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In praise of Joe Celko’s Complete Guide to NoSQL: What Every SQL 
Professional Needs to Know about Nonrelational Databases

“For those of you who have problems that just don’t fit the SQL mold, 
or who want to simply increase your knowledge of data management in 
general, you can do worse than Joe Celko’s books in general, and NoSQL 
in particular.”

—Jeff Garbus, Owner, Soaring Eagle Consulting
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Mr. Celko is the author of a series of books on SQL and RDBMS for 
Elsevier/Morgan Kaufmann. He is an independent consultant based in 
Austin, TX. He has written over 1,200 columns in the computer trade and 
academic presses, mostly dealing with data and databases.
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I N T R O D U C T I O N

“Nothing is more difficult than to introduce a new order, because the 
innovator has for enemies all those who have done well under the old 
conditions and lukewarm defenders in those who may do well under the 
new.” —Niccolo Machiavelli

I have done a series of books for the Elsevier/Morgan Kaufmann imprint 
over the last few decades. They have almost all been about SQL and RDBMS. 
This book is an overview of what is being called Big Data, new SQL, or NoSQL 
in the trade press; we geeks love buzzwords! The first columnist or blogger to 
invent a meme that catches on will have a place in Wikipedia and might even 
get a book deal out of it.

Since SQL is the de facto dominate database model on Earth, anything 
different has to be positioned as a challenger. But what buzzwords can we 
use? We have had petabytes of data in SQL for years, so “Big Data” does not 
seem right. SQL has been evolving with a new ANSI/ISO standard being 
issued every five or so years, rather than the “old SQL” suddenly changing 
into “new SQL” overnight. That last meme makes me think of New Coke® 
and does not inspire confidence and success.

Among the current crop of buzzwords, I like “NoSQL” the best because 
I read it as “N. O. SQL,” a shorthand for “not only SQL” instead of “no 
SQL,” as it is often read. This implies that the last 40-plus years of database 
technology have done no good. Not true! Too often SQL people, me 
especially, become the proverbial “kid with a hammer who thinks every 
problem is a nail” when we are doing IT. But it takes more than a hammer to 
build a house.

Some of the database tools we can use have been around for decades and 
even predate RDBMS. Some of the tools are new because technology made 
them possible. When you open your toolbox, consider all of the options and 
how they fit the task.

This survey book takes a quick look at the old technologies that you might 
not know or have forgotten. Then we get to the “new stuff” and why it exists. 
I am not so interested in hardware or going into particular software in depth. 
For one thing, I do not have the space and you can get a book with a narrow 
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focus for yourself and your projects. Think of this book as a department-store 
catalog where you can go to get ideas and learn a few new buzzwords.

Please send corrections and comments to jcelko212@earthlink.net and 
look for feedback on the companion website (http://elsevierdirect.com/v2/
companion.jsp?ISBN=9780124071926).

The following is a quick breakdown of what you can expect to find in 
this book:

Chapter 1: NoSQL and Transaction Processing. A queue of jobs being 
read into a mainframe computer is still how the bulk of commercial data 
processing is done. Even transaction processing models finish with a batch 
job to load the databases with their new ETL tools. We need to understand 
both of these models and how they can be used with new technologies.

Chapter 2: Columnar Databases. Columnar databases use traditional 
structured data and often run some version of SQL; the difference is in 
how they store the data. The traditional row-oriented approach is replaced 
by putting data in columns that can be assembled back into the familiar 
rows of an RDBMS model. Since columns are drawn from one and only 
one data type and domain, they can be compressed and distributed over 
storage systems, such as RAID.

Chapter 3: Graph Databases. Graph databases are based on graph theory, 
a branch of discrete mathematics. They model relationships among entities 
rather than doing computations and aggregations of the values of the 
attributes and retrievals based on those values.

Chapter 4: MapReduce Model. The MapReduce model is the most 
popular of what is generally called NoSQL or Big Data in the IT trade 
press. It is intended for fast retrieval of large amounts of data from large 
file systems in parallel. These systems trade this speed and volume for less 
data integrity. Their basic operations are simple and do little optimization. 
But a lot of applications are willing to make that trade-off.

Chapter 5: Streaming Databases and Complex Events. The relational 
model and the prior traditional database systems assume that the tables are 
static during a query and that the result is also a static table. But streaming 
databases are built on a model of constantly flowing data—think of river or 
a pipe of data moving in time. The best-known examples of streaming data 
are stock and commodity trading done by software in subsecond trades. 
The system has to take actions based on events in this stream.

mailto:jcelko212@earthlink.net
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Chapter 6: Key–Value Stores. A key–value store is a collection of pairs, 
(<key>, <value>), that generalize a simple array. The keys are unique 
within the collection and can be of any data type that can be tested for 
equality. This is a form of the MapReduce family, but performance depends 
on how carefully the keys are designed. Hashing becomes an important 
technique.

Schema versus No Schema. SQL and all prior databases use a schema 
that defines their structure, constraints, defaults, and so forth. But there is 
overhead in using and maintaining schema. Having no schema puts all of 
the data integrity (if any!) in the application. Likewise, the presentation 
layer has no way to know what will come back to it. These systems are 
optimized for retrieval, and the safety and query power of SQL systems is 
replaced by better scalability and performance for retrieval.

Chapter 7: Textbases. The most important business data is not 
in databases or files; it is in text. It is in contracts, warranties, 
correspondence, manuals, and reference material. Text by its nature is 
fuzzy and bulky; traditional data is encoded to be precise and compact. 
Originally, textbases could only find documents, but with improved 
algorithms, we are getting to the point of reading and understanding  
the text.

Chapter 8: Geographical Data. Geographic information systems (GISs) 
are databases for geographical, geospatial, or spatiotemporal (space–
time) data. This is more than cartography. We are not just trying to locate 
something on a map; we are trying to find quantities, densities, and 
contents of things within an area, changes over time, and so forth.

Chapter 9: Big Data and Cloud Computing. The term Big Data was 
invented by Forrester Research in a whitepaper along with the the four 
V buzzwords: volume, velocity, variety, and variability. It has come to 
apply to an environment that uses a mix of the database models we have 
discussed and tries to coordinate them.

Chapter 10: Biometrics, Fingerprints, and Specialized Databases. 
Biometrics fall outside commercial use. They identify a person as a 
biological entity rather than a commercial entity. We are now in the worlds 
of medicine and law enforcement. Eventually, however, biometrics may 
move into the commercial world as security becomes an issue and we are 
willing to trade privacy for security.
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Chapter 11: Analytic Databases. The traditional SQL database is used for 
online transaction processing. Its purpose is to provide support for daily 
business applications. The online analytical processing databases are built 
on the OLTP data, but the purpose of this model is to run queries that 
deal with aggregations of data rather than individual transactions. It is 
analytical, not transactional.

Chapter 12: Multivalued or NFNF Databases. RDBMS is based on first 
normal form, which assumes that data is kept in scalar values in columns 
that are kept in rows and those records have the same structure. The 
multivalued model allows the use to nest tables inside columns. They 
have a niche market that is not well known to SQL programmers. There is 
an algebra for this data model that is just as sound as the relational model.

Chapter 13: Hierarchical and Network Database Systems. IMS and IDMS 
are the most important prerelational technologies that are still in wide use 
today. In fact, there is a good chance that IMS databases still hold more 
commercial data than SQL databases. These products still do the “heavy 
lifting” in banking, insurance, and large commercial applications on 
mainframe computers, and they use COBOL. They are great for situations 
that do not change much and need to move around a lot of data. Because 
so much data still lives in them, you have to at least know the basics of 
hierarchical and network database systems to get to the data to put it in a 
NoSQL tool.
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C H A P T E R

1
NoSQL and Transaction Processing

Introduction

This chapter discusses traditional batch and transaction processing.  
A queue of jobs being read into a mainframe computer is still how the bulk 
of commercial data processing is done. Even transaction processing models 
finish with a batch job to load the databases with their new ETL (extract, 
transform, load) tools. We need to understand both of these models and how 
they can be used with new technologies.

In the beginning, computer systems did monoprocessing, by which I 
mean they did one job from start to finish in a sequence. Later, more than one 
job could share the machine and we had multiprocessing. Each job was still 
independent of the others and waited in a queue for its turn at the hardware.

This evolved into a transaction model and became the client–server 
architecture we use in SQL databases. The goal of a transactional system 
is to assure particular kinds of data integrity are in place at the end of a 
transaction. NoSQL does not work that way.

1.1 Databases Transaction Processing in the Batch Processing World

Let’s start with a historical look at data and how it changed. Before there was 
Big Data there was “Big Iron”—that is, the mainframe computers, which used 
batch processing. Each program ran with its own unshared data and unshared 
processor; there was no conflict with other users or resources. A magnetic 
tape or deck of punch cards could be read by only one job at a time.
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Scheduling batch jobs was an external activity. You submitted a job, it 
went into a queue, and a scheduler decided when it would be run. The 
system told an operator (yes, this is a separate job!) which tapes to hang on, 
what paper forms to load into a printer, and all the physical details. When a 
job was finished, the scheduler had to release the resources so following jobs 
could use them.

The scheduler had to assure that every job in the queue could finish. A job 
might not finish if other jobs were constantly assigned higher priority in the 
queue. This is called a live-lock problem. Think of the runt of a litter of pigs 
always being pushed away from its mother by the other piglets. One solution 
is to decrease the priority number of a job when it has been waiting for 
n seconds in the queue until it eventually gets to the first position.

For example, if two jobs, J1 and J2, both want to use resources A and 
B, we can get a dead-lock situation. Job J1 grabs resource A and waits for 
resource B; job J2 grabs resource B and waits for resource A. They sit and wait 
forever, unless one or both of the jobs releases its resource or we can find 
another copy of one of the resources.

This is still how most commercial data processing is done, but the tape 
drives have been swapped for disk drives.

1.2 Transaction Processing in the Disk Processing World

The world changed when disk drives were invented. At first, they were 
treated like fast tape drives and were mounted and dismounted and assigned 
to a single job. But the point of a database is that it is a common resource 
with multiple jobs (sessions) running at the same time.

There is no queue in this model. A user logs on in a session, which is 
connected to the entire database. Tables are not files, and the user does not 
connect to a particular table. The Data Control Language (DCL) inside the 
SQL engine decides what tables are accessible to which users.

If the batch systems were like a doorman at a fancy nightclub, deciding 
who gets inside, then a database system is like a waiter handling a room full 
of tables (sorry, had to do that pun) that are concurrently doing their own 
things.

In this world, the amount of data available to a user session is huge 
compared to a magnetic tape being read record by record. There can be many 
sessions running at the same time. Handling that traffic is a major conceptual 
and physical change.
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1.3 ACID

The late Jim Gray really invented modern transaction processing in the 
1970s and put it in the classic paper “The Transaction Concept: Virtues and 
Limitations” in June 1981. This is where the ACID (atomicity, consistency, 
isolation, and durability) acronym started. Gray’s paper discussed atomicity, 
consistency, and durability; isolation was added later. Bruce Lindsay and 
colleagues wrote the paper “Notes on Distributed Databases” in 1979 that 
built upon Gray’s work, and laid down the fundamentals for achieving 
consistency and the primary standards for database replication. In 1983, 
Andreas Reuter and Theo Härder published the paper “Principles of 
Transaction-Oriented Database Recovery” and coined the term ACID.

The terms in ACID mean:

◆	 Atomicity. Either the task (or all tasks) within a transaction are 
performed or none of them are. This is the all-or-none principle. If one 
element of a transaction fails, the entire transaction fails. SQL carries 
this principle internally. An INSERT statement inserts an entire set of 
rows into a table; a DELETE statement deletes an entire set of rows from 
a table; an UPDATE statement deletes and inserts entire sets.

◆	 Consistency. The transaction must meet all protocols or rules defined by 
the system at all times. The transaction does not violate those protocols 
and the database must remain in a consistent state at the beginning 
and end of a transaction. In SQL this means that all constraints are 
TRUE at the end of a transaction. This can be because the new state of 
the system is valid, or because the system was rolled back to its initial 
consistent state.

◆	 Isolation. No transaction has access to any other transaction that 
is in an intermediate or unfinished state. Thus, each transaction is 
independent unto itself. This is required for both performance and 
consistency of transactions within a database. This is not true in SQL; 
we have a concept of levels of isolation. A session can see uncommitted 
data at certain levels of isolation. This uncommitted data can be rolled 
back by its session, so in one sense, it never existed.

◆	 Durability. Once the transaction is complete, it will persist as complete 
and cannot be undone; it will survive system failure, power loss, and 
other types of system breakdowns. This is a hardware problem and 
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we have done a good job of this. We just do not let data sit in volatile 
storage before we persist it.

This has been done with various locking schemes in most SQL databases. 
A lock says how other sessions can use a resource, such as reading only 
committed rows, or allowing them to read uncommitted rows, etc. This is 
called a pessimistic concurrency model. The underlying assumption is that 
you have to protect yourself from other people and that conflict is the normal 
situation.

The other popular concurrency model is called optimistic concurrency. If 
you have worked with microfilm, you know this model. Everyone gets a copy 
of the data to do with it as they wish in their session. In microfilm systems, 
the records manager would make copies of a document from the film and 
hand them out. Each employee would mark up his or her copy and turn it 
into central records.

The assumptions in this model are:

◆	 Queries are much more common than database changes. Design for 
them.

◆	 Conflicts are rare when there are database changes. Treat them as 
exceptions.

◆	 When you do have conflicts, the sessions involved can be rolled back 
or you can set up rules for resolutions. Wait for things to get back to 
normal, and do not panic.

In case of microfilm systems, most of the requests were for information 
and the data was never changed. The requests that did make changes were 
usually separated in time so they did not conflict. When one or more 
employees made the same change, there was no conflict and the change was 
made. When two employees had a conflict, the records manager rejected 
both changes. Then he or she waited for another change that had no conflicts 
either by applying a rule or by a later change.

Optimistic concurrency depends on timestamping each row and keeping 
generational copies. The user can query the database at a point in time when 
he or she knows it is in an ACID state. In terms of the microfilm analogy, this 
is how central records look while waiting for the employees to return their 
marked-up copies. But this also means that we start with the database at time = 
t
0
, and can see it at time = t

0
, t

1
, t

2
, …, t

n
 as we wish, based on the timestamps. 
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Insertions, deletes, and updates do not interfere with queries as locking can. 
Optimistic concurrency is useful in situations where there is a constant inflow 
of data that has to be queried, such as stock and commodity trading.

The details of optimistic concurrency will be discussed in Section 5.1.1 
on streaming databases. This method is best suited for databases that have to 
deal with constantly changing data, but have to maintain data integrity and 
present a consistent view of the data at a point in time.

Notice what has not changed: central control of data!

1.4 Pessimistic Concurrency in Detail

Pessimistic concurrency control assumes that conflict is the expected 
condition and we have to guard against it. The most popular models in 
a relational database management system (RDBMS) have been based on 
locking. A lock is a device that gives one user session access to a resource 
while keeping or restricting other sessions from that resource. Each session 
can get a lock on resources, make changes and then COMMIT or ROLLBACK 
the work in the database. A COMMIT statement will persist the changes, and a 
ROLLBACK statement will restore the database to the state it was in before the 
session. The system can also do a ROLLBACK if there is a problem with the 
changes. At this point, the locks are released and other sessions can get to 
the tables or other resources.

There are variants of locking, but the basic SQL model has the following 
ways that one transaction can affect another:

◆	 P0 (dirty write). Transaction T1 modifies a data item. Another 
transaction, T2, then further modifies that data item before T1 performs 
a COMMIT or ROLLBACK. If T1 or T2 then performs a ROLLBACK, it is 
unclear what the correct data value should be. One reason why dirty 
writes are bad is that they can violate database consistency. Assume 
there is a constraint between x and y (e.g., x = y), and T1 and T2 each 
maintain the consistency of the constraint if run alone. However, the 
constraint can easily be violated if the two transactions write x and y in 
different orders, which can only happen if there are dirty writes.

◆	 P1 (dirty read). Transaction T1 modifies a row. Transaction T2 then 
reads that row before T1 performs a COMMIT. If T1 then performs a 
ROLLBACK, T2 will have read a row that was never committed and that 
may thus be considered to have never existed.
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◆	 P2 (nonrepeatable read). Transaction T1 reads a row. Transaction 
T2 then modifies or deletes that row and performs a COMMIT. If T1 
then attempts to reread the row, it may receive the modified value or 
discover that the row has been deleted.

◆	 P3 (phantom). Transaction T1 reads the set of rows N that satisfy  
some search condition. Transaction T2 then executes statements  
that generate one or more rows that satisfy the search condition used 
by transaction T1. If transaction T1 then repeats the initial read  
with the same search condition, it obtains a different collection  
of rows.

◆	 P4 (lost update). The lost update anomaly occurs when transaction 
T1 reads a data item, T2 updates the data item (possibly based on a 
previous read), and then T1 (based on its earlier read value) updates 
the data item and performs a COMMIT.

These phenomena are not always bad things. If the database is being  
used only for queries, without any changes being made during the workday, 
then none of these problems will occur. The database system will run much 
faster if you do not have to try to protect yourself from these problems. 
They are also acceptable when changes are being made under certain 
circumstances.

Imagine that I have a table of all the cars in the world. I want to execute 
a query to find the average age of drivers of red sport cars. This query will 
take some time to run, and during that time, cars will be crashed, bought, 
and sold; new cars will be built; and so forth. But I accept a situation with 
the three phenomena (P1–P3) because the average age will not change that 
much from the time I start the query to the time it finishes. Changes after the 
second decimal place really do not matter.

You can prevent any of these phenomena by setting the transaction 
isolation levels. This is how the system will use locks. The original ANSI 
model included only P1, P2, and P3. The other definitions first appeared in 
Microsoft Research Technical Report MSR-TR-95-51: “A Critique of ANSI 
SQL Isolation Levels” by Hal Berenson and colleagues (1995).

1.4.1 Isolation Levels

In standard SQL, the user gets to set the isolation level of the transactions in 
his or her session. The isolation level avoids some of the phenomena we just 



1 . 4  P e s s i m i s t i c  C o n c u r r e n c y  i n  D e t a i l 	 7 

talked about and gives other information to the database. The following is 
the syntax for the SET TRANSACTION statement:

SET TRANSACTION <transaction mode list>

<transaction mode> ::= <isolation level> | <transaction access mode> | 

<diagnostics size>

<diagnostics size> ::= DIAGNOSTICS SIZE <number of conditions>

<transaction access mode> ::= READ ONLY | READ WRITE

<isolation level> ::= ISOLATION LEVEL <level of isolation>

<level of isolation> ::=

READ UNCOMMITTED

| READ COMMITTED

| REPEATABLE READ–

| SERIALIZABLE

The optional <diagnostics size> clause tells the database to set up 
a list for error messages of a given size. This is a standard SQL feature, so 
you might not have it in your particular product. The reason is that a single 
statement can have several errors in it and the engine is supposed to find 
them all and report them in the diagnostics area via a GET DIAGNOSTICS 
statement in the host program.

The <transaction access mode> clause explains itself. The READ 
ONLY option means that this is a query and lets the SQL engine know that it 
can relax a bit. The READ WRITE option lets the SQL engine know that rows 
might be changed, and that it has to watch out for the three phenomena.

The important clause, which is implemented in most current SQL 
products, is <isolation level>. The isolation level of a transaction 
defines the degree to which the operations of one transaction are 
affected by concurrent transactions. The isolation level of a transaction 
is SERIALIZABLE by default, but the user can explicitly set it in the 
SET TRANSACTION statement.

The isolation levels each guarantee that each transaction will be executed 
completely or not at all, and that no updates will be lost. The SQL engine, 
when it detects the inability to guarantee the serializability of two or more 
concurrent transactions or when it detects unrecoverable errors, may initiate 
a ROLLBACK statement on its own.

Let’s take a look at Table 1.1, which shows the isolation levels and the 
three phenomena. A Yes means that the phenomena are possible under that 
isolation level.
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In the table:

◆	 The SERIALIZABLE isolation level is guaranteed to produce the same 
results as the concurrent transactions would have had if they had been 
done in some serial order. A serial execution is one in which each 
transaction executes to completion before the next transaction begins. 
The users act as if they are standing in a line waiting to get complete 
access to the database.

◆	 A REPEATABLE READ isolation level is guaranteed to maintain the same 
image of the database to the user during his or her session.

◆	 A READ COMMITTED isolation level will let transactions in this session 
see rows that other transactions commit while this session is running.

◆	 A READ UNCOMMITTED isolation level will let transactions in this 
session see rows that other transactions create without necessarily 
committing while this session is running.

Regardless of the isolation level of the transaction, phenomena P1, P2, 
and P3 shall not occur during the implied reading of schema definitions 
performed on behalf of executing a statement, the checking of integrity 
constraints, and the execution of referential actions associated with 
referential constraints. We do not want the schema itself changing on users.

1.4.2 Proprietary Isolation Levels

We have discussed the ANSI/ISO model, but vendors often implement 
proprietary isolation levels. You will need to know how those work to use your 
product. ANSI/ISO sets its levels at the session level for the entire schema. 
Proprietary models might allow the programmer to assign locks at the table 
level with additional syntax. Microsoft has a list of hints that use the syntax:

SELECT.. FROM <base table> WITH (<hint list>)

Table 1.1  Isolation Levels and the Three Phenomena

Isolation Level P1 P2 P3

SERIALIZABLE No No No

REPEATABLE READ No No Yes

READ COMMITTED No Yes Yes

READ UNCOMMITTED Yes Yes Yes
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The model can apply row or table level locks. If they are applied 
at the table, you can get ANSI/ISO conformance. For example, WITH 
(HOLDLOCK) is equivalent to SERIALIZABLE, but it applies only to 
the table or view for which it is specified and only for the duration of the 
transaction defined by the statement that it is used in.

The easiest way to explain the various schemes is with the concept of 
readers and writers. The names explain themselves.

In Oracle, writers block writers, The data will remain locked until you 
either COMMIT, ROLLBACK or stop the session without saving. When two 
users try to edit the same data at the same time, the data locks when the first 
user completes an operation. The lock continues to be held, even as this user 
is working on other data.

Readers do not block writers: Users reading the database do not prevent 
other users from modifying the same data at any isolation level.

DB2 and Informix are little different. Writers block writers, like Oracle. 
But in DB2 and Informix, writers prevent other users from reading the same 
data at any isolation level above UNCOMMITTED READ. At these higher 
isolation levels, locking data until edits are saved or rolled back can cause 
concurrency problems; while you're working on an edit session, nobody else 
can read the data you have locked. editing.

Readers block writers: In DB2 and Informix, readers can prevent 
other users from modifying the same data at any isolation level above 
UNCOMMITTED READ. Readers can only truly block writers in an 
application that opens a cursor in the DBMS, fetches one row at a time, and 
iterates through the result set as it processes the data. In this case, DB2 and 
Informix start acquiring and holding locks as the result set is processed.

In PostgreSQL, a row cannot be updated until the first transaction that made 
a change to the row is either committed to the database or rolled back. When 
two users try to edit the same data at the same time, the first user blocks other 
updates on that row. Other users cannot edit that row until this user either saves, 
thereby committing the changes to the database, or stops the edit session without 
saving, which rolls back all the edits performed in that edit session. If you use 
PostgreSQL’s multiversion concurrency control (MVCC), which is the default 
and recommended behavior for the database, user transactions that write to the 
database do not block readers from querying the database. This is true whether 
you use the default isolation level of READ COMMITTED in the database or set 
the isolation level to SERIALIZABLE. Readers do not block writers: No matter 
which isolation level you set in the database, readers do not lock data.
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1.5 CAP Theorem

In 2000, Eric Brewer presented his keynote speech at the ACM Symposium 
on the Principles of Distributed Computing and introduced the CAP or 
Brewer’s theorem. It was later revised and altered through the work of Seth 
Gilbert and Nancy Lynch of MIT in 2002, plus many others since.

This theorem is for distributed computing systems while traditional 
concurrency models assume a central concurrency manager. The pessimistic 
model had a traffic cop and the optimistic model had a head waiter. CAP 
stands for consistency, availability, and partition tolerance:

◆	 Consistency is the same idea as we had in ACID. Does the system reliably 
follow the established rules for its data content? Do all nodes within a 
cluster see all the data they are supposed to? Do not think that this is so 
elementary that no database would violate it. There are security databases 
that actively lie to certain users! For example, when you and I log on to 
the Daily Plant database, we are told that Clark Kent is a mild-mannered 
reporter for a great metropolitan newspaper. But if you are Lois Lane, you 
are told that Clark Kent is Superman, a strange visitor from another planet.

◆	 Availability means that the service or system is available when 
requested. Does each request get a response outside of failure or 
success? Can you log on and attach your session to the database?

◆	 Partition tolerance or robustness means that a given system continues 
to operate even with data loss or system failure. A single node failure 
should not cause the entire system to collapse. I am looking at my 
three-legged cat—she is partition tolerant. If she was a horse, we would 
have to shoot her.

Distributed systems can only guarantee two of the features, not all 
three. If you need availability and partition tolerance, you might have to 
let consistency slip and forget about ACID. Essentially, the system says “I 
will get you to a node, but I do not know how good the data you find there 
will be” or “I can be available and the data I show will be good, but not 
complete.” This is like the old joke about software projects: you have it on 
time, in budget, or correct—pick two.

Why would we want to lose the previous advantages? We would love to 
have them, but “Big Iron” has been beaten out by Big Data and it is spread 
all over the world. There is no central computer; every enterprise has to 
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deal with hundreds, thousands, or tens of thousands of data sources and 
users on networks today.

We have always had Big Data in the sense of a volume that is pushing the 
limitations of the hardware. The old joke in the glory days of the mainframe 
was that all you needed to do was buy more disks to solve any problem. 
Today, the data volume uses terms that did not exist in the old days. The 
SI prefixes peta (1015) and exa (1018) were approved in 1975 at the 15th 
Conférence Générale des Poids et Mesures (CGPM). 

1.6 BASE

The world is now full of huge distributed computing systems, such as 
Google’s BigTable, Amazon’s Dynamo, and Facebook’s Cassandra. Here is 
where we get to BASE, a deliberately cute acronym that is short for:

◆	 Basically available. This means the system guarantees the availability 
of the data as per the CAP theorem. But the response can be “failure,” 
“unreliable” because the requested data is in an inconsistent or 
changing state. Have you ever used a magic eight ball?

◆	 Soft state. The state of the system could change over time, so even 
during times without input there may be changes going on due to 
“eventual consistency,” thus the system is always assumed to be 
soft as opposed to hard, where the data is certain. Part of the system 
can have hard data, such as a table of constants like geographical 
locations.

◆	 Eventual consistency. The system will eventually become consistent 
once it stops receiving input. This gives us a window of inconsistency 
that is acceptably short. The term acceptably short window is a bit 
vague. A data warehouse doing noncritical computations can wait, 
but an online order-taking system has to respond in time to keep 
the customers happy (less than one minute). At the other extreme, 
real-time control systems must respond instantly. The domain name 
system (DNS) is the most commonly known system that uses eventual 
consistency. Updates to a domain name are passed around with 
protocols and time-controlled caches; eventually, all clients will see 
the update. But it is far from instantaneous or centralized. This model 
requires a global timestamp so that each node knows which data item 
is the most recent version.
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Like the ACID model, the eventual consistency model has variations:

◆	 Causal consistency. If process A has sent an update to process B, then 
a subsequent access by process B will return the updated value, and a 
write is guaranteed to supersede the earlier write. Access by process 
C that has no causal relationship to process A is subject to the normal 
eventual consistency rules. This was also called a buddy system in early 
network systems. If a node could not get to the definitive data source, it 
would ask a buddy if it had gotten the new data and trust its data.

◆	 Read-your-writes consistency. Process A, after it has updated a data item, 
always accesses the updated value and will never see an older value. 
This is a special case of the causal consistency model.

◆	 Session consistency. This is a practical version of the previous model, 
where a process accesses the storage system in a session. As long as 
the session exists, the system guarantees read-your-writes consistency. 
If the session terminates because of a failure, a new session will be 
created and processing will resume with a guarantee that it will not 
overlap the prior sessions.

◆	 Monotonic read consistency. A process returns only the most recent data 
values; it never returns any previous values.

◆	 Monotonic write consistency. In this case the system guarantees to 
serialize the writes by the same process. Systems that do not guarantee 
this level of consistency are notoriously hard to program. Think of it as 
a local queue at a node in the network.

A number of these properties can be combined. For example, one can get 
monotonic reads combined with session-level consistency. From a practical 
point of view monotonic reads and read-your-writes properties are most 
desirable in an eventual consistency system, but not always required. These 
two properties make it simpler for developers to build applications, while 
allowing the storage system to relax consistency and provide high availability.

Eventual consistency has been part of the backup systems in RDBMS 
products and in synchronous and asynchronous replication techniques. In 
synchronous mode the replica update is part of the transaction. In asynchronous 
mode the updates are delayed by log shipping. If the database crashes before the 
logs are shipped, the backup data can be out of date or inconsistent. Basically, 
the inconsistency window depends on the frequency of the log shipping.
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1.7 Server-side Consistency

On the server side we will have the same data in several, not necessarily all, 
nodes. If all n nodes agree on a data value, then we are sure of it. Life is good.

But when we are in the process of establishing a consensus on an update, 
we need to know how many nodes have acknowledged the receipt of the 
update so far out of the nodes that are on the mailing list. We are looking for 
a quorum rule that accounts for node failures and incomplete replication. 
These rules will vary with the application. Large bank transfers will probably 
want complete agreement on all nodes. An abandoned website shopping-cart 
application can be satisfied if the customer returns to any node to continue 
shopping with some version of his or her cart, even one with some missing 
items. You just have to be sure that when the user hits the “checkout” key the 
other nodes know to delete their local copy of that cart.

What we do not want is sudden emergency restarts of nodes as a default 
action. This was how early file systems worked. Many decades ago, my wife 
worked for an insurance company that processed social security data. A single 
bad punch card would abort the entire batch and issue a useless error message.

We want a system designed for graceful degradation. The Sabre airline 
reservation system expects a small number of duplicate reservations. It does 
not matter if somebody has two conflicting or redundant reservations in the 
system. Since the passenger cannot be in two places at once or in one place 
twice, the problem will be resolved by a human being or the physical logic of 
the problem.

When one node is overloaded, you will tolerate the reduced performance 
and move some of the load to other nodes until the first system can be 
repaired. The best example of that is redundant array of independent disks 
(RAID) systems. When a disk fails, it is physically removed from the array 
and a new unit is plugged in to replace it. During the reconstruction of 
the failed disk, performance for accesses will take a hit. The data has to be 
copied from the alternative array blocks while the system keeps running its 
usual tasks.

1.8 Error Handling

There are two broad classes of error messages. We can have an anticipated 
problem, like an invalid password, which can have a standard response or 
process. We all have gotten an invalid password, and then been locked out if 
we fail to get it right in some number of tries.



14	 C H A P T E R  1 :  N o S Q L  A N D  T R A N S A C T I O N  P R O C E S S I N G

The second class of error message tells us what happened, perhaps in 
painful detail. This invites some action on the part of the user or lets the user 
know why he or she is stuck.

But with NoSQL and the eventual consistency model, things might not be 
comfortable. Things stop or lock and you have no idea why, what to do, or 
how long it will take to resolve (if ever). As of 2012, Twitter has been trying 
to move from MySQL to Cassandra for more than a year. There are people 
(i.e., tweeters) who want instant feedback on the people they follow and any 
delay becomes an eternity. In August 2011, Foursquare reported an 11-hour 
downtime because of a failure of MongoDB.

1.9 Why SQL Does Not Work Here

To summarize why you might want to break away from SQL and the 
traditional RDBMS model:

◆	 You do not have the data in one machine or even one network.

◆	 Lots of it is not your data at all.

◆	 It is so big you cannot put it in one place.

◆	 It is uncoordinated in time as well as space.

◆	 It is not always nice, structured data that SQL was meant to handle. 
We will spend the next few chapters on the new flavors of data and the 
special tools they need.

Concluding Thoughts

You need to know the basics of the old technology to understand the new 
technology.

References
Gray, J. (1981). The Transaction Concept: Virtues and Limitations. http://www.hpl.hp.com/
techreports/tandem/TR-81.3.pdf. Cupertino CA.

Berenson, H., et al. (1995). Microsoft Research Technical Report MSR-TR-95-51: “A critique 
of ANSI SQL isolation levels”. Redmond, WA.

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf
http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf
http://refhub.elsevier.com/B978-0-12-407192-6.00001-7/rf9015
http://refhub.elsevier.com/B978-0-12-407192-6.00001-7/rf9015


Joe Celko's Complete Guide to NoSQL. DOI: 10.1016/B978-0-12-407192-6.00002-9
Copyright © 2014 Elsevier Inc. All rights reserved.

C H A P T E R

2
Columnar Databases

Introduction

Since the days of punch cards and magnetic tapes, files have been physically 
contiguous bytes that are accessed from start (open file) to finish (end-of-file 
flag = TRUE). Yes, the storage could be split up on a disk and the assorted data 
pages connected by pointer chains, but it is still the same model. Then the 
file is broken into records (more physically contiguous bytes), and records 
are broken into fields (still more physically contiguous bytes).

A file is processed in record by record (read/fetch next) or sequentially 
navigated in terms of a physical storage location (go to end of file, go back/
forward n records, follow a pointer chain, etc.). There is no parallelism in 
this model. There is also an assumption of a physical ordering of the records 
within the file and an ordering of fields within the records. A lot of time and 
resources have been spent sorting records to make this access practical; you 
did not do random access on a magnetic tape and you could not do it with a 
deck of punch cards.

When we got to RDBMS and SQL, this file system model was still the 
dominant mindset. Even Dr. Codd fell prey to it. He first had to have a 
PRIMARY KEY in all tables, which corresponded to the sort order of a 
sequential file. Later, he realized that a key is a key and there is no need to 
make one of them special in RDBMS. However, SQL had already incorporated 
the old terminology and the early SQL engines were built on existing file 
systems, so it stuck.
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The columnar model takes a fundamentally different approach. But it is 
one that works nicely with SQL and the relational model. In RDBMS, a table 
is an unordered set of rows that have exactly the same kind of rows. A row is 
an unordered set of columns all of the same kind, each of which holds scalar 
values drawn from a known domain. You access the columns by name, not 
by a physical position in the storage, but you have the "SELECT*" and other 
shorthand conventions to save typing.

The logical model is as follows: a table is a set of rows with one and only 
one structure; a row is a set of columns; a column is a scalar value drawn 
from one and only one domain. Storage usually follows this pattern with 
conventional file systems, using files for tables, records for rows, and fields 
for columns. But that has nothing to do with physical storage.

In the columnar model, we take a table and store each column in its own 
structure. Rows and tables are reassembled from these rows. Looking at the 
usual picture of a table, you can see why they are called vertical storage as 
opposed to horizontal storage models.

2.1 History

Column stores and inverted or transposed files are not that new. TAXIR was 
the first column-oriented database storage system that was built in 1969 for 
biology. Statistics Canada implemented the RAPID system in 1976 and used 
it for processing and retrieval of the Canadian Census of Population and 
Housing, as well as several other statistical applications. RAPID was shared 
with other statistical organizations throughout the world and used widely in 
the 1980s. It continued to be used by Statistics Canada until the 1990s.

For many years, Sybase IQ was the only commercially available columnar 
DBMS. However, when OLAP (online analytical processing) became popular, 
other products saw that they could take some of the techniques used for 
cubes and rollups and apply them to more general databases.

Given a column that has only one kind of simple data type in it, you can 
do a lot of compression. To reconstruct the rows, you have to break the pure 
set model and number the rows, as you did in a sequential file. Each row is 
reconstituted by looking at this row number. Contiguous row numbers with 
the same data value can be modeled as ranges: {start_position, end_
position, data_value}. This is the simplest format of compression, but it 
is very powerful. Much data is encoded in discrete values, so there are often 
long runs of identical values in a column.
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Then we can compress the data value using specialized routines built 
for just that domain and the data type it uses. It would be silly to have a 
domain token the same size or larger than the data value. The payoff comes 
with wider columns. Building a lookup table with a short token for a longer 
value is easy. Now the model changes to {start_position, end_position, 
domain_token} references {domain_token, data_value}.

For example, the area code in U.S. phone numbers use the regular 
expression of [2–9][0–9][0–9], which means that we can have at most 800 
of them. Instead of three ASCII characters, we can use a SMALLINT or a 
BCD for the token and get a lookup table that is tiny. This example is not a 
big savings, but it adds up in terabyte databases. A stronger example would 
be city and town names in the United States; there are slightly over 30,000 
municipalities as of 2012. You can store 65,535 tokens in a 2-byte integer; 
very few towns have a name of only two letters, and many of them are 
duplicates (before you ask, “Springfield” is the most common town name, 
which is why it is used on television shows, most famously The Simpsons). 
Likewise, a 2-byte integer can sequence almost 180 years of dates.

It also gives us a single place to add certain integrity constraints. For 
example, area codes 666 and 777 are valid areas codes but were not assigned 
as of 2012. Likewise, 555 is dummy phone exchange that you will see in 
movies; before all-digit dialing, “KLondike 5” was how you guaranteed the 
phone number could not be called. Listen for it in old movies, cartoons, and 
modern American television shows. You can simply leave invalid values out 
of the lookup table!

Freeform text compression is well known. For a database, we want a 
lossless compression—that means that when you decompress it, you get 
back everything you put in it. In music and video, we can trade some loss 
for speed or space without being hurt. The Lempel–Ziv (LZ) compression 
methods are among the most popular algorithms for lossless storage. 
DEFLATE is a variation on LZ optimized for decompression speed and 
compression ratio, but compression can be slow. DEFLATE is used in PKZIP, 
gzip, and PNG. LZW (Lempel–Ziv–Welch) is used in GIF images. Also 
noteworthy are the LZR (LZ–Renau) methods, which serve as the basis of the 
Zip method.

LZ methods use a table of substitutions for repeated strings. The table 
itself is often Huffman encoded (e.g., SHRI, LZX). This works well for human 
languages because grammatical affixes and structure words (prepositions, 
conjunctions, articles, particle markers, etc.) make up the bulk of text. But 
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encoding schemes also tend to follow patterns. A bank account number starts 
with the code for the American Bankers Association bank number in the 
United States. A product serial number includes a product line. Hierarchical 
and vector encoding schemes invite this kind of compression.

A lot of work has been done in recent years with minimal perfect hashing 
algorithms (see the “A Quick Look at Hashing” sidebar if you do not the 
technique). When the column is a relatively static set of strings, this is ideal. 
Any set of values, even those without common substrings, are hashed to a 
short, fixed-length data token that can be computed quickly.

The naive reaction to this model is that it is complicated, big, and slow. 
That is only half right; it is complicated compared to simple sequential field 
reading. But it is not slow. And it is not big.

At one point the computer processing unit (CPU) was the bottleneck, but 
then SMP (symmetric multiple processing), clusters, and MPP (massively 
parallel processing) gave us hundreds or thousands of CPUs running faster 
than was ever possible before. Boyle’s law is a bit of IT folklore that computer 
processing doubles in speed and halves in cost every 18 months. At the 
same time, data is getting bigger. A decade ago, 20 gigabytes was considered 
unmanageable; now small Internet startups are managing terabytes of data.

MPP uses many separate CPUs running in parallel to execute a 
single program. MPP is similar to SMP, but in SMP all the CPUs share 
the same memory, whereas in MPP systems, each CPU has its own memory. 
The trade-off is that MPP systems are more difficult to program because 
the processors have to communicate and coordinate with each other. On the 
other hand, SMP systems choke when all the CPUs attempt to access the 
same memory at once. However, these CPUs sit idle more often than not. 
This is due to the inability of the pre-CPU layers of memory—L2 (especially) 
and L1 caches—to throughput data rapidly. We are still moving complete 
records in a row-based model of data.

As an analogy, think about your personal electronics. If you want a few 
tracks from an album, it is cheaper to purchase only those tracks from 
iTunes. When you want most of the tracks, you will save money and time by 
purchasing the whole album, even though you only play some of the tracks.

A query is not the same kind of search-and-retrieval problem. The query 
either wants a column or it does not, and you know what that column is 
when you compile the query. The speed comes from the fact that assembling 
the rows with modern processor speeds and large primary storage is 
immensely faster than reading a single byte from a moving disk. In 2012, 
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IBM was able to reduce the size of tables in DB2 to one-third or smaller of the 
original tables. This savings keeps paying off because the {domain_token, 
data_value} is all that is read and they can be put in faster storage, such as 
solid-state disk (SSD).

The major significant difference between columnar- and row-based  
storage is that all the columns of a table are not stored in data pages. 
This eliminates much of the metadata that is stored on a data page. This 
metadata varies from product to product, but the most common metadata 
is the displacement of the rows (records) from the front of each data page 
and perhaps some other metadata about the data page. Within that there is 
metadata for the displacement of the columns from the front of each row  
and if the column is null. This is how the SQL data management system 
knows where to place the read–write head on the disk and what  
to return.

In particular, when early SQL products put a VARCHAR(n) column into 
a row, they would be allocated in the order of the columns in the CREATE 
TABLE statement. But this meant they would allocate storage for the full n 
characters, even if the data is shorter. The kludge we used was to put all the 
VARCHAR(n) columns at the end of the row in the DDL manually. Today, DB2 
and Oracle do this internally—rearrange the columns on output and hide it 
from the user.

The columnar model can compress data in place or store a pointer to a 
list of strings, such as first_name with a lookup table {1 = Aaron, 2 = Abe, 
3 = Albert, …, 9999 = Zebadiah, …}. But now there is a trade-off; we can store 
VARCHAR(n) as fixed length to speed up searching and not be hurt because 
the lookup table is small. Each lookup value appears only once, so we still 
have a relatively small amount of storage.

Obviously, these metadata maps had to be updated as records are inserted 
or deleted on the data page. Deletion is easy; the rows that are removed can 
be flagged immediately and ignored when the column is read. Insertions can 
be added to the end of the column structure. While this works, it is nice to 
have clusters of identical values to keep the size small and make searching 
by the data values easier. There are utility programs to recover storage—
columnar versions of the garbage-collection routines from other memory 
management systems.

Columnar databases can have indexes, but most of them do not. In effect, 
columnar storage itself is an index. The displacements also has to be handled 
by the indexes.
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A Quick Look at Hashing

Indexing and pointer chains involve a physical search to locate data. 
Given a search key, you can traverse from one node in a pointer chain to 
another until you either find a node with the search value or find that it 
does not exist.

Hashing is a disk-access technique based on mathematics. You take 
the search key and put it into a formula. The formula returns a location 
in an array or lookup table. That location contains a physical storage 
address and you can then go directly to it to find the data in one disk 
access.

For larger amounts of data, hashing is much faster than indexing.  
Tree-structured indexes become deeper as the amount of data increases. 
The traversals eventually have to get to a leaf node in this tree to find the 
data. This can mean more disk accesses with larger amounts of data.

It is possible that two or more different search keys will produce the 
same hash key. This is called a collision or (more poetically) a hash clash. 
The search key can then be rehashed with another function; the second 
function if often a member of the same family of hashing functions, 
with some of the constants changed. There is proof for certain hashing 
functions that a maximum of five rehashings will produce unique results.

A hashing function that has no collisions is called a perfect hashing 
function. If the hashing function has no empty slots in the array, then 
it is minimal. A minimal perfect hashing function requires that the set 
of search values is fixed, so it can work for keywords in a compiler and 
similar data sets.

The basic tools for most hashing algorithms are:

◆	 Digit selection. Given a search key, we pull some of the digits from 
the number, perhaps rearraging them. If the population is randomly 
distributed, this is a good technique. This is actually used by 
department stores at the order pickup windows. The first letter of the 
last names clusters around certain letters (“S” for Smith; “J” for Jones, 
Johnson, etc., but almost nobody for “X”, “Y,” and “Z”); however, 
customer phone numbers are uniformly random in the last two digits.

◆	 Division. The mod (<key>, m) function with a prime number (m) can 
be very a good hash function (Lum et al., 1971). It will give you a 

Continued
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2.2 How It Works

Since all values in a columnar store are of the same type and drawn from the 
same domain, calculating where the nth row is located is easy. All the columns 
are in the same order as they were in the original row, so to assemble the ith 
row, you go to the ith position in the relevant column stores and concatenate 
them. In the phone number example, go to area_codes, phone_exchange, 
and phone_nbr column stores and look for the ith records in each in parallel.

result between (0, (m − 1)). The TOTAL and IMAGE/3000 databases 
came with a list of large primes to allocate hash tables.

◆	 Multiplication. This technique squares a key and then pulls out the 
middle digits. A five-digit key will produce a ten-digit square and 
you can use the middle three digits with good results. For example, 
54,3212 = 2,950,771,041 and the middle digits are 077. The hash has 
to come from the middle or you will get too much clustering.

◆	 Folding. This technique pulls out continuous subsets of digits of size 
n and simply adds them. For example, given a five-digit key, you can 
add all five digits to get an answer in the range (0 ≤ hash ≤ 45). If you 
used pairs of digits, the range would be (0 ≤ hash ≤ 207). This is a 
weak technique, so exclusive-OR might be used instead of arithmetic 
and it is generally used with another technique.

Collision resolution techniques are also varied. The most common one 
is the use of buckets. A bucket is a hash table location that can hold more 
than one value. The two basic approaches are as follows:

◆	 Open address. This method tries to find a bucket in the hash table that 
is still open. The simplest approach is to start at the collision location 
and do a linear search for an open space from that point. Other similar 
techniques use more complicated functions than increments. Common 
functions are quadratics and pseudorandom number generators.

◆	 External chaining. You can add the new value to a linked list. This list 
might be in the main storage or have parts of it on disk. But with the 
right choice of the main storage table size, the overflow to disk can be 
less than 15% of the size of the hash table in the main storage. This 
method can be very effective.

A Quick Look at Hashing—Cont'd
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The area codes are relatively small, so they will come back first, then the 
exchanges, and finally the phone numbers. When I first saw this in the Sand 
(nee Nucleus) database, it was surprising. The test data was a set of over 
5 million rows of Los Angeles, CA, public data and was set up to step through 
the data slowly for monitoring. The result set appeared on the screen of the 
test machine in columns, not rows. Columns did not materialize in the result 
set in left-to-right order, either!

2.3 Query Optimizations

Some columnar databases use row-based optimizers, which negates many 
of the benefits of columnar storage. They materialize “rows” (comprising of 
only the columns of the query, in effect doing selection and projection) early 
in the query execution and process them with a row-oriented optimizer. 
Column-based optimizers are able to divide the selection and projection 
functions into separate operations, which is a version of the MapReduce 
algorithms (these algorithms will be explained later).

The goal is to do as much with just the row numbers as possible before looking 
up the actual data values. If you can gather the columns in parallel, so much the 
better. Obviously, projection will come first since having the data in columns has 
already done this. But selection needs to be applied as soon as possible.

Notice that I have talked about columns being drawn from a domain. Most 
of the joins done in actual databases are equijoins, which means the columns 
in different tables are drawn from the same domain and matched on equal 
values. In particular, a PRIMARY KEY and its referencing FOREIGN KEY have 
to be in the same domain. The PRIMARY KEY column will contain unique 
values for its table, and the FOREIGN KEYs will probably be one to many.

We can add a table name to the columnar descriptor, making it into domain 
descriptors: {table_name, start_position, end_position, data_value}. 
This vector can be fairly compact; a schema will seldom have the 2-plus million 
tables that can be modeled with a simple integers. This structure makes certain 
joins into scans over a single domain structure. An index can locate the start of 
each table within the domain descriptor and access the tables involved in parallel.

2.4 Multiple Users and Hardware

One of the advantages of a columnar model is that if two or more users 
want to use a different subset of columns, they do not have to lock out each 
other. This design is made easier because of a disk storage method known as 
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RAID (redundant array of independent disks, originally redundant array of 
inexpensive disks), which combines multiple disk drives into a logical unit. 
Data is stored in several patterns called levels that have different amounts 
of redundancy. The idea of the redundancy is that when one drive fails, the 
other drives can take over. When a replacement disk drive in put in the array, 
the data is replicated from the other disks in the array and the system is 
restored. The following are the various levels of RAID:

◆	 RAID 0 (block-level striping without parity or mirroring) has no (or zero) 
redundancy. It provides improved performance and additional storage 
but no fault tolerance. It is a starting point for discussion.

◆	 In RAID 1 (mirroring without parity or striping) data is written 
identically to two drives, thereby producing a mirrored set; the read 
request is serviced by either of the two drives containing the requested 
data, whichever one involves the least seek time plus rotational latency. 
This is also the pattern for Tandem’s nonstop computing model. 
Stopping the machine required a special command—“Ambush”—that 
has to catch both data flows at the same critical point, so they would 
not automatically restart.

◆	 In RAID 10 (mirroring and striping) data is written in stripes across 
primary disks that have been mirrored to the secondary disks. A typical 
RAID 10 configuration consists of four drives: two for striping and 
two for mirroring. A RAID 10 configuration takes the best concepts of 
RAID 0 and RAID 1 and combines them.

◆	 In RAID 2 (bit-level striping with dedicated Hamming-code parity) all 
disk spindle rotation is synchronized, and data is striped such that each 
sequential bit is on a different drive. Hamming-code parity is calculated 
across corresponding bits and stored on at least one parity drive. This 
theoretical RAID level is not used in practice.

◆	 In RAID 3 (byte-level striping with dedicated parity) all disk spindle 
rotation is synchronized, and data is striped so each sequential byte is 
on a different drive. Parity is calculated across corresponding bytes and 
stored on a dedicated parity drive.

◆	 RAID 4 (block-level striping with dedicated parity) is equivalent to 
RAID 5 except that all parity data is stored on a single drive. In this 
arrangement, files may be distributed between multiple drives. Each 
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drive operates independently, allowing input/output (I/O) requests to 
be performed in parallel. Parallelism is a huge advantage for a database. 
Each session can access one copy of a heavily referenced table without 
locking or read head contention.

◆	 RAID 5, RAID 6, and other patterns exist; many of them are marketing 
terms more than technology. The goal is to provide fault tolerance of 
drive failures, up to n disk drive failures or removals from the array. 
This makes larger RAID arrays practical, especially for high-availability 
systems. While this is nice for database people, we get more benefit 
from parallelism for queries.

2.5 Doing an ALTER Statement

ALTER statements change the structures in a schema. In the columnar model, 
ADD COLUMN and DROP COLUMN are pretty easy; a new columnar structure 
is created or an old one is removed from physical storage. In a row-oriented 
model, each row has to be compressed or expended with the alteration. The 
indexes will also have to be restructured.

Changing the data type is also harder in a traditional row-oriented 
database because of the same space problem. In the real world most of the 
alterations are to increase the physical storage of a column. Numbers are 
made greater, strings are made longer; only dates seem immune to expansion 
of a data value since the ISO-8601 has a fixed range of 0001-01-01 to 9999-
12-31 in the standard.

In the columnar model, the changes are much easier. Copy the positional 
data into a new columnar descriptor and cast the old data value to the new 
data value. When you have the new columnar structure loaded, drop the old 
and add the new. None of the queries will have to be changed unless they 
have a data type–specific predicate (e.g., if a date became an integer, then 
foobar_date < = CURRENT_TIMESTAMP is not going to parse).

2.6 Data Warehouses and Columnar Databases

Data warehouses can move some workloads, when few columns are involved, 
to columnar databases for improved performance. Multidimensional 
databases (MDBs), or cubes, are separate physical structures that support 
very fast access to precomputed aggregate data. When a query asks for most 
columns of the MDB, the MDB will perform quite well relatively speaking.
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The physical storage of these MDBs is a denormalized dimensional model 
that eliminates joins by storing the computations. However, MDBs get large 
and grow faster than expected as columns are added. The data in a MDB can 
be compressed in much the same way that it is in a columnar database, so it 
is relative easy to extract a subset of columns from a cube.

The best workload for columnar databases is queries that access less than 
all columns of the tables they use. In this case, less is more. The smaller the 
percentage of the row’s bytes needed, the better the performance difference 
with columnar databases.

Concluding Thoughts

A lot of important workloads are column selective, and therefore benefit 
tremendously from this model. Columnar databases perform well with 
larger amounts of data, large scans, and I/O-bound queries. While providing 
performance benefits, they also have unique abilities to compress their data.

Columnar databases have been around for a while and did very well in 
their niche. But they made a leap into the current market for two reasons. 
First, improved hardware, SSD in particular, made the differences between 
primary and secondary storage less clear. When there was a sharp difference 
between primary and secondary storage, compressing and decompressing 
data in and out of secondary storage was overhead. In SSD, there is no 
difference. The second factor is better algorithms. We have gotten really good 
at specialized compression on one hand, but we also have parallel algorithms 
that are designed for columnar data stores.
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C H A P T E R

3
Graph Databases

Introduction

This chapter discusses graph databases, which are used to model 
relationships rather than traditional structured data. Graph databases have 
nothing to do with presentation graphics. Just as FORTRAN is based on 
algebra, and relational databases are based on sets, graph databases are based 
on graph theory, a branch of discrete mathematics. Here is another way we 
have turned a mind tool into a class of programming tools!

Graph databases are not network databases. Those were the prerelational 
databases that linked records with pointer chains that could be traversed record 
by record. IBM's Information Management System (IMS) is one such tool still 
in wide use; it is a hierarchical access model. Integrated Database Management 
System (IDMS), TOTAL, and other products use more complex pointer 
structures (e.g., single-link lists, double-linked lists, junctions, etc.) to allow 
more general graphs than just a tree. These pointer structures are “hardwired” 
so that they can be navigated; they are the structure in which the data sits.

In a graph database, we are not trying to do arithmetic or statistics. We 
want to see relationships in the data. Curt Monash the database expert and 
blogger (http://www.dbms2.com/, http://www.monash.com) coined the term 
for this kind of analysis: relationship analytics.

Programmers have had algebra in high school, and they may have had 
some exposure to naive set theory in high school or college. You can program 
FORTRAN and other procedural languages with high school–level algebra and 

http://www.dbms2.com/
http://www.monash.com
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only a math major needs advanced set theory, which deals with infinite sets 
(computers do not have infinite storage no matter what your boss thinks). But 
you cannot really understand RDBMS and SQL without naive set theory.

But only math majors seem to take a whole semester of graph theory. This 
is really too bad; naive graph theory has simple concepts and lots of everyday 
examples that anyone can understand. Oh, did I mention that it is also full of 
sudden surprises where simple things become nonpolynomial (NP)-complete 
problems? Let’s try to make up that gap in your education.

In computer science, we use the “big O” notation, O(n), to express how 
much effort it takes to run an algorithm as the size of the input, (n). For 
example, if we have a simple process that handles one record at a time, 
the O(n) is linear; add one more record and it takes one more unit of 
execution time. But some algorithms increase in more complex ways. For 
example, sorting a file can be done in O(n log

2
(n)) time. Other algorithms 

can have a complexity that is a polynomial usually with squares and cubes. 
Then we get to the NP algorithms. They usually involve having to try all 
possible combinations to find a solution, so they have a factorial in their 
complexity, O(n!).

NP complexity shows up in many of the classic graph theory problems. 
Each new edge or node added to the graph can result in more and more 
combinations. We often find that we look for near-optimal solutions instead 
of practical reasons.

3.1 Graph Theory Basics

A graph has two things in it. There are edges (or arcs) and nodes (or 
vertices); the edges are drawn as lines that connect nodes, which are drawn 
as dots or circles. That is it! Two parts! Do not be fooled; binary numbers 
only have two parts and we build computers with them.

3.1.1 Nodes

Nodes are abstractions. They usually (not always) model what would be 
an entity in RDBMS. In fact, some of the power of graph theory is that 
a node can model a subgraph. A node may or may not have “something 
inside it” (electrical components) in the model; it can just sit there (bus 
stop) or simply be (transition state). A node is not an object. Objects have 
methods and local data inside them. In a complex graph query, we might 
be looking for an unknown or even nonexistent node. For example, a 
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bus stop with a Bulgarian barbeque stand might not exist. But a bus stop 
with a barbeque in a Bulgarian neighborhood might exist, and we not do 
know it until we connect many factors together (e.g., riders getting off at 
the Bulgarian Culture Center bus stop, restaurants or Bulgarian churches 
within n blocks of the bus stop, etc.). Other examples of graphs you might 
have seen are:

◆	 Schematic maps: the nodes are the bus stops, towns, and so forth.

◆	 Circuit diagrams: the nodes are electrical components.

◆	 State transitions: the nodes are the states (yes, this can be modeled in SQL).

3.1.2 Edges

Edges or arcs connect nodes. We draw them as lines that may or may not 
have an arrow head on them to show a direction of flow.  In schematic 
maps, the edges are the roads. They can have a distance or time on them. 
In the circuit diagrams, the edges are the wires that have resistance, 
voltage, etc. Likewise, the abstract state transitions are connected by 
edges that model the legal transition paths.

In one way, edges are more fun than nodes in graph theory. In RDBMS 
models of data, we have an unspecified single relationship between tables in 
the form of a REFERENCES clause. In a graph database, we can have multiple 
edges of different kinds between nodes. These can be of various strengths 
that we know (e.g., “I am your father, Luke,” if you are a Star Wars fan; “is a 
pen pal of”) and ones that we establish from other sources (e.g., “subscribes 
to the Wall Street Journal”; “friend of a friend of a friend”; “son of a son of a 
sailor,” if you are a Jimmy Buffett fan).

At the highest level of abstraction an edge can be directed or undirected. 
In terms of maps, these are one-way streets; for state transitions, this is prior 
state–current state pairs and so forth. We tend to like undirected graphs since 
the math is easier and there is often an inverse relationship of some sort (e.g., 
“father–son” in the case of Luke Skywalker and Darth Vader).

Colored edges are literally colored lines on a display of a graph database. 
One color is used to show the same kind of edge, the classic “friend of a 
friend of a friend,.” or a Bacon(n) relationship (I will explain this shortly) 
used in social networks when they send you a “you might also know …” 
message and ask you to send an invitation to that person to make a direct 
connection.
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Weighted edges have a measurement that can accumulate. In the case 
of a map—distances—the accumulation rule is additive; in the case of the 
Bacon(n) function it diminishes over distance (you may ask, “Who? Oh, I 
forgot about him!”).

3.1.3 Graph Structures

The bad news is that since graph theory is fairly new by mathematical 
standards, which means less than 500 years old, there are still lots of open 
problems and different authors will use different terminology. Let me 
introduce some basic terms that people generally agree on:

◆	 A null graph is a set of nodes without any edges. A complete graph has 
an edge between every pair of nodes. Both of these extremes are pretty 
rare in graph databases.

◆	 A walk is a sequence of edges that connect a set of nodes without 
repeating an edge.

◆	 A connected graph is a set of nodes in which any two nodes can be 
reached by a walk.

◆	 A path is a walk that goes through each node only once. If you have n 
nodes, you will have (n−1) edges in the path.

◆	 A cycle or circuit is a path that returns to where it started. In RDBMS, 
we do not like circular references because referential actions and data 
retrieval can hang in an endless loop. A Hamiltonian circuit is one that 
contains all nodes in a graph.

◆	 A tree is a connected graph that has no cycles. I have a book on how 
to model trees and hierarchies in SQL (Celko, 2012). Thanks to 
hierarchical databases, we tend to think of a directed tree in which 
subordination starts at a root node and flows down to leaf nodes. But 
in graph databases, trees are not as obvious as an organizational chart, 
and finding them is a complicated problem. In particular, we can start 
at a node as the root and look for the minimal spanning tree. This is a 
subset of edges that give us the shortest path from the root we picked 
to each node in the graph.

Very often we are missing the edges we need to find an answer. For 
example, we might see that two people got traffic tickets in front of a 
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particular restaurant, but this means nothing until we look at their credit 
card bills and see that these two people had a meal together.

3.2 RDBMS Versus Graph Database

As a generalization, graph databases worry about relationships, while RDBMSs 
worry about data. RDBMSs have difficulties with complex graph theoretical 
analysis. It’s easy to manage a graph where every path has length one; that 
is just a three-column table (node, edge, node). By doing self-joins, you can 
construct paths of length two, and so forth, called a breadth-first search. If you 
need a mental picture, think of an expanding search radius. You quickly get 
into Cartesian explosions for longer paths, and can get lost in an endless loop 
if there are cycles. Furthermore, it is extremely hard to write SQL for graph 
analysis if the path lengths are long, variable, or not known in advance.

3.3 Six Degrees of Kevin Bacon Problem

The game “Six Degrees of Kevin Bacon” was invented in 1994 by three 
Albright College students: Craig Fass, Brian Turtle, and Mike Ginelli. They 
were watching television movies when the film Footloose was followed by 
The Air Up There, which lead to the speculation that everyone in the movie 
industry was connected in some way to Kevin Bacon. Kevin Bacon himself was 
assigned the Bacon number 0; anyone who had been in a film with him has a 
Bacon number of 1; anyone who worked with that second person has a Bacon 
number of 2; and so forth. The goal is to look for the shortest path. As of mid-
2011, the highest finite Bacon number reported by the Oracle of Bacon is 8.

This became a fad that finally resulted in the website “Oracle of Bacon” 
(http://oracleofbacon.org), which allows you to do online searches between any 
two actors in the Internet Movie Database (www.imdb.com). For example, Jack 
Nicholson was in A Few Good Men with Kevin Bacon, and Michelle Pfeiffer was 
in Wolf with Jack Nicholson. I wrote a whitepaper for Cogito, Inc. of Draper, 
UT, in which I wrote SQL queries to the Kevin Bacon problem as a benchmark 
against their graph database. I want to talk about that in more detail.

3.3.1 Adjacency List Model for General Graphs

Following is a typical adjacency list model of a general graph with one 
kind of edge that is understood from context. Structure goes in one table 
and the nodes in a separate table, because they are separate kinds of things 

http://oracleofbacon.org
http://www.imdb.com
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(i.e., entities and relationships). The SAG card number refers to the Screen 
Actors Guild membership identifier, but I am going to pretend that they are 
single letters in the following examples.

CREATE TABLE Actors

(sag_card CHAR(9) NOT NULL PRIMARY KEY

actor_name VARCHAR(30) NOT NULL);

CREATE TABLE MovieCasts

(begin_sag_card CHAR(9) NOT NULL

REFERENCES Nodes (sag_card)

ON UPDATE CASCADE

ON DELETE CASCADE,

end_sag_card CHAR(9) NOT NULL

REFERENCES Nodes (sag_card)

ON UPDATE CASCADE

ON DELETE CASCADE,

PRIMARY KEY (begin_sag_card, end_sag_card),

CHECK (begin_sag_card <> end_sag_card));

I am looking for a path from Kevin Bacon, who is 's' for “start” in the 
example data, to some other actor who has a length less than six. Actually, what 
I would really like is the shortest path within the set of paths between actors.

The advantage of SQL is that it is a declarative, set-oriented language. When 
you specify a rule for a path, you get all the paths in the set. That is a good 
thing—usually. However, it also means that you have to compute and reject or 
accept all possible candidate paths. This means the number of combinations 
you have to look at increases so fast that the time required to process them is 
beyond the computing capacity in the universe. It would be nice if there were 
some heuristics to remove dead-end searches, but there are not.

I made one decision that will be important later; I added self-traversal 
edges (i.e., an actor is always in a movie with himself) with zero length. I am 
going to use letters instead of actor names. There are a mere five actors called 
{'s', 'u', 'v', 'x', 'y'}:

INSERT INTO Movies – 15 edges

VALUES ('s', 's'), ('s', 'u'), ('s', 'x'),

('u', 'u'), ('u', 'v'), ('u', 'x'), ('v', 'v'), ('v', 'y'), ('x', 'u'),

('x', 'v'), ('x', 'x'), ('x', 'y'), ('y', 's'), ('y', 'v'), ('y', 'y');
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I am not happy about this approach, because I have to decide the 
maximum number of edges in the path before I start looking for an answer. 
But this will work, and I know that a path will have no more than the total 
number of nodes in the graph. Let’s create a query of the paths:

CREATE TABLE Movies

(in_node CHAR(1) NOT NULL,

out_node CHAR(1) NOT NULL)

INSERT INTO Movies

VALUES ('s', 's'), ('s', 'u'), ('s', 'x'),

('u', 'u'), ('u', 'v'), ('u', 'x'), ('v', 'v'),

('v', 'y'), ('x', 'u'), ('x', 'v'), ('x', 'x'),

('x', 'y'), ('y', 's'), ('y', 'v', ('y', 'y');

CREATE TABLE Paths

(step1 CHAR(2) NOT NULL,

step2 CHAR(2) NOT NULL,

step3 CHAR(2) NOT NULL,

step4 CHAR(2) NOT NULL,

step5 CHAR(2) NOT NULL,

path_length INTEGER NOT NULL,

PRIMARY KEY (step1, step2, step3, step4, step5));

Let’s go to the query and load the table with all the possible paths of length 
five or less:

DELETE FROM Paths;

INSERT INTO Paths

SELECT DISTINCT M1.out_node AS s1, -- it is 's' in this example

M2.out_node AS s2,

M3.out_node AS s3,

M4.out_node AS s4,

M5.out_node AS s5,

(CASE WHEN M1.out_node NOT IN (M2.out_node, M3.out_node, M4.out_node, 

M5.out_node) THEN 1 ELSE 0 END

+ CASE WHEN M2.out_node NOT IN (M3.out_node, M4.out_node, M5.out_node) 

THEN 1 ELSE 0 END

+ CASE WHEN M3.out_node NOT IN (M2.out_node, M4.out_node, M5.out_node) 

THEN 1 ELSE 0 END
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+ CASE WHEN M4.out_node NOT IN (M2.out_node, M3.out_node, M5.out_node) 

THEN 1 ELSE 0 END

+ CASE WHEN M5.out_node NOT IN (

M2.out_node, M3.out_node, M4.out_node) THEN 1 ELSE 0 END)

AS path_length

FROM Movies AS M1, Movies AS M2, Movies AS M3, Movies AS M4, Movies AS M5

WHERE M1.in_node = M2.out_node

AND M2.in_node = M3.out_node

AND M3.in_node = M4.out_node

AND M4.in_node = M5.out_node

AND 0 < (CASE WHEN M1.out_node NOT IN (M2.out_node, M3.out_node, M4.out_

node, M5.out_node) THEN 1 ELSE 0 END

+ CASE WHEN M2.out_node NOT IN (M1.out_node, M3.out_node, M4.out_node, 

M5.out_node) THEN 1 ELSE 0 END

+ CASE WHEN M3.out_node NOT IN (M1.out_node, M2.out_node, M4.out_node, 

M5.out_node) THEN 1 ELSE 0 END

+ CASE WHEN M4.out_node NOT IN (M1.out_node, M2.out_node, M3.out_node, 

M5.out_node) THEN 1 ELSE 0 END

+ CASE WHEN M5.out_node NOT IN (M1.out_node, M2.out_node, M3.out_node, 

M4.out_node) THEN 1 ELSE 0 END);

SELECT * FROM Paths ORDER BY step1, step5, path_length;

The Paths. step1 column is where the path begins. The other columns of 
Paths are the second step, third step, fourth step, and so forth. The last step 
column is the end of the journey. The SELECT DISTINCT is a safety thing 
and the “greater than zero” is to clean out the zero-length start-to-start paths. 
This is a complex query, even by my standards.

The path length calculation is a bit harder. This sum of CASE expressions 
looks at each node in the path. If it is unique within the row, it is assigned a 
value of 1; if it is not unique within the row, it is assigned a value of 0.

There are 306 rows in the path table. But how many of these rows are 
actually the same path? SQL has to have a fixed number of columns in a 
table, but paths can be of different lengths. That is to say that (s, y, y, y, y)=(s, 
s, y, y, y)=(s, s, s, y, y)=(s, s, s, s, y). A path is not supposed to have cycles in 
it, so you need to filter the answers. The only places for this are in the WHERE 
clause or outside of SQL in a procedural language.

Frankly, I found it was easier to do the filtering in a procedural language 
instead of SQL. Load each row into a linked list structure and use recursive 
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code to find cycles. If you do it in SQL, you need a predicate for all possible 
cycles of size 1, 2, and so forth, up to the number of nodes in the graph.

Internally, graph databases will also use a simple (node, edge, node) 
storage model, but they will additionally add pointers to link nearby nodes 
or subgraphs. I did a benchmark against a “Kevin Bacon” database. One test 
was to find the degrees with Kevin Bacon as “the center of the universe,” and 
then a second test was to find a relationship between any two actors. I used 
2,674,732 rows of data. Ignoring the time to set up the data, the query times 
for the simple Bacon numbers are given in Table 3.1. The timings are raw 
clock times starting with an empty cache running on the same hardware. The 
SQL was Microsoft SQL Server, but similar results were later obtained with 
DB2 and Oracle.

The figures became much worse for SQL as I generalized the search (e.g., 
change the focus actor, use only actress links, use one common movie, and 
add directors). For example, changing the focus actor could be up to 9,000 
times slower, most by several hours versus less than one minute.

3.3.2 Covering Paths Model for General Graphs

What if we attempt to store all the paths in a directed graph in a single table 
in an RDBMS? The table for this would look like the following:

CREATE TABLE Paths

(path_nbr INTEGER NOT NULL,

step_nbr INTEGER NOT NULL

CHECK (path_nbr >= 0),

node_id CHAR(1) NOT NULL,

PRIMARY KEY (path_nbr, step_nbr));

Table 3.1  Query Times for Bacon Numbers

Bacon Number SQL Cogito

1 00:00:24 0.172ms

2 00:02:06 00:00:13

3 00:12:52 00:00:01

4 00:14:03 00:00:13

5 00:14:55 00:00:16

6 00:14:47 00:00:43
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Each path is assigned an ID number and the steps are numbered from 0 
(the start of the path) to k, the final step. Using the simple six-node graph, 
the one-edge paths are:

1 0 A

1 1 B

2 0 B

2 1 F

3 0 C

3 1 D

4 0 B

4 1 D

5 0 D

5 1 E

Now we can add the two-edge paths:

6 0 A

6 1 B

6 2 F

7 0 A

7 1 B

7 2 D

8 0 A

8 1 C

8 2 D

9 0 B

9 1 D

9 2 E

And finally the three-edge paths:

10 0 A

10 1 B

10 2 D

10 3 E

11 0 A

11 1 B

11 2 D

11 3 E
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These rows can be generated from the single-edge paths using a common 
table expression (CTE) or with a loop in a procedural language, such as SQL/
PSM. Obviously, there are fewer longer paths, but as the number of edges 
increases, so does the number of paths. By the time you get to a realistic-size 
graph, the number of rows is huge. However, it is easy to find a path between 
two nodes, as follows:

SELECT DISTINCT :in_start_node, :in_end_node,

(P2.step_nbr- P1.step_nbr) AS distance

FROM Paths AS P1, Paths AS P2

WHERE P1.path_nbr=P2.path_nbr

AND P1.step_nbr <= P2.step_nbr

AND P1.node_id = :in_start_node

AND P2.node_id = :in_end_node;

Notice the use of SELECT DISTINCT because most paths will be a subpath 
of one or more longer paths. Without it, the search for all paths from A to D in 
this simple graph would return:

7 0 A

7 1 B

7 2 D

8 0 A

8 1 C

8 2 D

10 0 A

10 1 B

10 2 D

11 0 A

11 1 B

11 2 D

However, there are only two distinct paths, namely (A, B, D) and (A, C, 
D). In a realistic graph with lots of connections, there is a good chance that a 
large percentage of the table will be returned.

Can we do anything to avoid the size problems? Yes and no. In this graph, 
most of the paths are redundant and can be removed. Look for a set of 
subpaths that cover all of the paths in the original graph. This is easy enough 
to do by hand for this simple graph:
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1 0 A

1 1 B

1 2 F

2 0 A

2 1 B

2 2 D

2 3 E

3 0 A

3 1 C

3 2 D

3 3 E

The problem of finding the longest path in a general graph is known to 
be NP-complete, and finding the longest path is the first step of finding a 
minimal covering path set. For those of you without a computer science 
degree, NP-complete problems are those that require drastically more 
resources (storage space and/or time) as the number of elements in the 
problem increases. There is usually an exhaustive search or combinatory 
explosion in these problems.

While search queries are easier in this model, dropping, changing, or 
adding a single edge can alter the entire structure, forcing us to rebuild the 
entire table. The combinatory explosion problem shows up again, so loading 
and validating the table takes too long for even a medium number of nodes. 
In another example, MyFamily.com (owner of Ancestry.com) wanted to 
let visitors find relationships between famous people and themselves. This 
involves looking for paths 10 to 20+ edges long, on a graph with over 200 
million nodes and 1 billion edges. Query rates are on the order of 20 per 
second, or 2 million per day.

3.3.3 Real-World Data Has Mixed Relationships

Now consider another kind of data. You are a cop on a crime scene 
investigator show. All you have is a collection of odd facts that do not fall 
into nice, neat relational tables. These facts tie various data elements together 
in various ways. You now have 60 minutes to find a network of associations 
to connect the bad guys to the crime in some as-of-yet-unknown manner.

Ideally, you would do a join between a table of “bad guys” and a table of 
“suspicious activities” on a known relationship. You have to know that such 
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a join is possible before you can write the code. You have to insert the data 
into those tables as you collect it. You cannot whip up another relationship 
on-the-fly.

Let’s consider an actual example. The police collect surveillance data in 
the form of notes and police reports. There is no fixed structure in which to 
fit this data. For example, U-Haul reports that a truck has not been returned 
and they file a police report. That same week, a farm-supply company reports 
someone purchased a large amount of ammonium nitrate fertilizer. If the 
same person did both actions, and used his own name (or with a known 
alias) in both cases, then you could join them into a relationship based on 
the “bad guys” table. This would be fairly easy; you would have this kind of 
query in a view for simple weekly reports. This is basically a shortest-path 
problem and it means that you are trying to find the dumbest terrorist in the 
United States.

In the real world, conspirator A rents the truck and conspirator B buys the 
fertilizer. Or one guy rents a truck and cannot return it on time while another 
totally unrelated person buys fertilizer paying in cash rather than using an 
account that is known to belong to a farmer. Who knows? To find if you have 
a coincidence or a conspiracy, you need a relationship between the people 
involved. That relationship can be weak (both people live in New York state) 
or strong (they were cellmates in prison).

Figure 3.1 is a screenshot of this query and the subgraph that answers 
it. Look at the graph that was generated from the sample data when it was 
actually given a missing rental truck and a fertilizer purchase. The result 
is a network that joins the truck to the fertilizer via two ex-cons, who 
shared jail time and a visit to a dam. Hey, that is a red flag for anyone! 
This kind of graph network is called a causal diagram in statistics and 
fuzzy logic. You will also see the same approach as a fishbone diagram 
(also known as cause-and-effect diagram and Ishikawa diagram after their 
inventor) when you are looking for patterns in data. Before now, this 
method has been a “scratch-paper” technique. This is fine when you are 
working on one very dramatic case in a 60-minute police show and have a 
scriptwriter.

In the real world, a major police department has a few hundred cases a 
week. The super-genius Sherlock Holmes characters are few and far between. 
But even if you could find such geniuses, you simply do not have enough 
whiteboards to do this kind of analysis one case at a time in the real world. 
Intelligence must be computerized in the 21st century if it is going to work.
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Most crime is committed by repeat offenders. Repeat offenders tend to 
follow patterns—some of which are pretty horrible, if you look at serial 
killers. What a police department wants to do is describe a case, then look 
through all the open cases to see if there are three or more cases that have the 
same pattern.

One major advantage is that data goes directly into the graph, while SQL 
requires that each new fact has to be checked against the existing data. Then 
the SQL data has to be encoded on some scale to fit into a column with a 
particular data type.

3.4 Vertex Covering

Social network marketing depends on finding “the cool kids,” the 
trendsetters who know everybody in a community. In some cases, it might 
be one person. The Pope is fairly well known among Catholics, for example, 
and his opinions carry weight.

U-Haul truck

auto theft

“Campbell, Jake”

suspicious activity

fertilizer

public nuisance

Coulee Dam

security guard report

“Browning George”

Figure 3.1  Possible Terrorist Attack Graph.
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Formally, a vertex cover of an undirecterd graph G is a set C of vertices 
such that each edge of G is incident to at least one vertex in C. The set C 
is said to cover the edges of G. Informally, you have a weird street map and 
want to put up security cameras at intersections (nodes) in such a way that 
no street (edge) is not under surveillance. We also talk about coloring the 
nodes to mark them as members of the set of desired vertices. Figure 3.2 
shows two vertex coverings taken from a Wikipedia article on this topic.

However, neither of these coverings is minimal. The three-node solution 
can be reduced to two nodes, and the four-node solution can be reduced to 
three nodes, as follows:

CREATE TABLE Grid

(v1 SMALLINT NOT NULL CHECK (v1>0),

v2 SMALLINT NOT NULL CHECK (v2>0),

PRIMARY KEY (v1, v2),

CHECK (v1<v2),

color SMALLINT DEFAULT 0 NOT NULL CHECK (color>= 0));

INSERT INTO Grid (v1, v2)

VALUES (1, 2), (1, 4), (2, 3), (2, 5), (2, 6);

{1, 2, 6} and {2, 4} are vertex covers. The second is the minimal cover. 
Can you prove it? In this example, you can use brute force and try all 
possible coverings. Finding a vertex covering is known to be an NP-complete 
problem, so brute force is the only sure way. In practice, this is not a good 
solution because the combinatorial explosion catches up with you sooner 
than you think.

One approach is to estimate the size of the cover, then pick random sets 
of that size. You then keep the best candidates, look for common subgraphs, 
and modify the candidates by adding or removing nodes. Obviously, when 
you have covered 100% of the edges, you have a winner; it might not be 
optimal, but it works.

Figure 3.2 Vertex coverings from Wikipedia: (a) three-node solution, and (b) a four-node 

solution.

(a) (b)
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Another consideration is that the problem might start with a known 
number of nodes. For example, you want to give n sample items to bloggers 
to publicize your product. You want to gift the bloggers with the largest 
readership for the gifts, with the least overlap.

3.5 Graph Programming Tools

As of 2012, there are no ANSI or ISO standard graph query languages. 
We have to depend on proprietary languages or open-source projects. 
They depend on underlying graph databases, which are also proprietary 
or open-source projects. Support for some of the open-source projects is 
available from commercial providers; Neo4j is the most popular product 
and it went commercial in 2009 after a decade in the open-source world. 
This has happened in the relational world with PostgreSQL, MySQL, and 
other products, so we should not be surprised.

There is an ISO standard known as resource description framework 
(RDF), which is a standard model for data interchange on the Web. It is 
based on the RDF that extends the linking structure of the Web to use URIs 
(uniform resource identifiers) to name the relationship between things as 
well as the two ends of the link (a triple). URIs can be classified as locators 
(URLs), names (URNs), or both. A uniform resource name (URN) functions 
like a person’s name, while a uniform resource locator (URL) resembles that 
person’s street address. In other words, the URN defines an item’s identity, 
while the URL provides a method for finding it.

The differences are easier to explain with an example. The ISBN uniquely 
identifies a specific edition of a book, its identity. But to read the book, you 
need its location: a URL address. A typical URL would be a file path for the 
electronic book saved on a local hard disk.

Since the Web is a huge graph database, many graph databases build on 
RDF standards. This also makes it easier to have a distributed graph database 
that can use existing tools.

3.5.1 Graph Databases

Some graph databases were built on an existing data storage system to get 
started, but then were moved to custom storage engines. The reason for this 
is simple: performance. Assume you want to model a simple one-to-many 
relationship, such as the Kevin Bacon problem. In RDBMS and SQL, there 
will be a table for the relationship, which will contain a reference to the table 
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with the unique entity and a reference for each row matching to that entity 
in the many side of the relationship. As the relational tables grow, the time to 
perform the join increases because you are working with entire sets.

In a graph model, you start at the Kevin Bacon node and traverse the 
graph looking at the edges with whatever property you want to use (e.g., 
“was in a movie with”). If there is a node property, you then filter on it (e.g., 
“this actor is French”). The edges act like very small, local relationship 
tables, but they give you a traversal and not a join.

A graph database can have ACID transactions. The simplest possible graph 
is a single node. This would be a record with named values, called properties. 
In theory, there is no upper limit on the number of properties in a node, but 
for practical purposes, you will want to distribute the data into multiple 
nodes, organized with explicit relationships.

3.5.2 Graph Languages

There is no equivalent to SQL in the graph database world. Graph theory 
was an established branch of mathematics, so the basic terminology and 
algorithms were well-known were the first products came along. That was 
an advantage. But graph database had no equivalent to IBM's System R, the 
research project that defined SEQUEL, which became SQL. Nor has anyone 
tried to make one language into the ANSI, ISO or other industry standard.

SPARQL

SPARQL (pronounced “sparkle,” a recursive acronym for SPARQL Protocol 
and RDF Query Language) is a query language for the RDF format. It tries 
to look a little like SQL by using common keywords and a bit like C with 
special ASCII characters and lambda calculus. For example:

PREFIX abc: <http://example.com/exampleOntology#>

SELECT ?capital ?country

WHERE {

?x abc:cityname ?capital;

abc:isCapitalOf ?y.

?y abc:countryname ?country;

abc:isInContinent abc:Africa.}

where the ? prefix is a free variable, and : names a source.

http://example.com/exampleOntology
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SPASQL

SPASQL (pronounced “spackle”) is an extension of the SQL standard, 
allowing execution of SPARQL queries within SQL statements, typically by 
treating them as subqueries or function clauses. This also allows SPARQL 
queries to be issued through “traditional” data access APIs (ODBC, JDBC, 
OLE DB, ADO.NET, etc.).

Gremlin

Gremlin is an open-source language that is based on traversals of a property 
graph with a syntax taken from OO and the C programming language family 
(https://github.com/tinkerpop/gremlin/wiki). There is syntax for directed edges and 
more complex queries that looks more mathematical than SQL-like. Following 
is a sample program. Vertexes are numbered and a traversal starts at one of them. 
The path is then constructed by in–out paths on the 'likes' property:

g = new Neo4jGraph('/tmp/neo4j')

// calculate basic collaborative filtering for vertex 1

m = [:]

g.v(1).out('likes').in('likes').out('likes').groupCount(m)

m.sort{-it.value}

// calculate the primary eigenvector (eigenvector centrality) of a graph

m = [:]; c = 0;

g.V.out.groupCount(m).loop(2){c++<1000}

m.sort{-it.value}

Eigenvector centrality is a measure of the influence of a node in a 
network. It assigns relative scores to all nodes in the network based on the 
concept that connections to high-scoring nodes contribute more to the score 
of the node in question than equal connections to low-scoring nodes. It 
measures the effect of the “cool kids” in your friends list. Google’s PageRank 
is a variant of the eigenvector centrality measure.

Cypher (NEO4j)

Cypher is a declarative graph query language that is still growing and 
maturing, which will make SQL programmers comfortable. It is not a weird 
mix of odd ASCII charterers, but human-readable keywords in the major 

https://github.com/tinkerpop/gremlin/wiki
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clauses. Most of the keywords like WHERE and ORDER BY are inspired by 
SQL. Pattern matching borrows expression approaches from SPARQL. The 
query language is comprised of several distinct clauses:

◆	 START: starting points in the graph, obtained via index lookups or by 
element IDs.

◆	 MATCH: the graph pattern to match, bound to the starting points in START.

◆	 WHERE: filtering criteria.

◆	 RETURN: what to return.

◆	 CREATE: creates nodes and relationships.

◆	 DELETE: removes nodes, relationships, and properties.

◆	 SET: sets values to properties.

◆	 FOREACH: performs updating actions once per element in a list.

◆	 WITH: divides a query into multiple, distinct parts.

For example, following is a query that finds a user called John in an index 
and then traverses the graph looking for friends of John’s friends (though not 
his direct friends) before returning both John and any friends-of-friends who 
are found:

START john=node:node_auto_index(name = 'John')

MATCH john-[:friend]->()-[:friend]->fof

RETURN john, fof

We start the traversal at the john node. The MATCH clause uses arrows to 
show the edges that build the friend-of-friend edges into a path. The final 
clause tells the query what to return.

In the next example, we take a list of users (by node ID) and traverse 
the graph looking for those other users who have an outgoing friend 
relationship, returning only those followed users who have a name property 
starting with S:

START user=node(5,4,1,2,3)

MATCH user-[:friend]->follower

WHERE follower.name=~ 'S.*'

RETURN user, follower.name
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The WHERE clause is familiar from SQL and other programming languages. 
It has the usual logical operators of AND, OR, and NOT; comparison operators; 
simple math; regular expressions; and so forth.

Trends

Go to http://www.graph-database.org/ for PowerPoint shows on various graph 
language projects. It will be in flux for the next several years, but you will see 
several trends. The proposed languages are declarative, and are borrowing 
ideas from SQL and the RDBMS model. For example, GQL (Graph Query 
Language) has syntax for SUBGRAPH as a graph venison of a derived table. 
Much like SQL, the graph languages have to send data to external users, but 
they lack a standard way of handing off the information.

It is probably worth the effort to get an open-source download of a 
declarative graph query language and get ready to update your resume.

Concluding Thoughts

Graph databases require a change in the mindset from computational data to 
relationships. If you are going to work with one of these products, then you 
ought to get math books on graph theory. A short list of good introductory 
books are listed in the Reference section.
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C H A P T E R

4
MapReduce Model

Introduction

This chapter discusses the MapReduce model of data processing developed 
by Google and Yahoo for their internal use. This is a data retrieval model 
rather than a query model.

The Internet as we know it today, or Web 2.0 if you prefer, really started 
with the LAMP stack of open-source software that anyone could use to get 
up a website: Linux (operating system), Apache (HTTP server), MySQL 
(database, but since it was acquired by Oracle, people are moving to the 
open-source version, MariaDB), and PHP, Perl, or Python for the application 
language. Apache and MySQL are now controlled by Oracle Corporation and 
the open-source community is distrustful of them.

There is a similar stack in the Big Data storage world called the SMAQ 
stack for storage, MapReduce, and query, rather than particular products per 
se. Like the LAMP stack, the tools that implement the layers of the SMAQ are 
usually open source and run on commodity hardware. The operative word 
here is “commodity” so that more shops can move to Big Data models.

This leads to the obvious question as to what Big Data is. The best answer 
I found is when the size of the data involved in the project is a major concern 
for whatever reason. We are looking for projects driven by the data, not 
computations or analysis of the data. The first web applications that hit this 
problem were web search engines. This makes sense; they were trying to keep 
up with the growth of the Web and not drop or leave out anything.
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Today, there are other players on the Web with size problems. The obvious 
ones are social networks, multiplayer games and simulations, as well as large 
retailers and auction sites. But outside of the Web, mobile phones, sensors, 
and other constant data flows can create petabytes of data.

Google invented the basic MapReduce technique, but Yahoo actually 
turned it into the Hadoop storage tools. As of this writing. Hadoop-based 
systems have a majority of the storage architectures. The query part can be 
done with Java because Hadoop is written in Java, but there are higher-level 
query languages for these platforms (more on that later).

The MapReduce part is the heart of this model. Imagine a large open 
office with clerks sitting at their desks (commodity hardware), with piles 
of catalogs in front of them. Putting the catalogs on their desks is a batch 
process; it is not like an SQL transaction model with interactive insert, 
update, and delete actions on the database.

Keeping with the office clerks image, once a day (or whatever temporal unit), 
the mail clerks dump the day’s catalogs on the clerk’s desks. What the clerks do 
not see is that the mail room (data sources) has to be cleaned up, filtered, and 
sorted a bit before the mail gets put in the mail cart and distributed. The ETL 
(extract, transform, load) tools from data warehousing work in Big Data, too, 
but the data sources are not often the clean, traditional structured ones that 
commercial data warehouses use. That is a whole topic in itself.

But assume we are ready for business. A boss at the front of the room shouts 
out the query: “Hey, find me a pair of red ballet flats!” to everyone, at the same 
time. Some of the clerks might realize that they do not have shoe catalogs 
in the pile on their desk and will ignore the request. The rest of the clerks 
will snap to attention and start looking through their catalogs. But what are 
they using as a match? A human being knows that we asked for a particular 
kind and color of women’s shoes. A human being will look at a picture and 
understand it. A computer has to be programmed to do this, and that might 
include a weighted match score and not a yes/no result. The smarter the 
algorithm, the longer it takes to run, and the more it costs in resources.

This is the mapping part. The query has to be parallelized. In this analogy, 
shouting out a query is enough, but the real world is not that simple. You 
have to have tasks that can be done independently of each other and yet 
consolidated into an alpha result. Another mail clerk has to run down the 
rows of desks and pick up the hits from the clerks, as they finish at different 
rates. Some clerks will have no matches and we can skip them. Some clerks 
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will have an exact match to “red ballet flats” in their catalog; some clerks will 
have “ballet flats” or “red flats” near-matches.

Now it is time for the reduce phase. The mail clerk gets the catalog clerks’ 
notes to the boss at the front of the room. But their handwriting is sloppy, so 
the mail clerk has to summarize and sort these notes. More algorithms, and 
a presentation layer now! Finally the boss has his or her answer and we are 
ready for another query.

Notice that this is more of a retrieval than what an SQL programmer 
would think of as a query. It is not elaborate like a relational division, roll up, 
cube, or other typical aggregation in SQL. This leads us to the storage used 
and finally the query languages

4.1 Hadoop Distributed File System

The standard storage mechanism used by Hadoop is the Hadoop distributed 
file system (HDFS). It is built from commodity hardware arranged to be fault 
tolerant. The nature of commodity hardware is that when we have a failure, 
the bad unit can be swapped out. This is the reason that RAID storage works. 
But we want extreme scalability, up to petabytes. This is more data than the 
usual RAID storage system handles.

The next assumption is that it will be streaming data rather than random 
data access. The data is just stuffed into disks while RAID systems have 
deliberate redundancy in the data that has to be controlled by the RAID 
system. This is a write-once model that assumes data never changes after it is 
written. This model simplifies replication and speeds up data throughput. But 
it means that the front end has to do any validation and integrity checking 
before the data gets into the system.

RDBMS people hate this lack of data integrity. We want CHECK() 
constraints and referential integrity enforced by FOREIGN KEY constraints in 
the database. It is a file system, not a database. The Big Data model is that we 
might get data integrity eventually. In the meantime, we assume that we can 
live with some level of incorrect and missing data.

HDFS is portable across operating systems, but you will find that LINUX 
is the most popular platform. This should be no surprise, since it was so well 
established on the Web.

The huge data volume makes it is much faster to move the program near to 
the data, and HDFS has features to facilitate this. HDFS provides an interface 
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similar to that of regular file systems. Unlike a database, HDFS can only store 
and retrieve data, not index it. Simple random access to data is not possible.

4.2 Query Languages

While it is possible to use a native API to get to the HDFS, developers prefer 
a higher-level interface. They are faster to code, they document the process, 
and the code can port to another platform or compiler.

4.2.1 Pig Latin

Pig Latin, or simply Pig, was developed by Yahoo and is now part of the 
Hadoop project. It is aimed at developers who use a workflow or directed 
graph programming model. That model can be parallelized, but each path 
has to be executed in order.

The typical Pig program has a LOAD command at the front and a STORE 
command at the end. Another characteristic that is not quite like procedural 
programming is that assignments are permanent; you cannot change a name. 
Unfortunately, you can reuse it without losing the prior object. Think of each 
statement as a station in an assembly line. You fetch a record from a source, 
pass it to the next station, and fetch the next record. The next station will do 
its task with whatever data it has.

For example, the fields in a record are referenced by a position using a 
dollar sign and a number, starting with $0. Following is the example Pig 
program from the Wikipedia article on the language. It extracts words by 
pulling lines from text and filtering out the whitespace. The data is grouped 
by words, each group is counted, and the final counts go to a file:

input_lines = LOAD '/tmp/my-copy-of-all-pages-on-internet' AS 

(line:chararray);

-- Extract words from each line and put them into a pig bag

-- datatype, then flatten the bag to get Alpha word on each row

words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;

-- FILTER out any words that are just white spaces

filtered_words = FILTER words BY word MATCHES '\\w+';

-- create a GROUP for each word

word_Groups = GROUP filtered_words BY word;
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-- count the entries in each GROUP

word_count = FOREACH word_Groups GENERATE COUNT(filtered_words) AS 

count, GROUP AS word;

-- order the records BY count

ordered_word_count = ORDER word_count BY count DESC;

STORE ordered_word_count INTO '/tmp/number-of-words-on-internet';

Developers can write user-defined functions (UDFs) in Java to get more 
expressive power. While SQL also has a CREATE function that can use 
external languages, SQL is expressive and powerful enough that this is 
seldom done by good SQL programmers.

The LOAD command is a cross between the SELECT command and the 
Data Declaration Language (DDL) of SQL. It not only fetches records, but 
has extra clauses that format the data into something the next statements 
can handle. The USING clause invokes a library procedure and uses it to read 
from the data source. The AS (<field pair list>) clause will break the 
records into fields and assign a data type to them. The elements in the field 
pair list are a pair of (<field name>:<data type>) separated by commas. There 
are also options for structured data of various kinds. DUMP will show you the 
current content of an object for debugging; it does not send it to persistent 
storage. Do not worry about it until you need to look at your code.

The FILTER command is the Pig version of the SQL search condition. It uses a 
mix of SQL and C symbols, logical operators, and semantics as SQL. For example:

Users_20 = FILTER Users BY age > 19 AND age < 30

Predicates in the BY clause can contain the C equality operators == and 
!=rather than the SQL <>. The rest of the theta operators are >, >= , <, and<=. 
These comparators can be used on any scalar data type, and == and ! = can 
also be applied to maps and tuples. To use these with beta tuples, both tuples 
must have the same schema or both not have a schema. None of the equality 
operators can be applied to bags. Pig has the usual operator precedence and 
basic math functions. But it is not a computational language, so you do not 
get a large math function library as part of the language.

Strings are called chararrays (array of characters) after the C family model and 
have Java’s regular expression syntax and semantics. Since chararrays are written 
in Java, this is no surprise, but they can throw off an SQL or other language 
programmer. SQL is based on the POSIX regular expressions, which have lots  
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of shorthands. PERL regular expressions will work on a portion of a string, 
while Java does not. For example, if you are looking for all fields that contain 
the string “Celko” you must use '.*Celko.*' and not 'Celko', which is an 
exact match. Only SQL uses '%' and '_ ' for wildcards; everyone else has 
'.' for single characters and '*' for a varying-length match.

The usual logical AND, OR, and NOT operators are here with the standard 
precedence. Pig has SQL’s three-valued logic and NULLs, so an UNKNOWN will 
be treated as a FALSE in a FILTER. Pig will short-circuit logical operations 
when possible. That means a Pig program is executed from left to right, and 
when the value of a predicate will not be affected by the following terms in 
the FILTER, evaluation stops.

Since Pig allows UDFs and is not a functional language, it means that 
some code might not execute and have expected side effects. As a silly 
example, consider a UDF that returns TRUE, but not before it has done 
something outside the application, like reformat all the hard drives:

FILTER Foobar BY (1 == 2) AND Format_All_Drives_Function (x);

The first term (1 == 2) is FALSE so Format_All_Drives_Function (x) 
will never be invoked. But if we write it as

FILTER Foobar BY Format_All_Drives_Function (x) AND (1 == 2);

Format_All_Drives_Function (x) is invoked now. The system will 
disappear if nothing stops this piece of insanity.

Side effects also prevent other optimizations that would be possible 
if we could be sure there were no side effects. SQL/PSM gets around this 
by requiring a procedure or function be declared as not deterministic. A 
deterministic function will return the same output for the same inputs. 
Think of a mathematical function, like sin() or cos(); now think of a FETCH 
statement that gets whatever the next record in a file happens to be.

There is a website with procedures in Java for all kinds of things. It was 
too cute to resist, so this website is the Piggybank. The packages are based 
on the type of function. The current top-level packages correspond to the 
function type and are:

◆	 org.apache.pig.piggybank.comparison—for a custom comparator used by 
the ORDER operator.

◆	 org.apache.pig.piggybank.evaluation—for evaluation functions like 
aggregates and column transformations.
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◆	 org.apache.pig.piggybank.filtering—for functions used in the FILTER 
operator.

◆	 org.apache.pig.piggybank.grouping—for grouping functions.

◆	 org.apache.pig.piggybank.storage—for LOAD/STORE functions.

The FOREACH statement applies an operation to every record in the data 
pipeline. Unix programmers who have written piped commands will be 
familiar with this model. FOREACH inputs a record named Alpha and outputs 
an Alpha record to send down the pipeline to the next statement. The next 
statement will create a new record named Beta. For the RDBMS people, this is 
(sort of) how Pig implements the relational projection operator. For example, 
the following code loads an entire record, but then removes all but the user 
and ID fields from each record:

Alpha = LOAD 'input' as (user_name:chararray, user_id:long, 

address:chararray, phone_nbr:chararray);

Beta = FOREACH Alpha GENERATE user_name, user_id;

But this is not quite projection in the relational sense. RDBMS is set-
oriented, so the projection occurs all at once. Pig is a workflow model—we 
get a flow of generated tuples as output. Subtle, but important.

FOREACH has a lot of tools, the simplest of which are constants and field 
references. Field references can be by name (the SQL model) or by position 
(record-oriented model). Positional references are proceeded by a $ and start 
from 0. I strongly recommend against the positional references since positions 
do not document the process. Positions will change if the data source changes. 
Referencing a nonexistent positional field in the tuple will return NULL. 
Referencing a field name that does not exist in the tuple will produce an error.

Use descriptive names and not positional numbers for safety and as the 
best modern programming practice. Today, we have text editors and can cut 
and paste lists and we do not use 80-column punch cards. For example:

Prices = LOAD 'NYSE_Daily_Ticker' as (exchange, symbol, date, open, 

high, low, close, volume, adj_close);

Gain = FOREACH Prices GENERATE close – open; -- simple math

--Gain2 = FOREACH Prices GENERATE $6 - $3;

Gain and Gain2 will contain the same values. In addition to using names 
and positions, you can refer to all fields in a record using an * like the SQL 
convention. This produces a tuple that contains all the fields. Beginning in 
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version 0.9, you can also refer to ranges of fields using beta periods and the 
syntax [<start field>]..[<end field>] . The syntax expands the fields 
in the order declared. If there is no explicit starting column, then the first 
alpha is used; if there is no explicit ending column, then the last alpha is used; 
otherwise, the range includes all fields between the start field and end field 
based on the field list.

The very useful question mark operator, with the syntax <predicate>? 
<true value>: <false value>, will be familiar to older C programmers. 
It is the Pig version of the CASE expression ancestor! The predicate is tested 
and the expression returns the true value after the question mark if it is TRUE. 
It returns the false value if the predicate is FALSE. This is how the C question 
mark works in the Boolean logic of its parent language. But Pig has a NULL! 
Quasi-SQL comes into play! Perhaps it is easier to see, as follows:

2 == 2 ? 1 : 4 --returns 1

2 == 3 ? 1 : 4 --returns 4

NULL == 2 ? 1 : 4 -- returns NULL

2 == 2 ? 1 : 'Celko' -- type error, string vs integer

Pig has bags, which is what SQL is based on. It is a collection of tuples 
that have no ordering, and allow duplicates in the collection. But SQL—good 
SQL—will have a PRIMARY KEY that assures the bag is actually a real set.

The GROUP statement is not the GROUP BY statement used by SQL! The 
GROUP BY in SQL is a summarizing statement that returns a table. The Pig 
GROUP statement collects records with the same key together. The result is 
not a summary, but the intermediate step of building a collection of bags. In 
Pig, you can apply the aggregate functions if you wish. For example:

Daily_Ticker = LOAD 'Daily_Stock_Prices' AS (stock_sym, stock_price);

Daily_Stock_Groups = GROUP Daily_Ticker BY stock_sym;

Ticker_Cnt = FOREACH Daily_Stock_Groups GENERATE GROUP, COUNT(Daily_

Ticker);

This example groups records by the stock’s ticker symbol and then counts 
them. The records coming out of the GROUP BY statement have beta fields, the 
key, and the bag of collected records. The key field is named GROUP and the bag 
is named for the alias that was grouped. So in the previous examples it will be 
named Daily_Ticker and inherit the schema from Daily_Ticker. If the relation 
Daily_Ticker has no schema, then the bag Daily_Ticker will have no schema. 
For each record in the GROUP, the entire record, including the key, is in the bag.
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You can also use GROUP on multiple keys. The keys must be in parenthesis, 
just like an SQL row constructor. But unlike SQL, we can use tuples as fields 
in the results; so, we still have records with two fields, but the fields are more 
complicated than SQL’s scalar columns.

At this point, it is easier to show this with an example. Let’s make up two 
data sets, Alpha and Beta:

Alpha = LOAD 'Alpha' USING PigStorage();

Beta = LOAD 'Beta' USING PigStorage();

PigStorage is a standard library routine that will let us read in records from 
a standard source. Assume the data looks like this:

Alpha:

a      A      1

b      B      2

c      C      3

a      AA     11

a      AAA    111

b      BB     22

Beta:

x      X      a

y      Y      b

x      XX     b

z      Z      c

Now we can use some of the fancy commands that resemble their relational 
cousins. We have already discussed GENERATE, but here is how it is dumped. 
Pay attention to the parentheses and the use of a zero initial position:

Alpha_0_2 = FOREACH Alpha GENERATE $0, $2;

(a, 1)

(b, 2)

(c, 3)

(a, 11)

(a, 111)

(b, 22)

The GROUP statement will display the grouping key first, then the tuple 
of rows appears in curvy brackets. Math majors will be delighted with this 
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because the curvy bracket is the standard notation for an enumerated set. 
Notice also that the fields are in their original order:

Alpha_Grp_0 = GROUP Alpha BY $0;

(a, {(a, A, 1), (a, AA, 11), (a, AAA, 111)})

(b, {(b, B, 2), (b, BB, 22)})

(c, {(c, C, 3)})

When the grouping key is more than one field, the row constructor is in 
parentheses, but the curvy brackets are still a list of fields:

Alpha_Grp_0_1 = GROUP Alpha BY ($0, $1);

((a, A), {(a, A, 1)})

((a, AA), {(a, AA, 11)})

((a, AAA), {(a, AAA, 111)})

((b, B), {(b, B, 2)})

((b, BB), {(b, BB, 22)})

((c, C), {(c, C, 3)})

Pig has three basic aggregate functions that look like their SQL cousins: 
SUM(), COUNT(), and AVG(). The rounding and presentation rules are not 
unexpected, but Pig does not have all of the fancy SQL operators that have 
been added to the ANSI/ISO standard SQL over the years. For example:

Alpha_Grp_0_Sum = FOREACH Alpha_Grp_0 GENERATE GROUP, SUM(Alpha.$2);

(a, 123.0)

(b, 24.0)

(c, 3.0)

Alpha_Grp_0_Cnt=FOREACH Alpha_Grp_0 GENERATE GROUP, COUNT(Alpha);

(a, 3)

(b, 2)

(c, 1)

Alpha_Grp_0_Avg=FOREACH Alpha_Grp_0 GENERATE GROUP, AVG(Alpha);

(a, 41.0)

(b, 12.0)

(c, 3.0)
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Now we get into the fancy stuff! FLATTEN will look familiar to LISP 
programmers, which has a common function of the same name. It takes 
the tuples of the curvy brackets and puts them into a list. This is why 
having the key in the tuples is important; you do not destroy information. 
For example:

Alpha_Grp_0_Flat = FOREACH Alpha_Grp_0 GENERATE FLATTEN(Alpha);

(a, A, 1)

(a, AA, 11)

(a, AAA, 111)

(b, B, 2)

(b, BB, 22)

(c, C, 3)

The COGROUP is a sort of join. You wind up with three or more fields. The 
first is what value is common to the tuples that follow. Each of the BY clauses 
tells you which column in the tuple is used. NULLs are treated as equal, just 
as we did in SQL’s grouping operators. For example:

Alpha_Beta_Cogrp = COGROUP Alpha BY $0, Beta BY $2;

(a, {(a, A, 1), (a, AA, 11), (a, AAA, 111)}, {(x, X, a)})

(b, {(b, B, 2), (b, BB, 22)}, {(y, Y, b), (x, XX, b)})

(c, {(c, C, 3)}, {(z, Z, c)})

Again, notice that this is a nested structure. The style in Pig is to build 
a chain of steps so that the engine can take advantage of parallelism in the 
workflow model. But that can often mean un-nesting these structures. Look 
at this example and study it:

Alpha_Beta_Cogrp_Flat = FOREACH Alpha_Beta_Cogroup GENERATE 

FLATTEN(Alpha.($0, $2)), FLATTEN(Beta.$1);

(a, 1, X)

(a, 11, X)

(a, 111, X)

(b, 2, Y)

(b, 22, Y)

(b, 2, XX)

(b, 22, XX)

(c, 3, Z)
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JOIN is the classic relational natural equijoin, but where SQL would drop 
one of the redundant join columns from the result table, Pig keeps both. This 
example has the join fields at the ends of the rows, so you can see them. Also 
notice how Alpha and Beta retain their identity, so the $ position notation 
does not apply to the result:

Alpha_Beta_Join = JOIN Alpha BY $0, Beta BY $2;

(a, A, 1, x, X, a)

(a, AA, 11, x, X, a)

(a, AAA, 111, x, X, a)

(b, B, 2, y, Y, b)

(b, BB, 22, y, Y, b)

(b, B, 2, x, XX, b)

(b, BB, 22, x, XX, b)

(c, C, 3, z, Z, c)

CROSS is the classic relational cross-join or Cartesian product if you prefer 
classic set theory. This can be dangerous for SQL programmers. In SQL, the 
SELECT .. FROM.. statement is defined as a cross-join in the FROM clause, 
and projection in the SELECT clause. No SQL engine actually does it this way 
in the real world, but since Pig is a step-by-step language, you can do exactly 
that! Essentially, the Pig programmer has to be his or her own optimizer. For 
example:

Alpha_Beta_Cross=CROSS Alpha, Beta;

(a, AA, 11, z, Z, c)

(a, AA, 11, x, XX, b)

(a, AA, 11, y, Y, b)

(a, AA, 11, x, X, a)

(c, C, 3, z, Z, c)

(c, C, 3, x, XX, b)

(c, C, 3, y, Y, b)

(c, C, 3, x, X, a)

(b, BB, 22, z, Z, c)

(b, BB, 22, x, XX, b)

(b, BB, 22, y, Y, b)

(b, BB, 22, x, X, a)
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(a, AAA, 111, x, XX, b)

(b, B, 2, x, XX, b)

(a, AAA, 111, z, Z, c)

(b, B, 2, z, Z, c)

(a, AAA, 111, y, Y, b)

(b, B, 2, y, Y, b)

(b, B, 2, x, X, a)

(a, AAA, 111, x, X, a)

(a, A, 1, z, Z, c)

(a, A, 1, x, XX, b)

(a, A, 1, y, Y, b)

(a, A, 1, x, X, a)

Split was in Dr. Codd’s original relational operators. It never caught on 
because it returns two tables and can be done with other relational operators 
Maier, 1983, pp. 37–38). But Pig has a version of it that lets you split the data 
into several different “buckets” in one statement, as follows:

SPLIT Alpha INTO Alpha_Under IF $2<10, Alpha_Over IF $2>= 10;

-- Alpha_Under:

(a, A, 1)

(b, B, 2)

(c, C, 3)

-- Alpha_Over:

(a, AA, 11)

(a, AAA, 111)

(b, BB, 22)

Did you notice that you could have rows that do not fall into a bucket?
There is a trade-off in this model. In SQL, the optimizer has statistics 

and uses that knowledge to create an execution plan. If the stats change, 
the execution plan can change. There is no way to collect statistics in Pig 
or any web-based environment. Once the program is written, you have to 
live with it.

This also means there is no way to distribute the workload evenly over the 
“reducers” in the system. If one of them has a huge workload, everyone has 
to wait until everyone is ready to pass data to the next step in the workflow. 
In fact, it might be impossible for one reducer to manage that much data.
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Hadoop has a “combiner phase” that does not remove all skew data, but it 
places a bound on it. And since, in most jobs, the number of mappers will be 
at most in the tens of thousands, even if the reducers get a skewed number of 
records, the absolute number of records per reducer will be small enough that 
the reducers can handle them quickly.

Some calculations like SUM that can be decomposed into any number of 
steps are called distributive and they work with the combiner. Remember 
your high school algebra? This is the distributive property and we like it.

Calculations that can be decomposed into an initial step, any number 
of intermediate steps, and a final step are called algebraic. Distributive 
calculations are a special case of algebraic, where the initial, intermediate, 
and final steps are all the same. COUNT is an example of such a function, 
where the initial step is a count and the intermediate and final steps are 
sums (more counting) of the individual counts. The median is not algebraic. 
You must have all the records sorted by some field(s) before you can find the 
middle value.

The real work in Pig is building UDFs that use the combiner whenever 
possible, because of its skew-reducing features and because early aggregation 
greatly reduces the amount of data shipped over the network and written to 
disk, thus speeding up performance significantly. This is not easy, so I am not 
even going to try to cover it.

4.2.2 Hive and Other Tools

Just as Pig was a Yahoo project, Hive is an open-source Hadoop language 
from Facebook. It is closer to SQL than Pig and can be used for ad-hoc 
queries without being compiled like Pig. It is the representative product 
in a family that includes Cassandra and Hypertable. They use HDFS as a 
storage system, but use a table-based abstraction over HDFS, so it is easy to 
load structured data. Hive QL is the SQL-like query language that executes 
MapReduce jobs. But it can use the Sqoop to import data from relational 
databases into Hadoop. It was developed by Cloudera for their Hadoop 
platform products. Sqoop is database-agnostic, as it uses the Java JDBC 
database API. Tables can be imported either wholesale, or using queries to 
restrict the data import. Sqoop also offers the ability to reinject the results 
of MapReduce from HDFS back into a relational database. This means that 
Hive is used for analysis and not for online transaction processing (OLTP) or 
batch processing.
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You declare tables with columns as in SQL, using a simple set of data 
types: INT, FLOAT, DATE, STRING, and BOOLEAN. The real strength comes 
from also using simple data structures:

◆	 Structs: The elements within the type can be accessed using the dot 
(.) notation. For example, for a column c of type STRUCT {a INT; b 
INT} the a field is accessed by the expression c.a.

◆	 Maps (key–value tuples): The elements are accessed using ['element 
name'] notation. For example, in a map M comprising of a 
mapping from 'group'→gid, the gid value can be accessed using M 
['group'].

◆	 Arrays (indexable one-dimensional lists): The elements in the array 
have to be in the same type. Elements can be accessed using the 
[n] notation where n is an index (zero-based) into the array. For 
example, for an array A having the elements ['a', 'b', 'c'], 
A[1] returns 'b':

CREATE TABLE Foo

(something_string STRING,

something_float FLOAT,l

my_array ARRAY<MAP<['foobar'],

STRUCT <p1:INT, p2:INT>>);

SELECT something_string, something_float,

my_array[0], ['foobar'].p1

FROM Foo;

The tables default to text fields separated by a control-A token and records 
separated by a new-line token. You can add more clauses to define the 
deliminators and file layout. For example, a simple CSV file can be defined 
by adding the following to the end of CREATE TABLE:

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\,'

STORED AS TEXTFILE

Another important part of the declarations is that a table can be 
partitioned over storage and you manipulate it by the partitions. For 
example, you can get a clause to get random samples from these partitions:
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TABLESAMPLE(BUCKET x OUT OF y)

The SELECT can also use infixed joins, but it allows only equijoins. You 
have INNER JOIN, LEFT OUTER, RIGHT OUTER, and FULL OUTER syntax.

There is also a LEFT SEMI JOIN to check if there is a reference in one 
table to another; this cannot be done decoratively in the SQL subset used. The 
compiler does not do the same optimizations you are used to in SQL, so put 
the largest table on the rightmost side of the join to get the best performance. 
There is also the usual UNION ALL, but none of the other set operators.

The usual SQL aggregate functions are used. The other built-in functions 
are a mix of SQL and C family syntax often with both options—that is, 
UPPER() and UCASE are the same function with two names, and so forth.

Concluding Thoughts

If you can read an execution plan in the SQL you know, you should not have 
any trouble with the basic concepts in the MapReduce model of data. Your 
learning curve will come with having to use Java and other lower-level tools 
that are part of an SQL compiler for complicated tasks.

The lack of an SQL style optimizer with statistics, transaction levels, and 
built-in data integrity will be a major jump. You will find that you have to do 
manually those things that you have had done for you.

Older programming languages have idioms and conventions, just 
like human languages. A COBOL programmer will solve a problem in a 
different way than an SQL programmer would approach the same problem. 
MapReduce is still developing its idioms and conventions. In fact, it is still 
trying to find a standard language to match the position that SQL has in 
RDBMS.
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C H A P T E R

5
Streaming Databases and Complex 

Events

Introduction

This chapter discusses streaming databases. These tools are concerned 
with data that is moving through time and has to be “caught” as it flows in 
the system. Rather than static data, we look for patterns of events in this 
temporal flow. Again, this is not a computational model for data.

The relational model assumes that the tables are static during a query and that 
the result is also a static table. If you want a mental picture, think of a reservoir of 
data that is used as it stands at the time of the query or other Data Manipulation 
Language (DML) statement. This is, roughly, the traditional RDBMS.

But streaming databases are built on constantly flowing data; think of a 
river or a pipe of data. The best-known examples of streaming data are stock 
and commodity trading done by software in subsecond trades. The reason 
that these applications are well known is because when they mess up, it 
appears in the newspapers. To continue the water/data analogy, everyone 
knows when a pipe breaks or a toilet backs up.

A traditional RDBMS, like a static reservoir, is concerned with data volume. 
Vendors talk about the number of terabytes (or petabytes or exabytes these 
days) their product can handle. Transaction volume and response time are 
secondary. They advertise and benchmark under the assumption that a 
traditional OLTP system can be made “good enough” with existing technology.

A streaming database, like a fire hose, is concerned with data volume, 
but more important are flow rate, speed, and velocity. There is a fundamental 



64	 C H A P T E R  5 :  S T R E A M I N G  D A T A B A S E S  A N D  C O M P L E X  E V E N T S

difference between a bathtub that fills at the rate of 10 liters per minute 
versus a drain pipe that flows at the rate of 100 liters per minute. There 
is also a difference between the wide pipe and the narrow nozzle of an 
industrial pressure cutter at the rate of 100 liters per second.

5.1 Generational Concurrency Models

Databases have to support concurrent users. Sharing data is a major reason 
to use DBMS; a single user is better off with a file system. But this means we 
need some kind of “traffic control” in the system.

This concept came from operating systems that had to manage hardware. 
Two jobs should not be writing to the same printer at the same time because 
it would produce a garbage printout. Reading data from an RDBMS is not a 
big problem, but when two sessions want to update, delete, or insert data in 
the same table, it is not so easy.

5.1.1 Optimistic Concurrency

Optimistic concurrency control assumes that conflicts are exceptional and 
we have to handle them after the fact. The model for optimistic concurrency 
is microfilm! Most database people today have not even seen microfilm, so, if 
you have not, you might want to Google it. This approach predates databases 
by decades. It was implemented manually in the central records department 
of companies when they started storing data on microfilm. A user did not 
get the microfilm, but instead the records manager made a timestamped 
photocopy for him. The user took the copy to his desk, marked it up, and 
returned it to the central records department. The central records clerk 
timestamped the updated document, photographed it, and added it to the 
end of the roll of microfilm.

But what if a second user, user B, also went to the central records 
department and got a timestamped photocopy of the same document? The 
central records clerk had to look at both timestamps and make a decision. If 
user A attempted to put his updates into the database while user B was still 
working on her copy, then the clerk had to either hold the first copy, wait for 
the second copy to show up, or return the second copy to user A. When both 
copies were in hand, the clerk stacked the copies on top of each other, held 
them up to the light, and looked to see if there were any conflicts. If both 
updates could be made to the database, the clerk did so. If there were conflicts, 
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the clerk must either have rules for resolving the problems or reject both 
transactions. This represents a kind of row-level locking, done after the fact.

The copy has a timestamp on it; call it t
0
 or start_timestamp. The 

changes are committed by adding the new version of the data to the end of 
the file with a timestamp, t

1
. That is unique within the system. Since modern 

machinery can work with nanoseconds, an actual timestamp and not just a 
sequential numbering will work. If you want to play with this model, you can 
get a copy of Borland’s Interbase or its open source, Firebird.

5.1.2 Isolation Levels in Optimistic Concurrency

A transaction running on its private copy of the data is never blocked. But 
this means that at any time, each data item might have multiple versions, 
created by active and committed transactions.

When transaction T1 is ready to commit, it gets a commit_timestamp 
that is later than any existing start_timestamp or commit_timestamp. 
The transaction successfully COMMITs only if no other transaction, say T2, 
with a commit_timestamp in T1’s temporal interval [start_timestamp, 
commit_timestamp] wrote data that T1 also wrote. Otherwise, T1 will 
ROLLBACK. This first-committer-wins strategy prevents lost updates 
(phenomenon P4). When T1 COMMITs, its changes become visible to all 
transactions of which the start_timestamps are larger than T1’s commit_
timestamp. This is called snapshot isolation, and it has its own problems.

Snapshot isolation is nonserializable because a transaction’s reads come at 
one instant and the writes at another. Assume you have several transactions 
working on the same data and a constraint that (x + y > 0) on the table. 
Each transaction that writes a new value for x and y is expected to maintain 
the constraint. While T1 and T2 both act properly in isolation with their 
copy, the constraint fails to hold when you put them together. The possible 
problems are:

◆	 A5 (data item constraint violation): Suppose constraint C is a database 
constraint between two data items x and y in the database. There are 
two anomalies arising from constraint violation.

◆	 A5A (read skew): Suppose transaction T1 reads x, and then T2 updates 
x and y to new values and COMMITs. Now, if T1 reads y, it may see 
an inconsistent state, and therefore produce an inconsistent state as 
output.
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◆	 A5B (write skew): Suppose T1 reads x and y, which are consistent with 
constraint C, and then T2 reads x and y, writes x, and COMMITs. Then 
T1 writes y. If there were a constraint between x and y, it might be 
violated.

◆	 P2 (fuzzy reads): This is a degenerate form of A5A, where (x = y). 
More typically, a transaction reads two different but related items (e.g., 
referential integrity).

◆	 A5B (write skew): This could arise from a constraint at a bank, where 
account balances are allowed to go negative as long as the sum of 
commonly held balances remains non-negative.

Clearly, neither A5A nor A5B could arise in histories where P2 is 
precluded, since both A5A and A5B have T2 write a data item that has been 
previously read by an uncommitted T1. Thus, phenomena A5A and A5B are 
only useful for distinguishing isolation levels below REPEATABLE READ in 
strength.

The ANSI SQL definition of REPEATABLE READ, in its strict interpretation, 
captures a degenerate form of row constraints, but misses the general 
concept. To be specific, Locking a table with a transaction level of 
REPEATABLE READ provides protection from Row Constraint Violations but 
the ANSI SQL definition forbidding anomalies A1 and A2, does not. Snapshot 
Isolation is even stronger than READ COMMITTED.

The important property for here is that you can be reading data at 
timestamp t

n
 while changing data at timestamp t

(n+k)
 in parallel. You are 

drinking from a different part of the stream and can reconstruct a consistent 
view of the database at any point in the past.

Table 5.1  ANSI SQL Isolation Levels Defined in Terms of the  
Three Original Phenomena

Isolation Level P0 (or A0)
Dirty Write

P1 (or A1)
Dirty Read

P2 (or A2) 
Fuzzy Read

P3 (or A3)
Phantom

READ 

UNCOMMITTED

Not Possible Possible Possible Possible

READ COMMITTED Not Possible Not Possible Possible Possible

REPEATABLE READ Not Possible Not Possible Not Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible Not Possible
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5.2 Complex Event Processing

The other assumption of a traditional RDBMS is that the constraints on 
the data model are always in effect when you query. All the water is in one 
place and ready to drink. But the stream data model deals with complex 
event processing (CEP). That means that not all the data has arrived in the 
database yet! You cannot yet complete a query because you are anticipating 
data, but you know you have part of it. The data can be from the same 
source, or from multiple sources.

The event concept is delightfully explained in an article by Gregor Hohpe 
(2005). Imagine you are in a coffee shop. Some coffee shops are synchronous: 
a customer walks up to the counter and asks for coffee and pastry; the person 

Table 5.2  Degrees of Consistency and Locking Isolation Levels Defined in 
Terms of Locks

Consistency Level =
Locking Isolation Level

Read locks on Data Items and 
Predicates 
(the same unless noted)

Write Locks on Data Items 
And Predicates 
(always the same)

Degree 0 None required Well-formed writes

Degree 1 = locking 

Read uncommitted

None required Well-formed writes,

Long duration,

Write locks

Degree 2 = locking 

Read committed

Well-formed reads short 

duration read locks (both)

Well-formed writes,long 

duration write locks

Cursor stability Well-formed reads 

Read locks held on current of 

cursor 

Short duration read predicate 

locks

Well-formed writes,

Long duration write locks

Locking 

Repeatable read

Well-formed reads 

Long duration data-item 

Read locks 

Short duration read 

Predicate locks

Well-formed writes, 

Long duration 

Write locks

Degree 3=locking serializable Well-formed reads 

Long duration 

Read locks (both)

Well-formed writes,

Long duration 

Write locks
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behind the counter puts the pastry into the microwave, prepares the coffee, 
takes the pastry out of the microwave, takes the payment, gives the tray to 
the customer, and then turns to serve the next customer. Each customer is a 
single thread.

Some coffee shops are asynchronous: the person behind the counter takes 
the order and payment and then moves on to serve the next customer; a 
short-order cook heats the pastry and a barista makes the coffee. When both 
coffee and pastry are ready, they call the customer for window pickup or send 
a server to the table with the order. The customer can sit down, take out a 
laptop, and write books while waiting.

The model has producers and consumers, or input and output streams. 
The hot pastry is an output that goes to a consumer who eats it. The events 
can be modeled in a data flow diagram if you wish.

In both shops, this is routine expected behavior. Now imagine a robber 
enters the coffee shop and demands people’s money. This is not, I hope, 
routine expected behavior. The victims have to file a police report and will 
probably call credit card companies to cancel stolen credit cards. These 
events will trigger further events, such as a court appearance, activation of a 
new credit card, and so forth.

5.2.1 Terminology for Event Processing

It is always nice to have terminology when we talk, so let’s discuss some. 
A situation is an event that might require a response. In the coffee shop 
example, running low on paper cups is an event that might not require an 
immediate response yet. (“How is the cup situation? We’re low!”) However, 
running out of paper cups is an event that does require a response since you 
cannot sell coffee without them. The pattern is detect→ decide→ respond, 
either by people or by machine.

1. Observation: Event processing is used to monitor a system or process by 
looking for exceptional behavior and generating alerts when such behavior 
occurs. In such cases, the reaction, if any, is left to the consumers of the 
alerts; the job of the event processing application is to produce the alerts only.

2. Information dissemination: When an event is observed, the system has 
to deliver the right information to the right consumer at the right granularity 
at the right time. It is personalized information delivery. My favorite is the 
emails I get from my banks about my checking accounts. One bank lets me 
set a daily limit and would only warn me if I went over the limit. Another bank 
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sends me a short statement of yesterday’s transactions each day. They do not 
tell my wife about my spending or depositing, just me.

3. Dynamic operational behavior: In this model, the actions of the system 
are automatically driven by the incoming events. The online trading 
systems use this model. Unfortunately, a system does not have to have good 
judgment and needs a way to prevent endless feedback. This situation lead 
to Amazon’s $23,698,655.93 book about flies in 2011. Here is the story: It 
regards Peter Lawrence’s The Making of a Fly, a biology book about flies, 
which published in 1992 and is out of print. But Amazon listed 17 copies for 
sale: 15 used from $35.54, and 2 new from two legitimate booksellers. The 
prices kept rising over several days, slowly converging in a pattern. The copy 
offered by Bordeebook was 1.270589 times the price of the copy offered by 
Profnath. Once a day Profnath set their price to be 0.9983 times higher than 
Bordeebook’s price. The prices would remain close for several hours, until 
Bordeebook “noticed” Profnath’s change and elevated their price to 1.270589 
times Profnath’s higher price.

Amazon retailers are increasingly using algorithmic pricing (something 
Amazon itself does on a large scale), with a number of companies offering 
pricing algorithms/services to retailers that do have a sanity check. The 
Profnath algorithm wants to make their price one of the lowest price, but 
only by a tiny bit so it will sort to the top of the list. A lot of business comes 
from being in first three positions!

On the other hand, Bordeebook has lots of positive feedback, so their 
algorithm bets that buyers will pay a premium for that level of confidence. 
Back in the days when I owned bookstores, there were “book scouts” who 
earned their living by searching through catalogs and bookstores and buying 
books for clients. Bordeebook’s algorithm seems to be a robot version of the 
book scout, with a markup of 1.270589 times the price of the book.

4. Active diagnostics: The event processing application diagnoses a 
problem by observing symptoms. A help desk call is the most common 
example for most of us. There is a classic Internet joke about the world’s 
first help desk (http://www.why-not.com/jokes.old/archive/1998/january/27.
html) that begins with “This fire help. Me Groog”; “Me Lorto. Help. Fire not 
work,” with the punchline being Grogg beating Lorto with a club for being 
too stupid to live.

Manufacturing systems look for product failures based on observable 
symptoms. The immediate goal is to correct flaws in the process but the real 
goal is to find the root cause of these symptoms. If you view manufacturing 

http://www.why-not.com/jokes.old/archive/1998/january/27.html
http://www.why-not.com/jokes.old/archive/1998/january/27.html
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as a stream, you will learn about a statistical sampling teaching called 
sequential analysis, invented by Abraham Wald (1973) for munitions testing. 
(The basic idea is that testing bullets, light bulbs, and many other goods 
is destructive, so we want to pull the smallest sample size from the stream 
that will give us the confidence level we want. But the sample size does not 
have to be constant! If we have a lot of failures, then we want to increase the 
sample size; if the failure rate is low, we can reduce the test sample size. A 
technique called Haldanes’ inverse sampling plays into the adjustment, if you 
want to do more research.

This idea actually goes back to the early days of statistics under the modern 
name “gambler’s ruin” in the literature. A gambler who raises his bet to a fixed 
fraction of bankroll when he wins, but does not reduce his bet when he loses, 
will eventually go broke, even if he has a positive expected value on each bet. 
There are problems that can only be solved with sequential analysis.

5. Predictive processing: You want to identify events before they have 
happened, so you can eliminate their consequences; in fact, the events 
might not actually exist! Imagine a fraud detection system in a financial 
institution that looks for patterns. It will act when it suspects fraud and 
possibly generate false positives, so further investigation will be required 
before you can be sure whether a fraud has actually taken place or not. 
The classic examples in finance are employees who do not take vacations 
(embezzlers), customers who suddenly apply for lots of credit cards (about to 
go bankrupt), and changes in purchase patterns (stolen identity).

These different classes of events do not exclude each other, so an 
application may fall into several of these categories.

5.2.2 Event Processing versus State Change Constraints

The event model is not quite the same as a state transition model for a 
system. State transitions are integrity checks that assure data changes only 
according to rules for sequences of procedures, of fixed or variable lifespans, 
warranties, commercial offers, and bids. You can use the Data Declaration 
Language (DDL) constraints in SQL to assure the state transition constraints 
via an auxiliary table. I do not go into much detail here since this is more of 
an SQL programming topic.

Such constraints can be modeled as a state-transition diagram to enforce 
the rules when an entity can be updated only in certain ways. There is an 
initial state, flow lines that show what are the next legal states, and one or 
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more termination states. The original example was a simple state change 
diagram of possible marital states that looked like Figure 5.1.

Here is a skeleton DDL with the needed FOREIGN KEY reference to valid 
state changes and the date that the current state started for me:

CREATE TABLE MyLife

(previous_state VARCHAR(10) NOT NULL,

 current_state VARCHAR(10) NOT NULL,

 CONSTRAINT Valid_State_Change

 FOREIGN KEY (previous_state, current_state)

 REFERENCES StateChanges (previous_state, current_state),

 start_date DATE NOT NULL PRIMARY KEY,

 ––etc.);

These are states of being locked into a rigid pattern. The initial state in this 
case is “born” and the terminal state is “dead,” a very terminal state of being. 
There is an implied temporal ordering, but no timestamps to pinpoint them 
in time. An acorn becomes an oak tree before it becomes lumber and finally 
a chest of drawers. The acorn does not jump immediately to being a chest of 
drawers. This is a constraint and not an event; there is no action per se.

5.2.3 Event Processing versus Petri Nets

A Petri net is a mathematical model of a system that is handy for CEP. There 
is a lot of research on them and they are used to design computer systems 
with complex timing problems. A Petri net consists of places (shown as 
circles), transitions (shown as lines or bars), and arcs (directed arrows).

Born

Married

Dead

Divorced

Figure 5.1  Martial Status State Transitions.
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Arcs run from a place to a transition or vice versa, never between places 
or between transitions. The places from which an arc runs to a transition are 
called the input places of the transition; the places to which arcs run from a 
transition are called the output places of the transition.

Graphically, places in a Petri net contain zero or more tokens (shown as 
black dots). The tokens will move around the Petri when a transition fires. 
A transition of a Petri net may fire whenever there are sufficient tokens at 
the start of all input arcs. When a transition fires, it consumes these input 
tokens, and places new tokens in the places at the end of all output arcs in 
an atomic step.

Petri nets are nondeterministic: when multiple transitions are enabled at 
the same time, any one of them may fire. If a transition is enabled, it may fire, 
but it doesn’t have to. Multiple tokens may be present anywhere in the net 
(even in the same place).

Petri nets can model the concurrent behavior of distributed systems 
where there is no central control. Fancier versions of this technique have 
inhibitor arcs, use colored tokens, and so forth. But the important point is 
that you can prove that a Petri net can be designed to come to a stable state 
from any initial marking. The classic textbook examples are a two-way 
traffic light and the dining philosophers problem. You can see animations 
of these Petri nets at http://www.informatik.uni-hamburg.de/TGI/PetriNets/
introductions/aalst/.

The dining philosophers problem was due to Edsger Dijkstra as 
a 1965 student exam question, but Tony Hoare gave us the present 
version of it. Five philosophers sit at a table with a bowl of rice in 
front of each of them. A chopstick is placed between each pair of 
adjacent philosophers. Each philosopher must alternately think and eat. 
However, a philosopher can only eat rice when he or she has a pair of 
chopsticks. Each chopstick can be held by only one philosopher and so 
a philosopher can use a chopstick only if it’s not being used by another 
philosopher. After he or she finishes eating, a philosopher needs to put 
down both chopsticks so they become available to others. A philosopher 
can grab the chopstick on his or her right or left as they become 
available, but cannot start eating before getting both of them. Assume the 
rice bowls are always filled.

No philosopher has any way of knowing what the others will do. The 
problem is how to keep the philosophers forever alternating between eating 
and thinking and not have anyone starve to death.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/aalst/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/aalst/
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5.3 Commercial Products

You can find commercial products from IBM (SPADE), Oracle (Oracle CEP), 
Microsoft (StreamInsight), and smaller vendors, such as StreamBase (stream-
oriented extension of SQL) and Kx (Q language, based on APL), as well as 
open-source projects (Esper, stream-oriented extension of SQL).

Broadly speaking, the languages are SQL-like and readable, or they are 
C-like and cryptic. As examples of the two extremes, let’s look at StreamBase 
and Kx.

5.3.1 StreamBase1

StreamBase makes direct extensions to a basic version of SQL that will 
be instantly readable to an SQL programmer. As expected, the keyword 
CREATE adds persistent objects to the schema; here is partial list of DDL 
statements:

CREATE SCHEMA

CREATE TABLE

CREATE INPUT STREAM

CREATE OUTPUT STREAM

CREATE STREAM

CREATE ERROR INPUT STREAM

CREATE ERROR OUTPUT STREAM

Notice that streams are declared for input and output and for error 
handling. Each table can be put in MEMORY or DISK. Each table must have a 
PRIMARY KEY that that be implemented with a [USING {HASH | BTREE}] 
clause. Secondary indexes are optional and are declared with a CREATE 
INDEX statement.

The data types are more like Java than SQL. There are the expected types 
of BOOL, BLOB, DOUBLE, INT, LONG, STRING, and TIMESTAMP. But they 
include structured data types (LIST, TUPLE, BLOB) and special types that 
apply to the StreamBase engine (CAPTURE, named schema data type, etc.). 
The TIMESTAMP is the ANSI style date and time data type, and also can be 
used as an ANSI interval data type. The STRING is not a fixed-length data 
type, as in SQL. BOOL can be {TRUE, FALSE}.

1 Disclaimer: I have done a video for StreamBase, available at http://www.streambase.com/
webinars/real-time-data-management-for-data-professionals/#axzz2KWao5wxo.

http://www.streambase.com/webinars/real-time-data-management-for-data-professionals/#axzz2KWao5wxo
http://www.streambase.com/webinars/real-time-data-management-for-data-professionals/#axzz2KWao5wxo
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The extensions for streams are logical. For example, we can use a 
statement to declare dynamic variables that get their values from a stream. 
Think of a ladle dipping into a stream with the following syntax:

 DECLARE <variable_identifier> <data type> DEFAULT <default_value>

 [UPDATE FROM '('stream_query')'];

In this example, the dynamic variable dynamic_var changes value each 
time a tuple is submitted to the input stream Dyn_In_Stream. In the SELECT 
clause that populates the output stream, the dynamic variable is used as an 
entry in the target list as well as in the WHERE clause predicate:

CREATE INPUT STREAM Dyn_In_Stream (current_value INT);

DECLARE dynamic_var INT DEFAULT 15 UPDATE FROM

 (SELECT current_value FROM Dyn_In_Stream);

CREATE INPUT STREAM Students

 (student_name STRING, student_address STRING, student_age INT);

CREATE OUTPUT STREAM Selected_Students AS

SELECT *, dynamic_var AS minimum_age FROM Students WHERE age>=  

dynamic_val;

One interesting streaming feature is the metronome and heartbeat. It is 
such a good metaphor. Here is the syntax:

CREATE METRONOME <metronome_identifier> (<field_identifier>, <interval>);

The <field_identifier> is a tuple field that will contain the timestamp 
value. The <interval> is an integer value in seconds. The METRONOME 
delivers output tuples periodically based on the system clock. In the same 
way that a musician’s metronome can be used to indicate the exact tempo 
of a piece of music, METRONOME can be used to control the timing of 
downstream operations.

At fixed intervals, a METRONOME will produce a tuple with a single timestamp 
field named <field_identifier> that will contain the current time value 
from the system clock on the computer hosting the StreamBase application. 
A METRONOME begins producing tuples as soon as the application starts.

Its partner is the HEARTBEAT statement, with this syntax:

<stream expression>

 WITH HEARTBEAT ON <field_identifier>

 EVERY <interval> [SLACK<timeout>]
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INTO <stream_identifier>

[ERROR INTO <stream_identifier>]

The <field_identifier> is the field in the input stream that holds a 
timestamp data type. The <interval> is the value in decimal seconds at 
which the heartbeat emits tuples. The <timeout> is the value in decimal 
seconds that specifies a permissible delay in receiving the data tuple.

HEARTBEAT adds timer tuples on the same stream with your data tuples so 
that downstream operations can occur even if there is a lull in the incoming 
data. HEARTBEAT detects late or missing tuples. Like METRONOME, HEARTBEAT 
uses the system clock and emits output tuples periodically, but HEARTBEAT 
can also emit tuples using information in the input stream, independent of 
the system clock.

HEARTBEAT passes input tuples directly through to the output stream, 
updating its internal clock. If an expected input tuple does not arrive within the 
configured <interval> plus a <timeout> value, then HEARTBEAT synthesizes 
a tuple, with all NULL data fields except for the timestamp, and emits it.

HEARTBEAT sits on a stream and passes through data tuples without 
modification. The data tuple must include a field of type <timestamp>. At 
configurable intervals, HEARTBEAT inserts a tuple with the same schema as 
the data tuple onto the stream. Fields within tuples that originate from the 
HEARTBEAT are set to NULL, with the exception of the <timestamp> field, 
which always has a valid value.

HEARTBEAT does not begin to emit tuples until the first data tuple has 
passed along the stream. HEARTBEAT emits a tuple whenever the output 
<interval> elapses on the system clock or whenever the data tuple’s 
<timestamp> field crosses a multiple of the output <interval>. If a 
data tuple’s <timestamp> field has a value greater than the upcoming 
HEARTBEAT <interval>, HEARTBEAT immediately emits as many tuples 
as needed to bring its <timestamp> in line with the <timestamp> values 
currently on the stream.

HEARTBEAT generates a stream and can be used anywhere a stream 
expression is acceptable. The following example illustrates the use of 
HEARTBEAT:

CREATE INPUT STREAM Input_Trades

(stock_symbol STRING,

 stock_price DOUBLE,

 trade_date TIMESTAMP);



76	 C H A P T E R  5 :  S T R E A M I N G  D A T A B A S E S  A N D  C O M P L E X  E V E N T S

CREATE OUTPUT STREAM Output_Trades_Trades;

CREATE ERROR Output_Trades STREAM Flameout;

This can be used with a query, like this:

SELECT * FROM Input_Trades

 WITH HEARTBEAT ON trade_date

 EVERY 10.0 SLACK 0.5

 INTO Output_Trades

 ERROR INTO Flameout;

There are many more features to work with the streams. The stream can 
be partitioned into finite blocks of tuples with the CREATE [MEMORY | 
DISK] MATERIALIZED WINDOW <window name>, and these subsets of an 
infinite stream can be used much like a table. Think of a bucket drawing data 
from a stream. The BSORT can reorder slightly disordered streams by applying 
a user-defined number of sort passes over a buffer. BSORT produces a new, 
reordered stream. There are other tools, but this is enough for an overview.

While you can write StreamSQL as a text file and compile it, the company 
provides a graphic tool, StreamBase Studio, that lets you draw a “plumbing 
diagram” to produce the code. The diagram is also good documentation for a 
project.

5.3.2 Kx2

Q is a proprietary array processing language developed by Arthur Whitney 
and commercialized by Kx Systems. The Kx products have been in use in the 
financial industry for over two decades. The language serves as the query 
language for kdb+, their disk-based/in-memory, columnar database.

The Q language evolved from K, which evolved from APL, short for A 
Programming Language, developed by Kenneth E. Iverson and associates. 
It enjoyed a fad with IBM and has special keyboards for the cryptic notation 
that features mix of Greek, math, and other special symbols.

One of the major problems with APL was the symbols. IBM Selectric 
typeball could only hold 88 characters and APL has more symbols than that, 
so you had to use overstrikes. Q, on the other hand, uses the standard ASCII 
character set.

2 Disclaimer: I have done a video for Kx.
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This family of languages uses a model of atoms, lists, and functions 
taken in part from LISP. Atoms are indivisible scalars and include numeric, 
character, and temporal data types. Lists are ordered collections of atoms (or 
other lists) upon which the higher-level data structures like dictionaries and 
tables are internally constructed. The operators in the language are functions 
that use whole structures as inputs and outputs. This means that there is no 
operator precedence; the code is excluded from right to left, just like nested 
function calls in mathematics. Think about how you evaluate sin(cos(x)) 
in math; first compute the cosine of x, then apply the sine to that result. 
The parentheses will become a mess, so we also use the notation f◦g (x) for 
functional composition in math. In Q, they are simply written in sequence.

The data types are the expected ones (given with the SQL equivalents 
shortly), but the temporal types are more complete than you might see in 
other languages. The numerics are Boolean (BIT), byte (SMALLINT), int 
(INTEGER), long (BIGINT), real (FLOAT), and float (DOUBLE PRECISION). 
The string tapes are char (CHAR(1)) and symbol (VARCHAR(n)). The 
temporal data types are date (DATE), date time (TIMESTAMP), minute 
(INTERVAL), second (INTERVAL), and time (TIME).

The language also uses the IEEE floating-point standard infinities and 
NaN values. If you do not know about them, then you need to do some 
reading. These are special values that represent positive and negative 
infinities, and thing that are “not a number” with special rules for their use.

There is also an SQL style “select [p] [by p] from texp [where p]” 
expression. The by clause is a change in the usual SQL syntax, best shown 
with an example. Start with a simple table:

tdetails

eid | name iq

----| --------------

1001| Dent 98

1002| Beeblebrox 42

1003| Prefect 126

The following statement and its results are shown below. The count.. by.. 
sorts the rows by iq and returns the relative position in the table. The max is 
the highest value of sc in the from clause table:

select topsc:max sc, cnt:count sc by eid.name from tdetails where  

eid.name <> `Prefect



78	 C H A P T E R  5 :  S T R E A M I N G  D A T A B A S E S  A N D  C O M P L E X  E V E N T S

name | topsc cnt

----------| ---------

Beeblebrox| 42 2

Dent | 98 2

Do not be fooled by the SQL-like syntax. This is still a columnar data 
model, while SQL is row-oriented. The language includes columnar 
operators. For example, a delete can remove a column from a table to get a 
new table structure. This would not work in SQL.

Likewise, you will see functional versions of procedural control structures. 
For example, assignment is typically done with SET, :=, or = in procedural 
languages, while Q uses a colon. The colon shows that the name on the left 
side is a name for the expression on the right; it is not an assignment in the 
procedural sense.

Much like the CASE expression in SQL or ADA, Q has

$[expr_cond1; expr_true1; . . . ; expr_condn; expr_truen; expr_false]

Counted iterations are done with a functional version of the classic do loop:

do[expr_count; expr_1; . . . ; expr_n]

where expr_count must evaluate to an int. The expressions expr_1 
through expr_n are evaluated expr_count times in left-to-right order. The 
do statement does not have an explicit result, so you cannot nest it inside 
other expressions. Following is factorial n done with (n − 1) iterations. The 
loop control is f and the argument is n: 

 n:5

 do[-1+f:r:n; r*:f-:1]

 r

120

The conditional iteration is done with a functional version of the classic 
while loop:

while['expr_cond; expr_1; … ; expr_n]

where expr_ cond is evaluated and the expressions expr_1 through 
expr_n are evaluated repeatedly in left-to-right order as long as expr_cond 
is nonzero. The while statement does not have an explicit result.
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I am going to stop at this point, having given you a taste of Q language 
coding. It is probably very different from the language you know and 
this book is not a tutorial for Q. You can find a good tutorial by Jeffry A. 
Borror entitled “Q for Mortals” at http://code.kx.com/wiki/JB:QforMortals2/
contents.

The trade-off in learning the Q language is that the programs are insanely 
fast and compact. An experienced Q programmer can write code rapidly in 
response to an immediate problem.

Concluding Thoughts

Complex events and streaming data are like the other new technologies in 
this book. They do not have idioms, conventions, and a standard language. 
But we are living in a world where the speed of processing is reaching the 
speed of light. The real problem is having to anticipate how to respond to 
complex events before they actually happen. There is no time to take action 
after or during the event.
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C H A P T E R

6
Key–Value Stores

Introduction

A key–value store, also called an associative array, is a collection of pairs, 
(<key>, <value>), that generalize a simple array. The keys are unique within 
the collection and can be of any data type that can be tested for equality. 
This is a form of the MapReduce family, but performance depends on how 
carefully the keys are designed. Hashing becomes an important technique.

This model has only four basic operations:

◆	 Insert pairs into the collection.

◆	 Delete pairs from the collection.

◆	 Update the values of existing pairs.

◆	 Find a value associated with a particular key. If there is no such value, 
then return an exception.

6.1 Schema Versus no Schema

SQL started off as a project at IBM under the name SEQUEL, which stood 
for Structured English-like Query Language; the structure came from the 
DDL. This is the sublanguage in SQL that defines the schema. Files are not 
anything like tables; rows are not records; columns are not fields. Rows are 
made up of columns. Columns have a known data type with constraints and 
are scalar. There is no ordering; you find a column by its name.



82	 C H A P T E R  6 :  K E Y – V A L U E  S T O R E S

Likewise, tables are made up of rows. The rows have no ordering within 
a table; you find them with keys and not by a physical position. There are 
table-level constraints and relationships. Finally, the unit of work is the 
whole schema, which has intertable constraints and relationships (CREATE 
ASSERTION, and FOREIGN KEY and PRIMARY KEY).

An empty table still has structure! Its columns are still strongly typed 
and its constraints are still enforced. It just works out that all table-level 
predicates are true for an empty set. An empty file is, well, nothing. A blank 
reel of magnetic tape is an empty file. But so is a disk directory entry that 
has a name and a NIL pointer or other end-of-file marker as its only data. All 
empty files look and behave the same way; you read them and immediately 
get an end-of-file flag raised.

Having no schema puts all of the data integrity (if any!) in the application. 
Likewise, the presentation layer has no way to know what will come back to 
it. These systems are optimized for retrieval and appending operations, and 
often offer little functionality beyond record storage. The safety and query 
power of SQL systems are replaced by better scalability and performance for 
certain data models.

6.2 Query Versus Retrieval

NoSQL works with a huge quantity of data that does not need relational 
queries and integrity. The data can be structured, but that is a bonus, not a 
requirement. The classic example is an online store with a large inventory, 
and we want to pull up parts of a web page with graphics and a short text 
description in HTML when a customer gets to the website. Imagine an 
Internet shoe store as the example for the rest of this section.

This organization is particularly useful for statistical or real-time analysis 
of growing lists of elements, such as Twitter posts or the Internet server logs 
from a large group of users. There is no indexing or constraint checking; you 
deal with a huge pile of raw data. But it might not be clean.

6.3 Handling Keys

In this environment, how the keys are handled is vital. They have to be 
designed for the target data and not just a sequential numbering. For 
our shoe store, we will have some internal product identifier, but it will 
probably be so obscure that no customer is going to know it when he or she 
comes to the website. But if we can construct an encoding that the user can 
understand, then life is easier.
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Good key encodings are not always easy to find. As Jorge Luis Borges 
comparatively stated in his essay “The Analytical Language of John Wilkins”:

These ambiguities, redundancies, and deficiencies recall those attributed 
by Dr. Franz Kuhn to a certain Chinese encyclopedia entitled Celestial 
Emporium of Benevolent Knowledge. On those remote pages it is written 
that animals are divided into (a) those that belong to the Emperor, (b) 
embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, 
(f) fabulous ones, (g) stray dogs, (h) those that are included in this 
classification, (i) those that tremble as if they were mad, (j) innumerable 
ones, (k) those drawn with a very fine camel’s hair brush, (l) others, (m) 
those that have just broken a flower vase, (n) those that resemble flies from 
a distance.

A dropdown list with these categories would not be much help for finding 
shoes on our website. There is no obvious key. Many years ago, I worked 
with a shoe company that was doing a data warehouse. The manufacturing 
side wanted reports based on the physical properties of the shoes and the 
marketing side wanted marketing categories. Steel-toed work boots were one 
category for manufacturing. However, at that time, marketing was selling 
them to two distinct groups: construction workers with big feet and Goth 
girls with small feet. These two groups did not shop at the same stores.

The ideal situation is a key that can quickly find which physical-
commodity hardware device has the desired data. This is seldom possible 
in the real world unless your database deals with one subject area that has a 
classification system in place.

6.3.1 Berkeley DB

Berkeley DB (BDB), a software library, is the most widely used (<key>, 
<value>) database toolkit. Part of its popularity is that it can be used by so 
much other software. BDB is written in C with API bindings for C++, C#, 
PHP, Java, Perl, Python, Ruby, Tcl, Smalltalk, and most other programming 
languages. The (<key>, <value>) pairs can be up to 4 gigabyte each and the 
key can have multiple data items.

This product began at the University of California at Berkeley in the late 
1980s. It changed hands until Oracle bought out BDB in February 2006. The 
result is a bit of a legal fragmentation with it. While it is not relational, it has 
options for ACID transactions, with a locking system enabling concurrent access 
to data. There is a logging system for transactions and recovery. Oracle added 
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support for SQL by including a version of SQLite. There is third-party support for 
PL/SQL in BDB via a commercial product named Metatranz StepSqlite.

A program accessing the database is free to decide how the data is to be 
stored in a record. BDB puts no constraints on the record’s data. We are back 
to the file model where the host program gives meaning to the data.

6.3.2 Access by Tree Indexing or Hashing

There is nothing in the (<key>, <value>) model that prohibits using the usual 
tree indexes or hashing for access. The main difference is that targets might be 
on other hardware drives in a large “platter farm” of commodity hardware.

6.4 Handling Values

SQL is a strongly typed language of which columns have a known data 
type, default, and constraints. I tell people that 85–90% of the real work in 
SQL is done in the DDL. Bad DDL will force the programmers to kludge 
corrections in the DML over and over. The queries will repeat constraints in 
predicates that could have been written once in the DDL and picked up by 
the optimizer from the schema information tables.

The (<key>, <value>) model does not say anything about the nature of the 
values. The data can be structured, but when it is, the data types are usually 
simple, exact, and approximate numerics, strings, and perhaps temporal. 
There are no defaults or constraints. The purpose of this model is the ability 
to store and retrieve great quantities of data, not the relationships among the 
elements. These are records in the old FORTRAN file system sense of data, 
not rows from RDBMS.

The advantage is that any host language program can use the data 
immediately. If you look at the SQL standards, each ANSI X3J language has 
rules for converting its data types to SQL data types. There are also indicators 
for handling nulls and passing other information between the host and the 
database.

6.4.1 Arbitrary Byte Arrays

Unstructured data is also kept in these products. The usual format is some 
kind of byte array: a BLOB, CLOB, or other large contiguous “chunks” of raw 
data. The host program decides what it means and how to use it. The (<key>, 
<value>) store simply wants to move it as fast as possible into the host.
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The fastest way to move data is to have it in primary storage rather than 
on secondary storage. Notice I am using “primary” rather than “core,” 
“RAM,” etc., and “secondary” rather than “disk,” “drum,” “RAID,” etc. The 
technology is changing too fast and the line between primary (fast, direct 
addressing by processor) and secondary (slower, retrieved by other hardware) 
storage is getting blurred. My bet is that in a few years of 2015, the use of 
SSD (solid-state disk) will replace the moving disk. This will make radical 
changes in how we think of computing:

◆	 There will be no difference between primary and secondary storage speeds.

◆	 Cores (formerly known as CPUs) will also be so cheap, we will put 
them at all levels of the hardware. We will have mastered parallel 
programming.

◆	 The results will be that a parallel table scan will be faster than using an 
index and not that different from hashing.

In short, everything becomes an in-memory database.
As of April 2013, IBM was sending out press releases that the hard drive 

would soon be dead in the enterprise. They put U.S. $1 billion in research 
to back up this prediction. IBM has launched a line of flash-based storage 
systems, called FlashSystems, based on technologies IBM acquired when it 
purchased Texas Memory in 2012. A set of FlashSystems could be configured 
into a single rack capable of storing as much as 1 petabyte of data, and 
capable of producing 22 million IOPS (input/output operations per second). 
Getting that same level of storage and throughput from a hard drive system 
would require 315 racks of high-performance disks.

IBM also has flash and disk hybrid storage systems, including the IBM 
Storwize V7000, IBM System Storage DS8870, and IBM XIV Storage System. 
They realize that not all systems would benefit from the use of solid-state 
technologies right now. Performance has to be a critical factor for systems 
operations. As of 2013, generic hard drives cost about $2 per gigabyte, an 
enterprise hard drive costs about $4 per gigabyte, and a high-performance 
hard drive costs about $6 per gigabyte. A solid-state disk is $10 per gigabyte.

6.4.2 Small Files of Known Structure

Since (<key>, <value>) stores are used for websites, one of the values is a 
small file that holds a catalog page or product offering. XML and HTML are 
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ideal for this. Every browser can use them—hypertext links are easy and they 
are simple text that is easy to update.

6.5 Products

This is a quick list of products as of 2013, taken from Wikipedia, using their 
classifications.

Eventually consistent (<key>, <value>) stores:

◆	 Apache Cassandra

◆	 Dynamo

◆	 Hibari

◆	 OpenLink Virtuoso

◆	 Project Voldemort

◆	 Riak

Hierarchical (<key>, <value>) stores:

◆	 GT.M

◆	 InterSystems Caché

Cloud or hosted services:

◆	 Freebase

◆	 OpenLink Virtuoso

◆	 Datastore on Google Appengine

◆	 Amazon DynamoDB

◆	 Cloudant Data Layer (CouchDB)

(<key>, <value>) cache in RAM:

◆	 Memcached

◆	 OpenLink Virtuoso

◆	 Oracle Coherence

◆	 Redis
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◆	 Nanolat Database

◆	 Hazelcast

◆	 Tuple space

◆	 Velocity

◆	 IBM WebSphere eXtreme Scale

◆	 JBoss Infinispan

Solid-state or rotating-disk (<key>, <value>) stores:

◆	 Aerospike

◆	 BigTable

◆	 CDB

◆	 Couchbase Server

◆	 Keyspace

◆	 LevelDB

◆	 MemcacheDB (using BDB)

◆	 MongoDB

◆	 OpenLink Virtuoso

◆	 Tarantool

◆	 Tokyo Cabinet

◆	 Tuple space

◆	 Oracle NoSQL Database

Ordered (<key>, <value>) stores:

◆	 Berkeley DB

◆	 IBM Informix C-ISAM

◆	 InfinityDB

◆	 MemcacheDB

◆	 NDBM
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Concluding Thoughts

Because this is one of the simplest and most general models for data retrieval, 
there are lots of products that use it. The real trick in this technique is the 
design of the keys.
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C H A P T E R

7
Textbases

Introduction

I coined the term textbase decades ago to define an evolution that was just 
beginning. The most important business data is not in databases or files; it is 
in text. It is in contracts, warranties, correspondence, manuals, and reference 
material. Traditionally, data processing (another old term) dealt with highly 
structured data in a machine-usable media. Storage was expensive and you 
did not waste it with text. Text by its nature is fuzzy and bulky; traditional 
data is encoded to be precise and compact.

Text and printed documents also have legal problems. Thanks to having 
been invented several thousand years ago, they have requirements and 
traditions that are enforced by law and social mechanisms. As storage got 
cheaper and we got smarter, the printed word started to get automated. Not 
just the printed word, but reading and understanding it is also becoming 
automated.

7.1 Classic Document Management Systems

Textbases began as document management systems. The early ancestors 
were microfilm and microfiche. The text was stored as a physical image with 
a machine searchable index. In 1938, University Microfilms International 
(UMI) was established by Eugene Power to distribute microfilm editions of 
current and past publications and academic dissertations. They dominated 
this field into the 1970s.
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The big changes were legal rather than technological. First, FAX copies of 
a document became legal, then microfilm copies of signed documents became 
legal, and, finally, electronically signed copies of signed documents became 
legal. The legal definition of an electronic signature can vary from a simple 
checkbox, a graphic file image of a signature, to an encryption protocol that 
can be verified by a third party. But the final result has been you did not need 
to have warehouses full of paper to have a legal document.

7.1.1 Document Indexing and Storage

Roll microfilm had physical “blips” between frames so that a microfilm 
reader could count and locate frames. Microfiche uses a Hollerith card 
(yes, they actually say “Hollerith” in the literature!) with a window of 
photographic film in it. Punch card sorters and storage cabinets can handle 
them. These are the original magnetic tape and punch card logical models! 
This should not be a surprise; new technology mimics the old technology. 
You do not jump to a new mindset all at once.

Later, we got hardware that could physically move the microfilm or 
microfiche around for us. They whiz, spin, and hum with lots of mechanical 
parts. If you can find an old video of these machines, you will get the feeling 
of what “steam punk” would be like if this science fiction genre were set in 
the 1950s instead of the Victorian era. We would call it “electromechanical 
punk” and everyone would wear gray flannel suits with narrow neckties.

These are a version of the (<key>, <value>) model used by NoSQL, using 
a more physical technology. But there is a difference; in textbases, the final 
judgment is made by a human reading and understanding the document. 
For semi-structured documents, such as insurance policies, there are policy 
numbers and other traditional structured data elements. But there are 
also semi-structured data elements, such as medical exams. And there are 
completely free text elements, such as a note like “Investigate this guy for 
fraud! We think he killed his wife for the insurance!” or worse.

7.1.2 Keyword and Keyword in Context

How do you help a human understand the document? The first contact 
a human has with a document is the title. This sounds obvious and it is 
why journals and formal documents had dull but descriptive titles. Before 
the early 20th century, books also had a secondary title to help someone 
decide to buy the book. Juvenile fiction was particularly subject to this 
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(e.g., The Boy Aviators in Nicaragua or In League with Insurgents), but so was 
adult fiction (e.g., Moby-Dick or The Whale) and scholarly books (e.g., An 
Investigation of the Laws of Thought on Which Are Founded the Mathematical 
Theories of Logic and Probabilities).

The next step in the evolutionary process was a list of keywords taken 
from a specialized vocabulary. This is popular in technical journals. The 
obvious problem is picking that list of words. In a technical field, just 
keeping up with the terminology is hard. Alternate spellings, acronyms, and 
replacement terms occur all the time. Talk to a medical records person about 
the names of diseases over time.

Since the real data is in the semantics, the next step in evolution is 
the technique of keyword in context (KWIC) index. It was the most 
common format for concordance lines in documents. A concordance is 
an alphabetical list of the principal words used in a document with their 
immediate contexts. Before computers, they were difficult, time consuming, 
and expense. This is why they were only done for religious texts or 
major works of literature. The first concordance, to the Vulgate Bible, was 
compiled by Hugh of St. Cher (d. 1262), who employed 500 monks to 
assist him. In 1448, Rabbi Mordecai Nathan completed a concordance to 
the Hebrew Bible. It took him ten years. Today, we use a text search program 
with much better response times.

The KWIC system and its relatives are based on a concept called keyword 
in titles, which was first proposed for Manchester libraries in 1864 by 
Andrea Crestadoro. KWIC indexes divide the lines vertically in two columns 
with a strong gutter, with the keywords on the right side of the gutter in 
alphabetical order. For the nontypesetters, a gutter is a vertical whitespace 
in a body of text.

There are some variations in KWIC, such as KWOC (keyword out of 
context), KWAC (keyword augmented in context), and KEYTALPHA (key 
term alphabetical). The differences are in the display to the user. The good 
side of the keyword indexing methods is that they are fast to create once 
you have a keyword list. It is just as easy as indexing a traditional file or 
database. Many systems do not even require controlled vocabulary; they do a 
controlled scan and build the list.

The bad news (and another step in the evolution) is that there no 
semantics in the search. The concept of related subjects, either narrower or 
broader concepts and topics in some recognized hierarchical structure, does 
not exist outside the mind of the users.
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7.1.3 Industry Standards

Serious document handling began with librarians, not with computer 
people. This is no surprise; books existed long before databases. The 
National Information Standards Organization (NISO) and now the ANSI 
Z39 group, was founded in 1939, long before we had computers. It is the 
umbrella for over 70 organizations in the fields of publishing, libraries, IT, 
and media organizations. They have a lot of standards for many things, but 
the important one for us deals with documents, not library bookshelves.

Contextual Query Language

NISO has defined a minimal text language, the Common Query Language 
(CQL; (http://zing.z3950.org/cql/intro.html). It assumes that there is a set of 
documents with a computerized interface that can be queries. Queries can be 
formed with the usual three Boolean operators—AND, OR, and NOT—to find 
search words or phrases (strings are enclosed in double quotemarks) in a 
document. For example:

dinosaur NOT reptile

(bird OR dinosaur) AND (feathers OR scales)

"feathered dinosaur" AND (yixian OR jehol)

All the Boolean operators have the same precedence, and associate from 
left to right. This is not what a programmer expects! This means you need to 
use a lot of extra parentheses. These are the same queries:

dinosaur AND bird OR dinobird

(dinosaur AND bird) OR dinobird

Proximity operators select candidates based on the positional relationship 
among words in the documents. Here is the BNF (Backus Normal Form or 
Backus-Naur Form, a formal grammar for defining programming languages) 
for the infixed operator:

PROX/[<relation>] / [<distance>] / [<unit>] / [<ordering>]

However, any or all of the parameters may be omitted if the default values 
are required. Further, any trailing part of the operator consisting entirely of 
slashes (because the defaults are used) is omitted. This is easier to explain 
with the following examples.

foo PROX bar

http://zing.z3950.org/cql/intro.html
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Here, the words foo and bar are immediately adjacent to each other, in 
either order.

foo PROX///SENTENCE bar

The words foo and bar occur anywhere in the same sentence. This means 
that the document engine can detect sentences; this is on the edge of syntax 
and semantics. The default distance is zero when the unit is not a word.

foo PROX//3/ELEMENT bar

The words foo and bar must occur within three elements of each other; for 
example, if a record contains a list of authors, and author number 4 contains 
foo and author number 7 contains bar, then this search will find that record.

foo PROX/=/2/PARAGRAPH bar

Here, the words foo and bar must appear exactly two paragraphs apart—it 
is not good enough for them to appear in the same paragraph or in adjacent 
paragraphs. And we now have a paragraph as a search unit in the data.

foo PROX/>/4/WORD/ORDERED bar

This finds records in which the words appear, with foo first, followed more 
than four words later by bar, in that order. The other searches are not ordered.

A document can have index fields (year, author, ISBN, title, subject, etc.) 
that can also be searched. Again examples will give you an overview:

YEAR>1998

TITLE ALL "complete dinosaur"

TITLE ANY "dinosaur bird reptile"

TITLE EXACT "the complete dinosaur"

The ALL option looks for all of the words in the string, without regard to 
their order. The ANY option looks for any of the words in the string. The 
EXACT option looks for all of the words in the string and they have to be 
in the order given. The exact searches are most useful on structured fields, 
such as ISBN codes, telephone numbers, and so forth. But we are getting into 
semantics with modifiers. The usual backslash modifier notation is used:

◆	 STEM: The words in the search term are scanned and derived words 
from the same stem or root word are matched. For example, “walked,” 
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“walking,” “walker,” and so forth would be reduced to the stem word 
“walk” in the search. Obviously this is language-dependent.

◆	 RELEVANT: The words in the search term are in an implementation-
dependent sense relevant to those in the records being searched. For 
example, the search subject ANY/RELEVANT "fish frog" would find 
records of which the subject field included any of the words “shark,” 
“tuna,” “coelocanth,” “toad,” “amphibian,” and so forth.

◆	 FUZZY: A catch-all modifier indicating that the server can apply an 
implementation-dependent form of “fuzzy matching” between the 
specified search term and its records. This may be useful for badly 
spelled search terms.

◆	 PHONETIC: This tries to match the term not only against words that are 
spelled the same but also those that sound the same with implementation-
dependent rules. For example, with SUBJECT =/PHONETIC, “rose” might 
match “rows” and “roes” (fish eggs).

The modifier EXACT/FUZZY appears strange, but is very useful for structured 
fields with errors. For example, for a telephone number that might have 
incorrect digits, the structure is the exact part; the digits are the fuzzy part:

telephone_nbr EXACT/FUZZY "404-845-7777"

Commercial Services and Products

There have been many commercial services that provide access to data. The 
most used ones are LexisNexis and WestLaw legal research services. They 
have terabytes of online data sold by subscriptions. There are also other 
industry-specific database services, university-based document textbases, etc.

These services have a proprietary search language, but most of these 
languages are similar to the CQL with minor differences in syntax. They 
have the Boolean and proximity constructs, but often include support for 
their particular specialization, such as a legal or medical vocabulary.

Later there are products that can create textbases from raw data for a 
user. ZyIndex has been the leader in this area for decades. It was written 
in 1983 in Pascal as a full-text search program for files on IBM-compatible 
PCs running DOS. Over the years the company added optical character 
recognition (OCR), full-text search email and attachments, XML, and other 
features. Competition followed and the internals vary, but most of the search 
languages stuck to the CQL model.
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These products have two phases. The first phase is to index the 
documents so they can be searched. Indexing can also mean that the original 
text can be compressed; this is important! The second phase is the search 
engine. Indexing either ignores “noise words” or uses the full text. The 
concept of noise words is linguistic; there are “full words” and “empty 
words” in Chinese grammar. The noise or empty words are structural things 
like conjunctions, prepositions, articles, etc., as opposed to verbs and nouns 
that form the skeleton of a concept. Virtually, every sentence will have a noise 
word in it, so looking for them is a waste. The trade-off is that “to be or not 
to be” or other phrases are all noise words and might not be found.

There are systems that will scan every word when they index. The usual 
model is to associate a list of data page numbers instead of a precise location 
within the file. Grabbing the document in data pages is easy because that it 
how disk storage works. It is cheap and simple to decompress and display the 
text once it is in the main storage.

Regular Expressions

Regular expressions came from UNIX by way of the mathematician Stephen 
Cole Kleene. They are abstract pattern strings that describe a set of strings. 
ANSI/ISO standard SQL has a simple LIKE predicate and more complex 
SIMILAR TO predicate.

A vertical bar separates alternatives: gray|grey can match “gray” or “grey” 
as a string. Parentheses are used to define the scope and precedence of the 
operators (among other uses). A quantifier after a token (e.g., a character) or 
group specifies how often that preceding element is allowed to occur. The most 
common quantifiers are the question mark (?), asterisk (*) (derived from the 
Kleene star), and the plus sign (+) (Kleene cross). In English, they mean:

? Zero or one of the preceding element: colou?r matches both “color” and “colour.”

* Zero or more of the preceding element: ab*c matches “ac”, “abc”, “abbc”, 

“abbbc”, etc.

+ One or more of the preceding element: ab + c matches “abc”, “abbc”, “abbbc”, etc.

These constructions can be combined to form arbitrarily complex 
expressions. The actual syntax for regular expressions varies among tools. 
Regular expressions are pure syntax and have no semantics. The SQL people 
love this, but textbase people think in semantics, not syntax. This is why 
textbases do not use full regular expressions—a fundamental difference.
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The IEEE POSIX Basic Regular Expressions (BRE) standard (ISO/IEC 
9945-2:1993) was designed mostly for backward compatibility with the 
traditional (Simple Regular Expression) syntax but provided a common 
standard that has since been adopted as the default syntax of many UNIX 
regular expression tools, though there is often some variation or additional 
features. In the BRE syntax, most characters are treated as literals—they 
match only themselves (e.g., "a" matches “a”). The exceptions, listed in 
Table 7.1, are called metacharacters or metasequences.

7.2 Text Mining and Understanding

So far, what we have discussed are simple tools that use a local textbase to do 
retrievals. While retrieval of text is important, this is not what we really want 

Table 7.1  Exceptions to BRE (Basic Regular Expressions) Exceptions 

Metacharacter Description

. Matches any single character (many applications exclude new lines, and exactly which 

characters are considered new lines is flavor-, character encoding–, and platform-specific, 

but it is safe to assume that the line-feed character is included). Within POSIX bracket 

expressions, the dot character matches a literal dot. For example, a.c matches “abc”, but 

[a.c] matches only “a”, “.”, or “c”.

[ ] Matches a single character that is contained within the brackets. For example, [abc] 

matches “a”, “b”, or “c”. [a-z] specifies a range that matches any lowercase letter from 

“a” to “z”. These forms can be mixed: [abcx-z] matches “a”, “b”, “c”, “x”, “y”, or 

“z”, as does [a-cx-z].

[^ ] Matches a single character that is not contained within the brackets. For example, [^abc] 

matches any character other than “a”, “b”, or “c”. [^a-z] matches any single character that 

is not a lowercase letter from “a” to “z”. Likewise, literal characters and ranges can be mixed.

^ Matches the starting position within the string. In line-based tools, it matches the starting 

position of any line.

$ Matches the ending position of the string or the position just before a string-ending new 

line. In line-based tools, it matches the ending position of any line.

\n Matches what the nth marked subexpression matched, where n is a digit from 1 to 9. This 

construct is theoretically irregular and was not adopted in the POSIX ERE syntax. Some 

tools allow referencing more than nine capturing groups.

* Matches the preceding element zero or more times. For example, ab*c matches “ac”, 

“abc”, “abbbc”, etc.; [xyz]* matches “,” “x”, “y”, “z”, “zx”, “zyx”, “xyzzy”, and so 

on; (ab)* matches “,” “ab”, “abab”, “ababab”, and so on.
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to do with text. We want meaning, not strings. This is why the first tools 
were used by lawyers and other professionals who have special knowledge, 
use a specialized vocabulary, and draw text from limited sources.

If you want to play with a large textbase, Google has an online tool (http://
books.google.com/ngrams) that will present a simple graph of the occurrences 
of a search phrase in books from 1800 to 2009 in many languages. This lets 
researchers look for the spread of a term, when it fell in and out of fashion 
and so forth.

We had to get out of this limited scope and search everything—this led 
to Google, Yahoo, and other web search engines. The volume of text and the 
constant flow of it are the obvious problems. The more subtle problems are 
in the mixed nature of text, but even simple searches on large volumes of text 
are time consuming.

Google found a strong correlation between how many people search for 
flu-related topics and how many people actually have flu symptoms. Of 
course, not every person who searches for “flu” is actually sick, but a pattern 
emerges when all the flu-related search queries are added together. Some of 
the details are given in http://www.nature.com/nature/journal/v457/n7232/full/
nature07634.html.

7.2.1 Semantics versus Syntax

Strings are simply patterns. You do not care if the alphabet used to build 
strings is Latin, Greek, or symbols that you invented. The most important 
property of a string is linear ordering of the letters. Machines love linear 
ordering and they are good at parsing when given a set of syntax rules. We 
have a firm mathematical basis and lots of software for parsing. Life is good 
for strings.

Words are different—they have meaning. They form sentences; 
sentences form paragraphs; paragraphs form a document. This is 
semantics. This is reading for understanding. This was one of the goals 
for artificial intelligence (AI) in computer science. The computer geek 
joke has been that AI is everything in computer research that almost 
works, but not quite.

Programs that read and grade student essays are called robo-readers and 
they are controversial. On March 15, 2013, Les Perelman, the former director 
of writing at the Massachusetts Institute of Technology, presented a paper at 
the Conference on College Composition and Communication in Las Vegas, 

http://books.google.com/ngrams
http://books.google.com/ngrams
http://www.nature.com/nature/journal/v457/n7232/full/nature07634.html
http://www.nature.com/nature/journal/v457/n7232/full/nature07634.html
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NV. It was about his critique of the 2012 paper by Mark D. Shermis, the dean 
of the college of education at the University of Akron. Shermis and co-author 
Ben Hamner, a data scientist, found automated essay scoring was capable of 
producing scores similar to human scores when grading SAT essays.

Perelman argued the methodology and the data in the Shermis–Hamner 
paper do not support their conclusions. The reason machine grading is 
important is that the vast majority of states are planning to introduce new high-
stakes tests for K–12 students that require writing sections. Educational software 
is marketed now because there simply are not enough humans to do the work.

Essay grading software is produced by a number of major vendors, 
including McGraw-Hill and Pearson. There are two consortia of states 
preparing to introduce totally new high-stakes standardized exams in 2014 
to match the common core curriculum, which has swept the nation. The 
two consortia—the Partnership for Assessment of Readiness for College 
and Careers, and Smarter Balanced Assessment Consortium—want to use 
machines to drive down costs.

Perelman thinks teachers will soon teach students to write to please robo-
readers, which Perelman argues disproportionately gives students credit for 
length and loquacious wording, even if they do not quite make sense. He notes, 
“The machine is rigged to try to get as close to the human scores as possible, 
but machines don’t understand meaning.” In 2010, when the common core 
exams were developed for its 24 member states, the group wanted to use 
machines to grade all of the writing. Today, this has changed. Now, 40% of the 
writing section, 40% of the written responses in the reading section, and 25% 
of the written responses in the math section will be scored by humans.

Many years ago, MAD magazine did a humor piece on high school 
teachers grading famous speeches and literature. Abraham Lincoln was told 
to replace “four score and seven years” with “87 years” for clarity; Ernest 
Hemingway needed to add more descriptions; Shakespeare was told that “to 
be or not to be” was contradictory and we needed a clear statement of this 
question. “The technology hasn’t moved ahead as fast as we thought,” said 
Jacqueline King, a director at Smarter Balanced. I am not sure that it can 
really move that far ahead.

7.2.2 Semantic Networks

A semantic network or semantic web is a graph model (see Chapter 3 on 
graph databases) of a language. Roughly speaking, the grammar is shown 
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in the arcs of the graph and the words are the nodes. The nodes need a 
disambiguation process because, to quote the lyrics from “Stairway to 
Heaven” (1971) by Led Zeppelin, “cause you know sometimes words have 
two meanings,” and the software has to learn how to pick a meaning.

Word-sense disambiguation (WSD) is an open problem of natural 
language processing that has two variants: lexical sample and all words task. 
The lexical sample uses a small sample of preselected words. The all words 
method uses all regular expressions that came from UNIX by way of the 
mathematician Stephen Cole Kleene. They are abstract pattern strings that 
describe a set of strings. ANSI/ISO standard SQL has a simple LIKE predicate 
and more complex SIMILAR TO predicate. This is a more realistic form of 
evaluation, but it is more expensive to produce.

Consider the (written) word “bass”:

◆	 A type of fish

◆	 Low-frequency musical tones

If you heard the word spoken, there would be a difference in pronunciation, 
but these sentences give no such clue:

◆	 I went bass fishing.

◆	 The bass line of the song is too weak.

You need a context. If the first sentence appears in text, a parse can see that 
this might be a adjective–noun pattern. But if it appears in an article in Field 
& Stream magazine, you have more confidence in the semantics of “bass” 
meaning a fish than if it were in Downbeat music reviews.

WordNet is a lexical database for the English language that puts 
English words into sets of synonyms called synsets. There are also 
short, general definitions and various semantic relations between these 
synonym sets. For example, the concept of “car” is encoded as {“car”, 
“auto”, “automobile”, “machine”, “motorcar”}. This is an open-source 
database that is widely used.

7.3 Language Problem

Americans tend not to learn foreign languages. Culturally, we believe that 
everyone learns American English and this is largely true today. We inherited the 
old British Empire’s legacy and added U.S. technical and economic domination to 
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it. Our technical domination gave us another advantage when computers came 
along. We had the basic Latin alphabet embedded in ASCII so it was easy to store 
English text on computers. Alphabets are linear and have a small character set; 
other languages are not so lucky. Chinese requires a huge character set; Korean 
and other languages require characters that are written in two dimensions.

7.3.1 Unicode and ISO Standards

The world is made up of more alphabet, syllabary, and symbol systems than 
just Latin-1. We have Unicode today. This is a 16-bit code that can represent 
in most of the world’s writing systems. It has a repertoire of more than 
110,000 characters covering 100 scripts. The standard shows the printed 
version of each character, rules for normalization (how to assemble a 
character from accent marks and other overlays), decomposition, collation, 
and display order (right-to-left scripts versus left-to-right scripts).

Unicode is the de-facto and de-jure tool for internationalization and 
localization of computer software. It is part of XML, Java, and the Microsoft .NET 
framework. Before Unicode, the ISO 8859 standard defined 8-bit codes for most 
of the European languages, with either complete or partial coverage. The problem 
was that a textbase with arbitrary scripts mixed with each other could not be 
stored without serious programming. The first 256 code points are identical to 
ISO 8859-1. This lets us move existing western text to Unicode, but also to store 
ISO standard encodings, which are limited to this subset of characters.

Unicode provides a unique numeric code point for each character. It does 
not deal with display, so SQL programmers will like that abstraction. The 
presentation layer has to decide on size, shape, font, colors, or any other 
visual properties.

7.3.2 Machine Translation

Languages can have inflectional and agglutinative parts in their grammar. An 
inflectional language changes the forms of their words to show grammatical 
functions. In linguistics, declension is the inflection of nouns, pronouns, 
adjectives, and articles to indicate number (at least singular and plural, but Arabic 
also has dual), case (nominative, subjective, genitive, possessive, instrumental, 
locational, etc.), and gender. Old English was a highly inflected language, but its 
declensions greatly simplified as it evolved into modern English.

An example of a Latin noun declension is given in Table 7.2, using the 
singular forms of the word homo.
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There are more declensions and Latin is not the worst such language. 
These languages are hard to parse and tend to be highly irregular. They often 
have totally different words for related concepts, such as plurals. English 
is notorious for its plurals (mouse versus mice, hero versus heroes, cherry 
versus cherries, etc.).

At the other extreme, an agglutinative language forms words by pre- or 
post- fixing morphemes to a root or stem. In contrast to Latin, the most 
agglutinate language is Esperanto. The advantage is that such languages are 
much easier to parse. For example:

“I see two female kittens”—Mi vidas du katinidojn

where kat/in/id/o/j/n means “female kittens in accusative” and made of:

kat (cat=root word) || in (female gender affix) || id (“a child” affix) || o 
(noun affix) || j (plural affix) || n (accusative case affix)

The root and the affixes never change. This is why projects like 
Distributed Language Translation (DLT) use a version of Esperanto as an 
intermediate language. The textbase is translated into the intermediate 
language and then from intermediate language into one of many target 
languages. Esperanto is so simple that intermediate language can be 
translated at a target computer. DLT was used for scrolling video news text 
on cable television in Europe.

Concluding Thoughts

We are doing a lot of things with text that we never thought would be 
possible. But the machines cannot make intuitive jumps; they are narrow in 
specialized worlds.

Table 7.2  Latin Declension for Homo

homo (nominative) subject

hominis (genitive) possession

homin–i (dative) indirect object

hominem (accusative) direct object

homine (ablative) various uses

— (vocative) addressing a person

— (locative) rare for places only
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In 2011, IBM entered their Watson AI computer system on the television 
quiz show Jeopardy. The program had to answer questions posed in natural 
language. It was very impressive and won a million dollars in prize money. 
The machine was specifically developed to answer questions on Jeopardy; 
it was not a general-purpose tool. Question categories that used clues 
containing only a few words were problematic for it. In February 2013, 
Watson’s first commercial application is at the Memorial Sloan–Kettering 
Cancer Center in conjunction with health insurance company WellPoint. It is 
now tuned to do utilization management decisions in lung cancer treatments.

With improved algorithms and computing power, we are getting to 
the point of reading and understanding the text. That is a whole different 
game, but it is not human intelligence yet. These algorithms find existing 
relationships, they do not create a new one. My favorite example from 
medicine was a burn surgeon who looked at the expanded metal grid on his 
barbeque and realized that the same pattern of slits and stretching could be 
used with human skin to repair burns. Machines do not do that.

LexisNexis and WestLaw teach law students how to use their textbases for 
legal research. The lessons include some standard exercises based on famous 
and important legal decisions. Year after year, the law students overwhelming 
fail to do a correct search. They fetch documents they do not need and fail 
to find documents they should have found. Even smart people working in a 
special niche are not good at asking questions from textbases.
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C H A P T E R

8
Geographical Data

Introduction

Geographic information systems (GISs) are databases for geographical, 
geospatial, or spatiotemporal (space–time) data. This is more than 
cartography. We are not just trying to locate something on a map; we are 
trying to find quantities, densities, and contents of things within an area, 
changes over time, and so forth.

This type of database goes back to early epidemiology with “Rapport 
sur La Marche Et Les Effets du Choléra Dans Paris et Le Département de la 
Seine,” prepared by French geographer Charles Picquet in 1832. He made 
a colored map of the districts of Paris to show the cholera deaths per 1,000 
population.

In 1854, John Snow produced a similar map of the London cholera 
outbreak, using points to mark some individual cases. This study is a classic 
story in statistics and epidemiology. London in those days had public hand-
operated water pumps; citizens hauled water back to their residences in 
buckets. His map clearly showed the source of the disease was the Broad 
Street pump, which had been contaminated with raw sewage. Cholera begins 
with watery diarrhea with a fluid loss of as much as 20 liters of water a day, 
leading to rapid dehydration and death for 70% of victims. Within days, 
cholera deaths dropped from hundreds to almost none. We had cartography 
for centuries, but the John Snow map was one of the first to analyze clusters 
of geographically dependent phenomena.
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Please remember that these maps were all produced by hand. We did not 
have photographic technology until the early 20th century and computer 
graphics until the late 20th century. The first true GIS was the Canada GIS 
(CGIS), developed by the Canadian Department of Forestry and Rural 
Development. Dr. Tomlinson, the head of this project, become known as the 
“father of GIS” not just for the term GIS, but for his use of overlays for spatial 
analysis of convergent geographic data. Before this, computer mapping 
was just maps without analysis. The bad news is that it never became a 
commercial product.

However, it inspired all of the commercial products that followed it. 
Today, the big players are Environmental Systems Research Institute (ESRI), 
Computer-Aided Resource Information System (CARIS), Mapping Display 
and Analysis System (MIDAS, now MapInfo), and Earth Resource Data 
Analysis System (ERDAS). There are also two public-domain systems (MOSS 
and GRASS GIS) that began in the late 1970s and early 1980s.

There are geospatial standards from ISO Technical Committee 211 
(ISO/TC 211) and the Open Geospatial Consortium (OGC). The OGC 
is an international industry consortium of 384 companies, government 
agencies, universities, and individuals that produce publicly available 
geoprocessing specifications and grade products on how well they conform 
to the specifications with compliance testing. The main goal is information 
interchange rather than query languages, but they include APIs for host 
languages and a Geography Markup Language (GML). Take a look at their 
web page for current information: http://www.opengeospatial.org/standards/as.

In practice, most queries are done graphically from a screen and not with a 
linear programming language. Answers are also typically a mix of graphics and 
traditional data presentations. Table 8.1 outlines some basic ISO standards.

Table 8.1  ISO Standards

ISO 19106:2004: Profiles Simple features from GML.

ISO 19107:2003: Spatial Schema See also ISO 19125 and ISO 19115; basic 

concepts defined in this standard are 

implemented. This is the foundation for 

simple features in GML.

ISO 19108:2003: Temporal Schema Time-aware data in GIS.

ISO 19109:2005: Rules for Application Schema A conceptual schema language in UML.

ISO 19136:2007: Geography Markup Language This is equivalent to OGC GML 3.2.1.

http://www.opengeospatial.org/standards/as
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8.1 GIS Queries

So much for the history and tools. What makes a GIS query different from 
a basic SQL query? When we ask a typical SQL query, we want aggregated 
numeric summaries of data measured in scalar units. In GIS we want spatial 
answers and space is not linear or scalar.

8.1.1 Simple Location

The most primitive GIS query is simply “Where am I?” But you need more 
than “Here!” as an answer. Let’s imagine two models for locations. If we are 
in a ship or airplane, the answer has a time and direction to it. There is an 
estimate of arrival at various points in the journey. However, if we are in 
a lighthouse, we will stay in the same location for a very long time! Even 
cities move: Constantinople, Istanbul, and Byzantium (among other names!) 
are historical names for the same location. Oh, wait! Their locations also 
changed over time.

8.1.2 Simple Distance

Once you have a way to describe any location, then the obvious next step is 
the distance between two of them. But distance is not so simple. Americans 
have the expression “as the crow flies” for direct linear distance. But distance 
is not linear.

The actual distance can be airplane, road, or railroad travel distances. 
The distance can be expressed as travel hours. Distance can be effectively 
infinite. For example, two villages on opposite sides of a mine field can be 
unreachable.

8.1.3 Find Quantities, Densities, and Contents within an Area

The next class of queries deals with area. Or is it volume? In traditional 
cartography, elevation was the third dimension and we had topographic 
maps with contour lines. But in GIS queries, the third dimension is usually 
something else.

The television show Bar Rescue on SPIKE network features Jon Taffer 
remodeling failing bars. He is an expert in this field and the show gives a lot 
of the science of bar management. Almost every show has a section where 
Taffer spreads out a map of the neighborhood and gives a GIS analysis of the 
client’s situation.
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The first query is always measurements of the neighborhood. How many 
other bars are in the neighborhood (quantity)? Are they clustered or spread 
out (density)? How many of them are like your bar (content)? These are 
static measurements that can be found in census and legal databases. What 
Taffer adds is experience and analysis.

8.1.4 Proximity Relationships

Proximity relationships are more complex than the walking distance between 
bars in the neighborhood. The concept of proximity is based on access 
paths. In New York, NY, most people walk, take a taxi, or take the subway; 
sidewalks are the access paths. In Los Angeles, CA, almost nobody walks; 
streets are the access paths (if there is parking).

The most common mistake in GIS is drawing a circle on a map and 
assuming this is your neighborhood. Most GIS systems can fetch the census 
data from the households within the circle. The trick is to change the circle 
into a polygon. You extend or contact the perimeter of your neighborhood 
based on other information.

8.1.5 Temporal Relationships

The simple measurement is linear distance, but travel time might be more 
important. Consider gas stations on interstate highway exits; the physical 
distance can be large, but the travel time can be short.

A GIS query for the shortest travel time for an emergency vehicle is not 
linear, nor is it road distance. The expected travel time also depends on the 
date and time of day of the trip.

One of the best uses of GIS is an animation of geography changes over 
time. It can show growth and decay patterns. From those patterns, we can 
make predictions.

8.2 Locating Places

The first geographical problem is simply locating a place on Earth and 
finding out what is there. While we take geographical positioning systems 
(GPSs) and accurate maps for granted today, this was not always the case. 
For most of human history, people depended on the sun, moon, and stars for 
that data. Geographic location also depended on physical features that could 
be described in text.
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This is fine for relatively short distances, but not for longer voyages and 
greater precision. We needed a global system.

8.2.1 Longitude and Latitude

Longitude and latitude should be a familiar concept from elementary school. 
You assume the world is a sphere (it really is not) rotating on an axis and draw 
imaginary lines on it. The lines from the North Pole to the South Pole are 
longitude. The circles that start at the Equator are latitude. This system goes 
back to the second-century BCE and the astronomer Hipparchus of Nicea, who 
improved Babylonian calculations. The Babylonians used base 60 numbers, so 
we have a system of angular measure based on a circle with 360 degrees with 
subdivisions of 60 units (Figure 8.1). Hipparchus used the ratio between the 
length of days in a year and solar positions, which can be done with a sundial.

Longitude was harder and required accurate clocks for the best and 
simplest solution. You set a clock to Greenwich Mean Time, take the local 
solar time, and directly compute the longitude. But clocks were not accurate 
and did not travel well on ships. A functional clock was finally built in the 
1770s by John Harrison, a Yorkshire carpenter. The previous method was the 
lunar distance method, which required lookup tables, the sun, the moon, and 
ten stars to find longitude at sea, but it was accurate to within half a degree. 
Since these tables were based on the Royal Observatory, Greenwich Mean 
Time became the international standard.

Most GIS problems are local enough to pretend that the Earth is flat. This 
avoids spherical trigonometry and puts us back into plane geometry. Hooray! 

Figure 8.1  Longitude and Latitude Lines. Source: http://commons.wikimedia.org/wiki/

Image:Sphere_filled_blue.svg rights, GNU Free Documentation license, Creative Commons 

Attribution ShareAlike license.

http://commons.wikimedia.org/wiki/Image:Sphere_filled_blue.svg
http://commons.wikimedia.org/wiki/Image:Sphere_filled_blue.svg
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We can draw maps from survey data and we are more worried about polygons 
and lines that represent neighborhoods, political districts, roads, and other 
human-made geographical features.

Unfortunately, these things were not that well measured in the past. In 
Texas and other larger western states, the property lines were surveyed 200 
or more years ago (much of it done by the Spanish/Mexican period) with the 
equipment available at that time. Many of the early surveys used physical 
features that have moved; rivers are the most common example, but survey 
markers have also been lost or moved. Texas is big, so a small error in an 
angle or a boundary marker becomes a narrow wedge shape of no-man’s land 
between property lines. These wedges and overlaps are very large in parts of 
west Texas. They also become overlapping property boundaries.

But do not think that having modern GPS will prevent errors. They also 
have errors, though much fewer and smaller than traditional survey tools 
produce. Two receivers at adjacent locations often experience similar errors, 
but they can often be corrected statistically. The difference in coordinates 
between the two receivers should be significantly more accurate than the 
absolute position of each receiver; this is called differential positioning. GPS 
can be blocked by physical objects and we are not talking about big objects. 
Mesh fences or other small objects can deflect the satellite signal. Multipath 
errors occur when the satellite signal takes two routes to the receiver. Then 
we have atmospheric disturbances that do to GPSs what they do to your 
television satellite dish reception.

These surveys need to be redone. We have the technology today to 
establish the borders and corners of the polygon that define a parcel of 
land far better than we did even ten years ago. But there are legal problems 
concerning who would get title to the thousands of acres in question and 
what jurisdictions the amended property would belong to. If you want to 
get more information, look at the types of land surveys at http://hovell.net/
types.htm.

8.2.2 Hierarchical Triangular Mesh

An alternative to (longitude, latitude) pairs is the hierarchical triangular 
mesh (HTM). While (longitude, latitude) pairs are based on establishing a 
point in a two-dimensional coordinate system on the surface of the Earth, 
HTM is based on dividing the surface into almost-equal-size triangles with 
a unique identifier to locate something by a containing polygon. The HTM 

http://hovell.net/types.htm
http://hovell.net/types.htm
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index is superior to cartographical methods using coordinates with 
singularities at the poles.

If you have seen a geodesic dome or Buckminster Fuller’s map, you have 
some feeling for this approach. HTM starts with an octahedron at level zero. 
To map the globe into an octahedron (regular polyhedron of eight triangles), 
align it so that the world is first cut into a northern and southern hemisphere. 
Now slice it along the prime meridian, and then at right angles to both those 
cuts. In each hemisphere, number the spherical triangles from 0 to 3, with 
either “N” or “S” in the prefix.

A triangle on a plane always has exactly 180°, but on the surface of a 
sphere and other positively curved surfaces, it is always greater than 180°, 
and less than 180° on negatively curved surfaces. If you want a quick mind 
tool, think that a positively curved surface has too much in the middle. 
A negatively curved surface is like a horse saddle or the bell of a trumpet; 
the middle of the surface is too small and curves the shape.

The eight spherical triangles are labeled N0 to N3 and S0 to S3 and are 
called “level 0 trixels” in the system. Each trixel can be split into four smaller 
trixels recursively. Put a point at the middle of each edge of the triangle. 
Use those three points to make an embedded triangle with great circle arc 
segments. This will divide the original triangle into four more spherical 
triangles at the next level down. Trixel division is recursive and smaller and 
smaller trixels to any level you desire (Figures 8.2–8.4). 

To name the new trixels, take the name of the patent trixel and append 
a digit from 0 to 3 to it, using a counterclockwise pattern. The (n={0, 1, 2}) 
point on the corner of the next level is opposite the same number on the 
corner of the previous level. The center triangle always gets a 3.

Figure 8.2  Second Level Tessellation.
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The triangles are close to the same size at each level. As they get smaller, 
the difference also decreases. At level 7 approximately three-quarters of the 
trixels are slightly smaller than the average size, and one-quarter are larger. 
The difference is because the three corner trixels (0, 1, 2) are smaller than 
trixel 3 in the center one. Remember that geometry lesson about triangles 
on spheres at the start of this section? The ratio of the maximum over the 
minimum areas at higher depths is about two. Obviously, smaller trixels have 
longer names and the length of the name gives its level.

The name can be used to compute the exact location of the three vertex 
vectors of the given trixel. They can be easily encoded into an integer 
identifier by assigning 2 bits to each level and encoding “N” as 11 and “S” 
as 10. For example, N01 encodes as binary 110001 or hexadecimal 0x31. 
The HTM ID (HtmID) is the number of a trixel (and its center point) as a 
unique 64-bit string (not all strings are valid trixels).

Figure 8.3 Third Level Tessellation.

Figure 8.4  High Level Tessellation.
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While the recursion can go to infinite, the smallest valid HtmID is 
8 levels but it is easy to go to 31 levels, represented in 64 bits. Level 25 
is good enough for most applications, since it is about 0.6 meters on the 
surface of the Earth or 0.02 arc-seconds. Level 26 is about 30 centimeters 
(less than one foot) on the Earth’s surface. If you want to get any closer 
than that to an object, you are probably trying to put a bullet in it or 
perform surgery.

The tricky stuff is covering an irregular polygon with trixels. A trixel can 
be completely inside a region, completely outside a region, overlapping the 
region, or touching another trixel. Obviously, the smaller the trixels used 
to approximate the region, the closer the approximation of the area. If we 
assume that the location of something is in the center of a trixel, then we can 
do some math or build a lookup table to get the distance between locations. 
Beyond depth 7, the curvature of the Earth becomes irrelevant, so distances 
within a trixel are simple Cartesian calculations. You spread the triangle out 
flat and run a string between the departure and destination triangles. You  
can get more math than you probably want in Microsoft research paper  
MSR-TR-2005-123.

8.2.3 Street Addresses

The United States and many other counties are moving to what we call the 
nine-one-one system. It assigns a street address that has a known (longitude, 
latitude) that can be used by emergency services, hence the name. Before 
this, an address like “The Johnson Ranch” was used in rural areas.

A database known as the Master Street Address Guide (MSAG) describes 
address elements, including the exact spellings of street names and street 
number ranges. It ties into the U.S. Postal Service’s (USPS) Coding Accuracy 
Support System (CASS). You can get the basic details of CASS at http://
pe.usps.com/text/pub28.

The use of U.S.-style addresses is not universal. In Korea, a big debate 
was started in 2012 when the country switched from the Japanese system 
to the U.S. system. In the Japanese system, a town or city is divided into 
neighborhoods. Within each neighborhood, streets have local names and 
the buildings are numbered in the order they were built. Numbers are not 
reused when a building is destroyed. There is no way to navigate in such a 
system unless you already know where something is. There is no way to get 
geographical data from these addresses.

http://pe.usps.com/text/pub28
http://pe.usps.com/text/pub28
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The objection in Korea came from Buddhist groups. Many of the 
neighborhoods were named after Buddhist saints and they were afraid those 
names would disappear when physically contiguous streets were give a 
uniform name.

8.2.4 Postal Codes

I cannot review all of the postal addresses on Earth. Showing a cultural basis, 
I will look at the United States, Canada, and the United Kingdom. They are 
all English-speaking nations with a common heritage, so you might expect 
some commonality. Wrong again.

Postal codes can be broadly lumped into those based on geography and 
those based on the postal delivery system. The U.S. ZIP code system is highly 
geographical, the Canadian system is less so, and the U.K. system is based on 
the post offices in the 1800s.

8.2.5 ZIP Codes

The zone improvement plan (ZIP) code is a postal code system used by the 
USPS. The term ZIP code was a registered servicemark (a type of trademark) 
held by the USPS, but the registration expired. Today the term has become 
almost a generic name for any postal code, and almost nobody remembers 
what it originally meant. The basic format is a string of five digits that appear 
after the state abbreviation code in a U.S. address. An extended ZIP+4 code 
was introduced in 1983, which includes the five digits of the ZIP code, a 
hyphen, and four more digits that determine a more precise location than the 
ZIP code alone.

The code is based on geography, which means that locations with the 
same ZIP code are physically contiguous. The first digit is a contiguous group 
of states.

The first three digits identify the sectional center facility (SCF). An SCF 
sorts and dispatches mail to all post offices with those first three digits in 
their ZIP codes. Most of the time, this aligns with state borders, but there are 
some exceptions for military bases and other locations that cross political 
units or that can be best served by a closer SCF.

The last two digits are an area within the SCF. But this does not have to 
match to a political boundary. They tend to identify a local post office or 
station that serves a given area.
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8.2.6 Canadian Postal Codes

Canada (www.canadapost.ca) was one of the last western countries to get a 
nationwide postal code system (1971). A Canadian postal code is a string 
of six characters that forms part of a postal address in Canada. This is an 
example of an alphanumeric system that has less of a geographical basis than 
the ZIP codes used in the United States. The format is

postal_code SIMILAR TO '[:UPPER:][:DIGIT:][:UPPER:] [:DIGIT:] [:UPPER:]

[:DIGIT:]'

Notice the space separating the third and fourth characters. The first three 
characters are a forward sortation area (FSA), which is geographical—for 
example, A0A is in Newfoundland and Y1A in the Yukon.

But this is not a good validation. The letters D, F, I, O, Q, and U are not 
allowed because handwritten addresses might make them look like digits or 
other letters when they are scanned. The letters W and Z are not used as the 
first letter. The first letter of an FSA code denotes a particular postal district, 
which, outside of Quebec and Ontario, corresponds to an entire province 
or territory. Owing to Quebec’s and Ontario’s large populations, those two 
provinces have three and five postal districts, respectively, and each has at 
least one urban area so populous that it has a dedicated postal district  
(“H” for Laval and Montréal, and “M” for Toronto).

At the other extreme, Nunavut and the Northwest Territories (NWT) are 
so small they share a single postal district. The digit specifies if the FSA is 
rural (zero) or urban (nonzero). The second letter represents a specific rural 
region, entire medium-size city, or section of a major metropolitan area.

The last three characters denote a local delivery unit (LDU). An LDU 
denotes a specific single address or range of addresses, which can correspond 
to an entire small town, a significant part of a medium-size town, a single 
side of a city block in larger cities, a single large building or a portion of a 
very large one, a single large institution such as a university or a hospital, or a 
business that receives large volumes of mail on a regular basis. LDUs ending 
in zero are postal facilities, from post offices and small retail postal outlets all 
the way to sortation centers.

In urban areas, LDUs may be specific postal carriers’ routes. In rural areas 
where direct door-to-door delivery is not available, an LDU can describe a set 
of post office boxes or a rural route. LDU 9Z9 is used exclusively for Business 

http://www.canadapost.ca
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Reply Mail. In rural FSAs, the first two characters are usually assigned in 
alphanumerical order by the name of each community.

LDU 9Z0 refers to large regional distribution center facilities, and is also 
used as a placeholder, appearing in some regional postmarks such as K0H 
9Z0 on purely local mail within the Kingston, Ontario, area.

8.2.7 Postcodes in the United Kingdom

These codes were introduced by the Royal Mail over a 15-year period from 
1959 to 1974 and are defined in part by British Standard BS-7666 rules. 
Strangely enough they are also the lowest level of aggregation in census 
enumeration. U.K. postcodes are variable-length alphanumeric, making them 
hard to computerize. The format does not work well for identifying the main 
sorting office and suboffice. They seem to have been based on what the Royal 
Post looked like several decades or centuries ago by abbreviating local names 
at various times in the 15-year period they began.

Postcodes have been supplemented by a newer system of five-digit codes 
called Mailsort, but only for bulk mailings of 4,000 or more letter-size items. 
Bulk mailers who use the Mailsort system get a discount, but bulk deliveries 
by postcode do not.

Postcode Formats

The format of U.K. postcode is generally given by the regular expression:

(GIR 0AA|[A-PR-UWYZ]([0-9]{1,2}|([A-HK-Y][0-9]|[A-HK-Y][0-9]([0-9]| 

[ABEHMNPRV-Y]))|[0-9][A-HJKS-UW]) [0-9][ABD-HJLNP-UW-Z]{2})

It is broken into two parts with a space between them. It is a hierarchical 
system, working from left to right—the first letter or pair of letters represents 
the area, the following digit or digits represents the district within that area, and 
so on. Each postcode generally represents a street, part of a street, or a single 
address. This feature makes the postcode useful to route planning software.

The part before the space is the outward code, which identifies the destination 
sorting office. The outward code can be split further into the area part (letters 
identifying one of 124 postal areas) and the district part (usually numbers); 
the letters in the inward code exclude C, I, K, M, O, and V to avoid confusing 
scanners. The letters of the outward code approximate an abbreviation of the 
location (London breaks this pattern). For example, “L” is Liverpool, “EH” is 
Edinburgh, “AB” is Aberdeen, and “BT” is Belfast and all of Northern Ireland.
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The remaining part is the inward code, which is used to sort the mail into 
local delivery routes. The inward code is split into the sector part (one digit) 
and the unit part (two letters). Each postcode identifies the address to within 
100 properties (with an average of 15 properties per postcode), although a 
large business may have a single code.

Greater London Postcodes

In London, postal area postcodes are based on the 1856 system of postal 
districts. They do not match the current boundaries of the London boroughs 
and can overlap into counties in the greater London area. The numbering system 
appears arbitrary on the map because it is historical rather than geographical.

The most central London areas needed more postcodes than were possible 
in an orderly pattern, so they have codes like EC1A 1AA to make up the 
shortage. Then some codes are constructed by the government for their use, 
without regard to keeping a pattern. For example, in Westminster:

◆	 SW1A 0AA: House of Commons

◆	 SW1A 0PW: House of Lords, Palace of Westminster

◆	 SW1A 1AA: Buckingham Palace

◆	 SW1A 2AA: 10 Downing Street, Prime Minister and First Lord of the 
Treasury

◆	 SW1A 2AB: 11 Downing Street, Chancellor of the Exchequer

◆	 SW1A 2HQ: HM Treasury headquarters

◆	 W1A 1AA: Broadcasting House

◆	 W1A 1AB: Selfridges

◆	 N81 1ER: Electoral Reform Society has all of N81

There are also nongeographic postcodes, such as outward code BX, 
so that they can be retained if the recipient changes physical locations. 
Outward codes beginning XY are used internally for misaddressed mail and 
international outbound mail. This does not cover special postcodes for the 
old Girobank, Northern Ireland, Crown dependencies, British Forces Post 
Office (BFPO), and overseas territories.

In short, the system is so complex that you require software and data 
files from the Royal Post (postcode address file, or PAF, which has about 
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27 million U.K. commercial and residential addresses) and specialized 
software. The PAF is not given out free by the Royal Mail, but licensed 
for commercial use by software vendors and updated monthly. In the 
United Kingdom, most addresses can be constructed from just the 
postcode and a house number. But not in an obvious way, so GISs have 
to depend on lookup files to translate the address into geographical 
locations.

8.3 SQL Extensions for GIS

In 1991, the National Institute for Science and Technology (NIST) set up the 
GIS/SQL work group to look at GIS extensions. Their work is available as 
“Towards SQL Database Language Extensions for Geographic Information 
Systems” at http://books.google.com.

In 1997, the Open Geospatial Consortium (OGC) published 
“OpenGIS Simple Features Specifications for SQL,” which proposes 
several conceptual ways for extending SQL to support spatial data. This 
specification is available from the OGC website at http://www.opengis.
org/docs/99-049.pdf. For example, PostGIS is an open-source, freely 
available, and fairly OGC-compliant spatial database extender for the 
PostgreSQL Database Management System. SQL Server 2008 has its 
spatial support: there is Oracle Spatial, and the DB2 spatial extender. 
These extensions add spatial functions such as distance, area, union, 
intersection, and specialty geometry data types to the database, using 
the OGC standards.

The bad news is that they all have the feeling of an OO add-on stuck to 
the side of the RDBMS model. The simple truth is that GIS is different from 
RDBMS. The best user interface for GIS is graphical, while RDBMS works 
best with the linear programming language Dr. Codd required in his famous 
12 rules.

Concluding Thoughts

The advent of Internet maps (MapQuest, Google Maps, etc.) and personal 
GPS on cellphones has made “the man on the street” (pun intended) aware 
of GIS as a type of everyday data. Touch screens also have made it easy to use 
a GIS system on portable devices. But this hides the more complex uses that 
are possible when traditional data is put in a GIS database.

http://books.google.com
http://www.opengis.org/docs/99-049.pdf
http://www.opengis.org/docs/99-049.pdf
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C H A P T E R

9
Big Data and Cloud Computing

Introduction

The term Big Data was invented by Forrester Research along with the four 
V buzzwords—volume, velocity, variety, variability—in a whitepaper. It has 
come to apply to an environment that uses a mix of the database models we 
have discussed so far and tries to coordinate them.

There is a “Dilbert” cartoon where the pointy-haired boss announces 
that “Big Data lives in the Cloud. It knows what we do” (http://dilbert.com/
strips/comic/2012-07-29/). His level of understanding is not as bad as usual 
for this character. Forrester Research created a definition with the catchy 
buzz phrase “the four V’s—volume, velocity, variety, variability” that sells 
a fad. Please notice value, veracity, validation, and verification are not in 
Forrester’s V-list.

The first V is volume, but that is not new. We have had terabyte 
and petabyte SQL databases for years; just look at Wal-Mart’s data 
warehouses. A survey in 2013 from IDC claims that the volume of data 
under management by the year 2020 will be 44 times greater than what 
was managed in 2009. But this does not mean that the data will be 
concentrated.

The second V is velocity. Data arrives faster than it has before, thanks 
to improved communication systems. In 2013, Austin, TX, was picked by 
Google as the second U.S. city to get their fiber-optic network. I get a daily 
summary of my checking account transactions; only paper checks that I 

http://dilbert.com/strips/comic/2012-07-29/
http://dilbert.com/strips/comic/2012-07-29/
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mailed are taking longer than an hour to clear. In the 1970s, the Federal 
Reserve was proud of 24-hour turnaround.

The third V is variety. The sources of data have increased. Anyone 
with a cellphone, tablet or home computer is a data source today. One 
of the problems we have had in the database world is that COBOL 
programmers came to tiered architectures with a mindset that assumes 
a monolithic application. The computation, data management and data 
presentation are all in one module. This is why SQLs still have string 
functions to convert temporal data into local presentation formats, to 
put currency symbols and punctuation in money and so forth. Today, 
there is no way to tell what device the data will be on, who the end user 
will be. We need loosely coupled modules with strong cohesion more 
than ever.

The fourth V is variability. Forrester meant this to refer to the variety of 
data formats. We are not using just simple structured data to get that volume. 
In terms of pure byte count, video is easily the largest source in my house. 
We gave up satellite and cable television and only watch Internet shows and 
DVDs. Twitter, emails, and other social network tools are also huge. Markup 
languages are everywhere and getting specialized. This is why ETL tools are 
selling so well.

Think of varying to mean both volume and velocity. Television marketing 
companies know that they will get a very busy switch board when they 
broadcast a sale. They might underestimate what the volume or velocity 
will be, but they know it is coming. We do not always have that luxury; a 
catastrophe at one point in the system can cascade. Imagine that one of your 
major distribution centers was in Chelyabinsk, Russia, when the meteor hit 
on February 13, 2013. The more centralized your system, the more damage 
a single event can do. If that was your only distribution center, you could be 
out of business.

The other mindset problem is management and administration with Big 
Data. If we cannot use traditional tools on Big Data, then what do we do 
about data modeling, database administration, data quality, data governance, 
and database programming?

The purpose of Big Data, or at least the sales pitch, is that we can use large 
amounts of data to get useful insights that will help an enterprise. Much like 
agile programming became an excuse for bad programming. You need to have 
some idea of, say, the data quality. In statistics, we say “sample size does not 
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overcome sample basis,” or that a small random herd of cattle is better than a 
large, diseased herd.

In more traditional databases (small herd), people will see and clean 
some data, but most raw Big Data is not even eyeballed because there is 
simply too much of it (large herd). The lack of quality has to be huge and/or 
concentrated to be seen in the volume of data.

Even worse, the data is often generated from automated machinery 
without any human intervention. Hopefully, the data generation is cleaning 
the data as it goes. But one of the rules of systemantics is that fail-safe 
systems fail by failing to fail safely (Gall, 1977).

In fairness to Big Data, you should not assume that “traditional data” 
has been following best practices either. I will argue that good data 
practices still apply, but that they have to be adapted to the Big Data 
model.

9.1 Objections to Big Data and the Cloud

“Nothing is more difficult than to introduce a new order, because the 
innovator has for enemies all those who have done well under the old 
conditions and lukewarm defenders in those who may do well under the 
new.” —Niccolo Machiavelli

Old Nick was right, as usual. As with any new IT meme, there are objections 
to it. The objections are usually valid. We have an investment in the old 
equipment and want to milk it for everything we can get out of it. But more 
than that, our mindset is comfortable with the old terms, old abstractions, 
and known procedures. The classic list of objections is outlined in the 
following sections.

9.1.1 Cloud Computing Is a Fad

Of course it is a fad! Everything in IT starts as a fad: structured 
programming, RDBMS, data warehouses, and so on. The trick is to filter the 
hype from the good parts. While Dilbert’s pointy-haired boss thinks that “If 
we accept Big Data into our servers, we will be saved from bankruptcy! Let 
us pay!,” you might want to be more rational.

If so, it is a very popular fad. Your online banking, Amazon purchases, 
social media, eBay, or email are already in a cloud for you. Apple and Google 
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have been keen to embrace cloud computing, affirming the idea that this is 
a technology revolution with longevity. Cloud computing is a developing 
trend, not a passing trend.

9.1.2 Cloud Computing Is Not as Secure as In-house Data 
Servers

This is true for some shops. I did defense contract work in the Cold War era 
when we had lots of security in the hardware and the software. But very few 
of us have armed military personnel watching our disk drives. Most shops do 
not use encryption on everything. High security is a very different world.

But you have to develop protection tools on your side. Do not leave 
unencrypted data on the cloud, or on your in-house servers. When you leave 
it on your in-house servers, it can get hacked, too. Read about the T.J. Maxx 
scandal or whatever the “security breach du jour” happens to be. This will 
sound obvious, but do not put encryption keys in the cloud with the data 
it encrypts. Do not concentrate data in one site; put it in separate server 
locations. When one site is hacked, switch over to another site.

9.1.3 Cloud Computing Is Costly

Yes, there are initial costs in the switch to the cloud. But there are trade-offs 
to make up for it. You will not need a staff to handle the in-house servers. 
Personnel are the biggest expense in any technological field. We are back 
to a classic trade-off. But if you are starting a new business, it can be much 
cheaper to buy cloud space instead of your own hardware.

9.1.4 Cloud Computing Is Complicated

Who cares? You are probably buying it as a service from a provider. As the buyer, 
your job is to pick the right kind of cloud computing for your company. The goal 
is to keep the technical side as simple as possible for your staff. And for your 
users!A specialized company can afford to hire specialized personnel. This is the 
same reason that you buy a package that has a bunch of lawyers behind it.

9.1.5 Cloud Computing Is Meant for Big Companies

Actually, you might avoid having to obtain costly software licenses and 
skilled personnel when you are a small company. There are many examples 
of very small companies going to the cloud so they could reach their users. 
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If you are successful, then you can move off the cloud; if you fail, the cost of 
failure is minimized.

9.1.6 Changes Are Only Technical

Did the automobile simply replace the horse? No. The design of cities for 
automobiles is not the same as for horses. The Orson Welles classic movie 
The Magnificent Ambersons (1942) ought to be required viewing for nerds. 
The story is set in the period when the rise of the automobile changed 
American culture. It is not just technology; it is also culture.

Let me leave you with this question: How does the staff use the company 
internal resources with the cloud? If there is an onsite server problem, you 
can walk down the hall and see the hardware. If there is a cloud problem, you 
cannot walk down the hall and your user is still mad.

There are no purely technical changes today; the lawyers always get 
involved. My favorite example (for both the up and down side of cloud 
computing) was a site to track local high school and college sports in the 
midwest run by Kyle Godwin. He put his business data in Megaupload, a 
file-sharing site that was closed down by the Department of Justice (DOJ) for 
software piracy in January 2013. When he tried to get his data back, the DOJ 
blocked him claiming it was not his data. His case is being handled by the 
Electronic Freedom Foundation (EFF) as of April 2013.

There are some legal questions about the ownership of the data, so you 
need to be sure of your contract. Some of this has been decided for emails on 
servers, but it is still full of open issues.

Using the Cloud

Let me quote from an article by Pablo Valerio (2013):
In case you need to make sure your data is properly identified as 

yours, and to avoid any possible dispute, the next time you negotiate an 
agreement with a cloud provider, you’d be wise to include these provisions 
in the contract:

◆	 Clearly specify the process, duration, and ways the data will be 
returned to you, at any time in the contract duration.

◆	 Also specify the format your data should be returned—usually the 
format the data was stored in the first place.

Continued



124	 C H A P T E R  9 :  B I G  D A T A  A N D  C L O U D  C O M P U T I N G

9.1.7 If the Internet Goes Down, the Cloud Becomes Useless

This is true; the Internet connection is a point of vulnerability. Netflix had 
losses when their service, Amazon Web Services (AWS), went down on 
multiple occasions.

This was also true of power supplies for large data centers. National Data 
Corporation in Atlanta, GA, did credit card processing decades ago. Their 
response to their first major power failure was to route power lines from 
separate substations. When both substations failed during a freak ice storm, 
they added a third power line and a huge battery backup.

If the whole Internet is down, that might mean the end of world as we 
know it. But you can have a backup connection with another provider. This 
is a technical issue and you would need to frame it in terms of the cost to the 
company of an outage. For example, one of my video download sites lost part 
of its dubbed anime; they are the only source for the series I was watching, 
so I was willing to wait a day for it to come back up. But when a clothing site 
went down, I simply made my gift certificate order with another site.

9.2 Big Data and Data Mining

Data mining as we know it today began with data warehousing (a previous 
IT fad). Data warehousing concentrated summary data in a format that was 
more useful for statistical analysis and reporting. This lead to large volumes 
of data arranged in star and snowflake schema models, ROLAP, MOLAP, and 
other OLAP variants.

The data warehouse is denormalized, does not expect to have transactions, 
and has a known data flow. But it is still structured data. Big Data is not 
structured and contains a variety of data types. If you can pull out structured 
data in the mix, then there are already tools for it.

◆	 Establish a limit, usually days, when the data should be fully returned 
to your organization.

◆	 Clearly establish your claims of ownership of the data stored, and that 
you don’t waive any rights on your property or copyright.

◆	 Sometimes we just accept service agreements (where we just agree 
on the conditions set forth by the provider) without realizing the 
potential problems. I seriously recommend consulting an attorney.

Using the Cloud—Cont'd
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9.2.1 Big Data for Nontraditional Analysis

More and more, governments and corporations are monitoring your tweets 
and Facebook posts for more complex data than simple statistical analysis. 
U.S. News and World Report ran a story in 2013 about the IRS collecting 
a “huge volume” of personal data about taxpayers. This new data will be 
mixing it with the social security numbers, credit card transactions, and 
the health records they will enforce under ObamaCare to create robo-
audits via machines. The movie Minority Report (2002, Steven Spielberg, 
based on a Philip K. Dick short story) predicts a near future where a 
“precrime” police division uses mutants to arrest people for crimes they 
have not yet committed. You are simply assumed guilty with no further 
proof.

Dean Silverman, the IRS’s senior advisor to the commissioner, said the IRS 
is going to devote time to even scrutinizing your Amazon.com purchases. 
This is not new; RapLeaf is a data mining company that has been caught 
harvesting personal data from social networks like Facebook and MySpace, 
in violation of user privacy agreements. Their slogan is “Real-Time Data 
on 80% of U.S. Emails” on their website. The gimmick is that processing 
unstructured data from social networks is not easy. You need a tool like IBM’s 
Watson to read and try to understand it.

In May 2013, the Government Accounting Office (GAO) found 
that the IRS has serious IT security problems. They have addressed 
only 58 of the 118 system security-related recommendations the GAO 
made in previous audits. The follow-up audit found that, of those 58 
“resolved” items, 13 had not been fully resolved. Right now, the IRS 
is not in compliance with its own policies. It is not likely that its Big 
Data analytics will succeed, especially when they have to start tracking 
ObamaCare compliance and penalizing citizens who do not buy health 
insurance.

In 2010, Macy’s department stores were still using Excel spreadsheets 
to analyze customer data. In 2013, Macys.com is using tens of millions 
of terabytes of information every day, which include social media, store 
transactions, and even feeds in a system of Big Data analytics. They estimate 
that this is a major boost in store sales.

Kroger CEO David Dillon has called Big Data analytics his “secret 
weapon” in fending off other grocery competitors. The grocery business 
works on fast turnaround, low profit margins, and insanely complicated 
inventory problems. Any small improvement is vital.
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Big retail chains (Sears, Target, Macy’s, Wal-Mart, etc.) want to react to 
market demand in near-real time. There are goals:

◆	 Dynamic pricing and allocation as goods fall in and out of fashion. 
The obvious case is seasonal merchandise; Christmas trees do not sell 
well in July. But they need finer adjustments. For example, at what 
price should they sell what kind of swimwear in which part of the 
country in July?

◆	 Cross-selling the customer at the cash register. This means that 
the customer data has to be processed no slower than a credit card 
swipe.

◆	 Tighter inventory control to avoid overstocking. The challenge is to put 
external data such as weather reports or social media with the internal 
data retailers already collect. The weather report tells us when and how 
many umbrellas to send to Chicago, IL. The social media can tell us 
what kind of umbrellas we should send.

The retail chain’s enemy in the online, dot-com retailers: clicks versus 
bricks. They use Big Data, but use it differently. Amazon.com invented the 
modern customer recommendation retail model. Initially, it was crude and 
needed tuning. My favorite personal experience was being assured that other 
customers who bought an obscure math book also like a particular brand 
of casual pants (I wear suits)! Trust me, I was the only buyer of that book 
on Earth that month. Today, my Netflix and Amazon recommendations are 
mostly for things I have already read, seen, or bought. This is means that my 
profiles are correctly adjusted today. When I get a recommendation I have not 
seen before, I have confidence in it.

9.2.2 Big Data for Systems Consolidation

The Arkansas Department of Human Services (DHS) has more than 
30 discrete system silos in an aging architecture. There has been no 
“total view” of a client. They are trying to install a new system that 
will bring the state’s social programs together, including Medicaid, 
the Supplemental Nutrition Assistance Program (SNAP), and the State 
Children’s Health Insurance Program (SCHIP). This consolidation 
is going to have to cross multiple agencies, so there will be political 
problems as well as technical ones.
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The goal is to create a single point of benefits to access all the programs 
available to them and a single source to inform once all the agencies about 
any change of circumstances regardless of how many benefits programs the 
client uses.

In a similar move, the Illinois DHS decided to digitize thousands of 
documents and manage them in a Big Data model. In 2010, the DHS had 
more than 100 million pieces of paper stored in case files at local offices and 
warehouses throughout the state. You do not immediately put everything 
in the cloud; it is too costly and there is too much of it. Instead, the agency 
decided to start with three basic forms that deal with the applications and 
the chronological case records stored as PDF files. The state is using the IBM 
Enterprise Content Management Big Data technologies. When a customer 
contacts the agency, a caseworker goes through a series of questions and 
inputs the responses into an online form. Based on the information provided, 
the system determines program eligibility, assigns metadata, and stores the 
electronic forms in a central repository. Caseworker time spent retrieving 
information has gone from days to just seconds, which has been a big boost 
to customer service. Doug Kasamis, CIO at DHS, said “the system paid for 
itself in three months.”

Concluding Thoughts

A survey at the start of 2013 by Big Data cloud services provider Infochimps 
found that 81% of their respondents listed Big Data/advanced analytics 
projects as a top-five 2013 IT priority. However, respondents also report that 
55% of Big Data projects do not get completed and that many others fall 
short of their objectives. We grab the new fad first, then prioritize business 
use cases. According to Gartner Research’s “Hype Cycle,” Big Data has 
reached its “peak of inflated expectations” by January 2013. This is exactly 
what happened when the IT fad du-jour was data warehouses. The failures 
were from the same causes, too! Overreaching scope, silos of data that could 
not be, and management failures.

But people trusted data warehouses because they were not exposed to the 
outside world. In mid-2013, we began to find out just how much surveillance 
the Obama administration has on Americans with the Prism program. That 
surveillance is done by using the cloud to monitor emails, social networks, 
Twitter, and almost everything else. The result has been a loss of confidence 
in Big Data for privacy.
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C H A P T E R

10
Biometrics, Fingerprints, and 

Specialized Databases

Introduction

Currently, biometrics fall outside commercial use. They identify a person as 
a biological entity rather than a commercial entity. We are now in the worlds 
of medicine and law enforcement. Eventually, however, biometrics may move 
into the commercial world as security becomes an issue and we are willing to 
trade privacy for security.

Automobiles come with VINs (vehicle identification numbers), books 
come with an International Standard Book Number (ISBN), companies have 
a Data Universal Numbering System (DUNS), and retail goods come with a 
Universal Product Code (UPC) bar code. But people are not manufactured 
goods and do not have an ANSI/ISO standard.

One of the standard troll questions on SQL database forums is how to 
identify a person with a natural key. The troll will object to any identifier that is 
linked to a role a person plays in the particular data model, such as an account 
number. It has to be a magical, universal “person identifier” that is 100% error-
free, cheap to use, and instantly available. Of course, pointing out that you do 
not have a magical, universal generic database for all of humanity, so it is both 
absurd and probably illegal under privacy laws, does not stop a troll.

We are biological goods! We do have biometric identifiers by virtue of 
being biological. The first problem is collecting the raw data, the biometric 
measurements. It obviously involves having a human body and some kind of 
instrument. The second problem is encoding those measurements in such a 
way that we can put them into a database and search them.
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People are complex objects with lots of dimensions. There is no obvious 
way you classify a person, no common scales. You might describe someone as 
“he/she looks<ethnic/gender/age group>” when trying to help someone find 
a person in a crowd. If the person is statistically unusual and the crowd is 
small, this can work. Wilt Chamberlain entitled his autobiography Wilt: Just 
Like Any Other 7-Foot Black Millionaire Who Lives Next Door, as if he would 
be lost in a crowd. But at the other extreme, there is an advantage for fashion 
models to be racially and age ambiguous.

10.1 Naive Biometrics

The first biometric identifier is facial recognition. Human beings can identify 
other human beings by sight, but computerizing this is difficult. People use 
fuzzy logic in their brains and do not have precise units of measurement to 
classify a person. This is physically hardwired into the human brain. If the 
part of the brain that does this survival task is damaged, you become “face 
blind” and literally cannot match a photograph to the person sitting next to 
you, or even your own image in a mirror.

Some (very) precomputer-era methods for identifying people were 
branding, tattooing, and maiming to physically mark a criminal or 
member of some group. Think of this as a bar code solution with really 
bad equipment. Later, we depended on visual memory and books full of 
photographs. But people change over time. Body weight varies, facial hair 
changes with age and fashion, and age takes its toll. Matching old school 
yearbook photographs and current photographs of celebrities is a popular 
magazine feature. Yet, we still accept an awful driver’s license photo as valid 
identification.

What we need for a database is an encoding system as opposed to a 
human narrative. Around 1870, French anthropologist Alphonse Bertillon 
devised a three-part identification system. The first part was a record of the 
dimensions of certain bony parts of the body. These measurements were 
reduced to a formula that, theoretically, would apply to only one person and 
would not change during his or her adult life. The other two parts were a 
formalized description and the “mugshot” photograph we still use today 
(Figure 10.1).

This system also introduced the idea of keeping data on cards, known as 
Bertillon cards, that could be sorted by characteristics and retrieved quickly 
instead of paper dossiers. A trained, experienced user could reduce hundreds 
of thousands of cards down to a small deck of candidates that a human could 
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compare against a suspect or photograph. The cards used holes on the edges 
to make visual sorting easier.

The Bertillon card encoded the prisoner’s eyes, ears, lips, beard, hair color, 
skin color, ethnicity, forehead, nose, build, chin, general contour of head, 
hair growth pattern, eyebrows, eyeballs and orbits, mouth, physiognomic 
expression, neck, inclination of shoulders, attitude, general demeanor, voice 
and language, and clothing.

Figure 10.1  Bertillon Identification System.



132	 C H A P T E R  1 0 :  B I O M E T R I C S ,  F I N G E R P R I N T S ,  A N D  D A T A B A S E S

The Bertillon system was generally accepted for over 30 years. Since you 
had to have the person to measure him or her, and it takes a while, it was 
used to determine if a suspect in custody was a repeat offender or repeat 
suspect. It was not useful for crime scene investigations (CSI) that we see on 
television shows.

The Bertillon system’s descendants are the basis for facial recognition 
systems, hand geometry recognition, and other biometric identification systems. 
Rather than trying to reduce a person to a single number, modern systems are 
based on ratios that can be constructed from still images or video.

10.2 Fingerprints

Fingerprints have been used for identification going back to Babylon and clay 
tablets. They were used in ancient China, Japan, and India as a signature for 
contracts. But it was not until 1788 when Johann Christoph Andreas Mayer, a 
German anatomist, recognized that fingerprints are individually unique.

Collecting fingerprints is much easier than a Bertillon card. Even today, 
with computerized storage, law enforcement uses the term ten-card for the 
form that holds prints from all ten fingers. As a database person would expect, 
the problem was the lack of a classification system. There were several options 
depending on where you lived. The most popular ten-print classification 
systems include the Roscher system, the Juan Vucetich system, and the Henry 
system. The Roscher system was developed in Germany and implemented in 
both Germany and Japan. The Vucetich system was developed in Argentina and 
is still in use in South America today. The Henry system was developed in India 
and implemented in most English-speaking countries, including the United 
States. Today, it is usually called the Galton–Henry classification because of the 
work done by Sir Francis Galton from which the Henry system was built.

10.2.1 Classification

In the original Galton system of classification, there are three basic fingerprint 
patterns: loop (60–65%), whorl (30–35%), and arch (5%). From this basic 
model, we get more subclassifications for plain arches or tented arches, and 
into loops that may be radial or ulnar, depending on the side of the hand 
toward which the tail points. Ulnar loops start on the pinky-side of the finger, 
the side closer to the ulna, the lower arm bone. Radial loops start on the 
thumb-side of the finger, the side closer to the radius. Whorls may also have 
subgroup classifications including plain whorls, accidental whorls,  
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double-loop whorls, peacock’s eye, composite, and central pocket–loop whorls. 
Then there are tented arch, the plain arch, and the central pocket loop.

The modern system should delight a database person because it uses a 
simple hashing algorithm. It consists of five fractions, in which R stands 
for right, L for left, i for the index finger, m for the middle finger, t for the 
thumb, r for the ring finger, and p (pinky) for the little finger. The encoding 
is Ri/Rt+Rr/Rm+Lt/Rp+Lm/Li+Lp/Lr The numbers assigned to each print are 
based on whether or not they are whorls. A whorl in the first fraction is 
given a 16, the second an 8, the third a 4, the fourth a 2, and 0 to the last 
fraction. Arches and loops are assigned 0. The numbers in the numerator and 
denominator are added up, using the scheme:

Ri Rr Lt Lm Lp Rt Rm Rp Li Lr+ + + +( ) + + + +( )/

and 1 is added to both top and bottom, to exclude any possibility of division 
by 0. For example, if the right ring finger and the left index finger have 
whorls, the encoding would look like this:

0 0 8 0 0 0 0 2 0 0 1 1 0 8 0 0 0 1

0

/ / / / / / , /+ + + + + + + + + +( )
+

and thecalculation:

00 0 2 0 1 9 3 3+ + + +( ) = =/

Only fingerprints with a hash value of 3 can match this person.

10.2.2 Matching

Matching a fingerprint is not the same as classifying it. The ten-card is made 
by rolling each finger on the ten-card to get the sides of the finger as well. 
In the real world, the sample to be matched against the database is a partial 
print, smeared or damaged.

This meant a search had to start with the classification as the first filter, 
then the technician counted the ridges. The final matches were done by 
hand. At one time, IBM made a special device with a front panel that had ten 
rotary dial switches, one for each finger with the ridge counts. This was easy 
for noncomputer police personnel to operate.

Fingerprint image systems today use different technology—optical, 
ultrasonic, capacitive, or thermal—to measure the physical difference 
between ridges and valleys. The machinery can be grouped into two major 
families: solid-state fingerprint readers and optical fingerprint readers. The 
real problem is that people are soft, so each image is distorted by pressure, 
skin condition, temperature, and other sampling noises.
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To overcome these problems we now use noncontact three-dimensional 
fingerprint scanners. The images are now digital. We are very good at high-
resolution image processing today that can be adjusted by comparing the 
distances between ridges to get a scale, and distorted back to the original shape.

Since fingerprints are used for security and access, these systems typically 
use a template that was previously stored and a candidate fingerprint. The 
algorithm finds one or more points in the fingerprint image and aligns the 
candidate fingerprint image to it. This information is local to the hardware 
and it is not meant for data exchange. Big Data databases take time for 
matching, so we try to optimize things with algorithms and database 
hardware; current hardware matches around 1,000 fingerprints per second.

In April 2013 Safe Gun Technology (SGTi) said it is hoping it can begin 
production on its version of a smart gun within the next two months. 
The Columbus, GA–based company uses relatively simple fingerprint 
recognition through a flat, infrared reader positioned on the weapon’s grip. 
The biometrics reader enables three other physical mechanisms that control 
the trigger, the firing pin, and the gun hammer. The controller chip can save 
from 15,000 to 20,000 fingerprints. If a large military unit wanted to program 
thousands of fingerprints into a single weapon, it would be possible. A single 
gun owner could also temporarily program a friend’s or family member’s print 
into the gun to go target shooting and then remove it upon returning home.

10.2.3 NIST Standards

NIST (National Institute for Science and Technology) has been setting 
standards as a member of both ANSI and ISO for decades. They deal with 
more than just fingerprints; they have specifications for fingerprints, palm 
prints, plantars, faces, irises, and other body parts, as well as scars, marks, 
and tattoos (SMTs). Marks, as used in this standard, mean needle marks or 
tracks from drug use.

The first version of this standard was ANSI/NBS-ICST 1-1986 and was 
a fingerprint standard. It evolved over time, with revisions made in 1993, 
1997, 2000, and 2007. In 2008, NIEM-conformant encoding using eXtensible 
Markup Language (XML) was adopted. NIEM (National Information 
Exchange Model) is a partnership of the U.S. Department of Justice and 
Department of Homeland Security. The most useful part of this document for 
the causal user is the list of the types of identifiers and their records, shown 
in Table 10.1.
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Please note that voice prints and dental records are not part of these 
specifications. They show up on television crime shows, but are actually so 
rare they are not worth adding. Dental records are used after death in most 
cases to identify a corpse. Voice is hard to match and we do not have an 
existing database to search.

Type-4 records are single fingerprint images at a nominal scanning 
resolution of 500 pixels per inch (ppi). You need 14 type-4 records to have 
the classic ten-card in a file (ten full, rolled individual fingers, two thumb 
impressions, and two simultaneous impressions of the four fingers on each 
hand). We want to move over to the type-14 records for fingerprint images.

Table 10.1 Types of Identifiers and Their Records

Record Identifier Record Contents

1 Transaction information

2 User-defined descriptive text

3 Low-resolution grayscale fingerprint image (deprecated)

4 High-resolution grayscale fingerprint image

5 Low-resolution binary fingerprint image (deprecated)

6 High-resolution binary fingerprint image (deprecated)

7 User-defined image

8 Signature image

9 Minutiae data

10 Face, other body part, or SMT image

11 Voice data (future addition to the standard)

12 Dental record data (future addition to the standard)

13 Variable-resolution latent friction ridge image

14 Variable-resolution fingerprint image

15 Variable-resolution palm print image

16 User-defined variable-resolution testing image

17 Iris image

18 DNA data

19 Variable-resolution plantar image

20 Source representation

21 Associated context

22–97 Reserved for future use

98 Information assurance

99 Common Biometric Exchange Formats Framework (CBEFF) 

biometric data record
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Type-18 records are for DNA. This uses the ISO/IEC 19794-14:2013 
Information Technology—Biometric Data Interchange Formats—Part 14: 
DNA Data Standard. Because of privacy considerations, this standard only 
uses the noncoding regions of DNA and avoids phenotypic information in 
other regions. More on DNA in the next section.

As expected, we have lots of three-letter acronyms: SAP (subject 
acquisition profile) is the term for a set of biometric characteristics. These 
profiles have mnemonics: SAP for face, FAP for fingerprints, and IAP for iris 
records. SAP codes are mandatory in type-10 records with a face image; FAP 
is optional in type-14 records; and IAP is optional in type-17 records.

Moving to machine processing is important. Humans are simply too error-
prone and slow for large databases. In 1995, the Collaborative Testing Service 
(CTS) administered a proficiency test that, for the first time, was “designed, 
assembled, and reviewed” by the International Association for Identification 
(IAI) to see how well trained personnel did with actual data.

The results were disappointing. Four suspect cards with prints of all ten 
fingers were provided together with seven latent prints. Of 156 people taking 
the test, only 68 (44%) correctly classified all seven latent prints. Overall, the 
tests contained a total of 48 incorrect identifications. David Grieve, the editor 
of the Journal of Forensic Identification, describes the reaction of the forensic 
community to the results of the CTS test as ranging from “shock to disbelief,” 
and added:

Errors of this magnitude within a discipline singularly admired and 
respected for its touted absolute certainty as an identification process have 
produced chilling and mind-numbing realities. Thirty-four participants, an 
incredible 22% of those involved, substituted presumed but false certainty 
for truth. By any measure, this represents a profile of practice that is 
unacceptable and thus demands positive action by the entire community.

10.3 DNA Identification

DNA (deoxyribonucleic acid) profiling is not full genome sequencing. 
Profiling is complete enough for paternity testing and criminal evidence. The 
good news is that a DNA profile can be encoded as a set of numbers that can 
be used as the person’s identifier. Although 99.9% of human DNA sequences 
are the same in every person, and humans and chimpanzees differ by less 
than 2%, there are enough differences to distinguish one individual from 
another.
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In the case of monozygotic (“identical”) twins, there is still enough 
differences that they can be differentiated by going to the gene level (http://
www.scientificamerican.com/article.cfm?id=identical-twins-genes-are-not-
identical). At sites of genetic divergence, one twin would have a different 
number of copies of the same gene, a genetic state called copy number 
variants. Normally people carry two copies of every gene, one inherited from 
each parent. But there are regions in the genome that can carry anywhere 
from 0 to over 14 copies of a gene.

Most of us are familiar with paternity testing that we have seen on 
television or read about in the tabloids. The initial testing that is done can 
quickly rule out a father from a sample from the mother and the child. 
Table 10.2 is a sample report from a commercial DNA paternity test that uses 
five markers.

The alleged father’s DNA matches among these five markers, so he is 
looking guilty. The complete test results need to show this matching on 16 
markers between the child and the alleged father to draw a conclusion of 
whether or not the man is the biological father. The initial test might spot 
close male relatives. For humans, the complete genome contains about 
20,000 genes on 23 pairs of chromosomes. Mapping them is expensive and 
time consuming.

10.3.1 Basic Principles and Technology

DNA profiling uses repetitive (“repeat”) sequences that are highly variable, 
called variable number tandem repeats (VNTRs), particularly short tandem 
repeats (STRs). VNTR loci are very similar between closely related humans, 
but so variable that unrelated individuals are extremely unlikely to have the 
same VNTRs.

This DNA profiling technique was first reported in 1984 by Sir Alec 
Jeffreys at the University of Leicester in England, and is now the basis of 

Table 10.2  Sample Paternity Report

DNA Marker Mother Child Alleged Father

D21S11 28, 30 28, 31 29, 31

D7S820 9, 10 10, 11 11, 12

TH01 14, 15 14, 16 15, 16

D13S317 7, 8 7, 9 8, 9

D19S433 14, 16.2 14, 15 15, 17

http://www.scientificamerican.com/article.cfm?id=identical-twins-genes-are-not-identical
http://www.scientificamerican.com/article.cfm?id=identical-twins-genes-are-not-identical
http://www.scientificamerican.com/article.cfm?id=identical-twins-genes-are-not-identical
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several national DNA databases. Dr. Jeffreys’ genetic fingerprinting was 
made commercially available in 1987, when a chemical company, Imperial 
Chemical Industries (ICI), started a blood-testing center in England.

The goal has been personalized medicine rather than identification. 
Identification does not need a full genome, so it should be cheaper. To get an 
idea of the cost reduction, the first complete sequencing of a human genome, 
done by the Human Genome Project, cost about $3 billion when it was 
finally completed in 2003. As of 2010, we can identify markers for specific 
diseases and genetic traits for under $1,000. Dogs can be identified for under 
$100; this has been used by anal (pun intended) homeowner associations 
to tag dogs and their poop to fine owners who do not clean up after their 
animals.

While every country uses STR-based DNA profiling systems, they do not all 
use the same one. In North America, CODIS 13 core loci are almost universal, 
while the United Kingdom uses the SGM+11 loci system (which is compatible 
with their national DNA database). There are overlaps in the sets of STR 
regions used because several STR regions can be tested at the same time.

Today, we have microchips from several companies (Panasonic, IBM, 
Fujitsu, etc.) that can do a DNA profile in less than an hour. The chips are 
the size of a coin and work with a single drop of blood or other body fluid. 
DNA is extracted inside the chip via submicroscopic “nanopores” (holes) in 
the chip from the blood. A series of polymerase chain reactions (PCRs) are 
completed inside the chip, which can be read via an interface.

10.4 Facial Databases

We have grown up with television crime shows where a video surveillance 
camera catches the bad guy, and the hero takes a freeze frame from the 
video back to the lab to match it against a facial database of bad guys. The 
mugshots flash on a giant television screen so fast you cannot recognize 
anyone, until a single perfect match pops up and the plot advances. The 
video graphics are beautiful and flashy, the heroes are beautiful and flashy, 
too. The case is always solved, unless we need a cliffhanger for the next 
season.

Facial databases do not work that way. Like any other biometric data, 
it can be used in a security system with a local database or as part of a 
centralized database. While it is pretty much the same technology, database 
people do not care so much about personal security uses.
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Recognition algorithms can be divided into two main approaches: 
geometric or photometric. Photometric algorithms basically try to overlay 
the pictures for a match. It easy to have multiple matches when you have a 
large database to search. This approach automates what people do by eyeball. 
There is a section of the human brain that does nothing but recognize 
faces, so we have evolved a complex process for this survival trait (“Hey, 
you’re not my tribe!”). However, some people have a brain condition called 
prosopagnosia, or “face blindness,” and they cannot do this. But I digress.

Geometric algorithms extract landmarks, or features, from an image of 
the subject’s face. These points, such as the center of the eyes, top of the 
nose, cheekbones, and so forth, can be normalized and then compressed to 
a mathematical value. A “probe image” is compared with the compressed 
face data. This is like the hashing algorithm or CRC code—you get a set of 
candidate matches that you filter.

There is no single algorithm, but some of them are principal component 
analysis using eigenfaces, linear discriminate analysis, elastic bunch graph 
matching using the Fisherface algorithm, hidden Markov model, multilinear 
subspace learning using tensor representation, and neuronal motivated 
dynamic link matching, if you want to read more technical details.

The bad news is that faces are three dimensional, not flat like fingerprints. 
In older methods, the viewing angle, lighting, masks, hats, and hairdos 
created enough “noise-to-signal” that those wonderful matches you see on 
television shows are not always possible. They worked from static, flattened 
images from the 8 × 10 glossy headshots of actors!

10.4.1 History

The earliest work in this area was done for an intelligence agency in the mid-
1960s by Woody Bledsoe, Helen Chan Wolf, and Charles Bisson. Using an 
early graphics tablet, an operator would mark coordinates and 20 distances 
on a mugshot. With practice, they could do about 40 photographs per house. 
The recognition algorithm was a simple match of the set of distances for the 
suspect and the database records. The closest matches were returned, using a 
chi-square matching algorithm.

The real problem was normalizing the data to put the face into a standard 
frontal orientation. The program had to determine the tilt, lean, and rotation 
angles, then use projective geometry to make adjustments. To quote Bledsoe 
(1966): “In particular, the correlation is very low between two pictures of the 
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same person with two different head rotations.” The normalization assumed 
a “standard head” to which the points and distance could be assigned. This 
standard head was derived from measurements on seven real heads.

Today, products use about 80 nodal points and more sophisticated 
algorithms. Some of these measured by the software are the:

◆	 Distance between the eyes

◆	 Width of the nose

◆	 Depth of the eye sockets

◆	 Shape of the cheekbones

◆	 Length of the jaw line

There is no standard yet, but Identix, a commercial company, has a 
product called FaceIt®. This product can produce a “face print” from a three-
dimensional image. FaceIt currently uses three different templates to confirm 
or identify the subject: vector, local feature analysis, and surface texture 
analysis. This can then be compared to a two-dimensional image by choosing 
three specific points off of the three-dimensional image. The face print can be 
stored in a computer as numeric values. They now use the uniqueness of skin 
texture, to yield even more accurate results.

That process, called surface texture analysis (STA), works much the same 
way facial recognition does. A picture is taken of a patch of skin, called a 
skin print. That patch is then broken up into smaller blocks. This is not just 
skin color, but any lines, pores, and the actual skin texture. It can identify 
differences between identical twins, which is not yet possible using facial 
recognition software alone.

The vector template is very small and is used for rapid searching over 
the entire database primarily for one-to-many searching. Think of it as 
a kind of high-level index on the face. The local feature analysis (LFA) 
template performs a secondary search of ordered matches following the 
vector template. Think of it as a secondary-level index, after the gross 
filtering is done.

The STA is the largest of the three. It performs a final pass after the LFA 
template search, relying on the skin features in the image, which contain the 
most detailed information.

By combining all three templates, FaceIt is relatively insensitive to changes 
in expression, including blinking, frowning, or smiling, and has the ability to 
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compensate for mustache or beard growth and the appearance of eyeglasses. 
The system is also uniform with respect to race and gender.

Today, sensors can capture the shape of a face and its features. The contour 
of the eye sockets, nose, and chin can be unique in an individual. Think of 
Shrek; he is really a three-dimensional triangular mesh frame with a skin over 
it. This framework can be rotated and flexed and yet still remain recognizable 
as Shrek. Very recognizable as Shrek. But this requires sophisticated sensors to 
do face capture for the database or the probe image. Skin texture analysis is 
a more recent tool that works with the visual details of the skin, as captured 
in standard digital or scanned images. This can give a 20–25% performance 
improvement in recognition.

10.4.2 Who Is Using Facial Databases

The first thought is that such databases are only for casinos looking for 
cheats and criminals or government police agencies. Yes, there is some of 
that, but there are mundane commercial applications, too.

Google’s Picasa digital image organizer has a built-in face recognition 
system starting in version 3.5 onward. It can associate faces with persons, so 
that queries can be run on pictures to return all pictures with a specific group 
of people together.

Sony’s Picture Motion Browser (PMB) analyzes photos, associates photos 
with identical faces so that they can be tagged accordingly, and differentiates 
between photos with one person, many persons, and nobody.

Windows Live Photo Gallery also includes face recognition.
Recognition systems are also used by casinos to catch card counters and 

other blacklisted individuals.
Police applications are not limited to just mugshot databases in 

investigations:

◆	 The London Borough of Newham tried a facial recognition system in 
their borough-wide CCTV system.

◆	 The German Federal Criminal Police Office has used facial recognition 
on mugshot images for all German police agencies since 2006. The 
European Union has such systems in place on a voluntary basis for 
automated border controls by Germany and Austria at international 
airports and other border crossing points. Their systems compare the 
face of the individual with the image in the e-passport microchip.
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◆	 Law enforcement agencies at the state and federal levels in the United 
States use arrest mugshot databases. The U.S. Department of State 
operates one of the largest face recognition systems in the world, with 
over 75 million photographs, that is actively used for visa processing.

◆	 The US-VISIT (U.S. Visitor and Immigrant Status Indicator 
Technology) is aimed at foreign travelers gaining entry to the 
United States. When a foreign traveler receives his or her visa, he 
or she submits fingerprints and has his or her photograph taken. 
The fingerprints and photograph are checked against a database of 
known criminals and suspected terrorists. When the traveler arrives 
in the United States at the port of entry, those same fingerprints and 
photographs are used to verify that the person who received the visa is 
the same person attempting to gain entry.

◆	 Mexico used facial recognition to prevent voter fraud in their 2000 
presidential election. It was a way to detect double voting.

◆	 At Super Bowl XXXV in January 2001, police in Tampa Bay, FL, used 
Viisage facial recognition software to search for potential criminals 
and terrorists in attendance at the event. Nineteen people with minor 
criminal records were potentially identified.

Facial recognition for ATM machines and personal computers has been 
tested, but not widely deployed. The android cell phones have an application 
called Visidon Applock. This application allows you to put a facial recognition 
lock on any of your applications. Facial recognition technology is already 
implemented in the iPhoto application for Macintosh. Another proposal is a 
smartphone application for people with prosopagnosia, so they can recognize 
their acquaintances. Smart cameras can detect not just focus, but closed eyes, 
red eyes, and other situations that mess up portrait photographs.

10.4.3 How Good Is It?

Bluntly, this is not the strongest biometric. DNA and fingerprinting are more 
reliable, efficient, and easier to search. The main advantage is that it does not 
require consent or physical samples from the subject and can find them in 
crowd. Ralph Gross, a researcher at the Carnegie Mellon Robotics Institute, 
describes one obstacle related to the viewing angle of the face: “Face 
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recognition has been getting pretty good at full frontal faces and 20 degrees 
off, but as soon as you go towards profile, there have been problems.” In fact, 
if you have a clear frontal view of a suspect, you can find him or her in more 
than a million mugshots 92% of the time.

The London Borough of Newham CCTV system mentioned earlier has 
never recognized a single criminal, despite several criminals in the system’s 
database living in the Borough, after all these years. But the effect of having 
cameras everywhere has reduced crime. The same effect occurred in Tampa, 
FL, and a system at Boston’s Logan Airport was shut down after failing to 
make any matches during a two-year test period.

The television show Person of Interest that premiered in 2012 is based 
on the premise that our heroes have a super AI program that can hack 
every computer, every surveillance, and, with super AI, figure out if 
someone is going to be in trouble so they can save them before the end 
of the show. In 2012, the FBI launched a $1 billion facial recognition 
program called the Next-Generation Identification (NGI) project as a pilot 
in several states.

The FBI’s goal is to build a database of over 12 million mugshots, voice 
prints, and iris scans from federal criminal records and the U.S. State 
Department’s passport and visa databases. They can also add the DMV 
information from the 30-odd states that currently keep this data.

We are not at “television fantasy level” yet and probably won’t be for many 
years. However, a test suite provided by NIST called the Face Recognition 
Grand Challenge (FRGC) (http://www.nist.gov/itl/iad/ig/frgc.cfm) ran from 
May 2004 to March 2006. The newer algorithms were ten times more 
accurate than the face recognition algorithms of 2002 and 100 times more 
accurate than those of 1995. Some of them were able to recognize identical 
twins who fooled humans.

The 2013 Boston Marathon bombers were not spotted by a fancy FBI facial 
recognition system, even though Dzhokhar and Tamerlan Tsarnaev’s images 
existed in official databases. The images that the FBI had of the Tsarnaevs 
brothers were grainy surveillance camera images taken from far away, with 
them wearing hats and sunglasses. They were spotted by investigators seeing 
them planting the bombs on the surveillance footage, then matching a face 
with an image from the security camera of a 7-11 in Cambridge. After the 
photos were made public, Facebook and hundreds of cellphone cameras 
filled in the gaps.

http://www.nist.gov/itl/iad/ig/frgc.cfm
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Concluding Thoughts

Biometrics will overcome the technological problems in the near future. It 
will be possible to have a cheap device that can match DNA and fingerprints 
or even put it on a smartcard. Identification at a distance is also coming. The 
real issues are political rather than technical.
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C H A P T E R

11
Analytic Databases

Introduction

The traditional SQL database is used for online transaction processing 
(OLTP). Its purpose is to provide support for daily business applications. 
The hardware was too expensive to keep a machine for special purposes, 
like analyzing the data. That was then; this is now. Today, we have online 
analytical processing (OLAP) databases, which are built on the OLTP 
data.

These products use a snapshot of a database taken at one point in time, 
and then put the data into a dimensional model. The purpose of this model 
is to run queries that deal with aggregations of data rather than individual 
transactions. It is analytical, not transactional.

In traditional file systems and databases, we use indexes, hashing, and 
other tricks for data access. We still have those tools, but we have added 
new ones. Star schemas, snowflake schemas, and multidimensional storage 
methods are all ways to get to the data faster, but in the aggregate rather than 
by rows.

11.1 Cubes

One such structure is the cube (or hypercube). Think of a two-dimensional 
cross-tabulation or a spreadsheet that models, say, a location (encoded as 
north, south, east, and west) and a product (encoded with category names). 
You have a grid that shows all possible combinations of locations and 
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products, but many of the cells are going to be empty—you do not sell many 
fur coats in the south, or many bikinis in the north.

Now extend the idea to more and more dimensions, such as payment 
method, purchase time, and so forth; the grid becomes a cube, then a 
hypercube, and so forth. If you have trouble visualizing more than three 
dimensions, then imagine a control panel like you find on a stereo system. 
Each slider switch controls one aspect of the sound, such as balance, volume, 
bass, and treble. The dimensions are conceptually independent of each other, 
but define the whole.

As you can see, actually materializing a complete cube would be very 
expensive and most of the cells would be empty. Fortunately, we have prior 
experience with sparse arrays from scientific programming and a lot of 
database access methods.

The OLAP cube is created from a star schema of tables, which we will 
discuss shortly. At the center is the fact table that lists the core facts that 
make up the query. Basically, a star schema has a fact table that models 
the cells of a sparse array by linking them to dimension tables. The star is 
denormalized, but since the data is never updated, there is no way to get 
an anomaly and no need for locking. The fact table has rows that store a 
complete event, such as a purchase (who, what, when, how, etc.). while the 
dimensional tables provide the units of measurement (e.g., the purchase can 
be grouped into weekday, year, month, shopping season, etc.).

11.2 Dr. Codd’s OLAP Rules

Dr. E. F. Codd and Associates published a whitepaper for Hyperion Solutions 
(see Arbor Software) in 1993 entitled “Providing OLAP to User-Analysts: 
An IT Mandate.” This introduced the term OLAP and a set of abstract rules 
somewhat like his rules for RDBMS. However, because the paper had been 
sponsored by a commercial vendor (whose product matched those rules 
fairly well), rather than a pure research paper like his RDBMS work, it was 
not well received.

It was also charged that Dr. Codd himself allowed his name to be used 
and that he did not put much work into it, but let the vendor, his wife, and 
a research assistant do the work. The original whitepaper had 12 rules, and 
then added another 6 rules in 1995. The rules were restructured into four 
feature groups, which are summarized here.
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In defense of Dr. Codd, his approach to first defining a new technology 
in terms of easily understood abstractions and generalizations is how every 
database innovator who followed him has approached their first public 
papers. It is only afterward that you will see scholarly mathematical papers 
that nobody but an expert can understand. His ideas on OLAP have also 
stood up over time.

11.2.1 Dr. Codd’s Basic Features

Dr. Codd’s original numbering is retained here, but some more comments are 
included.

◆	 F1: Multidimensional conceptual view. This means that data is kept in a 
matrix in which each dimension of the matrix is an attribute. This is a 
grid or spreadsheet model of the data. This includes the ability to select 
subsets of data based on restrictions on the dimensions.

◆	 F2: Intuitive data manipulation. Intuition is a vague term that every 
vendor claims for their product. This is usually taken to mean that 
that you have a graphical user interface (GUI) with the usual drag-
and-drop and other graphic interfaces. This does not exclude a written 
programming language, but it does not give you any help with the 
design of it.

◆	 F3: Accessibility: OLAP as a mediator. The OLAP engine is middleware 
between possibly heterogeneous data sources and an OLAP front end. 
You might want to compare this to the model for SQL, where the SQL 
engine sits between the user and the database.

◆	 F4: Batch extraction versus interpretive. The OLAP has to have its 
own staging database for OLAP data, as well as offering live access to 
external data. This is HOLAP (hybrid OLAP), which we will discuss 
shortly. The live access to external data is a serious problem because 
it implies some kind of connection and possibly huge and unexpected 
data flows into the staging database.

◆	 F5: OLAP analysis models. Dr. Codd described four analysis models in 
his whitepaper:

1.	 Categorical: This is the typical descriptive statistics we have had in 
reports since the beginning of data processing.
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2.	 Exegetical: This is what we have been doing with spreadsheets—
slice, dice, and drill down reporting on demand.

3.	 Contemplative: This is “what if” analysis. There have been some 
specialized tools for doing this kind of modeling, and some of them 
use extensions to spreadsheets. Contemplative analysis lets you ask 
questions about the effects of changes on the whole system, such as 
“What is the effect of closing the Alaska store do to the company?” In 
other words, you have a particular idea you want to test.

4.	 Formulaic: These are goal-seeking models. You know what outcome 
you want, but not how to get it. The model keeps changing 
parameters and doing the contemplations until it gets to the desired 
results (or proves that the goal is impossible). Here you would set 
a goal, such as “How can I increase the sale of bikinis in the Alaska 
store?” and wait for an answer. The bad news is that there can be 
many solutions, no solution (“Bikinis in Alaska are doomed to 
failure”), or unacceptable solutions (“Close down all but the Alaska 
store”).

Categorical and exegetical features are easy to implement. The 
contemplative and formulaic features are harder and more expensive to 
implement. We have some experience with formulaic and contemplative 
analysis with linear or constraint programming for industrial processes. But 
the number of parameters had to be fairly small, very well controlled, and the 
results measurable in well-defined units.

This weakness has led to “fuzzy” logic and math models where the data 
does not have to be precise in a traditional sense and a response on a large 
data set can be made fast (“Leopard prints are selling unusually well in Alaska, 
so it might be worth sending leopard print bikinis there this summer”).

◆	 F6: Client server architecture. This pretty well speaks for itself. The goal 
is to allow the users to share data easily and be able to use any front-
end tool. Today, this would be cloud-based access.

◆	 F7: Transparency. This is part of the RDBMS model. The client front end 
should not have to be aware of how the connection to the OLAP engine 
or other data sources is made.

◆	 F8: Multi-user support. This is also part of the RDBMS model. This is 
actually easy to do because OLAP engines are read-only snapshots 
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of data. There is no need for transaction controls for multiple users. 
However, there is a new breed of analytical database that is designed to 
allow querying while data is being steamed from external data sources 
in real time.

11.2.2 Special Features

This feature list was added to make the OLAP engines practical.

◆	 F9: Treatment of non-normalized data. This means we can load data from 
non-RDBMS sources. The SQL-99 standard, part 9, also added the SQL/
MED (management of external data) feature for importing external 
data (CAN/CSA-ISO/IEC 9075-9-02, March 6, 2003, adopted ISO/IEC 
9075-9:2001, first edition, May 15, 2001). This proposal never got very 
far, but current ETL products can handle these transformations in their 
proprietary syntax.

◆	 F10: Store OLAP results. This is actually a practical consideration. OLAP 
data is expensive and you do not want to have to reconstruct over and 
over from live data. Again, the implication is that the OLAP database is 
a snapshot of the state of the data sources.

◆	 F11: Extraction of missing values. In his relational model version 2 
(RMV2), Codd defined two kinds of missing values rather than the 
single NULL used in SQL. One of them is like the SQL NULL, which 
models that the attribute exists in the entity, but we do not know its 
value. The second kind of missing value says that the attribute does 
not exist in the entity, so it will never have a value. Since most SQL 
products (the exception is First SQL) support only the first kind of 
NULL, it can be hard to meet rule F11. However, there is some support 
in the CUBE and ROLLUP features for determining which NULLs were in 
the original data and which were created in the aggregation.

◆	 F12: Treatment of missing values. All missing values are ignored by the 
OLAP analyzer regardless of their source. This follows the rules for 
dropping NULLs in aggregations in standard SQL. But in statistics, there 
are ways to work around missing data. For example, if the known 
values take the shape of a normal distribution, the system can make the 
assumption that the missing values are in that normal distribution.
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11.2.3 Reporting Features

The reporting features are obviously the whole point of OLAP and had to be 
added. But this feels more commercial than theoretical.

◆	 F13: Flexible reporting. This feature is again a bit vague. Let’s take it to 
mean that the dimensions can be aggregated and arranged pretty much 
anyway the user wants to see the data. Today, this usually means the 
ability to provide pretty graphics. Visualization has become a separate 
area of IT.

◆	 F14: Uniform reporting performance. Dr. Codd required that reporting 
performance would not be significantly degraded by increasing the 
number of dimensions or database size. This is more of a product 
design goal than an abstract principle. If you have a precalculated 
database, the number of dimensions is not so much of a problem.

◆	 F15: Automatic adjustment of physical level. Dr. Codd required that 
the OLAP system adjust its physical storage automatically. This can 
be done with utility programs in most products, so the user has some 
control over the adjustments.

11.2.4 Dimension Control

These features deal with the dimensions on the cubes and we can use them 
together.

◆	 F16: Generic dimensionality. Dr. Codd took the purist view that each 
dimension must be equivalent in both its structure and operational 
capabilities. This may not be unconnected with the fact that this is an 
Essbase characteristic. However, he did allow additional operational 
capabilities to be granted to selected dimensions (presumably including 
time), but he insisted that such additional functions should be 
grantable to any dimension. He did not want the basic data structures, 
formulas, or reporting formats to be biased toward any one dimension.

	 This has proven to be one of the most controversial of all the original 12 
rules (it was renumbered when the features were revised). Technology-
focused products tend to largely comply with it, so the vendors of such 
products support it. Application-focused products usually make no effort 
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to comply, and their vendors bitterly attack the rule. With a strictly purist 
interpretation, few products fully comply. I would suggest that if you are 
purchasing a tool for general purpose or multiple application use, then you 
want to consider this rule, but even then with a lower priority. If you are 
buying a product for a specific application, you may safely ignore this rule.

◆	 F17: Unlimited dimensions and aggregation levels. This is physically 
impossible, so we can settle for a “large number” of dimensions and 
aggregation levels. Dr. Codd suggested that the product should support 
at least 15 and preferably 20 dimensions. The rule of thumb is to have 
more than you need right now so there is room for growth.

◆	 F18: Unrestricted cross-dimensional operations. There is a difference between a 
calculation and an operation. Certain combinations of scales cannot be used 
in the same calculation to give a meaningful result (e.g., “What is Thursday 
divided by red?” is absurd). However, it is possible to do an operation on 
mixed data (e.g., “How many red shoes did we sell on Thursday?”).

11.3 MOLAP

MOLAP, or multidimensional OLAP, is the “data in a grid” version that  
Dr. Codd described in his paper. This is where the idea of saving summary 
results first appeared. Generally speaking, MOLAP does fast simpler 
calculations on smaller databases. Business users have gotten very good 
with the design of spreadsheets over the last few decades and that same 
technology can be used by MOLAP engines.

The spreadsheet model is the first (and often the only) declarative 
language that most people learn. The advantage is that there are more 
spreadsheet users than SQL programmers in the world. They do not have to 
learn a new conceptual framework, just a new language for it.

11.4 ROLAP

ROLAP, or relational OLAP, was developed after MOLAP. The main difference 
is that ROLAP does not do precomputation or store summary data in the 
database. ROLAP tools create dynamic SQL queries when the user requests 
the data. The exception to that description is the use of materialized VIEWs, 
which will persist summary data for queries that follow its first invocation. 
Some goals of ROLAP are to be scalable because it would reduce storage 
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requirements and to be more flexible and portable because it uses SQL or an 
SQL-like language.

Another advantage is that the OLAP and transactional databases can 
be the same engine. RDBMS engines have gotten very good at handling 
large amounts of data, working in parallel, and optimizing queries 
stored in their particular internal formats. It is a shame to lose those 
advantages. For example, DB2’s optimizer now detects a star schema by 
looking for a single large table with many smaller ones joined to it. If it 
finds a star schema, it creates appropriate execution plans based on that 
assumption.

11.5 HOLAP

The problem with a pure ROLAP engine is that it is slower than MOLAP. 
Think about how most people actually work. A broad query is narrowed 
down to a more particular one. Particular tables, such as a general end-
of-the-month summary, can be constructed once and shared among many 
users.

This lead to HOLAP, hybrid OLAP, which retains some of result tables in 
specialized storage or indexing so that they can be reused. The base tables 
dimension tables and some summary tables are in the RDBMS. This is 
probably the most common approach in products today.

11.6 OLAP Query Languages

SQL is the standard query language for transactional databases. Other than a 
few OLAP features added to SQL-99, there is no such language for analytics. 
The closest thing is the MDX language from Microsoft, which has become a 
de-facto standard by virtue of Microsoft’s market domination.

This is not because MDX is a technically brilliant language, but because 
Microsoft makes it so much cheaper than other products. The syntax is a 
confusing mix of SQL and an OO dialect of some kind. Compared to full 
statistical packages, it is also weak.

There are statistical languages, such as SAS and IBM’s SPSS, which have 
been around for decades. These products have a large number of options and 
a great deal of computational power. In fact, you really need to be an expert 
to fully use them. Today, they come with a GUI, which makes the coding 
easier. But that does not mean you do not need statistical knowledge to make 
the right decisions.
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11.7 Aggregation Operators in SQL

When OLAP hit in IT, the SQL committee wanted to get ahead of the 
curve. A big fear was that vendors would create their own features with 
proprietary syntax and semantics. This would lead to dialects and mess 
up all that work that had been done on standards. So SQL got OLAP 
functions.

OLAP functions add the ROLLUP and CUBE extensions to the GROUP BY 
clause. The ROLLUP and CUBE extensions are often referred to as supergroups. 
They can be written in older standard SQL using GROUP BY and UNION 
operators, but it is insanely complex. It is always nice to be able to define a 
new feature as a shorthand for older operations. The compiler writers can 
reuse some of the code they already have and the programmers can reuse 
some of the mental model they already have.

But in the case of SQL, it also means that the results of these new features 
will also be SQL tables and not a new kind of data structure, like the classic 
GROUP BY result sets.

11.7.1 GROUP BY GROUPING SET

The GROUPING SET (<column list>) is shorthand starting in SQL-99 for 
a series of UNION queries that are common in reports. For example, to find 
the total:

SELECT dept_name, CAST(NULL AS CHAR(10)) AS job_title, COUNT(*)

 FROM Personnel

 GROUP BY dept_name

UNION ALL

SELECT CAST(NULL AS CHAR(8)) AS dept_name, job_title, COUNT(*)

 FROM Personnel

 GROUP BY job_title;

which can be rewritten as:

SELECT dept_name, job_title, COUNT(*)

 FROM Personnel

 GROUP BY GROUPING SET (dept_name, job_title);

There is a problem with all of the new grouping functions. They will 
generate NULLs for each dimension at the subtotal levels. How do you tell the 
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difference between a real NULL that was in the original data and a generated 
NULL? This is a job for the GROUPING() function, which returns 0 for NULLs 
in the original data and 1 for generated NULLs that indicate a subtotal.

Here is a little trick to get a human-readable output:

SELECT CASE GROUPING(dept_name)

 WHEN 1 THEN 'department total'

 ELSE dept_name END AS dept_name,

 CASE GROUPING(job_title)

 WHEN 1 THEN 'job total'

 ELSE job_title_name END AS job_title

 FROM Personnel

GROUP BY GROUPING SETS (dept_name, job_title);

This is actually a bad programming practice since display should be done 
in the front end and not in the database. Another problem is that you would 
probably want to use an ORDER BY on the query, rather than get the report 
back in a random order. But we do not care about that in SQL.

The grouping set concept can be used to define other OLAP groupings.

11.7.2 ROLLUP

A ROLLUP group is an extension to the GROUP BY clause that produces a 
result set that contains subtotal rows in addition to the regular grouped 
rows. Subtotal rows are superaggregate rows that contain further aggregates 
of which the values are derived by applying the same column functions that 
were used to obtain the grouped rows. A ROLLUP grouping is a series of 
grouping sets.

This is a “control break report” in classic COBOL and report writers used 
with sequential file processing:

GROUP BY ROLLUP (a, b, c)

is equivalent to

GROUP BY GROUPING SETS

(a, b, c)

(a, b)

(a)

()
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Notice that the n elements of the ROLLUP translate to a (n+1) grouping 
set. Another point to remember is that the order in which the grouping 
expression is specified is significant for ROLLUP.

The ROLLUP is basically the classic totals and subtotals report presented 
as an SQL table. The following example is a simple report for three sales 
regions. The ROLLUP function is used in the GROUP BY clause:

SELECT B.region_nbr, S.city_id, SUM(S.sale_amt) AS total_sales

 FROM SalesFacts AS S, MarketLookup AS M

 WHERe S.city_id = B.city_id

 AND B.region_nbr IN (1, 2, 6)

GROUP BY ROLLUP(B.region_nbr, S.city_id)

ORDER BY B.region_nbr, S.city_id;

The SELECT statement behaves in the usual manner. That is, the FROM 
clause builds a working table, the WHERE clause removes rows that do not 
meet the search conditions, and the GROUP BY clause breaks the data into 
groups that are then reduced to a single row of aggregates and grouping 
columns. A sample result of the SQL is shown in Table 11.1. The result 
shows ROLLUP of two groupings (region, city) returning three totals, 
including region, city, and grand total.

Table 11.1 Yearly Sales by City and Region

Region Number City ID Total Sales and Comment

1 1 81
2 2 13
... ... ...
2 NULL 1123 – region #2
3 11 63
3 12 110
... ... ...
3 NULL 1212 –region #3
6 35 55
6 74 13
... ... ...
6 NULL 902 –region #6
NULL NULL 3237 –grand total
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11.7.3 CUBE

The CUBE supergroup is the other SQL-99 extension to the GROUP BY 
clause that produces a result set that contains all the subtotal rows of 
a ROLLUP aggregation and, in addition, contains cross-tabulation rows. 
Cross-tabulation rows are additional superaggregate rows. They are, as the 
name implies, summaries across columns if the data were represented as a 
spreadsheet. Like ROLLUP, a CUBE group can also be thought of as a series of 
grouping sets. In the case of a CUBE, all permutations of the cubed grouping 
expression are computed along with the grand total. Therefore, the n 
elements of a CUBE translate to (2n) grouping sets. For example:

GROUP BY CUBE (a, b, c)

is equivalent to

GROUP BY GROUPING SETS

(a, b, c) (a, b) (a, c) (b, c) (a) (b) (c) ()

Notice that the three elements of the CUBE translate to eight grouping sets. 
Unlike ROLLUP, the order of specification of elements doesn’t matter for 
CUBE: CUBE (a, b) is the same as CUBE (b, a). But the rows might not be 
produced in the same order, depending on your product.

Table 11.2  Sex and Race

Sex Code Race Code Totals and Comment

M Asian 14
M White 12
M Black 10
F Asian 16
F White 11
F Black 10
M NULL 36 - Male Tot
F NULL 37 – Female Tot
NULL Asian 30 - Asian Tot
NULL White 23 – White Tot
NULL Black 20 – Black Tot
NULL NULL 73 -- Grand Tot
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CUBE is an extension of the ROLLUP function. The CUBE function not only 
provides the column summaries we saw in ROLLUP but also calculates the 
row summaries and grand totals for the various dimensions. This is a version 
of cross-tabulations (cross-tabs) that you know from statistics. For example:

SELECT sex_code, race_code, COUNT(*) AS total

 FROM Census

 GROUP BY CUBE(sex_code, race:code);

11.7.4 Notes about Usage

If your SQL supports these features, you need to test to see what 
GROUPING() does with the NULLs created by an outer join. Remember that 
SQL does not have to return the rows in a table in any particular order. You 
will still have to put the results into a CURSOR with an ORDER BY clause to 
produce a report. But you may find that the results tend to come back in 
sorted order because of how the SQL engine does its work.

This has happened before. Early versions of SQL did GROUP BY operations 
with a hidden sort; later SQL products used parallel processing, hashing, 
and other methods to form the groupings that did not have a sort as a side-
effect. Always write standard SQL and do not depend on the internals of one 
particular release of one particular SQL product.

11.8 OLAP Operators in SQL

IBM and Oracle jointly proposed extensions in early 1999 and thanks to 
ANSI’s uncommonly rapid actions, they became part of the SQL-99 standard. 
IBM implemented portions of the specifications in DB2 UDB 6.2, which was 
commercially available in some forms as early as mid-1999. Oracle 8i version 
2 and DB2 UDB 7.1, both released in late 1999, contained most of these 
features.

Other vendors contributed, including database tool vendors Brio, 
MicroStrategy, and Cognos, and database vendor Informix (not yet part of 
IBM), among others. A team lead by Dr. Hamid Pirahesh of IBM’s Almaden 
Research Laboratory played a particularly important role. After his team had 
researched the subject for about a year and come up with an approach to 
extending SQL in this area, he called Oracle. The companies then learned 
that each had independently done some significant work. With Andy 
Witkowski playing a pivotal role at Oracle, the two companies hammered out 
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a joint standards proposal in about two months. Red Brick was actually the 
first product to implement this functionality before the standard, but in a less 
complete form. You can find details in the ANSI document “Introduction to 
OLAP Functions” by Fred Zemke, Krishna Kulkarni, Andy Witkowski, and 
Bob Lyle.

11.8.1 OLAP Functionality

OLAP functions are a bit different from the GROUP BY family. You specify 
a “window” defined over the rows over to which an aggregate function 
is applied, and in what order. When used with a column function, the 
applicable rows can be further refined, relative to the current row, as either 
a range or a number of rows preceding and following the current row. For 
example, within a partition by month, an average can be calculated over the 
previous three-month period.

Row Numbering

While SQL is based on sets that have no ordering, people depend on ordering 
to find data. Would you like to have a randomized phone book? In  
SQL-92 the only ways to add row numbering to a result were to use a cursor 
(in effect, making the set into a sequential file) or to use a proprietary 
feature. The vendor’s features were all different.

One family uses a pseudocolumn attached to the table that adds an 
increasing integer to each row. The IDENTITY column used in SQL server 
is the most common example. The first practical consideration is that 
IDENTITY is proprietary and nonportable, so you know that you will have 
maintenance problems when you change releases or port your system to 
other products. Newbies actually think they will never port code! Perhaps 
they only work for companies that are failing and will be gone. Perhaps their 
code is so bad nobody else wants their application.

But let’s look at the logical problems. First try to create a table with two 
columns and try to make them both IDENTITY. If you cannot declare more 
than one column to be of a certain data type, then that thing is not a data 
type at all, by definition. It is a property that belongs to the PHYSICAL table, 
not the LOGICAL data in the table.

Next, create a table with one column and make it an IDENTITY. Now try 
to insert, update, and delete different numbers from it. If you cannot insert, 
update, and delete rows from a table, then it is not a table by definition.
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Finally, the ordering used is unpredictable when you insert with a SELECT 
statement, as follows:

INSERT INTO Foobar (a, b, c)

SELECT x, y, z

 FROM Floob;

Since a query result is a table, and a table is a set that has no ordering, 
what should the IDENTITY numbers be? The entire, whole, completed 
set is presented to Foobar all at once, not a row at a time. There are (n!) 
ways to number n rows, so which one do you pick? The answer has been 
to use whatever the physical order of the result set happened to be. That 
nonrelational phrase “physical order” again!

But it is actually worse than that. If the same query is executed again, but 
with new statistics or after an index has been dropped or added, the new 
execution plan could bring the result set back in a different physical order. 
Indexes and statistics are not part of the logical model.

The second family is to expose the physical location on the disk in an encoded 
format that can be used to directly move the read/writer head to the record. This 
is the Oracle ROWID. If the disk is defragmented, the location can be changed, 
and the code will not port. This approach is dependent on hardware.

The third family is a function. This was originally done in Sybase SQL 
Anywhere (see WATCOM SQL) and was the model for the standard SQL 
ROW_NUMBER() function.

This function computes the sequential row number of the row within the 
window defined by an ordering clause (if one is specified), starting with 1 for 
the first row and continuing sequentially to the last row in the window. If an 
ordering clause, ORDER BY, isn’t specified in the window, the row numbers 
are assigned to the rows in arbitrary order as returned by the subselect. In 
actual code, the numbering functions are used for display purposes rather 
than adding line numbers in the front end.

A cute trick for the median is to use two ROW_NUMBER() with an OVER() 
clause:

SELECT AVG(x),

 ROW_NUMBER() OVER(ORDER BY x ASC) AS hi,

 ROW_NUMBER() OVER(ORDER BY x DESC) AS lo

 FROM Foobar

 WHERE hi IN (lo, lo+1, lo-1);
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This handles both the even and old number of cases. If there are an 
odd number of rows then (hi=lo). If there is an even number of rows, 
then we want the two values in the two rows to either side of the middle. 
I leave it to you to play with duplicate values in column x and getting 
a weighted median, which is a better measure of central tendency. For 
example:

x hi lo

===========

1 1 7

1 2 6

2 3 5

3 4 4 <= median – 4.0

3 5 3

3 6 2

3 7 1

The median for an even number of cases:

x hi lo

===========

1 1 6

1 2 5

2 3 4 <= median

3 4 3 <= median=3.5

3 5 2

3 6 1

RANK and DENSE_RANK

So far, we have talked about extending the usual SQL aggregate 
functions. There are special functions that can be used with the window 
construct.

RANK assigns a sequential rank of a row within a window. The RANK 
of a row is defined as one plus the number of rows that strictly precede 
the row. Rows that are not distinct within the ordering of the window are 
assigned equal ranks. If two or more rows are not distinct with respect to 
the ordering, then there will be one or more gaps in the sequential rank 
numbering. That is, the results of RANK may have gaps in the numbers 
resulting from duplicate values. For example:
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x RANK

========

1 1

2 3

2 3

3 5

3 5

3 5

3 5

3 5

3 5

DENSE_RANK also assigns a sequential rank to a row in a window. 
However, a row’s DENSE_RANK is one plus the number of rows preceding it 
that are distinct with respect to the ordering. Therefore, there will be no gaps 
in the sequential rank numbering, with ties being assigned the same rank. 
RANK and DENSE_RANK require an ORDER BY clause. For example:

x DENSE_RANK

=============

1 1

2 2

2 2

3 3

3 3

3 3

3 3

3 3

Aside from these functions, the ability to define a window is equally 
important to the OLAP functionality of SQL. You use windows to define a set 
of rows over which a function is applied and the sequence in which it occurs. 
Another way to view the concept of a window is to equate it with the concept 
of a slice. In other words, a window is simply a slice of the overall data domain.

Moreover, when you use an OLAP function with a column function, such 
as AVG(), SUM(), MIN(), or MAX(), the target rows can be further refined, 
relative to the current row, as either a range or a number of rows preceding 
and following the current row. The point is that you can call upon the 
entire SQL vocabulary to be combined in any of your OLAP-centric SQL 
statements.



162	 C H A P T E R  1 1 :  A N A L Y T I C  D A T A B A S E S

Window Clause

The window clause has three subclauses: partitioning, ordering, and 
aggregation grouping. The general format is

<aggregate function> OVER ([PARTITION BY<column list>] ORDER BY<sort 

column list>[<aggregation grouping>])

A set of column names specifies the partitioning, which is applied to 
the rows that the preceding FROM, WHERE, GROUP BY, and HAVING clauses 
produced. If no partitioning is specified, the entire set of rows composes 
a single partition and the aggregate function applies to the whole set each 
time. Though the partitioning looks like a GROUP BY, it is not the same 
thing. A GROUP BY collapses the rows in a partition into a single row. The 
partitioning within a window, though, simply organizes the rows into groups 
without collapsing them.

The ordering within the window clause is like the ORDER BY clause in a 
CURSOR. It includes a list of sort keys and indicates whether they should be 
sorted ascending or descending. The important thing to understand is that 
ordering is applied only within each partition.

The <aggregation grouping> defines a set of rows upon which the 
aggregate function operates for each row in the partition. Thus, in our 
example, for each month, you specify the set including it and the two 
preceding rows. Here is an example from an ANSI paper on the SQL-99 
features:

SELECT SH.region, SH.month, SH.sales,

 AVG(SH.sales)

 OVER (PARTITION BY SH.region

 ORDER BY SH.month ASC

 ROWS 2 PRECEDING)

 AS moving_average

 FROM SalesHistory AS SH;

Here, AVG(SH.sales) OVER (PARTITION BY. . .) is an OLAP function. 
The construct inside the OVER() clause defines the “window” of data to 
which the aggregate function, AVG() in this example, is applied.

The window clause defines a partitioned set of rows to which the 
aggregate function is applied. The window clause says to take the 
SalesHistory table and then apply the following operations to it:
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◆	 Partition SalesHistory by region.

◆	 Order the data by month within each region.

◆	 Group each row with the two preceding rows in the same region.

◆	 Compute the moving average on each grouping.

The database engine is not required to perform the steps in the order 
described here, but has to produce the same result set as if they had been 
carried out.

There are two main types of aggregation groups: physical and logical. 
In physical grouping, you count a specified number of rows that are 
before or after the current row. The SalesHistory example uses physical 
grouping. In logical grouping, you include all the data in a certain interval, 
defined in terms of a subset positioned relative to the current sort key. For 
instance, you create the same group whether you define it as the current 
month’s row plus:

	 1.	 The two preceding rows as defined by the ORDER BY clause.

	 2.	 Any row containing a month no less than two months earlier.

Physical grouping works well for contiguous data and programmers who think 
in terms of sequential files. Physical grouping works for a larger variety of data 
types than logical grouping, because it does not require operations on values.

Logical grouping works better for data that has gaps or irregularities in the 
ordering and for programmers who think in SQL predicates. Logical grouping 
works only if you can do arithmetic on the values, such as numeric quantities 
and dates.

A physical grouping is based on aggregating a fixed number of rows in a 
partition, based on their position relative to the row for which the function is 
computed. One general format is:

OVER (RANGE BETWEEN <bound_1> AND <bound_2>)

The start of the window, <bound_1>, can be

UNBOUNDED PRECEDING

<unsigned constant> PRECEDING

<unsigned constant> FOLLOWING

CURRENT ROW



164	 C H A P T E R  1 1 :  A N A L Y T I C  D A T A B A S E S

The meanings are obvious. Unbounded proceedings include the entire 
partition that precedes the current row in the sort order. The numbered 
displacements are done by counting rows.

The end of the window, <bound_2>, can be

UNBOUNDED FOLLOWING

<unsigned constant> PRECEDING

<unsigned constant> FOLLOWING

CURRENT ROW

The UNBOUNDED FOLLOWING option includes the entire partition that follows 
the current row in the sort order. For example, you can include the whole partition:

OVER (RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

The ROWS option is shorthand that involves only preceding rows. For 
example, this is a running accumulative total:

SELECT SUM(x)

 OVER (ROWS UNBOUNDED PRECEDING) AS running_total

 FROM Foobar;

11.8.2 NTILE(n)

NTILE(n) splits a set into equal groups of approximately n rows. This often 
has vendor extensions and rules about the buckets, so use it with caution. 
For example:

NTILE(3) OVER (ORDER BY x)

x NTILE

================

1 1

1 1

2 1

2 1

3 2

3 2

3 2

3 3

3 3

3 3
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The SQL engine attempts to get the groups the same size, but this is 
not always possible. The goal is then to have them differ by just one row. 
NTILE(n), where (n) is greater than the number of rows in the query, is 
effectively a ROW_NUMBER() with groups of size one.

Obviously, if you use NTILE(100), you will get percentiles, but you need 
at least 100 rows in the result set. A trick to prune off outliers (a value that 
is outside the range of the other data values) is to use NTILE(200) and drop 
the first and 200th bucket to rule out the 0.5% on either end of the normal 
distribution.

11.8.3 Nesting OLAP Functions

One point will confuse older SQL programmers. These OLAP extensions are 
scalar functions, not aggregates. You cannot nest aggregates in standard SQL 
because it would make no sense. Consider this example:

SELECT customer_id, SUM(SUM(purchase_amt)) --error

 FROM Sales

 GROUP BY customer_id;

Each customer should get a total of his or her purchases with the 
innermost SUM(), which is one number for the grouping. If it worked, the 
outermost SUM() would be the total of that single number. However, you 
can write

SUM(SUM(purchase_amt)OVER (PARTITION BY depart_nbr))

In this case the total purchase amount for each department is computed, and 
then summed.

11.8.4 Sample Queries

Probably the most common use of row numbering is for display in the front 
end. This is not a good thing, since display is supposed to be done in the 
front end and not in the database. But here it is:

SELECT invoice_nbr,

 ROW_NUMBER()

 OVER (ORDER BY invoice_nbr) AS line_nbr,

 FROM Invoices

 ORDER BY invoice_nbr;
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Now let’s try something that is more like a report. List the top five wage 
earners in the company:

SELECT emp_nbr, last_name, sal_tot, sal_rank

 FROM (SELECT emp_nbr, last_name, (salary + bonus)

 RANK()

 OVER (ORDER BY (salary + bonus) DESC)

 FROM Personnel)

 AS X(emp_nbr, last_name, sal_tot, sal_rank)

 WHERE sal_rank < 6;

The derived table X computes the ranking, and then the containing query 
trims off the top five.

Given a table of sales leads and dealers, we want to match them based on 
their ZIP codes. Each dealer has a priority and each lead has a date on which 
it was received. The dealers with the highest priority get the earlier leads:

(SELECT lead_id,

 ROW_NUMBER()

 OVER (PARTITION BY zip_code

 ORDER BY lead_date)

 AS lead_link

 FROM Leads) AS L

FULL OUTER JOIN

(SELECT dealer_id,

 ROW_NUMBER()

 OVER (PARTITION BY zip_code

 ORDER BY dealer_priority DESC)

 AS dealer_link

 FROM Dealers) AS D

ON D.dealer_link = L.lead_link

AND D.zip_code = L.zip_code;

You can add more criteria to the ORDER BY list, or create a lookup table with 
multiparameter scoring criteria.

11.9 Sparseness in Cubes

The concept of cubes is a nice way to get a graphic image when you are 
thinking about reporting data. Think about a simple spreadsheet with 
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columns that hold the dates of a shipment and rows that hold the particular 
product shipped on that date. Obviously, this is going to be a large 
spreadsheet if the company has, say, 10,000 items and five years of history to 
look at (3,652,500 cells, actually).

Most of these cells will be empty. But there is a subtle difference between 
empty, zero, and NULL. Empty is a spreadsheet term and it means the cell 
exists because it was created by the range of rows and columns when the 
spreadsheet was set up. Zero is a numeric value; it needs to be in a cell to 
exist and you cannot divide by it—it is really a number. NULLs are an SQL 
concept that holds a place for a missing or unknown value. Remember that 
NULLs propagate in simple computations and they require storage in SQL; 
they are not the same as an empty cell.

Imagine that we did not ship iPods before October 23, 2001 because they 
were not released before that date. This cell does not exist in the cube yet. 
And in October 2001, we had an inventory of red-velvet, hip-hugger  
bell-bottoms; we sold none of them (the same as every month since 1976); 
this is a zero. Finally, nobody has reported iPod shipments for March 25, 
2006 yet, but we know it is a hot item and we will have made sales. Now we 
add a column for iPods and a history of empty cells appear.

At this point, you need to decide how to handle these cases. I would 
recommend ignoring nonexistent iPods in any sales history reports. Your 
cube tool should be able to tell the difference between all three cases. But 
the long history of not selling red-velvet, hip-hugger bell-bottoms (i.e., 
shipments=0) is important information—hey, disco is dead and you need to 
clean out the inventory.

A NULL is also information, but more properly a sign that data is missing. This 
is trickier because you need to have methods for handling that missing data.

Can you estimate a value and use it? If my iPod sales have increased at a 
steady rate of p% per month for the last m months, can I assume the trend 
will continue? Or should I use a median or an average? Or should I use data 
up to the point that I know values?

11.9.1 Hypercube

Extend the spreadsheet model from two dimensions to three, four, five, and 
so forth. Human beings have serious problems with a graphic greater than 
three dimensions. The universe in which we live and see things is limited to 
three dimensions.
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Enough of the cells will be empty that it is vital that the storage for 
the cube have a sparse matrix implementation. That means we do not 
physically store empty cells, but they might be materialized inside the 
engine. Figure 11.1 is a diagram for a (sources, routes, time) cube. I will 
explain the hierarchies on the three axes.

11.9.2 Dimensional Hierarchies

A listing of all of the cells in a hypercube is useless. We want to see 
aggregated (summary) information. We want to know that iPod sales are 
increasing, that we need to get rid of those bell-bottoms, that most of our 
business is in North America, and so forth.

Aggregation means that we need a hierarchy on the dimensions. Here is 
an example of a temporal dimension. Writing a hierarchy in SQL is easily 
done with a nested sets model if you have to write your own code:

Source

Route

Time

ground

nonground
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Hemisphere

Africa
190

Feb-17-99
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Apr-22-99
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600

May-31-99
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Dec-22-99
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Europe
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Packages
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Western
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air
sea

road
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Figure 11.1  A (sources, routes, time) cube. Source: http://www.aspfree.com/c/a/

MS-SQL-Server/Accessing-OLAP-using-ASP-dot-NET/

http://www.aspfree.com/c/a/MS-SQL-Server/Accessing-OLAP-using-ASP-dot-NET/
http://www.aspfree.com/c/a/MS-SQL-Server/Accessing-OLAP-using-ASP-dot-NET/
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CREATE TABLE TemporalDim

(range_name CHAR(15) NOT NULL PRIMARY KEY,

range_start_date DATE NOT NULL,

range_end_date DATE NOT NULL,

 CHECK (range_start_date<range_end_date));

INSERT INTO TemporalDim

VALUES ('Year2006', '2006-01-01', '2006-12-31'),

 ('Qtr-01-2006', '2006-01-01', '2006-03-31'),

 ('Mon-01-2006', '2006-01-01', '2006-01-31'),

 ('Day:2006-01-01', '2006-01-01', '2006-01-01'),

 ..;

You can argue that you do not need to go to the leaf node level in the hierarchy,  
but only to the lowest level of aggregation. That will save space, but the code 
can be trickier when you have to show the leaf node level of the hierarchy.

This is the template for a hierarchical aggregation:

SELECT TD.range_name, ..

 FROM TemporalDim AS TD, FactTable AS F

 WHERE F.shipping_time BETWEEN TD.range_start_date

 AND TD.range_end_date;

If you do not have the leaf nodes in the temporal dimension, then you need 
to add a CTE (common table expression) with the days and their names that 
are at the leaf nodes in your query:

WITH Calendar (date_name, cal_date)

AS VALUES (CAST ('2006-01-01' AS CHAR(15)),

 CAST ('2006-01-01' AS DATE),

 ('2006-01-02', '2006-01-02'),

 etc.

SELECT TD.range_name, ..

 FROM Temporal_Dim AS TD, Fact_Table AS F

 WHERE F.shipping_time BETWEEN TD.range_start_date

 AND TD.range_end_date

UNION ALL

SELECT Calendar.date_name, ..

 FROM Calendar AS C, FactTable AS F

 WHERE C.cal_date = F.shipping_time;



170	 C H A P T E R  1 1 :  A N A L Y T I C  D A T A B A S E S

1Day 2 3

JanMonth Feb

Quarter 1Quarter Quarter 2 Quarter 3

MembersLevels
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Figure 11.2  Example of a drilldown tree structure. Source: http://www.aspfree.com/c/a/

MS-SQL-Server/Accessing-OLAP-using-ASP-dot-NET/

A calendar table is used for other queries in the OLTP side of the house, 
so you should already have it in at least one database. You may also find that 
your cube tool automatically returns data at the leaf level if you ask it.

11.9.3 Drilling and Slicing

Many of the OLAP user interface tools will have a display with a dropdown 
menu for each dimension that lets you pick the level of aggregation in the 
report. The analogy is the slide switches on the front of expensive stereo 
equipment, which set how the music will be played, but not what songs are 
on the CD. It is called drilldown because you start at the highest level of the 
hierarchies and travel down the tree structure. Figure 11.2 is an example of 
such an interface from a Microsoft reporting tool.

Slicing a cube is another physical analogy. Look at the illustration of 
the cube in Figure 11.1 and imagine that you have a cheese knife and you 
slice off blocks from the cube. For example, you might want to look at 
only the ground shipments, so you slice off just that dimension, building a 
subcube. The drilldowns will still be in place. This is like picking the song 
from a CD.

Concluding Thoughts

We invented a new occupation: data scientist! This does not have 
an official definition, but it seems to be a person who can use OLAP 
databases, statistics packages, and some of the NoSQL tools we have 
discussed. He or she also seems to need a degree in statistics or math. 
There have also been a lot of advances in statistics that use the improved, 
cheap computing power we have today. For example, the assumption of a 

http://www.aspfree.com/c/a/MS-SQL-Server/Accessing-OLAP-using-ASP-dot-NET/
http://www.aspfree.com/c/a/MS-SQL-Server/Accessing-OLAP-using-ASP-dot-NET/
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normal distribution in data was made for convenience of computations for 
centuries. Today, we can use resampling, pareto, and exponential models, 
and even more complex math.
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C H A P T E R

12
Multivalued or NFNF Databases

Introduction

RDBMS is based on first normal form (1NF), which assumes that data is 
kept in scalar values in columns that are kept in rows and those records 
have the same structure. The multivalued model allows tables to be nested 
inside columns. They have a niche market that is not well known to SQL 
programmers. There is an algebra for this data model that is just as sound as 
the relational model.

In 2013, most current database programmers have never worked with 
anything but SQL. They did not grow up with file systems, COBOL, or any 
of the old network or hierarchical databases. These products are still around 
and run a lot of commercial applications. But we also have seen a blending of 
the traditional hierarchical sequential records and the set-oriented models of 
data. Let’s start with some history.

12.1 Nested File Structures

A flat file is a file of which the fields are all scalar values and the records have 
the same structure. When the relational model first came out in the 1970s, 
developers mistook tables for flat files. They missed the mathematics and the 
idea of a set. A file is read from left to right, in sequence, record by record; a 
table exists as a set that is the unit of work. A file stands alone while a table 
is part of a schema and has relationships with the rest of the schema. Frankly, 
a lot of developers still do not understand these concepts.
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But a flat file is the easiest starting point. The next most complicated file 
structures have variant records. Since a file is read left to right, it can tell the 
computer what to expect “downstream” in the data. In COBOL, we use the 
OCCURS and OCCURS DEPENDING ON clauses.

I will assume most of the readers do not know COBOL. The superquick 
explanation is that the COBOL DATA DIVISION is like the DDL in SQL, but 
the data is kept in strings that have a picture (PIC) clause that shows their 
display format. In COBOL, display and storage formats are the same. Records 
are made of a hierarchy of fields, and the nesting level is shown as an integer 
at the start of each declaration (numbers increase with depth; the convention 
is to step by fives). Suppose you wanted to store your monthly sales figures 
for the year. You could define 12 fields, one for each month, like this:

05 MONTHLY-SALES-1 PIC S9(5)V99.

05 MONTHLY-SALES-2 PIC S9(5)V99.

05 MONTHLY-SALES-3 PIC S9(5)V99.

. . .

05 MONTHLY-SALES-12 PIC S9(5)V99.

The dash is like an SQL underscore, a period is like a semicolon in SQL, 
and the picture tells us that each sales amount has a sign, up to five digits for 
dollars and two digits for cents. You can specify the field once and declare 
that it repeats 12 times with the simple OCCURS clause, like this:

05 MONTHLY-SALES OCCURS 12 TIMES PIC S9(5)V99.

The individual fields are referenced in COBOL by using subscripts, such 
as MONTHLY-SALES(1). The OCCURS can also be at the group level, and this 
is its most useful application. For example, all 25 line items on an invoice 
(75 fields) could be held in this group:

05 LINE-ITEMS OCCURS 25 TIMES.

10 ITEM-QUANTITY PIC 9999.

10 ITEM-DESCRIPTION PIC X(30).

10 UNIT-PRICE PIC S9(5)V99.

Notice the OCCURS is listed at the group level, so the entire group occurs 
25 times.

There can be nested OCCURS. Suppose we stock 10 products and we want 
to keep a record of the monthly sales of each product for the past 12 months:
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01 INVENTORY-RECORD.

05 INVENTORY-ITEM OCCURS 10 TIMES.

10 MONTHLY-SALES OCCURS 12 TIMES PIC 999.

In this case, INVENTORY-ITEM is a group composed only of MONTHLY-SALES,  
which occurs 12 times for each occurrence of an inventory item. This 
gives an array of 10 × 12 fields. The only information in this record is the 
120 monthly sales figures—12 months for each of 10 items.

Notice that OCCURS defines an array of known size. But because COBOL is 
a file system language, it reads fields in records from left to right. Since there 
is no NULL, inserting future values that are not yet known requires some 
coding tricks. The language has the OCCURS DEPENDING ON option. The 
computer reads an integer control field and then expects to find that many 
occurrences of a subrecord following at runtime. Yes, this can get messy and 
complicated, but look at this simple patient medical treatment history record 
to get an idea of the possibilities:

01 PATIENT-TREATMENTS.

05 PATIENT-NAME PIC X(30).

05 PATIENT-NUMBER PIC 9(9).

05 TREATMENT-COUNT PIC 99 COMP-3.

05 TREATMENT-HISTORY OCCURS 0 TO 50 TIMES

DEPENDING ON TREATMENT-COUNT

INDEXED BY TREATMENT-POINTER.

10 TREATMENT-DATE.

15 TREATMENT-YEAR PIC 9999.

15 TREATMENT-MONTH PIC 99.

15 TREATMENT-DAY PIC 99.

10 TREATING-PHYSICIAN-NAME PIC X(30).

10 TREATMENT-CODE PIC 999.

The TREATMENT-COUNT has to be handled in the applications to correctly 
describe the TREATMENT-HISTORY subrecords. I will not explain COMP-3  
(a data type for computations) or the INDEXED BY clause (array index), 
since they are not important to my point.

My point is that we had been thinking of data in arrays of nested 
structures before the relational model. We just had not separated data from 
computations and presentation layers, nor were we looking for an abstract 
model of computing yet.
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12.2 Multivalued Systems

When mini-computers appeared, they had limited capacity compared 
to current hardware and software. Products that were application 
development systems that integrated a database with an application 
language were favorites among users. You could build a full application 
with one tool!

One of the most successful such tools was Pick. This began life as the 
Generalized Information Retrieval Language System (GIRLS) on an IBM 
System/360 in 1965 by Don Nelson and Dick Pick at TRW for use by the U.S. 
Army to control the inventory of Cheyenne helicopter parts.

The relational model did not exist at this time; in fact, we really did 
not have any data theory. The Pick file structure was made up of variable-
length strings. This is not the model used in COBOL. In Pick, records are 
called items, fields are called attributes, and subfields are called values or 
subvalues (hence the present-day term multivalued database). All elements 
are variable length, with field and values marked off by special delimiters, so 
that any file, record, or field may contain any number of entries of the lower 
level of entity.

As a result, a Pick item (record) can be one complete entity (e.g., an 
entire, complete customer order) rather than an RDBMS model with a table 
of the set of all order headers that relates to the set of all customer order 
details, which relates to the inventory, etc.

The Pick system is written for a virtual machine and it included Unix-like 
hierarchy of directories, subdirectories, and files with records being hashed 
into buckets that could be scanned. There is a data dictionary that holds the 
system together. It also comes with a command-line language, so it is self-
contained.

This made porting Pick to other platforms easy. It was quickly licensed 
by many distributors, so Pick became a generic name for the family of 
multivalued databases with an implementation of Pick/BASIC. Dick Pick 
founded Pick & Associates, later renamed Pick Systems, then Raining 
Data, and, as of 2011, TigerLogic. He licensed Pick to a large variety 
of manufacturers and vendors who have produced different dialects of 
Pick. The dialect sold by TigerLogic is now known as D3, mvBase, and 
mvEnterprise. Those previously sold by IBM under the U2 umbrella are 
known as UniData and UniVerse. Rocket Software purchased IBM’s U2 
line in 2010.
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Pick runs on a large assortment of microcomputers, personal computers, 
and mainframe computers, and is still in use as of 2013. Here is a short list of 
Pick family products:

◆	 UniVerse (Unix based)

◆	 UniData (Unix based)

◆	 D3

◆	 jBASE

◆	 ARev

◆	 Advanced Pick

◆	 mvBase

◆	 mvEnterprise

◆	 R83

If you are old enough to remember dBase from Ashton-Tate as the first 
popular database product on a PC, you can compare this to how that line of 
development became the Xbase family of products.

Pick was first released commercially in 1973 by Microdata Corporation 
(and their British distributor CMC) as the Reality Operating System now 
supplied by Northgate Information Solutions. The Microdata implementation 
added a BASIC-like language called Pick/BASIC (see Data/BASIC). This 
became the de-facto Pick development language because it has extensions for 
smart terminal interface as well as the database operations.

Eventually, like all NoSQL products seem to do, they added a SQL-style 
language called ENGLISH (later, ACCESS, not be confused with the 
Microsoft database system of the same name) for retrieval and reporting. 
ENGLISH could not do updates at first, but later added the command 
REFORMAT for batch updating. ENGLISH did not have joins or other 
relational operators. In effect, you “prejoined” tables in Pick by using the data 
dictionary redefinitions for a field, which would execute a calculated lookup 
in another file. Data integrity has to be done in the application code.

Proprietary variations and enhancements sprouted up, but the core 
product has remained the same. Pick is used primarily for business data 
processing because its data model matches neatly to files and forms used in 
office work and it has a strong enthusiastic user community.
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12.3 NFNF Databases

Programming languages have had a formal basis, such as FORTRAN being 
based on Algebra, LISP on list processing, and so forth. Data and databases 
did not get “academic legitimacy” until Dr. Codd invented his relational 
algebra. It had everything academics love—a set of math symbols, including 
some new ones that would drive the typesetters crazy. But it also had axioms, 
thanks to Armstrong.

The immediate result was a burst of papers using Dr. Codd’s relational 
algebra. But the next step for a modern academic is to change or drop one 
of the axioms to see tha you can still have a consistent formal system. In 
geometry, change the parallel axiom (parallel lines never meet) to something 
else. For example, the replacement axiom is that two parallel lines (great 
circles) meet at two points on the surface of a sphere. Spheres are real. and we 
could test the new geometry with a real-world model.

Since 1NF is the basis for RDBMS, it was the one academics played 
with first. And we happen to have real multivalued databases to see if 
it works. Most of the academic work was done by Jaeschke and Schek 
at IBM and Roth, Korth, and Silberschatz at the University of Texas, 
Austin. They added new operators to the relational algebra and calculus 
to handle “nested relations” while still keeping the abstract set-oriented 
nature of the relational model. 1NF is not convenient for handling 
data with complex internal structures, such as computer-aided design 
and manufacturing (CAD/CAM). These applications have to handle 
structured entities while the 1NF table only allows atomic values for 
attributes.

Nonfirst normal form (NFNF) databases allow a column in a table to hold 
nested relations, and break the rule about a column only containing scalar 
values drawn from a known domain. In addition to NFNF, these databases are 
also called 2NF, NF2, and ¬NF in the literature. Since they are not part of the 
ANSI/ISO standards, you will find different proprietary implementations and 
academic notations for their operations.

Consider a simple example of employees and their children. On a 
normalized schema, the employees would be in one table and their children 
would be in a second table that references the parent:

CREATE TABLE Personnel

(emp_name VARCHAR(20) NOT NULL PRIMARY KEY,

..);
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CREATE TABLE Dependents

(dependent_name VARCHAR(20) NOT NULL PRIMARY KEY,

emp_name VARCHAR(20) NOT NULL

REFERENCES Personnel(emp_name)--- DRI actions

ON UPDATE CASCADE

ON DELETE CASCADE,

..);

But in an NFNF schema, the dependents would be in a column with a table 
type, perhaps something like this:

CREATE NF TABLE Personnel

(emp_name VARCHAR(20) NOT NULL PRIMARY KEY,

dependents TABLE

(dependent_name VARCHAR(20) NOT NULL PRIMARY KEY,

emp_name VARCHAR(20) NOT NULL,

..),

..);

We can extend the basic set operators UNION, INTERSECTION, and 
DIFFERENCE and subsets in a natural way. Extending the relational 
operations is also not difficult for PROJECTION and SELECTION. The JOIN 
operators are a bit harder, but if you restrict your algebra to the natural 
or equijoin, life is easier. The important characteristic is that when these 
extended relational operations are used on flat tables, they behave like the 
original relational operations.

To transform this NFNF table back into a 1NF schema, you would use 
an UNNEST operator. The unnesting, in this case, would make Dependents 

Personnel

John

Herb

Larry

Moe

Curly

Mary

Ann

ETC
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into its own table and remove it from Personnel. Although UNNEST is the 
mathematical inverse to NEST, the operator NEST is not always the mathematical 
inverse of UNNEST operations. Let’s start with a simple, abstract nested table:

G1

F1 F2 G2

F3 F4

X Y X Y

Y X

X Y Y Z

Z X

The UNNEST(<subtable>) operation will “flatten” a subtable up one level 
in the nesting:

G1

F1 F2 F3 F4

X Y X Y

X Y Y X

X Y Y Z

X Y Z X

The nest operation requires a new table name and its columns as a 
parameter. This is the extended SQL declaration:

NEST (G1, G2(F3, F4))

G1

F1 F2 G2

F3 F4

X Y X Y

Y X

Y Z

Z X

When we try to “re-nest” this step back to the original table, it fails.
There is also the question of how to order the nesting. We put the 

dependents inside the personnel in the first Personnel example. Children are 



1 2 . 3  N F N F  D a t a b a s e s 	 181

weak entities; they have to have a parent (a strong entity) to exist. But we could 
have nested the parents inside the dependents. The problem is that NEST() 
does not commute. An operation is commutative when (A ○ B) = (B ○ A), 
if you forgot your high school algebra. Let’s start with a simple flat table:

G1

F1 F2 F3 F4

X Y X X

X Y X Y

X Y X Z

X Y Y X

X Y Z X

Now, we do two nestlings to create subtables G2 made up of the F3 column 
and G3 made up of the F4 column. First in this order:

NEST(NEST (G1, G2(F3)) , G3(F4))

G1

F1 F2 G2 G3

F3 F4

X Y X X

Y

Z

X Y X Y

Z

Now in the opposite order:

NEST(NEST (G1, G3(F3)) , G2(F4))

G1

F1 F2 G2 G3

F3 F4

X Y X X

Y

Z

X Y Y X

Z
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The next question is how to handle missing data. What if Herb’s daughter 
Mary is lactose-intolerant and has no favorite ice cream flavor in the 
Personnel table example? The usual NFNF model will require explicit 
markers instead of a generic missing value.

Another constraint required is for the operators to be objective, which is 
covered by the partitioned normal form (PNF). This normal form cannot have 
empty subtables and operations have to be reversible. A little more formally, a 
relation in PNF is such that its atomic attributes are a superkey of the relation 
and that any nonatomic component of a tuple of the relation is also in PNF.

12.4 Existing Table-Valued Extensions

Existing SQL products have added some NFNF extensions, but they are not 
well optimized. The syntax is usually dialect, even though there are some 
ANSI/ISO standards for them.

12.4.1 Microsoft SQL Server

Microsoft SQL Server 2008 added table-valued parameters and user-defined 
data types. The syntax lets you declare a table as a type, then use that type 
name to define a local variable or parameter in stored procedures. According 
to Microsoft, a table-valued parameter (TVP) is an efficient option for up to 
1,000 or so rows. The syntax is straightforward:

CREATE TYPE Payments

AS TABLE (account_nbr CHAR(5) NOT NULL,

payment_amt DECIMAL(12,2));

This is not actually an NFNF implementation; it is more of a shorthand 
with limitations. You cannot use user-defined data types in a base table 
declaration! The T-SQL dialect uses a prefixed @ for local variables, both 
scalars and table variables, so to get a local, temporary table in the session, 
you have to write:

DECLARE @atm_money Payments;

12.4.2 Oracle Extensions

Oracle has a more powerful implementation than T-SQL, but it cannot 
handle optimizations without flattening the nested tables. The syntax uses 
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Oracle’s object type in the DDL; there are other collection types in the 
product, but let’s create an Address_Type for a simple example. This DDL 
will give us an Address_Type and Address_Book table. The Address_
Book is a table of Address_Type, pretty much the same syntax model at we 
just saw in T-SQL dialect:

CREATE TYPE Address_Type AS OBJECT

(addr_line VARCHAR2(35),

city_name VARCHAR2(25),

state_code CHAR2(2),

zip_code CHAR2(5));

CREATE TYPE Address_Book

AS TABLE OF Address_Type;

So now, to create a table, we just need to specify a column name (emp_
addresses in this case) and our newly created type (Address_Book):

CREATE TABLE Personnel

(emp_name VARCHAR2(25),

emp_addresses Address_Book);

To use this table and nested table we first put the addresses objects into a 
base table, say Personnel. The nested table is now empty, so we have to fill 
it with INSERT INTO statements using the key column name. To generate a 
result set we can make use of the table function:

INSERT INTO Personnel(name, emp_addresses)

VALUES ('Fred Flintstone', Address_Book());

INSERT INTO TABLE

(SELECT emp_addresses

FROM Personnel

WHERE emp_name = 'Fred Flintstone')

VALUES ('123 Main', 'Bedrock', 'TX', '78787');

INSERT INTO TABLE

(SELECT emp_addresses

FROM Personnel

WHERE emp_name = 'Fred Flintstone')

VALUES ('12 Lava Ln', 'Slag Town', 'CA', '98989');
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INSERT INTO TABLE

(SELECT emp_addresses

 FROM Personnel

 WHERE emp_name = 'Fred Flintstone')

 VALUES ('77 Cave Ct', 'Pre-York', 'NY', '12121');

To see the results, we can flatten the nesting with a simple query. The 
emp_addresses table is treated something like a derived table expression, 
but there is an implied join condition:

SELECT T1.emp_name, T2.*

FROM Personnel AS T1,

TABLE(T1.emp_addresses) AS T2;

Fred Flintstone 123 Main St Bedrock TX 78787

Fred Flintstone 12 Lava Ln Slag Town CA 98989

Fred Flintstone 77 Cave Ct Pre-York NY 33333

Concluding Thoughts

Multivalue databases is probably a better name than nonfirst normal form 
databases for this family of products. It is better to define something by what 
it is by its nature and not as the negative of something else. Most database 
programmers have classes on the relational model, but nobody outside a 
niche has any awareness of any other models, such as the multivalue one 
discussed here.
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C H A P T E R

13
Hierarchical and Network 

Database Systems

Introduction

IMS and IDMS are the most important prerelational technologies that are 
still in wide use today. In fact, there is a good chance that IMS databases still 
hold more commercial data than SQL databases. These products still do the 
“heavy lifting” in banking, insurance, and large commercial applications on 
mainframe computers and they use COBOL. They are great for situations 
that do not change much and need to move around a lot of data. Because 
so much data still lives in them, you have to at least know the basics of 
hierarchical and network database systems to get to the data to put it in a 
NoSQL tool.

I am going to assume that most of the readers of this book have only 
worked with SQL. If you have heard of a hierarchical or network database 
system, it was probably mentioned in a database course in college and 
then forgotten. In some ways, this is too bad. It helps to know how the 
earlier tools worked, so you can see how the new tools evolve from the 
old ones.

13.1 Types of Databases

The classic types of database structures are network, relational, and 
hierarchical. The relational model is associated with Dr. E. F. Codd, and the 
other two models are associated with Charles Bachman, who did pioneering 
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in the 1950s at Dow Chemical, and in the 1960’s at General Electric, where 
he developed the Integrated Data Store (IDS), one of the first database 
management systems. The network and hierarchical models are called  
“navigational” databases because the mental model of data access is that of 
a reader moving along paths to pick up the data. In fact, when Bachman 
received the ACM Turing Award in 1973 for his outstanding contributions to 
database technology, this is how he described it.

IMS was not the only navigational database, just the most popular. TOTAL 
from Cincom was based on a master record that had pointer chains to one or 
more sets of slave records. Later, IDMS and other products generalized this 
navigational model.

CODASYL, the committee that defined COBOL, came up with a standard 
for the navigational model. Finally, the ANSI X3H2 Database Standards 
Committee took the CODASYL model, formalized it a bit, and produced the 
NDL language specification. However, at that point, SQL had become the 
main work of the ANSI X3H2 Database Standards Committee and nobody 
really cared about NDL and the standard simply expired.

IMS from IBM is the most popular hierarchical database management 
system still in wide use today. It is stable, well defined, scalable, and very 
fast for what it does. The IMS software environment can be divided into five 
main parts:

	 1.	 Database

	 2.	 Data Language I (DL/I)

	 3.	 DL/I control blocks

	 4.	 Data communications component (IMS TM)

	 5.	 Application programs

13.2 Database History

Before the development of DBMSs, data was stored in individual files. With 
this system, each file was stored in a separate data set in a sequential or 
indexed format. To retrieve data from the file, an application had to open 
the file and read through it to the location of the desired data. If the data 
was scattered through a large number of files, data access required a lot 
of opening and closing of files, creating additional input/output (I/O) and 
processing overhead.
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To reduce the number of files accessed by an application, programmers 
often stored the same data in many files. This practice created redundant 
data and the related problems of ensuring update consistency across multiple 
files. To ensure data consistency, special cross-file update programs had to be 
scheduled following the original file update.

The concept of a database system resolved many data integrity and data 
duplication issues encountered in a file system. A properly designed database 
stores the data only once in one place and makes it available to all application 
programs and users. At the same time, databases provide security by limiting 
access to data. The user’s ability to read, write, update, insert, or delete data 
can be restricted. Data can also be backed up and recovered more easily in a 
single database than in a collection of flat files.

Database structures offer multiple strategies for data retrieval. Application 
programs can retrieve data sequentially or (with certain access methods) 
go directly to the desired data, reducing I/O and speeding up data retrieval. 
Finally, an update performed on part of the database is immediately available 
to other applications. Because the data exists in only one place, data integrity 
is more easily ensured.

The IMS database management system as it exists today represents the 
evolution of the hierarchical database over many years of development and 
improvement. IMS is in use at a large number of business and government 
installations throughout the world. IMS is recognized for providing excellent 
performance for a wide variety of applications and for performing well with 
databases of moderate to very large volumes of data and transactions.

13.2.1 DL/I

Because they are implemented and accessed through use of the DL/I, IMS 
databases are sometimes referred to as DL/I databases. DL/I is a command-
level language, not a database management system. DL/I is used in batch and 
online programs to access data stored in databases.

Application programs use DL/I calls to request data. DL/I then uses 
system access methods, such as virtual storage access method (VSAM), to 
handle the physical transfer of data to and from the database. IMS databases 
are often referred to by the access method they are designed for, such as 
HDAM (hierarchical direct access method), HIDAM (hierarchical indexed 
direct access method), PHDAM (partitioned HDAM), PHIDAM (partitioned 
HIDAM), HISAM (hierarchical indexed sequential access method), and 
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SHISAM (simple HISAM). These are all IBM terms from their mainframe 
database products and will not be discussed here.

IMS makes provisions for nine types of access methods, and you can 
design a database for any one of them. On the other hand, SQL programmers 
are generally isolated from the access methods that their database engine 
uses. We will not worry about the details of the access methods that are 
called at this level.

13.2.2 Control Blocks

When you create an IMS database, you must define the database structure 
and how the data can be accessed and used by application programs. These 
specifications are defined within the parameters provided in two control 
blocks, also called DL/I control blocks:

◆	 Database description (DBD)

◆	 Program specification block (PSB)

In general, the DBD describes the physical structure of the database, and 
the PSB describes the database as it will be seen by a particular application 
program. The PSB tells the application which parts of the database it can 
access and the functions it can perform on the data. Information from the 
DBD and PSB is merged into a third control block, the application control 
block (ACB). The ACB is required for online processing but is optional for 
batch processing.

13.2.3 Data Communications

The IMS Transaction Manager (IMS TM) is a separate set of licensed 
programs that provide access to the database in an online, real-time 
environment. Without the TM component, you would be able to process data 
in the IMS database in a batch mode only.

13.2.4 Application Programs

The data in a database is of no practical use to you if it sits in the database 
untouched. Its value comes in its use by application programs in the 
performance of business or organizational functions. With IMS databases, 
application programs use DL/I calls embedded in the host language to 
access the database. IMS supports batch and online application programs. 
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IMS supports programs written in ADA, Assembler, C, C++, COBOL, PL/I, 
Pascal, REXX, and WebSphere Studio Site Developer Version 5.0.

13.2.5 Hierarchical Databases

In a hierarchical database, data is grouped in records, which are subdivided into a 
series of segments. Consider a department database for a school in which a record 
consists of the segments Dept, Course, and Enroll. In a hierarchical database, 
the structure of the database is designed to reflect logical dependencies—certain 
data is dependent on the existence of certain other data. Enrollment is dependent 
on the existence of a course, and, in this case, a course is dependent on the 
existence of a department to offer that course. These are called strong and weak 
entities in RDBMS.

The terminology changes from the SQL world to the IMS world. IMS uses 
records and fields, and calls each hierarchy a database. In the SQL world, a 
row and column can be virtual, have defaults, and have constraints—they are 
smart. Records and fields are physical and depend on the application programs 
to give them meaning—they are dumb. In SQL, a schema or database is 
a collection of related tables, which might map into several different IMS 
hierarchies in the same data model. In other words, an IMS database is more 
like a table in SQL.

13.2.6 Strengths and Weaknesses

In a hierarchical database, the data relationships are defined by the storage 
structure. The rules for queries are highly structured. It is these fixed 
relationships that give IMS extremely fast access to data when compared to 
an SQL database when the queries have not been highly optimized.

Hierarchical and relational systems have their strengths and weaknesses. 
The relational structure makes it relatively easy to code ad-hoc queries. But 
an SQL query often makes the engine read through an entire table or series of 
tables to retrieve the data. This makes searches slower and more processing-
intensive. In addition, because the row and column structure must be 
maintained throughout the database, an entry must be made under each 
column for every row in every table, even if the entry is only a place holder 
(i.e., NULL) entry.

With the hierarchical structure, data requests or segment search 
arguments (SSAs) may be more complex to construct. Once written, 
however, they can be very efficient, allowing direct retrieval of the data 
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requested. The result is an extremely fast database system that can handle 
huge volumes of data transactions and large numbers of simultaneous 
users. Likewise, there is no need to enter placeholders where data is 
not being stored. If a segment occurrence isn’t needed, it isn’t created or 
inserted.

The trade-offs are the simplicity, portability, and flexibility of SQL versus 
the speed and storage savings of IMS. You tune an IMS database for one set of 
applications.

13.3 Simple Hierarchical Database

To illustrate how the hierarchical structure looks, we’ll design two very 
simple databases to store information for the courses and students in a 
college. One database will store information on each department in the 
college, and the second will contain information on each college student. In 
a hierarchical database, an attempt is made to group data in a one-to-many 
relationship.

An attempt is also made to design the database so that data that is 
logically dependent on other data is stored in segments that are hierarchically 
dependent on the data. For that reason, we have designated Dept as the 
key, or root, segment for our record, because the other data would not exist 
without the existence of a department. We list each department only once. 
We provide data on each course in each department. We have a segment type 
Course, with an occurrence of that type of segment for each course in the 
department. Data on the course title, description, and instructor is stored as 
fields within the Course segment. Finally, we have added another segment 
type, Enroll, which will include the student IDs of the students enrolled in 
each course.

Notice that we are in violation ISO-11179 naming rules. The navigational 
model works on one instance of a data element at a time, like a magnetic tape 
or punch-card file, and not on whole sets like RDBMS.

In Figure 13.1, we also created a second database called Student. This 
database contains information on all the students enrolled in the college. 
This database duplicates some of the data stored in the Enroll segment 
of the Department database. Later, we will construct a larger database 
that eliminates the duplicated data. The design we choose for our database 
depends on a number of factors; in this case, we will focus on which data we 
will need to access most frequently.
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The two databases in the figure are shown as they might be structured 
in relational form in three tables. Notice that these tables are not always 
normalized when you do a direct translation to SQL. For example:

CREATE SCHEMA College;

CREATE TABLE Courses

(course_nbr CHAR(9) NOT NULL PRIMARY KEY,

 course_title VARCHAR(20) NOT NULL,

 course_description VARCHAR(200) NOT NULL,

 dept_id CHAR(7) NOT NULL

 REFERENCES Departments (dept_id)

 ON UPDATE CASCADE);

CREATE TABLE Students

(student_id CHAR(9) NOT NULL PRIMARY KEY,

 student_name CHAR(35) NOT NULL,

 student_address CHAR(35) NOT NULL,

 major CHAR(10));

CREATE TABLE Departments

(dept_id CHAR(7) NOT NULL PRIMARY KEY,

 dept_name CHAR(15) NOT NULL,

 chairman_name CHAR(35) NOT NULL,

 budget_code CHAR(3) NOT NULL);

Figure 13.1  Sample hierarchical databases for Department and Student.
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13.3.1 Department Database

The segments in the Department database are as follows:

◆	 Dept: Information on each department. This segment includes fields 
for the department ID (key field), department name, chairman’s name, 
number of faculty, and number of students registered in departmental 
courses.

◆	 Course: This segment includes fields for the course number (a unique 
identifier), course title, course description, and instructor’s name.

◆	 Enroll: The students enrolled in the course. This segment includes 
fields for student ID (key field), student name, and grade.

13.3.2 Student Database

The segments in the Student database are as follows:

◆	 Student: Student information. This segment includes fields for 
student ID (key field), student name, address, major, and courses 
completed.

◆	 Billing: Billing information for courses taken. This segment includes 
fields for semester, tuition due, tuition paid, and scholarship funds 
applied.

The double-headed line between the root (Student) segment of the 
Student database and the Enroll segment of the Department database 
represents a logical relationship based on data residing in one segment and 
needed in the other. This is not like the referencing and referenced table 
structures in SQL; it has to be enforced by the application programs.

13.3.3 Design Considerations

Before implementing a hierarchical structure for your database, you should 
analyze the end user’s processing requirements, because they will determine 
how you structure the database. In particular, you must consider how the 
data elements are related and how they will be accessed.

For example, given the classic Parts and Suppliers database, the 
hierarchical structure could subordinate parts under suppliers for the accounts 
receivable department, or subordinate suppliers under parts for the order 
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department. In RDBMS, there would be a relationship table that references 
both parts and suppliers by their primary keys and that contains information 
that pertains to the relationship, and not to either parts or suppliers.

13.3.4 Example Database Expanded

At this point you have learned enough about database design to expand our 
original example database. We decide that we can make better use of our 
college data by combining the Department and Student databases. Our 
new College database is shown in Figure 13.2.

The following segments are in the expanded College database:

◆	 College: The root segment. One record will exist for each college 
in the university. The key field is the college ID, such as ARTS, ENGR, 
BUSADM, and FINEARTS.

◆	 Dept: Information on each department within the college. This 
segment includes fields for the department ID (key field), department 
name, chairman’s name, number of faculty, and number of students 
registered in departmental courses.

◆	 Course: This segment includes fields for the course number (key 
field), course title, course description, and instructor’s name.

◆	 Enroll: A list of students enrolled in the course. There are fields for 
student ID (key field), student name, current grade, and number of 
absences.

◆	 Staff: A list of staff members, including professors, instructors, 
teaching assistants, and clerical personnel. The key field is employee 

Figure 13.2  College database (combining Department and Student databases).
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number. There are fields for name, address, phone number, office 
number, and work schedule.

◆	 Student: Student information. This segment includes fields for 
student ID (key field), student name, address, major, and courses being 
taken currently.

◆	 Billing: Billing and payment information. It includes fields for billing 
date (key field), semester, amount billed, amount paid, scholarship 
funds applied, and scholarship funds available.

◆	 Academic: The key field is a combination of the year and semester. 
Fields include grade point average (GPA) per semester, cumulative 
GPA, and enough fields to list courses completed and grades per 
semester.

13.3.5 Data Relationships

The process of data normalization helps you break data into naturally 
associated groupings that can be stored collectively in segments in a 
hierarchical database. In designing your database, break the individual data 
elements into groups based on the processing functions they will serve. At the 
same time, group data based on inherent relationships between data elements.

For example, the College database (see Figure 13.2) contains a segment 
called Student. Certain data is naturally associated with a student, such as 
student ID number, student name, address, and courses taken. Other data 
that wanted in the College database, such as a list of courses taught or 
administrative information on faculty members, would not work well in the 
Student segment.

Two important data relationship concepts are one-to-many and many-to-
many. In the College database, there are many departments for each college, 
but only one college for each department. Likewise, many courses are taught 
by each department, but a specific course (in this case) can be offered by only 
one department.

The relationship between courses and students is many-to-many, as there 
are many students in any course and each student will take several courses. 
Let’s ignore the many-to-many relationship for now—this is the hardest 
relationship to model in a hierarchical database.

A one-to-many relationship is structured as a dependent relationship 
in a hierarchical database: the many are dependent on the one. Without a 
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department, there would be no courses taught; without a college, there would 
be no departments.

Parent and child relationships are based solely on the relative positions 
of the segments in the hierarchy, and a segment can be a parent of other 
segments while serving as the child of a segment above it. In Figure 13.2, 
Enroll is a child of Course, and Course, although the parent of Enroll, 
is also the child of Dept. Billing and Academic are both children of 
Student, which is a child of College. Technically, all of the segments except 
College are dependents.

When you have analyzed the data elements, grouped them into segments, 
selected a key field for each segment, and designed a database structure, 
you have completed most of your database design. You may find, however, 
that the design you have chosen does not work well for every application 
program. Some programs may need to access a segment by a field other than 
the one you have chosen as the key. Or another application may need to 
associate segments that are located in two different databases or hierarchies. 
IMS has provided two very useful tools that you can use to resolve these data 
requirements: secondary indexes and logical relationships.

Secondary indexes let you create an index based on a field other than the 
root segment key field. That field can be used as if it were the key to access 
segments based on a data element other than the root key.

Logical relationships let you relate segments in separate hierarchies and, 
in effect, create a hierarchic structure that does not actually exist in storage. 
The logical structure can be processed as if it physically exists, allowing you 
to create logical hierarchies without creating physical ones.

13.3.6 Hierarchical Sequence

Because segments are accessed according to their sequence in the hierarchy, 
it is important to understand how the hierarchy is arranged. In IMS, 
segments are stored in a top-down, left-to-right sequence (Figure 13.3). The 
sequence flows from the top to the bottom of the leftmost path or leg. When 
the bottom of that path is reached, the sequence continues at the top of the 
next leg to the right.

Understanding the sequence of segments within a record is important 
to understanding movement and position within the hierarchy. Movement 
can be forward or backward and always follows the hierarchical sequence. 
Forward means from top to bottom, and backward means bottom to top. 
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Position within the database means the current location at a specific segment. 
You are once more doing depth-first tree traversals, but with a slightly 
different terminology.

13.3.7 Hierarchical Data Paths

In Figure 13.4, the numbers inside the segments show the hierarchy as a 
search path would follow it. The numbers to the left of each segment show 
the segment types as they would be numbered by type, not occurrence. That 
is, there may be any number of occurrences of segment type 04, but there 
will be only one type of segment 04. The segment type is referred to as the 
segment code.

Figure 13.3  Sequence and data paths in a hierarchy.

Figure 13.4  Hierarchical Data Paths.
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To retrieve a segment, count every occurrence of every segment type in the 
path and proceed through the hierarchy according to the rules of navigation:

◆	 Top to bottom

◆	 Front to back (counting twin segments)

◆	 Left to right

For example, if an application program issues a GET-UNIQUE (GU) call for 
segment 6 in Figure 13.4, the current position in the hierarchy is immediately 
following segment 06. If the program then issues a GET-NEXT (GN) call, 
IMS would return segment 07. There is also the GET-NEXT WITHIN PARENT 
(GNP) call, which explains itself.

As shown in Figure 13.4, the College database can be separated into four 
search paths:

◆	 The first path includes segment types 01, 02, 03, and 04.

◆	 The second path includes segment types 01, 02, and 05.

◆	 The third path includes segment types 01, 06, and 07.

◆	 The fourth path includes segment types 01, 06, and 08. The search 
path always starts at 01, the root segment.

13.3.8 Database Records

Whereas a database consists of one or more database records, a database 
record consists of one or more segments. In the College database, a record 
consists of the root segment College and its dependent segments. It is 
possible to define a database record as only a root segment. A database can 
contain only the record structure defined for it, and a database record can 
contain only the types of segments defined for it.

The term record can also be used to refer to a data set record (or block), 
which is not the same thing as a database record. IMS uses standard data 
system management methods to store its databases in data sets. The smallest 
entity of a data set is also referred to as a record (or block).

Two distinctions are important. A database record may be stored in several 
data set blocks. A block may contain several whole records or pieces of 
several records. In this chapter, I try to distinguish between a database record 
and data set record where the meaning may be ambiguous.
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13.3.9 Segment Format

A segment is the smallest structure of the database in the sense that IMS 
cannot retrieve data in an amount less than a segment. Segments can be 
broken down into smaller increments called fields, which can be addressed 
individually by application programs.

A database record can contain a maximum of 255 types of segments. 
The number of segment occurrences of any type is limited only by 
the amount of space you allocate for the database. Segment types can 
be of fixed length or variable length. You must define the size of each 
segment type.

It is important to distinguish the difference between segment types and 
segment occurrences. Course is a type of segment defined in the DBD for the 
College database. There can be any number of occurrences for the Course 
segment type. Each occurrence of the Course segment type will be exactly 
as defined in the DBD. The only difference in occurrences of segment types 
is the data contained in them (and the length, if the segment is defined as 
variable length).

Segments have several different possible structures, but from a logical 
viewpoint, there is a prefix that has structural and control information for the 
IMS system, and 3 is the prefix for the actual data fields.

In the data portion, you can define the following types of fields: a 
sequence field and the data fields. The sequence field is often referred to as the 
key field. It can be used to keep occurrences of a segment type in sequence 
under a common parent, based on the data or value entered in this field. A 
key field can be defined in the root segment of a HISAM, HDAM, or HIDAM 
database to give an application program direct access to a specific root 
segment. A key field can be used in HISAM and HIDAM databases to allow 
database records to be retrieved sequentially. Key fields are used for logical 
relationships and secondary indexes.

The key field not only can contain data but also can be used in special 
ways that help you organize your database. With the key field, you can 
keep occurrences of a segment type in some kind of key sequence, which 
you design. For instance, in our example database you might want to store 
the student records in ascending sequence, based on student ID number. 
To do this, you define the student ID field as a unique key field. IMS will 
store the records in ascending numerical order. You could also store them 
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in alphabetical order by defining the name field as a unique key field. Three 
factors of key fields are important to remember:

	 1.	 The data or value in the key field is called the key of the segment.

	 2.	 The key field can be defined as unique or nonunique.

	 3.	 You do not have to define a key field in every segment type

You define data fields to contain the actual data being stored in the database. 
(Remember that the sequence field is a data field.) Data fields, including 
sequence fields, can be defined to IMS for use by applications programs.

13.3.10 Segment Definitions

In IMS, segments are defined by the order in which they occur and by their 
relationship with other segments:

◆	 Root segment: The first, or highest, segment in the record. There can be 
only one root segment for each record. There can be many records in a 
database.

◆	 Dependent segment: All segments in a database record except the root 
segment.

◆	 Parent segment: A segment that has one or more dependent segments 
beneath it in the hierarchy.

◆	 Child segment: A segment that is a dependent of another segment above 
it in the hierarchy.

◆	 Twin segment: A segment occurrence that exists with one or more 
segments of the same type under a single parent.

There are functions to edit, encrypt, or compress segments, which we will 
not consider here. The point is that you have a lot of control of the data at the 
physical level in IMS.

13.4 Summary

“Those who cannot remember the past are condemned to repeat it.” —
George Santayana
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There were databases before SQL, and they were all based on a navigation 
model. What SQL programmers do not like to admit is that not all 
commercial information resides in SQL databases. The majority is still in 
simple files or older, navigational, nonrelational databases.

Even after the new tools have taken on their own characteristics to 
become a separate species, the mental models of the old systems still linger. 
The old patterns are repeated in the new technology.

Even the early SQL products fell into this trap. For example, how many 
SQL programmers today use IDENTITY, or other auto-increment vendor 
extensions as keys on SQL tables today, unaware that they are imitating the 
navigational sequence field (a.k.a. the key field) from IMS?

This is not to say that a hierarchy is not a good way to organize data; it is! 
But you need to see the abstraction apart from any particular implementation. 
SQL is a declarative language, while DL/I is a collection of procedure calls 
inside a host language. The temptation is to continue to write SQL code in 
the same style as you wrote procedural code in COBOL, PL/I, or whatever 
host language you had.

The bad news is that you can use cursors to imitate sequential file 
routines. Roughly, the READ() command becomes an embedded FETCH 
statement, OPEN and CLOSE file commands map to OPEN CURSOR and CLOSE 
CURSOR statements, and every file becomes a simple table without any 
constraints and a “record number” of some sort. The conversion of legacy 
code is almost effortless with such a mapping. And it is also the worst way to 
program with a SQL database.

Hopefully, this book will show you a few tricks that will let you write SQL 
as SQL and not fake a previous language in it.

Concluding Thoughts

IMS is almost 50 years old and has moved from the early IBM System/360 
technology and COBOL to LINUX and Java. Failure to understand how all that 
data is modeled and accessed means you cannot get to that data. My personal 
experience was being teased by younger programmers for not knowing the 
current cool application programming language. When I asked them what 
they were doing, they were moving IBM 3270 terminal applications onto cell 
phones; the back end was an IMS database that had been at their insurance 
company since 1970. As Alphonse Karr said in 1839: “Plus ça change, plus c’est 
la même chose”—“the more it changes, the more it’s the same thing.”
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ACID: Atomicity, consistency, isolation, and durability, the four desirable 
properties of a classic transaction processing system. Each transaction is 
an atomic (indivisible) unit of work that fails or succeeds as a unit. The 
database is always in a consistent state at the start and end of a transaction; 
no constraints are violated. Each transaction is isolated from all the other 
transactions against the database. Finally, the work done by a transaction is 
persisted in the database (durable) when a transaction succeeds. See BASE.

Array: A data structure that uses one or more numeric position indexes 
(subscripts) to locate a value. The elements of an array are all of the same 
data type.

BASE: A deliberately cute acronym that is short for basically available, soft 
state, eventual consistent. This is the “no SQL” counterpart to the ACID 
property of RDBMS. The idea is that we can live with a system that is known 
to be incomplete and inaccurate, under the assumption that it will “catch up” 
with the truth. We are willing to wait to get data (basically available), can 
live with different users seeing slightly inconsistent versions of the same data 
(soft state), and believe the data to eventually arrive at a consistent state. The 
trade-off is performance for accuracy.

Batch processing: A technique of submitting a large set of transactions as a 
single unit of work. Typically in databases, this is how large amounts of data 
are inserted, updated, or deleted from the database.

Bertillon card: An early biometric identification system from France based 
on an elaborate system of body measurements. It was used for identifying 
criminals. It has been replaced by fingerprints, DNA, and other biometric 
identifiers.

G L O S S A R Y
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Big Data: A current buzzword usually associated with NoSQL and mixed 
data sources. Forrester Research created a definition with the catchy buzz 
phrase “the 4V’s” in their literature. The first V is volume, which has been 
growing at an exponential rate. The second V is velocity. Data arrives faster 
than it has before, thanks to improved communication systems such as fiber-
optic networks. The third V is variety. The sources of data have increased 
because the variety of devices and their applications. For example, social 
networks, blogs, and web cameras did not exist in the past. The fourth V is 
variability. There is an increasing variety of data formats, not just relational 
or traditional data stores. Others have tried to add more V’s to the Big Data 
definition: verification, value, veracity, and vicinity are some of the candidate 
buzzwords.

Biometrics: Data based on human physical measurements such as 
fingerprints, retina prints, and so forth. See Bertillon card.

Brewer’s theorem: Named for Eric Brewer who proposed it at the 2000 
Symposium on Principles of Distributed Computing (PODC). See CAP.

Byte: A unit of computer storage made of 8 bits (binary digits). The term was 
coined by Werner Buchholz in July 1956, during the early design phase for the 
IBM Stretch computer. There are several ways to express the size of computer 
storage using the base unit of 1,024 bits=1 kilobyte or 1KB, and copying the SI 
prefixes for decimal powers to apply as powers of the base unit.

1,024 Kbytes kilobytes

1,0242 Mbytes megabytes

1,0243 Gbytes gigabytes

1,0244 Tbytes terabytes

1,0245 Pbytes petabytes

1,0246 Ebytes exabytes

1,0247 Zbytes zettabytes

1,0248 Ybytes yottabytes

As of 2013, there are several commercial databases that are measured in 
petabytes, such as Wal-Mart’s data warehouse. Oracle has used the prefix 
“exa-” in their advertising for their data warehouse product, but has no 
installations that actually use that unit. The prefix “yotta-” apparently sounds 
too silly to be used for advertising.
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CAP: This was a conjecture made by Eric Brewer that stands for consistency, 
availability, and partition tolerance as a transaction model for distributed 
databases. The CAP theorem states that it is impossible for a distributed 
computer system to simultaneously provide all three of the following system 
characteristics:

◆	Consistency (all nodes in the distributed database see the same data at 
the same time).

◆	Availability (every database request receives a response about its 
success or failure).

◆	Partition tolerance (the system continues to operate despite arbitrary 
message loss or failure of part of the system).

In 2002, Seth Gilbert and Nancy Lynch of MIT published a formal proof of 
Brewer’s conjecture. See Brewer’s theorem.

Cloud computing: The practice of using a network of remote servers hosted 
on the Internet to store, manage, and process data, rather than a local server. 
Cloud computing is mostly jargon that is used for any distributed computing 
over a network.

CODASYL: The committee that defined COBOL and came up with a standard 
for the navigational database model. Their work with databases was taken 
over by the ANSI X3H2 Database Standards Committee. This committee took 
the CODASYL model, formalized it a bit, and produced the NDL (Network 
Database Language) specification. The NDL standard simply expired from lack 
of interest once the SQL standards were published.

Codd: Edgar Frank “Ted” Codd (d. 2003) was the inventor the relational 
model for database management, the theoretical basis for relational databases. 
His mathematical approach influenced all database models that followed it. 
In particular, he published his 12 rules of RDBMS to define what constituted 
a relational database. Dr. Codd later coined the term online analytical 
processing (OLAP) and wrote the 12 laws of OLAP.

Columnar databases: A relational database, usually SQL, that stores the data 
in columns rather than in rows. One advantage is that a column is of one and 
only one data type so it can be compressed and these columnar stores can be 
used to create many different tables.

COMMIT statement: A statement that persists the data in a user session into 
the database. This was first used in databases that have an ACID model, but 
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applies to any database. In an ACID model, the persisted data has to meet 
all the constraints and be immediately consistent; in a BASE model, the data 
is simply persisted and we wait to find out if it is consistent. See ROLLBACK 
statement and SAVEPOINT statement.

Complex event processing (CEP): Means that not all the data has arrived 
in the database yet! You cannot yet complete a query because you are 
anticipating data, but you know you have part of it. The data can be from the 
same source, or from multiple sources. The event model is not quite the same 
as a state transition model for a system. State transitions are integrity checks 
that assure data changes only according to rules for sequences of procedures, 
of fixed or variable lifespans.

Compression: Storing data in more compact format to save disk space and 
speed up data transfers from secondary to primary storage. Compression can 
lose some information from data from the original for some data types, such 
as music or graphics, or it can be lossless. This means the original data can be 
completely reconstructed from the compressed data.

Connected graph: From graph theory, a set of nodes in which any two nodes 
can be reached by a walk. This is a nice property for queries since any two 
nodes can be related (though the relationship might be insanely distant).

Consistency: The database property of persisting only data that meets all of 
the constraints, implicit or explicit, in the schema.

CQL: Contextual Query Language. A string pattern searching language for 
textbases defined by ANSI Z39. It is based on regular expressions. It is similar 
to commercial text search languages such as LexisNexus and Westlaw. See 
Regular expressions and Textbase

Cycle: A path in a graph that returns to the node from which it started. Also 
known as circuit in graph theory. A Hamiltonian circuit is one that contains 
all nodes in a graph. In RDBMS, it refers to circular references among 
referential actions; it is not desirable because data retrieval can hang in an 
endless loop.

Cypher: A declarative graph query language that is still growing and 
maturing, which will make SQL programmers comfortable.

DCL: Data Control Language. One of the SQL sublanguages that controls 
user access to the schema. It is not a security or encryption tool. The term is 
now applied to non-SQL databases as well.
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DDL: Data Definition Language. One of the SQL sublanguages that describes 
and modifies the tables, views, indexing, procedures, and other schema 
objects. The term is now applied to non-SQL databases as well.

DML: Data Manipulation Language. One of the SQL sublanguages that 
performs queries, invokes procedures, and updates the data in the schema. 
It does not change the structure of the schema or control access. The term is 
now applied to non-SQL databases as well.

DNA (Deoxyribonucleic Acid): The chemical basis of genes and 
chromosomes that makes each human being unique. DNA profiling is used 
for identification by encoding repetitive (repeat) gene sequences that are 
highly variable. These easily classified units of genetic material are called 
variable number tandem repeats (VNTRs) and, particularly, short tandem 
repeats (STRs). DNA profiling is not full genome sequencing.

Document management systems: See Textbase.

Edge: From graph theory, also known as an arc. They are the parts of a graph 
structure that connect two nodes. The edges can be undirected or directed to 
show if the relationship is asymmetric or symmetric, respectively. They can 
also have values, such as distances on a graph that models a physical map.

Face recognition: A family of biometric recognition algorithms can be 
divided into two main approaches: geometric or photometric. The geometric 
family assigns points on a human face and constructs a geometric model 
based on the distances and ratios among those points. This mesh can be 
encoded easily. The photometric family attempts to align a photographic 
image of a human face with base image from a database.

Four V’s: See Big Data.

Galton fingerprint system: Also Henry–Galton. One of several fingerprint 
classifications systems, based the physical appearance of fingerprints. It is 
used in the United States and many optical matching systems use it.

Generational concurrency model: A concurrency control model that 
is based on having a “snapshot” of the state of a database at a point in 
time (a generation) when the database was consistent. The database can 
be queried with or restored to that snapshot. This model was derived 
from microfilm systems that printed multiple copies of the same record 
for multiple users. Updates occur only when the various updates to the 
outstanding copies can be combined into a single consistent update. See 
Optimistic concurrency.
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Geographic information system (GIS): A database specialized for 
geographical or spatial data. There are geospatial standards from ISO 
Technical Committee 211 (ISO/TC 211) and the Open Geospatial 
Consortium (OGC). The OGC is an international industry group. Today, the 
big players are Environmental Systems Research Institute (ESRI), Computer-
Aided Resource Information System (CARIS), Mapping Display and Analysis 
System (MIDAS, now MapInfo), and Earth Resource Data Analysis System 
(ERDAS). There are also two public domain systems (MOSS and GRASS GIS) 
that began in the late 1970s and early 1980s.

Graph: A mathematical structure that consists of nodes (a.k.a. vertices) 
connected by edges (a.k.a. arcs). Each edge connects zero nodes, one node to 
itself, or two different nodes. A node is usually drawn as a circle or dot and 
the edges are drawn as lines in diagrams. See Connected graph, Edge, Node, 
Path, Tree, and Walk.

Graph databases: A database stores relationship data in a graph structure. 
They are not good for computations and aggregations. See Edge, Graph, 
Gremlin, Neo4j, and Node.

Gremlin: An open-source language that is based on traversals of a property 
graph with a syntax taken from OO and the C programming language family.

Hashing: A data access method that takes a search key and applies a 
mathematical function to it to get a position in a hash table. This hash table is 
a lookup table that holds the actual physical location of the data in physical 
storage. It is possible that two different keys can return the same hash value 
(a collision or hash clash) and these have to be resolved in some way. A 
perfect hashing function has no collisions.

HDFS: The Hadoop Distributed File System is built from commodity 
hardware arranged to be fault-tolerant. The logo for this software is a cute 
cartoon baby elephant. HDFS and MongoDB are the most popular versions of 
NoSQL databases.

Hierarchical database systems: A prerelational family of databases based on 
accessing data with a hierarchical data structure. It is a special case of the 
network or navigational family of databases. See IMS and Network database 
systems.

Hierarchical triangular mesh (HTM): A geographic location system based 
on a recursive geodesic covering of Earth with triangles called trixels. The 
smallest valid HTM ID is 8 levels but it is easy to go to 31 levels, represented 
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in 64 bits. Level 25 is good enough for most applications, since it is about 0.6 
meters on the surface of the Earth, or 0.02 arc-seconds. Level 26 is about 30 
centimeters (less than one foot) on the Earth’s surface.

Hive: This is an open-source Hadoop language from Facebook. It is closer 
to SQL than Pig and can be used for ad-hoc queries without being compiled 
like Pig.

Information management system (IMS): An IBM product that is the most 
popular hierarchical database in use today. Information is structured in 
records that are subdivided into a hierarchical tree of related segments.  
A record is a root segment and all of its dependent segments. Segments are 
further subdivided into fields. The data in any record relates to one entity. It 
is stable, well defined, scalable, and very fast for what it does. IMS databases 
are often referred to by the access method they are designed for, such as 
HDAM (hierarchical direct access method), HIDAM (hierarchical indexed 
direct access method), PHDAM (partitioned HDAM), PHIDAM (partitioned 
HIDAM), HISAM (hierarchical indexed sequential access method), and 
SHISAM (simple HISAM).

Isolation levels: The scheme by which a database decides how a session see 
modifications made to the database by other sessions. There is an ANSI/ISO 
standard SQL model that is based on committed and uncommitted work and 
the ACID properties. See BASE, as an alternative.

Java: A programming language currently owned by the Oracle Corporation. 
The JDBC (Java Database Connectivity) is a Java-based data access 
technology that defines how a client may access a database. JDBC is oriented 
toward relational databases, but has become the most popular application 
program interface for most of the NoSQL products.

Key–Value stores: A model of data storage that has a physical locator (key) 
and a value. These pairs are searched on the key with hashing or indexes and 
the value is returned. See MapReduce.

Keyword and keyword in context (KWIC): A family of text indexing 
techniques that look for a searched or keyword and return its location in a 
textbase. The classic KWIC displays the keyword in bold type, with words 
to left and right of it in regular type. The family includes KWOC (keyword 
out of context), KWAC (keyword augmented in context), and key-term 
alphabetical (KEYTALPHA). The differences in these techniques are in the 
display to the user.
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LAMP stack: An architecture for websites based on open-source software. 
The initials stand for Linux (operating system), Apache (HTTP server), 
MySQL (database, but since it was acquired by Oracle, people are moving 
to the open-source version, MariaDB), and PHP, Perl, or Python for the 
application language.

MapReduce: A data access technique for large data sets that depends on 
parallelism in the storage used. First, a Map() procedure does filtering and 
sorting to get the data into queues, then a Reduce()  procedure performs 
summary and aggregations with data drawn from the queues. This model 
is based on the map and reduce functions used in functional programming 
languages, such as LISP.

Master street address guide (MSAG): The MSAG describes address elements 
including the exact spellings of street names and street number ranges. It 
is part of the U.S. Postal Service’s (USPS) Coding Accuracy Support System 
(CASS). There are similar guides in other countries.

MDX: A programming language for OLAP queries from Microsoft that has 
become a de-facto standard by virtue of Microsoft’s market domination.

MOLAP: Multidimensional online analytical processing. This is the “data in 
a grid” version of OLAP that is preferred by spreadsheet users. See OLAP and 
ROLAP.

MongoDB: An open-source document-oriented database system developed 
and supported by 10gen. MongoDB stores structured data as documents in 
the BSON format, a version of JSON (JavaScript Object Notation). MongoDB 
is the most popular NoSQL database management system and has many 
third-party tools.

Multivalued databases: These databases are also called NFNF, 2NF, NF2, 
and ¬NF in the literature. They do not follow first normal form (1NF) by 
allowing an unordered list of values in a column of a table. They require a 
set of operators to nest and unnest these structures in addition to the usual 
relational operators with appropriate extensions.

Navigational databases: See Network databases and IMS.

Neo4j: The most popular graph programming language.

Network databases: A family of prerelational databases associated with 
Charles Bachman, who did pioneering in the 1950s at Dow Chemical and 
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in the 1960s at General Electric, where he developed the Integrated Data 
Store (IDS), one of the first database management systems. The network 
and hierarchical models are called navigational databases because the mental 
model of data access is that of a reader moving along paths to pick up 
the data. When Bachman received the ACM Turing Award in 1973 for his 
outstanding contributions to database technology, this is how he described 
it. ANSI X3H2 produced a short-lived standard for NDL (Network Database 
Language) that was never implemented.

NFNF databases: Nonfirst normal form. These databases are also called 
NFNF, 2NF, NF2, and ¬NF in the literature. See Multivalued databases.

NIST: National Institute for Science and Technology. An agency of the U.S. 
federal government that sets IT and other standards in the United States. It 
began life as the Bureau of Weights and Measures in the 1700s.

Node: Nodes are also called vertices. The part of a graph structure that is 
connected by edges. The nodes usually model an entity or element of a 
relationship. For example, if we use a graph for a schematic subway map, the 
nodes would be the subway stations connected by rails.

NoSQL: A buzzword that has be defined as “no sequel” or (better) “not only 
SQL” in the literature. It is usually applied to MapReduce databases, but has a 
more general (and vague) meaning.

OLAP: Online analytical processing. These products use a snapshot of a 
database taken at one point in time and provide analysis against the data. This 
lead to hybrid OLAP, which retains some of result tables in specialized storage 
or indexing so that they can be reused. The base tables, dimension tables, and 
some summary tables are in the RDBMS. This is probably the most common 
approach in products today. See ROLAP and MOLAP.

OLTP: Online transaction processing. Its purpose is to provide support for 
daily business applications. This is the niche that SQL has in the commercial 
market.

Optimistic concurrency: A concurrency control model for databases based 
on the assumption that multiple users will seldom want to modify the same 
data at the same time. When conflicts are detected, the actions are rolled 
back to a previous consistent database state. This is also called generational 
concurrency because the prior database states are retained. See Pessimistic 
concurrency.
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Optimizer: The part of a database engine that attempts to pick the best 
statement execution plan from many possible equivalent plans. This is one 
way that declarative programming (“tell the machine what you want”) differs 
from procedural programming (“tell the machine exactly how to do it”). The 
same statement can have different execution plans because the optimizer will 
use the current state of the database (indexing, statistics, cached data from 
other sessions, etc.) at the time of invocation.

Path: From graph theory, a path is a walk that goes through each node only 
once. If you have n nodes, you will have (n−1) edges in the path.

Pessimistic concurrency: A concurrency control model for databases based 
on the assumption that multiple users will always want to modify the 
same data at the same time. Records have to have locks to prevent this. See 
Optimistic concurrency.

Petri nets: A mathematical modeling tool that uses a graph that can hold and 
move tokens in its nodes. Petri nets are used to model concurrency problems 
in networks.

Pick: This product began life as the Generalized Information Retrieval 
Language System (GIRLS) on an IBM System/360 in 1965. It is still in use 
and has become a generic name for this type of database. It is a classic NFNF 
data model and uses a language that evolved from a version of BASIC.

Pig Latin: Or simply Pig, is a query language developed by Yahoo and is now 
part of the Hadoop project.

Query: A statement that returns a result set from a database without changing 
the data. A query does not need to be logged for backup and restoration. 
However, for full audits they are needed to show who saw what data and 
when they saw it.

RAID: Redundant array of independent disks (originally redundant array of 
inexpensive disks). A family of disk storage hardware arrangements, based on 
the concept that if the system has redundancy, a failure can be dynamically 
repaired by hardware replacement without loss of database access.

Regular expressions: A string pattern matching system first developed by 
the mathematician Stephen Cole Kleene. It is the basis for the grep()  family 
in UNIX and other programming languages. There are many vendor and 
language versions of this tool. ANSI/ISO standard SQL has a simple LIKE 
predicate and more complex SIMILAR TO predicate.
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ROLAP: Relational online analytical processing. It was developed after 
multidimensional OLAP. The main difference is that ROLAP does not do 
precomputation or store summary data in the database.

ROLLBACK statement: A statement that restores a database to its prior state 
and ends a user session. This was first used in databases that have an ACID 
model, but applies to any database that does not persist changes immediately. 
See COMMIT statement and SAVEPOINT  statement.

SAVEPOINT  statement: A statement that sets a point in a user session so 
that a transaction can be rolled back to the state of the database at which 
the savepoint was set. Think of it as an “almost commit,” which is given 
a name for the rollback. This was first used in databases that have an 
ACID model, but applies to any database that does not persist changes 
immediately. See COMMIT statement and ROLLBACK statement.

Schema/no schema: A formal description of the data structure used in a 
database. In SQL, this is done with the DDL (Data Definition Language), 
which describes the tables, views, indexing, procedures, and so forth. Other 
database models may have their own schema language, or have a no schema 
model. The no schema model usually has metadata embedded in the same 
storage as the data. The most common example is the use of tags in markup 
languages and key–value pairs.

SMAQ stack: Pronounced “smack stack,” this is an architecture for Big Data 
storage. The letters stand for storage, MapReduce, and query, and assume 
commodity hardware with open-source software. SMAQ systems are typically 
open source, distributed, and run on commodity hardware. This is a parallel 
to the commodity LAMP stack for websites. LAMP stands for Linux, Apache, 
MySQL, and PHP in that niche.

Sqoop: A database-agnostic tool that uses the Java JDBC database API. Tables 
can be imported either wholesale or using queries to restrict the data import. 
Sqoop also offers the ability to reinject the results of MapReduce from HDFS 
back into a relational database.

Streaming database: A database designed to process data that comes in a 
stream outside the control of the database. The classic examples are stock 
and commodity trades and instrument sampling. You can find products 
from IBM (SPADE), Oracle (Oracle CEP), Microsoft (StreamInsight), and 
smaller vendors, such as StreamBase (stream-oriented extension of SQL) 
and Kx (Q language, based on APL), as well as open-source projects (Esper, 



214	 G L O S S A R Y

stream-oriented extension of SQL). Broadly speaking, the languages are 
SQL-like and readable or they are C-like and cryptic. As examples of the two 
extremes, look at StreamBase and Kx.

Textbase: A modern term for what we called document management systems 
before. They are concerned with searching large volumes of text. NISO, the 
National Information Standards Organization and now the ANSI Z39 group, 
set standards in this area. Its membership is drawn from organizations in the 
fields of publishing, libraries, IT, and media organizations. See CQL.

Tree:

◆	 Graph databases: This is a connected graph that has no cycles.

◆	� Indexes: An access method that uses one of many possible tree 
structures to build pointer chains that eventually lead to a physical 
record.

Unicode: A computing industry standard for the consistent encoding, 
representation, and handling of text expressed in most of the world’s writing 
systems. The standard is maintained by the Unicode Consortium and uses 
the UTF-8 and UTF-16 representations. UTF-8 uses 1 byte for any ASCII 
characters, which have the same code values in both UTF-8 and ASCII 
encoding, and up to 4 bytes for other characters. UTF-16 uses two 16-bit 
units (4 × 8 bits) to handle each of the additional characters.

Walk: Graph theory. This is a sequence of edges that connect a set of nodes, 
without repeating an edge.

WordNet: A lexical database for the English language that puts English 
words into sets of synonyms called synsets. It is used by textbases for 
semantic searches.

X3H2: More properly ANSI X3H2, now known as INCITS H2. This is 
the committee that sets the SQL language and other database-related IT 
standards. ANSI stands for American National Standards Institute, and 
INCITS stands for International Committee for Information Technology 
Standards (it is pronounced “insights”). It was formerly known as the X3 
and NCITS. The SQL standards over the years have been: SQL-86, SQL-89, 
SQL-92, SQL:1999, SQL:2003, SQL:2008, and, as of this writing, SQL:2011. 
ANSI/ISO standards are reviewed every five years and can be deprecated at 
that time.
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XML: eXtensible Markup Language. A markup language that defines a set of 
rules for encoding documents in a format that is both human-readable and 
machine-readable. It is an international standard for exchanging data with 
strong support via Unicode for the languages of the world. Although the 
design of XML focuses on documents, it is widely used for the representation 
of arbitrary data structures. The major concept is tags that come in pairs 
written in <tag> and </tag> to bracket the unit of data. Other features use the 
angle brackets to separate them from the data.

ZIP code: The zone improvement plan (ZIP) code is a geographical encoding 
system used by the (USPS for addresses. The term Zip code has become a 
generic term for any address location code in other countries.



A Artificial intelligence (AI), 97
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Bertillon cards, 130–131

Big Data model

cloud computing, 123b

company, 122–123

complication, 122

costs, 122
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systems consolidation, 126–127

definition, 119
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variability, 120
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(CGIS), 104

Character large object (CLOB), 84

INDEX

Note: Page numbers followed by f indicate figures, b indicate boxes and t indicate tables.
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Cloud computing, 123b
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contiguous row numbers, 16
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LZ methods, 17–18
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Common table expression (CTE), 37

Complex event processing (CEP)
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terminology
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dynamic operational behavior, 69

information dissemination, 68–69
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predictive processing, 70
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tolerance (CAP) theorem, 10–11
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sparseness in
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hypercube, 167–168

NULL, 167
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two-dimensional cross-tabulation, 145–146
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D Data declaration language (DDL), 51

Data mining

definition, 124
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Deoxyribonucleic acid (DNA)
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expensive and time consuming, 137
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PCR, 138

profiling, 137–138

STR, 137, 138
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Department of Human Services (DHS), 126

Department of Justice (DOJ), 123

Distributed Language Translation (DLT), 101

Document management systems

indexing and storage, 90

industry standards

BRE standard, 95–96

commercial services and products, 

94–95

CQL, 92–94
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KWIC, 90–91

legal definition, 90

microfilm and microfiche, 89

Domain name system (DNS), 11

E Extract, transform, load (ETL) tools, 48

F Face Recognition Grand Challenge (FRGC), 

143

Facial databases

DNA and fingerprinting, 142–143

FBI’s goal, 143

Fisherface algorithm, 139

FRGC, 143

geometric algorithms, 139

Google’s Picasa digital image, 141

history

chi-square, 139

FaceIt®, 140

head rotations, 139–140

LFA template, 140

skin texture analysis, 141

software, 140

STA, 140

vector template, 140

mugshot databases, 141

NGI project, 143

noise-to-signal, 139

PMB analyzes, 141

recognition algorithms, 139

video graphics, 138

Visidon Applock, 142

Fingerprints

classification, 132–133

matching, 133–134

NIST standards

ANSI and ISO, 134

ANSI/NBS-ICST 1-1986, 134

CTS test, 136

dental records, 135

DNA, 136

identifiers and records, 134, 135t

images, 135

SAP, 136

SMTs, 134

Roscher system, 132

First normal form (1NF), 173, 178

Flashsystem, 85

Forward sortation area (FSA), 113

G Galton–Henry system, 132–133

Generalized Information Retrieval Language 

System (GIRLS), 176

Geographical positioning systems (GPSs),  

106, 108

Geographic information systems (GISs)

ISO standards, 104, 104t

location

Canadian postal codes, 113–114

GPSs, 106

HTM (see Hierarchical triangular 

mesh (HTM))

longitude and latitude, 107–108

postal addresses, 112

street addresses, 111–112

U.K. postcode, 114–116

ZIP code, 112

OGC, 104

public-domain systems, 104

query

distance, 105

locations, 105

proximity relationships, 106

quantities, densities, and contents, 

105–106

temporal relationships, 106

SQL extensions, 116

statistics and epidemiology, 103

type of, 103

Geography Markup Language (GML), 104

Government Accounting Office (GAO), 125
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Graph theory

edges/arcs, 29–30

graph structures, 30–31

Kevin Bacon problem (see Kevin Bacon 

problem)

nodes, 28–29

NP complexity, 28

programming tools

ACID transactions, 43

Cypher (NEO4j), 44–46

Gremlin, 44

Kevin Bacon problem, 42–43

RDF standards, 42

SPARQL, 43

SPASQL, 44

trends, 46

URL, 42

URN functions, 42

vs. RDBMS, 31

relationship analytics, 27

vertex covering, 40–42

Gremlin, 44

H Hadoop distributed file system (HDFS), 49–50

Hierarchical and network database systems

CODASYL, 186

College database, 193, 193f

Course segment, 190

database records, 197

data relationship, 194–195

definition, 185–186

Department database, 190, 191f, 192

design considerations, 192–193

history

access methods, 187

application programs, 188–189

control blocks, 188

data communications, 188

DL/I, 187–188

file system, 187

hierarchical database, 189

IMS, 187

input/output (I/O), 186

strengths and weaknesses, 189–190

IMS and IDMS, 185, 186

navigational model, 190

one-to-many relationship, 190

search path, 196–197

segments

definitions, 199

format, 198–199

sequence, hierarchy, 195–196, 196f

Student database, 190, 191f, 192

Hierarchical triangular mesh (HTM)

departure and destination triangles, 111

HtmID, 110

level 0 trixels, 109

octahedron align, 109

trixel division, 109, 109f, 110f

two-dimensional coordinate system, 108–109

vertex vectors, 110

Hive, 60–62

Hollerith card, 90

Hybrid online analytical processing  

(HOLAP), 152

I Integrated Data Store (IDS), 185–186

K Kevin Bacon problem

adjacency list model

advantage of, 32

CASE expressions, 34

nodes, 33

path length, 33, 34

procedural language, 34–35

query times, 35, 35t

SAG membership identifier, 31–32

self-traversal edges, 32

paths model

combinatory explosion problem, 38

CTE, 37
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one-edge paths, 36

SELECT DISTINCT, 37

size problems, 37

table path, 35

three-edge paths, 36

two-edge paths, 36

real-world data, mixed relationships, 

38–40

Key-value store model

handling keys

BDB, 83–84

steel-toed work boots, 83

tree indexing/hashing, 84

handling values

advantage, 84

byte array, 84–85

XML/HTML, 85–86

products, 86–87

query vs. retrieval, 82

schema vs. no schema, 81–82

Keyword in context (KWIC), 90–91

L Live-lock problem, 2

Local feature analysis (LFA), 140

M MapReduce model

ETL tools, 48

Google, 48

HDFS, 49–50

Hive, 60–62

LAMP stack, 47

mail clerk, 49

office clerks image, 48

Pig Latin (see Pig Latin)

red ballet flats, 48–49

SMAQ stack, 47

Massively parallel processing (MPP), 18

Multidimensional databases (MDBs), 24–25

Multidimensional online analytical processing 

(MOLAP), 151

Multivalued systems. See Nonfirst normal form 

(NFNF) databases

N National Information Standards Organization 

(NISO), 92

National Institute for Science and Technology 

(NIST), 116

Network Database Language (NDL), 186

Next-Generation Identification (NGI), 143

Nonfirst normal form (NFNF) databases

abstract nested table, 179f

academic legitimacy, 178

CAD/CAM, 178

definition, 178

JOIN operators, 179

microdata implementation, 177

nested file structures

COBOL, 174

dash, 174

flat file, 173, 174

INVENTORY-ITEM, 175

OCCURS, 174, 175

TREATMENT-COUNT, 175

nest operation, 180, 181

1NF, 178

NoSQL products, 177

Pick system, 176, 177

PNF, 182

RDBMS, 173

schema, 179

table-valued extensions

Microsoft SQL Server, 182

Oracle, 182–184

UNNEST operation, 179–180

Xbase family, 177

O Online analytical processing (OLAP), 16

aggregation operators

CUBE, 156–157

GROUP BY GROUPING SET, 153–154
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Online analytical processing (OLAP) (Continued)

ROLLUP, 154–155

usage, 157

cubes (see Cubes, OLAP)

Dr. Codd’s rules

accessibility, 147

analysis models, 147–148

batch extraction vs. interpretive, 147

client server architecture, 148

dimension control, 150–151

intuitive data manipulation, 147

multidimensional conceptual view, 147

multi-user support, 148–149

practical consideration, 149

reporting features, 150

transparency, 148

HOLAP, 152

MOLAP, 151

nesting, 165

NTILE(n), 164–165

queries, 165–166

query languages, 152

ROLAP, 151–152

row numbering

IDENTITY, 158 159

Oracle ROWID, 159

RANK and DENSE_RANK, 160–161

ROW_NUMBER( ) function, 159

window clause, 162–164

Open Geospatial Consortium (OGC), 104, 116

Optical character recognition (OCR), 94

Optimistic concurrency model

Borland’s interbase/Firebird, 65

isolation level, 65–66

microfilm, 64

timestamp, 65

transaction processing, 4–5

user A/B, 64–65

P Partitioned normal form (PNF), 182

Pessimistic concurrency model

ACID, 4

COMMIT statement, 5

isolation level, 6–8

RDBMS, 5

ROLLBACK statement, 5

variants of locking, 5

Picture Motion Browser (PMB), 141

Pig Latin language

Alpha and Beta, 55

AND, OR, and NOT operators, 52

bags, 54

chararrays, 51–52

COGROUP, 57

CROSS, 58

curvy brackets, 56

DDL, 51

distributive calculations, 60

field/positional references, 53

FILTER command, 51

FLATTEN, 57

FOREACH statement, 53

Gain and Gain2, 53–54

GROUP statement, 54, 55–56

JOIN, 58

lines and filters, 50

LOAD/STORE command, 50

nested structure, 57

Piggybank, 52

predicates, 54

RDBMS, 53

reducers, 59

side effects, 52

skew-reducing features, 60

Split, 59

stock’s ticker symbol, 54

SUM(), COUNT(), and AVG(), 56

text editors, 53

trade-off, 59

UDF, 51

zero initial position, 55

Polymerase chain reactions  

(PCRs), 138
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R RDF standards. See Resource description 

framework (RDF) standards

READ COMMITTED isolation level, 8

READ UNCOMMITTED isolation level, 8

Redundant array of independent disks (RAID), 

13, 22–24, 49–50

Relational database management system 

(RDBMS), 5, 12

graph theory (see Graph theory)

1NF, 173, 178

nodes, 28–29

Relational online analytical processing 

(ROLAP), 151–152

REPEATABLE READ isolation level, 8

Resource description framework (RDF) 

standards, 42

Roscher system, 132

S Scars, marks, and tattoos (SMTs), 134

Screen actors guild (SAG) membership 

identifier, 31–32

Sectional center facility (SCF), 112

Segment search arguments (SSAs), 189–190

Semantic network, 98–99

SERIALIZABLE isolation level, 8

Server side consistency, 13

Snapshot isolation, 65–66

Solid-state disk (SSD), 18–19, 85

SPARQL, 43

SPASQL, 44

SSD. See Solid-state disk (SSD)

Streaming databases

CEP (see Complex event processing (CEP))

flow rate, speed, and velocity, 63–64

Kx/Q language

atoms, lists, and functions, 77

CASE expression, 78

from clause table, 77

conditional iteration, 78

counted iterations, 78

data types, 77

IEEE floating-point, 77

SQL style, 77

symbols, 76

trade-off, 79

optimistic concurrency model

Borland’s interbase/Firebird, 65

isolation level, 65–66

microfilm, 64

timestamp, 65

user A/B, 64–65

RDBMS, 63

StreamBase

BSORT, 76

CREATE INDEX statements, 73

data types, 73

DDL statements, 73

field identifier, 75

HEARTBEAT statement, 74, 75

METRONOME, 74

WHERE clause predicates, 74

Subject acquisition profile (SAP), 136

Surface texture analysis (STA), 140

Symmetric multiple processing (SMP), 18

T Table-valued parameter (TVP), 182

Textbases

document management systems (see 

Document management systems)

language problem

machine translation, 100–101

Unicode and ISO standards, 100

text mining

flu symptoms, 97

semantic network, 98–99

semantics vs. syntax, 97–98

tools, 96–97

Text mining

flu symptoms, 97

semantic network, 98–99

semantics vs. syntax, 97–98

tools, 96–97
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Transaction processing

ACID

locking schemes, 3, 4

microfilm systems, 4

optimistic concurrency model, 4–5

pessimistic concurrency model, 4

BASE, 11–12

batch processing world, 1–2

CAP theorem, 10–11

disk processing world, 2

error handling, 13–14

pessimistic concurrency model

COMMIT statement, 5

isolation level, 6–8

RDBMS, 5

ROLLBACK statement, 5

variants of locking, 5

server side consistency, 13

traditional RDBMS model, 14

Trends, 46

U Uniform resource locator (URL), 42

Uniform resource name (URN) functions, 42

University Microfilms International  

(UMI), 89

User-defined function (UDF), 51

U.S. Visitor and Immigrant Status Indicator 

Technology (US-VISIT), 142

V Variable number tandem repeats  

(VNTRs), 137

Visidon Applock, 142

Vucetich system, 132

W WordNet, 99

Word-sense disambiguation (WSD), 99

Z Zone improvement plan (ZIP) code, 112
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