26
DynamoDB, 215, 237
eventual, 316
HBase, 53, 90
MongoDB, 127
Neo4j, 203
PostgreSQL, 14, 26

--consistent-read flag, Dy-
namoDB, 223

constraints
foreign key, 14, 16, 20,

37
Neo4j, 187

PostgreSQL, 13, 16, 20,
37

Redis, 264

Content-Type header, CouchDB
documents, 142

context object, Lambda func-
tions, 241

continuous polling
CouchDB, 162, 167
polyglot persistence ser-

vice example, 297

control plane, DynamoDB,
214, 218

core nodes, HBase clusters,
88

CouchDB, 135–175
about, 2, 7, 135, 307
attachments, 144
CAP theorem, 317
Changes API, 161–169,

290
CRUD, 137–149
design documents, 149
Fauxton interface, 137–

140, 147, 149
filtering changes, 167–

169
homework, 144, 157, 173
importing data using Ru-

by, 152–157
indexes, 135, 149, 152,

161
mapreduce, 145, 158–

161, 174
vs. MongoDB, 136
offline-friendly applica-

tions, 136
polyglot persistence ser-

vice example, 289–303
querying, 149–152, 157
replication, 169–173, 307
resources on, 171
REST, 135–136, 140–

144, 173
strengths, 174
views, 135, 145–161
watchers, 161–169, 173
weaknesses, 174

couchrest gem, 153–156

count, HBase, 70, 80

count()
MongoDB, 102, 115
PostgreSQL, 22

CREATE, Neo4j with Cypher,
181–186

create, HBase, 60

Index • 323

CREATE INDEX
Neo4j, 187
PostgreSQL, 18, 37

CREATE MATERIALIZED VIEWS, Post-
greSQL, 32

CREATE TABLE, PostgreSQL, 37

CREATE TEMPORARY TABLE, Post-
greSQL, 34

CREATE VIEW, PostgreSQL, 31

create-cluster, HBase, 84

create-default-roles, AWS, 84

create-function, Lambda, 242

create-stream, Kinesis, 239

create-table, DynamoDB, 218,
222

createClient(), polyglot persis-
tence service example, 293,
297

createWatcher(), Node.js, 164

createlang, PostgreSQL, 29

creating, see also CRUD
CouchDB, 137–142, 145–

149
DynamoDB, 218–219,

234
HBase, 58–60
indexes in MongoDB, 111
indexes in Neo4j, 187
indexes in PostgreSQL,

18
Kinesis streams, 239
materialized views, 32
MongoDB, 95–98, 111
Neo4j, 181–187, 190
pipelines, 251
PostgreSQL, 10–13, 18,

31

CRLF (\r\n), Redis streaming,
274–275

crosstab(), PostgreSQL, 34–35

CRUD
CouchDB, 137–149
defined, 13, 20
DynamoDB, 214, 216,

218–219, 221, 234
HBase, 58–66
MongoDB, 94–109
Neo4j, 179–186, 190
PostgreSQL, 10–15
Redis, 260–262

CSV, exporting MongoDB,
114

csv gem, 293

Ctrl+C
breaking connection in

Redis, 277
killing scripts in HBase,

73, 80

Ctrl -] , terminating telnet, 274

cube, 36, 46–49

cube operator (@>), Post-
greSQL, 48

cube_distance(), 47

cube_enlarge(), 48

cubes
bounding, 48
querying PostgreSQL

with, 46–49

cURL
checking REST server is

running, 190
CouchDB changes

watcher, 162
CouchDB CRUD opera-

tions, 140–144
CouchDB queries, 150–

152, 157
Neo4j REST interface,

189–194

Cygwin, xii

Cypher
CRUD, 179–186
excluding redundancies,

198
functions, 188
help files, 179, 195
querying with, 180–189,

195–201
resources on, 188
REST and, 193
shell, 202
terminology, 180
transactions, 202

D
/dF, PostgreSQL, 42

daemonize, Redis, 278

data
adding to HBase with

scripts, 64–73
importing into CouchDB

with Ruby, 152–157
inserting large dataset

into Redis, 282–285
population for polyglot

persistence service ex-
ample, 291–297

replicating in CouchDB,
169–173

size and database selec-
tion, 309

transforming TSV in Re-
dis, 293–294

warehousing, 302

Data Pipeline service, 250–
254

data warehousing, 302

Data.gov, 82

database setting, Redis, 278

databases, see also CouchDB;
DynamoDB; HBase; Mon-
goDB; Neo4j; NoSQL; Post-
greSQL; Redis; relational
databases

genres, 2–8, 305–309
HBase rows as, 62
multiple namespaces in

Redis, 272
selection and genres, 2–

3, 305
selection criteria, 309
selection questions, 2

datatypes
DynamoDB, 219
key-value stores, 4
lack of in HBase, 90
PostgreSQL, 14
Redis, 5, 260, 263–271
relational databases, 4

@db.save_doc(), CouchDB, 155

DECR, Redis, 262

DECRBY, Redis, 262

DEL, Redis, 273

DELETE
CouchDB CRUD opera-

tions, 143
Neo4j, 184, 299
PostgreSQL, 14, 36

delete-item, DynamoDB, 223

deleting, see also CRUD
CouchDB, 138, 140, 143
DynamoDB, 214, 222
MongoDB, 105, 107
Neo4j, 184, 188, 299
PostgreSQL, 14, 34, 36
Redis, 264, 268, 273

descending parameter, import-
ing XML into CouchDB,
156

describe, HBase, 76

describe-table, DynamoDB, 219

design documents, CouchDB,
149

destination, Redis, 270

Index • 324

dict_xsyn package, 36

dictionaries
listing in PostgreSQL, 42
tsvector and tsvector, 41

diffs, Redis sets, 267

dijkstra, Neo4j, 192

dimensional queries with cube,
46–49

directories
HBase, 57, 65
MongoDB, 95

disable, HBase, 63

disabling
commands in Redis, 280
tables in HBase, 63

disaster recovery
backups for HA Neo4j

clusters, 206
write-ahead logging in

HBase, 74, 76

DISCARD, Redis, 262

disk usage, HBase, 73, 80

DISTINCT, Cypher, 198

distinct(), MongoDB, 115

distributed configuration,
HBase, 55

dmetaphone(), PostgreSQL, 45

dmetaphone_alt(), PostgreSQL,
45

DNS (Domain Name Service)
and eventual consistency,
316

document types, DynamoDB,
220

document variable, HBase, 70

document-oriented databas-
es, see also CouchDB;
MongoDB

about, 6, 307
advantages, 95, 124
as genre, 2, 6, 307
workflow, 94

domain, relational databases,
12

dot operator (.), nesting in
MongoDB, 101, 113

double metaphones, 45

DoubleClick, 93

drivers
changes watcher in

CouchDB, 163
graph databases exercise,

202
MongoDB, 109, 123

for Neo4j in polyglot per-
sistence service exam-
ple, 298

performance, 283
Redis, replacing, 283

driving force, as selection cri-
teria, 2

DROP CONSTRAINT, Neo4j, 188

DROP INDEX, Neo4j, 187

du, HBase, 73

duplicate words, Bloom fil-
ters, 287

durability, see also ACID
compliance

database selection and,
309

defined, 26
DynamoDB, 213
HBase, 55
Redis, 259, 278–280, 304

Dynamo, 214, 216, 317, see
also DynamoDB

Dynamo: Amazon’s Highly
Available Key-value Store,
214

DynamoDB, 211–257
about, 2, 5, 211, 309
Auto Scaling, 237
AWS datacenters, 213,

238
control plane, 214, 218
costs, 217, 237, 256
CRUD, 214, 216, 218–

219, 221, 234
data model, 213–216,

218
data model for sensor ex-

ample, 234–236
datatypes, 219
exporting to S3, 250–252
help files, 217
homework, 232, 245, 255
indexes, 214, 218, 230–

233, 249, 255
Internet of Things, 246–

254
keys, 213, 222–228, 230,

234
Local version, 217
partitions, 227–230, 232
performance, 212, 222,

228, 230, 236
querying, 213, 215, 218,

221, 224–227, 230,
249–254

resources on, 232
streaming, 232–254

Streams, 245
strengths, 212, 255
throughput, 236, 251
weaknesses, 256

DynamoDB Streams, 245

E
--ec2-attributes, HBase cloud ex-

ample, 85

Elastic MapReduce, see EMR

Elasticsearch, 38

$elemMatch, MongoDB, 101,
103

emit()
CouchDB, 147, 149–152,

157–161, 164
MongoDB, 120–123

EMR
about, 82
exporting DynamoDB,

251
HBase on cloud example,

82–87
resources on, 88
setup, 82

emr command, 88

enable, HBase, 64

encapsulating, SAX handler,
155

ENDKEY, HBase, 76

endkey parameter, importing
XML into CouchDB, 156

ensureIndex, MongoDB, 111

entity diagrams, 36

Erlang, 7, 135

escaping, apostrophe (') in
PostgreSQL, 22

event object, Lambda func-
tions, 241

event source mapping, AWS,
243

EventEmitter, Node.js, 164

EventMachine, 295

eventual consistency, 316

everysec option, append-only
file in Redis, 279

exclamation point (!), regular
expressions in PostgreSQL
queries, 39

EXEC, Redis, 262

EXISTS, Redis, 271

$exists, MongoDB, 103

EXPIRE, Redis, 271

Index • 325

EXPIREAT, Redis, 272

expiry
DynamoDB, 245
Redis, 259, 271

EXPLAIN, PostgreSQL, 32, 43

EXPLAIN VERBOSE, PostgreSQL,
33

explain(), MongoDB, 111

exporting
DynamoDB to S3, 250–

252
MongoDB, 114
Node.js scripts, 164

exports object, Node.js, 164

--expression-attribute-values flag,
DynamoDB, 225

extract(), PostgreSQL, 34

F
FaaS (Functions-as-a-Ser-

vice), Lambda as, 238

Facebook, 55

false positives, Bloom filters,
72, 286–287

FaunaDB, 257

Fauxton interface, CouchDB,
137–140, 147, 149

feed, CouchDB watcher, 166

fields
CouchDB, 138
creating indexes in Mon-

goDB, 111
setting in MongoDB, 105

fields parameter, creating in-
dexes in MongoDB, 111

files
file system as key-value

store, 4
listing in MongoDB, 131
loading in MongoDB, 120
S3 buckets, 252
storing in HBase, 57

filter functions, CouchDB,
167–169

filter(), Cypher, 188

filtering
aggregate functions in

PostgreSQL, 23
Bloom filters, 71–72, 81,

285–288
CouchDB, 167–169
Cypher, 188

filters key, CouchDB, 168

finalize(), MongoDB, 120, 122

find()
MongoDB, 96, 98, 107,

125
MongoDB replica sets,

125

findOne(), MongoDB, 105

floats, DynamoDB, 220

flushCommits, HBase, 70

FLUSHALL, Redis, 273, 280

FLUSHDB, Redis, 273

flushing
disabling autoflush in

HBase, 70
Redis, 273, 280

foreign key constraints, Post-
greSQL, 14, 16, 20, 37

Foursquare, 93

Fowler, Martin, 291

--from flag, HA Neo4j clusters
backup, 206

FULL JOIN, PostgreSQL, 18

full-text searches
Neo4j, 193
PostgreSQL, 41–46

FUNCTION, PostgreSQL stored
procedures, 27–30

functions
aggregate functions, 22–

25
custom JavaScript func-

tions, 108
Cypher, 188
definitions in MongoDB,

97, 118–119
filter functions, 167–169
Lambda, 240–242, 254
storing JavaScript func-

tions in system.js, 119
window functions, Post-

greSQL, 24–25

Functions-as-a-Service
(FaaS), Lambda as, 238

fuzzy string matching in
PostgreSQL, 36–46

fuzzystrmatch package, 36, 39,
45

G
Generalized Index Search

Tree (GIST), 40

Generalized Inverted iNdex
(GIN), 43

generate_series(a, b) function,
PostgreSQL, 36

geohashes, 130

geospatial queries, MongoDB,
130

GET
CouchDB change watch-

er, 162
CouchDB conflicts, 172
CouchDB CRUD opera-

tions, 140
CouchDB watcher, 166
Neo4j nodes and relation-

ships, 190
Redis, 261, 275

get, HBase, 61, 66, 80

get(), CouchDB watcher, 166

get-item, DynamoDB, 223

GETBIT, Bloom filters, 287

GIN (Generalized Inverted iN-
dex), 43

GIST (Generalized Index
Search Tree), 40

Git, creating HBase directly,
56

global secondary indexes
(GSIs), 231, 237, 255

Google
BigQuery, ix, 6, 257
Bigtable, 54
Cloud Spanner, 257

graph databases, see al-
so Neo4j

about, 7, 308
advantages, 208
as genre, 2, 7, 308
nodes, 180, 208

graphSync.js, 297

Gremlin, 180, 300

GridFS, MongoDB, 114, 131–
132, 303

Grigorik, Ilya, 286

Groovy, 201

$group, MongoDB, 115–116

GROUP BY, PostgreSQL, 23–24

grouping
queries in MySQL, 24
queries in PostgreSQL, 23
views in CouchDB, 149

GSIs (global secondary index-
es), 231, 237, 255

$gt, MongoDB, 103

$gte, MongoDB, 103

GZ compression, HBase, 71

Gzip compression, HBase, 71

Index • 326

H
/h, PostgreSQL commands, 11

-h option for du in HBase, 73

H2, 4

Hadoop
about, 55
--applications flag, 85
EMR, 82
HBase and, 6, 54, 89

Hadoop Distributed File Sys-
tem (HDFS), 6, 89

hash datatype, Redis, 263

hash indexes
Neo4j, 192
PostgreSQL, 18, 21

hash key, DynamoDB, 223,
226, 229–230, 234, 239

HAVING, PostgreSQL, 23

HBase, 53–91
about, 2, 6, 53, 309
adding data with scripts,

64–73
Bloom filters, 71, 81
CAP theorem, 90, 317
cloud based example, 82–

87
cluster-to-cluster replica-

tion, 90
community support for,

55, 89
compression, 71, 81, 89
CRUD, 58–66
defaults, 63
disabling tables, 63
disk usage, 73, 80
help files, 58
homework, 66, 81, 88
indexes, 61, 90
installation, 56
killing, 57
killing scripts, 73, 80
modes, 55
performance, 61, 64–65,

71, 74, 89
polyglot persistence ser-

vice example, 302
regions, 58, 73–77
resources on, 66
scans, 61, 76–81
shell, 57
starting, 57
strengths, 89
terminology, 53, 55, 66,

88
version, 55, 57
weaknesses, 89

@hbase administration object,
65

hbase*, 63

hbase-default.xml file, 56

hbase-site.xml file, 56, 58

hbase.rootdir property, 57, 73

hbase:meta table, 75

HBASE_HOME environment vari-
able, 56

HBaseMaster, 76

HDEL, Redis, 264

HDFS (Hadoop Distributed
File System), 6, 89

headers
CouchDB documents,

142
relational databases, 12

help
Cypher, 195
DynamoDB, 217
HBase, 58
MongoDB, 95
Neo4j, 195
PostgreSQL, 11
Redis, 261

:help commands, Neo4j, 179

:help cypher, Neo4j, 179

help files
aws tool, 88
Cypher, 179, 195
DynamoDB, 217
emr command, 88
HBase, 58
MongoDB, 95–96, 109
MongoDB replica sets,

125
Neo4j, 179, 195
PostgreSQL, 11
Redis, 261

help()
MongoDB, 96, 109
MongoDB replica sets,

125

HGETALL, Redis, 264

hiding commands in Redis,
280

high availability mode, Neo4j,
203–208

high-performance multivari-
ate flagging, 288

HINCRBY, Redis, 264

hiredis gem, 283, 293

Hive, 55

HLEN, Redis, 264

Homebrew, xi, 94, 260

homework
CouchDB, 144, 157, 173
DynamoDB, 232, 245,

255
HBase, 66, 81, 88
MongoDB, 109, 123, 132
Neo4j, 189, 201, 207
PostgreSQL, 21, 36, 49
Redis, 273, 289, 303

horizontal sharding,
see sharding

hotspots, 228

HSETNX, Redis, 264

HSQLDB, 4

HTML, polyglot persistence
service example, 300

HTTPResponse, CouchDB
watcher, 166

I
IAM (Identity and Access

Management), 242

_id field, CouchDB, 138, 143

_id property, MongoDB, 98

idstr property, CouchDB, 158

if put_to, HBase, 79

ILIKE, PostgreSQL, 38

import, HBase, 65

importing
data in HBase with

scripts, 65, 67–73
data into CouchDB using

Ruby, 152–157
MongoDB, 114

$in, MongoDB, 103

$inc, MongoDB, 105

include?(), Bloom filters, 288

include_docs parameter,
CouchDB watcher, 162,
166

INCR, Redis, 261

INCRBY, Redis, 262

incrementing in Redis
hashes, 264
sorted sets, 268
strings, 261
values within transac-

tions, 274

indexes
B-tree indexes, 18, 21,

110–115
CouchDB, 135, 149,

152, 161

Index • 327

creating MongoDB, 111
defined, 18, 20
design documents, 149
DynamoDB, 214, 218,

230–233, 237, 249,
255

global secondary indexes,
231, 237, 255

hash indexes, 18, 21, 192
HBase, 61, 90
inverted, 43, 193
key-value, 192
lexemes in PostgreSQL,

43
listing in MongoDB, 111
listing in PostgreSQL, 20
local secondary indexes,

214, 230, 237, 249
materialized views, 32
MongoDB, 110–115, 130
Neo4j, 187, 192
nested values in Mon-

goDB, 113
performance in Dy-

namoDB, 230
performance in Mon-

goDB, 110, 114
PostgreSQL, 18–20, 32,

37, 39–40, 43
reverse lookups, 37
trigrams, 40

infinite ranges, Redis, 269

INFO, Redis, 277

Ingres, 9

initialize(), MongoDB replica
sets, 125

INNER JOIN, PostgreSQL, 15–18

inner joins, 15–18, 45

INSERT INTO, PostgreSQL, 13,
15

insert(), Bloom filters, 288

inserting
CouchDB bulk insertion,

296
HBase, 61
PostgreSQL, 13, 15
Redis lists, 264
Redis, large datasets,

282–285

installation
about, xi
aws tool, 83, 217
cube, 36
HBase, 56
MongoDB, 94
PostgreSQL, 10
PostgreSQL packages, 36

--instance-count, HBase cloud
example, 85

--instance-type, HBase cloud ex-
ample, 85

integers
DynamoDB datatype, 220
Redis, 261, 264

Interactive Graphics and Re-
trieval System, 9

Interlace, 295

Internet of Things
about, 246
streaming DynamoDB

example, 246–254

intersections
Redis keys, 270
Redis sets, 267

inverted indexes, 43, 193

isMaster(), MongoDB replica
sets, 126

isolation, defined, 26, see al-
so ACID compliance

items, DynamoDB
consistency, 215
data model, 212, 214,

218
JSON and, 221

J
Jamendo.com, 153, 155

JamendoCallbacks class, 155

Java
converting arguments to

HBase, 65
custom functions in

Cypher, 188
NIO library, 295

JavaScript, see also Node.js
custom functions, 108
filter functions, 168
Lambda functions, 240–

242
MongoDB and, 96
nonblocking code, 295
storing functions in sys-
tem.js, 119

syntax rules, 99

jbytes(), HBase, 65

JOIN, PostgreSQL, 17

joins
compound, 16
inner joins, 15–18, 45
natural joins, 45
outer joins, 17

PostgreSQL, 15–18, 20,
45, 50

relational databases, 4

journaling, see write-ahead
logging

jQuery, polyglot persistence
service example, 302

JRuby
HBase shell as inter-

preter, 64
streaming XML in HBase,

68

JSON, see also CouchDB;
MongoDB

document-oriented
databases, 307

in DynamoDB, 221, 234,
252

PostgreSQL support, 51

JSONB, PostgreSQL support,
51

JUNG project, 201

K
Kafka, 238

Kevin Bacon example, 197–
201

--key flag
DynamoDB, 223
Redis, 270

key argument, CouchDB re-
duce functions, 160

key attributes, DynamoDB,
218

key condition expressions,
DynamoDB, 225

key pair, SSH, 84

--key-condition-expression flag, Dy-
namoDB, 225

key-value indexes, Neo4j, 192

key-value pairs
mapreduce in CouchDB,

158–161
querying CouchDB, 149–

152

key-value stores, see also Re-
dis

about, 4, 306, 309
DynamoDB as, 216, 223
as genre, 2, 4, 306
performance, 306

KEYS, Redis, 296

keys
AWS access and secret,

83, 218

Index • 328

cloning key values in Re-
dis, 267

composite, 223, 229–
230, 234

compound, 14, 16
CouchDB mapreduce,

158–161
CouchDB views, 145,

147, 152
DynamoDB, 213, 222–

228, 230, 234, 239
foreign key constraints,

14, 16, 20, 37
hash, 223, 226, 229–

230, 234, 239
HBase, 58, 73, 90
MongoDB mapreduce,

120, 122
MongoDB sharding, 128
PostgreSQL, 13, 16, 18,

20, 37
primary, 13, 16, 18, 20
range, 223, 229–230, 234
Redis, 261, 263, 265,

267, 270–273
row key in HBase, 73, 90
SET (Redis), 261

killing
AWS, 83, 87
HBase, 57
scripts in HBase, 73, 80
telnet in Redis, 274
transactions in Post-

greSQL, 26

Kinesis
performance, 245
streaming DynamoDB,

233, 238–254

KV stores, see key-value
stores; Redis

L
L (list datatype), DynamoDB,

220

labels, Neo4j constraints, 187

Lambda
auto-inferring table

names, 254
functions, 240–242, 254
streaming DynamoDB,

233, 238–254

languages
polyglot programming,

291
PostgreSQL support, 28,

42
Redis support, 260

last_seq, CouchDB watcher,
166

LASTSAVE, Redis, 278

latency
CAP theorem, 317
nonblocking code, 295

LEFT JOIN, PostgreSQL, 17, 20

LEFT OUTER JOIN, PostgreSQL, 17

Lempel-Ziv-Oberhumer com-
pression, HBase, 71

Levenshtein distance, 39

levenshtein() function, 39

lexemes, 42–43

libxml-ruby gem, 153–156

licenses, Neo4j, 207–208

LIKE, PostgreSQL, 22, 38

limit parameter
CouchDB watcher, 162
importing XML into

CouchDB, 156

list datatype
DynamoDB, 220
Redis, 263–266

listCommands(), MongoDB, 118

listing
blocking lists in Redis,

266
collections in MongoDB,

96
databases in MongoDB,

95
dictionaries in Post-

greSQL, 42
files in MongoDB, 131
functions in MongoDB,

97
HBase clusters, 83, 85
indexes in MongoDB, 111
indexes in PostgreSQL,

20
languages in PostgreSQL,

29
list length in Redis, 264
popping lists in Redis,

265
server-side commands in

MongoDB, 118
tables in DynamoDB, 218

LLEN, Redis, 264

load balancer exercise, 207

local secondary indexes, Dy-
namoDB, 214, 230, 237,
249

lock-in, vendor, 27

logfile, Redis, 278

loglevel, Redis, 278

logs
HBase, 55, 57, 74, 76, 79
MongoDB, 114
PostgreSQL, 29
Redis options, 278
tailing Neo4j HA cluster,

205
write-ahead logging in

HBase, 55, 74, 76, 79

logs table, creating in Post-
greSQL, 29

longpolling, CouchDB, 162–
163, 165, 167

loopback interface, HBase, 58

LPOP, Redis, 265

LPUSH, Redis, 265

LRANGE, Redis, 264

LREM, Redis, 265

LSIs, see local secondary in-
dexes

$lt, MongoDB, 103

$lte, MongoDB, 103

Lucene, 38, 193

LZO compression, HBase, 71

M
M (map datatype), DynamoDB,

220

map datatype, DynamoDB,
220

map function, CouchDB,
147, 149–152, 158–161

mapReduce() function, Mon-
goDB, 119–123

mapreduce
CouchDB, 145, 158–161,

174
database selection and,

309
defined, 119
DynamoDB exporting

and, 251
MongoDB, 119–123

master election, HA Neo4j
clusters, 206

master node, HBase, 76

master-master replication,
CouchDB, 169–173, 307

master-slave replication, Re-
dis, 281

MasterProcWALs folder, HBase,
74

Index • 329

masters
CouchDB, 169–173, 307
HBase, 58, 76
MongoDB replica sets,

125–127
multiple in Redis, 284
Neo4j high availability

mode, 203–207
Redis, 281, 284

MATCH
Neo4j, 181–189, 195–201
PostgreSQL, 21

$match, MongoDB, 115–116

MATCH FULL, PostgreSQL, 16,
21

materialized views, 32

mathematical relations and
relational databases, 12

@max parameter, importing
XML into CouchDB, 155

max(), PostgreSQL, 22

memcached, 278

memory, Redis, 278, 280, 304

Merriman, Dwight, 93

Message Queue Telemetry
Transport (MQTT), 247

messaging patterns, Redis,
289

metadata
CouchDB views, 146
HBase, 75–76, 88
Neo4j nodes, 190
PostgreSQL, 21

metaphones, 44–46

MGET, Redis, 261

microservices, polyglot pro-
gramming and, 291

middleware layer pattern and
polyglot persistence, 291

min(), PostgreSQL, 22

misspellings
MongoDB, 107
PostgreSQL, 40

Moby Dick example, 286

$mod, MongoDB, 103

modify-instance-groups, EMR, 88

mongoconfig, 129

mongod, 95, 126–127

MongoDB, 93–133
about, 2, 7, 93, 307
aggregate queries, 115–

117, 130
CAP theorem, 317
CLI tools list, 114

clusters, 114
commands, listing, 105,

118
conventions, 99
vs. CouchDB, 136
CRUD, 94–109
databases, listing, 95
databases, switching, 95
files, listing, 131
functions, 97
geospatial queries, 130
GridFS, 114, 131–132,

303
help files, 95–96, 109,

125
homework, 109, 123, 132
indexes, 110–115, 130
installation, 94
mapreduce, 119–123
misspellings, 107
nesting, 100–104, 113
performance, 108, 110,

114, 117
polyglot persistence ser-

vice example, 302–303
query command list, 103
querying, 98–104, 106,

108, 112, 115–117,
121, 130

reading code in, 108
references, 106
replica sets, 124–128,

132
resources on, 104, 109
server-side commands,

117–119
sharding, 114, 127–131
starting, 95
strengths, 95, 133
UI tools, 98
weaknesses, 133

mongodump, 114

mongoexport, 114

mongofiles, 114, 131

MongoHQ, 307

mongoimport, 114

mongooplog, 114

mongoperf, 114

mongorestore, 114

mongos, 114, 128–130

mongostat, 114

mongotop, 114

most recently used (MRU)
caching algorithm, 272

MOVE, Redis, 273

MQTT (Message Queue
Telemetry Transport), 247

MRU (most recently used)
caching algorithm, 272

MSET, Redis, 261

MULTI, Redis, 262, 296

multi-master replication,
CouchDB, 169–173, 307

multibulk reply, Redis, 277

multivariate flagging, high-
performance, 288

mustache package, 299

MyPyramid Raw Food Data,
82

MySQL
about, ix, 4
AUTO_INCREMENT, 16
grouping queries, 24

N
N (number), DynamoDB, 220

name property, nodes in Neo4j,
190

name_pattern_ops, PostgreSQL,
39

names
aliasing table names in

PostgreSQL, 16
auto-inferring table

names, 254
indexing in PostgreSQL,

39
nodes in Neo4j, 190

NATURAL JOIN, PostgreSQL, 45

natural language processing,
PostgreSQL, 41–46

nc, netcat, 275

$ne, MongoDB, 103

nearest neighbor matches,
with cube, 47

Neo Technology, 207

Neo4j, 177–209, see al-
so Cypher

about, 2, 7, 177, 308
CAP theorem, 208, 317
constraints, 187
CRUD, 179–186, 190
Enterprise Edition, 178,

204, 207–208
GPL Community Edition,

178, 207
help files, 179, 195
high availability mode,

203–208
homework, 189, 201, 207

Index • 330

indexes, 187, 192
licenses, 207–208
performance, 208
polyglot persistence ser-

vice example, 289–
290, 297–303

querying, 180–189, 193,
195–201

resources on, 189, 192
REST, 189–194
shell, 195
strengths, 208
terminology, 180, 208
tools, 208
version, 178, 207–208
weaknesses, 208
web interface, 179

neo4j-admin tool, 206

nesting
CouchDB, 139
document-oriented

databases, 307
filter functions, 168
JSON in streaming in

DynamoDB, 252
lack of in Redis, 264
MongoDB, 100–104, 113

netcat, 275

network settings, HBase, 58

networks
CouchDB fault tolerance,

135
HBase settings, 58

$nin, MongoDB, 103

NIO library, 295

*nix platforms, Windows
users, xi

no option, append-only file in
Redis, 279

Node Package Manager (npm),
293

node path, Neo4j, 190–192,
199–201

node walking, 297

Node.js
about, 162
change watcher for

CouchDB, 162–169
checking installation, 293
nonblocking code, 295
polyglot persistence ser-

vice example, 290
SocketStream, 304

nodes
CouchDB master-master

replication, 169–173

Cypher, 180
eventual consistency, 316
graph databases, 180,

208
HBase, 55, 76, 88
MongoDB, 126
Neo4j, 180–186, 190,

195–201, 203–207
Neo4j high availability

mode, 203–207

non-relational databases,
see CouchDB; DynamoDB;
HBase; MongoDB; Neo4j;
NoSQL; Redis

nonblocking applications, 295

$nor, MongoDB, 103

NoSQL, see also CouchDB;
DynamoDB; HBase; Mon-
goDB; Neo4j; Redis

vs. relational databases,
1

as term, ix

$not, MongoDB, 103

notice setting, Redis log, 278

npm (Node Package Manager),
293

NS (number set), DynamoDB,
220

NULL
DynamoDB, 220
PostgreSQL, 14

null values
disallowing in Post-

greSQL, 14
DynamoDB, 220

number datatype, Dy-
namoDB, 220

number sets, DynamoDB,
220

O
object expiry, DynamoDB,

245

ObjectId, MongoDB, 96, 98

offline-friendly applications,
136

offset files, CouchDB, 152

oldWALs folder, HBase, 74

ON, joining tables in Post-
greSQL, 15

on_end_element(), importing XML
into CouchDB, 155

on_start_element(), importing
XML into CouchDB, 155

options parameter, creating in-
dexes in MongoDB, 111

$or, MongoDB, 103

order
reversing row order when

importing XML into
CouchDB, 156

sorted sets in Redis, 268

outer joins, 17

P
parsing

PostgreSQL parsers, 42
XML for CouchDB, 153–

156
XML for HBase, 68

partial values, matching in
MongoDB, 100

PARTITION BY, PostgreSQL, 25

partition key, see hash key

partition tolerance, in CAP
theorem, 315–318

partitions
in CAP theorem, 315–318
DynamoDB, 227–230,

232
graph databases, 308
Kinesis, 245
PostgreSQL, 52

passwords, Redis, 280

path, CouchDB watcher, 166

paths
CouchDB watcher, 166
counting number of

shortest paths in
Neo4j, 200

querying in Neo4j, 190–
192, 199–201

querying views in
CouchDB, 151

pattern matching, Post-
greSQL, 39

PCRE (Perl-compatible regu-
lar expression), 99, 103

percent sign (%), wildcard in
PostgreSQL, 22, 38

performance
aggregate queries in

MongoDB, 117
append-only file in Redis,

279
Bloom filters, 71, 288
CAP theorem, 317
column families, HBase,

65
drivers, 283

Index • 331

DynamoDB, 212, 222,
228, 230, 236

executing database code,
29

HBase, 61, 64–65, 71,
74, 89

indexes in DynamoDB,
230

indexes in MongoDB,
110, 114

key-value stores, 306
Kinesis, 245
MongoDB, 108, 110,

114, 117
Neo4j, 208
nonblocking code, 295
PostgreSQL, 27, 32
Redis, 5, 259, 279, 283,

285, 304
scans, 61, 222
as selection criteria, 3
stored procedures, 27
write-ahead logging in

HBase, 74

Perl, 29

Perl-compatible regular ex-
pression (PCRE), 99, 103

PERSIST, Redis, 271

persistence
polyglot persistence ser-

vice example, 289–303
Redis, 271, 278–280

pg_trgm package, 36, 40

Pig, 55

pipelines
creating, 251
replacing Redis driver,

283
streaming DynamoDB,

233–254
streaming with Redis,

275, 283

pivot tables, PostgreSQL, 34–
35

PL/Perl, 29

PL/pgSQL, 28

PL/Python, 29

PL/Tcl, 29

PNUTS, 317

point of entry, MongoDB, 129

policies, AWS security roles,
242

polling, CouchDB, 162–166,
297

polyglot persistence
about, 7, 289
rise of, 291
service example, 289–303

polyglot programming, 291

$pop, MongoDB, 105

popping
elements from MongoDB

arrays, 105
sets in Redis, 268
values in Redis lists, 265

populateCouch.js, 295

ports
CouchDB, 295
MongoDB, 124
Neo4j, 205, 297
Redis, 260, 278, 284, 293

POSIX style, regular expres-
sions, 39, 49

POST
CouchDB CRUD opera-

tions, 142
Neo4j indexes, 193
Neo4j nodes and relation-

ships, 190

Postgres95, 9

PostgreSQL, 9–52
about, ix, 1, 4, 9
aggregate functions, 22–

25
CAP theorem, 317
community support for,

51
core languages, 28
CRUD, 10–15
full-text searches, 41–46
fuzzy string matching,

36–46
help menus, 11
homework, 21, 36, 49
indexes, 18–20, 32, 37,

39–40, 43
installation, 10
joins, 15–18, 20, 45, 50
JSON and, 51
materialized views, 32
natural language process-

ing, 41–46
performance, 27, 32
pivot tables, 34–35
polyglot persistence ser-

vice example, 302
querying, 9, 18–20, 22–

25, 32–49
querying full-text, 41–46
querying with cube, 46–49
resources on, 11, 28, 45

RULEs, 32–35
schema, 9–11, 17, 51
stored procedures, 27–

30, 50, 188
strengths, 50
transactions, 26
views, 30–34
weaknesses, 51
window functions, 24–25

PouchDB, 136

prefix notation, 103

PRIMARY KEY, PostgreSQL, 13

primary keys, PostgreSQL,
13, 16, 18, 20

PRIMARY server, MongoDB
replica sets, 125–127

Procedural Language/Post-
greSQL, 28

procedures, stored (Post-
greSQL), 27–30, 50, 188

$project, MongoDB, 116

--projection-expression flag, Dy-
namoDB, 226

properties, Neo4j nodes, 191

pseudo-distributed mode,
HBase, 55

PUBLISH, Redis, 276

publish-subscribe with Redis,
259, 276

$pull, MongoDB, 105

$pullAll, MongoDB, 105

$push, MongoDB, 105

$pushAll, MongoDB, 105

PUT, cURL CouchDB CRUD
operations, 142

put, HBase, 61, 64–66, 70

PUT instances, HBase, 64, 67,
69, 79

put-item, DynamoDB, 221

Python
PostgreSQL support, 29
Twisted, 295

Q
-q option, netcat, 275

query, DynamoDB, 225

query planner, PostgreSQL,
32

query trees, PostgreSQL, 32

querying
aggregate functions in

PostgreSQL, 22–25

Index • 332

aggregate queries in
MongoDB, 115–117,
130

columnar databases, 307
CouchDB, 149–152, 157
database selection and,

309
DynamoDB, 213, 215,

218, 221, 224–227,
230, 249–254

full-text searches in Post-
greSQL, 41–46

fuzzy string matching in
PostgreSQL, 36–46

geospatial queries in
MongoDB, 130

graph databases, 308
grouping queries in

MySQL, 24
grouping queries in Post-

greSQL, 23
HBase regions, 75
key-value stores, 306
MongoDB, 98–104, 106,

108, 112, 115–117,
121, 130

MongoDB commands list,
103

MySQL, 24
Neo4j, 180–189, 193,

195–201
polyglot persistence ser-

vice example, 298–303
PostgreSQL, 9, 18–20,

22–25, 32–49
PostgreSQL full-text, 41–

46
PostgreSQL fuzzy string

matching in, 36–46
PostgreSQL with cube, 46–

49
Redis, 285–288
relational databases, 9,

12, 306
reverse querying in Neo4j,

197
RULEs, 32–35

queues, Redis, 259, 262,
264, 276

R
\r\n (CRLF), Redis streaming,

274–275

random property, CouchDB,
155, 157

random walk pattern, 248

random-walk gem, 248

RANDOMKEY, Redis, 294

range key, DynamoDB, 223,
229–230, 234

range(), Cypher, 188

ranges
Cypher, 188
DynamoDB, 215, 224–

227
MongoDB, 99
Redis, 264, 268

RDBMS databases, see Post-
greSQL; relational databas-
es

read capacity, DynamoDB,
236

reading, see also CRUD
CouchDB, 141
DynamoDB, 214, 221,

236
MongoDB, 98–104, 108
Neo4j high availability

mode, 203–207
operations, defined, 13
PostgreSQL, 13

Redis, 259–304
about, 2, 5, 259, 309
append-only file, 279,

304
benchmarking tool, 281
blocking queues, 259,

265, 276
Bloom filters, 285–288
CAP theorem, 317
client libraries, 260
clusters, 284–285, 289,

304
command conventions,

263
command-line interface,

260–273
configuration, 277–281
CRUD, 260–262
datatypes, 5, 260, 263–

271
expiry, 259, 271
help files, 261
hiding or disabling com-

mands, 280
homework, 273, 289, 303
inserting large dataset,

282–285
limits on size, 304
master-slave replication,

281
multiple namespaces,

272
performance, 5, 259,

279, 283, 285, 304

polyglot persistence ser-
vice example, 289–303

preventing unwanted
databases, 278

publish-subscribe with,
259, 276

querying, 285–288
resources on, 273
running in background,

260, 278
security, 280
server information, 277
snapshotting, 279
stacks, 259, 264–265
starting, 260
storage options, 261,

267, 278–280
streaming with pipelines,

275, 283
streaming with telnet,

274
strengths, 303–304
transactions, 262, 274,

276
tweaking parameters,

280
version, 260
weaknesses, 304

Redis Cluster, 304

redis gem, 282, 285, 293

redis-rb client, 282

redis-rb gem, 265

redis-server command, 260

redis.conf file, 277–281

Redshift, 257

reduce() function, MongoDB,
120–123

reducers, CouchDB, 158–
161, 173

redundancy
DynamoDB, 213
excluding in Cypher, 198

references, MongoDB, 106

REFERENCES keyword, Post-
greSQL, 14

referential integrity, Post-
greSQL, 14

REFRESH, materialized views in
PostgreSQL, 32

$regex, MongoDB, 103

region servers, HBase, 58,
73–77

regular expressions
filter functions, 168
MongoDB, 103, 109

Index • 333

PCRE-compliant, 99, 103
POSIX style, 39, 49
PostgreSQL queries, 39

relational algebra, 12

relational databases, see al-
so PostgreSQL

about, 4, 9, 305, 309
continued use of, ix, 1, 9
as genre, 4, 305
mathematical relations,

12
vs. NoSQL, 1
querying, 9, 12, 306
set theory, 4, 9, 12, 305
workflow, 94

relations
PostgreSQL, 11, 20
as term, 12

relationship store, polyglot
persistence service exam-
ple, 290, 297–303

relationships, Neo4j
creating, 181–186, 190
deleting, 184
getting information on,

182
indexes, 193
querying, 186, 195–201
returning names, 194
reversing, 197
terminology, 180, 208

--release-label, HBase cloud ex-
ample, 85

Remote Dictionary Service,
see Redis

remove, MongoDB, 107

RENAME, Redis, 273

replSet, MongoDB, 124

replica sets, MongoDB, 124–
128, 132

replication
CouchDB, 169–173, 307
document-oriented

databases, 307
HBase cluster-to-cluster

replication, 90
Redis, 259

Representational State
Transfer, see REST

requirepass, Redis, 280

rereduce, CouchDB, 160

resources
AWS, 88
for this book, xii
CouchDB, 171
couchrest gem, 153

Cypher, 188
DynamoDB, 232
EMR, 88
fuzzy matching in Post-

greSQL, 45
HBase, 66
MongoDB, 104, 109
Neo4j, 189, 192
PostgreSQL, 11, 28, 45
Redis, 273
S3 (Simple Storage Ser-

vice), 88

Resque, 304

REST
CouchDB, 135–136, 140–

144, 173
Cypher and, 193
Neo4j, 189–194

restoring, MongoDB, 114

RETURN, Neo4j, 183

return values, filter functions,
167

RETURNING, PostgreSQL, 16

_rev field, CouchDB, 138,
143, 172

reverse lookups, PostgreSQL,
37

reverse querying, Neo4j, 197

reverse ranges, Redis, 269

revision strings, CouchDB,
138, 143

Riak, 5

RIGHT JOIN, PostgreSQL, 18

Robo 3T, 98

Robomongo, 98

ROLE_ARN environment vari-
able, 242

roles, AWS, 84, 242

ROLLBACK
PostgreSQL, 26
SQL, 262

root directory, HBase, 57, 73

ROW FORMAT, DynamoDB, 252

row key, HBase, 73, 90

rows
CouchDB, 145, 156
counting, 80
HBase, 53, 58, 61–62,

73, 79–80, 90
PostgreSQL, 11, 20
reversing order when im-

porting XML into
CouchDB, 156

RPOP, Redis, 265

RPOPLPUSH, Redis, 265

RPUSH, Redis, 264

rs object, MongoDB, 125

Ruby
ARGF stream, 155
EventMachine, 295
importing data into

CouchDB, 152–157
redis gem, 282
script for streaming Dy-

namoDB, 247–249

RULEs, PostgreSQL, 32–35

runCommand(), MongoDB, 118

S
S (string), DynamoDB, 220

S3 (Simple Storage Service)
exporting DynamoDB to,

250–252
querying DynamoDB,

250–254
resources on, 88

SADD, Redis, 266, 275

Sanfilippo, Salvatore, 259

SAVE, Redis, 278

save keyword, Redis snapshot-
ting, 279

saving
documents in CouchDB,

155
Redis options, 278–280
views in CouchDB as de-

sign documents, 149

SAX handler, encapsulating,
155

scalability
columnar databases,

307, 309
database selection and,

3, 309
DynamoDB, 212, 237,

309
HBase, 6, 53, 89
key-value stores, 306
MongoDB, 93, 133
Neo4j, 177, 203
PostgreSQL, 52
Redis, 309

scalar types, DynamoDB, 219

scan
DynamoDB, 221
HBase, 61, 76, 80

Scan object, HBase, 79

scans
DynamoDB, 221, 248

Index • 334

HBase, 61, 76–81
performance, 61, 222

SCARD, Redis, 267

schemas
definition diagrams, 17
DynamoDB data model,

214, 218
entity diagrams, 36
HBase, 53, 60, 88
lack of enforcement in

MongoDB, 93, 133
lack of in Neo4j, 178, 187
misspellings in Mon-

goDB, 107
PostgreSQL, 9–11, 17, 51
selection decisions, 2,

306–308

scripts
adding data in HBase,

64–73
changes watcher for

CouchDB, 165
data transformation for

polyglot persistence
service example, 293–
294

disabling autoflush in
HBase, 70

disk usage in HBase, 80
importing data into

CouchDB with Ruby,
152–157

killing in HBase, 73, 80
querying polyglot persis-

tence service example,
299–303

scanning one table to
build another in
HBase, 77–81

streaming DynamoDB
example, 247–249

SDIFF, Redis, 267

SDIFFSTORE, Redis, 267

secondary indexes, Dy-
namoDB, 214, 230, 237,
249

SECONDARY server, MongoDB
replica sets, 126

secret key, AWS, 83, 218

security
AWS security roles, 242
database selection and,

309
Redis, 280

SECURITY_GROUP_ID environment
variable, 86

SELECT
PostgreSQL, 22–25, 28
Redis, 272

SELECT * FROM, DynamoDB,
214, 253

SELECT AVG, DynamoDB, 253

SELECT COUNT, DynamoDB, 253

SELECT DISTINCT
DynamoDB, 253
PostgreSQL, 24

SELECT MAX, DynamoDB, 253

SELECT STDDEV, DynamoDB,
253

SELECT...FROM, PostgreSQL, 13,
24

self property, Neo4j, 190

sensor example of streaming
DynamoDB, 234–254

Sentinel, 289

SERIAL, PostgreSQL, 16

servers
HBase region servers,

58, 73–77
MongoDB replica sets,

125–127
MongoDB, server-side

commands, 117–119
MongoDB, shard servers,

128
Redis master-slave repli-

cation, 281
Redis server information,

277
Redis, bridging, 285
Redis, multiple masters,

284
voting rights, 127

SET, Redis, 261, 263, 275, 282

$set, MongoDB, 104–105

set theory, relational
databases, 4, 9, 12, 305

set types, DynamoDB, 220

setWriteToWAL(), HBase, 74, 79

SETBIT, Bloom filters, 287

SETEX, Redis, 271

sets
Redis, 261, 263, 266–269
sorted sets in Redis, 263,

268–269

Seven Languages in Seven
Weeks, x

shard counts, streaming with
Kinesis, 239

sharding, see also replica sets
document-oriented

databases, 307
MongoDB, 114, 127–131
streaming DynamoDB

with Kinesis, 239

shortestPath, Neo4j, 192, 199

show collections, MongoDB, 96

show dbs, MongoDB, 95

Siemens, 212

Simple Storage Service (S3),
see S3 (Simple Storage Ser-
vice)

since parameter, CouchDB
watcher, 162

SINTER, Redis, 267

SINTERSTORE, Redis, 267

$size, MongoDB, 103

slave nodes, HBase clusters,
88

slaves
Neo4j high availability

mode, 203–207
Redis, 281

SMEMBERS, Redis, 267, 275,
296

SMOVE, Redis, 267

snapshotting, Redis, 279

social networks, graph
databases, 7, 209, 308

SocketStream, 304

$sort, MongoDB, 115

sort key, see range key

sorted sets, Redis, 263, 268–
269

soundex() algorithm, 45

source mapping, AWS, 243

Spanner, ix

Spark, 89

SPOP, Redis, 268

SQL
about, 20
commands in Athena,

255
conventions, 11
help for commands in

PostgreSQL, 11
querying DynamoDB,

250–254
relational databases, 4
ROLLBACK, 262

SQLite, 4

SREM, Redis, 268

Index • 335

SS (string set), DynamoDB,
220

SSH
key pair, 84
running HBase on AWS,

84, 86

ssh command, 87

stacks, Redis as, 259, 264–
265

stages, aggregate queries in
MongoDB, 115–117

standalone mode, HBase, 55

star notation, Cypher, 197

STARTKEY, HBase, 76

startkey parameter, importing
XML into CouchDB, 156

statistics, MongoDB, 114

status, HBase, 58

status(), MongoDB replica sets,
125

stop words, 42

stop-hbase.sh, 57

stored procedures, Post-
greSQL, 27–30, 50

storing
CouchDB append-only

storage model, 135
DynamoDB tables, 214
JavaScript functions, 119
materialized views, 32
Redis intersections, 267
Redis options, 261, 267,

278–280
Redis strings, 261

STREAM_ARN environment vari-
able, 239

streaming
DynamoDB, 232–254
Kinesis streams, creating,

239
Redis with pipelines,

275, 283
Redis with telnet, 274
understanding, 237
XML in HBase, 68

string sets, DynamoDB, 220

strings
checking for empty in

PostgreSQL, 14
CouchDB, 138, 143
DynamoDB, 220
fuzzy string matching in

PostgreSQL, 36–46
incrementing in Redis,

261

indexing for pattern
matching in Post-
greSQL, 39

Levenshtein distance, 39
metaphones, 44–46
natural language process-

ing, 41–46
PostgreSQL, 14, 39, 41–

46
publish-subscribe with

Redis, 276
querying partial strings

in polyglot persistence
service example, 298

Redis, 261, 274–275, 283
regular expressions in

PostgreSQL queries, 39
storage in Redis, 261
streaming in Redis with

pipelines, 275, 283
streaming in Redis with

telnet, 274
trigrams, 40
tsvector, 41–44

structs, 252

Structured Query Language,
see PostgreSQL; SQL

subdocuments, querying in
MongoDB, 101

subfolders, S3 buckets, 252

SUBSCRIBE, Redis, 276

subsets
CouchDB watcher, 162
filtering changes in

CouchDB, 167–169
querying CouchDB views,

152

sum(), CouchDB reducer func-
tions, 160

SUNION, Redis, 267

SUNIONSTORE, Redis, 267

system of record
CouchDB, 161, 290, 294
polyglot persistence ser-

vice example, 290, 294

system profiler, MongoDB,
112

T
tablefunc package, 36

tables
aliasing table names in

PostgreSQL, 16
auto-inferring table

names with Lambda,
254

DynamoDB, 214
HBase, 53, 58–60, 63–

64, 77–81
join tables in PostgreSQL,

15–18, 20
joins in relational

databases, 4
metadata, 21
pivot tables in Post-

greSQL, 34–35
PostgreSQL, 11, 15–18,

20–21, 34–35
temporary tables in Post-

greSQL, 34
as term, 12

tags, CouchDB, 158

Tate, Bruce, x

Tcl, 29

TCP
authoring ingress, 86
Redis, 274

telnet, Redis streaming, 274

templates
polyglot persistence ser-

vice example, 300
PostgreSQL, 42

temporary tables, Post-
greSQL, 34

term-separated value,
see TSV

terminate-clusters, AWS, 83, 87

text_pattern_ops, PostgreSQL, 39

thrashing, 293

throughput
exporting DynamoDB,

251
tuning in DynamoDB,

236

tilde (~), regular expressions
in PostgreSQL queries, 39

time to live (TTL)
DynamoDB, 245
Redis, 271

timeouts, Redis, 271

timestamps
HBase, 61
PostgreSQL, 17
Redis, 272, 278

top, MongoDB, 117

total_rows files, CouchDB, 152

transactions
Cypher, 202
PostgreSQL, 26
Redis, 262, 274, 276

trees, abstract syntax, 32

Index • 336

triggers
materialized views, 32
stored procedures, 29

trigrams, 40

ts_lexize(), PostgreSQL, 43

tsearch_data directory, 42

tsquery datatype, 41

TSV
importing into MongoDB,

114
transforming in Redis,

293–294

tsvector datatype, 41–44

TTL, see time to live (TTL)

TTL command, Redis, 271

tuple relational calculus, 12

tuples
PostgreSQL, 11, 20
as term, 12

Twisted, 295

Twitter, 55

TYPE, Redis, 273

$type, MongoDB, 103

U
UI tools, MongoDB, 98

underscore (_), wildcard in
PostgreSQL, 38

unions, Redis, 267, 270

UNIQUE, PostgreSQL, 18, 37

uniqueness, as selection crite-
ria, 3

$unset, MongoDB, 105

UNSUBSCRIBE, Redis, 277

UPDATE
Neo4j with Cypher, 181
PostgreSQL, 15

update(), MongoDB, 104

updating, see also CRUD
CouchDB, 138, 142, 161–

169, 173, 293
DynamoDB, 214, 222,

233
HBase, 61–66
Lambda functions, 243
MongoDB, 104–106
MongoDB commands list,

105
Neo4j with Cypher, 181
PostgreSQL, 13, 15, 31–

34
thrashing, 293

URL shortener with Redis,
261–273

use, MongoDB, 95

--use-default-roles, HBase cloud
example, 85

user context property, filter
functions, 168

V
value types, key-value stores,

4

values
cloning key values in Re-

dis, 267
CouchDB mapreduce,

158–161
CouchDB views, 145, 147
incrementing in Redis,

274
linking in polyglot persis-

tence service example,
302

MongoDB, matching in,
100–104, 113

MongoDB, updating, 105
partial, 100
popping lists in Redis,

265
popping sets in Redis,

268
Redis, 261, 264–268
SET (Redis), 261
sets in Redis, 267
sorted sets in Redis, 268

values argument, CouchDB re-
duce functions, 160

varchar_pattern_ops, PostgreSQL,
39

varchars, indexing in Post-
greSQL, 39

vendor lock-in, 27

verbose setting, Redis log, 278

version, HBase, 57

versioning
columnar databases, 307
in HBase, 61, 89

VERSIONS, HBase columns, 63

vertexes, graph databases,
180, 208

VIEW, PostgreSQL, 30–34

views
CouchDB, 135, 145–161,

174
creating in CouchDB,

145–149
creating in CouchDB with

mapreduce, 158–161,
174

creating in PostgreSQL,
31

defined, 145
grouping in CouchDB,

149
materialized views, 32
metadata in CouchDB

views, 146
PostgreSQL, 30–34
querying CouchDB, 149–

152, 157
saving in CouchDB, 149

Voldemort, 5

voting rights, MongoDB
servers, 127

W
WALs folder, HBase, 74

warehousing, data, 302

warning setting, Redis log, 278

watchers
continuous, 167
CouchDB, 161–169, 173

WHERE, PostgreSQL, 14

$where, MongoDB, 108

while, loop for streaming XML
in HBase, 69

WikiMedia Foundation, 68,
72

wildcards, PostgreSQL, 22

window functions, Post-
greSQL, 24–25

Windows, shell setup, xi

write-ahead logging
excluding, 74
HBase, 55, 74, 76, 79

writing
append-only file in Redis,

279
DynamoDB, 221, 236
DynamoDB write capaci-

ty, 236

X
XML

importing into CouchDB
with Ruby, 153–157

streaming in HBase, 68

XMLStreamReader, 69

Y
Yahoo, PNUTS, 317

Index • 337

Z
ZADD, Redis, 270

ZINCRBY, Redis, 268

ZooKeeper, 58, 89, 203

ZRANGE, Redis, 268

ZRANGEBYSCORE, Redis, 269

ZREMRANGEBYRANK, Redis, 269

ZREMRANGEBYSCORE, Redis, 269

ZREVRANGE, Redis, 269

ZREVRANGEBYSCORE, Redis, 269

ZUNIONSTORE, Redis, 270

Index • 338

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2018

https://pragprog.com

More Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

Learn Why, Then Learn How
Get started on your Elixir journey today.

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(242 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

Programming Elixir ≥ 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(398 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

https://pragprog.com/book/tvmelixir
https://pragprog.com/book/elixir16

A Better Web with Phoenix and Elm
Elixir and Phoenix on the server side with Elm on the front end gets you the best of both
worlds in both worlds!

Programming Phoenix ≥ 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert, as you build the next generation of web ap-
plications.

Chris McCord, Bruce Tate and José Valim
(325 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

https://pragprog.com/book/phoenix14
https://pragprog.com/book/jfelm

Better by Design
From architecture and design to deployment in the harsh realities of the real world, make
your software better by design.

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/mkdsa
https://pragprog.com/book/mnee2

Java in Depth
Get up to date on the latest Java 8 features, and take an in-depth look at concurrency op-
tions.

Functional Programming in Java
Get ready to program in a whole new way. Functional
Programming in Java will help you quickly get on top
of the new, essential Java 8 language features and the
functional style that will change and improve your
code. This short, targeted book will help you make the
paradigm shift from the old imperative way to a less
error-prone, more elegant, and concise coding style
that’s also a breeze to parallelize. You’ll explore the
syntax and semantics of lambda expressions, method
and constructor references, and functional interfaces.
You’ll design and write applications better using the
new standards in Java 8 and the JDK.

Venkat Subramaniam
(196 pages) ISBN: 9781937785468. $33
https://pragprog.com/book/vsjava8

Programming Concurrency on the JVM
Stop dreading concurrency hassles and start reaping
the pure power of modern multicore hardware. Learn
how to avoid shared mutable state and how to write
safe, elegant, explicit synchronization-free programs
in Java or other JVM languages including Clojure,
JRuby, Groovy, or Scala.

Venkat Subramaniam
(280 pages) ISBN: 9781934356760. $35
https://pragprog.com/book/vspcon

https://pragprog.com/book/vsjava8
https://pragprog.com/book/vspcon

Python and Data Science
For data science and basic science, for you and anyone else on your team.

Data Science Essentials in Python
Go from messy, unstructured artifacts stored in SQL
and NoSQL databases to a neat, well-organized dataset
with this quick reference for the busy data scientist.
Understand text mining, machine learning, and net-
work analysis; process numeric data with the NumPy
and Pandas modules; describe and analyze data using
statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-
stop solution covers the essential data science you
need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841. $29
https://pragprog.com/book/dzpyds

Practical Programming, Third Edition
Classroom-tested by tens of thousands of students,
this new edition of the best-selling intro to program-
ming book is for anyone who wants to understand
computer science. Learn about design, algorithms,
testing, and debugging. Discover the fundamentals of
programming with Python 3.6—a language that’s used
in millions of devices. Write programs to solve real-
world problems, and come away with everything you
need to produce quality code. This edition has been
updated to use the new language features in Python
3.6.

Paul Gries, Jennifer Campbell, Jason Montojo
(410 pages) ISBN: 9781680502688. $49.95
https://pragprog.com/book/gwpy3

https://pragprog.com/book/dzpyds
https://pragprog.com/book/gwpy3

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/pwrdata
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/pwrdata

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/pwrdata
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/pwrdata
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Why a NoSQL Book
	Why Seven Databases
	What’s in This Book
	What This Book Is Not
	Code Examples and Conventions
	Credits
	Online Resources

	1. Introduction
	It Starts with a Question
	The Genres
	Onward and Upward

	2. PostgreSQL
	That’s Post-greS-Q-L
	Day 1: Relations, CRUD, and Joins
	Day 2: Advanced Queries, Code, and Rules
	Day 3: Full Text and Multidimensions
	Wrap-Up

	3. HBase
	Introducing HBase
	Day 1: CRUD and Table Administration
	Day 2: Working with Big Data
	Day 3: Taking It to the Cloud
	Wrap-Up

	4. MongoDB
	Hu(mongo)us
	Day 1: CRUD and Nesting
	Day 2: Indexing, Aggregating, Mapreduce
	Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS
	Wrap-Up

	5. CouchDB
	Relaxing on the Couch
	Day 1: CRUD, Fauxton, and cURL Redux
	Day 2: Creating and Querying Views
	Day 3: Advanced Views, Changes API, and Replicating Data
	Wrap-Up

	6. Neo4J
	Neo4j Is Whiteboard Friendly
	Day 1: Graphs, Cypher, and CRUD
	Day 2: REST, Indexes, and Algorithms
	Day 3: Distributed High Availability
	Wrap-Up

	7. DynamoDB
	DynamoDB: The “Big Easy” of NoSQL
	Day 1: Let’s Go Shopping!
	Day 2: Building a Streaming Data Pipeline
	Day 3: Building an “Internet of Things” System Around DynamoDB
	Wrap-Up

	8. Redis
	Data Structure Server Store
	Day 1: CRUD and Datatypes
	Day 2: Advanced Usage, Distribution
	Day 3: Playing with Other Databases
	Wrap-Up

	9. Wrapping Up
	Genres Redux
	Making a Choice
	Where Do We Go from Here?

	A1. Database Overview Tables
	A2. The CAP Theorem
	Eventual Consistency
	CAP in the Wild
	The Latency Trade-Off

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

