[image: SQL Cookbook]

[image: O'Reilly Strata Conference]

SQL Cookbook

Anthony Molinaro

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Dedication

To my mom:
You’re the best! Thank you for
 everything.
Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596009762/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
Preface

SQL is the language in the database world. If
 you’re developing for or reporting from relational databases, your ability
 to put data into a database and then get it back out again ultimately
 comes down to your knowledge of SQL. Yet many practitioners use SQL in a
 perfunctory manner, and are unaware of the power at their disposal. This
 book aims to change all that, by opening your eyes to what SQL can really
 do for you.
The book you’re holding in your hands is a cookbook. It’s a
 collection of common SQL problems and their solutions that I hope you’ll
 find helpful in your day-to-day work. Recipes are categorized into
 chapters of related topics. When faced with a new SQL problem that you
 haven’t solved before, find the chapter that best seems to apply, skim
 through the recipe titles, and hopefully you will find a solution, or at
 least inspiration for a solution.
More than 150 recipes are available in this 600-plus page book, and
 I’ve only scratched the surface of what can be done using SQL. The number
 of different SQL solutions available for solving our daily programming
 problems is eclipsed only by the number of problems we need to solve. You
 won’t find all possible problems covered in this book. Indeed, such
 coverage would be impossible. You will, however, find many common problems
 and their solutions. And in those solutions lie techniques that you’ll
 learn how to expand upon and apply to other, new problems that I never
 thought to cover.
Tip
My publisher and I are constantly on the lookout for new,
 cookbook-worthy SQL recipes. If you come across a good or clever SQL
 solution to a problem, consider sharing it; consider sending it in for
 inclusion in the next edition of this book. See “Comments and Questions”
 for our contact information.

Why I Wrote This Book

Queries, queries, queries. My goal from the beginning of this
 project has not been so much to write a “SQL Cookbook” as to write a
 “Query Cookbook.” I’ve aimed to create a book comprised of queries
 ranging from the relatively easy to the relatively difficult in hopes
 the reader will grasp the techniques behind those queries and use them
 to solve his own particular business problems. I hope to pass on many of
 the SQL programming techniques I’ve used in my career so that you, the
 reader, will take them, learn from them, and eventually improve upon
 them; through this cycle we all benefit. Being able to retrieve data
 from a database seems so simple, yet in the world of Information
 Technology (IT) it’s crucial that the operation of data retrieval be
 done as efficiently as possible. Techniques for efficient data retrieval
 should be shared so that we can all be efficient and help each other
 improve.
Consider for a moment the outstanding contribution to mathematics
 by Georg Cantor, who was the first to realize the vast benefit of
 studying sets of elements (studying the set itself rather than its
 constituents). At first, Cantor’s work wasn’t accepted by many of his
 peers. In time, though, it was not only accepted, but set theory is now
 considered the foundation of mathematics! More importantly, however, it
 was not through Cantor’s work alone that set theory became what it is
 today; rather, by sharing his ideas, others such as Ernst Zermelo,
 Gottlob Frege, Abraham Fraenkel, Thoralf Skolem, Kurt Gödel, and John
 von Neumann developed and improved the theory. Such sharing not only
 provided everyone with a better understanding of the theory, it made for
 a better set theory than was first conceived.

Objectives of This Book

Ultimately, the goal of this book is to give you, the reader, a
 glimpse of what can be done using SQL outside of what is considered the
 typical SQL problem domain. SQL has come a very long way in the last ten
 years. Problems typically solved using a procedural language such as C
 or JAVA can now be solved directly in SQL, but many developers are
 simply unaware of this fact. This book is to help make you aware.
Now, before you take what I just said the wrong way, let me state
 that I am a firm believer in, “If it ain’t broke, don’t fix it.” For
 example, let’s say you have a particular business problem to solve, and
 you currently use SQL to simply retrieve your data while applying your
 complex business logic using a language other than SQL. If your code
 works and performance is acceptable, then great. I am in no way
 suggesting that you scrap your code for a SQL-only solution; I only ask
 that you open your mind and realize that the SQL you programmed with in
 1995 is not the same SQL being used in 2005. Today’s SQL can do so much
 more.

Audience for This Book

This text is unique in that the target audience is wide, but the
 quality of the material presented is not compromised. Consider that both
 complex and simple solutions are provided, and that solutions for five
 different vendors are available when a common solution does not exist.
 The target audience is indeed wide:
	The SQL novice
	Perhaps you have just purchased a text on learning SQL, or
 you are fresh into your first semester of a required database
 course and you want to supplement your new knowledge with some
 challenging real world examples. Maybe you’ve seen a query that
 magically transforms rows to columns, or that parses a serialized
 string into a result set. The recipes in this book explain
 techniques for performing these seemingly impossible
 queries.

	The non-SQL programmer
	Perhaps your background is in another language and you’ve
 been thrown into the fire at your current job and are expected to
 support complex SQL written by someone else. The recipes shown in
 this book, particularly in the later chapters, break down complex
 queries and provide a gentle walk-through to help you understand
 complex code that you may have inherited.

	The SQL journeyman
	For the intermediate SQL developer, this book is the gold at
 the end of the rainbow (OK, maybe that’s too strong; please
 forgive an author’s enthusiasm for his topic). In particular, if
 you’ve been coding SQL for quite some time and have not found your
 way onto window functions, you’re in for a treat. For example, the
 days of needing temporary tables to store intermediate results are
 over; window functions can get you to an answer in a single query!
 Allow me to again state that I have no intention of trying to
 force-feed my ideas to an already experienced practitioner.
 Instead, consider this book as a way to update your skill set if
 you haven’t caught on to some of the newer additions to the SQL
 language.

	The SQL expert
	Undoubtedly you’ve seen these recipes before, and you
 probably have your own variations. Why, then, is this book useful
 to you? Perhaps you’ve been a SQL expert on one platform your
 whole career, say, SQL Server, and now wish to learn Oracle.
 Perhaps you’ve only ever used MySQL, and you wonder what the same
 solutions in PostgreSQL would look like. This text covers
 different relational database management systems (RDBMSs) and
 displays their solutions side by side. Here’s your chance to
 expand your knowledge base.

How to Use This Book

Be sure to read this preface thoroughly. It contains necessary
 background and other information that you might otherwise miss if you
 dive into individual recipes. The section on “Platform and Version”
 tells you what RDBMSs this book covers. Pay special attention to “Tables
 Used in This Book,” so that you become familiar with the example tables
 used in most of the recipes. You’ll also find important coding and font
 conventions in “Conventions Used in This Book.” All these sections come
 later in this preface.
Remember that this is a cookbook, a collection of code examples to
 use as guidelines for solving similar (or identical) problems that you
 may have. Do not try to learn SQL from this book,
 at least not from scratch. This book should act as a supplement to, not
 a replacement for, a complete text on learning SQL. Additionally,
 following the tips below will help you use this book more
 productively:
	This book takes advantage of vendor-specific functions.
 SQL Pocket Guide by Jonathan Gennick has all of
 them and is convenient to have close to you in case you don’t know
 what some of the functions in my recipes do.

	If you’ve never used window functions, or have had problems
 with queries using GROUP BY, read Appendix A first. It will define and
 prove what a group is in SQL. More importantly, it gives a basic
 idea of how window functions work. Window functions are one of the
 most important SQL developments of the past decade.

	Use common sense! Realize that it is impossible to write a
 book that provides a solution to every possible business problem in
 existence. Instead, use the recipes from this book as templates or
 guidelines to teach yourself the techniques required to solve your
 own specific problems. If you find yourself saying, “Great, this
 recipe works for this particular data set, but mine is different and
 thus the recipe doesn’t work quite correctly,” that’s expected. In
 that case, try to find commonality between the data in the book and
 your data. Break down the book’s query to its simplest form and add
 complexity as you go. All queries start with SELECT…FROM…, so in
 their simplest form, all queries are the same. If you add complexity
 as you go, “building” a query one step, one function, one join at a
 time, you will not only understand how those constructs change the
 result set, but you will see how the recipe is different from what
 you actually need. And from there you can modify the recipe to work
 for your particular data set.

	Test, test, and test. Undoubtedly any table of yours is bigger
 than the 14 row EMP table used in this book, so please test the
 solutions against your data, at the very least to ensure that they
 perform well. I can’t possibly know what your tables look like, what
 columns are indexed, and what relationships are present in your
 schema. So please, do not blindly implement these techniques in your
 production code until you fully understand them and how they will
 perform against your particular data.

	Don’t be afraid to experiment. Be creative! Feel free to use
 techniques different from what I’ve used. I make it a point to use
 many of the functions supplied by the different vendors in this
 book, and often there are several other functions that may work as
 well as the one I’ve chosen to use in a particular recipe. Feel free
 to plug your own variations into the recipes of this book.

	Newer does not always mean better. If you’re not using some of
 the more recent features of the SQL language (for example, window
 functions), that does not necessarily mean your code is not as
 efficient as it can be. There are many cases in which traditional
 SQL solutions are as good or better than any new solution. Please
 keep this in mind, particularly in the Appendix B, Rozenshtein
 Revisited. After reading this book, you should not come
 away with the idea that you need to update or change all your
 existing code. Instead, only realize there are many new and
 extremely efficient features of SQL available now that were not
 available 10 years ago, and they are worth the time taken to learn
 them.

	Don’t be intimidated. When you get to the solution section of
 a recipe and a query looks impossible to understand, don’t fear.
 I’ve gone to great lengths to not only break down each query
 starting from its simplest form, but to show the intermediate
 results of each portion of a query as we work our way to the
 complete solution. You may not be able to see the big picture
 immediately, but once you follow the discussion and see not only how
 a query is built, but the results of each step, you’ll find that
 even convoluted-looking queries are not hard to grasp.

	Program defensively when necessary. In an effort to make the
 queries in this book as terse as humanly possible without obscuring
 their meaning, I’ve removed many “defensive measures” from the
 recipes. For example, consider a query computing a running total for
 a number of employee salaries. It could be the case that you have
 declared the column of type VARCHAR and are (sadly) storing a mix of
 numeric and string data in one field. You’ll find the running total
 recipe in this book does not check for such a case (and it will fail
 as the function SUM doesn’t know what to do with character data), so
 if you have this type of “data” (“problem” is a more accurate
 description), you will need to code around it or (hopefully) fix
 your data, because the recipes provided do not account for such
 design practices as the mixing of character and numeric data in the
 same column. The idea is to focus on the technique; once you
 understand the technique, sidestepping such problems is
 trivial.

	Repetition is the key. The best way to master the recipes in
 this book is to sit down and code them. When it comes to code,
 reading is fine, but actually coding is even better. You must read
 to understand why things are done a certain way, but only by coding
 will you be able to create these queries yourself.

Be advised that many of the examples in this book are contrived.
 The problems are not contrived. They are real. However, I’ve built all
 examples around a small set of tables containing employee data. I’ve
 done that to help you get familiar with the example data, so that,
 having become familiar with the data, you can focus on the technique
 that each recipe illustrates. You might look at a specific problem and
 think: “I would never need to do that with employee data.” But try to
 look past the example data in those cases and focus on the technique
 that I’m illustrating. The techniques are useful. My colleagues and I
 use them daily. We think you will too.

What’s Missing from This Book

Due to constraints on time and book size, it isn’t possible for a
 single book to provide solutions for all the possible SQL problems you
 may encounter. That said, here are some additional items that did not
 make the list:
	Data Definition
	Aspects of SQL such as creating indexes, adding constraints,
 and loading data are not covered in this book. Such tasks
 typically involve syntax that is highly vendor-specific, so you’re
 best off referring to vendor manuals. In addition, such tasks do
 not represent the type of “hard” problem for which one would
 purchase a book to solve. Chapter
 4, however, does provide recipes for common problems
 involving the insertion, updating, and deleting of data.

	XML
	It is my strong opinion that XML recipes do not belong in a
 book on SQL. Storing XML documents in relational databases is
 becoming increasingly popular, and each RDBMS has their own
 extensions and tools for retrieving and manipulating such data.
 XML manipulation often involves code that is procedural and thus
 outside the scope of this book. Recent developments such as XQUERY
 represent completely separate topics from SQL and belong in their
 own book (or books).

	Object-Oriented Extensions to SQL
	Until a language more suitable for dealing with objects
 comes along, I am strongly against using object-oriented features
 and designs in relational databases. At the present time, the
 object-oriented features available from some vendors are more
 suitable for use in procedural programming than in the sort of
 setoriented problem-solving for which SQL is designed.

	Debates on Points of Theory
	You won’t find arguments in this book about whether SQL is
 relational, or about whether NULL values should exist. These sort
 of theoretical discussions have their place, but not in a book
 centered on delivering SQL solutions to real-life problems. To
 solve real-life problems, you simply have to work with the tools
 available to you at the time. You have to deal with what you have,
 not what you wish you had.
Tip
If you wish to learn more about theory, any of Chris
 Date’s “Relational Database Writings” books would be a good
 start. You might also pick up a copy of his most recent book,
 Database in Depth (O’Reilly).

	Vendor Politics
	This text provides solutions for five different RDBMSs. It
 is only natural to want to know which vendor’s solution is “best”
 or “fastest.” There is plenty of information that each vendor
 would gladly provide to show that their product is “best”; I have
 no intention of doing so here.

	ANSI Politics
	Many texts shy away from the proprietary functions supplied
 by different vendors. This text embraces proprietary functions. I
 have no intention of writing convoluted, poorly performing SQL
 code simply for the sake of portability. I have never worked in an
 environment where the use of vendor-specific extensions was
 prohibited. You are paying for these features; why not use
 them?
Vendor extensions exist for a reason, and many times offer
 better performance and readability than you could otherwise
 achieve using standard SQL. If you prefer ANSI-only solutions,
 fine. As I mentioned before, I am not here to tell you to turn all
 your code upside down. If what you have is strictly ANSI and it
 works for you, great. When it comes down to it, we all go to work,
 we all have bills to pay, and we all want to go home at a
 reasonable time and enjoy what’s still left of our days. So, I’m
 not suggesting that ANSI-only is wrong. Do what works and is best
 for you. But, I want to make clear that if you’re looking for
 ANSI-only solutions, you should look elsewhere.

	Legacy Politics
	The recipes in this text make use of the newest features
 available at the time of writing. If you are using old versions of
 the RDBMSs that I cover, many of my solutions will simply not work
 for you. Technology does not stand still, and neither should you.
 If you need older solutions, you’ll find that many of the SQL
 texts available from years past have plenty of examples using
 older versions of the RDBMSs covered in this book.

Structure of This Book

This book is divided into 14 chapters and 2 appendices:
	Chapter 1,
 Retrieving Records, introduces very simple
 queries. Examples include how to use a WHERE clause to restrict rows
 from your result set, providing aliases for columns in your result
 set, using an inline view to reference aliased columns, using simple
 conditional logic, limiting the number of rows returned by a query,
 returning random records, and finding NULL values. Most of the
 examples are very simple, but some of them appear in more complex
 recipes, so it’s a good idea to read this chapter if you’re
 relatively new to SQL or aren’t familiar with any of the examples
 listed for this chapter.

	Chapter 2,
 Sorting Query Results, introduces recipes for
 sorting query results. The ORDER BY clause is introduced and is used
 to sort query results. Examples increase in complexity ranging from
 simple, single-column ordering, to ordering by substrings, to
 ordering based on conditional expressions.

	Chapter 3,
 Working with Multiple Tables, introduces
 recipes for combining data from multiple tables. If you are new to
 SQL or are a bit rusty on joins, I strongly recommend you read this
 chapter before reading Chapter
 5 and later. Joining tables is what SQL is all about; you
 must understand joins to be successful. Examples in this chapter
 include performing both inner and outer joins, identifying Cartesian
 productions, basic set operations (set difference, union,
 intersection), and the effects of joins on aggregate
 functions.

	Chapter 4,
 Inserting, Updating, Deleting, introduces
 recipes for inserting, updating, and deleting data, respectively.
 Most of the examples are very straightforward (perhaps even
 pedestrian). Nevertheless, operations such as inserting rows into
 one table from another table, the use of correlated subqueries in
 updates, an understanding of the effects of NULLs, and knowledge of
 new features such as multi-table inserts and the MERGE command are
 extremely useful for your toolbox.

	Chapter 5,
 Metadata Queries, introduces recipes for
 getting at your database metadata. It’s often very useful to find
 the indexes, constraints, and tables in your schema. The simple
 recipes here allow you to gain information about your schema.
 Additionally, “dynamic” SQL examples are shown here as well, i.e.,
 SQL generated by SQL.

	Chapter 6,
 Working with Strings, introduces recipes for
 manipulating strings. SQL is not known for its string parsing
 capabilities, but with a little creativity (usually involving
 Cartesian products) along with the vast array of vendor-specific
 functions, you can accomplish quite a bit. This chapter is where the
 book begins to get interesting. Some of the more interesting
 examples include counting the occurrences of a character in a
 string, creating delimited lists from table rows, converting
 delimited lists and strings into rows, and separating numeric and
 character data from a string of alphanumeric characters.

	Chapter 7,
 Working with Numbers, introduces recipes for
 common number crunching. The recipes found here are extremely common
 and you’ll learn how easily window functions solve problems
 involving moving calculations and aggregations. Examples include
 creating running totals; finding mean, median, and mode; calculating
 percentiles; and accounting for NULL while performing
 aggregations.

	Chapter 8,
 Date Arithmetic, is the first of two chapters
 dealing with dates. Being able to perform simple date arithmetic is
 crucial to everyday tasks. Examples include determining the number
 of business days between two dates, calculating the difference
 between two dates in different units of time (day, month, year,
 etc.), and counting occurrences of days in a month.

	Chapter 9,
 Date Manipulation, is the second of the two
 chapters dealing with dates. In this chapter you will find recipes
 for some of the most common date operations you will encounter in a
 typical work day. Examples include returning all days in a year,
 finding leap years, finding first and last days of a month, creating
 a calendar, and filling in missing dates for a range of
 dates.

	Chapter 10,
 Working with Ranges, introduces recipes for
 identifying values in ranges, and for creating ranges of values.
 Examples include automatically generating a sequence of rows,
 filling in missing numeric values for a range of values, locating
 the beginning and end of a range of values, and locating consecutive
 values.

	Chapter 11,
 Advanced Searching, introduces recipes that
 are crucial for everyday development and yet sometimes slip through
 the cracks. These recipes are not any more difficult than others,
 yet I see many developers making very inefficient attempts at
 solving the problems these recipes solve. Examples from this chapter
 include finding knight values, paginating through a result set,
 skipping rows from a table, finding reciprocals, selecting the top
 n records, and ranking results.

	Chapter 12,
 Reporting and Warehousing, introduces queries
 typically used in warehousing or generating complex reports. This
 chapter was meant to be the majority of the book as it existed in my
 original vision. Examples include converting rows into columns and
 vice versa (cross-tab reports), creating buckets or groups of data,
 creating histograms, calculating simple and complete subtotals,
 performing aggregations over a moving window of rows, and grouping
 rows based on given units of time.

	Chapter 13,
 Hierarchical Queries, introduces hierarchical
 recipes. Regardless of how your data is modeled, at some point you
 will be asked to format data such that it represents a tree or
 parent-child relationship. This chapter provides recipes
 accomplishing these tasks. Creating tree-structured result sets can
 be cumbersome with traditional SQL, so vendor-supplied functions are
 particularly useful in this chapter. Examples include expressing a
 parent-child relationship, traversing a hierarchy from root to leaf,
 and rolling up a hierarchy.

	Chapter 14, Odds ‘n’
 Ends, is a collection of miscellaneous recipes that didn’t seem to fit
 into any other problem domain, but that nevertheless are interesting and useful. This
 chapter is different from the rest in that it focuses on vendor-specific solutions only.
 This is the only chapter of the book where each recipe highlights only one vendor. The
 reasons are twofold: first, this chapter was meant to serve as more of a fun, geeky
 chapter. Second, some recipes exist only to highlight a vendor-specific function that
 has no equivalent in the other RDBMSs (examples include SQL Server’s PIVOT/UNPIVOT
 operators and Oracle’s MODEL clause). In some cases, though, you’ll be able to easily
 tweak a solution provided in this chapter to work for a platform not covered in the
 recipe.

	Appendix A,
 Window Function Refresher, is a window
 function refresher along with a solid discussion of groups in SQL.
 Window functions are new to most, so it is appropriate that this
 appendix serves as a brief tutorial. Additionally, in my experience
 I have noticed that the use of GROUP BY in queries is a source of
 confusion for many developers. This chapter defines exactly what a
 SQL group is, and then proceeds to use various queries as proofs to
 validate that definition. The chapter then goes into the effects of
 NULLs on groups, aggregates, and partitions. Lastly, you’ll find
 discussion on the more obscure and yet extremely powerful syntax of
 the window function’s OVER clause (i.e., the “framing” or
 “windowing” clause).

	Appendix B,
 Rozenshtein Revisited, is a tribute to David
 Rozenshtein, to whom I owe my success in SQL development.
 Rozenshtein’s book, The Essence of SQL
 (Coriolis Group Books) was the first book I purchased on SQL that
 was not required by a class. It was from that book that I learned
 how to “think in SQL.” To this day I attribute much of my
 understanding of how SQL works to David’s book. It truly is
 different from any other SQL book I’ve read, and I’m grateful that
 it was the first one I picked up on my own volition. Appendix B focuses on some of the
 queries presented in The Essence of SQL, and
 provides alternative solutions using window functions (which weren’t
 available when The Essence of SQL was written)
 for those queries.

Platform and Version

SQL is a moving target. Vendors are constantly pumping new
 features and functionality into their products. Thus you should know up
 front which versions of the various platforms were used in the
 preparation of this text:
	DB2 v.8

	Oracle Database 10g (with the exception
 of a handful of recipes, the solutions will work for
 Oracle8i Database and
 Oracle9i Database as well)

	PostgreSQL 8

	SQL Server 2005

	MySQL 5

Tables Used in This Book

The majority of the examples in this book involve the use of two
 tables, EMP and DEPT. The EMP table is a simple 14-row table with only
 numeric, string, and date fields. The DEPT table is a simple four-row
 table with only numeric and string fields. These tables appear in many
 old database texts, and the many-to-one relationship between departments
 and employees is well understood.
While I’m on the topic of the example tables, I want to mention
 that all but a very few solutions in this book run against these tables.
 Nowhere do I tweak my example data to set up a solution that you would
 be unlikely to have a chance of implementing in the real world, as some
 books do.
And while I’m on the topic of solutions, let me just mention that
 whenever possible I’ve tried to provide a generic solution that will run
 on all five RDBMSs covered in this book. Often that’s not possible. Even
 so, in many cases more than one vendor shares a solution. Because of
 their mutual support for window functions, for example, Oracle and DB2
 often share solutions. Whenever solutions are shared, or at least are
 very similar, discussions are shared as well.
The contents of EMP and DEPT are shown below, respectively:
	select * from emp;

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
	----- ------ --------- ---- ----------- ---- ---- -------
	 7369 SMITH CLERK 7902 17-DEC-1980 800 20
	 7499 ALLEN SALESMAN 7698 20-FEB-1981 1600 300 30
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30
	 7566 JONES MANAGER 7839 02-APR-1981 2975 20
	 7654 MARTIN SALESMAN 7698 28-SEP-1981 1250 1400 30
	 7698 BLAKE MANAGER 7839 01-MAY-1981 2850 30
	 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10
	 7788 SCOTT ANALYST 7566 09-DEC-1982 3000 20
	 7839 KING PRESIDENT 17-NOV-1981 5000 10
	 7844 TURNER SALESMAN 7698 08-SEP-1981 1500 0 30
	 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20
	 7900 JAMES CLERK 7698 03-DEC-1981 950 30
	 7902 FORD ANALYST 7566 03-DEC-1981 3000 20
	 7934 MILLER CLERK 7782 23-JAN-1982 1300 10
	
	
	select * from dept;
	
	DEPTNO DNAME LOC
	------ -------------- ---------
	 10 ACCOUNTING NEW YORK
	 20 RESEARCH DALLAS
	 30 SALES CHICAGO
	 40 OPERATIONS BOSTON
Additionally, you will find four pivot tables used in this book;
 T1, T10, T100, and T500. Because these tables exist only to facilitate
 pivots, I did not find it necessary to give them clever names. The
 number following the “T” in each of the pivot tables signifies the
 number of rows in each table starting from 1. For example, the values
 for T1 and T10:
	select id from t1;

	 ID

	 1

	select id from t10;

	 ID

	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9
	 10
As an aside, some vendors allow partial SELECT statements. For
 example, you can have SELECT without a FROM clause. I don’t particularly
 like this, thus I select against a support table, T1, with a single row,
 rather than using partial queries.
Any other tables are specific to particular recipes and chapters,
 and will be introduced in the text when appropriate.

Conventions Used in This Book

I use a number of typographical and coding conventions in this
 book. Take time to become familiar with them. Doing so will enhance your
 understanding of the text. Coding conventions in particular are
 important, because I can’t discuss them anew for each recipe in the
 book. Instead, I list the important conventions here.
Typographical Conventions

The following typographical conventions are used in this
 book:
	UPPERCASE
	Used to indicate SQL keywords within text

	lowercase
	Used for all queries in code examples. Other languages
 such as C and JAVA use lowercase for most keywords and I find it
 infinitely more readable than uppercase. Thus all queries will
 be lowercase.

	Constant width
 bold
	Indicates user input in examples showing an
 interaction.

Tip
Indicates a tip, suggestion, or general note.

Warning
Indicates a warning or caution.

Coding Conventions

My preference for case in SQL statements is to always use
 lowercase, for both keywords and user-specified identifiers. For
 example:
	select empno, ename
	 from emp;
Your preference may be otherwise. For example, many prefer to
 uppercase SQL keywords. Use whatever coding style you prefer, or
 whatever your project requires.
Despite my use of lowercase in code examples, I consistently
 uppercase SQL keywords and identifiers in the text. I do this to make
 those items stand out as something other than regular prose. For
 example:
The preceding query represents a SELECT against the EMP
 table.

While this book covers databases from five different vendors,
 I’ve decided to use one format for all the output:
	 EMPNO ENAME
	 ----- ------
	 7369 SMITH
	 7499 ALLEN
	…
Many solutions make use of inline views, or
 subqueries in the FROM clause. The ANSI SQL standard requires that
 such views be given table aliases. (Oracle is the only vendor that
 lets you get away without specifying such aliases.) Thus, my solutions
 use aliases such as x and y to identify the result sets from inline
 views:
	select job, sal
	 from (select job, max(sal) sal
	 from emp
	 group by job)x;
Notice the letter X following the final, closing parenthesis.
 That letter X becomes the name of the “table” returned by the subquery
 in the FROM clause. While column aliases are a valuable tool for
 writing self-documenting code, aliases on inline views (for most
 recipes in this book) are simply formalities. They are typically given
 trivial names such as X, Y, Z, TMP1, and TMP2. In cases where I feel a
 better alias will provide more understanding, I do so.
You will notice that the SQL in the SOLUTION section of the
 recipes is typically numbered, for example:
	1 select ename
	2 from emp
	3 where deptno = 10
The number is not part of the syntax; I have included it so I
 can reference parts of the query by number in the discussion
 section.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact O’Reilly for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 SQL Cookbook, by Anthony Molinaro. Copyright 2006
 O’Reilly Media, Inc., 0-596-00976-3.
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Comments and Questions

We have tested and verified the information in this book to the
 best of our ability, but you may find that features have changed or that
 we have made mistakes. If so, please notify us by writing to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

You can also send messages electronically. To be put on the
 mailing list or request a catalog, send email to:
	info@oreilly.com

To ask technical questions or comment on the book, or to suggest
 additional recipes for future editions, send email to:
	bookquestions@oreilly.com

We have a web site for this book where you can find examples and
 errata (previously reported errors and corrections are available for
 public view there). You can access this page at:
	http://www.oreilly.com/catalog/sqlckbk

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, it means the book is available online through the
 O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top technology
 books, cut and paste code samples, download chapters, and find quick
 answers when you need the most accurate, current information. Try it for
 free at http://safari.oreilly.com.

Acknowledgments

This book would not exist without all the support I’ve received
 from a great many people. I would like to thank my mother, Connie, to
 whom this book is dedicated. Without your hard work and sacrifice I
 would not be where I am today. Thank you for everything, Mom. I am
 thankful and appreciative of everything you’ve done for my brother and
 me. I have been blessed to have you as my mother.
To my brother, Joe: every time I came home from Baltimore to take
 a break from writing, you were there to remind me how great things are
 when we’re not working, and how I should finish writing so I can get
 back to the more important things in life. You’re a good man and I
 respect you. I am extremely proud of you, and proud to call you my
 brother.
To my wonderful fiancee, Georgia: Without your support I would not
 have made it through all 600-plus pages of this book. You were here
 sharing this experience with me, day after day. I know it was just as
 hard on you as it was on me. I spent all day working and all night
 writing, but you were great through it all. You were understanding and
 supportive and I am forever grateful. Thank you. I love you.
To my future in-laws: to my mother-in-law and father-in-law, Kiki
 and George. Thank you for your support throughout this whole experience.
 You always made me feel at home whenever I took a break and came to
 visit, and you made sure Georgia and I were always well fed. To my
 sister-in-laws, Anna and Kathy, it was always fun coming home and
 hanging out with you guys, giving Georgia and I a much needed break from
 the book and from Baltimore.
To my editor Jonathan Gennick, without whom this book would not
 exist. Jonathan, you deserve a tremendous amount of credit for this
 book. You went above and beyond what an editor would normally do and for
 that you deserve much thanks. From supplying recipes, to tons of
 rewrites, to keeping things humorous despite oncoming deadlines, I could
 not have done it without you. I am grateful to have had you as my editor
 and grateful for the opportunity you have given me. An experienced DBA
 and author yourself, it was a pleasure to work with someone of your
 technical level and expertise. I can’t imagine there are too many
 editors out there that can, if they decided to, stop editing and work
 practically anywhere as a database administrator (DBA); Jonathan can.
 Being a DBA certainly gives you an edge as an editor as you usually know
 what I want to say even when I’m having trouble expressing it. O’Reilly
 is lucky to have you on staff and I am lucky to have you as an
 editor.
I would like to thank Ales Spetic and Jonathan Gennick for
 Transact-SQL Cookbook. Isaac Newton famously said,
 “If I have seen a little further it is by standing on the shoulders of
 giants.” In the acknowledgments section of the Transact-SQL
 Cookbook, Ales Spetic wrote something that is a testament to
 this famous quote and I feel should be in every SQL book. I include it
 here:
I hope that this book will complement the exiting opuses of
 outstanding authors like Joe Celko, David Rozenshtein, Anatoly
 Abramovich, Eugine Berger, Iztik Ben-Gan, Richard Snodgrass, and
 others. I spent many nights studying their work, and I learned almost
 everything I know from their books. As I am writing these lines, I’m
 aware that for every night I spent discovering their secrets, they
 must have spent 10 nights putting their knowledge into a consistent
 and readable form. It is an honor to be able to give something back to
 the SQL community.

I would like to thank Sanjay Mishra for his excellent
 Mastering Oracle SQL book, and also for putting me
 in touch with Jonathan. If not for Sanjay, I may have never been in
 touch with Jonathan and never would have written this book. Amazing how
 a simple email can change your life. I would like to thank David
 Rozenshtein, especially, for his Essence of SQL
 book, which provided me with a solid understanding of how to think and
 problem solve in sets/SQL. I would like to thank David Rozenshtein,
 Anatoly Abramovich, and Eugene Birger for their book
 Optimizing Transact-SQL, from which I learned many
 of the advanced SQL techniques I use today.
I would like to thank the whole team at Wireless Generation, a
 great company with great people. A big thank you to all of the people
 who took the time to review, critique, or offer advice to help me
 complete this book: Jesse Davis, Joel Patterson, Philip Zee, Kevin
 Marshall, Doug Daniels, Otis Gospodnetic, Ken Gunn, John Stewart, Jim
 Abramson, Adam Mayer, Susan Lau, Alexis Le-Quoc, and Paul Feuer. I would
 like to thank Maggie Ho for her careful review of my work and extremely
 useful feedback regarding the window function refresher. I would like to
 thank Chuck Van Buren and Gillian Gutenberg for their great advice about
 running. Early morning workouts helped me clear my mind and unwind. I
 don’t think I would have been able to finish this book without getting
 out a bit. I would like to thank Steve Kang and Chad Levinson for
 putting up with all my incessant talk about different SQL techniques on
 the nights when all they wanted was to head to Union Square to get a
 beer and a burger at Heartland Brewery after a long day of work. I would
 like to thank Aaron Boyd for all his support, kind words, and, most
 importantly, good advice. Aaron is honest, hardworking, and a very
 straightforward guy; people like him make a company better. I would like
 to thank Olivier Pomel for his support and help in writing this book, in
 particular for the DB2 solution for creating delimited lists from rows.
 Olivier contributed that solution without even having a DB2 system to
 test it with! I explained to him how the WITH clause worked, and minutes
 later he came up with the solution you see in this book.
Jonah Harris and David Rozenshtein also provided helpful technical
 review feedback on the manuscript. And Arun Marathe, Nuno Pinto do
 Souto, and Andrew Odewahn weighed in on the outline and choice of
 recipes while this book was in its formative stages. Thanks, very much,
 to all of you.
I want to thank John Haydu and the MODEL clause development team
 at Oracle Corporation for taking the time to review the MODEL clause
 article I wrote for O’Reilly, and for ultimately giving me a better
 understanding of how that clause works. I would like to thank Tom Kyte
 of Oracle Corporation for allowing me to adapt his TO_BASE function into
 a SQL-only solution. Bruno Denuit of Microsoft answered questions I had
 regarding the functionality of the window functions introduced in SQL
 Server 2005. Simon Riggs of PostgreSQL kept me up to date about new SQL
 features in PostgreSQL (very big thanks: Simon, by knowing what was
 coming out and when, I was able to incorporate some new SQL features
 such as the ever-so-cool GENERATE_SERIES function, which I think made
 for more elegant solutions compared to pivot tables).
Last but certainly not least, I’d like to thank Kay Young. When
 you are talented and passionate about what you do, it is great to be
 able to work with people who are likewise as talented and passionate.
 Many of the recipes you see in this text have come from working with Kay
 and coming up with SQL solutions for everyday problems at Wireless
 Generation. I want to thank you and let you know I absolutely appreciate
 all the help you given me throughout all of this; from advice, to
 grammar corrections, to code, you played an integral role in the writing
 of this book. It’s been great working with you, and Wireless Generation
 is a better company because you are there.
—Anthony Molinaro
September 2005

Chapter 1. Retrieving Records

This chapter focuses on very basic SELECT statements. It is
 important to have a solid understanding of the basics as many of the
 topics covered here are not only present in more difficult recipes but
 also are found in everyday SQL.
1.1. Retrieving All Rows and Columns from a Table

Problem

You have a table and want to see all of the data in it.

Solution

Use the special “*” character and issue a SELECT against the
 table:
	1 select *
	2 from emp

Discussion

The character “*” has special meaning in SQL. Using it will
 return every column for the table specified. Since there is no WHERE
 clause specified, every row will be returned as well. The alternative
 would be to list each column individually:
	select empno,ename,job,sal,mgr,hiredate,comm,deptno
	 from emp
In ad hoc queries that you execute interactively, it’s easier to
 use SELECT *. However, when writing program code it’s better to
 specify each column individually. The performance will be the same,
 but by being explicit you will always know what columns you are
 returning from the query. Likewise, such queries are easier to
 understand by people other than yourself (who may or may not know all
 the columns in the tables in the query).

1.2. Retrieving a Subset of Rows from a Table

Problem

You have a table and want to see only rows that satisfy a
 specific condition.

Solution

Use the WHERE clause to specify which rows to keep. For example,
 to view all employees assigned to department number 10:
	1 select *
	2 from emp
	3 where deptno = 10

Discussion

The WHERE clause allows you to retrieve only rows you are
 interested in. If the expression in the WHERE clause is true for any
 row, then that row is returned.
Most vendors support common operators such as: =, <, >,
 <=, >=, !, <>. Additionally, you may want rows that
 satisfy multiple conditions; this can be done by specifying AND, OR,
 and parenthesis, as shown in the next recipe.

1.3. Finding Rows That Satisfy Multiple Conditions

Problem

You want to return rows that satisfy multiple conditions.

Solution

Use the WHERE clause along with the OR and AND clauses. For
 example, if you would like to find all the employees in department 10,
 along with any employees who earn a commission, along with any
 employees in department 20 who earn at most $2000:
	1 select *
	2 from emp
	3 where deptno = 10
	4 or comm is not null
	5 or sal <= 2000 and deptno=20

Discussion

You can use a combination of AND, OR, and parenthesis to return
 rows that satisfy multiple conditions. In the solution example, the
 WHERE clause finds rows such that:
	the DEPTNO is 10, or

	the COMM is not NULL, or

	the salary is $2000 or less for any employee in DEPTNO
 20.

The presence of parentheses causes conditions within them to be
 evaluated together.
For example, consider how the result set changes if the query
 was written with the parentheses as shown below:
	select *
	 from emp
	where (deptno = 10
	 or comm is not null
	 or sal <= 2000
)
	 and deptno=20

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
	----- ------ ----- ----- ----------- ----- ---------- ------
	 7369 SMITH CLERK 7902 17-DEC-1980 800 20
	 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20

1.4. Retrieving a Subset of Columns from a Table

Problem

You have a table and want to see values for specific columns rather than for all the columns.

Solution

Specify the columns you are interested in. For example, to see
 only name, department number, and salary for employees:
	1 select ename,deptno,sal
	2 from emp

Discussion

By specifying the columns in the SELECT clause, you ensure that
 no extraneous data is returned. This can be especially important when
 retrieving data across a network, as it avoids the waste of time
 inherent in retrieving data that you do not need.

1.5. Providing Meaningful Names for Columns

Problem

You would like to change the names of the columns that are
 returned by your query so they are more readable and understandable.
 Consider this query that returns the salaries and commissions for each
 employee:
	1 select sal,comm
	2 from emp
What’s “sal”? Is it short for “sale”? Is it someone’s name?
 What’s “comm”? Is it communication? You want the results to have more
 meaningful labels.

Solution

To change the names of your query results use the AS keyword in the form: original_name AS
 new_name. Some databases do not require AS, but all
 accept it:
	1 select sal as salary, comm as commission
	2 from emp

	SALARY COMMISSION
	------- ----------
	 800
	 1600 300
	 1250 500
	 2975
	 1250 1400
	 2850
	 2450
	 3000
	 5000
	 1500 0
	 1100
	 950
	 3000
	 1300

Discussion

Using the AS keyword to give new names to columns returned by
 your query is known as aliasing those columns.
 The new names that you give are known as aliases.
 Creating good aliases can go a long way toward making a query and its
 results understandable to others.

1.6. Referencing an Aliased Column in the WHERE Clause

Problem

You have used aliases to provide more meaningful column names
 for your result set and would like to exclude some of the rows using
 the WHERE clause. However, your attempt to reference alias names in
 the WHERE clause fails:
	select sal as salary, comm as commission
	 from emp
	 where salary < 5000

Solution

By wrapping your query as an inline view you can reference the
 aliased columns:
	1 select *
	2 from (
	3 select sal as salary, comm as commission
	4 from emp
	5) x
	6 where salary < 5000

Discussion

In this simple example, you can avoid the inline view and
 reference COMM or SAL directly in the WHERE clause to achieve the same result. This solution
 introduces you to what you would need to do when attempting to
 reference any of the following in a WHERE clause:
	Aggregate functions

	Scalar subqueries

	Windowing functions

	Aliases

Placing your query, the one giving aliases, in an inline view
 gives you the ability to reference the aliased columns in your outer query. Why do you need to do this?
 The WHERE clause is evaluated before the SELECT, thus, SALARY and
 COMMISSION do not yet exist when the “Problem” query’s WHERE clause is
 evaluated. Those aliases are not applied until after the WHERE clause
 processing is complete. However, the FROM clause is evaluated before
 the WHERE. By placing the original query in a FROM clause, the results
 from that query are generated before the outermost WHERE clause, and
 your outermost WHERE clause “sees” the alias names. This technique is
 particularly useful when the columns in a table are not named particularly
 well.
Tip
The inline view in this solution is aliased X. Not all
 databases require an inline view to be explicitly aliased, but some
 do. All of them accept it.

1.7. Concatenating Column Values

Problem

You want to return values in multiple columns as one column. For
 example, you would like to produce this result set from a query
 against the EMP table:
	CLARK WORKS AS A MANAGER
	KING WORKS AS A PRESIDENT
	MILLER WORKS AS A CLERK
However, the data that you need to generate this result set
 comes from two different columns, the ENAME and JOB columns in the EMP
 table:
	select ename, job
	 from emp
	 where deptno = 10

	 ENAME JOB
	 ---------- ---------
	 CLARK MANAGER
	 KING PRESIDENT
	 MILLER CLERK

Solution

Find and use the built-in function provided by your DBMS to
 concatenate values from multiple columns.
DB2, Oracle, PostgreSQL

These databases use the double vertical bar as the
 concatenation operator:
	1 select ename||' WORKS AS A '||job as msg
	2 from emp
	3 where deptno=10

MySQL

This database supports a function called CONCAT:
	1 select concat(ename, ' WORKS AS A ',job) as msg
	2 from emp
	3 where deptno=10

SQL Server

Use the "+” operator for concatenation:
	1 select ename + ' WORKS AS A ' + job as msg
	2 from emp
	3 where deptno=10

Discussion

Use the CONCAT function to concatenate values from multiple
 columns. The || is a shortcut for the CONCAT function in DB2, Oracle,
 and PostgreSQL, while + is the shortcut for SQL Server.

1.8. Using Conditional Logic in a SELECT Statement

Problem

You want to perform IF-ELSE operations on values in your SELECT statement.
 For example, you would like to produce a result set such that, if an
 employee is paid $2000 or less, a message of “UNDERPAID” is returned,
 if an employee is paid $4000 or more, a message of “OVERPAID” is
 returned, if they make somewhere in between, then “OK” is returned.
 The result set should look like this:
	ENAME SAL STATUS
	---------- ---------- ---------
	SMITH 800 UNDERPAID
	ALLEN 1600 UNDERPAID
	WARD 1250 UNDERPAID
	JONES 2975 OK
	MARTIN 1250 UNDERPAID
	BLAKE 2850 OK
	CLARK 2450 OK
	SCOTT 3000 OK
	KING 5000 OVERPAID
	TURNER 1500 UNDERPAID
	ADAMS 1100 UNDERPAID
	JAMES 950 UNDERPAID
	FORD 3000 OK
	MILLER 1300 UNDERPAID

Solution

Use the CASE expression to perform conditional logic directly in
 your SELECT statement:
	1 select ename,sal,
	2 case when sal <= 2000 then 'UNDERPAID'
	3 when sal >= 4000 then 'OVERPAID'
	4 else 'OK'
	5 end as status
	6 from emp

Discussion

The CASE expression allows you to perform condition logic on
 values returned by a query. You can provide an alias for a CASE
 expression to return a more readable result set. In the solution,
 you’ll see the alias STATUS given to the result of the CASE
 expression. The ELSE clause is optional. Omit the ELSE, and the CASE
 expression will return NULL for any row that does not satisfy the test
 condition.

1.9. Limiting the Number of Rows Returned

Problem

You want to limit the number of rows returned in your query. You
 are not concerned with order; any n rows will
 do.

Solution

Use the built-in function provided by your database to control
 the number of rows returned.
DB2

In DB2 use the FETCH FIRST clause:
	1 select *
	2 from emp fetch first 5 rows only

MySQL and PostgreSQL

Do the same thing in MySQL and PostgreSQL using LIMIT:
	1 select *
	2 from emp limit 5

Oracle

In Oracle, place a restriction on the number of rows returned
 by restricting ROWNUM in the WHERE clause:
	1 select *
	2 from emp
	3 where rownum <= 5

SQL Server

Use the TOP keyword to restrict the number of rows
 returned:
	1 select top 5 *
	2 from emp

Discussion

Many vendors provide clauses such as FETCH FIRST and LIMIT that
 let you specify the number of rows to be returned from a query. Oracle
 is different, in that you must make use of a function called ROWNUM
 that returns a number for each row returned (an increasing value
 starting from 1).
Here is what happens when you use ROWNUM <= 5 to return the
 first five rows:
	Oracle executes your query.

	Oracle fetches the first row and calls it row number
 1.

	Have we gotten past row number 5 yet? If no, then Oracle
 returns the row, because it meets the criteria of being numbered
 less than or equal to 5. If yes, then Oracle does not return the
 row.

	Oracle fetches the next row and advances the row number (to
 2, and then to 3, and then to 4, and so forth).

	Go to step 3.

As this process shows, values from Oracle’s ROWNUM are assigned
 after each row is fetched. This is a very
 important and key point. Many Oracle developers attempt to return
 only, say, the fifth row returned by a query by specifying ROWNUM =
 5.
Using an equality condition in conjunction with ROWNUM is a bad
 idea. Here is what happens when you try to return, say, the fifth row
 using ROWNUM = 5:
	Oracle executes your query.

	Oracle fetches the first row and calls it row number
 1.

	Have we gotten to row number 5 yet? If no, then Oracle
 discards the row, because it doesn’t meet the criteria. If yes,
 then Oracle returns the row. But the answer will never be
 yes!

	Oracle fetches the next row and calls it row number 1. This
 is because the first row to be returned from the query must be
 numbered as 1.

	Go to step 3.

Study this process closely, and you can see why the use of
 ROWNUM = 5 to return the fifth row fails. You can’t have a fifth row
 if you don’t first return rows one through four!
You may notice that ROWNUM = 1 does, in fact, work to return the
 first row, which may seem to contradict the explanation thus far. The
 reason ROWNUM = 1 works to return the first row is that, to determine
 whether or not there are any rows in the table, Oracle has to attempt
 to fetch at least once. Read the preceding process carefully,
 substituting 1 for 5, and you’ll understand why it’s OK to specify
 ROWNUM = 1 as a condition (for returning one row).

1.10. Returning n Random Records from a
 Table

Problem

You want to return a specific number of random records from a table. You want to modify the
 following statement such that successive executions will produce a
 different set of five rows:
	select ename, job
	 from emp

Solution

Take any built-in function supported by your DBMS for returning
 random values. Use that function in an ORDER BY clause
 to sort rows randomly. Then, use the previous recipe’s technique to
 limit the number of randomly sorted rows to return.
DB2

Use the built-in function RAND in conjunction with ORDER BY
 and FETCH:
	1 select ename,job
	2 from emp
	3 order by rand() fetch first 5 rows only

MySQL

Use the built-in RAND function in conjunction with LIMIT and
 ORDER BY:
	1 select ename,job
	2 from emp
	3 order by rand() limit 5

PostgreSQL

Use the built-in RANDOM function in conjunction with LIMIT and ORDER
 BY:
	1 select ename,job
	2 from emp
	3 order by random() limit 5

Oracle

Use the built-in function VALUE, found in the built-in package
 DBMS_RANDOM, in conjunction with ORDER BY and the built-in
 function ROWNUM:
	1 select *
	2 from (
	3 select ename, job
	4 from emp
	6 order by dbms_random.value()
	7)
	8 where rownum <= 5

SQL Server

Use the built-in function NEWID in conjunction with TOP and
 ORDER BY to return a random result set:
	1 select top 5 ename,job
	2 from emp
	3 order by newid()

Discussion

The ORDER BY clause can accept a function’s return value and
 use it to change the order of the result set. The solution queries all
 restrict the number of rows to return after the
 function in the ORDER BY clause is executed. Non-Oracle users may find
 it helpful to look at the Oracle solution as it shows (conceptually)
 what is happening under the covers of the other solutions.
It is important that you don’t confuse using a function in the
 ORDER BY clause with using a numeric constant. When specifying a
 numeric constant in the ORDER BY clause, you are requesting that the
 sort be done according the column in that ordinal position in the
 SELECT list. When you specify a function in the ORDER BY clause, the
 sort is performed on the result from the function as it is evaluated
 for each row.

1.11. Finding Null Values

Problem

You want to find all rows that are null for a particular
 column.

Solution

To determine whether a value is null, you must use IS NULL:
	1 select *
	2 from emp
	3 where comm is null

Discussion

NULL is never equal/not equal to anything, not even itself,
 therefore you cannot use = or != for testing whether a column is NULL.
 To determine whether or not a row has NULL values you must use IS
 NULL. You can also use IS NOT NULL to find rows without a null in a
 given column.

1.12. Transforming Nulls into Real Values

Problem

You have rows that contain nulls and would like to return
 non-null values in place of those nulls.

Solution

Use the function COALESCE to substitute real values for
 nulls:
	1 select coalesce(comm,0)
	2 from emp

Discussion

The COALESCE function takes one or more values as arguments.
 The function returns the first non-null value in the list. In the
 solution, the value of COMM is returned whenever COMM is not null.
 Otherwise, a zero is returned.
When working with nulls, it’s best to take advantage of the
 built-in functionality provided by your DBMS; in many cases you’ll
 find several functions work equally as well for this task. COALESCE
 happens to work for all DBMSs. Additionally, CASE can be used for all
 DBMSs as well:
	select case
	 when comm is not null then comm
	 else 0
	 end
	 from emp
While you can use CASE to translate nulls into values, you can
 see that it’s much easier and more succinct to use COALESCE.

1.13. Searching for Patterns

Problem

You want to return rows that match a particular substring or
 pattern. Consider the following query and result set:
	select ename, job
	 from emp
	 where deptno in (10,20)

	ENAME JOB
	---------- ---------
	SMITH CLERK
	JONES MANAGER
	CLARK MANAGER
	SCOTT ANALYST
	KING PRESIDENT
	ADAMS CLERK
	FORD ANALYST
	MILLER CLERK
Of the employees in departments 10 and 20, you want to return
 only those that have either an “I” somewhere in their name or a job
 title ending with “ER”:
	ENAME JOB
	---------- ---------
	SMITH CLERK
	JONES MANAGER
	CLARK MANAGER
	KING PRESIDENT
	MILLER CLERK

Solution

Use the LIKE operator in conjunction with the SQL wildcard operator (”%”):
	1 select ename, job
	2 from emp
	3 where deptno in (10,20)
	4 and (ename like '%I%' or job like '%ER')

Discussion

When used in a LIKE pattern-match operation, the percent (“%”)
 operator matches any sequence of characters. Most SQL implementations
 also provide the underscore (“_”) operator to match a single character.
 By enclosing the search pattern “I” with “%” operators, any string
 that contains an “I” (at any position) will be returned. If you do not
 enclose the search pattern with “%”, then where you place the operator
 will affect the results of the query. For example, to find job titles
 that end in “ER”, prefix the “%” operator to “ER”; if the requirement
 is to search for all job titles beginning with “ER”, then append the
 “%” operator to “ER”.

Chapter 2. Sorting Query Results

This chapter focuses on customizing how your query results look. By understanding
 how you can control and modify your result sets, you can provide more
 readable and meaningful data.
2.1. Returning Query Results in a Specified Order

Problem

You want to display the names, job, and salaries of employees in
 department 10 in order based on their salary (from lowest to highest).
 You want to return the following result set:
	ENAME JOB SAL
	---------- --------- ----------
	MILLER CLERK 1300
	CLARK MANAGER 2450
	KING PRESIDENT 5000

Solution

Use the ORDER BY clause:
	1 select ename,job,sal
	2 from emp
	3 where deptno = 10
	4 order by sal asc

Discussion

The ORDER BY clause allows you to order the rows of your result
 set. The solution sorts the rows based on SAL in ascending order. By
 default, ORDER BY will sort in ascending order, and the ASC clause is
 therefore optional. Alternatively, specify DESC to sort in descending
 order:
	select ename,job,sal
	 from emp
	 where deptno = 10
	 order by sal desc

	ENAME JOB SAL
	---------- --------- ----------
	KING PRESIDENT 5000
	CLARK MANAGER 2450
	MILLER CLERK 1300
You need not specify the name of the column on which to sort. You can instead specify a number
 representing the column. The number starts at 1 and matches the items
 in the SELECT list from left to right. For example:
	select ename,job,sal
	 from emp
	 where deptno = 10
	 order by 3 desc

	ENAME JOB SAL
	---------- --------- ----------
	KING PRESIDENT 5000
	CLARK MANAGER 2450
	MILLER CLERK 1300
The number 3 in this example’s ORDER BY clause corresponds to
 the third column in the SELECT list, which is SAL.

2.2. Sorting by Multiple Fields

Problem

You want to sort the rows from EMP first by DEPTNO ascending,
 then by salary descending. You want to return the following result
 set:
	 EMPNO DEPTNO SAL ENAME JOB
	---------- ---------- ---------- ---------- ---------
	 7839 10 5000 KING PRESIDENT
	 7782 10 2450 CLARK MANAGER
	 7934 10 1300 MILLER CLERK
	 7788 20 3000 SCOTT ANALYST
	 7902 20 3000 FORD ANALYST
	 7566 20 2975 JONES MANAGER
	 7876 20 1100 ADAMS CLERK
	 7369 20 800 SMITH CLERK
	 7698 30 2850 BLAKE MANAGER
	 7499 30 1600 ALLEN SALESMAN
	 7844 30 1500 TURNER SALESMAN
	 7521 30 1250 WARD SALESMAN
	 7654 30 1250 MARTIN SALESMAN
	 7900 30 950 JAMES CLERK

Solution

List the different sort columns in the ORDER BY clause, separated by commas:
	1 select empno,deptno,sal,ename,job
	2 from emp
	3 order by deptno, sal desc

Discussion

The order of precedence in ORDER BY is from left to right. If
 you are ordering using the numeric position of a column in the
 SELECT list, then that number must not be greater than
 the number of items in the SELECT list. You are generally permitted to
 order by a column not in the SELECT list, but to do so you must
 explicitly name the column. However, if you are using GROUP BY or DISTINCT in your query, you cannot order by
 columns that are not in the SELECT list.

2.3. Sorting by Substrings

Problem

You want to sort the results of a query by specific parts of a
 string. For example, you want to return employee names and jobs from
 table EMP and sort by the last two characters in the job field. The
 result set should look like the following:
	ENAME JOB
	---------- ---------
	KING PRESIDENT
	SMITH CLERK
	ADAMS CLERK
	JAMES CLERK
	MILLER CLERK
	JONES MANAGER
	CLARK MANAGER
	BLAKE MANAGER
	ALLEN SALESMAN
	MARTIN SALESMAN
	WARD SALESMAN
	TURNER SALESMAN
	SCOTT ANALYST
	FORD ANALYST

Solution

DB2, MySQL, Oracle, and PostgreSQL

Use the SUBSTR function in the ORDER BY clause:
	select ename,job
	 from emp
	 order by substr(job,length(job)-1)

SQL Server

Use the SUBSTRING function in the ORDER BY clause:
	select ename,job
	 from emp
	 order by substring(job,len(job)-1,2)

Discussion

Using your DBMS’s substring function, you can easily sort by any
 part of a string. To sort by the last two characters of a string, find
 the end of the string (which is the length of the string) and subtract
 2. The start position will be the second to last character in the
 string. You then take all characters after that start position.
 Because SQL Server requires a third parameter in SUBSTRING to specify
 the number of characters to take. In this example, any number greater
 than or equal to 2 will work.

2.4. Sorting Mixed Alphanumeric Data

Problem

You have mixed alphanumeric data and want to sort by either the numeric
 or character portion of the data. Consider this view:
	create view V
	as
	select ename||' '||deptno as data
	 from emp

	select * from V

	DATA

	SMITH 20
	ALLEN 30
	WARD 30
	JONES 20
	MARTIN 30
	BLAKE 30
	CLARK 10
	SCOTT 20
	KING 10
	TURNER 30
	ADAMS 20
	JAMES 30
	FORD 20
	MILLER 10
You want to sort the results by DEPTNO or ENAME. Sorting by
 DEPTNO produces the following result set:
	DATA

	CLARK 10
	KING 10
	MILLER 10
	SMITH 20
	ADAMS 20
	FORD 20
	SCOTT 20
	JONES 20
	ALLEN 30
	BLAKE 30
	MARTIN 30
	JAMES 30
	TURNER 30
	WARD 30
Sorting by ENAME produces the following result
 set:
	DATA

	ADAMS 20
	ALLEN 30
	BLAKE 30
	CLARK 10
	FORD 20
	JAMES 30
	JONES 20
	KING 10
	MARTIN 30
	MILLER 10
	SCOTT 20
	SMITH 20
	TURNER 30
	WARD 30

Solution

Oracle and PostgreSQL

Use the functions REPLACE and TRANSLATE to modify the string for
 sorting:
	/* ORDER BY DEPTNO */

	1 select data
	2 from V
	3 order by replace(data,
	4 replace(
	5 translate(data,'0123456789','##########'),'#',''),'')

	/* ORDER BY ENAME */

	1 select data
	2 from emp
	3 order by replace(
	4 translate(data,'0123456789','##########'),'#','')

DB2

Implicit type conversion is more strict in DB2 than in Oracle
 or PostgreSQL, so you will need to cast DEPTNO to a CHAR for view V
 to be valid. Rather than recreate view V, this solution will simply
 use an inline view. The solution uses REPLACE and TRANSLATE in the
 same way as the Oracle and PostrgreSQL solution, but the order of
 arguments for TRANSLATE is slightly different for DB2:
	/* ORDER BY DEPTNO */

	1 select *
	2 from (
	3 select ename||' '||cast(deptno as char(2)) as data
	4 from emp
	5) v
	6 order by replace(data,
	7 replace(
	8 translate(data,'##########','0123456789'),'#',''),'')

	/* ORDER BY ENAME */

	1 select *
	2 from (
	3 select ename||' '||cast(deptno as char(2)) as data
	4 from emp
	5) v
	6 order by replace(
	7 translate(data,'##########','0123456789'),'#','')

MySQL and SQL Server

The TRANSLATE function is not currently supported by these
 platforms, thus a solution for this problem will not be
 provided.

Discussion

The TRANSLATE and REPLACE functions remove either the numbers or
 characters from each row, allowing you to easily sort by one or the
 other. The values passed to ORDER BY are shown in the following query
 results (using the Oracle solution as the example, as the same
 technique applies to all three vendors; only the order of parameters
 passed to TRANSLATE is what sets DB2 apart):
	select data,
	 replace(data,
	 replace(
	 translate(data,'0123456789','##########'),'#',''),'') nums,
	 replace(
	 translate(data,'0123456789','##########'),'#','') chars
	 from V

	DATA NUMS CHARS
	------------ ------ ----------
	SMITH 20 20 SMITH
	ALLEN 30 30 ALLEN
	WARD 30 30 WARD
	JONES 20 20 JONES
	MARTIN 30 30 MARTIN
	BLAKE 30 30 BLAKE
	CLARK 10 10 CLARK
	SCOTT 20 20 SCOTT
	KING 10 10 KING
	TURNER 30 30 TURNER
	ADAMS 20 20 ADAMS
	JAMES 30 30 JAMES
	FORD 20 20 FORD
	MILLER 10 10 MILLER

2.5. Dealing with Nulls when Sorting

Problem

You want to sort results from EMP by COMM, but the field is
 nullable. You need a way to specify whether nulls sort last:
	ENAME SAL COMM
	---------- ---------- ----------
	TURNER 1500 0
	ALLEN 1600 300
	WARD 1250 500
	MARTIN 1250 1400
	SMITH 800
	JONES 2975
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	BLAKE 2850
	CLARK 2450
	SCOTT 3000
	KING 5000
or whether they sort first:
	ENAME SAL COMM
	---------- ---------- ----------
	SMITH 800
	JONES 2975
	CLARK 2450
	BLAKE 2850
	SCOTT 3000
	KING 5000
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	MARTIN 1250 1400
	WARD 1250 500
	ALLEN 1600 300
	TURNER 1500 0

Solution

Depending on how you want the data to look (and how your particular RDBMS sorts NULL values), you
 can sort the nullable column in ascending or descending order:
	1 select ename,sal,comm
	2 from emp
	3 order by 3

	1 select ename,sal,comm
	2 from emp
	3 order by 3 desc
This solution puts you in a position such that if the nullable
 column contains non-NULL values, they will be sorted in ascending or
 descending order as well, according to what you ask for; this may or
 may not what you have in mind. If instead you would like to sort NULL
 values differently than non-NULL values, for example, you want to sort
 non-NULL values in ascending or descending order and all NULL values
 last, you can use a CASE expression to conditionally sort the
 column.
DB2, MySQL, PostgreSQL, and SQL Server

Use a CASE expression to “flag” when a value is NULL. The idea
 is to have a flag with two values: one to represent NULLs, the other to represent non-NULLs. Once you have
 that, simply add this flag column to the ORDER BY clause. You’ll
 easily be able to control whether NULL values are sorted first or
 last without interfering with non-NULL values:
	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */
	1 select ename,sal,comm
	2 from (
	3 select ename,sal,comm,
	4 case when comm is null then 0 else 1 end as is_null
	5 from emp
	6) x
	7 order by is_null desc,comm

	ENAME SAL COMM
	------ ----- ----------
	TURNER 1500 0
	ALLEN 1600 300
	WARD 1250 500
	MARTIN 1250 1400
	SMITH 800
	JONES 2975
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	BLAKE 2850
	CLARK 2450
	SCOTT 3000
	KING 5000

	/* NON-NULL COMM SORTED DESCENDING, ALL NULLS LAST */

	
	1 select ename,sal,comm
	2 from (
	3 select ename,sal,comm,
	4 case when comm is null then 0 else 1 end as is_null
	5 from emp
	6) x
	7 order by is_null desc,comm desc

	ENAME SAL COMM
	------ ----- ----------
	MARTIN 1250 1400
	WARD 1250 500
	ALLEN 1600 300
	TURNER 1500 0
	SMITH 800
	JONES 2975
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	BLAKE 2850
	CLARK 2450
	SCOTT 3000
	KING 5000

	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */

	
	1 select ename,sal,comm
	2 from (
	3 select ename,sal,comm,
	4 case when comm is null then 0 else 1 end as is_null
	5 from emp
	6) x
	7 order by is_null,comm

	ENAME SAL COMM
	------ ----- ----------
	SMITH 800
	JONES 2975
	CLARK 2450
	BLAKE 2850
	SCOTT 3000
	KING 5000
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	TURNER 1500 0
	ALLEN 1600 300
	WARD 1250 500
	MARTIN 1250 1400

	/* NON-NULL COMM SORTED DESCENDING, ALL NULLS FIRST */

	
	1 select ename,sal,comm
	2 from (
	3 select ename,sal,comm,
	4 case when comm is null then 0 else 1 end as is_null
	5 from emp
	6) x
	7 order by is_null,comm desc

	ENAME SAL COMM
	------ ----- ----------
	SMITH 800
	JONES 2975
	CLARK 2450
	BLAKE 2850
	SCOTT 3000
	KING 5000
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	MARTIN 1250 1400
	WARD 1250 500
	ALLEN 1600 300
	TURNER 1500 0

Oracle

Users on Oracle8i Database and earlier can use the solution for the other
 platforms. Users on Oracle9i Database and later
 can use the NULLS FIRST and NULLS LAST extension to the ORDER
 BYclause to ensure NULLs are sorted first or last regardless of how
 non-NULL values are sorted:
	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */
	1 select ename,sal,comm
	2 from emp
	3 order by comm nulls last

	ENAME SAL COMM
	------ ----- ---------
	TURNER 1500 0
	ALLEN 1600 300
	WARD 1250 500
	MARTIN 1250 1400
	SMITH 800
	JONES 2975
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	BLAKE 2850
	CLARK 2450
	SCOTT 3000
	KING 5000

	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */
	
	
	1 select ename,sal,comm
	2 from emp
	3 order by comm nulls first

	ENAME SAL COMM
	------ ----- ----------
	SMITH 800
	JONES 2975
	CLARK 2450
	BLAKE 2850
	SCOTT 3000
	KING 5000
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	TURNER 1500 0
	ALLEN 1600 300
	WARD 1250 500
	MARTIN 1250 1400

	/* NON-NULL COMM SORTED DESCENDING, ALL NULLS FIRST */

	
	1 select ename,sal,comm
	2 from emp
	3 order by comm desc nulls first

	ENAME SAL COMM
	------ ----- ----------
	SMITH 800
	JONES 2975
	CLARK 2450
	BLAKE 2850
	SCOTT 3000
	KING 5000
	JAMES 950
	MILLER 1300
	FORD 3000
	ADAMS 1100
	MARTIN 1250 1400
	WARD 1250 500
	ALLEN 1600 300
	TURNER 1500 0

Discussion

Unless your RDBMS provides you with a way to easily sort NULL
 values first or last without modifying non-NULL values in the same
 column (such as Oracle does), you’ll need an auxiliary column.
Tip
As of the time of this writing, DB2 users can use NULLS FIRST
 and NULLS LAST in the ORDER BY subclause of the
 OVER clause in window functions but not in the ORDER
 BY clause for the entire result set.

The purpose of this extra column (in the query only, not in the
 table) is to allow you to identify NULL values and sort them
 altogether, first or last. The following query returns the result set
 for inline view X for the non-Oracle solution:
	select ename,sal,comm,
	 case when comm is null then 0 else 1 end as is_null
	 from emp

	ENAME SAL COMM IS_NULL
	------ ----- ---------- ----------
	SMITH 800 0
	ALLEN 1600 300 1
	WARD 1250 500 1
	
	JONES 2975 0
	MARTIN 1250 1400 1
	BLAKE 2850 0
	CLARK 2450 0
	SCOTT 3000 0
	KING 5000 0
	TURNER 1500 0 1
	ADAMS 1100 0
	JAMES 950 0
	FORD 3000 0
	MILLER 1300 0
By using the values returned by IS_NULL, you can easily sort
 NULLS first or last without interfering with the
 sorting of COMM.

2.6. Sorting on a Data Dependent Key

Problem

You want to sort based on some conditional logic. For example:
 if JOB is “SALESMAN” you want to sort on COMM; otherwise, you want to
 sort by SAL. You want to return the following result set:
	ENAME SAL JOB COMM
	---------- ---------- --------- ----------
	TURNER 1500 SALESMAN 0
	ALLEN 1600 SALESMAN 300
	WARD 1250 SALESMAN 500
	SMITH 800 CLERK
	JAMES 950 CLERK
	ADAMS 1100 CLERK
	MILLER 1300 CLERK
	MARTIN 1250 SALESMAN 1400
	CLARK 2450 MANAGER
	BLAKE 2850 MANAGER
	JONES 2975 MANAGER
	SCOTT 3000 ANALYST
	FORD 3000 ANALYST
	KING 5000 PRESIDENT

Solution

Use a CASE expression in the ORDER BY clause:
	1 select ename,sal,job,comm
	2 from emp
	3 order by case when job = 'SALESMAN' then comm else sal end

Discussion

You can use the CASE expression to dynamically change how
 results are sorted. The values passed to the ORDER BY look as
 follows:
	select ename,sal,job,comm,
	 case when job = 'SALESMAN' then comm else sal end as ordered
	 from emp
	 order by 5

	ENAME SAL JOB COMM ORDERED
	---------- ---------- --------- ---------- ----------
	TURNER 1500 SALESMAN 0 0
	ALLEN 1600 SALESMAN 300 300
	WARD1 250 SALESMAN 500 500
	SMITH 800 CLERK 800
	JAMES 950 CLERK 950
	ADAMS 1100 CLERK 1100
	MILLER 1300 CLERK 1300
	MARTIN 1250 SALESMAN 1400 1400
	CLARK2 450 MANAGER 2450
	BLAKE2 850 MANAGER 2850
	JONES2 975 MANAGER 2975
	SCOTT 3000 ANALYST 3000
	FORD 3000 ANALYST 3000
	KING 5000 PRESIDENT 5000

Chapter 3. Working with Multiple Tables

This chapter introduces the use of joins and set operations to combine data from multiple tables. Joins are the foundation of SQL.
 Set operations are also very important. If you want to master the complex
 queries found in the later chapters of this book, you must start here,
 with joins and set operations.
3.1. Stacking One Rowset atop Another

Problem

You want to return data stored in more than one table,
 conceptually stacking one result set atop the other. The tables do not
 necessarily have a common key, but their columns do have the same data types. For example, you
 want to display the name and department number of the employees in
 department 10 in table EMP, along with the name and department number
 of each department in table DEPT. You want the result set to look like
 the following:
	ENAME_AND_DNAME DEPTNO
	--------------- ----------
	CLARK 10
	KING 10
	MILLER 10

	ACCOUNTING 10
	RESEARCH 20
	SALES 30
	OPERATIONS 40

Solution

Use the set operation UNION ALL to combine rows from multiple tables:
	1 select ename as ename_and_dname, deptno
	2 from emp
	3 where deptno = 10
	4 union all
	5 select '----------', null
	6 from t1
	7union all
	8 select dname, deptno
	9 from dept

Discussion

UNION ALL combines rows from multiple row sources into one result set. As with all set operations, the items in all the SELECT lists must
 match in number and data type. For example, both of the following queries
 will fail:
	select deptno | select deptno, dname
	 from dept | from dept
	 union all | union
	select ename | select deptno
	 from emp | from emp
It is important to note, UNION ALL will include duplicates if
 they exist. If you wish to filter out duplicates, use the UNION
 operator. For example, a UNION between EMP.DEPTNO and DEPT.DEPTNO
 returns only four rows:
	select deptno
	 from emp
	 union
	select deptno
	 from dept

	 DEPTNO

	 10
	 20
	 30
	 40
Specifying UNION rather than UNION ALL will most likely result
 in a sort operation in order to eliminate duplicates. Keep this in
 mind when working with large result sets. Using UNION is roughly
 equivalent to the following query, which applies DISTINCT to the
 output from a UNION ALL:
	select distinct deptno
	 from (
	select deptno
	 from emp
	 union all
	select deptno
	 from dept
)

	 DEPTNO

	 10
	 20
	 30
	 40
You wouldn’t use DISTINCT in a query unless you had to, and the
 same rule applies for UNION; don’t use it instead of UNION ALL unless you have
 to.

3.2. Combining Related Rows

Problem

You want to return rows from multiple tables by joining on a
 known common column or joining on columns that share common values.
 For example, you want to display the names of all employees in
 department 10 along with the location of each employee’s department,
 but that data is stored in two separate tables. You want the result
 set to be the following:
	ENAME LOC
	---------- ----------
	CLARK NEW YORK
	KING NEW YORK
	MILLER NEW YORK

Solution

Join table EMP to table DEPT on DEPTNO:
	1 select e.ename, d.loc
	2 from emp e, dept d
	3 where e.deptno = d.deptno
	4 and e.deptno = 10

Discussion

The solution is an example of a join, or
 more accurately an equi-join, which is a type of
 inner join. A join is an operation that
 combines rows from two tables into one. An equi-join is one in which the join condition is based on
 an equality condition (e.g., where one department number equals
 another). An inner join is the original type of join; each row
 returned contains data from each table.
Conceptually, the result set from a join is produced by first
 creating a Cartesian product (all possible combinations of rows) from
 the tables listed in the FROM clause, as seen below:
	select e.ename, d.loc,
	 e.deptno as emp_deptno,
	 d.deptno as dept_deptno
	 from emp e, dept d
	 where e.deptno = 10

	ENAME LOC EMP_DEPTNO DEPT_DEPTNO
	---------- ------------- ---------- -----------
	CLARK NEW YORK 10 10
	KING NEW YORK 10 10
	MILLER NEW YORK 10 10
	CLARK DALLAS 10 20
	
	KING DALLAS 10 20
	MILLER DALLAS 10 20
	CLARK CHICAGO 10 30
	KING CHICAGO 10 30
	MILLER CHICAGO 10 30
	CLARK BOSTON 10 40
	KING BOSTON 10 40
	MILLER BOSTON 10 40
Every employee in table EMP (in department 10) is returned along
 with every department in the table DEPT. Then, the expression in the
 WHERE clause involving e.deptno and d.deptno (the join) restricts the
 result set such that the only rows returned are the ones where
 EMP.DEPTNO and DEPT.DEPTNO are equal:
	select e.ename, d.loc,
	 e.deptno as emp_deptno,
	 d.deptno as dept_deptno
	 from emp e, dept d
	 where e.deptno = d.deptno
	 and e.deptno = 10

	ENAME LOC EMP_DEPTNO DEPT_DEPTNO
	---------- -------------- ---------- -----------
	CLARK NEW YORK 10 10
	KING NEW YORK 10 10
	MILLER NEW YORK 10 10
An alternative solution makes use of an explicit JOIN clause
 (the “INNER” keyword is optional):
	select e.ename, d.loc
	 from emp e inner join dept d
	 on (e.deptno = d.deptno)
	 where e.deptno = 10
Use the JOIN clause if you prefer to have the join logic in the
 FROM clause rather than the WHERE clause. Both styles are ANSI
 compliant and work on all the latest versions of the RDBMSs in this
 book.

3.3. Finding Rows in Common Between Two Tables

Problem

You want to find common rows between two tables but there are
 multiple columns on which you can join. For example, consider the
 following view V:
	create view V
	as
	select ename,job,sal
	 from emp
	 where job = 'CLERK'

	select * from V

	ENAME JOB SAL
	---------- --------- ----------
	SMITH CLERK 800
	ADAMS CLERK 1100
	JAMES CLERK 950
	MILLER CLERK 1300
Only clerks are returned from view V. However, the view does not
 show all possible EMP columns. You want to return the EMPNO, ENAME,
 JOB, SAL, and DEPTNO of all employees in EMP that match the rows from
 view V. You want the result set to be the following:
	 EMPNO ENAME JOB SAL DEPTNO
	-------- ---------- --------- ---------- ---------
	 7369 SMITH CLERK 800 20
	 7876 ADAMS CLERK 1100 20
	 7900 JAMES CLERK 950 30
	 7934 MILLER CLERK 1300 10

Solution

Join the tables on all the columns necessary to return the
 correct result. Alternatively, use the set operation INTERSECT to avoid performing a join and instead return
 the intersection (common rows) of the two tables.
MySQL and SQL Server

Join table EMP to view V using multiple join
 conditions:
	1 select e.empno,e.ename,e.job,e.sal,e.deptno
	2 from emp e, V
	3 where e.ename = v.ename
	4 and e.job = v.job
	5 and e.sal = v.sal
Alternatively, you can perform the same join via the JOIN
 clause:
	1 select e.empno,e.ename,e.job,e.sal,e.deptno
	2 from emp e join V
	3 on (e.ename = v.ename
	4 and e.job = v.job
	5 and e.sal = v.sal)

DB2, Oracle, and PostgreSQL

The MySQL and SQL Server solution also works for DB2, Oracle,
 and PostgreSQL. It’s the solution you should use if you need to
 return values from view V.
If you do not actually need to return columns from view V, you
 may use the set operation INTERSECT along with an IN
 predicate:
	1 select empno,ename,job,sal,deptno
	2 from emp
	3 where (ename,job,sal) in (
	4 select ename,job,sal from emp
	5intersect
	6 select ename,job,sal from V
	7)

Discussion

When performing joins, you must consider the proper columns to join on in order to return correct results.
 This is especially important when rows can have common values for some columns while having different values
 for others.
The set operation INTERSECT will return rows common to both
 row sources. When using INTERSECT, you are required to compare the
 same number of items, having the same data type, from two tables. When
 working with set operations keep in mind that, by default, duplicate
 rows will not be returned.

3.4. Retrieving Values from One Table That Do Not Exist in
 Another

Problem

You wish to find those values in one table, call it the source
 table, that do not also exist in some target table. For example, you
 want to find which departments (if any) in table DEPT do not exist in
 table EMP. In the example data, DEPTNO 40 from table DEPT does not
 exist in table EMP, so the result set should be the following:
	 DEPTNO

	 40

Solution

Having functions that perform set difference is particularly
 useful for this problem. DB2, PostgreSQL, and Oracle support set
 difference operations. If your DBMS does not support a set difference
 function, use a subquery as shown for MySQL and SQL Server.
DB2 and PostgreSQL

Use the set operation EXCEPT:
	1 select deptno from dept
	2 except
	3 select deptno from emp

Oracle

Use the set operation MINUS:
	1 select deptno from dept
	2 minus
	3 select deptno from emp

MySQL and SQL Server

Use a subquery to return all DEPTNOs from table EMP into an
 outer query that searches table DEPT for rows that are not amongst the rows returned from
 the subquery:
	1 select deptno
	2 from dept
	3 where deptno not in (select deptno from emp)

Discussion

DB2 and PostgreSQL

The built-in functions provided by DB2 and PostgreSQL make
 this operation quite easy. The EXCEPT operator takes the first result set and removes
 from it all rows found in the second result set. The operation is
 very much like a subtraction.
There are restrictions on the use of set operators, including
 EXCEPT. Data types and number of values to compare must match in both SELECT lists.
 Additionally, EXCEPT will not return duplicates and, unlike a
 subquery using NOT IN, NULLs do not present a problem (see the
 discussion for MySQL and SQL Server). The EXCEPT operator will
 return rows from the upper query (the query before the EXCEPT) that
 do not exist in the lower query (the query after the EXCEPT).

Oracle

The Oracle solution is identical to that for DB2 and
 PostgreSQL, except that Oracle calls its set difference operator
 MINUS rather than EXCEPT. Otherwise, the preceding
 explanation applies to Oracle as well.

MySQL and SQL Server

The subquery will return all DEPTNOs from table EMP. The outer
 query returns all DEPTNOs from table DEPT that are “not in” or “not
 included in” the result set returned from the subquery.
Duplicate elimination is something you’ll want to consider
 when using the MySQL and SQL Server solutions. The EXCEPT- and
 MINUS-based solutions used for the other platforms eliminate
 duplicate rows from the result set, ensuring that each DEPTNO is
 reported only one time. Of course, that can only be the case anyway,
 as DEPTNO is a key field in my example data. Were DEPTNO not a key
 field, you could use DISTINCT as follows to ensure that each DEPTNO
 value missing from EMP is reported only once:
	select distinct deptno
	 from dept
	 where deptno not in (select deptno from emp)
Be mindful of NULLs when using NOT IN. Consider the following table, NEW_
 DEPT:
	create table new_dept(deptno integer)
	insert into new_deptvalues (10)
	insert into new_dept values (50)
	insert into new_dept values (null)
If you try to find the DEPTNOs in table DEPT that do not exist
 in table NEW_DEPT and use a subquery with NOT IN, you’ll find that
 the query returns no rows:
	select *
	 from dept
	 where deptno not in (select deptno from new_dept)
DEPTNOs 20, 30, and 40 are not in table NEW_DEPT, yet were not
 returned by the query. Why? The reason is the NULL value present in
 table NEW_DEPT. Three rows are returned by the subquery, with
 DEPTNOs of 10, 50, and NULL. IN and NOT IN are essentially OR
 operations, and will yield different results because of how NULL
 values are treated by logical OR evaluations. To understand this,
 examine the truth tables below (Let T=true, F=false, N=null):
 OR | T | F | N |
+----+---+---+----+
T	T	T	T
F	T	F	N
N	T	N	N
+----+---+---+----+

 NOT |
+-----+---+
T	F
F	T
N	N
+-----+---+

 AND | T | F | N |
+-----+---+---+---+
T	T	F	N
F	F	F	F
N	N	F	N
+-----+---+---+---+
Now consider the following example using IN and its equivalent
 using OR:
select deptno
 from dept
 where deptno in (10,50,null)

 DEPTNO

 10

select deptno
 from dept
 where (deptno=10 or deptno=50 or deptno=null)

DEPTNO

 10
Why was only DEPTNO 10 returned? There are four DEPTNOs in
 DEPT, (10,20,30,40), each one is evaluated against the predicate
 (deptno=10 or deptno=50 or deptno=null). According to the truth
 tables above, for each DEPTNO (10,20,30,40), the predicate
 yields:
DEPTNO=10
(deptno=10 or deptno=50 or deptno=null)
= (10=10 or 10=50 or 10=null)
= (T or F or N)
= (T or N)
= (T)

DEPTNO=20
(deptno=10 or deptno=50 or deptno=null)
= (20=10 or 20=50 or 20=null)
= (F or F or N)
= (F or N)
= (N)

DEPTNO=30
(deptno=10 or deptno=50 or deptno=null)
= (30=10 or 30=50 or 30=null)
= (F or F or N)
= (F or N)
= (N)

DEPTNO=40
(deptno=10 or deptno=50 or deptno=null)
= (40=10 or 40=50 or 40=null)
= (F or F or N)
= (F or N)
= (N)
Now it is obvious why only DEPTNO 10 was returned when using
 IN and OR. Now consider the same example using NOT IN and NOT
 OR:
select deptno
 from dept
 where deptno not in (10,50,null)

(no rows)

select deptno
 from dept
 where not (deptno=10 or deptno=50 or deptno=null)

(no rows)
Why are no rows returned? Let’s check the truth tables:
DEPTNO=10
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (10=10 or 10=50 or 10=null)
= NOT (T or F or N)
= NOT (T or N)
= NOT (T)
= (F)

DEPTNO=20
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (20=10 or 20=50 or 20=null)
= NOT (F or F or N)
= NOT (F or N)
= NOT (N)
= (N)

DEPTNO=30
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (30=10 or 30=50 or 30=null)
= NOT (F or F or N)
= NOT (F or N)
= NOT (N)
= (N)

DEPTNO=40
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (40=10 or 40=50 or 40=null)
= NOT (F or F or N)
= NOT (F or N)
= NOT (N)
= (N)
In SQL, “TRUE or NULL” is TRUE, but “FALSE or NULL” is NULL!
 You must keep this in mind when using IN predicates and when
 performing logical OR evaluations, and NULL values are involved.
To avoid the problem with NOT IN and NULLs, use a correlated subquery in conjunction with NOT EXISTS.
 The term "correlated subquery” is used because rows from the
 outer query are referenced in the subquery. The following example is
 an alternative solution that will not be affected by NULL rows
 (going back to the original query from the “Problem”
 section):
select d.deptno
 from dept d
 where not exists (
 select 1
 from emp e
 where d.deptno = e.deptno
)

DEPTNO

40

select d.deptno
 from dept d
 where not exists (
 select 1
 from new_dept nd
 where d.deptno = nd.deptno
)

DEPTNO

30
40
20
Conceptually, the outer query in this solution considers each
 row in the DEPT table. For each DEPT row, the following
 happens:
	The subquery is executed to see whether the department
 number exists in the EMP table. Note the condition D.DEPTNO =
 E.DEPTNO, which brings together the department numbers from the
 two tables.

	If the subquery returns results, then EXISTS (…) evaluates
 to true and NOT EXISTS (…) thus evaluates to FALSE, and the row
 being considered by the outer query is discarded.

	If the subquery returns no results, then NOT EXISTS (…)
 evaluates to TRUE, and the row being considered by the outer
 query is returned (because it is for a department not
 represented in the EMP table).

The items in the SELECT list of the subquery are unimportant
 when using a correlated subquery with EXISTS/NOT EXISTS, which is
 why I chose to select NULL, to force you to focus on the join in the
 subquery rather than the items in the SELECT list.

3.5. Retrieving Rows from One Table That Do Not Correspond to Rows in
 Another

Problem

You want to find rows that are in one table that do not have a
 match in another table, for two tables that have common keys. For
 example, you want to find which departments have no employees. The
 result set should be the following:
	 DEPTNO DNAME LOC
	 ---------- -------------- -------------
	 40 OPERATIONS BOSTON
Finding the department each employee works in requires an
 equi-join on DEPTNO from EMP to DEPT. The DEPTNO column
 represents the common value between tables. Unfortunately, an
 equi-join will not show you which department has no
 employees. That’s because by equi-joining EMP and DEPT you are
 returning all rows that satisfy the join condition. Instead you want
 only those rows from DEPT that do not satisfy the join
 condition.
This is a subtly different problem than in the preceding recipe,
 though at first glance they may seem the same. The difference is that
 the preceding recipe yields only a list of department numbers not
 represented in table EMP. Using this recipe, however, you can easily
 return other columns from the DEPT table; you can return more than
 just department numbers.

Solution

Return all rows from one table along with rows from another that
 may or may not have a match on the common column. Then, keep only
 those rows with no match.
DB2, MySQL, PostgreSQL, SQL Server

Use an outer join and filter for NULLs (keyword OUTER is
 optional):
	1 select d.*
	2 from dept d left outer join emp e
	3 on (d.deptno = e.deptno)
	4 where e.deptno is null

Oracle

For users on Oracle9i Database
 and later, the preceding solution will work. Alternatively, you can
 use the proprietary Oracle outer-join syntax:
	1 select d.*
	2 from dept d, emp e
	3 where d.deptno = e.deptno (+)
	4 and e.deptno is null
This proprietary syntax (note the use of the “+” in parens) is
 the only outer-join syntax available in
 Oracle8i Database and earlier.

Discussion

This solution works by outer joining and then keeping only rows
 that have no match. This sort of operation is sometimes called an
 anti-join. To get a better idea of how an
 anti-join works, first examine the result set without filtering for
 NULLs:
	select e.ename, e.deptno as emp_deptno, d.*
	 from dept d left join emp e
	 on (d.deptno = e.deptno)

	ENAME EMP_DEPTNO DEPTNO DNAME LOC
	---------- ---------- ---------- -------------- -------------
	SMITH 20 20 RESEARCH DALLAS
	ALLEN 30 30 SALES CHICAGO
	WARD 30 30 SALES CHICAGO
	JONES 20 20 RESEARCH DALLAS
	MARTIN 30 30 SALES CHICAGO
	BLAKE 30 30 SALES CHICAGO
	CLARK 10 10 ACCOUNTING NEW YORK
	SCOTT 20 20 RESEARCH DALLAS
	KING 10 10 ACCOUNTING NEW YORK
	TURNER 30 30 SALES CHICAGO
	ADAMS 20 20 RESEARCH DALLAS
	JAMES 30 30 SALES CHICAGO
	FORD 20 20 RESEARCH DALLAS
	MILLER 10 10 ACCOUNTING NEW YORK
	 40 OPERATIONS BOSTON
Notice, the last row has a NULL value for EMP.ENAME and
 EMP_DEPTNO. That’s because no employees work in department 40. The
 solution uses the WHERE clause to keep only rows where EMP_DEPTNO is
 NULL (thus keeping only rows from DEPT that have no match in
 EMP).

3.6. Adding Joins to a Query Without Interfering with Other
 Joins

Problem

You have a query that returns the results you want. You need
 additional information, but when trying to get it, you lose data from the original result set. For example, you want
 to return all employees, the location of the department in which they
 work, and the date they received a bonus. For this problem, the
 EMP_BONUS table contains the following data:
	select * from emp_bonus

	 EMPNO RECEIVED TYPE
	 ---------- ----------- ----------
	 7369 14-MAR-2005 1
	 7900 14-MAR-2005 2
	 7788 14-MAR-2005 3
The query you start with looks like this:
	select e.ename, d.loc
	 from emp e, dept d
	 where e.deptno=d.deptno

	 ENAME LOC
	 ---------- -------------
	 SMITH DALLAS
	 ALLEN CHICAGO
	 WARD CHICAGO
	 JONES DALLAS
	 MARTIN CHICAGO
	 BLAKE CHICAGO
	 CLARK NEW YORK
	 SCOTT DALLAS
	 KING NEW YORK
	 TURNER CHICAGO
	 ADAMS DALLAS
	 JAMES CHICAGO
	 FORD DALLAS
	 MILLER NEW YORK
You want to add to these results the date a bonus was given to
 an employee, but joining to the EMP_BONUS table returns fewer rows
 than you wish because not every employee has a bonus:
	select e.ename, d.loc,eb.received
	 from emp e, dept d, emp_bonus eb
	 where e.deptno=d.deptno
	 and e.empno=eb.empno

	ENAME LOC RECEIVED
	---------- ------------- -----------
	SCOTT DALLAS 14-MAR-2005
	SMITH DALLAS 14-MAR-2005
	JAMES CHICAGO 14-MAR-2005
Your desired result set is the following:
	ENAME LOC RECEIVED
	---------- ------------- -----------
	ALLEN CHICAGO
	WARD CHICAGO
	MARTIN CHICAGO
	JAMES CHICAGO 14-MAR-2005
	TURNER CHICAGO
	BLAKE CHICAGO
	SMITH DALLAS 14-MAR-2005
	FORD DALLAS
	ADAMS DALLAS
	JONES DALLAS
	SCOTT DALLAS 14-MAR-2005
	CLARK NEW YORK
	KING NEW YORK
	MILLER NEW YORK

Solution

You can use an outer join to obtain the additional information
 without losing the data from the original query. First join table EMP to
 table DEPT to get all employees and the location of the department they work, then outer
 join to table EMP_ BONUS to return the date of the bonus if there is
 one. Following is the DB2, MySQL, PostgreSQL, and SQL Server
 syntax:
	1 select e.ename, d.loc, eb.received
	2 from emp e join dept d
	3 on (e.deptno=d.deptno)
	4 left join emp_bonus eb
	5 on (e.empno=eb.empno)
	6 order by 2
If you are using Oracle9i Database or
 later, the preceding solution will work for you. Alternatively, you
 can use Oracle’s proprietary outer-join syntax, which is your only
 choice when using Oracle8i Database and
 earlier:
	1 select e.ename, d.loc, eb.received
	2 from emp e, dept d, emp_bonus eb
	3 where e.deptno=d.deptno
	4 and e.empno=eb.empno (+)
	5 order by 2
You can also use a scalar subquery (a subquery placed in the
 SELECT list) to mimic an outer join:
	1 select e.ename, d.loc,
	2 (select eb.received from emp_bonus eb
	3 where eb.empno=e.empno) as received
	4 from emp e, dept d
	5 where e.deptno=d.deptno
	6 order by 2
The scalar subquery solution will work across all
 platforms.

Discussion

An outer join will return all rows from one table and matching
 rows from another. See the previous recipe for another example of such
 a join. The reason an outer join works to solve this problem is that
 it does not result in any rows being eliminated that would otherwise
 be returned. The query will return all the rows it would return
 without the outer join. And it also returns the received date, if one
 exists.
Use of a scalar subquery is also a convenient technique for this
 sort of problem, as it does not require you to modify already correct
 joins in your main query. Using a scalar subquery is an
 easy way to tack on extra data to a query without compromising the current result
 set. When working with scalar subqueries, you must ensure they return a scalar
 (single) value. If a subquery in the SELECT list returns more than one
 row, you will receive an error.

See Also

See “Converting a Scalar Subquery to a Composite Subquery in
 Oracle” in Chapter 14 for a
 workaround to the problem of not being able to return multiple rows
 from a SELECT-list subquery.

3.7. Determining Whether Two Tables Have the Same Data

Problem

You want to know if two tables or views have the same data
 (cardinality and values). Consider the following view:
	create view V
	as
	select * from emp where deptno != 10
	 union all
	select * from emp where ename = 'WARD'

	select * from V

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
	----- ---------- --------- ----- ----------- ----- ----- ------
	 7369 SMITH CLERK 7902 17-DEC-1980 800 20
	 7499 ALLEN SALESMAN 7698 20-FEB-1981 1600 300 30
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30
	 7566 JONES MANAGER 7839 02-APR-1981 2975 20
	 7654 MARTIN SALESMAN 7698 28-SEP-1981 1250 1400 30
	 7698 BLAKE MANAGER 7839 01-MAY-1981 2850 30
	 7788 SCOTT ANALYST 7566 09-DEC-1982 3000 20
	 7844 TURNER SALESMAN 7698 08-SEP-1981 1500 0 30
	 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20
	 7900 JAMES CLERK 7698 03-DEC-1981 950 30
	 7902 FORD ANALYST 7566 03-DEC-1981 3000 20
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30
You want to determine whether or not this view has exactly the
 same data as table EMP. The row for employee “WARD” is duplicated to
 show that the solution will reveal not only different data but
 duplicates as well. Based on the rows in table EMP the difference will
 be the three rows for employees in department 10 and the two rows for
 employee “WARD”. You want to return the following result set:
	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
	----- ---------- --------- ----- ----------- ----- ----- ------ ---
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2
	 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1
	 7839 KING PRESIDENT 17-NOV-1981 5000 10 1
	 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

Solution

Functions that perform SET difference (MINUS or EXCEPT, depending on your DBMS) make the problem of
 comparing tables a relatively easy one to solve. If your
 DBMS does not offer such functions, you can use a correlated
 subquery.
DB2 and PostgreSQL

Use the set operations EXCEPT and UNION ALL to find the difference between view V and
 table EMP combined with the difference between table EMP and view
 V:
	 1 (
	 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 3 count(*) as cnt
	 4 from V
	 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	 6 except
	 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 8 count(*) as cnt
	 9 from emp
	10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	11)
	12 union all
	13 (
	14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	15 count(*) as cnt
	16 from emp
	17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	18 except
	19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	20 count(*) as cnt
	21 from v
	22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	23)

Oracle

Use the set operations MINUS and UNION ALL to find the
 difference between view V and table EMP combined with the difference
 between table EMP and view V:
	 1 (
	 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 3 count(*) as cnt
	 4 from V
	 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	 6 minus
	 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 8 count(*) as cnt
	 9 from emp
	10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	11)
	12 union all
	13 (
	14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	15 count(*) as cnt
	16 from emp
	17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	18 minus
	19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	20 count(*) as cnt
	21 from v
	22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	23)

MySQL and SQL Server

Use a correlated subquery and UNION ALL to find the rows in
 view V and not in table EMP combined with the rows in table EMP and
 not in view V:
	 1 select *
	 2 from (
	 3 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
	 4 e.sal,e.comm,e.deptno, count(*) as cnt
	 5 from emp e
	 6 group by empno,ename,job,mgr,hiredate,
	 7 sal,comm,deptno
	 8) e
	 9 where not exists (
	10 select null
	11 from (
	12 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
	13 v.sal,v.comm,v.deptno, count(*) as cnt
	14 from v
	15 group by empno,ename,job,mgr,hiredate,
	16 sal,comm,deptno
	17) v
	18 where v.empno = e.empno
	19 and v.ename = e.ename
	20 and v.job = e.job
	21 and coalesce(v.mgr,0) = coalesce(e.mgr,0)
	22 and v.hiredate = e.hiredate
	23 and v.sal = e.sal
	24 and v.deptno = e.deptno
	25 and v.cnt = e.cnt
	26 and coalesce(v.comm,0) = coalesce(e.comm,0)
	27)
	28 union all
	29 select *
	30 from (
	31 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
	32 v.sal,v.comm,v.deptno, count(*) as cnt
	33 from v
	34 group by empno,ename,job,mgr,hiredate,
	35 sal,comm,deptno
	36) v
	37 where not exists (
	38 select null
	39 from (
	40 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
	41 e.sal,e.comm,e.deptno, count(*) as cnt
	42 from emp e
	43 group by empno,ename,job,mgr,hiredate,
	44 sal,comm,deptno
	45) e
	46 where v.empno = e.empno
	47 and v.ename = e.ename
	48 and v.job = e.job
	49 and coalesce(v.mgr,0) = coalesce(e.mgr,0)
	50 and v.hiredate = e.hiredate
	51 and v.sal = e.sal
	52 and v.deptno = e.deptno
	53 and v.cnt = e.cnt
	54 and coalesce(v.comm,0) = coalesce(e.comm,0)
	55)

Discussion

Despite using different techniques, the concept is the same for
 all solutions:
	First, find rows in table EMP that do not exist in view
 V.

	Then combine (UNION ALL) those rows with rows from view V
 that do not exist in table EMP.

If the tables in question are equal, then no rows are returned.
 If the tables are different, the rows causing the difference are
 returned. As an easy first step when comparing tables, you can compare the cardinalities
 alone rather than including them with the data comparison. The following query is a simple example
 of this and will work on all DBMSs:
	select count(*)
	 from emp
	 union
	select count(*)
	 from dept

	COUNT(*)

	 4
	 14
Because UNION will filter out duplicates, only one row will be
 returned if the tables’ cardinalities are the same. Because two rows
 are returned in this example, you know that the tables do not contain
 identical rowsets.
DB2, Oracle, and PostgreSQL

MINUS and EXCEPT work in the same way, so I will use EXCEPT for
 this discussion. The queries before and after the UNION ALL are very
 similar. So, to understand how the solution works, simply execute
 the query prior to the UNION ALL by itself. The following result set
 is produced by executing lines 1–11 in the solution section:
	(
	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 count(*) as cnt
	 from V
	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	 except
	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 count(*) as cnt
	 from emp
	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
)

	 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
	 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2
The result set represents a row found in view V that is either
 not in table EMP or has a different cardinality than that same row
 in table EMP. In this case, the duplicate row for employee “WARD” is
 found and returned. If you’re still having trouble understanding how
 the result set is produced, run each query on either side of EXCEPT
 individually. You’ll notice the only difference between the two
 result sets is the CNT for employee “WARD” returned by view
 V.
The portion of the query after the UNION ALL does the opposite
 of the query preceding UNION ALL. The query returns rows in table
 EMP not in view V:
	(
	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 count(*) as cnt
	 from emp
	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
	 minus
	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
	 count(*) as cnt
	 from v
	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
)

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
	----- ---------- --------- ----- ----------- ----- ----- ------ ---
	7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1
	7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1
	7839 KING PRESIDENT 17-NOV-1981 5000 10 1
	7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1
The results are then combined by UNION ALL to produce the
 final result set.

MySQL and SQL Server

The queries before and after the UNION ALL are very similar.
 To understand how the subquery-based solution works, simply execute
 the query prior to the UNION ALL by itself. The query below is from
 lines 1–27 in the solution:
	select *
	 from (
	 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
	 e.sal,e.comm,e.deptno, count(*) as cnt
	 from emp e
	 group by empno,ename,job,mgr,hiredate,
	 sal,comm,deptno
) e
	 where not exists (
	select null
	 from (
	select v.empno,v.ename,v.job,v.mgr,v.hiredate,
	 v.sal,v.comm,v.deptno, count(*) as cnt
	 from v
	 group by empno,ename,job,mgr,hiredate,
	 sal,comm,deptno
) v
	 where v.empno = e.empno
	 and v.ename = e.ename
	 and v.job = e.job
	 and v.mgr = e.mgr
	 and v.hiredate = e.hiredate
	 and v.sal = e.sal
	 and v.deptno = e.deptno
	 and v.cnt = e.cnt
	 and coalesce(v.comm,0) = coalesce(e.comm,0)
)

	 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
	 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1
	 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1
	 7839 KING PRESIDENT 17-NOV-1981 5000 10 1
	 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1
Notice that the comparison is not between table EMP and view
 V, but rather between inline view E and inline view V. The
 cardinality for each row is found and returned as an attribute for
 that row. You are comparing each row and its occurrence count. If you
 are having trouble understanding how the comparison works, run the
 subqueries independently. The next step is to find all rows
 (including CNT) in inline view E that do not exist in inline view V.
 The comparison uses a correlated subquery and NOT EXISTS. The joins
 will determine which rows are the same, and the result will be all
 rows from inline view E that are not the rows returned by the join.
 The query after the UNION ALL does the opposite; it finds all rows
 in inline view V that do not exist in inline view E:
	select *
	 from (
	select v.empno,v.ename,v.job,v.mgr,v.hiredate,
	 v.sal,v.comm,v.deptno, count(*) as cnt
	 from v
	 group by empno,ename,job,mgr,hiredate,
	 sal,comm,deptno
) v
	 where not exists (
	select null
	 from (
	 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
	 e.sal,e.comm,e.deptno, count(*) as cnt
	 from emp e
	 group by empno,ename,job,mgr,hiredate,
	 sal,comm,deptno
) e
	 where v.empno = e.empno
	 and v.ename = e.ename
	 and v.job = e.job
	 and v.mgr = e.mgr
	 and v.hiredate = e.hiredate
	 and v.sal = e.sal
	 and v.deptno = e.deptno
	 and v.cnt = e.cnt
	 and coalesce(v.comm,0) = coalesce(e.comm,0)
)

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
	----- ---------- --------- ----- ----------- ----- ----- ------ ---
	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2
The results are then combined by UNION ALL to produce the
 final result set.
Tip
Ales Spectic and Jonathan Gennick give an alternate solution
 in their book Transact-SQL Cookbook
 (O’Reilly). See the section "Comparing Two Sets for Equality” in Chapter 2.

3.8. Identifying and Avoiding Cartesian Products

Problem

You want to return the name of each employee in department 10
 along with the location of the department. The following query is
 returning incorrect data:
	select e.ename, d.loc
	 from emp e, dept d
	 where e.deptno = 10

	ENAME LOC
	---------- -------------
	CLARK NEW YORK
	CLARK DALLAS
	CLARK CHICAGO
	CLARK BOSTON
	KING NEW YORK
	KING DALLAS
	KING CHICAGO
	KING BOSTON
	MILLER NEW YORK
	MILLER DALLAS
	MILLER CHICAGO
	MILLER BOSTON
The correct result set is the following:
	ENAME LOC
	---------- ---------
	CLARK NEW YORK
	KING NEW YORK
	MILLER NEW YORK

Solution

Use a join between the tables in the FROM clause to return the
 correct result set:
	1 select e.ename, d.loc
	2 from emp e, dept d
	3 where e.deptno = 10
	4 and d.deptno = e.deptno

Discussion

Looking at the data in the DEPT table:
	select * from dept

	 DEPTNO DNAME LOC
	---------- -------------- -------------
	 10 ACCOUNTING NEW YORK
	 20 RESEARCH DALLAS
	 30 SALES CHICAGO
	 40 OPERATIONS BOSTON
You can see that department 10 is in New York, and thus you can
 know that returning employees with any location other than New York is
 incorrect. The number of rows returned by the incorrect query is the
 product of the cardinalities of the two tables in the FROM clause. In
 the original query, the filter on EMP for department 10 will result in
 three rows. Because there is no filter for DEPT, all four rows from
 DEPT are returned. Three multiplied by four is twelve, so the
 incorrect query returns twelve rows. Generally, to avoid a Cartesian
 product you would apply the n–1 rule where
 n represents the number of tables in the FROM
 clause and n–1 represents the minimum number of
 joins necessary to avoid a Cartesian product. Depending on what the
 keys and join columns in your tables are, you may very well need more
 than n–1 joins, but n–1 is a
 good place to start when writing queries.
Tip
When used properly, Cartesian products can be very useful. The
 recipe, , uses a Cartesian product and is used by many other
 queries. Common uses of Cartesian products include transposing or
 pivoting (and unpivoting) a result set, generating a sequence of
 values, and mimicking a loop.

3.9. Performing Joins when Using Aggregates

Problem

You want to perform an aggregation but your query involves
 multiple tables. You want to ensure that joins do not
 disrupt the aggregation. For example, you want to find the sum of the
 salaries for employees in department 10 along with the sum of their
 bonuses. Some employees have more than one bonus and the join between
 table EMP and table EMP_BONUS is causing incorrect values to be
 returned by the aggregate function SUM. For this problem, table
 EMP_BONUS contains the following data:
	select * from emp_bonus

	EMPNO RECEIVED TYPE
	----- ----------- ----------
	 7934 17-MAR-2005 1
	 7934 15-FEB-2005 2
	 7839 15-FEB-2005 3
	 7782 15-FEB-2005 1
Now, consider the following query that returns the salary and
 bonus for all employees in department 10. Table BONUS.TYPE determines
 the amount of the bonus. A type 1 bonus is 10% of an employee’s
 salary, type 2 is 20%, and type 3 is 30%.
	select e.empno,
	 e.ename,
	 e.sal,
	 e.deptno,
	 e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3
	 end as bonus
	 from emp e, emp_bonus eb
	where e.empno = eb.empno
	 and e.deptno = 10

	 EMPNO ENAME SAL DEPTNO BONUS
	------- ---------- ---------- ---------- ---------
	 7934 MILLER 1300 10 130
	 7934 MILLER 1300 10 260
	 7839 KING 5000 10 1500
	 7782 CLARK 2450 10 245
So far, so good. However, things go awry when you attempt a join
 to the EMP_ BONUS table in order to sum the bonus amounts:
	select deptno,
	 sum(sal) as total_sal,
	 sum(bonus) as total_bonus
	 from (
	select e.empno,
	 e.ename,
	 e.sal,
	 e.deptno,
	 e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3
	 end as bonus
	 from emp e, emp_bonus eb
	 where e.empno = eb.empno
	 and e.deptno = 10
) x
	 group by deptno

	DEPTNO TOTAL_SAL TOTAL_BONUS
	------ ----------- -----------
	 10 10050 2135
While the TOTAL_BONUS is correct, the TOTAL_SAL is incorrect.
 The sum of all salaries in department 10 is 8750, as the following
 query shows:
	select sum(sal) from emp where deptno=10

	 SUM(SAL)

	 8750
Why is TOTAL_SAL incorrect? The reason is the duplicate rows in
 the SAL column created by the join. Consider the following query,
 which joins table EMP and EMP_ BONUS:
	select e.ename,
	 e.sal
	 from emp e, emp_bonus eb
	 where e.empno = eb.empno
	 and e.deptno = 10

	ENAME SAL
	---------- ----------
	CLARK 2450
	KING 5000
	MILLER 1300
	MILLER 1300
Now it is easy to see why the value for TOTAL_SAL is incorrect: MILLER’s salary is counted
 twice. The final result set that you are really after is:
	DEPTNO TOTAL_SAL TOTAL_BONUS
	------ --------- -----------
	 10 8750 2135

Solution

You have to be careful when computing aggregates across
 joins. Typically when duplicates are returned due to a
 join, you can avoid miscalculations by aggregate functions in two
 ways: you can simply use the keyword DISTINCT in the call to the
 aggregate function, so only unique instances of each value are used in
 the computation; or you can perform the aggregation first (in an
 inline view) prior to joining, thus avoiding the incorrect computation
 by the aggregate function because the aggregate will already be
 computed before you even join, thus avoiding the problem altogether.
 The solutions that follow use DISTINCT. The “Discussion” section will
 discuss the technique of using an inline view to perform the
 aggregation prior to joining.
MySQL and PostgreSQL

Perform a sum of only the DISTINCT salaries:
	 1 select deptno,
	 2 sum(distinct sal) as total_sal,
	 3 sum(bonus) as total_bonus
	 4 from (
	 5 select e.empno,
	 6 e.ename,
	 7 e.sal,
	 8 e.deptno,
	 9 e.sal*case when eb.type = 1 then .1
	10 when eb.type = 2 then .2
	11 else .3
	12 end as bonus
	13 from emp e, emp_bonus eb
	14 where e.empno = eb.empno
	15 and e.deptno = 10
	16) x
	17 group by deptno

DB2, Oracle, and SQL Server

These platforms support the preceding solution, but they also
 support an alternative solution using the window function SUM
 OVER:
	 1 select distinct deptno,total_sal,total_bonus
	 2 from (
	 3 select e.empno,
	 4 e.ename,
	 5 sum(distinct e.sal) over
	 6 (partition by e.deptno) as total_sal,
	 7 e.deptno,
	 8 sum(e.sal*case when eb.type = 1 then .1
	 9 when eb.type = 2 then .2
	10 else .3 end) over
	11 (partition by deptno) as total_bonus
	12 from emp e, emp_bonus eb
	13 where e.empno = eb.empno
	14 and e.deptno = 10
	15) x

Discussion

MySQL and PostgreSQL

The second query in the “Problem” section of this recipe
 joins table EMP and table EMP_BONUS and returns two
 rows for employee “MILLER”, which is what causes the error on the
 sum of EMP.SAL (the salary is added twice). The solution is to
 simply sum the distinct EMP.SAL values that are returned by the
 query. The following query is an alternative solution—necessary if
 there could be duplicate values in the column you are summing. The
 sum of all salaries in department 10 is computed first and that row
 is then joined to table EMP, which is then joined to table
 EMP_BONUS. The following query works for all DBMSs:
	select d.deptno,
	 d.total_sal,
	 sum(e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3 end) as total_bonus
	 from emp e,
	 emp_bonus eb,
	 (
	select deptno, sum(sal) as total_sal
	 from emp
	 where deptno = 10
	 group by deptno
) d
	 where e.deptno = d.deptno
	 and e.empno = eb.empno
	 group by d.deptno,d.total_sal

	 DEPTNO TOTAL_SAL TOTAL_BONUS
	--------- ---------- ------------
	 10 8750 2135

DB2, Oracle, and SQL Server

This alternative solution takes advantage of the window
 function SUM OVER. The following query is taken from lines 3–14
 in “Solution” and returns the following result set:
	select e.empno,
	 e.ename,
	 sum(distinct e.sal) over
	 (partition by e.deptno) as total_sal,
	 e.deptno,
	 sum(e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3 end) over
	 (partition by deptno) as total_bonus
	 from emp e, emp_bonus eb
	 where e.empno = eb.empno
	 and e.deptno = 10

	EMPNO ENAME TOTAL_SAL DEPTNO TOTAL_BONUS
	----- ---------- ---------- ------ -----------
	 7934 MILLER 8750 10 2135
	 7934 MILLER 8750 10 2135
	 7782 CLARK 8750 10 2135
	 7839 KING 8750 10 2135
The windowing function, SUM OVER, is called twice, first to
 compute the sum of the distinct salaries for the defined partition
 or group. In this case, the partition is DEPTNO 10 and the sum of
 the distinct salaries for DEPTNO 10 is 8750. The next call to SUM
 OVER computes the sum of the bonuses for the same defined partition.
 The final result set is produced by taking the distinct values for
 TOTAL_SAL, DEPTNO, and TOTAL_BONUS.

3.10. Performing Outer Joins when Using Aggregates

Problem

Begin with the same problem as in 3.9, but modify table
 EMP_BONUS such that the difference in this case is not all employees
 in department 10 have been given bonuses. Consider the EMP_BONUS table
 and a query to (ostensibly) find both the sum of all salaries for
 department 10 and the sum of all bonuses for all employees in
 department 10:
	select * from emp_bonus

	 EMPNO RECEIVED TYPE
	---------- ----------- ----------
	 7934 17-MAR-2005 1
	 7934 15-FEB-2005 2

	
	select deptno,
	 sum(sal) as total_sal,
	 sum(bonus) as total_bonus
	 from (
	select e.empno,
	 e.ename,
	 e.sal,
	 e.deptno,
	 e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3 end as bonus
	 from emp e, emp_bonus eb
	 where e.empno = eb.empno
	 and e.deptno = 10
)
	 group by deptno

	 DEPTNO TOTAL_SAL TOTAL_BONUS
	 ------ ---------- -----------
	 10 2600 390
The result for TOTAL_BONUS is correct, but the value returned
 for TOTAL_SAL does not represent the sum of all salaries in department
 10. The following query shows why the TOTAL_SAL is incorrect:
	select e.empno,
	 e.ename,
	 e.sal,
	 e.deptno,
	 e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3 end as bonus
	 from emp e, emp_bonus eb
	 where e.empno = eb.empno
	 and e.deptno = 10

	 EMPNO ENAME SAL DEPTNO BONUS
	--------- --------- ------- ---------- ----------
	 7934 MILLER 1300 10 130
	 7934 MILLER 1300 10 260
Rather than sum all salaries in department 10, only the salary
 for “MILLER” is summed and it is erroneously summed twice. Ultimately,
 you would like to return the following result set:
	DEPTNO TOTAL_SAL TOTAL_BONUS
	------ --------- -----------
	 10 8750 390

Solution

The solution is similar to that of 3.9, but here you outer join to EMP_BONUS to ensure all employees from
 department 10 are included.
DB2, MySQL, PostgreSQL, SQL Server

Outer join to EMP_BONUS, then perform the sum on only distinct
 salaries from department 10:
	 1 select deptno,
	 2 sum(distinct sal) as total_sal,
	 3 sum(bonus) as total_bonus
	 4 from (
	 5 select e.empno,
	 6 e.ename,
	 7 e.sal,
	 8 e.deptno,
	 9 e.sal*case when eb.type is null then 0
	10 when eb.type = 1 then .1
	11 when eb.type = 2 then .2
	12 else .3 end as bonus
	13 from emp e left outer join emp_bonus eb
	14 on (e.empno = eb.empno)
	15 where e.deptno = 10
	16)
	17 group by deptno
You can also use the window function SUM OVER:
	 1 select distinct deptno,total_sal,total_bonus
	 2 from (
	 3 select e.empno,
	 4 e.ename,
	 5 sum(distinct e.sal) over
	 6 (partition by e.deptno) as total_sal,
	 7 e.deptno,
	 8 sum(e.sal*case when eb.type is null then 0
	 9 when eb.type = 1 then .1
	10 when eb.type = 2 then .2
	11 else .3
	12 end) over
	13 (partition by deptno) as total_bonus
	14 from emp e left outer join emp_bonus eb
	15 on (e.empno = eb.empno)
	16 where e.deptno = 10
	17) x

Oracle

If you are using Oracle9i
 Database or later you can use the preceding solution.
 Alternatively, you can use the proprietary Oracle outer-join syntax,
 which is mandatory for users on Oracle8i
 Database and earlier:
	 1 select deptno,
	 2 sum(distinct sal) as total_sal,
	 3 sum(bonus) as total_bonus
	 4 from (
	 5 select e.empno,
	 6 e.ename,
	 7 e.sal,
	 8 e.deptno,
	 9 e.sal*case when eb.type is null then 0
	10 when eb.type = 1 then .1
	11 when eb.type = 2 then .2
	12 else .3 end as bonus
	13 from emp e, emp_bonus eb
	14 where e.empno = eb.empno (+)
	15 and e.deptno = 10
	16)
	17 group by deptno
Oracle 8i Database users can also use the
 SUM OVER syntaxshown for DB2 and the other databases,
 but must modify it to use the proprietary Oracle outer-join syntax shown in the preceding
 query.

Discussion

The second query in the “Problem” section of this recipe joins
 table EMP and table EMP_BONUS and returns only rows for employee
 “MILLER”, which is what causes the error on the sum of EMP.SAL (the
 other employees in DEPTNO 10 do not have bonuses and their salaries
 are not included in the sum). The solution is to outer join table EMP
 to table EMP_BONUS so even employees without a bonus will be included
 in the result. If an employee does not have a bonus, NULL will be
 returned for EMP_BONUS.TYPE. It is important to keep this in mind as
 the CASE statement has been modified and is slightly different from
 solution 3.9. If EMP_BONUS.TYPE is NULL, the CASE expression returns
 zero, which has no effect on the sum.
The following query is an alternative solution. The sum of all
 salaries in department 10 is computed first, then joined to table EMP,
 which is then joined to table EMP_BONUS (thus avoiding the outer
 join). The following query works for all DBMSs:
	select d.deptno,
	 d.total_sal,
	 sum(e.sal*case when eb.type = 1 then .1
	 when eb.type = 2 then .2
	 else .3 end) as total_bonus
	 from emp e,
	 emp_bonus eb,
	 (
	select deptno, sum(sal) as total_sal
	 from emp
	 where deptno = 10
	 group by deptno
) d
	 where e.deptno = d.deptno
	 and e.empno = eb.empno
	 group by d.deptno,d.total_sal

	 DEPTNO TOTAL_SAL TOTAL_BONUS
	--------- ---------- -----------
	 10 8750 390

3.11. Returning Missing Data from Multiple Tables

Problem

You want to return missing data from multiple tables simultaneously.
 Returning rows from table DEPT that do not exist in table EMP (any
 departments that have no employees) requires an outer join. Consider
 the following query, which returns all DEPTNOs and DNAMEs from DEPT
 along with the names of all the employees in each department (if there
 is an employee in a particular department):
	select d.deptno,d.dname,e.ename
	 from dept d left outer join emp e
	 on (d.deptno=e.deptno)

	 DEPTNO DNAME ENAME
	--------- -------------- ----------
	 20 RESEARCH SMITH
	 30 SALES ALLEN
	 30 SALES WARD
	 20 RESEARCH JONES
	 30 SALES MARTIN
	 30 SALES BLAKE
	 10 ACCOUNTING CLARK
	 20 RESEARCH SCOTT
	 10 ACCOUNTING KING
	 30 SALES TURNER
	 20 RESEARCH ADAMS
	 30 SALES JAMES
	 20 RESEARCH FORD
	 10 ACCOUNTING MILLER
	 40 OPERATIONS
The last row, the OPERATIONS department, is returned despite
 that department not having any employees, because table EMP was outer
 joined to table DEPT. Now, suppose there was an employee without a
 department. How would you return the above result set along with a row
 for the employee having no department? In other words, you want to
 outer join to both table EMP and table DEPT, and in the same query.
 After creating the new employee, a first attempt may look like
 this:
	insert into emp (empno,ename,job,mgr,hiredate,sal,comm,deptno)
	select 1111,'YODA','JEDI',null,hiredate,sal,comm,null
	 from emp
	 where ename = 'KING'
	select d.deptno,d.dname,e.ename
	 from dept d right outer join emp e
	 on (d.deptno=e.deptno)

	 DEPTNO DNAME ENAME
	---------- ------------ ----------
	 10 ACCOUNTING MILLER
	 10 ACCOUNTING KING
	 10 ACCOUNTING CLARK
	 20 RESEARCH FORD
	 20 RESEARCH ADAMS
	 20 RESEARCH SCOTT
	 20 RESEARCH JONES
	 20 RESEARCH SMITH
	 30 SALES JAMES
	 30 SALES TURNER
	 30 SALES BLAKE
	 30 SALES MARTIN
	 30 SALES WARD
	 30 SALES ALLEN
	 YODA
This outer join manages to return the new employee but lost the
 OPERATIONS department from the original result set. The final result
 set should return a row for YODA as well as OPERATIONS, such as the
 following:
	 DEPTNO DNAME ENAME
	---------- ------------ --------
	 10 ACCOUNTING CLARK
	 10 ACCOUNTING KING
	 10 ACCOUNTING MILLER
	 20 RESEARCH ADAMS
	 20 RESEARCH FORD
	 20 RESEARCH JONES
	 20 RESEARCH SCOTT
	 20 RESEARCH SMITH
	 30 SALES ALLEN
	 30 SALES BLAKE
	 30 SALES JAMES
	 30 SALES MARTIN
	 30 SALES TURNER
	 30 SALES WARD
	 40 OPERATIONS
	 YODA

Solution

Use a full outer join to return missing data from both tables based on a common value.
DB2, MySQL, PostgreSQL, SQL Server

Use the explicit FULL OUTER JOIN command to return missing
 rows from both tables along with matching rows:
	1 select d.deptno,d.dname,e.ename
	2 from dept d full outer join emp e
	3 on (d.deptno=e.deptno)
Alternatively, since MySQL does not yet have a FULL OUTER
 JOIN, union the results of the two different outer joins:
	1 select d.deptno,d.dname,e.ename
	2 from dept d right outer join emp e
	3 on (d.deptno=e.deptno)
	4 union
	5 select d.deptno,d.dname,e.ename
	6 from dept d left outer join emp e
	7 on (d.deptno=e.deptno)

Oracle

If you are on Oracle9i Database or later, you can use either of the preceding
 solutions. Alternatively, you can use Oracle’s proprietary outer
 join syntax, which is the only choice for users on
 Oracle8i Database and earlier:
	1 select d.deptno,d.dname,e.ename
	2 from dept d, emp e
	3 where d.deptno = e.deptno(+)
	4 union
	5 select d.deptno,d.dname,e.ename
	6 from dept d, emp e
	7 where d.deptno(+) = e.deptno

Discussion

The full outer join is simply the combination of outer joins on both tables. To see how a full outer join
 works “under the covers,” simply run each outer join, then union the
 results. The following query returns rows from table DEPT and any
 matching rows from table EMP (if any).
	select d.deptno,d.dname,e.ename
	 from dept d left outer join emp e
	 on (d.deptno = e.deptno)

	 DEPTNO DNAME ENAME
	 ------ -------------- ----------
	 20 RESEARCH SMITH
	 30 SALES ALLEN
	 30 SALES WARD
	 20 RESEARCH JONES
	 30 SALES MARTIN
	 30 SALES BLAKE
	 10 ACCOUNTING CLARK
	 20 RESEARCH SCOTT
	 10 ACCOUNTING KING
	 30 SALES TURNER
	 20 RESEARCH ADAMS
	 30 SALES JAMES
	 20 RESEARCH FORD
	 10 ACCOUNTING MILLER
	 40 OPERATIONS
This next query returns rows from table EMP and any matching
 rows from table DEPT (if any):
	select d.deptno,d.dname,e.ename
	 from dept d right outer join emp e
	 on (d.deptno = e.deptno)

	 DEPTNO DNAME ENAME
	 ------ -------------- ----------
	 10 ACCOUNTING MILLER
	 10 ACCOUNTING KING
	 10 ACCOUNTING CLARK
	 20 RESEARCH FORD
	 20 RESEARCH ADAMS
	 20 RESEARCH SCOTT
	 20 RESEARCH JONES
	 20 RESEARCH SMITH
	 30 SALES JAMES
	 30 SALES TURNER
	 30 SALES BLAKE
	 30 SALES MARTIN
	 30 SALES WARD
	 30 SALES ALLEN
	 YODA
The results from these two queries are unioned to provide the
 final result set.

3.12. Using NULLs in Operations and Comparisons

Problem

NULL is never equal to or not equal to any value, not even
 itself, but you want to evaluate values returned by a nullable column
 like you would evaluate real values. For example, you want to find all
 employees in EMP whose commission (COMM) is less than the commission
 of employee “WARD”. Employees with a NULL commission should be
 included as well.

Solution

Use a function such as COALESCE to transform the NULL value into
 a real value that can be used in standard evaluation:
	1 select ename,comm
	2 from emp
	3 where coalesce(comm,0) < (select comm
	4 from emp
	5 where ename = 'WARD')

Discussion

The COALESCE function will return the first non-NULL value
 from the list of values passed to it. When a NULL value is encountered
 it is replaced by zero, which is then compared with Ward’s commission.
 This can be seen by putting the COALESCE function in the SELECT
 list:
	select ename,comm,coalesce(comm,0)
	 from emp
	 where coalesce(comm,0) < (select comm
	 from emp
	 where ename = 'WARD')

	 ENAME COMM COALESCE(COMM,0)
	 ---------- ---------- ----------------
	 SMITH 0
	 ALLEN 300 300
	 JONES 0
	 BLAKE 0
	 CLARK 0
	 SCOTT 0
	 KING 0
	 TURNER 0 0
	 ADAMS 0
	 JAMES 0
	 FORD 0
	 MILLER 0

Chapter 4. Inserting, Updating, Deleting

The past few chapters have focused on basic query techniques, all
 centered around the task of getting data out of a database. This chapter
 turns the tables, and focuses on the following three topic areas:
	Inserting new records into your database

	Updating existing records

	Deleting records that you no longer want

For ease in finding them when you need them, recipes in this chapter
 have been grouped by topic: all the insertion recipes come first, followed
 by the update recipes, and finally recipes for deleting data.
Inserting is usually a straightforward task. It begins with the
 simple problem of inserting a single row. Many times, however, it is more
 efficient to use a set-based approach to create new rows. To that end,
 you’ll also find techniques for inserting many rows at a time.
Likewise, updating and deleting start out as simple tasks. You can
 update one record, and you can delete one record. But you can also update
 whole sets of records at once, and in very powerful ways. And there are
 many handy ways to delete records. For example, you can delete rows in one
 table depending on whether or not they exist in another table.
SQL even has a way, a relatively new addition to the standard, by
 which you can insert, update, and delete all at once. That may not sound
 like too useful a thing now, but the MERGE statement represents a very powerful way to bring a
 database table into sync with an external source of data (such as a flat
 file feed from a remote system). Check out Section in this chapter for
 details.
4.1. Inserting a New Record

Problem

You want to insert a new record into a table. For example, you
 want to insert a new record into the DEPT table. The value for DEPTNO
 should be 50, DNAME should be “PROGRAMMING”, and LOC should be
 “BALTIMORE”.

Solution

Use the INSERT statement with the VALUES clause to insert one row at a time:
	insert into dept (deptno,dname,loc)
	values (50,'PROGRAMMING','BALTIMORE')
For DB2 and MySQL you have the option of inserting one row at a
 time or multiple rows at a time by including multiple VALUES
 lists:
	/* multi row insert */
	insert into dept (deptno,dname,loc)
	values (1,'A','B'),
	 (2,'B','C')

Discussion

The INSERT statement allows you to create new rows in database
 tables. The syntax for inserting a single row is consistent across all
 database brands.
As a shortcut, you can omit the column list in an INSERT
 statement:
	insert into dept
	values (50,'PROGRAMMING','BALTIMORE')
However, if you do not list your target columns, you must insert
 into all of the columns in the table, and be
 mindful of the order of the values in the VALUES list; you must supply
 values in the same order in which the database displays columns in
 response to a SELECT * query.

4.2. Inserting Default Values

Problem

A table can be defined to take default values for specific
 columns. You want to insert a row of default values without having to
 specify those values. Consider the following table:
	create table D (id integer default 0)
You want to insert zero without explicitly specifying zero in
 the values list of an INSERT statement. You want to explicitly insert
 the default, whatever that default is.

Solution

All brands support use of the DEFAULT keyword as a way of explicitly specifying the
 default value for a column. Some brands provide additional ways to
 solve the problem.
The following example illustrates the use of the DEFAULT keyword:
	insert into D values (default)
You may also explicitly specify the column name, which you’ll
 need to do anytime you are not inserting into all columns of a
 table:
	insert into D (id) values (default)
Oracle8i Database and prior versions do not
 support the DEFAULT keyword. Prior to Oracle9i
 Database, there was no way to explicitly insert a default column
 value.
MySQL allows you to specify an empty values list if all columns
 have a default value defined:
	insert into D values ()
In this case, all columns will be set to their default
 values.
PostgreSQL and SQL Server support a DEFAULT VALUES clause:
	insert into D default values
The DEFAULT VALUES clause causes all columns to take on their
 default values.

Discussion

The DEFAULT keyword in the values list will insert the value
 that was specified as the default for a particular column during table
 creation. The keyword is available for all DBMSs.
MySQL, PostgreSQL, and SQL Server users have another option
 available if all columns in the table are defined with a default value
 (as table D is in this case). You may use an empty VALUES list (MySQL)
 or specify the DEFAULT VALUES clause (PostgreSQL and SQL Server) to
 create a new row with all default values; otherwise, you need to
 specify DEFAULT for each column in the table.
For tables with a mix of default and non-default columns,
 inserting default values for a column is as easy as excluding the
 column from the insert list; you do not need to use the DEFAULT
 keyword. Say that table D had an additional column that was not
 defined with a default value:
	create table D (id integer default 0, foo varchar(10))
You can insert a default for ID by listing only FOO in the
 insert list:
	insert into D (name) values ('Bar')
This statement will result in a row in which ID is 0 and FOO is
 “Bar”. ID takes on its default value because no other value is
 specified.

4.3. Overriding a Default Value with NULL

Problem

You are inserting into a column having a default value, and you
 wish to override that default value by setting the column to NULL.
 Consider the following table:
	create table D (id integer default 0, foo VARCHAR(10))
You wish to insert a row with a NULL value for ID.

Solution

You can explicitly specify NULL in your values list:
	insert into d (id, foo) values (null, 'Brighten')

Discussion

Not everyone realizes that you can explicitly specify NULL in
 the values list of an INSERT statement. Typically, when you do not wish to
 specify a value for a column, you leave that column out of your column
 and values lists:
	insert into d (foo) values ('Brighten')
Here, no value for ID is specified. Many would expect the column
 to taken on the null value, but, alas, a default value was specified
 at table creation time, so the result of the preceding INSERT is that
 ID takes on the value 0 (the default). By specifying NULL as the value
 for a column, you can set the column to NULL despite any default
 value.

4.4. Copying Rows from One Table into Another

Problem

You want to copy rows from one table to another by using a
 query. The query may be complex or simple, but ultimately you want the
 result to be inserted into another table. For example, you want to
 copy rows from the DEPT table to the DEPT_EAST table. The DEPT_EAST
 table has already been created with the same structure (same columns
 and data types) as DEPT and is currently empty.

Solution

Use the INSERT statement followed by a query to produce the rows
 you want:
	1 insert into dept_east (deptno,dname,loc)
	2 select deptno,dname,loc
	3 from dept
	4 where loc in ('NEW YORK','BOSTON')

Discussion

Simply follow the INSERT statement with a query that returns the
 desired rows. If you want to copy all rows from the source table,
 exclude the WHERE clause from the query. Like a regular insert, you do
 not have to explicitly specify which columns you are inserting into.
 But if you do not specify your target columns, you must insert into
 all of the table’s columns, and you must be mindful of the order of the values in
 the SELECT list as described earlier in “Inserting a New
 Record.”

4.5. Copying a Table Definition

Problem

You want to create a new table having the same set of columns as
 an existing table. For example, you want to create a copy of the DEPT
 table and call it DEPT_2. You do not want to copy the rows, only the
 column structure of the table.

Solution

DB2

Use the LIKE clause with the CREATE TABLE command:
	create table dept_2 like dept

Oracle, MySQL, and PostgreSQL

Use the CREATE TABLE command with a subquery that returns no
 rows:
	1 create table dept_2
	2 as
	3 select *
	4 from dept
	5 where 1 = 0

SQL Server

Use the INTO clause with a subquery that returns no
 rows:
	1 select *
	2 into dept_2
	3 from dept
	4 where 1 = 0

Discussion

DB2

DB2’s CREATE TABLE…LIKE command allows you to easily use one
 table as the pattern for creating another. Simply specify your
 pattern table’s name following the LIKE keyword.

Oracle, MySQL, and PostgreSQL

When using Create Table As Select (CTAS), all rows from your
 query will be used to populate the new table you are creating unless
 you specify a false condition in the WHERE clause. In the solution
 provided, the expression “1 = 0” in the WHERE clause of the query
 causes no rows to be returned. Thus the result of the CTAS statement
 is an empty table based on the columns in the SELECT clause of the
 query.

SQL Server

When using INTO to copy a table, all rows from your query will
 be used to populate the new table you are creating unless you
 specify a false condition in the WHERE clause of your query. In the
 solution provided, the expression “1 = 0” in the predicate of the
 query causes no rows to be returned. The result is an empty table
 based on the columns in the SELECT clause of the query.

4.6. Inserting into Multiple Tables at Once

Problem

You want to take rows returned by a query and insert those rows
 into multiple target tables. For example, you want to insert rows from
 DEPT into tables DEPT_EAST, DEPT_WEST, and DEPT_MID. All three tables
 have the same structure (same columns and data types) as DEPT and are
 currently empty.

Solution

The solution is to insert the result of a query into the target
 tables. The difference from “Copying Rows from One Table into Another”
 is that for this problem you have multiple target tables.
Oracle

Use either the INSERT ALL or INSERT FIRST statement. Both share the same syntax
 except for the choice between the ALL and FIRST keywords. The
 following statement uses INSERT ALL to cause all possible target
 tables to be considered:
	1 insert all
	2 when loc in ('NEW YORK','BOSTON') then
	3into dept_east (deptno,dname,loc) values (deptno,dname,loc)
	4 when loc = 'CHICAGO' then
	5 into dept_mid (deptno,dname,loc) values (deptno,dname,loc)
	6 else
	7 into dept_west (deptno,dname,loc) values (deptno,dname,loc)
	8 select deptno,dname,loc
	9 from dept

DB2

Insert into an inline view that performs a UNION ALL on the
 tables to be inserted. You must also be sure to place constraints on
 the tables that will ensure each row goes into the correct
 table:
	create table dept_east
	(deptno integer,
	 dname varchar(10),
	 loc varchar(10) check (loc in ('NEW YORK','BOSTON')))

	create table dept_mid
	(deptno integer,
	 dname varchar(10),
	 loc varchar(10) check (loc = 'CHICAGO'))

	create table dept_west
	(deptno integer,
	 dname varchar(10),
	 loc varchar(10) check (loc = 'DALLAS'))

	1 insert into (
	2 select * from dept_west union all
	3 select * from dept_east union all
	4 select * from dept_mid
	5) select * from dept

MySQL, PostgreSQL, and SQL Server

As of the time of this writing, these vendors do not support
 multi-table inserts.

Discussion

Oracle

Oracle’s multi-table insert uses WHEN-THEN-ELSE clauses to
 evaluate the rows from the nested SELECT and insert them
 accordingly. In this recipe’s example, INSERT ALL and INSERT FIRST
 would produce the same result, but there is a difference between the
 two. INSERT FIRST will break out of the WHEN-THEN-ELSE evaluation as
 soon as it encounters a condition evaluating to true; INSERT ALL
 will evaluate all conditions even if prior tests evaluate to true.
 Thus, you can use INSERT ALL to insert the same row into more than one table.

DB2

My DB2 solution is a bit of a hack. It requires that the
 tables to be inserted into have constraints defined to ensure that
 each row evaluated from the subquery will go into the correct table.
 The technique is to insert into a view that is defined as the UNION
 ALL of the tables. If the check constraints are not unique amongst
 the tables in the INSERT (i.e., multiple tables have the same check
 constraint), the INSERT statement will not know where to put the
 rows and it will fail.

MySQL, PostgreSQL, and SQL Server

As of the time of this writing, only Oracle and DB2 currently
 provide mechanisms to insert rows returned by a query into one or
 more of several tables within the same statement.

4.7. Blocking Inserts to Certain Columns

Problem

You wish to prevent users, or an errant software application,
 from inserting values into certain table columns. For
 example, you wish to allow a program to insert into EMP, but only into
 the EMPNO, ENAME, and JOB columns.

Solution

Create a view on the table exposing only those columns you wish
 to expose. Then force all inserts to go through that view.
For example, to create a view exposing the three columns in
 EMP:
	create view new_emps as
	select empno, ename, job
	 from emp
Grant access to this view to those users and programs allowed to
 populate only the three fields in the view. Do not grant those users
 insert access to the EMP table. Users may then create new EMP records
 by inserting into the NEW_EMPS view, but they will not be able to
 provide values for columns other than the three that are specified in
 the view definition.

Discussion

When you insert into a simple view such as in the solution, your
 database server will translate that insert into the underlying table.
 For example, the following insert:
	insert into new_emps
	 (empno ename, job)
	 values (1, 'Jonathan', 'Editor')
will be translated behind the scenes into:
	insert into emp
	 (empno ename, job)
	 values (1, 'Jonathan', 'Editor')
It is also possible, but perhaps less useful, to insert into an
 inline view (currently only supported by Oracle):
	insert into
	 (select empno, ename, job
	 from emp)
	values (1, 'Jonathan', 'Editor')
View insertion is a complex topic. The rules become very
 complicated very quickly for all but the simplest of views. If you
 plan to make use of the ability to insert into views, it is imperative
 that you consult and fully understand your vendor documentation on the
 matter.

4.8. Modifying Records in a Table

Problem

You want to modify values for some or all rows in a table. For example, you might want to increase
 the salaries of everyone in department 20 by 10%. The following result
 set shows the DEPTNO, ENAME, and SAL for employees in that
 department:
	select deptno,ename,sal
	 from emp
	 where deptno = 20
	 order by 1,3

	DEPTNO ENAME SAL
	------ ---------- ----------
	 20 SMITH 800
	 20 ADAMS 1100
	 20 JONES 2975
	 20 SCOTT 3000
	 20 FORD 3000
You want to bump all the SAL values by 10%.

Solution

Use the UPDATE statement to modify existing rows in a database
 table. For example:
	1 update emp
	2 set sal = sal*1.10
	3 where deptno = 20

Discussion

Use the UPDATE statement along with a WHERE clause to specify
 which rows to update; if you exclude a WHERE clause, then all rows are
 updated. The expression SAL*1.10 in this solution returns the salary
 increased by 10%.
When preparing for a mass update, you may wish to preview the
 results. You can do that by issuing a SELECT statement that includes
 the expressions you plan to put into your SET clauses. The following
 SELECT shows the result of a 10% salary increase:
	select deptno,
	 ename,
	 sal as orig_sal,
	 sal*.10 as amt_to_add,
	 sal*1.10 as new_sal
	 from emp
	 where deptno=20
	 order by 1,5

	DEPTNO ENAME ORIG_SAL AMT_TO_ADD NEW_SAL
	------ ------ -------- ---------- -------
	 20 SMITH 800 80 880
	 20 ADAMS 1100 110 1210
	 20 JONES 2975 298 3273
	 20 SCOTT 3000 300 3300
	 20 FORD 3000 300 3300
The salary increase is broken down into two columns: one to show
 the increase over the old salary, and the other to show the new
 salary.

4.9. Updating when Corresponding Rows Exist

Problem

You want to update rows in one table when corresponding rows
 exist in another. For example, if an employee appears in table
 EMP_BONUS, you want to increase that employee’s salary (in table EMP)
 by 20 percent. The following result set represents the data currently
 in table EMP_BONUS:
	select empno, ename
	 from emp_bonus

	 EMPNO ENAME
	---------- ---------
	 7369 SMITH
	 7900 JAMES
	 7934 MILLER

Solution

Use a subquery in your UPDATE statement’s WHERE clause to find employees in
 table EMP that are also in table EMP_BONUS. Your UPDATE will then act
 only on those rows, enabling you to increase their salary by 20
 percent:
	1 update emp
	2 set sal=sal*1.20
	3 where empno in (select empno from emp_bonus)

Discussion

The results from the subquery represent the rows that will be
 updated in table EMP. The IN predicate tests values of EMPNO from the
 EMP table to see whether they are in the list of EMPNO values returned
 by the subquery. When they are, the corresponding SAL values are
 updated.
Alternatively, you can use EXISTS instead of IN:
	update emp
	 set sal = sal*1.20
	 where exists (select null
	 from emp_bonus
	 where emp.empno=emp_bonus.empno)
You may be surprised to see NULL in the SELECT list of the
 EXISTS subquery. Fear not, that NULL does not have an adverse effect
 on the update. In my opinion it increases readability as it reinforces
 the fact that, unlike the solution using a subquery with an IN
 operator, what will drive the update (i.e., which rows will be
 updated) will be controlled by the WHERE clause of the subquery, not
 the values returned as a result of the subquery’s SELECT list.

4.10. Updating with Values from Another Table

Problem

You wish to update rows in one table using values from another.
 For example, you have a table called NEW_SAL, which holds the new
 salaries for certain employees. The contents of table NEW_SAL
 are:
	select *
	 from new_sal

	DEPTNO SAL
	------ ----------
	 10 4000
Column DEPTNO is the primary key of table NEW_SAL. You want to
 update the salaries and commission of certain employees in table EMP
 using values table NEW_SAL if there is a match between
 EMP.DEPTNO and NEW_SAL.DEPTNO, update EMP.SAL to NEW_SAL.SAL, and
 update EMP.COMM to 50% of NEW_SAL.SAL. The rows in EMP are as
 follows:
	select deptno,ename,sal,comm
	 from emp
	 order by 1

	DEPTNO ENAME SAL COMM
	------ ---------- ---------- ----------
	 10 CLARK 2450
	 10 KING 5000
	 10 MILLER 1300
	 20 SMITH 800
	 20 ADAMS 1100
	 20 FORD 3000
	 20 SCOTT 3000
	 20 JONES 2975
	 30 ALLEN 1600 300
	 30 BLAKE 2850
	 30 MARTIN 1250 1400
	 30 JAMES 950
	 30 TURNER 1500 0
	 30 WARD 1250 500

Solution

Use a join between NEW_SAL and EMP to find and return the new
 COMM values to the UPDATE statement. It is quite common for updates such as
 this one to be performed via correlated subquery. Another technique
 involves creating a view (traditional or inline, depending on what
 your database supports), then updating that view.
DB2

Use a correlated subquery to set new SAL and COMM values in
 EMP. Also use a correlated subquery to identify which rows from EMP
 should be updated:
	1 update emp e set (e.sal,e.comm) = (select ns.sal, ns.sal/2
	2 from new_sal ns
	3 where ns.deptno=e.deptno)
	4 where exists (select *
	5 from new_sal ns
	6 where ns.deptno = e.deptno)

MySQL

Include both EMP and NEW_SAL in the UPDATE clause of the
 UPDATE statement and join in the WHERE clause:
1 update emp e, new_sal ns
2 set e.sal=ns.sal,
3 e.comm=ns.sal/2
4 where e.deptno=ns.deptno

Oracle

The method for the DB2 solution will certainly work for
 Oracle, but as an alternative, you can update an inline view:
	1 update (
	2 select e.sal as emp_sal, e.comm as emp_comm,
	3 ns.sal as ns_sal, ns.sal/2 as ns_comm
	4 from emp e, new_sal ns
	5 where e.deptno = ns.deptno
	6) set emp_sal = ns_sal, emp_comm = ns_comm

PostgreSQL

The method used for the DB2 solution will work for PostgreSQL,
 but as an alternative you can (quite conveniently) join directly in
 the UPDATE statement:
	1 update emp
	2 set sal = ns.sal,
	3 comm = ns.sal/2
	4 from new_sal ns
	5 where ns.deptno = emp.deptno

SQL Server

The method used for the DB2 solution will work for SQL Server,
 but as an alternative you can (similarly to the PostgreSQL solution)
 join directly in the UPDATE statement:
	1 update e
	2 set e.sal = ns.sal,
	3 e.comm = ns.sal/2
	4 from emp e,
	5 new_sal ns
	6 where ns.deptno = e.deptno

Discussion

Before discussing the different solutions, I’d like to mention
 something important regarding updates that use queries to supply new values. A WHERE clause in the
 subquery of a correlated update is not the same as the WHERE clause of
 the table being updated. If you look at the UPDATE statement in the
 “Problem” section, the join on DEPTNO between EMP and NEW_SAL is done
 and returns rows to the SET clause of the UPDATE statement. For
 employees in DEPTNO 10, valid values are returned because there is a
 match DEPTNO in table NEW_SAL. But what about employees in the other
 departments? NEW_SAL does not have any other departments, so the SAL
 and COMM for employees in DEPTNOs 20 and 30 are set to NULL. Unless
 you are doing so via LIMIT or TOP or whatever mechanism your vendor
 supplies for limiting the number of rows returned in a result set, the
 only way to restrict rows from a table in SQL is to use a WHERE
 clause. To correctly perform this UPDATE, use a WHERE clause on the
 table being updated along with a WHERE clause in the correlated subquery.
DB2

To ensure you do not update every row in table EMP, remember
 to include a correlated subquery in the WHERE clause of the UPDATE.
 Performing the join (the correlated subquery) in the SET clause is
 not enough. By using a WHERE clause in the UPDATE, you ensure that
 only rows in EMP that match on DEPTNO to table NEW_SAL are updated.
 This holds true for all RDBMSs.

Oracle

In the Oracle solution using the update join view, you are
 using equi-joins to determine which rows will be updated. You can
 confirm which rows are being updated by executing the query
 independently. To be able to successfully use this type of UPDATE,
 you must first understand the concept of key-preservation. The
 DEPTNO column of the table NEW_SAL is the primary key of that table,
 thus its values are unique within the table. When joining between EMP and
 NEW_SAL, however, NEW_SAL.DEPTNO is not unique in the result set, as
 can be seen below:
	select e.empno, e.deptno e_dept, ns.sal, ns.deptno ns_deptno
	 from emp e, new_sal ns
	 where e.deptno = ns.deptno

	EMPNO E_DEPT SAL NS_DEPTNO
	----- ---------- ---------- ----------
	 7782 10 4000 10
	 7839 10 4000 10
	 7934 10 4000 10
To enable Oracle to update this join, one of the tables must
 be key-preserved, meaning that if its values are not unique in the
 result set, it should at least be unique in the table it comes from.
 In this case NEW_SAL has a primary key on DEPTNO, which makes it
 unique in the table. Because it is unique in its table, it may
 appear multiple times in the result set and will still be considered
 key-preserved, thus allowing the update to complete
 successfully.

PostgreSQL, SQL Server, and MySQL

The syntax is a bit different between these platforms, but the
 technique is the same. Being able to join directly in the UPDATE statement is extremely convenient. Since you
 specify which table to update (the table listed after the UPDATE
 keyword) there’s no confusion as to which table’s rows are modified.
 Additionally, because you are using joins in the update (since there
 is an explicit WHERE clause), you can avoid some of the pitfalls
 when coding correlated subquery updates; in particular, if you
 missed a join here, it would be very obvious you’d have a
 problem.

4.11. Merging Records

Problem

You want to conditionally insert, update, or delete records in a
 table depending on whether or not corresponding records exist. (If a
 record exists, then update; if not,then insert; if after updating a
 row fails to meet a certain condition, delete it.) For example, you
 want to modify table EMP_COMMISSION such that:
	If any employee in EMP_COMMISSION also exists in table EMP,
 then update their commission (COMM) to 1000.

	For all employees who will potentially have their COMM
 updated to 1000, if their SAL is less than 2000, delete them (they
 should not be exist in EMP_COMMISSION).

	Otherwise, insert the EMPNO, ENAME, and DEPTNO values from
 table EMP into table EMP_COMMISSION.

Essentially, you wish to execute either an UPDATE or an INSERT
 depending on whether a given row from EMP has a match in
 EMP_COMMISSION. Then you wish to execute a DELETE if the result of an
 UPDATE causes a commission that’s too high.
The following rows are currently in tables EMP and
 EMP_COMMISSION, respectively:
	select deptno,empno,ename,comm
	 from emp
	 order by 1

	DEPTNO EMPNO ENAME COMM
	------ ---------- ------ ----------
	 10 7782 CLARK
	 10 7839 KING
	 10 7934 MILLER
	 20 7369 SMITH
	 20 7876 ADAMS
	 20 7902 FORD
	 20 7788 SCOTT
	 20 7566 JONES
	 30 7499 ALLEN 300
	 30 7698 BLAKE
	 30 7654 MARTIN 1400
	 30 7900 JAMES
	 30 7844 TURNER 0
	 30 7521 WARD 500

	
	select deptno,empno,ename,comm
	 from emp_commission
	 order by 1

	 DEPTNO EMPNO ENAME COMM
	---------- ---------- ---------- ----------
	 10 7782 CLARK
	 10 7839 KING
	 10 7934 MILLER

Solution

Oracle is currently the only RDBMS with a statement designed to
 solve this problem. That statement is the MERGE statement, and it can perform either an UPDATE or
 an INSERT, as needed. For example:
	1 merge into emp_commission ec
	2 using (select * from emp) emp
	3 on (ec.empno=emp.empno)
	4 when matched then
	5 update set ec.comm = 1000
	6 delete where (sal < 2000)
	7 when not matched then
	8 insert (ec.empno,ec.ename,ec.deptno,ec.comm)
	9 values (emp.empno,emp.ename,emp.deptno,emp.comm)

Discussion

The join on line 3 of the solution determines what rows already
 exist and will be updated. The join is between EMP_COMMISSION (aliased
 as EC) and the subquery (aliased as emp). When the join succeeds, the
 two rows are considered “matched” and the UPDATE specified in the WHEN
 MATCHED clause is executed. Otherwise, no match is found and the
 INSERT in WHEN NOT MATCHED is executed. Thus, rows from table EMP that
 do not have corresponding rows based on EMPNO in table EMP_COMMISSION
 will be inserted into EMP_COMMISSION. Of all the employees in table EMP only those in DEPTNO 10
 should have their COMM updated in EMP_COMMISSION, while the rest of
 the employees are inserted. Additionally, since MILLER is in DEPTNO 10
 he is a candidate to have his COMM updated, but because his SAL is
 less than 2000 it is deleted from EMP_COMMISSION.

4.12. Deleting All Records from a Table

Problem

You want to delete all the records from a table.

Solution

Use the DELETE command to delete records from a table. For
 example, to delete all records from EMP:
	delete from emp

Discussion

When using the DELETE command without a WHERE clause, you will
 delete all rows from the table specified.

4.13. Deleting Specific Records

Problem

You wish to delete records meeting a specific criterion from a
 table.

Solution

Use the DELETE command with a WHERE clause specifying which rows
 to delete. For example, to delete all employees in department
 10:
	delete from emp where deptno = 10

Discussion

By using a WHERE clause with the DELETE command, you can delete
 a subset of rows in a table rather than all the rows.

4.14. Deleting a Single Record

Problem

You wish to delete a single record from a table.

Solution

This is a special case of “Deleting Specific Records.” The key
 is to ensure that your selection criterion is narrow enough to specify
 only the one record that you wish to delete. Often you will want to
 delete based on the primary key. For example, to delete employee CLARK
 (EMPNO 7782):
	delete from emp where empno = 7782

Discussion

Deleting is always about identifying the rows to be deleted, and
 the impact of a DELETE always comes down to its WHERE clause. Omit the
 WHERE clause and the scope of a DELETE is the entire table. By writing
 conditions in the WHERE clause, you can narrow the scope to a group of
 records, or to a single record. When deleting a single record, you
 should typically be identifying that record based on its primary key
 or on one of its unique keys.
Warning
If your deletion criterion is based on a primary or unique
 key, then you can be sure of deleting only one record. (This is
 because your RDBMS will not allow two rows to contain the same
 primary or unique key values.) Otherwise, you may want to check
 first, to be sure you aren’t about to inadvertently delete more
 records than you intend.

4.15. Deleting Referential Integrity Violations

Problem

You wish to delete records from a table when those records refer
 to nonexistent records in some other table. Example: some employees
 are assigned to departments that do not exist. You wish to delete those
 employees.

Solution

Use the NOT EXISTS predicate with a subquery to test the
 validity of department numbers:
	delete from emp
	 where not exists (
	 select * from dept
	 where dept.deptno = emp.deptno
)
Alternatively, you can write the query using a NOT IN
 predicate:
	delete from emp
	where deptno not in (select deptno from dept)

Discussion

Deleting is really all about selecting: the real work lies in
 writing WHERE clause conditions to correctly describe those records
 that you wish to delete.
The NOT EXISTS solution uses a correlated subquery to test for
 the existence of a record in DEPT having a DEPTNO matching that in a
 given EMP record. If such a record exists, then the EMP record is
 retained. Otherwise, it is deleted. Each EMP record is checked in this
 manner.
The IN solution uses a subquery to retrieve a list of valid
 department numbers. DEPTNOs from each EMP record are then checked
 against that list. When an EMP record is found with a DEPTNO not in
 the list, the EMP record is deleted.

4.16. Deleting Duplicate Records

Problem

You want to delete duplicate records from a table. Consider the
 following table:
	create table dupes (id integer, name varchar(10))
	insert into dupes values (1, 'NAPOLEON')
	insert into dupes values (2, 'DYNAMITE')
	insert into dupes values (3, 'DYNAMITE')
	insert into dupes values (4, 'SHE SELLS')
	insert into dupes values (5, 'SEA SHELLS')
	insert into dupes values (6, 'SEA SHELLS')
	insert into dupes values (7, 'SEA SHELLS')

	
	select * from dupes order by 1

	 ID NAME
	---------- ----------
	 1 NAPOLEON
	 2 DYNAMITE
	 3 DYNAMITE
	 4 SHE SELLS
	 5 SEA SHELLS
	 6 SEA SHELLS
	 7 SEA SHELLS
For each group of duplicate names, such as “SEA SHELLS”, you
 wish to arbitrarily retain one ID and delete the rest. In the case of
 “SEA SHELLS” you don’t care whether you delete 5 and 6, or 5 and 7, or
 6 and 7, but in the end you want just one record for “SEA
 SHELLS”.

Solution

Use a subquery with an aggregate function such as MIN to
 arbitrarily choose the ID to retain (in this case only the NAME with
 the smallest value for ID is not deleted):
	1 delete from dupes
	2 where id not in (select min(id)
	3 from dupes
	4 group by name)
For MySQL users you will need slightly different syntax because
 you cannot reference the same table twice in a delete (as of the time
 of this writing):
1 delete from dupes
2 where id not in
3 (select min(id)
4 from (select id,name from dupes) tmp
5 group by name)

Discussion

The first thing to do when deleting duplicates is to define
 exactly what it means for two rows to be considered “duplicates” of
 each other. For my example in this recipe, the definition of
 “duplicate” is that two records contain the same value in their NAME
 column. Having that definition in place, you can look to some other
 column to discriminate among each set of duplicates, to identify those
 records to retain. It’s best if this discriminating column (or
 columns) is a primary key. I used the ID column, which is a good
 choice because no two records have the same ID.
The key to the solution is that you group by the values that are
 duplicated (by NAME in this case), and then use an aggregate function
 to pick off just one key value to retain. The subquery in the
 “Solution” example will return the smallest ID for each NAME, which
 represents the row you will not delete:
	select min(id)
	 from dupes
	 group by name

	 MIN(ID)

	 2
	 1
	 5
	 4
The DELETE then deletes any ID in the table that is not returned
 by the subquery (in this case IDs 3, 6, and 7). If you are having
 trouble seeing how this works, run the subquery first and include the
 NAME in the SELECT list:
	select name, min(id)
	 from dupes
	 group by name

	NAME MIN(ID)
	---------- ----------
	DYNAMITE 2
	NAPOLEON 1
	SEA SHELLS 5
	SHE SELLS 4
The rows returned by the subquery represent those to be
 retained. The NOT IN predicate in the DELETE statement causes all
 other rows to be deleted.

4.17. Deleting Records Referenced from Another Table

Problem

You want to delete records from one table when those records are
 referenced from some other table. Consider the following table, named
 DEPT_ACCIDENTS, which contains one row for each accident that occurs
 in a manufacturing business. Each row records the department in which
 an accident occurred and also the type of accident.
	create table dept_accidents
	(deptno integer,
	 accident_name varchar(20))

	insert into dept_accidents values (10,'BROKEN FOOT')
	insert into dept_accidents values (10,'FLESH WOUND')
	insert into dept_accidents values (20,'FIRE')
	insert into dept_accidents values (20,'FIRE')
	insert into dept_accidents values (20,'FLOOD')
	insert into dept_accidents values (30,'BRUISED GLUTE')

	select * from dept_accidents

	 DEPTNO ACCIDENT_NAME
	---------- --------------------
	 10 BROKEN FOOT
	 10 FLESH WOUND
	 20 FIRE
	 20 FIRE
	 20 FLOOD
	 30 BRUISED GLUTE
You want to delete from EMP the records for those employees
 working at a department that has three or more accidents.

Solution

Use a subquery and the aggregate function COUNT to find the
 departments with three or more accidents. Then delete all employees
 working in those departments:
	1 delete from emp
	2 where deptno in (select deptno
	3 from dept_accidents
	4 group by deptno
	5 having count(*) >= 3)

Discussion

The subquery will identify which departments have three or more
 accidents:
	select deptno
	 from dept_accidents
	 group by deptno
	having count(*) >= 3

	 DEPTNO

	 20
The DELETE will then delete any employees in the departments
 returned by the subquery (in this case, only in department 20).

Chapter 5. Metadata Queries

This chapter presents recipes that allow you to find
 information about a given schema. For example, you may wish to know what
 tables you’ve created or which foreign keys are not indexed. All of the
 RDBMSs in this book provide tables and views for obtaining such data. The
 recipes in this chapter will get you started on gleaning information from
 those tables and views. There is, however, far more information available
 than the recipes in this chapter can show. Consult your RDBMSs
 documentation for the complete list of catalog or data dictionary
 tables/views.
Tip
For purposes of demonstration, all the recipes in this chapter
 assume the schema name SMEAGOL.

5.1. Listing Tables in a Schema

Problem

You want to see a list all the tables you’ve created in a given
 schema.

Solution

The solutions that follow all assume you are working with the
 SMEAGOL schema. The basic approach to a solution is the same for all
 RDBMSs: you query a system table (or view) containing a row for each
 table in the database.
DB2

Query SYSCAT.TABLES:
	1 select tabname
	2 from syscat.tables
	3 where tabschema = 'SMEAGOL'

Oracle

Query SYS.ALL_TABLES:
	select table_name
	 from all_tables
	 where owner = 'SMEAGOL'

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.TABLES:
	1 select table_name
	2 from information_schema.tables
	3 where table_schema = 'SMEAGOL'

Discussion

In a delightfully circular manner, databases expose information
 about themselves through the very mechanisms that you create for your
 own applications: tables and views. Oracle, for example, maintains an
 extensive catalog of system views, such as ALL_TABLES, that you can
 query for information about tables, indexes, grants, and any other
 database object.
Tip
Oracle’s catalog views are just that, views. They are based on
 an underlying set of tables that contain the information in a very
 user-unfriendly form. The views put a very usable face on Oracle’s
 catalog data.

Oracle’s system views and DB2’s system tables are each
 vendor-specific. PostgreSQL, MySQL, and SQL Server, on the other hand,
 support something called the information schema,
 which is a set of views defined by the ISO SQL standard. That’s why
 the same query can work for all three of those databases.

5.2. Listing a Table’s Columns

Problem

You want to list the columns in a table, along with their data types, and
 their position in the table they are in.

Solution

The following solutions assume that you wish to list columns,
 their data types, and their numeric position in the table named EMP in
 the schema SMEAGOL.
DB2

Query SYSCAT.COLUMNS:

	1 select colname, typename, colno
	2 from syscat.columns
	3 where tabname = 'EMP'
	4 and tabschema = 'SMEAGOL'

Oracle

Query ALL_TAB_COLUMNS:
	1 select column_name, data_type, column_id
	2 from all_tab_columns
	3 where owner = 'SMEAGOL'
	4 and table_name = 'EMP'

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.COLUMNS:
	1 select column_name, data_type, ordinal_position
	2 from information_schema.columns
	3 where table_schema = 'SMEAGOL'
	4 and table_name = 'EMP'

Discussion

Each vendor provides ways for you to get detailed information
 about your column data. In the examples above only the column name,
 data type, and position are returned. Additional useful items of
 information include length, nullability, and default values.

5.3. Listing Indexed Columns for a Table

Problem

You want list indexes, their columns, and the column position
 (if available) in the index for a given table.

Solution

The vendor-specific solutions that follow all assume that you
 are listing indexes for the table EMP in the SMEAGOL schema.
DB2

Query SYSCAT.INDEXES:
	1 select a.tabname, b.indname, b.colname, b.colseq
	2 from syscat.indexes a,
	3 syscat.indexcoluse b
	3 where a.tabname = 'EMP'
	4 and a.tabschema = 'SMEAGOL'
	5 and a.indschema = b.indschema
	6 and a.indname = b.indname

Oracle

Query SYS.ALL_IND_COLUMNS:
	select table_name, index_name, column_name, column_position
	 from sys.all_ind_columns
	 where table_name = 'EMP'
	 and table_owner = 'SMEAGOL'

PostgreSQL

Query PG_CATALOG.PG_INDEXES and
 INFORMATION_SCHEMA.COLUMNS:
	1 select a.tablename,a.indexname,b.column_name
	2 from pg_catalog.pg_indexes a,
	3 information_schema.columns b
	4 where a.schemaname = 'SMEAGOL'
	5 and a.tablename = b.table_name

MySQL

Use the SHOW INDEX command:
	show index from emp

SQL Server

Query SYS.TABLES, SYS.INDEXES, SYS.INDEX_COLUMNS, and
 SYS.COLUMNS:
	 1 select a.name table_name,
	 2 b.name index_name,
	 3 d.name column_name,
	 4 c.index_column_id
	 5 from sys.tables a,
	 6 sys.indexes b,
	 7 sys.index_columns c,
	 8 sys.columns d
	 9 where a.object_id = b.object_id
	10 and b.object_id = c.object_id
	11 and b.index_id = c.index_id
	12 and c.object_id = d.object_id
	13 and c.column_id = d.column_id
	14 and a.name = 'EMP'

Discussion

When it comes to queries, it’s important to know what columns
 are/aren’t indexed. Indexes can provide good performance for queries
 against columns that are frequently used in filters and that are
 fairly selective. Indexes are also useful when joining between tables.
 By knowing what columns are indexed, you are already one step ahead of
 performance problems if they should occur. Additionally, you might
 want to find information about the indexes themselves: how many levels
 deep they are, how many distinct keys, how many leaf blocks, and so
 forth. Such information is also available from the views/tables
 queried in this recipe’s solutions.

5.4. Listing Constraints on a Table

Problem

You want to list the constraints defined for a table in some
 schema and the columns they are defined on. For example, you want to
 find the constraints and the columns they are on for table EMP.

Solution

DB2

Query SYSCAT.TABCONST and SYSCAT.COLUMNS:
	1 select a.tabname, a.constname, b.colname, a.type
	2 from syscat.tabconst a,
	3 syscat.columns b
	4 where a.tabname = 'EMP'
	5 and a.tabschema = 'SMEAGOL'
	6 and a.tabname = b.tabname
	7 and a.tabschema = b.tabschema

Oracle

Query SYS.ALL_CONSTRAINTS and SYS.ALL_CONS_COLUMNS:
	 1 select a.table_name,
	 2 a.constraint_name,
	 3 b.column_name,
	 4 a.constraint_type
	 5 from all_constraints a,
	 6 all_cons_columns b
	 7 where a.table_name = 'EMP'
	 8 and a.owner = 'SMEAGOL'
	 9 and a.table_name = b.table_name
	10 and a.owner = b.owner
	11 and a.constraint_name = b.constraint_name

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.TABLE_CONSTRAINTS and INFORMATION_
 SCHEMA.KEY_COLUMN_USAGE:
	 1 select a.table_name,
	 2 a.constraint_name,
	 3 b.column_name,
	 4 a.constraint_type
	 5 from information_schema.table_constraints a,
	 6 information_schema.key_column_usage b
	 7 where a.table_name = 'EMP'
	 8 and a.table_schema = 'SMEAGOL'
	 9 and a.table_name = b.table_name
	10 and a.table_schema = b.table_schema
	11 and a.constraint_name = b.constraint_name

Discussion

Constraints are such a critical part of relational databases
 that it should go without saying why you need to know what constraints
 are on your tables. Listing the constraints on tables is useful for a
 variety of reasons: you may want to find tables missing a primary key,
 you may want to find which columns should be foreign keys but are not (i.e., child tables have data
 different from the parent tables and you want to know how that
 happened), or you may want to know about check constraints (Are
 columns nullable? Do they have to satisfy a specific condition?
 etc.).

5.5. Listing Foreign Keys Without Corresponding Indexes

Problem

You want to list tables that have foreign key columns that are
 not indexed. For example, you want to determine if the foreign keys on table EMP are indexed.

Solution

DB2

Query SYSCAT.TABCONST, SYSCAT.KEYCOLUSE, SYSCAT.INDEXES, and
 SYSCAT.INDEXCOLUSE:
	 1 select fkeys.tabname,
	 2 fkeys.constname,
	 3 fkeys.colname,
	 4 ind_cols.indname
	 5 from (
	 6 select a.tabschema, a.tabname, a.constname, b.colname
	 7 from syscat.tabconst a,
	 8 syscat.keycoluse b
	 9 where a.tabname = 'EMP'
	10 and a.tabschema = 'SMEAGOL'
	11 and a.type = 'F'
	12 and a.tabname = b.tabname
	13 and a.tabschema = b.tabschema
	14) fkeys
	15 left join
	16 (
	17 select a.tabschema,
	18 a.tabname,
	19 a.indname,
	20 b.colname
	21 from syscat.indexes a,
	22 syscat.indexcoluse b
	23 where a.indschema = b.indschema
	24 and a.indname = b.indname
	25) ind_cols
	26 on (fkeys.tabschema = ind_cols.tabschema
	27 and fkeys.tabname = ind_cols.tabname
	28 and fkeys.colname = ind_cols.colname)
	29 where ind_cols.indname is null

Oracle

Query SYS.ALL_CONS_COLUMNS, SYS.ALL_CONSTRAINTS, and SYS.ALL_
 IND_COLUMNS:
	 1 select a.table_name,
	 2 a.constraint_name,
	 3 a.column_name,
	 4 c.index_name
	 5 from all_cons_columns a,
	 6 all_constraints b,
	 7 all_ind_columns c
	 8 where a.table_name = 'EMP'
	 9 and a.owner = 'SMEAGOL'
	10 and b.constraint_type = 'R'
	11 and a.owner = b.owner
	12 and a.table_name = b.table_name
	13 and a.constraint_name = b.constraint_name
	14 and a.owner = c.table_owner (+)
	15 and a.table_name = c.table_name (+)
	16 and a.column_name = c.column_name (+)
	17 and c.index_name is null

PostgreSQL

Query INFORMATION_SCHEMA.KEY_COLUMN_USAGE, INFORMATION_
 SCHEMA.REFERENTIAL_CONSTRAINTS, INFORMATION_SCHEMA.COL-UMNS, and
 PG_CATALOG.PG_INDEXES:
	 1 select fkeys.table_name,
	 2 fkeys.constraint_name,
	 3 fkeys.column_name,
	 4 ind_cols.indexname
	 5 from (
	 6 select a.constraint_schema,
	 7 a.table_name,
	 8 a.constraint_name,
	 9 a.column_name
	10 from information_schema.key_column_usage a,
	11 information_schema.referential_constraints b
	12 where a.constraint_name = b.constraint_name
	13 and a.constraint_schema = b.constraint_schema
	14 and a.constraint_schema = 'SMEAGOL'
	15 and a.table_name = 'EMP'
	16) fkeys
	17 left join
	18 (
	19 select a.schemaname, a.tablename, a.indexname, b.column_name
	20 from pg_catalog.pg_indexes a,
	21 information_schema.columns b
	22 where a.tablename = b.table_name
	23 and a.schemaname = b.table_schema
	24) ind_cols
	25 on (fkeys.constraint_schema = ind_cols.schemaname
	26 and fkeys.table_name = ind_cols.tablename
	27 and fkeys.column_name = ind_cols.column_name)
	28 where ind_cols.indexname is null

MySQL

You can use the SHOW INDEX command to retrieve index
 information such as index name, columns in the index, and ordinal
 position of the columns in the index. Additionally, you can query
 INFORMATION_SCHEMA.KEY_COLUMN_USAGE to list the foreign keys for a given table. In MySQL 5, foreign keys are said to be indexed automatically, but
 can in fact be dropped. To determine whether a foreign key column’s
 index has been dropped you can execute SHOW INDEX for a particular
 table and compare the output with that of INFORMATION_SCHEMA.KEY_
 COLUMN_USAGE.COLUMN_NAME for the same table. If the COLUMN_NAME is
 listed in KEY_COLUMN_USAGE but is not returned by SHOW INDEX, you
 know that column is not indexed.

SQL Server

Query SYS.TABLES, SYS.FOREIGN_KEYS, SYS.COLUMNS, SYS.INDEXES,
 and SYS.INDEX_COLUMNS:
	 1 select fkeys.table_name,
	 2 fkeys.constraint_name,
	 3 fkeys.column_name,
	 4 ind_cols.index_name
	 5 from (
	 6 select a.object_id,
	 7 d.column_id,
	 8 a.name table_name,
	 9 b.name constraint_name,
	10 d.name column_name
	11 from sys.tables a
	12 join
	13 sys.foreign_keys b
	14 on (a.name = 'EMP'
	15 and a.object_id = b.parent_object_id
	16)
	17 join
	18 sys.foreign_key_columns c
	19 on (b.object_id = c.constraint_object_id)
	20 join
	21 sys.columns d
	22 on (c.constraint_column_id = d.column_id
	23 and a.object_id = d.object_id
	24)
	25) fkeys
	26 left join
	27 (
	28 select a.name index_name,
	29 b.object_id,
	30 b.column_id
	31 from sys.indexes a,
	32 sys.index_columns b
	33 where a.index_id = b.index_id
	34) ind_cols
	35 on (fkeys.object_id = ind_cols.object_id
	36 and fkeys.column_id = ind_cols.column_id)
	37 where ind_cols.index_name is null

Discussion

Each vendor uses its own locking mechanism when modifying rows.
 In cases where there is a parent-child relationship enforced via
 foreign key, having indexes on the child column(s) can
 reducing locking (see your specific RDBMS documentation for details).
 In other cases, it is common that a child table is joined to a parent
 table on the foreign key column, so an index may help improve
 performance in that scenario as well.

5.6. Using SQL to Generate SQL

Problem

You want to create dynamic SQL statements, perhaps to automate maintenance
 tasks. You want to accomplish three tasks in particular: count the
 number of rows in your tables, disable foreign key constraints defined
 on your tables, and generate insert scripts from the data in your tables.

Solution

The concept is to use strings to build SQL statements, and the
 values that need to be filled in (such as the object name the command
 acts upon) will be supplied by data from the tables you are selecting
 from. Keep in mind, the queries only generate the statements; you must
 then run these statements via script, manually, or however you execute
 your SQL statements. The examples below are queries that would work on
 an Oracle system. For other RDBMSs the technique is exactly the same,
 the only difference being things like the names of the data dictionary
 tables and date formatting. The output shown from the queries below
 are a portion of the rows returned from an instance of Oracle on my
 laptop. Your result sets will of course vary.
	/* generate SQL to count all the rows in all your tables */
	select 'select count(*) from '||table_name||';' cnts
	 from user_tables;

	CNTS
	--
	select count(*) from ANT;
	select count(*) from BONUS;
	select count(*) from DEMO1;
	select count(*) from DEMO2;
	select count(*) from DEPT;
	select count(*) from DUMMY;
	select count(*) from EMP;
	select count(*) from EMP_SALES;
	select count(*) from EMP_SCORE;
	select count(*) from PROFESSOR;
	select count(*) from T;
	select count(*) from T1;
	select count(*) from T2;
	select count(*) from T3;
	select count(*) from TEACH;
	select count(*) from TEST;
	select count(*) from TRX_LOG;
	select count(*) from X;

	/* disable foreign keys from all tables */

	
	select 'alter table '||table_name||
	 ' disable constraint '||constraint_name||';' cons
	 from user_constraints
	 where constraint_type = 'R';

	CONS
	--
	alter table ANT disable constraint ANT_FK;
	alter table BONUS disable constraint BONUS_FK;
	alter table DEMO1 disable constraint DEMO1_FK;
	alter table DEMO2 disable constraint DEMO2_FK;
	alter table DEPT disable constraint DEPT_FK;
	alter table DUMMY disable constraint DUMMY_FK;
	alter table EMP disable constraint EMP_FK;
	alter table EMP_SALES disable constraint EMP_SALES_FK;
	alter table EMP_SCORE disable constraint EMP_SCORE_FK;
	alter table PROFESSOR disable constraint PROFESSOR_FK;
	/* generate an insert script from some columns in table EMP */

	
	select 'insert into emp(empno,ename,hiredate) '||chr(10)||
	 'values('||empno||','||''''||ename
	 ||''',to_date('||''''||hiredate||'''));' inserts
	 from emp
	 where deptno = 10;

	INSERTS
	--
	insert into emp(empno,ename,hiredate)
	values(7782,'CLARK',to_date('09-JUN-1981 00:00:00'));

	insert into emp(empno,ename,hiredate)
	values(7839,'KING',to_date('17-NOV-1981 00:00:00'));

	insert into emp(empno,ename,hiredate)
	values(7934,'MILLER',to_date('23-JAN-1982 00:00:00'));

Discussion

Using SQL to generate SQL is particularly useful for creating
 portable scripts such as you might use when testing on multiple
 environments. Additionally, as can be seen by the examples above,
 using SQL to generate SQL is useful for performing batch maintenance,
 and for easily finding out information about multiple objects in one
 go. Generating SQL with SQL is an extremely simple operation, and the
 more you experiment with it the easier it will become. The examples
 provided should give you a nice base on how to build your own
 “dynamic” SQL scripts because, quite frankly, there’s not much to it.
 Work on it and you’ll get it.

5.7. Describing the Data Dictionary Views in an Oracle
 Database

Problem

You are using Oracle. You can’t remember what data dictionary views are available to you, nor can you
 remember their column definitions. Worse yet, you do not have
 convenient access to vendor documentation.

Solution

This is an Oracle-specific recipe. Oracle not only maintains a
 robust set of data dictionary views, but there are even data
 dictionary views to document the data dictionary views. It’s all so
 wonderfully circular.
Query the view named DICTIONARY to list data dictionary views
 and their purposes:
	select table_name, comments
	 from dictionary
	 order by table_name;

	TABLE_NAME COMMENTS
	------------------------------ --
	ALL_ALL_TABLES Description of all object and relational
	 tables accessible to the user

	ALL_APPLY Details about each apply process that
	 dequeues from the queue visible to the
	 current user
	…
Query DICT_COLUMNS to describe the columns in given a data
 dictionary view:
	select column_name, comments
	 from dict_columns
	 where table_name = 'ALL_TAB_COLUMNS';

	COLUMN_NAME COMMENTS
	------------------------------- --
	OWNER
	TABLE_NAME Table, view or cluster name
	COLUMN_NAME Column name
	DATA_TYPE Datatype of the column
	DATA_TYPE_MOD Datatype modifier of the column
	DATA_TYPE_OWNER Owner of the datatype of the column
	DATA_LENGTH Length of the column in bytes
	DATA_PRECISION Length: decimal digits (NUMBER) or binary
	 digits (FLOAT)

Discussion

Back in the day when Oracle’s documentation set wasn’t so freely
 available on the Web, it was incredibly convenient that Oracle made
 the DICTIONARY and DICT_ COLUMNS views available. Knowing just those
 two views, you could bootstrap to learning about all the other views,
 and from thence to learning about your entire database.
Even today, it’s convenient to know about DICTIONARY and
 DICT_COLUMNS. Often, if you aren’t quite certain which view describes
 a given object type, you can issue a wildcard query to find out. For
 example, to get a handle on what views might describe tables in your
 schema:
	select table_name, comments
	 from dictionary
	 where table_name LIKE '%TABLE%'
	 order by table_name;
This query returns all data dictionary view names that include
 the term “TABLE”. This approach takes advantage of Oracle’s fairly
 consistent data dictionary view naming conventions. Views describing
 tables are all likely to contain “TABLE” in their name. (Sometimes, as
 in the case of ALL_TAB_COLUMNS, TABLE is abbreviated TAB.)

Chapter 6. Working with Strings

This chapter focuses on string manipulation in SQL. Keep in mind
 that SQL is not designed to perform complex string manipulation and you
 can (and will) find working with strings in SQL to be very cumbersome and
 frustrating at times. Despite SQL’s limitations, there are some very
 useful built-in functions provided by the different DBMSs, and I’ve tried
 to use them in creative ways. This chapter in particular is very
 representative of the message I tried to convey in the introduction; SQL
 is the good, the bad, and the ugly. I hope that you take away from this
 chapter a better appreciation for what can and can’t be done in SQL when
 working with strings. In many cases you’ll be surprised by how easy
 parsing and transforming of strings can be, while at other times you’ll be
 aghast by the kind of SQL that is necessary to accomplish a particular
 task.
The first recipe in this chapter is critically important, as it is
 leveraged by several of the subsequent solutions. In many cases, you’d
 like to have the ability to traverse a string by moving through it a
 character at a time. Unfortunately, SQL does not make this easy. Because
 there is no loop functionality in SQL (Oracle’s MODEL clause excluded),
 you need to mimic a loop to traverse a string. I call this operation
 “walking a string” or “walking through a string” and the very first recipe
 explains the technique. This is a fundamental operation in string parsing
 when using SQL, and is referenced and used by almost all recipes in this
 chapter. I strongly suggest becoming comfortable with how the technique
 works.
6.1. Walking a String

Problem

You want to traverse a string to return each character as a row,
 but SQL lacks a loop operation. For example, you want to display the
 ENAME “KING” from table EMP as four rows, where each row contains just
 characters from “KING”.

Solution

Use a Cartesian product to generate the number of rows needed to
 return each character of a string on its own line. Then use your
 DBMS’s built-in string parsing function to extract the characters you
 are interested in (SQL Server users will use SUBSTRING instead of
 SUBSTR and DATALENGTH instead of LENGTH):
	1 select substr(e.ename,iter.pos,1) as C
	2 from (select ename from emp where ename = 'KING') e,
	3 (select id as pos from t10) iter
	4 where iter.pos <= length(e.ename)
	
	C
	-
	K
	I
	N
	G

Discussion

The key to iterating through a string’s characters is to join
 against a table that has enough rows to produce the required number of
 iterations. This example uses table T10, which contains 10 rows (it
 has one column, ID, holding the values 1 through 10). The maximum
 number of rows that can be returned from this query is 10.
The following example shows the Cartesian product between E and
 ITER (i.e., between the specific name and the 10 rows from T10)
 without parsing ENAME:
	select ename, iter.pos
	 from (select ename from emp where ename = 'KING') e,
	 (select id as pos from t10) iter
	
	ENAME POS
	---------- ----------
	KING 1
	KING 2
	KING 3
	KING 4
	KING 5
	KING 6
	KING 7
	KING 8
	KING 9
	KING 10
The cardinality of inline view E is 1, and the cardinality of
 inline view ITER is 10. The Cartesian product is then 10 rows.
 Generating such a product is the first step in mimicking a loop in
 SQL.
Tip
It is common practice to refer to table T10 as a “pivot”
 table.

The solution uses a WHERE clause to break out of the loop after
 four rows have been returned. To restrict the result set to the same
 number of rows as there are characters in the name, that WHERE clause
 specifies ITER.POS <= LENGTH(E. ENAME) as the condition:
	select ename, iter.pos
	 from (select ename from emp where ename = 'KING') e,
	 (select id as pos from t10) iter
	 where iter.pos <= length(e.ename)
	
	ENAME POS
	---------- ----------
	KING 1
	KING 2
	KING 3
	KING 4
Now that you have one row for each character in E.ENAME, you can
 use ITER.POS as a parameter to SUBSTR, allowing you to navigate
 through the characters in the string. ITER.POS increments with each
 row, and thus each row can be made to return a successive character
 from E.ENAME. This is how the solution example works.
Depending on what you are trying to accomplish you may or may
 not need to generate a row for every single character in a string. The
 following query is an example of walking E.ENAME and exposing
 different portions (more than a single character) of the
 string:
	select substr(e.ename,iter.pos) a,
	 substr(e.ename,length(e.ename)-iter.pos+1) b
	 from (select ename from emp where ename = 'KING') e,
	 (select id pos from t10) iter
	 where iter.pos <= length(e.ename)

	A B
	---------- ------
	KING G
	ING NG
	NG ING
	G KING
The most common scenarios for the recipes in this chapter
 involve walking the whole string to generate a row for each character
 in the string, or walking the string such that the number of rows
 generated reflects the number of particular characters or delimiters
 that are present in the string.

6.2. Embedding Quotes Within String Literals

Problem

You want to embed quote marks within string literals. You would
 like to produce results such as the following with SQL:
	QMARKS

	g'day mate
	beavers' teeth
	'

Solution

The following three SELECTs highlight different ways you can
 create quotes: in the middle of a string and by themselves:
	1 select 'g''day mate' qmarks from t1 union all
	2 select 'beavers'' teeth' from t1 union all
	3 select '''' from t1

Discussion

When working with quotes, it’s often useful to think of them
 like parentheses. When you have an opening parenthesis, you must
 always have a closing parenthesis. The same goes for quotes. Keep in
 mind that you should always have an even number of quotes across any
 given string. To embed a single quote within a string you need to use
 two quotes:
	select 'apples core', 'apple''s core',
	 case when '' is null then 0 else 1 end
	 from t1

	 'APPLESCORE 'APPLE''SCOR CASEWHEN''ISNULLTHEN0ELSE1END
	 ----------- ------------ -----------------------------
	 apples core apple's core 0
Following is the solution stripped down to its bare elements.
 You have two outer quotes defining a string literal, and, within that
 string literal you have two quotes that together represent just one
 quote in the string that you actually get:
	select '''' as quote from t1

	Q
	-
	'
When working with quotes, be sure to remember that a string
 literal comprising two quotes alone, with no intervening characters,
 is NULL.

6.3. Counting the Occurrences of a Character in a String

Problem

You want to count the number of times a character or substring
 occurs within a given string. Consider the following string:
	10,CLARK,MANAGER
You want to determine how many commas are in the string.

Solution

Subtract the length of the string without the commas from the
 original length of the string to determine the number of commas in the
 string. Each DBMS provides functions for obtaining the length of a
 string and removing characters from a string. In most cases, these
 functions are LENGTH and REPLACE, respectively (SQL Server users will
 use the built-in function LEN rather than LENGTH):
	1 select (length('10,CLARK,MANAGER')-
	2 length(replace('10,CLARK,MANAGER',',','')))/length(',')
	3 as cnt
	4 from t1

Discussion

You arrive at the solution by using simple subtraction. The call
 to LENGTH on line 1 returns the original size of the string, and the
 first call to LENGTH on line 2 returns the size of the string without
 the commas, which are removed by REPLACE.
By subtracting the two lengths you obtain the difference in
 terms of characters, which is the number of commas in the string. The
 last operation divides the difference by the length of your search
 string. This division is necessary if the string you are looking for
 has a length greater than 1. In the following example, counting the
 occurrence of “LL” in the string “HELLO HELLO” without dividing will
 return an incorrect result:
	select
	 (length('HELLO HELLO')-
	 length(replace('HELLO HELLO','LL','')))/length('LL')
	 as correct_cnt,
	 (length('HELLO HELLO')-
	 length(replace('HELLO HELLO','LL',''))) as incorrect_cnt
	 from t1

	CORRECT_CNT INCORRECT_CNT
	----------- -------------
	 2 4

6.4. Removing Unwanted Characters from a String

Problem

You want to remove specific characters from your data. Consider
 this result set:
	ENAME SAL
	---------- ----------
	SMITH 800
	ALLEN 1600
	WARD 1250
	JONES 2975
	MARTIN 1250
	BLAKE 2850
	CLARK 2450
	SCOTT 3000
	KING 5000
	TURNER 1500
	ADAMS 1100
	JAMES 950
	FORD 3000
	MILLER 1300
You want to remove all zeros and vowels as shown by the
 following values in columns STRIPPED1 and STRIPPED2:
	ENAME STRIPPED1 SAL STRIPPED2
	---------- ---------- ---------- ---------
	SMITH SMTH 800 8
	ALLEN LLN 1600 16
	WARD WRD 1250 125
	JONES JNS 2975 2975
	MARTIN MRTN 1250 125
	BLAKE BLK 2850 285
	CLARK CLRK 2450 245
	SCOTT SCTT 3000 3
	KING KNG 5000 5
	TURNER TRNR 1500 15
	ADAMS DMS 1100 11
	JAMES JMS 950 95
	FORD FRD 3000 3
	MILLER MLLR 1300 13

Solution

Each DBMS provides functions for removing unwanted characters
 from a string. The functions REPLACE and TRANSLATE are most useful for this problem.
DB2

Use the built-in functions TRANSLATE and REPLACE to remove
 unwanted characters and strings:
	1 select ename,
	2 replace(translate(ename,'aaaaa','AEIOU'),'a','') stripped1,
	3 sal,
	4 replace(cast(sal as char(4)),'0','') stripped2
	5 from emp

MySQL and SQL Server

MySQL and SQL Server do not offer a TRANSLATE function, so
 several calls to REPLACE are needed:
	 1 select ename,
	 2 replace(
	 3 replace(
	 4 replace(
	 5 replace(
	 6 replace(ename,'A',''),'E',''),'I',''),'O',''),'U','')
	 7 as stripped1,
	 8 sal,
	 9 replace(sal,0,'') stripped2
	10 from emp

Oracle and PostgreSQL

Use the built-in functions TRANSLATE and REPLACE to remove
 unwanted characters and strings:
	1 select ename,
	2 replace(translate(ename,'AEIOU','aaaaa'),'a')
	3 as stripped1,
	4 sal,
	5 replace(sal,0,'') as stripped2
	6 from emp

Discussion

The built-in function REPLACE removes all occurrences of zeros.
 To remove the vowels, use TRANSLATE to convert all vowels into one
 specific character (I used “a”; you can use any character), then use
 REPLACE to remove all occurrences of that character.

6.5. Separating Numeric and Character Data

Problem

You have (unfortunately) stored numeric data along with
 character data together in one column. You want to separate the
 character data from the numeric data. Consider the following result
 set:
	DATA

	SMITH800
	ALLEN1600
	WARD1250
	JONES2975
	MARTIN1250
	BLAKE2850
	CLARK2450
	SCOTT3000
	KING5000
	TURNER1500
	ADAMS1100
	JAMES950
	FORD3000
	MILLER1300
You would like the result to be:
	ENAME SAL
	---------- ----------
	SMITH 800
	ALLEN 1600
	WARD 1250
	JONES 2975
	MARTIN 1250
	BLAKE 2850
	CLARK 2450
	SCOTT 3000
	KING 5000
	TURNER 1500
	ADAMS 1100
	JAMES 950
	FORD 3000
	MILLER 1300

Solution

Use the built-in functions TRANSLATE and REPLACE to isolate the character from the numeric data. Like other recipes in this chapter, the
 trick is to use TRANSLATE to transform multiple characters into a
 single character you can reference. This way you are no longer
 searching for multiple numbers or characters, rather one character to
 represent all numbers or one character to represent all
 characters.
DB2

Use the functions TRANSLATE and REPLACE to isolate and
 separate the numeric from the character data:
	 1 select replace(
	 2 translate(data,'0000000000','0123456789'),'0','') ename,
	 3 cast(
	 4 replace(
	 5 translate(lower(data),repeat('z',26),
	 6 'abcdefghijklmnopqrstuvwxyz'),'z','') as integer) sal
	 7 from (
	 8 select ename||cast(sal as char(4)) data
	 9 from emp
	10) x

Oracle

Use the functions TRANSLATE and REPLACE to isolate and
 separate the numeric from the character data:
	 1 select replace(
	 2 translate(data,'0123456789','0000000000'),'0') ename,
	 3 to_number(
	 5 replace(
	 6 translate(lower(data),
	 7 'abcdefghijklmnopqrstuvwxyz',
	 8 rpad('z',26,'z')),'z')) sal
	 9 from (
	10 select ename||sal data
	11 from emp
	12)

PostgreSQL

Use the functions TRANSLATE and REPLACE to isolate and
 separate the numeric from the character data:
	 1 select replace(
	 2 translate(data,'0123456789','0000000000'),'0','') as ename,
	 3 cast(
	 4 replace(
	 5 translate(lower(data),
	 6 'abcdefghijklmnopqrstuvwxyz',
	 7 rpad('z',26,'z')),'z','') as integer) as sal
	 8 from (
	 9 select ename||sal as data
	10 from emp
	11) x

Discussion

The syntax is a bit different for each DBMS, but the technique
 is the same. I will use the solution for Oracle in the discussion
 section. The key to solving this problem is to isolate the numeric and character data. You can use TRANSLATE and
 REPLACE to do this. To extract the numeric data, first isolate all
 character data using TRANSLATE:
	select data,
	 translate(lower(data),
	 'abcdefghijklmnopqrstuvwxyz',
	 rpad('z',26,'z')) sal
	 from (select ename||sal data from emp)

	DATA SAL
	-------------------- -------------------
	SMITH800 zzzzz800
	ALLEN1600 zzzzz1600
	WARD1250 zzzz1250
	JONES2975 zzzzz2975
	MARTIN1250 zzzzzz1250
	BLAKE2850 zzzzz2850
	CLARK2450 zzzzz2450
	SCOTT3000 zzzzz3000
	KING5000 zzzz5000
	TURNER1500 zzzzzz1500
	ADAMS1100 zzzzz1100
	JAMES950 zzzzz950
	FORD3000 zzzz3000
	MILLER1300 zzzzzz1300
By using TRANSLATE you convert every non-numeric character into a lowercase Z. The next step is
 to remove all instances of lowercase Z from each record using REPLACE,
 leaving only numerical characters that can then be cast to a
 number:
	select data,
	 to_number(
	 replace(
	 translate(lower(data),
	 'abcdefghijklmnopqrstuvwxyz',
	 rpad('z',26,'z')),'z')) sal
	 from (select ename||sal data from emp)

	 DATA SAL
	 -------------------- ----------
	 SMITH800 800
	 ALLEN1600 1600
	 WARD1250 1250
	 JONES2975 2975
	 MARTIN1250 1250
	 BLAKE2850 2850
	 CLARK2450 2450
	 SCOTT3000 3000
	 KING5000 5000
	 TURNER1500 1500
	 ADAMS1100 1100
	 JAMES950 950
	 FORD3000 3000
	 MILLER1300 1300
To extract the non-numeric characters, isolate the numeric
 characters using TRANSLATE:
	select data,
	 translate(data,'0123456789','0000000000') ename
	 from (select ename||sal data from emp)

	 DATA ENAME
	 -------------------- ----------
	 SMITH800 SMITH000
	 ALLEN1600 ALLEN0000
	 WARD1250 WARD0000
	 JONES2975 JONES0000
	 MARTIN1250 MARTIN0000
	 BLAKE2850 BLAKE0000
	 CLARK2450 CLARK0000
	 SCOTT3000 SCOTT0000
	 KING5000 KING0000
	 TURNER1500 TURNER0000
	 ADAMS1100 ADAMS0000
	 JAMES950 JAMES000
	 FORD3000 FORD0000
	 MILLER1300 MILLER0000
By using TRANSLATE you convert every numeric character into a zero. The next step is to
 remove all instances of zero from each record using REPLACE, leaving
 only non-numeric characters:
	select data,
	 replace(translate(data,'0123456789','0000000000'),'0') ename
	 from (select ename||sal data from emp)

	 DATA ENAME
	 -------------------- -------
	 SMITH800 SMITH
	 ALLEN1600 ALLEN
	 WARD1250 WARD
	 JONES2975 JONES
	 MARTIN1250 MARTIN
	 BLAKE2850 BLAKE
	 CLARK2450 CLARK
	 SCOTT3000 SCOTT
	 KING5000 KING
	 TURNER1500 TURNER
	 ADAMS1100 ADAMS
	 JAMES950 JAMES
	 FORD3000 FORD
	 MILLER1300 MILLER
Put the two techniques together and you have your
 solution.

6.6. Determining Whether a String Is Alphanumeric

Problem

You want to return rows from a table only when a column of
 interest contains no characters other than numbers and letters.
 Consider the following view V (SQL Server users will use the operator
 “+” for concatenation instead of “||”):
	create view V as
	select ename as data
	 from emp
	 where deptno=10
	 union all
	select ename||', $'|| cast(sal as char(4)) ||'.00' as data
	 from emp
	 where deptno=20
	 union all
	select ename|| cast(deptno as char(4)) as data
	 from emp
	 where deptno=30
The view V represents your table, and it returns the
 following:
	DATA

	CLARK
	KING
	MILLER
	SMITH, $800.00
	JONES, $2975.00
	SCOTT, $3000.00
	ADAMS, $1100.00
	FORD, $3000.00
	ALLEN30
	WARD30
	MARTIN30
	BLAKE30
	TURNER30
	JAMES30
However, from the view’s data you want to return only the
 following records:
	DATA

	CLARK
	KING
	MILLER
	ALLEN30
	WARD30
	MARTIN30
	BLAKE30
	TURNER30
	JAMES30
In short, you wish to omit those rows containing data other than
 letters and digits.

Solution

It may seem intuitive at first to solve the problem by searching
 for all the possible non-alphanumeric characters that can be found in a string,
 but, on the contrary, you will find it easier to do the exact
 opposite: find all the alphanumeric characters. By doing so, you can
 treat all the alphanumeric characters as one by converting them to one
 single character. The reason you want to do this is so the
 alphanumeric characters can be manipulated together, as a whole. Once
 you’ve generated a copy of the string in which all alphanumeric
 characters are represented by a single character of your choosing, it
 is easy to isolate the alphanumeric characters from any other
 characters.
DB2

Use the function TRANSLATE to convert all alphanumeric characters to a single character, then
 identify any rows that have characters other than the converted
 alphanumeric character. For DB2 users, the CAST function calls in
 view V are necessary; otherwise, the view cannot be created due to
 type conversion errors. Take extra care when working with casts to
 CHAR as they are fixed length (padded):
	1 select data
	2 from V
	3 where translate(lower(data),
	4 repeat('a',36),
	5 '0123456789abcdefghijklmnopqrstuvwxyz') =
	6 repeat('a',length(data))

MySQL

The syntax for view V is slightly different in MySQL:
	create view V as
	select ename as data
	 from emp
	 where deptno=10
	 union all
	select concat(ename,', $',sal,'.00') as data
	 from emp
	 where deptno=20
	 union all
	select concat(ename,deptno) as data
	 from emp
	 where deptno=30
Use a regular expression to easily find rows that contain
 non-alphanumeric data:
	1 select data
	2 from V
	3 where data regexp '[^0-9a-zA-Z]' = 0

Oracle and PostgreSQL

Use the function TRANSLATE to convert all alphanumeric
 characters to a single character, then identify any rows that have
 characters other than the converted alphanumeric character. The CAST
 function calls in view V are not needed for Oracle and PostgreSQL.
 Take extra care when working with casts to CHAR as they are fixed
 length (padded). If you decide to cast, cast to VARCHAR or
 VARCHAR2:
	1 select data
	2 from V
	3 where translate(lower(data),
	4 '0123456789abcdefghijklmnopqrstuvwxyz',
	5 rpad('a',36,'a')) = rpad('a',length(data),'a')

SQL Server

Because SQL Server does not support a TRANSLATE function, you must walk each row and find
 any that contains a character that contains a non-alphanumeric value. That can be done many ways, but
 the following solution uses an ASCII-value evaluation:
	 1 select data
	 2 from (
	 3 select v.data, iter.pos,
	 4 substring(v.data,iter.pos,1) c,
	 5 ascii(substring(v.data,iter.pos,1)) val
	 6 from v,
	 7 (select id as pos from t100) iter
	 8 where iter.pos <= len(v.data)
	 9) x
	10 group by data
	11 having min(val) between 48 and 122

Discussion

The key to these solutions is being able to reference multiple
 characters concurrently. By using the function TRANSLATE you can
 easily manipulate all numbers or all characters without having to
 “iterate” and inspect each character one by one.
DB2, Oracle, and PostgreSQL

Only 9 of the 14 rows from view V are alphanumeric. To find
 the rows that are alphanumeric only, simply use the function
 TRANSLATE. In this example, TRANSLATE converts characters 0–9 and
 a–z to “a”. Once the conversion is done, the converted row is then
 compared with a string of all “a” with the same length (as the row).
 If the length is the same, then you know all the characters are
 alphanumeric and nothing else.
By using the TRANSLATE function (using the Oracle
 syntax):
	where translate(lower(data),
	 '0123456789abcdefghijklmnopqrstuvwxyz',
	 rpad('a',36,'a'))
you convert all numbers and letters into a distinct character
 (I chose “a”). Once the data is converted, all strings that are
 indeed alphanumeric can be identified as a string comprising only a
 single character (in this case, “a”). This can be seen by running
 TRANSLATE by itself:
	select data, translate(lower(data),
	 '0123456789abcdefghijklmnopqrstuvwxyz',
	 rpad('a',36,'a'))
	 from V

	DATA TRANSLATE(LOWER(DATA)
	-------------------- ---------------------
	CLARK aaaaa
	…
	SMITH, $800.00 aaaaa, $aaa.aa
	…
	ALLEN30 aaaaaaa
	…
The alphanumeric values are converted, but the string
 lengths have not been modified. Because the lengths are the same,
 the rows to keep are the ones for which the call to TRANSLATE
 returns all a’s. You keep those rows, rejecting the others, by
 comparing each original string’s length with the length of its
 corresponding string of a’s:
	select data, translate(lower(data),
	 '0123456789abcdefghijklmnopqrstuvwxyz',
	 rpad('a',36,'a')) translated,
	 rpad('a',length(data),'a') fixed
	 from V

	DATA TRANSLATED FIXED
	-------------------- -------------------- ----------------
	CLARK aaaaa aaaaa
	…
	SMITH, $800.00 aaaaa, $aaa.aa aaaaaaaaaaaaaa
	…
	ALLEN30 aaaaaaa aaaaaaa
	…
The last step is to keep only the strings where TRANSLATED
 equals FIXED.

MySQL

The expression in the WHERE clause:
	where data regexp '[^0-9a-zA-Z]' = 0
causes rows that have only numbers or characters to be
 returned. The value ranges in the brackets, “0-9a-zA-Z”, represent
 all possible numbers and letters. The character “^” is for negation,
 so the expression can be stated as “not numbers or letters.” A
 return value of 1 is true and 0 is false, so the whole expression
 can be stated as “return rows where anything other than numbers and
 letters is false.”

SQL Server

The first step is to walk each row returned by view V. Each
 character in the value returned for DATA will itself be returned as
 a row. The values returned by C represent each individual character
 for the values returned by DATA:
	+-----------------+------+------+------+
	| data | pos | c | val |
	+-----------------+------+------+------+
	| ADAMS, $1100.00 | 1 | A | 65 |
	| ADAMS, $1100.00 | 2 | D | 68 |
	| ADAMS, $1100.00 | 3 | A | 65 |
	| ADAMS, $1100.00 | 4 | M | 77 |
	| ADAMS, $1100.00 | 5 | S | 83 |
	| ADAMS, $1100.00 | 6 | , | 44 |
	| ADAMS, $1100.00 | 7 | | 32 |
	| ADAMS, $1100.00 | 8 | $ | 36 |
	| ADAMS, $1100.00 | 9 | 1 | 49 |
	| ADAMS, $1100.00 | 10 | 1 | 49 |
	| ADAMS, $1100.00 | 11 | 0 | 48 |
	| ADAMS, $1100.00 | 12 | 0 | 48 |
	| ADAMS, $1100.00 | 13 | . | 46 |
	| ADAMS, $1100.00 | 14 | 0 | 48 |
	| ADAMS, $1100.00 | 15 | 0 | 48 |
Inline view Z not only returns each character in the column
 DATA row by row, it also provides the ASCII value for each
 character. For this particular implementation of SQL Server, the
 range 48–122 represents alphanumeric characters. With that knowledge, you can
 group each row in DATA and filter out any such that the minimum
 ASCII value is not in the 48–122 range.

6.7. Extracting Initials from a Name

Problem

You want convert a full name into initials. Consider the
 following name:
	 Stewie Griffin
You would like to return:
	 S.G.

Solution

It’s important to keep in mind that SQL does not provide the
 flexibility of languages such as C or Python; therefore, creating a
 generic solution to deal with any name format is not something
 particularly easy to do in SQL. The solutions presented here expect
 the names to be either first and last name, or first, middle
 name/middle initial, and last name.
DB2

Use the built-in functions REPLACE, TRANSLATE, and REPEAT to
 extract the initials:
	1 select replace(
	2 replace(
	3 translate(replace('Stewie Griffin', '.', ''),
	4 repeat('#',26),
	5 'abcdefghijklmnopqrstuvwxyz'),
	6 '#',''), ' ','.')
	7 ||'.'
	8 from t1

MySQL

Use the built-in functions CONCAT, CONCAT_WS, SUBSTRING, and
 SUBSTRING_ INDEX to extract the initials:
	 1 select case
	 2 when cnt = 2 then
	 3 trim(trailing '.' from
	 4 concat_ws('.',
	 5 substr(substring_index(name,' ',1),1,1),
	 6 substr(name,
	 7 length(substring_index(name,' ',1))+2,1),
	 8 substr(substring_index(name,' ',-1),1,1),
	 9 '.'))
	10 else
	11 trim(trailing '.' from
	12 concat_ws('.',
	13 substr(substring_index(name,' ',1),1,1),
	14 substr(substring_index(name,' ',-1),1,1)
	15))
	16 end as initials
	17 from (
	18 select name,length(name)-length(replace(name,' ','')) as cnt
	19 from (
	20 select replace('Stewie Griffin','.','') as name from t1
	21)y
	22)x

Oracle and PostgreSQL

Use the built-in functions REPLACE, TRANSLATE, and RPAD to
 extract the initials:
	1 select replace(
	2 replace(
	3 translate(replace('Stewie Griffin', '.', ''),
	4 'abcdefghijklmnopqrstuvwxyz',
	5 rpad('#',26,'#')), '#',''),' ','.') ||'.'
	6 from t1

SQL Server

As of the time of this writing, neither TRANSLATE nor
 CONCAT_WS is supported in SQL Server.

Discussion

By isolating the capital letters you can extract the initials
 from a name. The following sections describe each vendor-specific
 solution in detail.
DB2

The REPLACE function will remove any periods in the name (to
 handle middle initials), and the TRANSLATE function will convert
 all non-uppercase letters to #.
	select translate(replace('Stewie Griffin', '.', ''),
	 repeat('#',26),
	 'abcdefghijklmnopqrstuvwxyz')
	 from t1

	TRANSLATE('STE

	S##### G######
At this point, the initials are the characters that are not #.
 The function REPLACE is then used to remove all the #
 characters:
	select replace(
	 translate(replace('Stewie Griffin', '.', ''),
	 repeat('#',26),
	 'abcdefghijklmnopqrstuvwxyz'),'#','')
	 from t1
	
	REP

	S G
The next step is to replace the white space with a period by
 using REPLACE again:
select replace(
	 replace(
	 translate(replace('Stewie Griffin', '.', ''),
	 repeat('#',26),
	 'abcdefghijklmnopqrstuvwxyz'),'#',''),' ','.') || '.'
	 from t1

	REPLA

	S.G
The final step is to append a decimal to the end of the
 initials.

Oracle and PostgreSQL

The REPLACE function will remove any periods in the name (to
 handle middle initials), and the TRANSLATE function will convert all
 non-uppercase letters to '#'.
	select translate(replace('Stewie Griffin','.',''),
	 'abcdefghijklmnopqrstuvwxyz',
	 rpad('#',26,'#'))
	 from t1
	
	TRANSLATE('STE

	S##### G######
At this point, the initials are the characters that are not “#”. The
 function REPLACE is then used to remove all the # characters:
	select replace(
	 translate(replace('Stewie Griffin','.',''),
	 'abcdefghijklmnopqrstuvwxyz',
	 rpad('#',26,'#')),'#','')
	 from t1

	REP

	S G
The next step is to replace the white space with a period by
 using REPLACE again:
	select replace(
	 replace(
	 translate(replace('Stewie Griffin','.',''),
	 'abcdefghijklmnopqrstuvwxyz',
	 rpad('#',26,'#')),'#',''),' ','.') || '.'
	 from t1

	REPLA

	S.G
The final step is to append a decimal to the end of the
 initials.

MySQL

The inline view Y is used to remove any period from the name.
 The inline view X finds the number of white spaces in the name so
 the SUBSTR function can be called the correct number of times to
 extract the initials. The three calls to SUBSTRING_ INDEX parse the
 string into individual names based on the location of the white space.
 Because there is only a first and last name, the code in the ELSE
 portion of the case statement is executed:
	select substr(substring_index(name, ' ',1),1,1) as a,
	 substr(substring_index(name,' ',-1),1,1) as b
	 from (select 'Stewie Griffin' as name from t1) x
	
	A B
	- -
	S G
If the name in question has a middle name or initial, the
 initial would be returned by executing
	substr(name,length(substring_index(name, ' ',1))+2,1)
which finds the end of the first name then moves two spaces to
 the beginning of the middle name or initial; that is, the start
 position for SUBSTR. Because only onecharacter is kept, the middle
 name or initial is successfully returned. The initials are then passed to CONCAT_WS, which
 separates the initials by a period:
	select concat_ws('.',
	 substr(substring_index(name, ' ',1),1,1),
	 substr(substring_index(name,' ',-1),1,1),
	 '.') a
	 from (select 'Stewie Griffin' as name from t1) x
	
	A

	S.G..
The last step is to trim the extraneous period from the
 initials.

6.8. Ordering by Parts of a String

Problem

You want to order your result set based on a substring. Consider
 the following records:
	ENAME

	SMITH
	ALLEN
	WARD
	JONES
	MARTIN
	BLAKE
	CLARK
	SCOTT
	KING
	TURNER
	ADAMS
	JAMES
	FORD
	MILLER
You want the records to be ordered based on the
 last two characters of each name:
	ENAME

	ALLEN
	TURNER
	MILLER
	JONES
	JAMES
	MARTIN
	BLAKE
	ADAMS
	KING
	WARD
	FORD
	CLARK
	SMITH
	SCOTT

Solution

The key to this solution is to find and use your DBMS’s built-in
 function to extract the substring on which you wish to sort. This is
 typically done with the SUBSTR function.
DB2, Oracle, MySQL, and PostgreSQL

Use a combination of the built-in functions LENGTH and SUBSTR
 to order by a specific part of a string:
	1 select ename
	2 from emp
	3 order by substr(ename,length(ename)-1,)

SQL Server

Use functions SUBSTRING and LEN to order by a specific part of
 a string:
	1 select ename
	2 from emp
	3 order by substring(ename,len(ename)-1,2)

Discussion

By using a SUBSTR expression in your ORDER BY clause, you can
 pick any part of a string to use in ordering a result set. You’re not
 limited to SUBSTR either. You can order rows by the result of almost
 any expression.

6.9. Ordering by a Number in a String

Problem

You want order your result set based on a number within a
 string. Consider the following view:
	create view V as
	select e.ename ||' '||
	 cast(e.empno as char(4))||' '||
	 d.dname as data
	 from emp e, dept d
	 where e.deptno=d.deptno
This view returns the following data:
	DATA

	 CLARK 7782 ACCOUNTING
	 KING 7839 ACCOUNTING
	 MILLER 7934 ACCOUNTING
	 SMITH 7369 RESEARCH
	 JONES 7566 RESEARCH
	 SCOTT 7788 RESEARCH
	 ADAMS 7876 RESEARCH
	 FORD 7902 RESEARCH
	 ALLEN 7499 SALES
	 WARD 7521 SALES
	 MARTIN 7654 SALES
	 BLAKE 7698 SALES
	 TURNER 7844 SALES
	 JAMES 7900 SALES
You want to order the results based on the employee number,
 which falls between the employee name and respective
 department:
	DATA

	SMITH 7369 RESEARCH
	ALLEN 7499 SALES
	WARD 7521 SALES
	JONES 7566 RESEARCH
	MARTIN 7654 SALES
	BLAKE 7698 SALES
	CLARK 7782 ACCOUNTING
	SCOTT 7788 RESEARCH
	KING 7839 ACCOUNTING
	TURNER 7844 SALES
	ADAMS 7876 RESEARCH
	JAMES 7900 SALES
	FORD 7902 RESEARCH
	MILLER 7934 ACCOUNTING

Solution

Each solution uses functions and syntax specific to its DBMS,
 but the method (making use of the built-in functions REPLACE and TRANSLATE) is the same for each. The idea is to use
 REPLACE and TRANSLATE to remove non-digits from the strings, leaving only the numeric values upon which to
 sort.
DB2

Use the built-in functions REPLACE and TRANSLATE to order
 by numeric characters in a string:
	1 select data
	2 from V
	3 order by
	4 cast(
	5 replace(
	6 translate(data,repeat('#',length(data)),
	7 replace(
	8 translate(data,'##########','0123456789'),
	9 '#','')),'#','') as integer)

Oracle

Use the built-in functions REPLACE and TRANSLATE to order
 by numeric characters in a string:
	1 select data
	2 from V
	3 order by
	4 to_number(
	5 replace(
	6 translate(data,
	7 replace(
	8 translate(data,'0123456789','##########'),
	9 '#'),rpad('#',20,'#')),'#'))

PostgreSQL

Use the built-in functions REPLACE and TRANSLATE to order by
 numeric characters in a string:
	1 select data
	2 from V
	3 order by
	4 cast(
	5 replace(
	6 translate(data,
	7 replace(
	8 translate(data,'0123456789','##########'),
	9 '#',''),rpad('#',20,'#')),'#','') as integer)

MySQL and SQL Server

As of the time of this writing, neither vendor supplies the
 TRANSLATE function.

Discussion

The purpose of view V is only to supply rows on which to
 demonstrate this recipe’s solution. The view simply concatenates
 several columns from the EMP table. The solution shows how to take
 such concatenated text as input and sort it by the employee number
 embedded within.
The ORDER BY clause in each solution may look a bit intimidating
 but performs quite well and is pretty straightforward once you examine
 it piece by piece. To order by the numbers in the string, it’s easiest
 to remove any characters that are not numbers. Once the non-numeric
 characters are removed all that is left to do is cast the string of
 numerals into a number, then sort as you see fit. Before examining
 each function call it is important to understand the order in which
 each function is called. Starting with the innermost call, TRANSLATE
 (line 8 from each of the original solutions), you see that:
	TRANSLATE (line 8) is called and the results are returned
 to

	REPLACE (line 7) and those results are returned to

	TRANSLATE (line 6) and those results are returned to

	REPLACE (line 5) and those results are returned and
 finally

	cast into a number

The first step is to convert the numbers into characters that do
 not exist in the rest of the string. For this example, I chose “#” and
 used TRANSLATE to convert all non-numeric characters into occurrences
 of “#”. For example, the following query shows the original data on
 the left and the results from the first translation:
	select data,
	 translate(data,'0123456789','##########') as tmp
	 from V

	DATA TMP
	 ------------------------------ -----------------------
	 CLARK 7782 ACCOUNTING CLARK #### ACCOUNTING
	 KING 7839 ACCOUNTING KING #### ACCOUNTING
	 MILLER 7934 ACCOUNTING MILLER #### ACCOUNTING
	 SMITH 7369 RESEARCH SMITH #### RESEARCH
	 JONES 7566 RESEARCH JONES #### RESEARCH
	 SCOTT 7788 RESEARCH SCOTT #### RESEARCH
	 ADAMS 7876 RESEARCH ADAMS #### RESEARCH
	 FORD 7902 RESEARCH FORD #### RESEARCH
	 ALLEN 7499 SALES ALLEN #### SALES
	 WARD 7521 SALES WARD #### SALES
	 MARTIN 7654 SALES MARTIN #### SALES
	 BLAKE 7698 SALES BLAKE #### SALES
	 TURNER 7844 SALES TURNER #### SALES
	 JAMES 7900 SALES JAMES #### SALES
TRANSLATE finds the numerals in each string and converts each
 one to to the “#” character. The modified strings are then returned to REPLACE (line 11), which
 removes all occurrences of “#”:
	select data,
	replace(
	translate(data,'0123456789','##########'),'#') as tmp
	 from V

	DATA TMP
	 ------------------------------ -------------------
	 CLARK 7782 ACCOUNTING CLARK ACCOUNTING
	 KING 7839 ACCOUNTING KING ACCOUNTING
	 MILLER 7934 ACCOUNTING MILLER ACCOUNTING
	 SMITH 7369 RESEARCH SMITH RESEARCH
	 JONES 7566 RESEARCH JONES RESEARCH
	 SCOTT 7788 RESEARCH SCOTT RESEARCH
	 ADAMS 7876 RESEARCH ADAMS RESEARCH
	 FORD 7902 RESEARCH FORD RESEARCH
	 ALLEN 7499 SALES ALLEN SALES
	 WARD 7521 SALES WARD SALES
	 MARTIN 7654 SALES MARTIN SALES
	 BLAKE 7698 SALES BLAKE SALES
	 TURNER 7844 SALES TURNER SALES
	 JAMES 7900 SALES JAMES SALES
The strings are then returned to TRANSLATE once again, but
 this time it’s the second (outermost) TRANSLATE in the solution.
 TRANSLATE searches the original string for any characters that match
 the characters in TMP. If any are found, they too are converted to
 “#"s. This conversion allows all non-numeric characters to be treated
 as a single character (because they are all transformed to the same
 character):
	select data, translate(data,
	 replace(
	 translate(data,'0123456789','##########'),
	 '#'),
	 rpad('#',length(data),'#')) as tmp
	 from V

	DATA TMP
	------------------------------ ---------------------------
	CLARK 7782 ACCOUNTING ########7782###########
	KING 7839 ACCOUNTING ########7839###########
	MILLER 7934 ACCOUNTING ########7934###########
	SMITH 7369 RESEARCH ########7369#########
	JONES 7566 RESEARCH ########7566#########
	SCOTT 7788 RESEARCH ########7788#########
	ADAMS 7876 RESEARCH ########7876#########
	FORD 7902 RESEARCH ########7902#########
	ALLEN 7499 SALES ########7499######
	WARD 7521 SALES ########7521######
	MARTIN 7654 SALES ########7654######
	BLAKE 7698 SALES ########7698######
	TURNER 7844 SALES ########7844######
	JAMES 7900 SALES ########7900######
The next step is to remove all “#” characters through a call to
 REPLACE (line 8), leaving you with only numbers:
	select data, replace(
	 translate(data,
	 replace(
	 translate(data,'0123456789','##########'),
	 '#'),
	 rpad('#',length(data),'#')),'#') as tmp
	 from V

	DATA TMP
	------------------------------ -----------
	CLARK 7782 ACCOUNTING 7782
	KING 7839 ACCOUNTING 7839
	MILLER 7934 ACCOUNTING 7934
	SMITH 7369 RESEARCH 7369
	JONES 7566 RESEARCH 7566
	SCOTT 7788 RESEARCH 7788
	ADAMS 7876 RESEARCH 7876
	FORD 7902 RESEARCH 7902
	ALLEN 7499 SALES 7499
	WARD 7521 SALES 7521
	MARTIN 7654 SALES 7654
	BLAKE 7698 SALES 7698
	TURNER 7844 SALES 7844
	JAMES 7900 SALES 7900
Finally, cast TMP to a number (line 4) using the appropriate
 DBMS function (often CAST) to accomplish this:
	select data, to_number(
	 replace(
	 translate(data,
	 replace(
	 translate(data,'0123456789','##########'),
	 '#'),
	 rpad('#',length(data),'#')),'#')) as tmp
	 from V

	DATA TMP
	------------------------------ ----------
	CLARK 7782 ACCOUNTING 7782
	KING 7839 ACCOUNTING 7839
	MILLER 7934 ACCOUNTING 7934
	SMITH 7369 RESEARCH 7369
	JONES 7566 RESEARCH 7566
	SCOTT 7788 RESEARCH 7788
	ADAMS 7876 RESEARCH 7876
	FORD 7902 RESEARCH 7902
	ALLEN 7499 SALES 7499
	WARD 7521 SALES 7521
	MARTIN 7654 SALES 7654
	BLAKE 7698 SALES 7698
	TURNER 7844 SALES 7844
	JAMES 7900 SALES 7900
When developing queries like this, it’s helpful to work with your
 expressions in the SELECT list. That way, you can easily view the
 intermediate results as you work toward a final solution. However,
 because the point of this recipe is to order the results, ultimately
 you should place all the function calls into the ORDER BY clause:
	select data
	 from V
	 order by
	 to_number(
	 replace(
	 translate(data,
	 replace(
	 translate(data,'0123456789','##########'),
	 '#'),rpad('#',length(data),'#')),'#'))

	DATA

	SMITH 7369 RESEARCH
	ALLEN 7499 SALES
	WARD 7521 SALES
	JONES 7566 RESEARCH
	MARTIN 7654 SALES
	BLAKE 7698 SALES
	CLARK 7782 ACCOUNTING
	SCOTT 7788 RESEARCH
	KING 7839 ACCOUNTING
	TURNER 7844 SALES
	ADAMS 7876 RESEARCH
	JAMES 7900 SALES
	FORD 7902 RESEARCH
	MILLER 7934 ACCOUNTING
As a final note, the data in the view is comprised of three
 fields, only one being numeric. Keep in mind that if there had been
 multiple numeric fields, they would have all been concatenated into
 one number before the rows were sorted.

6.10. Creating a Delimited List from Table Rows

Problem

You want to return table rows as values in a delimited list,
 perhaps delimited by commas, rather than in vertical columns as they
 normally appear. You want to convert a result set from this:
	DEPTNO EMPS
	------ ----------
	 10 CLARK
	 10 KING
	 10 MILLER
	 20 SMITH
	 20 ADAMS
	 20 FORD
	 20 SCOTT
	 20 JONES
	 30 ALLEN
	 30 BLAKE
	 30 MARTIN
	 30 JAMES
	 30 TURNER
	 30 WARD
to this:
	 DEPTNO EMPS
	------- ------------------------------------
	 10 CLARK,KING,MILLER
	 20 SMITH,JONES,SCOTT,ADAMS,FORD
	 30 ALLEN,WARD,MARTIN,BLAKE,TURNER,JAMES

Solution

Each DBMS requires a different approach to this problem. The key
 is to take advantage of the built-in functions provided by your DBMS.
 Understanding what is available to you will allow you to exploit your
 DBMS’s functionality and come up with creative solutions for a problem
 that is typically not solved in SQL.
DB2

Use recursive WITH to build the delimited list:
	 1 with x (deptno, cnt, list, empno, len)
	 2 as (
	 3 select deptno, count(*) over (partition by deptno),
	 4 cast(ename as varchar(100)), empno, 1
	 5 from emp
	 6 union all
	 7 select x.deptno, x.cnt, x.list ||','|| e.ename, e.empno, x.len+1
	 8 from emp e, x
	 9 where e.deptno = x.deptno
	10 and e.empno > x. empno
	11)
	12 select deptno,list
	13 from x
	14 where len = cnt

MySQL

Use the built-in function GROUP_CONCAT to build the delimited
 list:
	1 select deptno,
	2 group_concat(ename order by empno separator, ',') as emps
	3 from emp
	4 group by deptno

Oracle

Use the built-in function SYS_CONNECT_BY_PATH to build the
 delimited list:
	 1 select deptno,
	 2 ltrim(sys_connect_by_path(ename,','),',') emps
	 3 from (
	 4 select deptno,
	 5 ename,
	 6 row_number() over
	 7 (partition by deptno order by empno) rn,
	 8 count(*) over
	 9 (partition by deptno) cnt
	10 from emp
	11)
	12 where level = cnt
	13 start with rn = 1
	14 connect by prior deptno = deptno and prior rn = rn-1

PostgreSQL

PostgreSQL does not offer a standard built-in function for
 creating a delimited list, so it is necessary to know how many
 values will be in the list in advance. Once you know the size of the
 largest list, you can determine the number of values to append to
 create your list by using standard transposition and
 concatenation:
	 1 select deptno,
	 2 rtrim(
	 3 max(case when pos=1 then emps else '' end)||
	 4 max(case when pos=2 then emps else '' end)||
	 5 max(case when pos=3 then emps else '' end)||
	 6 max(case when pos=4 then emps else '' end)||
	 7 max(case when pos=5 then emps else '' end)||
	 8 max(case when pos=6 then emps else '' end),','
	 9) as emps
	10 from (
	11 select a.deptno,
	12 a.ename||',' as emps,
	13 d.cnt,
	14 (select count(*) from emp b
	15 where a.deptno=b.deptno and b.empno <= a.empno) as pos
	16 from emp a,
	17 (select deptno, count(ename) as cnt
	18 from emp
	19 group by deptno) d
	20 where d.deptno=a.deptno
	21) x
	22 group by deptno
	23 order by 1

SQL Server

Use recursive WITH to build the delimited list:
	 1 with x (deptno, cnt, list, empno, len)
	 2 as (
	 3 select deptno, count(*) over (partition by deptno),
	 4 cast(ename as varchar(100)),
	 5 empno,
	 6 1
	 7 from emp
	 9 union all
	 9 select x.deptno, x.cnt,
	10 cast(x.list + ',' + e.ename as varchar(100)),
	11 e.empno, x.len+1
	12 from emp e, x
	13 where e.deptno = x.deptno
	14 and e.empno > x. empno
	15)
	16 select deptno,list
	17 from x
	18 where len = cnt
	19 order by 1

Discussion

Being able to create delimited lists in SQL is useful because it is a common
 requirement. Yet each DBMS offers a unique method for building such a
 list in SQL. There’s very little commonality between the
 vendor-specific solutions; the techniques vary from using recursion,
 to hierarchal functions, to classic transposition, to
 aggregation.
DB2 and SQL Server

The solution for these two databases differ slightly in syntax
 (the concatenation operators are “||” for DB2 and “+” for SQL
 Server), but the technique is the same. The first query in the WITH
 clause (upper portion of the UNION ALL) returns the following
 information about each employee: the department, the number of
 employees in that department, the name, the ID, and a constant 1
 (which at this point doesn’t do anything). Recursion takes place in
 the second query (lower half of the UNION ALL) to build the list. To
 understand how the list is built, examine the following excerpts
 from the solution: first, the third SELECT-list item from the second
 query in the union:
	x.list ||','|| e.ename
and then the WHERE clause from that same query:
	where e.deptno = x.deptno
	 and e.empno > x.empno
The solution works by first ensuring the employees are in the
 same department. Then, for every employee returned by the upper
 portion of the UNION ALL, append the name of the employees who have
 a greater EMPNO. By doing this, you ensure that no employee will
 have his own name appended. The expression
	x.len+1
increments LEN (which starts at 1) every time an employee has
 been evaluated. When the incremented value equals the number of
 employees in the department:
	where len = cnt
you know you have evaluated all the employees and have
 completed building the list. That is crucial to the query as it not
 only signals when the list is complete, but also stops the recursion
 from running longer than necessary.

MySQL

The function GROUP_CONCAT does all the work. It concatenates
 the values found in the column passed to it, in this case ENAME.
 It’s an aggregate function, thus the need for GROUP BY in the
 query.

Oracle

The first step to understanding the Oracle query is to break
 it down. Running the inline view by itself (lines 4–10), you
 generate a result set that includes the following for each employee:
 her department, her name, a rank within her respective department
 that is derived by an ascending sort on EMPNO, and a count of all
 employees in her department. For example:
	select deptno,
	 ename,
	 row_number() over
	 (partition by deptno order by empno) rn,
	 count(*) over (partition by deptno) cnt
	 from emp

	DEPTNO ENAME RN CNT
	------ ---------- -- ---
	 10 CLARK 1 3
	 10 KING 2 3
	 10 MILLER 3 3
	 20 SMITH 1 5
	 20 JONES 2 5
	 20 SCOTT 3 5
	 20 ADAMS 4 5
	 20 FORD 5 5
	 30 ALLEN 1 6
	 30 WARD 2 6
	 30 MARTIN 3 6
	 30 BLAKE 4 6
	 30 TURNER 5 6
	 30 JAMES 6 6
The purpose of the rank (aliased RN in the query) is to allow
 you to walk the tree. Since the function ROW_NUMBER generates an
 enumeration starting from one with no duplicates or gaps, just
 subtract one (from the current value) to reference a prior (or
 parent) row. For example, the number prior to 3 is 3 minus 1, which
 equals 2. In this context, 2 is the parent of 3; you can observe
 this on line 12. Additionally, the lines
	start with rn = 1
	connect by prior deptno = deptno
identify the root for each DEPTNO as having RN equal to 1 and
 create a new list whenever a new department is encountered (whenever
 a new occurrence of 1 is found for RN).
At this point, it’s important to stop and look at the ORDER BY
 portion of the ROW_NUMBER function. Keep in mind the names are
 ranked by EMPNO and the list will be created in that order. The
 number of employees per department is calculated (aliased CNT) and
 is used to ensure that the query returns only the list that has all
 the employee names for a department. This is done because
 SYS_CONNECT_ BY_PATH builds the list iteratively, and you do not
 want to end up with partial lists.
For hierarchical queries, the pseudocolumn LEVEL starts with 1 (for
 queries not using CONNECT BY, LEVEL is 0, unless you are on 10g and
 later when LEVEL is only available when using CONNECT BY) and
 increments by one after each employee in a department has been
 evaluated (for each level of depth in the hierarchy). Because of
 this, you know that once LEVEL reaches CNT, you have reached the
 last EMPNO and will have a complete list.
Tip
The SYS_CONNECT_BY_PATH function prefixes the list with
 your chosen delimiter (in this case, a comma). You may or may not
 want that behavior. In this recipe’s solution, the call to the
 function LTRIM removes the leading comma from the list.

PostgreSQL

PostgreSQL’s solution requires you to know in advance the
 maximum number of employees in any one department. Running the
 inline view by itself (lines 11–18) generates a result set that
 includes (for each employee) his department, his name with a comma
 appended, the number of employees in his department, and the number
 of employees who have an EMPNO that is less than his:
	deptno | emps | cnt | pos
	--------+----------+-----+-----
	 20 | SMITH, | 5 | 1
	 30 | ALLEN, | 6 | 1
	 30 | WARD, | 6 | 2
	 20 | JONES, | 5 | 2
	 30 | MARTIN, | 6 | 3
	 30 | BLAKE, | 6 | 4
	 10 | CLARK, | 3 | 1
	 20 | SCOTT, | 5 | 3
	 10 | KING, | 3 | 2
	 30 | TURNER, | 6 | 5
	 20 | ADAMS, | 5 | 4
	 30 | JAMES, | 6 | 6
	 20 | FORD, | 5 | 5
	 10 | MILLER, | 3 | 3
The scalar subquery, POS (lines 14-15), is used to rank each
 employee by EMPNO. For example, the line
	max(case when pos = 1 then ename else '' end)||
evaluates whether or not POS equals 1. The CASE expression
 returns the employee name when POS is 1, and otherwise returns
 NULL.
You must query your table first to find the largest number of
 values that could be in any one list. Based on the EMP table, the
 largest number of employees in any one department is six, so the
 largest number of items in a list is six.
The next step is to begin creating the list. Do this by
 performing some conditional logic (in the form of CASE expressions)
 on the rows returned from the inline view.
You must write as many CASE expressions as there are possible
 values to be concatenated together.
If POS equals one, the current name is added to the list. The
 second CASE expression evaluates whether or not POS equals two; if
 it does, then the second name is appended to the first. If there is
 no second name, then an additional comma is appended to the first
 name (this process is repeated for each distinct value of POS until
 the last one is reached).
The use of the MAX function is necessary because you want to
 build only one list per department (you can also use MIN; it makes
 no difference in this case, since POS returns only one value for
 each case evaluation). Whenever an aggregate function is used, any
 items in the SELECT list not acted upon by the aggregate must be
 specified in the GROUP BY clause. This guarantees you will have only
 one row per item in the SELECT list not acted upon by the aggregate
 function.
Notice that you also need the function RTRIM to remove
 trailing commas; the number of commas will always be equal to the
 maximum number of values that could potentially be in a list (in
 this case, six).

6.11. Converting Delimited Data into a Multi-Valued IN-List

Problem

You have delimited data that you want to pass to the IN-list
 iterator of a WHERE clause. Consider the following string:
	7654,7698,7782,7788
You would like to use the string in a WHERE clause but the
 following SQL fails because EMPNO is a numeric column:
	select ename,sal,deptno
	 from emp
	 where empno in ('7654,7698,7782,7788')
This SQL fails because, while EMPNO is a numeric column, the IN
 list is composed of a single string value. You want that string to be
 treated as a comma-delimited list of numeric values.

Solution

On the surface it may seem that SQL should do the work of
 treating a delimited string as a list of delimited values for you, but
 that is not the case. When a comma embedded within quotes is
 encountered, SQL can’t possibly know that signals a multi-valued list.
 SQL must treat everything between the quotes as a single entity, as
 one string value. You must break the string up into individual EMPNOs.
 The key to this solution is to walk the string, but not into
 individual characters. You want to walk the string into valid EMPNO
 values.
DB2

By walking the string passed to the IN-list, you can easily
 convert it to rows. The functions ROW_NUMBER, LOCATE, and SUBSTR are
 particularly useful here:
	 1 select empno,ename,sal,deptno
	 2 from emp
	 3 where empno in (
	 4 select cast(substr(c,2,locate(',',c,2)-2) as integer) empno
	 5 from (
	 6 select substr(csv.emps,cast(iter.pos as integer)) as c
	 7 from (select ','||'7654,7698,7782,7788'||',' emps
	 8 from t1) csv,
	 9 (select id as pos
	10 from t100) iter
	11 where iter.pos <= length(csv.emps)
	12) x
	13 where length(c) > 1
	14 and substr(c,1,1) = ','
	15)

MySQL

By walking the string passed to the IN-list, you can easily
 convert it to rows:
	 1 select empno, ename, sal, deptno	
	 2 from emp
	 3 where empno in
	 4 (
	 5 select substring_index(
	 6 substring_index(list.vals,',',iter.pos),',',-1) empno
	 7 from (select id pos from t10) as iter,
	 8 (select '7654,7698,7782,7788' as vals
	 9 from t1) list
	10 where iter.pos <=
	11 (length(list.vals)-length(replace(list.vals,',','')))+1
	12)

Oracle

By walking the string passed to the IN-list, you can easily
 convert it to rows. The functions ROWNUM, SUBSTR, and INSTR are
 particularly useful here:
	 1 select empno,ename,sal,deptno
	 2 from emp
	 3 where empno in (
	 4 select to_number(
	 5 rtrim(
	 6 substr(emps,
	 7 instr(emps,',',1,iter.pos)+1,
	 8 instr(emps,',',1,iter.pos+1)
	 9 instr(emps,',',1,iter.pos)),',')) emps
	10 from (select ','||'7654,7698,7782,7788'||',' emps from t1) csv,
	11 (select rownum pos from emp) iter
	12 where iter.pos <= ((length(csv.emps)-
	13 length(replace(csv.emps,',')))/length(','))-1
	14)

Postgres

By walking the string passed to the IN-list, you can easily
 convert it to rows. The function SPLIT_PART makes it easy to parse
 the string into individual numbers:
	 1 select ename,sal,deptno
	 2 from emp
	 3 where empno in (
	 4 select cast(empno as integer) as empno
	 5 from (
	 6 select split_part(list.vals,',',iter.pos) as empno
	 7 from (select id as pos from t10) iter,
	 8 (select ','||'7654,7698,7782,7788'||',' as vals
	 9 from t1) list
	10 where iter.pos <=
	11 length(list.vals)-length(replace(list.vals,',',''))
	12) z
	13 where length(empno) > 0
	14)

SQL Server

By walking the string passed to the IN-list, you can easily
 convert it to rows. The functions ROW_NUMBER, CHARINDEX, and
 SUBSTRING are particularly useful here:
	 1 select empno,ename,sal,deptno
	 2 from emp
	 3 where empno in (select substring(c,2,charindex(',',c,2)-2) as empno
	 4 from (
	 5 select substring(csv.emps,iter.pos,len(csv.emps)) as c
	 6 from (select ','+'7654,7698,7782,7788'+',' as emps
	 7 from t1) csv,
	 8 (select id as pos
	 9 from t100) iter
	10 where iter.pos <= len(csv.emps)
	11) x
	12 where len(c) > 1
	13 and substring(c,1,1) = ','
	14)

Discussion

The first and most important step in this solution is to walk
 the string. Once you’ve accomplished that, all that’s left is to parse
 the string into individual, numeric values using your DBMS’s provided
 functions.
DB2 and SQL Server

The inline view X (lines 6–11) walks the string. The idea in
 this solution is to “walk through” the string, so that each row has
 one less character than the one before it:
	,7654,7698,7782,7788,
	7654,7698,7782,7788,
	654,7698,7782,7788,
	54,7698,7782,7788,
	4,7698,7782,7788,
	,7698,7782,7788,
	7698,7782,7788,
	698,7782,7788,
	98,7782,7788,
	8,7782,7788,
	,7782,7788,
	7782,7788,
	782,7788,
	82,7788,
	2,7788,
	,7788,
	7788,
	788,
	88,
	8,
	,
Notice that by enclosing the string in commas (the delimiter),
 there’s no need to make special checks as to where the beginning or
 end of the string is.
The next step is to keep only the values you want to use in
 the IN-list. The values to keep are the ones with leading commas,
 with the exception of the last row with its lone comma. Use
 SUBSTR or SUBSTRING to identify which rows have a
 leading comma, then keep all characters found before the next comma
 in that row. Once that’s done, cast the string to a number so it can
 be properly evaluated against the numeric column EMPNO (lines
 4–14):
	 EMPNO

	 7654
	 7698
	 7782
	 7788
The final step is to use the results in a subquery to return
 the desired rows.

MySQL

The inline view (lines 5–9) walks the string. The expression
 on line 10 determines how many values are in the string by finding
 the number of commas (the delimiter) and adding one. The function
 SUBSTRING_INDEX (line 6) returns all characters in the string before
 (to the left of) the nth occurrence of a comma
 (the delimiter):
	+---------------------+
	| empno |
	+---------------------+
	| 7654 |
	| 7654,7698 |
	| 7654,7698,7782 |
	| 7654,7698,7782,7788 |
	+---------------------+
Those rows are then passed to another call to SUBSTRING_INDEX
 (line 5); this time the nth occurrence of the
 delimited is –1, which causes all values to the right
 of the nth occurrence of the delimiter to be
 kept:
	+-------+
	| empno |
	+-------+
	| 7654 |
	| 7698 |
	| 7782 |
	| 7788 |
	+-------+
The final step is to plug the results into a subquery.

Oracle

The first step is to walk the string:
	select emps,pos
	 from (select ','||'7654,7698,7782,7788'||',' emps
	 from t1) csv,
	 (select rownum pos from emp) iter
	 where iter.pos <=
	 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1

	EMPS POS
	--------------------- ----------
	,7654,7698,7782,7788, 1
	,7654,7698,7782,7788, 2
	,7654,7698,7782,7788, 3
	,7654,7698,7782,7788, 4
The number of rows returned represents the number of values in
 your list. The values for POS are crucial to the query as they are
 needed to parse the string into individual values. The strings are
 parsed using SUBSTR and INSTR. POS is used to locate the
 nth occurrence of the delimiter in each string.
 By enclosing the strings in commas, no special checks are necessary
 to determine the beginning or end of a string. The values passed to
 SUBSTR, INSTR (lines 7–9) locate the nth and
 nth+1 occurrence of the delimiter. By
 subtracting the value returned for the current comma (the location
 in the string where the current comma is) from the value returned
 bythe next comma (the location in the string where the next comma
 is) you can extract each value from the string:
	select substr(emps,
	 instr(emps,',',1,iter.pos)+1,
	 instr(emps,',',1,iter.pos+1)
	 instr(emps,',',1,iter.pos)) emps
	 from (select ','||'7654,7698,7782,7788'||',' emps
	 from t1) csv,
	 (select rownum pos from emp) iter
	 where iter.pos <=
	 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1
	 EMPS

	 7654,
	 7698,
	 7782,
	 7788,
The final step is to remove the trailing comma from each
 value, cast it to a number, and plug it into a subquery.

PostgreSQL

The inline view Z (lines 6–9) walks the string. The number of
 rows returned is determined by how many values are in the string. To
 find the number of values in the string, subtract the size of the
 string without the delimiter from the size of the string with the
 delimiter (line 9). The function SPLIT_PART does the work of parsing
 the string. It looks for the value that comes before the
 nth occurrence of the delimiter:
	select list.vals,
	 split_part(list.vals,',',iter.pos) as empno,
	 iter.pos
	 from (select id as pos from t10) iter,
	 (select ','||'7654,7698,7782,7788'||',' as vals
	 from t1) list
	 where iter.pos <=
	 length(list.vals)-length(replace(list.vals,',',''))

	 vals | empno | pos
	----------------------+-------+-----
	,7654,7698,7782,7788, | | 1
	,7654,7698,7782,7788, | 7654 | 2
	,7654,7698,7782,7788, | 7698 | 3
	,7654,7698,7782,7788, | 7782 | 4
	,7654,7698,7782,7788, | 7788 | 5
The final step is to cast the values (EMPNO) to a number and
 plug it into a subquery.

6.12. Alphabetizing a String

Problem

You want alphabetize the individual characters within strings in
 your tables. Consider the following result set:
	ENAME

	ADAMS
	ALLEN
	BLAKE
	CLARK
	FORD
	JAMES
	JONES
	KING
	MARTIN
	MILLER
	SCOTT
	SMITH
	TURNER
	WARD
You would like the result to be:
	OLD_NAME NEW_NAME
	---------- --------
	ADAMS AADMS
	ALLEN AELLN
	BLAKE ABEKL
	CLARK ACKLR
	FORD DFOR
	JAMES AEJMS
	JONES EJNOS
	KING GIKN
	MARTIN AIMNRT
	MILLER EILLMR
	SCOTT COSTT
	SMITH HIMST
	TURNER ENRRTU
	WARD ADRW

Solution

This problem is a perfect example of why it is crucial to
 understand your DBMS and what functionality is available to you. In
 situations where your DBMS does not provide built-in functions to
 facilitate this solution, you need to come up with something creative.
 Compare the MySQL solution with the rest.
DB2

To alphabetize rows of strings it is necessary to walk each
 string then order its characters:
	 1 select ename,
	 2 max(case when pos=1 then c else '' end)||
	 3 max(case when pos=2 then c else '' end)||
	 4 max(case when pos=3 then c else '' end)||
	 5 max(case when pos=4 then c else '' end)||
	 6 max(case when pos=5 then c else '' end)||
	 7 max(case when pos=6 then c else '' end)
	 8 from (
	 9 select e.ename,
	10 cast(substr(e.ename,iter.pos,1) as varchar(100)) c,
	11 cast(row_number()over(partition by e.ename
	12 order by substr(e.ename,iter.pos,1))
	13 as integer) pos
	14 from emp e,
	15 (select cast(row_number()over() as integer) pos
	16 from emp) iter
	17 where iter.pos <= length(e.ename)
	18) x
	19 group by ename

MySQL

The key here is the GROUP_CONCAT function, which allows you to
 not only concatenate the characters that make up each name but also
 order them:
	1 select ename, group_concat(c order by c separator '')
	2 from (
	3 select ename, substr(a.ename,iter.pos,1) c
	4 from emp a,
	5 (select id pos from t10) iter
	6 where iter.pos <= length(a.ename)
	7) x
	8 group by ename

Oracle

The function SYS_CONNECT_BY_PATH allows you to iteratively
 build a list:
	 1 select old_name, new_name
	 2 from (
	 3 select old_name, replace(sys_connect_by_path(c,' '),' ') new_name
	 4 from (
	 5 select e.ename old_name,
	 6 row_number() over(partition by e.ename
	 7 order by substr(e.ename,iter.pos,1)) rn,
	 8 substr(e.ename,iter.pos,1) c
	 9 from emp e,
	10 (select rownum pos from emp) iter
	11 where iter.pos <= length(e.ename)
	12 order by 1
	13) x
	14 start with rn = 1
	15 connect by prior rn = rn-1 and prior old_name = old_name
	16)
	17 where length(old_name) = length(new_name)

PostgreSQL

PostgreSQL does not offer any built-in functions to easily
 sort characters in a string, so it is necessary not only to walk
 through each string but also to know in advance the largest length
 of any one name. View V is used in this solution for
 readability:
	 create or replace view V as
	 select x.*
	 from (
	 select a.ename,
	 substr(a.ename,iter.pos,1) as c
	 from emp a,
	 (select id as pos from t10) iter
	 where iter.pos <= length(a.ename)
	 order by 1,2
) x
The following select statement leverages the view:
	 1 select ename,
	 2 max(case when pos=1 then
	 3 case when cnt=1 then c
	 4 else rpad(c,cast(cnt as integer),c)
	 5 end
	 6 else ''
	 7 end)||
	 8 max(case when pos=2 then
	 9 case when cnt=1 then c
	10 else rpad(c,cast(cnt as integer),c)
	11 end
	12 else ''
	13 end)||
	14 max(case when pos=3 then
	15 case when cnt=1 then c
	16 else rpad(c,cast(cnt as integer),c)
	17 end
	18 else ''
	19 end)||
	20 max(case when pos=4 then
	21 case when cnt=1 then c
	22 else rpad(c,cast(cnt as integer),c)
	23 end
	24 else ''
	25 end)||
	26 max(case when pos=5 then
	27 case when cnt=1 then c
	28 else rpad(c,cast(cnt as integer),c)
	29 end
	30 else ''
	31 end)||
	32 max(case when pos=6 then
	33 case when cnt=1 then c
	34 else rpad(c,cast(cnt as integer),c)
	35 end
	36 else ''
	37 end)
	38 from (
	39 select a.ename, a.c,
	40 (select count(*)
	41 from v b
	42 where a.ename=b.ename and a.c=b.c) as cnt,
	43 (select count(*)+1
	44 from v b
	45 where a.ename=b.ename and b.c<a.c) as pos
	46 from v a
	47) x
	48 group by ename

SQL Server

To alphabetize rows of strings it is necessary to walk each
 string, and then order their characters:
	 1 select ename,
	 2 max(case when pos=1 then c else '' end)+
	 3 max(case when pos=2 then c else '' end)+
	 4 max(case when pos=3 then c else '' end)+
	 5 max(case when pos=4 then c else '' end)+
	 6 max(case when pos=5 then c else '' end)+
	 7 max(case when pos=6 then c else '' end)
	 8 from (
	 9 select e.ename,
	10 substring(e.ename,iter.pos,1) as c,
	11 row_number() over (
	12 partition by e.ename
	13 order by substring(e.ename,iter.pos,1)) as pos
	14 from emp e,
	15 (select row_number()over(order by ename) as pos
	16 from emp) iter
	17 where iter.pos <= len(e.ename)
	18) x
	19 group by ename

Discussion

DB2 and SQL Server

The inline view X returns each character in each name as a
 row. The function SUBSTR or SUBSTRING extracts each character from
 each name, and the function ROW_NUMBER ranks each character
 alphabetically:
	ENAME C POS
	----- - ---
	ADAMS A 1
	ADAMS A 2
	ADAMS D 3
	ADAMS M 4
	ADAMS S 5
	…
To return each letter of a string as a row, you must walk the
 string. This is accomplished with inline view ITER.
Now that the letters in each name have been alphabetized, the
 last step is to put those letters back together, into a string, in
 the order they are ranked. Each letter’s position is evaluated by
 the CASE statements (lines 2–7). If a character is found at a
 particular position it is then concatenated to the result of the
 next evaluation (the following CASE statement). Because the
 aggregate function MAX is used as well, only one character per
 position POS is returned, so that only one row per name is returned.
 The CASE evaluation goes up to the number 6, which is the maximum
 number of characters in any name in table EMP.

MySQL

The inline view X (lines 3–6) returns each character in each
 name as a row. The function SUBSTR extracts each character from each
 name:
	ENAME C
	----- -
	ADAMS A
	ADAMS A
	ADAMS D
	ADAMS M
	ADAMS S
	…
Inline view ITER is used to walk the string. From there, the
 rest of the work is done by the GROUP_CONCAT function. By specifying
 an order, the function not only concatenates each letter, it does so
 alphabetically.

Oracle

The real work is done by inline view X (lines 5–11), where the
 characters in each name are extracted and put into alphabetical
 order. This is accomplished by walking the string, then imposing
 order on those characters. The rest of the query merely glues the
 names back together.
The tearing apart of names can be seen by executing only
 inline view X:
	OLD_NAME RN C
	---------- --------- -
	ADAMS 1 A
	ADAMS 2 A
	ADAMS 3 D
	ADAMS 4 M
	ADAMS 5 S
	…
The next step is to take the alphabetized characters and
 rebuild each name. This is done with the function
 SYS_CONNECT_BY_PATH by appending each character to the ones before
 it:
	OLD_NAME NEW_NAME
	---------- ---------
	ADAMS A
	ADAMS AA
	ADAMS AAD
	ADAMS AADM
	ADAMS AADMS
	…
The final step is to keep only the strings that have the same
 length as the names they were built from.

PostgreSQL

For readability, view V is used in this solution to walk the
 string. The function SUBSTR, in the view definition, extracts each
 character from each name so that the view returns:
	ENAME C
	----- -
	ADAMS A
	ADAMS A
	ADAMS D
	ADAMS M
	ADAMS S
	…
The view also orders the results by ENAME and by each letter
 in each name. The inline view X (lines 15–18) returns the names and
 characters from view V, the number of times each character occurs in
 each name, and its position (alphabetically):
	ename | c | cnt | pos
	------+---+-----+-----
	ADAMS | A | 2 | 1
	ADAMS | A | 2 | 1
	ADAMS | D | 1 | 3
	ADAMS | M | 1 | 4
	ADAMS | S | 1 | 5
The extra columns CNT and POS, returned by the inline view X,
 are crucial to the solution. POS is used to rank each character and
 CNT is used to determine the number of times the character exists in
 each name. The final step is to evaluate the position of each
 character and rebuild the name. You’ll notice that each case
 statement is actually two case statements. This is to determine
 whether or not a character occursmore than once in a name; if it
 does, then rather than return that character, what is returned is
 that character appended to itself CNT times. The aggregate function,
 MAX, is used to ensure there is only one row per name.

6.13. Identifying Strings That Can Be Treated as Numbers

Problem

You have a column that is defined to hold character data.
 Unfortunately, the rows contain mixed numeric and character data. Consider view V:
	create view V as
	select replace(mixed,' ','') as mixed
	 from (
	select substr(ename,1,2)||
	 cast(deptno as char(4))||
	 substr(ename,3,2) as mixed
	 from emp
	 where deptno = 10
	 union all
	select cast(empno as char(4)) as mixed
	 from emp
	 where deptno = 20
	 union all
	select ename as mixed
	 from emp
	 where deptno = 30
) x
	select * from v

	 MIXED

	 CL10AR
	 KI10NG
	 MI10LL
	 7369
	 7566
	 7788
	 7876
	 7902
	 ALLEN
	 WARD
	 MARTIN
	 BLAKE
	 TURNER
	 JAMES
You want to return rows that are numbers only, or that contain
 at least one number. If the numbers are mixed with character data, you
 want to remove the characters and return only the numbers. For the
 sample data above you want the following result set:
	 MIXED

	 10
	 10
	 10
	 7369
	 7566
	 7788
	 7876
	 7902

Solution

The functions REPLACE and TRANSLATE are extremely useful for
 manipulating strings and individual characters. The key is to convert
 all numbers to a single character, which then makes it easy to isolate
 and identify any number by referring to a single character.
DB2

Use functions TRANSLATE, REPLACE, and POSSTR to isolate the
 numeric characters in each row. The calls to CAST are
 necessary in view V; otherwise, the view will fail to be created due
 to type conversion errors. You’ll need the function REPLACE to
 remove extraneous white space due to casting to the fixed length
 CHAR:
	 1 select mixed old,
	 2 cast(
	 3 case
	 4 when
	 5 replace(
	 6 translate(mixed,'9999999999','0123456789'),'9','') = ''
	 7 then
	 8 mixed
	 9 else replace(
	10 translate(mixed,
	11 repeat('#',length(mixed)),
	12 replace(
	13 translate(mixed,'9999999999','0123456789'),'9','')),
	14 '#','')
	15 end as integer) mixed
	16 from V
	17 where posstr(translate(mixed,'9999999999','0123456789'),'9') > 0

MySQL

The syntax for MySQL is slightly different and will define
 view V as:
	create view V as
	select concat(
	 substr(ename,1,2),
	 replace(cast(deptno as char(4)),' ',''),
	 substr(ename,3,2)
) as mixed
	 from emp
	 where deptno = 10
	 union all
	select replace(cast(empno as char(4)), ' ', '')
	 from emp where deptno = 20
	 union all
	select ename from emp where deptno = 30
Because MySQL does not support the TRANSLATE function, you
 must walk each row and evaluate it on a character-by-character
 basis.
	 1 select cast(group_concat(c order by pos separator '') as unsigned)
	 2 as MIXED1
	 3 from (
	 4 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
	 5 from V,
	 6 (select id pos from t10) iter
	 7 where iter.pos <= length(v.mixed)
	 8 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57
	 9) y
	10 group by mixed
	11 order by 1

Oracle

Use functions TRANSLATE, REPLACE, and INSTR to isolate the
 numeric characters in each row. The calls to CAST are
 not necessary in view V. Use the function REPLACE to remove
 extraneous white space due to casting to the fixed length CHAR. If
 you decide you would like to keep the explicit type conversion calls
 in the view definition, it is suggested you cast to VARCHAR2:
	 1 select to_number (
	 2 case
	 3 when
	 4 replace(translate(mixed,'0123456789','9999999999'),'9')
	 5 is not null
	 6 then
	 7 replace(
	 8 translate(mixed,
	 9 replace(
	10 translate(mixed,'0123456789','9999999999'),'9'),
	11 rpad('#',length(mixed),'#')),'#')
	12 else
	13 mixed
	14 end
	15) mixed
	16 from V
	17 where instr(translate(mixed,'0123456789','9999999999'),'9') > 0

PostgreSQL

Use functions TRANSLATE, REPLACE, and STRPOS to isolate the
 numeric characters in each row. The calls to CAST are
 not necessary in view V. Use the function REPLACE ito remove
 extraneous white space due to casting to the fixed length CHAR. If
 you decide you would like to keep the explicit type conversion calls
 in the view definition, it is suggested you cast to VARCHAR:
	 1 select cast(
	 2 case
	 3 when
	 4 replace(translate(mixed,'0123456789','9999999999'),'9','')
	 5 is not null
	 6 then
	 7 replace(
	 8 translate(mixed,
	 9 replace(
	10 translate(mixed,'0123456789','9999999999'),'9',''),
	11 rpad('#',length(mixed),'#')),'#','')
	12 else
	13 mixed
	14 end as integer) as mixed
	15 from V
	16 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

SQL Server

The built-in function ISNUMERIC along with a wildcard search
 allows you to easily identify strings that contains numbers, but
 getting numeric characters out of a string is not particularly
 efficient because the TRANSLATE function is not supported.

Discussion

The TRANSLATE function is very useful here as it allows you to
 easily isolate and identify numbers and characters. The trick is to
 convert all numbers to a single character; this way, rather than
 searching for different numbers you only search for one
 character.
DB2, Oracle, and PostgreSQL

The syntax differs slightly among these DBMSs, but the
 technique is the same. I’ll use the solution for PostgreSQL for the
 discussion.
The real work is done by functions TRANSLATE and REPLACE. To
 get the final result set requires several function calls, each
 listed below in one query:
	select mixed as orig,
	translate(mixed,'0123456789','9999999999') as mixed1,
	replace(translate(mixed,'0123456789','9999999999'),'9','') as mixed2,
	 translate(mixed,
	 replace(
	 translate(mixed,'0123456789','9999999999'),'9',''),
	 rpad('#',length(mixed),'#')) as mixed3,
	 replace(
	 translate(mixed,
	 replace(
	translate(mixed,'0123456789','9999999999'),'9',''),
	 rpad('#',length(mixed),'#')),'#','') as mixed4
	 from V
	 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

	 ORIG | MIXED1 | MIXED2 | MIXED3 | MIXED4 | MIXED5
	--------+--------+--------+--------+--------+--------
	 CL10AR | CL99AR | CLAR | ##10## | 10 | 10
	 KI10NG | KI99NG | KING | ##10## | 10 | 10
	 MI10LL | MI99LL | MILL | ##10## | 10 | 10
	 7369 | 9999 | | 7369 | 7369 | 7369
	 7566 | 9999 | | 7566 | 7566 | 7566
	 7788 | 9999 | | 7788 | 7788 | 7788
	 7876 | 9999 | | 7876 | 7876 | 7876
	 7902 | 9999 | | 7902 | 7902 | 7902
First, notice that any rows without at least one number are
 removed. How this is accomplished will become clear as you examine
 each of the columns in the above result set. The rows that are kept
 are the values in the ORIG column and are the rows that will
 eventually make up the result set. The first step to extracting the
 numbers is to use the function TRANSLATE to convert any number to a
 9 (you can use any digit; 9 is arbitrary), this is represented by
 the values in MIXED1. Now that all numbers are 9’s, they can be
 treating as a single unit. The next step is to remove all of the
 numbers by using the function REPLACE. Because all digits are now 9,
 REPLACE simply looks for any 9’s and removes them. This is
 represented by the values in MIXED2. The next step, MIXED3, uses
 values that are returned by MIXED2. These values are then compared
 to the values in ORIG. If any characters from MIXED2 are found in
 ORIG, they are converted to the # character by TRANSLATE. The result
 set from MIXED3 shows that the letters, not the numbers, have now
 been singled out and converted to a single character. Now that all
 non-numeric characters are represented by #’s, they can be
 treated as a single unit. The next step, MIXED4, uses REPLACE to
 find and remove any # characters in each row; what’s left are
 numbers only. The final step is to cast the numeric characters as
 numbers. Now that you’ve gone through the steps, you can see how the
 WHERE clause works. The results from MIXED1 are passed to STRPOS,
 and if a 9 is found (the position in the string where the first 9 is
 located) the result must be greater than 0. For rows that return a
 value greater than zero, it means there’s at least one number in
 that row and it should be kept.

MySQL

The first step is to walk each string and evaluate each
 character and determine whether or not it’s a number:
	select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
	 from V,
	 (select id pos from t10) iter
	 where iter.pos <= length(v.mixed)
	 order by 1,2

	+--------+------+------+
	| mixed | pos | c |
	+--------+------+------+
	| 7369 | 1 | 7 |
	| 7369 | 2 | 3 |
	| 7369 | 3 | 6 |
	| 7369 | 4 | 9 |
	…
	| ALLEN | 1 | A |
	| ALLEN | 2 | L |
	| ALLEN | 3 | L |
	| ALLEN | 4 | E |
	| ALLEN | 5 | N |
	…
	| CL10AR | 1 | C |
	| CL10AR | 2 | L |
	| CL10AR | 3 | 1 |
	| CL10AR | 4 | 0 |
	| CL10AR | 5 | A |
	| CL10AR | 6 | R |
	+--------+------+------+
Now that each character in each string can be evaluated
 individually, the next step is to keep only the rows that have a
 number in the C column:
	select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
	 from V,
	 (select id pos from t10) iter
	 where iter.pos <= length(v.mixed)
	 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57
	 order by 1,2

	+--------+------+------+
	| mixed | pos | c |
	+--------+------+------+
	| 7369 | 1 | 7 |
	| 7369 | 2 | 3 |
	| 7369 | 3 | 6 |
	| 7369 | 4 | 9 |
	…
	| CL10AR | 3 | 1 |
	| CL10AR | 4 | 0 |
	…
	+--------+------+------+
At this point, all the rows in column C are numbers. The next
 step is to use GROUP_CONCAT to concatenate the numbers to form their
 respective whole number in MIXED. The final result is then cast as a
 number:
	select cast(group_concat(c order by pos separator '') as unsigned)
	 as MIXED1
	 from (
	select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
	 from V,
	 (select id pos from t10) iter
	 where iter.pos <= length(v.mixed)
	 and ascii(substr(x.mixed,iter.pos,1)) between 48 and 57
) y
	 group by mixed
	 order by 1

	+--------+
	| MIXED1 |
	+--------+
	| 10 |
	| 10 |
	| 10 |
	| 7369 |
	| 7566 |
	| 7788 |
	| 7876 |
	| 7902 |
	+--------+
As a final note, keep in mind that any digits in each string
 will be concatenated to form one numeric value. For example, an input value of, say,
 ’99Gennick87’ will result in the value 9987 being returned. This is
 something to keep in mind, particularly when working with serialized
 data.

6.14. Extracting the nth Delimited
 Substring

Problem

You want to extract a specified, delimited substring from a
 string. Consider the following view V, which generates source data for
 this problem:
	create view V as
	select 'mo,larry,curly' as name
	 from t1
	 union all
	select 'tina,gina,jaunita,regina,leena' as name
	 from t1
Output from the view is as follows:
	select * from v

	NAME

	mo,larry,curly
	tina,gina,jaunita,regina,leena
You would like to extract the second name in each row, so the
 final result set would be:
	 SUB

	larry
	gina

Solution

The key to solving this problem is to return each name as an
 individual row while preserving the order in which the name exists in
 the list. Exactly how you do these things depends on which DBMS you
 are using.
DB2

After walking the NAMEs returned by view V, use the function
 ROW_NUMBER to keep only the second name from each string:
	 1 select substr(c,2,locate(',',c,2)-2)
	 2 from (
	 3 select pos, name, substr(name, pos) c,
	 4 row_number() over(partition by name
	 5 order by length(substr(name,pos)) desc) rn
	 6 from (
	 7 select ',' ||csv.name|| ',' as name,
	 8 cast(iter.pos as integer) as pos
	 9 from V csv,
	10 (select row_number() over() pos from t100) iter
	11 where iter.pos <= length(csv.name)+2
	12) x
	13 where length(substr(name,pos)) > 1
	14 and substr(substr(name,pos),1,1) = ','
	15) y
	16 where rn = 2

MySQL

After walking the NAMEs returned by view V, use the position
 of the commas to return only the second name in each string:
	 1 select name
	 2 from (
	 3 select iter.pos,
	 4 substring_index(
	 5 substring_index(src.name,',',iter.pos),',',-1) name
	 6 from V src,
	 7 (select id pos from t10) iter,
	 8 where iter.pos <=
	 9 length(src.name)-length(replace(src.name,',',''))
	10) x
	11 where pos = 2

Oracle

After walking the NAMEs returned by view V, retrieve the
 second name in each list by using SUBSTR and INSTR:
	 1 select sub
	 2 from (
	 3 select iter.pos,
	 4 src.name,
	 5 substr(src.name,
	 6 instr(src.name,',',1,iter.pos)+1,
	 7 instr(src.name,',',1,iter.pos+1) -
	 8 instr(src.name,',',1,iter.pos)-1) sub
	 9 from (select ','||name||',' as name from V) src,
	10 (select rownum pos from emp) iter
	11 where iter.pos < length(src.name)-length(replace(src.name,','))
	12)
	13 where pos = 2

PostgreSQL

Use the function SPLIT_PART to help return each individual
 name as a row:
	 1 select name
	 2 from (
	 3 select iter.pos, split_part(src.name,',',iter.pos) as name
	 4 from (select id as pos from t10) iter,
	 5 (select cast(name as text) as name from v) src
	 7 where iter.pos <=
	 8 length(src.name)-length(replace(src.name,',',''))+1
	 9) x
	10 where pos = 2

SQL Server

After walking the NAMEs returned by view V, use the function
 ROW_NUMBER to keep only the second name from each string:
	 1 select substring(c,2,charindex(',',c,2)-2)
	 2 from (
	 3 select pos, name, substring(name, pos, len(name)) as c,
	 4 row_number() over(
	 5 partition by name
	 6 order by len(substring(name,pos,len(name))) desc) rn
	 7 from (
	 8 select ',' + csv.name + ',' as name,
	 9 iter.pos
	10 from V csv,
	11 (select id as pos from t100) iter
	12 where iter.pos <= len(csv.name)+2
	13) x
	14 where len(substring(name,pos,len(name))) > 1
	15 and substring(substring(name,pos,len(name)),1,1) = ','
	16) y
	17 where rn = 2

Discussion

DB2 and SQL Server

The syntax is slightly different between these two DBMSs, but
 the technique is the same. I will use the solution for DB2 for the
 discussion. The strings are walked and the results are represented
 by inline view X:
	select ','||csv.name|| ',' as name,
	 iter.pos
	 from v csv,
	 (select row_number() over() pos from t100) iter
	 where iter.pos <= length(csv.name)+2

	EMPS POS
	------------------------------- ----
	,tina,gina,jaunita,regina,leena, 1
	,tina,gina,jaunita,regina,leena, 2
	,tina,gina,jaunita,regina,leena, 3
	…
The next step is to then step through each character in each
 string:
	select pos, name, substr(name, pos) c,
	 row_number() over(partition by name
	 order by length(substr(name, pos)) desc) rn
	 from (
	select ','||csv.name||',' as name,
	 cast(iter.pos as integer) as pos
	 from v csv,
	 (select row_number() over() pos from t100) iter
	 where iter.pos <= length(csv.name)+2
) x
	 where length(substr(name,pos)) > 1

	POS EMPS C RN
	--- --------------- ---------------- --
	 1 ,mo,larry,curly, ,mo,larry,curly, 1
	 2 ,mo,larry,curly, mo,larry,curly, 2
	 3 ,mo,larry,curly, o,larry,curly, 3
	 4 ,mo,larry,curly, ,larry,curly, 4
	 …
Now that different portions of the string are available to
 you, simply identify which rows to keep. The rows you are interested
 in are the ones that begin with a comma; the rest can be
 discarded:
	select pos, name, substr(name,pos) c,
	 row_number() over(partition by name
	 order by length(substr(name, pos)) desc) rn
	 from (
	select ','||csv.name||',' as name,
	 cast(iter.pos as integer) as pos
	 from v csv,
	 (select row_number() over() pos from t100) iter
	 where iter.pos <= length(csv.name)+2
) x
	 where length(substr(name,pos)) > 1
	 and substr(substr(name,pos),1,1) = ','

	POS EMPS C RN
	 --- -------------- ---------------- --
	 1 ,mo,larry,curly, ,mo,larry,curly, 1
	 4 ,mo,larry,curly, ,larry,curly, 2
	 10 ,mo,larry,curly, ,curly, 3
	 1 ,tina,gina,jaunita,regina,leena, ,tina,gina,jaunita,regina,leena, 1
	 6 ,tina,gina,jaunita,regina,leena, ,gina,jaunita,regina,leena, 2
	 11 ,tina,gina,jaunita,regina,leena, ,jaunita,regina,leena, 3
	 19 ,tina,gina,jaunita,regina,leena, ,regina,leena, 4
	 26 ,tina,gina,jaunita,regina,leena, ,leena, 5
This is an important step as it sets up how you will get the
 nth substring. Notice that many rows have been
 eliminated from this query because of the following condition in the
 WHERE clause:
	substr(substr(name,pos),1,1) = ','
You’ll notice that ,larry,curly, was ranked 4, but now is
 ranked 2. Remember, the WHERE clause is evaluated before the SELECT,
 so the rows with leading commas are kept, then
 ROW_NUMBER performs its ranking. At this point it’s easy to see
 that, to get the nth substring you want rows
 where RN equals n. The last step is to keep
 only the rows you are interested in (in this case where RN equals 2)
 and use SUBSTR to extract the name from that row. The name to keep
 is the first name in the row: larry from ,larry,curly, and gina from ,gina,jaunita,regina,leena,.

MySQL

The inline view X walks each string. You can determine how
 many values are in each string by counting the delimiters in the
 string:
	select iter.pos, src.name
	 from (select id pos from t10) iter,
	 V src
	 where iter.pos <=
	 length(src.name)-length(replace(src.name,',',''))

	+------+--------------------------------+
	| pos | name |
	+------+--------------------------------+
	| 1 | mo,larry,curly |
	| 2 | mo,larry,curly |
	| 1 | tina,gina,jaunita,regina,leena |
	| 2 | tina,gina,jaunita,regina,leena |
	| 3 | tina,gina,jaunita,regina,leena |
	| 4 | tina,gina,jaunita,regina,leena |
	+------+--------------------------------+
In this case, there is one fewer row than values in each
 string because that’s all that is needed. The function
 SUBSTRING_INDEX takes care of parsing the needed values:
	select iter.pos,src.name name1,
	 substring_index(src.name,',',iter.pos) name2,
	 substring_index(
	 substring_index(src.name,',',iter.pos),',',-1) name3
	 from (select id pos from t10) iter,
	 V src
	 where iter.pos <=
	 length(src.name)-length(replace(src.name,',',''))

+------+--------------------------------+--------------------------+---------+
| pos | name1 | name2 | name3 |
+------+--------------------------------+--------------------------+---------+
1	mo,larry,curly	mo	mo
2	mo,larry,curly	mo,larry	larry
1	tina,gina,jaunita,regina,leena	tina	tina
2	tina,gina,jaunita,regina,leena	tina,gina	gina
3	tina,gina,jaunita,regina,leena	tina,gina,jaunita	jaunita
4	tina,gina,jaunita,regina,leena	tina,gina,jaunita,regina	regina
+------+--------------------------------+--------------------------+---------+
I’ve shown three name fields, so you can see how the nested
 SUBSTRING_INDEX calls work. The inner call returns all characters to
 the left of the nth occurrence of a comma. The
 outer call returns everything to the right of the first comma it
 finds (starting from the end of the string). The final step is to
 keep the value for NAME3 where POS equals n, in
 this case 2.

Oracle

The inline view walks each string. The number of times each
 string is returned is determined by how many values are in each
 string. The solution finds the number of values in each string by
 counting the number of delimiters in it. Because each string is
 enclosed in commas, the number of values in a string is the number
 of commas minus one. The strings are then UNIONed and joined to a
 table with a cardinality that is at least the number of values in
 the largest string. The functions SUBSTR and INSTR use the value of
 POS to parse each string:
	select iter.pos, src.name,
	 substr(src.name,
	 instr(src.name,',',1,iter.pos)+1,
	 instr(src.name,',',1,iter.pos+1)
	 instr(src.name,',',1,iter.pos)-1) sub
	 from (select ','||name||',' as name from v) src,
	 (select rownum pos from emp) iter
	 where iter.pos < length(src.name)-length(replace(src.name,','))

	POS NAME SUB
	--- --------------------------------- -------------
	 1 ,mo,larry,curly, mo
	 1 , tina,gina,jaunita,regina,leena, tina
	 2 ,mo,larry,curly, larry
	 2 , tina,gina,jaunita,regina,leena, gina
	 3 ,mo,larry,curly, curly
	 3 , tina,gina,jaunita,regina,leena, jaunita
	 4 , tina,gina,jaunita,regina,leena, regina
	 5 , tina,gina,jaunita,regina,leena, leena
The first call to INSTR within SUBSTR determines the start
 position of the substring to extract. The next call to INSTR within
 SUBSTR finds the position of the nth comma
 (same as the start position) as well the position of the
 nth + 1 comma. Subtracting the two values
 returns the length of the substring to extract. Because every value
 is parsed into its own row, simply specify WHERE POS =
 n to keep the nth
 substring (in this case, where POS = 2, so, the second substring in
 the list).

PostgreSQL

The inline view X walks each string. The number of rows
 returned is determined by how many values are in each string. To
 find the number of values in each string, find the number of
 delimiters in each string and add one. The function SPLIT_PART uses
 the values in POS to find the nth occurrence of
 the delimiter and parse the string into values:
	select iter.pos, src.name as name1,
	 split_part(src.name,',',iter.pos) as name2
	 from (select id as pos from t10) iter,
	 (select cast(name as text) as name from v) src
	 where iter.pos <=
	 length(src.name)-length(replace(src.name,',',''))+1

	 pos | name1 | name2
	-----+--------------------------------+---------
	 1 | mo,larry,curly | mo
	 2 | mo,larry,curly | larry
	 3 | mo,larry,curly | curly
	 1 | tina,gina,jaunita,regina,leena | tina
	 2 | tina,gina,jaunita,regina,leena | gina
	 3 | tina,gina,jaunita,regina,leena | jaunita
	 4 | tina,gina,jaunita,regina,leena | regina
	 5 | tina,gina,jaunita,regina,leena | leena
I’ve shown NAME twice so you can see how SPLIT_PART parses
 each string using POS. Once each string is parsed, the final step is
 the keep the rows where POS equals the nth
 substring you are interested in, in this case, 2.

6.15. Parsing an IP Address

Problem

You want to parse an IP address’s fields into columns. Consider
 the following IP address:
	111.22.3.4
You would like the result of your query to be:
	A B C D
	----- ----- ----- ---
	111 22 3 4

Solution

The solution depends on the built-in functions provided by your
 DBMS. Regardless of your DBMS, being able to locate periods and the
 numbers immediately surrounding them are the keys to the
 solution.
DB2

Use the recursive WITH clause to simulate an iteration through
 the IP address while using SUBSTR to easily parse it. A
 leading period is added to the IP address so that every set of
 numbers has a period in front of it and can be treated the same
 way.
	 1 with x (pos,ip) as (
	 2 values (1,'.92.111.0.222')
	 3 union all
	 4 select pos+1,ip from x where pos+1 <= 20
	 5)
	 6 select max(case when rn=1 then e end) a,
	 7 max(case when rn=2 then e end) b,
	 8 max(case when rn=3 then e end) c,
	 9 max(case when rn=4 then e end) d
	10 from (
	11 select pos,c,d,
	12 case when posstr(d,'.') > 0 then substr(d,1,posstr(d,'.')-1)
	13 else d
	14 end as e,
	15 row_number() over(order by pos desc) rn
	16 from (
	17 select pos, ip,right(ip,pos) as c, substr(right(ip,pos),2) as d
	18 from x
	19 where pos <= length(ip)
	20 and substr(right(ip,pos),1,1) = '.'
	21) x
	22) y

MySQL

The function SUBSTR_INDEX makes parsing an IP address an easy
 operation:
	1 select substring_index(substring_index(y.ip,'.',1),'.',-1) a,
	2 substring_index(substring_index(y.ip,'.',2),'.',-1) b,
	3 substring_index(substring_index(y.ip,'.',3),'.',-1) c,
	4 substring_index(substring_index(y.ip,'.',4),'.',-1) d
	5 from (select '92.111.0.2' as ip from t1) y

Oracle

Use the built-in function SUBSTR and INSTR to parse and
 navigate through the IP address:
	1 select ip,
	2 substr(ip, 1, instr(ip,'.')-1) a,
	3 substr(ip, instr(ip,'.')+1,
	4 instr(ip,'.',1,2)-instr(ip,'.')-1) b,
	5 substr(ip, instr(ip,'.',1,2)+1,
	6 instr(ip,'.',1,3)-instr(ip,'.',1,2)-1) c,
	7 substr(ip, instr(ip,'.',1,3)+1) d
	8 from (select '92.111.0.2' as ip from t1)

PostgreSQL

Use the built-in function SPLIT_PART to parse an IP
 address:
	1 select split_part(y.ip,'.',1) as a,
	2 split_part(y.ip,'.',2) as b,
	3 split_part(y.ip,'.',3) as c,
	4 split_part(y.ip,'.',4) as d
	5 from (select cast('92.111.0.2' as text) as ip from t1) as y

SQL Server

Use the recursive WITH clause to simulate an iteration through
 the IP address while using SUBSTR to easily parse it. A leading
 period is added to the IP address so that every set of numbers has a
 period in front of it and can be treated the same way:
	 1 with x (pos,ip) as (
	 2 select 1 as pos,'.92.111.0.222' as ip from t1
	 3 union all
	 4 select pos+1,ip from x where pos+1 <= 20
	 5)
	 6 select max(case when rn=1 then e end) a,
	 7 max(case when rn=2 then e end) b,
	 8 max(case when rn=3 then e end) c,
	 9 max(case when rn=4 then e end) d
	10 from (
	11 select pos,c,d,
	12 case when charindex('.',d) > 0
	13 then substring(d,1,charindex('.',d)-1)
	14 else d
	15 end as e,
	16 row_number() over(order by pos desc) rn
	17 from (
	18 select pos, ip,right(ip,pos) as c,
	19 substring(right(ip,pos),2,len(ip)) as d
	20 from x
	21 where pos <= len(ip)
	22 and substring(right(ip,pos),1,1) = '.'
	23) x
	24) y

Discussion

By using the built-in functions for your database, you can
 easily walk through parts of a string. The key is being able to locate
 each of the periods in the address. Then you can parse the numbers
 between each.

Chapter 7. Working with Numbers

This chapter focuses on common operations involving numbers,
 including numeric computations. While SQL is not typically considered the
 first choice for complex computations, it is very efficient for day-to-day
 numeric chores.
Tip
Some recipes in this chapter make use of aggregate functions and
 the GROUP BY clause. If you are not familiar with grouping, please read
 at least the first major section, called “Grouping,” in Appendix A.

7.1. Computing an Average

Problem

You want to compute the average value in a column, either for
 all rows in a table or for some subset of rows. For example, you might
 want to find the average salary for all employees as well as the
 average salary for each department.

Solution

When computing the average of all employee salaries, simply
 apply the AVG function to the column containing those salaries. By
 excluding a WHERE clause, the average is computed against all non-NULL
 values:
	1 select avg(sal) as avg_sal
	2 from emp

	 AVG_SAL

	2073.21429
To compute the average salary for each department, use the GROUP
 BY clause to create a group corresponding to each department:
	1 select deptno, avg(sal) as avg_sal
	2 from emp
	3 group by deptno

	 DEPTNO AVG_SAL
	---------- ----------
	 10 2916.66667
	 20 2175
	 30 1566.66667

Discussion

When finding an average where the whole table is the group or
 window, simply apply the AVG function to the column you are interested in without
 using the GROUP BY clause. It is important to realize that the
 function AVG ignores NULLs. The effect of NULL values being ignored
 can be seen here:
	create table t2(sal integer)
	insert into t2 values (10)
	insert into t2 values (20)
	insert into t2 values (null)
	select avg(sal) select distinct 30/2
	 from t2 from t2

	 AVG(SAL) 30/2
	---------- ----------
	 15 15

	
	select avg(coalesce(sal,0)) select distinct 30/3
	 from t2 from t2
	
	AVG(COALESCE(SAL,0)) 30/3
	-------------------- ----------
	 10 10
The COALESCE function will return the first non-NULL value
 found in the list of values that you pass. When NULL SAL values are
 converted to zero, the average changes. When invoking aggregate
 functions, always give thought to how you want NULLs handled.
The second part of the solution uses GROUP BY (line 3) to divide
 employee records into groups based on department affiliation. GROUP BY
 automatically causes aggregate functions such as AVG to execute and
 return a result for each group. In this example, AVG would execute
 once for each department-based group of employee records.
It is not necessary, by the way, to include GROUP BY columns in
 your select list. For example:
	select avg(sal)
	 from emp
	 group by deptno

	 AVG(SAL)

	2916.66667
	 2175
	1566.66667
You are still grouping by DEPTNO even though it is not in the
 SELECT clause. Including the column you are grouping by in the SELECT
 clause often improves readability, but is not mandatory. It is
 mandatory, however, to avoid placing columns in your SELECT list that
 are not also in your GROUP BY clause.

See Also

Appendix A for a refresher
 on GROUP BY functionality.

7.2. Finding the Min/Max Value in a Column

Problem

You want to find the highest and lowest values in a given column. For example, you want to find
 the highest and lowest salaries for all employees, as well as the
 highest and lowest salaries for each department.

Solution

When searching for the lowest and highest salaries for all
 employees, simply use the functions MIN and MAX, respectively:
	1 select min(sal) as min_sal, max(sal) as max_sal
	2 from emp

	 MIN_SAL MAX_SAL
	---------- ----------
	 800 5000
When searching for the lowest and highest salaries for each
 department, use the functions MIN and MAX with the GROUP BY
 clause:
1 select deptno, min(sal) as min_sal, max(sal) as max_sal
	2 from emp
	3 group by deptno

	 DEPTNO MIN_SAL MAX_SAL
	---------- ---------- ----------
	 10 1300 5000
	 20 800 3000
	 30 950 2850

Discussion

When searching for the highest or lowest values, and in cases
 where the whole table is the group or window, simply apply the MIN or
 MAX function to the column you are interested in without using the
 GROUP BY clause.
Remember that the MIN and MAX functions ignore NULLs, and that you can have NULL
 groups as well as NULL values for columns in a group. The following
 are examples that ultimately lead to a query using GROUP BY that
 returns NULL values for two groups (DEPTNO 10 and 20):
	select deptno, comm
	 from emp
	 where deptno in (10,30)
	 order by 1

	 DEPTNO COMM
	 ---------- ----------
	 10
	 10
	 10
	 30 300
	 30 500
	 30
	 30 0
	 30 1300
	 30

	
	select min(comm), max(comm)
	 from emp

	 MIN(COMM) MAX(COMM)
	---------- ----------
	 0 1300

	
	select deptno, min(comm), max(comm)
	 from emp
	 group by deptno

	 DEPTNO MIN(COMM) MAX(COMM)
	 ---------- ---------- ----------
	 10
	 20
	 30 0 1300
Remember, as Appendix A
 points out, even if nothing other than aggregate functions are listed
 in the SELECT clause, you can still group by other columns in
 the table; for example:
	select min(comm), max(comm)
	 from emp
	 group by deptno

	 MIN(COMM) MAX(COMM)
	---------- ----------
	 0 1300
Here you are still grouping by DEPTNO even though it is not in
 the SELECT clause. Including the column you are grouping by in the
 SELECT clause often improves readability, but is not mandatory. It is
 mandatory, however, that any column in the SELECT list of a GROUP BY
 query also be listed in the GROUP BY clause.

See Also

Appendix A for a refresher
 on GROUP BY functionality.

7.3. Summing the Values in a Column

Problem

You want to compute the sum of all values, such as all employee
 salaries, in a column.

Solution

When computing a sum where the whole table is the group or
 window, simply apply the SUM function to the columns you are interested in
 without using the GROUP BY clause:
	1 select sum(sal)
	2 from emp

	 SUM(SAL)

	 29025
When creating multiple groups or windows of data, use the
 SUM function with the GROUP BY clause. The following
 example sums employee salaries by department:
	1 select deptno, sum(sal) as total_for_dept
	2 from emp
	3 group by deptno

	 DEPTNO TOTAL_FOR_DEPT
	---------- --------------
	 10 8750
	 20 10875
	 30 9400

Discussion

When searching for the sum of all salaries for each department,
 you are creating groups or “windows” of data. Each employee’s salary
 is added together to produce a total for his respective department.
 This is an example of aggregation in SQL because detailed information,
 such as each individual employee’s salary, is not the focus; the focus
 is the end result for each department. It is important to note that
 the SUM function will ignore NULLs, but you can have NULL groups,
 which can be seen here. DEPTNO 10 does not have any employees who earn
 a commission, thus grouping by DEPTNO 10 while attempting to SUM the
 values in COMM will result in a group with a NULL value returned by
 SUM:
	select deptno, comm
	 from emp
	 where deptno in (10,30)
	 order by 1

	 DEPTNO COMM
	---------- ----------
	 10
	 10
	 10
	 30 300
	 30 500
	 30
	 30 0
	 30 1300
	 30

	
	select sum(comm)
	 from emp

	 SUM(COMM)

	 2100

	select deptno, sum(comm)
	 from emp
	 where deptno in (10,30)
	 group by deptno

	 DEPTNO SUM(COMM)
	---------- ----------
	 10
	 30 2100

See Also

Appendix A for a refresher
 on GROUP BY functionality.

7.4. Counting Rows in a Table

Problem

You want to count the number of rows in a table, or you wish to
 count the number of values in a column. For example, you want to find
 the total number of employees as well as the number of employees in
 each department.

Solution

When counting rows where the whole table is the group or window,
 simply use the COUNT function along with the “*” character:
	1 select count(*)
	2 from emp

	 COUNT(*)

	 14
When creating multiple groups, or windows of data, use the
 COUNT function with the GROUP BY clause:
	1 select deptno, count(*)
	2 from emp
	3 group by deptno

	 DEPTNO COUNT(*)
	---------- ----------
	 10 3
	 20 5
	 30 6

Discussion

When counting the number of employees for each department, you
 are creating groups or “windows” of data. Each employee found
 increments the count by one to produce a total for her respective
 department. This is an example of aggregation in SQL because detailed
 information, such as each individual employee’s salary or job, is not
 the focus; the focus is the end result for each department. It is
 important to note that the COUNT function will ignore NULLs when
 passed a column name as an argument, but will include NULLs when
 passed the “*” character or any constant; consider:
	select deptno, comm
	 from emp

	 DEPTNO COMM
	---------- ----------
	 20
	 30 300
	 30 500
	 20
	 30 1300
	 30
	 10
	 20
	 10
	 30 0
	 20
	 30
	 20
	 10

	
	select count(*), count(deptno), count(comm), count('hello')
	 from emp

	 COUNT(*) COUNT(DEPTNO) COUNT(COMM) COUNT('HELLO')
	---------- ------------- ----------- --------------
	 14 14 4 14

	
	select deptno, count(*), count(comm), count('hello')
	 from emp
	 group by deptno

	 DEPTNO COUNT(*) COUNT(COMM) COUNT('HELLO')
	 ---------- ---------- ----------- --------------
	 10 3 0 3
	 20 5 0 5
	 30 6 4 6
If all rows are null for the column passed to COUNT or if the
 table is empty, COUNT will return zero. It should also be noted that,
 even if nothing other than aggregate functions are specified in the
 SELECT clause, you can still group by other columns in the table; for
 example:
	select count(*)
	 from emp
	 group by deptno

	 COUNT(*)

	 3
	 5
	 6
Notice that you are still grouping by DEPTNO even though it is
 not in the SELECT clause. Including the column you are grouping by in
 the SELECT clause often improves readability, but is not mandatory. If
 you do include it (in the SELECT list), it is mandatory that is it
 listed in the GROUP BY clause.

See Also

Appendix A for a refresher
 on GROUP BY functionality.

7.5. Counting Values in a Column

Problem

You wish to count the number of non-NULL values in a column. For
 example, you’d like to find out how many employees are on
 commission.

Solution

Count the number of non-NULL values in the EMP table’s
 COMM column:
	select count(comm)
	 from emp

	COUNT(COMM)

	 4

Discussion

When you “count star,” as in COUNT(*), what you are really
 counting is rows (regardless of actual value, which is why rows
 containing NULL and non-NULL values are counted). But when you COUNT a
 column, you are counting the number of non-NULL values in that column.
 The previous recipe’s discussion touches on this distinction. In this
 solution, COUNT(COMM) returns the number of non-NULL values in the
 COMM column. Since only commissioned employees have commissions, the
 result of COUNT(COMM) is the number of such employees.

7.6. Generating a Running Total

Problem

You want to calculate a running total of values in a
 column.

Solution

As an example, the following solutions show how to compute a
 running total of salaries for all employees. For readability, results
 are ordered by SAL whenever possible so that you can easily eyeball
 the progression of the running total.
DB2 and Oracle

Use the windowing version of the function SUM to compute a
 running total:
	1 select ename, sal,
	2 sum(sal) over (order by sal,empno) as running_total
	3 from emp
	4 order by 2

	ENAME SAL RUNNING_TOTAL
	---------- ---------- -------------
	SMITH 800 800
	JAMES 950 1750
	ADAMS 1100 2850
	WARD 1250 4100
	MARTIN 1250 5350
	MILLER 1300 6650
	TURNER 1500 8150
	ALLEN 1600 9750
	CLARK 2450 12200
	BLAKE 2850 15050
	JONES 2975 18025
	SCOTT 3000 21025
	FORD 3000 24025
	KING 5000 29025

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to compute a running total (without the use of a window function
 such as SUM OVER, you cannot easily order the result set by
 SAL as in the DB2 and Oracle solution). Ultimately, the running
 total is correct (the final value is the same as the above recipe),
 but the intermediate values differ due to the lack of
 ordering:
	1 select e.ename, e.sal,
	2 (select sum(d.sal) from emp d
	3 where d.empno <= e.empno) as running_total
	4 from emp e
	5 order by 3

	ENAME SAL RUNNING_TOTAL
	---------- ---------- -------------
	SMITH 800 800
	ALLEN 1600 2400
	WARD 1250 3650
	JONES 2975 6625
	MARTIN 1250 7875
	BLAKE 2850 10725
	CLARK 2450 13175
	SCOTT 3000 16175
	KING 5000 21175
	TURNER 1500 22675
	ADAMS 1100 23775
	JAMES 950 24725
	FORD 3000 27725
	MILLER 1300 29025

Discussion

Generating a running total is one of the tasks made simple by
 the new ANSI windowing functions. For DBMSs that do not yet support
 these windowing functions, a scalar subquery (joining on a field with
 unique values) is required.
DB2 and Oracle

The windowing function SUM OVER makes generating a running
 total a simple task. The ORDER BY clause in the solution includes
 not only the SAL column, but also the EMPNO column (which is the
 primary key) to avoid duplicate values in the running total. The
 column RUNNING_TOTAL2 in the following example illustrates the
 problem that you might otherwise have with duplicates:
	select empno, sal,
	 sum(sal)over(order by sal,empno) as running_total1,
	 sum(sal)over(order by sal) as running_total2
	 from emp
	 order by 2

	ENAME SAL RUNNING_TOTAL1 RUNNING_TOTAL2
	---------- ---------- -------------- --------------
	SMITH 800 800 800
	JAMES 950 1750 1750
	ADAMS 1100 2850 2850
	WARD 1250 4100 5350
	MARTIN 1250 5350 5350
	MILLER 1300 6650 6650
	TURNER 1500 8150 8150
	ALLEN 1600 9750 9750
	CLARK 2450 12200 12200
	BLAKE 2850 15050 15050
	JONES 2975 18025 18025
	SCOTT 3000 21025 24025
	FORD 3000 24025 24025
	KING 5000 29025 29025
The values in RUNNING_TOTAL2 for WARD, MARTIN, SCOTT, and FORD
 are incorrect. Their salaries occur more than once, and those
 duplicates are summed together and added to the running total. This
 is why EMPNO (which is unique) is needed to produce the (correct)
 results that you see in RUNNING_TOTAL1. Consider this: for ADAMS you
 see 2850 for RUNNING_TOTAL1 and RUNNING_TOTAL2. Add WARD’s salary of
 1250 to 2850 and you get 4100, yet RUNNING_TOTAL2 returns 5350. Why?
 Since WARD and MARTIN have the same SAL, their two 1250 salaries are
 added together to yield 2500, which is then added to 2850 to arrive
 at 5350 for both WARD and MARTIN. By specifying a combination of
 columns to order by that cannot result in duplicate values (e.g.,
 any combination of SAL and EMPNO is unique), you ensure the correct
 progression of the running total.

MySQL, PostgreSQL, and SQL Server

Until windowing functions are fully supported for these DBMSs,
 you can use a scalar subquery to compute a running total. You must
 join on a column with unique values; otherwise the running total
 will have incorrect values in the event that duplicate salaries
 exist. The key to this recipe’s solution is the join on D.EMPNO to
 E. EMPNO, which returns (sums) every D.SAL where D.EMPNO is less
 than or equal E.EMPNO. This can be understood easily by rewriting
 the scalar subquery as a join for a handful of the employees:
	select e.ename as ename1, e.empno as empno1, e.sal as sal1,
	 d.ename as ename2, d.empno as empno2, d.sal as sal2
	 from emp e, emp d
	 where d.empno <= e.empno
	 and e.empno = 7566

	ENAME EMPNO1 SAL1 ENAME EMPNO2 SAL2
	---------- ---------- ---------- ---------- ---------- ----------
	JONES 7566 2975 SMITH 7369 800
	JONES 7566 2975 ALLEN 7499 1600
	JONES 7566 2975 WARD 7521 1250
	JONES 7566 2975 JONES 7566 2975
Every value in EMPNO2 is compared against every value in
 EMPNO1. For every row where the value in EMPNO2 is less than or
 equal to the value in EMPNO1, the value in SAL2 is included in the
 sum. In this snippet, the EMPNO values for employees Smith, Allen,
 Ward, and Jones are compared against the EMPNO of Jones. Since all
 four employees’ EMPNOs meet the condition of being less than or
 equal to Jones’ EMPNO, those salaries are summed. Any employee whose
 EMPNO is greater than Jones’ is not included in the SUM (in this
 snippet). The way the full query works is by summing all the
 salaries where the corresponding EMPNO is less than or equal to 7934
 (Miller’s EMPNO), which is the highest in the table.

7.7. Generating a Running Product

Problem

You want to compute a running product on a numeric column. The
 operation is similar to “Calculating a Running Total,” but using
 multiplication instead of addition.

Solution

By way of example, the solutions all compute running products of employee salaries. While a running
 product of salaries may not be all that useful, the technique can
 easily be applied to other, more useful domains.
DB2 and Oracle

Use the windowing function SUM OVER and take advantage of the fact that you can
 simulate multiplication by adding logarithms:
	1 select empno,ename,sal,
	2 exp(sum(ln(sal))over(order by sal,empno)) as running_prod
	3 from emp
	4 where deptno = 10

	EMPNO ENAME SAL RUNNING_PROD
	----- ---------- ---- --------------------
	 7934 MILLER 1300 1300
	 7782 CLARK 2450 3185000
	 7839 KING 5000 15925000000
It is not valid in SQL to compute logarithms of values less
 than or equal to zero. If you have such values in your tables you
 need to avoid passing those invalid values to SQL’s LN function.
 Precautions against invalid values and NULLs are not provided in
 this solution for the sake of readability, but you should consider
 whether to place such precautions in production code that you write.
 If you absolutely must work with negative and zero values, then this
 solution may not work for you.
An alternative, Oracle-only solution is to use the MODEL clause that became available in Oracle Database
 10g. In the following example, each SAL is
 returned as a negative number to show that negative values will not
 cause a problem for the running product:
	1 select empno, ename, sal, tmp as running_prod
	2 from (
	3 select empno,ename,-sal as sal
	4 from emp
	5 where deptno=10
	6)
	7 model
	8 dimension by(row_number()over(order by sal desc) rn)
	9 measures(sal, 0 tmp, empno, ename)
	10 rules (
	11 tmp[any] = case when sal[cv()-1] is null then sal[cv()]
	12 else tmp[cv()-1]*sal[cv()]
	13 end
	14)

	EMPNO ENAME SAL RUNNING_PROD
	----- ---------- ---- --------------------
	 7934 MILLER -1300 -1300
	 7782 CLARK -2450 3185000
	 7839 KING -5000 -15925000000

MySQL, PostgreSQL, and SQL Server

You still use the approach of summing logarithms, but these
 platforms do not support windowing functions, so use a scalar
 subquery instead:
	1 select e.empno,e.ename,e.sal,
	2 (select exp(sum(ln(d.sal)))
	3 from emp d
	4 where d.empno <= e.empno
	5 and e.deptno=d.deptno) as running_prod
	6 from emp e
	7 where e.deptno=10

	EMPNO ENAME SAL RUNNING_PROD
	----- ---------- ---- --------------------
	 7782 CLARK 2450 2450
	 7839 KING 5000 12250000
	 7934 MILLER 1300 15925000000
SQL Server users use LOG instead of LN.

Discussion

Except for the MODEL clause solution, which is only usable with
 Oracle Database 10g or later, all the solutions
 take advantage of the fact that you can multiply two numbers
 by:
	Computing their respective natural logarithms

	Summing those logarithms

	Raising the result to the power of the mathematical constant
 e (using the EXP function)

The one caveat when using this approach is that it doesn’t work
 for summing zero or negative values, because any value less than or
 equal to zero is out of range for an SQL logarithm.
DB2 and Oracle

For an explanation of how the window function SUM OVER works,
 see the previous recipe “Generating a Running Total.”
In Oracle Database 10g and later, you can
 generate running products via the MODEL clause. Using the MODEL
 clause along with the window function ROW_NUMBER allows you to
 easily access prior rows. Each item in the MEASURES list can be
 accessed like an array. The arrays can then be searched by using the
 items in the DIMENSIONS list (which are the values returned by
 ROW_NUMBER, alias RN):
	select empno, ename, sal, tmp as running_prod,rn
	 from (
	select empno,ename,-sal as sal
	 from emp
	 where deptno=10
)
	 model
	 dimension by(row_number()over(order by sal desc) rn)
	 measures(sal, 0 tmp, empno, ename)
	 rules ()

	EMPNO ENAME SAL RUNNING_PROD RN
	----- ---------- ---------- ------------ ----------
	 7934 MILLER -1300 0 1
	 7782 CLARK -2450 0 2
	 7839 KING -5000 0 3
Observe that SAL[1] has a value of–1300. Because the numbers
 are increasing by one with no gaps, you can reference prior rows by
 subtracting one. The RULES clause:
	rules (
	 tmp[any] = case when sal[cv()-1] is null then sal[cv()]
	 else tmp[cv()-1]*sal[cv()]
	 end
)
uses the built-in operator, ANY, to work through each row
 without hard-coding. ANY in this case will be the values 1, 2, and
 3. TMP[n] is initialized to zero. A value is
 assigned to TMP[n] by evaluating the current
 value (the function CV returns the current value) of the
 corresponding SAL row. TMP[1] is initially zero and SAL[1] is–1300.
 There is no value for SAL[0] so TMP[1] is set to SAL[1]. After
 TMP[1] is set, the next row is TMP[2]. First SAL[1] is evaluated
 (SAL[CV()–1] is SAL[1] because the current value of ANY is now 2).
 SAL[1] is not null, it is–1300, so TMP[2] is set to the product of
 TMP[1] and SAL[2]. This is continued for all the rows.

MySQL, PostgreSQL, and SQL Server

See “Generating a Running Total” earlier in this chapter for an
 explanation of the subquery approach used for the MySQL, PostgreSQL,
 and SQL Server solutions.
Be aware that the output of the subquery-based solution is
 slightly different from that of the Oracle and DB2 solutions due to
 the EMPNO comparison (the running product is computed in a different order).
 Like a running total, the summation is driven by the predicate of
 the scalar subquery; the ordering of rows is by EMPNO for this
 solution whereas the Oracle/DB2 solution order is by SAL.

7.8. Calculating a Running Difference

Problem

You want to compute a running difference on values in a numeric
 column. For example, you want to compute a running difference on the
 salaries in DEPTNO 10. You would like to return the following result
 set:
	ENAME SAL RUNNING_DIFF
	---------- ---------- ------------
	MILLER 1300 1300
	CLARK 2450 -1150
	KING 5000 -6150

Solution

DB2 and Oracle

Use the window function SUM OVER to create a running
 difference:
	1 select ename,sal,
	2 sum(case when rn = 1 then sal else -sal end)
	3 over(order by sal,empno) as running_diff
	4 from (
	5 select empno,ename,sal,
	6 row_number()over(order by sal,empno) as rn
	7 from emp
	8 where deptno = 10
	9) x

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to compute a running difference:
	1 select a.empno, a.ename, a.sal,
	2 (select case when a.empno = min(b.empno) then sum(b.sal)
	3 else sum(-b.sal)
	4 end
	5 from emp b
	6 where b.empno <= a.empno
	7 and b.deptno = a.deptno) as rnk
	8 from emp a
	9 where a.deptno = 10

Discussion

The solutions are identical to those of “Generating a Running
 Total.” The only difference is that all values for SAL are returned as
 negative values with the exception of the first (you want the starting
 point to be the first SAL in DEPTNO 10).

7.9. Calculating a Mode

Problem

You want to find the mode (for those of you who don’t recall,
 the mode in mathematics is the element that
 appears most frequently for a given set of data) of the values in a
 column. For example, you wish to find mode of the salaries in DEPTNO
 20. Based on the following salaries:
	select sal
	 from emp
	 where deptno = 20
	 order by sal

	 SAL

	 800
	 1100
	 2975
	 3000
	 3000
the mode is 3000.

Solution

DB2 and SQL Server

Use the window function DENSE_RANK to rank the counts of the
 salaries to facilitate extracting the mode:
	 1 select sal
	 2 from (
	 3 select sal,
	 4 dense_rank()over(order by cnt desc) as rnk
	 5 from (
	 6 select sal, count(*) as cnt
	 8 from emp
	 9 where deptno = 20
	10 group by sal
	11) x
	12) y
	13 where rnk = 1

Oracle

Users on Oracle8i Database can use the
 solution provided for DB2. If you are on
 Oracle9i Database and later, you can use the
 KEEP extension to the aggregate function MAX to find
 the mode SAL. One important note is that if there are ties, i.e.,
 multiple rows that are the mode, the solution using KEEP will only keep one, and that is the one with the
 highest salary. If you want to see all modes (if more than one exists), you must modify this
 solution or simply use the DB2 solution presented above. In this
 case, since 3000 is the mode SAL in DEPTNO 20 and is also the
 highest SAL, this solution is sufficient:
	1 select max(sal)
	2 keep(dense_rank first order by cnt desc) sal
	3 from (
	4 select sal, count(*) cnt
	5 from emp
	6 where deptno=20
	7 group by sal
	8)

MySQL and PostgreSQL

Use a subquery to find the mode:
	1 select sal
	2 from emp
	3 where deptno = 20
	4 group by sal
	5 having count(*) >= all (select count(*)
	6 from emp
	7 where deptno = 20
	8 group by sal)

Discussion

DB2 and SQL Server

The inline view X returns each SAL and the number of times it
 occurs. Inline view Y uses the window function DENSE_RANK (which
 allows for ties) to sort the results.
The results are ranked based on the number of times each SAL
 occurs as is seen below:
	1 select sal,
	2 dense_rank()over(order by cnt desc) as rnk
	3 from (
	4 select sal,count(*) as cnt
	5 from emp
	6 where deptno = 20
	7 group by sal
	8) x

	 SAL RNK
	----- ----------
	 3000 1
	 800 2
	 1100 2
	 2975 2
The outermost portion of query simply keeps the row(s) where
 RNK is 1.

Oracle

The inline view returns each SAL and the number of times it
 occurs and is shown below:
select sal, count(*) cnt
	 from emp
	 where deptno=20
	 group by sal

	 SAL CNT
	----- ----------
	 800 1
	 1100 1
	 2975 1
	 3000 2
The next step is to use the KEEP extension of the aggregate function MAX to find
 the mode. If you analyze the KEEP clause shown below you will notice
 three subclauses, DENSE_RANK, FIRST, and ORDER BY CNT DESC:
	keep(dense_rank first order by cnt desc)
What this does is extremely convenient for finding the mode.
 The KEEP clause determines which SAL will be returned by MAX by
 looking at the value of CNT returned by the inline view. Working
 from right to left, the values for CNT are ordered in descending
 order, then the first is kept of all the values for CNT returned in
 DENSE_RANK order. Looking at the result set from the inline view,
 you can see that 3000 has the highest CNT of 2. The MAX(SAL)
 returned is the greatest SAL that has the greatest CNT, in this case
 3000.

See Also

Chapter 11, the section on
 “Finding Knight Values,” for a deeper discussion of Oracle’s KEEP
 extension of aggregate functions.
MySQL and PostgreSQL

The subquery returns the number of times each SAL occurs. The
 outer query returns any SAL that has a number of occurrences greater
 than or equal to all of the counts returned by the subquery (or to
 put it another way, the outer query returns the most common salaries
 in DEPTNO 20).

7.10. Calculating a Median

Problem

You want to calculate the median (for those of who do not
 recall, the median is the value of the middle
 member of a set of ordered elements) value for a column of numeric
 values. For example, you want to find the median of the salaries in
 DEPTNO 20. Based on the following salaries:
	select sal
	 from emp
	 where deptno = 20
	 order by sal

	 SAL

	 800
	 1100
	 2975
	 3000
	 3000
the median is 2975.

Solution

Other than the Oracle solution (which uses supplied functions to
 compute a median), all of the solutions are based on the method
 described by Rozenshtein, Abramovich, and Birger in
 Optimizing Transact-SQL: Advanced Programming
 Techniques (SQL Forum Press, 1997). The introduction of
 window functions allows for a more efficient solution compared to the
 traditional self join.
DB2

Use the window functions COUNT(*) OVER and ROW_NUMBER to find
 the median:
	 1 select avg(sal)
	 2 from (
	 3 select sal,
	 4 count(*) over() total,
	 5 cast(count(*) over() as decimal)/2 mid,
	 6 ceil(cast(count(*) over() as decimal)/2) next,
	 7 row_number() over (order by sal) rn
	 8 from emp
	 9 where deptno = 20
	10) x
	11 where (mod(total,2) = 0
	12 and rn in (mid, mid+1)
	13)
	14 or (mod(total,2) = 1
	15 and rn = next
	16)

MySQL and PostgreSQL

Use a self join to find the median:
	 1 select avg(sal)
	 2 from (
	 3 select e.sal
	 4 from emp e, emp d
	 5 where e.deptno = d.deptno
	 6 and e.deptno = 20
	 7 group by e.sal
	 8 having sum(case when e.sal = d.sal then 1 else 0 end)
	 9 >= abs(sum(sign(e.sal - d.sal)))
	10)

Oracle

Use the functions MEDIAN (Oracle Database
 10g) or PERCENTILE_CONT (Oracle9i
 Database):
	1 select median(sal)
	2 from emp
	3 where deptno=20

	1 select percentile_cont(0.5)
	2 within group(order by sal)
	3 from emp
	4 where deptno=20
Use the DB2 solution for Oracle8i
 Database. For versions prior to Oracle8i
 Database you can use the PostgreSQL/MySQL solution.

SQL Server

Use the window functions COUNT(*) OVER and ROW_NUMBER to find
 the median:
	 1 select avg(sal)
	 2 from (
	 3 select sal,
	 4 count(*)over() total,
	 5 cast(count(*)over() as decimal)/2 mid,
	 6 ceiling(cast(count(*)over() as decimal)/2) next,
	 7row_number()over(order by sal) rn
	 8 from emp
	 9 where deptno = 20
	10) x
	11 where (total%2 = 0
	12 and rn in (mid, mid+1)
	13)
	14 or (total%2 = 1
	15 and rn = next
	16)

Discussion

DB2 and SQL Server

The only difference between the DB2 and SQL Server solutions
 is a small point of syntax: SQL Server uses “%” for modulo and DB2 uses the function MOD; otherwise they
 are the same. Inline view X returns three different counts, TOTAL,
 MID, and NEXT, along with RN, generated by ROW_NUMBER. These
 additional columns help determine how to find the median. Examine
 the result set for inline view X to see what these columns
 represent:
	select sal,
	 count(*)over() total,
	 cast(count(*)over() as decimal)/2 mid,
	 ceil(cast(count(*)over() as decimal)/2) next,
	 row_number()over(order by sal) rn
	 from emp
	 where deptno = 20

	SAL TOTAL MID NEXT RN
	---- ----- ---- ---- ----
	 800 5 2.5 3 1
	1100 5 2.5 3 2
	2975 5 2.5 3 3
	3000 5 2.5 3 4
	3000 5 2.5 3 5
To find the median, the values for SAL must be ordered from
 lowest to highest. Since DEPTNO 20 has an odd number of employees,
 the median is simply the SAL that is located in the position where
 RN equals NEXT (the position that represents the smallest whole
 number larger than the total number of employees divided by
 two).
The first part of the WHERE clause (lines 11–13) is not
 satisfied if there are an odd number of rows returned by the result
 set. If you know that the result set will always be odd, you can
 simplify to:
	select avg(sal)
	 from (
	select sal,
	 count(*)over() total,
	 ceil(cast(count(*)over() as decimal)/2) next,
	 row_number()over(order by sal) rn
	 from emp
	 where deptno = 20
) x
	 where rn = next
Unfortunately, if you have an even number of rows in the
 result set, the simplified solution will not work. The original
 solution handles even-numbered rows by using the values in the
 column MID. Consider what the results from inline view X would look
 like for DEPTNO 30, which has six employees:
	select sal,
	 count(*)over() total,
	 cast(count(*)over() as decimal)/2 mid,
	 ceil(cast(count(*)over() as decimal)/2) next,
	 row_number()over(order by sal) rn
	 from emp
	 where deptno = 30

	SAL TOTAL MID NEXT RN
	---- ----- ---- ---- ----
	 950 6 3 3 1
	1250 6 3 3 2
	1250 6 3 3 3
	1500 6 3 3 4
	1600 6 3 3 5
	2850 6 3 3 6
Since there are an even number of rows returned, the median is
 computed by taking the average of two rows; the row where RN equals
 MID and the row where RN equals MID + 1.

MySQL and PostgreSQL

The median is computed by first self joining table EMP, which
 returns a Cartesian product for all the salaries (but the GROUP BY
 on E.SAL will prevent duplicates from being returned). The HAVING
 clause uses the function SUM to count the number of times E.SAL
 equals D.SAL; if this count is greater than or equal to the number
 of times E.SAL is greater than D.SAL then that row is the median.
 You can observe this by moving the SUM into the SELECT list:
	select e.sal,
	 sum(case when e.sal=d.sal
	 then 1 else 0 end) as cnt1,
	 abs(sum(sign(e.sal - d.sal))) as cnt2
	 from emp e, emp d
	 where e.deptno = d.deptno
	 and e.deptno = 20
	 group by e.sal

	 SAL CNT1 CNT2
	---- ---- ----
	 800 1 4
	1100 1 2
	2975 1 0
	3000 4 6

Oracle

If you are on Oracle Database 10g or
 Oracle9i Database, you can leave the work of
 computing a median to functions supplied by Oracle. If you are running
 Oracle8i Database, you can use the DB2
 solution. Otherwise you must use the PostgreSQL solution. While the
 MEDIAN function obviously computes a median, it may not be at all
 obvious that PERCENTILE_CONT does so as well. The argument passed
 to PERCENTILE_CONT, 0.5, is a percentile value. The clause, WITHIN
 GROUP (ORDER BY SAL), determines which sorted rows PERCENTILE_CONT
 will search (remember, a median is the middle value from a set of
 ordered values). The value returned is the value from the sorted
 rows that falls into the given percentile (in this case, 0.5, which
 is the middle because the boundary values are 0 and 1).

7.11. Determining the Percentage of a Total

Problem

You want to determine the percentage that values in a specific
 column represent against a total. For example, you want to determine
 what percentage of all salaries are the salaries in DEPTNO 10 (the
 percentage that DEPTNO 10 salaries contribute to the total).

Solution

In general, computing a percentage against a total in SQL is no
 different than doing so on paper; simply divide, then multiply. In
 this example you want to find the percentage of total salaries in table EMP that come from
 DEPTNO 10. To do that, simply find the salaries for DEPTNO 10, and
 then divide by the total salary for the table. As the last step,
 multiply by 100 to return a value that represents a percent.
MySQL and PostgreSQL

Divide the sum of the salaries in DEPTNO 10 by the sum of all
 salaries:
	1 select (sum(
	2 case when deptno = 10 then sal end)/sum(sal)
	3)*100 as pct
	4 from emp

DB2, Oracle, and SQL Server

Use an inline view with the window function SUM OVER to find the sum of all salaries along with
 the sum of all salaries in DEPTNO 10. Then do the division and
 multiplication in the outer query:
	1 select distinct (d10/total)*100 as pct
	2 from (
	3 select deptno,
	4 sum(sal)over() total,
	5 sum(sal)over(partition by deptno) d10
	6 from emp
	7) x
	8 where deptno=10

Discussion

MySQL and PostgreSQL

The CASE statement conveniently returns only the salaries from
 DEPTNO 10. They are then summed and divided by the sum of all the
 salaries. Because NULLs are ignored by aggregates, an ELSE clause is
 not needed in the CASE statement. To see exactly which values are
 divided, execute the query without the division:
	select sum(case when deptno = 10 then sal end) as d10,
	 sum(sal)
	 from emp

	D10 SUM(SAL)
	---- ---------
	8750 29025
Depending on how you define SAL, you may need to include
 explicit casts when performing division. For example, on DB2, SQL
 Server, and PostgreSQL, if SAL is stored as an integer, you can cast
 to decimal to get the correct answer, as seen below:
	select (cast(
	 sum(case when deptno = 10 then sal end)
	 as decimal)/sum(sal)
)*100 as pct
	 from emp

DB2, Oracle, and SQL Server

As an alternative to the traditional solution, this solution
 uses window functions to compute a percentage relative to the total. For DB2 and SQL
 Server, if you’ve stored SAL as an integer, you’ll need to cast
 before dividing:
	select distinct
	 cast(d10 as decimal)/total*100 as pct
	 from (
	select deptno,
	 sum(sal)over() total,
	 sum(sal)over(partition by deptno) d10
	 from emp
) x
	 where deptno=10
It is important to keep in mind that window functions are
 applied after the WHERE clause is evaluated. Thus, the filter on
 DEPTNO cannot be performed in inline view X. Consider the results
 of inline view X without and with the filter on
 DEPTNO. First without:
	select deptno,
	 sum(sal)over() total,
	 sum(sal)over(partition by deptno) d10
	 from emp

	DEPTNO TOTAL D10
	------- --------- ---------
	 10 29025 8750
	 10 29025 8750
	 10 29025 8750
	 20 29025 10875
	 20 29025 10875
	 20 29025 10875
	 20 29025 10875
	 20 29025 10875
	 30 29025 9400
	 30 29025 9400
	 30 29025 9400
	 30 29025 9400
	 30 29025 9400
	 30 29025 9400
and now with:
	select deptno,
	 sum(sal)over() total,
	 sum(sal)over(partition by deptno) d10
	 from emp
	 where deptno=10

	DEPTNO TOTAL D10
	------ --------- ---------
	 10 8750 8750
	 10 8750 8750
	 10 8750 8750
Because window functions are applied after the WHERE clause,
 the value for TOTAL represents the sum of all salaries in DEPTNO 10
 only. But to solve the problem you want the TOTAL to represent the
 sum of all salaries, period. That’s why the filter on DEPTNO must
 happen outside of inline view X.

7.12. Aggregating Nullable Columns

Problem

You want to perform an aggregation on a column, but the column
 is nullable. You want the accuracy of your aggregation to be
 preserved, but are concerned because aggregate functions ignore NULLs. For example, you want
 to determine the average commission for employees in DEPTNO 30, but
 there are some employees who do not earn a commission (COMM is NULL
 for those employees). Because NULLs are ignored by aggregates, the
 accuracy of the output is compromised. You would like to somehow
 include NULL values in your aggregation.

Solution

Use the COALESCE function to convert NULLs to 0, so they will be
 included in the aggregation:
	1 select avg(coalesce(comm,0)) as avg_comm
	2 from emp
	3 where deptno=30

Discussion

When working with aggregate functions, keep in mind that NULLs
 are ignored. Consider the output of the solution without using the
 COALESCE function:
	select avg(comm)
	 from emp
	 where deptno=30

	 AVG(COMM)

	 550
This query shows an average commission of 550 for DEPTNO 30, but
 a quick examination of those rows:
	select ename, comm
	 from emp
	 where deptno=30
	order by comm desc

	ENAME COMM
	---------- ---------
	BLAKE
	JAMES
	MARTIN 1400
	WARD 500
	ALLEN 300
	TURNER 0
shows that only four of the six employees can earn a commission.
 The sum of all commissions in DEPTNO 30 is 2200, and the average
 should be 2200/6, not 2200/4. By excluding the COALESCE function, you
 answer the question, “What is the average commission of employees in
 DEPTNO 30 who can earn a commission?” rather than
 “What is the average commission of all employees in DEPTNO 30?” When
 working with aggregates, remember to treat NULLs accordingly.

7.13. Computing Averages Without High and Low Values

Problem

You want to compute an average, but you wish to exclude the
 highest and lowest values in order to (hopefully) reduce the effect of
 skew. For example, you want to compute the average salary of all
 employees excluding the highest and lowest salaries.

Solution

MySQL and PostgreSQL

Use subqueries to exclude high and low values:
	1 select avg(sal)
	2 from emp
	3 where sal not in (
	4 (select min(sal) from emp),
	5 (select max(sal) from emp)
	6)

DB2, Oracle, and SQL Server

Use an inline view with the windowing functions MAX OVER and
 MIN OVER to generate a result set from which you can easily
 eliminate the high and low values:
	1 select avg(sal)
	2 from (
	3 select sal, min(sal)over() min_sal, max(sal)over() max_sal
	4 from emp
	5) x
	6 where sal not in (min_sal,max_sal)

Discussion

MySQL and PostgreSQL

The subqueries return the highest and lowest salaries in the
 table. By using NOT IN against the values returned, you exclude the
 highest and lowest salaries from the average. Keep in mind that if
 there are duplicates (if multiple employees have the highest or
 lowest salaries), they will all be excluded from the average. If
 your goal is to exclude only a single instance of the high and low
 values, simply subtract them from the SUM and then divide:
	select (sum(sal)-min(sal)-max(sal))/(count(*)-2)
	 from emp

DB2, Oracle, and SQL Server

Inline view X returns each salary along with the highest and
 lowest salary:
	select sal, min(sal)over() min_sal, max(sal)over() max_sal
	 from emp

	 SAL MIN_SAL MAX_SAL
	--------- --------- ---------
	 800 800 5000
	 1600 800 5000
	 1250 800 5000
	 2975 800 5000
	 1250 800 5000
	 2850 800 5000
	 2450 800 5000
	 3000 800 5000
	 5000 800 5000
	 1500 800 5000
	 1100 800 5000
	 950 800 5000
	 3000 800 5000
	 1300 800 5000
You can access the high and low salary at every row, so
 finding which salaries are highest and/or lowest is trivial. The
 outer query filters the rows returned from inline view X such that
 any salary that matches either MIN_SAL or MAX_SAL is excluded from
 the average.

7.14. Converting Alphanumeric Strings into Numbers

Problem

You have alphanumeric data and would like to return numbers
 only. You want to return the number 123321 from the string
 “paul123f321”.

Solution

DB2

Use the functions TRANSLATE and REPLACE to extract numeric
 characters from an alphanumeric string:
	1 select cast(
	2 replace(
	3 translate('paul123f321',
	4 repeat('#',26),
	5 'abcdefghijklmnopqrstuvwxyz'),'#','')
	6 as integer) as num
	7 from t1

Oracle and PostgreSQL

Use the functions TRANSLATE and REPLACE to extract numeric
 characters from an alphanumeric string:
	1 select cast(
	2 replace(
	3 translate('paul123f321',
	4 'abcdefghijklmnopqrstuvwxyz',
	5 rpad('#',26,'#')),'#','')
	6 as integer) as num
	7 from t1

MySQL and SQL Server

As of the time of this writing, neither vendor supports the
 TRANSLATE function, thus a solution will not be provided.

Discussion

The only difference between the two solutions is syntax; DB2
 uses the function REPEAT rather than RPAD and the parameter list for
 TRANSLATE is in a different order. The following explanation uses the
 Oracle/PostgreSQL solution but is relevant to DB2 as well. If you run
 query inside out (starting with TRANSLATE only), you’ll see this is
 very simple. First, TRANSLATE converts any non-numeric character to an
 instance of “#”:
	select translate('paul123f321',
	 'abcdefghijklmnopqrstuvwxyz',
	 rpad('#',26,'#')) as num
	 from t1

	NUM

	####123#321
Since all non-numeric characters are now represented by “#”,
 simply use REPLACE to remove them, then cast the result to a number.
 This particular example is extremely simple because the data is
 alphanumeric. If additional characters can be stored, rather than
 fishing for those characters, it is easier to approach this problem
 differently: rather than finding non-numeric characters and then
 removing them, find all numeric characters and remove anything that is
 not amongst them. The following example will help clarify this
 technique:
	select replace(
	 translate('paul123f321',
	 replace(translate('paul123f321',
	 '0123456789',
	 rpad('#',10,'#')),'#',''),
	 rpad('#',length('paul123f321'),'#')),'#','') as num
	 from t1

	NUM

	123321
This solution looks a bit more convoluted than the original but
 is not so bad once you break it down. Observe the innermost call to
 TRANSLATE:
	select translate('paul123f321',
	 '0123456789',
	 rpad('#',10,'#'))
	 from t1

	TRANSLATE('

	paul###f###
So, the initial approach is different; rather than replacing
 each non-numeric character with an instance of “#”, you replace each
 numeric character with an instance of “#”. The next step removes all
 instances of “#”, thus leaving only non-numeric characters:
	select replace(translate('paul123f321',
	 '0123456789',
	 rpad('#',10,'#')),'#','')
	 from t1

	REPLA

	paulf
The next step is to call TRANSLATE again, this time to replace
 each of the non-numeric characters (from the query above) with an
 instance of “#” in the original string:
	select translate('paul123f321',
	 replace(translate('paul123f321',
	 '0123456789',
	 rpad('#',10,'#')),'#',''),
	 rpad('#',length('paul123f321'),'#'))
	 from t1

	TRANSLATE('

	####123#321
At this point, stop and examine the outermost call to TRANSLATE.
 The second parameter to RPAD (or the second parameter to REPEAT for
 DB2) is the length of the original string. This is convenient to use
 since no character can occur enough times to be greater than the
 string it is part of. Now that all non-numeric characters are replaced
 by instances of “#”, the last step is to use REPLACE to remove all
 instances of “#”. Now you are left with a number.

7.15. Changing Values in a Running Total

Problem

You want to modify the values in a running total depending on
 the values in another column. Consider a scenario where you want to
 display the transaction history of a credit card account along with
 the current balance after each transaction. The following view, V,
 will be used in this example:
	create view V (id,amt,trx)
	as
	select 1, 100, 'PR' from t1 union all
	select 2, 100, 'PR' from t1 union all
	select 3, 50, 'PY' from t1 union all
	select 4, 100, 'PR' from t1 union all
	select 5, 200, 'PY' from t1 union all
	select 6, 50, 'PY' from t1

	select * from V

	ID AMT TR
	-- ---------- --
	 1 100 PR
	 2 100 PR
	 3 50 PY
	 4 100 PR
	 5 200 PY
	 6 50 PY
The ID column uniquely identifies each transaction. The AMT
 column represents the amount of money involved in each transaction
 (either a purchase or a payment). The TRX column defines the type of
 transaction; a payment is “PY” and a purchase is “PR.” If the value
 for TRX is PY, you want the current value for AMT subtracted from the
 running total; if the value for TRX is PR, you want the current value
 for AMT added to the running total. Ultimately you want to return the
 following result set:
	TRX_TYPE AMT BALANCE
	-------- ---------- ----------
	PURCHASE 100 100
	PURCHASE 100 200
	PAYMENT 50 150
	PURCHASE 100 250
	PAYMENT 200 50
	PAYMENT 50 0

Solution

DB2 and Oracle

Use the window function SUM OVER to create the running total along with a CASE expression to
 determine the type of transaction:
	 1 select case when trx = 'PY'
	 2 then 'PAYMENT'
	 3 else 'PURCHASE'
	 4 end trx_type,
	 5 amt,
	 6 sum(
	 7 case when trx = 'PY'
	 8 then -amt else amt
	 9 end
	10) over (order by id,amt) as balance
	11 from V

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to create the running total along with a
 CASE expression to determine the type of transaction:
	 1 select case when v1.trx = 'PY'
	 2 then 'PAYMENT'
	 3 else 'PURCHASE'
	 4 end as trx_type,
	 5 v1.amt,
	 6 (select sum(
	 7 case when v2.trx = 'PY'
	 8 then -v2.amt else v2.amt
	 9 end
	10)
	11 from V v2
	12 where v2.id <= v1.id) as balance
	13 from V v1

Discussion

The CASE expression determines whether the current AMT is added
 or deducted from the running total. If the transaction is a payment,
 the AMT is changed to a negative value, thus reducing the amount of
 the running total. The result of the CASE expression is seen
 below:
	select case when trx = 'PY'
	 then 'PAYMENT'
	 else 'PURCHASE'
	 end trx_type,
	 case when trx = 'PY'
	 then -amt else amt
	 end as amt
	 from V

	TRX_TYPE AMT
	-------- ---------
	PURCHASE 100
	PURCHASE 100
	PAYMENT -50
	PURCHASE 100
	PAYMENT -200
	PAYMENT -50
After evaluating the transaction type, the values for AMT are
 then added to or subtracted from the running total. For an explanation
 on how the window function, SUM OVER, or the scalar subquery creates
 the running total see recipe “Calculating a Running Total.”

Chapter 8. Date Arithmetic

This chapter introduces techniques for performing simple
 date arithmetic. Recipes cover common tasks like adding days to dates,
 finding the number of business days between dates, and finding the
 difference between dates in days.
Being able to successfully manipulate dates with your RDBMS’s
 built-in functions can greatly improve your productivity. For all the
 recipes in this chapter, I try to take advantage of each RDBMS’s built-in
 functions. In addition, I have chosen to use one date format for all the recipes, “DD-MON-YYYY”. I chose to do
 this because I believe it will benefit those of you who work with one
 RDBMS and want to learn others. Seeing one standard format will help you
 focus on the different techniques and functions provided by each RDBMS
 without having to worry about default date formats.
Tip
This chapter focuses on basic date arithmetic. You’ll find more
 advanced date recipes in the following chapter. The recipes presented in
 this chapter use simple date data types. If you are using more complex
 date data types you will need to adjust the solutions
 accordingly.

8.1. Adding and Subtracting Days, Months, and Years

Problem

You need to add or subtract some number of days, months, or
 years from a date. For example, using the HIREDATE for employee CLARK
 you want to return six different dates: five days before and after
 CLARK was hired, five months before and after CLARK was hired, and,
 finally, five years before and after CLARK was hired. CLARK was hired
 on “09-JUN-1981”, so you want to return the following result
 set:
	HD_MINUS_5D HD_PLUS_5D HD_MINUS_5M HD_PLUS_5M HD_MINUS_5Y HD_PLUS_5Y
	----------- ----------- ----------- ----------- ----------- -----------
	04-JUN-1981 14-JUN-1981 09-JAN-1981 09-NOV-1981 09-JUN-1976 09-JUN-1986
	12-NOV-1981 22-NOV-1981 17-JUN-1981 17-APR-1982 17-NOV-1976 17-NOV-1986
	18-JAN-1982 28-JAN-1982 23-AUG-1981 23-JUN-1982 23-JAN-1977 23-JAN-1987

Solution

DB2

Standard addition and subtraction is allowed on date values,
 but any value that you add to or subtract from a date must be
 followed by the unit of time it represents:
	1 select hiredate -5 day as hd_minus_5D,
	2 hiredate +5 day as hd_plus_5D,
	3 hiredate -5 month as hd_minus_5M,
	4 hiredate +5 month as hd_plus_5M,
	5 hiredate -5 year as hd_minus_5Y,
	6 hiredate +5 year as hd_plus_5Y
	7 from emp
	8 where deptno = 10

Oracle

Use standard addition and subtraction for days, and use the
 ADD_MONTHS function to add and subtract months and
 years:
	1 select hiredate-5 as hd_minus_5D,
	2 hiredate+5 as hd_plus_5D,
	3 add_months(hiredate,-5) as hd_minus_5M,
	4 add_months(hiredate,5) as hd_plus_5M,
	5 add_months(hiredate,-5*12) as hd_minus_5Y,
	6 add_months(hiredate,5*12) as hd_plus_5Y
	7 from emp
	8 where deptno = 10

PostgreSQL

Use standard addition and subtraction with the INTERVAL keyword specifying the unit of time to add or
 subtract. Single quotes are required when specifying an INTERVAL
 value:
	1 select hiredate - interval '5 day' as hd_minus_5D,
	2 hiredate + interval '5 day' as hd_plus_5D,
	3 hiredate - interval '5 month' as hd_minus_5M,
	4 hiredate + interval '5 month' as hd_plus_5M,
	5 hiredate - interval '5 year' as hd_minus_5Y,
	6 hiredate + interval '5 year' as hd_plus_5Y
	7 from emp
	8 where deptno=10

MySQL

Use standard addition and subtraction with the INTERVAL
 keyword specifying the unit of time to add or subtract. Unlike the
 PostgreSQL solution, you do not place single quotes around the
 INTERVAL value:
	1 select hiredate - interval 5 day as hd_minus_5D,
	2 hiredate + interval 5 day as hd_plus_5D,
	3 hiredate - interval 5 month as hd_minus_5M,
	4 hiredate + interval 5 month as hd_plus_5M,
	5 hiredate - interval 5 year as hd_minus_5Y,
	6 hiredate + interval 5 year as hd_plus_5Y
	7 from emp
	8 where deptno=10
Alternatively, you can use the DATE_ADD function, which is shown below:
	1 select date_add(hiredate,interval -5 day) as hd_minus_5D,
	2 date_add(hiredate,interval 5 day) as hd_plus_5D,
	3 date_add(hiredate,interval -5 month) as hd_minus_5M,
	4 date_add(hiredate,interval 5 month) as hd_plus_5M,
	5 date_add(hiredate,interval -5 year) as hd_minus_5Y,
	6 date_add(hiredate,interval 5 year) as hd_plus_5DY
	7 from emp
	8 where deptno=10

SQL Server

Use the DATEADD function to add or subtract different units of
 time to/from a date:
	1 select dateadd(day,-5,hiredate) as hd_minus_5D,
	2 dateadd(day,5,hiredate) as hd_plus_5D,
	3 dateadd(month,-5,hiredate) as hd_minus_5M,
	4 dateadd(month,5,hiredate) as hd_plus_5M,
	5 dateadd(year,-5,hiredate) as hd_minus_5Y,
	6 dateadd(year,5,hiredate) as hd_plus_5Y
	7 from emp
	8 where deptno = 10

Discussion

The Oracle solution takes advantage of the fact that integer
 values represent days when performing date arithmetic. However, that’s true only of arithmetic with
 DATE types. Oracle9 i Database introduced
 TIMESTAMP types. For those, you should use the INTERVAL
 solution shown for PostgreSQL. Beware too, of passing TIMESTAMPs to
 old-style date functions such as ADD_MONTHS. By doing so, you can lose any fractional
 seconds that such TIMESTAMP values may contain.
The INTERVAL keyword and the string literals that go with it
 represent ISO-standard SQL syntax. The standard requires that interval
 values be enclosed within single quotes. PostgreSQL (and Oracle9
 i Database and later) complies with the standard.
 MySQL deviates somewhat by omitting support for the quotes.

8.2. Determining the Number of Days Between Two Dates

Problem

You want to find the difference between two dates and represent the result in
 days. For example, you want to find the difference in days between the
 HIREDATEs of employee ALLEN and employee WARD.

Solution

DB2

Use two inline views to find the HIREDATEs for WARD and ALLEN.
 Then subtract one HIREDATE from the other using the DAYS
 function:
	 1 select days(ward_hd) - days(allen_hd)
	 2 from (
	 3 select hiredate as ward_hd
	 4 from emp
	 5 where ename = 'WARD'
	 6) x,
	 7 (
	 8 select hiredate as allen_hd
	 9 from emp
	10 where ename = 'ALLEN'
	11) y

Oracle and PostgreSQL

Use two inline views to find the HIREDATEs for WARD and ALLEN,
 and then subtract one date from the other:
	 1 select ward_hd - allen_hd
	 2 from (
	 3 select hiredate as ward_hd
	 4 from emp
	 5 where ename = 'WARD'
	 6) x,
	 7 (
	 8 select hiredate as allen_hd
	 9 from emp
	10 where ename = 'ALLEN'
	11) y

MySQL and SQL Server

Use the function DATEDIFF to find the number of days between two dates.
 MySQL’s version of DATEDIFF requires only two parameters (the two
 dates you want to find the difference in days between), and the
 smaller of the two dates should be passed first to avoid negative
 values (opposite in SQL Server). SQL Server’s version of the
 function allows you to specify what you want the return value to
 represent (in this example you want to return the difference in
 days). The solution following uses the SQL Server version:
	 1 select datediff(day,allen_hd,ward_hd)
	 2 from (
	 3 select hiredate as ward_hd
	 4 from emp
	 5 where ename = 'WARD'
	 6) x,
	 7 (
	 8 select hiredate as allen_hd
	 9 from emp
	10 where ename = 'ALLEN'
	11) y
MySQL users can simply remove the first argument of the
 function and flip-flop the order in which ALLEN_HD and WARD_HD is
 passed.

Discussion

For all solutions, inline views X and Y return the HIREDATEs for
 employees WARD and ALLEN respectively. For example:
	select ward_hd, allen_hd
	 from (
	select hiredate as ward_hd
	 from emp
	 where ename = 'WARD'
) y,
	 (
	select hiredate as allen_hd
	 from emp
	 where ename = 'ALLEN'
) x

	WARD_HD ALLEN_HD
	----------- ----------
	22-FEB-1981 20-FEB-1981
You’ll notice a Cartesian product is created, because there is
 no join specified between X and Y. In this case, the lack of a join is
 harmless as the cardinalities for X and Y are both 1, thus the result
 set will ultimately have one row (obviously, because 1x1=1). To get
 the difference in days, simply subtract one of the two values returned
 from the other using methods appropriate for your database.

8.3. Determining the Number of Business Days Between Two Dates

Problem

Given two dates, you want to find how many “working” days are
 between them, including the two dates themselves. For example, if
 January 10th is a Tuesday and January 11th is a Monday, then the
 number of working days between these two dates is two, as both days
 are typical work days. For this recipe, “business days” is defined as
 any day that is not Saturday or Sunday.

Solution

The solution examples find the number of business days between the HIREDATEs of BLAKE and JONES.
 To determine the number of business days between two dates, you can
 use a pivot table to return a row for each day between the two dates
 (including the start and end dates). Having done that, finding the
 number of business days is simply counting the dates returned that are
 not Saturday or Sunday.
Tip
If you want to exclude holidays as well, you can create a
 HOLIDAYS table. Then include a simple NOT IN predicate to exclude
 days listed in HOLIDAYS from the solution.

DB2

Use the pivot table T500 to generate the required number of
 rows (representing days) between the two dates. Then count each day
 that is not a weekend. Use the DAYNAME function to return the weekday name of each
 date. For example:
	 1 select sum(case when dayname(jones_hd+t500.id day -1 day)
	 2 in ('Saturday','Sunday')
	 3 then 0 else 1
	 4 end) as days
	 5 from (
	 6 select max(case when ename = 'BLAKE'
	 7 then hiredate
	 8 end) as blake_hd,
	 9 max(case when ename = 'JONES'
	10 then hiredate
	11 end) as jones_hd
	12 from emp
	13 where ename in ('BLAKE','JONES')
	14) x,
	15 t500
	16 where t500.id <= blake_hd-jones_hd+1

MySQL

Use the pivot table T500 to generate the required number of
 rows (days) between the two dates. Then count each day that is not a
 weekend. Use the DATE_ADD function to add days to each date. Use the
 DATE_FORMAT function to obtain the weekday name of
 each date:
	 1 select sum(case when date_format(
	 2 date_add(jones_hd,
	 3 interval t500.id-1 DAY),'%a')
	 4 in ('Sat','Sun')
	 5 then 0 else 1
	 6 end) as days
	 7 from (
	 8 select max(case when ename = 'BLAKE'
	 9 then hiredate
	10 end) as blake_hd,
	11 max(case when ename = 'JONES'
	12 then hiredate
	13 end) as jones_hd
	14 from emp
	15 where ename in ('BLAKE','JONES')
	16) x,
	17 t500
	18 where t500.id <= datediff(blake_hd,jones_hd)+1

Oracle

Use the pivot table T500 to generate the required number of
 rows (days) between the two dates, and then count each day
 that is not a weekend. Use the TO_CHAR function to obtain the weekday name of each
 date:
	 1 select sum(case when to_char(jones_hd+t500.id-1,'DY')
	 2 in ('SAT','SUN')
	 3 then 0 else 1
	 4 end) as days
	 5 from (
	 6 select max(case when ename = 'BLAKE'
	 7 then hiredate
	 8 end) as blake_hd,
	 9 max(case when ename = 'JONES'
	10 then hiredate
	11 end) as jones_hd
	12 from emp
	13 where ename in ('BLAKE','JONES')
	14) x,
	15 t500
	16 where t500.id <= blake_hd-jones_hd+1

PostgreSQL

Use the pivot table T500 to generate the required number of
 rows (days) between the two dates. Then count each day that is not a
 weekend. Use the TO_CHAR function to obtain the weekday name of each
 date:
	 1 select sum(case when trim(to_char(jones_hd+t500.id-1,'DAY'))
	 2 in ('SATURDAY','SUNDAY')
	 3 then 0 else 1
	 4 end) as days
	 5 from (
	 6 select max(case when ename = 'BLAKE'
	 7 then hiredate
	 8 end) as blake_hd,
	 9 max(case when ename = 'JONES'
	10 then hiredate
	11 end) as jones_hd
	12 from emp
	13 where ename in ('BLAKE','JONES')
	14) x,
	15 t500
	16 where t500.id <= blake_hd-jones_hd+1

SQL Server

Use the pivot table T500 to generate the required number of
 rows (days) between the two dates, and then count each day that is
 not a weekend. Use the DATENAME function to obtain the weekday name of each
 date:
	 1 select sum(case when datename(dw,jones_hd+t500.id-1)
	 2 in ('SATURDAY','SUNDAY')
	 3 then 0 else 1
	 4 end) as days
	 5 from (
	 6 selectmax(case when ename = 'BLAKE'
	 7 then hiredate
	 8 end) as blake_hd,
	 9 max(case when ename = 'JONES'
	10 then hiredate
	11 end) as jones_hd
	12 from emp
	13 where ename in ('BLAKE','JONES')
	14) x,
	15 t500
	16 where t500.id <= datediff(day,jones_hd-blake_hd)+1

Discussion

While each RDBMS requires the use of different built-in
 functions to determine the name of a day, the overall solution
 approach is the same for each. The solution can be broken into two
 steps:
	Return the days between the start date and end date
 (inclusive).

	Count how many days (i.e., rows) there are, excluding
 weekends.

Inline view X performs step 1. If you examine inline view X,
 you’ll notice the use of the aggregate function MAX, which the recipe
 uses to remove NULLs. If the use of MAX is unclear, the following
 output might help you understand. The output shows the results from
 inline view X without MAX:
	select case when ename = 'BLAKE'
	 then hiredate
	 end as blake_hd,
	 case when ename = 'JONES'
	 then hiredate
	 end as jones_hd
	 from emp
	 where ename in ('BLAKE','JONES')

	BLAKE_HD JONES_HD
	----------- -----------
	 02-APR-1981
	01-MAY-1981
Without MAX, two rows are returned. By using MAX you return only
 one row instead of two, and the NULLs are eliminated:
	select max(case when ename = 'BLAKE'
	 then hiredate
	 end) as blake_hd,
	 max(case when ename = 'JONES'
	 then hiredate
	 end) as jones_hd
	 from emp
	 where ename in ('BLAKE','JONES')

	BLAKE_HD JONES_HD
	----------- -----------
	01-MAY-1981 02-APR-1981
The number of days (inclusive) between the two dates here is 30. Now
 that the two dates are in one row, the next step is to generate one
 row for each of those 30 days. To return the 30 days (rows), use table
 T500. Since each value for ID in table T500 is simply 1 greater than
 the one before it, add each row returned by T500 to the earlier of the
 two dates (JONES_HD) to generate consecutive days starting from
 JONES_HD up to and including BLAKE_HD. The result of this addition is
 shown below (using Oracle syntax):
	select x.*, t500.*, jones_hd+t500.id-1
	 from (
	select max(case when ename = 'BLAKE'
	 then hiredate
	 end) as blake_hd,
	 max(case when ename = 'JONES'
	 then hiredate
	 end) as jones_hd
	 from emp
	 where ename in ('BLAKE','JONES')
) x,
	 t500
	 where t500.id <= blake_hd-jones_hd+1

	BLAKE_HD JONES_HD ID JONES_HD+T5
	----------- ----------- ---------- -----------
	01-MAY-1981 02-APR-1981 1 02-APR-1981
	01-MAY-1981 02-APR-1981 2 03-APR-1981
	01-MAY-1981 02-APR-1981 3 04-APR-1981
	01-MAY-1981 02-APR-1981 4 05-APR-1981
	01-MAY-1981 02-APR-1981 5 06-APR-1981
	01-MAY-1981 02-APR-1981 6 07-APR-1981
	01-MAY-1981 02-APR-1981 7 08-APR-1981
	01-MAY-1981 02-APR-1981 8 09-APR-1981
	01-MAY-1981 02-APR-1981 9 10-APR-1981
	01-MAY-1981 02-APR-1981 10 11-APR-1981
	01-MAY-1981 02-APR-1981 11 12-APR-1981
	01-MAY-1981 02-APR-1981 12 13-APR-1981
	01-MAY-1981 02-APR-1981 13 14-APR-1981
	01-MAY-1981 02-APR-1981 14 15-APR-1981
	01-MAY-1981 02-APR-1981 15 16-APR-1981
	01-MAY-1981 02-APR-1981 16 17-APR-1981
	01-MAY-1981 02-APR-1981 17 18-APR-1981
	01-MAY-1981 02-APR-1981 18 19-APR-1981
	01-MAY-1981 02-APR-1981 19 20-APR-1981
	01-MAY-1981 02-APR-1981 20 21-APR-1981
	01-MAY-1981 02-APR-1981 21 22-APR-1981
	01-MAY-1981 02-APR-1981 22 23-APR-1981
	01-MAY-1981 02-APR-1981 23 24-APR-1981
	01-MAY-1981 02-APR-1981 24 25-APR-1981
	01-MAY-1981 02-APR-1981 25 26-APR-1981
	01-MAY-1981 02-APR-1981 26 27-APR-1981
	01-MAY-1981 02-APR-1981 27 28-APR-1981
	01-MAY-1981 02-APR-1981 28 29-APR-1981
	01-MAY-1981 02-APR-1981 29 30-APR-1981
	01-MAY-1981 02-APR-1981 30 01-MAY-1981
If you examine the WHERE clause, you’ll notice that you add 1 to
 the difference between BLAKE_HD and JONES_HD to generate the required
 30 rows (otherwise, you would get 29 rows). You’ll also notice that
 you subtract 1 from T500.ID in the SELECT list of the outer query,
 since the values for ID start at 1 and adding 1 to JONES_HD would
 cause JONES_HD to be excluded from the final count.
Once you generate the number of rows required for the result
 set, use a CASE expression to “flag” whether or not each of the
 days returned are weekdays or weekends (return a 1 for a
 weekday and a 0 for a weekend). The final step is to use the aggregate
 function SUM to tally up the number of 1s to get the final
 answer.

8.4. Determining the Number of Months or Years Between Two
 Dates

Problem

You want to find the difference between two dates in terms of
 either months or years. For example, you want to find the number of
 months between the first and last employees hired, and you also wish
 to express that value as some number of years.

Solution

Since there are always 12 months in a year, you can find the
 number of months between two dates, and then divide by 12 to get the
 number of years. After getting comfortable with the solution, you’ll
 want to round the results up or down depending on what you want for
 the year. For example, the first HIREDATE in table EMP is
 “17-DEC-1980” and the last is “12-JAN-1983”. If you do the math on the
 years (1983 minus 1980) you get three years, yet the difference in
 months is approximately 25 (a little over two years). You should tweak
 the solution as you see fit. The solutions below will return 25 months
 and ~2 years.
DB2 and MySQL

Use the functions YEAR and MONTH to return the four-digit year and the two-digit
 month for the dates supplied:
	1 select mnth, mnth/12
	2 from (
	3 select (year(max_hd) - year(min_hd))*12 +
	4 (month(max_hd) - month(min_hd)) as mnth
	5 from (
	6 select min(hiredate) as min_hd, max(hiredate) as max_hd
	7 from emp
	8) x
	9) y

Oracle

Use the function MONTHS_BETWEEN to find the difference between two
 dates in months (to get years, simply divide by 12):
	1 select months_between(max_hd,min_hd),
	2 months_between(max_hd,min_hd)/12
	3 from (
	4 select min(hiredate) min_hd, max(hiredate) max_hd
	5 from emp
	6) x

PostgreSQL

Use the function EXTRACT to return the four-digit year and two-digit
 month for the dates supplied:
	 1 select mnth, mnth/12
	 2 from (
	 3 select (extract(year from max_hd)
	 4 extract(year from min_hd)) * 12
	 5 +
	 6 (extract(month from max_hd)
	 7 extract(month from min_hd)) as mnth
	 8 from (
	 9 select min(hiredate) as min_hd, max(hiredate) as max_hd
	10 from emp
	11) x
	12) y

SQL Server

Use the function DATEDIFF to find the difference between two dates in
 months (to get years, simply divide by 12):
	1 select datediff(month,min_hd,max_hd),
	2 datediff(month,min_hd,max_hd)/12
	3 from (
	4 select min(hiredate) min_hd, max(hiredate) max_hd
	5 from emp
	6) x

Discussion

DB2, MySQL, and PostgreSQL

Once you extract the year and month for MIN_HD and MAX_HD in
 the PostgreSQL solution, the method for finding the months and years
 between MIN_HD and MAX_HD is the same for all three RDBMs. This
 discussion will cover all three solutions. Inline view X returns the
 earliest and latest HIREDATEs in table EMP and can be seen
 below:
	select min(hiredate) as min_hd,
	 max(hiredate) as max_hd
	 from emp

	MIN_HD MAX_HD
	----------- -----------
	17-DEC-1980 12-JAN-1983
To find the months between MAX_HD and MIN_HD, multiply the
 difference in years between MIN_HD and MAX_HD by 12, then add the
 difference in months between MAX_HD and MIN_HD. If you are having
 trouble seeing how this works, return the date component for each
 date. The numeric values for the years and months are show
 below:
	select year(max_hd) as max_yr, year(min_hd) as min_yr,
	 month(max_hd) as max_mon, month(min_hd) as min_mon
	 from (
	select min(hiredate) as min_hd, max(hiredate) as max_hd
	 from emp
) x

	MAX_YR MIN_YR MAX_MON MIN_MON
	------ ---------- ---------- ----------
	 1983 1980 1 12
Looking at the results above, finding the months between
 MAX_HD and MIN_HD is simply (1983–1980)*12 + (1–12). To find the
 number of years between MIN_HD and MAX_HD, divide the number of
 months by 12. Again, depending on the results you are looking for
 you will want to round the values.

Oracle and SQL Server

Inline view X returns the earliest and latest HIREDATEs in
 table EMP and can be seen below:
	select min(hiredate) as min_hd, max(hiredate) as max_hd
	 from emp

	MIN_HD MAX_HD
	----------- -----------
	17-DEC-1980 12-JAN-1983
The functions supplied by Oracle and SQL Server (MONTHS_BETWEEN and DATEDIFF, respectively) will return
 the number of months between two given dates. To find the year, divide the
 number of months by 12.

8.5. Determining the Number of Seconds, Minutes, or Hours Between Two
 Dates

Problem

You want to return the difference in seconds between two dates.
 For example, you want to return the difference between the HIREDATEs
 of ALLEN and WARD in seconds, minutes, and hours.

Solution

If you can find the number of days between two dates, you can find seconds, minutes,
 and hours as they are the units of time that make up a day.
DB2

Use the function DAYS to find the difference between ALLEN_HD
 and WARD_HD in days. Then multiply to find each unit of time:
	 1 select dy*24 hr, dy*24*60 min, dy*24*60*60 sec
	 2 from (
	 3 select (days(max(case when ename = 'WARD'
	 4 then hiredate
	 5 end)) -
	 6 days(max(case when ename = 'ALLEN'
	 7 then hiredate
	 8 end))
	 9) as dy
	10 from emp
	11) x

MySQL and SQL Server

Use the DATEDIFF function to return the number of days between
 ALLEN_HD and WARD_HD. Then multiply to find each unit of
 time:
	 1 select datediff(day,allen_hd,ward_hd)*24 hr,
	 2 datediff(day,allen_hd,ward_hd)*24*60 min,
	 3 datediff(day,allen_hd,ward_hd)*24*60*60 sec
	 4 from (
	 5 select max(case when ename = 'WARD'
	 6 then hiredate
	 7 end) as ward_hd,
	 8 max(case when ename = 'ALLEN'
	 9 then hiredate
	10 end) as allen_hd
	11 from emp
	12) x

Oracle and PostgreSQL

Use subtraction to return the number of days between ALLEN_HD
 and WARD_ HD. Then multiply to find each unit of time:
	 1 select dy*24 as hr, dy*24*60 as min, dy*24*60*60 as sec
	 2 from (
	 3 select (max(case when ename = 'WARD'
	 4 then hiredate
	 5 end) -
	 6 max(case when ename = 'ALLEN'
	 7 then hiredate
	 8 end)) as dy
	 9 from emp
	10) x

Discussion

Inline view X for all solutions returns the HIREDATEs for WARD
 and ALLEN, as can be seen below:
	select max(case when ename = 'WARD'
	 then hiredate
	 end) as ward_hd,
	 max(case when ename = 'ALLEN'
	 then hiredate
	 end) as allen_hd
	 from emp

	WARD_HD ALLEN_HD
	----------- -----------
	22-FEB-1981 20-FEB-1981
Multiply the number of days between WARD_HD and ALLEN_HD by 24
 (hours in a day), 1440 (minutes in a day), and 86400 (seconds in a
 day).

8.6. Counting the Occurrences of Weekdays in a Year

Problem

You want to count the number of times each weekday occurs in one
 year.

Solution

To find the number of occurrences of each weekday in a year, you
 must:
	Generate all possible dates in the year.

	Format the dates such that they resolve to the name of their
 respective weekdays.

	Count the occurrence of each weekday name.

DB2

Use recursive WITH to avoid the need to SELECT against a table with at least 366 rows. Use the
 function DAYNAME to obtain the weekday name for each date, and then
 count the occurrence of each:
	 1 with x (start_date,end_date)
	 2 as (
	 3 select start_date,
	 4 start_date + 1 year end_date
	 5 from (
	 6 select (current_date
	 7 dayofyear(current_date) day)
	 8 +1 day as start_date
	 9 from t1
	10) tmp
	11 union all
	12 select start_date + 1 day, end_date
	13 from x
	14 where start_date + 1 day < end_date
	15)
	16 select dayname(start_date),count(*)
	17 from x
	18 group by dayname(start_date)

MySQL

Select against table T500 to generate enough rows to return
 every day in the year. Use the DATE_FORMAT function to obtain the weekday name of
 each date, and then count the occurrence of each name:
	 1 select date_format(
	 2 date_add(
	 3 cast(
	 4 concat(year(current_date),'-01-01')
	 5 as date),
	 6 interval t500.id-1 day),
	 7 '%W') day,
	 8 count(*)
	 9 from t500
	10 where t500.id <= datediff(
	11 cast(
	12 concat(year(current_date)+1,'-01-01')
	13 as date),
	14 cast(
	15 concat(year(current_date),'-01-01')
	16 as date))
	17 group by date_format(
	18 date_add(
	19 cast(
	20 concat(year(current_date),'-01-01')
	21 as date),
	22 interval t500.id-1 day),
	23 '%W')

Oracle

If you are on Oracle9 i Database or
 later, you can use the recursive CONNECT BY to return each day in a year. If you are on Oracle8
 i Database or earlier, select against table
 T500 to generate enough rows to return every day in a year. In
 either case, use the TO_CHAR function to obtain the weekday name of
 each date, and then count the occurrence of each name.
First, the CONNECT BY solution:
	 1 with x as (
	 2 select level lvl
	 3 from dual
	 4 connect by level <= (
	 5 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
	 6)
	 7)
	 8 select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)
	 9 from x
	10 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')
and next, the solution for older releases of Oracle:
	1 select to_char(trunc(sysdate,'y')+rownum-1,'DAY'),
	2 count(*)
	3 from t500
	4 where rownum <= (add_months(trunc(sysdate,'y'),12)
	5 - trunc(sysdate,'y'))
	6 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

PostgreSQL

Use the built-in function GENERATE_SERIES to generate one rows
 for every day in the year. Then use the TO_CHAR function to obtain
 the weekday name of each date. Finally, count the occurrence of each
 weekday name. For example:
	 1 select to_char(
	 2 cast(
	 3 date_trunc('year',current_date)
	 4 as date) + gs.id-1,'DAY'),
	 5 count(*)
	 6 from generate_series(1,366) gs(id)
	 7 where gs.id <= (cast
	 8 (date_trunc('year',current_date) +
	 9 interval '12 month' as date) -
	10 cast(date_trunc('year',current_date)
	11 as date))
	12 group by to_char(
	13 cast(
	14 date_trunc('year',current_date)
	15 as date) + gs.id-1,'DAY')

SQL Server

Use the recursive WITH to avoid the need to SELECT against a table with at least 366 rows. If you are on
 a version of SQL Server that does not support the WITH clause, see
 the alternative Oracle solution as a guideline for using a pivot
 table. Use the DATENAME function to obtain the weekday name of each
 date, and then count the occurrence of each name. For
 example:
	 1 with x (start_date,end_date)
	 2 as (
	 3 select start_date,
	 4 dateadd(year,1,start_date) end_date
	 5 from (
	 6 select cast(
	 7 cast(year(getdate()) as varchar) + '-01-01'
	 8 as datetime) start_date
	 9 from t1
	10) tmp
	11 union all
	12 select dateadd(day,1,start_date), end_date
	13 from x
	14 where dateadd(day,1,start_date) < end_date
	15)
	16 select datename(dw,start_date),count(*)
	17 from x
	18 group by datename(dw,start_date)
	19 OPTION (MAXRECURSION 366)

Discussion

DB2

Inline view TMP, in the recursive WITH view X, returns the
 first day of the current year and is shown below:
	select (current_date
	 dayofyear(current_date) day)
	 +1 day as start_date
	 from t1

	START_DATE

	01-JAN-2005
The next step is to add one year to START_DATE, so that you
 have the beginning and end dates. You need to know both because you
 want to generate every day in a year. START_DATE and END_DATE are
 shown below:
	select start_date,
	 start_date + 1 year end_date
	 from (
	select (current_date
	 dayofyear(current_date) day)
	 +1 day as start_date
	 from t1
) tmp

	START_DATE END_DATE
	----------- ------------
	01-JAN-2005 01-JAN-2006
The next step is to recursively increment START_DATE by one
 day, stopping before it equals END_DATE. A portion of the rows
 returned by the recursive view X is shown below:
	with x (start_date,end_date)
	as (
	select start_date,
	 start_date + 1 year end_date
	 from (
	select (current_date -
	 dayofyear(current_date) day)
	 +1 day as start_date
	 from t1
) tmp
	 union all
	select start_date + 1 day, end_date
	 from x
	 where start_date + 1 day < end_date
)
	select * from x

	START_DATE END_DATE
	----------- -----------
	01-JAN-2005 01-JAN-2006
	02-JAN-2005 01-JAN-2006
	03-JAN-2005 01-JAN-2006
	…
	29-JAN-2005 01-JAN-2006
	30-JAN-2005 01-JAN-2006
	31-JAN-2005 01-JAN-2006
	…
	01-DEC-2005 01-JAN-2006
	02-DEC-2005 01-JAN-2006
	03-DEC-2005 01-JAN-2006
	…
	29-DEC-2005 01-JAN-2006
	30-DEC-2005 01-JAN-2006
	31-DEC-2005 01-JAN-2006
The final step is to use the function DAYNAME on the rows
 returned by the recursive view X, and count how many times each
 weekday occurs. The final result is shown below:
	with x (start_date,end_date)
	as (
	select start_date,
	 start_date + 1 year end_date
	 from (
	select (
 current_date -
	 dayofyear(current_date) day)
	 +1 day as start_date
	 from t1
) tmp
	 union all
	select start_date + 1 day, end_date
	 from x
	 where start_date + 1 day < end_date
)
	select dayname(start_date),count(*)
	 from x
	 group by dayname(start_date)

	START_DATE COUNT(*)
	---------- ----------
	FRIDAY 52
	MONDAY 52
	SATURDAY 53
	SUNDAY 52
	THURSDAY 52
	TUESDAY 52
	WEDNESDAY 52

MySQL

This solution selects against table T500 to generate one row
 for every day in the year. The command on line 4 returns the first
 day of the current year. It does this by returning the year of the
 date returned by the function CURRENT_DATE, and then appending a
 month and day (following MySQL’s default date format). The result is
 shown below:
	select concat(year(current_date),'-01-01')
	 from t1

	START_DATE

	01-JAN-2005
Now that you have the first day in the current year, use the
 DATEADD function to add each value from T500.IDto
 generate each day in the year. Use the function DATE_FORMAT to return the weekday for each date. To
 generate the required number of rows from table T500, find the
 difference in days between the first day of the current year and the
 first day of the next year, and return that many rows (will be
 either 365 or 366). A portion of the results is shown below:
	select date_format(
	 date_add(
	 cast(
	 concat(year(current_date),'-01-01')
	 as date),
	 interval t500.id-1 day),
	 '%W') day
	 from t500
	 where t500.id <= datediff(
	 cast(
	 concat(year(current_date)+1,'-01-01')
	 as date),
	 cast(
	 concat(year(current_date),'-01-01')
	 as date))

	DAY

	01-JAN-2005
	02-JAN-2005
	03-JAN-2005
	…
	29-JAN-2005
	30-JAN-2005
	31-JAN-2005
	…
	01-DEC-2005
	02-DEC-2005
	03-DEC-2005
	…
	29-DEC-2005
	30-DEC-2005
	31-DEC-2005
Now that you can return every day in the current year, count
 the occurrences of each weekday returned by the function DAYNAME.
 The final results are shown below:
	select date_format(
	 date_add(
	 cast(
	 concat(year(current_date),'-01-01')
	 as date),
	 interval t500.id-1 day),
	 '%W') day,
	 count(*)
	 from t500
	 where t500.id <= datediff(
	 cast(
	 concat(year(current_date)+1,'-01-01')
	 as date),
	 cast(
	 concat(year(current_date),'-01-01')
	 as date))
	 group by date_format(
	 date_add(
	 cast(
	 concat(year(current_date),'-01-01')
	 as date),
	 interval t500.id-1 day),
	 '%W')

	DAY COUNT(*)
	--------- ----------
	FRIDAY 52
	MONDAY 52
	SATURDAY 53
	SUNDAY 52
	THURSDAY 52
	TUESDAY 52
	WEDNESDAY 52

Oracle

The solutions provided either select against table T500 (a
 pivot table), or use the recursive CONNECT BY and WITH, to generate
 a row for every day in the current year. The call to the function
 TRUNC truncates the current date to the first day of
 the current year.
If you are using the CONNECT BY/WITH solution, you can use the
 pseudo-column LEVEL to generate sequential numbers beginning at 1.
 To generate the required number of rows needed for this solution,
 filter ROWNUM or LEVEL on the difference in days between the first
 day of the current year and the first day of the next year (will be
 365 or 366 days). The next step is to increment each day by adding
 ROWNUM or LEVEL to the first day of the current year. Partial
 results are shown below:
	/* Oracle 9i and later */
	with x as (
	select level lvl
	 from dual
	 connect by level <= (
	 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
)
	select trunc(sysdate,'y')+lvl-1	 from x
If you are using the pivot-table solution, you can use any
 table or view with at least 366 rows in it. And since Oracle has
 ROWNUM, there’s no need for a table with incrementing values
 starting from 1. Consider the following example, which uses pivot
 table T500 to return every day in the current year:
	/* Oracle 8i and earlier */
	select trunc(sysdate,'y')+rownum-1 start_date
	 from t500
	 where rownum <= (add_months(trunc(sysdate,'y'),12)
	 - trunc(sysdate,'y'))

	START_DATE

	01-JAN-2005
	02-JAN-2005
	03-JAN-2005
	…
	29-JAN-2005
	30-JAN-2005
	31-JAN-2005
	…
	01-DEC-2005
	02-DEC-2005
	03-DEC-2005
	…
	29-DEC-2005
	30-DEC-2005
	31-DEC-2005
Regardless of which approach you take, you eventually
 must use the function TO_ CHAR to return the weekday name for each
 date, and then count the occurrence of each name. The final results
 are shown below:
	/* Oracle 9i and later */
	with x as (
	select level lvl
	 from dual
	 connect by level <= (
	 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
)
	select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)
	 from x
	 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

	/* Oracle 8i and earlier */
	select to_char(trunc(sysdate,'y')+rownum-1,'DAY') start_date,
	 count(*)
	 from t500
	 where rownum <= (add_months(trunc(sysdate,'y'),12)
	 - trunc(sysdate,'y'))
	 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

	START_DATE COUNT(*)
	---------- ----------
	FRIDAY 52
	MONDAY 52
	SATURDAY 53
	SUNDAY 52
	THURSDAY 52
	TUESDAY 52
	WEDNESDAY 52

PostgreSQL

The first step is to use the DATE_TRUNC function to return the year of the current
 date (shown below, selecting against T1 so only one row is
 returned):
	select cast(
	 date_trunc('year',current_date)
	 as date) as start_date
	 from t1

	 START_DATE

	 01-JAN-2005
The next step is to select against a row source (any table
 expression, really) with at least 366 rows. The solution uses the
 function GENERATE_SERIES as the row source. You can, of course, use
 table T500 instead. Then add one day to the first day of the current
 year until you return every day in the year (shown below):
	select cast(date_trunc('year',current_date)
	 as date) + gs.id-1 as start_date
	 from generate_series (1,366) gs(id)
	 where gs.id <= (cast
	 (date_trunc('year',current_date) +
	 interval '12 month' as date) -
	 cast(date_trunc('year',current_date)
	 as date))

	START_DATE

	01-JAN-2005
	02-JAN-2005
	03-JAN-2005
	…
	29-JAN-2005
	30-JAN-2005
	31-JAN-2005
	…
	01-DEC-2005
	02-DEC-2005
	03-DEC-2005
	…
	29-DEC-2005
	30-DEC-2005
	31-DEC-2005
The final step is to use the function TO_CHAR to return the
 weekday name for each date, and then count the occurrence of each
 name. The final results are shown below:
	select to_char(
	 cast(
	 date_trunc('year',current_date)
	 as date) + gs.id-1,'DAY') as start_dates,
	 count(*)
	 from generate_series(1,366) gs(id)
	 where gs.id <= (cast
	 (date_trunc('year',current_date) +
	 interval '12 month' as date) -
	 cast(date_trunc('year',current_date)
	 as date))
	 group by to_char(
	 cast(
	 date_trunc('year',current_date)
	 as date) + gs.id-1,'DAY')

	START_DATE COUNT(*)
	---------- ----------
	FRIDAY 52
	MONDAY 52
	SATURDAY 53
	SUNDAY 52
	THURSDAY 52
	TUESDAY 52
	WEDNESDAY 52

SQL Server

Inline view TMP, in the recursive WITH view X, returns the
 first day of the current year and is shown below:
	select cast(
	 cast(year(getdate()) as varchar) + '-01-01'
	 as datetime) start_date
	 from t1

	START_DATE

	01-JAN-2005
Once you return the first day of the current year, add one
 year to START_DATE so that you have the beginning and end dates. You
 need to know both because you want to generate every day in a year.
 START_DATE and END_DATE are shown below:
	select start_date,
	 dateadd(year,1,start_date) end_date
	 from (
	select cast(
	 cast(year(getdate()) as varchar) + '-01-01'
	 as datetime) start_date
	 from t1
) tmp

	START_DATE END_DATE
	----------- -----------
	01-JAN-2005 01-JAN-2006
Next, recursively increment START_DATE by one day and stop before it
 equals END_DATE. A portion of the rows returned by the recursive
 view X is shown below:
	with x (start_date,end_date)
	 as (
	 select start_date,
	 dateadd(year,1,start_date) end_date
	 from (
	 select cast(
	 cast(year(getdate()) as varchar) + '-01-01'
	 as datetime) start_date
	 from t1
) tmp
	 union all
	 select dateadd(day,1,start_date), end_date
	 from x
	 where dateadd(day,1,start_date) < end_date
)
	 select * from x
	 OPTION (MAXRECURSION 366)

	START_DATE END_DATE
	----------- -----------
	01-JAN-2005 01-JAN-2006
	02-JAN-2005 01-JAN-2006
	03-JAN-2005 01-JAN-2006
	…
	29-JAN-2005 01-JAN-2006
	30-JAN-2005 01-JAN-2006
	31-JAN-2005 01-JAN-2006
	…
	01-DEC-2005 01-JAN-2006
	02-DEC-2005 01-JAN-2006
	03-DEC-2005 01-JAN-2006
	…
	29-DEC-2005 01-JAN-2006
	30-DEC-2005 01-JAN-2006
	31-DEC-2005 01-JAN-2006
The final step is to use the function DATENAME on the rows returned by the recursive view X
 and count how many times each weekday occurs. The final result is
 shown below:
	with x(start_date,end_date)
	 as (
	 select start_date,
	 dateadd(year,1,start_date) end_date
	 from (
	 select cast(
	 cast(year(getdate()) as varchar) + '-01-01'
	 as datetime) start_date
	 from t1
) tmp
	 union all
	 select dateadd(day,1,start_date), end_date
	 from x
	 where dateadd(day,1,start_date) < end_date
)
	 select datename(dw,start_date), count(*)
	 from x
	 group by datename(dw,start_date)
	 OPTION (MAXRECURSION 366)

	START_DATE COUNT(*)
	--------- ----------
	FRIDAY 52
	MONDAY 52
	SATURDAY 53
	SUNDAY 52
	THURSDAY 52
	TUESDAY 52
	WEDNESDAY 52

8.7. Determining the Date Difference Between the Current Record and
 the Next Record

Problem

You want to determine the difference in days between two dates
 (specifically dates stored in two different rows). For example, for
 every employee in DEPTNO 10, you want to determine the number of days
 between the day they were hired and the day the next employee (can be
 in another department) was hired.

Solution

The trick to this problem’s solution is to find the earliest
 HIREDATE after the current employee was hired. After that, simply use
 the technique from “Determining the Number of Days between Two Dates”
 to find the difference in days.
DB2

Use a scalar subquery to find the next HIREDATE relative to
 the current HIREDATE. Then use the DAYS function to find the difference in days:
	1 select x.*,
	2 days(x.next_hd) - days(x.hiredate) diff
	3 from (
	4 select e.deptno, e.ename, e.hiredate,
	5 (select min(d.hiredate) from emp d
	6 where d.hiredate > e.hiredate) next_hd
	7 from emp e
	8 where e.deptno = 10
	9) x

MySQL and SQL Server

Use a scalar subquery to find the next HIREDATE relative to
 the current HIREDATE. Then use the DATEDIFF function to find the difference in days. The SQL Server version of DATEDIFF
 is used below:
	1 select x.*,
	2 datediff(day,x.hiredate,x.next_hd) diff
	3 from (
	4 select e.deptno, e.ename, e.hiredate,
	5 (select min(d.hiredate) from emp d
	6 where d.hiredate > e.hiredate) next_hd
	7 from emp e
	8 where e.deptno = 10
	9) x
MySQL users can exclude the first argument (“day”) and switch
 the order of the two remaining arguments:
	2 datediff(x.next_hd, x.hiredate) diff

Oracle

If you’re on Oracle8 i Database or later,
 use the window function LEAD OVER to access the next HIREDATE relative to the
 current row, thus facilitating subtraction:
	1 select ename, hiredate, next_hd,
	2 next_hd - hiredate diff
	3 from (
	4 select deptno, ename, hiredate,
	5 lead(hiredate)over(order by hiredate) next_hd
	6 from emp
	7)
	8 where deptno=10
If you are on Oracle8 Database or earlier, you can use the
 PostgreSQL solution as an alternative.

PostgreSQL

Use a scalar subquery to find the next HIREDATE relative to
 the current HIREDATE. Then use simple subtraction to find the
 difference in days:
	1 select x.*,
	2 x.next_hd - x.hiredate as diff
	3 from (
	4 select e.deptno, e.ename, e.hiredate,
	5 (select min(d.hiredate) from emp d
	6 where d.hiredate > e.hiredate) as next_hd
	7 from emp e
	8 where e.deptno = 10
	9) x

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

Despite the differences in syntax, the approach is the same for
 all these solutions: use a scalar subquery to find the next HIREDATE
 relative to the current HIREDATE, and then find the difference in
 days between the two using the technique described in “Determining
 the Number of Days Between Two Dates,” found earlier in this
 chapter.

Oracle

The window function LEAD OVER is extremely useful here as it allows you to
 access “future” rows (“future” determined by the ORDER BY clause,
 relative to the current row). The ability to access rows around your
 current row without additional joins provides for more readable and
 efficient code. When working with window functions, keep in mind
 that they are evaluated after the WHERE clause, hence the need for
 an inline view in the solution. If you were to move the filter on
 DEPTNO into the inline view, the results would change (only the
 HIREDATEs from DEPTNO 10 would be considered). One important note to
 mention about Oracle’s LEAD and LAG functions is their behavior in the presence of
 duplicates. In the preface I mention that these recipes are not
 coded “defensively” because there are too many conditions that one
 can’t possibly foresee that can break code. Or, even if one can
 foresee every problem, sometimes the resulting SQL becomes
 unreadable. So in most cases, the goal of a solution is to introduce
 a technique: one that you can use in your production system, but
 that must be tested and many times tweaked to work for your
 particular data. In this case, though, there is a situation that I
 will discuss simply because the workaround may not be all that
 obvious, particularly for those coming from non-Oracle systems. In
 this example there are no duplicate HIREDATEs in table EMP, but it
 is certainly possible (and probably likely) that there are duplicate
 date values in your tables. Consider the employees in DEPTNO 10 and
 their HIREDATEs:
	select ename, hiredate
	 from emp
	 where deptno=10
	 order by 2

	ENAME HIREDATE
	------ -----------
	CLARK 09-JUN-1981
	KING 17-NOV-1981
	MILLER 23-JAN-1982
For the sake of this example, let’s insert four duplicates
 such that there are five employees (including KING) hired on
 November 17:
	insert into emp (empno,ename,deptno,hiredate)
	values (1,'ant',10,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,hiredate)
	values (2,'joe',10,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,hiredate)
	values (3,'jim',10,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,hiredate)
	values (4,'choi',10,to_date('17-NOV-1981'))

	select ename, hiredate
	 from emp
	 where deptno=10
	 order by 2

	ENAME HIREDATE
	------ -----------
	CLARK 09-JUN-1981
	ant 17-NOV-1981
	joe 17-NOV-1981
	KING 17-NOV-1981
	jim 17-NOV-1981
	choi 17-NOV-1981
	MILLER 23-JAN-1982
Now there are multiple employees in DEPTNO 10 hired on the
 same day. If you try to use the proposed solution (moving the filter
 into the inline view so you only are concerned with employees in
 DEPTNO 10 and their HIREDATEs) on this result set you get the
 following output:
	select ename, hiredate, next_hd,
	 next_hd - hiredate diff
	 from (
	select deptno, ename, hiredate,
	 lead(hiredate)over(order by hiredate) next_hd
	 from emp
	 where deptno=10
)

	ENAME HIREDATE NEXT_HD DIFF
	------ ----------- ----------- ----------
	CLARK 09-JUN-1981 17-NOV-1981 161
	ant 17-NOV-1981 17-NOV-1981 0
	joe 17-NOV-1981 17-NOV-1981 0
	KING 17-NOV-1981 17-NOV-1981 0
	jim 17-NOV-1981 17-NOV-1981 0
	choi 17-NOV-1981 23-JAN-1982 67
	MILLER 23-JAN-1982 (null) (null)
Looking at the values of DIFF for four of the five employees
 hired on the same day, you can see that the value is zero. This is
 not correct. All employees hired on the same day should have their
 dates evaluated against the HIREDATE of the next date on which an
 employee was hired, i.e., all employees hired on November 17 should
 be evaluated against MILLER’s HIREDATE. The problem here is that the
 LEAD function orders the rows by HIREDATE but does not
 skip duplicates. So, for example, when employee ANT’s HIREDATE is
 evaluated against employee JOE’s HIREDATE, the difference is zero, hence a DIFF value of zero for
 ANT. Fortunately, Oracle has provided an easy workaround for
 situations like this one. When invoking the LEAD function, you can
 pass an argument to LEAD to specify exactly where the future row is
 (i.e., is it the next row, 10 rows later, etc.). So, looking at
 employee ANT, instead of looking ahead one row you need to look
 ahead five rows (you want to jump over all the other duplicates),
 because that’s where MILLER is. If you look at employee JOE, he is
 four rows from MILLER, JIM is three rows from MILLER, KING is two
 rows from MILLER and, pretty boy CHOI is one row from MILLER. To get
 the correct answer, simply pass the distance from each employee to
 MILLER as an argument to LEAD. The solution is shown below:
	select ename, hiredate, next_hd,
	 next_hd - hiredate diff
	 from (
	select deptno, ename, hiredate,
	 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd
	 from (
	select deptno,ename,hiredate,
	 count(*)over(partition by hiredate) cnt,
	 row_number()over(partition by hiredate order by empno) rn
	 from emp
	 where deptno=10
)
)

	ENAME HIREDATE NEXT_HD DIFF
	------ ----------- ----------- ----------
	CLARK 09-JUN-1981 17-NOV-1981 161
	ant 17-NOV-1981 23-JAN-1982 67
	joe 17-NOV-1981 23-JAN-1982 67
	jim 17-NOV-1981 23-JAN-1982 67
	choi 17-NOV-1981 23-JAN-1982 67
	KING 17-NOV-1981 23-JAN-1982 67
 	MILLER 23-JAN-1982 (null) (null)
Now the results are correct. All the employees hired on the
 same day have their HIREDATEs evaluated against the next HIREDATE,
 not a HIREDATE that matches their own. If the workaround isn’t
 immediately obvious, simply break down the query. Start with the
 inline view:
	select deptno,ename,hiredate,
	 count(*)over(partition by hiredate) cnt,
	 row_number()over(partition by hiredate order by empno) rn
	 from emp
	 where deptno=10

	DEPTNO ENAME HIREDATE CNT RN
	------ ------ ----------- ---------- ----------
	 10 CLARK 09-JUN-1981 1 1
	 10 ant 17-NOV-1981 5 1
	 10 joe 17-NOV-1981 5 2
	 10 jim 17-NOV-1981 5 3
	 10 choi 17-NOV-1981 5 4
	 10 KING 17-NOV-1981 5 5
	 10 MILLER 23-JAN-1982 1 1
The window function COUNT OVER counts the number of times each
 HIREDATE occurs and returns this value to each row. For the
 duplicate HIREDATEs, a value of 5 is returned for each row with that
 HIREDATE. The window function ROW_ NUMBER OVER ranks each employee
 by EMPNO. The ranking is partitioned by HIREDATE, so unless there
 are duplicate HIREDATEs each employee will have a rank of 1. At this
 point, all the duplicates have been counted and ranked and the
 ranking can serve as the distance to the next HIREDATE (MILLER’s
 HIREDATE). You can see this by subtracting RN from CNT and adding 1
 for each row when calling LEAD:
	select deptno, ename, hiredate,
	 cnt-rn+1 distance_to_miller,
	 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd
	 from (
	select deptno,ename,hiredate,
	 count(*)over(partition by hiredate) cnt,
	 row_number()over(partition by hiredate order by empno) rn
	 from emp
	 where deptno=10
)

	DEPTNO ENAME HIREDATE DISTANCE_TO_MILLER NEXT_HD
	------ ------ ----------- ------------------ -----------
	 10 CLARK 09-JUN-1981 1 17-NOV-1981
	 10 ant 17-NOV-1981 5 23-JAN-1982
	 10 joe 17-NOV-1981 4 23-JAN-1982
	 10 jim 17-NOV-1981 3 23-JAN-1982
	 10 choi 17-NOV-1981 2 23-JAN-1982
	 10 KING 17-NOV-1981 1 23-JAN-1982
	 10 MILLER 23-JAN-1982 1 (null)
As you can see, by passing the appropriate distance to jump
 ahead to, the LEAD function performs the subtraction on the correct
 dates.

Chapter 9. Date Manipulation

This chapter introduces recipes for searching and modifying
 dates. Queries involving dates are very common. Thus, you need to know how
 to think when working with dates, and you need to have a good
 understanding of the functions that your RDBMS platform provides for
 manipulating them. The recipes in this chapter form an important
 foundation for future work as you move on to more complex queries
 involving not only dates, but times too.
Before getting into the recipes, I want to reinforce the concept
 (that I mentioned in the Preface) of using these solutions as guidelines
 to solving your specific problems. Try to think “big picture.” For
 example, if a recipe solves a problem for the current month, keep in mind
 that you may be able to use the recipe for any month (with minor
 modifications), not just the month used in the recipe. Again, I want you
 to use these recipes as guidelines, not as the absolute final option.
 There’s no possible way a book can contain an answer for all your
 problems, but if you understand what is presented here, modifying these
 solutions to fit your needs is trivial. I also urge you to consider
 alternative versions of the solutions I’ve provided. For instance, if I
 solve a problem using one particular function provided by your RDBMS, it
 is worth the time and effort to find out if there is an alternative—maybe
 one that is more or less efficient than what is presented here. Knowing
 what options you have will make you a better SQL programmer.
Tip
The recipes presented in this chapter use simple date data types.
 If you are using more complex date data types you will need to adjust
 the solutions accordingly.

9.1. Determining if a Year Is a Leap Year

Problem

You want to determine whether or not the current year is a leap
 year.

Solution

If you’ve worked on SQL for some time, there’s no doubt that
 you’ve come across several techniques for solving this problem. Just
 about all the solutions I’ve encountered work well, but the one
 presented in this recipe is probably the simplest. This solution
 simply checks the last day of February; if it is the 29th then the
 current year is a leap year.
DB2

Use the recursive WITH clause to return each day in February.
 Use the aggregate function MAX to determine the last day in
 February.
	 1 with x (dy,mth)
	 2 as (
	 3 select dy, month(dy)
	 4 from (
	 5 select (current_date -
	 6 dayofyear(current_date) days +1 days)
	 7 +1 months as dy
	 8 from t1
	 9) tmp1
	10 union all
	11 select dy+1 days, mth
	12 from x
	13 where month(dy+1 day) = mth
	14)
	15 select max(day(dy))
	16 from x

Oracle

Use the function LAST_DAY to find the last day in February:
	1 select to_char(
	2 last_day(add_months(trunc(sysdate,'y'),1)),
	3 'DD')
	4 from t1

PostgreSQL

Use the function GENERATE_SERIES to return each day in
 February, then use the aggregate function MAX to find the last day
 in February:
	 1 select max(to_char(tmp2.dy+x.id,'DD')) as dy
	 2 from (
	 3 select dy, to_char(dy,'MM') as mth
	 4 from (
	 5 select cast(cast(
	 6 date_trunc('year',current_date) as date)
	 7 + interval '1 month' as date) as dy
	 8 from t1
	 9) tmp1
	10) tmp2, generate_series (0,29) x(id)
	11 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

MySQL

Use the function LAST_DAY to find the last day in February:
	1 select day(
	2 last_day(
	3 date_add(
	4 date_add(
	5 date_add(current_date,
	6 interval -dayofyear(current_date) day),
	7 interval 1 day),
	8 interval 1 month))) dy
	9 from t1

SQL Server

Use the recursive WITH clause to return each day in February.
 Use the aggregate function MAX to determine the last day in
 February:
	 1 with x (dy,mth)
	 2 as (
	 3 select dy, month(dy)
	 4 from (
	 5 select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
	 6 from t1
	 7) tmp1
	 8 union all
	 9 select dateadd(dd,1,dy), mth
	10 from x
	11 where month(dateadd(dd,1,dy)) = mth
	12)
	13 select max(day(dy))
	14 from x

Discussion

DB2

The inline view TMP1 in the recursive view X returns the first
 day in February by:
	Starting with the current date

	Using DAYOFYEAR to determine the number of days into the
 current year that the current date represents

	Subtracting that number of days from the current date to
 get December 31 of the prior year, and then adding one to get to
 January 1 of the current year

	Adding one month to get to February 1

The result of all this math is shown below:
	 select (current_date
	 dayofyear(current_date) days +1 days) +1 months as dy
	 from t1

	DY

	01-FEB-2005
The next step is to return the month of the date returned by
 inline view TMP1 by using the MONTH function:
	select dy, month(dy) as mth
	 from (
	select (current_date
	 dayofyear(current_date) days +1 days) +1 months as dy
	 from t1
) tmp1

	DY MTH
	----------- ---
	01-FEB-2005 2
The results presented thus far provide the start point for the
 recursive operation that generates each day in February. To return
 each day in February, repeatedly add one day to DY until you are no
 longer in the month of February. A portion of the results of the
 WITH operation is shown below:
	 with x (dy,mth)
	 as (
	select dy, month(dy)
	 from (
	select (current_date -
	 dayofyear(current_date) days +1 days) +1 months as dy
	 from t1
) tmp1
	 union all
	 select dy+1 days, mth
	 from x
	 where month(dy+1 day) = mth
)
	 select dy,mth
	 from x

	DY MTH
	----------- ---
	01-FEB-2005 2
	…
	10-FEB-2005 2
	…
	28-FEB-2005 2
The final step is to use the MAX function on the DY column to
 return the last day in February; if it is the 29th, you are in a
 leap year.

Oracle

The first step is to find the beginning of the year using the
 TRUNC function:
	select trunc(sysdate,'y')
	 from t1

	DY

	01-JAN-2005
Because the first day of the year is January 1st, the next
 step is to add one month to get to February 1st:
	select add_months(trunc(sysdate,'y'),1) dy
	 from t1

	DY

	01-FEB-2005
The next step is to use the LAST_DAY function to find the last
 day in February:
	select last_day(add_months(trunc(sysdate,'y'),1)) dy
	 from t1

	DY

	28-FEB-2005
The final step (which is optional) is to use TO_CHAR to return
 either 28 or 29.

PostgreSQL

The first step is to examine the results returned by inline
 view TMP1. Use the DATE_TRUNC function to find the beginning of the
 current year and cast that result as a DATE:
	select cast(date_trunc('year',current_date) as date) as dy
	 from t1

	DY

	01-JAN-2005
The next step is to add one month to the first day of the
 current year to get the first day in February, casting the result as
 a date:
	select cast(cast(
	 date_trunc('year',current_date) as date)
	 + interval '1 month' as date) as dy
	 from t1

	DY

	01-FEB-2005
Next, return DY from inline view TMP1 along with the numeric
 month of DY. Return the numeric month by using the TO_CHAR
 function:
	select dy, to_char(dy,'MM') as mth
	 from (
	 select cast(cast(
	 date_trunc('year',current_date) as date)
	 + interval '1 month' as date) as dy
	 from t1
) tmp1

	DY MTH
	----------- ---
	01-FEB-2005 2
The results shown thus far comprise the result set of inline
 view TMP2. Your next step is to use the extremely useful function
 GENERATE_SERIES to return 29 rows (values 1 through 29). Every row
 returned by GENERATE_SERIES (aliased X) is added to DY from inline
 view TMP2. Partial results are shown below:
	select tmp2.dy+x.id as dy, tmp2.mth
	 from (
	select dy, to_char(dy,'MM') as mth
	 from (
	select cast(cast(
	 date_trunc('year',current_date) as date)
	 + interval '1 month' as date) as dy
	 from t1
) tmp1
) tmp2, generate_series (0,29) x(id)
	 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

	DY MTH
	----------- ---
	01-FEB-2005 02
	…
	10-FEB-2005 02
	…
	28-FEB-2005 02
The final step is to use the MAX function to return the last
 day in February. The function TO_CHAR is applied to that value and
 will return either 28 or 29.

MySQL

The first step is to find the first day of the current year by
 subtracting from the current date the number of days it is into the
 year, and then adding one day. Do all of this with the DATE_ADD function:
	select date_add(
	 date_add(current_date,
	 interval -dayofyear(current_date) day),
	 interval 1 day) dy
	 from t1

	DY

	01-JAN-2005
Then add one month again using the DATE_ADD function:
	select date_add(
	 date_add(
	 date_add(current_date,
	 interval -dayofyear(current_date) day),
	 interval 1 day),
	 interval 1 month) dy
	 from t1

	DY

	01-FEB-2005
Now that you’ve made it to February, use the LAST_DAY function to find the last day of the month:
	select last_day(
	 date_add(
	 date_add(
	 date_add(current_date,
	 interval -dayofyear(current_date) day),
	 interval 1 day),
	 interval 1 month)) dy
	 from t1

	DY

	28-FEB-2005
The final step (which is optional) is to use the DAY function
 to return either a 28 or 29.

SQL Server

This solution uses the recursive WITH clause to generate each
 day in February. The first step is to find the first day of
 February. To do this, find the first day of the current year by
 subtracting from the current date the number of days it is into the
 year, and then adding one day. Once you have the first day of the
 current year, use the DATEADD function to add one month to advance
 to the first day of February:
	select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
	 from t1

	DY

	01-FEB-2005
Next, return the first day of February along with the numeric
 month for February:
	select dy, month(dy) mth
	 from (
	select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
	 from t1
) tmp1

	DY MTH
	----------- ---
	01-FEB-2005 2
Then use the recursive capabilities of the WITH clause to
 repeatedly add one day to DY from inline view TMP1 until you are no
 longer in February (partial results shown below):
	 with x (dy,mth)
	 as (
	select dy, month(dy)
	 from (
	select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
	 from t1
) tmp1
	 union all
	select dateadd(dd,1,dy), mth
	 from x
	 where month(dateadd(dd,1,dy)) = mth
)
	select dy,mth from x

	DY MTH
	----------- ---
	01-FEB-2005 02
	…
	10-FEB-2005 02
	…
	28-FEB-2005 02
Now that you can return each day in February, the final step
 is to use the MAX function to see if the last day is the 28th or
 29th. As an optional last step, you can use the DAY function to return a 28 or 29, rather than a
 date.

9.2. Determining the Number of Days in a Year

Problem

You want to count the number of days in the current year.

Solution

The number of days in the current year is the difference between the first day of the next
 year and the first day of the current year (in days). For each
 solution the steps are:
	Find the first day of the current year.

	Add one year to that date (to get the first day of the next
 year).

	Subtract the current year from the result of Step 2.

The solutions differ only in the built-in functions that you use
 to perform these steps.
DB2

Use the function DAYOFYEAR to help find the first day of the current
 year, and use DAYS to find the number of days in the current
 year:
	1 select days((curr_year + 1 year)) - days(curr_year)
	2 from (
	3 select (current_date -
	4 dayofyear(current_date) day +
	5 1 day) curr_year
	6 from t1
	7) x

Oracle

Use the function TRUNC to find the beginning of the current
 year, and use ADD_ MONTHS to then find the beginning of next
 year:
	1 selectadd_months(trunc(sysdate,'y'),12) - trunc(sysdate,'y')
	2 from dual

PostgreSQL

Use the function DATE_TRUNC to find the beginning of the
 current year. Then use interval arithmetic to determine the
 beginning of next year:
	1 select cast((curr_year + interval '1 year') as date) - curr_year
	2 from (
	3 select cast(date_trunc('year',current_date) as date) as curr_year
	4 from t1
	5) x

MySQL

Use ADDDATE to help find the beginning of the current
 year. Use DATEDIFF and interval arithmetic to determine the
 number of days in the year:
	1 select datediff((curr_year + interval 1 year),curr_year)
	2 from (
	3 select adddate(current_date,-dayofyear(current_date)+1) curr_year
	4 from t1
	5) x

SQL Server

Use the function DATEADD to find the first day of the current
 year. Use DATEDIFF to return the number of days in the
 current year:
	1 select datediff(d,curr_year,dateadd(yy,1,curr_year))
	2 from (
	3 select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year
	4 from t1
	5) x

Discussion

DB2

The first step is to find the first day of the current year.
 Use DAYOFYEAR to determine how many days you are into the current
 year. Subtract that value from the current date to get the last day
 of last year, and then add 1:
	select (current_date
	 dayofyear(current_date) day +
	 1 day) curr_year
	 from t1

	CURR_YEAR

	01-JAN-2005
Now that you have the first day of the current year, just add
 one year to it; this gives you the first day of next year. Then
 subtract the beginning of the current year from the beginning of
 next year.

Oracle

The first step is to find the first day of the current year,
 which you can easily do by invoking the built-in TRUNC function and passing ‘Y’ as the second argument
 (thereby truncating the date to the beginning of the year):
	select select trunc(sysdate,'y') curr_year
	 from dual

	CURR_YEAR

	01-JAN-2005
Then add one year to arrive at the first day of the next year.
 Finally, subtract the two dates to find the number of days in the
 current year.

PostgreSQL

Begin by finding the first day of the current year. To do
 that, invoke the DATE_ TRUNC function as follows:
	select cast(date_trunc('year',current_date) as date) as curr_year
	 from t1

	CURR_YEAR

	01-JAN-2005
You can then easily add a year to compute the first day of
 next year. Then all you need to do is to subtract the two dates. Be
 sure to subtract the earlier date from the later date. The result
 will be the number of days in the current year.

MySQL

Your first step is to find the first day of the current year.
 Use DAYOFYEAR to find how many days you are into the current year.
 Subtract that value from the current date, and add 1:
	select adddate(current_date,-dayofyear(current_date)+1) curr_year
	 from t1

	CURR_YEAR

	01-JAN-2005
Now that you have the first day of the current year, your next
 step is to add one year to it to get the first day of next year.
 Then subtract the beginning of the current year from the beginning
 of the next year. The result is the number of days in the current
 year.

SQL Server

Your first step is to find the first day of the current year.
 Use DATEADD and DATEPART to subtract from the current date the number
 of days into the year the current date is, and add 1:
	select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year
	 from t1

	CURR_YEAR

	01-JAN-2005
Now that you have the first day of the current year, your next
 step is to add one year to it get the first day of the next year.
 Then subtract the beginning of the current year from the beginning
 of the next year. The result is the number of days in the current
 year.

9.3. Extracting Units of Time from a Date

Problem

You want to break the current date down into six parts: day,
 month, year, second, minute, and hour. You want the results to be
 returned as numbers.

Solution

My use of the current date is arbitrary. Feel free to use this
 recipe with other dates. In Chapter
 1, I mention the importance of learning and taking advantage of
 the built-in functions provided by your RDBMS; this is especially true
 when it comes to working with dates. There are different ways of
 extracting units of time from a date than those presented in this
 recipe, and it would benefit you to experiment with different
 techniques and functions.
DB2

DB2 implements a set of built-in functions that make it easy
 for you to extract portions of a date. The function names HOUR, MINUTE, SECOND, DAY, MONTH, and YEAR conveniently correspond to the units of time you
 can return: if you want the day use DAY, hour use HOUR, etc. For
 example:
	1 select hour(current_timestamp) hr,
	2 minute(current_timestamp) min,
	3 second(current_timestamp) sec,
	4 day(current_timestamp) dy,
	5 month(current_timestamp) mth,
	6 year(current_timestamp) yr
	7 from t1

	 HR MIN SEC DY MTH YR
	---- ----- ----- ----- ----- -----
	 20 28 36 15 6 2005

Oracle

Use functions TO_CHAR and TO_NUMBER to return specific units of time from a
 date:
	1 select to_number(to_char(sysdate,'hh24')) hour,
	2 to_number(to_char(sysdate,'mi')) min,
	3 to_number(to_char(sysdate,'ss')) sec,
	4 to_number(to_char(sysdate,'dd')) day,
	5 to_number(to_char(sysdate,'mm')) mth,
	6 to_number(to_char(sysdate,'yyyy')) year
	7 from dual

	 HOUR MIN SEC DAY MTH YEAR
	 ---- ----- ----- ----- ----- -----
	 20 28 36 15 6 2005

PostgreSQL

Use functions TO_CHAR and TO_NUMBER to return specific units
 of time from a date:
	1 select to_number(to_char(current_timestamp,'hh24'),'99') as hr,
	2 to_number(to_char(current_timestamp,'mi'),'99') as min,
	3 to_number(to_char(current_timestamp,'ss'),'99') as sec,
	4 to_number(to_char(current_timestamp,'dd'),'99') as day,
	5 to_number(to_char(current_timestamp,'mm'),'99') as mth,
	6 to_number(to_char(current_timestamp,'yyyy'),'9999') as yr
	7 from t1
	
	 HR MIN SEC DAY MTH YR
	 ---- ----- ----- ----- ----- -----
	 20 28 36 15 6 2005

MySQL

Use the DATE_FORMAT function to return specific units of time
 from a date:
	1 select date_format(current_timestamp,'%k') hr,
	2 date_format(current_timestamp,'%i') min,
	3 date_format(current_timestamp,'%s') sec,
	4 date_format(current_timestamp,'%d') dy,
	5 date_format(current_timestamp,'%m') mon,
	6 date_format(current_timestamp,'%Y') yr
	7 from t1

	 HR MIN SEC DAY MTH YR
	---- ----- ----- ----- ----- -----
	 20 28 36 15 6 2005

SQL Server

Use the function DATEPART to return specific units of time from a
 date:
	1 select datepart(hour, getdate()) hr,
	2 datepart(minute,getdate()) min,
	3 datepart(second,getdate()) sec,
	4 datepart(day, getdate()) dy,
	5 datepart(month, getdate()) mon,
	6 datepart(year, getdate()) yr
	7 from t1

	 HR MIN SEC DAY MTH YR
	---- ----- ----- ----- ----- -----
	 20 28 36 15 6 2005

Discussion

There’s nothing fancy in these solutions; just take advantage of
 what you’re already paying for. Take the time to learn the date
 functions available to you. This recipe only scratches the surface of
 the functions presented in each solution. You’ll find that each of the
 functions takes many more arguments and can return more information
 than what this recipe provides you.

9.4. Determining the First and Last Day of a Month

Problem

You want to determine the first and last days for the current
 month.

Solution

The solutions presented here are for finding first and last days
 for the current month. Using the current month is arbitrary. With a
 bit of adjustment, you can make the solutions work for any
 month.
DB2

Use the DAY function to return the number of days into the
 current month the current date represents. Subtract this value from
 the current date, and then add 1 to get the first of the month. To
 get the last day of the month, add one month to the current date,
 then subtract from it the value returned by the DAY function as
 applied to the current date:
	1 select (date(current_date) - day(date(current_date)) day + 1 day) firstday,
	2 (date(current_date)+1 month - day(date(current_date)+1 month) day) lastday
	3 from t1

Oracle

Use the function TRUNC to find the first of the month, and the
 function LAST_DAY to find the last day of the month:
	1 select trunc(sysdate,'mm') firstday,
	2 last_day(sysdate) lastday
	3 from dual
Tip
Using TRUNC as decribed here will result in the loss of any
 time-of-day component, whereas LAST_DAY will preserve the time of
 day.

PostgreSQL

Use the DATE_TRUNC function to truncate the current date to
 the first of the current month. Once you have the first day of the
 month, add one month and subtract one day to find the end of the
 current month:
	1 select firstday,
	2 cast(firstday + interval '1 month'
	3 - interval '1 day' as date) as lastday
	4 from (
	5 select cast(date_trunc('month',current_date) as date) as firstday
	6 from t1
	7) x

MySQL

Use the DATE_ADD and DAY functions to find the number of days into the
 month the current date is. Then subtract that value from the current
 date and add 1 to find the first of the month. To find the last day
 of the current month, use the LAST_DAY function:
	1 select date_add(current_date,
	2 interval -day(current_date)+1 day) firstday,
	3 last_day(current_date) lastday
	4 from t1

SQL Server

Use the DATEADD and DAY functions to find the number of days into the
 month represented by the current date. Then subtract that value from
 the current date and add 1 to find the first of the month. To get
 the last day of the month, add one month to the current date, and
 then subtract from that result the value returned by the DAY
 function applied to the current date, again using the functions DAY
 and DATEADD:
	1 select dateadd(day,-day(getdate())+1,getdate()) firstday,
	2 dateadd(day,
	3 -day(dateadd(month,1,getdate())),
	4 dateadd(month,1,getdate())) lastday
	5 from t1

Discussion

DB2

To find the first day of the month simply find the numeric
 value of the current day of the month then subtract this from the
 current date. For example, if the date is March 14th, the numeric
 day value is 14. Subtracting 14 days from March 14th gives you the
 last day of the month in February. From there, simply add one day to
 get to the first of the current month. The technique to get the last
 day of the month is similar to that of the first; subtract the
 numeric day of the month from the current date to get the last day
 of the prior month. Since we want the last day of the current month
 (not the last day of the prior month), we need to add one month to
 the current date.

Oracle

To find the first day of the current month, use the TRUNC function with “mm” as the second argument to
 “truncate” the current date down to the first of the month. To find
 the last day of the current month, simply use the LAST_DAY
 function.

PostgreSQL

To find the first day of the current month, use the DATE_TRUNC function with “month” as the second
 argument to “truncate” the current date down to the first of the
 month. To find the last day of the current month, add one month to
 the first day of the month, and then subtract one day.

MySQL

To find the first day of the month, use the DAY function. The DAY function conveniently returns the day of the month
 for the date passed. If you subtract the value returned by
 DAY(CURRENT_DATE) from the current date, you get the last day of the
 prior month; add one day to get the first day of the current month.
 To find the last day of the current month, simply use the LAST_DAY function.

SQL Server

To find the first day of the month, use the DAY function. The
 DAY function conveniently returns the day of the month for the date
 passed. If you subtract the value returned by DAY(GETDATE()) from
 the current date, you get the last day of the prior month; add one
 day to get the first day of the current month. To find the last day
 of the current month, use the DATEADD function. Add one month to the current date,
 then subtract from it the value returned by DAY(GETDATE()) to get
 the last day of the current month. Add one month to the current
 date, then subtract from it the value returned by
 DAY(DATEADD(MONTH,1,GETDATE())) to get the last day of the current
 month.

9.5. Determining All Dates for a Particular Weekday Throughout a
 Year

Problem

You want to find all the dates in a year that correspond to a
 given day of the week. For example, you may wish to generate a list of
 Fridays for the current year.

Solution

Regardless of vendor, the key to the solution is to return each
 day for the current year and keep only those dates corresponding to
 the day of the week that you care about. The solution examples retain
 all the Fridays.
DB2

Use the recursive WITH clause to return each day in the
 current year. Then use the function DAYNAME to keep only
 Fridays:
	1 with x (dy,yr)
	2 as (
	3 select dy, year(dy) yr
	4 from (
	5 select (current_date -
	6 dayofyear(current_date) days +1 days) as dy
	7 from t1
	8) tmp1
	9 union all
 10 select dy+1 days, yr
 11 from x
 12 where year(dy +1 day) = yr
 13)
 14 select dy
 15 from x
 16 where dayname(dy) = 'Friday'

Oracle

Use the recursive CONNECT BY clause to return each day in the
 current year. Then use the function TO_CHAR to keep only
 Fridays:
	1 with x
	2 as (
	3 select trunc(sysdate,'y')+level-1 dy
	4 from t1
	5 connect by level <=
	6 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
	7)
	8 select *
	9 from x
 10 where to_char(dy, 'dy') = 'fri'

PostgreSQL

Use the function GENERATE_SERIES to return each day in the
 current year. Then use the function TO_CHAR to keep only
 Fridays:
	 1 select cast(date_trunc('year',current_date) as date)
	 2 + x.id as dy
	 3 from generate_series (
	 4 0,
	 5 (select cast(
	 6 cast(
	 7 date_trunc('year',current_date) as date)
	 8 + interval '1 years' as date)
	 9 - cast(
	10 date_trunc('year',current_date) as date))-1
	11) x(id)
	12 where to_char(
	13 cast(
	14 date_trunc('year',current_date)
	15 as date)+x.id,'dy') = 'fri'

MySQL

Use the pivot table T500 to return each day in the current
 year. Then use the function DAYNAME to keep only Fridays:
	 1 select dy
	 2 from (
	 3 select adddate(x.dy,interval t500.id-1 day) dy
	 4 from (
	 5 select dy, year(dy) yr
	 6 from (
	 7 select adddate(
	 8 adddate(current_date,
	 9 interval -dayofyear(current_date) day),
	10 interval 1 day) dy
	11 from t1
	12) tmp1
	13) x,
	14 t500
	15 where year(adddate(x.dy,interval t500.id-1 day)) = x.yr
	16) tmp2
	17 where dayname(dy) = 'Friday'

SQL Server

Use the recursive WITH clause to return each day in the
 current year. Then use the function DAYNAME to keep only
 Fridays:
	 1 with x (dy,yr)
	 2 as (
	 3 select dy, year(dy) yr
	 4 from (
	 5 select getdate()-datepart(dy,getdate())+1 dy
	 6 from t1
	 7) tmp1
	 8 union all
	 9 select dateadd(dd,1,dy), yr
	10 from x
	11 where year(dateadd(dd,1,dy)) = yr
	12)
	13 select x.dy
	14 from x
	15 where datename(dw,x.dy) = 'Friday'
	16 option (maxrecursion 400)

Discussion

DB2

To find all the Fridays in the current year, you must be able
 to return every day in the current year. The first step is to find
 the first day of the year by using the DAYOFYEAR function. Subtract
 the value returned by DAYOFYEAR(CURRENT_DATE) from the current date
 to get December 31 of the prior year, and then add 1 to get the
 first day of the current year:
	select (current_date
	 dayofyear(current_date) days +1 days) as dy
	 from t1

	DY

	01-JAN-2005
Now that you have the first day of the year, use the WITH
 clause to repeatedly add one day to the first day of the year until
 you are no longer in the current year. The result set will be every
 day in the current year (a portion of the rows returned by the
 recursive view X is shown below):
	 with x (dy,yr)
	 as (
	select dy, year(dy) yr
	 from (
	select (current_date
	 dayofyear(current_date) days +1 days) as dy
	 from t1
) tmp1
	union all
	select dy+1 days, yr
	 from x
	 where year(dy +1 day) = yr
)
	select dy
	 from x

	DY

	01-JAN-2005
	…
	15-FEB-2005
	…
	22-NOV-2005
	…
	31-DEC-2005
The final step is to use the DAYNAME function to keep only
 rows that are Fridays.

Oracle

To find all the Fridays in the current year, you must be able
 to return every day in the current year. Begin by using the TRUNC
 function to find the first day of the year:
select trunc(sysdate,'y') dy
	 from t1

	DY

	01-JAN-2005
Next, use the CONNECT BY clause to return every day in the
 current year (to understand how to use CONNECT BY to generate rows,
 see “Generating Consecutive Time and Numeric Values” in Chapter 13).
Tip
As an aside, this recipe uses the WITH clause, but you can
 also use an inline view.

At the time of this writing, Oracle’s WITH clause is not meant for recursive operations
 (unlike the case with DB2 and SQL Server); recursive operations are
 done using CONNECT BY. A portion of the result set returned by view
 X is shown below:
	 with x
	 as (
	select trunc(sysdate,'y')+level-1 dy
	from t1
	 connect by level <=
	 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
	select *
	from x

	DY

	01-JAN-2005
	…
	15-FEB-2005
	…
	22-NOV-2005
	…
	31-DEC-2005
The final step is to use the TO_CHAR function to keep only
 Fridays.

PostgreSQL

To find all the Fridays in the current year, you must be able
 to return a row for every day in the current year. To do that, use
 the GENERATE_SERIES function. The start and end values to be
 returned by GENERATE_SERIES are 0 and the number of days in the
 current year minus 1. The first parameter passed to GENERATE_SERIES
 is 0, while the second is a query that determines the number of days
 in the current year (because you are adding to the first day of the
 current year, you actually want to add 1 less than the number of
 days in the current year, so as to not spill over into the next
 year). The result returned by the second parameter of the
 GENERATE_SERIES function is shown below:
	select cast(
	 cast(
	 date_trunc('year',current_date) as date)
	 + interval '1 years' as date)
	 -cast(
	 date_trunc('year',current_date) as date)-1 as cnt
	 from t1

	CNT

	364
Keeping in mind the result set above, the call to
 GENERATE_SERIES in the FROM clause will look like this:
 GENERATE_SERIES (0, 364). If you are in a leap year, such as 2004,
 the second parameter would be 365.
The next step after generating a list of dates in the year is
 to add the values returned by GENERATE_SERIES to the first day of
 the current year. A portion of the results is shown below:
	select cast(date_trunc('year',current_date) as date)
	 + x.id as dy
	 from generate_series (
	 0,
	 (select cast(
	 cast(
	 date_trunc('year',current_date) as date)
	 + interval '1 years' as date)
	 -cast(
	 date_trunc('year',current_date) as date))-1
) x(id)

	DY

	01-JAN-2005
	…
	15-FEB-2005
	…
	22-NOV-2005
	…
	31-DEC-2005
The final step is to use the TO_CHAR function to keep only the
 Fridays.

MySQL

To find all the Fridays in the current year, you must be able
 to return every day in the current year. The first step is to find
 the first day of the year by using the DAYOF-YEAR function. Subtract
 the value returned by DAYOFYEAR(CURRENT_DATE) from the current date,
 and then add 1 to get the first day of the current year:
	select adddate(
	 adddate(current_date,
	 interval -dayofyear(current_date) day),
	 interval 1 day) dy
	 from t1

	DY

	01-JAN-2005
Then use table T500 to generate enough rows to return each day
 in the current year. You can do this by adding each value of T500.ID
 to the first day of the year until you break out of the current
 year. Partial results of this operation are shown below:
	select adddate(x.dy,interval t500.id-1 day) dy
	 from (
	select dy, year(dy) yr
	 from (
	select adddate(
	 adddate(current_date,
	 interval -dayofyear(current_date) day),
	 interval 1 day) dy
	 from t1
) tmp1
) x,
	 t500
	 where year(adddate(x.dy,interval t500.id-1 day)) = x.yr

	DY

	01-JAN-2005
	…
	15-FEB-2005
	…
	22-NOV-2005
	…
	31-DEC-2005
The final step is to use the DAYNAME function to keep only
 Fridays.

SQL Server

To find all the Fridays in the current year, you must be able
 to return every day in the current year. The first step is to find
 the first day of the year by using the DATEPART function. Subtract the value returned by
 DATEPART(DY,GETDATE()) from the current date, and then add 1 to get
 the first day of the current year:
	select getdate()-datepart(dy,getdate())+1 dy
	 from t1

	DY

	01-JAN-2005
Now that you have the first day of the year, use the WITH
 clause and the DATEADD function to repeatedly add one day to the
 first day of the year until you are no longer in the current year.
 The result set will be every day in the current year (a portion of
 the rows returned by the recursive view X is shown below):
	with x (dy,yr)
	 as (
	select dy, year(dy) yr
	 from (
	select getdate()-datepart(dy,getdate())+1 dy
	 from t1
) tmp1
	 union all
	select dateadd(dd,1,dy), yr
	 from x
	 where year(dateadd(dd,1,dy)) = yr
)
	select x.dy
	 from x
	option (maxrecursion 400)

	DY

	01-JAN-2005
	…
	15-FEB-2005
	…
	22-NOV-2005
	…
	31-DEC-2005
Finally, use the DATENAME function to keep only rows that are
 Fridays. For this solution to work, you must set MAXRECURSION to at
 least 366 (the filter on the year portion of the current year, in
 recursive view X, guarantees you will never generate more than 366
 rows).

9.6. Determining the Date of the First and Last Occurrence of a
 Specific Weekday in a Month

Problem

You want to find, for example, the first and last Mondays of the
 current month.

Solution

The choice to use Monday and the current month is arbitrary; you
 can use the solutions presented in this recipe for any weekday and any
 month. Because each weekday is seven days apart from itself, once you
 have the first instance of a weekday, you can add 7 days to get the
 second and 14 days to get the third. Likewise, if you have the last
 instance of a weekday in a month, you can subtract 7 days to get the
 third and subtract 14 days to get the second.
DB2

Use the recursive WITH clause to generate each day in the
 current month and use a CASE expression to flag all Mondays. The
 first and last Mondays will be the earliest and latest of the
 flagged dates:
	 1 with x (dy,mth,is_monday)
	 2 as (
	 3 select dy,month(dy),
	 4 case when dayname(dy)='Monday'
	 5 then 1 else 0
	 6 end
	 7 from (
	 8 select (current_date-day(current_date) day +1 day) dy
	 9 from t1
	10) tmp1
	11 union all
	12 select (dy +1 day), mth,
	13 case when dayname(dy +1 day)='Monday'
	14 then 1 else 0
	15 end
	16 from x
	17 where month(dy +1 day) = mth
	18)
	19 select min(dy) first_monday, max(dy) last_monday
	20 from x
	21 where is_monday = 1

Oracle

Use the functions NEXT_DAY and LAST_DAY, together with a bit of clever date
 arithmetic, to find the first and last Mondays of the current
 month:
	select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday,
	 next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday
	 from dual

PostgreSQL

Use the function DATE_TRUNC to find the first day of the
 month. Once you have the first day of the month, you can use simple
 arithmetic involving the numeric values of weekdays (Sun–Sat is 1–7) to find the first and last
 Mondays of the current month:
	 1 select first_monday,
	 2 case to_char(first_monday+28,'mm')
	 3 when mth then first_monday+28
	 4 else first_monday+21
	 5 end as last_monday
	 6 from (
	 7 select case sign(cast(to_char(dy,'d') as integer)-2)
	 8 when 0
	 9 then dy
	10 when -1
	11 then dy+abs(cast(to_char(dy,'d') as integer)-2)
	12 when 1
	13 then (7-(cast(to_char(dy,'d') as integer)-2))+dy
	14 end as first_monday,
	15 mth
	16 from (
	17 select cast(date_trunc('month',current_date) as date) as dy,
	18 to_char(current_date,'mm') as mth
	19 from t1
	20) x
	21) y

MySQL

Use the ADDDATE function to find the first day of the month.
 Once you have the first day of the month, you can use simple
 arithmetic on the numeric values of weekdays (Sun–Sat is 1–7) to find the first and last
 Mondays of the current month:
	 1 select first_monday,
	 2 case month(adddate(first_monday,28))
	 3 when mth then adddate(first_monday,28)
	 4 else adddate(first_monday,21)
	 5 end last_monday
	 6 from (
	 7 select case sign(dayofweek(dy)-2)
	 8 when 0 then dy
	 9 when -1 then adddate(dy,abs(dayofweek(dy)-2))
	10 when 1 then adddate(dy,(7-(dayofweek(dy)-2)))
	11 end first_monday,
	12 mth
	13 from (
	14 select adddate(adddate(current_date,-day(current_date)),1) dy,
	15 month(current_date) mth
	16 from t1
	17) x
	18) y

SQL Server

Use the recursive WITH clause to generate each day in the
 current month, and then use a CASE expression to flag all Mondays.
 The first and last Mondays will be the earliest and latest of the
 flagged dates:
	 1 with x (dy,mth,is_monday)
	 2 as (
	 3 select dy,mth,
	 4 case when datepart(dw,dy) = 2
	 5 then 1 else 0
	 6 end
	 7 from (
	 8 select dateadd(day,1,dateadd(day,-day(getdate()),getdate())) dy,
	 9 month(getdate()) mth
	10 from t1
	11) tmp1
	12 union all
	13 select dateadd(day,1,dy),
	14 mth,
	15 case when datepart(dw,dateadd(day,1,dy)) = 2
	16 then 1 else 0
	17 end
	18 from x
	19 where month(dateadd(day,1,dy)) = mth
	20)
	21 select min(dy) first_monday,
	22 max(dy) last_monday
	23 from x
	24 where is_monday = 1

Discussion

DB2 and SQL Server

DB2 and SQL Server use different functions to solve this
 problem, but the technique is exactly the same. If you eyeball both
 solutions you’ll see the only difference between the two is the way
 dates are added. This discussion will cover both solutions, using
 the DB2 solution’s code to show the results of intermediate
 steps.
Tip
If you do not have access to the recursive WITH clause in
 the version of SQL Server or DB2 that you are running, you can use
 the PostgreSQL technique instead.

The first step in finding the first and last Mondays of the
 current month is to return the first day of the month. Inline view
 TMP1 in recursive view X finds the first day of the current month by
 first finding the current date, specifically, the day of the month
 for the current date. The day of the month for the current date
 represents how many days into the month you are (e.g., April 10th is
 the 10th day of the April). If you subtract this day of the month
 value from the current date, you end up at the last day of the
 previous month (e.g., subtracting 10 from April 10th puts you at the
 last day of March). After this subtraction, simply add one day to
 arrive at the first day of the current month:
	select (current_date-day(current_date) day +1 day) dy
	 from t1

	DY

	01-JUN-2005
Next, find the month for the current date using the MONTH
 function and a simple CASE expression to determine whether or not
 the first day of the month is a Monday:
	select dy, month(dy) mth,
	 case when dayname(dy)='Monday'
	 then 1 else 0
	 end is_monday
	 from (
	select (current_date-day(current_date) day +1 day) dy
	 from t1
) tmp1

	DY MTH IS_MONDAY
	----------- --- ----------
	01-JUN-2005 6 0
Then use the recursive capabilities of the WITH clause to
 repeatedly add one day to the first day of the month until you’re no
 longer in the current month. Along the way, you will use a CASE
 expression to determine which days in the month are Mondays (Mondays
 will be flagged with “1”). A portion of the output from recursive
 view X is shown below:
	with x (dy,mth,is_monday)
	 as (
	 select dy,month(dy) mth,
	 case when dayname(dy)='Monday'
	 then 1 else 0
	 end is_monday
	 from (
	 select (current_date-day(current_date) day +1 day) dy
	 from t1
) tmp1
	 union all
	 select (dy +1 day), mth,
	 case when dayname(dy +1 day)='Monday'
	 then 1 else 0
	 end
	 from x
	 where month(dy +1 day) = mth
)
	 select *
	 from x

	DY MTH IS_MONDAY
	----------- --- ----------
	01-JUN-2005 6 0
	02-JUN-2005 6 0
	03-JUN-2005 6 0
	04-JUN-2005 6 0
	05-JUN-2005 6 0
	06-JUN-2005 6 1
	07-JUN-2005 6 0
	08-JUN-2005 6 0
	…
Only Mondays will have a value of 1 for IS_MONDAY, so the
 final step is to use the aggregate functions MIN and MAX on rows
 where IS_MONDAY is 1 to find the first and last Mondays of the
 month.

Oracle

The function NEXT_DAY makes this problem easy to solve. To find the
 first Monday of the current month, first return the last day of the
 prior month via some date arithmetic involving the TRUNC
 function:
	select trunc(sysdate,'mm')-1 dy
	 from dual

	DY

	31-MAY-2005
Then use the NEXT_DAY function to find the first Monday that comes after the
 last day of the previous month (i.e., the first Monday of the
 current month):
	select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday
	 from dual

	FIRST_MONDAY

	06-JUN-2005
To find the last Monday of the current month, start by
 returning the first day of the current month by using the TRUNC
 function:
	select trunc(sysdate,'mm') dy
	 from dual

	DY

	01-JUN-2005
The next step is to find the last week (the last seven days)
 of the month. Use the LAST_DAY function to find the last day of the
 month, and then subtract seven days:
	select last_day(trunc(sysdate,'mm'))-7 dy
	 from dual

	DY

	23-JUN-2005
If it isn’t immediately obvious, you go back seven days from
 the last day of the month to ensure that you will have at least one
 of any weekday left in the month. The last step is to use the
 function NEXT_DAY to find the next (and last) Monday of the
 month:
	select next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday
	 from dual

	LAST_MONDAY

	27-JUN-2005

PostgreSQL and MySQL

PostgreSQL and MySQL also share the same solution approach.
 The difference is in the functions that you invoke. Despite their
 lengths, the respective queries are extremely simple; little
 overhead is involved in finding the first and last Mondays of the
 current month.
The first step is to find the first day of the current month.
 The next step is to find the first Monday of the month. Since there
 is no function to find the next date for a given weekday, you need
 to use a little arithmetic. The CASE expression beginning on line 7
 (of either solution) evaluates the difference between the numeric
 value for the weekday of the first day of the month and the numeric
 value corresponding to Monday. Given that the function TO_CHAR (PostgresSQL), when called with the ‘D’ or ‘d’
 format, and the function DAYOFWEEK (MySQL) will return a numeric value from 1
 to 7 representing days Sunday to Saturday; Monday is always
 represented by 2. The first test evaluated by CASE is the SIGN of the numeric value of the first day of the
 month (whatever it may be) minus the numeric value of Monday (2). If
 the result is 0, then the first day of the month falls on a Monday
 and that is the first Monday of the month. If the result is–1, then
 the first day of the month falls on a Sunday and to find the first
 Monday of the month simply add the difference in days between 2 and
 1 (numeric values of Monday and Sunday, respectively) to the first
 day of the month.
Tip
If you are having trouble understanding how this works,
 forget the weekday names and just do the math. For example, say
 you happen to be starting on a Tuesday and you are looking for the
 next Friday. When using TO_CHAR with the ‘d’ format, or DAYOFWEEK,
 Friday is 6 and Tuesday is 3. To get to 6 from 3, simply take the
 difference (6–3 = 3) and add it to the smaller value ((6–3) + 3 =
 6). So, regardless of the actual dates, if the numeric value of
 the day you are starting from is less than the numeric value of
 the day you are searching for, adding the difference between the
 two dates to the date you are starting from will get you to the
 date you are searching for.

If the result from SIGN is 1, then the first day of the month
 falls between Tuesday and Saturday (inclusive). When the first day
 of the month has a numeric value greater than 2 (Monday), subtract
 from 7 the difference between the numeric value of the first day of
 the month and the numeric value of Monday (2), and then add that
 value to the first day of the month. You will have arrived at the
 day of the week that you are after, in this case Monday.
Tip
Again, if you are having trouble understanding how this
 works, forget the weekday names and just do the math. For example,
 suppose you want to find the next Tuesday and you are starting
 from Friday. Tuesday (3) is less than Friday (6). To get to 3 from
 6 subtract the difference between the two values from 7 (7–(|3–6|
) = 4) and add the result (4) to the start day Friday. (The
 vertical bars in |3-6| generate the absolute value of that
 difference.) Here, you’re not adding 4 to 6 (which will give you
 10), you are adding four days to Friday, which will give you the
 next Tuesday.

The idea behind the CASE expression is to create a sort of a
 “next day” function for PostgreSQL and MySQL. If you do not start
 with the first day of the month, the value for DY will be the value
 returned by CURRENT_DATE and the result of the CASE expression
 will return the date of the next Monday starting from the current
 date (unless CURRENT_DATE is a Monday, then that date will be
 returned).
Now that you have the first Monday of the month, add either 21 or 28 days to find the last
 Monday of the month. The CASE expression in lines 2–5 determines
 whether to add 21 or 28 days by checking to see whether 28 days
 takes you into the next month. The CASE expression does this through
 the following process:
	It adds 28 to the value of FIRST_MONDAY.

	Using either TO_CHAR (PostgreSQL) or MONTH, the CASE
 expression extracts the name of the current month from result of
 FIRST_MONDAY + 28.

	The result from Step 2 is compared to the value MTH from
 the inline view. The value MTH is the name of the current month
 as derived from CURRENT_ DATE. If the two month values match,
 then the month is large enough for you to need to add 28 days,
 and the CASE expression returns FIRST_MONDAY + 28. If the two
 month values do not match, then you do not have room to add 28
 days, and the CASE expression returns FIRST_MONDAY + 21 days
 instead. It is convenient that our months are such that 28 and
 21 are the only two possible values you need worry about
 adding.

Tip
You can extend the solution by adding 7 and 14 days to find
 the second and third Mondays of the month, respectively.

9.7. Creating a Calendar

Problem

You want to create a calendar for the current month. The
 calendar should be formatted like a calendar you might have on your
 desk seven columns across, (usually) five rows down.

Solution

Each solution will look a bit different, but they all solve the
 problem the same way: return each day for the current month, and then
 pivot on the day of the week for each week in the month to create a
 calendar.
There are different formats available for calendars. For example, the Unix
 cal command formats the days from Sunday to
 Saturday. The examples in this recipe are based on ISO weeks, so the
 Monday through Friday format is the most convenient to generate. Once
 you become comfortable with the solutions, you’ll see that
 reformatting however you like is simply a matter of modifying the
 values assigned by the ISO week before pivoting.
Tip
As you begin to use different types of formatting with SQL to
 create readable output, you will notice your queries becoming
 longer. Don’t let those long queries intimidate you; the queries
 presented for this recipe are extremely simple once broken down and
 run piece by piece.

DB2

Use the recursive WITH clause to return every day in the
 current month. Then pivot on the day of the week using CASE and
 MAX:
	 1 with x(dy,dm,mth,dw,wk)
	 2 as (
	 3 select (current_date -day(current_date) day +1 day) dy,
	 4 day((current_date -day(current_date) day +1 day)) dm,
	 5 month(current_date) mth,
	 6 dayofweek(current_date -day(current_date) day +1 day) dw,
	 7 week_iso(current_date -day(current_date) day +1 day) wk
	 8 from t1
	 9 union all
	10 select dy+1 day, day(dy+1 day), mth,
	11 dayofweek(dy+1 day), week_iso(dy+1 day)
	12 from x
	13 where month(dy+1 day) = mth
	14)
	15 select max(case dw when 2 then dm end) as Mo,
	16 max(case dw when 3 then dm end) as Tu,
	17 max(case dw when 4 then dm end) as We,
	18 max(case dw when 5 then dm end) as Th,
	19 max(case dw when 6 then dm end) as Fr,
	20 max(case dw when 7 then dm end) as Sa,
	21 max(case dw when 1 then dm end) as Su
	22 from x
	23 group by wk
	24 order by wk

Oracle

Use the recursive CONNECT BY clause to return each day in the
 current month. Then pivot on the day of the week using CASE and
 MAX:
	 1 with x
	 2 as (
	 3 select *
	 4 from (
	 5 select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
	 6 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
	 7 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
	 8 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
	 9 to_char(sysdate,'mm') mth
	10 from dual
	11 connect by level <= 31
	12)
	13 where curr_mth = mth
	14)
	15 select max(case dw when 2 then dm end) Mo,
	16 max(case dw when 3 then dm end) Tu,
	17 max(case dw when 4 then dm end) We,
	18 max(case dw when 5 then dm end) Th,
	19 max(case dw when 6 then dm end) Fr,
	20 max(case dw when 7 then dm end) Sa,
	21 max(case dw when 1 then dm end) Su
	22 from x
	23 group by wk
	24 order by wk

PostgreSQL

Use the function GENERATE_SERIES to return every day in the
 current month. Then pivot on the day of the week using MAX and
 CASE:
	 1 select max(case dw when 2 then dm end) as Mo,
	 2 max(case dw when 3 then dm end) as Tu,
	 3 max(case dw when 4 then dm end) as We,
	 4 max(case dw when 5 then dm end) as Th,
	 5 max(case dw when 6 then dm end) as Fr,
	 6 max(case dw when 7 then dm end) as Sa,
	 7 max(case dw when 1 then dm end) as Su
	 8 from (
	 9 select *
	10 from (
	11 select cast(date_trunc('month',current_date) as date)+x.id,
	12 to_char(
	13 cast(
	14 date_trunc('month',current_date)
	15 as date)+x.id,'iw') as wk,
	16 to_char(
	17 cast(
	18 date_trunc('month',current_date)
	19 as date)+x.id,'dd') as dm,
	20 cast(
	21 to_char(
	22 cast(
	23 date_trunc('month',current_date)
	24 as date)+x.id,'d') as integer) as dw,
	25 to_char(
	26 cast(
	27 date_trunc('month',current_date)
	28 as date)+x.id,'mm') as curr_mth,
	29 to_char(current_date,'mm') as mth
	30 from generate_series (0,31) x(id)
	31) x
	32 where mth = curr_mth
	33) y
	34 group by wk
	35 order by wk

Mysol

Use table T500 to return each day in the current month. Then
 pivot on the day of the week using MAX and CASE:
	 1 select max(case dw when 2 then dm end) as Mo,
	 2 max(case dw when 3 then dm end) as Tu,
	 3 max(case dw when 4 then dm end) as We,
	 4 max(case dw when 5 then dm end) as Th,
	 5 max(case dw when 6 then dm end) as Fr,
	 6 max(case dw when 7 then dm end) as Sa,
	 7 max(case dw when 1 then dm end) as Su
	 8 from (
	 9 select date_format(dy,'%u') wk,
	10 date_format(dy,'%d') dm,
	11 date_format(dy,'%w')+1 dw
	12 from (
	13 select adddate(x.dy,t500.id-1) dy,
	14 x.mth
	15 from (
	16 select adddate(current_date,-dayofmonth(current_date)+1) dy,
	17 date_format(
	18 adddate(current_date,
	19 -dayofmonth(current_date)+1),
	20 '%m') mth
	21 from t1
	22) x,
	23 t500
	24 where t500.id <= 31
	25 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
	26) y
	27) z
	28 group by wk
	29 order by wk

SQL Server

Use the recursive WITH clause to return every day in the
 current month. Then pivot on the day of the week using CASE and
 MAX:
	 1 with x(dy,dm,mth,dw,wk)
	 2 as (
	 3 select dy,
	 4 day(dy) dm,
	 5 datepart(m,dy) mth,
	 6 datepart(dw,dy) dw,
	 7 case when datepart(dw,dy) = 1
	 8 then datepart(ww,dy)-1
	 9 else datepart(ww,dy)
	10 end wk
	11 from (
	12 select dateadd(day,-day(getdate())+1,getdate()) dy
	13 from t1
	14) x
	15 union all
	16 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
	17 datepart(dw,dateadd(d,1,dy)),
	18 case when datepart(dw,dateadd(d,1,dy)) = 1
	19 then datepart(wk,dateadd(d,1,dy))-1
	20 else datepart(wk,dateadd(d,1,dy))
	21 end
	22 from x
	23 where datepart(m,dateadd(d,1,dy)) = mth
	24)
	25 select max(case dw when 2 then dm end) as Mo,
	26 max(case dw when 3 then dm end) as Tu,
	27 max(case dw when 4 then dm end) as We,
	28 max(case dw when 5 then dm end) as Th,
	29 max(case dw when 6 then dm end) as Fr,
	30 max(case dw when 7 then dm end) as Sa,
	31 max(case dw when 1 then dm end) as Su
	32 from x
	33 group by wk
	34 order by wk

Discussion

DB2

The first step is to return each day in the month for which
 you want to create a calendar. Do that using the recursive WITH clause (if
 you don’t have WITH available, you can use a pivot table, such as
 T500, as in the MySQL solution). Along with each day of the month
 (alias DM) you will need to return different parts of each date: the
 day of the week (alias DW), the current month you are working with
 (alias MTH), and the ISO week for each day of the month (alias WK).
 The results of the recursive view X prior to recursion taking place
 (the upper portion of the UNION ALL) are shown below:
	select (current_date -day(current_date) day +1 day) dy,
	 day((current_date -day(current_date) day +1 day)) dm,
	 month(current_date) mth,
	 dayofweek(current_date -day(current_date) day +1 day) dw,
	 week_iso(current_date -day(current_date) day +1 day) wk
	 from t1

	DY DM MTH DW WK
	----------- -- --- ---------- --
	01-JUN-2005 01 06 4 22
The next step is to repeatedly increase the value for DM (move
 through the days of the month) until you are no longer in the
 current month. As you move through each day in the month, you will
 also return the day of the week that each day is, and which ISO week
 the current day of the month falls into. Partial results are shown
 below:
	with x(dy,dm,mth,dw,wk)
	 as (
	select (current_date -day(current_date) day +1 day) dy,
	 day((current_date -day(current_date) day +1 day)) dm,
	 month(current_date) mth,
	 dayofweek(current_date -day(current_date) day +1 day) dw,
	 week_iso(current_date -day(current_date) day +1 day) wk
	 from t1
	 union all
	 select dy+1 day, day(dy+1 day), mth,
	 dayofweek(dy+1 day), week_iso(dy+1 day)
	 from x
	 where month(dy+1 day) = mth
)
	select *
	 from x

	DY DM MTH DW WK
	----------- -- --- ---------- --
	01-JUN-2005 01 06 4 22
	02-JUN-2005 02 06 5 22
	…
	21-JUN-2005 21 06 3 25
	22-JUN-2005 22 06 4 25
	…
	30-JUN-2005 30 06 5 26
What you are returning at this point are: each day for the
 current month, the two-digit numeric day of the month, the two-digit
 numeric month, the one-digit day of the week (1–7 for Sun–Sat), and
 the two-digit ISO week each day falls into. With all this
 information available, you can use a CASE expression to determine
 which day of the week each value of DM (each day of the month) falls
 into. A portion of the results is shown below:
	with x(dy,dm,mth,dw,wk)
	 as (
	select (current_date -day(current_date) day +1 day) dy,
	 day((current_date -day(current_date) day +1 day)) dm,
	 month(current_date) mth,
	 dayofweek(current_date -day(current_date) day +1 day) dw,
	 week_iso(current_date -day(current_date) day +1 day) wk
	 from t1
	 union all
	 select dy+1 day, day(dy+1 day), mth,
	 dayofweek(dy+1 day), week_iso(dy+1 day)
	 from x
	 where month(dy+1 day) = mth
)
	 select wk,
	 case dw when 2 then dm end as Mo,
	 case dw when 3 then dm end as Tu,
	 case dw when 4 then dm end as We,
	 case dw when 5 then dm end as Th,
	 case dw when 6 then dm end as Fr,
	 case dw when 7 then dm end as Sa,
	 case dw when 1 then dm end as Su
	 from x

	WK MO TU WE TH FR SA SU
	-- -- -- -- -- -- -- --
	22 01
	22 02
	22 03
	22 04
	22 05
	23 06
	23 07
	23 08
	23 09
	23 10
	23 11
	23 12
As you can see from the partial output, every day in each week
 is returned as a row. What you want to do now is to group the days
 by week, and then collapse all the days for each week into a single
 row. Use the aggregate function MAX, and group by WK (the ISO week)
 to return all the days for a week as one row. To properly format the
 calendar and ensure that the days are in the right
 order, order the results by WK. The final output is shown
 below:
	with x(dy,dm,mth,dw,wk)
	 as (
	select (current_date -day(current_date) day +1 day) dy,
	 day((current_date -day(current_date) day +1 day)) dm,
	 month(current_date) mth,
	 dayofweek(current_date -day(current_date) day +1 day) dw,
	 week_iso(current_date -day(current_date) day +1 day) wk
	 from t1
	 union all
	 select dy+1 day, day(dy+1 day), mth,
	 dayofweek(dy+1 day), week_iso(dy+1 day)
	 from x
	 where month(dy+1 day) = mth
)
	select max(case dw when 2 then dm end) as Mo,
	 max(case dw when 3 then dm end) as Tu,
	 max(case dw when 4 then dm end) as We,
	 max(case dw when 5 then dm end) as Th,
	 max(case dw when 6 then dm end) as Fr,
	 max(case dw when 7 then dm end) as Sa,
	 max(case dw when 1 then dm end) as Su
	 from x
	 group by wk
	 order by wk

	MO TU WE TH FR SA SU
	-- -- -- -- -- -- --
	 01 02 03 04 05
	06 07 08 09 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30

Oracle

Begin by using the recursive CONNECT BY clause to generate a row for each day in
 the month for which you wish to generate a calendar. If you aren’t running at least
 Oracle9i Database, you can’t use CONNECT BY
 this way. Instead, you can use a pivot table, such as T500 in the
 MySQL solution.
Along with each day of the month, you will need to return
 different bits of information for each day: the day of the month
 (alias DM), the day of the week (alias DW), the current month you
 are working with (alias MTH), and the ISO week for each day of the
 month (alias WK). The results of the WITH view X for the first day
 of the current month are shown below:
	select trunc(sysdate,'mm') dy,
	 to_char(trunc(sysdate,'mm'),'dd') dm,
	 to_char(sysdate,'mm') mth,
	 to_number(to_char(trunc(sysdate,'mm'),'d')) dw,
	 to_char(trunc(sysdate,'mm'),'iw') wk
	 from dual

	DY DM MT DW WK
	----------- -- -- ---------- --
	01-JUN-2005 01 06 4 22
The next step is to repeatedly increase the value for DM (move
 through the days of the month) until you are no longer in the
 current month. As you move through each day in the month, you will
 also return the day of the week for each day and the ISO week into
 which the current day falls. Partial results are shown below (the
 full date for each day is added below for readability):
	with x
	 as (
	select *
	 from (
	select trunc(sysdate,'mm')+level-1 dy,
	 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
	 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
	 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
	 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
	 to_char(sysdate,'mm') mth
	 from dual
	 connect by level <= 31
)
	 where curr_mth = mth
)
	select *
	 from x

	DY WK DM DW CU MT
	----------- -- -- ---------- -- --
	01-JUN-2005 22 01 4 06 06
	02-JUN-2005 22 02 5 06 06
	…
	21-JUN-2005 25 21 3 06 06
	22-JUN-2005 25 22 4 06 06
	…
	30-JUN-2005 26 30 5 06 06
What you are returning at this point is one row for each day
 of the current month. In that row you have: the two-digit numeric
 day of the month, the two-digit numeric month, the one-digit day of
 the week (1–7 for Sun–Sat), and the two-digit ISO week number. With
 all this information available, you can use a CASE expression to
 determine which day of the week each value of DM (each day of the
 month) falls into. A portion of the results is shown below:
	with x
	 as (
	select *
	 from (
	select trunc(sysdate,'mm')+level-1 dy,
	 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
	 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
	 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
	 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
	 to_char(sysdate,'mm') mth
	 from dual
	 connect by level <= 31
)
	 where curr_mth = mth
)
	select wk,
	 case dw when 2 then dm end as Mo,
	 case dw when 3 then dm end as Tu,
	 case dw when 4 then dm end as We,
	 case dw when 5 then dm end as Th,
	 case dw when 6 then dm end as Fr,
	 case dw when 7 then dm end as Sa,
	 case dw when 1 then dm end as Su
	 from x

	WK MO TU WE TH FR SA SU
	-- -- -- -- -- -- -- --
	22 01
	22 02
	22 03
	22 04
	22 05
	23 06
	23 07
	23 08
	23 09
	23 10
	23 11
	23 12
As you can see from the partial output, every day in each week
 is returned as a row, but the day number is in one of seven columns
 corresponding to the day of the week. Your task now is to
 consolidate the days into one row for each week. Use the aggregate
 function MAX and group by WK (the ISO week) to return all the days
 for a week as one row. To ensure the days are in the right order,
 order the results by WK. The final output is shown below:
	with x
	 as (
	select *
	 from (
	select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
	 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
	 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
	 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
	 to_char(sysdate,'mm') mth
	 from dual
	 connect by level <= 31
)
	 where curr_mth = mth
)
	select max(case dw when 2 then dm end) Mo,
	 max(case dw when 3 then dm end) Tu,
	 max(case dw when 4 then dm end) We,
	 max(case dw when 5 then dm end) Th,
	 max(case dw when 6 then dm end) Fr,
	 max(case dw when 7 then dm end) Sa,
	 max(case dw when 1 then dm end) Su
	 from x
	 group by wk
	 order by wk

	MO TU WE TH FR SA SU
	-- -- -- -- -- -- --
	 01 02 03 04 05
	06 07 08 09 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30

PostgreSQL

Use the GENERATE_SERIES function to return one row for each
 day in the month. If your version of PostgreSQL doesn’t support
 GENERATE_SERIES, then query a pivot table as shown in the MySQL
 solution.
For each day of the month, return the following information:
 the day of the month (alias DM), the day of the week (alias DW), the
 current month you are working with (alias MTH), and the ISO week for
 each day of the month (alias WK). The formatting and explicit
 casting makes this solution tough on the eyes, but it’s really quite
 simple. Partial results from inline view X are shown below:
	select cast(date_trunc('month',current_date) as date)+x.id as dy,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'iw') as wk,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'dd') as dm,
	 cast(
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'d') as integer) as dw,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'mm') as curr_mth,
	 to_char(current_date,'mm') as mth
	 from generate_series (0,31) x(id)

	DY WK DM DW CU MT
	----------- -- -- ---------- -- --
	01-JUN-2005 22 01 4 06 06
	02-JUN-2005 22 02 5 06 06
	…
	21-JUN-2005 25 21 3 06 06
	22-JUN-2005 25 22 4 06 06
	…
	30-JUN-2005 26 30 5 06 06
Notice that as you move through each day in the month, you
 will also return the day of the week and the ISO week number. To
 ensure you return days only for the month you are interested in,
 return only rows where CURR_MTH = MTH (the month each day belongs to
 should be the month the current date belongs to). What you are
 returning at this point is, for each day for the current month: the
 two-digit numeric day of the month, the two-digit numeric month, the
 one-digit day of the week (1–7 for Sun – Sat), and the two-digit ISO
 week. Your next step is to use a CASE expression to determine which
 day of the week each value of DM (each day of the month) falls into.
 A portion of the results is shown below:
	select case dw when 2 then dm end as Mo,
	 case dw when 3 then dm end as Tu,
	 case dw when 4 then dm end as We,
	 case dw when 5 then dm end as Th,
	 case dw when 6 then dm end as Fr,
	 case dw when 7 then dm end as Sa,
	 case dw when 1 then dm end as Su
	 from (
	select *
	 from (
	select cast(date_trunc('month',current_date) as date)+x.id,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'iw') as wk,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'dd') as dm,
	 cast(
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'d') as integer) as dw,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'mm') as curr_mth,
	 to_char(current_date,'mm') as mth
	 from generate_series (0,31) x(id)
) x
	 where mth = curr_mth
) y
	
	WK MO TU WE TH FR SA SU
	-- -- -- -- -- -- -- --
	22 01
	22 02
	22 03
	22 04
	22 05
	23 06
	23 07
	23 08
	23 09
	23 10
	23 11
	23 12
As you can see from the partial output, every day in each week
 is returned as a row, and each day number falls into the column
 corresponding to its day of the week. Your job now is to collapse
 the days into one row for each week. To that end, use the aggregate
 function MAX and group the rows by WK (the ISO week). The result
 will be all the days for each week returned as one row as you would
 see on a calendar. To ensure the days are in the right order,
 order the results by WK. The final output is shown below:
	select max(case dw when 2 then dm end) as Mo,
	 max(case dw when 3 then dm end) as Tu,
	 max(case dw when 4 then dm end) as We,
	 max(case dw when 5 then dm end) as Th,
	 max(case dw when 6 then dm end) as Fr,
	 max(case dw when 7 then dm end) as Sa,
	 max(case dw when 1 then dm end) as Su
	 from (
	select *
	 from (
	select cast(date_trunc('month',current_date) as date)+x.id,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'iw') as wk,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'dd') as dm,
	 cast(
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'d') as integer) as dw,
	 to_char(
	 cast(
	 date_trunc('month',current_date)
	 as date)+x.id,'mm') as curr_mth,
	 to_char(current_date,'mm') as mth
	 from generate_series (0,31) x(id)
) x
	 where mth = curr_mth
) y
	 group by wk
	 order by wk

	MO TU WE TH FR SA SU
	-- -- -- -- -- -- --
	 01 02 03 04 05
	06 07 08 09 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30

MySQL

The first step is to return a row for each day in the month
 for which you want to create a calendar. To that end, query against table T500. By
 adding each value returned by T500 to the first day of the month,
 you can return each day in the month.
For each date, you will need to return the following bits of
 information: the day of the month (alias DM), the day of the week
 (alias DW), the current month you are working with (alias MTH), and
 the ISO week for each day of the month (alias WK). Inline view X
 returns the first day of the current month along with the two-digit
 numeric value for the current month. Results are shown below:
	select adddate(current_date,-dayofmonth(current_date)+1) dy,
	 date_format(
	 adddate(current_date,
	 -dayofmonth(current_date)+1),
	 '%m') mth
	 from t1

	DY MT
	----------- --
	01-JUN-2005 06
The next step is to move through the month, starting from the
 first day and returning each day in the month. Notice that as you
 move through each day in the month, you will also return the
 corresponding day of the week and ISO week number. To ensure you
 return days only for the month you are interested in, return only
 rows where the month of the day returned is equal to the current
 month (the month each day belongs to should be the month the current
 date belongs to). A portion of the rows from inline view Y is shown
 below:
	select date_format(dy,'%u') wk,
	 date_format(dy,'%d') dm,
	 date_format(dy,'%w')+1 dw
	 from (
	select adddate(x.dy,t500.id-1) dy,
	 x.mth
	 from (
	select adddate(current_date,-dayofmonth(current_date)+1) dy,
	 date_format(
	 adddate(current_date,
	 -dayofmonth(current_date)+1),
	 '%m') mth
	 from t1
) x,
	 t500
	 where t500.id <= 31
	 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
) y

	WK DM DW
	-- -- ----------
	22 01 4
	22 02 5
	…
	25 21 3
	25 22 4
	…
	26 30 5
For each day for the current month you now have: the two-digit
 numeric day of the month (DM), the one-digit day of the week (DW),
 and the two-digit ISO week number (WK). Using this information, you
 can write a CASE expression to determine which day of the week each
 value of DM (each day of the month) falls into. A portion of the
 results is shown below:
	select case dw when 2 then dm end as Mo,
	 case dw when 3 then dm end as Tu,
	 case dw when 4 then dm end as We,
	 case dw when 5 then dm end as Th,
	 case dw when 6 then dm end as Fr,
	 case dw when 7 then dm end as Sa,
	 case dw when 1 then dm end as Su
	 from (
	select date_format(dy,'%u') wk,
	 date_format(dy,'%d') dm,
	 date_format(dy,'%w')+1 dw
	 from (
	select adddate(x.dy,t500.id-1) dy,
	 x.mth
	 from (
	select adddate(current_date,-dayofmonth(current_date)+1) dy,
	 date_format(
	 adddate(current_date,
	 -dayofmonth(current_date)+1),
	 '%m') mth
	 from t1
) x,
	 t500
	 where t500.id <= 31
	 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
) y
) z

	WK MO TU WE TH FR SA SU
	-- -- -- -- -- -- -- --
	22 01
	22 02
	22 03
	22 04
	22 05
	23 06
	23 07
	23 08
	23 09
	23 10
	23 11
	23 12
As you can see from the partial output, every day in each week
 is returned as a row. Within each row, the day number falls into the
 column corresponding to the appropriate weekday. Now you need to
 consolidate the days into one row for each week. To do that, use the
 aggregate function MAX, and group the rows by WK (the ISO week). To
 ensure the days are in the right order, order the results by WK. The
 final output is shown below:
	select max(case dw when 2 then dm end) as Mo,
	 max(case dw when 3 then dm end) as Tu,
	 max(case dw when 4 then dm end) as We,
	 max(case dw when 5 then dm end) as Th,
	 max(case dw when 6 then dm end) as Fr,
	 max(case dw when 7 then dm end) as Sa,
	 max(case dw when 1 then dm end) as Su
	 from (
	select date_format(dy,'%u') wk,
	 date_format(dy,'%d') dm,
	 date_format(dy,'%w')+1 dw
	 from (
	select adddate(x.dy,t500.id-1) dy,
	 x.mth
	 from (
	select adddate(current_date,-dayofmonth(current_date)+1) dy,
	 date_format(
	 adddate(current_date,
	 -dayofmonth(current_date)+1),
	 '%m') mth
	 from t1
) x,
	 t500
	 where t500.id <= 31
	 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
) y
) z
	 group by wk
	 order by wk

	MO TU WE TH FR SA SU
	-- -- -- -- -- -- --
	 01 02 03 04 05
	06 07 08 09 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30

SQL Server

Begin by returning one row for each day of the month. You can
 do that using the recursive WITH clause. Or, if your version of SQL
 Server doesn’t support recursive WITH, you can use a pivot table in
 the same manner as the MySQL solution. For each row that you return,
 you will need the following items: the day of the month (alias DM),
 the day of the week (alias DW), the current month you are working
 with (alias MTH), and the ISO week for each day of the month (alias
 WK). The results of the recursive view X prior to recursion taking
 place (the upper portion of the UNION ALL) are shown below:
	select dy,
	 day(dy) dm,
	 datepart(m,dy) mth,
	 datepart(dw,dy) dw,
	 case when datepart(dw,dy) = 1
	 then datepart(ww,dy)-1
	 else datepart(ww,dy)
	 end wk
	 from (
	select dateadd(day,-day(getdate())+1,getdate()) dy
	 from t1
) x

	DY DM MTH DW WK
	----------- -- --- ---------- --
	01-JUN-2005 1 6 4 23
Your next step is to repeatedly increase the value for DM
 (move through the days of the month) until you are no longer in the
 current month. As you move through each day in the month, you will
 also return the day of the week and the ISO week number. Partial
 results are shown below:
	 with x(dy,dm,mth,dw,wk)
	 as (
	select dy,
	 day(dy) dm,
	 datepart(m,dy) mth,
	 datepart(dw,dy) dw,
	 case when datepart(dw,dy) = 1
	 then datepart(ww,dy)-1
	 else datepart(ww,dy)
	 end wk
	 from (
	select dateadd(day,-day(getdate())+1,getdate()) dy
	 from t1
) x
	 union all
	 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
	 datepart(dw,dateadd(d,1,dy)),
	 case when datepart(dw,dateadd(d,1,dy)) = 1
	 then datepart(wk,dateadd(d,1,dy))-1
	 else datepart(wk,dateadd(d,1,dy))
	 end
	 from x
	 where datepart(m,dateadd(d,1,dy)) = mth
)
	select *
	 from x

	DY DM MTH DW WK
	----------- -- --- ---------- --
	01-JUN-2005 01 06 4 23
	02-JUN-2005 02 06 5 23
	…
	21-JUN-2005 21 06 3 26
	22-JUN-2005 22 06 4 26
	…
	30-JUN-2005 30 06 5 27
You now have, for each day in the current month: the two-digit
 numeric day of the month, the two-digit numeric month, the one-digit
 day of the week (1–7 for Sun– Sat), and the two-digit ISO week
 number.
Now, use a CASE expression to determine which day of the week
 each value of DM (each day of the month) falls into. A portion of
 the results is shown below:
	 with x(dy,dm,mth,dw,wk)
	 as (
	select dy,
	 day(dy) dm,
	 datepart(m,dy) mth,
	 datepart(dw,dy) dw,
	 case when datepart(dw,dy) = 1
	 then datepart(ww,dy)-1
	 else datepart(ww,dy)
	 end wk
	 from (
	select dateadd(day,-day(getdate())+1,getdate()) dy
	 from t1
) x
	 union all
	 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
	 datepart(dw,dateadd(d,1,dy)),
	 case when datepart(dw,dateadd(d,1,dy)) = 1
	 then datepart(wk,dateadd(d,1,dy))-1
	 else datepart(wk,dateadd(d,1,dy))
	 end
	 from x
	 where datepart(m,dateadd(d,1,dy)) = mth
)
	select case dw when 2 then dm end as Mo,
	 case dw when 3 then dm end as Tu,
	 case dw when 4 then dm end as We,
	 case dw when 5 then dm end as Th,
	 case dw when 6 then dm end as Fr,
	 case dw when 7 then dm end as Sa,
	 case dw when 1 then dm end as Su
	 from x

	WK MO TU WE TH FR SA SU
	-- -- -- -- -- -- -- --
	22 01
	22 02
	22 03
	22 04
	22 05
	23 06
	23 07
	23 08
	23 09
	23 10
	23 11
	23 12
Every day in each week is returned as a separate row. In each
 row, the column containing the day number corresponds to the day of
 the week. You now need to consolidate the days for each week into
 one row. Do that by grouping the rows by WK (the ISO week) and
 applying the MAX function to the different columns. The results will
 be in calendar format as shown below:
	with x(dy,dm,mth,dw,wk)
	 as (
	select dy,
	 day(dy) dm,
	 datepart(m,dy) mth,
	 datepart(dw,dy) dw,
	 case when datepart(dw,dy) = 1
	 then datepart(ww,dy)-1
	 else datepart(ww,dy)
	 end wk
	 from (
	select dateadd(day,-day(getdate())+1,getdate()) dy
	 from t1
) x
	 union all
	 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
	 datepart(dw,dateadd(d,1,dy)),
	 case when datepart(dw,dateadd(d,1,dy)) = 1
	 then datepart(wk,dateadd(d,1,dy))-1
	 else datepart(wk,dateadd(d,1,dy))
	 end
	 from x
	 where datepart(m,dateadd(d,1,dy)) = mth
)
	select max(case dw when 2 then dm end) as Mo,
	 max(case dw when 3 then dm end) as Tu,
	 max(case dw when 4 then dm end) as We,
	 max(case dw when 5 then dm end) as Th,
	 max(case dw when 6 then dm end) as Fr,
	 max(case dw when 7 then dm end) as Sa,
	 max(case dw when 1 then dm end) as Su
	 from x
	 group by wk
	 order by wk

	MO TU WE TH FR SA SU
	-- -- -- -- -- -- --
	 01 02 03 04 05
	06 07 08 09 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30

9.8. Listing Quarter Start and End Dates for the Year

Problem

You want to return the start and end dates for each of the four
 quarters of a given year.

Solution

There are four quarters to a year, so you know you will need to
 generate four rows. After generating the desired number of rows,
 simply use the date functions supplied by your RDBMS to return the
 quarter the start and end dates fall into. Your goal is to produce the
 following result set (one again, the choice to use the current year is
 arbitrary):
	QTR Q_START Q_END
	--- ----------- -----------
	 1 01-JAN-2005 31-MAR-2005
	 2 01-APR-2005 30-JUN-2005
	 3 01-JUL-2005 30-SEP-2005
	 4 01-OCT-2005 31-DEC-2005
DB2

Use table EMP and the window function ROW_NUMBER OVER to
 generate four rows. Alternatively, you can use the WITH clause to
 generate rows (as many of the recipes do), or you can query against
 any table with at least four rows. The following solution uses the ROW_NUMBER OVER approach:
	 1 select quarter(dy-1 day) QTR,
	 2 dy-3 month Q_start,
	 3 dy-1 day Q_end
	 4 from (
	 5 select (current_date -
	 6 (dayofyear(current_date)-1) day
	 7 + (rn*3) month) dy
	 8 from (
	 9 select row_number()over() rn
	10 from emp
	11 fetch first 4 rows only
	12) x
	13) y

Oracle

Use the function ADD_MONTHS to find the start and end dates for each
 quarter. Use ROWNUM to represent the quarter the start and end dates
 belong to. The following solution uses table EMP to generate four
 rows.
	1 select rownum qtr,
	2 add_months(trunc(sysdate,'y'),(rownum-1)*3) q_start,
	3 add_months(trunc(sysdate,'y'),rownum*3)-1 q_end
	4 from emp
	5 where rownum <= 4

PostgreSQL

Use the function GENERATE_SERIES to generate the required four
 quarters. Use the DATE_TRUNC function to truncate the dates
 generated for each quarter down to year and month. Use the TO_CHAR
 function to determine which quarter the start and end dates belong to:
	 1 select to_char(dy,'Q') as QTR,
	 2 date(
	 3 date_trunc('month',dy)-(2*interval '1 month')
	 4) as Q_start,
	 5 dy as Q_end
	 6 from (
	 7 select date(dy+((rn*3) * interval '1 month'))-1 as dy
	 8 from (
	 9 select rn, date(date_trunc('year',current_date)) as dy
	10 from generate_series(1,4) gs(rn)
	11) x
	12) y

MySQL

Use table T500 to generate four rows (one for each quarter).
 Use functions DATE_ ADD and ADDDATE to create the start and end dates for each
 quarter. Use the QUARTER function to determine which quarter the start
 and end dates belong to:
	 1 select quarter(adddate(dy,-1)) QTR,
	 2date_add(dy,interval -3 month) Q_start,
	 3 adddate(dy,-1) Q_end
	 4 from (
	 5 select date_add(dy,interval (3*id) month) dy
	 6 from (
	 7 select id,
	 8 adddate(current_date,-dayofyear(current_date)+1) dy
	 9 from t500
	10 where id <= 4
	11) x
	12) y

SQL Server

Use the recursive WITH clause to generate four rows. Use the
 function DATEADD to find the start and end dates. Use the function
 DATEPART to determine which quarter the start and end
 dates belong to:
	 1 with x (dy,cnt)
	 2 as (
	 3 select dateadd(d,-(datepart(dy,getdate())-1),getdate()),
	 4 1
	 5 from t1
	 6 union all
	 7 select dateadd(m,3,dy), cnt+1
	 8 from x
	 9 where cnt+1 <= 4
	10)
	11 select datepart(q,dateadd(d,-1,dy)) QTR,
	1 dateadd(m,-3,dy) Q_start,
	13 dateadd(d,-1,dy) Q_end
	14 from x
	15 order by 1

Discussion

DB2

The first step is to generate four rows (with values 1 through
 4) for each quarter in the year. Inline view X uses the window
 function ROW_NUMBER OVER and the FETCH FIRST clause to return only
 four rows from EMP. The results are shown below:
	select row_number()over() rn
	 from emp
	 fetch first 4 rows only

	RN
	--
	 1
	 2
	 3
	 4
The next step is to find the first day of the year, then add
 n months to it, where n is
 three times RN (you are adding 3, 6, 9, and 12 months to the first
 day of the year). The results are shown below:
	select (current_date
	 (dayofyear(current_date)-1) day
	 + (rn*3) month) dy
	 from (
	select row_number()over() rn
	 from emp
	 fetch first 4 rows only
) x

	DY

	01-APR-2005
	01-JUL-2005
	01-OCT-2005
	01-JAN-2005
At this point, the values for DY are one day after the end
 date for each quarter. The next step is to get the start and end
 dates for each quarter. Subtract one day from DY to get the end of
 each quarter, and subtract three months from DY to get the start of
 each quarter. Use the QUARTER function on DY-1 (the end date for each
 quarter) to determine which quarter the start and end dates belong
 to.

Oracle

The combination of ROWNUM, TRUNC, and ADD_MONTHS makes this solution very easy.
 To find the start of each quarter simply add n
 months to the first day of the year, where n is
 (ROWNUM-1)*3 (giving you 0,3,6,9). To find the end of each
 quarter add n months to the first
 day of the year, where n is ROWNUM*3, and
 subtract one day. As an aside, when working with quarters, you may
 also find it useful to use TO_CHAR and/or TRUNC with the ‘q’
 formatting option.

PostgreSQL

The first step is to truncate the current date to the first
 day of the year using the DATE_TRUNC function. Next, add
 n months, where n is RN
 (the values returned by GENERATE_SERIES) times three, and subtract
 one day. The results are shown below:
	select date(dy+((rn*3) * interval '1 month'))-1 as dy
	 from (
	select rn, date(date_trunc('year',current_date)) as dy
	 from generate_series(1,4) gs(rn)
) x

	DY

	31-MAR-2005
	30-JUN-2005
	30-SEP-2005
	31-DEC-2005
Now that you have the end dates for each quarter, the final
 step is to find the start date by subtracting two months from DY
 then truncating to the first day of the month by using the
 DATE_TRUNC function. Use the TO_CHAR function on the end date for
 each quarter (DY) to determine which quarter the start and end dates
 belong to.

MySQL

The first step is to find the first day of the year by using
 functions ADDDATE and DAYOFYEAR, then adding n
 months to the first day of the year, where n is
 T500.ID times three, by using the DATE_ADD function. The results are shown below:
	select date_add(dy,interval (3*id) month) dy
	 from (
	select id,
	 adddate(current_date,-dayofyear(current_date)+1) dy
	 from t500
	 where id <= 4
) x
 	DY

	01-APR-2005
	01-JUL-2005
	01-OCT-2005
	01-JAN-2005
At this point the dates are one day after the end of each
 quarter; to find the end of each quarter, simply
 subtract one day from DY. The next step is to find the start of each
 quarter by subtracting three months from DY. Use the QUARTER function on the end date of each quarter to
 determine which quarter the start and end dates belong to.

SQL Server

The first step is to find the first day of the year, then
 recursively add n months, where
 n is three times the current iteration (there
 are four iterations, therefore, you are adding 3*1 months, 3*2
 months, etc.), using the DATEADD function. The results are shown
 below:
	with x (dy,cnt)
	 as (
	select dateadd(d,-(datepart(dy,getdate())-1),getdate()),
	 1
	 from t1
	 union all
	select dateadd(m,3,dy), cnt+1
	 from x
	 where cnt+1 <= 4
)
	select dy
	 from x

	DY

	01-APR-2005
	01-JUL-2005
	01-OCT-2005
	01-JAN-2005
The values for DY are one day after the end of each quarter.
 To get the end of each quarter, simply subtract one day from DY by
 using the DATEADD function. To find the start of each quarter, use
 the DATEADD function to subtract three months from DY. Use the
 DATEPART function on the end date for each quarter to
 determine which quarter the start and end dates belong to.

9.9. Determining Quarter Start and End Dates for a Given
 Quarter

Problem

When given a year and quarter in the format of YYYYQ (four-digit
 year, one-digit quarter), you want to return the quarter’s start and
 end dates.

Solution

The key to this solution is to find the quarter by using the modulus function on the YYYYQ
 value. (As an alternative to modulo, since the year format is four
 digits, you can simply substring out the last digit to get the
 quarter.) Once you have the quarter, simply multiply by 3 to get the
 ending month for the quarter. In the solutions that follow, inline
 view X will return all four year and quarter combinations. The result
 set for inline view X is as follows:
	select 20051 as yrq from t1 union all
	select 20052 as yrq from t1 union all
	select 20053 as yrq from t1 union all
	select 20054 as yrq from t1
	 YRQ

	 20051
	 20052
	 20053
	 20054
DB2

Use the function SUBSTR to return the year from inline view X.
 Use the MOD function to determine which quarter you are looking
 for:
	 1 select (q_end-2 month) q_start,
	 2 (q_end+1 month)-1 day q_end
	 3 from (
	 4 select date(substr(cast(yrq as char(4)),1,4) ||'-'||
	 5 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end
	 6 from (
	 7 select 20051 yrq from t1 union all
	 8 select 20052 yrq from t1 union all
	 9 select 20053 yrq from t1 union all
	10 select 20054 yrq from t1
	11) x
	12) y

Oracle

Use the function SUBSTR to return the year from inline view X.
 Use the MOD function to determine which quarter you are looking
 for:
	 1 select add_months(q_end,-2) q_start,
	 2 last_day(q_end) q_end
	 3 from (
	 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
	 5 from (
	 6 select 20051 yrq from dual union all
	 7 select 20052 yrq from dual union all
	 8 select 20053 yrq from dual union all
	 9 select 20054 yrq from dual
	10) x
	11) y

PostgreSQL

Use the function SUBSTR to return the year from the inline
 view X. Use the MOD function to determine which quarter you are looking for:
	 1 select date(q_end-(2*interval '1 month')) as q_start,
	 2 date(q_end+interval '1 month'-interval '1 day') as q_end
	 3 from (
	 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') as q_end
	 5 from (
	 6 select 20051 as yrq from t1 union all
	 7 select 20052 as yrq from t1 union all
	 8 select 20053 as yrq from t1 union all
	 9 select 20054 as yrq from t1
	10) x
	11) y

MySQL

Use the function SUBSTR to return the year from the inline
 view X. Use the MOD function to determine which quarter you are
 looking for:
	 1 select date_add(
	 2 adddate(q_end,-day(q_end)+1),
	 3 interval -2 month) q_start,
	 4 q_end
	 5 from (
	 6 select last_day(
	 7 str_to_date(
	 8 concat(
	 9 substr(yrq,1,4),mod(yrq,10)*3),'%Y%m')) q_end
	10 from (
	11 select 20051 as yrq from t1 union all
	12 select 20052 as yrq from t1 union all
	13 select 20053 as yrq from t1 union all
	14 select 20054 as yrq from t1
	15) x
	16) y

SQL Server

Use the function SUBSTRING to return the year from the inline view X.
 Use the modulus function (%) to determine which quarter you
 are looking for:
	 1 select dateadd(m,-2,q_end) q_start,
	 2 dateadd(d,-1,dateadd(m,1,q_end)) q_end
	 3 from (
	 4 select cast(substring(cast(yrq as varchar),1,4)+'-'+
	 5 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end
	 6 from (
	 7 select 20051 as yrq from t1 union all
	 8 select 20052 as yrq from t1 union all
	 9 select 20052 as yrq from t1 union all
	10 select 20054 as yrq from t1
	11) x
	12) y

Discussion

DB2

The first step is to find the year and quarter you are working with. Substring out the year
 from inline view X (X.YRQ) using the SUBSTR function. To get the
 quarter, use modulus 10 on YRQ. Once you have the quarter, multiply
 by 3 to get the end month for the quarter. The results are shown
 below:
	select substr(cast(yrq as char(4)),1,4) yr,
	 mod(yrq,10)*3 mth
	 from (
	select 20051 yrq from t1 union all
	select 20052 yrq from t1 union all
	select 20053 yrq from t1 union all
	select 20054 yrq from t1
) x
	YR MTH
	---- ------
	2005 3
	2005 6
	2005 9
	2005 12
At this point you have the year and end month for each
 quarter. Use those values to construct a date, specifically, the
 first day of the last month for each quarter. Use the concatenation
 operator “||” to glue together the year and month, then use the
 DATE function to convert to a date:
	select date(substr(cast(yrq as char(4)),1,4) ||'-'||
	 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end
	 from (
	select 20051 yrq from t1 union all
	select 20052 yrq from t1 union all
	select 20053 yrq from t1 union all
	select 20054 yrq from t1
) x

	Q_END

	01-MAR-2005
	01-JUN-2005
	01-SEP-2005
	01-DEC-2005
The values for Q_END are the first day of the last month of
 each quarter. To get to the last day of the month add one
 month to Q_END, then subtract one day. To find the start date for
 each quarter subtract two months from Q_END.

Oracle

The first step is to find the year and quarter you are working
 with. Substring out the year from inline view X (X.YRQ) using the
 SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you
 have the quarter, multiply by 3 to get the end month for the
 quarter. The results are shown below:
	select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
	 from (
	select 20051 yrq from dual union all
	select 20052 yrq from dual union all
	select 20053 yrq from dual union all
	select 20054 yrq from dual
) x
	YR MTH
	---- ------
	2005 3
	2005 6
	2005 9
	2005 12
At this point you have the year and end month for each
 quarter. Use those values to construct a date, specifically, the
 first day of the last month for each quarter. Use the concatenation
 operator “||” to glue together the year and month, then use the
 TO_DATE function to convert to a date:
	select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
	 from (
	select 20051 yrq from dual union all
	select 20052 yrq from dual union all
	select 20053 yrq from dual union all
	select 20054 yrq from dual
) x
	Q_END

	01-MAR-2005
	01-JUN-2005
	01-SEP-2005
	01-DEC-2005
The values for Q_END are the first day of the last month of
 each quarter. To get to the last day of the month use the LAST_DAY
 function on Q_END. To find the start date for each quarter subtract
 two months from Q_END using the ADD_MONTHS function.

PostgreSQL

The first step is to find the year and quarter you are working with. Substring out the year
 from inline view X (X.YRQ) using the SUBSTR function. To get the
 quarter, use modulus 10 on YRQ. Once you have the quarter, multiply
 by 3 to get the end month for the quarter. The results are shown
 below:
	select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
	 from (
	select 20051 yrq from dual union all
	select 20052 yrq from dual union all
	select 20053 yrq from dual union all
	select 20054 yrq from dual
) x
	YR MTH
	---- -------
	2005 3
	2005 6
	2005 9
	2005 12
At this point you have the year and end month for each
 quarter. Use those values to construct a date, specifically, the
 first day of the last month for each quarter. Use the concatenation
 operator “||” to glue together the year and month, then use the TO_
 DATE function to convert to a date:
	select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
	 from (
	select 20051 yrq from dual union all
	select 20052 yrq from dual union all
	select 20053 yrq from dual union all
	select 20054 yrq from dual
) x

	Q_END

	01-MAR-2005
	01-JUN-2005
	01-SEP-2005
	01-DEC-2005
The values for Q_END are the first day of the last month of
 each quarter. To get to the last day of the month add one month to
 Q_END and subtract one day. To find the start date for each quarter
 subtract two months from Q_END. Cast the final result as
 dates.

MySQL

The first step is to find the year and quarter you are working
 with. Substring out the year from inline view X (X.YRQ) using the
 SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you have the quarter, multiply by 3 to get the end month for the
 quarter. The results are shown below:
	select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
	 from (
	select 20051 yrq from dual union all
	select 20052 yrq from dual union all
	select 20053 yrq from dual union all
	select 20054 yrq from dual
) x

	YR MTH
	---- ------
	2005 3
	2005 6
	2005 9
	2005 12
At this point you have the year and end month for each
 quarter. Use those values to construct a date, specifically, the
 last day of each quarter. Use the CONCAT function to glue together the year and month,
 then use the STR_TO_DATE function to convert to a date. Use the
 LAST_DAY function to find the last day for each
 quarter:
	select last_day(
	 str_to_date(
	 concat(
	 substr(yrq,1,4),mod(yrq,10)*3),'%Y%m')) q_end
	 from (
	select 20051 as yrq from t1 union all
	select 20052 as yrq from t1 union all
	select 20053 as yrq from t1 union all
	select 20054 as yrq from t1
) x

	Q_END

	31-MAR-2005
	30-JUN-2005
	30-SEP-2005
	31-DEC-2005
Because you already have the end of each quarter, all that’s
 left is to find the start date for each quarter. Use the DAY
 function to return the day of the month the end of each quarter
 falls on, and subtract that from Q_END using the ADDDATE function to give you the end of the prior
 month; add one day to bring you to the first day of the last month
 of each quarter. The last step is to use the DATE_ADD function to
 subtract two months from the first day of the last month of each
 quarter to get you to the start date for each quarter.

SQL Server

The first step is to find the year and quarter you are working
 with. Substring out the year from inline view X (X.YRQ) using the
 SUBSTRING function. To get the quarter, use modulus 10
 on YRQ. Once you have the quarter, multiply by 3 to get the end month for the
 quarter. The results are shown below:
	select substring(yrq,1,4) yr, yrq%10*3 mth
	 from (
	select 20051 yrq from dual union all
	select 20052 yrq from dual union all
	select 20053 yrq from dual union all
	select 20054 yrq from dual
) x

	YR MTH
	---- ------
	2005 3
	2005 6
	2005 9
	2005 12
At this point, you have the year and end month for each
 quarter. Use those values to construct a date, specifically, the
 first day of the last month for each quarter. Use the concatenation
 operator “+” to glue together the year and month, then use the
 CAST function to convert to a date:
	select cast(substring(cast(yrq as varchar),1,4)+'-'+
	 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end
	 from (
	select 20051 yrq from t1 union all
	select 20052 yrq from t1 union all
	select 20053 yrq from t1 union all
	select 20054 yrq from t1
) x

	Q_END

	01-MAR-2005
	01-JUN-2005
	01-SEP-2005
	01-DEC-2005
The values for Q_END are the first day of the last month of
 each quarter. To get to the last day of the month add one month to
 Q_END and subtract one day using the DATEADD function. To find the
 start date for each quarter subtract two months from Q_END using the
 DATEADD function.

9.10. Filling in Missing Dates

Problem

You need to generate a row for every date (or every month, week,
 or year) within a given range. Such rowsets are often used to generate
 summary reports. For example, you want to count the number of
 employees hired every month of every year in which any employee has
 been hired. Examining the dates of all the employees hired, there have been
 hirings from 1980 to 1983:
	select distinct
	 extract(year from hiredate) as year
	 from emp

	YEAR

	 1980
	 1981
	 1982
	 1983
You want to determine the number of employees hired each month
 from 1980 to 1983. A portion of the desired result set is shown
 below:
	MTH NUM_HIRED
	----------- ----------
	01-JAN-1981 0
	01-FEB-1981 2
	01-MAR-1981 0
	01-APR-1981 1
	01-MAY-1981 1
	01-JUN-1981 1
	01-JUL-1981 0
	01-AUG-1981 0
	01-SEP-1981 2
	01-OCT-1981 0
	01-NOV-1981 1
	01-DEC-1981 2

Solution

The trick here is that you want to return a row for each month
 even if no employee was hired (i.e., the count would be zero). Because
 there isn’t an employee hired every month between 1980 and 1983, you
 must generate those months yourself, and then outer join to table EMP
 on HIREDATE (truncating the actual HIREDATE to its month, so it can
 match the generated months when possible).
DB2

Use the recursive WITH clause to generate every month (the
 first day of each month from January 1, 1980, to December 1, 1983).
 Once you have all the months for the required range of dates, outer
 join to table EMP and use the aggregate function COUNT to count the
 number of hires for each month:
	 1 with x (start_date,end_date)
	 2 as (
	 3 select (min(hiredate)
	 4 dayofyear(min(hiredate)) day +1 day) start_date,
	 5 (max(hiredate)
	 6 dayofyear(max(hiredate)) day +1 day) +1 year end_date
	 7 from emp
	 8 union all
	 9 select start_date +1 month, end_date
	10 from x
	11 where (start_date +1 month) < end_date
	12)
	13 select x.start_date mth, count(e.hiredate) num_hired
	14 from x left join emp e
	15 on (x.start_date = (e.hiredate-(day(hiredate)-1) day))
	16 group by x.start_date
	17 order by 1

Oracle

Use the CONNECT BY clause to generate each month between 1980
 and 1983. Then outer join to table EMP and use the aggregate
 function COUNT to count the number of employees hired in each month.
 If you are on Oracle8i Database and earlier,
 the ANSI outer join is not available to you, nor is the ability to
 use CONNECT BY as a row generator; a simple workaround is to use a
 traditional pivot table (like the one used in the MySQL solution).
 Following as an Oracle solution using Oracle’s outer-join
 syntax:
	 1 with x
	 2 as (
	 3 select add_months(start_date,level-1) start_date
	 4 from (
	 5 select min(trunc(hiredate,'y')) start_date,
	 6 add_months(max(trunc(hiredate,'y')),12) end_date
	 7 from emp
	 8)
	 9 connect by level <= months_between(end_date,start_date)
	10)
	11 select x.start_date MTH, count(e.hiredate) num_hired
	12 from x, emp e
	13 where x.start_date = trunc(e.hiredate(+),'mm')
	14 group by x.start_date
	15 order by 1
and here is a second Oracle solution, this time using the ANSI
 syntax:
	 1 with x
	 2 as (
	 3 select add_months(start_date,level-1) start_date
	 4 from (
	 5 select min(trunc(hiredate,'y')) start_date,
	 6 add_months(max(trunc(hiredate,'y')),12) end_date
	 7 from emp
	 8)
	 9 connect by level <= months_between(end_date,start_date)
	10)
	11 select x.start_date MTH, count(e.hiredate) num_hired
	12 from x left join emp e
	13 on (x.start_date = trunc(e.hiredate,'mm'))
	14 group by x.start_date
	15 order by 1

PostgreSQL

To improve readability, this solution uses a view, named V, to
 return the number of months between the first day of the first month
 of the year the first employee was hired and the first day of the
 last month of the year the most recent employee was hired. Use the
 value returned by view V as the second value passed to the function
 GENERATE_SERIES, so that the correct number of months (rows) are
 generated. Once you have all the months for the required range of
 dates, outer join to table EMP and use the aggregate
 function COUNT to count the number of hires for each month:
	create view v
	as
	select cast(
	 extract(year from age(last_month,first_month))*12-1
	 as integer) as mths
	 from (
	select cast(date_trunc('year',min(hiredate)) as date) as first_month,
	 cast(cast(date_trunc('year',max(hiredate))
	 as date) + interval '1 year'
	 as date) as last_month
	 from emp
) x

	1 select y.mth, count(e.hiredate) as num_hired
	2 from (
	3 select cast(e.start_date + (x.id * interval '1 month')
	4 as date) as mth
	5 from generate_series (0,(select mths from v)) x(id),
	6 (select cast(
	7 date_trunc('year',min(hiredate))
	8 as date) as start_date
	9 from emp) e
	10) y left join emp e
	11 on (y.mth = date_trunc('month',e.hiredate))
	12 group by y.mth
	13 order by 1

MySQL

Use the pivot table T500 to generate each month between 1980
 and 1983. Then outer join to table EMP and use the aggregate
 function COUNT to count the number of employees hired for each
 month:
	1 select z.mth, count(e.hiredate) num_hired
	2 from (
	3 select date_add(min_hd,interval t500.id-1 month) mth
	4 from (
	5 select min_hd, date_add(max_hd,interval 11 month) max_hd
	6 from (
	7 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
	8 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
	9 from emp
	10) x
	11) y,
	12 t500
	13 where date_add(min_hd,interval t500.id-1 month) <= max_hd
	14) z left join emp e
	15 on (z.mth = adddate(
	16 date_add(
	17 last_day(e.hiredate),interval -1 month),1))
	18 group by z.mth
	19 order by 1

SQL Server

Use the recursive WITH clause to generate every month (the
 first day of each month from January 1, 1980, to December 1, 1983).
 Once you have all the months for the required range of dates, outer join to table EMP and use the aggregate
 function COUNT to count the number of hires for each month:
	1 with x (start_date,end_date)
	2 as (
	3 select (min(hiredate)
	4 datepart(dy,min(hiredate))+1) start_date,
	5 dateadd(yy,1,
	6 (max(hiredate)
	7 datepart(dy,max(hiredate))+1)) end_date
	8 from emp
	9 union all
	10 select dateadd(mm,1,start_date), end_date
	11 from x
	12 where dateadd(mm,1,start_date) < end_date
	13)
	14 select x.start_date mth, count(e.hiredate) num_hired
	15 from x left join emp e
	16 on (x.start_date =
	17 dateadd(dd,-day(e.hiredate)+1,e.hiredate))
	18 group by x.start_date
	19 order by 1

Discussion

DB2

The first step is to generate every month (actually the first
 day of each month) from 1980 to 1983. Start using the DAYOFYEAR function on the MIN and MAX HIREDATEs to
 find the boundary months:
	select (min(hiredate)
	 dayofyear(min(hiredate)) day +1 day) start_date,
	 (max(hiredate)
	 dayofyear(max(hiredate)) day +1 day) +1 year end_date
	 from emp

	START_DATE END_DATE
	----------- -----------
	01-JAN-1980 01-JAN-1984
Your next step is to repeatedly add months to START_DATE to
 return all the months necessary for the final result set. The value
 for END_DATE is one day more than it should be. This is OK. As you
 recursively add months to START_DATE, you can stop before you hit
 END_DATE. A portion of the months created is shown below:
	with x (start_date,end_date)
	 as (
	select (min(hiredate)
	 dayofyear(min(hiredate)) day +1 day) start_date,
	 (max(hiredate)
	 dayofyear(max(hiredate)) day +1 day) +1 year end_date
	 from emp
	 union all
	select start_date +1 month, end_date
	 from x
	 where (start_date +1 month) < end_date
)
	select *
	 from x

	START_DATE END_DATE
	----------- -----------
	01-JAN-1980 01-JAN-1984
	01-FEB-1980 01-JAN-1984
	01-MAR-1980 01-JAN-1984
	…
	01-OCT-1983 01-JAN-1984
	01-NOV-1983 01-JAN-1984
	01-DEC-1983 01-JAN-1984
At this point, you have all the months you need, and you can
 simply outer join to EMP.HIREDATE. Because the day for each
 START_DATE is the first of the month, truncate EMP.HIREDATE to the
 first day of its month. Finally, use the aggregate function COUNT on
 EMP.HIREDATE.

Oracle

The first step is to generate the first day of every for every
 month from 1980 to 1983. Start by using TRUNC and ADD_MONTHS together with the MIN and MAX HIREDATE
 values to find the boundary months:
	select min(trunc(hiredate,'y')) start_date,
	 add_months(max(trunc(hiredate,'y')),12) end_date
	 from emp

	START_DATE END_DATE
	----------- -----------
	01-JAN-1980 01-JAN-1984
Then repeatedly add months to START_DATE to return all the months necessary for
 the final result set. The value for END_DATE is one day more than it
 should be, which is OK. As you recursively add months to START_DATE,
 you can stop before you hit END_DATE. A portion of the months
 created is shown below:
	with x as (
	select add_months(start_date,level-1) start_date
	 from (
	select min(trunc(hiredate,'y')) start_date,
	 add_months(max(trunc(hiredate,'y')),12) end_date
	 from emp
)
	 connect by level <= months_between(end_date,start_date)
)
	select *
	 from x

	START_DATE

	01-JAN-1980
	01-FEB-1980
	01-MAR-1980
	…
	01-OCT-1983
	01-NOV-1983
	01-DEC-1983
At this point, you have all the months you need; simply outer
 join to EMP.HIREDATE. Because the day for each START_DATE is the
 first of the month, truncate EMP.HIREDATE to the first day of the
 month it is in. The final step is to use the aggregate function
 COUNT on EMP.HIREDATE.

PostgreSQL

This solution uses the function GENERATE_SERIES to return the
 months you need. If you do not have the GENERATE_SERIES function
 available, you can use a pivot table as in the MySQL solution. The
 first step is to understand view V. View V simply finds the number
 of months you’ll need to generate by finding the boundary dates for the range. Inline view X in view V uses the
 MIN and MAX HIREDATEs to find the start and end boundary dates and
 is shown below:
	select cast(date_trunc('year',min(hiredate)) as date) as first_month,
	 cast(cast(date_trunc('year',max(hiredate))
	 as date) + interval '1 year'
	 as date) as last_month
	 from emp

	FIRST_MONTH LAST_MONTH
	----------- -----------
	01-JAN-1980 01-JAN-1984
The value for LAST_MONTH is actually one day more than it
 should be. This is fine, as you can just subtract 1 when you
 calculate the months between these two dates. The next step is to use the AGE function to
 find the difference between the two dates in years, then multiply by
 12 (and remember, subtract by 1!):
	select cast(
	 extract(year from age(last_month,first_month))*12-1
	 as integer) as mths
	 from (
	select cast(date_trunc('year',min(hiredate)) as date) as first_month,
	 cast(cast(date_trunc('year',max(hiredate))
	 as date) + interval '1 year'
	 as date) as last_month
	 from emp
) x

	MTHS

	 47
Use the value returned by view V as the second parameter of
 GENERATE_SERIES to return the number of months you need. Your next
 step is then to find your start date. You’ll repeatedly add months
 to your start date to create your range of months. Inline view Y
 uses the DATE_TRUNC function on the MIN(HIREDATE) to find the
 start date, and uses the values returned by GENERATE_SERIES to add
 months. Partial results are shown below:
	select cast(e.start_date + (x.id * interval '1 month')
	 as date) as mth
	 from generate_series (0,(select mths from v)) x(id),
	 (select cast(
	 date_trunc('year',min(hiredate))
	 as date) as start_date
	 from emp
) e

	MTH

	01-JAN-1980
	01-FEB-1980
	01-MAR-1980
	…
	01-OCT-1983
	01-NOV-1983
	01-DEC-1983
Now that you have each month you need for the final result
 set, outer join to EMP. HIREDATE and use the aggregate function
 COUNT to count the number of hires for each month.

MySQL

First, find the boundary dates by using the aggregate functions MIN and MAX
 along with the DAYOFYEAR and ADDDATE functions. The result set shown below is from
 inline view X:
	select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
	 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
	 from emp

	MIN_HD MAX_HD
	----------- -----------
	01-JAN-1980 01-JAN-1983
Next, increment MAX_HD to the last month of the year:
	select min_hd, date_add(max_hd,interval 11 month) max_hd
	 from (
	select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
	 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
	 from emp
) x

	MIN_HD MAX_HD
	----------- -----------
	01-JAN-1980 01-DEC-1983
Now that you have the boundary dates, add months to MIN_HD up
 to and including MAX_HD by using pivot table T500 to generate the
 rows you need. A portion of the results is shown below:
	select date_add(min_hd,interval t500.id-1 month) mth
	 from (
	select min_hd, date_add(max_hd,interval 11 month) max_hd
	 from (
	select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
	 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
	 from emp
) x
) y,
	 t500
	where date_add(min_hd,interval t500.id-1 month) <= max_hd
	MTH

	01-JAN-1980
	01-FEB-1980
	01-MAR-1980
	…
	01-OCT-1983
	01-NOV-1983
	01-DEC-1983
Now that you have all the months you need for the final result
 set, outer join to EMP.HIREDATE (be sure to truncate EMP.HIREDATE to
 the first day of the month) and use the aggregate function COUNT on
 EMP.HIREDATE to count the number of hires in each month.

SQL Server

Begin by generating every month (actually, the first day of
 each month) from 1980 to 1983. Then find the boundary months by
 applying the DAYOFYEAR function to the MIN and MAX HIREDATEs:
	select (min(hiredate) -
	 datepart(dy,min(hiredate))+1) start_date,
 	 dateadd(yy,1,
	 (max(hiredate) -
	 datepart(dy,max(hiredate))+1)) end_date
	 from emp

	START_DATE END_DATE
	----------- -----------
	01-JAN-1980 01-JAN-1984
Your next step is to repeatedly add months to START_DATE to
 return all the months necessary for the final result set. The value
 for END_DATE is one day more than it should be, which is OK, as you
 can stop recursively adding months to START_DATE before you hit
 END_DATE. A portion of the months created is shown below:
	with x (start_date,end_date)
	 as (
	select (min(hiredate) -
	 datepart(dy,min(hiredate))+1) start_date,
	 dateadd(yy,1,
	 (max(hiredate) -
	 datepart(dy,max(hiredate))+1)) end_date
	 from emp
	 union all
	select dateadd(mm,1,start_date), end_date
	 from x
	 where dateadd(mm,1,start_date) < end_date
)
	select *
	 from x

	START_DATE END_DATE
	----------- -----------
	01-JAN-1980 01-JAN-1984
	01-FEB-1980 01-JAN-1984
	01-MAR-1980 01-JAN-1984
	…
	01-OCT-1983 01-JAN-1984
	01-NOV-1983 01-JAN-1984
	01-DEC-1983 01-JAN-1984
At this point, you have all the months you need. Simply outer
 join to EMP.HIREDATE. Because the day for each START_DATE is the
 first of the month, truncate EMP.HIREDATE to the first day of the
 month. The final step is to use the aggregate function COUNT on
 EMP.HIREDATE.

9.11. Searching on Specific Units of Time

Problem

You want to search for dates that match a given month, or day of the week, or
 some other unit of time. For example, you want to find all employees
 hired in February or December, as well as employees hired on a
 Tuesday.

Solution

Use the functions supplied by your RDBMS to find month and
 weekday names for dates. This particular recipe can be useful in
 various places. Consider, if you wanted to search HIREDATEs but wanted
 to ignore the year by extracting the month (or any other part of the
 HIREDATE you are interested in), you can do so. The example solutions
 to this problem search by month and weekday name. By studying the date
 formatting functions provided by your RDBMS, you can easily modify
 these solutions to search by year, quarter, combination of year and
 quarter, month and year combination, etc.
DB2 and MySQL

Use the functions MONTHNAME and DAYNAME to find the name of the month and weekday an
 employee was hired, respectively:
	1 select ename
	2 from emp
	3 where monthname(hiredate) in ('February','December')
	4 or dayname(hiredate) = 'Tuesday'

Oracle and PostgreSQL

Use the function TO_CHAR to find the names of the month and
 weekday an employee was hired. Use the function RTRIM to remove trailing whitespaces:
	1 select ename
	2 from emp
	3 where rtrim(to_char(hiredate,'month')) in ('february','december')
	4 or rtrim(to_char(hiredate,'day')) = 'tuesday'

SQL Server

Use the function DATENAME to find the names of the month and weekday an
 employee was hired:
	1 select ename
	2 from emp
	3 where datename(m,hiredate) in ('February','December')
	4 or datename(dw,hiredate) = 'Tuesday'

Discussion

The key to each solution is simply knowing which functions to
 use and how to use them. To verify what the return values are, put the
 functions in the SELECT clause and examine the output. Listed below is
 the result set for employees in DEPTNO 10 (using SQL Server
 syntax):
	select ename,datename(m,hiredate) mth,datename(dw,hiredate) dw
	 from emp
	 where deptno = 10

	ENAME MTH DW
	------ --------- -----------
	CLARK June Tuesday
	KING November Tuesday
	MILLER January Saturday
Once you know what the function(s) return, finding rows using
 the functions shown in each of the solutions is easy.

9.12. Comparing Records Using Specific Parts of a Date

Problem

You want to find which employees have been hired on the same
 month and weekday. For example, if an employee was hired on Monday,
 March 10, 1988, and another employee was hired on Monday, March 2,
 2001, you want those two to come up as a match since the day of week
 and month match. In table EMP, only three employees meet this
 requirement. You want to return the following result set:
	MSG
	--
	JAMES was hired on the same month and weekday as FORD
	SCOTT was hired on the same month and weekday as JAMES
	SCOTT was hired on the same month and weekday as FORD

Solution

Because you want to compare one employee’s HIREDATE with the
 HIREDATE of the other employees, you will need to self join table EMP.
 That makes each possible combination of HIREDATEs available for you to
 compare. Then, simply extract the weekday and month from each HIREDATE
 and compare.
DB2

After self joining table EMP, use the function DAYOFWEEK to return the numeric day of the week. Use
 the function MONTHNAME to return the name of the month:
	1 select a.ename ||
	2 ' was hired on the same month and weekday as '||
	3 b.ename msg
	4 from emp a, emp b
	5 where (dayofweek(a.hiredate),monthname(a.hiredate)) =
	6 (dayofweek(b.hiredate),monthname(b.hiredate))
	7 and a.empno < b.empno
	8 order by a.ename

Oracle and PostgreSQL

After self joining table EMP, use the TO_CHAR function to
 format the HIREDATE into weekday and month for comparison:
	1 select a.ename ||
	2 ' was hired on the same month and weekday as '||
	3 b.ename as msg
	4 from emp a, emp b
	5 where to_char(a.hiredate,'DMON') =
	6 to_char(b.hiredate,'DMON')
	7 and a.empno < b.empno
	8 order by a.ename

MySQL

After self joining table EMP, use the DATE_FORMAT function to format the HIREDATE into
 weekday and month for comparison:
	1 select concat(a.ename,
	2 ' was hired on the same month and weekday as ',
	3 b.ename) msg
	4 from emp a, emp b
	5 where date_format(a.hiredate,'%w%M') =
	6 date_format(b.hiredate,'%w%M')
	7 and a.empno < b.empno
	8 order by a.ename

SQL Server

After self joining table EMP, use the DATENAME function to format the HIREDATE into weekday
 and month for comparison:
	1 select a.ename +
	2 ' was hired on the same month and weekday as '+
	3 b.ename msg
	4 from emp a, emp b
	5 where datename(dw,a.hiredate) = datename(dw,b.hiredate)
	6 and datename(m,a.hiredate) = datename(m,b.hiredate)
	7 and a.empno < b.empno
	8 order by a.ename

Discussion

The only difference between the solutions is the date function
 used to format the HIREDATE. I’m going to use the Oracle/PostgreSQL
 solution in this discussion (because it’s the shortest to type out),
 but the explanation holds true for the other solutions as well.
The first step is to self join EMP so that each employee has
 access to the other employees’ HIREDATEs. Consider the results of the
 query below (filtered for SCOTT):
	select a.ename as scott, a.hiredate as scott_hd,
	 b.ename as other_emps, b.hiredate as other_hds
	 from emp a, emp b
	 where a.ename = 'SCOTT'
	 and a.empno != b.empno

	SCOTT SCOTT_HD OTHER_EMPS OTHER_HDS
	---------- ----------- ---------- -----------
	SCOTT 09-DEC-1982 SMITH 17-DEC-1980
	SCOTT 09-DEC-1982 ALLEN 20-FEB-1981
	SCOTT 09-DEC-1982 WARD 22-FEB-1981
	SCOTT 09-DEC-1982 JONES 02-APR-1981
	SCOTT 09-DEC-1982 MARTIN 28-SEP-1981
	SCOTT 09-DEC-1982 BLAKE 01-MAY-1981
	SCOTT 09-DEC-1982 CLARK 09-JUN-1981
	SCOTT 09-DEC-1982 KING 17-NOV-1981
	SCOTT 09-DEC-1982 TURNER 08-SEP-1981
	SCOTT 09-DEC-1982 ADAMS 12-JAN-1983
	SCOTT 09-DEC-1982 JAMES 03-DEC-1981
	SCOTT 09-DEC-1982 FORD 03-DEC-1981
	SCOTT 09-DEC-1982 MILLER 23-JAN-1982
By self-joining table EMP, you can compare SCOTT’s HIREDATE to
 the HIREDATE of all the other employees. The filter on EMPNO is so
 that SCOTT’s HIREDATE is not returned as one of the OTHER_HDS. The
 next step is to use your RDBMS’s supplied date formatting function(s)
 to compare the weekday and month of the HIREDATEs and keep only those
 that match:
	select a.ename as emp1, a.hiredate as emp1_hd,
	 b.ename as emp2, b.hiredate as emp2_hd
	 from emp a, emp b
	 where to_char(a.hiredate,'DMON') =
	 to_char(b.hiredate,'DMON')
	 and a.empno != b.empno
	 order by 1

	EMP1 EMP1_HD EMP2 EMP2_HD
	---------- ----------- ---------- -----------
	FORD 03-DEC-1981 SCOTT 09-DEC-1982
	FORD 03-DEC-1981 JAMES 03-DEC-1981
	JAMES 03-DEC-1981 SCOTT 09-DEC-1982
	JAMES 03-DEC-1981 FORD 03-DEC-1981

	SCOTT 09-DEC-1982 JAMES 03-DEC-1981
	SCOTT 09-DEC-1982 FORD 03-DEC-1981
At this point, the HIREDATEs are correctly matched, but there
 are six rows in the result set rather than the three in the “Problem”
 section of this recipe. The reason for the extra rows is the filter on
 EMPNO. By using “not equals” you do not filter out the reciprocals.
 For example, the first row matches FORD and SCOTT and the last row
 matches SCOTT and FORD. The six rows in the result set are technically
 accurate but redundant. To remove the redundancy use “less than” (the
 HIREDATEs are removed to bring the intermediate queries closer to the
 final result set):
	select a.ename as emp1, b.ename as emp2
	 from emp a, emp b
	 where to_char(a.hiredate,'DMON') =
	 to_char(b.hiredate,'DMON')
	 and a.empno < b.empno
	 order by 1

	EMP1 EMP2
	---------- ----------
	JAMES FORD
	SCOTT JAMES
	SCOTT FORD
The final step is to simply concatenate the result set to form
 the message.

9.13. Identifying Overlapping Date Ranges

Problem

You want to find all instances of an employee starting a new
 project before ending an existing project. Consider table
 EMP_PROJECT:
	select *
	 from emp_project

	EMPNO ENAME PROJ_ID PROJ_START PROJ_END
	----- ---------- ------- ----------- -----------
	7782 CLARK 1 16-JUN-2005 18-JUN-2005
	7782 CLARK 4 19-JUN-2005 24-JUN-2005
	7782 CLARK 7 22-JUN-2005 25-JUN-2005
	7782 CLARK 10 25-JUN-2005 28-JUN-2005
	7782 CLARK 13 28-JUN-2005 02-JUL-2005
	7839 KING 2 17-JUN-2005 21-JUN-2005
	7839 KING 8 23-JUN-2005 25-JUN-2005
	7839 KING 14 29-JUN-2005 30-JUN-2005
	7839 KING 11 26-JUN-2005 27-JUN-2005
	7839 KING 5 20-JUN-2005 24-JUN-2005
	7934 MILLER 3 18-JUN-2005 22-JUN-2005
	7934 MILLER 12 27-JUN-2005 28-JUN-2005
	7934 MILLER 15 30-JUN-2005 03-JUL-2005
	7934 MILLER 9 24-JUN-2005 27-JUN-2005
	7934 MILLER 6 21-JUN-2005 23-JUN-2005
Looking at the results for employee KING, you see that KING
 began PROJ_ID 8 before finishing PROJ_ID 5 and began PROJ_ID 5 before
 finishing PROJ_ID 2. You want to return the following result
 set:
	EMPNO ENAME MSG
	----- ---------- --------------------------------
	7782 CLARK project 7 overlaps project 4
	7782 CLARK project 10 overlaps project 7
	7782 CLARK project 13 overlaps project 10
	7839 KING project 8 overlaps project 5
	7839 KING project 5 overlaps project 2
	7934 MILLER project 12 overlaps project 9
	7934 MILLER project 6 overlaps project 3

Solution

The key here is to find rows where PROJ_START (the date the new project starts) occurs on or after another
 project’s PROJ_START date and on or before that other project’s
 PROJ_END date. To begin, you need to be able to compare each project
 with each other project (for the same employee). By self joining
 EMP_PROJECT on employee, you generate every possible combination of
 two projects for each employee. To find the overlaps, simply find the
 rows where PROJ_START for any PROJ_ID falls between PROJ_START and
 PROJ_END for another PROJ_ID by the same employee.
DB2, PostgreSQL, and Oracle

Self join EMP_PROJECT. Then use the concatenation operator “||” to construct the message that explains
 which projects overlap:
	1 select a.empno,a.ename,
	2 'project '||b.proj_id||
	3 ' overlaps project '||a.proj_id as msg
	4 from emp_project a,
	5 emp_project b
	6 where a.empno = b.empno
	7 and b.proj_start >= a.proj_start
	8 and b.proj_start <= a.proj_end
	9 and a.proj_id != b.proj_id

MySQL

Self join EMP_PROJECT. Then use the CONCAT function to construct the message that explains
 which projects overlap:
	1 select a.empno,a.ename,
	2 concat('project ',b.proj_id,
	3 ' overlaps project ',a.proj_id) as msg
	4 from emp_project a,
	5 emp_project b
	6 where a.empno = b.empno
	7 and b.proj_start >= a.proj_start
	8 and b.proj_start <= a.proj_end
	9 and a.proj_id != b.proj_id

SQL Server

Self join EMP_PROJECT. Then use the concatenation operator "+” to construct the message that explains which
 projects overlap:
	1 select a.empno,a.ename,
	2 'project '+b.proj_id+
	3 ' overlaps project '+a.proj_id as msg
	4 from emp_project a,
	5 emp_project b
	6 where a.empno = b.empno
	7 and b.proj_start >= a.proj_start
	8 and b.proj_start <= a.proj_end
	9 and a.proj_id != b.proj_id

Discussion

The only difference between the solutions lies in the string
 concatenation, so one discussion using the DB2 syntax will cover all
 three solutions. The first step is a self join of EMP_PROJECT so that
 the PROJ_START dates can be compared amongst the different projects.
 The output of the self join for employee KING is shown below. You can
 observe how each project can “see” the other projects:
	select a.ename,
	 a.proj_id as a_id,
	 a.proj_start as a_start,
	 a.proj_end as a_end,
	 b.proj_id as b_id,
	 b.proj_start as b_start
	 from emp_project a,
	 emp_project b
	 where a.ename = 'KING'
	 and a.empno = b.empno
	 and a.proj_id != b.proj_id
	order by 2

	ENAME A_ID A_START A_END B_ID B_START
	------ ----- ----------- ----------- ----- -----------
	KING 2 17-JUN-2005 21-JUN-2005 8 23-JUN-2005
	KING 2 17-JUN-2005 21-JUN-2005 14 29-JUN-2005
	KING 2 17-JUN-2005 21-JUN-2005 11 26-JUN-2005
	KING 2 17-JUN-2005 21-JUN-2005 5 20-JUN-2005
	KING 5 20-JUN-2005 24-JUN-2005 2 17-JUN-2005
	KING 5 20-JUN-2005 24-JUN-2005 8 23-JUN-2005
	KING 5 20-JUN-2005 24-JUN-2005 11 26-JUN-2005
	KING 5 20-JUN-2005 24-JUN-2005 14 29-JUN-2005
	KING 8 23-JUN-2005 25-JUN-2005 2 17-JUN-2005
	KING 8 23-JUN-2005 25-JUN-2005 14 29-JUN-2005
	KING 8 23-JUN-2005 25-JUN-2005 5 20-JUN-2005
	KING 8 23-JUN-2005 25-JUN-2005 11 26-JUN-2005
	KING 11 26-JUN-2005 27-JUN-2005 2 17-JUN-2005
	KING 11 26-JUN-2005 27-JUN-2005 8 23-JUN-2005
	KING 11 26-JUN-2005 27-JUN-2005 14 29-JUN-2005
	KING 11 26-JUN-2005 27-JUN-2005 5 20-JUN-2005
	KING 14 29-JUN-2005 30-JUN-2005 2 17-JUN-2005
	KING 14 29-JUN-2005 30-JUN-2005 8 23-JUN-2005
	KING 14 29-JUN-2005 30-JUN-2005 5 20-JUN-2005
	KING 14 29-JUN-2005 30-JUN-2005 11 26-JUN-2005
As you can see from the result set above, the self join makes finding overlapping dates easy; simply return each row where B_START occurs
 between A_START and A_END. If you look at the WHERE clause on lines 7
 and 8 of the solution:
	and b.proj_start >= a.proj_start
	and b.proj_start <= a.proj_end
it is doing just that. Once you have the required rows,
 constructing the messages is just a matter of concatenating the return
 values.
Oracle users can use the window function LEAD OVER to avoid the self join, if the maximum number of
 projects per employee is fixed. This can come in handy if the self
 join is expensive for your particular results (if the self join
 requires more resources than the sorts needed for LEAD OVER). For
 example, consider the alternative for employee KING using LEAD
 OVER:
	select empno,
	 ename,
	 proj_id,
	 proj_start,
	 proj_end,
	 case
	 when lead(proj_start,1)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 when lead(proj_start,2)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 when lead(proj_start,3)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 when lead(proj_start,4)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 end is_overlap
	 from emp_project
	 where ename = 'KING'

	EMPNO ENAME PROJ_ID PROJ_START PROJ_END IS_OVERLAP
	----- ------ ------- ----------- ----------- ----------
	7839 KING 2 17-JUN-2005 21-JUN-2005 5
	7839 KING 5 20-JUN-2005 24-JUN-2005 8
	7839 KING 8 23-JUN-2005 25-JUN-2005
	7839 KING 11 26-JUN-2005 27-JUN-2005
	7839 KING 14 29-JUN-2005 30-JUN-2005
Because the number of projects is fixed at five for employee
 KING, you can use LEAD OVER to move examine the dates of all the projects without a self join. From here, producing the final result set is
 easy. Simply keep the rows where IS_OVERLAP is not NULL:
	select empno,ename,
	 'project '||is_overlap||
	 ' overlaps project '||proj_id msg
	 from (
	select empno,
	 ename,
	 proj_id,
	 proj_start,
	 proj_end,
	 case
	 when lead(proj_start,1)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 when lead(proj_start,2)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 when lead(proj_start,3)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 when lead(proj_start,4)over(order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(order by proj_start)
	 end is_overlap
	 from emp_project
	 where ename = 'KING'
)
	 where is_overlap is not null

	EMPNO ENAME MSG
	----- ------ --------------------------------
	7839 KING project 5 overlaps project 2
	7839 KING project 8 overlaps project 5
To allow the solution to work for all employees (not just KING),
 partition by ENAME in the LEAD OVER function:
	select empno,ename,
	 'project '||is_overlap||
	 ' overlaps project '||proj_id msg
	 from (
	select empno,
	 ename,
	 proj_id,
	 proj_start,
	 proj_end,
	 case
	 when lead(proj_start,1)over(partition by ename
	 order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(partition by ename
	 order by proj_start)
	 when lead(proj_start,2)over(partition by ename
	 order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(partition by ename
	 order by proj_start)
	 when lead(proj_start,3)over(partition by ename
	 order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(partition by ename
	 order by proj_start)
	 when lead(proj_start,4)over(partition by ename
	 order by proj_start)
	 between proj_start and proj_end
	 then lead(proj_id)over(partition by ename
	 order by proj_start)
	 end is_overlap
	 from emp_project
)
	where is_overlap is not null

	EMPNO ENAME MSG
	----- ------ -------------------------------
	7782 CLARK project 7 overlaps project 4
	7782 CLARK project 10 overlaps project 7
	7782 CLARK project 13 overlaps project 10
	7839 KING project 5 overlaps project 2
	7839 KING project 8 overlaps project 5
	7934 MILLER project 6 overlaps project 3
	7934 MILLER project 12 overlaps project 9

Chapter 10. Working with Ranges

This chapter is about “everyday” queries that involve ranges. Ranges
 are common in everyday life. For example, projects that we work on range
 over consecutive periods of time. In SQL, it’s often necessary to
 search for ranges, or to generate ranges, or to otherwise manipulate
 range-based data. The queries you’ll read about here are slightly more
 involved than the queries found in the preceding chapters, but they are
 just as common, and they’ll begin to give you a sense of what SQL can
 really do for you when you learn to take full advantage of it.
10.1. Locating a Range of Consecutive Values

Problem

You want to determine which rows represent a range of
 consecutive projects. Consider the following result set from view V,
 which contains data about a project and its start and end
 dates:
	select *
	 from V

	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 4 04-JAN-2005 05-JAN-2005
	 5 06-JAN-2005 07-JAN-2005
	 6 16-JAN-2005 17-JAN-2005
	 7 17-JAN-2005 18-JAN-2005
	 8 18-JAN-2005 19-JAN-2005
	 9 19-JAN-2005 20-JAN-2005
	 10 21-JAN-2005 22-JAN-2005
	 11 26-JAN-2005 27-JAN-2005
	 12 27-JAN-2005 28-JAN-2005
	 13 28-JAN-2005 29-JAN-2005
	 14 29-JAN-2005 30-JAN-2005
Excluding the first row, each row’s PROJ_START should equal the
 PROJ_END of the row before it (“before” is defined as PROJ_ID–1 for
 the current row). Examining the first five rows from view V, PROJ_IDs
 1 through 3 are part of the same “group” as each PROJ_END equals the
 PROJ_START of the row after it. Because you want to find the range of dates for consecutive projects, you would like to return all rows
 where the current PROJ_END equals the next row’s PROJ_START. If the
 first five rows comprised the entire result set, you would like to
 return only the first three rows. The final result set (using all 14
 rows from view V) should be:
	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 6 16-JAN-2005 17-JAN-2005
	 7 17-JAN-2005 18-JAN-2005
	 8 18-JAN-2005 19-JAN-2005
	 11 26-JAN-2005 27-JAN-2005
	 12 27-JAN-2005 28-JAN-2005
	 13 28-JAN-2005 29-JAN-2005
The rows with PROJ_IDs 4,5,9,10, and 14 are excluded from this
 result set because the PROJ_END of each of these rows does not match
 the PROJ_START of the row following it.

Solution

DB2, MySQL, PostgreSQL, and SQL Server

Use a self join to find the rows with consecutive
 values:
	1 select v1.proj_id,
	2 v1.proj_start,
	3 v1.proj_end
	4 from V v1, V v2
	5 where v1.proj_end = v2.proj_start

Oracle

The preceding solution will also work for Oracle.
 Alternatively, here is another solution that takes advantage of the
 window function LEAD OVER to look at the “next” row’s BEGIN_DATE,
 thus avoiding the need to self join:
	1 select proj_id, proj_start, proj_end
	2 from (
	3 select proj_id, proj_start, proj_end,
	4 lead(proj_start)over(order by proj_id) next_proj_start
	5 from V
	6)
	7 where next_proj_start = proj_end

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

By self joining the view to itself, each row can be compared
 to every other row returned. Consider a partial result set for IDs 1
 and 4:
	select v1.proj_id as v1_id,
	 v1.proj_end as v1_end,
	 v2.proj_start as v2_begin,
	 v2.proj_id as v2_id
	 from v v1, v v2
	where v1.proj_id in (1, 4)

	V1_ID V1_END V2_BEGIN V2_ID
	----- ----------- ----------- ----------
	 1 02-JAN-2005 01-JAN-2005 1
	 1 02-JAN-2005 02-JAN-2005 2
	 1 02-JAN-2005 03-JAN-2005 3
	 1 02-JAN-2005 04-JAN-2005 4
	 1 02-JAN-2005 06-JAN-2005 5
	 1 02-JAN-2005 16-JAN-2005 6
	 1 02-JAN-2005 17-JAN-2005 7
	 1 02-JAN-2005 18-JAN-2005 8
	 1 02-JAN-2005 19-JAN-2005 9
	 1 02-JAN-2005 21-JAN-2005 10
	 1 02-JAN-2005 26-JAN-2005 11
	 1 02-JAN-2005 27-JAN-2005 12
	 1 02-JAN-2005 28-JAN-2005 13
	 1 02-JAN-2005 29-JAN-2005 14
	 4 05-JAN-2005 01-JAN-2005 1
	 4 05-JAN-2005 02-JAN-2005 2
	 4 05-JAN-2005 03-JAN-2005 3
	 4 05-JAN-2005 04-JAN-2005 4
	 4 05-JAN-2005 06-JAN-2005 5
	 4 05-JAN-2005 16-JAN-2005 6
	 4 05-JAN-2005 17-JAN-2005 7
	 4 05-JAN-2005 18-JAN-2005 8
	 4 05-JAN-2005 19-JAN-2005 9
	 4 05-JAN-2005 21-JAN-2005 10
	 4 05-JAN-2005 26-JAN-2005 11
	 4 05-JAN-2005 27-JAN-2005 12
	 4 05-JAN-2005 28-JAN-2005 13
	 4 05-JAN-2005 29-JAN-2005 14
Examining this result set, you can see why PROJ_ID 1 is
 included in the final result set and PROJ_ID 4 is not: there is no
 corresponding V2_BEGIN value for the V1_ END value returned for
 V1_ID 4.
Depending on how you view the data, PROJ_ID 4 can just as
 easily be considered contiguous. Consider the following result
 set:
	select *
	 from V
	where proj_id <= 5

	PROJ_ID PROJ_START PROJ_END
	------- ---------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 4 04-JAN-2005 05-JAN-2005
	 5 06-JAN-2005 07-JAN-2005
If “contiguous” is defined as a project that starts the same
 day another project ends, then PROJ_ID 4 should be included in the
 result set. PROJ_ID 4 was originally eliminated because of the
 forward comparison (comparing its PROJ_END with the next
 PROJ_START), but if you do a backwards comparison (PROJ_START with
 the prior PROJ_END), then PROJ_ID 4 will be included in the result
 set.
Modifying the solution to include PROJ_ID 4 is trivial: simply add an
 additional predicate to ensure that both PROJ_START and PROJ_END are
 checked for being contiguous, not just PROJ_END. The modification
 shown in the following query produces a result set that includes
 PROJ_ID 4 (DISTINCT is necessary because some rows satisfy both
 predicate conditions):
	select distinct
	 v1.proj_id,
	 v1.proj_start,
	 v1.proj_end
	 from V v1, V v2
	where v1.proj_end = v2.proj_start
	 or v1.proj_start = v2.proj_end

	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 4 04-JAN-2005 05-JAN-2005

Oracle

While the self-join solution certainly works, the window
 function LEAD OVER is perfect for this type of problem. The function
 LEAD OVER allows you to examine other rows without performing a self
 join (though the function must impose order on the result set to do
 so). Consider the results of the inline view (lines 3–5) for IDs 1
 and 4:
	select *
	 from (
	select proj_id, proj_start, proj_end,
	 lead(proj_start)over(order by proj_id) next_proj_start
	 from v
)
	 where proj_id in (1, 4)

	PROJ_ID PROJ_START PROJ_END NEXT_PROJ_START
	------- ----------- ----------- ---------------
	 1 01-JAN-2005 02-JAN-2005 02-JAN-2005
	 4 04-JAN-2005 05-JAN-2005 06-JAN-2005
Examining the above snippet of code and its result set, it is particularly easy to
 see why PROJ_ID 4 is excluded from the final result set of the
 complete solution. It’s excluded because its PROJ_END date of
 05-JAN-2005 does not match the “next” project’s start date of
 06-JAN-2005.
The function LEAD OVER is extremely handy when it comes to
 problems such as this one, particularly when examining partial
 results. When working with window functions, keep in mind that they
 are evaluated after the FROM and WHERE clauses, so the LEAD OVER function in the preceding
 query must be embedded within an inline view. Otherwise the LEAD
 OVER function is applied to the result set after the WHERE clause
 has filtered out all rows except for PROJ_ID’s 1 and 4.
Now, depending on how you view the data, you may very well
 want to include PROJ_ID 4 in the final result set. Consider the
 first five rows from view V:
	select *
	 from V
	 where proj_id <= 5

	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 4 04-JAN-2005 05-JAN-2005
	 5 06-JAN-2005 07-JAN-2005
If your requirement is such that PROJ_ID 4 is in fact
 contiguous (because PROJ_ START for PROJ_ID 4 matches PROJ_END for
 PROJ_ID 3), and that only PROJ_ ID 5 should be discarded, the
 proposed solution for this recipe is incorrect (!), or at the very
 least, incomplete:
	select proj_id, proj_start, proj_end
	 from (
	select proj_id, proj_start, proj_end,
	 lead(proj_start)over(order by proj_id) next_start
	 from V
	where proj_id <= 5
)
	where proj_end = next_start

	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
If you believe PROJ_ID 4 should be included, simply add LAG
 OVER to the query and use an additional filter in the WHERE
 clause:
	select proj_id, proj_start, proj_end
	 from (
	select proj_id, proj_start, proj_end,
	 lead(proj_start)over(order by proj_id) next_start,
	 lag(proj_end)over(order by proj_id) last_end
	 from V
	where proj_id <= 5
)
	where proj_end = next_start
	 or proj_start = last_end

	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 4 04-JAN-2005 05-JAN-2005
Now PROJ_ID 4 is included in the final result set, and only
 the evil PROJ_ID 5 is excluded. Please consider your exact
 requirements when applying these recipes to your code.

10.2. Finding Differences Between Rows in the Same Group or
 Partition

Problem

You want to return the DEPTNO, ENAME, and SAL of each employee
 along with the difference in SAL between employees in the same
 department (i.e., having the same value for DEPTNO). The difference
 should be between each current employee and the employee hired
 immediately afterwards (you want to see if there is a correlation
 between seniority and salary on a “per department” basis). For each
 employee hired last in his department, return “N/A” for the
 difference. The result set should look like this:
	DEPTNO ENAME SAL HIREDATE DIFF
	------ ---------- ---------- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 -2550
	 10 KING 5000 17-NOV-1981 3700
	 10 MILLER 1300 23-JAN-1982 N/A
	 20 SMITH 800 17-DEC-1980 -2175
	 20 JONES 2975 02-APR-1981 -25
	 20 FORD 3000 03-DEC-1981 0
	 20 SCOTT 3000 09-DEC-1982 1900
	 20 ADAMS 1100 12-JAN-1983 N/A
	 30 ALLEN 1600 20-FEB-1981 350
	 30 WARD 1250 22-FEB-1981 -1600
	 30 BLAKE 2850 01-MAY-1981 1350
	 30 TURNER 1500 08-SEP-1981 250
	 30 MARTIN 1250 28-SEP-1981 300
	 30 JAMES 950 03-DEC-1981 N/A

Solution

The is another example of where the Oracle window functions LEAD
 OVER and LAG OVER come in handy. You can easily access next and
 prior rows without additional joins. For other RDBMSs, you can use
 scalar subqueries, though not as easily. This particular problem is
 not at all elegant when having to use scalar subqueries or self joins
 to solve it.
DB2, MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to retrieve the HIREDATE of the employee
 hired immediately after each employee. Then use another scalar
 subquery to find the salary of said employee:
	 1 select deptno, ename, hiredate, sal,
	 2 coalesce(cast(sal-next_sal as char(10)), 'N/A') as diff
	 3 from (
	 4 select e.deptno,
	 5 e.ename,
	 6 e.hiredate,
	 7 e.sal,
	 8 (select min(sal) from emp d
	 9 where d.deptno=e.deptno
	10 and d.hiredate =
	11 (select min(hiredate) from emp d
	12 where e.deptno=d.deptno
	13 and d.hiredate > e.hiredate)) as next_sal
	14 from emp e
	15) x

Oracle

Use the window function LEAD OVER to access the “next”
 employee’s salary relative to the current row:
	1 select deptno, ename, sal, hiredate,
	2 lpad(nvl(to_char(sal-next_sal), 'N/A'), 10) diff
	3 from (
	4 select deptno, ename, sal, hiredate,
	5 lead(sal)over(partition by deptno
	6 order by hiredate) next_sal
	7 from emp
	8)

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

The first step is to use a scalar subquery to find the
 HIREDATE of the employee hired immediately after each employee in
 the same department. The solution uses MIN(HIREDATE) in the scalar
 subquery to ensure that only one value is returned even in the event
 of multiple people being hired on the same date:
	select e.deptno,
	 e.ename,
	 e.hiredate,
	 e.sal,
	 (select min(hiredate) from emp d
	 where e.deptno=d.deptno
	 and d.hiredate > e.hiredate) as next_hire
	 from emp e
	 order by 1

	DEPTNO ENAME HIREDATE SAL NEXT_HIRE
	------ ---------- ----------- ---------- -----------
	 10 CLARK 09-JUN-1981 2450 17-NOV-1981
	 10 KING 17-NOV-1981 5000 23-JAN-1982
	 10 MILLER 23-JAN-1982 1300
	 20 SMITH 17-DEC-1980 800 02-APR-1981
	 20 ADAMS 12-JAN-1983 1100
	 20 FORD 03-DEC-1981 3000 09-DEC-1982
	 20 SCOTT 09-DEC-1982 3000 12-JAN-1983
	 20 JONES 02-APR-1981 2975 03-DEC-1981
	 30 ALLEN 20-FEB-1981 1600 22-FEB-1981
	 30 BLAKE 01-MAY-1981 2850 08-SEP-1981
	 30 MARTIN 28-SEP-1981 1250 03-DEC-1981
	 30 JAMES 03-DEC-1981 950
	 30 TURNER 08-SEP-1981 1500 28-SEP-1981
	 30 WARD 22-FEB-1981 1250 01-MAY-1981
The next step is to use another scalar subquery to find the
 salary of the employee who was hired on the NEXT_HIRE date. Again,
 the solution uses MIN to ensure that just one value is always
 returned:
	select e.deptno,
	 e.ename,
	 e.hiredate,
	 e.sal,
	 (select min(sal) from emp d
	 where d.deptno=e.deptno
	 and d.hiredate =
	 (select min(hiredate) from emp d
	 where e.deptno=d.deptno
	 and d.hiredate > e.hiredate)) as next_sal
	 from emp e
	order by 1

	DEPTNO ENAME HIREDATE SAL NEXT_SAL
	------ ---------- ----------- ---------- ----------
	 10 CLARK 09-JUN-1981 2450 5000
	 10 KING 17-NOV-1981 5000 1300
	 10 MILLER 23-JAN-1982 1300
	 20 SMITH 17-DEC-1980 800 2975
	 20 ADAMS 12-JAN-1983 1100
	 20 FORD 03-DEC-1981 3000 3000
	 20 SCOTT 09-DEC-1982 3000 1100
	 20 JONES 02-APR-1981 2975 3000
	 30 ALLEN 20-FEB-1981 1600 1250
	 30 BLAKE 01-MAY-1981 2850 1500
	 30 MARTIN 28-SEP-1981 1250 950
	 30 JAMES 03-DEC-1981 950
	 30 TURNER 08-SEP-1981 1500 1250
	 30 WARD 22-FEB-1981 1250 2850
The final step is to find the difference between SAL and NEXT_SAL, and to use the function
 COALESCE to return “N/A” when applicable. Since the
 result of the subtraction is a number and can potentially be NULL,
 you must cast to a string for COALESCE to work:
	select deptno, ename, hiredate, sal,
	 coalesce(cast(sal-next_sal as char(10)), 'N/A') as diff
	 from (
	select e.deptno,
	 e.ename,
	 e.hiredate,
	 e.sal,
	 (select min(sal) from emp d
	 where d.deptno=e.deptno
	 and d.hiredate =
	 (select min(hiredate) from emp d
	 where e.deptno=d.deptno
	 and d.hiredate > e.hiredate)) as next_sal
	 from emp e
) x
	order by 1

	DEPTNO ENAME HIREDATE SAL DIFF
	------ ---------- ----------- ---------- ---------
	 10 CLARK 09-JUN-1981 2450 -2550
	 10 KING 17-NOV-1981 5000 3700
	 10 MILLER 23-JAN-1982 1300 N/A
	 20 SMITH 17-DEC-1980 800 -2175
	 20 ADAMS 12-JAN-1983 1100 N/A
	 20 FORD 03-DEC-1981 3000 0
	 20 SCOTT 09-DEC-1982 3000 1900
	 20 JONES 02-APR-1981 2975 -25
	 30 ALLEN 20-FEB-1981 1600 350
	 30 BLAKE 01-MAY-1981 2850 1350
	 30 MARTIN 28-SEP-1981 1250 300
	 30 JAMES 03-DEC-1981 950 N/A
	 30 TURNER 08-SEP-1981 1500 250
	 30 WARD 22-FEB-1981 1250 -1600
Tip
The use of MIN(SAL) in this solution is an example of how,
 in some ways, you can unintentionally inject business logic into a query while making what
 appears to be a solely technical decision. If multiple salaries
 are available for a given date, should you take the least? the
 highest? the average? In my example, I choose to take the least.
 In real life, I might well punt that decision back to the business
 client who requested the report to begin with.

Oracle

The first step is to use the LEAD OVER window function to find
 the “next” salary for each employee within her department. The
 employees hired last in each department will have a NULL value for
 NEXT_SAL:
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno order by hiredate) next_sal
	 from emp

	DEPTNO ENAME SAL HIREDATE NEXT_SAL
	------ ---------- ---------- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 5000
	 10 KING 5000 17-NOV-1981 1300
	 10 MILLER 1300 23-JAN-1982
	 20 SMITH 800 17-DEC-1980 2975
	 20 JONES 2975 02-APR-1981 3000
	 20 FORD 3000 03-DEC-1981 3000
	 20 SCOTT 3000 09-DEC-1982 1100
	 20 ADAMS 1100 12-JAN-1983
	 30 ALLEN 1600 20-FEB-1981 1250
	 30 WARD 1250 22-FEB-1981 2850
	 30 BLAKE 2850 01-MAY-1981 1500
	 30 TURNER 1500 08-SEP-1981 1250
	 30 MARTIN 1250 28-SEP-1981 950
	 30 JAMES 950 03-DEC-1981
The next step is to take the difference between each employee’s salary and the salary of the
 employee hired immediately after her in the same department:
	select deptno,ename,sal,hiredate, sal-next_sal diff
	 from (
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno order by hiredate) next_sal
	 from emp
)

	DEPTNO ENAME SAL HIREDATE DIFF
	------ ---------- ---------- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 -2550
	 10 KING 5000 17-NOV-1981 3700
	 10 MILLER 1300 23-JAN-1982
	 20 SMITH 800 17-DEC-1980 -2175
	 20 JONES 2975 02-APR-1981 -25
	 20 FORD 3000 03-DEC-1981 0
	 20 SCOTT 3000 09-DEC-1982 1900
	 20 ADAMS 1100 12-JAN-1983
	 30 ALLEN 1600 20-FEB-1981 350
	 30 WARD 1250 22-FEB-1981 -1600
	 30 BLAKE 2850 01-MAY-1981 1350
	 30 TURNER 1500 08-SEP-1981 250
	 30 MARTIN 1250 28-SEP-1981 300
	 30 JAMES 950 03-DEC-1981
The next step is to use the function NVL to return “N/A” when DIFF is NULL. To be able to
 return “N/A” you must cast the value of DIFF to a string, otherwise
 NVL will fail:
	select deptno,ename,sal,hiredate,
	 nvl(to_char(sal-next_sal),'N/A') diff
	 from (
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno order by hiredate) next_sal
	 from emp
)

	DEPTNO ENAME SAL HIREDATE DIFF
	------ ---------- ---------- ----------- ---------------
	 10 CLARK 2450 09-JUN-1981 -2550
	 10 KING 5000 17-NOV-1981 3700
	 10 MILLER 1300 23-JAN-1982 N/A
	 20 SMITH 800 17-DEC-1980 -2175
	 20 JONES 2975 02-APR-1981 -25
	 20 FORD 3000 03-DEC-1981 0
	 20 SCOTT 3000 09-DEC-1982 1900
	 20 ADAMS 1100 12-JAN-1983 N/A
	 30 ALLEN 1600 20-FEB-1981 350
	 30 WARD 1250 22-FEB-1981 -1600
	 30 BLAKE 2850 01-MAY-1981 1350
	 30 TURNER 1500 08-SEP-1981 250
	 30 MARTIN 1250 28-SEP-1981 300
	 30 JAMES 950 03-DEC-1981 N/A
The last step is to use the function LPAD to format the values for DIFF. This is because,
 by default, numbers are right justified while strings are left
 justified. Using LPAD, you can right justify all the results in the
 column:
	select deptno,ename,sal,hiredate,
	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
	 from (
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno order by hiredate) next_sal
	 from emp
)

	DEPTNO ENAME SAL HIREDATE DIFF
	------ ---------- ---------- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 -2550
	 10 KING 5000 17-NOV-1981 3700
	 10 MILLER 1300 23-JAN-1982 N/A
	 20 SMITH 800 17-DEC-1980 -2175
	 20 JONES 2975 02-APR-1981 -25
	 20 FORD 3000 03-DEC-1981 0
	 20 SCOTT 3000 09-DEC-1982 1900
	 20 ADAMS 1100 12-JAN-1983 N/A
	 30 ALLEN 1600 20-FEB-1981 350
	 30 WARD 1250 22-FEB-1981 -1600
	 30 BLAKE 2850 01-MAY-1981 1350
	 30 TURNER 1500 08-SEP-1981 250
	 30 MARTIN 1250 28-SEP-1981 300
	 30 JAMES 950 03-DEC-1981 N/A
While the majority of the solutions provided in this book do
 not deal with “what if” scenarios (for the sake of readability and
 the author’s sanity), the scenario involving duplicates when using Oracle’s LEAD OVER function in
 this manner must be discussed. In the simple sample data in table
 EMP, no employees have duplicate HIREDATEs, yet this is a very
 likely situation. Normally, I would not discuss a “what if”
 situation such as duplicates (since there aren’t any in table EMP),
 but the workaround involving LEAD (particularly to those of you with
 non-Oracle backgrounds) may not be immediately obvious. Consider the
 following query, which returns the difference in SAL between the employees in DEPTNO 10 (the difference is
 performed in the order in which they were hired):
	select deptno,ename,sal,hiredate,
	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
	 from (
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno
	 order by hiredate) next_sal
	 from emp
	 where deptno=10 and empno > 10
)

	DEPTNO ENAME SAL HIREDATE DIFF
	------ ------ ----- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 -2550
	 10 KING 5000 17-NOV-1981 3700
	 10 MILLER 1300 23-JAN-1982 N/A
This solution is correct considering the data in table EMP
 but, if there were duplicate rows, the solution would fail. Consider
 the example below, showing four more employees hired on the same day
 as KING:
	insert into emp (empno,ename,deptno,sal,hiredate)
	values (1,'ant',10,1000,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,sal,hiredate)
	values (2,'joe',10,1500,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,sal,hiredate)
	values (3,'jim',10,1600,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,sal,hiredate)
	values (4,'jon',10,1700,to_date('17-NOV-1981'))

	select deptno,ename,sal,hiredate,
	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
	 from (
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno
	 order by hiredate) next_sal
	 from emp
	 where deptno=10
)

	DEPTNO ENAME SAL HIREDATE DIFF
	------ ------ ----- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 1450
	 10 ant 1000 17-NOV-1981 -500
	 10 joe 1500 17-NOV-1981 -3500
	 10 KING 5000 17-NOV-1981 3400
	 10 jim 1600 17-NOV-1981 -100
	 10 jon 1700 17-NOV-1981 400
	 10 MILLER 1300 23-JAN-1982 N/A
You’ll notice that with the exception of employee JON, all
 employees hired on the same date (November 17) evaluate their salary
 against another employee hired on the same date! This is incorrect.
 All employees hired on November 17 should have the difference of
 salary computed against MILLER’s salary, not another employee hired
 on November 17. Take, for example, employee ANT. The value for DIFF
 for ANT is–500 because ANT’s SAL is compared with JOE’s SAL and is
 500 less than JOE’s SAL, hence the value of–500. The correct value
 for DIFF for employee ANT should be–300 because ANT makes 300 less
 than MILLER, who is the next employee hired by HIREDATE. The reason
 the solution seems to not work is due to the default behavior of
 Oracle’s LEAD OVER function. By default, LEAD OVER only looks ahead
 one row. So, for employee ANT, the next SAL based on HIREDATE is
 JOE’s SAL, because LEAD OVER simply looks one row ahead and doesn’t
 skip duplicates. Fortunately, Oracle planned for such a situation
 and allows you to pass an additional parameter to LEAD OVER to
 determine how far ahead it should look. In the example above, the
 solution is simply a matter of counting: find the distance from each
 employee hired on November 17 to January 23 (MILLER’s HIREDATE). The
 solution below shows how to accomplish this:
	select deptno,ename,sal,hiredate,
	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
	 from (
	select deptno,ename,sal,hiredate,
	 lead(sal,cnt-rn+1)over(partition by deptno
	 order by hiredate) next_sal
	 from (
	select deptno,ename,sal,hiredate,
	 count(*)over(partition by deptno,hiredate) cnt,
	 row_number()over(partition by deptno,hiredate order by sal) rn
	 from emp
	 where deptno=10
)
)

	DEPTNO ENAME SAL HIREDATE DIFF
	------ ------ ----- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 1450
	 10 ant 1000 17-NOV-1981 -300
	 10 joe 1500 17-NOV-1981 200
	 10 jim 1600 17-NOV-1981 300
	 10 jon 1700 17-NOV-1981 400
	 10 KING 5000 17-NOV-1981 3700
	 10 MILLER 1300 23-JAN-1982 N/A
Now the solution is correct. As you can see, all the employees
 hired on November 17 now have their salaries compared with MILLER’s
 salary. Inspecting the results, employee ANT now has a value of–300
 for DIFF, which is what we were hoping for. If it isn’t immediately
 obvious, the expression passed to LEAD OVER; CNT-RN+1 is simply the
 distance from each employee hired on November 17 to MILLER. Consider
 the inline view below, which shows the values for CNT and RN:
	select deptno,ename,sal,hiredate,
	 count(*)over(partition by deptno,hiredate) cnt,
	 row_number()over(partition by deptno,hiredate order by sal) rn
	 from emp
	 where deptno=10

	DEPTNO ENAME SAL HIREDATE CNT RN
	------ ------ ----- ----------- ---------- ----------
	 10 CLARK 2450 09-JUN-1981 1 1
	 10 ant 1000 17-NOV-1981 5 1
	 10 joe 1500 17-NOV-1981 5 2
	 10 jim 1600 17-NOV-1981 5 3
	 10 jon 1700 17-NOV-1981 5 4
	 10 KING 5000 17-NOV-1981 5 5
	 10 MILLER 1300 23-JAN-1982 1 1
The value for CNT represents, for each employee with a
 duplicate HIREDATE, how many duplicates there are in total for their
 HIREDATE. The value for RN represents a ranking for the employees in
 DEPTNO 10. The rank is partitioned by DEPTNO and HIREDATE so only
 employees with a HIREDATE that another employee has will have a
 value greater than one. The ranking is sorted by SAL (this is
 arbitrary; SAL is convenient, but we could have just as easily
 chosen EMPNO). Now that you know how many total duplicates there are
 and you have a ranking of each duplicate, the distance to MILLER is
 simply the total number of duplicates minus the current rank plus
 one (CNT-RN+1). The results of the distance calculation and its
 effect on LEAD OVER are shown below:
	select deptno,ename,sal,hiredate,
	 lead(sal)over(partition by deptno
	 order by hiredate) incorrect,
	 cnt-rn+1 distance,
	 lead(sal,cnt-rn+1)over(partition by deptno
	 order by hiredate) correct
	 from (
	select deptno,ename,sal,hiredate,
	 count(*)over(partition by deptno,hiredate) cnt,
	 row_number()over(partition by deptno,hiredate
	 order by sal) rn
	 from emp
	 where deptno=10
)

	DEPTNO ENAME SAL HIREDATE INCORRECT DISTANCE CORRECT
	------ ------ ----- ----------- ---------- ---------- ----------
	 10 CLARK 2450 09-JUN-1981 1000 1 1000
	 10 ant 1000 17-NOV-1981 1500 5 1300
	 10 joe 1500 17-NOV-1981 1600 4 1300
	 10 jim 1600 17-NOV-1981 1700 3 1300
	 10 jon 1700 17-NOV-1981 5000 2 1300
	 10 KING 5000 17-NOV-1981 1300 1 1300
	 10 MILLER 1300 23-JAN-1982 1
Now you can clearly see the effect that you have when you pass
 the correct distance to LEAD OVER. The rows for INCORRECT represent
 the values returned by LEAD OVER using a default distance of one.
 The rows for CORRECT represent the values returned by LEAD OVER
 using the proper distance for each employee with a duplicate
 HIREDATE to MILLER. At this point, all that is left is to find the
 difference between CORRECT and SAL for each row, which has
 already been shown.

10.3. Locating the Beginning and End of a Range of Consecutive
 Values

Problem

This recipe is an extension of the prior recipe , and it uses
 the same view V from the prior recipe. Now that you’ve located the
 ranges of consecutive values, you want to find just their start and
 end points. Unlike the prior recipe, if a row is not part of a set of
 consecutive values, you still want to return it. Why? Because such a
 row represents both the beginning and end of its range. Using the data
 from view V:
	select *
	 from V

	PROJ_ID PROJ_START PROJ_END
	------- ----------- -----------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005
	 3 03-JAN-2005 04-JAN-2005
	 4 04-JAN-2005 05-JAN-2005
	 5 06-JAN-2005 07-JAN-2005
	 6 16-JAN-2005 17-JAN-2005
	 7 17-JAN-2005 18-JAN-2005
	 8 18-JAN-2005 19-JAN-2005
	 9 19-JAN-2005 20-JAN-2005
	 10 21-JAN-2005 22-JAN-2005
	 11 26-JAN-2005 27-JAN-2005
	 12 27-JAN-2005 28-JAN-2005
	 13 28-JAN-2005 29-JAN-2005
	 14 29-JAN-2005 30-JAN-2005
you want the final result set to be:
	PROJ_GRP PROJ_START PROJ_END
	-------- ----------- -----------
	 1 01-JAN-2005 05-JAN-2005
	 2 06-JAN-2005 07-JAN-2005
	 3 16-JAN-2005 20-JAN-2005
	 4 21-JAN-2005 22-JAN-2005
	 5 26-JAN-2005 30-JAN-2005

Solution

This problem is a bit more involved than its predecessor. First,
 you must identify what the ranges are. A range of rows is defined by
 the values for PROJ_START and PROJ_END. For a row to be considered
 “consecutive” or part of a group, its PROJ_ START value must equal the
 PROJ_END value of the row before it. In the case where a row’s
 PROJ_START value does not equal the prior row’s PROJ_END value and its
 PROJ_END value does not equal the next row’s PROJ_START value, this is
 an instance of a single row group. Once you have identify the ranges,
 you need to be able to group the rows in these ranges together (into
 groups) and return only their start and end points.
Examine the first row of the desired result set. The PROJ_START
 is the PROJ_ START for PROJ_ID 1 from view V and the PROJ_END is the
 PROJ_END for PROJ_ID 4 from view V. Despite the fact that PROJ_ID 4
 does not have a consecutive value following it, it is the last of a
 range of consecutive values, and thus it is included in the first
 group.
DB2, MySQL, PostgreSQL, and SQL Server

The solution for these platforms will use use view V2 to help
 improve readability. View V2 is defined as follows:
	create view v2
	as
	select a.*,
	 case
	 when (
	 select b.proj_id
	 from V b
	 where a.proj_start = b.proj_end
)
	 is not null then 0 else 1
	 end as flag
	from V a
The result set from view V2 is:
	select *
	 from V2

	PROJ_ID PROJ_START PROJ_END FLAG
	------- ----------- ----------- ----------
	 1 01-JAN-2005 02-JAN-2005 1
	 2 02-JAN-2005 03-JAN-2005 0
	 3 03-JAN-2005 04-JAN-2005 0
	 4 04-JAN-2005 05-JAN-2005 0
	 5 06-JAN-2005 07-JAN-2005 1
	 6 16-JAN-2005 17-JAN-2005 1
	 7 17-JAN-2005 18-JAN-2005 0
	 8 18-JAN-2005 19-JAN-2005 0
	 9 19-JAN-2005 20-JAN-2005 0
	 10 21-JAN-2005 22-JAN-2005 1
	 11 26-JAN-2005 27-JAN-2005 1
	 12 27-JAN-2005 28-JAN-2005 0
	 13 28-JAN-2005 29-JAN-2005 0
	 14 29-JAN-2005 30-JAN-2005 0
Using V2, the solution is as follows. First, find the rows
 that are part of a set of consecutive values. Group those rows
 together. Then use the MIN and MAX functions to find their start and
 end points:
	 1 select proj_grp,
	 2 min(proj_start) as proj_start,
	 3 max(proj_end) as proj_end
	 4 from (
	 5 select a.proj_id,a.proj_start,a.proj_end,
	 6 (select sum(b.flag)
	 7 from V2 b
	 8 where b.proj_id <= a.proj_id) as proj_grp
	 9 from V2 a
	10) x
	11 group by proj_grp

Oracle

While the solution for the other vendors will work for Oracle,
 there’s no need to introduce additional views when you can take
 advantage of Oracle’s LAG OVER window function. Use LAG OVER to determine
 whether or not each prior row’s PROJ_END equals the current row’s
 PROJ_START to help place the rows into groups. Once they are
 grouped, use the aggregate functions MIN and MAX to find their start
 and end points:
	 1 select proj_grp, min(proj_start), max(proj_end)
	 2 from (
	 3 select proj_id,proj_start,proj_end,
	 4 sum(flag)over(order by proj_id) proj_grp
	 5 from (
	 6 select proj_id,proj_start,proj_end,
	 7 case when
	 8 lag(proj_end)over(order by proj_id) = proj_start
	 9 then 0 else 1
	10 end flag
	11 from V
	12)
	13)
	14 group by proj_grp

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

Using view V2 makes this problem relatively easy to solve.
 View V2 uses a scalar subquery in a CASE expression to determine
 whether or not a particular row is part of a set of consecutive
 values. The CASE expression, aliased FLAG, returns a 0 if the
 current row is part of a consecutive set or a 1 if it is not
 (membership in a consecutive set is determined by whether or not
 there is a record with a PROJ_END value that matches the current
 row’s PROJ_START value). The next step is to examine inline view X
 (lines 5–9). Inline view X returns all rows from view V2 along with
 a running total on FLAG; this running total is what creates our
 groups and can be seen below:
	select a.proj_id,a.proj_start,a.proj_end,
	 (select sum(b.flag)
	 from v2 b
	 where b.proj_id <= a.proj_id) as proj_grp
	 from v2 a

	PROJ_ID PROJ_START PROJ_END PROJ_GRP
	------- ----------- ----------- ----------
	 1 01-JAN-2005 02-JAN-2005 1
	 2 02-JAN-2005 03-JAN-2005 1
	 3 03-JAN-2005 04-JAN-2005 1
	 4 04-JAN-2005 05-JAN-2005 1
	 5 06-JAN-2005 07-JAN-2005 2
	 6 16-JAN-2005 17-JAN-2005 3
	 7 17-JAN-2005 18-JAN-2005 3
	 8 18-JAN-2005 19-JAN-2005 3
	 9 19-JAN-2005 20-JAN-2005 3
	 10 21-JAN-2005 22-JAN-2005 4
	 11 26-JAN-2005 27-JAN-2005 5
	 12 27-JAN-2005 28-JAN-2005 5
	 13 28-JAN-2005 29-JAN-2005 5
	 14 29-JAN-2005 30-JAN-2005 5
Now that the ranges have been grouped, find the start and end
 point for each by simply using the aggregate functions MIN and MAX
 on PROJ_START and PROJ_END respectively, and group by the values
 created by the running total.

Oracle

The window function LAG OVER is extremely useful in this situation. You
 can examine each prior row’s PROJ_END value without a self join,
 without a scalar sub-query, and without a view. The results of the
 LAG OVER function without the CASE expression are as follows:
	select proj_id,proj_start,proj_end,
	 lag(proj_end)over(order by proj_id) prior_proj_end
	 from V

	PROJ_ID PROJ_START PROJ_END PRIOR_PROJ_END
	------- ----------- ----------- --------------
	 1 01-JAN-2005 02-JAN-2005
	 2 02-JAN-2005 03-JAN-2005 02-JAN-2005
	 3 03-JAN-2005 04-JAN-2005 03-JAN-2005
	 4 04-JAN-2005 05-JAN-2005 04-JAN-2005
	 5 06-JAN-2005 07-JAN-2005 05-JAN-2005
	 6 16-JAN-2005 17-JAN-2005 07-JAN-2005
	 7 17-JAN-2005 18-JAN-2005 17-JAN-2005
	 8 18-JAN-2005 19-JAN-2005 18-JAN-2005
	 9 19-JAN-2005 20-JAN-2005 19-JAN-2005
	 10 21-JAN-2005 22-JAN-2005 20-JAN-2005
	 11 26-JAN-2005 27-JAN-2005 22-JAN-2005
	 12 27-JAN-2005 28-JAN-2005 27-JAN-2005
	 13 28-JAN-2005 29-JAN-2005 28-JAN-2005
	 14 29-JAN-2005 30-JAN-2005 29-JAN-2005
The CASE expression in the complete solution simply compares
 the value returned by LAG OVER to the current row’s PROJ_START
 value; if they are the same, return 0, else return 1. The next step
 is to create a running total on the 0’s and 1’s returned by the CASE
 expression to put each row into a group. The results of the running
 total can be seen below:
	select proj_id,proj_start,proj_end,
	 sum(flag)over(order by proj_id) proj_grp
	 from (
	select proj_id,proj_start,proj_end,
	 case when
	 lag(proj_end)over(order by proj_id) = proj_start
	 then 0 else 1
	 end flag
	 from V
)

	PROJ_ID PROJ_START PROJ_END PROJ_GRP
	------- ----------- ----------- ----------
	 1 01-JAN-2005 02-JAN-2005 1
	 2 02-JAN-2005 03-JAN-2005 1
	 3 03-JAN-2005 04-JAN-2005 1
	 4 04-JAN-2005 05-JAN-2005 1
	 5 06-JAN-2005 07-JAN-2005 2
	 6 16-JAN-2005 17-JAN-2005 3
	 7 17-JAN-2005 18-JAN-2005 3
	 8 18-JAN-2005 19-JAN-2005 3
	 9 19-JAN-2005 20-JAN-2005 3
	 10 21-JAN-2005 22-JAN-2005 4
	 11 26-JAN-2005 27-JAN-2005 5
	 12 27-JAN-2005 28-JAN-2005 5
	 13 28-JAN-2005 29-JAN-2005 5
	 14 29-JAN-2005 30-JAN-2005 5
Now that each row has been placed into a group, simply use the
 aggregate functions MIN and MAX on PROJ_START and PROJ_END
 respectively, and group by the values created in the PROJ_GRP
 running total column.

10.4. Filling in Missing Values in a Range of Values

Problem

You want to return the number of employees hired each year for the entire decade of the 1980s, but there are
 some years in which no employees were hired. You would like to return
 the following result set:
	YR CNT
	---- ----------
	1980 1
	1981 10
	1982 2
	1983 1
	1984 0
	1985 0
	1986 0
	1987 0
	1988 0
	1989 0

Solution

The trick to this solution is returning zeros for years that saw
 no employees hired. If no employee was hired in a given year, then no
 rows for that year will exist in table EMP. If the year does not exist
 in the table, how can you return a count, any count, even zero? The
 solution requires you to outer join. You must supply a result set that
 returns all the years you want to see, and then perform a count
 against table EMP to see if there were any employees hired in each of
 those years.
DB2

Use table EMP as a pivot table (because it has 14 rows) and
 the built-in function YEAR to generate one row for each year in the
 decade of 1980. Outer join to table EMP and count how many employees
 were hired each year:
	 1 select x.yr, coalesce(y.cnt,0) cnt
	 2 from (
	 3 select year(min(hiredate)over()) -
	 4 mod(year(min(hiredate)over()),10) +
	 5 row_number()over()-1 yr
	 6 from emp fetch first 10 rows only
	 7) x
	 8 left join
	 9 (
	10 select year(hiredate) yr1, count(*) cnt
	11 from emp
	12 group by year(hiredate)
	13) y
	14 on (x.yr = y.yr1)

Oracle

Use table EMP as a pivot table (because it has 14
 rows) and the built-in functions TO_NUMBER and TO_CHAR to generate one row for each
 year in the decade of 1980. Outer join to table EMP and count how
 many employees were hired each year:
	 1 select x.yr, coalesce(cnt,0) cnt
	 2 from (
	 3 select extract(year from min(hiredate)over()) -
	 4 mod(extract(year from min(hiredate)over()),10) +
	 5 rownum-1 yr
	 6 from emp
	 7 where rownum <= 10
	 8) x,
	 9 (
	10 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt
	11 from emp
	12 group by to_number(to_char(hiredate,'YYYY'))
	13) y
	14 where x.yr = y.yr(+)
If you’re using Oracle9 i Database or
 later, you can implement the solution using the newly supported
 JOIN clause:
	 1 select x.yr, coalesce(cnt,0) cnt
	 2 from (
	 3 select extract(year from min(hiredate)over()) -
	 4 mod(extract(year from min(hiredate)over()),10) +
	 5 rownum-1 yr
	 6 from emp
	 7 where rownum <= 10
	 8) x
	 9 left join
	10 (
	11 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt
	12 from emp
	13 group by to_number(to_char(hiredate,'YYYY'))
	14) y
	15 on (x.yr = y.yr)

PostgreSQL and MySQL

Use table T10 as a pivot table (because it has 10 rows) and
 the built-in function EXTRACT to generate one row for each year in the decade of 1980. Outer join to table EMP
 and count how many employees were hired each year:
	 1 select y.yr, coalesce(x.cnt,0) as cnt
	 2 from (
	 3 selectmin_year-mod(cast(min_year as int),10)+rn as yr
	 4 from (
	 5 select (select min(extract(year from hiredate))
	 6 from emp) as min_year,
	 7 id-1 as rn
	 8 from t10
	 9) a
	10) y
	11 left join
	12 (
	13 select extract(year from hiredate) as yr, count(*) as cnt
	14 from emp
	15 group by extract(year from hiredate)
	16) x
	17 on (y.yr = x.yr)

SQL Server

Use table EMP as a pivot table (because it has 14 rows) and
 the built-in function YEAR to generate one row for each year in the
 decade of 1980. Outer join to table EMP and count how many employees
 were hired each year:
	 1 select x.yr, coalesce(y.cnt,0) cnt
	 2 from (
	 3 select top (10)
	 4 (year(min(hiredate)over()) -
	 5 year(min(hiredate)over())%10)+
	 6 row_number()over(order by hiredate)-1 yr
	 7 from emp
	 8) x
	 9 left join
	10 (
	11 select year(hiredate) yr, count(*) cnt
	12 from emp
	13 group by year(hiredate)
	14) y
	15 on (x.yr = y.yr)

Discussion

Despite the difference in syntax, the approach is the same for
 all solutions. Inline view X returns each year in the decade of the
 ’80s by first finding the year of the earliest HIREDATE. The next step
 is to add RN–1 to the difference between the earliest year and the
 earliest year modulus ten. To see how this works, simply execute
 inline view X and return each of the values involved separately. Listed below is the result
 set for inline view X using the window function MIN OVER (DB2, Oracle,
 SQL Server) and a scalar subquery (MySQL, PostgreSQL):
	select year(min(hiredate)over()) -
	 mod(year(min(hiredate)over()),10) +
	 row_number()over()-1 yr,
	 year(min(hiredate)over()) min_year,
	 mod(year(min(hiredate)over()),10) mod_yr,
	 row_number()over()-1 rn
	 from emp fetch first 10 rows only

	 YR MIN_YEAR MOD_YR RN
	---- ---------- ---------- ----------
	1980 1980 0 0
	1981 1980 0 1
	1982 1980 0 2
	1983 1980 0 3
	1984 1980 0 4
	1985 1980 0 5
	1986 1980 0 6
	1987 1980 0 7
	1988 1980 0 8
	1989 1980 0 9

	
	select min_year-mod(min_year,10)+rn as yr,
	 min_year,
	 mod(min_year,10) as mod_yr
	 rn
	 from (
	select (select min(extract(year from hiredate))
	 from emp) as min_year,
	 id-1 as rn
	 from t10
) x

	 YR MIN_YEAR MOD_YR RN
	---- ---------- ---------- ----------
	1980 1980 0 0
	1981 1980 0 1
	1982 1980 0 2
	1983 1980 0 3
	1984 1980 0 4
	1985 1980 0 5
	1986 1980 0 6
	1987 1980 0 7
	1988 1980 0 8
	1989 1980 0 9
Inline view Y returns the year for each HIREDATE and the number
 of employees hired during that year:
	select year(hiredate) yr, count(*) cnt
	 from emp
	 group by year(hiredate)

	 YR CNT
	----- ----------
	 1980 1
	 1981 10
	 1982 2
	 1983 1
For the final solution, outer join inline view Y to inline view
 X so that every year is returned even if there are no employees
 hired.

10.5. Generating Consecutive Numeric Values

Problem

You would like to have a "row source generator” available to you in your queries.
 Row source generators are useful for queries that require pivoting.
 For example, you want to return a result set such as the following, up
 to any number of rows that you specify:
	ID

	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9
	 10
	…
If your RDBMS provides built-in functions for returning rows
 dynamically, you do not need to create a pivot table in advance with a
 fixed number of rows. That’s why a dynamic row generator can be so
 handy. Otherwise, you must use a traditional pivot table with a fixed
 number of rows (that may not always be enough) to generate rows when
 needed.

Solution

This solution shows how to return 10 rows of increasing numbers
 starting from 1. You can easily adapt the solution to return any
 number of rows.
The ability to return increasing values from 1 opens the door to many other solutions.
 For example, you can generate numbers to add to dates in order to
 generate sequences of days. You can also use such numbers to parse
 through strings.
DB2 and SQL Server

Use the recursive WITH clause to generate a sequence of rows with
 incrementing values. Use a one-row table such as T1 to kick off the
 row generation; the WITH clause does the rest:
	 1 with x (id)
	 2 as (
	 3 select 1
	 4 from t1
	 5 union all
	 6 select id+1
	 7 from x
	 8 where id+1 <= 10
	 9)
	10 select * from x
Following is a second, alternative solution for DB2 only. Its
 advantage is that it does not require table T1:
	1 with x (id)
	2 as (
	3 values (1)
	4 union all
	5 select id+1
	6 from x
	7 where id+1 <= 10
	8)
	9 select * from x

Oracle

Use the recursive CONNECT BY clause (Oracle9 i
 Database or later). In Oracle 9 i Database, you
 must either wrap the CONNECT BY solution in an inline view or place it in the WITH clause:
	1 with x
	2 as (
	3 select level id
	4 from dual
	5 connect by level <= 10
	6)
	7 select * from x
In Oracle Database 10 g or later, you can
 generate rows using the MODEL clause:
	1 select array id
	2 from dual
	3 model
	4 dimension by (0 idx)
	5 measures(1 array)
	6 rules iterate (10) (
	7 array[iteration_number] = iteration_number+1
	8)

PostgreSQL

Use the very handy function GENERATE_SERIES, which is designed
 for the express purpose of generating rows:
	1 select id
	2 from generate_series (1, 10) x(id)

Discussion

DB2 and SQL Server

The recursive WITH clause increments ID (which starts at 1)
 until the WHERE clause is satisfied. To kick things off you must
 generate one row having the value 1. You can do this by selecting 1
 from a one-row table or, in the case of DB2, by using the VALUES
 clause to create a one-row result set.

Oracle

The solution places the CONNECT BY subquery into the WITH
 clause. Rows will continue to be returned unless short-circuited by
 the WHERE clause. Oracle will increment the pseudo-column LEVEL
 automatically, so there’s no need for you to do so.
In the MODEL clause solution, there is an explicit ITERATE command that allows you to generate multiple
 rows. Without the ITERATE clause, only one row will be returned,
 since DUAL has only one row. For example:
	select array id
	 from dual
	model
	 dimension by (0 idx)
	 measures(1 array)
	 rules ()

	 ID
	 --
	 1
The MODEL clause not only allows you array access to rows, it
 allows you to easily “create” or return rows that are not in the
 table you are selecting against. In this solution, IDX is the array
 index (location of a specific value in the array) and ARRAY (aliased
 ID) is the “array” of rows. The first row defaults to 1 and can be
 referenced with ARRAY[0]. Oracle provides the function ITERATION_NUMBER so you can track the number of times
 you’ve iterated. The solution iterates 10 times, causing
 ITERATION_NUMBER to go from 0 to 9. Adding 1 to each of those values
 yields the results 1 through 10.
It may be easier to visualize what’s happening with the model
 clause if you execute the following query:
	select 'array['||idx||'] = '||array as output
	 from dual
	 model
	 dimension by (0 idx)
	 measures(1 array)
	 rules iterate (10) (
	 array[iteration_number] = iteration_number+1
)

	OUTPUT

	array[0] = 1
	array[1] = 2
	array[2] = 3
	array[3] = 4
	array[4] = 5
	array[5] = 6
	array[6] = 7
	array[7] = 8
	array[8] = 9
	array[9] = 10

PostgreSQL

All the work is done by the function GENERATE_SERIES. The
 function accepts three parameters, all numeric values. The first
 parameter is the start value, the second parameter is the ending
 value, and the third parameter is an optional “step” value (how much
 each value is incremented by). If you do not pass a third parameter,
 the increment defaults to 1.
The GENERATE_SERIES function is flexible enough so that you do
 not have to hardcode parameters. For example, if you wanted to
 return five rows starting from value 10 and ending with value 30,
 incrementing by 5 such that the result set is the following:
	 ID

	 10
	 15
	 20
	 25
	 30
you can be creative and do something like this:
	select id
	 from generate_series(
	 (select min(deptno) from emp),
	 (select max(deptno) from emp),
	 5
) x(id)
Notice here that the actual values passed to GENERATE_SERIES
 are not known when the query is written. Instead, they are generated
 by subqueries when the main query executes.

Chapter 11. Advanced Searching

In a very real sense, this entire book so far has been about
 searching. You’ve seen all sorts of queries that use joins and WHERE
 clauses and grouping techniques to search out and return the results that you need. Some types of searching operations,
 though, stand apart from others in that they represent a different way of
 thinking about searching. Perhaps you’re displaying a result set one page
 at a time. Half of that problem is to identify (search for) the entire set
 of records that you want to display. The other half of that problem is to
 repeatedly search for the next page to display as a user cycles through
 the records on a display. Your first thought may not be to think of
 pagination as a searching problem, but it can be
 thought of that way, and it can be solved that way; that is the type of
 searching solution this chapter is all about.
11.1. Paginating Through a Result Set

Problem

You want to paginate or “scroll through” a result set. For
 example, you want to return the first five salaries from table EMP,
 then the next five, and so forth. Your goal is to allow a user to view
 five records at a time, scrolling forward with each click of a “Next”
 button.

Solution

Because there is no concept of first, last, or next in SQL, you
 must impose order on the rows you are working with. Only by imposing
 order can you accurately return ranges of records.
DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to impose order, and
 specify the window of records that you want returned in your WHERE
 clause. For example, to return rows 1 through 5:
	select sal
	 from (
	select row_number() over (order by sal) as rn,
	 sal
	 from emp
) x
	 where rn between 1 and 5

	 SAL

	 800
	 950
	1100
	1250
	1250
Then to return rows 6 through 10:
	select sal
	 from (
	select row_number() over (order by sal) as rn,
	 sal
	 from emp
) x
	 where rn between 6 and 10

	 SAL

	 1300
	 1500
	 1600
	 2450
	 2850
You can return any range of rows that you wish simply by
 changing the WHERE clause of your query.

MySQL and PostgreSQL

Scrolling through a result set is particularly easy due to the
 LIMIT and OFFSET clauses that these products support. Use LIMIT
 to specify the number of rows to return, and use OFFSET to specify
 the number of rows to skip. For example, to return the first five
 rows in order of salary:
	select sal
	 from emp
	 order by sal limit 5 offset 0

	 SAL

	 800
	 950
	 1100
	 1250
	 1250
To return the next group of five rows:
	select sal
	 from emp
	 order by sal limit 5 offset 5

	 SAL

	 1300
	 1500
	 1600
	 2450
	 2850
LIMIT and OFFSET not only make the MySQL and PostgreSQL
 solutions easy to write, but they are quite readable, too.

Discussion

DB2, Oracle, and SQL Server

The window function ROW_NUMBER OVER in inline view X will
 assign a unique number to each salary (in increasing order starting
 from 1). Listed below is the result set for inline view X:
	select row_number() over (order by sal) as rn,
	 sal
	 from emp

	RN SAL
	-- ----------
	 1 800
	 2 950
	 3 1100
	 4 1250
	 5 1250
	 6 1300
	 7 1500
	 8 1600
	 9 2450
	10 2850
	11 2975
	12 3000
	13 3000
	14 5000
Once a number has been assigned to a salary, simply pick the
 range you want to return by specifying values for RN.
For Oracle users, an alternative: you can use ROWNUM instead of ROW NUMBER OVER to generate sequence
 numbers for the rows:
	select sal
	 from (
	select sal, rownum rn
	 from (
	select sal
	 from emp
	 order by sal
)
)
	 where rn between 6 and 10

	 SAL

	 1300
	 1500
	 1600
	 2450
	 2850
Using ROWNUM forces you into writing an extra level of
 subquery. The innermost subquery sorts rows by salary. The next
 outermost subquery applies row numbers to those rows, and, finally,
 the very outermost SELECT returns the data you are after.

MySQL and PostgreSQL

The OFFSET clause added to the SELECT clause makes
 scrolling through results intuitive and easy. Specifying OFFSET 0 will
 start you at the first row, OFFSET 5 at the sixth row, and OFFSET 10
 at the eleventh row. The LIMIT clause restricts the number of rows returned. By
 combining the two clauses you can easily specify where in a result
 set to start returning rows and how many to return.

11.2. Skipping n Rows from a Table

Problem

You want a query to return every other employee in table EMP;
 you want the first employee, third employee, and so forth. For
 example, from the following result set:
	ENAME

	ADAMS
	ALLEN
	BLAKE
	CLARK
	FORD
	JAMES
	JONES
	KING
	MARTIN
	MILLER
	SCOTT
	SMITH
	TURNER
	WARD
you want to return:
	ENAME

	ADAMS
	BLAKE
	FORD
	JONES
	MARTIN
	SCOTT
	TURNER

Solution

To skip the second or fourth or n th row
 from a result set, you must impose order on the result set, otherwise
 there is no concept of first or next, second, or fourth.
DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to assign a number to
 each row, which you can then use in conjunction with the modulo
 function to skip unwanted rows. The modulo function is MOD for DB2 and Oracle.
 In SQL Server, use the percent (%) operator. The following example
 uses MOD to skip even-numbered rows:
	1 select ename
	2 from (
	3 select row_number() over (order by ename) rn,
	4 ename
	5 from emp
	6) x
	7 where mod(rn,2) = 1

MySQL and PostgreSQL

Because there are no built-in functions for ranking or
 numbering rows, you need to use a scalar subquery to rank the rows
 (by name in this example). Then use modulus to skip rows:
	1 select x.ename
	2 from (
	3 select a.ename,
	4 (select count(*)
	5 from emp b
	6 where b.ename <= a.ename) as rn
	7 from emp a
	8) x
	9 where mod(x.rn,2) = 1

Discussion

DB2, Oracle, and SQL Server

The call to the window function ROW_NUMBER OVER in inline view
 X will assign a rank to each row (no ties, even with duplicate
 names). The results are shown below:
	select row_number() over (order by ename) rn, ename
	 from emp

	RN ENAME
	-- --------
	 1 ADAMS
	 2 ALLEN
	 3 BLAKE
	 4 CLARK
	 5 FORD
	 6 JAMES
	 7 JONES
	 8 KING
	 9 MARTIN
	10 MILLER
	11 SCOTT
	12 SMITH
	13 TURNER
	14 WARD
The last step is to simply use modulus to skip every other
 row.

MySQL and PostgreSQL

With a function to rank or number rows, you can use a scalar subquery to first rank the
 employee names. Inline view X ranks each name and is shown
 below:
	select a.ename,
	 (select count(*)
	 from emp b
	 where b.ename <= a.ename) as rn
	 from emp a

	ENAME RN
	---------- ----------
	ADAMS 1
	ALLEN 2
	BLAKE 3
	CLARK 4
	FORD 5
	JAMES 6
	JONES 7
	KING 8
	MARTIN 9
	MILLER 10
	SCOTT 11
	SMITH 12
	TURNER 13
	WARD 14
The final step is to use the modulo function on the generated
 rank to skip rows.

11.3. Incorporating OR Logic when Using Outer Joins

Problem

You want to return the name and department information for all
 employees in departments 10 and 20 along with department information
 for departments 30 and 40 (but no employee information). Your first
 attempt looks like this:
	select e.ename, d.deptno, d.dname, d.loc
	 from dept d, emp e
	 where d.deptno = e.deptno
	 and (e.deptno = 10 or e.deptno = 20)
	 order by 2

	ENAME DEPTNO DNAME LOC
	------- ---------- -------------- -----------
	CLARK 10 ACCOUNTING NEW YORK
	KING 10 ACCOUNTING NEW YORK
	MILLER 10 ACCOUNTING NEW YORK
	SMITH 20 RESEARCH DALLAS
	ADAMS 20 RESEARCH DALLAS
	FORD 20 RESEARCH DALLAS
	SCOTT 20 RESEARCH DALLAS
	JONES 20 RESEARCH DALLAS
Because the join in this query is an inner join, the result set does not include department
 information for DEPTNOs 30 and 40.
You attempt to outer join EMP to DEPT with the following query,
 but you still do not get the correct results:
	select e.ename, d.deptno, d.dname, d.loc
	 from dept d left join emp e
	 on (d.deptno = e.deptno)
	 where e.deptno = 10
	 or e.deptno = 20
	 order by 2

	ENAME DEPTNO DNAME LOC
	------- ---------- ------------ -----------
	CLARK 10 ACCOUNTING NEW YORK
	KING 10 ACCOUNTING NEW YORK
	MILLER 10 ACCOUNTING NEW YORK
	SMITH 20 RESEARCH DALLAS
	ADAMS 20 RESEARCH DALLAS
	FORD 20 RESEARCH DALLAS
	SCOTT 20 RESEARCH DALLAS
	JONES 20 RESEARCH DALLAS
Ultimately, you would like the result set to be:
	ENAME DEPTNO DNAME LOC
	------- ---------- ------------ ---------
	CLARK 10 ACCOUNTING NEW YORK
	KING 10 ACCOUNTING NEW YORK
	MILLER 10 ACCOUNTING NEW YORK
	SMITH 20 RESEARCH DALLAS
	JONES 20 RESEARCH DALLAS
	SCOTT 20 RESEARCH DALLAS
	ADAMS 20 RESEARCH DALLAS
	FORD 20 RESEARCH DALLAS
	 30 SALES CHICAGO
	 40 OPERATIONS BOSTON

Solution

DB2, MySQL, PostgreSQL, and SQL Server

Move the OR condition into the JOIN clause:
	1 select e.ename, d.deptno, d.dname, d.loc
	2 from dept d left join emp e
	3 on (d.deptno = e.deptno
	4 and (e.deptno=10 or e.deptno=20))
	5 order by 2
Alternatively, you can filter on EMP.DEPTNO first in an inline
 view and then outer join:
	1 select e.ename, d.deptno, d.dname, d.loc
	2 from dept d
	3 left join
	4 (select ename, deptno
	5 from emp
	6 where deptno in (10, 20)
	7) e on (e.deptno = d.deptno)
	8 order by 2

Oracle

If you are on Oracle9i Database or later,
 you can use either of the solutions for the other products.
 Otherwise, you need to use CASE or DECODE in a workaround. Following
 is a solution using CASE:
	select e.ename, d.deptno, d.dname, d.loc
	 from dept d, emp e
	 where d.deptno = e.deptno (+)
	 and d.deptno = case when e.deptno(+) = 10 then e.deptno(+)
	 when e.deptno(+) = 20 then e.deptno(+)
	 end
	 order by 2
And next is the same solution, but this time using
 DECODE:
	select e.ename, d.deptno, d.dname, d.loc
	 from dept d, emp e
	 where d.deptno = e.deptno (+)
	 and d.deptno = decode(e.deptno(+),10,e.deptno(+),
	 20,e.deptno(+))
	 order by 2
When using the proprietary Oracle outer join syntax (+) along with an IN or OR
 predicate on an outer joined column, the query will return an error.
 The solution is to move the IN or OR predicate to an inline
 view:
	select e.ename, d.deptno, d.dname, d.loc
	 from dept d,
	 (select ename, deptno
	 from emp
	 where deptno in (10, 20)
) e
	 where d.deptno = e.deptno (+)
	 order by 2

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

Two solutions are given for these products. The first moves
 the OR condition into the JOIN clause, making it part of the join
 condition. By doing that, you can filter the rows returned from EMP
 without losing DEPTNOs 30 and 40 from DEPT.
The second solution moves the filtering into an inline view.
 Inline view E filters on EMP.DEPTNO and returns EMP rows of
 interest. These are then outer joined to DEPT. Because DEPT is the
 anchor table in the outer join, all departments, including 30 and
 40, are returned.

Oracle

Use the CASE and DECODE functions as a workaround for what seems to be
 a bug in the older outer-join syntax. The solution using inline view
 E works by first finding the rows of interest in table EMP, and then
 outer joining to DEPT.

11.4. Determining Which Rows Are Reciprocals

Problem

You have a table containing the results of two tests, and you
 want to determine which pair of scores are reciprocals. Consider the
 result set below from view V:
	select *
	 from V

	TEST1 TEST2
	----- ----------
	 20 20
	 50 25
	 20 20
	 60 30
	 70 90
	 80 130
	 90 70
	 100 50
	 110 55
	 120 60
	 130 80
	 140 70
Examining these results, you see that a test score for TEST1 of
 70 and TEST2 of 90 is a reciprocal (there exists a score of 90 for
 TEST1 and a score of 70 for TEST2). Likewise, the scores of 80 for
 TEST1 and 130 for TEST2 are reciprocals of 130 for TEST1 and 80 for
 TEST2. Additionally, the scores of 20 for TEST1 and 20 for TEST2 are
 reciprocals of 20 for TEST2 and 20 for TEST1. You want to identify
 only one set of reciprocals. You want your result set to be
 this:
	TEST1 TEST2
	----- ---------
	 20 20
	 70 90
	 80 130
not this:
	TEST1 TEST2
	----- ---------
	 20 20
	 20 20
	 70 90
	 80 130
	 90 70
	 130 80

Solution

Use a self join to identify rows where TEST1 equals TEST2 and
 vice versa:
	select distinct v1.*
	 from V v1, V v2
	 where v1.test1 = v2.test2
	 and v1.test2 = v2.test1
	 and v1.test1 <= v1.test2

Discussion

The self-join results in a Cartesian product in which every
 TEST1 score can be compared against every TEST2 score and vice versa.
 The query below will identify the reciprocals:
	select v1.*
	 from V v1, V v2
	 where v1.test1 = v2.test2
	 and v1.test2 = v2.test1

	TEST1 TEST2
	----- ----------
	 20 20
	 20 20
	 20 20
	 20 20
	 90 70
	 130 80
	 70 90
	 80 130
The use of DISTINCT ensures that duplicate rows are removed from
 the final result set. The final filter in the WHERE clause (and
 V1.TEST1 <= V1.TEST2) will ensure that only one pair of reciprocals
 (where TEST1 is the smaller or equal value) is returned.

11.5. Selecting the Top n Records

Problem

You want to limit a result set to a specific number of records
 based on a ranking of some sort. For example, you want to return the names and salaries
 of the employees with the top five salaries.

Solution

The key to this solution is to make two passes: first rank the
 rows on whatever value you want to rank on; then limit the result set
 to the number of rows you are interested in.
DB2, Oracle, and SQL Server

The solution to this problem depends on the use
 of a window function. Which window function you will
 use depends on how you want to deal with ties. The following
 solution uses DENSE_RANK, so that each tie in salary will count as
 only one against the total:
	1 select ename,sal
	2 from (
	3 select ename, sal,
	4 dense_rank() over (order by sal desc) dr
	5 from emp
	6) x
	7 where dr <= 5
The total number of rows returned may exceed five, but there
 will be only five distinct salaries. Use ROW_NUMBER OVER if you wish
 to return five rows regardless of ties (as no ties are allowed with
 this function).

MySQL and PostgreSQL

Use a scalar subquery to create a rank for each salary. Then
 restrict the results of that subquery by rank:
	 1 select ename,sal
	 2 from (
	 3 select (select count(distinct b.sal)
	 4 from emp b
	 5 where a.sal <= b.sal) as rnk,
	 6 a.sal,
	 7 a.ename
	 8 from emp a
	 9)
	10 where rnk <= 5

Discussion

DB2, Oracle, and SQL Server

The window function DENSE_RANK OVER in inline view X does all the work.
 The following example shows the entire table after applying that
 function:
	select ename, sal,
	 dense_rank() over (order by sal desc) dr
	 from emp

	ENAME SAL DR
	------- ------ ----------
	KING 5000 1
	SCOTT 3000 2
	FORD 3000 2
	JONES 2975 3
	BLAKE 2850 4
	CLARK 2450 5
	ALLEN 1600 6
	TURNER 1500 7
	MILLER 1300 8
	WARD 1250 9
	MARTIN 1250 9
	ADAMS 1100 10
	JAMES 950 11
	SMITH 800 12
Now it’s just a matter of returning rows where DR is less than
 or equal to five.

MySQL and PostgreSQL

The scalar subquery in inline view X ranks the salaries as
 follows:
	select (select count(distinct b.sal)
	 from emp b
	 where a.sal <= b.sal) as rnk,
	 a.sal,
	 a.ename
	 from emp a

	RNK SAL ENAME
	--- ------ -------
	 1 5000 KING
	 2 3000 SCOTT
	 2 3000 FORD
	 3 2975 JONES
	 4 2850 BLAKE
	 5 2450 CLARK
	 6 1600 ALLEN
	 7 1500 TURNER
	 8 1300 MILLER
	 9 1250 WARD
	 9 1250 MARTIN
	 10 1100 ADAMS
	 11 950 JAMES
	 12 800 SMITH
The final step is to return only rows where RNK is less than
 or equal to five.

11.6. Finding Records with the Highest and Lowest Values

Problem

You want to find "extreme” values in your table. For example, you want to
 find the employees with the highest and lowest salaries in table
 EMP.

Solution

DB2, Oracle, and SQL Server

Use the window functions MIN OVER and MAX OVER to find the lowest and highest salaries,
 respectively:
	1 select ename
	2 from (
	3 select ename, sal,
	4 min(sal)over() min_sal,
	5 max(sal)over() max_sal
	6 from emp
	7) x
	8 where sal in (min_sal,max_sal)

MySQL and PostgreSQL

Write two subqueries, one each to return the MIN and MAX
 values of SAL:
	1 select ename
	2 from emp
	3 where sal in ((select min(sal) from emp),
	4 (select max(sal) from emp))

Discussion

DB2, Oracle, and SQL Server

The window functions MIN OVER and MAX OVER allow each row to
 have access to the lowest and highest salaries. The result set from
 inline view X is as follows:
	select ename, sal,
	 min(sal)over() min_sal,
	 max(sal)over() max_sal
	 from emp

	ENAME SAL MIN_SAL MAX_SAL
	------- ------ ---------- ----------
	SMITH 800 800 5000
	ALLEN 1600 800 5000
	WARD 1250 800 5000
	JONES 2975 800 5000
	MARTIN 1250 800 5000
	BLAKE 2850 800 5000
	CLARK 2450 800 5000
	SCOTT 3000 800 5000
	KING 5000 800 5000
	TURNER 1500 800 5000
	ADAMS 1100 800 5000
	JAMES 950 800 5000
	FORD 3000 800 5000
	MILLER 1300 800 5000
Given this result set, all that’s left is to return rows where SAL equals MIN_SAL or MAX_SAL.

MySQL and PostgreSQL

This solution uses two subqueries in one IN list to find the
 lowest and highest salaries from EMP. The rows returned by the outer
 query are the ones having salaries that match the values returned by
 either subquery.

11.7. Investigating Future Rows

Problem

You want to find any employees who earn less than the employee
 hired immediately after them. Based on the following result
 set:
	ENAME SAL HIREDATE
	---------- ---------- ---------
	SMITH 800 17-DEC-80
	ALLEN 1600 20-FEB-81
	WARD 1250 22-FEB-81
	JONES 2975 02-APR-81
	BLAKE 2850 01-MAY-81
	CLARK 2450 09-JUN-81
	TURNER 1500 08-SEP-81
	MARTIN 1250 28-SEP-81
	KING 5000 17-NOV-81
	JAMES 950 03-DEC-81
	FORD 3000 03-DEC-81
	MILLER 1300 23-JAN-82
	SCOTT 3000 09-DEC-82
	ADAMS 1100 12-JAN-83
SMITH, WARD, MARTIN, JAMES, and MILLER earn less than the person
 hired immediately after they were hired, so those are the employees
 you wish to find with a query.

Solution

The first step is to define what “future” means. You must impose
 order on your result set to be able to define a row as having a value
 that is “later” than another.
DB2, MySQL, PostgreSQL, and SQL Server

Use subqueries to determine the following for each
 employee:
	The date of the first person subsequently hired with a
 greater salary

	The date of the next person to be hired

When the two dates match, you have what you are looking
 for:
	 1 select ename, sal, hiredate
	 2 from (
	 3 select a.ename, a.sal, a.hiredate,
	 4 (select min(hiredate) from emp b
	 5 where b.hiredate > a.hiredate
	 6 and b.sal > a.sal) as next_sal_grtr,
	 7 (select min(hiredate) from emp b
	 8 where b.hiredate > a.hiredate) as next_hire
	 9 from emp a
	10) x
	11 where next_sal_grtr = next_hire

Oracle

You can use the LEAD OVER window function to access the salary
 of the next employee that was hired. It’s then a simple matter to
 check whether that salary is larger:
	1 select ename, sal, hiredate
	2 from (
	3 select ename, sal, hiredate,
	4 lead(sal)over(order by hiredate) next_sal
	5 from emp
	6)
	7 where sal < next_sal

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

The scalar subqueries return, for each employee, the HIREDATE
 of the very next employee hired and the HIREDATE of the first,
 subsequently hired employee who earns more than the current
 employee. Here’s a look at the raw data:
	select a.ename, a.sal, a.hiredate,
	 (select min(hiredate) from emp b
	 where b.hiredate > a.hiredate
	 and b.sal > a.sal) as next_sal_grtr,
	 (select min(hiredate) from emp b
	 where b.hiredate > a.hiredate) as next_hire
	 from emp a

	ENAME SAL HIREDATE NEXT_SAL_GRTR NEXT_HIRE
	------- ------ --------- ------------- ---------
	SMITH 800 17-DEC-80 20-FEB-81 20-FEB-81
	ALLEN 1600 20-FEB-81 02-APR-81 22-FEB-81
	WARD 1250 22-FEB-81 02-APR-81 02-APR-81
	JONES 2975 02-APR-81 17-NOV-81 01-MAY-81
	MARTIN 1250 28-SEP-81 17-NOV-81 17-NOV-81
	BLAKE 2850 01-MAY-81 17-NOV-81 09-JUN-81
	CLARK 2450 09-JUN-81 17-NOV-81 08-SEP-81
	SCOTT 3000 09-DEC-82 12-JAN-83
	KING 5000 17-NOV-81 03-DEC-81
	TURNER 1500 08-SEP-81 17-NOV-81 28-SEP-81
	ADAMS 1100 12-JAN-83
	JAMES 950 03-DEC-81 23-JAN-82 23-JAN-82
	FORD 3000 03-DEC-81 23-JAN-82
	MILLER 1300 23-JAN-82 09-DEC-82 09-DEC-82
Someone hired subsequently may or may not have been hired
 immediately after the current employee was hired. The next (and
 last) step then is to return only rows where NEXT_SAL_GRTR (the earliest HIREDATE of an
 employee who earns more than the current employee) equals NEXT_HIRE
 (the HIREDATE of the very next employee relative to the current
 employee’s HIREDATE).

Oracle

The window function LEAD OVER is perfect for a problem such as
 this one. It not only makes for a more readable query than the
 solution for the other products, LEAD OVER also leads to a more
 flexible solution because an argument can be passed to it that will
 determine how many rows ahead it should look (by default 1). Being
 able to leap ahead more than one row is important in the case of
 duplicates in the column you are ordering by.
The following example shows how easy it is to use LEAD OVER to
 look at the salary of the “next” employee hired:
	select ename, sal, hiredate,
	 lead(sal)over(order by hiredate) next_sal
	 from emp

	ENAME SAL HIREDATE NEXT_SAL
	------- ------ --------- ----------
	SMITH 800 17-DEC-80 1600
	ALLEN 1600 20-FEB-81 1250
	WARD 1250 22-FEB-81 2975
	JONES 2975 02-APR-81 2850
	BLAKE 2850 01-MAY-81 2450
	CLARK 2450 09-JUN-81 1500
	TURNER 1500 08-SEP-81 1250
	MARTIN 1250 28-SEP-81 5000
	KING 5000 17-NOV-81 950
	JAMES 950 03-DEC-81 3000
	FORD 3000 03-DEC-81 1300
	MILLER 1300 23-JAN-82 3000
	SCOTT 3000 09-DEC-82 1100
	ADAMS 1100 12-JAN-83
The final step is to return only rows where SAL is less than
 NEXT_SAL. Because of LEAD OVER’s default range of one row, if there
 had been duplicates in table EMP, in particular, multiple employees
 hired on the same date, their SAL would be compared. This may or may
 not have been what you intended. If your goal is to compare the SAL
 of each employee with SAL of the next employee hired, excluding
 other employees hired on the same day, you can use the following
 solution as an alternative:
	select ename, sal, hiredate
	 from (
	select ename, sal, hiredate,
	 lead(sal,cnt-rn+1)over(order by hiredate) next_sal
	 from (
	select ename,sal,hiredate,
	 count(*)over(partition by hiredate) cnt,
	 row_number()over(partition by hiredate order by empno) rn
	 from emp
)
)
	 where sal < next_sal
The idea behind this solution is to find the distance from the
 current row to the row it should be compared with. For example, if
 there are five duplicates, the first of the five needs to leap five
 rows to get to its correct LEAD OVER row. The value
 for CNT represents, for each employee with a duplicate HIREDATE, how
 many duplicates there are in total for their HIREDATE. The value for
 RN represents a ranking for the employees in DEPTNO 10. The rank is
 partitioned by HIREDATE so only employees with a HIREDATE that
 another employee has will have a value greater than one. The ranking
 is sorted by EMPNO (this is arbitrary). Now that you now how many
 total duplicates there are and you have a ranking of each duplicate,
 the distance to the next HIREDATE is simply the total number of
 duplicates minus the current rank plus one (CNT-RN+1).

See Also

For additional examples of using LEAD OVER in the presence of
 duplicates (and a more thorough discussion of the technique above):
 Chapter 8, the section on
 “Determining the Date Difference Between the Current Record and the
 Next Record” and Chapter 10, the
 section on “Finding Differences Between Rows in the Same Group or
 Partition.”

11.8. Shifting Row Values

Problem

You want to return each employee’s name and salary along with
 the next highest and lowest salaries. If there are no higher or lower
 salaries, you want the results to wrap (first SAL shows last SAL and
 vice versa). You want to return the following result set:
	ENAME SAL FORWARD REWIND
	---------- ---------- ---------- ----------
	SMITH 800 950 5000
	JAMES 950 1100 800
	ADAMS 1100 1250 950
	WARD 1250 1250 1100
	MARTIN 1250 1300 1250
	MILLER 1300 1500 1250
	TURNER 1500 1600 1300
	ALLEN 1600 2450 1500
	CLARK 2450 2850 1600
	BLAKE 2850 2975 2450
	JONES 2975 3000 2850
	SCOTT 3000 3000 2975
	FORD 3000 5000 3000
	KING 5000 800 3000

Solution

For Oracle users, the window functions LEAD OVER and LAG OVER make this problem easy to solve and the
 resulting queries very readable. With other RDBMSs you can use scalar
 subqueries, though ties will present a problem. Because of the problem
 with ties, the RDBMSs without support for window functions enable only
 an approximate solution to this problem.
DB2, SQL Server, MySQL, and PostgreSQL

Use a scalar subquery to find next and prior salaries relative
 to each salary:
	 1 select e.ename, e.sal,
	 2 coalesce(
	 3 (select min(sal) from emp d where d.sal > e.sal),
	 4 (select min(sal) from emp)
	 5) as forward,
	 6 coalesce(
	 7 (select max(sal) from emp d where d.sal < e.sal),
	 8 (select max(sal) from emp)
	 9) as rewind
	10 from emp e
	11 order by 2

Oracle

Use the window functions LAG OVER and LEAD OVER to access
 prior and next rows relative to the current row:
	1 select ename,sal,
	2 nvl(lead(sal)over(order by sal),min(sal)over()) forward,
	3 nvl(lag(sal)over(order by sal),max(sal)over()) rewind
	4 from emp

Discussion

DB2, SQL Server, MySQL, and PostgreSQL

The scalar subquery solution is not a true solution to the
 problem. It’s an approximation that will fail in the event any two
 records contain the same value for SAL. It’s the best you can do
 without having window functions available.

Oracle

The window functions LAG OVER and LEAD OVER will (by default and unless
 otherwise specified) return values from the row before and after the current row, respectively.
 You define what “before” or “after” means in the ORDER BY portion of
 the OVER clause. If you examine the solution, the first step is to
 return the next and prior rows relative to the current row, ordered
 by SAL:
	select ename,sal,
	 lead(sal)over(order by sal) forward,
	 lag(sal)over(order by sal) rewind
	 from emp

	ENAME SAL FORWARD REWIND
	---------- ---------- ---------- ----------
	SMITH 800 950
	JAMES 950 1100 800
	ADAMS 1100 1250 950
	WARD 1250 1250 1100
	MARTIN 1250 1300 1250
	MILLER 1300 1500 1250
	TURNER 1500 1600 1300
	ALLEN 1600 2450 1500
	CLARK 2450 2850 1600
	BLAKE 2850 2975 2450
	JONES 2975 3000 2850
	SCOTT 3000 3000 2975
	FORD 3000 5000 3000
	KING 5000 3000
Notice that REWIND is NULL for employee SMITH and FORWARD is
 NULL for employee KING; that is because those two employees have the
 lowest and highest salaries, respectively. The requirement in the
 problem section should NULL values exist in FORWARD or REWIND is to
 “wrap” the results meaning that, for the highest SAL, FORWARD should
 be the value of the lowest SAL in the table, and for the lowest SAL,
 REWIND should be the value of the highest SAL in the table. The
 window functions MIN OVER and MAX OVER with no partition or window specified (i.e.,
 an empty parenthesis after the OVER clause) will return the lowest
 and highest salaries in the table, respectively. The results are
 shown below:
	select ename,sal,
	 nvl(lead(sal)over(order by sal),min(sal)over()) forward,
	 nvl(lag(sal)over(order by sal),max(sal)over()) rewind
	 from emp

	ENAME SAL FORWARD REWIND
	---------- ---------- ---------- ----------
	SMITH 800 950 5000
	JAMES 950 1100 800
	ADAMS 1100 1250 950
	WARD 1250 1250 1100
	MARTIN 1250 1300 1250
	MILLER 1300 1500 1250
	TURNER 1500 1600 1300
	ALLEN 1600 2450 1500
	CLARK 2450 2850 1600
	BLAKE 2850 2975 2450
	JONES 2975 3000 2850
	SCOTT 3000 3000 2975
	FORD 3000 5000 3000
	KING 5000 800 3000
Another useful feature of LAG OVER and LEAD OVER is the ability to define how
 far forward or back you would like to go. In the example for this
 recipe, you go only one row forward or back. If want to move three rows
 forward and five rows back, doing so is simple. Just specify the
 values 3 and 5 as shown below:
	select ename,sal,
	 lead(sal,3)over(order by sal) forward,
	 lag(sal,5)over(order by sal) rewind
	 from emp

	ENAME SAL FORWARD REWIND
	---------- ---------- ---------- ----------
	SMITH 800 1250
	JAMES 950 1250
	ADAMS 1100 1300
	WARD 1250 1500
	MARTIN 1250 1600
	MILLER 1300 2450 800
	TURNER 1500 2850 950
	ALLEN 1600 2975 1100
	CLARK 2450 3000 1250
	BLAKE 2850 3000 1250
	JONES 2975 5000 1300
	SCOTT 3000 1500
	FORD 3000 1600
	KING 5000 2450

11.9. Ranking Results

Problem

You want to rank the salaries in table EMP while allowing for
 ties. You want to return the following result set:
	RNK SAL
	--- -------
	 1 800
	 2 950
	 3 1100
	 4 1250
	 4 1250
	 5 1300
	 6 1500
	 7 1600
	 8 2450
	 9 2850
	 10 2975
	 11 3000
	 11 3000
	 12 5000

Solution

Window functions make ranking queries extremely simple. Three
 window functions are particularly useful for ranking: DENSE_RANK OVER, ROW_NUMBER OVER, and RANK OVER.
DB2, Oracle, and SQL Server

Because you want to allow for ties, use the window function
 DENSE_RANK OVER:
	1 select dense_rank() over(order by sal) rnk, sal
	2 from emp

MySQL and PostgreSQL

Until window functions are introduced, use a scalar subquery
 to rank the salaries:
	1 select (select count(distinct b.sal)
	2 from emp b
	3 where b.sal <= a.sal) as rnk,
	4 a.sal
	5 from emp a

Discussion

DB2, Oracle, and SQL Server

The window function DENSE_RANK OVER does all the legwork here.
 In parentheses following the OVER keyword you place an ORDER BY
 clause to specify the order in which rows are ranked. The solution
 uses ORDER BY SAL, so rows from EMP are ranked in
 ascending order of salary.

MySQL and PostgreSQL

The output from the scalar subquery solution is similar to
 that of DENSE_RANK because the driving predicate in the scalar
 subquery is on SAL.

11.10. Suppressing Duplicates

Problem

You want to find the different job types in table EMP but do not
 want to see duplicates. The result set should be:
	JOB

	ANALYST
	CLERK
	MANAGER
	PRESIDENT
	SALESMAN

Solution

All of the RDBMSs support the keyword DISTINCT, and it arguably
 is the easiest mechanism for suppressing duplicates from the result set. However, this recipe
 will also cover two additional methods for suppressing
 duplicates.
DB2, Oracle, and SQL Server

The traditional method of using DISTINCT and sometimes GROUP
 BY (as seen next in the MySQL/PostgreSQL solution) certainly works
 for these RDBMSs. The solution below is an alternative that makes
 use of the window function ROW_NUMBER OVER:
	1 select job
	2 from (
	3 select job,
	4 row_number()over(partition by job order by job) rn
	5 from emp
	6) x
	7 where rn = 1

MySQL and PostgreSQL

Use the DISTINCT keyword to suppress duplicates from the result set:
	select distinct job
	 from emp
Additionally, it is also possible to use GROUP BY to suppress
 duplicates:
	select job
	 from emp
	 group by job

Discussion

DB2, Oracle, and SQL Server

This solution depends on some outside-the-box thinking about
 partitioned window functions. By using PARTITION BY in the OVER
 clause of ROW_NUMBER, you can reset the value returned by ROW_NUMBER
 to 1 whenever a new job is encountered. The results below are from
 inline view X:
	select job,
	 row_number()over(partition by job order by job) rn
	 from emp

	JOB RN
	--------- ----------
	ANALYST 1
	ANALYST 2
	CLERK 1
	CLERK 2
	CLERK 3
	CLERK 4
	MANAGER 1
	MANAGER 2
	MANAGER 3
	PRESIDENT 1
	SALESMAN 1
	SALESMAN 2
	SALESMAN 3
	SALESMAN 4
Each row is given an increasing, sequential number, and that
 number is reset to 1 whenever the job changes. To filter out the
 duplicates, all you must do is keep the rows where RN
 is 1.
An ORDER BY clause is mandatory when using ROW_NUMBER
 OVER (except in DB2) but doesn’t affect the result. Which job is
 returned is irrelevant so long as you return one of each job.

MySQL and PostgreSQL

The first solution shows how to use the keyword DISTINCT to
 suppress duplicates from a result set. Keep in mind that DISTINCT is
 applied to the whole SELECT list; additional columns can and will change
 the result set. Consider the difference between the two queries
 below:
	select distinct job select distinct job, deptno
	 from emp from emp

	JOB JOB DEPTNO
	--------- --------- ----------
	ANALYST ANALYST 20
	CLERK CLERK 10
	MANAGER CLERK 20
	PRESIDENT CLERK 30
	SALESMAN MANAGER 10
	 MANAGER 20
	 MANAGER 30
	 PRESIDENT 10
	 SALESMAN 30
By adding DEPTNO to the SELECT list, what you return is each
 DISTINCT pair of JOB/DEPTNO values from table EMP.
The second solution uses GROUP BY to suppress duplicates. While using GROUP BY
 this way is not uncommon, keep in mind that GROUP BY and DISTINCT
 are two very different clauses that are not interchangeable. I’ve
 included GROUP BY in this solution for completeness, as you will no
 doubt come across it at some point.

11.11. Finding Knight Values

Problem

You want return a result set that contains each employee’s name,
 the department they work in, their salary, the date they were hired,
 and the salary of the last employee hired, in each department. You
 want to return the following result set:
	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------ ---------- ---------- ----------- ----------
	 10 MILLER 1300 23-JAN-1982 1300
	 10 KING 5000 17-NOV-1981 1300
	 10 CLARK 2450 09-JUN-1981 1300
	 20 ADAMS 1100 12-JAN-1983 1100
	 20 SCOTT 3000 09-DEC-1982 1100
	 20 FORD 3000 03-DEC-1981 1100
	 20 JONES 2975 02-APR-1981 1100
	 20 SMITH 800 17-DEC-1980 1100
	 30 JAMES 950 03-DEC-1981 950
	 30 MARTIN 1250 28-SEP-1981 950
	 30 TURNER 1500 08-SEP-1981 950
	 30 BLAKE 2850 01-MAY-1981 950
	 30 WARD 1250 22-FEB-1981 950
	 30 ALLEN 1600 20-FEB-1981 950
The values in LATEST_SAL are the "Knight values” because the path to find them is
 analogous to a knight’s path in the game of chess. You determine the
 result the way a knight determines a new location: by jumping to a row
 then turning and jumping to a different column (see Figure 11-1). To find the
 correct values for LATEST_SAL, you must first locate (jump to) the row
 with the latest HIREDATE in each DEPTNO, and then you select (jump to)
 the SAL column of that row.
[image: A knight value comes from “up and over”]

Figure 11-1. A knight value comes from “up and over”

Tip
The term "Knight value” was coined by a very clever coworker of
 mine, Kay Young. After having him review the recipes for
 correctness I admitted to him that I was stumped and could not come
 up with a good title. Because you need to initially evaluate one row
 then “jump” and take a value from another, he came up with the term
 “Knight value.”

Solution

DB2 and SQL Server

Use a CASE expression in a subquery to return the SAL of the
 last employee hired in each DEPTNO; for all other salaries, return
 zero. Use the window function MAX OVER in the outer query to return
 the non-zero SAL for each employee’s department:
	 1 select deptno,
	 2 ename,
	 3 sal,
	 4 hiredate,
	 5 max(latest_sal)over(partition by deptno) latest_sal
	 6 from (
	 7 select deptno,
	 8 ename,
	 9 sal,
	10 hiredate,
	11 case
	12 when hiredate = max(hiredate)over(partition by deptno)
	13 then sal else 0
	14 end latest_sal
	15 from emp
	16) x
	17 order by 1, 4 desc

MySQL and PostgreSQL

Use a scalar subquery nested two levels deep. First, find the
 HIREDATE of the last employee in each DEPTO. Then use the aggregate
 function MAX (in case there are duplicates) to find the SAL of the
 last employee hired in each DEPTNO:
	 1 select e.deptno,
	 2 e.ename,
	 3 e.sal,
	 4 e.hiredate,
	 5 (select max(d.sal)
	 6 from emp d
	 7 where d.deptno = e.deptno
	 8 and d.hiredate =
	 9 (select max(f.hiredate)
	10 from emp f
	11 where f.deptno = e.deptno)) as latest_sal
	12 from emp e
	13 order by 1, 4 desc

Oracle

Use the window function MAX OVER to return the highest SAL for
 each DEPTNO. Use the functions DENSE_RANK and LAST, while ordering by HIREDATE, in the KEEP clause
 to return the highest SAL for the latest HIREDATE in a given
 DEPTNO:
	1 select deptno,
	2 ename,
	3 sal,
	4 hiredate,
	5 max(sal)
	6 keep(dense_rank last order by hiredate)
	7 over(partition by deptno) latest_sal
	8 from emp
	9 order by 1, 4 desc

Discussion

DB2 and SQL Server

The first step is to use the window function MAX OVER in a
 CASE expression to find the employee hired last, or most recently,
 in each DEPTNO. If an employee’s HIREDATE matches the value returned
 by MAX OVER, then use a CASE expression to return that employee’s
 SAL; otherwise return 0. The results of this are shown below:
	select deptno,
	 ename,
	 sal,
	 hiredate,
	 case
	 when hiredate = max(hiredate)over(partition by deptno)
	 then sal else 0
	 end latest_sal
	 from emp

	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------ --------- ----------- ----------- ----------
	 10 CLARK 2450 09-JUN-1981 0
	 10 KING 5000 17-NOV-1981 0
	 10 MILLER 1300 23-JAN-1982 1300
	 20 SMITH 800 17-DEC-1980 0
	 20 ADAMS 1100 12-JAN-1983 1100
	 20 FORD 3000 03-DEC-1981 0
	 20 SCOTT 3000 09-DEC-1982 0
	 20 JONES 2975 02-APR-1981 0
	 30 ALLEN 1600 20-FEB-1981 0
	 30 BLAKE 2850 01-MAY-1981 0
	 30 MARTIN 1250 28-SEP-1981 0
	 30 JAMES 950 03-DEC-1981 950
	 30 TURNER 1500 08-SEP-1981 0
	 30 WARD 1250 22-FEB-1981 0
Because the value for LATEST_SAL will be either 0 or the SAL
 of the employee(s) hired most recently, you can wrap the above query
 in an inline view and use MAX OVER again, but this time to return
 the greatest non-zero LATEST_SAL for each DEPTNO:
	select deptno,
	 ename,
	 sal,
	 hiredate,
	 max(latest_sal)over(partition by deptno) latest_sal
	 from (
	select deptno,
	 ename,
	 sal,
	 hiredate,
	 case
	 when hiredate = max(hiredate)over(partition by deptno)
	 then sal else 0
	 end latest_sal
	 from emp
) x
	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------- --------- ---------- ----------- ----------
	 10 MILLER 1300 23-JAN-1982 1300
	 10 KING 5000 17-NOV-1981 1300
	 10 CLARK 2450 09-JUN-1981 1300
	 20 ADAMS 1100 12-JAN-1983 1100
	 20 SCOTT 3000 09-DEC-1982 1100
	 20 FORD 3000 03-DEC-1981 1100
	 20 JONES 2975 02-APR-1981 1100
	 20 SMITH 800 17-DEC-1980 1100
	 30 JAMES 950 03-DEC-1981 950
	 30 MARTIN 1250 28-SEP-1981 950
	 30 TURNER 1500 08-SEP-1981 950
	 30 BLAKE 2850 01-MAY-1981 950
	 30 WARD 1250 22-FEB-1981 950
	 30 ALLEN 1600 20-FEB-1981 950

MySQL and PostgreSQL

The first step is to use a scalar subquery to find the
 HIREDATE of the last employee hired in each DEPTNO:
	select e.deptno,
	 e.ename,
	 e.sal,
	 e.hiredate,
	 (select max(f.hiredate)
	 from emp f
	 where f.deptno = e.deptno) as last_hire
	 from emp e
	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LAST_HIRE
	------ ---------- ---------- ----------- -----------
	 10 MILLER 1300 23-JAN-1982 23-JAN-1982
	 10 KING 5000 17-NOV-1981 23-JAN-1982
	 10 CLARK 2450 09-JUN-1981 23-JAN-1982
	 20 ADAMS 1100 12-JAN-1983 12-JAN-1983
	 20 SCOTT 3000 09-DEC-1982 12-JAN-1983
	 20 FORD 3000 03-DEC-1981 12-JAN-1983
	 20 JONES 2975 02-APR-1981 12-JAN-1983
	 20 SMITH 800 17-DEC-1980 12-JAN-1983
	 30 JAMES 950 03-DEC-1981 03-DEC-1981
	 30 MARTIN 1250 28-SEP-1981 03-DEC-1981
	 30 TURNER 1500 08-SEP-1981 03-DEC-1981
	 30 BLAKE 2850 01-MAY-1981 03-DEC-1981
	 30 WARD 1250 22-FEB-1981 03-DEC-1981
	 30 ALLEN 1600 20-FEB-1981 03-DEC-1981
The next step is to find the SAL for the employee(s) in each
 DEPTNO hired on LAST_HIRE. Use the aggregate function MAX to keep
 the highest (if there are multiple employees hired on the same
 day):
	select e.deptno,
	 e.ename,
	 e.sal,
	 e.hiredate,
	 (select max(d.sal)
	 from emp d
	 where d.deptno = e.deptno
	 and d.hiredate =
	 (select max(f.hiredate)
	 from emp f
	 where f.deptno = e.deptno)) as latest_sal
	 from emp e
	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------ ---------- ---------- ----------- ----------
	 10 MILLER 1300 23-JAN-1982 1300
	 10 KING 5000 17-NOV-1981 1300
	 10 CLARK 2450 09-JUN-1981 1300
	 20 ADAMS 1100 12-JAN-1983 1100
	 20 SCOTT 3000 09-DEC-1982 1100
	 20 FORD 3000 03-DEC-1981 1100
	 20 JONES 2975 02-APR-1981 1100
	 20 SMITH 800 17-DEC-1980 1100
	 30 JAMES 950 03-DEC-1981 950
	 30 MARTIN 1250 28-SEP-1981 950
	 30 TURNER 1500 08-SEP-1981 950
	 30 BLAKE 2850 01-MAY-1981 950
	 30 WARD 1250 22-FEB-1981 950
	 30 ALLEN 1600 20-FEB-1981 950

Oracle

Users on Oracle8i Database can use the
 DB2 solution. For users on Oracle9i Database
 and later, you can use the solution presented below. The key to the
 Oracle solution is to take advantage of the KEEP clause. The KEEP clause allows you to rank the rows returned by a
 group/partition and work with the first or last row in the group. Consider what the solution
 looks like without KEEP:
	select deptno,
	 ename,
	 sal,
	 hiredate,
	 max(sal) over(partition by deptno) latest_sal
	 from emp
	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------ ---------- ---------- ----------- ----------
	 10 MILLER 1300 23-JAN-1982 5000
	 10 KING 5000 17-NOV-1981 5000
	 10 CLARK 2450 09-JUN-1981 5000
	 20 ADAMS 1100 12-JAN-1983 3000
	 20 SCOTT 3000 09-DEC-1982 3000
	 20 FORD 3000 03-DEC-1981 3000
	 20 JONES 2975 02-APR-1981 3000
	 20 SMITH 800 17-DEC-1980 3000
	 30 JAMES 950 03-DEC-1981 2850
	 30 MARTIN 1250 28-SEP-1981 2850
	 30 TURNER 1500 08-SEP-1981 2850
	 30 BLAKE 2850 01-MAY-1981 2850
	 30 WARD 1250 22-FEB-1981 2850
	 30 ALLEN 1600 20-FEB-1981 2850
Rather than returning the SAL of the latest employee hired,
 MAX OVER without KEEP simply returns the highest salary in each
 DEPTNO. KEEP, in this recipe, allows you to order the salaries by
 HIREDATE in each DEPTNO by specifying ORDER BY HIREDATE. Then, the
 function DENSE_RANK assigns a rank to each HIREDATE in
 ascending order. Finally, the function LAST determines which row to
 apply the aggregate function to: the “last” row based on the ranking
 of DENSE_ RANK. In this case, the aggregate function MAX is applied
 to the SAL column for the row with the “last” HIREDATE. In essence,
 keep the SAL of the HIREDATE ranked last in each DEPTNO.
You are ranking the rows in each DEPTNO based on one column
 (HIREDATE), but then applying the aggregation (MAX) on another
 column (SAL). This ability to rank in one dimension and aggregate
 over another is convenient as it allows you to avoid extra joins and
 inline views as are used in the other solutions. Finally, by adding
 the OVER clause after the KEEP clause you can return the SAL “kept”
 by KEEP for each row in the partition.
Alternatively, you can order by HIREDATE in descending order
 and “keep” the first SAL. Compare the two queries below, which
 return the same result set:
	select deptno,
	 ename,
	 sal,
	 hiredate,
	 max(sal)
	 keep(dense_rank last order by hiredate)
	 over(partition by deptno) latest_sal
	 from emp
	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------ ---------- ---------- ----------- ----------
	 10 MILLER 1300 23-JAN-1982 1300
	 10 KING 5000 17-NOV-1981 1300
	 10 CLARK 2450 09-JUN-1981 1300
	 20 ADAMS 1100 12-JAN-1983 1100
	 20 SCOTT 3000 09-DEC-1982 1100
	 20 FORD 3000 03-DEC-1981 1100
	 20 JONES 2975 02-APR-1981 1100
	 20 SMITH 800 17-DEC-1980 1100
	 30 JAMES 950 03-DEC-1981 950
	 30 MARTIN 1250 28-SEP-1981 950
	 30 TURNER 1500 08-SEP-1981 950
	 30 BLAKE 2850 01-MAY-1981 950
	 30 WARD 1250 22-FEB-1981 950
	 30 ALLEN 1600 20-FEB-1981 950

	
	select deptno,
	 ename,
	 sal,
	 hiredate,
	 max(sal)
	 keep(dense_rank first order by hiredate desc)
	 over(partition by deptno) latest_sal
	 from emp
	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL
	------ ---------- ---------- ----------- ----------
	 10 MILLER 1300 23-JAN-1982 1300
	 10 KING 5000 17-NOV-1981 1300
	 10 CLARK 2450 09-JUN-1981 1300
	 20 ADAMS 1100 12-JAN-1983 1100
	 20 SCOTT 3000 09-DEC-1982 1100
	 20 FORD 3000 03-DEC-1981 1100
	 20 JONES 2975 02-APR-1981 1100
	 20 SMITH 800 17-DEC-1980 1100
	 30 JAMES 950 03-DEC-1981 950
	 30 MARTIN 1250 28-SEP-1981 950
	 30 TURNER 1500 08-SEP-1981 950
	 30 BLAKE 2850 01-MAY-1981 950
	 30 WARD 1250 22-FEB-1981 950
	 30 ALLEN 1600 20-FEB-1981 950

11.12. Generating Simple Forecasts

Problem

Based on current data, you want to return addition rows and columns representing future actions. For
 example, consider the following result set:
	ID ORDER_DATE PROCESS_DATE
	-- ----------- ------------
	 1 25-SEP-2005 27-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
You want to return three rows per row returned in your result
 set (each row plus two additional rows for each order). Along with the
 extra rows you would like to return two additional columns providing
 dates for expected order processing.
From the result set above you can see that an order takes two
 days to process. For the purposes of this example, let’s say the next
 step after processing is verification, and the last step is shipment.
 Verification occurs one day after processing and shipment occurs one
 day after verification. You want to return a result set expressing the
 whole procedure. Ultimately you want to transform the result set above
 to the following result set:
	ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
	-- ----------- ------------ ----------- -----------
	 1 25-SEP-2005 27-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

Solution

The key is to use a Cartesian product to generate two additional
 rows for each order then simply use CASE expressions to create the
 required column values.
DB2 and SQL Server

Use the recursive WITH clause to generate rows needed for your
 Cartesian product. The DB2 and SQL Server solutions are identical
 except for the function used to retrieve the current date. DB2 uses
 CURRENT_DATE and SQL Server uses GET-DATE. The SQL
 Server solution is shown below:
	 1 withnrows(n) as (
	 2 select 1 from t1 union all
	 3 select n+1 from nrows where n+1 <= 3
	 4)
	 5 select id,
	 6 order_date,
	 7 process_date,
	 8 case when nrows.n >= 2
	 9 then process_date+1
	10 else null
	11 end as verified,
	12 case when nrows.n = 3
	13 then process_date+2
	14 else null
	15 end as shipped
	16 from (
	17 select nrows.n id,
	18 getdate()+nrows.n as order_date,
	19 getdate()+nrows.n+2 as process_date
	20 from nrows
	21) orders, nrows
	22 order by 1

Oracle

Use the hierarchical CONNECT BY clause to generate the three
 rows needed for the Cartesian product. Use the WITH clause to allow you to reuse the results returned
 by CONNECT BY without having to call it again:
	 1 with nrows as (
	 2 select level n
	 3 from dual
	 4 connect by level <= 3
	 5)
	 6 select id,
	 7 order_date,
	 8 process_date,
	 9 case when nrows.n >= 2
	10 then process_date+1
	11 else null
	12 end as verified,
	13 case when nrows.n = 3
	14 then process_date+2
	15 else null
	16 end as shipped
	17 from (
	18 select nrows.n id,
	19 sysdate+nrows.n as order_date,
	20 sysdate+nrows.n+2 as process_date
	21 from nrows
	22) orders, nrows

PostgreSQL

You can create a Cartesian product many different ways; this
 solution uses the PostgreSQL function GENERATE_SERIES:
	 1 select id,
	 2 order_date,
	 3 process_date,
	 4 case when gs.n >= 2
	 5 then process_date+1
	 6 else null
	 7 end as verified,
	 8 case when gs.n = 3
	 9 then process_date+2
	10 else null
	11 end as shipped
	12 from (
	13 select gs.id,
	14 current_date+gs.id as order_date,
	15 current_date+gs.id+2 as process_date
	16 from generate_series(1,3) gs (id)
	17) orders,
	18 generate_series(1,3)gs(n)

MySQL

MySQL does not support a function for automatic row generation.

Discussion

DB2 and SQL Server

The result set presented in the problem section is returned
 via inline view ORDERS and is shown below:
	with nrows(n) as (
	select 1 from t1 union all
	select n+1 from nrows where n+1 <= 3
)
	select nrows.n id,getdate()+nrows.n as order_date,
	 getdate()+nrows.n+2 as process_date
	 from nrows

	ID ORDER_DATE PROCESS_DATE
	-- ----------- ------------
	 1 25-SEP-2005 27-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
The query above simply uses the WITH clause to make up three
 rows representing the orders you must process. NROWS returns the
 values 1, 2, and 3, and those numbers are added to GETDATE
 (CURRENT_DATE for DB2) to represent the dates of the orders. Because
 the problem section states that processing time takes two days, the
 query above also adds two days to the ORDER_DATE (adds the value
 returned by NROWS to GETDATE, then adds two more days).
Now that you have your base result set, the next step is to
 create a Cartesian product because the requirement is to return
 three rows for each order. Use NROWS to create a Cartesian product
 to return three rows for each order:
	with nrows(n) as (
	select 1 from t1 union all
	select n+1 from nrows where n+1 <= 3
)
	select nrows.n,
	 orders.*
	 from (
	select nrows.n id,
	 getdate()+nrows.n as order_date,
	 getdate()+nrows.n+2 as process_date
	 from nrows
) orders, nrows
	 order by 2,1

	 N ID ORDER_DATE PROCESS_DATE
	--- --- ----------- ------------
	 1 1 25-SEP-2005 27-SEP-2005
	 2 1 25-SEP-2005 27-SEP-2005
	 3 1 25-SEP-2005 27-SEP-2005
	 1 2 26-SEP-2005 28-SEP-2005
	 2 2 26-SEP-2005 28-SEP-2005
	 3 2 26-SEP-2005 28-SEP-2005
	 1 3 27-SEP-2005 29-SEP-2005
	 2 3 27-SEP-2005 29-SEP-2005
	 3 3 27-SEP-2005 29-SEP-2005
Now that you have three rows for each order, simply use a CASE
 expression to create the addition column values to represent the
 status of verification and shipment.
The first row for each order should have a NULL value for
 VERIFIED and SHIPPED. The second row for each order should have a
 NULL value for SHIPPED. The third row for each order should have
 non-NULL values for each column. The final result set is shown
 below:
	with nrows(n) as (
	select 1 from t1 union all
	select n+1 from nrows where n+1 <= 3
)
	select id,
	 order_date,
	 process_date,
	 case when nrows.n >= 2
	 then process_date+1
	 else null

	 end as verified,
	 case when nrows.n = 3
	 then process_date+2
	 else null
	 end as shipped
	 from (
	select nrows.n id,
	 getdate()+nrows.n as order_date,
	 getdate()+nrows.n+2 as process_date
	 from nrows
) orders, nrows
	 order by 1

	ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
	-- ----------- ------------ ----------- -----------
	 1 25-SEP-2005 27-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005
The final result set expresses the complete order process from
 the day the order was received to the day it should be
 shipped.

Oracle

The result set presented in the problem section is returned
 via inline view ORDERS and is shown below:
	with nrows as (
	select level n
	 from dual
	connect by level <= 3
)
	select nrows.n id,
	 sysdate+nrows.n order_date,
	 sysdate+nrows.n+2 process_date
	 from nrows

	ID ORDER_DATE PROCESS_DATE
	-- ----------- ------------
	 1 25-SEP-2005 27-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
The query above simply uses CONNECT BY to make up three rows
 representing the orders you must process. Use the WITH clause to
 refer to the rows returned by CONNECT BY as NROWS.N. CONNECT BY
 returns the values 1, 2, and 3, and those numbers are added to
 SYSDATE to represent the dates of the orders. Since the problem
 section states that processing time takes two days, the query above
 also adds two days to the ORDER_DATE (adds the value returned by
 GENERATE_ SERIES to SYSDATE, then adds two more days).
Now that you have your base result set, the next step is to
 create a Cartesian product because the requirement is to return
 three rows for each order. Use NROWS to create a Cartesian product
 to return three rows for each order:
	with nrows as (
	select level n
	 from dual
	connect by level <= 3
)
	select nrows.n,
	 orders.*
	 from (
	select nrows.n id,
	 sysdate+nrows.n order_date,
	 sysdate+nrows.n+2 process_date
	 from nrows
) orders, nrows

	 N ID ORDER_DATE PROCESS_DATE
	--- --- ----------- ------------
	 1 1 25-SEP-2005 27-SEP-2005
	 2 1 25-SEP-2005 27-SEP-2005
	 3 1 25-SEP-2005 27-SEP-2005
	 1 2 26-SEP-2005 28-SEP-2005
	 2 2 26-SEP-2005 28-SEP-2005
	 3 2 26-SEP-2005 28-SEP-2005
	 1 3 27-SEP-2005 29-SEP-2005
	 2 3 27-SEP-2005 29-SEP-2005
	 3 3 27-SEP-2005 29-SEP-2005
Now that you have three rows for each order, simply use a CASE
 expression to create the addition column values to represent the
 status of verification and shipment.
The first row for each order should have a NULL value for
 VERIFIED and SHIPPED. The second row for each order should have a
 NULL value for SHIPPED. The third row for each order should have
 non-NULL values for each column. The final result set is shown
 below:
	with nrows as (
	select level n
	 from dual
	connect by level <= 3
)
	select id,
	 order_date,
	 process_date,
	 case when nrows.n >= 2
	 then process_date+1
	 else null
	 end as verified,
	 case when nrows.n = 3
	 then process_date+2
	 else null
	 end as shipped
	 from (
	select nrows.n id,
	 sysdate+nrows.n order_date,
	 sysdate+nrows.n+2 process_date
	 from nrows
) orders, nrows

	 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
	 -- ----------- ------------ ----------- -----------
	 1 25-SEP-2005 27-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005
The final result set expresses the complete order process from
 the day the order was received to the day it should be
 shipped.

PostgreSQL

The result set presented in the problem section is returned
 via inline view ORDERS and is shown below:
	select gs.id,
	 current_date+gs.id as order_date,
	 current_date+gs.id+2 as process_date
	 from generate_series(1,3) gs (id)

	ID ORDER_DATE PROCESS_DATE
	-- ----------- ------------
	 1 25-SEP-2005 27-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
The query above simply uses the GENERATE_SERIES function to
 make up three rows representing the orders you must process.
 GENERATE_SERIES returns the values 1, 2, and 3, and those numbers
 are added to CURRENT_DATE to represent the dates of the orders.
 Since the problem section states that processing time takes two
 days, the query above also adds two days to the ORDER_DATE (adds the
 value returned by GENERATE_SERIES to CURRENT_DATE, then adds two
 more days). Now that you have your base result set, the next step is
 to create a Cartesian product because the requirement is to return
 three rows for each order. Use the GENERATE_ SERIES function to
 create a Cartesian product to return three rows for each
 order:
	select gs.n,
	 orders.*
	 from (
	select gs.id,
	 current_date+gs.id as order_date,
	 current_date+gs.id+2 as process_date
	 from generate_series(1,3) gs (id)
) orders,
	 generate_series(1,3)gs(n)

	 N ID ORDER_DATE PROCESS_DATE
	--- --- ----------- ------------
	 1 1 25-SEP-2005 27-SEP-2005
	 2 1 25-SEP-2005 27-SEP-2005
	 3 1 25-SEP-2005 27-SEP-2005
	 1 2 26-SEP-2005 28-SEP-2005
	 2 2 26-SEP-2005 28-SEP-2005
	 3 2 26-SEP-2005 28-SEP-2005
	 1 3 27-SEP-2005 29-SEP-2005
	 2 3 27-SEP-2005 29-SEP-2005
	 3 3 27-SEP-2005 29-SEP-2005
Now that you have three rows for each order, simply use a CASE
 expression to create the addition column values to represent the
 status of verification and shipment.
The first row for each order should have a NULL value for
 VERIFIED and SHIPPED. The second row for each order should have a
 NULL value for SHIPPED. The third row for each order should have
 non-NULL values for each column. The final result set is shown
 below:
	select id,
	 order_date,
	 process_date,
	 case when gs.n >= 2
	 then process_date+1
	 else null
	 end as verified,
	 case when gs.n = 3
	 then process_date+2
	 else null
	 end as shipped
	 from (
	select gs.id,
	 current_date+gs.id as order_date,
	 current_date+gs.id+2 as process_date
	 from generate_series(1,3) gs(id)
) orders,
	 generate_series(1,3)gs(n)

	ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
	-- ----------- ------------ ----------- -----------
	 1 25-SEP-2005 27-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005
The final result set expresses the complete order process from
 the day the order was received to the day it should be
 shipped.

Chapter 12. Reporting and Warehousing

This chapter introduces queries you may find helpful for creating
 reports. These typically involve reporting-specific formatting
 considerations along with different levels of aggregation. Another focus
 of this chapter is on transposing or pivoting result sets, converting rows
 into columns. Pivoting is an extremely useful technique for solving a
 variety of problems. As your comfort level increases with pivoting, you’ll
 undoubtedly find uses for it outside of what are presented in this
 chapter.
12.1. Pivoting a Result Set into One Row

Problem

You wish to take values from groups of rows and turn those
 values into columns in a single row per group. For example, you have a
 result set displaying the number of employees in each
 department:
	DEPTNO CNT
	------ ----------
	 10 3
	 20 5
	 30 6
You would like to reformat the output such the result set looks
 as follows:
	DEPTNO_10 DEPTNO_20 DEPTNO_30
	--------- ---------- ----------
	 3 5 6

Solution

Transpose the result set using a CASE expression and the
 aggregate function SUM:
	1 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	2 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	3 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	4 from emp

Discussion

This example is an excellent introduction to pivoting. The
 concept is simple: for each row returned by the unpivoted query, use a
 CASE expression to separate the rows into columns. Then, because this
 particular problem is to count the number of employees per department,
 use the aggregate function SUM to count the occurrence of each DEPTNO.
 If you’re having trouble understanding how this works exactly, execute
 the query with the aggregate function SUM and include DEPTNO for
 readability:
	select deptno,
	 case when deptno=10 then 1 else 0 end as deptno_10,
	 case when deptno=20 then 1 else 0 end as deptno_20,
	 case when deptno=30 then 1 else 0 end as deptno_30
	 from emp
	 order by 1

	 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
	 ------ ---------- ---------- ----------
	 10 1 0 0
	 10 1 0 0
	 10 1 0 0
	 20 0 1 0
	 20 0 1 0
	 20 0 1 0
	 20 0 1 0
	 30 0 0 1
	 30 0 0 1
	 30 0 0 1
	 30 0 0 1
	 30 0 0 1
	 30 0 0 1
You can think of each CASE expression as a flag to determine
 which DEPTNO a row belongs to. At this point, the “rows to columns”
 transformation is already done; the next step is to simply sum the
 values returned by DEPTNO_10, DEPTNO_20, and DEPTNO_30, and then to
 group by DEPTNO. Following are the results:
	select deptno,
	 sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	 from emp
	 group by deptno

	DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
	------ ---------- ---------- ----------
	 10 3 0 0
	 20 0 5 0
	 30 0 0 6
If you eyeball this result set, you see that logically the
 output makes sense; for example, DEPTNO 10 has 3 employees in
 DEPTNO_10 and zero in the other departments. Since the goal is to
 return one row, the last step is to lose the DEPTNO and GROUP BY, and
 simply sum the CASE expressions:
	select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	 from emp

	 DEPTNO_10 DEPTNO_20 DEPTNO_30
	 --------- ---------- ----------
	 3 5 6
Following is another approach that you may sometimes see applied
 to this same sort of problem:
	select max(case when deptno=10 then empcount else null end) as deptno_10
	 max(case when deptno=20 then empcount else null end) as deptno_20,
	 max(case when deptno=10 then empcount else null end) as deptno_30
	 from (
	select deptno, count(*) as empcount
	 from emp
	 group by deptno
) x
This approach uses an inline view to generate the employee
 counts per department. CASE expressions in the main query translate
 rows to columns, getting you to the following results:
	DEPTNO_10 DEPTNO_20 DEPTNO_30
	--------- ---------- ----------
	 3 NULL NULL
	 NULL 5 NULL
	 NULL NULL 6
Then the MAX functions collapses the columns into one
 row:
	DEPTNO_10 DEPTNO_20 DEPTNO_30
	--------- ---------- ----------
	 3 5 6

12.2. Pivoting a Result Set into Multiple Rows

Problem

You want to turn rows into columns by creating a column
 corresponding to each of the values in a single given column. However,
 unlike in the previous recipe, you need multiple rows of
 output.
For example, you want to return each employee and their position
 (JOB), and you currently use a query that returns the following result
 set:
	JOB ENAME
	--------- ----------
	ANALYST SCOTT
	ANALYST FORD
	CLERK SMITH
	CLERK ADAMS
	CLERK MILLER
	CLERK JAMES
	MANAGER JONES
	MANAGER CLARK
	MANAGER BLAKE
	PRESIDENT KING
	SALESMAN ALLEN
	SALESMAN MARTIN
	SALESMAN TURNER
	SALESMAN WARD
You would like to format the result set such that each job gets
 its own column:
	CLERKS ANALYSTS MGRS PREZ SALES
	------ -------- ----- ---- ------
	MILLER FORD CLARK KING TURNER
	JAMES SCOTT BLAKE MARTIN
	ADAMS JONES WARD
	SMITH ALLEN

Solution

Unlike the first recipe in this chapter, the result set for this
 recipe consists of more than one row. Using the previous recipe’s
 technique will not work for this recipe, as the MAX(ENAME) for each
 JOB would be returned, which would result in one ENAME for each JOB
 (i.e., one row will be returned as in the first recipe). To solve this
 problem, you must make each JOB/ENAME combination unique. Then, when
 you apply an aggregate function to remove NULLs, you don’t lose any
 ENAMEs.
DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to make each JOB/ENAME
 combination unique. Pivot the result set using a CASE expression and
 the aggregate function MAX while grouping on the value returned by
 the window function:
	 1 select max(case when job='CLERK'
	 2 then ename else null end) as clerks,
	 3 max(case when job='ANALYST'
	 4 then ename else null end) as analysts,
	 5 max(case when job='MANAGER'
	 6 then ename else null end) as mgrs,
	 7 max(case when job='PRESIDENT'
	 8 then ename else null end) as prez,
	 9 max(case when job='SALESMAN'
	10 then ename else null end) as sales
	11 from (
	12 select job,
	13 ename,
	14 row_number()over(partition by job order by ename) rn
	15 from emp
	16) x
	17 group by rn

PostgreSQL and MySQL

Use a scalar subquery to rank each employee by EMPNO. Pivot
 the result set using a CASE expression and the aggregate function
 MAX while grouping on the value returned by the scalar
 subquery:
	 1 select max(case when job='CLERK'
	 2 then ename else null end) as clerks,
	 3 max(case when job='ANALYST'
	 4 then ename else null end) as analysts,
	 5 max(case when job='MANAGER'
	 6 then ename else null end) as mgrs,
	 7 max(case when job='PRESIDENT'
	 8 then ename else null end) as prez,
	 9 max(case when job='SALESMAN'
	10 then ename else null end) as sales
	11 from (
	12 select e.job,
	13 e.ename,
	14 (select count(*) from emp d
	15 where e.job=d.job and e.empno < d.empno) as rnk
	16 from emp e
	17) x
	18 group by rnk

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER OVER
 to help make each JOB/ENAME combination unique:
	select job,
	 ename,
	 row_number()over(partition by job order by ename) rn
	 from emp

	 JOB ENAME RN
	 --------- ---------- ----------
	 ANALYST FORD 1
	 ANALYST SCOTT 2
	 CLERK ADAMS 1
	 CLERK JAMES 2
	 CLERK MILLER 3
	 CLERK SMITH 4
	 MANAGER BLAKE 1
	 MANAGER CLARK 2
	 MANAGER JONES 3
	 PRESIDENT KING 1
	 SALESMAN ALLEN 1
	 SALESMAN MARTIN 2
	 SALESMAN TURNER 3
	 SALESMAN WARD 4
Giving each ENAME a unique “row number” within a given job
 prevents any problems that might otherwise result from two employees
 having the same name and job. The goal here is to be able to group
 on row number (on RN) without dropping any employees from the result
 set due to the use of MAX. This step is the most important step in
 solving the problem. Without this first step, the aggregation in the
 outer query will remove necessary rows. Consider what the result set would look like
 without using ROW_NUMBER OVER, using the same technique as seen in
 the first recipe:
	select max(case when job='CLERK'
	 then ename else null end) as clerks,
	 max(case when job='ANALYST'
	 then ename else null end) as analysts,
	 max(case when job='MANAGER'
	 then ename else null end) as mgrs,
	 max(case when job='PRESIDENT'
	 then ename else null end) as prez,
	 max(case when job='SALESMAN'
	 then ename else null end) as sales
	 from emp

	CLERKS ANALYSTS MGRS PREZ SALES
	---------- ---------- ---------- ---------- ----------
	SMITH SCOTT JONES KING WARD
Unfortunately, only one row is returned for each JOB: the
 employee with the MAX ENAME. When it comes time to pivot the result
 set, using MIN or MAX should serve as a means to remove NULLs from
 the result set, not restrict the ENAMEs returned. How this works
 will be come clearer as you continue through the explanation.
The next step uses a CASE expression to organize the ENAMEs
 into their proper column (JOB):
	select rn,
	 case when job='CLERK'
	 then ename else null end as clerks,
	 case when job='ANALYST'
	 then ename else null end as analysts,
	 case when job='MANAGER'
	 then ename else null end as mgrs,
	 case when job='PRESIDENT'
	 then ename else null end as prez,
	 case when job='SALESMAN'
	 then ename else null end as sales
	 from (
	Select job,
	 ename,
	 row_number()over(partition by job order by ename) rn
	 from emp
) x

	RN CLERKS ANALYSTS MGRS PREZ SALES
	-- ---------- ---------- ---------- ---------- ----------
	 1 FORD
	 2 SCOTT
	 1 ADAMS
	 2 JAMES
	 3 MILLER
	 4 SMITH
	 1 BLAKE
	 2 CLARK
	 3 JONES
	 1 KING
	 1 ALLEN
	 2 MARTIN
	 3 TURNER
	 4 WARD
At this point, the rows are transposed into columns and the last step is
 to remove the NULLs to make the result set more readable. To remove
 the NULLs use the aggregate function MAX and group by RN. (You can
 use the function MIN as well. The choice to use MAX is arbitrary, as
 you will only ever be aggregating one value per group.) There is
 only one value for each RN/JOB/ENAME combination. Grouping by RN in
 conjunction with the CASE expressions embedded within the calls to
 MAX ensures that each call to MAX results in picking only one name
 from a group of otherwise NULL values:
	select max(case when job='CLERK'
	 then ename else null end) as clerks,
	 max(case when job='ANALYST'
	 then ename else null end) as analysts,
	 max(case when job='MANAGER'
	 then ename else null end) as mgrs,
	 max(case when job='PRESIDENT'
	 then ename else null end) as prez,
	 max(case when job='SALESMAN'
	 then ename else null end) as sales
	 from (
	Select job,
	 ename,
	 row_number()over(partition by job order by ename) rn
	 from emp
) x
	group by rn

	CLERKS ANALYSTS MGRS PREZ SALES
	------ -------- ----- ---- ------
	MILLER FORD CLARK KING TURNER
	JAMES SCOTT BLAKE MARTIN
	ADAMS JONES WARD
	SMITH ALLEN
The technique of using ROW_NUMBER OVER to create unique
 combinations of rows is extremely useful for formatting query
 results. Consider the query below that creates a sparse report
 showing employees by DEPTNO and JOB:
	select deptno dno, job,
	 max(case when deptno=10
	 then ename else null end) as d10,
	 max(case when deptno=20
	 then ename else null end) as d20,
	 max(case when deptno=30
	 then ename else null end) as d30,
	 max(case when job='CLERK'
	 then ename else null end) as clerks,
	 max(case when job='ANALYST'
	 then ename else null end) as anals,
	 max(case when job='MANAGER'
	 then ename else null end) as mgrs,
	 max(case when job='PRESIDENT'
	 then ename else null end) as prez,
	 max(case when job='SALESMAN'
	 then ename else null end) as sales
	 from (
	Select deptno,
	 job,
	 ename,
	 row_number()over(partition by job order by ename) rn_job,
	 row_number()over(partition by job order by ename) rn_deptno
	 from emp
) x
	 group by deptno, job, rn_deptno, rn_job
	 order by 1

	DNO JOB D10 D20 D30 CLERKS ANALS MGRS PREZ SALES
	--- --------- ------ ----- ------ ------ ----- ----- ---- ------
	 10 CLERK MILLER MILLER
	 10 MANAGER CLARK CLARK
	 10 PRESIDENT KING KING
	 20 ANALYST FORD FORD
	 20 ANALYST SCOTT SCOTT
	 20 CLERK ADAMS ADAMS
	 20 CLERK SMITH SMITH
	 20 MANAGER JONES JONES
	 30 CLERK JAMES JAMES
	 30 MANAGER BLAKE BLAKE
	 30 SALESMAN ALLEN ALLEN
	 30 SALESMAN MARTIN MARTIN
	 30 SALESMAN TURNER TURNER
	 30 SALESMAN WARD WARD
By simply modifying what you group by (hence the nonaggregate
 items in the SELECT list above), you can produce reports with
 different formats. It is worth the time of changing things around to
 understand how these formats change based on what you include in
 your GROUP BY clause.

PostgreSQL and MySQL

The technique for these RDBMSs is the same as for the others
 once a method of creating unique JOB/ENAME combinations is
 established. The first step is to use a scalar subquery to provide a
 “row number” or “rank” for each JOB/ENAME combination:
	select e.job,
	 e.ename,
	 (select count(*) from emp d
	 where e.job=d.job and e.empno < d.empno) as rnk
	 from emp e

	JOB ENAME RNK
	--------- ---------- ----------
	CLERK SMITH 3
	SALESMAN ALLEN 3
	SALESMAN WARD 2
	MANAGER JONES 2
	SALESMAN MARTIN 1
	MANAGER BLAKE 1
	MANAGER CLARK 0
	ANALYST SCOTT 1
	PRESIDENT KING 0
	SALESMAN TURNER 0
	CLERK ADAMS 2
	CLERK JAMES 1
	ANALYST FORD 0
	CLERK MILLER 0
Giving each JOB/ENAME combination a unique “rank” makes each
 row unique. Even if there are employees with the same name working the same job, no two
 employees will share the same rank within a job. This step is the
 most important step in solving the problem. Without this first step,
 the aggregation in the outer query will remove necessary rows. Consider what the result set would look like
 without applying a rank to each JOB/ENAME combination, using the
 same technique as seen in the first recipe:
	select max(case when job='CLERK'
	 then ename else null end) as clerks,
	 max(case when job='ANALYST'
	 then ename else null end) as analysts,
	 max(case when job='MANAGER'
	 then ename else null end) as mgrs,
	 max(case when job='PRESIDENT'
	 then ename else null end) as prez,
	 max(case when job='SALESMAN'
	 then ename else null end) as sales
	 from emp

	CLERKS ANALYSTS MGRS PREZ SALES
	---------- ---------- ---------- ---------- ----------
	SMITH SCOTT JONES KING WARD
Unfortunately, only one row is returned for each JOB: the
 employee with the MAX ENAME. When it comes time to pivot the result
 set, using MIN or MAX should serve as a means to remove NULLs from
 the result set, not to restrict the ENAMEs returned.
Now, that you see the purpose of applying a rank, you can move
 on to the next step. The next step uses a CASE expression to
 organize the ENAMEs into their proper column (JOB):
	select rnk,
	 case when job='CLERK'
	 then ename else null end as clerks,
	 case when job='ANALYST'
	 then ename else null end as analysts,
	 case when job='MANAGER'
	 then ename else null end as mgrs,
	 case when job='PRESIDENT'
	 then ename else null end as prez,
	 case when job='SALESMAN'
	 then ename else null end as sales
	 from (
	Select e.job,
	 e.ename,
	 (select count(*) from emp d
	 where e.job=d.job and e.empno < d.empno) as rnk
	 from emp e
) x

	RNK CLERKS ANALYSTS MGRS PREZ SALES
	--- ------ -------- ----- ---- ----------
	 3 SMITH
	 3 ALLEN
	 2 WARD
	 2 JONES
	 1 MARTIN
	 1 BLAKE
	 0 CLARK
	 1 SCOTT
	 0 KING
	 0 TURNER
	 2 ADAMS
	 1 JAMES
	 0 FORD
	 0 MILLER
At this point, the rows are transposed into columns and the last step is
 to remove the NULLs to make the result set more readable. To remove
 the NULLs use the aggregate function MAX and group by RNK. (MAX is
 an arbitrary choice. You can use the function MIN as well.) There is
 only one value for each RN/JOB/ENAME combination, so the application
 of the aggregate function is simply to remove NULLs:
	select max(case when job='CLERK'
	 then ename else null end) as clerks,
	 max(case when job='ANALYST'
	 then ename else null end) as analysts,
	 max(case when job='MANAGER'
	 then ename else null end) as mgrs,
	 max(case when job='PRESIDENT'
	 then ename else null end) as prez,
	 max(case when job='SALESMAN'
	 then ename else null end) as sales
	 from (
	Select e.job,
	 e.ename,
	 (select count(*) from emp d
	 where e.job=d.job and e.empno < d.empno) as rnk
	 from emp e
) x
	 group by rnk

	CLERKS ANALYSTS MGRS PREZ SALES
	------ -------- ----- ---- ------
	MILLER FORD CLARK KING TURNER
	JAMES SCOTT BLAKE MARTIN
	ADAMS JONES WARD
	SMITH ALLEN

12.3. Reverse Pivoting a Result Set

Problem

You want to transform columns to rows. Consider the following
 result set:
	DEPTNO_10 DEPTNO_20 DEPTNO_30
	---------- ---------- ----------
	 3 5 6
You would like to convert that to:
	DEPTNO COUNTS_BY_DEPT
	------ --------------
	 10 3
	 20 5
	 30 6

Solution

Examining the desired result set, it’s easy to see that you can
 execute a simple COUNT and GROUP BY on table EMP to produce the
 desired result. The object here, though, is to imagine that the data
 is not stored as rows; perhaps the data is denormalized and aggregated
 values are stored as multiple columns.
To convert columns to rows, use a Cartesian product. You’ll need
 to know in advance how many columns you want to convert to rows
 because the table expression you use to create the Cartesian product
 must have a cardinality of at least the number of columns you want to
 transpose.
Rather than create a denormalized table of data, the solution
 for this recipe will use the solution from the first recipe of this
 chapter to create a “wide” result set. The full solution is as
 follows:
	 1 select dept.deptno,
	 2 case dept.deptno
	 3 when 10 then emp_cnts.deptno_10
	 4 when 20 then emp_cnts.deptno_20
	 5 when 30 then emp_cnts.deptno_30
	 6 end as counts_by_dept
	 7 from (
	 8 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	 9 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	10 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	11 from emp
	12) emp_cnts,
	13 (select deptno from dept where deptno <= 30) dept

Discussion

The inline view EMP_CNTS represents the denormalized view, or
 “wide” result set that you want to convert to rows, and is shown
 below:
	select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	 from emp

	DEPTNO_10 DEPTNO_20 DEPTNO_30
	--------- ---------- ----------
	 3 5 6
Because there are three columns, you will create three rows.
 Begin by creating a Cartesian product between inline view EMP_CNTS and
 some table expression that has at least three rows. The following code
 uses table DEPT to create the Cartesian product; DEPT has four
 rows:
	select dept.deptno,
	 emp_cnts.deptno_10,
	 emp_cnts.deptno_20,
	 emp_cnts.deptno_30
	 from (
	Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	 from emp
) emp_cnts,
	 (select deptno from dept where deptno <= 30) dept

	DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
	------ ---------- ---------- ---------
	 10 3 5 6
	 20 3 5 6
	 30 3 5 6
The Cartesian product enables you to return a row for each
 column in inline view EMP_CNTS. Since the final result set should have
 only the DEPTNO and the number of employees in said DEPTNO, use a CASE
 expression to transform the three columns into one:
	select dept.deptno,
	 case dept.deptno
	 when 10 then emp_cnts.deptno_10
	 when 20 then emp_cnts.deptno_20
	 when 30 then emp_cnts.deptno_30
	 end as counts_by_dept
	 from (
	Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
	 sum(case when deptno=30 then 1 else 0 end) as deptno_30
	 from emp
) emp_cnts,
	 (select deptno from dept where deptno <= 30) dept

	DEPTNO COUNTS_BY_DEPT
	------ --------------
	 10 3
	 20 5
	 30 6

12.4. Reverse Pivoting a Result Set into One Column

Problem

You want to return all columns from a query as just one column.
 For example, you want to return the ENAME, JOB, and SAL of all
 employees in DEPTNO 10, and you want to return all three values in one
 column. You want to return three rows for each employee and one row of
 white space between employees. You want to return the following result
 set:
	EMPS

	CLARK
	MANAGER
	2450

	KING
	PRESIDENT
	5000

	MILLER
	CLERK
	1300

Solution

The key is to use a Cartesian product to return four rows for
 each employee. This lets you return one column value per row and have
 an extra row for spacing between employees.
DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to rank each row based
 on EMPNO (1–4). Then use a CASE expression to transform three
 columns into one:
	 1 select case rn
	 2 when 1 then ename
	 3 when 2 then job
	 4 when 3 then cast(sal as char(4))
	 5 end emps
	 6 from (
	 7 select e.ename,e.job,e.sal,
	 8 row_number()over(partition by e.empno
	 9 order by e.empno) rn
	10 from emp e,
	11 (select *
	12 from emp where job='CLERK') four_rows
	13 where e.deptno=10
	14) x

PostgreSQL and MySQL

This recipe is meant to highlight the use of window functions
 to provide a ranking for your rows, which then comes into play later
 when pivoting. At the time of this writing, neither
 PostgreSQL nor MySQL support window functions.

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER OVER
 to create a ranking for each employee in DEPTNO 10:
	select e.ename,e.job,e.sal,
	 row_number()over(partition by e.empno
	 order by e.empno) rn
	 from emp e
	 where e.deptno=10

	ENAME JOB SAL RN
	---------- --------- ---------- ----------
	CLARK MANAGER 2450 1
	KING PRESIDENT 5000 1
	MILLER CLERK 1300 1
At this point the ranking doesn’t mean much. You are
 partitioning by EMPNO, so the rank is 1 for all three rows in DEPTNO
 10. Once you add the Cartesian product, the rank will begin to take
 shape, as can be seen in the following results:
	select e.ename,e.job,e.sal,
	 row_number()over(partition by e.empno
	 order by e.empno) rn
	 from emp e,
	 (select *
	 from emp where job='CLERK') four_rows
	 where e.deptno=10

	ENAME JOB SAL RN
	---------- --------- ---------- ----------
	CLARK MANAGER 2450 1
	CLARK MANAGER 2450 2
	CLARK MANAGER 2450 3
	CLARK MANAGER 2450 4
	KING PRESIDENT 5000 1
	KING PRESIDENT 5000 2
	KING PRESIDENT 5000 3
	KING PRESIDENT 5000 4
	MILLER CLERK 1300 1
	MILLER CLERK 1300 2
	MILLER CLERK 1300 3
	MILLER CLERK 1300 4
You should stop at this point and understand two key
 points:
	RN is no longer 1 for each employee; it is now a repeating
 sequence of values from 1 to 4, the reason being, window
 functions are applied after the FROM and WHERE clauses are
 evaluated. So, partitioning by EMPNO causes the RN to reset to 1
 when a new employee is encountered.

	The inline view FOUR_ROWS is simply that a SQL statement
 exists simply to return four rows. That is all it does. You want
 to return a row for every column (ENAME, JOB, SAL) plus an
 additional row for whitespace.

At this point, the hard work is done and all that is left is
 to use a CASE expression to put ENAME, JOB, and SAL into one column
 for each employee (you need to cast SAL to a string to make CASE
 happy):
	select case rn
	 when 1 then ename
	 when 2 then joB
	 when 3 then cast(sal as char(4))
	 end emps
	 from (
	Select e.ename,e.job,e.sal,
	 row_number()over(partition by e.empno
	 order by e.empno) rn
	 from emp e,
	 (select *

	 from emp where job='CLERK') four_rows
	 where e.deptno=10
) x

	EMPS

	CLARK
	MANAGER
	2450

	KING
	PRESIDENT
	5000

	MILLER
	CLERK
	1300

12.5. Suppressing Repeating Values from a Result Set

Problem

You are generating a report, and, when two rows have the same
 value in a column, you wish to display that value only once. For
 example, you want to return DEPTNO and ENAME from table EMP, you wish
 to group all rows for each DEPTNO, and you wish to display each DEPTNO
 only one time. You want to return the following result set:
	DEPTNO ENAME
	------ ---------
	 10 CLARK
	 KING
	 MILLER
	 20 SMITH
	 ADAMS
	 FORD
	 SCOTT
	 JONES
	 30 ALLEN
	 BLAKE
	 MARTIN
	 JAMES
	 TURNER
	 WARD

Solution

This is a simple formatting problem that is easily solved by the
 window function LAG OVER provided by Oracle. There are other methods
 such as scalar subqueries and other window functions that you can use
 (and that you’ll have to use for non-Oracle platforms), but LAG OVER
 is most convenient and appropriate here.
DB2 and SQL Server

You can use the window function MIN OVER to find the smallest
 EMPNO for each DEPTNO. Then use a CASE expression to “white out” the
 rows that do not have this EMPNO:
	 1 select case when empno=min_empno
	 2 then deptno else null
	 3 end deptno,
	 4 ename
	 5 from (
	 6 select deptno,
	 7 min(empno)over(partition by deptno) min_empno,
	 8 empno,
	 9 ename
	10 from emp
	11) x

Oracle

Use the window function LAG OVER to access prior rows relative to the current
 row, to find the first DEPTNO for each partition:
	1 select to_number(
	2 decode(lag(deptno)over(order by deptno),
	3 deptno,null,deptno)
	4) deptno, ename
	5 from emp

PostgreSQL and MySQL

This recipe highlights the use of window functions for easily
 accessing rows around your current row. At the time of this writing,
 these vendors do not support window functions.

Discussion

DB2 and SQL Server

The first step is to use the window function MIN OVER to find
 the lowest EMPNO in each DEPTNO:
	select deptno,
	 min(empno)over(partition by deptno) min_empno,
	 empno,
	 ename
	 from emp

	DEPTNO MIN_EMPNO EMPNO ENAME
	------ ---------- ---------- ----------
	 10 7782 7782 CLARK
	 10 7782 7839 KING
	 10 7782 7934 MILLER
	 20 7369 7369 SMITH
	 20 7369 7876 ADAMS
	 20 7369 7902 FORD
	 20 7369 7788 SCOTT
	 20 7369 7566 JONES
	 30 7499 7499 ALLEN
	 30 7499 7698 BLAKE
	 30 7499 7654 MARTIN
	 30 7499 7900 JAMES
	 30 7499 7844 TURNER
	 30 7499 7521 WARD
The next and last step is to use a CASE expression to suppress
 the repeated display of DEPTNO. If an employee’s EMPNO matches
 MIN_EMPNO, return DEPTNO, otherwise return NULL:
	select case when empno=min_empno
	 then deptno else null
	 end deptno,
	 ename
	 from (
	Select deptno,
	 min(empno)over(partition by deptno) min_empno,
	 empno,
	 ename
	 from emp
) x

	DEPTNO ENAME
	------ ----------
	 10 CLARK
	 KING
	 MILLER
	 20 SMITH
	 ADAMS
	 FORD
	 SCOTT
	 JONES
	 30 ALLEN
	 BLAKE
	 MARTIN
	 JAMES
	 TURNER
	 WARD

Oracle

The first step is to use the window function LAG OVER to
 return the prior DEPTNO for each row:
	Select lag(deptno)over(order by deptno) lag_deptno,
	 deptno,
	 ename
	 from emp

	LAG_DEPTNO DEPTNO ENAME
	---------- ---------- ----------
	 10 CLARK
	 10 10 KING
	 10 10 MILLER
	 10 20 SMITH
	 20 20 ADAMS
	 20 20 FORD
	 20 20 SCOTT
	 20 20 JONES
	 20 30 ALLEN
	 30 30 BLAKE
	 30 30 MARTIN
	 30 30 JAMES
	 30 30 TURNER
	 30 30 WARD
If you eyeball the result set above, you can easily see where
 DEPTNO matches LAG_ DEPTNO. For those rows, you want to set DEPTNO
 to NULL. Do that by using DECODE (TO_NUMBER is included to cast
 DEPTNO as a number):
	select to_number(
	 decode(lag(deptno)over(order by deptno),
	 deptno,null,deptno)
) deptno, ename
	 from emp

	DEPTNO ENAME
	------ ----------
	 10 CLARK
	 KING
	 MILLER
	 20 SMITH
	 ADAMS
	 FORD
	 SCOTT
	 JONES
	 30 ALLEN
	 BLAKE
	 MARTIN
	 JAMES
	 TURNER
	 WARD

12.6. Pivoting a Result Set to Facilitate Inter-Row
 Calculations

Problem

You wish to make calculations involving data from multiple rows.
 To make your job easier, you wish to pivot those rows into columns
 such that all values you need are then in a single row.
In this book’s example data, DEPTNO 20 is the department with
 the highest combined salary, which you can confirm by executing the
 following query:
	select deptno, sum(sal) as sal
	 from emp
	 group by deptno

	DEPTNO SAL
	------ ----------
	 10 8750
	 20 10875
	 30 9400
You want to calculate the difference between the salaries of
 DEPTNO 20 and DEPTNO 10 and between DEPTNO 20 and DEPTNO 30.

Solution

Transpose the totals using the aggregate function SUM and a CASE
 expression. Then code your expressions in the select list:
	1 select d20_sal - d10_sal as d20_10_diff,
	2 d20_sal - d30_sal as d20_30_diff
	3 from (
	4 select sum(case when deptno=10 then sal end) as d10_sal,
	5 sum(case when deptno=20 then sal end) as d20_sal,
	6 sum(case when deptno=30 then sal end) as d30_sal
	7 from emp
	8) totals_by_dept

Discussion

The first step is to pivot the salaries for each DEPTNO from
 rows to columns by using a CASE expression:
	select case when deptno=10 then sal end as d10_sal,
	 case when deptno=20 then sal end as d20_sal,
	 case when deptno=30 then sal end as d30_sal
	 from emp

	D10_SAL D20_SAL D30_SAL
	------- ---------- ----------
	 800
	 1600
	 1250
	 2975
	 1250
	 2850
	 2450
	 3000
	 5000
	 1500
	 1100
	 950
	 3000
	 1300
The next step is to sum all the salaries for each DEPTNO by
 applying the aggregate function SUM to each CASE expression:
	select sum(case when deptno=10 then sal end) as d10_sal,
	 sum(case when deptno=20 then sal end) as d20_sal,
	 sum(case when deptno=30 then sal end) as d30_sal
	 from emp

	D10_SAL D20_SAL D30_SAL
	------- ---------- ----------
	 8750 10875 9400
The final step is to simply wrap the above SQL in an inline view
 and perform the subtractions.

12.7. Creating Buckets of Data, of a Fixed Size

Problem

You wish to organized data into evenly sized buckets, with a
 predetermined number of elements in each bucket. The total number of
 buckets may be unknown, but you want to ensure that each bucket has
 five elements. For example, you want to organize the employees in
 table EMP into groups of five based on the value of EMPNO, as shown in
 the following results:
	GRP EMPNO ENAME
	--- ---------- -------
	 1 7369 SMITH
	 1 7499 ALLEN
	 1 7521 WARD
	 1 7566 JONES
	 1 7654 MARTIN
	 2 7698 BLAKE
	 2 7782 CLARK
	 2 7788 SCOTT
	 2 7839 KING
	 2 7844 TURNER
	 3 7876 ADAMS
	 3 7900 JAMES
	 3 7902 FORD
	 3 7934 MILLER

Solution

The solution to this problem is greatly simplified if your RDBMS
 provides functions for ranking rows. Once rows are ranked, creating
 buckets of five is simply a matter of dividing and then taking the
 mathematical ceiling of the quotient.
DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to rank each employee
 by EMPNO. Then divide by 5 to create the groups (SQL Server users
 will use CEILING, not CEIL):
	1 select ceil(row_number()over(order by empno)/5.0) grp,
	2 empno,
	3 ename
	4 from emp

PostgreSQL and MySQL

Use a scalar subquery to rank each EMPNO. Then divide by 5 to
 create the groups:
	1 select ceil(rnk/5.0) as grp,
	2 empno, ename
	3 from (
	4 select e.empno, e.ename,
	5 (select count(*) from emp d
	6 where e.empno > d.empno)+1 as rnk
	7 from emp e
	8) x
	9 order by grp

Discussion

DB2, Oracle, and SQL Server

The window function ROW_NUMBER OVER assigns a rank or “row
 number” to each row sorted by EMPNO:
	select row_number()over(order by empno) rn,
	 empno,
	 ename
	 from emp

	RN EMPNO ENAME
	-- ---------- ----------
	 1 7369 SMITH
	 2 7499 ALLEN
	 3 7521 WARD
	 4 7566 JONES
	 5 7654 MARTIN
	 6 7698 BLAKE
	 7 7782 CLARK
	 8 7788 SCOTT
	 9 7839 KING
	10 7844 TURNER
	11 7876 ADAMS
	12 7900 JAMES
	13 7902 FORD
	14 7934 MILLER
The next step is to apply the function CEIL (or CEILING) after dividing ROW_ NUMBER OVER by five.
 Dividing by five logically organizes the rows into groups of five,
 i.e., five values less than or equal to 1, five values greater than
 1 but less than or equal to 2, the remaining group (composed of the
 last four rows since 14, the number of rows in table EMP, is not a
 multiple of 5) has a value greater than 2 but less than or equal to
 3.
The CEIL function will return the smallest whole number
 greater than the value passed to it; this will create whole number
 groups. The results of the division and application of the CEIL are
 shown below. You can follow the order of operation from left to
 right, from RN to DIVISION to GRP:
	select row_number()over(order by empno) rn,
	 row_number()over(order by empno)/5.0 division,
	 ceil(row_number()over(order by empno)/5.0) grp,
	 empno,
	 ename
	 from emp

	RN DIVISION GRP EMPNO ENAME
	-- ---------- --- ----- ----------
	 1 .2 1 7369 SMITH
	 2 .4 1 7499 ALLEN
	 3 .6 1 7521 WARD
	 4 .8 1 7566 JONES
	 5 1 1 7654 MARTIN
	 6 1.2 2 7698 BLAKE
	 7 1.4 2 7782 CLARK
	 8 1.6 2 7788 SCOTT
	 9 1.8 2 7839 KING
	10 2 2 7844 TURNER
	11 2.2 3 7876 ADAMS
	12 2.4 3 7900 JAMES
	13 2.6 3 7902 FORD
	14 2.8 3 7934 MILLER

PostgreSQL and MySQL

The first step is to use a scalar subquery to rank each row by
 EMPNO:
	select (select count(*) from emp d
	 where e.empno < d.empno)+1 as rnk,
	 e.empno, e.ename
	 from emp e
	 order by 1

	RNK EMPNO ENAME
	--- ---------- ----------
	 1 7934 MILLER
	 2 7902 FORD
	 3 7900 JAMES
	 4 7876 ADAMS
	 5 7844 TURNER
	 6 7839 KING
	 7 7788 SCOTT
	 8 7782 CLARK
	 9 7698 BLAKE
	10 7654 MARTIN
	11 7566 JONES
	12 7521 WARD
	13 7499 ALLEN
	14 7369 SMITH
The next step is to apply the function CEIL after dividing RNK by 5. Dividing by 5 logically
 organizes the rows into groups of five, i.e., five values less than
 or equal to 1, five values greater than one but less than or equal
 to 2, the remaining group (composed of the last four rows since 14,
 the number of rows in table EMP, is not a multiple of 5) has a value
 greater than 2 but less than or equal to 3. The results of the
 division and application of the CEIL are shown below. You can follow
 the order of operation from left to right as you work your way from
 RNK over to GRP:
	select rnk,
	 rnk/5.0 as division,
	 ceil(rnk/5.0) as grp,
	 empno, ename
	 from (
	Select e.empno, e.ename,
	 (select count(*) from emp d
	 where e.empno < d.empno)+1 as rnk
	 from emp e
) x
	 order by 1

	RNK DIVISION GRP EMPNO ENAME
	--- ---------- --- ----- -------
	 1 .2 1 7934 MILLER
	 2 .4 1 7902 FORD
	 3 .6 1 7900 JAMES
	 4 .8 1 7876 ADAMS
	 5 1 1 7844 TURNER
	 6 1.2 2 7839 KING
	 7 1.4 2 7788 SCOTT
	 8 1.6 2 7782 CLARK
	 9 1.8 2 7698 BLAKE
	 10 2 2 7654 MARTIN
	 11 2.2 3 7566 JONES
	 12 2.4 3 7521 WARD
	 13 2.6 3 7499 ALLEN
	 14 2.8 3 7369 SMITH

12.8. Creating a Predefined Number of Buckets

Problem

You want to organize your data into a fixed number of buckets.
 For example, you want to organize the employees in table EMP into four
 buckets. The result set should look similar to the following:
	GRP EMPNO ENAME
	--- ----- ---------
	 1 7369 SMITH
	 1 7499 ALLEN
	 1 7521 WARD
	 1 7566 JONES
	 2 7654 MARTIN
	 2 7698 BLAKE
	 2 7782 CLARK
	 2 7788 SCOTT
	 3 7839 KING
	 3 7844 TURNER
	 3 7876 ADAMS
	 4 7900 JAMES
	 4 7902 FORD
	 4 7934 MILLER
This problem is the opposite of the previous recipe, where you
 had an unknown number of buckets but a predetermined number of
 elements in each bucket. In this recipe, the goal is such that you may
 not necessarily know how many elements are in each bucket, but you are
 defining a fixed (known) number of buckets to be created.

Solution

The solution to this problem is trivial if your RDBMS provides
 functions for creating “buckets” of rows. If your RDBMS provides no
 such functions, you can simply rank each row, and then use the modulus
 of said rank and n, where n
 is the number of buckets you wish to create, in an expression to
 determine into which bucket the row falls. Where available, this
 solution will make use of the NTILE window function for creating a fixed number of
 buckets. NTILE organizes an ordered set into the number of buckets you
 specify, with any stragglers distributed into the available buckets
 starting from the first bucket. The desired result set for this recipe
 reflects this: buckets 1 and 2 have four rows while buckets 3 and 4
 have three rows. If your RDBMS does not support NTILE, don’t worry
 about which rows are in which buckets; the main goal of this recipe is
 to create the fixed number of buckets you are requesting.
DB2

Use the window function ROW_NUMBER OVER window function to
 rank the rows by EMPNO, then use the modulus of the rank and 4 to
 create four buckets:
	1 select mod(row_number()over(order by empno),4)+1 grp,
	2 empno,
	3 ename
	4 from emp
	5 order by 1

Oracle and SQL Server

The DB2 solution will work for these vendors but alternatively
 (conveniently) you may use the NTILE window function to create four buckets:
	1 select ntile(4)over(order by empno) grp,
	2 empno,
	3 ename
	4 from emp

MySQL, and PostgreSQL

Use a self join to rank the rows by EMPNO, then use the
 modulus of the rank and 4 to create your buckets:
	1 select mod(count(*),4)+1 as grp,
	2 e.empno,
	3 e.ename
	4 from emp e, emp d
	5 where e.empno >= d.empno
	6 group by e.empno,e.ename
	7 order by 1

Discussion

DB2

The first step is to use the window function ROW_NUMBER OVER
 to rank each row by EMPNO:
	select row_number()over(order by empno) grp,
	 empno,
	 ename
	 from emp

	GRP EMPNO ENAME
	--- ----- ------
	 1 7369 SMITH
	 2 7499 ALLEN
	 3 7521 WARD
	 4 7566 JONES
	 5 7654 MARTIN
	 6 7698 BLAKE
	 7 7782 CLARK
	 8 7788 SCOTT
	 9 7839 KING
	 10 7844 TURNER
	 11 7876 ADAMS
	 12 7900 JAMES
	 13 7902 FORD
	 14 7934 MILLER
Now that the rows are ranked, use the modulo function, MOD, to
 create four buckets:
	select mod(row_number()over(order by empno),4) grp,
	 empno,
	 ename
	 from emp

	GRP EMPNO ENAME
	--- ----- ------
	 1 7369 SMITH
	 2 7499 ALLEN
	 3 7521 WARD
	 0 7566 JONES
	 1 7654 MARTIN
	 2 7698 BLAKE
	 3 7782 CLARK
	 0 7788 SCOTT
	 1 7839 KING
	 2 7844 TURNER
	 3 7876 ADAMS
	 0 7900 JAMES
	 1 7902 FORD
	 2 7934 MILLER
The last step is to add one GRP so the buckets start at 1, not
 0, and use ORDER BY on GRP to order the rows by bucket.

Oracle and SQL Server

All the work is done by the NTILE function. Simply pass it a number representing
 the number of buckets you want, and watch the magic unfold right in
 front of your eyes.

MySQL and PostgreSQL

The fist step is to generate a Cartesian product with table
 EMP so that each EMPNO can be compared with every other EMPNO [only
 a snippet of the Cartesian is shown below because there would be 196
 rows returned (14x14)]:
	select e.empno,
	 e.ename,
	 d.empno,
	 d.ename
	 from emp e, emp d

	EMPNO ENAME EMPNO ENAME
	----- ---------- ---------- ---------
	 7369 SMITH 7369 SMITH
	 7369 SMITH 7499 ALLEN
	 7369 SMITH 7521 WARD
	 7369 SMITH 7566 JONES
	 7369 SMITH 7654 MARTIN
	 7369 SMITH 7698 BLAKE
	 7369 SMITH 7782 CLARK
	 7369 SMITH 7788 SCOTT
	 7369 SMITH 7839 KING
	 7369 SMITH 7844 TURNER
	 7369 SMITH 7876 ADAMS
	 7369 SMITH 7900 JAMES
	 7369 SMITH 7902 FORD
	 7369 SMITH 7934 MILLER
	 …
As you can see from this result set, you can compare SMITH’s
 EMPNO to the EMPNO of all the other employees in EMP (you can
 compare each employee’s EMPNO with all the other employees’ EMPNOs).
 The next step is to restrict the Cartesian product to only those
 EMPNOs that are greater than or equal to another EMPNO. A portion of
 the result set (as there are 105 rows) is shown below:
	select e.empno,
	 e.ename,
	 d.empno,
	 d.ename
	 from emp e, emp d
	 where e.empno >= d.empno

	EMPNO ENAME EMPNO ENAME
	----- ---------- ---------- ----------
	 7934 MILLER 7934 MILLER
	 7934 MILLER 7902 FORD
	 7934 MILLER 7900 JAMES
	 7934 MILLER 7876 ADAMS
	 7934 MILLER 7844 TURNER
	 7934 MILLER 7839 KING
	 7934 MILLER 7788 SCOTT
	 7934 MILLER 7782 CLARK
	 7934 MILLER 7698 BLAKE
	 7934 MILLER 7654 MARTIN
	 7934 MILLER 7566 JONES
	 7934 MILLER 7521 WARD
	 7934 MILLER 7499 ALLEN
	 7934 MILLER 7369 SMITH
	 …
	 7499 ALLEN 7499 ALLEN
	 7499 ALLEN 7369 SMITH
	 7369 SMITH 7369 SMITH
Of the entire result set, I’ve included only rows (from EMP E)
 for MILLER, ALLEN, and SMITH in this output. The reason is to show
 you how the Cartesian product has been restricted by the WHERE
 clause. Because the filter on EMPNO in the WHERE clause uses
 “greater than or equal to,” you know you will get at least one row
 for each employee because each EMPNO is equal to itself. But why is
 there only one row for SMITH (on the left-hand side of the result
 set) when there are two rows for ALLEN and 14 rows for MILLER? The
 reason is the compound evaluation on EMPNO in the WHERE clause:
 “greater than or equal to”. In SMITH’s case, there is no EMPNO that
 7369 is greater than, so only one row is returned for SMITH. In
 ALLEN’s case, ALLEN’s EMPNO is obviously equal to itself (so that
 row is returned), but 7499 is also greater than 7369 (SMITH’s EMPNO)
 so two rows are returned for ALLEN. In the case of MILLER’s EMPNO
 7934, it is greater than all the other EMPNOs in table EMP (and
 obviously equal to itself) so there are 14 MILLER rows
 returned.
Now you can compare each EMPNO and determine which ones are
 greater than others. Use the aggregate function COUNT to return the
 self join as a more expressive result set:
	select count(*) as grp,
	 e.empno,
	 e.ename
	 from emp e, emp d
	 where e.empno >= d.empno
	 group by e.empno,e.ename
	 order by 1

	GRP EMPNO ENAME
	--- ---------- ----------
	 1 7369 SMITH
	 2 7499 ALLEN
	 3 7521 WARD
	 4 7566 JONES
	 5 7654 MARTIN
	 6 7698 BLAKE
	 7 7782 CLARK
	 8 7788 SCOTT
	 9 7839 KING
	10 7844 TURNER
	11 7876 ADAMS
	12 7900 JAMES
	13 7902 FORD
	14 7934 MILLER
Now that the rows are ranked, simply add 1 to the modulus of
 GRP and 4 to create four buckets (adding 1 so the buckets start at
 1, not 0). Use the ORDER BY clause on GRP to order the buckets
 appropriately:
	select mod(count(*),4)+1 as grp,
	 e.empno,
	 e.ename
	 from emp e, emp d
	 where e.empno >= d.empno
	 group by e.empno,e.ename
	 order by 1

	GRP EMPNO ENAME
	--- ---------- ---------
	 1 7900 JAMES
	 1 7566 JONES
	 1 7788 SCOTT
	 2 7369 SMITH
	 2 7902 FORD
	 2 7654 MARTIN
	 2 7839 KING
	 3 7499 ALLEN
	 3 7698 BLAKE
	 3 7934 MILLER
	 3 7844 TURNER
	 4 7521 WARD
	 4 7782 CLARK
	 4 7876 ADAMS

12.9. Creating Horizontal Histograms

Problem

You want to use SQL to generate histograms that extend
 horizontally. For example, you want to display the number of employees
 in each department as a horizontal histogram with each employee
 represented by an instance of “*”. You want to return the following
 result set:
	DEPTNO CNT
	------ ----------
	 10 ***
	 20 *****
	 30 ******

Solution

The key to this solution is to use the aggregate function COUNT,
 and use GROUP BY DEPTNO to determine the number of employees in each
 DEPTNO. The value returned by COUNT is then passed to a string
 function that generates a series of “*” characters.
DB2

Use the REPEAT function to generate the histogram:
	1 select deptno,
	2 repeat('*',count(*)) cnt
	3 from emp
	4 group by deptno

Oracle, PostgreSQL, and MySQL

Use the LPAD function to generate the needed strings of “*”
 characters:
	1 select deptno,
	2 lpad('*',count(*),'*') as cnt
	3 from emp
	4 group by deptno

SQL Server

Generate the histogram using the REPLICATE function:
	1 select deptno,
	2 replicate('*',count(*)) cnt
	3 from emp
	4 group by deptno

Discussion

The technique is the same for all vendors. The only difference
 lies in the string function used to return a “*” for each employee.
 The Oracle solution will be used for this discussion, but the
 explanation is relevant for all the solutions.
The first step is to count the number of employees in each
 department:
	select deptno,
	 count(*)
	 from emp
	 group by deptno

	DEPTNO COUNT(*)
	------ ----------
	 10 3
	 20 5
	 30 6
The next step is to use the value returned by COUNT(*) to
 control the number of “*"characters to return for each department.
 Simply pass COUNT(*) as an argument to the string function LPAD to
 return the desired number of “*"s:
	select deptno,
	 lpad('*',count(*),'*') as cnt
	 from emp
	 group by deptno

	DEPTNO CNT
	------ ----------
	 10 ***
	 20 *****
	 30 ******
For PostgreSQL users, you may need to explicitly cast the value
 returned by COUNT(*) to an integer as can be seen below:
	select deptno,
	 lpad('*',count(*)::integer,'*') as cnt
	 from emp
	 group by deptno

	DEPTNO CNT
	------ ----------
	 10 ***
	 20 *****
	 30 ******
This CAST is necessary because PostgreSQL requires the numeric
 argument to LPAD to be an integer.

12.10. Creating Vertical Histograms

Problem

You want to generate a histogram that grows from the bottom up.
 For example, you want to display the number of employees in each
 department as a vertical histogram with each employee represented by
 an instance of “*”. You want to return the following result
 set:
	D10 D20 D30
	--- --- ---
	 *
	 * *
	 * *
	* * *
	* * *
	* * *

Solution

The technique used to solve this problem is built upon that used
 as the second recipe in this chapter: .
DB2, Oracle, and SQL Server

Use the ROW_NUMBER OVER function to uniquely identify each
 instance of “*” for each DEPTNO. Use the aggregate function MAX to
 pivot the result set and group by the values returned by ROW_NUMBER
 OVER (SQL Server users should not use DESC in the ORDER BY
 clause):
	 1 select max(deptno_10) d10,
	 2 max(deptno_20) d20,
	 3 max(deptno_30) d30
	 4 from (
	 5 select row_number()over(partition by deptno order by empno) rn,
	 6 case when deptno=10 then '*' else null end deptno_10,
	 7 case when deptno=20 then '*' else null end deptno_20,
	 8 case when deptno=30 then '*' else null end deptno_30
	 9 from emp
	10) x
	11 group by rn
	12 order by 1 desc, 2 desc, 3 desc

PostgreSQL and MySQL

Use a scalar subquery to uniquely identify each instance of
 “*” for each DEPTNO. Use the aggregate function MAX on the values
 returned by inline view X, while also grouping by RNK to pivot the
 result set. MySQL users should not use DESC in the ORDER BY
 clause:
	 1 select max(deptno_10) as d10,
	 2 max(deptno_20) as d20,
	 3 max(deptno_30) as d30
	 4 from (
	 5 select case when e.deptno=10 then '*' else null end deptno_10,
	 6 case when e.deptno=20 then '*' else null end deptno_20,
	 7 case when e.deptno=30 then '*' else null end deptno_30,
	 8 (select count(*) from emp d
	 9 where e.deptno=d.deptno and e.empno < d.empno) as rnk
	10 from emp e
	11) x
	12 group by rnk
	13 order by 1 desc, 2 desc, 3 desc

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER to
 uniquely identify each instance of “*” in each department. Use a
 CASE expression to return a “*” for each employee in each
 department:
	select row_number()over(partition by deptno order by empno) rn,
	 case when deptno=10 then '*' else null end deptno_10,
	 case when deptno=20 then '*' else null end deptno_20,
	 case when deptno=30 then '*' else null end deptno_30
	 from emp

	RN DEPTNO_10 DEPTNO_20 DEPTNO_30
	-- ---------- ---------- ---------
	 1 *
	 2 *
	 3 *
	 1 *
	 2 *
	 3 *
	 4 *
	 5 *
	 1 *
	 2 *
	 3 *
	 4 *
	 5 *
	 6 *
The next and last step is to use the aggregate function MAX on
 each CASE expression, grouping by RN to remove the NULLs from the
 result set. Order the results ASC or DESC depending on how your
 RDBMS sorts NULLs:
	select max(deptno_10) d10,
	 max(deptno_20) d20,
	 max(deptno_30) d30
	 from (
	Select row_number()over(partition by deptno order by empno) rn,
	 case when deptno=10 then '*' else null end deptno_10,
	 case when deptno=20 then '*' else null end deptno_20,
	 case when deptno=30 then '*' else null end deptno_30
	 from emp
) x
	 group by rn
	 order by 1 desc, 2 desc, 3 desc

	D10 D20 D30
	--- --- ---
	 *
	 * *
	 * *
	* * *
	* * *
	* * *

PostgreSQL and MySQL

The first step is to use a scalar subquery to uniquely
 identify each instance of “*” in each department. The scalar
 subquery ranks the employees by EMPNO in each DEPTNO, so there can
 be no duplicates. Use a CASE expression to generate a “*” for each
 employee in each department:
	select case when e.deptno=10 then '*' else null end deptno_10,
	 case when e.deptno=20 then '*' else null end deptno_20,
	 case when e.deptno=30 then '*' else null end deptno_30,
	 (select count(*) from emp d
	 where e.deptno=d.deptno and e.empno < d.empno) as rnk
	 from emp e

	DEPTNO_10 DEPTNO_20 DEPTNO_30 RNK
	---------- ---------- ---------- ----------
	 * 4
	 * 5
	 * 4
	 * 3
	 * 3
	 * 2
	* 2
	 * 2
	* 1
	 * 1
	 * 1
	 * 0
	 * 0
	 * 0
Then use the aggregate function MAX on each CASE expression,
 being sure to group by RNK to remove the NULLs from the result set.
 Order the results ASC or DESC depending on how your RDBMS sorts
 NULLs:
	select max(deptno_10) as d10,
	 max(deptno_20) as d20,
	 max(deptno_30) as d30
	 from (
	Select case when e.deptno=10 then '*' else null end deptno_10,
	 case when e.deptno=20 then '*' else null end deptno_20,
	 case when e.deptno=30 then '*' else null end deptno_30,
	 (select count(*) from emp d
	 where e.deptno=d.deptno and e.empno < d.empno) as rnk
	 from emp e
) x
	 group by rnk
	 order by 1 desc, 2 desc, 3 desc

	D10 D20 D30
	--- --- ---
	 *
	 * *
	 * *
	* * *
	* * *
	* * *

12.11. Returning Non-GROUP BY Columns

Problem

You are executing a GROUP BY query, and you wish to return
 columns in your select list that are not also listed in your GROUP BY
 clause. This is not normally possible, as such ungrouped columns would
 not represent a single value per row.
Say that you want to find the employees who earn the highest and
 lowest salaries in each department, as well as the employees who earn
 the highest and lowest salaries in each job. You want to see each
 employee’s name, the department he works in, his job title, and his
 salary. You want to return the following result set:
	DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
	------ ------ --------- ----- --------------- --------------
	 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
	 10 CLARK MANAGER 2450 LOW SAL IN JOB
	 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
	 20 JONES MANAGER 2975 TOP SAL IN JOB
	 30 JAMES CLERK 950 LOW SAL IN DEPT
	 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
	 30 WARD SALESMAN 1250 LOW SAL IN JOB
	 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
	 30 BLAKE MANAGER 2850 TOP SAL IN DEPT
Unfortunately, including all these columns in the SELECT clause
 will ruin the grouping. Consider the following example. Employee
 “KING” earns the highest salary. You want to verify this with the
 following query:
	Select ename,max(sal)
	 from empgroup by ename
Instead of seeing “KING” and KING’s salary, the above query will
 return all 14 rows from table EMP. The reason is because of the
 grouping: the MAX(SAL) is applied to each ENAME. So, it would seem the
 above query can be stated as “find the employee with the highest
 salary” but in fact what it is doing is “find the highest salary for
 each ENAME in table EMP.” This recipe explains a technique for
 including ENAME without the need to GROUP BY that column.

Solution

Use an inline view to find the high and low salaries by DEPTNO
 and JOB. Then keep only the employees who make those salaries.
DB2, Oracle, and SQL Server

Use the window functions MAX OVER and MIN OVER to find the
 highest and lowest salaries by DEPTNO and JOB. Then keep the rows
 where the salaries are those that are highest or lowest by DEPTNO or
 JOB:
	 1 select deptno,ename,job,sal,
	 2 case when sal = max_by_dept
	 3 then 'TOP SAL IN DEPT'
	 4 when sal = min_by_dept
	 5 then 'LOW SAL IN DEPT'
	 6 end dept_status,
	 7 case when sal = max_by_job
	 8 then 'TOP SAL IN JOB'
	 9 when sal = min_by_job
	10 then 'LOW SAL IN JOB'
	11 end job_status
	12 from (
	13 select deptno,ename,job,sal,
	14 max(sal)over(partition by deptno) max_by_dept,
	15 max(sal)over(partition by job) max_by_job,
	16 min(sal)over(partition by deptno) min_by_dept,
	17 min(sal)over(partition by job) min_by_job
	18 from emp
	19) emp_sals
	20 where sal in (max_by_dept,max_by_job,
	21 min_by_dept,min_by_job)

PostgreSQL and MySQL

Use scalar subqueries to find the highest and lowest salaries
 by DEPTNO and JOB. Then keep only those employees who match those
 salaries:
	 1 select deptno,ename,job,sal,
	 2 case when sal = max_by_dept
	 3 then 'TOP SAL IN DEPT'
	 4 when sal = min_by_dept
	 5 then 'LOW SAL IN DEPT'
	 6 end as dept_status,
	 7 case when sal = max_by_job
	 8 then 'TOP SAL IN JOB'
	 9 when sal = min_by_job
	10 then 'LOW SAL IN JOB'
	11 end as job_status
	12 from (
	13 select e.deptno,e.ename,e.job,e.sal,
	14 (select max(sal) from emp d
	15 where d.deptno = e.deptno) as max_by_dept,
	16 (select max(sal) from emp d
	17 where d.job = e.job) as max_by_job,
	18 (select min(sal) from emp d
	19 where d.deptno = e.deptno) as min_by_dept,
	20 (select min(sal) from emp d
	21 where d.job = e.job) as min_by_job
	22 from emp e
	23) x
	24 where sal in (max_by_dept,max_by_job,
	25 min_by_dept,min_by_job)

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window functions MAX OVER and MIN
 OVER to find the highest and lowest salaries by DEPTNO and
 JOB:
	select deptno,ename,job,sal,
	 max(sal)over(partition by deptno) maxDEPT,
	 max(sal)over(partition by job) maxJOB,
	 min(sal)over(partition by deptno) minDEPT,
	 min(sal)over(partition by job) minJOB
	 from emp

	DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB
	------ ------ --------- ----- ------- ------ ------- ------
	 10 MILLER CLERK 1300 5000 1300 1300 800
	 10 CLARK MANAGER 2450 5000 2975 1300 2450
	 10 KING PRESIDENT 5000 5000 5000 1300 5000
	 20 SCOTT ANALYST 3000 3000 3000 800 3000
	 20 FORD ANALYST 3000 3000 3000 800 3000
	 20 SMITH CLERK 800 3000 1300 800 800
	 20 JONES MANAGER 2975 3000 2975 800 2450
	 20 ADAMS CLERK 1100 3000 1300 800 800
	 30 JAMES CLERK 950 2850 1300 950 800
	 30 MARTIN SALESMAN 1250 2850 1600 950 1250
	 30 TURNER SALESMAN 1500 2850 1600 950 1250
	 30 WARD SALESMAN 1250 2850 1600 950 1250
	 30 ALLEN SALESMAN 1600 2850 1600 950 1250
	 30 BLAKE MANAGER 2850 2850 2975 950 2450
At this point, every salary can be compared with the highest
 and lowest salaries by DEPTNO and JOB. Notice that the grouping (the inclusion of multiple columns in the
 SELECT clause) does not affect the values returned by MIN OVER and
 MAX OVER. This is the beauty of window functions: the aggregate is
 computed over a defined “group” or partition and returns multiple
 rows for each group. The last step is to simply wrap the window
 functions in an inline view and keep only those rows that match the
 values returned by the window functions. Use a simple CASE
 expression to display the “status” of each employee in the final
 result set:
	select deptno,ename,job,sal,
	 case when sal = max_by_dept
	 then 'TOP SAL IN DEPT'
	 when sal = min_by_dept
	 then 'LOW SAL IN DEPT'
	 end dept_status,
	 case when sal = max_by_job
	 then 'TOP SAL IN JOB'
	 when sal = min_by_job
	 then 'LOW SAL IN JOB'
	 end job_status
	 from (
	select deptno,ename,job,sal,
	 max(sal)over(partition by deptno) max_by_dept,
	 max(sal)over(partition by job) max_by_job,
	 min(sal)over(partition by deptno) min_by_dept,
	 min(sal)over(partition by job) min_by_job
	 from emp
) x
	 where sal in (max_by_dept,max_by_job,
	 min_by_dept,min_by_job)

	DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
	------ ------ --------- ----- --------------- --------------
	 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
	 10 CLARK MANAGER 2450 LOW SAL IN JOB
	 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
	 20 JONES MANAGER 2975 TOP SAL IN JOB
	 30 JAMES CLERK 950 LOW SAL IN DEPT
	 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
	 30 WARD SALESMAN 1250 LOW SAL IN JOB
	 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
	 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

PostgreSQL and MySQL

The first step is to use scalar subqueries to find the highest
 and lowest salaries by DEPTNO and JOB:
	select e.deptno,e.ename,e.job,e.sal,
	 (select max(sal) from emp d
	 where d.deptno = e.deptno) as maxDEPT,
	 (select max(sal) from emp d
	 where d.job = e.job) as maxJOB,
	 (select min(sal) from emp d
	 where d.deptno = e.deptno) as minDEPT,
	 (select min(sal) from emp d
	 where d.job = e.job) as minJOB
	 from emp e

	DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB
	------ ------ --------- ----- ------- ------ ------- ------
	 20 SMITH CLERK 800 3000 1300 800 800
	 30 ALLEN SALESMAN 1600 2850 1600 950 1250
	 30 WARD SALESMAN 1250 2850 1600 950 1250
	 20 JONES MANAGER 2975 3000 2975 800 2450
	 30 MARTIN SALESMAN 1250 2850 1600 950 1250
	 30 BLAKE MANAGER 2850 2850 2975 950 2450
	 10 CLARK MANAGER 2450 5000 2975 1300 2450
	 20 SCOTT ANALYST 3000 3000 3000 800 3000
	 10 KING PRESIDENT 5000 5000 5000 1300 5000
	 30 TURNER SALESMAN 1500 2850 1600 950 1250
	 20 ADAMS CLERK 1100 3000 1300 800 800
	 30 JAMES CLERK 950 2850 1300 950 800
	 20 FORD ANALYST 3000 3000 3000 800 3000
	 10 MILLER CLERK 1300 5000 1300 1300 800
The highest and lowest salaries by DEPTNO and JOB can now be compared with all other
 salaries in table EMP. The final step is to wrap the scalar
 subqueries in an inline view and simply keep the employees whose
 salaries match one of the scalar subqueries. Use a CASE expression
 to display each employee’s status in the final result set:
	select deptno,ename,job,sal,
	 case when sal = max_by_dept
	 then 'TOP SAL IN DEPT'
	 when sal = min_by_dept
	 then 'LOW SAL IN DEPT'
	 end as dept_status,
	 case when sal = max_by_job
	 then 'TOP SAL IN JOB'
	 when sal = min_by_job
	 then 'LOW SAL IN JOB'
	 end as job_status
	 from (
	select e.deptno,e.ename,e.job,e.sal,
	 (select max(sal) from emp d
	 where d.deptno = e.deptno) as max_by_dept,
	 (select max(sal) from emp d
	 where d.job = e.job) as max_by_job,
	 (select min(sal) from emp d
	 where d.deptno = e.deptno) as min_by_dept,
	 (select min(sal) from emp d
	 where d.job = e.job) as min_by_job
	 from emp e
) x
	 where sal in (max_by_dept,max_by_job,
	 min_by_dept,min_by_job)

	DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
	------ ------ --------- ----- --------------- --------------
	 10 CLARK MANAGER 2450 LOW SAL IN JOB
	 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
	 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
	 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
	 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
	 20 JONES MANAGER 2975 TOP SAL IN JOB
	 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
	 30 BLAKE MANAGER 2850 TOP SAL IN DEPT
	 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
	 30 JAMES CLERK 950 LOW SAL IN DEPT
	 30 WARD SALESMAN 1250 LOW SAL IN JOB

12.12. Calculating Simple Subtotals

Problem

For the purposes of this recipe, a “simple subtotal” is defined
 as a result set that contains values from the aggregation of one
 column along with a grand total value for the table. An example would
 be a result set that sums the salaries in table EMP by JOB, and that
 also includes the sum of all salaries in table EMP. The summed
 salaries by JOB are the subtotals, and the sum of all salaries in table EMP is
 the grand total. Such a result set should look as follows:
	JOB SAL
	--------- ----------
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
	TOTAL 29025

Solution

The ROLLUP extension to the GROUP BY clause solves this problem
 perfectly. If ROLLUP is not available for your RDBMS, you can solve
 the problem, albeit with more difficulty, using a scalar subquery or a
 UNION query.
DB2 and Oracle

Use the aggregate function SUM to sum the salaries, and use
 the ROLLUP extension of GROUP BY to organize the results
 into subtotals (by JOB) and a grand total (for the whole
 table):
	1 select case grouping(job)
	2 when 0 then job
	3 else 'TOTAL'
	4 end job,
	5 sum(sal) sal
	6 from emp
	7 group by rollup(job)

SQL Server and MySQL

Use the aggregate function SUM to sum the salaries, and use
 WITH ROLLUP to organize the results into subtotals (by JOB) and a grand total (for the whole
 table). Then use COALESCE to supply the label ‘TOTAL’ for the grand
 total row (which will otherwise have a NULL in the job
 column):
	1 select coalesce(job,'TOTAL') job,
	2 sum(sal) sal
	3 from emp
	4 group by job with rollup
With SQL Server, you also have the option to use the
 GROUPING function shown in the Oracle/DB2 recipe
 rather than COALESCE to determine the level of aggregation.

PostgreSQL

Use the aggregate function SUM to sum the salaries by DEPTNO.
 Then UNION ALL with a query generating the sum of all the salaries
 in the table:
	1 select job, sum(sal) as sal
	2 from emp
	3 group by job
	4 union all
	5 select 'TOTAL', sum(sal)
	6 from emp

Discussion

DB2 and Oracle

The first step is to use the aggregate function SUM, grouping
 by JOB in order to sum the salaries by JOB:
	select job, sum(sal) sal
	 from emp
	 group by job

	JOB SAL
	--------- -----
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
The next step is to use the ROLLUP extension to GROUP BY to
 produce a grand total for all salaries along with the subtotals for each JOB:
	select job, sum(sal) sal
	 from emp
	 group by rollup(job)

	JOB SAL
	--------- -------
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
	 29025
The last step is to use the GROUPING function in the JOB column to display a label
 for the grand total. If the value of JOB is NULL, the GROUPING
 function will return 1, which signifies that the value for SAL is
 the grand total created by ROLLUP. If the value of JOB is not NULL,
 the GROUPING function will return 0, which signifies the value for
 SAL is the result of the GROUP BY, not the ROLLUP. Wrap the call to
 GROUPING(JOB) in a CASE expression that returns either the job name
 or the label ‘TOTAL', as appropriate:
	select case grouping(job)
	 when 0 then job
	 else 'TOTAL'
	 end job,
	 sum(sal) sal
	 from emp
	 group by rollup(job)

	JOB SAL
	--------- ----------
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
	TOTAL 29025

SQL Server and MySQL

The first step is to use the aggregate function SUM, grouping
 the results by JOB to generate salary sums by JOB:
	select job, sum(sal) sal
	 from emp
	 group by job

	JOB SAL
	--------- -----
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
The next step is to use GROUP BY’s ROLLUP extension to produce
 a grand total for all salaries along with the subtotals for each JOB:
	select job, sum(sal) sal
	 from emp
	 group by job with rollup

	JOB SAL
	--------- -------
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
	 29025
The last step is to use the COEALESCE function against the JOB
 column. If the value of JOB is NULL, the value for SAL is the grand
 total created by ROLLUP. If the value of JOB is not NULL, the value
 for SAL is the result of the “regular” GROUP BY, not the
 ROLLUP:
	select coalesce(job,'TOTAL') job,
	 sum(sal) sal
	 from emp
	 group by job with rollup

	JOB SAL
	--------- ----------
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
	TOTAL 29025

PostgreSQL

The first step is to group the results by job, using the
 aggregate function SUM to return salary totals by JOB:
	select job, sum(sal) sal
	 from emp
	 group by job
	
	JOB SAL
	--------- -----
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
The last step is to use a UNION ALL to supply the grand total
 to the above query:
	select job, sum(sal) as sal
	 from emp
	 group by job
	 union all
	select 'TOTAL', sum(sal)
	 from emp
	
	JOB SAL
	--------- -------
	ANALYST 6000
	CLERK 4150
	MANAGER 8275
	PRESIDENT 5000
	SALESMAN 5600
	TOTAL 29025

12.13. Calculating Subtotals for All Possible Expression
 Combinations

Problem

You want to find the sum of all salaries by DEPTNO, and by JOB,
 for every JOB/ DEPTNO combination. You also want a grand total for all
 salaries in table EMP. You want to return the following result
 set:
	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 CLERK TOTAL BY JOB 4150
	 ANALYST TOTAL BY JOB 6000
	 MANAGER TOTAL BY JOB 8275
	 PRESIDENT TOTAL BY JOB 5000
	 SALESMAN TOTAL BY JOB 5600
	 10 TOTAL BY DEPT 8750
	 30 TOTAL BY DEPT 9400
	 20 TOTAL BY DEPT 10875
	 GRAND TOTAL FOR TABLE 29025

Solution

Extensions added to GROUP BY in recent years make this a fairly
 easy problem to solve. If your platform does not supply such
 extensions for computing various levels of subtotals, then you must compute them manually (via self
 joins or scalar subqueries).
DB2

For DB2, you will need to CAST the results from GROUPING to
 the CHAR(1) data type:
	 1 select deptno,
	 2 job,
	 3 case cast(grouping(deptno) as char(1))||
	 4 cast(grouping(job) as char(1))
	 5 when '00' then 'TOTAL BY DEPT AND JOB'
	 6 when '10' then 'TOTAL BY JOB'
	 7 when '01' then 'TOTAL BY DEPT'
	 8 when '11' then 'TOTAL FOR TABLE'
	 9 end category,
	10 sum(sal)
	11 from emp
	12 group by cube(deptno,job)
	13 order by grouping(job),grouping(deptno)

Oracle

Use the CUBE extension to the GROUP BY clause with the
 concatenation operator ||:
	 1 select deptno,
	 2 job,
	 3 case grouping(deptno)||grouping(job)
	 4 when '00' then 'TOTAL BY DEPT AND JOB'
	 5 when '10' then 'TOTAL BY JOB'
	 6 when '01' then 'TOTAL BY DEPT'
	 7 when '11' then 'GRAND TOTALFOR TABLE'
	 8 end category,
	 9 sum(sal) sal
	10 from emp
	11 group by cube(deptno,job)
	12 order by grouping(job),grouping(deptno)

SQL Server

Use the CUBE extension to the GROUP BY clause. For SQL Server,
 you will need to CAST the results from GROUPING to CHAR(1), and you
 will need to use the + operator for concatenation (as opposed to
 Oracle’s || operator):
	 1 select deptno,
	 2 job,
	 3 case cast(grouping(deptno)as char(1))+
	 4 cast(grouping(job)as char(1))
	 5 when '00' then 'TOTAL BY DEPT AND JOB'
	 6 when '10' then 'TOTAL BY JOB'
	 7 when '01' then 'TOTAL BY DEPT'
	 8 when '11' then 'GRAND TOTAL FOR TABLE'
	 9 end category,
	10 sum(sal) sal
	11 from emp
	12 group by deptno,job with cube
	13 order by grouping(job),grouping(deptno)

PostgreSQL and MySQL

Use multiple UNION ALLs, creating different sums for
 each:
	 1 select deptno, job,
	 2 'TOTAL BY DEPT AND JOB' as category,
	 3 sum(sal) as sal
	 4 from emp
	 5 group by deptno, job
	 6 union all
	 7 select null, job, 'TOTAL BY JOB', sum(sal)
	 8 from emp
	 9 group by job
	10 union all
	11 select deptno, null, 'TOTAL BY DEPT', sum(sal)
	12 from emp
	13 group by deptno
	14 union all
	15 select null,null,'GRAND TOTAL FOR TABLE', sum(sal)
	16 from emp

Discussion

Oracle, DB2, and SQL Server

The solutions for all three are essentially the same. The
 first step is to use the aggregate function SUM and group by both
 DEPTNO and JOB to find the total salaries for each JOB and DEPTNO
 combination:
	select deptno, job, sum(sal) sal
	 from emp
	 group by deptno, job
	
	DEPTNO JOB SAL
	------ --------- -------
	 10 CLERK 1300
	 10 MANAGER 2450
	 10 PRESIDENT 5000
	 20 CLERK 1900
	 20 ANALYST 6000
	 20 MANAGER 2975
	 30 CLERK 950
	 30 MANAGER 2850
	 30 SALESMAN 5600
The next step is to create subtotals by JOB and DEPTNO along with the grand total
 for the whole table. Use the CUBE extension to the GROUP BY clause
 to perform aggregations on SAL by DEPTNO, JOB, and for the whole
 table:
	select deptno,
	 job,
	 sum(sal) sal
	 from emp
	 group by cube(deptno,job)

	DEPTNO JOB SAL
	------ --------- -------
	 29025
	 CLERK 4150
	 ANALYST 6000
	 MANAGER 8275
	 SALESMAN 5600
	 PRESIDENT 5000
	 10 8750
	 10 CLERK 1300
	 10 MANAGER 2450
	 10 PRESIDENT 5000
	 20 10875
	 20 CLERK 1900
	 20 ANALYST 6000
	 20 MANAGER 2975
	 30 9400
	 30 CLERK 950
	 30 MANAGER 2850
	 30 SALESMAN 5600
Next, use the GROUPING function in conjunction with CASE to
 format the results into more meaningful output. The
 value from GROUPING(JOB) will be 1 or 0 depending on whether or not
 the values for SAL are due to the GROUP BY or the CUBE. If the
 results are due to the CUBE, the value will be 1, otherwise it will
 be 0. The same goes for GROUPING(DEPTNO). Looking at the first step
 of the solution, you should see that grouping is done by DEPTNO and
 JOB. Thus, the expected values from the calls to GROUPING when a row
 represents a combination of both DEPTNO and JOB is 0. The query
 below confirms this:
	select deptno,
	 job,
	 grouping(deptno) is_deptno_subtotal,
	 grouping(job) is_job_subtotal,
	 sum(sal) sal
	 from emp
	 group by cube(deptno,job)
	 order by 3,4

	DEPTNO JOB IS_DEPTNO_SUBTOTAL IS_JOB_SUBTOTAL SAL
	------ --------- ------------------ --------------- -------
	 10 CLERK 0 0 1300
	 10 MANAGER 0 0 2450
	 10 PRESIDENT 0 0 5000
	 20 CLERK 0 0 1900
	 30 CLERK 0 0 950
	 30 SALESMAN 0 0 5600
	 30 MANAGER 0 0 2850
	 20 MANAGER 0 0 2975
	 20 ANALYST 0 0 6000
	 10 0 1 8750
	 20 0 1 10875
	 30 0 1 9400
	 CLERK 1 0 4150
	 ANALYST 1 0 6000
	 MANAGER 1 0 8275
	 PRESIDENT 1 0 5000
	 SALESMAN 1 0 5600
	 1 1 29025
The final step is to use a CASE expression to determine which
 category each row belongs to based on the values returned by
 GROUPING(JOB) and GROUPING(DEPTNO) concatenated:
	select deptno,
	 job,
	 case grouping(deptno)||grouping(job)
	 when '00' then 'TOTAL BY DEPT AND JOB'
	 when '10' then 'TOTAL BY JOB'
	 when '01' then 'TOTAL BY DEPT'
	 when '11' then 'GRAND TOTAL FOR TABLE'
	 end category,
	 sum(sal) sal
	 from emp
	 group by cube(deptno,job)
	 order by grouping(job),grouping(deptno)

	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 CLERK TOTAL BY JOB 4150
	 ANALYST TOTAL BY JOB 6000
	 MANAGER TOTAL BY JOB 8275
	 PRESIDENT TOTAL BY JOB 5000
	 SALESMAN TOTAL BY JOB 5600
	 10 TOTAL BY DEPT 8750
	 30 TOTAL BY DEPT 9400
	 20 TOTAL BY DEPT 10875
	 GRAND TOTAL FOR TABLE 29025
This Oracle solution implicitly converts the results from the
 GROUPING functions to a character type in preparation for
 concatenating the two values. DB2 and SQL Server users will need to
 explicitly CAST the results of the GROUPING functions to CHAR(1) as
 shown in the solution. In addition, SQL Server users must use the +
 operator, and not the || operator, to concatenate the results from
 the two GROUPING calls into one string.
For Oracle and DB2 users, there is an additional extension to
 GROUP BY called GROUPING SETS; this extension is extremely useful. For
 example, you can use GROUPING SETS to mimic the output created by
 CUBE as is done below (DB2 and SQL Server users will need to add
 explicit CASTS to the values returned by the GROUPING function just
 as in the CUBE solution):
	select deptno,
	 job,
	 case grouping(deptno)||grouping(job)
	 when '00' then 'TOTAL BY DEPT AND JOB'
	 when '10' then 'TOTAL BY JOB'
	 when '01' then 'TOTAL BY DEPT'
	 when '11' then 'GRAND TOTAL FOR TABLE'
	 end category,
	 sum(sal) sal
	 from emp
	 group by grouping sets ((deptno),(job),(deptno,job),())

	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 CLERK TOTAL BY JOB 4150
	 ANALYST TOTAL BY JOB 6000
	 MANAGER TOTAL BY JOB 8275
	 SALESMAN TOTAL BY JOB 5600
	 PRESIDENT TOTAL BY JOB 5000
	 10 TOTAL BY DEPT 8750
	 20 TOTAL BY DEPT 10875
	 30 TOTAL BY DEPT 9400
	 GRAND TOTAL FOR TABLE 29025
What’s great about GROUPING SETS is that it allows you to define the
 groups. The GROUPING SETS clause in the preceding query causes
 groups to be created by DEPTNO, by JOB, by the combination of DEPTNO
 and JOB, and finally the empty parenthesis requests a grand total.
 GROUPING SETS gives you enormous flexibility for creating reports
 with different levels of aggregation; for example, if you wanted to
 modify the preceding example to exclude the GRAND TOTAL, simply
 modify the GROUPING SETS clause by excluding the empty
 parentheses:
	/* no grand total */
	select deptno,
	 job,
	 case grouping(deptno)||grouping(job)
	 when '00' then 'TOTAL BY DEPT AND JOB'
	 when '10' then 'TOTAL BY JOB'
	 when '01' then 'TOTAL BY DEPT'
	 when '11' then 'GRAND TOTAL FOR TABLE'
	 end category,
	 sum(sal) sal
	 from emp
	 group by grouping sets ((deptno),(job),(deptno,job))

	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- ----------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 CLERK TOTAL BY JOB 4150
	 ANALYST TOTAL BY JOB 6000
	 ANAGER TOTAL BY JOB 8275
	 SALESMAN TOTAL BY JOB 5600
	 PRESIDENT TOTAL BY JOB 5000
	 10 TOTAL BY DEPT 8750
	 20 TOTAL BY DEPT 10875
	 30 TOTAL BY DEPT 9400
You can also eliminate a subtotal, such as the one on DEPTNO,
 simply by omitting (DEPTNO) from the GROUPING SETS clause:
	/* nosubtotals by DEPTNO */
	
	
	select deptno,
	 job,
	 case grouping(deptno)||grouping(job)
	 when '00' then 'TOTAL BY DEPT AND JOB'
	 when '10' then 'TOTAL BY JOB'
	 when '01' then 'TOTAL BY DEPT'
	 when '11' then 'GRAND TOTAL FOR TABLE'
	 end category,
	 sum(sal) sal
	 from emp
	 group by grouping sets ((job),(deptno,job),())
	 order by 3
	
	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- ----------
	 GRAND TOTAL FOR TABLE 29025
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 CLERK TOTAL BY JOB 4150
	 SALESMAN TOTAL BY JOB 5600
	 PRESIDENT TOTAL BY JOB 5000
	 MANAGER TOTAL BY JOB 8275
	 ANALYST TOTAL BY JOB 6000
As you can see, GROUPING SETS makes it very easy indeed to
 play around with totals and subtotals in order to look at your data
 from different angles.

PostgreSQL and MySQL

The first step is to use the aggregate function SUM and group
 by both DEPTNO and JOB:
	select deptno, job,
	 'TOTAL BY DEPT AND JOB' as category,
	 sum(sal) as sal
	 from emp
	 group by deptno, job

	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
The next step is to UNION ALL the sum of all the salaries by
 JOB:
	select deptno, job,
	 'TOTAL BY DEPT AND JOB' as category,
	 sum(sal) as sal
	 from emp
	 group by deptno, job
	 union all
	select null, job, 'TOTAL BY JOB', sum(sal)
	 from emp
	 group by job

	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 ANALYST TOTAL BY JOB 6000
	 CLERK TOTAL BY JOB 4150
	 MANAGER TOTAL BY JOB 8275
	 PRESIDENT TOTAL BY JOB 5000
	 SALESMAN TOTAL BY JOB 5600
The next step is to UNION ALL the sum of all the salaries by
 DEPTNO:
	select deptno, job,
	 'TOTAL BY DEPT AND JOB' as category,
	 sum(sal) as sal
	 from emp
	 group by deptno, job
	 union all
	select null, job, 'TOTAL BY JOB', sum(sal)
	 from emp
	 group by job
	 union all
	select deptno, null, 'TOTAL BY DEPT', sum(sal)
	 from emp
 	 group by deptno
	
	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 ANALYST TOTAL BY JOB 6000
	 CLERK TOTAL BY JOB 4150
	 MANAGER TOTAL BY JOB 8275
	 PRESIDENT TOTAL BY JOB 5000
	 SALESMAN TOTAL BY JOB 5600
	 10 TOTAL BY DEPT 8750
	 20 TOTAL BY DEPT 10875
	 30 TOTAL BY DEPT 9400
The final step is to UNION ALL the sum of all salaries in
 table EMP:
	select deptno, job,
	 'TOTAL BY DEPT AND JOB' as category,
	 sum(sal) as sal
	 from emp
	 group by deptno, job
	 union all
	select null, job, 'TOTAL BY JOB', sum(sal)
	 from emp
	 group by job
	 union all
	select deptno, null, 'TOTAL BY DEPT', sum(sal)
	 from emp
	 group by deptno
	 union all
	select null,null, 'GRAND TOTAL FOR TABLE', sum(sal)
	 from emp
	
	DEPTNO JOB CATEGORY SAL
	------ --------- --------------------- -------
	 10 CLERK TOTAL BY DEPT AND JOB 1300
	 10 MANAGER TOTAL BY DEPT AND JOB 2450
	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
	 20 CLERK TOTAL BY DEPT AND JOB 1900
	 20 ANALYST TOTAL BY DEPT AND JOB 6000
	 20 MANAGER TOTAL BY DEPT AND JOB 2975
	 30 CLERK TOTAL BY DEPT AND JOB 950
	 30 MANAGER TOTAL BY DEPT AND JOB 2850
	 30 SALESMAN TOTAL BY DEPT AND JOB 5600
	 ANALYST TOTAL BY JOB 6000
	 CLERK TOTAL BY JOB 4150
	 MANAGER TOTAL BY JOB 8275
	 PRESIDENT TOTAL BY JOB 5000
	 SALESMAN TOTAL BY JOB 5600
	 10 TOTAL BY DEPT 8750
	 20 TOTAL BY DEPT 10875
	 30 TOTAL BY DEPT 9400
	 GRAND TOTAL FOR TABLE 29025

12.14. Identifying Rows That Are Not Subtotals

Problem

You’ve used the CUBE extension of the GROUP BY clause to create
 a report, and you need a way to differentiate between rows that would
 be generated by a normal GROUP BY clause and those rows that have been
 generated as a result of using CUBE or ROLLUP.
Following is the result set from a query using the CUBE
 extension to GROUP BY to create a breakdown of the salaries in table
 EMP:
	DEPTNO JOB SAL
	------ --------- -------
	 29025
	 CLERK 4150
	 ANALYST 6000
	 MANAGER 8275
	 SALESMAN 5600
	 PRESIDENT 5000
	 10 8750
	 10 CLERK 1300
	 10 MANAGER 2450
	 10 PRESIDENT 5000
	 20 10875
	 20 CLERK 1900
	 20 ANALYST 6000
	 20 MANAGER 2975
	 30 9400
	 30 CLERK 950
	 30 MANAGER 2850
	 30 SALESMAN 5600
This report includes the sum of all salaries by DEPTNO and JOB
 (for each JOB per DEPTNO), the sum of all salaries by DEPTNO, the sum
 of all salaries by JOB, and finally a grand total (the sum of all
 salaries in table EMP). You want to clearly identify the different
 levels of aggregation. You want to be able to identify which category
 an aggregated value belongs to (i.e., does a given value in the SAL
 column represent a total by DEPTNO? By JOB? The grand total?). You
 would like to return the following result set:
	DEPTNO JOB SAL DEPTNO_SUBTOTALS JOB_SUBTOTALS
	------ --------- ------- ---------------- -------------
	 29025 1 1
	 CLERK 4150 1 0
	 ANALYST 6000 1 0
	 MANAGER 8275 1 0
	 SALESMAN 5600 1 0
	 PRESIDENT 5000 1 0
	 10 8750 0 1
	 10 CLERK 1300 0 0
	 10 MANAGER 2450 0 0
	 10 PRESIDENT 5000 0 0
	 20 10875 0 1
	 20 CLERK 1900 0 0
	 20 ANALYST 6000 0 0
	 20 MANAGER 2975 0 0
	 30 9400 0 1
	 30 CLERK 950 0 0
	 30 MANAGER 2850 0 0
	 30 SALESMAN 5600 0 0

Solution

Use the GROUPING function to identify which values exist due to
 CUBE’s or ROLLUP’s creation of subtotals, or
 superaggregate values. The following is an
 example for DB2 and Oracle:
	 1 select deptno, job, sum(sal) sal,
	 2 grouping(deptno) deptno_subtotals,
	 3 grouping(job) job_subtotals
	 4 from emp
	 5 group by cube(deptno,job)
The only difference between the SQL Server solution and that for
 DB2 and Oracle lies in how the CUBE/ROLLUP clauses are written:
	 1 select deptno, job, sum(sal) sal,
	 2 grouping(deptno) deptno_subtotals,
	 3 grouping(job) job_subtotals
	 4 from emp
	 5 group by deptno,job with cube
This recipe is meant to highlight the use of CUBE and GROUPING
 when working with subtotals. As of the time of this writing,
 PostgreSQL and MySQL support neither CUBE nor GROUPING.

Discussion

If DEPTNO_SUBTOTALS is 0 and JOB_SUBTOTALS is 1 (in which case
 JOB is NULL), the value of SAL represents a subtotal of salaries by
 DEPTNO created by CUBE. If JOB_SUBTOTALS is 0 and DEPTNO_SUBTOTALS is
 1 (in which case DEPTNO is NULL) the value of SAL represents a
 subtotal of salaries by JOB created by CUBE. Rows with 0 for both
 DEPTNO_SUBTOTALS and JOB_SUBTOTALS represent rows created by regular aggregation (the sum of SAL for
 each DEPTNO/JOB combination).

12.15. Using Case Expressions to Flag Rows

Problem

You want to map the values in a column, say, the EMP table’s JOB
 column, into a series of “Boolean” flags. For example, you wish to
 return the following result set:
	ENAME IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ
	------ -------- -------- ------ ---------- -------
	KING 0 0 0 0 1
	SCOTT 0 0 0 1 0
	FORD 0 0 0 1 0
	JONES 0 0 1 0 0
	BLAKE 0 0 1 0 0
	CLARK 0 0 1 0 0
	ALLEN 0 1 0 0 0
	WARD 0 1 0 0 0
	MARTIN 0 1 0 0 0
	TURNER 0 1 0 0 0
	SMITH 1 0 0 0 0
	MILLER 1 0 0 0 0
	ADAMS 1 0 0 0 0
	JAMES 1 0 0 0 0
Such a result set can be useful for debugging and to provide
 yourself a view of the data different from what you’d see in a more
 typical result set.

Solution

Use a CASE expression to evaluate each employee’s JOB, and
 return a 1 or 0 to signify her JOB. You’ll need to write one CASE
 expression, and thus create one column for each possible job:
	 1 select ename,
	 2 case when job = 'CLERK'
	 3 then 1 else 0
	 4 end as is_clerk,
	 5 case when job = 'SALESMAN'
	 6 then 1 else 0
	 7 end as is_sales,
	 8 case when job = 'MANAGER'
	 9 then 1 else 0
	10 end as is_mgr,
	11 case when job = 'ANALYST'
	12 then 1 else 0
	13 end as is_analyst,
	14 case when job = 'PRESIDENT'
	15 then 1 else 0
	16 end as is_prez
	17 from emp
	18 order by 2,3,4,5,6

Discussion

The solution code is pretty much self-explanatory. If you are
 having trouble understanding it, simply add JOB to the SELECT
 clause:
	select ename,
	 job,
	 case when job = 'CLERK'
	 then 1 else 0
	 end as is_clerk,
	 case when job = 'SALESMAN'
	 then 1 else 0
	 end as is_sales,
	 case when job = 'MANAGER'
	 then 1 else 0
	 end as is_mgr,
	 case when job = 'ANALYST'
	 then 1 else 0
	 end as is_analyst,
	 case when job = 'PRESIDENT'
	 then 1 else 0
	 end as is_prez
	 from emp
	 order by 2
	
	ENAME JOB IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ
	------ --------- -------- -------- ------ ---------- -------
	SCOTT ANALYST 0 0 0 1 0
	FORD ANALYST 0 0 0 1 0
	SMITH CLERK 1 0 0 0 0
	ADAMS CLERK 1 0 0 0 0
	MILLER CLERK 1 0 0 0 0
	JAMES CLERK 1 0 0 0 0
	JONES MANAGER 0 0 1 0 0
	CLARK MANAGER 0 0 1 0 0
	BLAKE MANAGER 0 0 1 0 0
	KING PRESIDENT 0 0 0 0 1
	ALLEN SALESMAN 0 1 0 0 0
	MARTIN SALESMAN 0 1 0 0 0
	TURNER SALESMAN 0 1 0 0 0
	WARD SALESMAN 0 1 0 0 0

12.16. Creating a Sparse Matrix

Problem

You want to create a sparse matrix, such as the following one
 transposing the DEPTNO and JOB columns of table EMP:
	D10 D20 D30 CLERKS MGRS PREZ ANALS SALES
	---------- ---------- ---------- ------ ----- ---- ----- ------
	 SMITH SMITH
	 ALLEN ALLEN
	 WARD WARD
	 JONES JONES
	 MARTIN MARTIN
	 BLAKE BLAKE
	CLARK CLARK
	 SCOTT SCOTT
	KING KING
	 TURNER TURNER
	 ADAMS ADAMS
	 JAMES JAMES
	 FORD FORD
	MILLER MILLER

Solution

Use CASE expressions to create a sparse row-to-column
 transformation:
	 1 select case deptno when 10 then ename end as d10,
	 2 case deptno when 20 then ename end as d20,
	 3 case deptno when 30 then ename end as d30,
	 4 case job when 'CLERK' then ename end as clerks,
	 5 case job when 'MANAGER' then ename end as mgrs,
	 6 case job when 'PRESIDENT' then ename end as prez,
	 7 case job when 'ANALYST' then ename end as anals,
	 8 case job when 'SALESMAN' then ename end as sales
	 9 from emp

Discussion

To transform the DEPTNO and JOB rows to columns, simply use a
 CASE expression to evaluate the possible values returned by those
 rows. That’s all there is to it. As an aside, if you want to “densify”
 the report and get rid of some of those NULL rows, you would need to
 find something to group by. For example, use the window function
 ROW_NUMBER OVER to assign a ranking for each employee per DEPTNO, and
 then use the aggregate function MAX to rub out some of the
 NULLs:
	select max(case deptno when 10 then ename end) d10,
	 max(case deptno when 20 then ename end) d20,
	 max(case deptno when 30 then ename end) d30,
	 max(case job when 'CLERK' then ename end) clerks,
	 max(case job when 'MANAGER' then ename end) mgrs,
	 max(case job when 'PRESIDENT' then ename end) prez,
	 max(case job when 'ANALYST' then ename end) anals,
	 max(case job when 'SALESMAN' then ename end) sales
	 from (
	select deptno, job, ename,
	 row_number()over(partition by deptno order by empno) rn
	 from emp
) x
	 group by rn

	D10 D20 D30 CLERKS MGRS PREZ ANALS SALES
	---------- ---------- ---------- ------ ----- ---- ----- ------
	CLARK SMITH ALLEN SMITH CLARK ALLEN
	KING JONES WARD JONES KING WARD
	MILLER SCOTT MARTIN MILLER SCOTT MARTIN
	 ADAMS BLAKE ADAMS BLAKE
	 FORD TURNER FORD TURNER
	 JAMES JAMES

12.17. Grouping Rows by Units of Time

Problem

You want to summarize data by some interval of time. For
 example, you have a transaction log and want to summarize transactions
 by 5-second intervals. The rows in table TRX_LOG are shown
 below:
	select trx_id,
	 trx_date,
	 trx_cnt
	 from trx_log
	TRX_ID TRX_DATE TRX_CNT
	------ -------------------- ----------
	 1 28-JUL-2005 19:03:07 44
	 2 28-JUL-2005 19:03:08 18
	 3 28-JUL-2005 19:03:09 23
	 4 28-JUL-2005 19:03:10 29
	 5 28-JUL-2005 19:03:11 27
	 6 28-JUL-2005 19:03:12 45
	 7 28-JUL-2005 19:03:13 45
	 8 28-JUL-2005 19:03:14 32
	 9 28-JUL-2005 19:03:15 41
	 10 28-JUL-2005 19:03:16 15
	 11 28-JUL-2005 19:03:17 24
	 12 28-JUL-2005 19:03:18 47
	 13 28-JUL-2005 19:03:19 37
	 14 28-JUL-2005 19:03:20 48
	 15 28-JUL-2005 19:03:21 46
	 16 28-JUL-2005 19:03:22 44
	 17 28-JUL-2005 19:03:23 36
	 18 28-JUL-2005 19:03:24 41
	 19 28-JUL-2005 19:03:25 33
	 20 28-JUL-2005 19:03:26 19
You want to return the following result set:
	GRP TRX_START TRX_END TOTAL
	--- -------------------- -------------------- ----------
	 1 28-JUL-2005 19:03:07 28-JUL-2005 19:03:11 141
	 2 28-JUL-2005 19:03:12 28-JUL-2005 19:03:16 178
	 3 28-JUL-2005 19:03:17 28-JUL-2005 19:03:21 202
	 4 28-JUL-2005 19:03:22 28-JUL-2005 19:03:26 173

Solution

Group the entries into five row buckets. There are several ways
 to accomplish that logical grouping; this recipe does so by dividing the TRX_ID values by 5, using a technique
 shown earlier in “Creating Buckets of Data, of a Fixed Size.”
Once you’ve created the “groups,” use the aggregate functions
 MIN, MAX, and SUM to find the start time, end time, and total number
 of transactions for each “group” (SQL Server users should use
 CEILING instead of CEIL):
	 1 select ceil(trx_id/5.0) as grp,
	 2 min(trx_date) as trx_start,
	 3 max(trx_date) as trx_end,
	 4 sum(trx_cnt) as total
	 5 from trx_log
	 6 group by ceil(trx_id/5.0)

Discussion

The first step, and the key to the whole solution, is to
 logically group the rows together. By dividing by 5 and taking the
 smallest whole number greater than the quotient, you can create
 logical groups. For example:
	select trx_id,
	 trx_date,
	 trx_cnt,
	 trx_id/5.0 as val,
	 ceil(trx_id/5.0) as grp
	 from trx_log
	TRX_ID TRX_DATE TRX_CNT VAL GRP
	------ -------------------- ------- ------ ---
	 1 28-JUL-2005 19:03:07 44 .20 1
	 2 28-JUL-2005 19:03:08 18 .40 1
	 3 28-JUL-2005 19:03:09 23 .60 1
	 4 28-JUL-2005 19:03:10 29 .80 1
	 5 28-JUL-2005 19:03:11 27 1.00 1
	 6 28-JUL-2005 19:03:12 45 1.20 2
	 7 28-JUL-2005 19:03:13 45 1.40 2
	 8 28-JUL-2005 19:03:14 32 1.60 2
	 9 28-JUL-2005 19:03:15 41 1.80 2
	 10 28-JUL-2005 19:03:16 15 2.00 2
	 11 28-JUL-2005 19:03:17 24 2.20 3
	 12 28-JUL-2005 19:03:18 47 2.40 3
	 13 28-JUL-2005 19:03:19 37 2.60 3
	 14 28-JUL-2005 19:03:20 48 2.80 3
	 15 28-JUL-2005 19:03:21 46 3.00 3
	 16 28-JUL-2005 19:03:22 44 3.20 4
	 17 28-JUL-2005 19:03:23 36 3.40 4
	 18 28-JUL-2005 19:03:24 41 3.60 4
	 19 28-JUL-2005 19:03:25 33 3.80 4
	 20 28-JUL-2005 19:03:26 19 4.00 4
The last step is to apply the appropriate aggregate functions to
 find the total number of transactions per 5 seconds along with the
 start and end times for each transaction:
	select ceil(trx_id/5.0) as grp,
	 min(trx_date) as trx_start,
	 max(trx_date) as trx_end,
	 sum(trx_cnt) as total
	 from trx_log
	 group by ceil(trx_id/5.0)
	GRP TRX_START TRX_END TOTAL
	--- -------------------- -------------------- ----------
	 1 28-JUL-2005 19:03:07 28-JUL-2005 19:03:11 141
	 2 28-JUL-2005 19:03:12 28-JUL-2005 19:03:16 178
	 3 28-JUL-2005 19:03:17 28-JUL-2005 19:03:21 202
	 4 28-JUL-2005 19:03:22 28-JUL-2005 19:03:26 173
If your data is slightly different (perhaps you don’t have an ID
 for each row), you can always “group” by dividing the seconds of each
 TRX_DATE row by 5 to create a similar grouping. Then you can include the hour for each
 TRX_DATE and group by the actual hour and logical “grouping,” GRP.
 Following is an example of this technique (using Oracle’s TO_CHAR and
 TO_NUMBER functions, you would use the appropriate date and character
 formatting functions for your platform):
	select trx_date,trx_cnt,
	 to_number(to_char(trx_date,'hh24')) hr,
	 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp
	 from trx_log

	TRX_DATE TRX_CNT HR GRP
	-------------------- ---------- ---------- ----------
	28-JUL-2005 19:03:07 44 19 62
	28-JUL-2005 19:03:08 18 19 62
	28-JUL-2005 19:03:09 23 19 62
	28-JUL-2005 19:03:10 29 19 62
	28-JUL-2005 19:03:11 27 19 62
	28-JUL-2005 19:03:12 45 19 63
	28-JUL-2005 19:03:13 45 19 63
	28-JUL-2005 19:03:14 32 19 63
	28-JUL-2005 19:03:15 41 19 63
	28-JUL-2005 19:03:16 15 19 63
	28-JUL-2005 19:03:17 24 19 64
	28-JUL-2005 19:03:18 47 19 64
	28-JUL-2005 19:03:19 37 19 64
	28-JUL-2005 19:03:20 48 19 64
	28-JUL-2005 19:03:21 46 19 64
	28-JUL-2005 19:03:22 44 19 65
	28-JUL-2005 19:03:23 36 19 65
	28-JUL-2005 19:03:24 41 19 65
	28-JUL-2005 19:03:25 33 19 65
	28-JUL-2005 19:03:26 19 19 65
Regardless of the actual values for GRP, the key here is that
 you are grouping for every 5 seconds. From there you can apply
 the aggregate functions in the same way as in the original
 solution:
	select hr,grp,sum(trx_cnt) total
	 from (
	select trx_date,trx_cnt,
	 to_number(to_char(trx_date,'hh24')) hr,
	 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp
	 from trx_log
) x
	 group by hr,grp
	HR GRP TOTAL
	-- ---------- ----------
	19 62 141
	19 63 178
	19 64 202
	19 65 173
Including the hour in the grouping is useful if your transaction
 log spans hours. In DB2 and Oracle, you can also use the window
 function SUM OVER to produce the same result. The following query
 returns all rows from TRX_LOG along with a running total for TRX_CNT
 by logical “group,” and the TOTAL for TRX_CNT for each row in the
 “group”:
	select trx_id, trx_date, trx_cnt,
	 sum(trx_cnt)over(partition by ceil(trx_id/5.0)
	 order by trx_date
	 range between unbounded preceding
	 and current row) runing_total,
	 sum(trx_cnt)over(partition by ceil(trx_id/5.0)) total,
	 case when mod(trx_id,5.0) = 0 then 'X' end grp_end
	 from trx_log

	TRX_ID TRX_DATE TRX_CNT RUNING_TOTAL TOTAL GRP_END
	------ -------------------- ---------- ------------ ---------- -------
	 1 28-JUL-2005 19:03:07 44 44 141
	 2 28-JUL-2005 19:03:08 18 62 141
	 3 28-JUL-2005 19:03:09 23 85 141
	 4 28-JUL-2005 19:03:10 29 114 141
	 5 28-JUL-2005 19:03:11 27 141 141 X
	 6 28-JUL-2005 19:03:12 45 45 178
	 7 28-JUL-2005 19:03:13 45 90 178
	 8 28-JUL-2005 19:03:14 32 122 178
	 9 28-JUL-2005 19:03:15 41 163 178
	 10 28-JUL-2005 19:03:16 15 178 178 X
	 11 28-JUL-2005 19:03:17 24 24 202
	 12 28-JUL-2005 19:03:18 47 71 202
	 13 28-JUL-2005 19:03:19 37 108 202
	 14 28-JUL-2005 19:03:20 48 156 202
	 15 28-JUL-2005 19:03:21 46 202 202 X
	 16 28-JUL-2005 19:03:22 44 44 173
	 17 28-JUL-2005 19:03:23 36 80 173
	 18 28-JUL-2005 19:03:24 41 121 173
	 19 28-JUL-2005 19:03:25 33 154 173
	 20 28-JUL-2005 19:03:26 19 173 173 X

12.18. Performing Aggregations over Different Groups/Partitions
 Simultaneously

Problem

You want to aggregate over different dimensions at the same
 time. For example, you want to return a result set that
 lists each employee’s name, his department, the number of employees in
 his department (himself included), the number of employees that have
 the same job as he does (himself included in this count as well), and
 the total number of employees in the EMP table. The result set should
 look like the following:
	ENAME DEPTNO DEPTNO_CNT JOB JOB_CNT TOTAL
	------ ------ ---------- --------- -------- ------
	MILLER 10 3 CLERK 4 14
	CLARK 10 3 MANAGER 3 14
	KING 10 3 PRESIDENT 1 14
	SCOTT 20 5 ANALYST 2 14
	FORD 20 5 ANALYST 2 14
	SMITH 20 5 CLERK 4 14
	JONES 20 5 MANAGER 3 14
	ADAMS 20 5 CLERK 4 14
	JAMES 30 6 CLERK 4 14
	MARTIN 30 6 SALESMAN 4 14
	TURNER 30 6 SALESMAN 4 14
	WARD 30 6 SALESMAN 4 14
	ALLEN 30 6 SALESMAN 4 14
	BLAKE 30 6 MANAGER 3 14

Solution

Window functions make this problem quite easy to solve. If you
 do not have window functions available to you, you can use scalar
 subqueries.
DB2, Oracle, and SQL Server

Use the COUNT OVER window function while specifying different
 partitions, or groups of data on which to perform
 aggregation:
	select ename,
	 deptno,
	 count(*)over(partition by deptno) deptno_cnt,
	 job,
	 count(*)over(partition by job) job_cnt,
	 count(*)over() total
	 from emp

PostgreSQL and MySQL

Use scalar subqueries in your SELECT list to perform the
 aggregate count operations on different groups of rows:
	 1 select e.ename,
	 2 e.deptno,
	 3 (select count(*) from emp d
	 4 where d.deptno = e.deptno) as deptno_cnt,
	 5 job,
	 6 (select count(*) from emp d
	 7 where d.job = e.job) as job_cnt,
	 8 (select count(*) from emp) as total
	 9 from emp e

Discussion

DB2, Oracle, and SQL Server

This example really shows off the power and convenience of
 window functions. By simply specifying different partitions or
 groups of data to aggregate, you can create immensely detailed
 reports without having to self join over and over, and without
 having to write cumbersome and perhaps poorly performing subqueries
 in your SELECT list. All the work is done by the window function
 COUNT OVER. To understand the output, focus on the OVER clause for a
 moment for each COUNT operation:
	count(*)over(partition by deptno)

	count(*)over(partition by job)

	count(*)over()
Remember the main parts of the OVER clause: the partition,
 specified by PARTITION BY: and the frame or window, specified by
 ORDER BY. Look at the first COUNT, which partitions by DEPTNO. The
 rows in table EMP will be grouped by DEPTNO and the COUNT operation
 will be performed on all the rows in each group. Since there is no
 frame or window clause specified (no ORDER BY), all the rows in the
 group are counted. The PARTITION BY clause finds all the unique
 DEPTNO values, and then the COUNT function counts the number
 of rows having each value. In the specific example of
 COUNT(*)OVER(PARTITION BY DEPTNO), The PARTITION BY clause
 identifies the partitions or groups to be values 10, 20, and
 30.
The same processing is applied to the second COUNT, which
 partitions by JOB. The last count does not partition by anything,
 and simply has an empty parenthesis. An empty parenthesis implies
 “the whole table.” So, whereas the two prior COUNTs aggregate values
 based on the defined groups or partitions, the final COUNT counts
 all rows in table EMP.
Warning
Keep in mind that window functions are applied after the
 WHERE clause. If you were to filter the result set in some way,
 for example, excluding all employees in DEPTNO 10, the value for
 TOTAL would not be 14, it would be 11. To filter results after
 window functions have been evaluated, you must make your windowing
 query into an inline view and then filter on the results from that
 view.

PostgreSQL and MySQL

For every row returned by the main query (rows from EMP E),
 use multiple scalar subqueries in the SELECT list to perform
 different counts for each DEPTNO and JOB. To get the TOTAL, simply
 use another scalar subquery to get the count of all employees in
 table EMP.

12.19. Performing Aggregations over a Moving Range of Values

Problem

You want to compute a moving aggregation, such as a moving sum
 on the salaries in table EMP. You want to compute a sum for every 90
 days, starting with the HIREDATE of the first employee. You want to
 see how spending has fluctuated for every 90-day period between the
 first and last employee hired. You want to return the following result
 set:
	HIREDATE SAL SPENDING_PATTERN
	----------- ------- ----------------
	17-DEC-1980 800 800
	20-FEB-1981 1600 2400
	22-FEB-1981 1250 3650
	02-APR-1981 2975 5825
	01-MAY-1981 2850 8675
	09-JUN-1981 2450 8275
	08-SEP-1981 1500 1500
	28-SEP-1981 1250 2750
	17-NOV-1981 5000 7750
	03-DEC-1981 950 11700
	03-DEC-1981 3000 11700
	23-JAN-1982 1300 10250
	09-DEC-1982 3000 3000
	12-JAN-1983 1100 4100

Solution

Being able to specify a moving window in the framing or
 windowing clause of window functions makes this problem very easy to
 solve, if your RDBMS supports such functions. The key is to order by
 HIREDATE in your window function and then specify a window of 90 days
 starting from the earliest employee hired. The sum will be computed
 using the salaries of employees hired up to 90 days prior to the
 current employee’s HIREDATE (the current employee is included in the
 sum). If you do not have window functions available, you can use
 scalar subqueries, but the solution will be more complex.
DB2 and Oracle

For DB2 and Oracle, use the window function SUM OVER and order by HIREDATE. Specify a range of 90 days
 in the window or “framing” clause to allow the sum to be computed
 for each employee’s salary and to include the salaries of all
 employees hired up to 90 days earlier. Because DB2 does not allow
 you to specify HIREDATE in the ORDER BY clause of a window function
 (line 3 below), you can order by DAYS(HIREDATE) instead:
	 1 select hiredate,
	 2 sal,
	 3 sum(sal)over(order by days(hiredate)
	 4 range between 90 preceding
	 5 and current row) spending_pattern
	 6 from emp e
The Oracle solution is more straightforward than DB2’s,
 because Oracle allows window functions to order by datetime
 types:
	 1 select hiredate,
	 2 sal,
	 3 sum(sal)over(order by hiredate
	 4 range between 90 preceding
	 5 and current row) spending_pattern
	 6 from emp e

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to sum the salaries of all employees
 hired up to 90 days prior to the day each employee was hired:
	 1 select e.hiredate,
	 2 e.sal,
	 3 (select sum(sal) from emp d
	 4 whered.hiredate between e.hiredate-90
	 5 and e.hiredate) as spending_pattern
	 6 from emp e
	 7 order by 1

Discussion

DB2 and Oracle

DB2 and Oracle share the same solution. The only difference,
 and it’s minor between the two solutions, lies in how you specify
 HIREDATE in the ORDER BY clause of the window function. At the time of
 this book’s writing, DB2 doesn’t allow a DATE value in such an
 ORDER BY clause if you are using a numeric value to
 set the window’s range. (For example, RANGE BETWEEN UNBOUNDED
 PRECEDING AND CURRENT ROW allows you to order by a date, but RANGE
 BETWEEN 90 PRECEDING AND CURRENT ROW does not.)
To understand what the solution query is doing, you simply
 need to understand what the window clause is doing. The window you
 are defining orders the salaries for all employees by HIREDATE. Then
 the function computes a sum. The sum is not computed for all
 salaries. Instead, the processing is as follows:
	The salary of the first employee hired is evaluated. Since
 no employees were hired before the first employee, the sum at
 this point is simply the first employee’s salary.

	The salary of the next employee (by HIREDATE) is
 evaluated. This employee’s salary is included in the moving sum
 along with any other employees who were hired up to 90 days
 prior.

The HIREDATE of the first employee is December 17, 1980, and
 the HIREDATE of the next hired employee is February 20, 1981. The
 second employee was hired less than 90 days after the first
 employee, and thus the moving sum for the second employee is 2400
 (1600 + 800). If you are having trouble understanding where the
 values in SPENDING_PATTERN come from, examine the following query
 and result set:
	select distinct
	 dense_rank()over(order by e.hiredate) window,
	 e.hiredate current_hiredate,
	 d.hiredate hiredate_within_90_days,
	 d.sal sals_used_for_sum
	 from emp e,
	 emp d
	where d.hiredate between e.hiredate-90 and e.hiredate

	WINDOW CURRENT_HIREDATE HIREDATE_WITHIN_90_DAYS SALS_USED_FOR_SUM
	------ ---------------- ----------------------- -----------------
	 1 17-DEC-1980 17-DEC-1980 800
	 2 20-FEB-1981 17-DEC-1980 800
	 2 20-FEB-1981 20-FEB-1981 1600
	 3 22-FEB-1981 17-DEC-1980 800
	 3 22-FEB-1981 20-FEB-1981 1600
	 3 22-FEB-1981 22-FEB-1981 1250
	 4 02-APR-1981 20-FEB-1981 1600
	 4 02-APR-1981 22-FEB-1981 1250
	 4 02-APR-1981 02-APR-1981 2975
	 5 01-MAY-1981 20-FEB-1981 1600
	 5 01-MAY-1981 22-FEB-1981 1250
	 5 01-MAY-1981 02-APR-1981 2975
	 5 01-MAY-1981 01-MAY-1981 2850
	 6 09-JUN-1981 02-APR-1981 2975
	 6 09-JUN-1981 01-MAY-1981 2850
	 6 09-JUN-1981 09-JUN-1981 2450
	 7 08-SEP-1981 08-SEP-1981 1500
	 8 28-SEP-1981 08-SEP-1981 1500
	 8 28-SEP-1981 28-SEP-1981 1250
	 9 17-NOV-1981 08-SEP-1981 1500
	 9 17-NOV-1981 28-SEP-1981 1250
	 9 17-NOV-1981 17-NOV-1981 5000
	 10 03-DEC-1981 08-SEP-1981 1500
	 10 03-DEC-1981 28-SEP-1981 1250
	 10 03-DEC-1981 17-NOV-1981 5000
	 10 03-DEC-1981 03-DEC-1981 950
	 10 03-DEC-1981 03-DEC-1981 3000
	 11 23-JAN-1982 17-NOV-1981 5000
	 11 23-JAN-1982 03-DEC-1981 950
	 11 23-JAN-1982 03-DEC-1981 3000
	 11 23-JAN-1982 23-JAN-1982 1300
	 12 09-DEC-1982 09-DEC-1982 3000
	 13 12-JAN-1983 09-DEC-1982 3000
	 13 12-JAN-1983 12-JAN-1983 1100
If you look at the WINDOW column, only those rows with the
 same WINDOW value will be considered for each sum. Take for example,
 WINDOW 3. The salaries used for the sum for that window are 800,
 1600, and 1250, which total 3650. If you look at the final result
 set in the “Problem” section, you’ll see the SPENDING_PATTERN for
 February 22, 1981 (WINDOW 3) is 3650. As proof, to verify that the
 above self join includes the correct salaries for the windows
 defined, simply sum the values in SALS_USED_FOR_SUM and group by
 CURRENT_DATE. The result should be the same as the result set shown
 in the “Problem” section (with the duplicate row for December 3,
 1981, filtered out):
	select current_hiredate,
	 sum(sals_used_for_sum) spending_pattern
	 from (
	select distinct
	 dense_rank()over(order by e.hiredate) window,
	 e.hiredate current_hiredate,
	 d.hiredate hiredate_within_90_days,
	 d.sal sals_used_for_sum
	 from emp e,
	 emp d
	 where d.hiredate between e.hiredate-90 and e.hiredate
) x
	 group by current_hiredate

	CURRENT_HIREDATE SPENDING_PATTERN
	---------------- ----------------
	17-DEC-1980 800
	20-FEB-1981 2400
	22-FEB-1981 3650
	02-APR-1981 5825
	01-MAY-1981 8675
	09-JUN-1981 8275
	08-SEP-1981 1500
	28-SEP-1981 2750
	17-NOV-1981 7750
	03-DEC-1981 11700
	23-JAN-1982 10250
	09-DEC-1982 3000
	12-JAN-1983 4100

MySQL, PostgreSQL, and SQL Server

The key to this solution is to use a scalar subquery (a self
 join will work as well) while using the aggregate function SUM to
 compute a sum for every 90 days based on HIREDATE. If you are having
 trouble seeing how this works, simply convert the solution to a self
 join and examine which rows are included in the computations.
 Consider the result set below, which returns the same result set as
 that in the solution:
	select e.hiredate,
	 e.sal,
	 sum(d.sal) as spending_pattern
	 from emp e, emp d
	 where d.hiredate
	 between e.hiredate-90 and e.hiredate
	 group by e.hiredate,e.sal
	 order by 1\

	HIREDATE SAL SPENDING_PATTERN
	----------- ----- ----------------
	17-DEC-1980 800 800
	20-FEB-1981 1600 2400
	22-FEB-1981 1250 3650
	02-APR-1981 2975 5825
	01-MAY-1981 2850 8675
	09-JUN-1981 2450 8275
	08-SEP-1981 1500 1500
	28-SEP-1981 1250 2750
	17-NOV-1981 5000 7750
	03-DEC-1981 950 11700
	03-DEC-1981 3000 11700
	23-JAN-1982 1300 10250
	09-DEC-1982 3000 3000
	12-JAN-1983 1100 4100
If it is still unclear, simply remove the aggregation and
 start with the Cartesian product. The first step is to generate a
 Cartesian product using table EMP so that each HIREDATE can be
 compared with all the other HIREDATEs. [Only a snippet of the result
 set is shown below because there are 196 rows (14x14) returned by a
 Cartesian of EMP.]
	select e.hiredate,
	 e.sal,
	 d.sal,
	 d.hiredate
	 from emp e, emp d

	HIREDATE SAL SAL HIREDATE
	----------- ----- ----- -----------
	17-DEC-1980 800 800 17-DEC-1980
	17-DEC-1980 800 1600 20-FEB-1981
	17-DEC-1980 800 1250 22-FEB-1981
	17-DEC-1980 800 2975 02-APR-1981
	17-DEC-1980 800 1250 28-SEP-1981
	17-DEC-1980 800 2850 01-MAY-1981
	17-DEC-1980 800 2450 09-JUN-1981
	17-DEC-1980 800 3000 09-DEC-1982
	17-DEC-1980 800 5000 17-NOV-1981
	17-DEC-1980 800 1500 08-SEP-1981
	17-DEC-1980 800 1100 12-JAN-1983
	17-DEC-1980 800 950 03-DEC-1981
	17-DEC-1980 800 3000 03-DEC-1981
	17-DEC-1980 800 1300 23-JAN-1982
	20-FEB-1981 1600 800 17-DEC-1980
	20-FEB-1981 1600 1600 20-FEB-1981
	20-FEB-1981 1600 1250 22-FEB-1981
	20-FEB-1981 1600 2975 02-APR-1981
	20-FEB-1981 1600 1250 28-SEP-1981
	20-FEB-1981 1600 2850 01-MAY-1981
	20-FEB-1981 1600 2450 09-JUN-1981
	20-FEB-1981 1600 3000 09-DEC-1982
	20-FEB-1981 1600 5000 17-NOV-1981
	20-FEB-1981 1600 1500 08-SEP-1981
	20-FEB-1981 1600 1100 12-JAN-1983
	20-FEB-1981 1600 950 03-DEC-1981
	20-FEB-1981 1600 3000 03-DEC-1981
	20-FEB-1981 1600 1300 23-JAN-1982
If you examine the result set above, you’ll notice that there
 is no HIREDATE 90 days earlier or equal to December 17, except for
 December 17. So, the sum for that row should be only 800. If you
 examine the next HIREDATE, February 20, you’ll notice that there is
 one HIREDATE that falls within the 90-day window (within 90 days
 prior), and that is December 17. If you sum the SAL from December 17
 with the SAL from February 20 (because we are looking for HIREDATEs
 equal to each HIREDATE or within 90 days earlier) you get 2400,
 which happens to be the final result for that HIREDATE.
Now that you know how it works, use a filter in the WHERE
 clause to return for each HIREDATE and HIREDATE that is equal to it
 or is no more than 90 days earlier:
	select e.hiredate,
	 e.sal,
	 d.sal sal_to_sum,
	 d.hiredate within_90_days
	 from emp e, emp d
	 where d.hiredate
	 between e.hiredate-90 and e.hiredate
	 order by 1
	HIREDATE SAL SAL_TO_SUM WITHIN_90_DAYS
	----------- ----- ---------- --------------
	17-DEC-1980 800 800 17-DEC-1980
	20-FEB-1981 1600 800 17-DEC-1980
	20-FEB-1981 1600 1600 20-FEB-1981
	22-FEB-1981 1250 800 17-DEC-1980
	22-FEB-1981 1250 1600 20-FEB-1981
	22-FEB-1981 1250 1250 22-FEB-1981
	02-APR-1981 2975 1600 20-FEB-1981
	02-APR-1981 2975 1250 22-FEB-1981
	02-APR-1981 2975 2975 02-APR-1981
	01-MAY-1981 2850 1600 20-FEB-1981
	01-MAY-1981 2850 1250 22-FEB-1981
	01-MAY-1981 2850 2975 02-APR-1981
	01-MAY-1981 2850 2850 01-MAY-1981
	09-JUN-1981 2450 2975 02-APR-1981
	09-JUN-1981 2450 2850 01-MAY-1981
	09-JUN-1981 2450 2450 09-JUN-1981
	08-SEP-1981 1500 1500 08-SEP-1981
	28-SEP-1981 1250 1500 08-SEP-1981
	28-SEP-1981 1250 1250 28-SEP-1981
	17-NOV-1981 5000 1500 08-SEP-1981
	17-NOV-1981 5000 1250 28-SEP-1981
	17-NOV-1981 5000 5000 17-NOV-1981
	03-DEC-1981 950 1500 08-SEP-1981
	03-DEC-1981 950 1250 28-SEP-1981
	03-DEC-1981 950 5000 17-NOV-1981
	03-DEC-1981 950 950 03-DEC-1981
	03-DEC-1981 950 3000 03-DEC-1981
	03-DEC-1981 3000 1500 08-SEP-1981
	03-DEC-1981 3000 1250 28-SEP-1981
	03-DEC-1981 3000 5000 17-NOV-1981
	03-DEC-1981 3000 950 03-DEC-1981
	03-DEC-1981 3000 3000 03-DEC-1981
	23-JAN-1982 1300 5000 17-NOV-1981
	23-JAN-1982 1300 950 03-DEC-1981
	23-JAN-1982 1300 3000 03-DEC-1981
	23-JAN-1982 1300 1300 23-JAN-1982
	09-DEC-1982 3000 3000 09-DEC-1982
	12-JAN-1983 1100 3000 09-DEC-1982
	12-JAN-1983 1100 1100 12-JAN-1983
Now that you know which SALs are to be included in the moving
 window of summation, simply use the aggregate function SUM to
 produce a more expressive result set:
	select e.hiredate,
	 e.sal,
	 sum(d.sal) as spending_pattern
	 from emp e, emp d
	 where d.hiredate
	 between e.hiredate-90 and e.hiredate
	 group by e.hiredate,e.sal
	 order by 1
If you compare the result set for the query above and the
 result set for the query below (which is the original solution
 presented), you will see they are the same:
	select e.hiredate,
	 e.sal,
	 (select sum(sal) from emp d
	 where d.hiredate between e.hiredate-90
	 and e.hiredate) as spending_pattern
	 from emp e
	 order by 1

	HIREDATE SAL SPENDING_PATTERN
	----------- ----- ----------------
	17-DEC-1980 800 800
	20-FEB-1981 1600 2400
	22-FEB-1981 1250 3650
	02-APR-1981 2975 5825
	01-MAY-1981 2850 8675
	09-JUN-1981 2450 8275
	08-SEP-1981 1500 1500
	28-SEP-1981 1250 2750
	17-NOV-1981 5000 7750
	03-DEC-1981 950 11700
	03-DEC-1981 3000 11700
	23-JAN-1982 1300 10250
	09-DEC-1982 3000 3000
	12-JAN-1983 1100 4100

12.20. Pivoting a Result Set with Subtotals

Problem

You want to create a report containing subtotals, then transpose
 the results to provide a more readable report. For example, you’ve
 been asked to create a report that displays for each department, the
 managers in the department along with a sum of the salaries of the
 employees who work for those managers. Additionally, you want to
 return two subtotals: the sum of all salaries in each department for
 those employees who have managers, and a sum of all salaries in the
 result set (the sum of the department subtotals). You currently have
 the following report:
	DEPTNO MGR SAL
	------ ---------- ----------
	 10 7782 1300
	 10 7839 2450
	 10 3750
	 20 7566 6000
	 20 7788 1100
	 20 7839 2975
	 20 7902 800
	 20 10875
	 30 7698 6550
	 30 7839 2850
	 30 9400
	 24025
You want to provide a more readable report and wish to transform
 the above result set to the following, which makes the meaning of the
 report much more clear:
	MGR DEPT10 DEPT20 DEPT30 TOTAL
	---- ---------- ---------- ---------- ----------
	7566 0 6000 0
	7698 0 0 6550
	7782 1300 0 0
	7788 0 1100 0
	7839 2450 2975 2850
	7902 0 800 0
	 3750 10875 9400 24025

Solution

The first step is to generate subtotals using the ROLLUP extension to GROUP BY. The next step is to
 perform a classic pivot (aggregate and CASE expression) to create the
 desired columns for your report. The GROUPING function allows you to
 easily determine which values are subtotals (that is, exist because of
 ROLLUP and otherwise would not normally be there). Depending on how
 your RDBMS sorts NULL values, you may need to add an ORDER BY to the
 solution to allow it to look like the target result set above.
DB2 and Oracle

Use the ROLLUP extension to GROUP BY then use a CASE
 expression to format the data into a more readable report:
	 1 select mgr,
	 2 sum(case deptno when 10 then sal else 0 end) dept10,
	 3 sum(case deptno when 20 then sal else 0 end) dept20,
	 4 sum(case deptno when 30 then sal else 0 end) dept30,
	 5 sum(case flag when '11' then sal else null end) total
	 6 from (
	 7 select deptno,mgr,sum(sal) sal,	
	 8 cast(grouping(deptno) as char(1))||
	 9 cast(grouping(mgr) as char(1)) flag
	10 from emp
	11 where mgr is not null
	12 group by rollup(deptno,mgr)
	13) x
	14 group by mgr

SQL Server

Use the ROLLUP extension to GROUP BY then use a CASE
 expression to format the data into a more readable report:
	 1 select mgr,
	 2 sum(case deptno when 10 then sal else 0 end) dept10,
	 3 sum(case deptno when 20 then sal else 0 end) dept20,
	 4 sum(case deptno when 30 then sal else 0 end) dept30,
	 5 sum(case flag when '11' then sal else null end) total
	 6 from (
	 7 select deptno,mgr,sum(sal) sal,
	 8 cast(grouping(deptno) as char(1))+
	 9 cast(grouping(mgr) as char(1)) flag
	10 from emp
	11 where mgr is not null
	12 group by deptno,mgr with rollup
	13) x
	14 group by mgr

MySQL and PostgreSQL

The GROUPING function is not supported by either
 RDBMS.

Discussion

The solutions provided above are identical except for the string
 concatenation and how GROUPING is specified. Because the solutions are
 so similar, the discussion below will refer to the SQL Server solution
 to highlight the intermediate result sets (the discussion is relevant to DB2 and
 Oracle as well).
The first step is to generate a result set that sums the SAL for
 the employees in each DEPTNO per MGR. The idea is to show how much the
 employees make under a particular manager in a particular department.
 For example, this query below will allow you to compare the salaries
 of employees who work for KING in DEPTNO 10 compared with those who
 work for KING in DEPTNO 30:
	select deptno,mgr,sum(sal) sal
	 from emp
	 where mgr is not null
	 group by mgr,deptno
	 order by 1,2

	DEPTNO MGR SAL
	------ ---------- ----------
	 10 7782 1300
	 10 7839 2450
	 20 7566 6000
	 20 7788 1100
	 20 7839 2975
	 20 7902 800
	 30 7698 6550
	 30 7839 2850
The next step is to use the ROLLUP extension to GROUP BY to
 create subtotals for each DEPTNO and across all employees (who
 have a manager):
	select deptno,mgr,sum(sal) sal
	 from emp
	 where mgr is not null
	 group by deptno,mgr with rollup

	DEPTNO MGR SAL
	------ ---------- ----------
	 10 7782 1300
	 10 7839 2450
	 10 3750
	 20 7566 6000
	 20 7788 1100
	 20 7839 2975
	 20 7902 800
	 20 10875
	 30 7698 6550
	 30 7839 2850
	 30 9400
	 24025
With the subtotals created, you need a way to determine which
 values are in fact subtotals (created by ROLLUP) and which are results
 of the regular GROUP BY. Use the GROUPING function to create bitmaps to help identify the
 subtotal values from the regular aggregate values:
	select deptno,mgr,sum(sal) sal,
	 cast(grouping(deptno) as char(1))+
	 cast(grouping(mgr) as char(1)) flag
	 from emp
	 where mgr is not null
	 group by deptno,mgr with rollup

	DEPTNO MGR SAL FLAG
	------ ---------- ---------- ----
	 10 7782 1300 00
	 10 7839 2450 00
	 10 3750 01
	 20 7566 6000 00
	 20 7788 1100 00
	 20 7839 2975 00
	 20 7902 800 00
	 20 10875 01
	 30 7698 6550 00
	 30 7839 2850 00
	 30 9400 01
	 24025 11
If it isn’t immediately obvious, the rows with a value of 00 for
 FLAG are the results of regular aggregation. The rows with a value of
 01 for FLAG are the results of ROLLUP aggregating SAL by DEPTNO (since
 DEPTNO is listed first in the ROLLUP; if you switch the order, for
 example, “GROUP BY MGR, DEPTNO WITH ROLLUP”, you’d see quite different
 results). The row with a value of 11 for FLAG is the result of ROLLUP
 aggregating SAL over all rows.
At this point you have everything you need to create a
 beautified report by simply using CASE expressions. The goal is to
 provide a report that shows employee salaries for each manager across
 departments. If a manager does not have any subordinates in a
 particular department, a zero should be returned; otherwise, you want
 to return the sum of all salaries for that manager’s subordinates in
 that department. Additionally, you want to add a final column, TOTAL,
 representing a sum of all the salaries in the report. The solution
 satisfying all these requirements is shown below:
	select mgr,
	 sum(case deptno when 10 then sal else 0 end) dept10,
	 sum(case deptno when 20 then sal else 0 end) dept20,
	 sum(case deptno when 30 then sal else 0 end) dept30,
	 sum(case flag when '11' then sal else null end) total
	 from (
	select deptno,mgr,sum(sal) sal,
	 cast(grouping(deptno) as char(1))+
	 cast(grouping(mgr) as char(1)) flag
	 from emp
	 where mgr is not null
	 group by deptno,mgr with rollup
) x
	 group by mgr
	 order by coalesce(mgr,9999)

	MGR DEPT10 DEPT20 DEPT30 TOTAL
	---- ---------- ---------- ---------- ----------
	7566 0 6000 0
	7698 0 0 6550
	7782 1300 0 0
	7788 0 1100 0
	7839 2450 2975 2850
	7902 0 800 0
	 3750 10875 9400 24025

Chapter 13. Hierarchical Queries

This chapter introduces recipes for expressing hierarchical
 relationships that you may have in your data. It is typical when working
 with hierarchical data to have more difficulty retrieving and displaying
 the data (as a hierarchy) than storing it. This is particularly true
 because of the inflexibility of SQL (SQL’s nonrecursive nature). When working with hierarchical queries, it is
 absolutely crucial that you take advantage of what your RDBMS supplies you
 to facilitate these operations; otherwise you will end up writing
 potentially less efficient queries and constructing convoluted data models
 to deal with the hierarchical data. For PostgreSQL users, the recursive
 WITH clause will most likely be added to later versions PostgreSQL, so it
 would behoove you to pay attention to the DB2 solutions to these
 queries.
This chapter will provide recipes to help you unravel the
 hierarchical structure of your data by taking advantage of the functions
 supplied by each of the RDBMSs. Before starting, examine table EMP and the
 hierarchical relationship between EMPNO and MGR:
	select empno,mgr
	 from emp
	order by 2

	 EMPNO MGR
	---------- ----------
	 7788 7566
	 7902 7566
	 7499 7698
	 7521 7698
	 7900 7698
	 7844 7698
	 7654 7698
	 7934 7782
	 7876 7788
	 7566 7839
	 7782 7839
	 7698 7839
	 7369 7902
	 7839
If you look carefully, you will see that each value for MGR is also
 an EMPNO, meaning the manager of each employee in table EMP is also an
 employee in table EMP and not stored somewhere else. The relationship
 between MGR and EMPNO is a parent–child relationship in that the value for
 MGR is the most immediate parent for a given EMPNO (it is also possible
 that the manager for a specific employee can have a manager herself, and
 those managers can in turn have managers, and so on, creating an
 n-tier hierarchy). If an employee has no manager,
 then MGR is NULL.
13.1. Expressing a Parent-Child Relationship

Problem

You want to include parent information along with data from
 child records. For example, you want to display each employee’s name
 along with the name of his manager. You want to return the following
 result set:
	EMPS_AND_MGRS

	FORD works for JONES
	SCOTT works for JONES
	JAMES works for BLAKE
	TURNER works for BLAKE
	MARTIN works for BLAKE
	WARD works for BLAKE
	ALLEN works for BLAKE
	MILLER works for CLARK
	ADAMS works for SCOTT
	CLARK works for KING
	BLAKE works for KING
	JONES works for KING
	SMITH works for FORD

Solution

Self join EMP on MGR and EMPNO to find the name of each
 employee’s manager. Then use your RDBMS’s supplied function(s) for
 string concatenation to generate the strings in the desired result
 set.
DB2, Oracle, and PostgreSQL

Self join on EMP. Then use the double vertical-bar (||)
 concatenation operator:
	1 select a.ename || ' works for ' || b.ename as emps_and_mgrs
	2 from emp a, emp b
	3 where a.mgr = b.empno

MySQL

Self join on EMP. Then use the concatenation function
 CONCAT:
	1 select concat(a.ename, ' works for ',b.ename) as emps_and_mgrs
	2 from emp a, emp b
	3 where a.mgr = b.empno

SQL Server

Self join on EMP. Then use the plus sign (+) as the
 concatenation operator:
	1 select a.ename + ' works for ' + b.ename as emps_and_mgrs
	2 from emp a, emp b
	3 where a.mgr = b.empno

Discussion

The implementation is essentially the same for all the
 solutions. The difference lies only in the method of string
 concatenation, and thus one discussion will cover all of the
 solutions.
The key is the join between MGR and EMPNO. The fist step is to
 build a Cartesian product by joining EMP to itself (only a portion of
 the rows returned by the Cartesian product is shown below):
	select a.empno, b.empno
	 from emp a, emp b

	EMPNO MGR
	----- ----------
	 7369 7369
	 7369 7499
	 7369 7521
	 7369 7566
	 7369 7654
	 7369 7698
	 7369 7782
	 7369 7788
	 7369 7839
	 7369 7844
	 7369 7876
	 7369 7900
	 7369 7902
	 7369 7934
	 7499 7369
	 7499 7499
	 7499 7521
	 7499 7566
	 7499 7654
	 7499 7698
	 7499 7782
	 7499 7788
	 7499 7839
	 7499 7844
	 7499 7876
	 7499 7900
	 7499 7902
	 7499 7934
As you can see, by using a Cartesian product you are returning
 every possible EMPNO/EMPNO combination (such that it looks like the
 manager for EMPNO 7369 is all the other employees in the table,
 including EMPNO 7369).
The next step is to filter the results such that you return only
 each employee and his manager’s EMPNO. Accomplish this by joining on
 MGR and EMPNO:
	1 select a.empno, b.empno mgr
	2 from emp a, emp b
	3 where a.mgr = b.empno

	 EMPNO MGR
	---------- ----------
	 7902 7566
	 7788 7566
	 7900 7698
	 7844 7698
	 7654 7698
	 7521 7698
	 7499 7698
	 7934 7782
	 7876 7788
	 7782 7839
	 7698 7839
	 7566 7839
	 7369 7902
Now that you have each employee and the EMPNO of his manager,
 you can return the name of each manager by simply selecting B.ENAME
 rather than B.EMPNO. If after some practice you have difficulty
 grasping how this works, you can use a scalar subquery rather than a
 self join to get the answer:
	select a.ename,
	 (select b.ename
	 from emp b
	 where b.empno = a.mgr) as mgr
	 from emp a

	ENAME MGR
	---------- ----------
	SMITH FORD
	ALLEN BLAKE
	WARD BLAKE
	JONES KING
	MARTIN BLAKE
	BLAKE KING
	CLARK KING
	SCOTT JONES
	KING
	TURNER BLAKE
	ADAMS SCOTT
	JAMES BLAKE
	FORD JONES
	MILLER CLARK
The scalar subquery version is equivalent to the self join, except for one row: employee KING is
 in the result set, but that is not the case with the self join. “Why
 not?” you might ask. Remember, NULL is never equal to anything, not
 even itself. In the self-join solution, you use an equi-join between
 EMPNO and MGR, thus filtering out any employees who have NULL for MGR.
 To see employee KING when using the self-join method, you must outer
 join as shown in the following two queries. The first solution uses
 the ANSI outer join while the second uses the Oracle outer-join
 syntax. The output is the same for both and is shown following the
 second query:
	/* ANSI */
	select a.ename, b.ename mgr
	 from emp a left join emp b
	 on (a.mgr = b.empno)

	/* Oracle */
	select a.ename, b.ename mgr
	 from emp a, emp b
	 where a.mgr = b.empno (+)

	ENAME MGR
	---------- ----------
	FORD JONES
	SCOTT JONES
	JAMES BLAKE
	TURNER BLAKE
	MARTIN BLAKE
	WARD BLAKE
	ALLEN BLAKE
	MILLER CLARK
	ADAMS SCOTT
	CLARK KING
	BLAKE KING
	JONES KING
	SMITH FORD
	KING

13.2. Expressing a Child-Parent-Grandparent Relationship

Problem

Employee CLARK works for KING and to express that relationship
 you can use the first recipe in this chapter. What if employee CLARK
 was in turn a manager for another employee? Consider the following
 query:
	select ename,empno,mgr
	 from emp
	 where ename in ('KING','CLARK','MILLER')

	ENAME EMPNO MGR
	--------- -------- -------
	CLARK 7782 7839
	KING 7839
	MILLER 7934 7782
As you can see, employee MILLER works for CLARK who in turn
 works for KING. You want to express the full hierarchy from MILLER to
 KING. You want to return the following result set:
	LEAF___BRANCH___ROOT

	MILLER-->CLARK-->KING
However, the single self-join approach from the previous recipe
 will not suffice to show the entire relationship from top to bottom.
 You could write a query that does two self joins, but what you really
 need is a general approach for traversing such hierarchies.

Solution

This recipe differs from the first recipe because there is now a
 three-tier relationship, as the title suggests. If your RDBMS does not
 supply functionality for traversing tree-structured data, then you can
 solve this problem using the techniques described for PostgreSQL and
 MySQL, but you must add an additional self join. DB2, SQL Server, and
 Oracle offer functions for expressing hierarchies. Thus self joins on
 those RDBMSs aren’t necessary, though they certainly work.
DB2 and SQL Server

Use the recursive WITH clause to find MILLER’s manager, CLARK,
 then CLARK’s manager, KING. The SQL Server string concatenation
 operator + is used in this solution:
	1 with x (tree,mgr,depth)
	2 as (
	3 select cast(ename as varchar(100)),
	4 mgr, 0
	5 from emp
	6 where ename = 'MILLER'
	7 union all
	8 select cast(x.tree+'-->'+e.ename as varchar(100)),
	9 e.mgr, x.depth+1
	10 from emp e, x
	11 where x.mgr = e.empno
	12)
	13 select tree leaf___branch___root
	14 from x
	15 where depth = 2
The only modification necessary for this solution to work on
 DB2 is to use DB2’s concatenation operator, ||. Otherwise, the
 solution will work as is, on DB2 as well as SQL Server.

Oracle

Use the function SYS_CONNECT_BY_PATH to return MILLER, MILLER’s
 manager, CLARK, then CLARK’s manager, KING. Use the CONNECT BY
 clause to walk the tree:
	1 select ltrim(
	2 sys_connect_by_path(ename,'-->'),
	3 '-->') leaf___branch___root
	4 from emp
	5 where level = 3
	6 start with ename = 'MILLER'
	7 connect by prior mgr = empno

PostgreSQL and MySQL

Self join on table EMP twice to return MILLER, MILLER’s
 manager, CLARK, then CLARK’s manager, KING. The following solution
 uses PostgreSQL’s concatenation operator, the double vertical-bar
 (||):
	1 select a.ename||'-->'||b.ename
	2 ||'-->'||c.ename as leaf___branch___root
	3 from emp a, emp b, emp c
	4 where a.ename = 'MILLER'
	5 and a.mgr = b.empno
	6 and b.mgr = c.empno
For MySQL users, simply use the CONCAT function; this solution
 will work for PostgreSQL as well.

Discussion

DB2 and SQL Server

The approach here is to start at the leaf node and walk your
 way up to the root (as useful practice, try walking in the other
 direction). The upper part of the UNION ALL simply finds the row for
 employee MILLER (the leaf node). The lower part of the UNION ALL
 finds the employee who is MILLER’s manager, then finds that person’s
 manager, and this process of finding the “manager’s manager” repeats
 until processing stops at the highest-level manager (the root node).
 The value for DEPTH starts at 0 and increments automatically by 1
 each time a manager is found. DEPTH is a value that DB2 maintains
 for you when you execute a recursive query.
Tip
For an interesting and in-depth introduction to the WITH
 clause with focus on its use recursively, see Jonathan Gennick’s
 article "Understanding the WITH Clause” at http://gennick.com/with.htm.

Next, the second query of the UNION ALL joins the recursive
 view X to table EMP, to define the parent–child relationship. The
 query at this point, using SQL Server’s concatenation operator, is
 as follows:
	 with x (tree,mgr,depth)
	 as (
	select cast(ename as varchar(100)),
	 mgr, 0
	 from emp
	 where ename = 'MILLER'
	 union all
	select cast(x.tree+'-->'+e.ename as varchar(100)),
	 e.mgr, x.depth+1
	 from emp e, x
	 where x.mgr = e.empno
)
	select tree leaf___branch___root
	 from x

	TREE DEPTH
	---------- ----------
	MILLER 0
	CLARK 1
	KING 2
At this point, the heart of the problem has been solved;
 starting from MILLER, return the full hierarchical relationship from
 bottom to top. What’s left then is merely formatting. Since the tree
 traversal is recursive, simply concatenate the current ENAME from
 EMP to the one before it, which gives you the following result
 set:
	 with x (tree,mgr,depth)
	 as (
	select cast(ename as varchar(100)),
	 mgr, 0
	 from emp
	 where ename = 'MILLER'
	 union all
	select cast(x.tree+'-->'+e.ename as varchar(100)),
	 e.mgr, x.depth+1
	 from emp e, x
	 where x.mgr = e.empno
)
	select depth, tree
	 from x

	DEPTH TREE
	----- ---------------------------
	 0 MILLER
	 1 MILLER-->CLARK
	 2 MILLER-->CLARK-->KING
The final step is to keep only the last row in the hierarchy.
 There are several ways to do this, but the solution uses DEPTH to
 determine when the root is reached (obviously, if CLARK has a
 manager other than KING, the filter on DEPTH would have to change;
 for a more generic solution that requires no such filter, see the
 next recipe).

Oracle

The CONNECT BY clause does all the work in the Oracle
 solution. Starting with MILLER, you walk all the way to KING without
 the need for any joins. The expression in the CONNECT BY clause
 defines the relationship of the data and how the tree will be
 walked:
	 select ename
	 from emp
	 start with ename = 'MILLER'
	connect by prior mgr = empno

	ENAME

	MILLER
	CLARK
	KING
The keyword PRIOR lets you access values from the previous
 record in the hierarchy. Thus, for any given EMPNO you can use PRIOR
 MGR to access that employee’s manager number. When you see a clause
 such as CONNECT BY PRIOR MGR = EMPNO, think of that clause as
 expressing a join between, in this case, parent and child.
Tip
For more on CONNECT BY and related features, see the
 following Oracle Technology Network articles: “Querying
 Hierarchies: Top-of-the-Line Support” at http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby.html,
 and “New CONNECT BY Features in Oracle Database 10g"at http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby_10g.html.

At this point you have successfully displayed the full
 hierarchy starting from MILLER and ending at KING. The problem is
 for the most part solved. All that remains is the formatting. Use
 the function SYS_CONNECT_BY_PATH to append each ENAME to the one
 before it:
	 select sys_connect_by_path(ename,'-->') tree
	 from emp
	 start with ename = 'MILLER'
	connect by prior mgr = empno

	TREE

	-->MILLER
	-->MILLER-->CLARK
	-->MILLER-->CLARK-->KING
Because you are interested in only the complete hierarchy, you
 can filter on the pseudo-column LEVEL (a more generic approach is
 shown in the next recipe):
	 select sys_connect_by_path(ename,'-->') tree
	 from emp
	 where level = 3
	 start with ename = 'MILLER'
	connect by prior mgr = empno

	TREE

	-->MILLER-->CLARK-->KING
The final step is to use the LTRIM function to remove the leading “-->” from the
 result set.

PostgreSQL and MySQL

Without built-in support for hierarchical queries, you must
 self join n times to return the whole tree
 (where n is the number of nodes between the
 leaf and the root, including the root itself; in this example,
 relative to MILLER, CLARK is a branch node and KING is the root
 node, so the distance is two nodes, and n = 2).
 This solution simply uses the technique from the previous recipe and
 adds one more self join:
	select a.ename as leaf,
	 b.ename as branch,
	 c.ename as root
	 from emp a, emp b, emp c
	 where a.ename = 'MILLER'
	 and a.mgr = b.empno
	 and b.mgr = c.empno

	LEAF BRANCH ROOT
	--------- ---------- -----
	MILLER CLARK KING
The next and last step is to format the output using the ||
 concatenation operator for PostgreSQL or the CONCAT function for
 MySQL. The drawback to this kind of query is that if the hierarchy
 changes—for example, if there is another node between CLARK and
 KING—the query would need to have yet another join to return the
 whole tree. This is why it is such an advantage to have and use
 built-in functions for hierarchies.

13.3. Creating a Hierarchical View of a Table

Problem

You want to return a result set that describes the hierarchy of
 an entire table. In the case of the EMP table, employee KING has no
 manager, so KING is the root node. You want to display, starting from
 KING, all employees under KING and all employees (if any) under KING’s
 subordinates. Ultimately, you want to return the following result
 set:
	EMP_TREE

	KING
	KING - BLAKE
	KING - BLAKE - ALLEN
	KING - BLAKE - JAMES
	KING - BLAKE - MARTIN
	KING - BLAKE - TURNER
	KING - BLAKE - WARD
	KING - CLARK
	KING - CLARK - MILLER
	KING - JONES
	KING - JONES - FORD
	KING - JONES - FORD - SMITH
	KING - JONES - SCOTT
	KING - JONES - SCOTT - ADAMS

Solution

DB2 and SQL Server

Use the recursive WITH clause to start building the hierarchy
 at KING and then ultimately display all the employees. The solution
 following uses the DB2 concatenation operator “||”. SQL Server users
 use the concatenation operator +. Other than the concatenation
 operators, the solution will work as-is on both RDBMSs:
	 1 with x (ename,empno)
	 2 as (
	 3 select cast(ename as varchar(100)),empno
	 4 from emp
	 5 where mgr is null
 	 6 union all
	 7 select cast(x.ename||' - '||e.ename as varchar(100)),
	 8 e.empno
	 9 from emp e, x
	10 where e.mgr = x.empno
	11)
	12 select ename as emp_tree
	13 from x
	14 order by 1

Oracle

Use the CONNECT BY function to define the hierarchy. Use
 SYS_CONNECT_BY_PATH function to format the output
 accordingly:
	1 select ltrim(
	2 sys_connect_by_path(ename,' - '),
	3 ' - ') emp_tree
	4 from emp
	5 start with mgr is null
	6 connect by prior empno=mgr
	7 order by 1
This solution differs from that in the previous recipe in that
 it includes no filter on the LEVEL pseudo-column. Without the
 filter, all possible trees (where PRIOR EMPNO=MGR) are
 displayed.

PostgreSQL

Use three UNIONs and multiple self joins:
	 1 select emp_tree
	 2 from (
	 3 select ename as emp_tree
	 4 from emp
	 5 where mgr is null
	 6 union
	 7 select a.ename||' - '||b.ename
	 8 from emp a
	 9 join
	10 emp b on (a.empno=b.mgr)
	11 where a.mgr is null
	12 union
	13 select rtrim(a.ename||' - '||b.ename
	14 ||' - '||c.ename,' - ')
	15 from emp a
	16 join
	17 emp b on (a.empno=b.mgr)
	18 left join
	19 emp c on (b.empno=c.mgr)
	20 where a.ename = 'KING'
	21 union
	22 select rtrim(a.ename||' - '||b.ename||' - '||
	23 c.ename||' - '||d.ename,' - ')
	24 from emp a
	25 join
	26 emp b on (a.empno=b.mgr)
	27 join
	28 emp c on (b.empno=c.mgr)
	29 left join
	30 emp d on (c.empno=d.mgr)
	31 where a.ename = 'KING'
	32) x
	33 where tree is not null
	34 order by 1

MySQL

Use three UNIONs and multiple self joins:
	 1 select emp_tree
	 2 from (
	 3 select ename as emp_tree
	 4 from emp
	 5 where mgr is null
	 6 union
	 7 select concat(a.ename,' - ',b.ename)
	 8 from emp a
	 9 join
	10 emp b on (a.empno=b.mgr)
	11 where a.mgr is null
	12 union
	13 select concat(a.ename,' - ',
	14 b.ename,' - ',c.ename)
	15 from emp a
	16 join
	17 emp b on (a.empno=b.mgr)
	18 left join
	19 emp c on (b.empno=c.mgr)
	20 where a.ename = 'KING'
	21 union
	22 select concat(a.ename,' - ',b.ename,' - ',
	23 c.ename,' - ',d.ename)
	24 from emp a
	25 join
	26 emp b on (a.empno=b.mgr)
	27 join
	28 emp c on (b.empno=c.mgr)
	29 left join
	30 emp d on (c.empno=d.mgr)
	31 where a.ename = 'KING'
	32) x
	33 where tree is not null
	34 order by 1

Discussion

DB2 and SQL Server

The first step is to identify the root row (employee KING) in
 the upper part of the UNION ALL in the recursive view X. The next
 step is to find KING’s subordinates, and their subordinates if there
 are any, by joining recursive view X to table EMP. Recursion will
 continue until you’ve returned all employees. Without the formatting
 you see in the final result set, the result set returned by the
 recursive view X is shown below:
	with x (ename,empno)
	 as (
	select cast(ename as varchar(100)),empno
	 from emp
	 where mgr is null
	 union all
	select cast(e.ename as varchar(100)),e.empno
	 from emp e, x
	 where e.mgr = x.empno
)
	 select ename emp_tree
	 from x

	 EMP_TREE

	 KING
	 JONES
	 SCOTT
	 ADAMS
	 FORD
	 SMITH
	 BLAKE
	 ALLEN
	 WARD
	 MARTIN
	 TURNER
	 JAMES
	 CLARK
	 MILLER
All the rows in the hierarchy are returned (which can be
 useful), but without the formatting you cannot tell who the managers
 are. By concatenating each employee to her manager, you return more
 meaningful output. Produce the desired output simply by using
	cast(x.ename+','+e.ename as varchar(100))
in the SELECT clause of the lower portion of the UNION ALL in
 recursive view X.
The WITH clause is extremely useful in solving this type of
 problem, because the hierarchy can change (for example, leaf nodes
 become branch nodes) without any need to modify the query.

Oracle

The CONNECT BY clause returns the rows in the hierarchy. The
 START WITH clause defines the root row. If you run the
 solution without SYS_CONNECT_BY_PATH, you can see that the correct
 rows are returned (which can be useful), but not formatted to
 express the relationship of the rows:
	select ename emp_tree
	 from emp
	 start with mgr is null
	connect by prior empno = mgr

	EMP_TREE

	KING
	JONES
	SCOTT
	ADAMS
	FORD
	SMITH
	BLAKE
	ALLEN
	WARD
	MARTIN
	TURNER
	JAMES
	CLARK
	MILLER
By using the pseudo-column LEVEL and the function LPAD, you
 can see the hierarchy more clearly, and you can ultimately see why
 SYS_CONNECT_BY_PATH returns the results that you see in the desired
 output shown earlier:
	select lpad('.',2*level,'.')||ename emp_tree
	 from emp
	 start with mgr is null
	connect by prior empno = mgr

	EMP_TREE

	..KING
JONES
SCOTT
ADAMS
FORD
SMITH
BLAKE
ALLEN
WARD
MARTIN
TURNER
JAMES
CLARK
MILLER
The indentation in this output indicates who the managers are
 by nesting subordinates under their superiors. For example, KING
 works for no one. JONES works for KING. SCOTT works for JONES. ADAMS
 works for SCOTT.
If you look at the corresponding rows from the solution when
 using SYS_CONNECT_BY_PATH, you will see that SYS_CONNECT_BY_PATH
 rolls up the hierarchy for you. When you get to a new node, you see all the prior nodes as
 well:
	KING
	KING - JONES
	KING - JONES - SCOTT
	KING - JONES - SCOTT - ADAMS
Tip
If you are on Oracle8i Database or
 earlier, you can use the PostgreSQL solution to this problem.
 Alternatively, because CONNECT BY is available on older versions
 of Oracle, you can simply use LEVEL and RPAD/ LPAD for formatting
 (although to reproduce the output created by SYS_CONNECT_BY_PATH
 would require a bit more work).

PostgreSQL and MySQL

With the exception of string concatenation in the SELECT
 clauses, the solutions are the same for both PostgreSQL and MySQL.
 The first step is to determine the maximum number of nodes for any
 one branch. You have to do this manually, before you write the
 query. If you examine the data in the EMP table, you will see that
 employees ADAM and SMITH are the leaf nodes at the greatest depth
 (you may wish to look at the Oracle discussion where you’ll find a
 nicely formatted tree of the EMP hierarchy). If you look at employee
 ADAMS, you see that ADAMS works for SCOTT who in turn works for
 JONES who in turn works for KING, so the depth is 4. To be able to
 express a hierarchy with a depth of four, you must self join four
 instances of table EMP, and you must write a four-part UNION query.
 The results of the four-way self join (which is the lower part of
 the last UNION, from top to bottom) is shown below (using PostgreSQL
 syntax; MySQL users, simply substitute “||” for the CONCAT function
 call):
	select rtrim(a.ename||' - '||b.ename||' - '||
	 c.ename||' - '||d.ename,' - ') as max_depth_4
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 join
	 emp c on (b.empno=c.mgr)
	 left join
	 emp d on (c.empno=d.mgr)
	 where a.ename = 'KING'

	MAX_DEPTH_4

	KING - JONES - FORD - SMITH
	KING - JONES - SCOTT - ADAMS
	KING - BLAKE - TURNER
	KING - BLAKE - ALLEN
	KING - BLAKE - WARD
	KING - CLARK - MILLER
	KING - BLAKE - MARTIN
	KING - BLAKE - JAMES
The filter on A.ENAME is necessary to ensure that the root row
 is KING and no other employee. If you look at the result set above
 and compare it with the final result set, you’ll see that there are
 some three-deep hierarchies not returned: KING - JONES - FORD and
 KING - JONES - SCOTT. To include those rows in the final result set,
 you need to write another query similar to the one above, but with
 one less join (self joining only three instances of table EMP rather
 than four). The result set of this query is shown below:
	select rtrim(a.ename||' - '||b.ename
	 ||' - '||c.ename,' - ') as max_depth_3
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 left join
	 emp c on (b.empno=c.mgr)
	 where a.ename = 'KING'

	MAX_DEPTH_3

	KING - BLAKE - ALLEN
	KING - BLAKE - WARD
	KING - BLAKE - MARTIN
	KING - JONES - SCOTT
	KING - BLAKE - TURNER
	KING - BLAKE - JAMES
	KING - JONES - FORD
	KING - CLARK - MILLER
Like the query before it, the filter on A.ENAME is necessary
 to ensure the root row node is KING. You’ll notice some overlapping
 rows between the query above and the four-way EMP join. To get rid
 of the redundant rows, simply UNION the two queries:
	select rtrim(a.ename||' - '||b.ename
	 ||' - '||c.ename,' - ') as partial_tree
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 left join
	 emp c on (b.empno=c.mgr)
	 where a.ename = 'KING'
	union
	select rtrim(a.ename||' - '||b.ename||' - '||
	 c.ename||' - '||d.ename,' - ')
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 join
	 emp c on (b.empno=c.mgr)
	 left join
	 emp d on (c.empno=d.mgr)
	 where a.ename = 'KING'

	PARTIAL_TREE

	KING - BLAKE - ALLEN
	KING - BLAKE - JAMES
	KING - BLAKE - MARTIN
	KING - BLAKE - TURNER
	KING - BLAKE - WARD
	KING - CLARK - MILLER
	KING - JONES - FORD
	KING - JONES - FORD - SMITH
	KING - JONES - SCOTT
	KING - JONES - SCOTT - ADAMS
At this point the tree is almost complete. The next step is to
 return rows that represent a two-deep hierarchy with KING as the
 root node (i.e., employees who work directly for KING). The query to
 return those rows is shown below:
	select a.ename||' - '||b.ename as max_depth_2
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 where a.mgr is null

	MAX_DEPTH_2

	KING - JONES
	KING - BLAKE
	KING - CLARK
The next step is to UNION the above query, to the PARTIAL_TREE
 union:
	select a.ename||' - '||b.ename as partial_tree
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 where a.mgr is null
	union
	select rtrim(a.ename||' - '||b.ename
	 ||' - '||c.ename,' - ')
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 left join
	 emp c on (b.empno=c.mgr)
	 where a.ename = 'KING'
	union
	select rtrim(a.ename||' - '||b.ename||' - '||
	 c.ename||' - '||d.ename,' - ')
	 from emp a
	 join
	 emp b on (a.empno=b.mgr)
	 join
	 emp c on (b.empno=c.mgr)
	 left join
	 emp d on (c.empno=d.mgr)
	 where a.ename = 'KING'

	PARTIAL_TREE

	KING - BLAKE
	KING - BLAKE - ALLEN
	KING - BLAKE - JAMES
	KING - BLAKE - MARTIN
	KING - BLAKE - TURNER
	KING - BLAKE - WARD
	KING - CLARK
	KING - CLARK - MILLER
	KING - JONES
	KING - JONES - FORD
	KING - JONES - FORD - SMITH
	KING - JONES - SCOTT
	KING - JONES - SCOTT - ADAMS
The final step is to UNION KING to the top of PARTIAL_TREE to
 return the desired result set.

13.4. Finding All Child Rows for a Given Parent Row

Problem

You want to find all the employees who work for JONES, either
 directly or indirectly (i.e., they work for someone who works for
 JONES). The list of employees under JONES is shown below (JONES is
 included in the result set):
	ENAME

	JONES
	SCOTT
	ADAMS
	FORD
	SMITH

Solution

Being able to move to the absolute top or bottom of a tree is
 extremely useful. For this solution there is no special formatting
 necessary. The goal is to simply return all employees who work under
 employee JONES, including JONES himself. This type of query really
 shows the usefulness of recursive SQL extensions like Oracle’s CONNECT
 BY and SQL Server’s/DB2’s WITH clause.
DB2 and SQL Server

Use the recursive WITH clause to find all employees under
 JONES. Begin with JONES by specifying WHERE ENAME = ‘JONES’ in the
 first of the two union queries:
	 1 with x (ename,empno)
	 2 as (
	 3 select ename,empno
	 4 from emp
	 5 where ename = 'JONES'
	 6 union all
	 7 select e.ename, e.empno
	 8 from emp e, x
	 9 where x.empno = e.mgr
	10)
	11 select ename
	12 from x

Oracle

Use the CONNECT BY clause and specify START WITH ENAME =
 ‘JONES’ to find all the employees under JONES:
	1 select ename
	2 from emp
	3 start with ename = 'JONES'
	4 connect by prior empno = mgr

PostgreSQL and MySQL

You must know in advance how many nodes there are in the tree.
 The following queries show how to determine the depth of the
 hierarchy:
	/* find JONES' EMPNO */
	select ename,empno,mgr
	 from emp
	 where ename = 'JONES'

	ENAME EMPNO MGR
	---------- ----------- ---------
	JONES 7566 7839

	
	/* are there any employees who work directly under JONES? */
	select count(*)
	 from emp
	 where mgr = 7566

	 COUNT(*)

	 2

	
	/* there are two employees under JONES, find their EMPNOs */
	select ename,empno,mgr
	 from emp
	 where mgr = 7566

	ENAME EMPNO MGR
	---------- ----------- -----------
	SCOTT 7788 7566
	FORD 7902 7566

	
	/* are there any employees under SCOTT or FORD? */
	select count(*)
	 from emp
	 where mgr in (7788,7902)

	 COUNT(*)

	 2

	
	/* there are two employees under SCOTT or FORD, find their EMPNOs */
	select ename,empno,mgr
	 from emp
	 where mgr in (7788,7902)

	ENAME EMPNO MGR
	--------- ----------- --------
	SMITH 7369 7902
	ADAMS 7876 7788

	
	/* are there any employees under SMITH or ADAMS? */
	select count(*)
	 from emp
	 where mgr in (7369,7876)

	 COUNT(*)

	 0
The hierarchy starting from JONES ends with employees SMITH
 and ADAMS. That makes the hierarchy three levels deep. Now that you
 know the depth, you can begin to traverse the hierarchy from top to bottom.
First, self join table EMP twice. Then unpivot inline view X
 to transform three columns with two rows into one column with six
 rows (in PostgreSQL, you can use GENERATE_SERIES(1,6) as an
 alternative to querying the T100 pivot table):
	 1 select distinct
	 2 case t100.id
	 3 when 1 then root
	 4 when 2 then branch
	 5 else leaf
	 6 end as JONES_SUBORDINATES
	 7 from (
	 8 select a.ename as root,
	 9 b.ename as branch,
	10 c.ename as leaf
	11 from emp a, emp b, emp c
	12 where a.ename = 'JONES'
	13 and a.empno = b.mgr
	14 and b.empno = c.mgr
	15) x,
	16 t100
	17 where t100.id <= 6
As an alternative, you can use views and UNION the results. If
 you create the following views:
	create view v1
	as
	select ename,mgr,empno
	 from emp
	 where ename = 'JONES'
	 create view v2
	 as
	 select ename,mgr,empno
	 from emp
	 where mgr = (select empno from v1)

	 create view v3
	 as
	 select ename,mgr,empno
	 from emp
	 where mgrin (select empno from v2)
the solution then becomes:
	select ename from v1
	 union
	select ename from v2
	 union
	select ename from v3

Discussion

DB2 and SQL Server

The recursive WITH clause makes this a relatively easy problem to
 solve. The first part of the WITH clause, the upper part of the
 UNION ALL, returns the row for employee JONES. You need to return
 ENAME to see the name and EMPNO so you can use it to join on. The
 lower part of the UNION ALL recursively joins EMP.MGR to X.EMPNO.
 The join condition will be applied until the result set is
 exhausted.

Oracle

The START WTH clause tells the query to make JONES the
 root node. The condition in the CONNECT BY clause drives
 the tree walk and will run until the condition is no longer
 true.

PostgreSQL and MySQL

The technique used here is the same as that of the second
 recipe in this chapter, “Expressing a Child-Parent-Grandparent
 Relationship.” A major drawback is that you must know in advance the
 depth of the hierarchy.

13.5. Determining Which Rows Are Leaf, Branch, or Root Nodes

Problem

You want to determine what type of node a given row is: a leaf,
 branch, or root. For this example, a leaf node is an employee who is
 not a manager. A branch node is an employee who is both a manager and
 also has a manager. A root node is an employee without a manager. You want to return 1 (TRUE) or 0
 (FALSE) to reflect the status of each row in the hierarchy. You want
 to return the following result set:
	ENAME IS_LEAF IS_BRANCH IS_ROOT
	---------- ---------- ---------- ----------
	KING 0 0 1
	JONES 0 1 0
	SCOTT 0 1 0
	FORD 0 1 0
	CLARK 0 1 0
	BLAKE 0 1 0
	ADAMS 1 0 0
	MILLER 1 0 0
	JAMES 1 0 0
	TURNER 1 0 0
	ALLEN 1 0 0
	WARD 1 0 0
	MARTIN 1 0 0
	SMITH 1 0 0

Solution

It is important to realize that the EMP table is modeled in a
 tree hierarchy, not a recursive hierarchy, the value for
 MGR for root nodes is NULL. If EMP was modeled to use a recursive
 hierarchy, root nodes would be self-referencing (i.e., the value for
 MGR for employee KING would be KING’s EMPNO). I find self-referencing
 to be counterintuitive and thus am using NULL values for root nodes’
 MGR. For Oracle users using CONNECT BY and DB2/SQL Server users using
 WITH, you’ll find tree hierarchies easier to work with and potentially
 more efficient than recursive hierarchies. If you are in a situation
 where you have a recursive hierarchy and are using CONNECT BY or WITH,
 watch out: you can end up with a loop in your SQL. You need to code
 around such loops if you are stuck with recursive hierarchies.
DB2, PostgreSQL, MySQL, and SQL Server

Use three scalar subqueries to determine the correct “Boolean”
 value (either a 1 or a 0) to return for each node type:
	 1 select e.ename,
	 2 (select sign(count(*)) from emp d
	 3 where 0 =
	 4 (select count(*) from emp f
	 5 where f.mgr = e.empno)) as is_leaf,
	 6 (select sign(count(*)) from emp d
	 7 where d.mgr = e.empno
	 8 and e.mgr is not null) as is_branch,
	 9 (select sign(count(*)) from emp d
	10 where d.empno = e.empno
	11 and d.mgr is null) as is_root
	12 from emp e
	13 order by 4 desc,3 desc

Oracle

The scalar subquery solution will work for Oracle as well, and
 should be used if you are on a version of Oracle prior to Oracle
 Database 10g. The following solution highlights
 built-in functions provided by Oracle (that were introduced in
 Oracle Database 10g) to identify root and leaf
 rows. The functions are CONNECT_BY_ROOT and CONNECT_BY_ISLEAF, respectively:
	 1 select ename,
	 2 connect_by_isleaf is_leaf,
	 3 (select count(*) from emp e
	 4 where e.mgr = emp.empno
	 5 and emp.mgr is not null
	 6 and rownum = 1) is_branch,
	 7 decode(ename,connect_by_root(ename),1,0) is_root
	 8 from emp
	 9 start with mgr is null
	10 connect by prior empno = mgr
	11 order by 4 desc, 3 desc

Discussion

DB2, PostgreSQL, MySQL, and SQL Server

This solution simply applies the rules defined in the
 “Problem” section to determine leaves, branches, and roots. The
 first step is to find determine whether an employee is a leaf
 node. If the employee is not a manager (no one works
 under her), then she is a leaf node. The first scalar subquery,
 IS_LEAF, is shown below:
	select e.ename,
	 (select sign(count(*)) from emp d
	 where 0 =
	 (select count(*) from emp f
	 where f.mgr = e.empno)) as is_leaf
	 from emp e
	order by 2 desc

	ENAME IS_LEAF
	----------- --------
	SMITH 1
	ALLEN 1
	WARD 1
	ADAMS 1
	TURNER 1
	MARTIN 1
	JAMES 1
	MILLER 1
	JONES 0
	BLAKE 0
	CLARK 0
	FORD 0
	SCOTT 0
	KING 0
Because the output for IS_LEAF should be a 0 or 1, it is
 necessary to take the SIGN of the COUNT(*) operation. Otherwise you
 would get 14 instead of 1 for leaf rows. As an alternative, you can
 use a table with only one row to count against, because you only
 want to return 0 or 1. For example:
	select e.ename,
	 (select count(*) from t1 d
	 where not exists
	 (select null from emp f
	 where f.mgr = e.empno)) as is_leaf
	 from emp e
	order by 2 desc

	ENAME IS_LEAF
	---------- ----------
	SMITH 1
	ALLEN 1
	WARD 1
	ADAMS 1
	TURNER 1
	MARTIN 1
	JAMES 1
	MILLER 1
	JONES 0
	BLAKE 0
	CLARK 0
	FORD 0
	SCOTT 0
	KING 0
The next step is to find branch nodes. If an employee is a manager (someone works for
 them), and they also happen to work for someone else, then the
 employee is a branch node. The results of the scalar subquery
 IS_BRANCH are shown below:
	select e.ename,
	 (select sign(count(*)) from emp d
	 where d.mgr = e.empno
	 and e.mgr is not null) as is_branch
	 from emp e
	order by 2 desc

	ENAME IS_BRANCH
	----------- ---------
	JONES 1
	BLAKE 1
	SCOTT 1
	CLARK 1
	FORD 1
	SMITH 0
	TURNER 0
	MILLER 0
	JAMES 0
	ADAMS 0
	KING 0
	ALLEN 0
	MARTIN 0
	WARD 0
Again, it is necessary to take the SIGN of the COUNT(*)
 operation. Otherwise you will get (potentially) values greater than
 1 when a node is a branch. Like scalar subquery IS_LEAF, you
 can use a table with one row to avoid using SIGN. The following
 solution uses a one-row table named dual:
	select e.ename,
	 (select count(*) from t1 t
	 where exists (
	 select null from emp f
	 where f.mgr = e.empno
	 and e.mgr is not null)) as is_branch
	 from emp e
	order by 2 desc

	ENAME IS_BRANCH
	--------------- ----------
	JONES 1
	BLAKE 1
	SCOTT 1
	CLARK 1
	FORD 1
	SMITH 0
	TURNER 0
	MILLER 0
	JAMES 0
	ADAMS 0
	KING 0
	ALLEN 0
	MARTIN 0
	WARD 0
The last step is to find the root nodes. A root node is
 defined as an employee who is a manager but who does not work for
 anyone else. In table EMP, only KING is a root node. Scalar subquery
 IS_ROOT is shown below:
	select e.ename,
	 (select sign(count(*)) from emp d
	 where d.empno = e.empno
	 and d.mgr is null) as is_root
	 from emp e
	order by 2 desc

	ENAME IS_ROOT
	---------- ---------
	KING 1
	SMITH 0
	ALLEN 0
	WARD 0
	JONES 0
	TURNER 0
	JAMES 0
	MILLER 0
	FORD 0
	ADAMS 0
	MARTIN 0
	BLAKE 0
	CLARK 0
	SCOTT 0
Because EMP is a small 14-row table, it is easy to see that
 employee KING is the only root node, so in this case taking the SIGN of the COUNT(*)
 operation is not strictly necessary. If there can be multiple root
 nodes, then you can use SIGN, or you can use a one-row table in the
 scalar subquery as is shown earlier for IS_BRANCH and
 IS_LEAF.

Oracle

For those of you on versions of Oracle prior to Oracle
 Database 10g, you can follow the discussion for
 the other RDBMSs, as that solution will work (without modifications)
 in Oracle. If you are on Oracle Database 10g or
 later, you may want to take advantage of two functions to make
 identifying root and leaf nodes a simple task: they are CONNECT_BY_ROOT and CONNECT_BY_ISLEAF, respectively. As of the time of
 this writing, it is necessary to use CONNECT BY in your SQL
 statement in order for you to be able to use CONNECT_BY_ROOT and
 CONNECT_BY_ISLEAF. The first step is to find the leaf nodes by using
 CONNECT_BY_ISLEAF as follows:
	select ename,
	 connect_by_isleaf is_leaf
	 from emp
	 start with mgr is null
	connect by prior empno = mgr
	order by 2 desc

	ENAME IS_LEAF
	---------- ----------
	ADAMS 1
	SMITH 1
	ALLEN 1
	TURNER 1
	MARTIN 1
	WARD 1
	JAMES 1
	MILLER 1
	KING 0
	JONES 0
	BLAKE 0
	CLARK 0
	FORD 0
	SCOTT 0
The next step is to use a scalar subquery to find the branch
 nodes. Branch nodes are employees who are managers but
 who also work for someone else:
	select ename,
	 (select count(*) from emp e
	 where e.mgr = emp.empno
	 and emp.mgr is not null
	 and rownum = 1) is_branch
	 from emp
	 start with mgr is null
	connect by prior empno = mgr
	order by 2 desc

	ENAME IS_BRANCH
	---------- ----------
	JONES 1
	SCOTT 1
	BLAKE 1
	FORD 1
	CLARK 1
	KING 0
	MARTIN 0
	MILLER 0
	JAMES 0
	TURNER 0
	WARD 0
	ADAMS 0
	ALLEN 0
	SMITH 0
The filter on ROWNUM is necessary to ensure that you return a
 count of 1 or 0, and nothing else.
The last step is to identify the root nodes by using the
 function CONNECT_BY_ROOT. The solution finds the ENAME for the root
 node and compares it with all the rows returned by the query. If
 there is a match, that row is the root node:
	select ename,
	 decode(ename,connect_by_root(ename),1,0) is_root
	 from emp
	 start with mgr is null
	connect by prior empno = mgr
	order by 2 desc

	ENAME IS_ROOT
	---------- ----------
	KING 1
	JONES 0
	SCOTT 0
	ADAMS 0
	FORD 0
	SMITH 0
	BLAKE 0
	ALLEN 0
	WARD 0
	MARTIN 0
	TURNER 0
	JAMES 0
	CLARK 0
	MILLER 0
If using Oracle9i Database or later, you
 can use the SYS_CONNECT_BY_PATH function as an alternative to
 CONNECT_BY_ROOT. The Oracle9i Database version
 of the preceding would be:
	select ename,
	 decode(substr(root,1,instr(root,',')-1),NULL,1,0) root
	 from (
	select ename,
	 ltrim(sys_connect_by_path(ename,','),',') root
	 from emp
	start with mgr is null
	connect by prior empno=mgr
)

	ENAME ROOT
	---------- ----
	KING 1
	JONES 0
	SCOTT 0
	ADAMS 0
	FORD 0
	SMITH 0
	BLAKE 0
	ALLEN 0
	WARD 0
	MARTIN 0
	TURNER 0
	JAMES 0
	CLARK 0
	MILLER 0
The SYS_CONNECT_BY_PATH function rolls up a hierarchy starting
 from the root value as is shown below:
	select ename,
	 ltrim(sys_connect_by_path(ename,','),',') path
	 from emp
	start with mgr is null
	connect by prior empno=mgr

	ENAME PATH
	---------- ----------------------------
	KING KING
	JONES KING,JONES
	SCOTT KING,JONES,SCOTT
	ADAMS KING,JONES,SCOTT,ADAMS
	FORD KING,JONES,FORD
	SMITH KING,JONES,FORD,SMITH
	BLAKE KING,BLAKE
	ALLEN KING,BLAKE,ALLEN
	WARD KING,BLAKE,WARD
	MARTIN KING,BLAKE,MARTIN
	TURNER KING,BLAKE,TURNER
	JAMES KING,BLAKE,JAMES
	CLARK KING,CLARK
	MILLER KING,CLARK,MILLER
To get the root row, simply substring out the first ENAME in
 PATH:
	select ename,
	 substr(root,1,instr(root,',')-1) root
	 from (
	select ename,
	 ltrim(sys_connect_by_path(ename,','),',') root
	 from emp
	start with mgr is null
	connect by prior empno=mgr
)

	ENAME ROOT
	---------- ----------
	KING
	JONES KING
	SCOTT KING
	ADAMS KING
	FORD KING
	SMITH KING
	BLAKE KING
	ALLEN KING
	WARD KING
	MARTIN KING
	TURNER KING
	JAMES KING
	CLARK KING
	MILLER KING
The last step is to flag the result from the ROOT column if it
 is NULL; that is your root row.

Chapter 14. Odds ‘n’ Ends

This chapter contains queries that didn’t fit in any other chapter
 either because the chapter they would belong to is already long enough, or
 because the problems they solve are more fun than realistic. This chapter
 is meant to be a “fun” chapter, in that the recipes here may or may not be
 recipes that you would actually use; nevertheless, I consider the queries
 interesting and wanted to include them somewhere in this book.
14.1. Creating Cross-Tab Reports Using SQL Server’s PIVOT
 Operator

Problem

You want to create a cross-tab report, to transform your result
 set’s rows into columns. You are aware of traditional methods of
 pivoting but would like to try something different. In particular, you
 want to return the following result set without using CASE expressions
 or joins:
	DEPT_10 DEPT_20 DEPT_30 DEPT_40
	------- ----------- ----------- ----------
	 3 5 6 0

Solution

Use the PIVOT operator to create the required result set without
 CASE expressions or additional joins:
	1 select [10] as dept_10,
	2 [20] as dept_20,
	3 [30] as dept_30,
	4 [40] as dept_40
	5 from (select deptno, empno from emp) driver
	6 pivot (
	7 count(driver.empno)
	8 for driver.deptno in ([10],[20],[30],[40])
	9) as empPivot

Discussion

The PIVOT operator may seem strange at first, but the
 operation it performs in the solution is technically the same as the
 more familiar transposition query shown below:
	select sum(case deptno when 10 then 1 else 0 end) as dept_10,
	 sum(case deptno when 20 then 1 else 0 end) as dept_20,
	 sum(case deptno when 30 then 1 else 0 end) as dept_30,
	 sum(case deptno when 40 then 1 else 0 end) as dept_40
	 from emp

	DEPT_10 DEPT_20 DEPT_30 DEPT_40
	------- ---------- ---------- ----------
	 3 5 6 0
Now that you know what is essentially happening, let’s break
 down what the PIVOT operator is doing. Line 5 of the solution shows an
 inline view named DRIVER:
	from (select deptno, empno from emp) driver
I’ve chosen the alias “driver” because the rows from this inline
 view (or table expression) feed directly into the PIVOT operation. The
 PIVOT operator rotates the rows to columns by evaluating the items
 listed on line 8 in the FOR list (shown below):
	for driver.deptno in ([10],[20],[30],[40])
The evaluation goes something like this:
	If there are any DEPTNOs with a value of 10, perform the
 aggregate operation defined (COUNT(DRIVER.EMPNO)) for those
 rows.

	Repeat for DEPTNOs 20, 30, and 40.

The items listed in the brackets on line 8 serve not only to
 define values for which aggregation is performed; the items also
 become the column names in the result set (without the square
 brackets). In the SELECT clause of the solution, the items in the FOR
 list are referenced and aliased. If you do not alias the items in the
 FOR list, the column names become the items in the FOR list sans
 brackets.
Interestingly enough, since inline view DRIVER is just that, an
 inline view, you may put more complex SQL in there. For example,
 consider the situation where you want to modify the result set such
 that the actual department name is the name of the column. Listed
 below are the rows in table DEPT:
	select * from dept

	DEPTNO DNAME LOC
	------ -------------- -------------
	 10 ACCOUNTING NEW YORK
	 20 RESEARCH DALLAS
	 30 SALES CHICAGO
	 40 OPERATIONS BOSTON
You would like to use PIVOT to return the following result
 set:
	ACCOUNTING RESEARCH SALES OPERATIONS
	---------- ---------- ---------- ----------
	 3 5 6 0
Because inline view DRIVER can be practically any valid table
 expression, you can perform the join from table EMP to table DEPT, and
 then have PIVOT evaluate those rows. The following query will return
 the desired result set:
	select [ACCOUNTING] as ACCOUNTING,
	 [SALES] as SALES,
	 [RESEARCH] as RESEARCH,
	 [OPERATIONS] as OPERATIONS
	 from (
	 select d.dname, e.empno
	 from emp e,dept d
	 where e.deptno=d.deptno

) driver
	 pivot (
	 count(driver.empno)
	 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
) as empPivot
As you can see, PIVOT provides an interesting spin on pivoting
 result sets. Regardless of whether or not you prefer using it to the
 traditional methods of pivoting, it’s nice to have another tool in
 your toolbox.

14.2. Unpivoting a Cross-Tab Report Using SQL Server’s UNPIVOT
 Operator

Problem

You have a pivoted result set (or simply a fat table) and you
 wish to unpivot the result set. For example, instead of having a
 result set with one row and four columns you want to return a result
 set with two columns and four rows. Using the result set from the
 previous recipe, you want to convert it from this:
	ACCOUNTING RESEARCH SALES OPERATIONS
	---------- ---------- ---------- ----------
	 3 5 6 0
to this:
	DNAME CNT
	-------------- ----------
	ACCOUNTING 3
	RESEARCH 5
	SALES 6
	OPERATIONS 0

Solution

You didn’t think SQL Server would give you the ability to PIVOT
 without being able to UNPIVOT, did you? To unpivot the result set just
 use it as the driver and let the UNPIVOT operator do all the work. All you need to do is
 specify the column names:
	 1 select DNAME, CNT
	 2 from (
	 3 select [ACCOUNTING] as ACCOUNTING,
	 4 [SALES] as SALES,
	 5 [RESEARCH] as RESEARCH,
	 6 [OPERATIONS] as OPERATIONS
	 7 from (
	 8 select d.dname, e.empno
	 9 from emp e,dept d
	10 where e.deptno=d.deptno
	11
	12) driver
	13 pivot (
	14 count(driver.empno)
	15 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
	16) as empPivot
	17) new_driver
	18 unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)
	19) as un_pivot
Hopefully, before reading this recipe you’ve read the one prior
 to it, because the inline view NEW_DRIVER is simply the code from the
 previous recipe (if you don’t understand it, please refer to the
 previous recipe before looking at this one). Since lines 3–16 consist
 of code you’ve already seen, the only new syntax is on line 18, where
 you use UNPIVOT.
The UNPIVOT command simply looks at the result set from
 NEW_DRIVER and evaluates each column and row. For example, the UNPIVOT
 operator evaluates the column names from NEW_DRIVER. When it
 encounters ACCOUNTING, it transforms the column name ACCOUNTING into a
 row value (under the column DNAME). It also takes the value for
 ACCOUNTING from NEW_DRIVER (which is 3) and returns that as part of
 the ACCOUNTING row as well (under the column CNT). UNPIVOT does this
 for each of the items specified in the FOR list and simply returns
 each one as a row.
The new result set is now skinny and has two columns, DNAME and
 CNT, with four rows:
	select DNAME, CNT
	 from (
	 select [ACCOUNTING] as ACCOUNTING,
	 [SALES] as SALES,
	 [RESEARCH] as RESEARCH,
	 [OPERATIONS] as OPERATIONS
	 from (
	 select d.dname, e.empno
	 from emp e,dept d
	 where e.deptno=d.deptno

) driver
	 pivot (
	 count(driver.empno)
	 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
) as empPivot
) new_driver
	unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)
) as un_pivot

	DNAME CNT
	-------------- ----------
	ACCOUNTING 3
	RESEARCH 5
	SALES 6
	OPERATIONS 0

14.3. Transposing a Result Set Using Oracle’s MODEL Clause

Problem

Like the fist recipe in this chapter, you wish to find an
 alternative to the traditional pivoting techniques you’ve seen
 already. You want to try your hand at Oracle’s MODEL clause. Unlike
 SQL Server’s PIVOT operator, Oracle’s MODEL clause does not exist to
 transpose result sets; as a matter of fact, it would be quite accurate
 to say the application of the MODEL clause for pivoting would be a
 misuse and clearly not what the MODEL clause was intended for.
 Nevertheless, the MODEL clause provides for an interesting approach to
 a common problem. For this particular problem, you want to transform
 the following result set from this:
	select deptno, count(*) cnt
	 from emp
	 group by deptno

	DEPTNO CNT
	------ ----------
	 10 3
	 20 5
	 30 6
to this:
	 D10 D20 D30
	---------- ---------- ----------
	 3 5 6

Solution

Use aggregation and CASE expressions in the MODEL clause just as
 you would use them if pivoting with traditional techniques. The main
 difference in this case is that you use arrays to store the values of
 the aggregation and return the arrays in the result set:
	select max(d10) d10,
	 max(d20) d20,
	 max(d30) d30
	 from (
	select d10,d20,d30
	 from (select deptno, count(*) cnt from emp group by deptno)
	 model
	 dimension by(deptno d)
	 measures(deptno, cnt d10, cnt d20, cnt d30)
	 rules(
	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)
)

Discussion

The MODEL clause is an extremely useful and powerful addition to
 the Oracle SQL toolbox. Once you begin working with MODEL you’ll
 notice helpful features such as iteration, array access to row values,
 the ability to “upsert” rows into a result set, and the ability to build reference models.
 You’ll quickly see that this recipe doesn’t take advantage of any of
 the cool features the MODEL clause offers, but it’s nice to be able to
 look at a problem from multiple angles and use different features in
 unexpected ways (if for no other reason than to learn where certain
 features are more useful than others).
The first step to understanding the solution is to examine the
 inline view in the FROM clause. The inline view simply counts the
 number of employees in each DEPTNO in table EMP. The results are shown
 below:
	select deptno, count(*) cnt
	 from emp
	 group by deptno

	DEPTNO CNT
	------ ----------
	 10 3
	 20 5
	 30 6
This result set is what is given to MODEL to work with.
 Examining the MODEL clause, you see three subclauses that stand out: DIMENSION BY, MEASURES, and
 RULES. Let’s start with MEASURES.
The items in the MEASURES list are simply the arrays you are
 declaring for this query. The query uses four arrays: DEPTNO, D10,
 D20, and D30. Like columns in a SELECT list, arrays in the MEASURES
 list can have aliases. As you can see, three of the four arrays are
 actually CNT from the inline view.
If the MEASURES list contains our arrays, then the items in the
 DIMENSION BY subclause are the array indices. Consider this: array D10
 is simply an alias for CNT. If you look at the result set for the inline view above, you’ll see that
 CNT has three values: 3, 5, and 6. When you create an array of CNT,
 you are creating an array with three elements, namely, the three
 integers 3, 5, and 6. Now, how do you access these values from the
 array individually? You use the array index. The index, defined in the
 DIMENSION BY subclause, has the values of 10, 20, and 30 (from the
 result set above). So, for example, the following
 expression:
	d10[10]
would evaluate to 3, as you are accessing the value for CNT in
 array D10 for DEPTNO 10 (which is 3).
Because each of the three arrays (D10, D20, D30) contain the
 values from CNT, all three of them have the same results. How then do
 we get the proper count into the correct array? Enter the RULES
 subclause. If you look at the result set for the inline view shown
 earlier, you’ll see that the values for DEPTNO are 10, 20, and 30. The
 expressions involving CASE in the RULES clause simply evaluate each
 value in the DEPTNO array:
	If the value is 10, store the CNT for DEPTNO 10 in D10[10]
 else store 0.

	If the value is 20, store the CNT for DEPTNO 20 in D20[20]
 else store 0.

	If the value is 30, store the CNT for DEPTNO 30 in D30[30]
 else store 0.

If you find yourself feeling a bit like Alice tumbling down the
 rabbit hole, don’t worry; just stop and execute what’s been discussed
 thus far. The following result set represents what has been discussed.
 Sometimes it’s easier to read a bit, look at the code that actually
 performs what you just read, then go back and read it again. The
 following is quite simple once you see it in action:
	select deptno, d10,d20,d30
	 from (select deptno, count(*) cnt from emp group by deptno)
	 model
	 dimension by(deptno d)
	 measures(deptno, cnt d10, cnt d20, cnt d30)
	 rules(
	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)

	 DEPTNO D10 D20 D30
	 ------ ---------- ---------- ----------
	 10 3 0 0
	 20 0 5 0
	 30 0 0 6
As you can see, the RULES subclause is what changed the values in each
 array. If you are still not catching on, simply execute the same query
 but comment out the expressions in the RULES subclase:
	select deptno, d10,d20,d30
	 from (select deptno, count(*) cnt from emp group by deptno)
	 model
	 dimension by(deptno d)
	 measures(deptno, cnt d10, cnt d20, cnt d30)
	 rules(
	 /*
	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
	 */
)

	 DEPTNO D10 D20 D30
	 ------ ---------- ---------- ----------
	 10 3 3 3
	 20 5 5 5
	 30 6 6 6
It should be clear now that the result set from the MODEL clause is the same as the
 inline view, except that the COUNT operation is aliased D10, D20, and
 D30. The query below proves this:
	select deptno, count(*) d10, count(*) d20, count(*) d30
	 from emp
	 group by deptno

	 DEPTNO D10 D20 D30
	 ------ ---------- ---------- ----------
	 10 3 3 3
	 20 5 5 5
	 30 6 6 6
So, all the MODEL clause did was to take the values for DEPTNO
 and CNT, put them into arrays, and then make sure that each array
 represents a single DEPTNO. At this point, arrays D10, D20, and D30
 each have a single non-zero value representing the CNT for a given
 DEPTNO. The result set is already transposed, and all that is left
 is to use the aggregate function MAX (you could have used MIN or SUM;
 it would make no difference in this case) to return only one
 row:
	select max(d10) d10,
	 max(d20) d20,
	 max(d30) d30
	 from (
	select d10,d20,d30
	 from (select deptno, count(*) cnt from emp group by deptno)
	 model
	 dimension by(deptno d)
	 measures(deptno, cnt d10, cnt d20, cnt d30)
	 rules(
	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)
)

	 D10 D20 D30
	 ---------- ---------- ----------
	 3 5 6

14.4. Extracting Elements of a String from Unfixed Locations

Problem

You have a string field that contains serialized log data. You
 want to parse through the string and extract the relevant information.
 Unfortunately, the relevant information is not at fixed points in the
 string. Instead, you must use the fact that certain characters exist
 around the information you need, to extract said information. For
 example, consider the following strings:
	xxxxxabc[867]xxx[-]xxxx[5309]xxxxx
	xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx
	call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx
	film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx
You want to extract the values between the square brackets,
 returning the following result set:
	FIRST_VAL SECOND_VAL LAST_VAL
	--------------- ------------------- ---------------
	867 - 5309
	11271978 4 Joe
	F_GET_ROWS() ROSEWOOD…SIR 44400002
	non_marked unit withabanana?

Solution

Despite not knowing the exact locations within the string of the
 interesting values, you do know that they are located between square
 brackets [], and you know there are three of them. Use Oracle’s
 built-in function INSTR to find the locations to of the brackets. Use the
 built-in function SUBSTR to extract the values from the string. View V
 will contain the strings to parse and is defined as follows (its use
 is strictly for readability):
	create view V
	as
	select 'xxxxxabc[867]xxx[-]xxxx[5309]xxxxx' msg
	 from dual
	 union all
	 select 'xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx' msg
	 from dual
	 union all
	 select 'call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx' msg
	 from dual
	 union all
	 select 'film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx' msg
	 from dual

	 1 select substr(msg,
	 2instr(msg,'[',1,1)+1,
	 3 instr(msg,']',1,1)-instr(msg,'[',1,1)-1) first_val,
	 4 substr(msg,
	 5 instr(msg,'[',1,2)+1,
	 6 instr(msg,']',1,2)-instr(msg,'[',1,2)-1) second_val,
	 7 substr(msg,
	 8 instr(msg,'[',-1,1)+1,
	 9 instr(msg,']',-1,1)-instr(msg,'[',-1,1)-1) last_val
	10 from V

Discussion

Using Oracle’s built-in function INSTR makes this problem fairly
 simple to solve. Since you know the values you are after are enclosed
 in [], and that there are three sets of [], the first step to this
 solution is to simply use INSTR to find the numeric positions of [] in
 each string. The following example returns the numeric position of the
 opening and closing brackets in each row:
	select instr(msg,'[',1,1) "1st_[",
	 instr(msg,']',1,1) "]_1st",
	 instr(msg,'[',1,2) "2nd_[",
	 instr(msg,']',1,2) "]_2nd",
	 instr(msg,'[',-1,1) "3rd_[",
	 instr(msg,']',-1,1) "]_3rd"
	 from V

	 1st_[]_1st 2nd_[]_2nd 3rd_[]_3rd
	 ------ ----- ---------- ----- ---------- -----
	 9 13 17 19 24 29
	 11 20 28 30 34 38
	 6 19 23 38 42 51
	 6 17 21 26 36 49
At this point, the hard work is done. All that is left is to
 plug the numeric positions into SUBSTR to parse MSG at those
 locations. You’ll notice that in the complete solution there’s some
 simple arithmetic on the values returned by INSTR, particularly, +1
 and–1; this is necessary to ensure the opening square bracket, [, is
 not returned in the final result set. Listed below is the solution
 less addition and subtraction of 1 on the return values from INSTR;
 notice how each value has a leading square bracket:
	select substr(msg,
	 instr(msg,'[',1,1),
	 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,
	 substr(msg,
	 instr(msg,'[',1,2),
	 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,
	 substr(msg,
	 instr(msg,'[',-1,1),
	 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val
	 from V

	FIRST_VAL SECOND_VAL LAST_VAL
	--------------- -------------------- -------
	[867 [- [5309
	[11271978 [4 [Joe
	[F_GET_ROWS() [ROSEWOOD…SIR [44400002
	[non_marked [unit [withabanana?
From the result set above, you can see that the open bracket is
 there. You may be thinking: “OK, put the addition of 1 to INSTR back
 and the leading square bracket goes away. Why do we need to subtract
 1?” The reason is this: if you put the addition back but leave out the
 subtraction, you end up including the closing square bracket, as can
 be seen below:
	select substr(msg,
	 instr(msg,'[',1,1)+1,
	 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,
	 substr(msg,
	 instr(msg,'[',1,2)+1,
	 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,
	 substr(msg,
	 instr(msg,'[',-1,1)+1,
	 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val
	 from V

	FIRST_VAL SECOND_VAL LAST_VAL
	--------------- --------------- -------------
	867] -] 5309]
	11271978] 4] Joe]
	F_GET_ROWS()] ROSEWOOD…SIR] 44400002]
	non_marked] unit] withabanana?]
At this point it should be clear: to ensure you include neither
 of the square brackets, you must add 1 to the beginning index and
 subtract one from the ending index.

14.5. Finding the Number of Days in a Year (an Alternate Solution for
 Oracle)

Problem

You want to find the number of days in a year.
Tip
This recipe presents an alternative solution to “Determining
 the Number of Days in a Year” from Chapter 9. This solution is specific
 to Oracle.

Solution

Use the TO_CHAR function to format the last date of the year
 into a three-digit day-of-the-year number:
	1 select 'Days in 2005: '||
	2 to_char(add_months(trunc(sysdate,'y'),12)-1,'DDD')
	3 as report
	4 from dual
	5 union all
	6 select 'Days in 2004: '||
	7 to_char(add_months(trunc(
	8 to_date('01-SEP-2004'),'y'),12)-1,'DDD')
	9 from dual

	REPORT

	Days in 2005: 365
	Days in 2004: 366

Discussion

Begin by using the TRUNC function to return the first day of the
 year for the given date, as follows:
	select trunc(to_date('01-SEP-2004'),'y')
	 from dual

	TRUNC(TO_DA

	01-JAN-2004
Next, use ADD_MONTHS to add one year (12 months) to the
 truncated date. Then subtract one day, bringing you to the end of the
 year in which your original date falls:
	select add_months(
	 trunc(to_date('01-SEP-2004'),'y'),
	 12) before_subtraction,
	 add_months(
	 trunc(to_date('01-SEP-2004'),'y'),
	 12)-1 after_subtraction
	 from dual

	BEFORE_SUBT AFTER_SUBTR
	----------- -----------
	01-JAN-2005 31-DEC-2004
Now that you have found the last day in the year you are working
 with, simply use TO_CHAR to return a three-digit number representing
 on which day (1st, 50th, etc.) of the year the last day is:
	select to_char(
	 add_months(
	 trunc(to_date('01-SEP-2004'),'y'),
	 12)-1,'DDD') num_days_in_2004
	 from dual

	NUM

	366

14.6. Searching for Mixed Alphanumeric Strings

Problem

You have a column with mixed alphanumeric data. You want to
 return those rows that have both alphabetical and numeric characters;
 in other words, if a string has only number or only letters, do not
 return it. The return values should have a mix of both letters and
 numbers. Consider the following data:
	STRINGS

	1010 switch
	333
	3453430278
	ClassSummary
	findRow 55
	threes
The final result set should contain only those rows that have
 both letters and numbers:
	STRINGS

	1010 switch
	findRow 55

Solution

Use the built-in function TRANSLATE to convert each occurrence
 of a letter or digit into a specific character. Then keep only those
 strings that have at least one occurrence of both. The solution uses
 Oracle syntax, but both DB2 and PostgreSQL support TRANSLATE, so
 modifying the solution to work on those platforms should be
 trivial:
	with v as (
	select 'ClassSummary' strings from dual union
	select '3453430278' from dual union
	select 'findRow 55' from dual union
	select '1010 switch' from dual union
	select '333' from dual union
	select 'threes' from dual
)
	select strings
	 from (
	select strings,
	translate(
	strings,
	'abcdefghijklmnopqrstuvwxyz0123456789',
	 rpad('#',26,'#')||rpad('*',10,'*')) translated
	from v
) x
whereinstr(translated,'#') > 0
and instr(translated,'*') > 0
Tip
As an alternative to the WITH clause, you may use an inline
 view or simply create a view.

Discussion

The TRANSLATE function makes this problem extremely easy to
 solve. The first step is to use TRANSLATE to identify all letters and
 all digits by pound (#) and asterisk (*) characters, respectively. The
 intermediate results (from inline view X) are as follows:
	with v as (
	select 'ClassSummary' strings from dual union
	select '3453430278' from dual union
	select 'findRow 55' from dual union
	select '1010 switch' from dual union
	select '333' from dual union
	select 'threes' from dual
)
	select strings,
	 translate(
	 strings,
	 'abcdefghijklmnopqrstuvwxyz0123456789',
	 rpad('#',26,'#')||rpad('*',10,'*')) translated
	 from v

	STRINGS TRANSLATED
	------------- ------------
	1010 switch **** ######
	333 ***
	3453430278 **********
	ClassSummary C####S######
	findRow 55 ####R## **
	threes ######
At this point, it is only a matter of keeping those rows that
 have at least one instance each of “#” and “*”. Use the function INSTR
 to determine whether “#” and “*” are in a string. If those two
 characters are, in fact, present, then the value returned will be
 greater than zero. The final strings to return, along with their
 translated values, are shown next for clarity:
	with v as (
	select 'ClassSummary' strings from dual union
	select '3453430278' from dual union
	select 'findRow 55' from dual union
	select '1010 switch' from dual union
	select '333' from dual union
	select 'threes' from dual
)
	select strings, translated
	 from (
	select strings,
	 translate(
	 strings,
	 'abcdefghijklmnopqrstuvwxyz0123456789',
	 rpad('#',26,'#')||rpad('*',10,'*')) translated
	 from v
)
	 where instr(translated,'#') > 0
	 and instr(translated,'*') > 0

	STRINGS TRANSLATED
	------------ ------------
	1010 switch **** ######
	findRow 55 ####R## **

14.7. Converting Whole Numbers to Binary Using Oracle

Problem

You want to convert a whole number to its binary representation
 on an Oracle system. For example, you would like to return all the
 salaries in table EMP in binary as part of the following result
 set:
	ENAME SAL SAL_BINARY
	---------- ----- --------------------
	SMITH 800 1100100000
	ALLEN 1600 11001000000
	WARD 1250 10011100010
	JONES 2975 101110011111
	MARTIN 1250 10011100010
	BLAKE 2850 101100100010
	CLARK 2450 100110010010
	SCOTT 3000 101110111000
	KING 5000 1001110001000
	TURNER 1500 10111011100
	ADAMS 1100 10001001100
	JAMES 950 1110110110
	FORD 3000 101110111000
	MILLER 1300 10100010100

Solution

This solution makes use of the MODEL clause, so you’ll need to be running Oracle
 Database 10g or later for it to work. Because of
 MODEL’s ability to iterate and provide array access to row values, it
 is a natural choice for this operation (assuming you are forced to
 solve the problem in SQL, as a stored function is more appropriate
 here). Like the rest of the solutions in this book, even if you don’t
 find a practical application for this code, focus on the technique. It
 is useful to know that the MODEL clause can perform procedural tasks
 while still keeping SQL’s set-based nature and power. So, even if you
 find yourself saying: “I’d never do this in SQL,” that’s fine. I’m in
 no way suggesting you should or shouldn’t. I only remind you to focus
 on the technique, so you can apply it to whatever you consider a more
 “practical” application.
The following solution returns all ENAME and SAL from table EMP,
 while calling the MODEL clause in a scalar subquery (this way it
 serves as sort of a standalone function from table EMP that simply
 receives an input, processes it, and returns a value, much like a
 function would):
	 1 select ename,
	 2 sal,
	 3 (
	 4 select bin
	 5 from dual
	 6 model
	 7 dimension by (0 attr)
	 8 measures (sal num,
	 9 cast(null as varchar2(30)) bin,
	10 '0123456789ABCDEF' hex
	11)
	12 rules iterate (10000) until (num[0] <= 0) (
	13 bin[0] = substr(hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
	14 num[0] = trunc(num[cv()]/2)
	15)
	16) sal_binary
	17 from emp

Discussion

I mentioned in the “Solution” section that this problem is most
 likely better solved via a stored function. Indeed, the idea for this
 recipe came from a function. As a matter of fact, this recipe is an
 adaptation of a function called TO_BASE, written by Tom Kyte of Oracle Corporation. Like other recipes in this
 book that you may decide not to use, even if you do not use this
 recipe it does a nice job of showing of some of the features of the
 MODEL clause such as iteration and array access of rows.
To make the explanation easier, I am going to focus on a slight
 variation of the subquery containing the MODEL clause. The code that
 follows is essentially the subquery from the solution, except that
 it’s been hard-wired to return the value 2 in binary:
	select bin
	 from dual
	 model
	 dimension by (0 attr)
	 measures (2 num,
	 cast(null as varchar2(30)) bin,
	 '0123456789ABCDEF' hex
)
	 rules iterate (10000) until (num[0] <= 0) (
	 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
	 num[0] = trunc(num[cv()]/2)
)

	BIN

	10
The following query outputs the values returned from one
 iteration of the RULES defined in the query above:
	select 2 start_val,
	 '0123456789ABCDEF' hex,
	 substr('0123456789ABCDEF',mod(2,2)+1,1) ||
	 cast(null as varchar2(30)) bin,
	 trunc(2/2) num
	 from dual

	START_VAL HEX BIN NUM
	--------- ---------------- ---------- ---
	 2 0123456789ABCDEF 0 1
START_VAL represents the number you want to convert to binary,
 which in this case is 2. The value for BIN is the result of a
 substring operation on ’0123456789ABCDEF’ (HEX, in the original
 solution). The value for NUM is the test that will determine when you
 exit the loop.
As you can see from the preceding result set, the first time
 through the loop BIN is 0 and NUM is 1. Because NUM is not less than
 or equal to 0, another loop iteration occurs. The following SQL
 statement shows the results of the next iteration:
	select num start_val,
	 substr('0123456789ABCDEF',mod(1,2)+1,1) || bin bin,
	 trunc(1/2) num
	 from (
	select 2 start_val,
	 '0123456789ABCDEF' hex,
	 substr('0123456789ABCDEF',mod(2,2)+1,1) ||
	 cast(null as varchar2(30)) bin,
	 trunc(2/2) num
	 from dual
)

	START_VAL BIN NUM
	--------- ---------- ---
	 1 10 0
The next time through the loop, the result of the substring
 operation on HEX returns 1 and the prior value of BIN, 0, is appended
 to it. The test, NUM, is now 0, thus this is the last iteration and
 the return value “10” is the binary representation of the number 2.
 Once you’re comfortable with what’s going on, you can remove the
 iteration from the MODEL clause and step through it row by row to
 follow how the rules are applied to come to the final result set, as
 is shown below:
	select 2 orig_val, num, bin
	 from dual
	 model
	 dimension by (0 attr)
	 measures (2 num,
	 cast(null as varchar2(30)) bin,
	 '0123456789ABCDEF' hex
)
	 rules (
	 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
	 num[0] = trunc(num[cv()]/2),
	 bin[1] = substr (hex[0],mod(num[0],2)+1,1)||bin[0],
	 num[1] = trunc(num[0]/2)
)

	ORIG_VAL NUM BIN
	-------- --- ---------
	 2 1 0
	 2 0 10

14.8. Pivoting a Ranked Result Set

Problem

You want to rank the values in a table, then pivot the result
 set into three columns. The idea is to show the top three, the next
 three, then all the rest. For example, you want to rank the employees
 in table EMP by SAL, and then pivot the results into three columns.
 The desired result set is as follows:
	TOP_3 NEXT_3 REST
	--------------- --------------- --------------
	KING (5000) BLAKE (2850) TURNER (1500)
	FORD (3000) CLARK (2450) MILLER (1300)
	SCOTT (3000) ALLEN (1600) MARTIN (1250)
	JONES (2975) WARD (1250)
	 ADAMS (1100)
	 JAMES (950)
	 SMITH (800)

Solution

The key to this solution is to first use the window function
 DENSE_RANK OVER to rank the employees by SAL while
 allowing for ties. By using DENSE_RANK OVER, you can easily see the
 top three salaries, the next three salaries, and then all the
 rest.
Next, use the window function ROW_NUMBER OVER to rank each
 employee within his group (the top three, next three, or last group).
 From there, simply perform a classic transpose, while using the
 built-in string functions available on your platform to beautify the
 results. The following solution uses Oracle syntax.
 Since both DB2 and SQL Server 2005 support window functions,
 converting the solution to work for those platforms is trivial:
	 1 select max(case grp when 1 then rpad(ename,6) ||
	 2 ' ('|| sal ||')' end) top_3,
	 3 max(case grp when 2 then rpad(ename,6) ||
	 4 ' ('|| sal ||')' end) next_3,
	 5 max(case grp when 3 then rpad(ename,6) ||
	 6 ' ('|| sal ||')' end) rest
	 7 from (
	 8 select ename,
	 9 sal,
	10 rnk,
	11 case when rnk <= 3 then 1
	12 when rnk <= 6 then 2
	13 else 3
	14 end grp,
	15 row_number()over (
	16 partition by case when rnk <= 3 then 1
	17 when rnk <= 6 then 2
	18 else 3
	19 end
	20 order by sal desc, ename
	21) grp_rnk
	22 from (
	23 select ename,
	24 sal,
	25 dense_rank()over(order by sal desc) rnk
	26 from emp
	27) x
	28) y
	29 group by grp_rnk

Discussion

This recipe is a perfect example of how much you can accomplish
 with so little, with the help of window functions. The solution may
 look involved, but as you break it down from inside out you will be
 surprised how simple it is. Let’s begin by executing inline view X
 first:
	select ename,
	 sal,
	 dense_rank()over(order by sal desc) rnk
	 from emp

	ENAME SAL RNK
	---------- ----- ----------
	KING 5000 1
	SCOTT 3000 2
	FORD 3000 2
	JONES 2975 3
	BLAKE 2850 4
	CLARK 2450 5
	ALLEN 1600 6
	TURNER 1500 7
	MILLER 1300 8
	WARD 1250 9
	MARTIN 1250 9
	ADAMS 1100 10
	JAMES 950 11
	SMITH 800 12
As you can see from the result set above, inline view X simply ranks the
 employees by SAL, while allowing for ties (because the solution uses
 DENSE_RANK instead of RANK, there are ties without
 gaps). The next step is to take the rows from inline view X and create
 groups by using a CASE expression to evaluate the ranking from
 DENSE_RANK. Additionally, use the window function ROW_NUMBER OVER to
 rank the employees by SAL within their group (within the group you are
 creating with the CASE expression). All of this happens in inline view
 Y and is shown below:
	select ename,
	 sal,
	 rnk,
	 case when rnk <= 3 then 1
	 when rnk <= 6 then 2
	 else 3
	 end grp,
	 row_number()over (
	 partition by case when rnk <= 3 then 1
	 when rnk <= 6 then 2
	 else 3
	 end
	 order by sal desc, ename
) grp_rnk
	 from (
	select ename,
	 sal,
	 dense_rank()over(order by sal desc) rnk
	 from emp
) x

	ENAME SAL RNK GRP GRP_RNK
	---------- ----- ---- ---- -------
	KING 5000 1 1 1
	FORD 3000 2 1 2
	SCOTT 3000 2 1 3
	JONES 2975 3 1 4
	BLAKE 2850 4 2 1
	CLARK 2450 5 2 2
	ALLEN 1600 6 2 3
	TURNER 1500 7 3 1
	MILLER 1300 8 3 2
	MARTIN 1250 9 3 3
	WARD 1250 9 3 4
	ADAMS 1100 10 3 5
	JAMES 950 11 3 6
	SMITH 800 12 3 7
Now the query is starting to take shape and, if you followed it
 from the beginning (from inline view X), you can see that it’s not
 that complicated. The query so far returns each employee, her SAL, her
 RNK, which represents where her SAL ranks amongst all employees, her
 GRP, which indicates the group each employee is in (based on SAL), and
 finally GRP_RANK, which is a ranking (based on SAL) within her
 GRP.
At this point, perform a traditional pivot on ENAME while using
 the Oracle concatenation operator || to append the SAL. The function
 RPAD ensures that the numeric values in parentheses line
 up nicely. Finally, use GROUP BY on GRP_RNK to ensure you show each
 employee in the result set. The final result set is shown below:
	select max(case grp when 1 then rpad(ename,6) ||
	 ' ('|| sal ||')' end) top_3,
	 max(case grp when 2 then rpad(ename,6) ||
	 ' ('|| sal ||')' end) next_3,
	 max(case grp when 3 then rpad(ename,6) ||
	 ' ('|| sal ||')' end) rest
	 from (
	select ename,
	 sal,
	 rnk,
	 case when rnk <= 3 then 1
	 when rnk <= 6 then 2
	 else 3
	 end grp,
	 row_number()over (
	 partition by case when rnk <= 3 then 1
	 when rnk <= 6 then 2
	 else 3
	 end
	 Order by sal desc, ename
) grp_rnk
	 from (
	select ename,
	 sal,
	 dense_rank()over(order by sal desc) rnk
	 from emp
) x
) y
	group by grp_rnk

	TOP_3 NEXT_3 REST
	--------------- --------------- -------------
	KING (5000) BLAKE (2850) TURNER (1500)
	FORD (3000) CLARK (2450) MILLER (1300)
	SCOTT (3000) ALLEN (1600) MARTIN (1250)
	JONES (2975) WARD (1250)
	ADAMS (1100)
	 JAMES (950)
	 SMITH (800)
If you examine the queries in all of the steps you’ll notice
 that table EMP is accessed exactly once. One of the remarkable things
 about window functions is how much work you can do in just one pass
 through your data. No need for self joins or temp tables; just get the
 rows you need, then let the window functions do the rest. Only in
 inline view X do you need to access EMP. From there, it’s simply a
 matter of massaging the result set to look the way you want. Consider
 what all this means for performance if you can create this type of
 report with a single table access. Pretty cool.

14.9. Adding a Column Header into a Double Pivoted Result Set

Problem

You want to stack two result sets, and then pivot them into two columns.
 Additionally, you want to add a “header” for each group of rows in
 each column. For example, you have two tables containing information
 about employees working in different areas of development in your
 company (say, in research and applications):
	select * from it_research

	DEPTNO ENAME
	------ --------------------
	 100 HOPKINS
	 100 JONES
	 100 TONEY
	 200 MORALES
	 200 P.WHITAKER
	 200 MARCIANO
	 200 ROBINSON
	 300 LACY
	 300 WRIGHT
	 300 J.TAYLOR

	
	select * from it_apps

	DEPTNO ENAME
	------ -----------------
	 400 CORRALES
	 400 MAYWEATHER
	 400 CASTILLO
	 400 MARQUEZ
	 400 MOSLEY
	 500 GATTI
	 500 CALZAGHE
	 600 LAMOTTA
	 600 HAGLER
	 600 HEARNS
	 600 FRAZIER
	 700 GUINN
	 700 JUDAH
	 700 MARGARITO
You would like to create a report listing the employees from
 each table in two columns. You want to return the DEPTNO followed by
 ENAME for each. Ultimately you want to return the following result
 set:
	RESEARCH APPS
	-------------------- ---------------
	100 400
	 JONES MAYWEATHER
	 TONEY CASTILLO
	 HOPKINS MARQUEZ
	200 MOSLEY
	 P.WHITAKER CORRALES
	 MARCIANO 500
	 ROBINSON CALZAGHE
	 MORALES GATTI
	300 600
	 WRIGHT HAGLER
	 J.TAYLOR HEARNS
	 LACY FRAZIER
	 LAMOTTA
	 700
	 JUDAH
	 MARGARITO
	 GUINN

Solution

For the most part, this solution requires nothing more than a
 simple stack-n-pivot (union then pivot) with an added twist: the
 DEPTNO must precede the ENAME for each employee returned. The
 technique here uses a Cartesian product to generate an extra row for
 each DEPTNO, so you have the required rows necessary to show all
 employees, plus room for the DEPTNO. The solution uses Oracle syntax,
 but since DB2 supports window functions that can compute moving
 windows (the framing clause), converting this solution to work for
 DB2 is trivial. Because the IT_ RESEARCH and IT_APPS tables exist only
 for this recipe, their table creation statements are shown along with
 this solution:
	create table IT_research (deptno number, ename varchar2(20))

	insert into IT_research values (100,'HOPKINS')
	insert into IT_research values (100,'JONES')
	insert into IT_research values (100,'TONEY')
	insert into IT_research values (200,'MORALES')
	insert into IT_research values (200,'P.WHITAKER')
	insert into IT_research values (200,'MARCIANO')
	insert into IT_research values (200,'ROBINSON')
	insert into IT_research values (300,'LACY')
	insert into IT_research values (300,'WRIGHT')
	insert into IT_research values (300,'J.TAYLOR')

	create table IT_apps (deptno number, ename varchar2(20))

	insert into IT_apps values (400,'CORRALES')
	insert into IT_apps values (400,'MAYWEATHER')
	insert into IT_apps values (400,'CASTILLO')
	insert into IT_apps values (400,'MARQUEZ')
	insert into IT_apps values (400,'MOSLEY')
	insert into IT_apps values (500,'GATTI')
	insert into IT_apps values (500,'CALZAGHE')
	insert into IT_apps values (600,'LAMOTTA')
	insert into IT_apps values (600,'HAGLER')
	insert into IT_apps values (600,'HEARNS')
	insert into IT_apps values (600,'FRAZIER')
	insert into IT_apps values (700,'GUINN')
	insert into IT_apps values (700,'JUDAH')
	insert into IT_apps values (700,'MARGARITO')

	 1 select max(decode(flag2,0,it_dept)) research,
	 2 max(decode(flag2,1,it_dept)) apps
	 3 from (
	 4 select sum(flag1)over(partition by flag2
	 5 order by flag1,rownum) flag,
	 6 it_dept, flag2
	 7 from (
	 8 select 1 flag1, 0 flag2,
	 9 decode(rn,1,to_char(deptno),' '||ename) it_dept
	10 from (
	11 select x.*, y.id,
	12 row_number()over(partition by x.deptno order by y.id) rn
	13 from (
	14 select deptno,
	15 ename,
	16 count(*)over(partition by deptno) cnt
	17 from it_research
	18) x,
	19 (select level id from dual connect by level <= 2) y
	20)
	21 where rn <= cnt+1
	22 union all
	23 select 1 flag1, 1 flag2,
	24 decode(rn,1,to_char(deptno),' '||ename) it_dept
	25 from (
	26 select x.*, y.id,
	27 row_number()over(partition by x.deptno order by y.id) rn
	28 from (
	29 select deptno,
	30 ename,
	31 count(*)over(partition by deptno) cnt
	32 from it_apps
	33) x,
	34 (select level id from dual connect by level <= 2) y
	35)
	36 where rn <= cnt+1
	37) tmp1
	38) tmp2
	39 group by flag

Discussion

Like many of the other warehousing/report type queries, the
 solution presented looks quite convoluted but once broken down you’ll
 seen it’s nothing more than a stack-n-pivot with a Cartesian twist (on
 the rocks, with a little umbrella). The way to break this query down
 is to work on each part of the UNION ALL first, then bring it together
 for the pivot. Let’s start with the lower portion of the UNION
 ALL:
	select 1 flag1, 1 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y
) z
	 where rn <= cnt+1

	FLAG1 FLAG2 IT_DEPT
	----- ---------- --------------------------
	 1 1 400
	 1 1 MAYWEATHER
	 1 1 CASTILLO
	 1 1 MARQUEZ
	 1 1 MOSLEY
	 1 1 CORRALES
	 1 1 500
	 1 1 CALZAGHE
	 1 1 GATTI
	 1 1 600
	 1 1 HAGLER
	 1 1 HEARNS
	 1 1 FRAZIER
	 1 1 LAMOTTA
	 1 1 700
	 1 1 JUDAH
	 1 1 MARGARITO
	 1 1 GUINN
Let’s examine exactly how that result set is put together.
 Breaking down the above query to its simplest components, you have
 inline view X, which simply returns each ENAME and DEPTNO and the
 number of employees in each DEPTNO from table IT_APPS. The results are
 as follows:
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps

	DEPTNO ENAME CNT
	------ -------------------- ----------
	 400 CORRALES 5
	 400 MAYWEATHER 5
	 400 CASTILLO 5
	 400 MARQUEZ 5
	 400 MOSLEY 5
	 500 GATTI 2
	 500 CALZAGHE 2
	 600 LAMOTTA 4
	 600 HAGLER 4
	 600 HEARNS 4
	 600 FRAZIER 4
	 700 GUINN 3
	 700 JUDAH 3
	 700 MARGARITO 3
The next step is to create a Cartesian product between the rows
 returned from inline view X and two rows generated from DUAL using
 CONNECT BY. The results of this operation are as follows:
	select *
	 from (
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y
	 order by 2

	DEPTNO ENAME CNT ID
	------ ---------- --- ---
	 500 CALZAGHE 2 1
	 500 CALZAGHE 2 2
	 400 CASTILLO 5 1
	 400 CASTILLO 5 2
	 400 CORRALES 5 1
	 400 CORRALES 5 2
	 600 FRAZIER 4 1
	 600 FRAZIER 4 2
	 500 GATTI 2 1
	 500 GATTI 2 2
	 700 GUINN 3 1
	 700 GUINN 3 2
	 600 HAGLER 4 1
	 600 HAGLER 4 2
	 600 HEARNS 4 1
	 600 HEARNS 4 2
	 700 JUDAH 3 1
	 700 JUDAH 3 2
	 600 LAMOTTA 4 1
	 600 LAMOTTA 4 2
	 700 MARGARITO 3 1
	 700 MARGARITO 3 2
	 400 MARQUEZ 5 1
	 400 MARQUEZ 5 2
	 400 MAYWEATHER 5 1
	 400 MAYWEATHER 5 2
	 400 MOSLEY 5 1
	 400 MOSLEY 5 2
As you can see from these results, each row from inline view X
 is now returned twice due to the Cartesian product with inline view Y.
 The reason a Cartesian is needed will become clear shortly. The next
 step is to take the current result set and rank each employee within
 his DEPTNO by ID (ID has a value of 1 or 2 as was returned by the
 Cartesian product). The result of this ranking is shown in the output
 from the following query:
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y

	DEPTNO ENAME CNT ID RN
	------ ---------- --- --- ----------
	 400 CORRALES 5 1 1
	 400 MAYWEATHER 5 1 2
	 400 CASTILLO 5 1 3
	 400 MARQUEZ 5 1 4
	 400 MOSLEY 5 1 5
	 400 CORRALES 5 2 6
	 400 MOSLEY 5 2 7
	 400 MAYWEATHER 5 2 8
	 400 CASTILLO 5 2 9
	 400 MARQUEZ 5 2 10
	 500 GATTI 2 1 1
	 500 CALZAGHE 2 1 2
	 500 GATTI 2 2 3
	 500 CALZAGHE 2 2 4
	 600 LAMOTTA 4 1 1
	 600 HAGLER 4 1 2
	 600 HEARNS 4 1 3
	 600 FRAZIER 4 1 4
	 600 LAMOTTA 4 2 5
	 600 HAGLER 4 2 6
	 600 FRAZIER 4 2 7
	 600 HEARNS 4 2 8
	 700 GUINN 3 1 1
	 700 JUDAH 3 1 2
	 700 MARGARITO 3 1 3
	 700 GUINN 3 2 4
	 700 JUDAH 3 2 5
	 700 MARGARITO 3 2 6
Each employee is ranked; then his duplicate is ranked. The
 result set contains duplicates for all employees in table IT_APP,
 along with their ranking within their DEPTNO. The reason you need to
 generate these extra rows is because you need a slot in the result set
 to slip in the DEPTNO in the ENAME column. If you Cartesian-join
 IT_APPS with a one-row table, you get no extra rows (because
 cardinality of any table x1 = cardinality of that table).
The next step is to take the results returned thus far and pivot
 the result set such that all the ENAMES are returned in one column but
 are preceded by the DEPTNO they are in. The following query shows how
 this happens:
	select 1 flag1, 1 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y
) z
	 where rn <= cnt+1

	FLAG1 FLAG2 IT_DEPT
	----- ---------- -------------------------
	 1 1 400
	 1 1 MAYWEATHER
	 1 1 CASTILLO
	 1 1 MARQUEZ
	 1 1 MOSLEY
	 1 1 CORRALES
	 1 1 500
	 1 1 CALZAGHE
	 1 1 GATTI
	 1 1 600
	 1 1 HAGLER
	 1 1 HEARNS
	 1 1 FRAZIER
	 1 1 LAMOTTA
	 1 1 700
	 1 1 JUDAH
	 1 1 MARGARITO
	 1 1 GUINN
FLAG1 and FLAG2 come into play later and can be ignored for the
 moment. Focus your attention on the rows in IT_DEPT. The number of
 rows returned for each DEPTNO is CNT*2, but all that is needed is
 CNT+1, which is the filter in the WHERE clause. RN is the ranking for
 each employee. The rows kept are all those ranked less than or equal
 to CNT+1; i.e., all employees in each DEPTNO plus one more (this extra
 employee is the employee who is ranked first in their DEPTNO). This
 extra row is where the DEPTNO will slide in. By using DECODE (an older Oracle function that gives more or less
 the equivalent of a CASE expression) to evaluate the value of RN, you
 can slide the value of DEPTNO into the result set. The employee who
 was at position 1 (based on the value of RN) is still shown in the
 result set, but is now last in each DEPTNO (because the order is
 irrelevant, this is not a problem). That pretty much covers the lower
 part of the UNION ALL.
The upper part of the UNION ALL is processed in the same way as
 the lower part so there’s no need to explain how that works. Instead,
 let’s examine the result set returned when stacking the
 queries:
	select 1 flag1, 0 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_research
) x,
	 (select level id from dual connect by level <= 2) y
)
	 where rn <= cnt+1
	union all
	select 1 flag1, 1 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y
)
	 where rn <= cnt+1

	FLAG1 FLAG2 IT_DEPT
	----- ---------- -----------------------
	 1 0 100
	 1 0 JONES
	 1 0 TONEY
	 1 0 HOPKINS
	 1 0 200
	 1 0 P.WHITAKER
	 1 0 MARCIANO
	 1 0 ROBINSON
	 1 0 MORALES
	 1 0 300
	 1 0 WRIGHT
	 1 0 J.TAYLOR
	 1 0 LACY
	 1 1 400
	 1 1 MAYWEATHER
	 1 1 CASTILLO
	 1 1 MARQUEZ
	 1 1 MOSLEY
	 1 1 CORRALES
	 1 1 500
	 1 1 CALZAGHE
	 1 1 GATTI
	 1 1 600
	 1 1 HAGLER
	 1 1 HEARNS
	 1 1 FRAZIER
	 1 1 LAMOTTA
	 1 1 700
	 1 1 JUDAH
	 1 1 MARGARITO
	 1 1 GUINN
At this point, it isn’t clear what FLAG1’s purpose is, but you
 can see that FLAG2 identifies which rows come from which part of the
 UNION ALL (0 for the upper part, 1 for the lower part).
The next step is to wrap the stacked result set in an inline
 view and create a running total on FLAG1 (finally, its purpose is
 revealed!), which will act as a ranking for each row in each stack.
 The results of the ranking (running total) are shown below:
	select sum(flag1)over(partition by flag2
	 order by flag1,rownum) flag,
	 it_dept, flag2
	 from (
	select 1 flag1, 0 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_research
) x,
	 (select level id from dual connect by level <= 2) y
)
	 where rn <= cnt+1
	union all
	select 1 flag1, 1 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y
)
	 where rn <= cnt+1
) tmp1

	FLAG IT_DEPT FLAG2
	---- --------------- ----------
	 1 100 0
	 2 JONES 0
	 3 TONEY 0
	 4 HOPKINS 0
	 5 200 0
	 6 P.WHITAKER 0
	 7 MARCIANO 0
	 8 ROBINSON 0
	 9 MORALES 0
	 10 300 0
	 11 WRIGHT 0
	 12 J.TAYLOR 0
	 13 LACY 0
	 1 400 1
	 2 MAYWEATHER 1
	 3 CASTILLO 1
	 4 MARQUEZ 1
	 5 MOSLEY 1
	 6 CORRALES 1
	 7 500 1
	 8 CALZAGHEe 1
	 9 GATTI 1
	 10 600 1
	 11 HAGLER 1
	 12 HEARNS 1
	 13 FRAZIER 1
	 14 LAMOTTA 1
	 15 700 1
	 16 JUDAH 1
	 17 MARGARITO 1
	 18 GUINN 1
The last remaining step (finally!) is to pivot the value
 returned by TMP1 on FLAG2 while grouping by FLAG (the running total
 generated in TMP1). The results from TMP1 are wrapped in an inline
 view and pivoted (wrapped in a final inline view called TMP2). The
 final solution and result set is shown below:
	select max(decode(flag2,0,it_dept)) research,
	 max(decode(flag2,1,it_dept)) apps
	 from (
	select sum(flag1)over(partition by flag2
	 order by flag1,rownum) flag,
	 it_dept, flag2
	 from (
	select 1 flag1, 0 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_research
) x,
	 (select level id from dual connect by level <= 2) y
)
	 where rn <= cnt+1
	union all
	select 1 flag1, 1 flag2,
	 decode(rn,1,to_char(deptno),' '||ename) it_dept
	 from (
	select x.*, y.id,
	 row_number()over(partition by x.deptno order by y.id) rn
	 from (
	select deptno deptno,
	 ename,
	 count(*)over(partition by deptno) cnt
	 from it_apps
) x,
	 (select level id from dual connect by level <= 2) y
)
	 where rn <= cnt+1
) tmp1
) tmp2
	 group by flag

	RESEARCH APPS
	-------------------- ---------------
	100 400
	 JONES MAYWEATHER
	 TONEY CASTILLO
	 HOPKINS MARQUEZ
	200 MOSLEY
	 P.WHITAKER CORRALES
	 MARCIANO 500
	 ROBINSON CALZAGHE
	 MORALES GATTI
	300 600
	 WRIGHT HAGLER
	 J.TAYLOR HEARNS
	 LACY FRAZIER
	 LAMOTTA
	 700
	 JUDAH
	 MARGARITO
	 GUINN

14.10. Converting a Scalar Subquery to a Composite Subquery in
 Oracle

Problem

You would like to bypass the restriction of returning exactly
 one value from a scalar subquery. For example, you attempt to execute
 the following query:
	select e.deptno,
	 e.ename,
	 e.sal,
	 (select d.dname,d.loc,sysdate today
	 from dept d
	 where e.deptno=d.deptno)
	 from emp e
but receive an error because subqueries in the SELECT list are
 allowed to return only a single value.

Solution

Admittedly, this problem is quite unrealistic, because a simple
 join between tables EMP and DEPT would allow you to return as many
 values you want from DEPT. Nevertheless, the key is to focus on the
 technique and understand how to apply it to a scenario that you find
 useful. The key to bypassing the requirement to return a single value
 when placing a SELECT within SELECT (scalar subquery) is to take
 advantage of Oracle’s object types. You can define an object to have several
 attributes, and then you can work with it as a single entity or
 reference each element individually. In effect, you don’t really
 bypass the rule at all. You simply return one value, an object, that
 in turn contains many attributes.
This solution makes use of the following object type:
	create type generic_obj
	 as object (
	 val1 varchar2(10),
	 val2 varchar2(10),
	 val3 date
);
With this type in place, you can execute the following
 query:
	 1 select x.deptno,
	 2 x.ename,
	 3 x.multival.val1 dname,
	 4 x.multival.val2 loc,
	 5 x.multival.val3 today
	 6 from (
	 7select e.deptno,
	 8 e.ename,
	 9 e.sal,
	10 (select generic_obj(d.dname,d.loc,sysdate+1)
	11 from dept d
	12 where e.deptno=d.deptno) multival
	13 from emp e
	14) x

	DEPTNO ENAME DNAME LOC TODAY
	------ ---------- ---------- ---------- -----------
	 20 SMITH RESEARCH DALLAS 12-SEP-2005
	 30 ALLEN SALES CHICAGO 12-SEP-2005
	 30 WARD SALES CHICAGO 12-SEP-2005
	 20 JONES RESEARCH DALLAS 12-SEP-2005
	 30 MARTIN SALES CHICAGO 12-SEP-2005
	 30 BLAKE SALES CHICAGO 12-SEP-2005
	 10 CLARK ACCOUNTING NEW YORK 12-SEP-2005
	 20 SCOTT RESEARCH DALLAS 12-SEP-2005
	 10 KING ACCOUNTING NEW YORK 12-SEP-2005
	 30 TURNER SALES CHICAGO 12-SEP-2005
	 20 ADAMS RESEARCH DALLAS 12-SEP-2005
	 30 JAMES SALES CHICAGO 12-SEP-2005
	 20 FORD RESEARCH DALLAS 12-SEP-2005
	 10 MILLER ACCOUNTING NEW YORK 12-SEP-2005

Discussion

The key to the solution is to use the object’s constructor
 function (by default the constructor function has the same name as the
 object). Because the object itself is a single scalar value, it does
 not violate the scalar subquery rule, as you can see from the
 following:
	select e.deptno,
	 e.ename,
	 e.sal,
	 (select generic_obj(d.dname,d.loc,sysdate-1)
	 from dept d
	 where e.deptno=d.deptno) multival
	from emp e

	DEPTNO ENAME SAL MULTIVAL(VAL1, VAL2, VAL3)
	------ ------ ----- ---
	 20 SMITH 800 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
	 30 ALLEN 1600 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
	 30 WARD 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
	 20 JONES 2975 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
	 30 MARTIN 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
	 30 BLAKE 2850 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
	 10 CLARK 2450 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')
	 20 SCOTT 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
	 10 KING 5000 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')
	 30 TURNER 1500 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
	 20 ADAMS 1100 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
	 30 JAMES 950 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
	 20 FORD	 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
	 10 MILLER 1300 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')
The next step is to simply wrap the query in an inline view and extract
 the attributes.
Warning
One important note: In Oracle, unlike the case with other
 vendors, you do not generally need to name your inline views. In this particular case, however, you do
 need to name your inline view. Otherwise you will not be able to
 reference the object’s attributes.

14.11. Parsing Serialized Data into Rows

Problem

You have serialized data (stored in strings) that you want to
 parse and return as rows. For example, you store the following
 data:
	STRINGS

	entry:stewiegriffin:lois:brian:
	entry:moe::sizlack:
	entry:petergriffin:meg:chris:
	entry:willie:
	entry:quagmire:mayorwest:cleveland:
	entry:::flanders:
	entry:robo:tchi:ken:
You want to convert these serialized strings into the following
 result set:
	VAL1 VAL2 VAL3
	--------------- --------------- ---------------
	moe sizlack
	petergriffin meg chris
	quagmire mayorwest cleveland
	robo tchi ken
	stewiegriffin lois brian
	willie
	 flanders

Solution

Each serialized string in this example can store up to three
 values. The values are delimited by colons, and a string may or may
 not have all three entries. If a string does not have all three
 entries, you must be careful to place the entries that are available
 into the correct column in the result set. For example, consider the
 following row:
	entry:::flanders:
This row represents an entry with the first two values missing
 and only the third value available. Hence, if you examine the target
 result set in the “Problem” section, you will notice that for the row
 “flanders” is in, both VAL1 and VAL2 are NULL.
The key to this solution is nothing more than a string walk with
 some string parsing, following by a simple pivot. This solution uses
 rows from view V, which is defined as follows. The example uses Oracle
 syntax, but since nothing more than string parsing functions are
 needed for this recipe, converting to other platforms is
 trivial:
	create view V
	 as
	select 'entry:stewiegriffin:lois:brian:' strings
	 from dual
	 union all
	select 'entry:moe::sizlack:'
	 from dual
	 union all
	select 'entry:petergriffin:meg:chris:'
	 from dual
	 union all
	select 'entry:willie:'
	 from dual
	 union all
	select 'entry:quagmire:mayorwest:cleveland:'
	 from dual
	 union all
	select 'entry:::flanders:'
	 from dual
	 union all
	select 'entry:robo:tchi:ken:'
	 from dual
Using view V to supply the example data to parse, the solution
 is as follows:
	 1 with cartesian as (
	 2 select level id
	 3 from dual
	 4 connect by level <= 100
	 5)
	 6 select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,
	 7 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,
	 8 max(decode(id,3,substr(strings,p1+1,p2-1))) val3
	 9 from (
	10 select v.strings,
	11 c.id,
	12 instr(v.strings,':',1,c.id) p1,
	13 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
	14 from v, cartesian c
	15 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
	16)
	17 group by strings
	18 order by 1

Discussion

The first step is to walk the serialized strings:
	with cartesian as (
	select level id
	 from dual
	 connect by level <= 100
)
	select v.strings,
		 c.id
	 from v,cartesian c
	 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

	STRINGS ID
	----------------------------------- ---
	entry:::flanders: 1
	entry:::flanders: 2
	entry:::flanders: 3
	entry:moe::sizlack: 1
	entry:moe::sizlack: 2
	entry:moe::sizlack: 3
	entry:petergriffin:meg:chris: 1
	entry:petergriffin:meg:chris: 3
	entry:petergriffin:meg:chris: 2
	entry:quagmire:mayorwest:cleveland: 1
	entry:quagmire:mayorwest:cleveland: 3
	entry:quagmire:mayorwest:cleveland: 2
	entry:robo:tchi:ken: 1
	entry:robo:tchi:ken: 2
	entry:robo:tchi:ken: 3
	entry:stewiegriffin:lois:brian: 1
	entry:stewiegriffin:lois:brian: 3
	entry:stewiegriffin:lois:brian: 2
	entry:willie: 1
The next step is to use the function INSTR to find the numeric
 position of each colon in each string. Since each value you need to
 extract is enclosed by two colons, the numeric values are aliased P1
 and P2, for “position 1” and “position 2”:
	with cartesian as (
	select level id
	 from dual
	 connect by level <= 100
)
	select v.strings,
	 c.id,
	 instr(v.strings,':',1,c.id) p1,
	 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
	 from v,cartesian c
	 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
	 order by 1

	STRINGS ID P1 P2
	----------------------------------- --- ---------- ----------
	entry:::flanders: 1 6 1
	entry:::flanders: 2 7 1
	entry:::flanders: 3 8 9
	entry:moe::sizlack: 1 6 4
	entry:moe::sizlack: 2 10 1
	entry:moe::sizlack: 3 11 8
	entry:petergriffin:meg:chris: 1 6 13
	entry:petergriffin:meg:chris: 3 23 6
	entry:petergriffin:meg:chris: 2 19 4
	entry:quagmire:mayorwest:cleveland: 1 6 9
	entry:quagmire:mayorwest:cleveland: 3 25 10
	entry:quagmire:mayorwest:cleveland: 2 15 10
	entry:robo:tchi:ken: 1 6 5
	entry:robo:tchi:ken: 2 11 5
	entry:robo:tchi:ken: 3 16 4
	entry:stewiegriffin:lois:brian: 1 6 14
	entry:stewiegriffin:lois:brian: 3 25 6
	entry:stewiegriffin:lois:brian: 2 20 5
	entry:willie: 1 6 7
Now that you know the numeric positions for each pair of colons
 in each string, simply pass the information to the function SUBSTR to
 extract values. Since you want to create a result set with three
 columns, use DECODE to evaluate the ID from the Cartesian
 product:
with cartesian as (
	select level id
	 from dual
	 connect by level <= 100
)
	select decode(id,1,substr(strings,p1+1,p2-1)) val1,
	 decode(id,2,substr(strings,p1+1,p2-1)) val2,
	 decode(id,3,substr(strings,p1+1,p2-1)) val3
	 from (
	select v.strings,
	 c.id,
	 instr(v.strings,':',1,c.id) p1,
	 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
	 from v,cartesian c
	 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
)
	 order by 1

	VAL1 VAL2 VAL3
	--------------- --------------- --------------
	moe
	petergriffin
	quagmire
	robo
	stewiegriffin
	willie
	 lois

	 meg
	 mayorwest

	 tchi
	 brian
	 sizlack
	 chris
	 cleveland
	 flanders
	 ken
The last step is to apply an aggregate function to the values
 returned by SUBSTR while grouping by ID, to make a human-readable
 result set:
	with cartesian as (
	select level id
	 from dual
	 connect by level <= 100
)
	select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,
	 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,
	 max(decode(id,3,substr(strings,p1+1,p2-1))) val3
	 from (
	select v.strings,
	 c.id,
	 instr(v.strings,':',1,c.id) p1,
	 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
	 from v,cartesian c
	where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
)
	group by strings
	order by 1

	VAL1 VAL2 VAL3
	--------------- --------------- -----------
	moe sizlack
	petergriffin meg chris
	quagmire mayorwest cleveland
	robo tchi ken
	stewiegriffin lois brian
	willie
	 flanders

14.12. Calculating Percent Relative to Total

Problem

You want to report a set of numeric values, and you want to show
 each value as a percentage of the whole. For example, you are on an
 Oracle system and you want to return a result set that shows the
 breakdown of salaries by JOB so that you can determine which JOB
 position costs the company the most money. You also want to include
 the number of employees per JOB to prevent the results from being
 misleading. You want to produce the following report:
	JOB NUM_EMPS PCT_OF_ALL_SALARIES
	--------- ---------- -------------------
	CLERK 4 14
	ANALYST 2 20
	MANAGER 3 28
	SALESMAN 4 19
	PRESIDENT 1 17
As you can see, if the number of employees is not included in
 the report, it would look as if the president position takes very
 little of the overall salary. Seeing that there is only one president
 helps put into perspective what that 17% means.

Solution

Only Oracle enables a decent solution to this problem, which
 involves using the built-in function RATIO_TO_REPORT. To calculate percentages of the whole for other databases, you can
 use division as shown in “Determining the Percentage of a Total” in
 Chapter 7.
	1 select job,num_emps,sum(round(pct)) pct_of_all_salaries
	2 from (
	3 select job,
	4 count(*)over(partition by job) num_emps,
	5 ratio_to_report(sal)over()*100 pct
	6 from emp
	7)
	8 group by job,num_emps

Discussion

The first step is to use the window function COUNT OVER to
 return the number of employees per JOB. Then use RATIO_TO_REPORT to
 return the percentage each salary counts against the total (the value
 is returned in decimal):
	select job,
	 count(*)over(partition by job) num_emps,
	 ratio_to_report(sal)over()*100 pct
	 from emp

	JOB NUM_EMPS PCT
	--------- ---------- ----------
	ANALYST 2 10.3359173
	ANALYST 2 10.3359173
	CLERK 4 2.75624462
	CLERK 4 3.78983635
	CLERK 4 4.4788975
	CLERK 4 3.27304048
	MANAGER 3 10.2497847
	MANAGER 3 8.44099914
	MANAGER 3 9.81912145
	PRESIDENT 1 17.2265289
	SALESMAN 4 5.51248923
	SALESMAN 4 4.30663221
	SALESMAN 4 5.16795866
	SALESMAN 4 4.30663221
The last step is to use the aggregate function SUM to sum the
 values returned by RATIO_TO_REPORT. Be sure to group by JOB and
 NUM_EMPS. Multiply by 100 to return a whole number that represents a
 percentage (e.g., to return 25 rather than 0.25 for
 25%):
	select job,num_emps,sum(round(pct)) pct_of_all_salaries
	 from (
	select job,
	 count(*)over(partition by job) num_emps,
	 ratio_to_report(sal)over()*100 pct
	 from emp
)
	 group by job,num_emps

	JOB NUM_EMPS PCT_OF_ALL_SALARIES
	--------- ---------- -------------------
	CLERK 4 14
	ANALYST 2 20
	MANAGER 3 28
	SALESMAN 4 19
	PRESIDENT 1 17

14.13. Creating CSV Output from Oracle

Problem

You want to create a delimited list (perhaps comma delimited)
 from rows in a table. For example, using table EMP, you want to return
 the following result set:
	DEPTNO LIST
	------ --------------------------------------
	 10 MILLER,KING,CLARK
	 20 FORD,ADAMS,SCOTT,JONES,SMITH
	 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN
You are on an Oracle system (Oracle Database
 10g or later) and want to use the MODEL
 clause.

Solution

This solution takes advantage of the iteration capabilities of
 Oracle’s MODEL clause. The technique is to use the window function
 ROW_NUMBER OVER to rank each employee (by EMPNO, which is arbitrary)
 in each DEPTNO. Because MODEL provides array access, you can access
 prior array elements by subtracting from the rank. So, for each row,
 create a list that includes each employee’s name, plus the name of the
 employee ranked before the current employee:
	 1 select deptno,
	 2 list
	 3 from (
	 4 select *
	 5 from (
	 6 select deptno,empno,ename,
	 7 lag(deptno)over(partition by deptno
	 8 order by empno) prior_deptno
	 9 from emp
	10)
	11 model
	12 dimension by
	13 (
	14 deptno,
	15 row_number()over(partition by deptno order by empno) rn
	16)
	17 measures
	18 (
	19 ename,
	20 prior_deptno,cast(null as varchar2(60)) list,
	21 count(*)over(partition by deptno) cnt,
	22 row_number()over(partition by deptno order by empno) rnk
	23)
	24 rules
	25 (
	26 list[any,any]
	27 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
	28 then ename[cv(),cv()]
	29 else ename[cv(),cv()]||','||
	30 list[cv(),rnk[cv(),cv()]-1]
	31 end
	32)
	33)
	34 where cnt = rn

Discussion

The first step is to use the window function LAG OVER to return
 the DEPTNO of the previous employee (sorted by EMPNO). The results are
 partitioned by DEPTNO, so the return value will be NULL for the first
 employee (by EMPNO) in the department and DEPTNO for the rest. The
 results are as follows:
	select deptno,empno,ename,
	 lag(deptno)over(partition by deptno
	 order by empno) prior_deptno
	 from emp

	DEPTNO EMPNO ENAME PRIOR_DEPTNO
	------ ---------- ------ ------------
	 10 7782 CLARK
	 10 7839 KING 10
	 10 7934 MILLER 10
	 20 7369 SMITH
	 20 7566 JONES 20
	 20 7788 SCOTT 20
	 20 7876 ADAMS 20
	 20 7902 FORD 20
	 30 7499 ALLEN
	 30 7521 WARD 30
	 30 7654 MARTIN 30
	 30 7698 BLAKE 30
	 30 7844 TURNER 30
	 30 7900 JAMES 30
The next step is to examine the MEASURES subclause of the MODEL clause. The items in the
 MEASURES list are the arrays:
	ENAME
	An array of all the ENAMEs in EMP

	PRIOR_DEPTNO
	An array of the values returned by the LAG OVER window
 function

	CNT
	An array of the number of employees in each DEPTNO

	RNK
	An array of rankings (by EMPNO) for each employee in each
 DEPTNO

The array indices are DEPTNO and RN (the value returned by the
 ROW_NUMBER OVER window function in the DIMENSION BY subclause). To see
 what all these arrays contain, simply comment out the code listed in
 the RULES subclause of the MODEL clause and execute the query, as
 follows:
	select *
	 from (
	select deptno,empno,ename,
	 lag(deptno)over(partition by deptno
	 order by empno) prior_deptno
	 from emp
)
	 model
	 dimension by
	 (
	 deptno,
	 row_number()over(partition by deptno order by empno) rn
)
	 measures
	 (
	 ename,
	 prior_deptno,cast(null as varchar2(60)) list,
	 count(*)over(partition by deptno) cnt,
	 row_number()over(partition by deptno order by empno) rnk
)
	 rules
	 (
	/*
	 list[any,any]
	 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
	 then ename[cv(),cv()]
	 else ename[cv(),cv()]||','||
	 list[cv(),rnk[cv(),cv()]-1]
	 end
	*/
)
	 order by 1

	DEPTNO RN ENAME PRIOR_DEPTNO LIST CNT RNK
	------ --- ------ ------------ ---------- --- ----
	 10 1 CLARK 3 1
	 10 2 KING 10 3 2
	 10 3 MILLER 10 3 3
	 20 1 SMITH 5 1
	 20 2 JONES 20 5 2
	 20 4 ADAMS 20 5 4
	 20 5 FORD 20 5 5
	 20 3 SCOTT 20 5 3
	 30 1 ALLEN 6 1
	 30 6 JAMES 30 6 6
	 30 4 BLAKE 30 6 4
	 30 3 MARTIN 30 6 3
	 30 5 TURNER 30 6 5
	 30 2 WARD 30 6 2
Now that you know exactly what each item declared in the MODEL
 clause does, continue on to the RULES subclause. If you look at the
 CASE expression, you’ll see that the current value for PRIOR_DEPTNO is
 being evaluated. If that value is NULL, it signifies that the first
 employee in each DEPTNO and ENAME should be returned to that
 employee’s LIST array. If the value for PRIOR_DEPTNO is not NULL, then
 append the value of the prior employee’s LIST to the current
 employee’s name (ENAME array), and then return that result as the
 current employee’s LIST. This CASE expression operation, when
 performed for each row in DEPTNO, results in an iteratively built
 comma-separated values (CSV) list. You can see the intermediate results in the
 following example:
	select deptno,
	 list
	 from (
	select *
	 from (
	select deptno,empno,ename,
	 lag(deptno)over(partition by deptno
	 order by empno) prior_deptno
	 from emp
)
	 model
	 dimension by
	 (
	 deptno,
	 row_number()over(partition by deptno order by empno) rn
)
	 measures
	 (
	 ename,
	 prior_deptno,cast(null as varchar2(60)) list,
	 count(*)over(partition by deptno) cnt,
	 row_number()over(partition by deptno order by empno) rnk
)
	 rules
	 (
	 list[any,any]
	 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
	 then ename[cv(),cv()]
	 else ename[cv(),cv()]||','||
	 list[cv(),rnk[cv(),cv()]-1]
	 end
)
)

	DEPTNO LIST
	------ ---------------------------------------
	 10 CLARK
	 10 KING,CLARK
	 10 MILLER,KING,CLARK
	 20 SMITH
	 20 JONES,SMITH
	 20 SCOTT,JONES,SMITH
	 20 ADAMS,SCOTT,JONES,SMITH
	 20 FORD,ADAMS,SCOTT,JONES,SMITH
	 30 ALLEN
	 30 WARD,ALLEN
	 30 MARTIN,WARD,ALLEN
	 30 BLAKE,MARTIN,WARD,ALLEN
	 30 TURNER,BLAKE,MARTIN,WARD,ALLEN
	 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN
The last step is to keep only the last employee in each DEPTNO
 to ensure that you have a complete CSV list for each DEPTNO. Use the values stored in the
 CNT array and the values stored in the RN array to keep only the
 completed CSV for each DEPTNO. Because RN represents a ranking of
 employees in each DEPTNO by EMPNO, the last employee in each DEPTNO
 will be the one where CNT = RN, as the following example shows:
	select deptno,
	 list
	 from (
	select *
	 from (
	select deptno,empno,ename,
	 lag(deptno)over(partition by deptno
	 order by empno) prior_deptno
	 from emp
)
	 model
	 dimension by
	 (
	 deptno,
	 row_number()over(partition by deptno order by empno) rn
)
	 measures
	 (
	 ename,
	 prior_deptno,cast(null as varchar2(60)) list,
	 count(*)over(partition by deptno) cnt,
	 row_number()over(partition by deptno order by empno) rnk
)
	 rules
	 (
	 list[any,any]
	 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
	 then ename[cv(),cv()]
	 else ename[cv(),cv()]||','||
	 list[cv(),rnk[cv(),cv()]-1]
	 end
)
)
	 where cnt = rn

	DEPTNO LIST
	------ --
	 10 MILLER,KING,CLARK
	 20 FORD,ADAMS,SCOTT,JONES,SMITH
	 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

14.14. Finding Text Not Matching a Pattern (Oracle)

Problem

You have a text field that contains some structured text values
 (e.g., phone numbers), and you wish to find occurrences where those
 values are structured incorrectly. For example, you have data like the
 following:
	select emp_id, text
	 from employee_comment

	EMP_ID TEXT
	---------- --
	7369 126 Varnum, Edmore MI 48829, 989 313-5351
	7499 1105 McConnell Court
	 Cedar Lake MI 48812
	 Home: 989-387-4321
	 Cell: (237) 438-3333
and you wish to list rows having invalidly formatted phone numbers. For example, you wish to list
 the following row because its phone number uses two different
 separator characters:
	7369 126 Varnum, Edmore MI 48829, 989 313-5351
You wish to consider valid only those phone numbers that use the
 same character for both delimiters.

Solution

This problem has a multi-part solution:
	Find a way to describe the universe of apparent phone
 numbers that you wish to consider.

	Remove any validly formatted phone numbers from
 consideration.

	See whether you still have any apparent phone numbers left.
 If you do, you know those are invalidly formatted.

The following solution makes good use of the regular expression functionality introduced in Oracle
 Database 10g
	select emp_id, text
	from employee_comment
	where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')
	 and regexp_like(
	 regexp_replace(text,
	 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
	 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

	 EMP_ID TEXT
	---------- --
	 7369 126 Varnum, Edmore MI 48829, 989 313-5351
	 7844 989-387.5359
	 9999 906-387-1698, 313-535.8886
Each of these rows contains at least one apparent phone number
 that is not correctly formatted.

Discussion

The key to this solution lies in the detection of an “apparent
 phone number.” Given that the phone numbers are stored in a comment
 field, any text at all in the field could be construed to be an
 invalid phone number. You need a way to narrow the field to a more
 reasonable set of values to consider. You don’t, for example, want to see the following row in your
 output:
	 EMP_ID TEXT
	---------- --
	 7900 Cares for 100-year-old aunt during the day. Schedule only
	 for evening and night shifts.
Clearly there’s no phone number at all in this row, much less
 one that is invalid. You and I can see that. The question is, how do
 you get the RDBMS to “see” it. I think you’ll enjoy the answer. Please
 read on.
Tip
This recipe comes (with permission) from an article by
 Jonathan Gennick called "Regular Expression Anti-Patterns,” which you can read
 at: http://gennick.com/antiregex.htm.

The solution uses Pattern A to define the set of “apparent”
 phone numbers to consider:
	Pattern A: [0-9]{3}[-.][0-9]{3}[-.][0-9]{4}
Pattern A checks for two groups of three digits followed by one
 group of four digits. Any one of a dash (-), a period (.), or a space
 are accepted as delimiters between groups. You could come up with a
 more complex pattern. For example, you could decide that you also wish
 to consider seven-digit phone numbers. But don’t get side-tracked. The
 point now is that somehow you do need to define the universe of
 possible phone number strings to consider, and for this problem that
 universe is defined by Pattern A. You can define a different Pattern
 A, and the general solution still applies.
The solution uses Pattern A in the WHERE clause to ensure that
 only rows having potential phone numbers (as defined by the pattern!)
 are considered:
	select emp_id, text
	 from employee_comment
	 where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')
Next, you need to define what a “good” phone number looks like.
 The solution does this using Pattern B:
	Pattern B: [0-9]{3}([-.])[0-9]{3}\1[0-9]{4}
This time, the pattern uses \1 to reference the first
 subexpression. Whichever character is matched by ([-.]) must also be
 matched by \1. Pattern B describes good phone numbers, which must be
 eliminated from consideration (as they are not bad). The solution
 eliminates the well-formatted phone numbers through a call to REGEXP_
 REPLACE:
regexp_replace(text,
	 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
This call to REGEXP_REPLACE occurs in the WHERE clause. Any
 well-formatted phone numbers are replaced by a string of
 three asterisks. Again, Pattern B can be any pattern that you desire.
 The point is that Pattern B describes the acceptable pattern that you
 are after.
Having replaced well-formatted phone numbers with strings of
 three asterisks (***), any “apparent” phone numbers that remain must,
 by definition, be poorly formatted. The solution applies REGEXP_LIKE
 to the output from REGEXP_LIKE to see whether any poorly formatted
 phone numbers remain:
	and regexp_like(
	 regexp_replace(text,
	 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
	 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')
This recipe would be difficult to implement without the pattern
 matching capabilities inherent in Oracle’s relatively new regular
 expression features. In particular, this recipe depends on
 REGEXP_REPLACE. Other databases (notably PostgreSQL) implement support
 for regular expressions. But to my knowledge, only Oracle
 supports the regular expression search and replace functionality on
 which this recipe depends.

14.15. Transforming Data with an Inline View

Problem

You have a table in a column that sometimes contains numeric
 data and sometimes character data. Another column in the same table
 indicates which is the case. You wish to use a subquery to isolate
 only the numeric data:
	select *
	 from (select flag, to_number(num) num
	 from subtest
	 where flag in ('A', 'C'))
	 where num > 0
Unfortunately, this query against an inline view often (but
 perhaps not always!) results in the following error message;
	ERROR:
	ORA-01722: invalid number

Solution

One solution is to force the inline view to completely execute
 prior to the outer SELECT statement. You can do that, in Oracle at
 least, by including the row number pseudo-column in your inner SELECT
 list:
	select *
	 from (select rownum, flag, to_number(num) num
	 from subtest
	 where flag in ('A', 'C'))
	 where num > 0
See “Discussion” for an explanation of why this solution
 works.

Discussion

The reason for the invalid number error in the problem query is
 that some optimizers will merge the inner and outer queries. While it
 looks like you are executing an inner query first to remove all
 non-numeric NUM values, you might really be executing:
	select flag, to_number(num) num
	from subtest
	where to_number(num) > 0 and flag in ('A', 'C');
And now you can probably clearly see the reason for the error:
 rows with non-numeric NUM values are not filtered
 out before the TO_NUMBER function is applied.
Tip
Should a database merge sub and main
 queries? The answer depends on whether you are thinking in terms of
 relational theory, in terms of the SQL standard, or in terms of how
 your particular database vendor chooses to implement his brand of
 SQL. You can learn more by visiting http://gennick.com/madness.html.

The solution solves the problem, in Oracle at least, because it
 adds ROWNUM to the inner query’s SELECT list. ROWNUM is a function
 that returns a sequentially increasing number for each row
 returned by a query. Those last words are
 important. The sequentially increasing number, termed a row
 number, cannot be computed outside the context of returning
 a row from a query. Thus, Oracle is forced to materialize the result
 of the subquery, which means that Oracle is forced to execute the
 subquery first in order to return rows from that subquery in order to
 properly assign row numbers. Thus, querying for ROWNUM is one
 mechanism that you can use to force Oracle to fully execute a subquery
 prior to the main query (i.e., no merging of queries allowed). If you
 are not using Oracle, and you need to force the order of execution of
 a subquery, check to see whether your database supports something
 analogous to Oracle’s ROWNUM function.

14.16. Testing for Existence of a Value Within a Group

Problem

You want to create a Boolean flag for a row depending on whether
 or not any row in its group contains a specific value. Consider an
 example of a student who has taken a certain number of exams during a
 period of time. A student will take three exams over three months. If
 a student passes one of these exams, the requirement is satisfied and
 a flag should be returned to express that fact. If a student did not
 pass any of the three tests in the three month period, then an
 additional flag should be returned to express that fact as well.
 Consider the following example (using Oracle syntax to make up rows
 for this example; minor modifications are necessary for
 DB2 and SQL Server, because both support window functions):
	create view V
	as
	select 1 student_id,
	 1 test_id,
	 2 grade_id,
	 1 period_id,
	 to_date('02/01/2005','MM/DD/YYYY') test_date,
	 0 pass_fail
	 from dual union all
	select 1, 2, 2, 1, to_date('03/01/2005','MM/DD/YYYY'), 1 from dual union all
	select 1, 3, 2, 1, to_date('04/01/2005','MM/DD/YYYY'), 0 from dual union all
	select 1, 4, 2, 2, to_date('05/01/2005','MM/DD/YYYY'), 0 from dual union all
	select 1, 5, 2, 2, to_date('06/01/2005','MM/DD/YYYY'), 0 from dual union all
	select 1, 6, 2, 2, to_date('07/01/2005','MM/DD/YYYY'), 0 from dual

	select *
	 from V

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL
	---------- ------- -------- --------- ----------- ---------
	 1 1 2 1 01-FEB-2005 0
	 1 2 2 1 01-MAR-2005 1
	 1 3 2 1 01-APR-2005 0
	 1 4 2 2 01-MAY-2005 0
	 1 5 2 2 01-JUN-2005 0
	 1 6 2 2 01-JUL-2005 0
Examining the result set above, you see that the student has
 taken six tests over two, three-month periods. The student has passed
 one test (1 means “pass”; 0 means “fail”), thus the requirement is
 satisfied for the entire first period. Because the student did not
 pass any exams during the second period (the next three months),
 PASS_FAIL is 0 for all three exams. You want to return a result set
 that highlights whether or not a student has passed a test for a given
 period. Ultimately you want to return the following result set:
	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS
	---------- ------- -------- --------- ----------- ------ -----------
	 1 1 2 1 01-FEB-2005 + 0
	 1 2 2 1 01-MAR-2005 + 0
	 1 3 2 1 01-APR-2005 + 0
	 1 4 2 2 01-MAY-2005 - 0
	 1 5 2 2 01-JUN-2005 - 0
	 1 6 2 2 01-JUL-2005 - 1
The values for METREQ (“met requirement”) are + and -,
 signifying the student either has or has not satisfied the requirement
 of passing at least one test in a period (three-month span),
 respectively. The value for IN_PROGRESS should be 0 if a student has
 already passed a test in a given period. If a student has not passed a
 test for a given period, then the row that has the latest exam date
 for that student will have a value of 1 for
 IN_PROGRESS.

Solution

What makes this problem a bit tricky is the fact that you have
 to treat rows in a group as a group and not as individuals. Consider
 the values for PASS_FAIL in the problem section. If you evaluate row
 by row, it would seem that the value for METREQ for each row except
 TEST_ID 2 should be “-”, when in fact that is not the case. You must
 ensure you evaluate the rows as a group. By using the window function
 MAX OVER you can easily determine whether or not a
 student passed at least one test during a particular period. Once you
 have that information, the “Boolean” values are a simple matter of
 using CASE expressions:
	 1 select student_id,
	 2 test_id,
	 3 grade_id,
	 4 period_id,
	 5 test_date,
	 6 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,
	 7 decode(grp_p_f,1,0,
	 8 decode(test_date,last_test,1,0)) in_progress
	 9 from (
	10 select V.*,
	11 max(pass_fail)over(partition by
	12 student_id,grade_id,period_id) grp_p_f,
	13 max(test_date)over(partition by
	14 student_id,grade_id,period_id) last_test
	15 from V
	16) x

Discussion

The key to the solution is using the window function MAX OVER to
 return the greatest value of PASS_FAIL for each group. Because the
 values for PASS_FAIL are only 1 or 0, if a student passed at least one
 exam, then MAX OVER would return 1 for the entire group. How this
 works is shown below:
	select V.*,
	 max(pass_fail)over(partition by
	 student_id,grade_id,period_id) grp_pass_fail
	 from V

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_PASS_FAIL
	---------- ------- -------- --------- ----------- --------- -------------
	 1 1 2 1 01-FEB-2005 0 1
	 1 2 2 1 01-MAR-2005 1 1
	 1 3 2 1 01-APR-2005 0 1
	 1 4 2 2 01-MAY-2005 0 0
	 1 5 2 2 01-JUN-2005 0 0
	 1 6 2 2 01-JUL-2005 0 0
The result set above shows that the student passed at least one
 test during the first period, thus the entire group has a value of 1
 or “pass.” The next requirement is that if the student has not passed
 any tests in a period, return a value of 1 for he IN_ PROGRESS flag
 for the latest test date in that group. You can use the window
 function MAX OVER to do this as well:
	select V.*,
	 max(pass_fail)over(partition by
	 student_id,grade_id,period_id) grp_p_f,
	 max(test_date)over(partition by
	 student_id,grade_id,period_id) last_test
	 from V

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_P_F LAST_TEST
	---------- ------- -------- --------- ----------- --------- ------- -----------
	 1 1 2 1 01-FEB-2005 0 1 01-APR-2005
	 1 2 2 1 01-MAR-2005 1 1 01-APR-2005
	 1 3 2 1 01-APR-2005 0 1 01-APR-2005
	 1 4 2 2 01-MAY-2005 0 0 01-JUL-2005
	 1 5 2 2 01-JUN-2005 0 0 01-JUL-2005
	 1 6 2 2 01-JUL-2005 0 0 01-JUL-2005
Now that you have determined for which period the student has
 passed a test and what the latest test date for each period is, the
 last step is simply a matter of applying some formatting magic to make
 the result set look nice. The final solution uses Oracle’s DECODE
 function (CASE supporters eat your hearts out) to create the METREQ
 and IN_PROGRESS columns. Use the LPAD function to right justify the
 values for METREQ:
	select student_id,
	 test_id,
	 grade_id,
	 period_id,
	 test_date,
	 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,
	 decode(grp_p_f,1,0,
	 decode(test_date,last_test,1,0)) in_progress
	 from (
	select V.*,
	 max(pass_fail)over(partition by
	 student_id,grade_id,period_id) grp_p_f,
	 max(test_date)over(partition by
	 student_id,grade_id,period_id) last_test
	 from V
) x

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS
	---------- ------- -------- --------- ----------- ------ -----------
	 1 1 2 1 01-FEB-2005 + 0
	 1 2 2 1 01-MAR-2005 + 0
	 1 3 2 1 01-APR-2005 + 0
	 1 4 2 2 01-MAY-2005 - 0
	 1 5 2 2 01-JUN-2005 - 0
	 1 6 2 2 01-JUL-2005 - 1

Appendix A. Window Function Refresher

The recipes in this book take full advantage of the window functions
 added to the ISO SQL standard in 2003, as well as vendor-specific window
 functions. This appendix is meant to serve as a brief overview of how
 window functions work. Window functions make many typically difficult
 tasks (difficult to solve using standard SQL, that is) quite easy. For a
 complete list of window functions available, full syntax, and in-depth
 coverage of how they work, please consult your vendor’s
 documentation.
A.1. Grouping

Before moving on to window functions, it is crucial that you
 understand how grouping works in SQL. In my experience, the concept of
 grouping results in SQL has been a stumbling block for many. The
 problems stem from not fully understanding how the GROUP BY clause works
 and why certain queries return certain results when using GROUP
 BY.
Simply stated, grouping is a way to organize like rows together.
 When you use GROUP BY in a query, each row in the result set is a group
 and represents one or more rows with the same values in one or more
 columns that you specify. That’s the gist of it.
If a group is simply a unique instance of a row that represents
 one or more rows with the same value for a particular column (or
 columns), then practical examples of groups from table EMP include all
 employees in department 10 (the common value for these
 employees that enable them to be in the same group is DEPTNO=10) or
 all clerks (the common value for these employees
 that enable them to be in the same group is JOB='CLERK'). Consider the
 following queries. The first shows all employees in department 10; the
 second query groups the employees in department 10 and returns the
 following information about the group: the number of rows (members) in
 the group, the highest salary, and the lowest salary:
select deptno,ename
		from emp
		where deptno=10

	 DEPTNO ENAME
	 ------ ----------
		 10 CLARK
		 10 KING
		 10 MILLER

	 select deptno,
				 count(*) as cnt,
				 max(sal) as hi_sal,
				 min(sal) as lo_sal
			 from emp
		 where deptno=10
		 group by deptno

		DEPTNO		 CNT	 HI_SAL	 LO_SAL
		------ ---------- ---------- ----------
			10			3		5000		1300
If you were not able to group the employees in department 10
 together, to get the information in the second query above you would
 have to manually inspect the rows for that department (trivial if there
 are only three rows, but what if there were three million rows?). So,
 why would anyone want to group? Reasons for doing so vary; perhaps you want to see how
 many different groups exist or how many members (rows) are in each
 group. As you can see from the simple example above, grouping allows you
 to get information about many rows in a table without having to inspect
 them one by one.
Definition of an SQL Group

In mathematics, a group is defined, for the most part, as (G,
 •, e), where G is a set, •
 is a binary operation in G, and
 e is a member of G. We will
 use this definition as the foundation for what a SQL group is. A SQL
 group will be defined as (G,
 e), where G is a result set
 of a single or self-contained query that uses GROUP BY,
 e is a member of G, and the
 following axioms are satisfied:
	For each e in G,
 e is distinct and represents one or more
 instances of e.

	For each e in G, the aggregate function
 COUNT returns a value > 0.

Tip
The result set is included in the definition of a SQL group to
 reinforce the fact that we are defining what groups are when working
 with queries only. Thus, it would be accurate to replace “e” in each
 axiom with the word “row” because the rows in the result set are
 technically the groups.

Because these properties are fundamental to what we consider a
 group, it is important that we prove they are true (and we will
 proceed to do so through the use of some example SQL queries).
Groups are non-empty

By its very definition, a group must have at least one member
 (or row). If we accept this as a truth, then it can be said that a
 group cannot be created from an empty table. To prove that
 proposition true, simply try to prove it is false. The following
 example creates an empty table, and then attempts to create groups
 via three different queries against that empty table:
create table fruits (name varchar(10))

	select name
		from fruits
	 group by name

	 (no rows selected)

	 select count(*) as cnt
		 from fruits
		group by name

		(no rows selected)

	select name, count(*) as cnt
		from fruits
	 group by name

	 (no rows selected)
As you can see from these queries, it is impossible to create
 what SQL considers a group from an empty table.

Groups are distinct

Now let’s prove that the groups created via queries with a
 GROUP BY clause are distinct. The following example inserts five
 rows into table FRUITS, and then creates groups from those
 rows:
insert into fruits values ('Oranges')
	insert into fruits values ('Oranges')
	insert into fruits values ('Oranges')
	insert into fruits values ('Apple')
	insert into fruits values ('Peach')

	select *
		from fruits

	NAME

	Oranges
	Oranges
	Oranges
	Apple
	Peach

	select name
		from fruits
	 group by name

	 NAME

	 Apple
	 Oranges
	 Peach

	 select name, count(*) as cnt
		from fruits
	 group by name

	 NAME			CNT
	 ------- --------
	 Apple		1
	 Oranges		3
	 Peach		1
The first query shows that “Oranges” occurs three times in
 table FRUITS. However, the second and third queries (using GROUP BY)
 return only one instance of “Oranges.” Taken together, these queries prove that
 the rows in the result set (e in G, from our definition) are
 distinct, and each value of NAME represents one or more instances of
 itself in table FRUITS.
Knowing that groups are distinct is important because it
 means, typically, you would not use the DISTINCT keyword in your SELECT list when using a GROUP BY in your
 queries.
Tip
I am in no way suggesting GROUP BY and DISTINCT are the
 same. They represent two completely different concepts. I am
 merely stating that the items listed in the GROUP BY clause will
 be distinct in the result set and that using DISTINCT as well as
 GROUP BY is redundant.

Frege’s Axiom and Russell’s Paradox
For those of you who are interested, Frege’s
 axiom of abstraction, based on Cantor’s
 solution for defining set membership for infinite or uncountable
 sets, states that, given a specific identifying property, there
 exists a set whose members are only those items having that
 property. The source of trouble, as put by Robert Stoll, “is the unrestrictd use of the principal of
 abstraction.” Bertrand Russell asked Gottlob Frege to consider a
 set whose members are sets and have the defining property of not
 being members of themselves.
As Russell pointed out, the axiom of abstraction gives too
 much freedom because you are simply specifiying a condition or
 property to define set membership, thus a contradiction can be
 found. To better explain how a contradiction can be found, he
 devised the "Barber Puzzle.” The Barber Puzzle states:
In a certain town there is a male barber who shaves all
 those men, and only those men, who do not shave themselves. If
 this is true, who, then, shaves the barber?

For a more concrete example, consider the set that can be
 described as:
For all members x in y that satisfy a specific
 condition (P)

The mathematical notation for this description is:
	{x e y | P(x)}
Because the above set considers only those x in y
 that satisfy a condition (P) you may find it more
 intuitive to describe the set as x is a member of y if
 and only if x satisfies a condition (P).
At this point let us define this condition
 P(x) as x is not a member of
 x:
	(x e x)
The set is now defined as x is a member of y if
 and only if x is not a member of x:
	{x e y | (x e x)}
Russell’s paradox may not be clear to you yet, but
 ask yourself this: can the set above be a member of itself? Let’s
 assume that x = y and
 look at the above set again. The following set can be defined as
 y is a member of y if and only if y is not a member of
 y:
	{y e y | (y e y)}
Simply put, Russell’s paradox leaves us in a position to have a set that
 is concurrently a member of itself and not a member of itself, which is a
 contradiction. Intuitive thinking would lead one to believe this
 isn’t a problem at all; indeed, how can a set be a member of
 itself? The set of all books, after all, is not a book. So why
 does this paradox exist and how can it be an issue? It becomes an
 issue when you consider more abstract applications of set theory.
 For example, a “practical” application of Russell’s paradox can be
 demonstrated by considering the set of all sets. If we allow such
 a concept to exist, then by its very definition, it must be a
 member of itself (it is, after all, the set of all sets). What
 then happens when you apply P(x) above to the
 set of all sets? Simply stated, Russell’s paradox would state that
 the set of all sets is a member of itself if and only if it is not
 a member of itself—clearly a contradiction.
For those of you who are interested, Ernst Zermelo developed the axiom schema of separation (also referred to as the
 axiom schema of subsets or the axiom of specification) to elegantly sidestep Russell’s
 paradox in axiomatic set theory.

COUNT is never zero

The queries and results in the preceding section also prove
 the final axiom that the aggregate function COUNT will never return
 zero when used in a query with GROUP BY on a nonempty table. It
 should not be surprising that you cannot return a count of zero for
 a group. We have already proved that a group cannot be created from
 an empty table, thus a group must have at least one row. If at least
 one row exists, then the count will always be at least 1.
Tip
Remember, we are talking about using COUNT with GROUP BY,
 not COUNT by itself. A query using COUNT without a GROUP BY on an
 empty table will of course return zero.

Paradoxes

“Hardly anything more unfortunate can befall a scientific
 writer than to have one of the foundations of his edifice shaken
 after the work is finished…. This was the position I was placed in
 by a letter of Mr. Bertrand Russell, just when the printing of this
 volume was nearing its completion.”

The preceding quote is from Gottlob Frege in response to Bertrand Russell’s discovery of a
 contradiction to Frege’s axiom of abstraction in set theory.
Paradoxes many times provide scenarios that would seem to
 contradict established theories or ideas. In many cases these
 contradictions are localized and can be “worked around,” or they are
 applicable to such small test cases that they can be safely
 ignored.
You may have guessed by now that the point to all this
 discussion of paradoxes is that there exists a paradox concerning our
 definition of an SQL group, and that paradox must be addressed.
 Although our focus right now is on groups, ultimately we are
 discussing SQL queries. In its GROUP BY clause, a query may have a
 wide range of values such as constants, expressions, or, most
 commonly, columns from a table. We pay a price for this flexibility,
 because NULL is a valid “value” in SQL. NULLs present problems
 because they are effectively ignored by aggregate functions. With that
 said, if a table consists of a single row and its value is NULL, what
 would the aggregate function COUNT return when used in a GROUP BY
 query? By our very definition, when using GROUP BY and the aggregate
 function COUNT, a value >= 1 must be returned. What happens, then,
 in the case of values ignored by functions such as COUNT, and what
 does this mean to our definition of a GROUP? Consider the following
 example, which reveals the NULL group paradox (using the function
 COALESCE when necessary for readability):
select *
		from fruits

	 NAME

	 Oranges
	 Oranges
	 Oranges
	 Apple
	 Peach

	 insert into fruits values (null)
	 insert into fruits values (null)
	 insert into fruits values (null)
	 insert into fruits values (null)
	 insert into fruits values (null)

	 select coalesce(name,'NULL') as name
		from fruits

	 NAME

	 Oranges
	 Oranges
	 Oranges
	 Apple
	 Peach
	 NULL
	 NULL
	 NULL
	 NULL
	 NULL

	 select coalesce(name,'NULL') as name,
			count(name) as cnt
		from fruits
	 group by name

	 NAME			 CNT
	 -------- ----------
	 Apple				1
	 NULL				0
	 Oranges			3
	 Peach				1
It would seem that the presence of NULL values in our table introduces a contradiction, or
 paradox, to our definition of a SQL group. Fortunately, this
 contradiction is not a real cause for concern, because the paradox has
 more to do with the implementation of aggregate functions than our definition. Consider the
 final query in the preceding set; a general problem statement for that
 query would be:
Count the number of times each name occurs in table
 FRUITS or count the number of members in each
 group.

Examining the INSERT statements above, it’s clear that there are
 five rows with NULL values, which means there exists a NULL group with
 five members.
Tip
While NULL certainly has properties that differentiate it from
 other values, it is nevertheless a value, and can in fact be a group.

How, then, can we write the query to return a count of 5 instead
 of 0, thus returning the information we are looking for while
 conforming to our definition of a group? The example below shows a
 workaround to deal with the NULL group paradox:
select coalesce(name,'NULL') as name,
		 count(*) as cnt
	 from fruits
	 group by name

	 NAME			CNT
	 --------- --------
	 Apple			 1
	 Oranges		 3
	 Peach			 1
	 NULL			 5
The workaround is to use COUNT(*) rather than COUNT(NAME) to
 avoid the NULL group paradox. Aggregate functions will ignore NULL
 values if any exist in the column passed to them. Thus, to avoid a
 zero when using COUNT do not pass the column name; instead, pass in an
 asterisk (*). The * causes the COUNT function to count rows rather than the actual
 column values, so whether or not the actual values are NULL or not
 NULL is irrelevant.
One more paradox has to do with the axiom that each group in a
 result set (for each e in G)
 is distinct. Because of the nature of SQL result sets and tables,
 which are more accurately defined as multisets or "bags,” not sets (because duplicate rows are allowed), it
 is possible to return a result set with duplicate groups. Consider the following queries:
select coalesce(name,'NULL') as name,
		 count(*) as cnt
	 from fruits
	 group by name
	 union all
	select coalesce(name,'NULL') as name,
			count(*) as cnt
	 from fruits
	 group by name

	 NAME			 CNT
	 ---------- ---------
	 Apple				1
	 Oranges			3
	 Peach				1
	 NULL				5
	 Apple				1	
	 Oranges			3
	 Peach				1
	 NULL				5

	 select x.*
		from (
	 select coalesce(name,'NULL') as name,
			count(*) as cnt
		from fruits
	 group by name
) x,
			(select deptno from dept) y

	 NAME			 CNT
	 ---------- ----------
	 Apple				 1
	 Apple				 1
	 Apple				 1
	 Apple				 1
	 Oranges			 3
	 Oranges			 3
	 Oranges			 3
	 Oranges			 3
	 Peach				 1
	 Peach				 1
	 Peach				 1
	 Peach				 1
	 NULL				 5
	 NULL				 5
	 NULL				 5
	 NULL				 5
As you can see in these queries, the groups are in fact repeated
 in the final results. Fortunately, this is not much to worry about
 because it represents only a partial paradox. The first property of a
 group states that for (G,
 e), G is a result set from a
 single or self-contained query that uses GROUP BY. Simply put, the
 result set from any GROUP BY query itself conforms to our definition of a
 group. It is only when you combine the result sets from two GROUP BY
 queries to create a multiset that groups may repeat. The first query
 in the preceding example uses UNION ALL, which is not a set operation but a multiset
 operation, and invokes GROUP BY twice, effectively executing two
 queries.
Tip
If you use UNION, which is a set operation, you will not see
 repeating groups.

The second query in the preceding set uses a Cartesian product,
 which only works if you materialize the group first and then perform
 the Cartesian. Thus the GROUP BY query when self-contained conforms to
 our definition. Neither of the two examples takes anything away from
 the definition of a SQL group. They are shown for completeness, and so
 that you can be aware that almost anything is possible in SQL.

Relationship Between SELECT and GROUP BY

With the concept of a group defined and proved, it is now time
 to move on to more practical matters concerning queries using GROUP
 BY. It is important to understand the relationship between the
 SELECT clause and the GROUP BY clause when grouping in SQL. It is important to keep in mind when
 using aggregate functions such as COUNT that any item in your
 SELECT list that is not used as an argument to an aggregate function
 must be part of your group. For example, if you write a SELECT clause
 such as:
	select deptno, count(*) as cnt
		from emp
then you must list DEPTNO in your GROUP BY clause:
select deptno, count(*) as cnt
		from emp
	 group by deptno

	 DEPTNO	CNT
	 ------- ----
			10	 3
			20	 5
			30 6
Constants, scalar values returned by user-defined functions,
 window functions, and non-correlated scalar subqueries are exceptions
 to this rule. Since the SELECT clause is evaluated after the GROUP BY
 clause, these constructs are allowed in the SELECT list and do not
 have to (and in some cases cannot) be specified in the GROUP BY
 clause. For example:
select 'hello' as msg,
			1 as num,
			deptno,
			(select count(*) from emp) as total,
			count(*) as cnt
	 from emp
	 group by deptno

	 MSG	NUM DEPTNO TOTAL CNT
	 ----- --- ------ ----- ---
	 hello	1		10	14		3
	 hello	1		20	14		5
	 hello	1		30	14		6
Don’t let this query confuse you. The items in the SELECT list
 not listed in the GROUP BY clause do not change the value of CNT for each
 DEPTNO, nor do the values for DEPTNO change. Based on the results of
 the preceding query, we can define the rule about matching items in
 the SELECT list and the GROUP BY clause when using aggregates a bit
 more precisely:
Items in a SELECT list that can potentially change the group
 or change the value returned by an aggregate function must be
 included in the GROUP BY clause.

The additional items in the preceding SELECT list did not change
 the value of CNT for any group (each DEPTNO), nor did they change the
 groups themselves.
Now it’s fair to ask: exactly what items in a SELECT list can
 change a grouping or the value returned by an aggregate function? The
 answer is simple: other columns from the table(s) you are selecting
 from. Consider the prospect of adding the JOB column to the query
 we’ve been looking at:
select deptno, job, count(*) as cnt
		from emp
	 group by deptno, job

	 DEPTNO JOB		CNT
	 ------ ---------- ----
	 10	CLERK			1
	 10	MANAGER			1
	 10	PRESIDENT		1
	 20	CLERK			2
	 20	ANALYST			2
	 20	MANAGER			1
	 30	CLERK			1
	 30	MANAGER			1
	 30	SALESMAN		4
By listing another column, JOB, from table EMP, we are changing
 the group and changing the result set; thus we must now include JOB in
 the GROUP BY clause along with DEPTNO, otherwise the query will fail.
 The inclusion of JOB in the SELECT/GROUP BY clauses changes the query
 from “How many employees are in each department?” to “How many
 different types of employees are in each department?” Notice again
 that the groups are distinct; the values for DEPTNO and JOB
 individually are not distinct, but the
 combination of the two (which is what is in the GROUP BY and SELECT list, and thus is the group) are
 distinct (e.g., 10 and CLERK appear only once).
If you choose not to put items other than aggregate functions in the SELECT list, then you may list any valid column you
 wish, in the GROUP BY clause. Consider the following two queries,
 which highlight this fact:
select count(*)
		from emp
	 group by deptno

		COUNT(*)

				3
				5
				6

	select count(*)
		from emp
	 group by deptno,job

	 COUNT(*)

			1
			1
			1
			2
			2
			1
			1
			1
			4
Including items other than aggregate functions in the SELECT
 list is not mandatory, but often improves readability and usability of
 the results.
Tip
As a rule, when using GROUP BY and aggregate functions, any items in the
 SELECT list [from the table(s) in the FROM clause] not used as an
 argument to an aggregate function must be included in the GROUP BY
 clause. However, MySQL has a “feature” that allows you to deviate
 from this rule, allowing you to place items in your SELECT list
 [that are columns in the table(s) you are selecting from] that are
 not used as arguments to an aggregate function and that are not
 present in your GROUP BY clause. I use the term “feature” very
 loosely here as its use is a bug waiting to happen and I urge you to
 avoid it. As a matter of fact, if you use MySQL and care at all
 about the accuracy of your queries I suggest you urge them to remove
 this, ahem, “feature.”

A.2. Windowing

Once you understand the concept of grouping and using aggregates in SQL, understanding
 window functions is easy. Window functions, like
 aggregate functions, perform an aggregation on a defined set (a group)
 of rows, but rather than returning one value per group, window functions
 can return multiple values for each group. The group of rows to perform
 the aggregation on is the window (hence the name
 "window functions”). DB2 actually calls such functions
 online analytic processing (OLAP) functions, and
 Oracle calls them analytic functions, but the ISO
 SQL standard calls them window functions, so that’s the term I use in
 this book.
A Simple Example

Let’s say that you wish to count the total number of employees
 across all departments. The traditional method for doing that is to
 issue a COUNT(*) query against the entire EMP table:
select count(*) as cnt
		from emp

		 CNT

		 14
This is easy enough, but often you will find yourself wanting to
 access such aggregate data from rows that do not represent an
 aggregation, or that represent a different aggregation. Window
 functions make light work of such problems. For example, the following
 query shows how you can use a window function to access aggregate data
 (the total count of employees) from detail rows (one per
 employee):
select ename,
			 deptno,
			 count(*) over() as cnt
		 from emp
	 order by 2

	 ENAME	 DEPTNO	CNT
	 ---------- ------ ------
	 CLARK			10	 14
	 KING				10	 14
	 MILLER			10	 14
	 SMITH			20	 14	
	 ADAMS			20	 14
	 FORD				20	 14
	 SCOTT			20	 14
	 JONES			20	 14
	 ALLEN			30	 14
	 BLAKE			30	 14
	 MARTIN			30	 14
	 JAMES			30	 14
	 TURNER			30	 14
	 WARD				30	 14
The window function invocation in this example is COUNT(*)
 OVER(). The presence of the OVER keyword indicates that the invocation of COUNT will
 be treated as a window function, not as an aggregate function. In
 general, the SQL standard allows for all aggregate functions to also be window functions, and the
 keyword OVER is how the language distinguishes between the two
 uses.
So, what did the window function COUNT(*) OVER () do exactly? For every row being
 returned in the query, it returned the count of all the
 rows in the table. As the empty parentheses suggest, the
 OVER keyword accepts additional clauses to affect the range of rows
 that a given window function considers. Absent any such clauses, the
 window function looks at all rows in the result set, which is why you
 see the value 14 repeated in each row of output.
Hopefully you begin to see the great utility of window
 functions, which is that they allow you to work with multiple levels
 of aggregation in one row. As you continue through this appendix,
 you’ll begin to see even more just how incredibly useful that ability
 can be.

Order of Evaluation

Before digging deeper into the OVER clause, it is
 important to note that window functions are performed as the last step
 in SQL processing prior to the ORDER BY clause. As an example of how
 window functions are processed last, let’s take the query from the
 preceding section and use a WHERE clause to filter out employees from
 DEPTNO 20 and 30:
select ename,
		 deptno,
		 count(*) over() as cnt
	 from emp
	 where deptno = 10
	 order by 2

	 ENAME		DEPTNO	 CNT
	 ---------- ------ ------
	 CLARK			10		3
	 KING			10		3
	 MILLER			10		3
The value for CNT for each row is no longer 14, it is now 3. In
 this example, it is the WHERE clause that restricts the result set to
 three rows, hence the window function will count only three rows
 (there are only three rows available to the window function by the
 time processing reaches the SELECT portion of the query). From this
 example you can see that window functions perform their computations
 after clauses such as WHERE and GROUP BY are evaluated.

Partitions

Use the PARTITION BY clause to define a
 partition or group of rows to perform an aggregation over. As we’ve seen
 already, if you use empty parentheses then the entire result set is
 the partition that a window function aggregation will be computed
 over. You can think of the PARTITION BY clause as a “moving GROUP BY”
 because unlike a traditional GROUP BY, a group created by PARTITION BY
 is not distinct in a result set. You can use PARTITION BY to compute
 an aggregation over a defined group of rows (resetting when a new group is encountered) and
 rather than having one group represent all instances of that value in
 the table, each value (each member in each group) is returned.
 Consider the following query:
select ename,
				 deptno,
				 count(*) over(partition by deptno) as cnt
				from emp
			order by 2

			ENAME		DEPTNO		CNT
			----------	------ ------
			CLARK			10		3
			KING			10		3
			MILLER			10		3
			SMITH			20		5
			ADAMS			20		5
			FORD			20		5
			SCOTT			20		5
			JONES			20		5
			ALLEN			30		6
			BLAKE			30		6
			MARTIN			30		6
			JAMES			30		6
			TURNER			30		6
			WARD			30 6
This query still returns 14 rows, but now the COUNT is performed
 for each department as a result of the PARTITION BY DEPTNO clause.
 Each employee in the same department (in the same partition) will have
 the same value for CNT, because the aggregation will not reset
 (recompute) until a new department is encountered. Also note that you
 are returning information about each group, along with the members of
 each group. You can think of the preceding query as a more efficient
 version of the following:
select e.ename,
		 e.deptno,
		 (select count(*) from emp d
			 where e.deptno=d.deptno) as cnt
		from emp e
	 order by 2

	 ENAME		 DEPTNO	 CNT
	 ---------- ------ ------
	 CLARK			10		3
	 KING			10		3
	 MILLER		10		3
	 SMITH			20		5
	 ADAMS			20		5
	 FORD			20		5
	 SCOTT			20		5
	 JONES			20		5
	 ALLEN			30		6
	 BLAKE			30		6
	 MARTIN		30		6
	 JAMES			30		6
	 TURNER		30		6
	 WARD			30		6
Additionally, what’s nice about the PARTITION BY clause is that it performs its computations
 independently of other window functions, partitioning by different columns in
 the same SELECT statement. Consider the following query, which returns
 each employee, her department, the number of employees in her
 respective department, her job, and the number of employees with the
 same job:
select ename,
			deptno,
			count(*) over(partition by deptno) as dept_cnt,
			job,
			count(*) over(partition by job) as job_cnt
		from emp
	 order by 2

	 ENAME	 DEPTNO DEPT_CNT JOB		JOB_CNT	
	 ---------- ------ -------- --------- -------
	 MILLER			10			3 CLERK			4
	 CLARK			10			3 MANAGER		3
	 KING				10			3 PRESIDENT		1
	 SCOTT			20			5 ANALYST		2
	 FORD				20			5 ANALYST		2
	 SMITH			20			5 CLERK			4
	 JONES			20			5 MANAGER		3
	 ADAMS			20			5 CLERK			4
	 JAMES			30			6 CLERK			4
	 MARTIN			30			6 SALESMAN		4
	 TURNER			30			6 SALESMAN		4
	 WARD				30			6 SALESMAN		4
	 ALLEN			30			6 SALESMAN		4
	 BLAKE			30			6 MANAGER		3
In this result set, you can see that employees in the same
 department have the same value for DEPT_CNT, and that employees who
 have the same job position have the same value for JOB_CNT.
By now it should be clear that the PARTITION BY clause works
 like a GROUP BY clause, but it does so without being affected by the
 other items in the SELECT clause and without requiring you to write a
 GROUP BY clause.

Effect of NULLs

Like the GROUP BY clause, the PARTITION BY clause lumps
 all the NULLs into one group or partition. Thus, the effect from NULLs
 when using PARTITION BY is similar to that from using GROUP BY. The
 following query uses a window function to count the number of
 employees with each distinct commission (returning–1 in place of NULL
 for readability):
select coalesce(comm,-1) as comm,
		count(*)over(partition by comm) as cnt
	 from emp

	 COMM		 CNT
	------ ----------
		0			1
	 300			1
	 500			1
	 1400			1
	 -1		 10
	 -1		 10
	 -1		 10
	 -1		 10
	 -1		 10
	 -1		 10
	 -1 10
	 -1 10
	 -1		 10
	 -1		 10
Because COUNT(*) is used, the function counts rows. You can see
 that there are 10 employees having NULL commissions. Use COMM instead
 of *, however, and you get quite different results:
select coalesce(comm,-1) as comm,
 count(comm)over(partition by comm) as cnt
 from emp

 COMM		CNT
	---- ----------
	 0 1
	 300		 1
 500 1
 1400 1
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
This query uses COUNT(COMM), which means that only the
 non-NULL values in the COMM column are counted. There is one
 employee with a commission of 0, one employee with a commission of
 300, and so forth. But notice the counts for those with NULL
 commissions! Those counts are 0. Why? Because aggregate functions ignore NULL values, or more
 accurately, aggregate functions count only non-NULL values.
Tip
When using COUNT, consider whether you wish to include
 NULLs. Use COUNT(column) to avoid counting NULLs. Use
 COUNT(*) if you do wish to include NULLs (since you are no longer
 counting actual column values, you are counting rows).

When Order Matters

Sometimes the order in which rows are treated by a window
 function is material to the results that you wish to obtain from a
 query. For this reason, window function syntax includes an ORDER BY subclause that you can place within an OVER
 clause. Use the ORDER BY clause to specify how the rows are ordered with
 a partition (remember, “partition” in the absence of a PARTITION BY
 clause means the entire result set).
Warning
Some window functions require you to
 impose order on the partitions of rows being affected. Thus, for
 some window functions an ORDER BY clause is mandatory. At the time of this
 writing, SQL Server does not allow ORDER BY in the OVER clause when
 used with aggregate window functions. SQL Server does permit ORDER
 BY in the OVER clause when used with window ranking
 functions.

When you use an ORDER BY clause in the OVER clause of a window
 function you are specifying two things:
	How the rows in the partition are ordered

	What rows are included in the computation

Consider the following query, which sums and computes a running
 total of salaries for employees in DEPTNO 10:
select deptno,
			ename,
			hiredate,
			sal,
			sum(sal)over(partition by deptno) as total1,
			sum(sal)over() as total2,
			sum(sal)over(order by hiredate) as running_total
		from emp
	 where deptno=10

	 DEPTNO ENAME HIREDATE	 SAL TOTAL1 TOTAL2 RUNNING_TOTAL
	 ------ ------ ----------- ----- ------ ------ -------------
		 10 CLARK 09-JUN-1981 2450 8750	 8750		2450
		 10 KING	 17-NOV-1981 5000 8750	 8750		7450
		 10 MILLER 23-JAN-1982 1300 8750	 8750		8750
Warning
Just to keep you on your toes, I’ve included a sum with empty
 parentheses. Notice how TOTAL1 and TOTAL2 have the same values. Why?
 Once again, the order in which window functions are evaluated
 answers the question. The WHERE clause filters the result set such
 that only salaries from DEPTNO 10 are considered for summation. In
 this case there is only one partition—the entire result set, which
 consists of only salaries from DEPTNO 10. Thus TOTAL1 and TOTAL2 are
 the same.

Looking at the values returned by column SAL, you can easily see
 where the values for RUNNING_TOTAL come from. You can eyeball the
 values and add them yourself to compute the running total. But more
 importantly, why did including an ORDER BY in the OVER clause create a
 running total in the first place? The reason is, when you use ORDER BY
 in the OVER clause you are specify a default “moving” or “sliding”
 window within the partition even though you don’t see it. The ORDER BY
 HIREDATE clause terminates summation at the HIREDATE in the current
 row.
The following query is the same as the previous one, but uses
 the RANGE BETWEEN clause (which you’ll learn more about
 later) to explicitly specify the default behavior that results from
 ORDER BY HIREDATE:
select deptno,
		 ename,
		 hiredate,
		 sal,
		 sum(sal)over(partition by deptno) as total1,
		 sum(sal)over() as total2,
		 sum(sal)over(order by hiredate
						range between unbounded preceding
							and current row) as running_total
	 from emp
	 where deptno=10

	 DEPTNO ENAME HIREDATE		 SAL TOTAL1 TOTAL2 RUNNING_TOTAL
	 ------ ------ ----------- ----- ------ ------ -------------
		 10 CLARK 09-JUN-1981	2450 8750	 8750			2450
		 10 KING 17-NOV-1981	5000 8750	 8750			7450
		 10 MILLER 23-JAN-1982 1300 8750 8750 8750
The RANGE BETWEEN clause that you see in this query is termed
 the framing clause by ANSI and I’ll use that term
 here. Now, it should be easy to see why specifying an ORDER BY in the
 OVER clause created a running total; we’ve (by default) told the query
 to sum all rows starting from the current row and include all prior
 rows (“prior” as defined in the ORDER BY, in this case ordering the
 rows by HIREDATE).

The Framing Clause

Let’s apply the framing clause from the preceding query
 to the result set, starting with the first employee hired, who is
 named CLARK.
	Starting with CLARK’s salary, 2450, and including all
 employees hired before CLARK, compute a sum. Since CLARK was the
 first employee hired in DEPTNO 10, the sum is simply CLARK’s
 salary, 2450, which is the first value returned by
 RUNNING_TOTAL.

	Let’s move to the next employee based on HIREDATE, named
 KING, and apply the framing clause once again. Compute a sum on
 SAL starting with the current row, 5000 (KING’s salary), and
 include all prior rows (all employees hired before KING). CLARK is
 the only one hired before KING so the sum is 5000 + 2450, which is
 7450, the second value returned by RUNNING_TOTAL.

	Moving on to MILLER, the last employee in the partition
 based on HIREDATE, let’s one more time apply the framing clause.
 Compute a sum on SAL starting with the current row, 1300 (MILLER’s
 salary), and include all prior rows (all employees hired before
 MILLER). CLARK and KING were both hired before MILLER, and thus
 their salaries are included in MILLER’s RUNNING_TOTAL: 2450 + 5000
 + 1300 is 8750, which is the value for RUNNING_TOTAL for
 MILLER.

As you can see, it is really the framing clause that produces
 the running total. The ORDER BY defines the order of evaluation and
 happens to also imply a default framing.
In general, the framing clause allows you to define different
 “sub-windows” of data to include in your computations. There are many
 ways to specify such sub-windows. Consider the following query:
select deptno,
			ename,
			sal,
			sum(sal)over(order by hiredate
						 range between unbounded preceding
						 and current row) as run_total1,
			sum(sal)over(order by hiredate
						 rows between 1 preceding
						 and current row) as run_total2,
			sum(sal)over(order by hiredate
						 range between current row
						 and unbounded following) as run_total3,
			sum(sal)over(order by hiredate
						 rows between current row
						 and 1 following) as run_total4
		from emp
	 where deptno=10

	DEPTNO ENAME	SAL RUN_TOTAL1 RUN_TOTAL2 RUN_TOTAL3 RUN_TOTAL4
	------ ------ ----- ---------- ---------- ---------- ----------
		10 CLARK	2450	 2450		 2450	 8750		7450
		10 KING		5000	 7450 7450 6300 6300
		10 MILLER 1300 8750 6300 1300 1300
Don’t be intimidated here; this query is not as bad as it looks.
 You’ve already seen RUN_TOTAL1 and the effects of the framing clause “UNBOUNDED PRECEDING AND CURRENT ROW”.
 Here’s a quick description of what’s happening in the other
 examples:
	RUN_TOTAL2
	Rather than the keyword RANGE, this framing clause specifies ROWS, which
 means the frame, or window, is going to be
 constructed by counting some number of rows. The 1 PRECEDING
 means that the frame will begin with the row immediately
 preceding the current row. The range continues through the
 CUR-RENT ROW. So what you get in RUN_TOTAL2 is the sum of the
 current employee’s salary and that of the preceding employee,
 based on HIREDATE.
Tip
It so happens that RUN_TOTAL1 and RUN_TOTAL2 are the
 same for both CLARK and KING. Why? Think about which values
 are being summed for each of those employees, for each of the
 two window functions. Think carefully, and you’ll get the
 answer.

	RUN_TOTAL3
	The window function for RUN_TOTAL3 works just the opposite
 of that for RUN_TOTAL1; rather than starting with the current
 row and including all prior rows in the summation, summation
 begins with the current row and includes all subsequent rows in
 the summation.

	RUN_TOTAL4
	Is inverse of RUN_TOTAL2; rather than starting from the
 current row and including one prior row in the summation, start
 with the current row and include one subsequent row in the
 summation.

Tip
If you can understand what’s been explained thus far, you will
 have no problem with any of the recipes in this book. If you’re not
 catching on, though, try practicing with your own examples and your
 own data. I personally find learning easier by actually coding new
 features rather than just reading about them.

A Framing Finale

As a final example of the effect of the framing clause on query
 output, consider the following query:
select ename,
			sal,
			min(sal)over(order by sal) min1,
			max(sal)over(order by sal) max1,
			min(sal)over(order by sal
						 range between unbounded preceding
						 and unbounded following) min2,
			max(sal)over(order by sal
						 range between unbounded preceding
						 and unbounded following) max2,
			min(sal)over(order by sal
						 range between current row
						 and current row) min3,
			max(sal)over(order by sal
						 range between current row
						 and current row) max3,
			max(sal)over(order by sal
						 rows between 3 preceding
						 and 3 following) max4
	 from emp

	 ENAME		SAL		MIN1	MAX1	MIN2	MAX2	MIN3	MAX3	MAX4
	 ------ ----- ------ ------ ------ ------ ------ ------ ------
	 SMITH		800		800		800		800		5000	800		800		1250
	 JAMES		950		800		950		800		5000	950		950		1250
	 ADAMS		1100	800		1100	800		5000	1100	1100	1300
	 WARD		1250	800		1250	800		5000	1250	1250	1500
	 MARTIN	1250	800		1250	800		5000	1250	1250	1600
	 MILLER	1300	800		1300	800		5000	1300	1300	2450
	 TURNER	1500	800		1500	800		5000	1500	1500	2850
	 ALLEN		1600	800		1600	800		5000	1600	1600	2975
	 CLARK		2450	800		2450	800		5000	2450	2450	3000
	 BLAKE		2850	800		2850	800		5000	2850	2850	3000	
	 JONES		2975	800		2975	800		5000	2975	2975	5000
	 SCOTT		3000	800		3000	800		5000	3000	3000	5000
	 FORD		3000	800		3000	800		5000	3000	3000	5000
	 KING		5000	800		5000	800		5000	5000	5000	5000
OK, let’s break this query down:
	MIN1
	The window function generating this column does not
 specify a framing clause, so the default framing clause of
 UNBOUNDED PRECEDING AND CURRENT ROW kicks in. Why is MIN1 800
 for all rows? It’s because the lowest salary comes first (ORDER
 BY SAL), and it remains the lowest, or minimum, salary forever
 after.

	MAX1
	The values for MAX1 are much different from those for
 MIN1. Why? The answer (again) is the default framing clause
 UNBOUNDED PRECEDING AND CURRENT ROW. In conjunction with ORDER
 BY SAL, this framing clause ensures that the maximum salary will
 also correspond to that of the current row.
Consider the first row, for SMITH. When evaluating SMITH’s
 salary and all prior salaries, MAX1 for SMITH is SMITH’s salary,
 because there are no prior salaries. Moving on to the next row,
 JAMES, when comparing JAMES’ salary to all prior salaries, in
 this case comparing to the salary of SMITH, JAMES’ salary is the
 higher of the two, and thus it is the maximum. If you apply this
 logic to all rows, you will see that the value of MAX1 for each
 row is the current employee’s salary.

	MIN2 and MAX2
	The framing clause given for these is UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING, which is the same as
 specifying empty parentheses. Thus, all rows in the result set
 are considered when computing MIN and MAX. As you might expect,
 the MIN and MAX values for the entire result set are constant,
 and thus the value of these columns is constant as well.

	MIN3 and MAX3
	The framing clause for these is CURRENT ROW AND CURRENT
 ROW, which simply means use only the current employee’s salary
 when looking for the MIN and MAX salary. Thus both MIN3 and MAX3
 are the same as SAL for each row. That was easy, wasn’t
 it?

	MAX4
	The framing clause defined for MAX4 is 3 PRECEDING AND 3
 FOLLOWING, which means, for every row, consider the three rows
 prior and the three rows after the current row, as well as the
 current row itself. This particular invocation of MAX(SAL) will
 return from those rows the highest salary value.
If you look at the value of MAX4 for employee MARTIN you
 can see how the framing clause is applied. MARTIN’s salary is
 1250 and the three employee salaries prior to MARTIN’s are
 WARD’s (1250), ADAMS’ (1100) and JAMES’ (950). The three
 employee salaries after MARTIN’s are MILLER’s (1300), TURNER’s
 (1500), and ALLEN’s (1600). Out of all those salaries, including
 MARTIN’s, the highest is ALLEN’s, and thus the value of MAX4 for
 MARTIN is 1600.

Readability + Performance = Power

As you can see, window functions are extremely powerful as they
 allow you to write queries that contain both detailed and aggregate
 information. Using window functions allows you to write smaller, more
 efficient queries as compared to using multiple self join and/or
 scalar subqueries. Consider the following query, which easily answers
 all of the following questions: “What is the number of employees in
 each department? How many different types of employees are in each
 department (e.g., how many clerks are in department 10)? How many
 total employees are in table EMP?”
select deptno,
			job,
			count(*) over (partition by deptno) as emp_cnt,
			count(job) over (partition by deptno,job) as job_cnt,
			count(*) over () as total
		from emp

		DEPTNO JOB			EMP_CNT		JOB_CNT		TOTAL
		------ --------- ---------- ---------- ----------
			10 CLERK			3			1			14
			10 MANAGER			3			1			14
			10 PRESIDENT		3			1			14
			20 ANALYST			5			2			14
			20 ANALYST			5			2			14
			20 CLERK			5			2			14
			20 CLERK			5			2			14
			20 MANAGER			5			1			14
			30 CLERK			6			1			14
			30 MANAGER			6			1			14
			30 SALESMAN			6			4			14
			30 SALESMAN			6			4			14
			30 SALESMAN			6			4			14
			30 SALESMAN			6			4			14
To return the same result set without using window functions
 would require a bit more work:
select a.deptno, a.job,
		(select count(*) from emp b
			where b.deptno = a.deptno) as emp_cnt,
		(select count(*) from emp b
			where b.deptno = a.deptno and b.job = a.job) as job_cnt,
		(select count(*) from emp) as total
	 from emp a
	order by 1,2

	DEPTNO JOB			EMP_CNT		JOB_CNT		TOTAL
	------ --------- ---------- ---------- ----------
		10 CLERK			3			1			14
		10 MANAGER			3			1			14
		10 PRESIDENT		3			1			14
		20 ANALYST			5			2			14
		20 ANALYST			5			2			14
		20 CLERK			5			2			14	
		20 CLERK			5			2			14
		20 MANAGER			5			1			14
		30 CLERK			6			1			14
		30 MANAGER			6			1			14
		30 SALESMAN			6			4			14
		30 SALESMAN			6			4			14
		30 SALESMAN			6			4			14
		30 SALESMAN			6			4			14
The non-window solution is obviously not difficult to write, yet
 it certainly is not as clean or efficient (you won’t see performance
 differences with a 14-row table, but try these queries with, say, a
 1,000- or 10,000-row table and then you’ll see the benefit of using
 window functions over multiple self joins and scalar
 subqueries).

Providing a Base

Besides readability and performance, window functions are useful
 for providing a “base” for more complex “report style” queries. For
 example, consider the following “report style” query that uses window
 functions in an inline view and then aggregates the results in an
 outer query. Using window functions allows you to return detailed as
 well as aggregate data, which is useful for reports. The query below uses window functions to find
 counts using different partitions. Because the aggregation is applied
 to multiple rows, the inline view returns all rows from EMP, which the
 outer CASE expressions can use to transpose and create a formatted
 report:
select deptno,
		 emp_cnt as dept_total,
		 total,
		 max(case when job = 'CLERK'
					then job_cnt else 0 end) as clerks,
		 max(case when job = 'MANAGER'
					then job_cnt else 0 end) as mgrs,
		 max(case when job = 'PRESIDENT'
					then job_cnt else 0 end) as prez,
		 max(case when job = 'ANALYST'
					then job_cnt else 0 end) as anals,
		 max(case when job = 'SALESMAN'
					then job_cnt else 0 end) as smen
		from (
	 select deptno,
			job,
			count(*) over (partition by deptno) as emp_cnt,
			count(job) over (partition by deptno,job) as job_cnt,
			count(*) over () as total	
		from emp
) x
	 group by deptno, emp_cnt, total

	 DEPTNO DEPT_TOTAL TOTAL CLERKS MGRS PREZ ANALS SMEN
	 ------ ---------- ----- ------ ---- ---- ----- ----
		10			3		14		1	1	1	 0		0
		20			5		14		2	1	0	 2		0
		30			6		14		1	1	0	 0		4
The query above returns each department, the total number of
 employees in each department, the total number of employees in table
 EMP, and a breakdown of the number of different job types in each
 department. All this is done in one query, without additional joins or
 temp tables!
As a final example of how easily multiple questions can be
 answered using window functions, consider the following query:
select ename as name,
			sal,
			max(sal)over(partition by deptno) as hiDpt,
			min(sal)over(partition by deptno) as loDpt,
			max(sal)over(partition by job) as hiJob,
			min(sal)over(partition by job) as loJob,
			max(sal)over() as hi,
			min(sal)over() as lo,
			sum(sal)over(partition by deptno
							 order by sal,empno) as dptRT,
			sum(sal)over(partition by deptno) as dptSum,
			sum(sal)over() as ttl
		 from emp
	 order by deptno,dptRT

	 NAME		SAL HIDPT LODPT HIJOB LOJOB		HI	LO DPTRT DPTSUM		TTL
	 ------ ----- ----- ----- ----- ----- ----- ---- ------ ------ ------
	 MILLER 1300 5000 1300 1300 800 5000 800 1300 8750 29025
	 CLARK 2450 5000 1300 2975 2450 5000 800 3750 8750 29025
	 KING 5000 5000 1300 5000 5000 5000 800 8750 8750 29025
	 SMITH 800 3000 800 1300 800 5000 800 800 10875 29025
	 ADAMS 1100 3000 800 1300 800 5000 800 1900 10875 29025
	 JONES 2975 3000 800 2975 2450 5000 800 4875 10875 29025
	 SCOTT 3000 3000 800 3000 3000 5000 800 7875 10875 29025
	 FORD 3000 3000 800 3000 3000 5000 800 10875 10875 29025
	 JAMES 950 2850 950 1300 800 5000 800 950 9400 29025
	 WARD 1250 2850 950 1600 1250 5000 800 2200 9400 29025
	 MARTIN 1250 2850 950 1600 1250 5000 800 3450 9400 29025
	 TURNER 1500 2850 950	1600 1250 5000 800 4950 9400 29025
	 ALLEN 1600 2850 950 1600 1250 5000 800 6550 9400 29025
	 BLAKE 2850 2850 950 2975 2450 5000 800 9400 9400 29025
This query answers the following questions easily, efficiently,
 and readably (and without additional joins to EMP!). Simply match the
 employee and her salary with the different rows in the result set to
 determine:
	who makes the highest salary of all employees (HI)

	who makes the lowest salary of all employees (LO)

	who makes the highest salary in her department
 (HIDPT)

	who makes the lowest salary in her department (LODPT)

	who makes the highest salary in her job (HIJOB)

	who makes the lowest salary in her job (LOJOB)

	what is the sum of all salaries (TTL)

	what is the sum of salaries per department (DPTSUM)

	what is the running total of all salaries per department
 (DPTRT)

Appendix B. Rozenshtein Revisited

This appendix is a tribute to David Rozenshtein. As I mentioned in
 the introduction, I feel his book The Essence of SQL is (even today) the best book
 ever written on SQL. Although only 119 pages long, the book covers what I
 consider to be crucial topics for any SQL programmer. In particular, David
 shows how to think through a problem and arrive at an answer. The
 solutions provided by Rozenshtein are very set oriented. Even if the size
 of your tables do not permit you to use his solutions in a practical
 environment, his approach is excellent as it forces you to stop searching
 for a procedural solution to a problem and start thinking in sets.
The Essence of SQL was published long before
 window functions and MODEL clauses. In this appendix I provide alternative
 solutions to some of the questions in Rozenshtein’s book using some of the
 newer functions available in standard SQL. (Whether these new solutions
 are “better” than Rozenshtein’s depends on the circumstances.) At the end
 of each discussion, I present a solution based on the original solution
 from Rozenshtein’s book. For the examples in which I present a variation
 of a problem found in Rozenshtein’s text, I will also present a variation
 of a solution (a solution that may not necessarily exist in Rozenshtein’s
 book, but that uses a similar technique).
B.1. Rozenshtein’s Example Tables

The following tables are based on Rozenshtein’s book and will be
 used in this chapter:
	/* table of students */
	create table student
	(sno integer,
	 sname varchar(10),
	 age integer
)

	/* table of courses */
	create table courses
	(cno varchar(5),
	 title varchar(10),
	 credits integer
)
	
	/* table of professors */
	create table professor
	(lname varchar(10),
	 dept varchar(10),
	 salary integer,
	 age integer
)

	/* table of students and the courses they take */
	create table take
	(sno integer,
	 cno varchar(5)
)

	/* table of professors and the courses they teach */
	create table teach
	(lname varchar(10),
	 cno varchar(5)
)

	insert into student values (1,'AARON',20)
	insert into student values (2,'CHUCK',21)
	insert into student values (3,'DOUG',20)
	insert into student values (4,'MAGGIE',19)
	insert into student values (5,'STEVE',22)
	insert into student values (6,'JING',18)
	insert into student values (7,'BRIAN',21)
	insert into student values (8,'KAY',20)
	insert into student values (9,'GILLIAN',20)
	insert into student values (10,'CHAD',21)
	
	insert into courses values ('CS112','PHYSICS',4)
	insert into courses values ('CS113','CALCULUS',4)
	insert into courses values ('CS114','HISTORY',4)
	
	insert into professor values ('CHOI','SCIENCE',400,45)
	insert into professor values ('GUNN','HISTORY',300,60)
	insert into professor values ('MAYER','MATH',400,55)
	insert into professor values ('POMEL','SCIENCE',500,65)
	insert into professor values ('FEUER','MATH',400,40)
	
	insert into take values (1,'CS112')
	insert into take values (1,'CS113')
	insert into take values (1,'CS114')
	insert into take values (2,'CS112')
	insert into take values (3,'CS112')
	insert into take values (3,'CS114')
	insert into take values (4,'CS112')
	insert into take values (4,'CS113')
	insert into take values (5,'CS113')
	insert into take values (6,'CS113')
	insert into take values (6,'CS114')

	insert into teach values ('CHOI','CS112')
	insert into teach values ('CHOI','CS113')
	insert into teach values ('CHOI','CS114')
	insert into teach values ('POMEL','CS113')
	insert into teach values ('MAYER','CS112')
	insert into teach values ('MAYER','CS114')

B.2. Answering Questions Involving Negation

In his book, Rozenshtein approached the teaching of SQL
 through an examination of the different types of fundamental problems
 that you are often called upon to solve, in one form or another.
 Negation is one such type. It is often necessary to find rows for which
 some condition is not true. Simple conditions are easy but, as the
 following questions show, some negation problems require a bit of
 creativity and thought to solve.
Question 1

You want to find students who do not take CS112, but the
 following query is returning the wrong results:
	select *
	 from student
	 where sno in (select sno
					 from take
					 where cno != 'CS112')
Because a student may take several courses, this query can (and
 does) return students who take CS112. The query is incorrect because
 it does not answer the question: “Who does not take CS112?”
 Instead, it answers the question “Who takes a course that is not
 CS112?” The correct result set should include students who take no
 courses as well as students who take courses but none of them CS112.
 Ultimately, you should return the following result set:
	SNO		 SNAME				AGE
	--------- ---------- ----------
			5 STEVE				 22
			6 JING				 18
			7 BRIAN				 21
			8 KAY				 20
			9 GILLIAN			 20
		 10 CHAD				 21
MySQL and PostgreSQL

Use a CASE expression with the aggregate function MAX
 to flag CS112 if it exists for a particular student:
	1 select s.sno,s.sname,s.age
	2	from student s left join take t
	3	 on (s.sno = t.sno)
	4 group by s.sno,s.sname,s.age
	5 having max(case when t.cno = 'CS112'
	6				 then 1 else 0 end) = 0

DB2 and SQL Server

Use a CASE expression with the window function MAX OVER to
 flag CS112 if it exists for a particular student:
	1 select distinct sno,sname,age
	2	from (
	3 select s.sno,s.sname,s.age,
	4		 max(case when t.cno = 'CS112'
	5				 then 1 else 0 end)
	7		 over(partition by s.sno,s.sname,s.age) as takes_CS112
	9	from student s left join take t
 10	 on (s.sno = t.sno)
 11) x
 12 where takes_CS112 = 0

Oracle

For users on Oracle9i Database and later,
 you can use the DB2 solution above. Alternatively, you can use the
 proprietary Oracle outer-join syntax, which is mandatory for users
 on Oracle8i Database and earlier:
	/* group by solution */
	
	1 select s.sno,s.sname,s.age
	2	from student s, take t
	3 where s.sno = t.sno (+)
	4 group by s.sno,s.sname,s.age
	5 having max(case when t.cno = 'CS112'
	6				 then 1 else 0 end) = 0

	/* window solution */
	
	 1 select distinct sno,sname,age
	 2	 from (
	 3 select s.sno,s.sname,s.age,
	 4		 max(case when t.cno = 'CS112'
	 5				 then 1 else 0 end)
	 7		 over(partition by s.sno,s.sname,s.age) as takes_CS112
	 9	 from student s, take t
	10 where s.sno = t.sno (+)
	11) x
	12 where takes_CS112 = 0

Discussion

Despite the different syntax for each solution, the technique
 is the same. The idea is to create a “Boolean” column in the result
 set to denote whether or not a student takes CS112. If a student takes CS112,
 then return 1 in that column; otherwise, return 0. The following
 query moves the CASE expression into the SELECT list and shows the
 intermediate results thus far:
select s.sno,s.sname,s.age,
		 case when t.cno = 'CS112'
				then 1
				else 0
		 end as takes_CS112
	 from student s left join take t
		on (s.sno=t.sno)

	SNO SNAME			 AGE TAKES_CS112
	--- ---------- ---------- -----------
	1 AARON			 20			1
	1	AARON			 20			0
	1	AARON			 20			0
	2	CHUCK			 21			1
	3	DOUG			 20			1
	3	DOUG			 20			0
	4	MAGGIE			 19			1
	4	MAGGIE			 19			0
	5	STEVE			 22			0
	6	JING			 18			0
	6	JING			 18			0
	8	KAY				 20			0
 10	CHAD			 21			0
	7	BRIAN			 21			0
	9	GILLIAN			 20			0
The outer join to table TAKE ensures that even students who
 take no courses are returned. The next step is to use MAX to take
 the greatest value returned by the CASE expression for each student.
 If a student takes CS112, the greatest value will be 1, because all
 other courses are 0. For the solution using GROUP BY, the final step
 is to use the HAVING clause to keep only students with 0 returned
 from the MAX/CASE expression. For the window solution, you need to
 wrap the query in an inline view and then reference TAKES_CS112,
 because window functions cannot be referenced directly in the WHERE
 clause. Because of how window functions work, it is also necessary
 to remove duplicates caused by multiple courses.

Original solution

The original solution to this problem is quite clever and is
 shown here:
	select *
	 from student
	 where snonot in (select sno
						from take
						where cno = 'CS112')
This can be stated as: “Find the students in table TAKE who
 take CS112, and then return all students in table STUDENT who are
 not them.” This technique follows the advice regarding negation found at the end of Rozenshtein’s
 book:
Remember that real negation requires two passes: To find out
 “who does not,” first find out “who does” and then get rid of
 them.

Question 2

You want to find students who take CS112 or CS114 but not both.
 The following query looks promising as a solution but returns the
 wrong result set:
	select *
	 from student
	 where sno in (select sno
					 from take
					 where cno != 'CS112'
					 and cno != 'CS114')
Of the students who take courses, only students DOUG and AARON
 take both CS112 and CS114. Those two should be excluded. Student STEVE
 takes CS113, but not CS112 or CS114, and should be excluded as
 well.
Because a student can take multiple courses, the approach here
 is to return a single row for each student with information regarding
 whether the student takes CS112 or CS114, or both. This approach
 allows you to easily evaluate whether or not the student takes both
 courses without having to make multiple passes through the data. The
 final result set should be:
	SNO SNAME			 AGE
	--- ---------- ----------
	2	CHUCK			 21
	4	MAGGIE			 19
	6	JING			 18
MySQL and PostgreSQL

Use a CASE expression with the aggregate function SUM to find
 students who take either CS112 or CS114 but not both:
	1 select s.sno,s.sname,s.age
	2	from student s, take t
	3 where s.sno = t.sno
	4 group by s.sno,s.sname,s.age
	5 having sum(case when t.cno in ('CS112','CS114')
	6				 then 1 else 0 end) = 1

DB2, Oracle, and SQL Server

Use a CASE expression with the window function SUM
 OVER to find students who take either CS112 or CS114 but not
 both:
	1 select distinct sno,sname,age
	2	from (
	3 select s.sno,s.sname,s.age,
	4		 sum(case when t.cno in ('CS112','CS114') then 1 else 0 end)
	5		 over (partition by s.sno,s.sname,s.age) as takes_either_or
	6	from student s, take t
	7 where s.sno = t.sno
	8) x
	9 where takes_either_or = 1

Discussion

The first step in solving the problem is to use an inner join
 from table STUDENT to table TAKE, thus eliminating any students who
 do not take any courses. The next step is to use a CASE expression
 to denote whether a student takes each respective course. In the
 following query, the CASE expressions are moved into the SELECT list
 and return the intermediate results thus far:
select s.sno,s.sname,s.age,
		 case when t.cno in ('CS112','CS114')
				then 1 else 0 end as takes_either_or
	 from student s, take t
	 where s.sno = t.sno

	SNO SNAME	 AGE TAKES_EITHER_OR
	--- ---------- --- ---------------
	1	AARON		20				 1
	1	AARON		20				 0
	1	AARON		20				 1
	2	CHUCK		21				 1
	3	DOUG		20				 1
	3	DOUG		20				 1
	4	MAGGIE		19				 1
	4	MAGGIE		19				 0
	5	STEVE		22				 0
	6	JING		18				 0
	6	JING		18				 1
A value of 1 for TAKES_EITHER_OR signifies the student takes
 CS112 or CS114. Because a student can take multiple courses, the
 next step is to return only one row per student by using a GROUP BY
 with the aggregate function SUM. The function SUM will sum all the
 1’s for each student:
select s.sno,s.sname,s.age,
		 sum(case when t.cno in ('CS112','CS114')
					then 1 else 0 end) as takes_either_or
	 from student s, take t
	 where s.sno = t.sno
	 group by s.sno,s.sname,s.age

	SNO SNAME	 AGE TAKES_EITHER_OR
	--- ---------- --- ---------------
	 1
 AARON		20				 2
	 2 CHUCK		21				 1
	 3 DOUG		20				 2
	 4 MAGGIE		19				 1
	 5 STEVE		22				 0
	 6 JING		18				 1
Students who do not take CS112 or CS114 will have 0 for
 TAKES_EITHER_OR. Students who take both CS112 and CS114 will have 2
 for TAKES_EITHER_OR. Thus the only students you want to return are
 those with a value of 1 for TAKES_EITHER_OR. The final solution uses
 the HAVING clause to keep only those students where the SUM of
 TAKES_EITHER_OR is one.
For the window solution, the same technique is used. You also
 need to wrap the query in an inline view, and then reference the
 column TAKES_EITHER_OR, because window functions cannot be
 referenced directly in the WHERE clause (they are evaluated last in
 SQL processing, prior only to the ORDER BY clause). Because of how
 window functions work, it is necessary to remove duplicates caused
 by multiple courses.

Original solution

The following query is the original solution (modified
 slightly). The query is quite clever and uses the same approach as
 the original solution in Question 1. The solution uses a self join
 to find students who take both CS112 and CS114, and then uses a
 subquery to filter them out of the set of students who take either
 CS112 or CS114:
	select *
	 from student s, take t
	 where s.sno = t.sno
	 and t.cno in ('CS112', 'CS114')
	 and s.sno not in (select a.sno
						 from take a, take b
						 where a.sno = b.sno
						 and a.cno = 'CS112'
						 and b.cno = 'CS114')

Question 3

You want to find students who take CS112 and no other courses,
 but the following query returns incorrect results:
	select s.*
	 from student s, take t
	 where s.sno = t.sno
	 and t.cno = 'CS112'
CHUCK is the only student who takes CS112 and no other courses,
 and is the only student that should be returned from the query.
This question can be restated as “Find students who take only CS112.”
 The query above finds students who take CS112, but also returns
 students who take other courses as well. The query should answer the
 question “Who takes only one course and that one course is
 CS112?”
MySQL and PostgreSQL

Use the aggregate function COUNT to ensure that students
 returned by the query take only one course:
	1 select s.*
	2	from student s,
	3		 take t1,
	4		 (
	5 select sno
	6	from take
	7 group by sno
	8 having count(*) = 1
	9) t2
 10 where s.sno = t1.sno
 11 and t1.sno = t2.sno
 12	 and t1.cno = 'CS112'

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to ensure a student takes
 only one course:
	1 select sno,sname,age
	2	from (
	3 select s.sno,s.sname,s.age,t.cno,
	4		 count(t.cno) over (
	5		 partition by s.sno,s.sname,s.age
	6) as cnt
	7	from student s, take t
	8 where s.sno = t.sno
	9) x
 10 where cnt = 1
 11	 and cno = 'CS112'

Discussion

The key to the solutions is to write a query to answer both of
 the following questions: “Which student takes only one course?” and
 “Which student takes CS112?” The first approach uses inline view T2
 to find students who take only one course. The next step is to join
 inline view T2 to table TAKE and keep only students who take CS112
 (so what you are left with are students who take only one course and
 that one course is CS112). The query below shows the results thus
 far:
select t1.*
	 from take t1,
		 (
	select sno
	 from take
	 group by sno
	having count(*) = 1
) t2
	 where t1.sno = t2.sno
	 and t1.cno = 'CS112'

	SNO CNO
	--- -----
	 2 CS112
The final step is to join to table STUDENT and find the
 students who match those returned by the join between inline view T2
 and table TAKE. The window solution takes a similar approach but
 does so in a different (more efficient) way. Inline view X returns
 the students, the courses they take, and the number of courses they
 take (the inner join between table TAKE and table STUDENT guarantees
 that students who take no courses are excluded). The results are
 shown below:
select s.sno,s.sname,s.age,t.cno,
		 count(t.cno) over (
		 partition by s.sno,s.sname,s.age
) as cnt
	 from student s, take t
	 where s.sno = t.sno

	SNO SNAME			 AGE CNO		 CNT
	--- ---------- ---------- ----- ----------
	 1 AARON			 20 CS112			 3
	 1 AARON			 20 CS113			 3
	 1 AARON			 20 CS114			 3
	 2 CHUCK			 21 CS112			 1
	 3 DOUG			 20 CS112			 2
	 3 DOUG			 20 CS114			 2
	 4 MAGGIE			 19 CS112			 2
	 4 MAGGIE			 19 CS113			 2
	 5 STEVE			 22 CS113			 1
	 6 JING			 18 CS113			 2
	 6 JING			 18 CS114			 2
With the course and count available, the last step is to
 simply keep only rows such that CNT is 1 and CNO is CS112.

Original solution

The original solution uses a subquery and double negation:
	select s.*
	 from student s, take t
	 where s.sno = t.sno
	 and s.sno not in (select sno
							from take
						 where cno != 'CS112')
This is an extremely clever solution, because nowhere in the
 query is the number of courses checked, nor is there a filter to
 ensure that students returned by the query actually take CS112! How
 does this work, then? The subquery returns all students who take a
 course other than CS112 and the results are shown below:
select sno
	 from take
	 where cno != 'CS112'

	SNO

	 1
	 1
	 3
	 4
	 5
	 6
	 6
The outer query returns all students who take a course (any
 course) and are not amongst the students returned by the subquery.
 Ignoring the NOT IN portion of the outer query for a moment, the
 results would be the following (showing all students who take a
 course):
select s.*
	 from student s, take t
	 where s.sno = t.sno

	SNO SNAME			 AGE
	--- ---------- ----------
	 1 AARON			 20
	 1 AARON			 20
	 1 AARON			 20
	 2 CHUCK			 21
	 3 DOUG			 20
	 3 DOUG			 20
	 4 MAGGIE			 19
	 4 MAGGIE			 19
	 5 STEVE			 22
	 6 JING			 18
	 6 JING			 18
If you compare the two results sets, you see that the addition
 of NOT IN to the outer query effectively performs a set difference
 between SNO from the outer query and SNO from the subquery,
 returning only the student whose SNO is 2. In summary, the subquery
 finds all students who take a course that is not CS112. The outer
 query returns all students who are not amongst those that take a
 course other than CS112 (at this point the only available students
 are those who actually take CS112 or take nothing at all). The join
 between table STUDENT and table TAKE filters out the students who do
 not take any classes at all, leaving you only with the student who
 takes CS112 and only CS112. Set-based problem solving at its
 best!

B.3. Answering Questions Involving “at Most”

Questions involving “at most” represent another type of
 query problem that you’ll encounter from time to time. It’s easy enough
 to find rows for which a condition is true, but what if you want to
 place a limit on the number of such rows? That’s what the next next two
 questions are all about.
Question 4

You want to find the students who take at most two courses.
 Students who do not take any courses should be excluded. Of the
 students who take courses, only AARON takes more than two and should
 be excluded from the result set. Ultimately, you want to return the
 following result set:
	SNO SNAME			 AGE
	--- ---------- ----------
	 2 CHUCK			 21
	 3 DOUG			 20
	 4 MAGGIE			 19
	 5 STEVE			 22
	 6 JING			 18
MySQL and PostgreSQL

Use the aggregate function COUNT to determine which students
 take no more than two courses:
	1 select s.sno,s.sname,s.age
	2	from student s, take t
	3 where s.sno = t.sno
	4 group by s.sno,s.sname,s.age
	5 having count(*) <= 2

DB2, Oracle, and SQL Server

Use the window function COUNT OVER, again to determine which
 students take no more than two courses:
	1 select distinct sno,sname,age
	2 from (
	3 select s.sno,s.sname,s.age,
	4		 count(*) over (
	5		 partition by s.sno,s.sname,s.age
	6) as cnt
	7	from student s, take t
	 8 where s.sno = t.sno
	 9) x
	10 where cnt <= 2

Discussion

Both solutions work by simply counting the number of times a
 particular SNO occurs in table TAKE. The inner join to table TAKE
 ensures that students who take no courses are excluded from the
 final result set.

Original solution

Rozenshtein used the aggregate solution shown here for MySQL
 and PostgreSQL in his book along with an alternative solution using
 multiple self joins, shown here:
	select distinct s.*
	 from student s, take t
	 where s.sno = t.sno
	 and s.sno not in (select t1.sno
							from take t1, take t2, take t3
						 where t1.sno = t2.sno
						 and t2.sno = t3.sno
							 and t1.cno < t2.cno
							 and t2.cno < t3.cno)
The multiple self-join solution is interesting because it
 solves the problem without using aggregation. To understand how the
 solution works, focus on the WHERE clause of the subquery. The inner
 joins on SNO ensure that you are dealing with the same student
 across all columns of each row that can potentially be returned by
 the subquery. The less-than comparisons are what determine whether
 or not a student is taking more than two courses. The WHERE clause
 in the subquery can be stated as: “For a particular student, return
 rows where the first CNO is less than the second CNO and the second
 CNO is less than the THIRD CNO.” If a student has fewer than three
 courses, that expression can never evaluate to true as there is no
 third CNO. The job of the subquery is to find students who take
 three or more courses. The outer query then returns students who
 take at least one course and are not amongst those returned by the
 subquery.

Question 5

You want to find students who are older than at most two other students. Another way to think about
 the problem is to find only the students who are older than zero, one,
 or two other students. The final result set should be:
	SNO SNAME AGE
	---- ---------- ---
	 6 JING		 18
	 4 MAGGIE		 19
	 1 AARON		 20
	 9 GILLIAN	 20
	 8 KAY		 20
	 3 DOUG		 20
MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to
 find the students who are older than zero, one, or two other
 students:
	1 select s1.*
	2	from student s1
	3 where 2 >= (select count(*)
	4					from student s2
	5				 where s2.age < s1.age)

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find the students who
 are older than zero, one, or two other students:
	1 select sno,sname,age
	2	from (
	3 select sno,sname,age,
	4		 dense_rank()over(order by age) as dr
	5	from student
	6) x
	7 where dr <= 3

Discussion

The aggregate solution uses a scalar subquery to find all
 students who are older than no more than two other students. To see
 how this works, rewrite the solution to use a scalar subquery. In
 the following example, the column CNT represents the number of
 students that are younger than the current student:
select s1.*,
		 (select count(*) from student s2
			 where s2.age < s1.age) as cnt
	 from student s1
	 order by 4

	SNO SNAME			 AGE		 CNT
	--- ---------- ---------- ----------
	 6 JING			 18		 0
	 4 MAGGIE			 19		 1
	 1 AARON			 20		 2
	 3 DOUG			 20		 2
	 8 KAY				 20		 2	
	 9 GILLIAN			 20		 2
	 2 CHUCK			 21		 6
	 7 BRIAN			 21		 6
	 10 CHAD			 21		 6
	 5 STEVE			 22		 9
Rewriting the solution this way makes it easy to see that the
 students in the final result set are those for whom CNT is less than
 or equal to 2.
The solution using the window function DENSE_RANK is similar
 to the scalar subquery example in that every row is ranked based on
 how many students are younger than the current student (ties are
 allowed and there are no gaps). The following query shows the output
 from the DENSE_RANK function:
select sno,sname,age,
		 dense_rank()over(order by age) as dr
	 from student

	SNO SNAME			 AGE		 DR
	--- ---------- ---------- ----------
	 6 JING			 18		 1
	 4 MAGGIE			 19		 2
	 1 AARON			 20		 3
	 3 DOUG			 20		 3
	 8 KAY				 20		 3
	 9 GILLIAN			 20		 3
	 2 CHUCK			 21		 4
	 7 BRIAN			 21		 4
	 10 CHAD			 21		 4
	 5 STEVE			 22		 5
The final step is to wrap the query in an inline view and keep
 only those rows where DR is less than or equal to 3.

Original solution

Rozenshtein takes an interesting approach to solving this
 problem by rephrasing it. Instead of “find the students who are
 older than at most two students,” his approach is to “find the
 students who are not older than three or more (at least three)
 students.” This approach is brilliant for those of you who want to
 learn how to problem solve in sets, because it forces you to find
 the solution in two passes:
	Find the set of students who are older than three or more
 students.

	Simply return all students who are not amongst the
 students returned by step 1.

The solution is shown below:
select *
	 from student
	 where sno not in (
	select s1.sno
	 from student s1,
		 student s2,
		 student s3,
		 student s4
	 where s1.age > s2.age
	 and s2.age > s3.age
	 and s3.age > s4.age
)

	SNO SNAME	 AGE
	--- ---------- ---
	 6 JING		18
	 4 MAGGIE		19
	 1 AARON		20
	 9 GILLIAN		20
	 8 KAY			20
	 3 DOUG		20
If you examine the solution from bottom up, you see that step 1, “find all students who are older than
 three or more students,” is performed first and is shown below
 (using DISTINCT to reduce the result set size for
 readability):
select distinct s1.*
	 from student s1,
		 student s2,
		 student s3,
		 student s4
	 where s1.age > s2.age
	 and s2.age > s3.age
	 and s3.age > s4.age

	SNO SNAME	 AGE
	--- ---------- ---
	 2 CHUCK		21
	 5 STEVE		22
	 7 BRIAN		21
	 10 CHAD	 21
If you are getting confused by all the self joins, simply
 focus on the WHERE clause. S1.AGE is greater than S2.AGE so you know
 at that point any student who is older than at least one other
 student is considered. Next, S2.AGE is greater than S3.AGE. At this
 point any student who is older than two other students is
 considered. If you are stumbling at this point, try to keep in mind
 that greater-than comparisons are transitive. If S1.AGE is greater
 than S2.AGE, and S2.AGE is greater than S3.AGE, then it is also true
 that S1AGE is greater than S3.AGE. You may find it helpful to strip
 down the query to one self join and build the query once you
 understand what is returned by each step. For example, find all
 students who are older than at least one other student (all students
 except the youngest, JING, should be returned):
select distinct s1.*
	 from student s1,
		 student s2
	 where s1.age > s2.age

	SNO SNAME	 AGE
	--- ---------- ---
	 5 STEVE		22
	 7 BRIAN		21
	 10 CHAD		21
	 2 CHUCK		21
	 1 AARON		20
	 3 DOUG		20
	 9 GILLIAN		20
	 8 KAY			20
	 4 MAGGIE		19
Next, find all students who are older than two or more
 students (now, both JING and MAGGIE should be excluded from the
 result set):
select distinct s1.*
	 from student s1,
		 student s2,
		 student s3
	 where s1.age > s2.age
	 and s2.age > s3.age

	SNO SNAME	 AGE
	--- ---------- ---
	 1 AARON		20
	 2 CHUCK	 21
	 3 DOUG		20
	 5 STEVE		22
	 7 BRIAN		21
	 8 KAY		 20
	 9 GILLIAN		20
	 10 CHAD		21
Finally, find all students who are older than three or more
 students (only CHUCK, STEVE, BRIAN, and CHAD are in this result
 set):
select distinct s1.*
	 from student s1,
		 student s2,
		 student s3,
		 student s4
	 where s1.age > s2.age
	 and s2.age > s3.age
	 and s3.age > s4.age

	SNO SNAME	 AGE
	--- ---------- ---
	 2 CHUCK		21
	 5 STEVE	 22
	 7 BRIAN		21
	 10 CHAD		21
Now that you know which students are older than three or more
 other students, simply return only those students who are not
 amongst the four students above by using NOT IN with a
 subquery.

B.4. Answering Questions Involving “at Least”

The flip side of "at most” is “at least.” You can often solve “at least”
 questions by applying variations of the techniques described for “at
 most” questions. When solving “at least” problems it is often helpful to
 rephrase them as “having no fewer than.”
In general, if you can identify a threshold in your requirement,
 you’ve already solved half the problem. Once you know the threshold, you
 can decide to solve the problem using one pass (aggregate or window
 functions typically using COUNT) or two passes (negation with
 subquery).
Question 6

You want to find students who take at least two courses.
You may find it helpful to restate the problem as “Find students
 who take two or more courses” or as “Find students who take no fewer
 than two courses.” You can use the same technique used for Question 4:
 use the aggregate function COUNT or window function COUNT OVER. The
 final result set should be:
	SNO SNAME		 AGE
	--- ---------- ----------
	 1 AARON			 20
	 3 DOUG			 20
	 4 MAGGIE			 19
	 6 JING			 18
MySQL and PostgreSQL

Use the aggregate function COUNT to find students who take at
 least two courses:
	1 select s.sno,s.sname,s.age
	2	from student s, take t
	3 where s.sno = t.sno
	4 group by s.sno,s.sname,s.age
	5 having count(*) >= 2

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to find students who take
 at least two courses:
	1 select distinct sno,sname,age
	2 from (
	3 select s.sno,s.sname,s.age,
	4		 count(*) over (
	5		 partition by s.sno,s.sname,s.age
	6) as cnt
	7	from student s, take t
	8 where s.sno = t.sno
	9) x
 10 where cnt >= 2

Discussion

See Question 4 for a full discussion of the solutions
 presented in this section; the techniques are the same. For the
 aggregate solution, join table STUDENT to table TAKE and use COUNT
 in the HAVING clause to keep only those students with two or more
 courses. For the window solution, join table STUDENT to table TAKE
 and perform a count over the partition that is defined by specifying
 all the columns from table STUDENT. From there, simply keep only
 those rows where CNT is two or greater.

Original solution

The solution below uses a self join on table TAKE to find
 students who take two or more classes. The equi-join on SNO in the
 subquery ensures that each student is evaluated against his/her own
 courses only. The greater-than comparison on CNO can only be true if
 a student takes more than one course, otherwise CNO would equal CNO
 (as there is only one course to be compared with itself). The last
 step is to return all students who are amongst those returned by the
 subquery, and is shown below:
select *
	 from student
	 where sno in (
	select t1.sno
	 from take t1,
		 take t2
	 where t1.sno = t2.sno
	 and t1.cno > t2.cno
)

	SNO SNAME			 AGE
	--- ---------- ----------
	 1 AARON			 20
	 3 DOUG			 20
	 4 MAGGIE			 19
	 6 JING			 18

Question 7

You want to find students who take both CS112 and CS114. The
 students may take other courses, but they must take CS112 and CS114 as
 well.
This problem is similar to Question 2, except that in that case
 a student may take more than two courses whereas in this case they
 take at least 2 courses (AARON and DOUG are the
 only students who take both CS112 and CS114). You can easily modify
 the solution from Question 2 to work here. The final result set should
 be:
	SNO SNAME	 AGE
	--- ---------- ----
	 1 AARON		 20
	 3 DOUG		 20
MySQL and PostgreSQL

Use the aggregate functions MIN and MAX to find students who
 take both CS112 and CS114:
	1 select s.sno, s.sname, s.age
	2	from student s, take t
	3 where s.sno = t.sno
	4	 and t.cno in ('CS114','CS112')
	5 group by s.sno, s.sname, s.age
	6 having min(t.cno) != max(t.cno)

DB2, Oracle, and SQL Server

Use the window functions MIN OVER and MAX OVER to find
 students who take both CS112 and CS114:
	1 select distinct sno, sname, age
	2 from (
	3 select s.sno, s.sname, s.age,
	4		 min(cno) over (partition by s.sno) as min_cno,
	5		 max(cno) over (partition by s.sno) as max_cno
	6 from student s, take t	
	7 where s.sno = t.sno
	8 and t.cno in ('CS114','CS112')
	9) x
 10 where min_cno != max_cno

Discussion

Both solutions use the same technique to find the answer. The
 IN list ensures only students who take CS112 or CS114, or both, are
 returned. If a student does not take both courses, then MIN(CNO)
 will equal MAX(CNO) and that student is excluded. To help visualize
 how this works, the intermediate results of the window solution are
 shown below (T.CNO is added for clarity):
select s.sno, s.sname, s.age, t.cno,
		 min(cno) over (partition by s.sno) as min_cno,
		 max(cno) over (partition by s.sno) as max_cno
	 from student s, take t
	 where s.sno = t.sno
	 and t.cno in ('CS114','CS112')

	SNO SNAME		AGE CNO	 MIN_C MAX_C
	--- ---------- ---- ----- ----- -----
	 1 AARON		20 CS114 CS112 CS114
	 1 AARON		20 CS112 CS112 CS114
	 2 CHUCK		21 CS112 CS112 CS112
	 3 DOUG		20 CS114 CS112 CS114
	 3 DOUG	 20 CS112 CS112 CS114
	 4 MAGGIE		19 CS112 CS112 CS112
	 6 JING		18 CS114 CS114 CS114
Examining the results, it’s easy to see only AARON and DOUG
 have rows where MIN(CNO) != MAX(CNO).

Original solution

The original solution by Rozenshtein uses a self join on table
 TAKE. Following is the original solution, which performs extremely
 well with the proper indexes in place:
select s.*
	 from student s,
		 take t1,
		 take t2
	 where s.sno = t1.sno
	 and t1.sno = t2.sno
	 and t1.cno = 'CS112'
	 and t2.cno = 'CS114'

	 SNO SNAME AGE
	 --- ----- ---
	 1 AARON 20
	 3 DOUG 20
All the solutions work by ensuring that, regardless of the
 other courses a student may take, they must take both CS112 and
 CS114. If you are having trouble understanding the self join, you
 may find it easier to understand the following example:
select s.*
	 from take t1, student s

	 where s.sno = t1.sno
 and t1.cno = 'CS114'
	 and 'CS112' = any (select t2.cno
					 from take t2
						 where t1.sno = t2.sno
							and t2.cno != 'CS114')
 	SNO SNAME AGE
 --- ----- ---
	 1 AARON 20
	 3 DOUG 20

Question 8

Find students who are older than at least two other students.
You may find it helpful to restate the problem as “Find students
 who are older than two or more other students.” You can use the same
 technique used in Question 5. The final result set is shown below
 (only JING and MAGGIE are not older than two or more students):
	SNO SNAME			 AGE
	--- ---------- ----------
	 1 AARON 20
	 2 CHUCK			 21
	 3 DOUG			 20
	 5 STEVE			 22
	 7 BRIAN			 21
	 8 KAY			 20
	 9 GILLIAN			 20
	10 CHAD			 21
MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to
 find students older than at least two other students:
	1 select s1.*
	2 from student s1
	3 where 2 <= (select count(*)
	4 from student s2
	5 where s2.age < s1.age)

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find students older than
 at least two other students:
	1 select sno,sname,age
	2 from (
	3 select sno,sname,age,
	4 dense_rank()over(order by age) as dr
	5 from student
	6) x
	7 where dr >= 3

Discussion

For a full discussion see Question 5. The technique is exactly
 the same for both solutions, with the only difference being the
 final evaluation on the count or rank.

Original solution

The problem is a variation of Question 6, the difference being
 you are now only dealing with the STUDENT table. This solution in
 Question 6 can be easily adapted to “find students older than at
 least two other students” and is shown below:
select distinct s1.*
	 from student s1,
		 student s2,
		 student s3
	 where s1.age > s2.age
	 and s2.age > s3.age

	 SNO SNAME AGE
	 --- ---------- ----------
	 1 AARON 20
	 2 CHUCK 21
	 3 DOUG 20
	 5 STEVE 22
	 7 BRIAN 21
	 8 KAY 20
	 9 GILLIAN 20
	 10 CHAD 21

B.5. Answering Questions Involving “Exactly”

You would think that answering the question of whether or not something is
 true would be easy. In many cases it is easy. But sometimes it can be
 tricky to answer questions of whether something is “exactly” true,
 especially when answering involves joining master/detail data. The
 problem stems from the exclusive nature of “exactly.” It may be more
 helpful to think of it as “only.” Consider the difference between people
 who wear shoes and those who wear only shoes. It is not enough to
 satisfy the condition; you must satisfy the condition while ensuring
 that no other conditions are satisfied.
Question 9

Find professors who teach exactly one course.
You can restate the problem as “Find professors who teach only
 one course.” Which course they teach is unimportant; what matters is
 that only one course is taught. The final result set should be:
	LNAME DEPT SALARY AGE
	---------- ---------- ---------- ----
	POMEL SCIENCE 500 65
MySQL and PostgreSQL

Use the aggregate function COUNT to find the professors who
 teach exactly one course:
	1 select p.lname,p.dept,p.salary,p.age
	2 from professor p, teach t
	3 where p.lname = t.lname
	4 group by p.lname,p.dept,p.salary,p.age
	5 having count(*) = 1

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to find the professors who
 teach exactly one course:
	1 select lname, dept, salary, age
	2 from (
	3 select p.lname,p.dept,p.salary,p.age,
	4 count(*) over (partition by p.lname) as cnt
	5 from professor p, teach t
	6 where p.lname = t.lname
	7) x
	8 where cnt = 1

Discussion

By inner joining table PROFESSOR to table TEACH you ensure
 that all professors who teach no courses are excluded. The aggregate
 solution uses the COUNT function in the HAVING clause to return only
 professors who teach exactly one course. The window solution uses the COUNT
 OVER function, but notice that the columns from table PROFESSOR that
 are used in the PARTITION clause of the COUNT OVER function are
 different from the columns that are used in the GROUP BY of the
 aggregate solution. In this example it is safe for the GROUP BY and
 PARTITION BY clauses to be different, because the last names are
 unique in table TEACHER, i.e., excluding P.DEPT, P.SALARY, and .PAGE
 from the partition does not affect the COUNT operation. In solutions
 prior to this one, I purposely use the same columns in the PARTITION
 clause of a window function solution as I use in the GROUP BY clause
 of an aggregate solution to show that the PARTITION is a moving,
 more flexible kind of GROUP BY.

Original solution

This solution uses the same technique used in Question 3:
 perform two passes to find the answer. The first step is to find
 those professors who teach two or more classes. The second step is
 to find those professors who teach a course and are not amongst
 those returned by step 1. Please refer to Question 3 for a full
 discussion. The solution is shown below:
select p.*
	 from professor p,
	 teach t
	 where p.lname = t.lname
	 and p.lname not in (
	select t1.lname
	 from teach t1,
	 teach t2
	 where t1.lname = t2.lname
	 and t1.cno > t2.cno
)

	LNAME DEPT SALARY AGE
	---------- ---------- ---------- ----------
	POMEL SCIENCE 500 65

Question 10

You want to find students who take only CS112 and CS114 (exactly
 those two courses and no other courses), but the following query
 returns an empty result set:
	select s.*
	 from student s, take t
	 where s.sno = t.sno
	 and t.cno = 'CS112'
	 and t.cno = 'CS114'
No row can have a column that is simultaneously two values
 (assuming simple scalar data types such as those used for table
 STUDENT), so the query will never work. Rozenshtein’s book does a nice
 job of discussing how intuitive thinking when writing queries causes errors such as this one. DOUG is the only
 student who takes only CS112 and CS114 and should be the only student
 returned for this query.
MySQL and PostgreSQL

Use a CASE expression and the aggregate function COUNT to find
 students who take only CS112 and CS114:
	1 select s.sno, s.sname, s.age
	2 from student s, take t
	3 where s.sno = t.sno
	4 group by s.sno, s.sname, s.age
	5 having count(*) = 2
	6 and max(case when cno = 'CS112' then 1 else 0 end) +
	7 max(case when cno = 'CS114' then 1 else 0 end) = 2

DB2, Oracle, and SQL Server

Use the window function COUNT OVER with a CASE expression to
 find students who take only CS112 and CS114:
	 1 select sno,sname,age
	 2 from (
	 3 select s.sno,	
	 4 s.sname,	
	 5		 s.age,
	 6		 count(*) over (partition by s.sno) as cnt,
	 7		 sum(case when t.cno in ('CS112', 'CS114')
	 8				 then 1 else 0
	 9			 end)
	10	 over (partition by s.sno) as both,
	11		 row_number()
	12		 over (partition by s.sno order by s.sno) as rn
	13 from student s, take t
	14 where s.sno = t.sno
	15) x
	16 where cnt = 2
	17 and both = 2
	18 and rn = 1

Discussion

The aggregate solution uses the same technique found in
 Question 1 and Question 2. The inner join from table STUDENT to
 table TAKE ensures that any students who take no courses are
 excluded. The COUNT expression in the HAVING clause keeps only
 students who take exactly two courses. The results of the CASE
 expressions counting the number of courses are summed. Only those
 students who take both CS112 and CS114 have a sum of 2.
The window solution uses a technique similar to the window
 solutions found in Question 1 and Question 2. This version is
 slightly different as the value of the CASE expression is returned
 to the window function SUM OVER. Another variation in this solution
 is the use of the window function ROW_NUMBER to avoid using
 DISTINCT. The results of the window solution without the final
 filters are shown below:
select s.sno,
	 s.sname,
		 s.age,
		 count(*) over (partition by s.sno) as cnt,
		 sum(case when t.cno in ('CS112', 'CS114')
		 then 1 else 0
			 end)
		 over (partition by s.sno) as both,
		 row_number()
		 over (partition by s.sno order by s.sno) as rn
	 from student s, take t
	 where s.sno = t.sno
	
	 SNO SNAME AGE CNT BOTH RN
	 --- ------ ---- ---- ---- ----
	 1 AARON 20 3 2 1
	 1 AARON 20 3 2 2
	 1 AARON 20 3 2 3
	 2 CHUCK 21 1 1 1
	 3 DOUG 20 2 2 1
	 3 DOUG 20 2 2 2
	 4 MAGGIE 19 2 1 1
	 4 MAGGIE 19 2 1 2
 	 5 STEVE 22 1 0 1
	 6 JING 18 2 1 1
	 6 JING 18 2 1 2
Examining these results, you can see that the final result set
 is the one where BOTH and CNT are 2. RN can be either 1 or 2, it
 doesn’t matter; that column exists only to help filter out
 duplicates without using DISTINCT.

Original solution

This solution uses a subquery with multiple self joins to
 first find students who take at least three classes. The next step
 is to use a self join on table TAKE to find those students who take
 both CS112 and CS114. The final step is to keep only those students
 who take both CS112 and CS114 and do not take three or more classes.
 The solution is shown below:
select s1.*
	 from student s1,
		 take t1,
	 take t2
	 where s1.sno = t1.sno
	 and s1.sno = t2.sno
	 and t1.cno = 'CS112'
	 and t2.cno = 'CS114'
	 and s1.sno not in (
	select s2.sno
	 from student s2,
		 take t3,
		 take t4,
		 take t5
	 where s2.sno = t3.sno
	 and s2.sno = t4.sno
	 and s2.sno = t5.sno
	 and t3.cno > t4.cno
	 and t4.cno > t5.cno
)

	SNO SNAME AGE
	--- ---------- ---
	 3 DOUG 20

Question 11

You want to find students who are older than exactly two other students. Another way of stating the
 problem is that you want to find the third youngest student(s). The
 final result set should be:
	SNO SNAME AGE
	--- ---------- ----------
 	 1 AARON 20
	 3 DOUG 20
	 8 KAY 20
	 9 GILLIAN 20
MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to
 find the third youngest student:
	1 select s1.*
	2 from student s1
	3 where 2 = (select count(*)
	4 from student s2
	5 where s2.age < s1.age)

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find the third youngest
 student:
	1 select sno,sname,age
	2 from (
	3 select sno,sname,age,
	4 dense_rank()over(order by age) as dr
	5 from student
	6) x
	7 where dr = 3

Discussion

The aggregate solution uses a scalar subquery to find all
 students who are older than two (and only two) other students. To
 see how this works, rewrite the solution to use a scalar subquery.
 In the following example, the column CNT represents the number of
 students that are younger than the current student:
select s1.*,
	 (select count(*) from student s2
	 where s2.age < s1.age) as cnt
	 from student s1
	 order by 4

	SNO SNAME AGE CNT
	--- ---------- ---------- ----------
	 6 JING 18 0
	 4 MAGGIE 19		 1
	 1 AARON 20 2
	 3 DOUG 20 2
	 8 KAY 20 2
	 9 GILLIAN 20 2
	 2 CHUCK 21 6
	 7 BRIAN 21 6
	10 CHAD 21 6
	 5 STEVE 22 9
Rewriting the solution this way makes it easy to see who the
 third youngest students are (those whose CNT is 2).
The solution using the window function DENSE_RANK is similar
 to the scalar subquery example in that every row is ranked based on
 how many students are younger than the current student (ties are
 allowed and there are no gaps). The following query shows the output
 from the DENSE_RANK function:
select sno,sname,age,
	 dense_rank()over(order by age) as dr
	 from student

	 SNO SNAME AGE DR
	 --- ---------- ---------- ----------
	 6 JING 18 1
	 4 MAGGIE 19 2
	 1 AARON 20 3
	 3 DOUG 20 3
	 8 KAY 20 3
	 9 GILLIAN 20 3
	 2 CHUCK 21 4
		7 BRIAN 21 4
	 10 CHAD 21 4
		5 STEVE 22 5
The final step is to wrap the query in an inline view and keep
 only those rows where DR is 3.

Original solution

The original solution uses a two-pass approach: step 1, find
 the students who are older than three or more students; step 2, find
 the students who are older than two students who are not amongst the
 students returned by step 1. Alternatively, Rozenshtein would
 rephrase this as, “Find students who are older than at least two
 students and are not older than at least three students.” The
 solution is shown below:
select s5.*
	 from student s5,
			student s6,
			student s7
	 where	s5.age > s6.age
		and s6.age > s7.age
		and s5.sno not in (
 	 select	s1.sno
	 from student s1,
			student s2,
			student s3,
			student s4
	 where	s1.age > s2.age
	 and	s2.age > s3.age
	 and	s3.age > s4.age
)

	SNO SNAME	AGE
	--- ------ ----
	1	AARON	20
	3	DOUG	20
	9	GILLIAN 20
	8	KAY		20
The solution above uses the technique shown in Question 5.
 Refer to Question 5 for a complete discussion of how extremes are
 found using self joins.

B.6. Answering Questions Involving “Any” or “All”

 Queries involving “any” or “all” typically require you to
 find rows that satisfy one or more conditions completely. For example,
 if you are asked to find people who eat all vegetables, you are
 essentially looking for people for whom there is no vegetable that they
 do not eat. This type of problem statement is typically categorized as
 relational division. With questions regarding
 “any,” it is crucial you pay close attention to how the question is
 phrased. Consider the difference between these two requirements: “a
 student who takes any class” and “a plane faster than any train.” The former
 implies, “find a student who takes at least one class,” while the latter
 implies “find a plane that is faster than all trains.”
Question 12

You want to find students who take all courses.
The number of courses for a student in table TAKE must be equal
 to the total number of courses in table COURSES. There are three
 courses in table COURSES. Only AARON takes all three courses and
 should be the only student returned. The final result set should
 be:
	SNO SNAME	AGE
	--- ------ ---
	 1 AARON	20
MySQL and PostgreSQL

Use the aggregate function COUNT to find students who take
 every course:
	1 select s.sno,s.sname,s.age
	2	from student s, take t
	3 where s.sno = t.sno
	4 group by s.sno,s.sname,s.age
	5 having count(t.cno) = (select count(*) from courses)

DB2 and SQL Server

Use the window function COUNT OVER and an outer join instead
 of a subquery:
	1 select sno,sname,age
	2	from (
	3 select s.sno,s.sname,s.age,
	4		 count(t.cno)
	5		 over (partition by s.sno) as cnt,
	6		 count(distinct c.title) over() as total,
	7		 row_number() over
	8		 (partition by s.sno order by c.cno) as rn
	9	from courses c
	10		 left join take t on (c.cno = t.cno)
	11		 left join student s on (t.sno = s.sno)
	12) x
	13	where cnt = total
	14	 and rn = 1

Oracle

Users on Oracle9i and later can
 use the DB2 solution. Alternatively, you can use the proprietary
 Oracle outer-join syntax, which is mandatory for users on
 8i and earlier:
	1 select sno,sname,age
	2	 from (
	3 select s.sno,s.sname,s.age,
	4		 count(t.cno)
	5		 over (partition by s.sno) as cnt,
	6 count(distinct c.title) over() as total,
	7 row_number() over
	8		 (partition by s.snoorder by c.cno) as rn
	9 from courses c, take t, student s
	10 where c.cno = t.cno (+)
	11		and t.sno = s.sno (+)
	12)
	13 where cnt = total
	14 and rn = 1

Discussion

The aggregate solution uses a subquery to return the total
 number of courses available. The outer query keeps only students who
 take the same number of courses as the value returned by the
 subquery. The window solution takes a different approach: it uses an
 outer join to table COURSES instead of a subquery. The window
 solution also uses window functions to return the number of courses
 a student takes (aliased CNT) along with the total number of courses
 there are in table COURSES (aliased TOTAL). The query below shows
 the intermediate results from those window functions:
select s.sno,s.sname,s.age,
			count(distinct t.cno)
			over (partition by s.sno) as cnt,
			count(distinct c.title) over() as total,
			row_number()
			over(partition by s.sno order by c.cno) as rn
	 from courses c
			left join take t on (c.cno = t.cno)
			left join student s on (t.sno = s.sno)
	 order by 1

	SNO SNAME	AGE	 CNT		TOTAL	RN
	--- ------ ----	 ---- ---------- ----
	 1 AARON	20		3			3	1
	 1 AARON	20		3			3	2
	 1 AARON	20		3			3	3
	 2 CHUCK	21		1			3	1
	 3 DOUG	20		2			3	1
	 3 DOUG	20		2			3	2
	 4 MAGGIE	19		2			3	1
	 4 MAGGIE	19		2			3	2
	 5 STEVE	22		1			3	1
	 6 JING	18		2			3	1
	 6 JING	18		2			3	2
The student who takes all courses is the one where CNT equals
 TOTAL. ROW_NUMBER is used instead of DISTINCT to filter out the
 duplicates from the final result set. Strictly speaking, the outer
 joins to tables TAKE and STUDENT are not necessary, as there are no
 courses that aren’t taken by at least one student. If there is a
 course that no students take, CNT would not equal TOTAL, and a row
 with NULL values for SNO, SNAME, and AGE would be returned. The
 example below creates a new course that no students take. The
 following query demonstrates what the intermediate result set would
 look like if there exists a course no students take (for clarity,
 C.TITLE is included below):
insert into courses values ('CS115','BIOLOGY',4)

	select s.sno,s.sname,s.age,c.title,
		 count(distinct t.cno)
		 over (partition by s.sno) as cnt,
		 count(distinct c.title) over() as total,
		 row_number()
		 over(partition by s.sno order by c.cno) as rn
	 from courses c
		 left join take t on (c.cno = t.cno)
		 left join student s on (t.sno = s.sno)
 order by 1

	 SNO SNAME AGE TITLE	 CNT TOTAL RN
	 --- ------ --- ---------- --- ----- ---
	 1	 AARON	20	PHYSICS		3	4	 1
	 1	 AARON	20	CALCULUS	3	4	 2
	 1 AARON	20	HISTORY		3	4	 3
	 2 CHUCK	21	PHYSICS		1	4	 1
	 3 DOUG	20	PHYSICS		2	4	 1
	 3 DOUG	20	HISTORY		2	4	 2
	 4 MAGGIE	19	PHYSICS		2	4	 1
	 4 MAGGIE	19	CALCULUS	2	4	 2
	 5 STEVE	22	CALCULUS	1	4	 1
	 6 JING	18	CALCULUS	2	4	 1
	 6 JING	18	HISTORY		2	4	 2
					BIOLOGY		0	4	 1
Examining these results, it’s easy to see no rows will be
 returned when the final filters are applied. Additionally, keep in
 mind that window functions take effect after the WHERE clause is
 evaluated so it is necessary to use DISTINCT when counting the total
 courses available in table COURSES (otherwise you get the total from
 the result set, which would be the total number of courses taken by
 all students, i.e., select count(cno) from take).
Tip
The sample data used for this example does not have
 any duplicates in table TAKE, so the solution
 provided works fine. If there had been duplicates in TAKE, for
 example, a student that takes the same courses three times, the
 solution would fail. The workaround for dealing with duplicates in
 this solution is trivial; simply add DISTINCT when performing the
 count on T.CNO and the solution will work correctly.

Original solution

The original solution avoids aggregates by using a
 Cartesian product in a devilishly clever way. The query below is
 based on the original:
	select *
		from student
	where sno not in
			(select s.sno
				from student s, courses c
			 where (s.sno,c.cno) not in (select sno,cno from take))
Rozenshtein restates the problem to be “Which students are not
 among those for whom there is a course that they do not take?” If
 you look at the problem that way, you are now working with negation.
 Recall how Rozenshtein suggests handling negation:
Remember that real negation requires two passes: To find out
 “who does not,” first find out “who does” and then get rid of
 them.

The innermost subquery returns all valid SNO/CNO combinations.
 The middle subquery, which uses a Cartesian product between tables
 STUDENT and COURSES, returns all students and all courses (i.e.,
 every student taking every course) and filters out the valid SNO/CNO
 combinations (leaving only “made up” SNO/CNO combinations). The
 outermost query returns only the rows from table STUDENT where the
 SNO is not amongst those returned by the middle subquery. The
 following queries may make the solution a bit more clear. To keep it
 readable, I’ll use only AARON and CHUCK (only AARON takes all
 courses):
select *
		from student
	 where sno in (1,2)
	
	 SNO SNAME		 AGE
	 --- ---------- ----
		1 AARON		 20
		2 CHUCK		 21

	select *
		from take
	 where sno in (1,2)

	 SNO CNO
	 --- -----
		1 CS112
		1 CS113
		1 CS114
		2 CS112

	select s.sno, c.cno
		from student s, courses c
	 where s.sno in (1,2)
	 order by 1

	 SNO CNO
	 --- -----
	 1 CS112
	 1 CS113
	 1 CS114
	 2 CS112
	 2 CS113
	 2 CS114
These queries show the rows from table STUDENT for AARON and
 CHUCK, the courses that AARON and CHUCK take, and a Cartesian
 product that returns AARON and CHUCK taking all courses,
 respectively. The result set from the Cartesian product for AARON
 matches the result set returned for AARON from table TAKE, but CHUCK
 has two “made up” rows as a result of the Cartesian product that do
 not match his rows in table TAKE. The following query is the middle
 subquery and uses NOT IN to filter out the valid SNO/CNO
 combinations:
select s.sno, c.cno
		from student s, courses c
	 where s.sno in (1,2)
			and (s.sno,c.cno) not in (select sno,cno from take)

 SNO CNO
	 --- ----
	 2 CS113
	 2 CS114
Notice that AARON is not returned by the middle subquery
 (because AARON takes all courses). The result set of the middle
 subquery contains rows that exist due to the Cartesian product, not
 because CHUCK actually takes those courses. The outermost query then
 returns rows from table STUDENT where the SNO is not amongst the SNO
 returned by the middle subquery:
select *
		from student
	 where sno in (1,2)
			and sno not in
				(select s.sno from student s, courses c
					where s.sno in (1,2)
						and (s.sno,c.cno) not in (select sno,cno from take))

	SNO SNAME		AGE
	--- ---------- -----
	1	AARON		20

Question 13

Find students who are older than any other students.
You can restate the problem as “Find the oldest students.” The
 final result set should be:
	SNO SNAME		AGE
	--- -------- ------
	 5 STEVE		22
MySQL and PostgreSQL

Use the aggregate function MAX in a subquery to find the
 oldest students:
	1 select *
	2	from student
	3 where age = (select max(age) from student)

DB2, Oracle, and SQL Server

Use the window function MAX OVER in an inline view to
 find the oldest students:
	1 select sno,sname,age
	2 from (
	3 select s.*,
	4		max(s.age)over() as oldest
	5 from student s
	6) x
	7 where age = oldest

Discussion

Both solutions use the function MAX to find the oldest
 student. The subquery solution first finds the greatest age in table
 STUDENT and returns it to the outer query, which finds student of
 that age. The window version does the same as the subquery solution
 but returns the greatest age for each row. The intermediate results
 of the window query are as follows:
select s.*,
			max(s.age) over() as oldest
		from student s

	SNO SNAME	 AGE	 OLDEST
	--- ---------- ---- ----------
	 1	AARON		20			22
	 2	CHUCK		21			22
	 3	DOUG		20			22
	 4	MAGGIE	 19			22
	 5	STEVE		22			22
	 6	JING		18			22
	 7	BRIAN		21			22
	 8	KAY			20			22
	 9	GILLIAN		20			22
 10	CHAD		21			22
To find the oldest students, simply keep the rows where AGE =
 OLDEST.

Original solution

The original solution uses a self join on table STUDENT in a
 subquery to find all students who are younger than some other
 student. The outer query returns all students from table STUDENT who
 are not amongst those returned by the subquery. The operation can be
 rephrased as “find all students who are not amongst those students
 who are younger than at least one other student”:
	select *
		from student
	 where age not in (select a.age
							from student a, student b
						 where a.age < b.age)
The subquery returns use a Cartesian product to find all ages
 in A that are younger than all ages in B. The only age that would
 not be younger than any other age is the greatest age. The greatest
 age is not returned by the subquery. The outer query uses NOT IN to
 return all rows from table STUDENT where AGE is not amongst the AGE
 returned by the subquery (if A.AGE is returned, that means there is
 an AGE somewhere in table STUDENT that is greater than it). If you
 have trouble understanding how it works, examine the following
 query. Conceptually they both work in a similar way, but the
 following is probably more common:
	select *
		from student
	 where age >= all (select age from student)

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	% (modulus) function (SQL Server), SQL Server, MySQL, MySQL
	
	% (wildcard) operator, Solution
	
	* character in SELECT statements, Retrieving Records
	
	+ (concatenation) operator (SQL Server), SQL Server, SQL Server
	

A
	abstraction, Paradoxes
	
	ADDDATE function (MySQL), MySQL, MySQL, MySQL, MySQL
	
	ADD_MONTHS function (Oracle), Oracle, Discussion, Oracle, Oracle, Oracle
	
	aggregate functions
		defining rows to perform operation on, Partitions, Partitions
	
	grouping and, Relationship Between SELECT and GROUP BY, Windowing
	
	multiple tables and, Problem
	
	NULL values and, Problem, Paradoxes, Effect of NULLs
	
	WHERE clause, Discussion
	
	window functions versus, Windowing
	

	aliases
		for CASE expression, Problem
	
	inline views, Discussion
	
	timing of application, Discussion
	

	any or "all" queries, Oracle
	
	any or “all” queries, Answering Questions Involving “Any” or “All”, Answering Questions Involving “Any” or “All”, Discussion, Original solution, Question 13, DB2, Oracle, and SQL Server
	
	arithmetic
		dates
		difference between dates, Problem
	
	seconds/minutes/hours between dates, Oracle and SQL Server
	

	AS keyword, Solution
	
	at least queries, Answering Questions Involving “at Least”, Question 6, Question 7, MySQL and PostgreSQL, Question 8, MySQL and PostgreSQL, Answering Questions Involving “Exactly”
	
	at most queries, Answering Questions Involving “at Most”, Question 5, MySQL and PostgreSQL, Original solution, Original solution, Answering Questions Involving “at Least”
	
	AVG function, Solution
	
	axiom of abstraction, Groups are distinct, Groups are distinct
	
	axiom of specification, Paradoxes
	
	axiom schema of separation, Groups are distinct
	
	axiom schema of subsets, Groups are distinct
	

B
	bags, Paradoxes
	
	Barber Puzzle, Groups are distinct
	
	business logic, DB2, MySQL, PostgreSQL, and SQL Server
	

C
	calendars, Solution
	
	CAST function (SQL Server), SQL Server
	
	CEIL function (DB2/MySQL/Oracle/PostgreSQL), DB2, Oracle, and SQL Server, PostgreSQL and MySQL
	
	CEILING function (SQL Server), DB2, Oracle, and SQL Server, Solution
	
	COALESCE function, Discussion, Discussion, Discussion, Solution, DB2, MySQL, PostgreSQL, and SQL Server
	
	complex
		retrieving records
		rows, Discussion
	

	CONCAT function (MySQL), Discussion, MySQL, MySQL
	
	concatenation
		columns, Discussion
	
	operator (+) (SQL Server), DB2, Oracle, PostgreSQL, SQL Server
	
	operator (||) (DB2/Oracle/PostgreSQL), SQL Server, DB2, PostgreSQL, and Oracle
	

	CONNECT BY clause (Oracle)
		alternatives to, Oracle
	
	in hierarchical structures, PostgreSQL and MySQL, PostgreSQL and MySQL, Problem
	
	inline views and, Oracle
	
	WITH clause and, DB2 and SQL Server, Oracle
	

	CONNECT_BY_ISLEAF function (Oracle), Oracle, Oracle
	
	CONNECT_BY_ROOT function (Oracle), Oracle, Oracle
	
	correlated subqueries, MySQL and SQL Server
	
	COUNT function, Solution, Solution, Paradoxes, Effect of NULLs
	
	COUNT OVER window function, DB2, Oracle, and SQL Server, A Simple Example
	
	CREATE TABLE command, DB2
	
	CREATE TABLE … LIKE command (DB2), DB2
	
	CSV output, Discussion, Discussion
	
	CUBE extension, Oracle, SQL Server, Solution
	
	CURRENT_DATE function (DB2/MySQL/PostgreSQL), DB2, PostgreSQL and MySQL, DB2 and SQL Server
	

D
	DATE function (DB2), DB2
	
	DATEADD function (MySQL), MySQL
	
	DATEADD function (SQL Server), SQL Server, SQL Server, SQL Server
	
	DATEDIFF function (MySQL/SQL Server), MySQL and SQL Server, SQL Server, MySQL and SQL Server, MySQL and SQL Server, MySQL
	
	DATENAME function (SQL Server), SQL Server, SQL Server, SQL Server, SQL Server, SQL Server
	
	DATEPART function (SQL Server), SQL Server, SQL Server, SQL Server, SQL Server, SQL Server
	
	dates
		arithmetic, Date Arithmetic, Discussion
		business days between dates, Solution, Oracle, Discussion, Discussion, Discussion
	
	difference between record and next record, MySQL and SQL Server, DB2, MySQL, PostgreSQL, and SQL Server, Oracle
	
	weekdays in year, counting, DB2, Oracle, SQL Server, DB2, DB2, MySQL, MySQL, Oracle, PostgreSQL, PostgreSQL, SQL Server, SQL Server
	

	format, Date Arithmetic
	
	manipulation, Date Manipulation
		calendar, DB2, DB2, Oracle, PostgreSQL, MySQL, SQL Server
	
	date ranges, identifying overlapping, Solution, Discussion, Discussion, Discussion
	
	leap year, Solution, DB2, DB2, DB2, PostgreSQL, MySQL
	
	missing dates, Problem, PostgreSQL, SQL Server, PostgreSQL, PostgreSQL, MySQL, SQL Server, Problem
	
	quarter start/end dates, Solution, PostgreSQL, DB2, Oracle, MySQL, Solution, PostgreSQL, DB2, DB2, PostgreSQL, MySQL, SQL Server
	
	weekdays, first/last in month, PostgreSQL, MySQL
	
	year, Problem, Solution, SQL Server, PostgreSQL
	

	ORDER BY clause and (DB2), DB2 and Oracle
	

	DATE_ADD function (MySQL), MySQL, MySQL, MySQL, MySQL, MySQL
	
	DATE_FORMAT function (MySQL), MySQL, MySQL, MySQL, MySQL, MySQL
	
	DATE_TRUNC function (PostgreSQL), PostgreSQL, PostgreSQL, SQL Server, PostgreSQL, PostgreSQL
	
	DAY function (DB2), DB2, DB2, MySQL
	
	DAY function (MySQL), MySQL, MySQL, MySQL, MySQL
	
	DAY function (SQL Server), SQL Server, SQL Server, MySQL
	
	DAYNAME function (DB2/MySQL/SQL Server), DB2, DB2 and MySQL
	
	DAYOFWEEK function (DB2/MYSQL), Oracle, PostgreSQL and MySQL, DB2
	
	DAYOFYEAR function (DB2/MySQL/SQL Server), MySQL, DB2, DB2, MySQL, SQL Server
	
	DAYS function (DB2), Solution, DB2, Solution
	
	DB2
		DATE values in ORDER BY clause, MySQL, PostgreSQL, and SQL Server
	

	DECODE function (Oracle), Oracle, Discussion
	
	DEFAULT keyword, Solution
	
	DEFAULT VALUES clause (PostgreSQL/SQL Server), Solution
	
	DELETE command, Solution, Solution
	
	deleting records
		all, Discussion
	
	that violate integrity, Problem
	
	with NULLs (DB2/Oracle/SQL Server), DB2, Oracle, and SQL Server
	
	with NULLs (PostgreSQL/MySQL), PostgreSQL and MySQL, PostgreSQL and MySQL
	

	delimited data, MySQL
	
	delimited lists, DB2, PostgreSQL, Discussion, Oracle, Problem
	
	DENSE_RANK function (DB2/Oracle/SQL Server), DB2, Oracle, and SQL Server, Oracle, Oracle
	
	DENSE_RANK OVER window function (DB2/Oracle/SQL
 Server), DB2, Oracle, and SQL Server, Solution, Solution, Discussion
	
	DISTINCT keyword
		alternatives to, Discussion, MySQL and PostgreSQL
	
	SELECT list and, Discussion, MySQL and PostgreSQL, Groups are distinct
	
	uses for, MySQL and SQL Server, Problem, Problem
	

	duplicates
		suppressing, Solution
	

	dynamic SQL, Problem
	

E
	equi-join operations, Discussion, Problem
	
	exactly queries, Answering Questions Involving “Exactly”, Discussion, Question 10, Discussion, Question 11, Answering Questions Involving “Any” or “All”
	
	EXCEPT function, DB2 and PostgreSQL, DB2 and PostgreSQL, Solution, DB2, Oracle, and PostgreSQL
	
	EXTRACT function (PostgreSQL/MySQL), PostgreSQL, PostgreSQL and MySQL
	
	extreme values, Problem
	

F
	foreign keys, Discussion, DB2, MySQL, SQL Server
	
	framing clause, Solution, When Order Matters, The Framing Clause, The Framing Clause, A Framing Finale, A Framing Finale
	
	Frege, Paradoxes
	
	Frege’s axiom, Groups are distinct, Paradoxes
	

G
	GENERATE_SERIES function (PostgreSQL)
		alternatives to, PostgreSQL, Oracle, Oracle, PostgreSQL and MySQL
	

	GETDATE function (SQL Server), DB2 and SQL Server, DB2 and SQL Server
	
	GROUP BY clause, Discussion, MySQL and PostgreSQL, Relationship Between SELECT and GROUP BY, Relationship Between SELECT and GROUP BY, Relationship Between SELECT and GROUP BY
	
	GROUP BY queries, PostgreSQL and MySQL, Problem, DB2, Oracle, and SQL Server, DB2, Oracle, and SQL Server, PostgreSQL and MySQL, PostgreSQL and MySQL
	
	grouping
		aggregate functions and, Relationship Between SELECT and GROUP BY, Relationship Between SELECT and GROUP BY
	
	by time units, Discussion, Solution, Discussion, Discussion, Problem
	
	characteristics of, Definition of an SQL Group, Groups are distinct, Groups are distinct, Groups are distinct
	
	COUNT function and, Solution
	
	defined, Definition of an SQL Group
	
	examples, Grouping
	
	NULLs and, Paradoxes
	
	reasons for, Grouping
	
	SELECT clause and, Discussion, Relationship Between SELECT and GROUP BY, Relationship Between SELECT and GROUP BY, Relationship Between SELECT and GROUP BY
	
	SUM function and, Solution
	

	GROUPING function (DB2/Oracle/SQL Server), SQL Server and MySQL, DB2 and Oracle, Solution, Discussion
	
	GROUPING function (MySQL/PostgreSQL), MySQL and PostgreSQL
	
	GROUPING SETS extension (DB2/Oracle), Oracle, DB2, and SQL Server, Oracle, DB2, and SQL Server, Oracle, DB2, and SQL Server
	

H
	hierarchies
		node type, Oracle, DB2, PostgreSQL, MySQL, and SQL Server, DB2, PostgreSQL, MySQL, and SQL Server, DB2, PostgreSQL, MySQL, and SQL Server, DB2, PostgreSQL, MySQL, and SQL Server, DB2, PostgreSQL, MySQL, and SQL Server, Oracle
	
	problematic nature of, Hierarchical Queries
	
	tree versus recursive structure, Solution
	

	HOUR function (DB2), DB2
	

I
	IF-ELSE operations, Problem
	
	indexes
		listing, DB2
	

	information schema (MySQL/PostgreSQL/SQL
 Server), PostgreSQL, MySQL, and SQL Server
	
	inner joins, Discussion, Problem
	
	INSERT ALL statement (Oracle), Oracle
	
	INSERT FIRST statement (Oracle), Oracle
	
	INSERT statement, Solution, Discussion
	
	inserting records
		into multiple tables, Oracle, Oracle
	
	with default values, Solution
	

	INSTR function (Oracle), Solution, Solution, Solution
	
	INTERSECT operation, Solution, DB2, Oracle, and PostgreSQL
	
	INTERVAL keyword, PostgreSQL, Discussion
	
	IS NULL, Solution
	
	ITERATE command (Oracle), Oracle
	
	ITERATION_NUMBER function (Oracle), Oracle
	

J
	JOIN clause
		in FROM clause, Discussion
	
	Oracle support for, Oracle
	

	joins
		anti-, Discussion
	
	equi-, Discussion, Problem
	
	inner, Discussion
	
	scalar subqueries and, Discussion
	
	selecting columns, Discussion
	

K
	KEEP extension (Oracle), Oracle, Oracle, Oracle
	
	keys
		foreign, MySQL, Discussion
	
	Knight values, Problem, Solution
	
	Kyte, Discussion
	

L
	LAG function (Oracle), Oracle
	
	LAG OVER window function (Oracle), Solution, Oracle, Oracle, Solution, Oracle, Oracle, Solution, Oracle
	
	LAST function (Oracle), Oracle, Oracle
	
	LAST_DAY function (MySQL/Oracle), Oracle, MySQL, Oracle, MySQL, Oracle
	
	LEAD function (Oracle), Oracle, Oracle
	
	LEAD OVER window function (Oracle)
		duplicates and, Oracle
	
	self joins and, Discussion, Discussion, DB2, MySQL, PostgreSQL, and SQL Server, Oracle
	
	uses, Oracle
	

	LIKE operator, Solution
	
	LIMIT clause (MySQL/PostgreSQL), MySQL and PostgreSQL, MySQL and PostgreSQL, MySQL and PostgreSQL
	
	logarithms, DB2 and Oracle
	
	loop functionality, Working with Strings
	
	LPAD function (Oracle/PostgreSQL/MySQL), Oracle, Oracle, PostgreSQL, and MySQL
	
	LTRIM function (Oracle), Oracle
	

M
	MAX function, SQL Server
	
	MAX OVER window function, DB2, Oracle, and SQL Server, Oracle, Solution
	
	MEASURES subclause of MODEL clause (Oracle), Discussion
	
	MEDIAN function (Oracle), MySQL and PostgreSQL
	
	MERGE statement, Inserting, Updating, Deleting, Solution
	
	metadata, Metadata Queries
		columns in table, Problem
	
	data dictionary, Problem
	
	foreign keys without indexes, Problem
	

	MIN OVER window function (DB2/Oracle/SQL Server), PostgreSQL and MySQL, DB2, Oracle, and SQL Server, Oracle
	
	minimum values, Problem, Discussion, MySQL and PostgreSQL, Oracle
	
	MINUS operation, Oracle, Solution, DB2, Oracle, and PostgreSQL
	
	MINUTE function (DB2), DB2
	
	MOD function (DB2), DB2 and SQL Server
	
	MODEL clause (Oracle)
		uses, Discussion
	

	modes, Oracle
	
	modifying records
		changing row data, Problem
	
	using queries for new values, Discussion
	
	with values from another table, Problem, Discussion, Oracle
	

	modulus (%) function (SQL Server), SQL Server, MySQL
	
	MONTH function (DB2/MySQL), DB2 and MySQL, DB2, DB2, PostgreSQL and MySQL
	
	MONTHNAME function (DB2/MySQL), DB2 and MySQL, DB2
	
	MONTHS_BETWEEN function (Oracle), Oracle, Oracle and SQL Server
	
	multiple tables
		inserting data into, Problem
	
	retrieving data from, Working with Multiple Tables, Discussion, Discussion, DB2 and PostgreSQL, Problem, Solution, Discussion, Discussion, Problem, Discussion, Problem, Oracle, Solution, Oracle
		comparing, Solution, Discussion, MySQL and SQL Server, MySQL and SQL Server
	
	joins when aggregates are used, Problem, Solution, MySQL and PostgreSQL
	
	missing data from multiple tables, Problem, Solution
	
	outer joins when using aggregates, Solution, Oracle
	
	values nonexistant in all tables, Discussion, DB2 and PostgreSQL, MySQL and SQL Server, MySQL and SQL Server
	

	multisets, Paradoxes
	

N
	names, Solution, MySQL
	
	negation queries, Answering Questions Involving Negation, Original solution, Original solution
		A only, Discussion, Question 3, Discussion, Original solution
	
	A or B but not both, Original solution, DB2, Oracle, and SQL Server, Discussion
	
	not A, Question 1, MySQL and PostgreSQL, Discussion, Original solution
	

	NEXT_DAY function (Oracle), Oracle, Oracle, Oracle
	
	NOT EXISTS, Solution
	
	NOT IN operator, MySQL and SQL Server
	
	NROWS function (DB2/SQL Server), DB2 and SQL Server
	
	NTILE window function (Oracle/SQL Server), Solution, Oracle and SQL Server, Oracle and SQL Server
	
	NULL paradox, Groups are distinct, Paradoxes, Paradoxes, Paradoxes
	
	NULLs
		aggregate functions and, Problem, Paradoxes, Effect of NULLs
	
	AVG function and, Discussion
	
	comparisons to, Problem, Discussion
	
	groups and, Paradoxes
	
	MIN/MAX functions and, Discussion
	
	sorting and, Solution, Oracle, Discussion
	
	window functions and, Partitions, When Order Matters
	

	numbers queries
		percentage of total, Solution, DB2, Oracle, and SQL Server
	
	percentage relative to total, Solution
	
	subtotals, DB2 and Oracle, DB2 and Oracle, SQL Server and MySQL
	
	subtotals for all combinations, Solution, Oracle, Oracle, DB2, and SQL Server, Oracle, DB2, and SQL Server, Oracle, DB2, and SQL Server, Oracle, DB2, and SQL Server, Oracle, DB2, and SQL Server, PostgreSQL and MySQL
	

	NVL function (Oracle), Oracle
	

O
	OFFSET clause (MySQL/PostgreSQL), MySQL and PostgreSQL, MySQL and PostgreSQL
	
	Optimizing Transact-SQL: Advanced Programming Techniques
 (Rozenshtein et al.), Solution
	
	Oracle
		object types, Solution
	

	ORDER BY clause, Discussion, Solution, Solution, DB2 and Oracle, When Order Matters
	
	outer joins
		OR logic in, Problem, Oracle
	
	Oracle syntax, Oracle, Oracle, Oracle, Oracle, Oracle, Oracle
	

	OVER keyword, Discussion, A Simple Example
	

P
	PARTITION BY clause, Partitions, Partitions, Partitions, Effect of NULLs
	
	partitions
		ORDER BY clause and, When Order Matters
	

	percentage calculations, DB2, Oracle, and SQL Server, Problem, Discussion
	
	PERCENTILE_CONT function (Oracle), Oracle, Oracle
	
	PIVOT operator (SQL Server), Discussion
	
	pivoting
		multiple rows, DB2, Oracle, and SQL Server, DB2, Oracle, and SQL Server, PostgreSQL and MySQL, PostgreSQL and MySQL, Solution
	
	ranked result sets, Solution, Discussion, Discussion, Problem
	
	subtotals, Solution, Discussion
	

	PostgreSQL
		PRIOR keyword (Oracle), Oracle
	

Q
	QUARTER function (DB2/MySQL), MySQL, DB2, MySQL
	
	queries
		strings
		alphanumeric, Problem
	

R
	RANDOM function, PostgreSQL
	
	random records, Problem, PostgreSQL
	
	RANGE BETWEEN clause, When Order Matters, The Framing Clause, The Framing Clause, A Framing Finale
	
	ranges
		consecutive, Working with Ranges, Problem
	
	differences between rows in group, DB2, MySQL, PostgreSQL, and SQL Server, Oracle, Oracle, Oracle
	
	missing values, Solution
	

	RATIO_TO_REPORT function (Oracle), Solution
	
	reciprocal rows, Discussion
	
	REGEXP_REPLACE function (Oracle), Discussion
	
	Regular Expression Anti-Patterns(Gennick), Discussion
	
	regular expressions (Oracle), Solution, Discussion
	
	relational division, Answering Questions Involving “Any” or “All”
	
	REPEAT function (DB2), DB2
	
	REPLACE function, Oracle and PostgreSQL, Solution, Solution, Solution, Solution
	
	REPLICATE function (SQL Server), SQL Server
	
	result set, Solution, Discussion, Discussion, Problem
	
	retrieving data from
		multiple tables
		columns with same data type, Problem
	

	retrieving records
		complex, Solution
		aggregating over moving value range, DB2, Oracle, and SQL Server, DB2 and Oracle, DB2 and Oracle, DB2 and Oracle
	
	non-GROUP BY columns, returning, Problem, DB2, Oracle, and SQL Server, DB2, Oracle, and SQL Server, PostgreSQL and MySQL, PostgreSQL and MySQL
	
	repeating values, suppressing, Problem
	
	subtotals, Problem, SQL Server and MySQL
	

	simple, Discussion
		random, Solution, Oracle
	

	reverse pivoting result sets, PostgreSQL and MySQL
	
	ROLLUP extension of GROUP BY(DB2/Oracle), DB2 and Oracle, Solution, Solution
	
	row generation, Problem, Problem, DB2 and SQL Server, MySQL
	
	ROWNUM function (Oracle), Oracle, Oracle, DB2, Oracle, and SQL Server
	
	ROW_NUMBER function (DB2/SQL Server), SQL Server
	
	ROW_NUMBER OVER window function (DB2/Oracle/SQL
 Server)
		ORDER BY clause and, DB2, Oracle, and SQL Server
	
	uniqueness of result, DB2, Oracle, and SQL Server
	
	uses, DB2, DB2, Oracle, and SQL Server
	

	RPAD function (Oracle), Discussion
	
	RTRIM function (Oracle/PostgreSQL), Oracle and PostgreSQL
	
	RULES subclause (Oracle), Discussion
	
	running differences, MySQL, PostgreSQL, and SQL Server
	
	running products, Solution, DB2 and Oracle, DB2 and Oracle, MySQL, PostgreSQL, and SQL Server
	
	running totals, MySQL, PostgreSQL, and SQL Server, DB2 and Oracle, DB2 and Oracle
	
	Russell, Groups are distinct
	
	Russell’s Paradox, Groups are distinct
	

S
	scalar subqueries
		converting to composite (Oracle), Solution, Discussion
	
	joins and, Solution, Discussion
	

	scripts, Problem
	
	searching, Advanced Searching
		duplicates, Solution, DB2, Oracle, and SQL Server
	
	for text not matching pattern (Oracle), Discussion, Problem, Discussion, Discussion
	
	Knight values, Problem
	
	results, Advanced Searching, MySQL and PostgreSQL
	
	row values, Oracle, Oracle, Oracle
	
	rows, DB2, Oracle, and SQL Server, DB2, MySQL, PostgreSQL, and SQL Server, Oracle
	
	rows from table, DB2, Oracle, and SQL Server, MySQL and PostgreSQL, MySQL and PostgreSQL
	
	top n records, DB2, Oracle, and SQL Server, DB2, Oracle, and SQL Server
	

	SECOND function (DB2), DB2
	
	SELECT statements
		DISTINCT keyword and, Groups are distinct
	
	GROUP BY and, Discussion, Paradoxes, Relationship Between SELECT and GROUP BY, Relationship Between SELECT and GROUP BY
	

	self joins
		alternatives to, Discussion, Discussion, Problem, DB2, MySQL, PostgreSQL, and SQL Server
	

	serialized data, Solution, Discussion
	
	set differences, Discussion
	
	set operations generally, Working with Multiple Tables, Discussion, Discussion
	
	SIGN function (MySQL/PostgreSQL), PostgreSQL and MySQL
	
	simple
		retrieving records
		columns, Problem, Discussion
	

	sorting records, Sorting Query Results, Problem, Discussion
		nulls and, DB2, MySQL, PostgreSQL, and SQL Server, DB2, MySQL, PostgreSQL, and SQL Server, DB2, MySQL, PostgreSQL, and SQL Server, Oracle, Oracle, Discussion
	
	on data dependent key, Discussion
	
	on multiple fields, Discussion
	
	on single field, Sorting Query Results
	
	strings, Solution, Discussion, Discussion
	

	specification, Groups are distinct
	
	START WITH clause (Oracle), Oracle, Oracle
	
	Stoll, Groups are distinct
	
	strings
		queries, Discussion, Oracle
		alphanumeric status, Solution, DB2, SQL Server, DB2, Oracle, and PostgreSQL, SQL Server
	
	initials, extracting from name, MySQL, DB2, Oracle and PostgreSQL, MySQL
	
	IP Address parsing, DB2, Oracle
	
	numeric content, Problem, DB2, Oracle, PostgreSQL, DB2, Oracle, and PostgreSQL, MySQL
	
	ordering by number, DB2, Oracle, Discussion, Problem
	
	parsing into rows, Solution
	

	searching for mixed alphanumeric, Discussion
	
	separating numeric and character data, Solution, Discussion, Discussion, Discussion
	

	STR_TO_DATE function (MySQL), MySQL
	
	subqueries
		correlated, MySQL and SQL Server
	

	SUBSTR function (DB2/MySQL/Oracle/PostgreSQL), DB2, MySQL, Oracle, and PostgreSQL, Solution, DB2 and SQL Server
	
	SUBSTRING function (SQL Server), SQL Server, SQL Server, SQL Server
	
	subtotals
		pivoting result set with, Discussion
	

	SUM function, Solution, Discussion
	
	SUM OVER window function (DB2/Oracle/SQL
 Server), DB2, Oracle, and SQL Server, Oracle, MySQL, PostgreSQL, and SQL Server, DB2 and Oracle, DB2, Oracle, and SQL Server
	
	SYS_CONNECT_BY_PATH function (Oracle), Oracle, Oracle, Oracle
	

T
	tables
		creating and copying definition, Discussion
	

	testing for existence of value within group, Problem, Problem
	
	The Essence of SQL (Rozenshtein), Rozenshtein Revisited
	
	time
		grouping rows by, Solution, Discussion, Discussion
	

	TIMESTAMP types (Oracle), Discussion
	
	TO_BASE function (Oracle), Discussion
	
	TO_CHAR function (Oracle/PostgreSQL), Oracle, Oracle, Oracle, PostgreSQL and MySQL
	
	TO_DATE function (Oracle/PostgreSQL), Oracle, PostgreSQL
	
	TO_NUMBER function (Oracle/PostgreSQL), Oracle, Oracle
	
	TRANSLATE function (DB2/Oracle/PostgreSQL), MySQL and SQL Server, Solution, Solution, SQL Server, Solution
	
	transposing result sets (Oracle), Discussion, Discussion, Discussion
	
	TRUNC function (Oracle), Oracle, Oracle, Oracle, Oracle
	

U
	underscore (_) operator, Discussion
	
	Understanding the WITH Clause(Gennick), DB2 and SQL Server
	
	UNION ALL operation, Solution, DB2 and PostgreSQL, Paradoxes
	
	UNION operation, Solution, Discussion, Discussion, Paradoxes
	
	UNPIVOT operator (SQL Server), Solution, Solution
	
	UPDATE statement, Solution, Solution, Solution, PostgreSQL, PostgreSQL, SQL Server, and MySQL
	

V
	VALUES clause, Solution
	
	version differences
		Oracle
		CONNECT BY clause, Oracle, Oracle, Oracle, Oracle
	
	DEFAULT keyword, Solution
	
	JOIN clause, Oracle, DB2, MySQL, PostgreSQL, and SQL Server
	
	KEEP clause, Oracle, Oracle
	
	LEAD OVER window function, Oracle
	
	MEDIAN/PERCENTILE_CONT functions, Oracle, Oracle
	
	MODEL clause, DB2 and Oracle, Solution
	
	outer joins, Discussion
	

W
	WHERE clause, Discussion
	
	wildcard (%) operator, Solution
	
	window functions
		aggregate functions versus, A Simple Example
	
	evaluation order, Order of Evaluation
	
	NULLs and, Effect of NULLs, Effect of NULLs
	
	ORDER BY subclause, When Order Matters
	
	partitions, Partitions
	
	reports and, Providing a Base
	
	timing of, DB2, MySQL, PostgreSQL, and SQL Server, Oracle, DB2, Oracle, and SQL Server
	

	WITH clause (DB2/SQL Server), Solution, DB2 and SQL Server, Problem
	
	WITH clause (Oracle), Oracle
	
	WITH ROLLUP (SQL Server/MySQL), SQL Server and MySQL
	

Y
	YEAR function (DB2/MySQL/SQL Server), DB2 and MySQL, DB2, Problem, PostgreSQL and MySQL
	
	Young, Problem
	
	YS_CONNECT_BY_PATH function (Oracle), Oracle
	

Z
	Zermelo, Groups are distinct
	

About the Author
Anthony Molinaro is a SQL developer and database administrator with many years experience in helping developers improve their SQL queries. SQL is particular passion of Anthony's, and he's become known as the go-to guy among his clients when it comes to solving difficult SQL query problems. He's well-read, understands relational theory well, and has nine years of hands-on experience solving tough, SQL problems. Anthony is particularly well-acquainted with new and powerful SQL features such as the windowing function syntax that was added to the most recent SQL standard.

Colophon
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The animal on the cover of SQL Cookbook is an
 Agamid lizard. These lizards belong to the Agamidae family and have more
 than 300 species among them. Agamids can be found in Africa, Asia,
 Australia, and Southern Europe, and are characterized by strong legs
 and—in some varieties—the ability to change color. Unlike other species of
 lizards, agamids cannot regenerate their tails if they lose them. They can
 be found in varied environments from hot deserts to warm, wet tropical
 rainforests.
Several species of agamids are popular as pets. Among these are the
 Bearded Dragon (genus Pogona). Calm, yet curious,
 these creatures grow to be only about 20 inches. Even with their small
 stature, they are still considered “giant” lizards, and therefore require
 ample space. Males are generally territorial and, although they are social
 animals, overcrowding can lead to stress, especially when the animals have
 no place to hide. Overcrowding can lead to injuries from fighting such as
 lost toes and tails, as well as a loss of appetite.
The head of the bearded lizard is triangular in shape and features
 many spikes protruding from its chin. These spikes resemble whiskers (thus
 the name). The spikes are also found along its side. Bearded dragons open
 their mouths and display their spiky beards to scare predators and other
 beardeds. They also can flatten their bodies to appear larger. As pets,
 they may stop displaying their beards once they become comfortable with
 their owners and habitats.
Although they originated in Australia, the bearded dragons sold by
 U.S. dealers are descendants of animals that were imported from Europe.
 This is due to Australia’s strict export laws regarding wildlife.
The Flying Lizard (draco volans) is another
 varied example of an agamid lizard. Measuring slightly less than 12
 inches, this animal has a long, thin body with flaps of skin along its
 ribs. The male flying lizard will claim two to three trees for its
 territory with one to three females living in each tree. In order to
 transport itself from one place to another, it glides from trees or other
 high places by extending its skin flaps like wings. However, it usually
 does not fly in rain or wind. When threatened, the flying lizard may also
 extend its skin flaps to appear larger.
Another interesting variety of the agamidae family is the Red Headed
 Rock Agama (Agama agama) found in sub-Saharan Africa.
 These creatures often live in groups of 10 to 20 with an older male acting
 as the group’s “leader.” At night, their coloring is dark brown, but at
 dawn, their bodies change to light blue with a bright orange head and
 tail. Their skin coloring changes with their mood, acting like a virtual
 mood ring. For example, when males fight, their heads will become brown,
 while white spots appear along the body.
Darren Kelly was the production editor for SQL
 Cookbook. Kenneth Kimball was the copyeditor and Karmyn Guthrie
 was the proofreader. nSight, Inc. provided production services. Jamie
 Peppard and Genevieve d’Entremont provided quality control. Jansen Fernald
 provided production support Beth Palmer wrote the index.
Karen Montgomery designed the cover of this book, based on a series
 design by Edie Freedman. The cover image is a 19th-century engraving from
 the Dover Pictorial Archive. Karen Montgomery produced the cover layout
 with Adobe InDesign CS using Adobe’s ITC Garamond font.
David Futato designed the interior layout. This book was converted
 by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool
 created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
 Perl and XML technologies. The text font is Linotype Birka; the heading
 font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans
 Mono Condensed. The illustrations that appear in the book were produced by
 Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand
 MX and Adobe Photoshop CS. The tip and warning icons were drawn by
 Christopher Bing. This colophon was written by Jansen Fernald.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

SQL Cookbook

Anthony Molinaro

Editor
Jonathan Gennick

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-09-26T12:08:38-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/bk01-toc.html
SQL Cookbook

Table of Contents
		Dedication

		Special Upgrade Offer

		A Note Regarding Supplemental Files

		Preface		Why I Wrote This Book

		Objectives of This Book

		Audience for This Book

		How to Use This Book

		What’s Missing from This Book

		Structure of This Book

		Platform and Version

		Tables Used in This Book

		Conventions Used in This Book

		Using Code Examples

		Comments and Questions

		Safari® Enabled

		Acknowledgments

		1. Retrieving Records		1.1. Retrieving All Rows and Columns from a Table

		1.2. Retrieving a Subset of Rows from a Table

		1.3. Finding Rows That Satisfy Multiple Conditions

		1.4. Retrieving a Subset of Columns from a Table

		1.5. Providing Meaningful Names for Columns

		1.6. Referencing an Aliased Column in the WHERE Clause

		1.7. Concatenating Column Values

		1.8. Using Conditional Logic in a SELECT Statement

		1.9. Limiting the Number of Rows Returned

		1.10. Returning n Random Records from a
 Table

		1.11. Finding Null Values

		1.12. Transforming Nulls into Real Values

		1.13. Searching for Patterns

		2. Sorting Query Results		2.1. Returning Query Results in a Specified Order

		2.2. Sorting by Multiple Fields

		2.3. Sorting by Substrings

		2.4. Sorting Mixed Alphanumeric Data

		2.5. Dealing with Nulls when Sorting

		2.6. Sorting on a Data Dependent Key

		3. Working with Multiple Tables		3.1. Stacking One Rowset atop Another

		3.2. Combining Related Rows

		3.3. Finding Rows in Common Between Two Tables

		3.4. Retrieving Values from One Table That Do Not Exist in
 Another

		3.5. Retrieving Rows from One Table That Do Not Correspond to Rows in
 Another

		3.6. Adding Joins to a Query Without Interfering with Other
 Joins

		3.7. Determining Whether Two Tables Have the Same Data

		3.8. Identifying and Avoiding Cartesian Products

		3.9. Performing Joins when Using Aggregates

		3.10. Performing Outer Joins when Using Aggregates

		3.11. Returning Missing Data from Multiple Tables

		3.12. Using NULLs in Operations and Comparisons

		4. Inserting, Updating, Deleting		4.1. Inserting a New Record

		4.2. Inserting Default Values

		4.3. Overriding a Default Value with NULL

		4.4. Copying Rows from One Table into Another

		4.5. Copying a Table Definition

		4.6. Inserting into Multiple Tables at Once

		4.7. Blocking Inserts to Certain Columns

		4.8. Modifying Records in a Table

		4.9. Updating when Corresponding Rows Exist

		4.10. Updating with Values from Another Table

		4.11. Merging Records

		4.12. Deleting All Records from a Table

		4.13. Deleting Specific Records

		4.14. Deleting a Single Record

		4.15. Deleting Referential Integrity Violations

		4.16. Deleting Duplicate Records

		4.17. Deleting Records Referenced from Another Table

		5. Metadata Queries		5.1. Listing Tables in a Schema

		5.2. Listing a Table’s Columns

		5.3. Listing Indexed Columns for a Table

		5.4. Listing Constraints on a Table

		5.5. Listing Foreign Keys Without Corresponding Indexes

		5.6. Using SQL to Generate SQL

		5.7. Describing the Data Dictionary Views in an Oracle
 Database

		6. Working with Strings		6.1. Walking a String

		6.2. Embedding Quotes Within String Literals

		6.3. Counting the Occurrences of a Character in a String

		6.4. Removing Unwanted Characters from a String

		6.5. Separating Numeric and Character Data

		6.6. Determining Whether a String Is Alphanumeric

		6.7. Extracting Initials from a Name

		6.8. Ordering by Parts of a String

		6.9. Ordering by a Number in a String

		6.10. Creating a Delimited List from Table Rows

		6.11. Converting Delimited Data into a Multi-Valued IN-List

		6.12. Alphabetizing a String

		6.13. Identifying Strings That Can Be Treated as Numbers

		6.14. Extracting the nth Delimited
 Substring

		6.15. Parsing an IP Address

		7. Working with Numbers		7.1. Computing an Average

		7.2. Finding the Min/Max Value in a Column

		7.3. Summing the Values in a Column

		7.4. Counting Rows in a Table

		7.5. Counting Values in a Column

		7.6. Generating a Running Total

		7.7. Generating a Running Product

		7.8. Calculating a Running Difference

		7.9. Calculating a Mode

		7.10. Calculating a Median

		7.11. Determining the Percentage of a Total

		7.12. Aggregating Nullable Columns

		7.13. Computing Averages Without High and Low Values

		7.14. Converting Alphanumeric Strings into Numbers

		7.15. Changing Values in a Running Total

		8. Date Arithmetic		8.1. Adding and Subtracting Days, Months, and Years

		8.2. Determining the Number of Days Between Two Dates

		8.3. Determining the Number of Business Days Between Two Dates

		8.4. Determining the Number of Months or Years Between Two
 Dates

		8.5. Determining the Number of Seconds, Minutes, or Hours Between Two
 Dates

		8.6. Counting the Occurrences of Weekdays in a Year

		8.7. Determining the Date Difference Between the Current Record and
 the Next Record

		9. Date Manipulation		9.1. Determining if a Year Is a Leap Year

		9.2. Determining the Number of Days in a Year

		9.3. Extracting Units of Time from a Date

		9.4. Determining the First and Last Day of a Month

		9.5. Determining All Dates for a Particular Weekday Throughout a
 Year

		9.6. Determining the Date of the First and Last Occurrence of a
 Specific Weekday in a Month

		9.7. Creating a Calendar

		9.8. Listing Quarter Start and End Dates for the Year

		9.9. Determining Quarter Start and End Dates for a Given
 Quarter

		9.10. Filling in Missing Dates

		9.11. Searching on Specific Units of Time

		9.12. Comparing Records Using Specific Parts of a Date

		9.13. Identifying Overlapping Date Ranges

		10. Working with Ranges		10.1. Locating a Range of Consecutive Values

		10.2. Finding Differences Between Rows in the Same Group or
 Partition

		10.3. Locating the Beginning and End of a Range of Consecutive
 Values

		10.4. Filling in Missing Values in a Range of Values

		10.5. Generating Consecutive Numeric Values

		11. Advanced Searching		11.1. Paginating Through a Result Set

		11.2. Skipping n Rows from a Table

		11.3. Incorporating OR Logic when Using Outer Joins

		11.4. Determining Which Rows Are Reciprocals

		11.5. Selecting the Top n Records

		11.6. Finding Records with the Highest and Lowest Values

		11.7. Investigating Future Rows

		11.8. Shifting Row Values

		11.9. Ranking Results

		11.10. Suppressing Duplicates

		11.11. Finding Knight Values

		11.12. Generating Simple Forecasts

		12. Reporting and Warehousing		12.1. Pivoting a Result Set into One Row

		12.2. Pivoting a Result Set into Multiple Rows

		12.3. Reverse Pivoting a Result Set

		12.4. Reverse Pivoting a Result Set into One Column

		12.5. Suppressing Repeating Values from a Result Set

		12.6. Pivoting a Result Set to Facilitate Inter-Row
 Calculations

		12.7. Creating Buckets of Data, of a Fixed Size

		12.8. Creating a Predefined Number of Buckets

		12.9. Creating Horizontal Histograms

		12.10. Creating Vertical Histograms

		12.11. Returning Non-GROUP BY Columns

		12.12. Calculating Simple Subtotals

		12.13. Calculating Subtotals for All Possible Expression
 Combinations

		12.14. Identifying Rows That Are Not Subtotals

		12.15. Using Case Expressions to Flag Rows

		12.16. Creating a Sparse Matrix

		12.17. Grouping Rows by Units of Time

		12.18. Performing Aggregations over Different Groups/Partitions
 Simultaneously

		12.19. Performing Aggregations over a Moving Range of Values

		12.20. Pivoting a Result Set with Subtotals

		13. Hierarchical Queries		13.1. Expressing a Parent-Child Relationship

		13.2. Expressing a Child-Parent-Grandparent Relationship

		13.3. Creating a Hierarchical View of a Table

		13.4. Finding All Child Rows for a Given Parent Row

		13.5. Determining Which Rows Are Leaf, Branch, or Root Nodes

		14. Odds ‘n’ Ends		14.1. Creating Cross-Tab Reports Using SQL Server’s PIVOT
 Operator

		14.2. Unpivoting a Cross-Tab Report Using SQL Server’s UNPIVOT
 Operator

		14.3. Transposing a Result Set Using Oracle’s MODEL Clause

		14.4. Extracting Elements of a String from Unfixed Locations

		14.5. Finding the Number of Days in a Year (an Alternate Solution for
 Oracle)

		14.6. Searching for Mixed Alphanumeric Strings

		14.7. Converting Whole Numbers to Binary Using Oracle

		14.8. Pivoting a Ranked Result Set

		14.9. Adding a Column Header into a Double Pivoted Result Set

		14.10. Converting a Scalar Subquery to a Composite Subquery in
 Oracle

		14.11. Parsing Serialized Data into Rows

		14.12. Calculating Percent Relative to Total

		14.13. Creating CSV Output from Oracle

		14.14. Finding Text Not Matching a Pattern (Oracle)

		14.15. Transforming Data with an Inline View

		14.16. Testing for Existence of a Value Within a Group

		A. Window Function Refresher		A.1. Grouping

		A.2. Windowing

		B. Rozenshtein Revisited		B.1. Rozenshtein’s Example Tables

		B.2. Answering Questions Involving Negation

		B.3. Answering Questions Involving “at Most”

		B.4. Answering Questions Involving “at Least”

		B.5. Answering Questions Involving “Exactly”

		B.6. Answering Questions Involving “Any” or “All”

		Index

		About the Author

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/ad_files/strata_ebook_ad.jpg
Change the world with data.
We'll show you how.
strataconf.com

Strata

CONFERENCE

A
HADOOP
#WORLD

Oct 28 - 30, 2013
New York, NY

OREILLY"

Strata

CONFERENCE
Making Data Work

O'REILLY"

Strata

CONFERENCE
Making Data Work

Nov 11 -13, 2013
London, England

Feb 11-13, 2014
Santa Clara, CA

OREILLY"

Strata&

CONFERENCE
Data Makes a Difference

April 23-25, 2014
Boston, MA

O'REILLY

Spreading the knowledge of innovators.

OEBPS/oreilly_large.png.jpg

OEBPS/orm_front_cover.jpg
Query Solutions and Techniques
Jfor Database Developers

O’REILLY®

Anthony Molinaro

OEBPS/httpatomoreillycomsourceoreillyimages1812092.png

