O'REILLY"

MySOL and

MariaDB

HEADING IN THE RIGHT DIRECTION
WITH MYSQL AND MARIADB

Russell JT. Dyer

Foreword by Monty Widenius, creator of MySQL and MariaDB

O'REILLY"

Learning MySQL and MariaDB

If you're a programmer new to databases—or just new to MySQL and
its community-driven variant, MariaDB—you've found the perfect
introduction. This hands-on guide provides an easy, step-by-step
approach to installing, using, and maintaining these popular relational
database engines.

Author Russell Dyer, Curriculum Manager at MariaDB and former editor of
the MySQL Knowledge Base, takes you through database design and the
basics of data management and manipulation, using real-world examples
and many practical tips. Exercises and review questions help you practice
what you've just learned.

m Create and alter MySQL tables and specify fields and columns
within them

m Learn how toinsert, select, update, delete, join, and subquery
data, using practical examples

m Use built-in string functions to find, extract, format, and
convert text from columns

m Learn functions for mathematical or statistical calculations, and
for formatting date and time values

m Perform administrative duties such as managing user accounts,
backing up databases, and importing large amounts of data

m Use APIs to connect and query MySQL and MariaDB with PHP
and other languages

Russell J.T. Dyer is a freelance writer and currently the Curriculum Manager at
MariaDB Ab. He worked previously at MySQL Ab. as their Knowledge Base Editor.
He is the author of MySQL in a Nutshell (O'Reilly) as well as dozens of articles for
Linux Journal, ONLamp.com, The Perl Journal, Red Hat Magazine, TechRepublic,
Unix Review, and XML.com.

“MySQL and MariaDB
are among the most
commonly used
database servers, and
this is the book to read
to get up to speed on
learning both of them.
Russell makes it easy
and accessible with
exercises that will take
you through the process
of learning—and towards

becoming an expert.”

—Colin Charles

currently Chief Evangelist at MariaDB Corp.,
and formerly Community Relations
Manager at MySQL Inc.

MYSQL DATABASE p— p—
u l

US $49.99 CAN $57.99

ISBN: 978-1-449-36290-4

MR NAT i ==

LR i :

Twitter: @oreillymedia
facebook.com/oreilly

Learning MySQL and MariaDB

Russell].T. Dyer

Beijing + Cambridge - Farnham - Kdln - Sebastopol + Tokyo [KOAR{=|MN4

Learning MySQL and MariaDB
by Russell J.T. Dyer

Copyright © 2015 Russell J.T. Dyer. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Lucie Haskins
Production Editor: Matt Hacker Cover Designer: Ellie Volckhausen
Copyeditor: Jasmine Kwityn Interior Designer: David Futato
Proofreader: Troy Mott lllustrator: Rebecca Demarest
April 2015: First Edition

Revision History for the First Edition:

2015-03-23: First release
See http://oreilly.com/catalog/errata.csp?isbn=9781449362904 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Learning MySQL and MariaDB, the image
of a banded angelfish, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the information and instruc-
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel-
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-449-36290-4
[LSI]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449362904

To Fortunata Serio, my mother, who gave me life, taught me to be kind and loving, and
to speak—which is a precursor to being a writer.

And to Andrew Gambos, who had the thankless job of being my stepfather, but taught
me how to assert myself in life and in my career.

Table of Contents

30T €31 (R Xiii
o = - T« T Xix

Partl. The Software

T INtroduction. ..o 3
The Value of MySQL and MariaDB 3
Mailing Lists and Forums 4
Other Books and Other Publications 4

2. Installing MySQLand MariaDB.ccoeviniriiiiiiiiriierinnenneennnnns 7
The Installation Packages 7
Licensing 8
Finding the Software 9
Choosing a Distribution 10
The _AMP Alternatives 11

Linux Binary Distributions 11
Mac OS X Distributions 13
Windows Distributions 16
FreeBSD and Sun Solaris Distributions 19
Source Distributions 21
Post-Installation 23
Special Configuration 24
Setting Initial Password for root 24
More on Passwords and Removing Anonymous Users 25
Creating a User 26

3. TheBasicsandthemysqlClient..........ccoovuiiiiiiiiiiiiiiiiiiiiiiiinnenn, 29

The mysql Client 29

Connecting to the Server 30

Starting to Explore Databases 33
First SQL Commands 34
Inserting and Manipulating Data 36
A Little Complexity 39

Summary 40

Exercises 41

Partll. Database Structures

4, (reating Databasesand Tables............ccoovviiiiiiiiiiiiiiiiiiiiiieines 45
Creating a Database 46
Creating Tables 47
Inserting Data 51
More Perspectives on Tables 52
Summary 56
Exercises 56

5. AlteringTables.ooorniiiiiii i i i i i i e e 59
Prudence When Altering Tables 59
Essential Changes 61

Dynamic Columns 68
Optional Changes 71
Setting a Column’s Default Value 71
Setting the Value of AUTO_INCREMENT 73
Another Method to Alter and Create a Table 74
Renaming a Table 77
Reordering a Table 78
Indexes 80
Summary 85
Exercises 85

Partlll. Basics of Handling Data

6. InsertingData.........coiiiniiiiiiiiiiii i i e N
The Syntax 91
Practical Examples 93

The Table for Bird Orders 94
The Table for Bird Families 95
The Table for Birds 101
Other Possibilities 104

vi | Tableof Contents

Inserting Emphatically

Inserting Data from Another Table
A Digression: Setting the Right ID

Replacing Data

Priorities When Inserting Data
Summary
Exercises

. SelectingData...........coovvviiiiiiiiinnn..

Basic Selection

Selecting by a Criteria

Ordering Results

Limiting Results

Combining Tables

Expressions and the Like
Counting and Grouping Results
Summary

Exercises

. Updating and Deleting Data.....................

Updating Data
Updating Specific Rows
Limiting Updates
Ordering to Make a Difference
Updating Multiple Tables
Handling Duplicates
Deleting Data
Deleting in Multiple Tables
Summary
Exercises

. Joining and Subquerying Data...................

Unifying Results
Joining Tables
Selecting a Basic Join
Updating Joined Tables
Deleting Within Joined Tables
Subqueries
Scalar Subqueries
Column Subqueries
Row Subqueries
Table Subqueries

104
104
106
110
112
114
115

........................... 119

120
120
121
124
124
127
132
134
134

........................... 137

137
138
142
143
144
146
149
150
151
151

........................... 153

153
156
157
162
164
166
167
169
170
172

Table of Contents | vii

Performance Considerations with Subqueries 173
Summary 173
Exercises 174

PartIV. Built-In Functions

10, StriNg FUNCEIONS. . .o vveieeit it ittt ii it ie e enennesnnenneanns 179
Formatting Strings 180
Concatenating Strings 180
Setting Case and Quotes 182
Trimming and Padding Strings 183
Extracting Text 185
Searching Strings and Using Lengths 188
Locating Text Within a String 188
String Lengths 191
Comparing and Searching Strings 192
Replacing and Inserting into Strings 194
Converting String Types 196
Compressing Strings 199
Summary 200
Exercises 200
11. Dateand Time Functions.............cooevviiiiiiiiiiiiiiiii i, 203
Date and Time Data Types 203
Current Date and Time 205
Extracting Date and Time Components 208
Formatting Dates and Time 212
Adjusting to Standards and Time Zones 214
Adding and Subtracting Dates and Time 217
Comparing Dates and Times 222
Summary 226
Exercises 226
12. Aggregate and NumericFunctions............cooviiviiiiiiiiiiiiiiiniennnens 229
Aggregate Functions 229
Counting Values 230
Calculating a Group of Values 235
Concatenating a Group 240
Numeric Functions 241
Rounding Numbers 241
Rounding Only Down or Up 244

vii | Table of Contents

Truncating Numbers 245

Eliminating Negative Numbers 245
Summary 247
Exercises 247

PartV. Administration and Beyond

13. User Accountsand Privileges.c.ovvuiiiiiiiiiiiiiiiiiiieiieriinnennnes 253
User Account Basics 253
Restricting the Access of User Accounts 256

Username and Host 256
SQL Privileges 258
Database Components and Privileges 260
Administrative User Accounts 265
User Account for Making Backups 265
User Account for Restoring Backups 266
User Account for Bulk Importing 267
User Account to Grant Privileges 268
Revoking Privileges 269
Deleting a User Account 270
Changing Passwords and Names 272
Setting a User Account Password 272
Renaming a User Account 273
User Roles 274
Summary 276
Exercises 276

14. Backing Up and Restoring Databases.............ccovviiviiiiiiiiiiiiinnnen. 279

Making Backups 279
Backing Up All Databases 280
Understanding Dump Files 282
Backing Up Specific Databases 288
Creating Backup Scripts 289
Backing Up Specific Tables 290

Restoring Backups 292
Restoring a Database 292
Restoring a Table 293
Restoring Only Rows or Columns 298
Recovering from a Binary Log 300

Developing a Backup Policy 307

Summary 312

Table of Contents | ix

Exercises

. BulklmportingData...........coovviiiiiiiiiiiienieennnns

Preparing to Import
Loading Data Basics
Watching for Warnings
Checking the Accuracy of the Import
Selecting Imported Data
Better Loading
Mapping Fields
Setting Columns
More Field and Line Definitions
Starting, Terminating, and Escaping
Replacing Data Versus Ignoring Errors
Importing from Outside MySQL
Importing Local Files
Using mysqlimport
Importing Without FILE Privileges
Bulk Exporting Data
Summary
Exercises

. Application Programming Interfaces........................

Creating API User Accounts
CAPI
Connecting to MySQL
Querying MySQL
Complete Minimal C API Program
Compiling with C Includes
Perl DBI
Installing
Connecting to MySQL
Querying MySQL
A Full Example with Per]l DBI
More Information
PHP API
Installing and Configuring
Connecting to MySQL
Querying MySQL
More Information
Python
Installing

312

315
315
318
319
320
323
324
324
326
327
328
329
330
331
331
332
333
335
335

337
338
338
339
340
341
342
342
343
343
343
346
348
348
349
349
350
353
353
353

Table of Contents

Connecting to MySQL 353

Querying MySQL 354
Sample Python Program 355
More Information 357
Ruby API 357
Installing and Preparing MySQL/Ruby 357
Connecting to MySQL 359
Querying MySQL 360
Sample MySQL/Ruby Program 361
More Information 364
SQL Injection 364
Summary 366
Exercises 366
INAEX. .t 369

Table of Contents | xi

Foreword

Before you begin to read the main chapters of this book to learn about MySQL and
MariaDB, it might be useful to understand what we were trying to accomplish when we
first created MySQL about 20 years ago and MariaDB about 5 years ago, as well as the
current state of these database systems and my expectations of them going forward. And
I'd like to encourage you in your decision to learn these database systems and to assure
you that they will be in use for a long time and that you will benefit from the time and
energy you put into reading this book and learning what it has to teach you.

Origins of MySQL

When my business partner David Axmark and I started MySQL, there weren’t any good,
free, open source database systems. There was mSQL, which wasn’t open source, but it
inspired us to create a new database system for our clients, which would later become
MySQL. We had no plans to do anything more with this embryo of MySQL other than
satisfy the needs of our clients. We were learning, discovering, and creating out of prac-
tical concerns and needs, much as you might and perhaps should be doing as a reader
of this book and a newcomer to MySQL and MariaDB.

Although we had accomplished our task in creating a straightforward database to meet
our requirements, it wasn’t long before we noticed that there were many other organi-
zations that were looking for a solution similar to what we had already developed. So
we decided to make the software available to the public and we named it MySQL.

Part of our motivation for doing this was that we felt that it was a way in which we could
give something back to the open source community that would be very useful. Most
open source projects at that time weren’t as useful. We wanted to make the world a little
better—we had no idea at that time how much of an impact MySQL would have on the
world. At the same time, we were hoping that by going public with the software, it might
finance further development of MySQL for as long as we might want. We had expect-
ations of getting rich from MySQL. We hoped only to be able to work full-time on this

Xiii

project because we believed in it. The result, though, was that we contributed much to
the world—much more than we thought possible.

Given the fact that over 80% of the websites in the world are now running on MySQL,
one could easily argue that we accelerated the growth of the internet and almost every-
thing that has grown out of it. The impact it’s had is immeasurable. Many of the sites
and businesses that have been successful, including the ones that are now huge, probably
would never have started if it were not for MySQL being free and dependable. At that
time, those founders and startup companies just didn’t have the financial resources to
start their sites. The cost of commercial database software was a barrier to some of the
most creative web-based organizations being launched, including organizations like
Google, Wikipedia, and Facebook. Plus, the commercial database systems posed other
problems for startups of that time. First, they were too slow—they weren’t optimized
for the Web and that was critical for organizations like these. The commecial alternatives
were also too difficult to use and manage, requiring higher paid developers.

Because of these factors, we were able to give fledgling organizations what they needed
to become the significant components of the Internet and a major part of the lives of
most people in the world today. We were a critical component of the development of
the Internet and we still are. There’s nothing to indicate that we won’t continue to be so.
The growth of MySQL and especially of MariaDB is increasing. It’s not decreasing as
some people expected with the introduction of new databases systems and methods
such as NoSQL.

MySQL became a dominant database system long ago. Once something becomes dom-
inant, it’s difficult to replace it. Even if something better comes along, people prefer
what’s already familiar to them and what they already know and are using. For something
to replace MySQL as the dominant open source database, it would have to be not only
critically better, but also offer a way for people to migrate without much effort, and
without wasting all of the knowledge they accumulated from their current system. This
is why MariaDB can replace MySQL: it’s basically the same thing, but with more features
and more potential for the future.

State of MySQL and MariaDB

MySQL and MariaDB aren't perfect—no database is that, nor will ever be that—but
MySQL and MariaDB are good enough for most people and they’re excellent in many
ways. The balance we strive for is to develop a database system that works easily on the
Web and has one of the fastest connectors. Thanks to the fact that we’re using threads,
we can handle much higher loads than other database systems. We used some of the
most advanced technologies available when we started MySQL and we have always
striven to adapt to new hardware and to optimize the software for all commonly used
systems and methods of deployment. Because were continuously improving the soft-
ware, we can have a new release each month for the community edition and we can have

xiv | Foreword

a new version every year. That’s an indication that things are happening and improving
regularly.

As someone learning and intending to use MySQL and MariaDB, you can take comfort
in that we are always improving and adjusting for a changing environment. You can
count on us for the future. I think that’s the main thing: people like that they can depend
on us. Although it may be fun and exciting to learn something new, after a while it can
become tiresome to have to learn a totally new system every couple of years. You won't
have to do that with MySQL and MariaDB.

I mentioned before about how difficult it is to supplant a dominant software. In the case
of MariaDB, it’s not much of a change in practice for those who have been using MySQL.
As a result, most people can migrate to MariaDB without the usual obstacles, but they
can take advantage of the new features included in MariaDB and the ones that are
planned when theyre added. MariaDB is relevant because we continue to make im-
provements and we care about giving developers what they need to get the most out of
their databases.

Beyond the Server

In addition to web usage, MySQL and MariaDB can be used for stand-alone applications,
embedded with other software. Embedded MySQL and MariaDB are growing more
than ever. Many applications are moving to cloud environments, but database systems
that many businesses used in the past are typically too expensive to use in a cloud
environment. As a result, they need an inexpensive database system that is easily de-
ployed in a cloud environment. For this situation, MySQL and MariaDB are the obvious
choices.

The use of mobile devices and websites and applications through mobile devices has
increased dramatically; for some sites, it now exceeds access and usage through desktop
computers. For sites and applications that run on mobile devices and use a database
located in the cloud or in house, were the best choice among all the open source and
commercial database systems. We have the best scale-out technologies for when your
site or application experiences major spikes in traffic or rapid growth in business. With
the encryption that we're adding in version 10.1 of MariaDB, you can be assured that
your databases will be very secure by default. Most other database systems don't have
encryption by default.

MariaDB: The Differences and Expectations

Regarding my hopes and expectations for the MariaDB database system, I'm working
at the foundation to ensure that we get more companies actively involved in the devel-
opment of MariaDB. That’s something we lacked during the history of MySQL. We want
to develop something that will satisfy everyone—not only now, but for the future. To

Foreword | xv

do that, we need more organizations involved. We’re happy to see Google involved in
the MariaDB Foundation. I'd like to see 10 or 15 companies as significant as Google
involved. That’s something they’ve managed to do at FOSS, the Free and Open Source
Software Foundation. They have several companies that assist in development. That’s
their strength. Their weakness is that they don’t have one company coordinating the
development of software. My hope is that the MariaDB Foundation will act as a coor-
dinator for the effort, but with many companies helping. That would benefit everyone.
It is this collaborative effort that I don’t expect from Oracle regarding MySQL. That’s
the difference and advantage of MariaDB. With Oracle, there’s no certainty in the future
of the open source code of MySQL. With MariaDB, by design it will always be open
source and everything they do will be open source. The foundation is motivated and
truly want to be more closely aligned with open source standards.

The MariaDB Foundation was created to be a sanctuary. If something goes wrong in
the MariaDB Corporation, the Foundation can guarantee that the MariaDB software
will remain open—always. That’s its main role. The other role is to ensure that compa-
nies that want to participate in developing MariaDB software can do so on equal terms
as anyone else because the foundation is there. So if someone creates and presents a
patch for MariaDB software, they can submit it to be included in the next release of
MariaDB. With many other open source projects, it’s difficult to get a patch included in
the software. You have to struggle and learn how to conform to their coding style. And
it’s even harder to get the patch accepted. In the case of MySQL with Oracle, it could be
blocked by Oracle. The situation is inherently different with MariaDB.

For example, if Percona, a competitor of MariaDB Corporation, wants to add a patch
to MariaDB software that will help their background program XtraBackup to run better,
but the management of MariaDB Corporation doesn’t like that it would be helping their
competitor, it doesn’t matter. MariaDB Corporation has no say in which patches are
adopted. If the Foundation accepts the patch, it's added to the software. The Foundation
review patches on their technical merits only, not based on any commercial agenda.

The open source projects that survived are those that were created for practical reasons.
MySQL wasn’t in the beginning the best database solution. People complained that it
didn’t have many features at that time. However, it was always practical. It solved prob-
lems and met the needs of developers and others. And it did so better than other solu-
tions that were supposedly better choices. We did that by actively listening to people
and with a willingness to make changes to solve problems. Our goal with MariaDB is
to get back to those roots and be more interactive with customers and users. By this
method, we can create something that might not be perfect for everyone, but pretty
good.

xvi | Foreword

The Future of MySQL and MariaDB

As for the future, if you want MariaDB to be part of your professional life, I can assure
you that we will do everything possible to support and develop the software. We have
many brilliant people who will help to ensure MariaDB has a long future.

In the near term, I think that MariaDB version 10.1 will play a large role in securing the
future of MariaDB. It offers full integration with Galera cluster—an add-on for MariaDB
for running multiple database servers for better performance—because of the new en-
cryption features. That's important. In recent months, all other technologies have been
overshadowed with security concerns because the systems of some governments and
major companies have been hacked. Having good encryption could have stopped most
of those attacks from achieving anything. These improvements will change the percep-
tion that open source databases are not secure enough. Many commercial database
makers have said that MySQL and MariaDB are not secure, and they have been able to
convince some businesses to choose a commercial solution instead as a result. With
MariaDB 10.1, though, we can prove easily that their argument is not true. So that’s
good. If you've chosen to use MariaDB, you can make this point when you’re asked
about the difference between MySQL and MariaDB, and you can feel good about your
choice over the long term for this same reason.

Looking at the future, many companies are leery about using commercial database
software because they don’t know for sure if the compiled code contains backdoors for
accessing the data or if there is some special way in which the software is using encryp-
tion that could allow hackers to get at their databases. On the other hand, countries like
Russia and China question whether open source databases are secure. The only way we
can assure them of that is to provide access to the source code, and that means they
must use open source software. So I do hope and expect that in the future we will see
MySQL and MariaDB growing rapidly in these countries and similar organizations,
because we can address their concerns when commercial solutions cannot. Ironically,
a more transparent software system is preferred by a less transparent government. It’s
better not only for less transparent organizations, but also for those that want to keep
their databases more secure. This applies to an organization that wants to keep their
data private and doesn’t want someone else such as a hacker, or a competitor, a govern-
ment to have access to their data.

Your Future in Learning MySQL and MariaDB

Both MySQL and MariaDB follow the SQL convention for database languages, which
was created about 30 years ago. The nice thing about SQL is that it hasn’t changed much
in the last 30 years. Mostly, one can do more with it. So if you learn one SQL system
well, you can easily make a transition to another. The basic concepts that you'll acquire
in learning an SQL system like MySQL or MariaDB, will be useful for your entire career

Foreword | xvii

as a database developer or administrator. There’s nothing to indicate that MySQL or
MariaDB will go away for the next 50 years. All of the concepts for the past 20 years of
MySQL are the same as they are today and will probably be the same for the next several
decades. There are just some new features and tools to be able to do extra tasks. But the
skills you always need are basic ones and they’re contained in this book. These skills are
ones that will always be of benefit to you.

Advice on Learning MySQL and MariaDB

You shouldn’t just read this book. You should install MySQL or MariaDB, try executing
the examples given, and complete the exercises at the end of each chapter. You should
also try to do something useful with the software and the SQL statements and functions
described in each chapter. You should use the tools or utilities presented. If you don’t
get practical experience, any book like this one will be useless to you. If youre not sure
what you can do to get practical experience, perhaps you could try to build a website
using MySQL or MariaDB. Try to solve some data-related problem with one of these
database systems. Begin to make it part of your life. Then what youre learning may help
you immediately in some way. By this method, you will become more excited by what
you're learning. You will better learn the basics by using the software from almost the
beginning.

Another way to learn more, as well as make yourself known in the community and to
develop a business network that could lead to more work and better jobs, is by partic-
ipating in the forums and mailing lists and IRC channels for MySQL and MariaDB. By
using what you're learning to help others, you'll not only become popular, but you'll
learn more in the process of having to explain the concepts you’ll learn in this book.

—Monty Widenius
Madlaga, Spain, January 2015

xviii | Foreword

Preface

MySQL is the most popular open source database system available. It’s particularly useful
for public websites that require a fast and stable database. Even if you're not familiar
with MySQL, you've used it many times. You use it when you use Google, Amazon,
Facebook, Wikipedia, and many other popular websites. It’s the keeper of the data behind
huge websites with thousands of pages of data, and small sites with only a few pages. It’s
also used in many non-web-based applications. It’s fast, stable, and small when needed.

The software was started by Michael “Monty” Widenius and David Axmark in 1995 and
is licensed under the GNU General Public License. In time, they founded the Swedish
company MySQL Ab (the Ab stands for aktiebolag, or stock company), which years later
became MySQL, Inc., incorporated in the United States. In January 2008, the company
was acquired by Sun Microsystems, which seemed promising for the future of the soft-
ware. But in April 2009 Oracle—a major competitor of MySQL that offers closed source
database software—acquired Sun. Many worried at the time that this acquisition would
eventually end MySQL software as a free, open source alternative on which much of the
Web and many sites that have changed the world were built. Five years after the ac-
quisition, this hasn’t proved to be the case. Many new features have been added to
MySQL and the number of MySQL developers within and outside of Oracle has
increased.

Displeased that Oracle took control of MySQL software, Monty started a new company
(Monty Program Ab) that has developed a fork of the software called MariaDB.' Because
MySQL software is licensed with the GPL, it is possible to freely and legally use the
MySQL software and add to it. At the same time, Ulf Sandberg, the former Senior Vice
President of Services at MySQL, Inc., along with other former employees of MySQL,
left Sun and Oracle and started SkySQL Ab, providing support, consulting, training,
and other services related to MySQL and MariaDB software. As of October 2013, Monty

1. Incidentally, MySQL is named for Monty Widenius’ first daughter, My Widenius. MariaDB is named for his
second daughter, Maria Widenius.

Xix

Program has merged into SkySQL, which was renamed to MariaDB Ab in October 2014.
The software license, though, is now held by the MariaDB Foundation so that it cannot
be bought by Oracle or any other corporation.

As for the community related to the software, some have been migrating to MariaDB,
preferring software not associated with a large proprietary software company. Many
operating systems distributors, hardware makers, and software packagers are now ship-
ping their products with MariaDB, either together with MySQL or without it. Many
websites that used MySQL software have switched to MariaDB. It’s easy to do, and for
most sites it requires no changes to applications that use MySQL—not a single line of
code needs to be changed to switch to MariaDB. If you want to take advantage of new,
advanced features of MariaDB, it is necessary to add or change code in an application
that previously used MySQL, bu the rest is the same.

Although ownership, company names, and even the name of the software has changed,
the vision that began almost 30 years ago and the spirit that has grown strong and vibrant
in the community is the same and continues in MariaDB.

If you want to learn about MySQL and MariaDB software, you can do it. It’s not difficult
to understand or to use. This book has been written to be a primer for newcomers to
MySQL and MariaDB, to get you started and help you be productive quickly. It’s also
useful for beginners who have learned only parts of MySQL and feel that there may be
key aspects used commonly that they don’t know, that they somehow missed or skipped
over when first learning it. At the beginner level, there is no difference between MySQL
and MariaDB. So when you learn one, you learn the other. Because of this, the names
MySQL and MariaDB are used interchangeably.

Reading Strategy

The chapters of this book are written and ordered based on the assumption that the
reader will read them in order. This does not assume that some chapters won't be skip-
ped; it’s assumed that most will skip Part I. For instance, in addition to skipping Chap-
ter 1, the introductory chapter, if MySQL is already installed on your computer, you
would probably skip Chapter 2, which covers installing MySQL and MariaDB. If you've
never used MySQL, you probably should read Chapter 3, The Basics and the mysql
Client. After that, all readers should read sequentially the chapters contained in the Parts
I1, I11, and IV. The remaining chapters, contained in Part V, relate to administration
and not all of those may be of use to you early on.

Most of the chapters conclude with a set of exercises. The exercises are designed to help
you think through what you've read in the chapter. Working through the exercises will
help reinforce what you should have learned from the examples in the chapter. Inci-
dentally, it’s useful to try entering the examples throughout the chapters for more prac-

xx | Preface

tice. The exercises at the end of the chapters depend on a building of knowledge, if not
from one chapter to the next, at least from previous chapters.

Text-Based Interface and Operating Systems

Many people feel that graphical user interfaces (GUIs) are faster when using a complex
software program or system. This accounts for the popularity of Windows programs.
However, while it is said that a picture is worth a thousand words, when you want to
say only one word, you don’t need to draw a picture. You don’t need to use an elaborate
GUI to make a minute change to a database.

In particular, I don't like GUIs for controlling a server or MySQL. Interfaces tend to
change between versions of the interface. Command-line utilities are very stable and
their basic commands don’t usually change. If you know how to configure a server at
the command line, it matters little what kind of server youre entering commands on.
Any examples in this book that are executed within MySQL are universal. Examples
shown at the command line are for Unix-like operating systems (e.g., Linux). I leave it
to readers to make the necessary adjustments for their particular operating systems (i.e.,
how to get to the command prompt).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

Preface | xxi

This icon indicates a warning or caution.

Using Code Examples

All of the scripts and programs shown in the book are available for you to
easily copy and modify for your own use. They can be found on the Web at
http://mysqlresources.com/files.

This book is here to help you learn MySQL and MariaDB and to get your job done in
relation to this software. In general, if this book includes code examples, you may use
the code in your programs and documentation. You do not need to contact us for per-
mission unless you're reproducing a significant portion of the code. For example, writing
a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning MySQL and MariaDB by Russell
J.T. Dyer (O'Reilly). Copyright 2015 Russell J.T. Dyer, 978-1-449-36290-4”

If you feel your use of code examples falls outside fair use or the permission given above,
you may contact us at permissions@oreilly.com to request special permission.

Safari® Books Online
Safari Books Online is an on-demand digital library that
{ D delivers expert content in both book and video form from

the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM

xxii | Preface

http://mysqlresources.com/files
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/lrng_mysql_and_mariadb.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thanks to my colleagues Colin Charles, Kenneth Dyer, Chad Hudson, Caryn-Amy Rose,
and Sveta Smirnova for reviewing this book for technical accuracy and for advice and
other information critical to its creation. Thanks to my editor, Andy Oram, for his help
and his confidence in me over the many years I've known him. Thanks to my two bosses
from the MySQL and MariaDB world: Ulf Sandberg and Max Mether, both of whom
worked at MySQL AB and SkySQL/MariaDB Ab. Both of them have been very encour-
aging and excellent managers. Thanks also to my friend and coworker, Rusty Osborne
Johnson for her friendship and patience while working on this book.

Preface | xxiii

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/lrng_mysql_and_mariadb
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART |
The Software

At the heart of what is collectively known as MySQL and MariaDB is the server. The
term server in this context refers to software, not a primary computer on which it may
be running. The server maintains, controls, and protects your data, storing it in files on
the computer where the server is running in various formats. The server listens for
requests from other software that is running (called clients in this context). The term
client refers to software, not a computer. A client and server software may be running
on the same computer, which can be a personal laptop computer.

We'll start by using a command-line client where you type in requests manually. Then
we’ll graduate to issuing the requests from programs that can back up web servers and
other uses for the data. It’s not necessary for you to know all of the files and programs
that make up MySQL. There are, though, a few key ones of which you should be aware.

One key program is the server itself, mysqld (the d stands for daemon and is a common
term for a server). The name is the same in both MySQL and MariaDB. This daemon
must be running in order for users to be able to access data and make changes. As an
administrator, you have the ability to configure and set mysqld to suit your database

system needs. The daemon is mentioned where relevant in various chapters throughout
this book.

Another key program, used extensively through this book, is the basic MySQL client,
called simply, mysql. With it, you can interact with the mysqld daemon, and thereby the
databases. It’s a textual user interface. There’s nothing fancy about it—a mouse is not
needed to use it. You simply type in the SQL statements that you will learn about in this
book. The results of queries are displayed in ASCII text. It's very clean looking, but no
graphics are involved. It’s also very fast, as there’s nothing but text (i.e., there are no
binaries or image files). We’ll cover this in Chapter 3. There are GUI clients available,

but because most MySQL developers and administrators prefer the mysql client, and
what you type in mysql is the same as what is passed to the server by a GUI client, I
cover it exclusively.

CHAPTER 1
Introduction

MySQL is an open source, multithreaded, relational database management system cre-
ated by Michael “Monty” Widenius in 1995. In 2000, MySQL was released under a dual-
license model that permitted the public to use it for free under the GNU General Public
License (GPL). All of this, in addition to its many features and stability, caused its pop-
ularity to soar.

It has been estimated that there are more than six million installations of MySQL world-
wide, and reports of over 50,000 downloads a day of MySQL installation software. The
success of MySQL as a leading database is due not only to its price—after all, other cost-
free and open source databases are available—but also its reliability, performance, and
features. MariaDB is rapidly becoming the replacement to MySQL, and is seen by many
as the heir apparent to the spirit of the MySQL community.

If youre embarking on a career in computer programming, web development, or com-
puter technology more generally, learning MySQL and MariaDB will prove useful. Many
businesses develop and maintain custom software with MySQL. Additionally, many of
the most popular websites and software use MySQL for their database—or they use
another SQL database system that you can learn once you understand MySQL. It’s highly
likely that you will be required to know or will benefit from knowing MySQL during
the course of working as a database or website developer. Therefore, learning MySQL
and MariaDB is a good foundation for your career in computer technology.

The Value of MySQL and MariaDB

Many features contribute to MySQLSs standing as a superb database system. Its speed is
one of its most prominent features (refer to its benchmarks page for its performance
over time). MySQL and MariaDB are remarkably scalable, and are able to handle tens
of thousands of tables and billions of rows of data. They can also manage small amounts

http://www.mysql.com/it-resources/benchmarks

of data quickly and smoothly, making them convenient for small businesses or amateur
projects.

The critical software in any database management system is its storage engine, which
manages queries and interfaces between a user’s SQL statements and the database’s back-
end storage. MySQL and MariaDB offer several storage engines with different advan-
tages. Some are transaction-safe storage engines that allow for rollback of data (i.e., the
often needed undo feature so familiar in desktop software). Additionally, MySQL has a
tremendous number of built-in functions, which are detailed in several chapters of this
book. MariaDB offers the same functions and a few more. MySQL and MariaDB are
also very well known for rapid and stable improvements. Each new release comes with
speed and stability improvements, as well as new features.

Mailing Lists and Forums

When learning MySQL and MariaDB, and especially when first using MySQL for your
work, it’s valuable to know where to find help when you have problems with the software
and your databases. For problems that you may have with your databases, you can
receive assistance from the MySQL community at no charge through several Oracle-
hosted forums. You should start by registering on the forums so that you may ask ques-
tions, as well as help others. You can learn much when helping others, as it forces you
to refine what you know about MySQL. You can find similar resources related to Ma-
riaDB on MariaDB Ab’s website.

When you have a problem with MySQL, you can search the forums for messages from
others who may have described the same problem that you are trying to resolve. It’s a
good idea to search the forums and the documentation before starting a new topic in
the forums. If you can't find a solution after searching, post a question. Be sure to post
your question in the forum related to your particular topic.

Other Books and Other Publications

MariaDB provides online documentation of their software that generally applies to
MySQL software. Oracle provides extensive online documentation for the MySQL
server and all of the other software it distributes. The documentation is organized by
version of MySQL. You can read the material online or download it in a few different
formats (e.g., HTML, PDE, EPUB). In PDF and EPUB, you can download a copy to an
ereader. I maintain a website that contains some documentation and examples derived
from my book, MySQL in a Nutshell (2008). Other people have also contributed exam-
ples and other materials to the site.

In addition to the book that youre now reading, O’'Reilly publishes a few other MySQL
books worth adding to your library. O’Reilly’s mainline reference book on MySQL is
written by me, MySQL in a Nutshell. For solving common practical problems, there’s

4 | Chapter 1: Introduction

http://forums.mysql.com/
http://forums.mysql.com/
https://mariadb.com/resources/community-tools
https://mariadb.com/kb/en/mariadb/documentation/
http://dev.mysql.com/doc
http://mysqlresources.com
http://shop.oreilly.com/product/9780596514334.do

MySQL Cookbook (2006) by Paul DuBois. For advice on optimizing MySQL and per-
forming administrative tasks, such as backing up databases, O’Reilly has published High
Performance MySQL (2012) by Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko.
At MySQL, Inc., I worked with the writers of both MySQL Cookbook and High Perfor-
mance MySQL, and they are authorities on the topic and well respected in the MySQL
community.

O'Reilly also publishes several books about the MySQL application programming in-
terfaces (APIs). For PHP development with MySQL, there’s Learning PHP, MySQL,
JavaScript, CSS, and HTMLS5 (2014) by Robin Nixon. For interfacing with Perl to MySQL
and other database systems, there’s Programming the Perl DBI (published in 2000 and
still very useful) by Alligator Descartes and Tim Bunce. To interface to MySQL with
Java, you can use the JDBC and JConnector drivers; George Reese’s book, Database
Programming with JDBC & Java (2000) is a useful resource on this topic.

In addition to published books on MySQL, a few websites offer brief tutorials on using
MySQL. Incidentally, I've contributed a few articles to O'Reilly blogs and several other
publications on MySQL and related topics. MySQL:s site also provides some in-depth
articles on MySQL. Many of these articles deal with new products and features, making
them ideal if you want to learn about using the latest releases available even while they’re
still in the testing stages. All of these online publications are available for no cost, except
the time invested in reading them. If you are a MySQL support customer, though, you
can get information about MySQL from their private Knowledge Base, of which I was
the editor for many years.

Once you've mastered the material in this book, if you require more advanced training
on MySQL, MariaDB, or related topics, MariaDB Ab offers training courses. Some are
for one or two days, others are week-long courses offered in locations around the world.
You can find a list of courses and when they’re offered on MariaDB Ab’s training page.
I'm currently the Curriculum Manager for MariaDB Ab.

Other Books and Other Publications | 5

http://shop.oreilly.com/product/0636920032274.do
http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920036463.do
http://shop.oreilly.com/product/0636920036463.do
http://shop.oreilly.com/product/9781565926998.do
http://shop.oreilly.com/product/9781565926165.do
http://shop.oreilly.com/product/9781565926165.do
http://dev.mysql.com/tech-resources/articles
http://dev.mysql.com/tech-resources/articles
http://www.skysql.com/products/mysql-training

CHAPTER 2
Installing MySQL and MariaDB

The MySQL and MariaDB database server and client software works on several different
operating systems, notably several distributions of Linux, Mac OS X, FreeBSD, Sun
Solaris, and Windows.

This chapter briefly explains briefly the process of installing MySQL or MariaDB on
Linux, Mac OS X, and Windows operating systems. For some operating systems, this
chapter has additional sections for different distribution formats. For any one platform,
you can install MySQL by reading just three sections of this chapter: the next section
on choosing a distribution; the section that applies to the distribution that you choose;
and “Post-Installation” on page 23 at the end of the chapter. There’s no need to read how
to install every version of MySQL.

The Installation Packages

The MySQL and MariaDB packages come with several programs. Foremost is the server,
represented by the mysqld daemon.' It has the same name in both MySQL and MariaDB.
This daemon is the software that actually stores and maintains control over all of the
data in the databases. The mysqld daemon listens for requests on a particular port (3306,
by default) by which clients submit queries. The standard MySQL client program is
called simply mysql. With this text-based interface, a user can log in and execute SQL
queries. This client can also accept queries from text files containing queries, and thereby
execute them on behalf of the user or other software. However, most MySQL interaction
is done by programs using a variety of languages. The interfaces for Per]l, PHP, and others
are discussed in Chapter 16.

1. A daemon is a background process that runs continuously; a Unix term for what most people call a “server””

A few wrapper scripts for mysqld come with the server installation. The mysqld_safe
script is the most common way to start mysqld, because this script can restart the dae-
mon if it crashes. This helps ensure minimal downtime for database services. You don’t
need to know the details of how all of this works if you’re just starting to learn MySQL
and MariaDB, but it gives you a sense of how powerful and versatile this database system
can be.

MySQL, and thereby MariaDB, also comes with a variety of utilities for managing the
server. The mysqlaccess tool creates user accounts and sets their privileges. The
mysqladmin utility can be used to manage the database server itself from the command
line. This kind of interaction with the server includes checking a server’s status and
usage, and shutting down a server. The mysqlshow tool may be used to examine a server’s
status, as well as information about databases and tables. Some of these utilities require
Perl, or ActivePerl for Windows, to be installed on the server. See the Perl site to down-
load and install a copy of Perl on non-Windows systems, and the ActivePerl site to
download and install a copy of ActivePer]l on Windows systems.

MySQL and MariaDB also come with a few utilities for importing and exporting data
from and to databases. The mysqldump utility is the most popular one for exporting data
and table structures to a plain-text file, known as a dump file. This can be used for
backing up data or for copying databases between servers. The mysql client can be used
to import the data back to MySQL from a dump file. These topics and utilities are
explained in detail in Part I, The Software.

You can opt not to install the helper utilities. However, there’s no cost for them and
they’re not large files. So you may as well install and use them.

Licensing

Although MySQL can be used for free and is open source, the company that develops
MySQL—currently Oracle—holds the copyright to the source code. The company ofters
a dual-licensing program for its software: one allows cost-free use through the GPL
under certain common circumstances, and the other is a commercial license requiring
the payment of a fee. They’re both the same software, but each has a different license
and different privileges. The website for the Free Software Foundation, which created
the GPL, has details on the license.

Oracle allows you to use the software under the GPL if you use it without redistributing
it, or if you redistribute it only with software that is licensed under the GPL. You can
even use the GPL if you redistribute MySQL with software that you developed, as long
as you distribute your software under the GPL as well. This is how MariaDB was created
and why it is a legal fork of MySQL.

However, if you have developed an application that requires MySQL for its functionality
and you want to sell your software with MySQL under a non-free license, you must

8 | Chapter2:Installing MySQL and MariaDB

http://www.perl.org
http://www.activestate.com/activeperl
http://www.fsf.org/licenses/license-list.html
http://www.fsf.org/licenses/license-list.html

purchase a commercial license from Oracle. There are other scenarios in which a com-
mercial license may be required. For details on when you must purchase a license, see
the MySQL legal site.

Besides holding the software copyright, Oracle also holds the MySQL trademark. As a
result, you cannot distribute software that includes MySQL in its name. None of this is
important to learning how to use MySQL, but its good for you to be aware of these
things for when you become an advanced MySQL developer.

Finding the Software

You can obtain a copy of MySQL from MySQL: site, which requires an Oracle login but
is still free, or from one of its mirror sites. You can instead download MariaDB, which
contains the latest release of MySQL and some additional features. You can get a copy
of MariaDB from the MariaDB Foundation site, which is also free and requires
registration.

When downloading the software on both sites, you’ll have to provide some information
about yourself, your organization, and how you intend to use the software. They’re
collecting information to understand how the software is used and to give to their sales
department. But if you indicate that you don’t want to be contacted, you can just down-
load the software and not have to interact further with them.

If your server or local computer has MySQL or MariaDB installed on it, you can skip
this chapter. If youre not sure whether MySQL or MariaDB is running on the computer
you’re using, you could enter something like this from the command line of a Linux or
Mac machine:

ps aux | grep mysql
If MySQL is running, the preceding command should produce results like the following:

2763 ? 00:00:00 mysqld_safe
2900 ? 5-23:48:51 mysqld

On a Windows computer, you can use the tasklist tool to see whether MySQL is
running. Enter something like the following from the command line:

tasklist /fi "IMAGENAME eq mysqld"
If it’s running, you will get results like this:

Image Name PID Session Name Session# Mem Usage

mysqld.exe 1356 Services 0 212 K

If it’s not running, you may get results like this from tasklist:

INFO: No tasks are running which match the specified criteria.

Finding the Software | 9

http://www.mysql.com/about/legal
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mirrors.html
https://downloads.mariadb.org/mariadb/

This isn’t conclusive proof that you don’t have MySQL installed. It just shows that the
daemon isn’t running. You might try searching your computer for mysqld, using a file
manager or some other such program. You might also try running mysqladmin, assum-
ing it’s installed on your server, and use the first line shown here to test MySQL (an
example of the results you should see follow):

mysqladmin -p version status

mysqladmin Ver 9.0 Distrib 5.5.33a-MariaDB, for Linux on 1686
Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.

Server version 5.5.33a-MariaDB

Protocol version 10

Connection Localhost via UNIX socket

UNIX socket /var/1lib/mysql/mysql.sock
Uptime: 30 days 23 hours 37 min 12 sec

Threads: 4 Questions: 24085079 Slow queries: O Opens: 10832 Flush tables: 3
Open tables: 400 Queries per second avg: 8.996 Uptime: 2677032 Threads: 4
Questions: 24085079 Slow queries: © Opens: 10832 Flush tables: 3

Open tables: 400 Queries per second avg: 8.996

If one of these tests shows that MySQL is running on your computer, you may move
onto Chapter 3. If MySQL is not running, it may be just that you need to start it. That’s
covered in this chapter, at the end of each section for each version of MySQL. Look for
the section related to your distribution of MySQL or MariaDB (e.g., Mac OS X) and
skip to the end of that section to see how to start the daemon. Try then to start it. If it
starts, skip to the end of this chapter and read “Post-Installation” on page 23. There are
afew important points made in that section, in particular some security steps you should
follow. If youre unable to start the daemon, though, read the whole section for the
distribution you choose.

Choosing a Distribution

Before beginning to download an installation package, you must decide which version
of MySQL or MariaDB to install. For MySQL, the best choice is usually the latest stable
version recommended by Oracle on its site, the version called the generally available
(GA) release. This is the best way to go if youre new to MySQL. There’s no need as a
beginner to use a beta version, or a development release. Unless you have a support
contract with Oracle, which would provide you access to the Enterprise version of
MySQL, you will have to use the MySQL Community Server version. For a beginner,
it’s essentially the same as the Enterprise version.

For MariaDB, the latest GA release will be the current stable version. You can download
it from the MariaDB Foundation’s download page.

10 | Chapter2: Installing MySQL and MariaDB

https://downloads.mariadb.org/mariadb/

When installing one of these database systems, you also have the option of using either
a source distribution or a binary distribution. The binary distribution is easier to install
and is recommended. Use a source distribution only if you have special configuration
requirements that must be set during the installation or at compile time. You may also
have to use a source distribution if a binary distribution isn’t available for your operating
system. Otherwise, install the binary; there’s no need to make installation difficult when
your goal at this point should be to learn the basics of MySQL.

The _AMP Alternatives

The following sections describe different methods for downloading and installing
MySQL or MariaDB for different operating systems, in different formats. An easy
method, though, is to use one of the _AMP packages. These letters stand for Apache,
MySQL/MariaDB, and PHP/Perl/Python. Apache is the most popular web server. PHP
is the most popular programming language used with MySQL. An AMP package or
stack is based on an operating system: the Linux stack is called LAMP, the Macintosh
stack is called MAMP, and the Windows stack is called WAMP. If you download and
install one of these stacks, it will install Apache, MySQL, PHP, and any software upon
which they depend on your local computer or server. It’s a simple, turnkey method. If
you install MySQL using a stack installation, you still need to make some post-
installation adjustments. Theyre explained in the last section of this chapter. So after
installing, skip ahead to it.

Sites for these packages include:

o The Apache XAMPP site for the latest Linux version (the extra P in LAMPP stands
for Perl). Even though the site calls the package XAMPP instead of LAMPDP, it’s the
same thing.

+ The SourceForge MAMP site for the latest Mac version.
o The EasyPHP WAMP site for the latest Windows vision.

All of these packages have easy-to-follow installation programs. The default installation
options are usually fine.

Linux Binary Distributions

If your server is running on a version of Linux that installs software through the RPM
package format (where RPM originally stood for RedHat Package Manager) or the DEB
package format (where DEB stands for Debian Linux), it is recommended that you use
a binary package instead of a source distribution. Linux binaries are provided based on
a few different Linux distributions: various versions of Red Hat, Debian, SuSE Linux.
For all other distributions of Linux, there are generic Linux packages for installing

The _AMP Alternatives | 11

http://www.apachefriends.org/en/xampp-linux.html
http://sourceforge.net/projects/mamp/
http://www.easyphp.org/download.php

MySQL. There are also different versions of a distribution related to the type of processor
used by the server (e.g., 32-bit or 64-bit).

Before proceeding, though, if you have the original installation disks for Linux, you may
be able to use its installation program to easily install MySQL from the disks. In this
case, you can skip the remainder of this section and proceed to “Post-Installation” on
page 23. If your installation disks are old, though, they may not have the latest version of
MySQL. So you may want to install MySQL using the method described in the following
paragraphs.

For each version of MySQL, there are a few binary installation packages that you can
download: the MySQL Server, the Shared Components, the Compatibility Libraries,
Client Utilities, Embedded, and the Test Suite. The most important ones are the Server,
the Client Utilities, and the Shared Components. In addition to these main packages,
you may also want to install the one named Shared Libraries. It provides the files nec-
essary for interacting with MySQL from programming languages such as PHP, Perl, and
C. The other packages are for advanced or special needs that won't be discussed in this
book and that you may not need to learn until youre a more advanced MySQL developer.

The naming scheme for these packages is generally MySQL-server-version.rpm,
MySQL-client-version.rpm and MySQL-shared-version.rpm, where version is the
actual version number. The corresponding package names for Debian-based distribu-
tions end in .deb instead of .rpm.

To install .rpm files after downloading them to your server, you can use the rpm utility
or something more comprehensive like yum. yum is better about making sure you’re not
installing software that conflicts with other things on your server. It also upgrades and
installs anything that might be missing on your server. In addition, it can be used to
upgrade MySQL for newer editions as they become available. On Debian-based systems,
apt-get is similar to yum. For MySQL, Oracle provides a yum repository and an apt
repository. For MariaDB, there is a repository configuration tool for each operating
system.

To install the binary installation files for MySQL using yum, you would enter something
like the following from the command line on the server:

yum install MySQL-server-version.rpm \
MySQL-client-version.rpm MySQL-shared-version.rpm

You would, of course, modify the names of the RPM or DEB files to the precise name
of the packages you want to install. The yum utility will take you through the installation
steps, asking you to confirm the installation, any removals of conflicting software, and
any upgrades needed. Unless the server is a critical one for use in business, you can
probably agree to let it do what it wants.

12 | Chapter2: Installing MySQL and MariaDB

http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/downloads/repo/apt/
https://downloads.mariadb.org/mariadb/repositories/

Toinstall the binary installation files for MariaDB using yum, you would enter something
like the following from the command line on the server:

yum install MariaDB-server MariaDB-client

To install MySQL or MariaDB using the rpm utility, enter something like the following
from the command line in the directory where the RPM files are located:

rpm -ivh MySQL-server-version.rpm \
MySQL-client-version.rpm MySQL-shared-version.rpm

If an earlier version of MySQL is already installed on the server, you will receive an error
message stating this problem, and the installation will be canceled. If you want to up-
grade an existing installation, you can replace the -i option in the example with an
upper case -U like so:

rpm -Uvh MySQL-server-version.rpm
MySQL-client-version.rpm MySQL-shared-version.rpm

When the RPM files are installed, the mysqld daemon will be started or restarted auto-
matically. Once MySQL is installed and running, you need to make some post-
installation adjustments, as explained in “Post-Installation” on page 23. So skip ahead to
it.

Mac 0S X Distributions

Recent versions of Mac OS X no longer come with MySQL installed, but previous ones
did—they stopped shipping it after Oracle took over MySQL. If your computer started
with an older version, it may already be installed, but not running. To see if you have
MySQL installed on your system, open the Terminal application (located in Applica-
tions/Utilities). Once you have a command prompt, enter the first line shown here (the
results you should see are on lines 2-4):

whereils mysql mysqld mysqld_safe

Jusr/bin/mysql

Jusr/bin/mysqld

Jusr/bin/mysqld_safe
If you get the results just shown, MySQL is installed on your computer. Check now
whether the MySQL daemon (mysqld) is running. Enter the following from the com-
mand line:

ps aux | grep mysql

If it shows that mysqld is running, you don’t need to install it, but skip instead to “Post-
Installation” on page 23.

If the daemon is present on your system but not running, enter the following from the
command line as roof to start it:

The _AMP Alternatives | 13

Jusr/bin/mysqld_safe &

If MySQL is not installed on your Mac system or you want to upgrade your copy of
MySQL by installing the latest release, directions are included in the remainder of this
section. If MySQL isn’t already installed on your system, you may need to create a system
user named mysql before installing MySQL. Oracle’s MySQL package automatically
creates a user called _mysgl.

Binary file packages (DMG files) are available for installing MySQL. For Mac servers
that do not have a GUTI or a desktop manager, or for when you want to install it remotely,
there are TAR files for installing MySQL.? Whether you will be downloading a DMG
file or a TAR file, be sure to download the package related to the type of processor on
your server (e.g., 32-bit or 64-bit), and for the minimum version of the server’s operating
system (e.g., Mac OS X, version 10.6 or higher).

If an older version of MySQL is already installed on your server, you will need to shut
down the MySQL service before installing and running the newer version or replacing
it with MariaDB. You can do this with the MySQL Manager Application, which isa GUI
application that was probably installed when the operating system was first installed
along with MySQL. It’s typically installed on recent versions of Mac OS X by default. If
your server doesn’t have the MySQL Manager Application, you can enter the following
from the command line to shut down the MySQL service:

Jusr/sbin/mysqladmin -u root -p shutdown

If you've never used MySQL and didn’t set the password, it’s probably blank. When
youre prompted for it after entering the preceding command, just press the Enter key.

To install the MySQL package file, from the Finder desktop manager, double-click on
the disk image file (the DMG file) that you downloaded. This will reveal the disk image
file’s contents. Look for the PKG files; there will be two. Double-click on the one named
mysql-version.pkg (e.g., mysql-5.5.29-0sx10.6-x86.pkg). This will begin the installation
program. The installer will take you through the installation steps from there. The de-
fault settings are recommended for most users and developers.

To have MySQL started at boot time, add a startup item. Within the disk image file that
you downloaded, you should see an icon labeled MySQLStartupItem.pkg. Just double-
click it, and it will create a startup item for MySQL. You should also install the MySQL
preferences pane so that you can start and stop MySQL easily from Systems Preferences
in the Mac system, as well as set it to start automatically at start up time. To do this, click
on the icon labeled MySQL.prefPane. If you have problems using the installer, read the
ReadMe.txt file included in the DMG image file.

2. tar is an archive tool developed on Unix, but its format is understood by many archiving tools on many
operating systems.

14 | Chapter2: Installing MySQL and MariaDB

There is not yet an official installer for MariaDB on a Mac machine. However, you can
use homebrewto download and install the needed packages, including required libraries.
The homebrew utility works much like yum does on Linux systems, but is made for Mac
OS X. After you install homebrew, you can run the following from the command line to
install MariaDB:

brew install mariadb

To install MySQL with the TAR package instead of the DMG package, download the
TAR file from Oracle’s site and move it to the /usr/local directory, then change to that
directory. Next, untar and unzip the installation program like so:

cd /usr/local
tar xvfz mysql-version.tar.gz

Change the name of the installation package in the example to the actual name. From
here, create a symbolic link for the installation directory, and then run the configuration
program. Here is an example of how you might do this:

1n -s /usr/local/mysql-version [usr/local/mysql
cd /usr/local/mysql

./configure --prefix=/usr/local/mysql \
--with-unix-socket-path=/usr/local/mysql/mysql_socket \
--with-mysqld-user=mysql

The first line creates the symbolic link to give MySQL a universal location regardless of
future versions; change version to the actual version number. By making a symbolic
link to a generic directory of /usr/local/mysql, you’ll always know where to find MySQL

when you need it. You could also just rename the directory with the version name to
just mysql. But then you can’t test new versions and keep old versions when upgrading.

With the second line, you enter the directory where the installation files are now located.
The third line runs the configuration program to install MySQL. I've included a few
options that I think will be useful for solving some problems in advance. Depending on
your needs, you might provide more options than these few. However, for most begin-
ners, these should be enough.

Next, you should set who owns the files and directories created, and which group has
rights to them. Set both the user and group to mysql, which should have been created
by the installation program. For some systems, you may have to enable permissions for
the hard drive or volume first. To do that, use the vsdbutil utility. If you want to check
whether permissions are enabled on the volume first, use the -c option; to just enable
it, use -a option for vsdbutil. You should also make a symbolic link from
the /usr/bin directory to the mysql and mysqladmin clients:

vsdbutil -a /Volumes/Macintosh\ HD/

sudo chown -R _mysql /usr/local/mysql/.

The _AMP Alternatives | 15

http://brew.sh/

alias mysql=/usr/local/mysqgl/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

The first line of this example enables the main drive of the Mac machine. The name of
the drive on which you locate MySQL may be different on your server. The second line
changes the owner to the user mysql. The last two lines create aliases for the two key
MySQL clients mentioned earlier so that you can run them from anywhere on your
system.

At this point, you should be able to start the daemon and log into MySQL or MariaDB.
If you installed the preference pane for MySQL with the installer, you can go to the
Systems Preference of the operating system and start it there instead:

sudo /usr/bin/mysqld_safe &
mysql -u root -p

Depending on the release of MySQL, the file path for a dmg installation may be different
from what is shown in the first line here. An ampersand (&) sends the process to the
background. The second line will start the mysql client and let you log in as root, the
MySQL user who is in control of the whole server—MySQL users are different from
operating system users, so the root user is also different even though the name is the
same. The command will prompt you for a password, which will probably be blank. So
you can just press Enter for the password and you’ll be in.

Success here simply shows that you can connect to the MySQL or MariaDB server and
that you have correctly added the symbolic links for the mysql client. There’s more to
do before you start trying MySQL. So type exit and press Enter to exit the mysql client.

Now that MySQL or MariaDB is installed and running, you need to make some post-
installation adjustments, as explained in “Post-Installation” on page 23. Skip ahead to
that section.

Windows Distributions

Installing MySQL or MariaDB on a server using Microsoft Windows is fairly easy.
MySQLs website now provides one installation package for everything, offering differ-
ent methods and versions to meet your needs and preference. The MariaDB Founda-
tion’s website provides installation packages for installing MariaDB on servers using
Windows. The easiest and best choice for installing MySQL is to download and use the
MySQL Installer for Windows. It’s a single file that does everything for you. There are
also older versions still available that may be downloaded in a TAR file, but the new
installer is easier and will give you the latest version. For both the installer packages and
the TAR packages, there are 32-bit and 64-bit versions, which you would choose based
on which kind of processor is in your server.

16 | Chapter2: Installing MySQL and MariaDB

Both the installer and TAR packages contain the essential files for running MySQL or
MariaDB, including all of the command-line utilities covered in this book (e.g., mysql,
mysqladmin, mysqlbackup), some useful scripts for handling special needs, and the li-
braries for APIs. They also contain the /usr/local/mysql/docs directory for the version
that you download.

If you decide to use the TAR package for Windows, because it does not include an
installer to handle everything for you, you will have to do a few things manually at the
beginning. First, you will need to unzip the TAR file to get at the installation files. To
do this, you need WinZip or another utility that you might have installed on your server
to uncompress the files. These files need to be copied into the c:\mysql directory. You’ll
have to create that directory if it does not already exist on your server. Then, using a
plain-text editor (e.g., Notepad) you must create a configuration file that is generally
called my.ini in the c:\windows directory. Several examples of this configuration file are
provided with the distribution package. Once you have the files in the appropriate place,
you can run the setup program. It does provide some assistance, but not as much as the
installer.

Before running the installer or the setup program, if MySQL is already installed and
running on your server, and you want to install a newer version, you will first need to
shut down the one that’s currently running on your server. For server versions of Win-
dows, it’s generally installed as a service. You can enter something like the following
within a command window to shut down the service and remove it:

mysqld -remove

If MySQL is running on your server, but not as a service, you can enter the following
within a command window to shut it down:

msyqladmin -u root -p shutdown

If that returns an error message, you may have to figure out the absolute path for
mysqladmin. Try entering something like the following, adjusting the file path to wher-
ever mysqladmin is located:

"C:\Program Data\MySQL\MySQL Server 5.1\bin\mysqladmin" -u root -p shutdown

After you download the MySQL Installer for Windows from the Windows desktop,
double-click on the file’s icon and the Windows Installer program will start. If you're
installing from a ZIP package, look for the file named setup.exe wherever you put the
MySQL installation files. Double-click on it to start the installation. From this point,
the installation process is pretty much the same for both types of packages.

After you've started the installation, once you get past the licensing question and so
forth, you will be given a few choices of which type of installation. The Developer choice
is the recommended one. However, it will not install the files need for an API, or some
other utilities. It will install the MySQL server, libraries, and several MySQL clients on

The _AMP Alternatives | 17

http://www.winzip.com

your computer. This is probably the best choice. However, if you're installing the soft-
ware on a server and you will be connecting to it from a different computer such as your
deskop, you could select “Server only” to install the MySQL server on your server. If
you do so, run the installer on your desktop machine and select “Client only” to install
only the MySQL clients locally. The MySQL files aren’t very large, though. You could
also install the “Server only” on your server and the Developer package on your desktop.
This would allow you to use your desktop as a development environment to learn and
test a database before uploading it to your server and making it active. Choose the
packages and combinations that work best for you. Just be sure to have both the MySQL
server and the MySQL clients installed somewhere that you can access them.

On the same screen where you choose the setup type, there will be two boxes for file
paths: one where you install the utilities and the other where MySQL stores your data.
You can accept the default paths for these or change them, if you want to use a different
hard drive or location. The default settings are usually fine. Just make a copy of the paths
somewhere, because you may want to know this information later. You can find it later
in the configuration file for MySQL, but while it's handy now, copy it down: it might
save you some time later.

Next, the installer will check whether your computer has the required additional files,
besides the MySQL package. Allow it to install whatever files it says you need. For the
TAR package, you will have to decide which directory to use and put the files where you
want them. A typical choice is C:\Program Data\MySQL\ for the installation path, and
C:\Program Data\MySQL\MySQL Server version\data\ for the data path, where the
word version is replaced with the version number.

The last section before the installer finishes is the Configuration screen, where you can
set some configuration options. If you want to set options, you can check the box labeled
Advanced Configuration, but because you're still learning about MySQL, you should
leave this unchecked and accept the basic default settings for now. You can change the
server settings later.

If you're installing the MySQL server on this machine and not just the clients, you will
see a “Start the MySQL Server at System Startup” checkbox. It is a good idea to check
that box. In the Configuration section, you can also enter the password for the MySQL
root user. Enter a secure password and don’t forget it. You can also add another user.
We'll cover that in “Post-Installation” on page 23. But if you want to make that process
easier, you can add a user here for yourself—but I recommend waiting and using MySQL
to add users, so you learn that important skill. As for the rest of the choices that the
installer gives you, you can probably accept the default settings.

In this book, you will be working and learning from the command line, so you will need
to have easy access to the MySQL clients that work from the command line. To invoke
the command-line utilities without having to enter the file path to the directory con-
taining them, enter the following from the command line, from any directory:

18 | Chapter2: Installing MySQL and MariaDB

PATH=%PATH%; C:\Program Data\MySQL\MySQL Server version\bin
export PATH

Replace the word version with the version number and make sure to enter the actual
path where MySQL is installed. If you changed the location when you installed MySQL,
you need to use the path that you named. The line just shown will let you start the client
by entering simply mysql and not something like, C:\Program Data\MySQL\MySQL
Server version\bin\mysql each time. For some Windows systems, you may need to
change the start of the path to C:\Program Files\. You’ll have to search your system to
see where the binary files for MySQL were installed—look for the bin\ subdirectory.
Any command windows you may already have open won't get the new path. So be sure
to close them and open a new command window.

Once you've finished installing MySQL and you've set up the configuration file, the
installer will start the MySQL server automatically. If you've installed MySQL manually
without an installer, enter something like the following from a command window:

mysqld --install
net start mysql

Now that MySQL is installed and running, you need to make some post-installation

adjustments, as explained in “Post-Installation” on page 23. So jump ahead to the last
couple of pages of this chapter.

FreeBSD and Sun Solaris Distributions

Installing MySQL or MariaDB with a binary distribution is easier than using a source
distribution. If a binary distribution is available for your platform, it's the recommended
choice. For Sun Solaris distributions, there are PKG files for MySQL on Oracle’s site and
PKG files for MariaDB on the MariaDB Foundation’s site. For MySQL, you will have to
decide between 32-bit, 64-bit, and SPARC versions, depending on the type of processor
used on your server. For MariaDB, there is only a 64-bit version.

There are also TAR files, combining the MySQL files. The FreeBSD files are available
only in TAR packages and only for MySQL. For MariaDB, you will have to compile the
source files. If you download the TAR files, you will need a copy of GNU’s tar and
GNU'’s gunzip to unpack the installation files. These tools are usually included on Sun
Solaris and FreeBSD systems. If your system doesn’t have them, though, you can down-
load them from the GNU Foundation site.

Once you've chosen and downloaded an installation package, enter something like the
following from the command line as root to begin the installation process:

groupadd mysql

useradd -g mysql mysql

cd /usr/local

tar xvfz /tmp/mysql-version.tar.gz

The _AMP Alternatives | 19

http://www.gnu.org

These commands are the same for both MySQL and MariaDB. The first command
creates the user group, mysql. The second creates the user, mysql, and adds it to the mysql
group at the same time. The next command changes to the directory where the MySQL
files are about to be extracted. The last line uses the tar utility (along with gunzip via
the z option) to unzip and extract the distribution files. The word versionin the name
of the installation file should be replaced with the version number—that is to say, use
the actual file path and name of the installation file that you downloaded as the second
argument of the tar command. For Sun Solaris systems, you should use gtar instead
of tar.

After running the previous commands, you need to create a symbolic link to the direc-
tory created by tar in /usr/local:

1n -s /usr/local/mysql-version [usr/local/mysql

This creates /ust/local/mysqlas alink to /usr/local/mysql-version, where mysql-version
is the actual name of the subdirectory that tar created in /ust/local. Thelink is necessary,
because MySQL is expecting the software to be located in /ust/local/mysql and the data
to be in /usr/local/mysql/data by default.

At this point, MySQL or MariaDB is basically installed. Now you must generate the
initial user privileges or grant tables, and change the file ownership of the related pro-
grams and data files. To do these tasks, enter the following from the command line:

cd /usr/local/mysql
./scripts/mysql_install_db

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

The first command changes to the directory containing MySQL:s files. The second line
uses a script provided with the distribution to generate the initial privileges or grant
tables, which consist of the mysql database with MySQLs superuser, root. This is the
same for MariaDB. The third line changes the ownership of the MySQL directories and
programs to the filesystem user, mysql. The last line changes the group owner of the
same directory and files to the user, mysqgl.

With the programs installed and their ownerships set properly, you can start MySQL.
This can be done in several ways. To make sure that the daemon is restarted in the event
that it crashes, enter the following from the command line:

Jusr/local/mysql/bin/mysqld_safe &

Themysqld_safe daemon, started by this command, will in turn start the MySQL server
daemon, mysqld. If the mysqld daemon crashes, mysqld_safe will restart it. The am-
persand at the end of the line instructs the shell to run the command in the background.
This way you can exit the server and it will continue to run without you staying
connected.

20 | Chapter2:Installing MySQL and MariaDB

To have MySQL or MariaDB start at boot time, copy the mysql.server file located in the
support-files subdirectory of /usr/local/mysql to the /etc/init.d directory. To do this, enter
the following from the command line:

cp support-files/mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql
chkconfig --add mysql

The first line follows a convention of placing the start up file for the server in the server’s
initial daemons directory with the name, mysql. The second line makes the file exe-
cutable. The third sets the run level of the service for startup and shutdown.

Now that MySQL or MariaDB is installed and running, you need to make some post-
installation adjustments, as explained in “Post-Installation” on page 23.

Source Distributions

Although a binary distribution of MySQL and MariaDB is recommended, sometimes
you may want to use a source distribution, either because binaries are not available for
your server’s operating system, or because you have some special requirements that
require customizing the installation. The steps for installing the source files of MySQL
or MariaDB on all Unix types of operating systems are basically the same. This includes
Linux, FreeBSD, and Sun Solaris. These steps are explained in this section.

To install a source distribution, you will need copies of GNU gunzip, GNU tar, GNU
gcc (at least Version 2.95.2), and GNU make. These tools are usually included in Linux
systems and most Unix systems. If your system doesn’'t have them, you can download
them from the GNU Foundation site.

Once you've chosen and downloaded the source distribution files for MySQL or Ma-
riaDB, enter the following commands as root from the directory where you want the
source files stored:

groupadd mysql

useradd -g mysql mysql

tar xvfz /tmp/mysql-version.tar.gz

cd mysql-version

These commands are the same for installing MariaDB, except that the name of the
installation package file will be something like mariadb-5.5.35.tar.gz and the name of
the directory created when expanding the TAR file will be different. The first line creates
the filesystem user group, mysql. The second creates the system user, mysql, and adds
it to the mysql group at the same time. The next command uses the tar utility (along
with gunzip via the z option) to unzip and extract the source distribution file you
downloaded. Replace the word version with the version number. Use the actual file
path and name of the installation file that you downloaded for the second argument of

The _AMP Alternatives | 21

http://www.gnu.org

the tar command. The last command changes the directory to the one created by tar
in the previous line. That directory contains the files needed to configure MySQL.

This brings you to the next step, which is to configure the source files to prepare them
for building the binary programs. This is where you can add any special build require-
ments you may have. For instance, if you want to change the default directory from
where MySQL or MariaDB is installed, use the - - prefix option with a value set to equal
the desired directory. To set the Unix socket file’s path, use --with-unix-socket-
path. If you would like to use a different character set from the default of latini, use
- -with-charset and name the character set you want as the default. Here is an example
of how you might configure MySQL with these particular options before building the
binary files:
./configure --prefix=/usr/local/mysql \

--with-unix-socket-path=/tmp \
--with-charset=1latin2

You can enter this command on one line without the backslashes. Several other con-
figuration options are available. To get a complete and current listing of options per-
mitted with the installation package you downloaded, enter the following from the
command line:

./configure --help
You may also want to look at the latest online documentation for compiling MySQL.

Once you've decided on any options that you want, run the configure script with those
options. It will take quite a while to run, and it will display a great amount of information,
which you can ignore usually if it ends successfully. After the configure script finishes,
the binaries will need to be built and MySQL needs to be initialized. To do this, enter
the following:

make

make install

cd /usr/local/mysql
./scripts/mysql_install_db

The first line here builds the binary programs. There may be plenty of text displayed
after that line and the next one, but I omitted that output to save space. If the command
is successful, you need to enter the second line to install the binary programs and related
files in the appropriate directories. The third line changes to the directory where MySQL
was installed. If you configured MySQL to be installed in a different directory, you'll
have to use that directory path instead. The last command uses a script provided with
the distribution to generate the initial user privileges or grant tables.

All that remains is to change the ownership of the MySQL programs and directories.
You can do this by entering the following:

22 | Chapter2:Installing MySQL and MariaDB

http://bit.ly/compiling_mysql

chown -R mysql /usr/local/mysql

chgrp -R mysql /usr/local/mysql
The first line here changes ownership of the MySQL directories and programs to the
filesystem user, mysql. The second line changes the group owner of the same directories
and files to the group mysql. These file paths may be different depending on the version
of MySQL you installed and whether you configured MySQL for different paths.

With the programs installed and their file ownerships set properly, you can start the
daemon. You can do this in several ways. To make sure that the daemon is restarted in
the event that it crashes, enter the following from the command line:

Jusr/local/mysql/bin/mysqld_safe &

This method is the same for both MySQL and MariaDB, and it starts the mysqld_safe
daemon, which will in turn start the server daemon, mysqld. If the mysqld daemon
crashes, mysqld_safe will restart it. The ampersand at the end of the line instructs the
shell to run the daemon in the background. This way you can exit the server and it will
continue to run without you staying connected.

To have MySQL or MariaDB started at boot time, copy the mysql.server file, located in
the support-files subdirectory of /usr/local/mysql, to the /etc/init.d directory. To do this,
enter the following from the command line:

cp support-files/mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql

chkconfig --add mysql
The first line follows a convention of placing the startup file for the server in the server’s
initial daemons directory with the name, mysql. The second command makes the file
executable. The third sets the run level of the service for startup and shutdown. All of
this is the same for MariaDB.

At this point, MySQL or MariaDB is installed and running. All that remains now are
some post-installation adjustments, as explained in the next section.

Post-Installation

After you've finished installing MySQL or MariaDB on your server, you should perform
a few tasks before allowing others to begin using the service. You may want to change
the server’s default behavior by making changes to the configuration file. Ata minimum,
you should change the password for the database administrator, root, and add some
nonadministrative users. Some versions of MySQL have some anonymous users ini-
tially, and you should delete them. This section will explain these tasks.

Although the creators of MySQL and MariaDB have set the server daemon to the rec-
ommended configuration, you may want to change one or more settings. For instance,
you may want to turn on error logging.

Post-Installation | 23

Special Configuration

To enable error logging and other such settings, you will need to edit the main config-
uration file for MySQL. On Unix-like systems, this file is /etc/my.cnf. On Windows
systems, the main configuration file is usually either c:\windows\my.ini or c:\my.cnf.
The configuration file is a text file that you can edit with a plain-text editor—don’t use
aword processor, as it will introduce hidden binary characters that will cause problems.

The configuration file is organized into sections or groups under a heading name con-
tained within square brackets. For instance, settings for the server daemon, mysqld, are
listed under the group heading, [mysqld]. Under this heading you could add something
like log = /var/log/mysql to enable logging and to set the directory for the log files.
You can list many options in the file for a particular group. Here is an example of how
a server configuration file might look:

[mysqld]

datadir=/data/mysql

user=mysql

default-character-set=utf8

log-bin=/data/mysql/logs/binary_log

max_allowed_packet=512M

[mysqld_safe]

ulimit -d 256000
ledir=/usr/sbin

mysqld=mysqld
log-error=/var/log/mysqld. log
pid-file=/data/mysql/mysqld.pid

[mysqgl.client]
default-character-set=utf8

Asabeginner, you probably won’t need to make any changes to the server’s configuration
file. For now, just know that the configuration file exists, where it’s located on your
server, and how to change settings. What is necessary is to set the password for the
MySQL user, root. It’s initially blank.

Setting Initial Password for root

You can change the password for the root user in MySQL in a few ways. One way is to
use the administration utility, mysqladmin. Enter the following from the command line:

mysqladmin -u root -p flush-privileges password "new_pwd"

Replace the word new_pwd in quotes with a strong password that you want to use for
root. If you get a message saying something like, mysqladmin command is not found, it
may be because you didn't make a symbolic link to the MySQL directory where
mysqladmin is located or you haven't added it to your command path. See the instruc-
tions for the distribution you installed on how to do one or the other. For now, you can

24 | Chapter2:Installing MySQL and MariaDB

just add the file path to the preceding line and re-enter it. On Linux and other Unix like
systems, try running the command as /usr/local/mysql/bin/mysqladmin. Ona Win-
dows system, try c:\mysql\bin\mysqladmin.

If youre working on a networked server, though, it’s better not to enter a password in
this way. Someone might be looking over your shoulder or may find it in the server logs
later. As of version 5.5.3 of MySQL, you can and should enter it like this:

mysqladmin -u root -p flush-privileges password

After entering thisline, you will be prompted for the old password, which will be initially
blank, so press the Enter key. Then you will be prompted to enter the new password
twice. By this method, the password you enter won't be displayed on the screen as you
type it. If everything was installed properly and if the mysqld daemon is running, you
should not get any message in response.

The MySQL user root is completely different from the operating system’s root user, even
though it has the same name. It is meaningful only within MySQL or MariaDB.
Throughout this book, I will be referring to this MySQL user by default when I use the
term root. On the rare occasion where I have to refer to the operating system root user,
I will explain that.

More on Passwords and Removing Anonymous Users

Privileges in MySQL are set based on a combination of the user’s name and the user’s
host. For instance, the user root is allowed to do everything from the localhost, but very
little or nothing from a remote location. This is for security. Therefore, there may be
more than one username/host combination for root. Using mysqladmin, you changed
the password for root on the localhost, as you would have executed it while logged into
the server where MySQL is located locally. Now you should set the password for all of
the username/host combinations for root. To get a list of username and host combina-
tions on the server, execute the following from the command line:

mysql -u root -p -e "SELECT User,Host FROM mysql.user;"

| root | 127.0.0.1
| root | localhost
| root | %

| | localhost
ommmm- B T T +

If this didn’t work for you, it may be that you don’t have the mysql client in your com-
mand path. You may have to preface mysql with /bin/ or /usr/bin/, or the path for
wherever the binary files for MySQL are installed. The command will be the same for
MariaDB. The results here are contrived. It’s unlikely you will see exactly these results.

Post-Installation | 25

But there are versions of MySQL whose host for root is %, which is a wildcard meaning
any host. This is not good for security, because it allows anybody to claim to be root and
to gain access from any location. And there have been versions of MySQL in which the
username is left blank, meaning that any username from the localhost is accepted.
Thisisan anonymous user. All of the users you will see in the results, though, will initially
have no password. You should delete any unnecessary users and set passwords for those
that you want to keep. Although 127.0.0.1 and localhost translate to the same host,
the password should be changed for both. To change the root user’s password for the
first two entries shown in the previous example and to delete the second two user/host
combinations shown, you would enter the following at the command prompt:

mysql -u root -p -e "SET PASSWORD FOR 'root'@'127.0.0.1' PASSWORD('new_pwd');"
mysql -u root -p -e "SET PASSWORD FOR 'root'@'localhost' PASSWORD('new_pwd');"
mysql -u root -p -e "DROP USER 'root'@'%';"
mysql -u root -p -e "DROP USER ''@'localhost';"
When you've finished making changes to the initial batch of users, you should flush the
user privileges so that the new passwords will take effect. Enter the following from the
command line:

mysqladmin -u root -p flush-privileges

From this point on, you’ll have to use the new password for the user, root.

Creating a User

The next step regarding users is to create at least one user for general use. It’s best not
to use the root user for general database management. To create another user, enter
commands like:

mysql -u root -p -e "GRANT USAGE ON *.*
TO 'russell'@'localhost'
IDENTIFIED BY 'Rover#My_1st_Dogé&Not_Yours!';"

These lines create the user russell and allow him to access MySQL from the localhost.
The *.* means all databases and all tables. We’ll cover this in more depth later in the
book. The statement also sets his password as Rover#My_1st_Dog&Not_Yours!.

This user has no privileges, actually: he can’t even view the databases, much less enter
data. When you set up a new user, you should consider which privileges to allow the
user. If you want her to be able only to view data, enter something like the following
from the command line:

mysql -u root -p -e "GRANT SELECT ON *.* TO 'russell'@'localhost';"

Inthisline, the user russellmay use only the SELECT statement, a command for viewing
data. If you would like to see the privileges granted to a user, you could enter something
like this from the command line:

26 | Chapter2:Installing MySQL and MariaDB

mysql -u root -p -e "SHOW GRANTS FOR 'russell@'localhost' \G"

kkkkhkkkkhhkhkhhkkhhkhkhhkkhkhkhkhhxk 1. row hhkkkhkhkhhhhkhkhkhkhhkhkhkkkhhkhkhkk*k

Grants for russell@localhost:
GRANT SELECT ON *.* TO 'russell'@'localhost'
IDENTIFIED BY PASSWORD '*B1A8D5415ACE5AB4BBAC120EC1D17766B8EFF1A1"

These results show that the user is granted only privileges to use the SELECT statement
for viewing data. We’ll cover this in more depth later in the book. Notice that the pass-
word is returned encrypted. There’s no way to retrieve someone’s password unencrypted
from MySQL.

The user in the previous example, russell on localhost, cannot add, change, or delete
data. If you want to give a user more than viewing privileges, you should add additional
privileges to the SELECT command, separated by commas. That is covered in Chap-
ter 13. For now, to give a user all privileges, replace SELECT with ALL. Here’s another
example using the ALL setting:

mysql -u root -p -e "GRANT ALL ON *.* TO 'russell'@'localhost';"
The user in this example, russell on localhost, has all basic privileges. So that you can

experiment while reading this book, you should create a user with full privileges, but
use a name other than mine, something that better suits you.

With the MySQL or MariaDB installation software downloaded and installed, all of the
binary files and minimal data in place and properly set, and a full privileged user created,
the database system is now ready to use and you can begin learning how to use it.

Post-Installation | 27

CHAPTER 3
The Basics and the mysql Client

There are various methods of interacting with a MySQL or MariaDB server to develop
or work with a database. A program that interfaces with the server is known as a MySQL
client. There are many such clients, but this book focuses on one that best serves the
need of interactive users, a text-based client known simply as mysql. It's the most com-
monly used interface, recommended for beginners and preferred by advanced users.

There are alternative clients with GUIs, but in the long run they’re not as useful. First,
you don’t learn as much while using them. Because they give you visual hints about what
to do, you may be able to carry out some basic queries quickly, but you won't be as well
prepared for advanced work. The text-based mysql client causes you to think and re-
member more—and it’s not that difficult to use or confusing. More importantly, GUIs
tend to change often. When they do, you will need to learn where to find what you want
in the new version. If you change jobs or go to a customer’s site, or for whatever reason
use someone else’s system, they may not use the same GUI with which you are familiar.
However, they will always have the mysql client, because it’s installed with the MySQL
server. So all examples in this book assume that this is the client you will use. I recom-
mend that when examples are shown, that you try entering them on your computer
with the mysql client so that you can reinforce what you're learning.

The mysql Client

With the mysql client, you may interact with the MySQL or MariaDB server from either
the command line or within an interface environment called the monitor. The
command-line method of using mysql allows you to interact with the server without
much overhead. It also allows you to enter MySQL commands in scripts and other
programs. For instance, you can put lines in cron to perform maintenance tasks and
make backups automatically of databases. The monitor is an ASCII display of mysql
that makes the text a little more organized and provides more information about

29

commands you execute. Almost all of the examples in this book are taken from the
monitor display. If theyre not, I will note that they are from the command line.

If MySQL or MariaDB was installed properly on your server, mysql should be available
for you to use. If not, see “Post-Installation” on page 23 to make sure everything is
configured correctly on your system and make sure you created the necessary symbolic
links or aliases. The mysql client should be in the /bin/ or /usr/bin/ directory. Windows,
Macs, and other operating systems with GUIs have file location utilities for finding a
program. Look for the directory containing the mysql client and the other binary files
for MySQL.

Assuming that everything is working, you will need a MySQL username and password
to be able to connect to MySQL, even with the mysql client. If youre not the adminis-
trator, you must obtain these credentials from the appointed person. If MySQL or Ma-
riaDB was just installed and the root password is not set yet, its password is blank—that
is to say, just press the Enter key when prompted for the password. To learn how to set
the root password and to create new users and grant them privileges, see “Post-
Installation” on page 23 for starting pointers and Chapter 13 for more advanced details.

Connecting to the Server

Once you know your MySQL username and password, you can connect to the MySQL
server with the mysql client. For instance, I gave myself the username russell so I can
connect as follows from a command line:

mysql -u russell -p

It’s useful to understand each element of the previous line. The -u option is followed by
your username. Notice that the option and name are separated by a space. You would
replace russell here with whatever username you've created for yourself. This is the
MySQL user, not the user for the operating system. Incidentally, it’s not a good security
practice to use the root user, unless you have a specific administrative task to perform
for which only root has the needed privileges. So if you haven't created another user for
yourself, go back and do that now. To log into MariaDB, you would enter the same
command and options as for MySQL.

The -p option instructs the mysql client to prompt you for the password. You could add
the password to the end of the - p option (e.g., -pRover#My_1st_Dog&Not_Yours!, where
the text after -p is the password). If you do this, leave no space between -p and the
password. However, entering the password on the command line is not a good security
practice either, because it displays the password on the screen (which others standing
behind you may see), and it transmits the password as clear text through the network,
as well as making it visible whenever someone gets a list of processes that are running
on the server. It’s better to give the -p option without the password and then enter the

30 | Chapter3:The Basics and the mysql Client

password when asked by the server. Then the password won’t be displayed on the screen
or saved anywhere.

If you're logged into the server filesystem with the same username as you created for
MySQL, you won't need the -u option; the -p is all you’ll need. You could then just enter
this:

mysql -p

Once you've entered the proper mysql command to connect to the server, along with
the password when prompted, you will be logged into MySQL or MariaDB through the
client. You will see something that looks like this:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1419341
Server version: 5.5.29 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

If MariaDB is installed on your server, you will see something like the following:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 360511
Server version: 5.5.33a-MariaDB MariaDB Server, wsrep_23.7.6.rXXXX

Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>>

The first line, after “Welcome to the MySQL/MariaDB monitor;” says that commands
end with a semicolon (;) or a slash-g (\g). When you enter a command, or rather an
SQL statement, you can press Enter at any point to go to the next line and continue
entering more text. Until you enter either ; or \g, the mysql client will not transmit what
you've entered to the MySQL server. If you use \G, with an uppercase G, you'll get a
different format. We’ll cover that format later. For now, just use the semicolon.

The second line in the output shown tells you the identification number for your con-
nection to the server. One day you may get in trouble and need to know that. For now
you can ignore it.

The third line tells you which version of MySQL or MariaDB is installed on the server.
That can be useful when you have problems and discover in reading the online docu-
mentation that the problem is in a particular version, or when you want to upgrade the
server but need to know which version you have now before upgrading.

The next line talks about getting online help. It provides help for all of the SQL state-
ments and functions. Try entering these commands to see what the client returns:

Connecting to the Server | 31

help
This command provides help on using the mysql client.

help contents
This command shows you a list of categories for help on major aspects of MySQL
or MariaDB. In that list, you will see one of the categories is called Data Manipu-
lation. These are SQL statements related to inserting, updating, and deleting data.

hep Data Manipulation
This command will display all of those statements for which help is available from
the client. One of those SQL statements is SHOW DATABASES.

help SHOW DATABASES
This command shows how to retrieve the help information related to that SQL
statement. As you can see, there is plenty of useful information accessible within
the client. If you can’t quite remember the syntax of an SQL statement, it’s a quick
way to retrieve the information.

The first help command provides help on using the mysql client. The second help
command shows youalist of categories for help on major aspects of MySQL or MariaDB.
In that list, you will see one of the categories is called, Data Manipulation. These are
SQL statements related to inserting, updating, and deleting data. The third help com-
mand will display all of those statements for which help is available from the client. One
of those SQL statements is SHOW DATABASES. The last help command shows how to
retrieve the help information related to that SQL statement. As you can see, there is
plenty of useful information accessible within the client. If you can’t quite remember
the syntax of an SQL statement, it’s a quick way to retrieve the information.

A minor but sometimes useful tip is included in the third line of the opening results: to
cancel an SQL statement once you've started typing it, enter \c and press Enter without
a closing semicolon. It will clear whatever you have been entering, even on previous
lines, from the buffer of the mysql client, and return you to the mysql> prompt.

The very last line, the mysql>, is known as the prompt. It's prompting you to enter a
command, and is where you’ll operate during most of this book. If you press Enter
without finishing a command, the prompt will change to -> to indicate that the client
hasn’t yet sent the SQL statement to the server. On MariaDB, the default prompt is
different. It shows MariaDB [(none)]>>to start. When you later set the default database
to be used, the none will be changed to the name of the current default database.

Incidentally, it is possible to change the prompt to something else. To do so, enter the
client command prompt followed by the text you want to display for the prompt. There
are a few special settings (e.g., \d for default database). Here’s how you might change
the prompt:

prompt SQL Command \d>_

32 | Chapter3:The Basics and the mysql Client

And here’s how the prompt will look after you run the preceding command to
change it:

SQL Command (none)>

Right now you have no default database. So now that you have the mysql client started,
let’s start exploring databases.

Starting to Explore Databases

The next few chapters cover how to create databases, add data to them, and run queries
to find interesting relationships. In this chapter, while you're logged into MySQL or
MariaDB with the mysql client, let’s get familiar with the core aspects of the database
system. We'll consider a few basic concepts of databases so that you may enter a few
commands within the mysql monitor. This will help you get comfortable with the mysql
client. Because you may be in a very early stage of learning, we’ll keep it simple for now.

In SQL terminology, data is always stored in a table, a term that reflects the way a user
generally views the data. In a table about movies, for example, you might see a horizontal
row about each movie, with the title as one column, and other columns to indicate more
information on each movie:

B B R D +
| movie_id | title | rating |
B R R B +
1	Casablanca	PG
2	The Impostors	R
3	The Bourne Identity	PG-13
B B R D +

That’s just a simple example. Don't try to create that table. Let’s first take a look at what
you already have on your server, to see these elements. From the mysql> prompt, enter
the following and press the Enter key:

SHOW DATABASES;

The following output (or something similar) should be displayed in response:

B LT T T PP +
| Database |
B LT T T PP +
| information_schema |
| mysql I
| test |
B LT T T PP +

First, let me mention a book convention. MySQL is not case sensitive when you enter
keywords such as SHOW. You could just as well enter show or even sHoW. However, the
names of databases, tables, and columns may be case sensitive, especially on an operating
system that is case sensitive, such as Mac OS X or Linux. Most books and documentation

Starting to Explore Databases | 33

use all upper case letters to indicate keywords while respecting the case of the things
that you can change. We use all lower case letters for database, table, and column names
because it’s easier on the eyes and easier to type, and mostly because it’s easier for the
reader to distinguish between what is set by the SQL convention and what is flexible.

The list just displayed shows that you have three databases at the start of using MySQL,
created automatically during installation. The information_schema database contains
information about the server. The next database in the list is mysql, which stores user-
names, passwords, and user privileges. When you created a user for yourself at the end
of Chapter 2, this is where that information was stored. You may have noticed that some
commands shown in Chapter 2 referenced this database. Don't try to change the mysql
database directly. Later, I'll show you commands for manipulating this database. At least
for now, access the mysql database only through administrative functions and utilities.
The last database listed is called test. That’s there for you to test things and to use when
learning. Let’s use that for a bit in this chapter.

First SQL Commands

The test database is initially empty; it contains no tables. So let’s create one. Don't worry
about understanding what you're doing in detail. I'll introduce concepts gradually as
we go along.

So enter the following in the mysql client (remember the terminating semicolon):
CREATE TABLE test.books (book_id INT, title TEXT, status INT);

This is your first SQL statement. It creates a table in the test database and names it
books. We specified the name of the database and table with test.books (i.e., the format
is database. table). We also defined, within the parentheses, three columns for the
table. We'll talk about that in more depth later.

If you correctly type that SQL statement, you'll receive a reply like this:
Query OK, 0 rows affected (0.19 sec)

This is a message from the server reporting how things went with the SQL statement
you sent. What you need to take from the message is that everything is OK. With that,
let’s see the results of what we did. To see a list of tables within the test database, enter:

SHOW TABLES FROM test;

The output should be:

1 row in set (0.01 sec)

34 | Chapter3:The Basics and the mysql Client

You now have one table, books. Notice that the results are enclosed with ASCII text to
looklike a table of data, as you might draw it on a piece of paper. Notice also the message
after the table. It says that one row is in the set, meaning that books is the only table in
the database. The time in parentheses that you will see after running every SQL state-
ment indicates how long it took for the server to process the request. In this case, it took
my server 0.01 seconds. I ran that statement from my home computer in Milan, Italy,
but using my server in Tampa, Florida in the U.S. That’s a pretty quick response. Some-
times it’s even faster and shows 0.00 seconds, because the lapse in time was not enough
to register.

From this point forward, I will leave out these lines of status to save space and to keep
the clutter down, unless there’s something relevant to discuss. For the same reason, I'm
not including the mysql> prompts. You'll have to learn when something is entered from
themysql client versus the operating system shell—although I will usually indicate when
to enter something from the operating system shell. So from now on, I'll combine input
and output like this:

SHOW TABLES FROM test;

R R +
| Tables_1in_test |
R R +
| books |
R R +

You can tell what you’re supposed to enter because it’s bold, whereas the output is not.

For each of these SQL statements, we have to specify the database name. If you will be
working mainly in one database (you usually will be), you can set the default database
so that you don’t have to specify the database each time. To do this, enter a USE command:

USE test

Incidentally, if your server doesn’t have the test database, you can
create it by just entering CREATE DATABASE test; on the server first.

Because this is an instruction for the mysql client and not the server, the usual ending
semicolon is not needed. The client will change the default database on the server for
the client to the one given, making it unnecessary to specify table names without a
preceding database name—unless you want to execute an SQL statement for a table in
another database. After entering the USE command, you can re-enter the earlier SQL
statement to list the tables in the database without specifying that you want test. It’s
taken for granted:

Starting to Explore Databases | 35

SHOW TABLES;

B T +
| Tables_in_test |
B T +
| books

B T +

Now that we’ve peeked at a database, which is not much more than a grouping of tables
(in this example, only one table), and created a table, let’s look inside the table that we
created. To do that, we’ll use the SQL statement DESCRIBE, like so:

DESCRIBE books;

ommmmna ommmmea 4o Ho---- Hommmmmna Hommmmn +
| Field | Type | Null | Key | Default | Extra |
ommmmna ommmma 4o o---- Hommmmmna Hommmmn +
| book_id | int(11) | YES | | NULL | |
| title | text | YES | | NULL |

| status | int(11) | YES | | NULL |

ommmmna ommmma 4o o---- Hommmmmna Hommmmn +

In these results you can see that we created three fields for entering data, named book_1d,
title,and status. That’s pretty limited, but we’re keeping things simple in this chapter.
The first and third fields, book_id and status, are integer types, meaning they can
contain only numbers. We stipulated that when we created the table by adding the INT
keyword when specifying those columns. The other field, title, can contain text, which
includes anything you can type at the keyboard. We set that earlier with the TEXT key-
word. Don’t worry about remembering any of this now. We're just looking around to
get a feel for the system and the mysql client.

Inserting and Manipulating Data

Lets put some data in this table. Enter the following three SQL statements within the
mysql client:

INSERT INTO books VALUES(100, 'Heart of Darkness', 0);
INSERT INTO books VALUES(101, 'The Catcher of the Rye', 1);
INSERT INTO books VALUES(102, 'My Antonia', 0);

All three lines use the SQL statement INSERT to insert, or add data, to the books table.
Each line will be followed by a status message (or an error message if you mistype
something), but I didn’t bother to include those messages here. Notice that numbers
don’t need to be within quotes, but text does. The syntax of SQL statements like this one
is pretty structured—hence the name Structured Query Language. You can be casual
about spacing between elements of the statements, but you must enter everything in the
right order and use the parentheses, commas, and semicolons as shown. Keeping SQL
statements structured makes queries predictable and the database faster.

36 | Chapter3: The Basics and the mysql Client

The previous examples insert the values given in parentheses into the table. The values
are given in the same order and format as we told MySQL to expect when we created
the table: three fields, of which the first and third will be numbers, and the second will
be any kind of text. Let’s ask MySQL to display the data we just gave it to see how it
looks:

SELECT * FROM books;

ommmma B L ommmmma +
| book_id | title | status |
ommmma B L ommmmma +
100	Heart of Darkness	0
101	The Catcher of the Rye	1
102	My Antonia	0
ommmma B L ommmmma +

In this table, you can see more easily why they call records rows and fields columns. We
used the SELECT statement to select all columns—the asterisk (*) means “everything”—
from the table named. In this example, book_1id functions as a record identification
number, while title and status contain the text and numbers we want to store. I
purposely gave status values of 0 or I to indicate status: 0 means inactive and I means
active. These are arbitrary designations and mean nothing to MySQL or MariaDB. In-
cidentally, the title of the second book is not correct, but we’ll use it later as an example
of how to change data.

Let’s play with these values and the SELECT statement to see how it works. Let’s add a
WHERE clause to the SQL statement:

SELECT * FROM books WHERE status = 1;

Fommme R TP R +
| book_id | title | status |
Fommme R TP Fommmm +
| 101 | The Catcher of the Rye | 1|
Fommme R TP Fommmm +

In these results, we've selected only rows in which status equals I (i.e., only records
that are active). We did this using the WHERE clause. It’s part of the SELECT statement and
not an SQL statement on its own. Let’s try another SQL statement like this one, but ask
for the inactive records:

SELECT * FROM books WHERE status = 0 \G

kkhkhkhkhkkhhkhkhhhkhhkhkhkhkhkhkhkhkxk 1. row khkkkhkhkhkhkhhkhkhkhkhhhkhkkrhkhkhkkk

book_id: 100
title: Heart of Darkness
status: 0
Fhhkhkkhhrrhhhdddrhhdddrrhhdd 2. row Thhkhhhrrdhhhdddrdhhddddrdhddd

book_id: 102

Starting to Explore Databases | 37

title: My Antonia
status: 0

Notice that this time we changed the ending of the SQL statement from a semicolon to
\G. This was mentioned earlier in this chapter as an option. It shows the results not in
a table format, but as a batch of lines for each record. Sometimes this is easier to read,
usually when the fields are so long that a tabular format would be too wide for your
screen and would wrap around. It’s a matter of preference for each situation.

We've added data to this minimal table. Now let’s change the data a little. Let’s change
the status of one of the rows. To do this, we will use the UPDATE statement. It produces
two lines of status output:

UPDATE books SET status = 1 WHERE book_id = 102;

Query OK, 1 row affected (0.18 sec)
Rows matched: 1 Changed: 1 Warnings: 0

You can learn how to read and remember SQL statement syntax better if you read and
interpret themin the way and order they’re written. Let’s do that with this SQL statement,
the first line in the preceding code block. It says to update books by setting the value of
status to I for all rows where book_1id equals 102. In this case, there is only one record
with that value, so the message that follows says that one row was affected, and only one
was changed or updated—however you want to say that. To see the results, run the
SELECT statement shown earlier, the one where we check for active status:

SELECT * FROM books WHERE status = 1;

ommmma T L dommmmme +
| book_id | title | status |

+
| 101 | The Catcher of the Rye |
| 102 | My Antonia |

+

Thanks to our update, we get two rows back this time, where the rows have a status of
active. If we execute the UPDATE statement again, but for a different book_1id, we can
change the book, The Catcher in the Rye to inactive:

UPDATE books SET status = 0 WHERE book_id = 101;

SELECT * FROM books WHERE status = 0;

ommmmmna o m e dommmmna +
| book_id | title | status |
ommmmmna o m e dommmmna +
| 100 | Heart of Darkness | © |
| 101 | The Catcher of the Rye | 0 |
tommmmem - R R tommmem - +

38 | Chapter3: The Basics and the mysql Client

Lets enter one more UPDATE statement so you can see how to do more with just one
statement. As I mentioned earlier, the title of this book is not correct. It’s not The Catcher
of the Rye. The correct title is The Catcher in the Rye. Let’s change that text in the title
column, while simultaneously setting the value of status back to I. We could do this
with two SQL statements, but let’s do it in one like so:

UPDATE books
SET title = 'The Catcher in the Rye', status = 1
WHERE book_1id = 101;

Notice that we've given the same syntax as before with the UPDATE statement, but we’ve
given two pairs of columns and values to set. That’s easier than entering the UPDATE
statement twice. It also saves some network traffic when communicating with a server
on another continent.

A Little Complexity

Let’s increase the pace a little. Let’s create another table and insert a couple of rows of
data in it. Enter these two SQL statements from within the mysql client:

CREATE TABLE status_names (status_id INT, status_name CHAR(8));

INSERT INTO status_names VALUES(0, 'Inactive'), (1,'Active');

Now we've created the table status_names, but with only two columns. The CREATE
TABLE statement is similar to the one we used to create the first table. There’s one dif-
ference I'd like you to notice: instead of using the column type of TEXT, were using the
column type of CHAR, which stands for “character” We can add text to this column, but
its size is limited: each row can have only a maximum of eight characters in this column.
That makes a smaller field and therefore a smaller and faster table. It doesn’t matter in
our examples here, as we're not entering much data, but little specifications like this will
make a huge performance difference in large databases. It's good for you to start thinking
this way from the beginning.

The second SQL statement added two sets of values. Doing multiple sets of values in
one INSERT is allowed, and is easier than entering a separate line for each. Here’s how
the data looks in that table:

SELECT * FROM status_names;

B B +
| status_id | status_name |
B B +
| 0 | Inactive |
| 1 | Active |
E T +

That’s probably a seemingly useless table of data. But let’s combine this table with the
first table, books, to see a glimpse of the potential of database system like MariaDB. We'll

Starting to Explore Databases | 39

use the SELECT statement to join both tables together to get nicer results, and we’ll be
selective about which data is displayed. Try this on your computer:
SELECT book_1id, title, status_name

FROM books JOIN status_names
WHERE status = status_id;

Fommmeeaa e LT T R LT +
| book_1id | title | status_name |
Fommmeeaa e LT T R LT +
100	Heart of Darkness	Inactive
101	The Catcher in the Rye	Active
102	My Antonia	Active
Fommmeeaa e LT T R LT +

First, notice that I broke this SQL statement over three lines. That’s allowed. Nothing is
processed until you type a semicolon and then press the Enter key. Breaking apart a
statement like this makes it easier to read, but has no effect on MySQL. In this SQL
statement, the first line selects book_id and title, which are both in books, and sta
tus_name, which is in the status_names table. Notice that we didn’t use an asterisk to
select all of the columns, but named the specific ones we want. We also chose columns
from two tables.

On the second line, we say to select these columns listed from books and from sta
tus_names. The JOIN clause is where we named the second table.

In the WHERE clause, on the third line, we tell MySQL to match the values of the sta
tus column from books to the values of the status_id column from the sta

tus_names table. This is the point in which the rows from each will be joined. If the idea
of joining tables seems difficult, don’t worry about it at this point. I've included it just
to show you what can be done with MySQL and MariaDB. I'll explain joins more fully
later.

When we created books, we could have made status a text or character field and entered
the words Active or Inactive for each row. But if you have a table with thousands or
maybe millions of rows of data, entering @ or 1 is much easier and you're less likely to
make typos (e.g., you might enter Actve sometimes). Databases are tedious, but creating
tables with better structures and using better written SQL statements makes them less
tedious and helps you to leverage your time and resources.

Summary

There’s plenty more you can do to explore the simple tables we've created, but in this
chapter I wanted just to give you an overview of MySQL and MariaDB, and to show
you around. The chapters in Part IT will delve into details, starting with Chapter 4, which
will cover creating tables in detail.

40 | Chapter3: The Basics and the mysql Client

Before jumping ahead, you might want to reinforce what you just learned from this
chapter. A few exercises follow for you to play some more on your own with the test
database and the mysql client. When you're finished, to exit mysql, type quit or exit,
and press the Enter key.

Exercises

In addition to logging into MySQL or MariaDB with the mysql client and entering the
SQL statements shown already in this chapter, here are a few exercises to get some more
practice playing with the mysql client and to help you better understand the basics.
Rather than use generic names like books and book_1d, you're asked to use more realistic
names. In that same spirit, use fairly realistic data (e.g., “John Smith” for a person’s name)
when entering data in these exercises.

1. Loginto MySQL or MariaDB using the mysql client and switch the default database
to the database, test. Create two tables called contacts and relation_types. For
both tables, use column type INT for number columns and CHAR for character col-
umns. Specify the maximum number of characters you want with CHAR—otherwise
MySQL wills set a maximum of one character, which is not very useful. Make sure
that you allow for enough characters to fit the data you will enter later. If you want
to allow characters between numbers (e.g., hyphens for a telephone number), use
CHAR. For the contacts, you will need six columns: name, phone_work, phone_mo
bile,ematil, relation_id. For the relation_types table, there should be only two
columns: relation_1id and relationship.

When you're finished creating both tables, use the DESCRIBE statement to see how
they look.

2. Enter datain the two tables created in the previous exercise. Enter data in the second
table, relation_types first. Enter three rows of data in it. Use single-digit, sequen-
tial numbers for the first column, but the following text for the second column:
Family, Friend, Colleague. Now enter data in the table named contacts. Enter at
least five fictitious names, telephone numbers, and email addresses. For the last
column, relation_1id, enter single digits to correspond with the relation_1id
numbers in the table, relation_types. Make sure you have at least one row for
each of the three potential values for relation_1id.

3. Execute two SELECT statements to retrieve all of the columns of data from both
tables that you created and filled with data from the previous two exercises. Then
run a SELECT statement that retrieves only the person’s name and email address
from the table named contacts.

4. Change some of the data entered in the previous exercises, using the UPDATE state-
ment. If you don’t remember how to do that, refer back to the examples in this
chapter on how to change data in a table. First, change someone’s name or telephone

Exercises | 41

number. Next, change someone’s email address and his or her relationship to you
(i.e., relation_id). Do this in one UPDATE statement.

. Run a SELECT statement that joins both tables created in the first exercise. Use the

JOIN clause to do this (the JOIN clause was covered in this chapter, so look back at
the example if you don't remember how to use it). Join the tables on the common
column named relation_id—this will go in the WHERE clause. To help you with
this, here’s how the clauses for the tables should look:

FROM contacts JOIN relation_types
WHERE contacts.relation_id = relation_types.relation_id

Select the columns name and phone_mob1ile, but only for contacts who are marked
as a Friend—you’ll have to add this to the WHERE with AND. Try doing this based on
the value of relation_id and then again based on the value of the relationship
column.

)

Chapter 3: The Basics and the mysql Client

PART Il
Database Structures

The primary organizational structure in MySQL and MariaDB is the database. Separate
databases are usually created for each separate business or organization, or for individual
departments or projects. The basis by which you might want to create separate databases
is mostly based on your personal preference. It does allow a convenient method of
providing different permissions and privileges to different users or groups of users.
However, for a beginner, one database for one organization is enough on which to learn.

As explained in “Starting to Explore Databases” on page 33, databases contain tables
that contain one row or record for each item of data, and information about that item
in columns or fields. Compared to databases, there are well-established, practical con-
siderations for determining what separate tables to create. Although some beginners
may create one large table within a database, a table with many columns, it is almost
always an inefficient method of handling data. There is almost never a situation in which
it makes sense to have only one table. So expect to create many small tables and not a
few wide tables (a wide table is one with many columns).

When creating a table, you specify the fields or columns to be created, called the table’s
schema. When specifying the columns of a table being created, you may specify various
properties of each column. Ata minimum, you must specify the type of column to create:
whether it contains characters or just integers; whether it is to contain date and time
information; or possibly binary data. When first creating a column, you may also specify
how the data to be contained in the column is indexed, if it is to be collated based on
particular alphabets (e.g., Latin letters or Chinese characters), and other factors.

The first chapter of this part, Chapter 4, covers how to create a database—a very simple
task—and how to create a table. I also touch on how to put data into a table and retrieve
it, topics to be greatly expanded in later chapters. Presenting only how to create a table

without showing you how to use it would be a very dry approach. It’s better to show you
quickly the point of why you would create a table before moving on to other details
related to tables.

When you first create tables, especially as a beginner, it’s difficult to know exactly what
to put in each table’s schema. Invariably, you will want to change a table’s structure after
the table is created. Thus, in Chapter 5 we’ll look at how to alter tables after they have
been created. I could have placed the chapter on altering tables after the chapters on
manipulating data, but you would inevitably need to jump ahead to it at some point
when you realize that you created a table incorrectly while experimenting with MySQL.

CHAPTER 4
Creating Databases and Tables

In order to be able to add and manipulate data, you first have to create a database. There’s
not much to this. You're creating just a container in which you will add tables. Creating
a table is more involved and offers many choices. There are several types of tables from
which to choose, some with unique features. When creating tables, you must also decide
on the structure of each table: the number of columns, the type of data each column
may hold, how the tables will be indexed, and several other factors. However, while
you're still learning, you can accept the default setting for most of the options when
creating tables.

There are a few basic things to decide when creating a structure for your data:

o The number of tables to include in your database, as well as the table names

o For each table, the number of columns it should contain, as well as the column
names

o For each column, what kind of data is to be stored

For the last part, in the beginning, we’ll use just four types of columns: columns that
contain only numbers; columns that contain alphanumeric characters, but not too many
(i.e., a maximum of 255 characters); columns that contain plenty of text and maybe
binary files; and columns for recording date and time information. This is a good start-
ing point for creating a database and tables. As we get further along, we can expand that
list of column data types to improve the performance of your databases.

This chapter contains examples of how to create a database and tables. The text is written
on the assumption that you will enter the SQL statements shown on your server, using
themysql client. The exercises at the end of this chapter will require that you make some
changes and additions to the database and its tables on your computer. So, when in-
structed, be sure to try all of the examples on your computer.

45

The database and the tables that we create in this chapter will be used in several chapters
in this book, especially in Part ITI, Basics of Handling Data. In those later chapters, you
will be asked to add, retrieve, and change data from the tables you create in this chapter.
Exercises in subsequent chapters assume that you have created the tables you are asked
to create in this chapter. Thus, in order to get the most value possible from this book,
it's important that you complete the exercises included for each chapter. It will help
reinforce what you read, and you will learn more.

Creating a Database

Creating a database is simple, mostly because there’s nothing much to it. Use the SQL
statement CREATE DATABASE. You will have to provide a name for the database with this
SQL statement. You could call it something bland like db1. However, let's do something
more realistic and interesting. I'm a fan of birds, so I've used a database of a fictitious
bird-watching website for the examples in this book. Some birds live in groups, or a
colony called a rookery. To start, let’s create a database that will contain information
about birds and call it rookery. To do this, enter the following from within the mysql
client:

CREATE DATABASE rookery;

As previously mentioned, this very minimal, first SQL statement will create a subdir-
ectory called rookery on the filesystem in the data directory for MySQL. It won’t create
any data. It will just set up a place to add tables, which will in turn hold data. Incidentally,
if you don’t like the keyword DATABASE, you can use SCHEMA instead: CREATE SCHEMA
database_name. The results are the same.

You can, though, do a bit more than the SQL statement shown here for creating a da-
tabase. You can add a couple of options in which you can set the default types of char-
acters that will be used in the database and how data will be sorted or collated. So, let’s
drop the rookery database and create it again like so:

DROP DATABASE rookery;

CREATE DATABASE rookery
CHARACTER SET latini
COLLATE latini_bin;

The first line in this SQL statement is the same as the earlier one—remember, all of this
is one SQL statement spread over two lines, ending with the semicolon. The second line,
which is new, tells MySQL that the default characters that will be used in tables in the
database are Latin letters and other characters. The third line tells MySQL that the
default method of sorting data in tables is based on binary Latin characters. We'll discuss
binary characters and binary sorting in a later chapter, but it’s not necessary to under-
stand that at this point. In fact, for most purposes, the minimal method of creating a
database without options, as shown earlier, is fine. You can always change these two

46 | Chapter4: Creating Databases and Tables

options later if necessary. 'm only mentioning the options here so that you know they
exist if you need to set them one day.

Now that we've created a database, let’s confirm that it’s there, on the MySQL server. To
get a list of databases, enter the following SQL statement:

SHOW DATABASES;

B R +
| Database |
B R +
| information_schema |
| rookery |
| mysql |
| test |
mm e +

The results here show the rookery database, and three other databases that were created
when MySQL was installed on the server. We saw the other three in “Starting to Explore
Databases” on page 33, and we'll cover them in later chapters of this book as needed.

Before beginning to add tables to the rookery database, enter the following command
into the mysql client:

USE rookery

Thislittle command will set the new database that was just created as the default database
for the mysql client. It will remain the default database until you change it to a different
one or until you exit the client. This makes it easier when entering SQL statements to
create tables or other SQL statements related to tables. Otherwise, when you enter each
table-related SQL statement, you would have to specify each time the database where
the table is located.

Creating Tables

The next step for structuring a database is to create tables. Although this can be com-
plicated, we’ll keep it simple to start. We'll initially create one main table and two smaller
tables for reference information. The main table will have a bunch of columns, but the
reference tables will have only a few columns.

For our fictitious bird-watchers site, the key interest is birds. So we want to create a table
that will hold basic data on birds. For learning purposes, we won't make this an elaborate
table. Enter the following SQL statement into mysql on your computer:

CREATE TABLE birds (

bird_id INT AUTO_INCREMENT PRIMARY KEY,
scientific_name VARCHAR(255) UNIQUE,
common_name VARCHAR(50),

Creating Tables | 47

family_1id INT,
description TEXT);

This SQL statement creates the table birds with five fields, or columns, with commas
separating the information about each column. Note that all the columns together are
contained in a pair of parentheses. For each colum, we specify the name, the type, and
optional settings. For instance, the information we give about the first column is:

e The name, bird_id
o The type, INT (meaning it has to contain integers)

o The settings, AUTO_INCREMENT and PRIMARY KEY

The names of the columns can be anything other than words that are reserved for SQL
statements, clauses, and functions. Actually, you can use a reserve word, but it must
always be given within quotes to distinguish it. You can find a list of data types from
which to choose on the websites of MySQL and MariaDB, or in my book, MySQL in a
Nutshell.

We created this table with only five columns. You can have plenty of columns (up to
255), but you shouldn’t have too many. If a table has too many columns, it can be cum-
bersome to use and the table will be sluggish when it’s accessed. It’s better to break data
into multiple tables.

The first column in the birds table is a simple identification number, bird_id. It will
be the primary key column on which data will be indexed—hence the keywords, PRI
MARY KEY. We'll discuss the importance of the primary key later.

The AUTO_INCREMENT option tells MySQL to automatically increment the value of this
field. It will start with the number 1, unless we specify a different number.

The next column will contain the scientific name of each bird (e.g., Charadrius vocif-
erus, instead of Killdeer). You might think that the scientific_name column would be
the ideal identifier to use as the primary key on which to index the birds table, and that
we wouldn't need the bird_id column. But the scientific name can be very long and
usually in Latin or Greek (or sometimes a mix of both languages), and not everyone is
comfortable using words from these languages. In addition, would be awkward to enter
the scientific name of a bird when referencing a row in the table. We've set the scien
tific_name column to have a variable-width character data type (VARCHAR). The 255
that we specify in the parentheses after it sets the maximum size (255 should be sufficient
for the long names we’ll need to accommodate).

If the scientific name of a bird has fewer than 255 characters, the storage engine will
reduce the size of the column for the row. This is different from the CHAR column data
type. If the data in a CHAR column is less than its maximum, space is still allocated for
the full width that you set. There are trade-offs with these two basic character data types.

48 | Chapter4: Creating Databases and Tables

http://shop.oreilly.com/product/9780596514334.do
http://shop.oreilly.com/product/9780596514334.do

If the storage engine knows exactly what to expect from a column, tables run faster and
can be indexed more easily with a CHAR column. However, a VARCHAR column can use
less space on the server’s hard drive and is less prone to fragmentation. That can improve
performance. When you know for sure that a column will have a set number of char-
acters, use CHAR. When the width may vary, use VARCHAR.

Next, we set the column data type for the common_name of each bird to a variable-width
character column of only 50 characters at most.

The fourth column (family_id) will be used as identification numbers for the family
of birds to which each bird belongs. They are integer data types (i.e., INT). We'll create
another table for more information on the families. Then, when manipulating data, we
can join the two tables, use a number to identify each family, and link each bird to its
family.

The last column is for the description of each bird. It’s a TEXT data type, which means
that it’s a variable-width column, and it can hold up 65,535 bytes of data for each row.
This will allow us to enter plenty of text about each bird. We could write multiple pages
describing a bird and put it in this column.

There are additional factors to consider when searching for a bird in a database, so there
are many columns we could add to this table: information about migratory patterns,
notable features for spotting them in the wild, and so on. In addition, there are many
other data types that may be used for columns. We can have columns that allow for
larger and smaller numbers, or for binary files to be included in each row. For instance,
you might want a column with a binary data type to store a photograph of each bird.
However, this basic table gives you a good sampling of the possibilities when creating
tables.

To see how the table looks, use the DESCRIBE statement. It displays information about
the columns of a table, or the table schema—not the data itself. To use this SQL statement
to get information on the table we just created, you would enter the following SQL
statement:

DESCRIBE birds;

e Fommmm e - o Fommmmna o +
| Field | Type | Null | Key | Default | Extra |
e Fommmm e - o Fommmmna o +
bird_1id	int(11)	NO	PRI	NULL	auto_1increment
scientific_name	varchar(255)	YES	UNI	NULL	
common_name	varchar(50)	YES		NULL	
family_1id	int(11)	YES		NULL	
description	text	YES		NULL	
e Fommmm e - o Fommmmna o +

Creating Tables | 49

Notice that these results are displayed in a table format made with ASCII characters. It’s
not very slick looking, but it’s clean, quick, and provides the information requested. Let’s
study this layout, not the content, per se.

The first row of this results set contains column headings describing the rows of infor-
mation that follow it. In the first column of this results set, Field contains the fields or
columns of the table created.

The second column, Type, lists the data type for each field. Notice that for the table’s
columns in which we specified the data type VARCHAR with the specific widths within
parentheses, those settings are shown here (e.g., varchar (255)). Where we didn’t specify
the size for the INT columns, the defaults were assumed and are shown here. We'll cover
later what INT(11) means and discuss the other possibilities for integer data types.

The third column in the preceding results, Null, indicates whether each field may con-
tain NULL values. NULL is nothing; it’s nonexistent data. This is different from blank
or empty content in a field. That may seem strange: just accept that there’s a difference
at this point. You’ll see that in action later in this book.

The fourth column, Key, indicates whether a field is a key field—an indexed column.
It’s not an indexed column if the result is blank, as it is with common_name. If a column
is indexed, the display will say which kind of index. Because of the limited space per-
mitted in the display, it truncates the words. In the example shown, the bird_id column
is a primary key, shortened to PRI in this display. We set scientific_name to another
type of key or index, one called UNIQUE, which is abbreviated UNT here.

The next-to-last column in the display, Default, would contain any default value set for
each field. We didn’t set any when creating the birds table, but we could have done so.
We can do that later.

The last column, Extra, provides any extra information the table maintains on each
column. In the example shown, we can see that the values for bird_1id will be incre-
mented automatically. There’s usually nothing else listed in this column.

If we don't like something within the structure of the table we created, we can use the
ALTER TABLE statement to change it (this SQL statement is covered in Chapter 5). If you
made some mistakes and just want to start over, you can delete the table and try again
to create it. To delete a table completely (including its data), you can use the DROP
TABLE statement, followed by the table name. Be careful with this SQL statement, as it’s
not reversible and it deletes any data in the table.

50 | Chapter4: Creating Databases and Tables

Incidentally, when using the mysql client, you can press the up ar-
row on your keyboard to get to the previous lines you entered. So if
you create a table, then run the DESCRIBE statement and catch a mis-
take, you can just drop the table, and use the up arrow to go back to
your previous entry in which you created the table. Use the left ar-

row to move the cursor over to the text you want to change and fix
it. When you've finished modifying the CREATE TABLE statement,
press Enter. The modified CREATE TABLE statement will then be sent
to the server.

Inserting Data

Those were a lot of details to absorb in the last section. Let’s take a break from creating
tables and enter data in the birds table. We’ll use an INSERT statement, which was
covered briefly in Chapter 3, and will be covered in more detail in the next section. For
now, don’t worry too much about understanding all of the possibilities with the IN
SERT statement. Just enter the following on your server using the mysql client:

INSERT INTO birds (scientific_name, common_name)
VALUES ('Charadrius vociferus', 'Killdeer'),
('Gavia immer', 'Great Northern Loon'),

('Aix sponsa', 'Wood Duck'),
('Chordeiles minor', 'Common Nighthawk'),

('Sitta carolinensis', ' White-breasted Nuthatch'),
('Apteryx mantelli', 'North Island Brown Kiwi');

This will create six rows of data for six birds. Enter the following from the mysql client
to see the contents of the table:

SELECT * FROM birds;

oo +
| bird_1id |
oo +
I 1]
I 2|
I 3
I 4 |
I 5]
I 6 |
o +

Charadrius vociferus
Gavia immer

Aix sponsa
Chordeiles minor
Sitta carolinensis
Apteryx mantelli

+
I
+
I
I
I
I
I
I
+

Killdeer

Great Northern...
Wood Duck

Common Nighthawk
White-breasted...
North Island...

—_——————+ — +

As you can see from the results, MySQL put values in the two columns we gave it, and
set the other columns to their default values (i.e., NULL). We can change those values

later.

Let’s create another table for a different database. We have information on birds in the
rookery database. Let’s create another database that contains information about people

Inserting Data | 51

who are interested in bird-watching. We'll call it birdwatchers and we’ll create one
table for it that we’ll call humans, to correlate with the name of birds table:

CREATE DATABASE birdwatchers;

CREATE TABLE birdwatchers.humans
(human_id INT AUTO_INCREMENT PRIMARY KEY,
formal_title VARCHAR(25),

name_first VARCHAR(25),

name_last VARCHAR(25),

email_address VARCHAR(255));

This isn’t much of a table; we're not collecting much information on members, but it
will do well for now. Let’s enter some data into this table. The following adds four people
to our table of members of the site:

INSERT INTO birdwatchers.humans

(name_first, name_last, email_address)

VALUES

('Mr.', 'Russell', 'Dyer', 'russell@mysqglresources.com'),
('Mr.', 'Richard', 'Stringer', 'richard@mysqlresources.com'),
('Ms.', 'Rusty', 'Osborne', 'rusty@mysqlresources.com'),
('Ms.', 'Lexi', 'Hollar', 'alexandra@mysqlresources.com');

This enters information for four humans. Notice that we left the first column NULL so
that MySQL can assign an identification number automatically and incrementally.

We've created some simple tables. We could do more, but this is enough for now to
better understand tables and their structure.

More Perspectives on Tables

Besides the DESCRIBE statement, there’s another way to look at how a table is structured.
You can use the SHOW CREATE TABLE statement. This basically shows how you might
enter the CREATE TABLE to create an existing table, perhapsin a different database. What’s
particularly interesting and useful about the SHOW CREATE TABLE statement is that it
shows the default settings assumed by the server, ones that you might not have specified
when you ran the CREATE TABLE statement. Here’s how you would enter this statement,
with the results shown after it:

SHOW CREATE TABLE birds \G

hkkkhkkhkkhhkhkhhkhhhhkhhhkhkhhxk 1. row hhkkhhkhkhhhhkhkhhkkhhkhhhhhkhkhkhkk

Table: birds
Create Table: CREATE TABLE “birds’ (
‘bird_id® int(11) NOT NULL AUTO_INCREMENT,
‘scientific_name’ varchar(255) COLLATE latinl_bin DEFAULT NULL,
‘common_name"’ varchar(50) COLLATE latini_bin DEFAULT NULL,
‘family_id® int(11) DEFAULT NULL,

52 | Chapter4: Creating Databases and Tables

“description’ text COLLATE latini_bin,
PRIMARY KEY ('bird_id'),
UNIQUE KEY ‘scientific_name’ ('scientific_name")
) ENGINE=MyISAM DEFAULT CHARSET=latinl COLLATE=latini_bin

As mentioned earlier, there are more options that you can set for each column; if you
don’t specify them, the server will use the default choices. Here you can see those default
settings. Notice that we did not set a default value for any of the fields (except the first
one when we said to use an automatically incremented number), so it set each column
to a default of NULL. For the third column, the common_name column, the server set the
set of characters (i.e., the alphabet, numbers, and other characters) by which it will
collate the data in that column to latinI_bin (i.e., Latin binary characters). The server
did the same for three other columns. That’s because of how we set the database at the
beginning of this chapter, in the second CREATE DATABASE statement. This is where that
comes into play. We could set a column to a different one from the one we set for the
database default, but it’s usually not necessary.

You may have noticed in looking at the results that the options for the bird_id column
don’t indicate that it’s a primary key, although we specified that in CREATE TABLE. In-
stead, the list of columns is followed by a list of keys or indexes used in the table. Here
it lists the primary key and specifies that that index is based on bird_1id. It then shows
aunique key. For that kind of key, it gives a name of the index, scientific_name, which
is the same as the column it indexes, and it then shows in parentheses a lists of columns
from which the index is drawn. That could be more than one column, but it’s just one
here. We'll cover indexes in Chapter 5 (see “Indexes” on page 80).

There’s one more aspect you should note in the results of SHOW CREATE TABLE. Notice
that the last line shows a few other settings after the closing parentheses for the set of
columns. First is the type of table used, or rather the type of storage engine used for this
table. In this case, it's MyISAM, which is the default for many servers. The default for
your server may be different. Data is stored and handled in different ways by different
storage engines. There are advantages and disadvantages to each.

The other two settings are the default character set (latin1) and the default collation
(latini_bin) in the table. These come from the default values when the database was
created, or rather they came indirectly from there. You can set a different character and
collation, and you can even set a different character set and collation for an individual
column.

Let me give you an example where setting explicit values for the character set and col-
lation might be useful. Suppose you have a typical database for a bird-watcher group
located in England with most of its common names written in English. Suppose further
that the site attracts bird-watchers from other countries in Europe, so you might want
to include common bird names in other languages. Let’s say that you want to set up a
table for the Turkish bird-watchers. For that table, you would use a different character
set and collation, because the Turkish alphabet contains both Latin and other letters.

More Perspectives on Tables | 53

For the character set, you would use latin5, which has both Latin and other letters. For
collation, you would use latin5_turkish_cti, which orders text based on the order of
the letters in the Turkish alphabet. To make sure you don't forget to use this character
set and collation when adding columns to this table later, you could set the CHARSET and
COLLATE for the table to these values.

Before moving on, let me make one more pointabout the SHOW CREATE TABLE statement:
if you want to create a table with plenty of special settings different from the default,
you can use the results of the SHOW CREATE TABLE statement as a starting point for
constructing a more elaborate CREATE TABLE statement. Mostly you would use it to see
the assumptions that the server made when it created a table, based on the default
settings during installation.

The next table we’ll create for the examples in this book is bird_families. This will
hold information about bird families, which are groupings of birds. This will tie into
the family_1id column in the birds table. The new table will save us from having to
enter the name and other information related to each family of birds for each bird in
the birds table:

CREATE TABLE bird_families (

family_1id INT AUTO_INCREMENT PRIMARY KEY,
scientific_name VARCHAR(255) UNIQUE,
brief_description VARCHAR(255));

We're creating three columns in the table. The first is the most interesting for our pur-
poses here. It's the column that will be indexed and will be referenced by the birds table.
That sounds like there is a physical connection or something similar within the birds
table, but that’s not what will happen. Instead, the connection will be made only when
we execute an SQL statement, a query referencing both tables. With such SQL state-
ments, we'll join the bird_families table to the birds table based on the family_id
columns in both. For instance, we would do this when we want a list of birds along with
their corresponding family names, or maybe when we want to get a list of birds for a
particular family.

Now we can put all the information we want about a family of birds in one row. When
we enter data in the birds table, we’'ll include the family_1id identification number that
will reference a row of the bird_families table. This also helps to ensure consistency
of data: there’s less chance of spelling deviations when you only enter a number and not
a Latin name. It also saves space because you can store information in one row of
bird_families and refer to it from hundreds of rows in birds. We'll see soon how this
works.

The scientific_name column will hold the scientific name of the family of birds (e.g.,
Charadriidae). The third column is basically for the common names of families (e.g.,
Plovers). But people often associate several common names to a family of birds, as well

54 | Chapter4: Creating Databases and Tables

as vague names for the types of birds contained in the family. So we’ll just call the column
brief_description.

Let’s next create a table for information about the orders of the birds. This is a grouping
of families of birds. We’ll name it bird_orders. For this table, let’s try out some of the
extra options mentioned earlier. Enter the following SQL statement:

CREATE TABLE bird_orders (
order_id INT AUTO_INCREMENT PRIMARY KEY,
scientific_name VARCHAR(255) UNIQUE,
brief_description VARCHAR(255),
order_image BLOB

) DEFAULT CHARSET=utf8 COLLATE=utf8_general_ci;

This SQL statement creates a table named bird_orders with four columns to start. The
first one, order_1id, is the key in which rows will be referenced from the bird_fami
lies table. This is followed by scientific_name for the scientific name of the order of
birds, with a data type of VARCHAR. We're allowing the maximum number of characters
for it. It's more than we’ll need, but there won't be many entries in this table and it’s
difficult to guess what what the longest description will be. So we’ll set it to the maximum
allowed for that data type. We’re naming this column brief_description, as we did in
the earlier bird_families table.

Because all three tables that we've created so far have similar names for some of the
columns (e.g., scientific_name), that may cause us alittle trouble later if we try to join
all of these tables together. It might seem simpler to use distinct names for these columns
in each of these tables (e.g., order_scientific_name). However, we can resolve that
ambiguity easily when necessary.

In the previous SQL statement, notice that we have a column for an image to represent
the order of birds. We might put a photo of the most popular bird of the order or a
drawing of several birds from the order. Notice that for this image file, the data type
we're using is a BLOB. While the name is cute and evocative, it also stands for binary
large object. We can store an image file, such as a JPEG file, in the column. Thats not
always a good idea. It can make the table large, which can be a problem when backing
up the database. It might be better to store the image files on the server and then store
a file path or URL address in the database, pointing to where the image file is located.
I've included a BLOB here, though, to show it as a possibility.

After the list of columns, we’ve included the default character set and collation to be
used when creating the columns. We're using UTF-8 (i.e., UCS Transformation Format,
8-bit), because some of the names may include characters that are not part of the default
latin1 character set. For instance, if our fictitious bird-watcher site included German
words, the column brief_description would be able to accept the letters with umlauts
over them (i.e., d). The character set utf8 allows for such letters.

More Perspectives on Tables | 55

For a real bird-watching database, both the bird_families and bird_orders tables
would have more columns. There would also be several more tables than the few we're
creating. But for our purposes, these few tables as they are here will be fine for now.

Summary

You have many more possibilities when creating tables. There are options for setting
different types of storage engines. We touched on that in this chapter, but there’s much
more to that. You can also create some tables with certain storage engines that will allow
you to partition the data across different locations on the server’s hard drives. The stor-
age engine can have an impact on the table’s performance. Some options and settings
are rarely used, but theyre there for a reason. For now, we've covered enough options
and possibilities when creating tables.

What we have covered in this chapter may actually be a bit overwhelming, especially
the notion of reference tables like bird_families and bird_orders. Their purpose
should become clearer in time. Chapter 5 provides some clarification on tables, and will
show you how to alter them. There are additional examples of inserting and selecting
data interspersed throughout that chapter. Before moving on, make sure to complete
the exercises in the following section. They should help you to better understand how
tables work and are used.

Exercises

Besides the SQL statements you entered on your MySQL server while reading this
chapter, here are a few exercises to further reinforce what you've learned about creating
databases and tables. In some of these exercises, you will be asked to create tables that
will be used in later chapters, so it's important that you complete the exercises that follow.

1. UsetheDROP TABLE statement to delete the tablebird_orders that we created earlier
in this chapter. Look for the CREATE TABLE statement that we used to create that
table. Copy or type it into a text editor and make changes to that SQL statement:
change the brief_description column to TEXT column type. Watch out for extra
commas when you remove columns from the list. When you're finished, copy that
modified SQL statement into the mysql monitor on your computer and press Enter
to execute it.

If you get an error, look at the error message (which will probably be confusing)
and then look at the SQL statement in your text editor. Look where you made
changes and see if you have any mistakes. Make sure you have keywords and values
in the correct places and there are no typos. Fix any mistakes you find and try
running the statement again. Keep trying until you succeed.

56 | Chapter4: Creating Databases and Tables

2. I mentioned in this chapter that we might want to store data related to identifying
birds. Instead of putting that data in the birds table, create a table for that data,
which will be a reference table. Try creating that table with the CREATE TABLE
statement. Name it birds_wing_shapes. Give it three columns: the first column
should be named wing_1id with a data type of CHAR with the maximum character
width set to 2. Make that column the index, as a UNIQUE key, but not an AUTO_IN
CREMENT. We'll enter two-letter codes manually to identify each row of data—a
feasible task because there will be probably only six rows of data in this table. Name
the second column wing_shape and set its data type to CHAR with the maximum
character width set to 25. This will be used to describe the type of wings a bird may
have (e.g., tapered wings). The third column should be called wing_example and
make it a BLOB column for storing example images of the shapes of wings.

3. After creating the birds_wing_shapes table in the previous exercise, run the SHOW
CREATE TABLE statement for that table in mysql. Run it twice: once with the semi-
colon at the end of the SQL statement and another time with \G to see how the
different displays can be useful given the results.

Copy the results of the second statement, the CREATE TABLE statement it returns.
Paste that into a text editor. Then use the DROP TABLE statement to delete the table
birds_wing_shapes in mysql.

In your text editor, change a few things in the CREATE TABLE statement you copied.
First, change the storage engine—the value of ENGINE for the table—to a MyISAM
table, if it’s not already. Next, change the character set and collation for the table.
Set the character set to utf8 and the collation to utf8_general_ci.

Now copy the CREATE TABLE statement you modified in your text editor and paste
it into the mysql monitor and press [Enter] to run it. If you get an error, look at
the confusing error message and then look at the SQL statement in your text editor.
Look where you made changes and see if you have any mistakes. Make sure you
have keywords and values in the correct places and there are no typos. Fix any
mistakes you find and try running the statement again. Keep trying to fix it until
you're successful. Once you’re successful, run the DESCRIBE statement for the table
to see how it looks.

4. Create two more tables, similar to birds_wing_shapes. One table will store infor-
mation on the common shapes of bird bodies, and the other will store information
on the shapes of their bills. They will also be used for helping bird-watchers to
identify birds. Call these two tables birds_body_shapes and birds_bill_shapes.

For the birds_body_shapes table, name the first column body_1d, set the data type
to CHAR(3), and make it a UNIQUE key column. Name the second column
body_shape with CHAR(25), and the third column body_example, making it a BLOB
column for storing images of the bird shapes.

Exercises | 57

For the birds_bill_shapes table, create three similar columns: bill_id with
CHAR(2) and UNIQUE; bill_shape with CHAR(25); and bill_example, making it a
BLOB column for storing images of the bird shapes. Create both tables with the
ENGINE set to a MyISAM, the DEFAULT CHARSET, utf8, and the COLLATE as
utf8_general_ci. Run the SHOW CREATE TABLE statement for each table when
you're finished to check your work.

58

Chapter 4: Creating Databases and Tables

CHAPTER 5
Altering Tables

Despite the best planning, you will need occasionally to change the structure or other
aspects of your tables. We cannot imagine everything that we might want to do with a
table, or how the data might look when it’s entered. Altering a table, though, is not very
difficult. Because of these factors, you shouldn't worry too much about getting the table
structure exactly right when creating a table. You should see tables as more fluid. Perhaps
the term table structure makes that difficult to accept: the words table and structure have
such rigid senses to them. To offset these images, perhaps a modified version of a cliché
would be useful to give you a truer sense of the reality of table structures: theyre not
made of stone or wood, but of digital confines that are easily altered. I suspect that
sentence won't be quoted much, but it’s a useful perspective.

In this chapter, we will explore the ways to alter tables: how to add and delete columns,
how to change their data types, how to add indexes, and how to change table and column
options. This chapter will also include some precautions about potential data problems
you can cause when altering a table containing data.

Prudence When Altering Tables

Before doing any structural changes to a table, especially if it contains data, you should
make a backup of the table to be changed. You should do this even if youre making
simple changes. You might lose part of the data if you inadvertently change the column
to a different size, and may lose all of the data contained in a column if you change the
column type to one that’s incompatible (e.g., from a string to a numeric data type).

If youre altering only one table, you can make a copy of the table within the same
database to use as a backup in case you make a mistake and want to restore the table to
how it was before you started. A better choice would be to make a copy of the table and
then alter the copy. You may even want to put the copy in the test database and alter

59

the table there. When you're finished altering it, you can use it to replace the original
table. We'll cover this method in more detail later in this chapter.

The best precaution to take, in addition to working with copies of tables, would be to
use the mysqldump utility to make a backup of the tables you're altering or the whole
database. This utility is covered in Chapter 14 . However, to make it easier for you, here
is an example of what you should enter from the command line—not from the mysql
client—to make a backup of the birds table with mysqldump (you'll need to have read
and write permission for the directory where youre executing it; it’s set to the /tmp
directory here, but you should change that to a different directory, perhaps one to which
only you have access and the filesystem mysql user has read and write permission):

mysqldump --user='russell' -p \
rookery birds > /tmp/birds.sql

Asyou can see, the username is given on the first line (you would enter your username
instead of mine) within single or double quotes, with the -p option to tell mysqldump to
prompt you for the password. There are many other mysqldump options, but for our
purposes, these are all that are necessary. Incidentally, this statement can be entered in
one line from the command line, or it can be entered on multiple lines as shown here
by using the back-slash (\) to let the shell know that more is to follow. On the second
line in the preceding code block, the database name is given, followed by the table name.
The redirect (>) tells the shell to send the results of the dump to a text file called birds.sql
in the /tmp directory.

The previous example makes a backup of just the birds table. It may be best to make a
backup of the whole rookery database. To do this with mysqldump, enter the following
from the command line:

mysqldump --user='russell' -p \
rookery > rookery.sql

You should definitely do this, because having a backup of the rookery database will be
helpful in case you accidentally delete one of the tables or its data and then get confused
later when you’re working on the exercises in later chapters. In fact, it’s a good idea to
make a backup of the rookery database at the end of each chapter. Each dump file should
be named according to its chapter name (e.g., rookery-chl-end.sql, rookery-ch2-
end.sql, etc.) so that you can rewind to a specific point in the book.

Later on, if you have a problem and need to restore the database back to where you were
at the end of a chapter, you would enter something like the following from the command
line:

mysql --user='russell' -p \
rookery < rookery-ch2-end.sql

Notice that this line does not use the mysqldump utility. We have to use the mysql client
at the command line to restore a dump file. When the dump file (rookery-ch2-end.sql)

60 | Chapter5:Altering Tables

is read into the database, it will delete the rookery database with its tables and data
before restoring the back up copy with its tables and data. Any data that users entered
in the interim into the rookery database will be lost. Notice that to restore from the
dump file, we're using a different redirect, the less-than sign (<) to tell mysql to take
input from the contents of the text file, rookery-ch2-end.sql. It’s possible to restore only
a table or to set other limits on what is restored from a back up file. You can read about
how to do that in Chapter 14. Let's move on to learning the essentials of altering tables
in MySQL and MariaDB.

Essential Changes

After youhave created a table, entered data into it, and begun to use it, you will invariably
need to make changes to the table. You may need to add another column, change the
data type of the column (e.g., to allow for more characters), or perhaps rename a column
for clarity of purpose or to align the columns better with columns in other tables. To
improve the speed at which data is located in the column (i.e., make queries faster), you
might want to add or change an index. You may want to change one of the default values
or set one of the options. All of these changes can be made through the ALTER TABLE
statement.

The basic syntax for the ALTER TABLE is simple:
ALTER TABLE table_name changes;

Replace table_name with the name of the table you want to change. Enter the changes
you want to make on the rest of the line. We'll cover the various changes possible with
the ALTER TABLE statement one at a time in this chapter.

This SQL statement starts simply. It’s the specifics of the changes that can make it con-
fusing. Actually, that isn’'t always the reason for the confusion. The reason many devel-
opers have trouble with the ALTER TABLE statement is because they most likely don’t use
it often. When you need to make a change to a table, you will probably look in a book
or in the documentation to see how to make a change, enter it on your server, and then
forget what you did. In contrast, because you will frequently use the SQL statements for
entering and retrieving data (i.e.,INSERT and SELECT), their syntax will be easier to re-
member. So it’s natural that database developers don’t always remember how to make
some of the changes possible with the ALTER TABLE statement.

One of the most common alterations you will need to make to a table isadding a column.
To do this, include the ADD COLUMN clause as the changes at the end of the syntax shown
earlier. As an example of this clause, let’s add a column to the bird_families table to
be able to join it to the bird_orders table. You should have created these two tables in
Chapter 4. We'll name the column order_id, the same as in the bird_orders table. It’s
acceptable and perhaps beneficial for it to have the same name as the related column in
the bird_orders table. To do this, enter the following from the mysql client:

Essential Changes | 61

ALTER TABLE bird_families
ADD COLUMN order_id INT;

This is pretty simple. It adds a column to the table with the name order_id. It will
contain integers, but it will not increment automatically like its counterpart in the
bird_orders table. You don’t want automatic increments for the column being added
tobird_families, because you're just referring to existing orders, not adding new ones.

As another example of this clause, let’s add a couple of columns to the birds table to be
able to join it to the two tables you should have created in the exercises at the end of
Chapter 4 (i.e., birds_wing_shapes and birds_body_shapes). Before we do that, lets
make a copy of the table and alter the copy instead of the original. When we're finished,
we'll use the table we altered to replace the original table.

To make a copy of the birds table, we’ll use the CREATE TABLE statement with the LIKE
clause. This was covered in Chapter 4) In fact, let’s create the new table in the test
database just to work separately on it (this isn’t necessary, but it's a good practice to have
a development database separate from the live one. To do this, enter the following in
mysql on your server:

CREATE TABLE test.birds_new LIKE birds;

Next, enter the following two lines in mysql to switch the default database of the client
and to see how the new table looks:

USE test

DESCRIBE birds_new;

This DESCRIBE statement will show you the structure of the new table. Because we copied
only the structure of the birds table when we created the new table, there is no data in
this table. To do that, we could use an INSERT statement coupled with a SELECT like so:

INSERT INTO birds_new
SELECT * FROM rookery.birds;

This will work fine. However, there’s another method that creates a table based on an-
other table and copies over the data in the process:

CREATE TABLE birds_new_alternative
SELECT * FROM rookery.birds;

This will create the table birds_new_alternative with the data stored in it. However,
if you execute a DESCRIBE statement for the table, you will see that it did not set the
bird_1id column to a PRIMARY KEY and did not set it to AUTO_INCREMENT. So in our
situation, the first method we used to create the table is preferred, followed by an INSERT
INTO. . .SELECT statement. Enter the following to delete the alternative table:

DROP TABLE birds_new_alternative;

62 | Chapter5: Altering Tables

Be careful with the DROP TABLE statement. Once you delete a table, there is usually no
way (or at least no easy way) to get it back, unless you have a backup copy of the database.
That’s why I suggested that you make a backup at the beginning of this chapter.

Let’s now alter the new table and add a column named wing_id to be able to join the
table to the birds_wing_shapes table. To add the column, enter the following SQL
statement in mysql:

ALTER TABLE birds_new
ADD COLUMN wing_id CHAR(2);

This will add a column named wing_1id to the table with a fixed character data type and
amaximum width of two characters. have made sure to give the column the exact same
data type and size as the corresponding column in birds_wing_shapes, because that
enables us to refer to the column in each table to join the tables.

Let’s look at the structure of the birds_new table to see how it looks now. Enter the
following in your mysql client:

DESCRIBE birds_new;

o Fommmm e o o Fommmmeaa Fommmm e +
| Field | Type | Null | Key | Default | Extra |
o Fommmm e o o Fommmmeaa Fommmm e +
bird_1id	int(11)	NO	PRI	NULL	auto_increment
scientific_name	varchar(100)	YES	UNI	NULL	
common_name	varchar(50)	YES		NULL	
family_1id	int(11)	YES		NULL	
description	text	YES		NULL	
wing_1id	char(2)	YES		NULL	
e TP o o Fommmmnan o +

Looking over the results set for the table, you should recognize the first six columns.
They’re based on the birds table that we created in Chapter 4. The only change is the
addition we just made. Notice that the new column, wing_1id, was added to the end of
the table. Where a column is located matters little to MySQL or MariaDB. However, it
may matter to you as a developer, especially when working with wider tables or with
tables that have many columns. Let’s try adding this column again, but this time tell
MySQL to put it after the family_1id. First, we’ll delete the column we just added. Be-
cause it’s a new column, we can do this without losing data.

ALTER TABLE birds_new
DROP COLUMN wing_id;

This was even simpler than adding the column. Notice that we don't mention the column
data type or other options. The command doesn’t need to know that in order to drop a
column. The DROP COLUMN clause removes the column and all of the data contained in
the column from the table. There’s no UNDO statement in MySQL or in MariaDB, so be
careful when working with a live table.

Essential Changes | 63

Lets add the wing_1id column again:

ALTER TABLE birds_new
ADD COLUMN wing_id CHAR(2) AFTER family_id;

This will put the wing_1id column after the family_1id in the table. Run the DESCRIBE
statement again to see for yourself. By the way, to add a column to the first position, you
would use the keyword FIRST instead of AFTER. FIRST takes no column name.

With the ADD COLUMN clause of the ALTER TABLE statement, we can add more than one
column at a time and specify where each should go. Let’s add three more columns to
the birds_new table. We’ll add columns to join the table to the birds_body_shapes and
birds_bill_shapes tables we created in the exercises at the end of Chapter 4. We'll also
add afield to note whether abird is an endangered species. While we're making changes,
let’s change the width of the common_name column. It’s only 50 characters wide now. That
may not be enough for some birds that have lengthy common names. For that change,
we’ll use the CHANGE COLUMN clause. Enter the following in mysql:

ALTER TABLE birds_new

ADD COLUMN body_id CHAR(2) AFTER wing_id,

ADD COLUMN bill_id CHAR(2) AFTER body_id,

ADD COLUMN endangered BIT DEFAULT b'l' AFTER bill_id,
CHANGE COLUMN common_name common_name VARCHAR(255);

This is similar to the previous ALTER TABLE examples using the ADD COLUMN clause.
There are a few differences to note. First, we entered the ADD COLUMN clause three times,
separated by commas. You might think you should be able to specify the ADD COLUMN
keywords once, and then have each column addition listed after it, separated by commas.
This is a common mistake that even experienced developers make. You can include
multiple clauses in ALTER TABLE, but each clause must specify just one column. This
restriction may seem unnecessary, but altering a table can cause problems if you enter
something incorrectly. Being emphatic like this is a good precaution.

In one of the columns added here, the endangered column, we’re using a data type we
haven’t used yet in this book: BIT. This stores one bit, which takes a values of either set
or unset—basically, 1 or 0. We'll use this to indicate whether a species is endangered or
not. Notice that we specified a default value for this column with the DEFAULT keyword
followed by the default value. Notice also that to set the bit, we put the letter b in front
of the value in quotes. There is one quirk—a bug with this data type. It stores the bit
fine, but it does not display the value. If the value is unset (o), it shows a blank space in
the results of a SELECT statement. If the value is set, it does not show anything, causing
the ASCII format of the results set to be indented by one space to the left. It’s a bug in
MySQL that they’ll resolve eventually—it may even be fixed by the time you read this.
We can still use the data type just fine with this bug. We'll see this in action after we
finish loading the data into the table.

64 | Chapter5:Altering Tables

As for the CHANGE COLUMN clause, notice that we listed the name of the common_name
column twice. The first time is to name the column that is to be changed. The second
time is to provide the new name, if we wanted to change it. Even though we’re not
changing the name, we still must list it again. Otherwise, it will return an error message
and reject the SQL statement. After the column names, you must give the data type.
Even if you were using the CHANGE COLUMN statement to change only the name of the
column, you must give the data type again. Basically, when you type CHANGE COLUMN,
the server expects you to fully specify the new column, even if some parts of the spec-
ification remain the same.

There is one more thing to note about the previous ALTER TABLE example. Notice that
we told the server where to locate each of columns that it’s adding using the AFTER clause.
We did this previously. However, what’s different is that for the second column, where
we're adding bill_id, we said to locate it after body_1id. You might imagine that would
cause an error because we’re adding the body_1d column in the same statement. How-
ever, MySQL executes the clauses of an ALTER TABLE statement in the order that they
are given. Depending on the version and operation, it creates a temporary copy of the
table and alters that copy based on the ALTER TABLE statement’s instructions, one clause
at a time, from left to right (or top to bottom in our layout). When it’s finished, if there
are no errors, it then replaces the original table with the altered temporary table—much
like we’re doing here, but rapidly and behind the scenes.

If there are errors in processing any clause of the ALTER TABLE statement, it just deletes
the temporary table and leaves the original table unchanged, and then returns an error
message to the client. So in the previous example, in the temporary table that MySQL
creates, it firstadded the column body_1d. Once that was done, it then added thebi11_1id
column and put it after the body_id column in that temporary table. Your tendency
might have been to have entered AFTER wing_1id at the end of each of the ADD COLUMN
clauses. That would have worked, but the columns would have been in reverse order
(i.e.,wing_1id, endangered, bill_id, body_1d). Soif we want body_1id to belocated after
wing_id, and bill_1id to be located after body_id, and so on, we have to say so in the
SQL statement as shown.

Lets change now the value of the endangered column. The table only has five rows in
it at the moment and none of the birds they represent are endangered. Still, let’s set the
value of the endangered column to 0 for four of them. To do this, we use the UPDATE
statement (you'll learn more about it in Chapter 8, so don’t worry if this is unfamiliar):

UPDATE birds_new SET endangered = 0
WHERE bird_id IN(1,2,4,5);

This will set the value of the endangered column to 0, or rather unset it, for the rows in
which the bird_id column has one of the values listed within the parentheses. Basically,
we’ll change four rows of data, but leave the one unchanged where bird_id equals 3.
Remember that when we created the endangered column, we gave a default of b'1",

Essential Changes | 65

meaning the bit is set by default. The preceding statement is unsetting that column for
the four rows identified in the WHERE clause.

Now we'll retrieve data using the SELECT statement (covered in Chapters 3 and 7), based
on whether the endangered column is set. Because the birds_new table is now wider,
we'll enter the following SQL statement using the \G for an easier-to-read display:

SELECT bird_id, scientific_name, common_name
FROM birds_new
WHERE endangered \G

*hkkhkkkhkhkhhhkhkhhkhhhhhkhkdkx 1_ row *hkkkhkhkhhhhkhhdhhhdhhkdhdkkx
bird_id: 3
scientific_name: Aix sponsa
common_name: Wood Duck

khkhkkhkkhkhkhkhkhhkhhkhhkhkhkikx 2' row khkkkhkhkhkhkdhkhkhhkhhkhkhkhxdkkx
bird_id: 6
scientific_name: Apteryx mantelli
common_name: North Island Brown Kiwi

Notice that in the WHERE clause of the SELECT statement we are selecting rows where the
endangered column has a value. For the column data type of BIT, this is all that’s needed,
and it has the same effect as if we specified WHERE endangered = 1. To filter on the
reverse—to select rows in which the bit for the endangered column is not set—use the
NOT operator like so:

SELECT * FROM birds_new
WHERE NOT endangered \G

After looking over the display for the Wood Duck and that Kiwi bird, maybe we should
allow for other values for the endangered column. There are several degrees of endan-
germent for birds. We could and should create a separate reference table for the possi-
bilities, but let’s just enumerate the choices in the column attributes so you can see how
that’s done. While we're at it, we’ll also relocate the column to just after the family_id
column. For this, we’ll use a new clause, MODIFY COLUMN:

ALTER TABLE birds_new

MODIFY COLUMN endangered

ENUM('Extinct',
'"Extinct in Wild',
'Threatened - Critically Endangered',
'Threatened - Endangered',
'Threatened - Vulnerable',
'Lower Risk - Conservation Dependent',
"Lower Risk - Near Threatened',
"Lower Risk - Least Concern')

AFTER family_id;

66 | Chapter5: Altering Tables

Notice that the syntax for the MODIFY COLUMN clause lists the name of the column once.
That’s because the clause does not allow you to change the column name. For that, you
must use the CHANGE COLUMN clause. Notice also that we used a new column data type
that lets us enumerate a list of acceptable values: the ENUM data type. The values are
enclosed in quotes, separated by commas, and the set is contained within a pair of
parentheses.

Let’s run the SHOW COLUMNS statement with the LIKE clause to see just the column settings
for the endangered column:

SHOW COLUMNS FROM birds_new LIKE 'endangered' \G

kkkkkhkhkkkhhkhkhkkkhkhkhkkkhkhkhkkx*® 1' row khkkkkhkhkkhhkhkhkkkhkhkhkkkkhkhkkk*®

Field: endangered

Type: enum('Extinct','Extinct in Wild',
'Threatened - Critically Endangered',
'Threatened - Endangered',
'Threatened - Vulnerable',
'Lower Risk - Conservation Dependent',
'Lower Risk - Near Threatened',
'Lower Risk - Least Concern')

Null: YES

Key:
Default: NULL
Extra:

In addition to the values enumerated, notice that a NULL value is allowed and is the
default. We could have disallowed NULL values by including a NOT NULL clause.

If we want to add another value to the enumerated list, we would use the ALTER
TABLE statement again with the MODIFY COLUMN clause, without the AFTER clause exten-
sion—unless we want to relocate the column again. We would have to list all of the
enumerated values again, with the addition of the new one.

To set the values in a column that has an enumerated list, you can either give a value
shown in the list, or refer to the value numerically, if you know the order of the values.
The first enumerated value would be 1. For instance, you could do an UPDATE statement
like this to set all birds in the table to Lower Risk - Least Concern, the seventh value:

UPDATE birds_new
SET endangered = 7;

I said earlier that using the ENUM data type can be an alternative to a reference table when
there are a few values. However, the endangered column as shown in this example is
cumbersome and not professional. We could still do a reference table in addition to this
enumerated list within the table. The reference table would have a row for each of these
choices, but with extra columns that would provide more information for them, for
when we wanted to display more information. Based on that, we could change the values
in the enumerated list in the birds table to something easier to type (e.g., LR-LC for

Essential Changes | 67

Lower Risk - Least Concern) and then put the lengthier description in the reference table
that we’d create.

It will be simpler, however, to treat the endangered column like the other reference tables
that we've created (e.g., birds_wing_shapes) and use numbers for the values in the
birds table. We should change the column and create another reference table for it.
We'll do that later, though.

Dynamic Columns

We just covered ENUM, so let’s digress from ALTER TABLE for a moment to cover dynamic
columns. This is something thatis available only in MariaDB, as of version 5.3. It’s similar
to an ENUM column, but with key/value pairs instead of a plain list of options. That will
initially sound confusing, but it make more sense when we look at some examples. So
let’s create a few tables with dynamic columns.

To make the bird-watchers site more interesting, suppose we’ve decided to do some
surveys of the preferences of bird-watchers. We’ll ask the members to rate birds they
like the most. That will be a simple start. In time, we might ask them to rate the best
places to see birds in an area, or maybe binocular makers and models they like the best.
For this scenario, let’s create a set of tables.

If you're not using MariaDB and don’t want to replace MySQL with it, just read along.
If you do have MariaDB installed on your server, enter the following:

USE birdwatchers;

CREATE TABLE surveys
(survey_id INT AUTO_INCREMENT KEY,
survey_name VARCHAR(255));

CREATE TABLE survey_questions
(question_1id INT AUTO_INCREMENT KEY,
survey_id INT,

question VARCHAR(255),

choices BLOB);

CREATE TABLE survey_answers
(answer_id INT AUTO_INCREMENT KEY,
human_1id INT,

question_1id INT,

date_answered DATETIME,

answer VARCHAR(255));

The first table we created here will contain a list of surveys. The second table is where
we'll put the questions. Because we intend to do only polls, the choices column will
contain the survey choices. We defined it with a very generic type, BLOB, but we’ll use it

68 | Chapter5: Altering Tables

to store a dynamic column. The data type used has to be able to hold the data that will
be given to it when we create the dynamic column. BLOB can be a good choice for that.

The third table is where we will store the answers to the survey questions. This time we
define a VARCHAR column to hold the dynamic column. We will link survey_answers to
survey_questions based on the question_id, and survey_questions to surveys
based on the survey_id.

Now let’s put some data in these tables. If you're using MariaDB, enter the following
SQL statements to add SQL statements:

INSERT INTO surveys (survey_name)
VALUES("Favorite Birding Location");

INSERT INTO survey_questions

(survey_1id, question, choices)

VALUES(LAST_INSERT_ID(),

"What's your favorite setting for bird-watching?",
COLUMN_CREATE('1', 'forest', '2', 'shore', '3', 'backyard'));

INSERT INTO surveys (survey_name)
VALUES("Preferred Birds");

INSERT INTO survey_questions

(survey_1id, question, choices)

VALUES (LAST_INSERT_ID(),

"Which type of birds do you like best?",

COLUMN_CREATE('1', 'perching', '2', 'shore', '3', 'fowl', '4', 'rapture'));
That created two surveys: one with a set of choices about where the birders like to watch
birds; the second with a simple, not comprehensive set of bird types they prefer. We
used COLUMN_CREATE() to create the enumerated lists of choices: each choice has a key
and a value. Thus, in survey_questions, choice 1 is “forest,” choice 2 is “shore,” and
choice 3 is “backyard” Starting with MariaDB version 10.0.1, you can give strings for
the keys instead of numbers.

Let’s see now how data may be retrieved from a dynamic column:

SELECT COLUMN_GET(choices, 3 AS CHAR)
AS 'Location'

FROM survey_questions

WHERE survey_id = 1;

Essential Changes | 69

This returns the third choice. We used the COLUMN_GET() function to get the dynamic
column within the column given as the first argument. The second argument specifies
the key to use to get the data. We also included AS to indicate the type of data type it
should use (i.e., CHAR) to cast the value it returns.

Now let’s enter a bunch of answers for our members. If you're using an electronic version
of this book, just copy and paste the following into your MariaDB server:

INSERT INTO survey_answers
(human_1id, question_id, date_answered, answer)

VALUES

(29, 1, NOW(), 2),
(29, 2, NOW(), 2),
(35, 1, NOW(), 1),
(35, 2, NOW(), 1),
(26, 1, NOW(), 2),
(26, 2, NOW(), 1),
(27, 1, NOW(), 2),
(27, 2, NOW(), 4),
(16, 1, NOW(), 3),

(3, 1, NOW(), 1),
(3, 2, NOW(), 1);

This isn’t many rows, but it’s enough for now. Let’s count the votes for the first survey
question by executing the following:

SELECT IFNULL(COLUMN_GET(choices, answer AS CHAR), 'total')
AS 'Birding Site', COUNT(*) AS 'Votes'

FROM survey_answers

JOIN survey_questions USING(question_1id)

WHERE survey_id = 1

AND question_id = 1

GROUP BY answer WITH ROLLUP;

Fommmm e Fommmmn +
| Birding Site | Votes |
Fommmm e Fommmmn +
| forest | 2 |
| shore | 3

| backyard | 1

| total | 6 |
R TR LR +

In the WHERE clause, survey_id chose the survey we want from survey_questions while
question_id chose the question we want from survey_answers. We retrieve all the
answers, group them, and count the rows for each answer to see how many bird-
watchers voted for each one.

That’s not much data, though. I'll add more answers to give us a larger table with which
to work. You can download the table from my site. We’ll use it in examples later in this

70 | Chapter5: Altering Tables

http://mysqlresources.com/files

book. Dynamic columns are still new and very much under development, so this brief
a review will suffice for now. Let’s now get back to more standard table-related topics.

Optional Changes

In addition to the most common uses for the ALTER TABLE statement (i.e., adding and
renaming columns), you can use it to set some of the options of an existing table and
its columns. You can also use the ALTER TABLE statement to set the value of table vari-
ables, as well as the default value of columns. This section covers how to change those
settings and values, as well as how to rename a table. Additionally, you can change
indexes in a table. That is covered in the section on “Indexes” on page 80.

Setting a Column’s Default Value

You may have noticed that the results of the DESCRIBE statements shown in earlier ex-
amples have a heading called Default. You may have also noticed that almost all of the
fields have a default value of NULL. This means that when the user does not enter a
value for the column, the value of NULL will be used. If you would like to specify a
default value for a column, though, you could have done so when creating the table. For
an existing table, you can use the ALTER TABLE statement to specify a default value other
than NULL. This won't change the values of existing rows—not even ones that previ-
ously used a default value. You would use either the CHANGE clause or the ALTER clause.
Let’s look at an example of using the CHANGE clause first.

Suppose that most of the birds that we will list in our database would have a value of
Lower Risk - Least Concern in the endangered column. Rather than enter Lower Risk -
Least Concern or its numeric equivalent in each INSERT statement (which inserts data
into a table), we could change the default value of the endangered column. Let’s do that
and change the column from an ENUM to an INT data type to prepare for the creation of
a reference table for the conservation status of birds. Let’s also make this a little more
interesting by creating the reference table and inserting all of the data we had enumer-
ated in the settings for the endangered. We'll start by entering the following in mysql
to create the reference table:

CREATE TABLE rookery.conservation_status
(status_id INT AUTO_INCREMENT PRIMARY KEY,
conservation_category CHAR(10),
conservation_state CHAR(25));

We named the reference table conservation_status, which is a better description than
endangered. Notice that we split each status into two columns. A value like Lower Risk
- Least Concern was meant to indicate the state of Least Concern in the category Lower
Risk. So we created two columns for those values. We'll put Lower Risk in the
conservation_category column and Least Concern in another column called,
conservation_category.

Optional Changes | 71

Now let’s insert all of the data into this new reference table. We’ll use the INSERT state-
ment (covered briefly in Chapter 3):

INSERT INTO rookery.conservation_status
(conservation_category, conservation_state)
VALUES('Extinct','Extinct'),
('Extinct','Extinct in Wild'),
('Threatened', 'Critically Endangered'),
('Threatened', 'Endangered'),
('Threatened', 'Vulnerable'),
('Lower Risk','Conservation Dependent'),
('Lower Risk','Near Threatened'),
('Lower Risk','Least Concern');

If you find this SQL statement confusing, just enter it and rest assured we’ll cover such
statements in detail in Chapter 6. For now, though, I wanted to show you a reference
table with data in it. Let’s use the SELECT statement to select all of the rows of data in the
table. Enter just the SQL statement (shown in bold), not the results that follow it:

SELECT * FROM

emmemmam—aa
| status_id
emmemmamenn

o ~NOUT A WN R

.

+
I
+
I
|
I
|
I
|
I
|
+

rookery.conservation_status;

Extinct

Extinct

Threatened
Threatened
Threatened
Lower Risk
Lower Risk
Lower Risk

+
I
+
I
|
I
|
I
|
I
|
+

________________________ -
conservation_state |

Extinct |
Extinct in Wild |
Critically Endangered |
Endangered |
Vulnerable |
Conservation Dependent |
Near Threatened |
Least Concern |

The first column gets default values, incrementing automatically as we asked when we
created the table, while the other two columns get the values we specified during our

insert.

Notice that we have been prefixing the table name with the database name (i.e., rook
ery.conservation_status). That’s because we had set the default database to test with
USE. Going back to the birds_new table, we’re ready to change the endangered column.
We decided earlier that we wanted to set the default value of this column to Lower Risk
- Least Concern, or rather to the value of the status_1id for that combination of columns
in the conservation_status table. Looking at the results, you can see that the value for
the status_1id we want for the default is 8. We can change the endangered column’s
name and default value by entering the following on the server:

ALTER TABLE birds_new
CHANGE COLUMN endangered conservation_status_id INT DEFAULT 8;

72 | Chapter5: Altering Tables

The syntax of this is mostly the same as previous examples in this chapter that use the
CHANGE clause (i.e., list the name of the column twice and restate the data types, even if
you don’t want to change them). The difference in this case is that we've added the
keyword DEFAULT followed by the default value—if the default value were a string, you
would put it within quotes. The example also changed the column name. But if we
wanted only to set the default value for a column, we could use the ALTER clause of the
ALTER TABLE statement. Let’s change the default of conservation_status_id to 7:

ALTER TABLE birds_new
ALTER conservation_status_id SET DEFAULT 7;

This is much simpler. It only sets the default value for the column. Notice that the second
line starts with ALTER and not CHANGE. It’s then followed by the column name, and the
SET subclause. Let’s see how that column looks now, running the SHOW COLUMNS state-
ment only for that column:

SHOW COLUMNS FROM birds_new LIKE 'conservation_status_id' \G

hkkkhkkkkhhhhhkhhhhhkkhhkhkhhxk 1. row hhkkhkhkhhhhhkhhhkhhkhhhhhkhkhkkk

Fleld: conservation_status_id
Type: int(11)
Null: YES
Key:
Default: 7
Extra:

Asyou can see, the default value is now 7. If we change our minds about having a default
value for conservation_status_id, we would enter the following to reset it back to
NULL, or whatever the initial default value would be based on the data type of the
column:

ALTER TABLE birds_new
ALTER conservation_status_id DROP DEFAULT;

This particular usage of the DROP keyword doesn’t delete data in the columns. It just
alters the column settings so there is no default value. Run the SHOW COLUMNS statement
again on your computer to see that the default has been reset. Then put the default back
to 7.

Setting the Value of AUTO_INCREMENT

Many of the main tables in a database will have a primary key that uses the AUTO_IN
CREMENT option. That creates an AUTO_INCREMENT variable in the table called tables in
the information_schema database. You may recognize that database name. We saw the
information_schema database in the results of the SHOW DATABASE statement in “Start-
ing to Explore Databases” on page 33. When you create a table, MySQL adds a row to
the table called tables in the information_schema database. One of the columns of
that table is called auto_increment. That is where you can find the value of the next

Optional Changes | 73

row to be created in a table. This is initially set to a value of 1, unless you set it to a
different number when creating the table. Let’s run a SELECT statement to get that value
from the information_schema database, from the tables table:

SELECT auto_increment
FROM information_schema.tables
WHERE table_name = 'birds';

g +
| auto_1increment |
g +
| 7|
g +

Because we entered data for only six birds in the birds table, and the value of AUTO_IN
CREMENT was not set when the table was created, it started at 1 and now has a value of
7. That means the next row we add to the table will have 7 in the column.

If you would like to change the value of AUTO_INCREMENT for a particular table, you can
do so with the ALTER TABLE statement. Let’s set the value of AUTO_INCREMENT for the
birds table to 10, just to see how to change it this way. While we’re at it, let’s switch the
default database back to rookery. Enter the following in mysql:

USE rookery

ALTER TABLE birds
AUTO_INCREMENT = 10;

This will cause the bird_id to be set to 10 for the next row of data on a bird that we
enter into the birds table. Changing the auto-increment value is not usually necessary,
but it’s good to know that you can do even this with ALTER TABLE.

Another Method to Alter and Create a Table

There may be times when you realize that you've created a table that is too wide, with
too many columns. Perhaps some columns would be handled better in a separate table.
Or perhaps you started adding new columns to an existing table and found it became
unruly over time. In either case, you could create a smaller table and then move data
from the larger table into the new, smaller one. To do this, you can create a new table
with the same settings for the columns you want to move, then copy the data from the
first table to the new table, and then delete the columns you no longer need from the
first table. If you wanted to make this transition by the method just described, the in-
dividual column settings will need to be same in the new table to prevent problems or
loss of data.

An easier method for creating a table based on another table is to use the CREATE
TABLE with the LIKE clause. Let’s try that to create a copy of the birds table. Enter the
following in mysql on your server:

74 | Chapter5: Altering Tables

CREATE TABLE birds_new LIKE birds;

This creates an identical table like the birds table, but with the name birds_new. If you
enter the SHOW TABLES statement in mysql, you will see that you now have a birds table
and a new table, birds_new.

You can use an underscore (i.e., _) in a table name, but you may want
to avoid using hyphens. MySQL interprets a hyphen as a minus sign
and tries to do a calculation between the two words given, which
causes an error. If you want to use a hyphen, you must always refer-
ence the table name within quotes.

Execute the following three SQL statements to see what you now have:

DESCRIBE birds;
DESCRIBE birds_new;

SELECT * FROM birds_new;
Empty set (0.00 sec)

The first two SQL statements will show you the structure of both tables. They will con-
firm that they are identical except for their names. To save space, I didn’t include the
results of those two SQL statements here.

The third SQL statement should show you all of the rows of data in the birds_new table.
Because we copied only the structure of the birds table when we created the new table,
there is no data—as indicated by the message returned. We could copy the data over
when we're finished altering the table if that’s what we want to do.

This method can also be used when making major modifications to a table. In such a
situation, it's good to work from a copy of the table. You would then use the ALTER
TABLE statement to change the new table (e.g., birds_new). When you're finished making
the changes, you would then copy all of the data from the old table to the new table,
delete the original table, and then rename the new table.

In such a situation, you may have one minor problem. I said earlier that the tables are
identical except for the table names, but that’s not exactly true. There may be one other
difference. If the table has a column that uses AUTO_INCREMENT for the default value, the
counter will be set to 0 for the new table. You must determine the current value of
AUTO_INCREMENT for the birds table to be assured that the rows in the new table have
the correct identification numbers. Enter the following SQL statement in mysql:

SHOW CREATE TABLE birds \G

In the results, which are not shown, the last line will reveal the current value of the
AUTO_INCREMENT variable. For instance, the last line may look as follows:

Optional Changes | 75

) ENGINE=MyISAM AUTO_INCREMENT=6 DEFAULT CHARSET=latinl COLLATE=latini_bin

In this excerpt of the results, you can see that the variable, AUTO_INCREMENT is currently
6.Set AUTO_INCREMENT to the same value in the birds_newtable by entering the following
SQL statement in mysql:

ALTER TABLE birds_new
AUTO_INCREMENT = 6;

When you're ready to copy the data from one table to the other, you can use the IN
SERT...SELECT syntax. This is covered in “Other Possibilities” on page 104.

Instead of copying the data after youre finished modifying the new table, you can copy
the data while creating the new table. This might be useful when you want to move only
certain columns with their data to a new table, without any alterations to the columns.
To do this, you would still use the CREATE TABLE statement, but with a slightly different
syntax.

Let’s suppose that we have decided that we want to create a new table for details about
each bird (e.g., migratory patterns, habitats, etc.). Looking at the birds table, though,
we decide that the description column and its data belong in this new table. So we’ll
create a new table and copy that column’s settings and data, as well as the bird_id into
the new table. We can do that by entering the following from mysql to get the table
started:

CREATE TABLE birds_details
SELECT bird_1id, description
FROM birds;

This creates the birds_details table with two columns, based on the same columns in
the birds table. It also copies the data from the two columns in the birds table into the
birds_details table. There is one minor, but necessary, difference in one of the col-
umns in the new table. The difference has to do with AUTO_INCREMENT again, but not in
the same way as earlier examples. Enter the DESCRIBE statement to see the difference:

DESCRIBE birds_details;

ommmmmeeaa ommmeeaa ommna- omma- Hmmmmmmnas e +
| Field | Type | Null | Key | Default | Extra |
ommmmm e ommmeena ommna- omme- Hommmmmnae Hommmann +
| bird_1id | int(11) | NO | | © | |
| description | text | YES | | NULL | |
oo o [P P e R +

The difference here is that the bird_id does not use AUTO_INCREMENT. This is good
because we have to manually set the value of the bird_id for each row that we enter.
We won't have details for each bird, though, and we won’t necessarily be entering them
in the same order as we will in the birds table. We could change the bird_id column

76 | Chapter5: Altering Tables

in this table to an AUTO_INCREMENT column, but that would cause problems—trying to
keep it in line with the birds table would be maddening. We could, however, make an
index for the bird_id column in the birds_detatils table by using the ALTER TABLE
statement and setting the column to a UNIQUE key. That would allow only one entry per
bird, which may be a good idea. This is covered in “Indexes” on page 80.

The CREATE TABLE...SELECT statement created the birds_detatils table with only two
columns. We said, though, that we want more columns for keeping other information
on birds. We’ll add those additional columns later with the ALTER TABLE statement, in
the exercises at the end of the chapter. For now, let’s remove the column description
from the birds table by entering this from mysql:

ALTER TABLE birds
DROP COLUMN description;

This will delete the column and the data in that column. So be careful using it. This
clause will be covered in more depth in Chapter 6.

Renaming a Table

Earlier sections covered how to make changes to the columns in a table. This included
renaming columns. Sometimes, though, you may want to rename a table. You may do
this for style reasons or to change the name of a table to something more explanatory.
You may do it as a method of replacing an existing table, by deleting the existing table
first and then renaming the replacement table to the deleted table’s name. This is the
situation in some of the examples in the previous section.

We created a copy of the birds table that we called birds_newin the test database. Our
plan was to modify the birds_new table, then to delete the birds table from the rook
ery database and replace it with birds_new table from the test database. To fully replace
the birds table, in this case, we will rename birds_new to birds. This is not done
through the ALTER TABLE statement. That’s used only for altering the structure of col-
umns in a table, not for renaming a table. Instead, we will use the RENAME TABLE state-
ment. Let’s wait before doing that. For now, a generic example follows of how you would
rename a table. Do not enter this statement, though:

RENAME TABLE tablel_altered
TO tablel;

This SQL statement would rename the tablel_altered table to table1. This assumes
that a table named table1 doesn’t already exist in the database. If it does, it won’t over-
write that table. Instead, you'll get an error message and the table won’t be renamed.

The RENAME TABLE statement can also be used to move a table to another database. This
can be useful when you have a table that you've created in one database, as we did in the
test database, and now want to relocate it to a different database. Because you can both
rename and relocate a table in the same RENAME TABLE statement, let’s do that with our

Optional Changes | 77

example instead of using the previous syntax. (Incidentally, relocating a table without
renaming it is also allowed. You would give the name of the new database, with the same
table name.) In our examples, we will have to either delete or rename the unaltered table
in the rookery database first. Renaming the table that’s being replaced is a safer choice,
so we'll go with that option.

Let’s rename the birds table in the rookery database to birds_old and then rename
and relocate the birds_new table from the test database to birds in the rookery da-
tabase. To do all of this in one SQL statement, enter the following:

RENAME TABLE rookery.birds TO rookery.birds_old,
test.birds_new TO rookery.birds;

If there was a problem in doing any of these changes, an error message would be gen-
erated and none of the changes would be made. If all of it went well, though, we should
have two tables in the rookery database that are designed to hold data on birds.

Let’s run the SHOW TABLES statement to see the tables in the rookery database. We'll
request only tables starting with the word birds by using the LIKE clause with the wild-
card, %. Enter the following in mysql:

SHOW TABLES IN rookery LIKE 'birds%';

| birds |
| birds_bill_shapes

| birds_body_shapes

| birds_details

| birds_new

| birds_old

| birds_wing_shapes

The birds table used to be the birds_new table that we altered in the test database.
The original birds table has been renamed to birds_old. The other tables in the results
set here are the ones we created earlier in this chapter. Because their names start with
birds, they’re in the results. After running a SELECT statement to ensure that you haven’t
lost any data, you might want to delete the birds_old table. You would delete the
birds_old table with the DROP TABLE statement in mysql. It would look like the fol-
lowing, but don’t enter this:

DROP TABLE birds_old;

Reordering a Table

The SELECT statement, which is used to retrieve data from a table, hasan ORDER BY clause
that may be used to sort or order the results of the statement. This is useful when dis-

78 | Chapter5: Altering Tables

playing data, especially when viewing a table with many rows of data. Although it’s not
necessary, there may be times in which it would be desirable to resort the data within a
table. You might do this with tables in which the data is rarely changed, such as a ref-
erence table. It can sometimes make a sequential search of the table faster, but a good
index will work fine and is usually better.

As an example of how to reorder a table, if you go to my website, you will find a table
listing country codes. We might use such a table in conjunction with members of the
site or maybe to have a list of birds spotted in each country. The country_codes table
contains two-character country codes, along with the names of the countries. Rather
than type the name of the country for each record in a related table for members or bird
spottings, we could enter a two-character code for the country (e.g., us for United States
of America). The table is already in alphabetical order by name, but you might want to
reorder that table to put rows in alphabetical order. Or perhaps you want to add a new
country to the list, perhaps a disputed territory that you want to recognize. You might
want to reorder the list after making the addition.

First, let’s see how the data in the table looks now. Let’s enter the following SELECT
statement in mysql, limiting the results to the first five rows of data:

SELECT * FROM country_codes

LIMIT 5;

Fommmm e Fommmm e +
| country_code | country_name |
Fommmm e Fommmm e +
af	Afghanistan
ax	Aland Islands
al	Albania
dz	Algeria
as	American Samoa
Fommmm e Fommmm e +

As you can see, the data is already in alphabetical order based on the values in the
country_name column. Let’s use the ALTER TABLE statement with its ORDER BY clause to
reorder the data in the table based on the country_code column. We would probably
not want the table in this order, but let’s do it just to experiment with this clause of the
ALTER TABLE statement. We can change it back afterwards. Enter the following in mysql:

ALTER TABLE country_codes
ORDER BY country_code;

That should have been processed quickly. Let’s run the SELECT statement again to see
what the first five rows in the table now contain:

Optional Changes | 79

SELECT * FROM
country_codes LIMIT 5;

Fommmm e o +
| country_code | country_name |
Fommmm e o +
| ac | Ascension Island

ad	Andorra
ae	United Arab Emirates
af	Afghanistan
ag	Antigua and Barbuda

+

______________________ +

Notice that the results are different and that the rows are now sorted on the coun
try_code columns without having to specify that order in the SELECT statement. To put
the rows back in order by country_name, enter the ALTER TABLE statement, but with the
country_name column instead of the country_code column.

Again, reordering a table is rarely necessary. You can order the results of a SELECT
statement with the ORDER BY clause like so:

SELECT * FROM country_codes
ORDER BY country_name
LIMIT 5;

The results of this SQL statement are the same as the previous SELECT statement, and
the difference in speed is usually indiscernible.

Indexes

One of the most irritating tasks for beginners in using the ALTER TABLE statement is
having to use it to change an index. If you try to rename a column that is indexed by
using only an ALTER TABLE statement, you will get a frustrating and confusing error
message. For instance, suppose we decide to rename the primary key column in the
conservation_status table from status_id to conservation_status_1id. To do so,
we might try an SQL statement like this:

ALTER TABLE conservation_status
CHANGE status_id conservation_status_id INT AUTO_INCREMENT PRIMARY KEY;

ERROR 1068: Multiple primary key defined

When you first try doing this, you will probably think that youre remembering the
syntax incorrectly. So you'll try different combinations, but nothing will work. To avoid
this and to get it right the first time, you will need to understand indexes better and
understand that an index is separate from the column upon which the index is based.

Indexes are used by MySQL to locate data quickly. They work very much like the index
in the back of a book. Let’s use that metaphor to compare methods of searching this

80 | Chapter5:Altering Tables

book. For example, if you want to find the syntax for the ALTER TABLE statement, you
could start at the beginning of this book and flip through the pages rapidly and se-
quentially—assuming you have a print version of this book—until you spot those key-
words. That would be searching for data without an index. Instead, you could flip to
the beginning of the book and search the Table of Contents, which is a broader index,
for a chapter title using the words alter table and then search within the chapters con-
taining those words in their title. That’s an example of a simple or poor index. A better
choice would be to go to the index at the back of this book, look for the list of pages in
which ALTER TABLE can be found, and go straight to those pages to find what you want.

An index in MySQL works similarly to the last example. Without an index, rows are
searched sequentially. Because an index is smaller and is structured to be traversed
quickly, it can be searched rapidly and then MySQL can jump directly to the row that
matches the search pattern. So when you create a table, especially one that will hold
many rows of data, create it with an index. The database will run faster.

With this metaphor of a book index in mind, you can better understand that an index
is not the same as a column, although it is related to columns. To illustrate this in a
MySQL table, let’s look at the index for the humans table we created in Chapter 4, by
using the SHOW INDEX statement. Enter the following from mysql:

SHOW INDEX FROM birdwatchers.humans \G

R R 1' row R R
Table: humans
Non_unique: 0
Key_name: PRIMARY
Seq_1in_index: 1
Column_name: human_1id
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:

The output shows that behind the scenes there is an index associated with the hu
man_id (look in the preceding output where it says, Column_name). The human_1id
column is not the index, but the data from which the index is drawn. The name of the
column and name of the index are the same and the index is bound to the column, but
they are not the same. Let’s alter this table and add another index to make this clearer.

Suppose that users of the humans table sometimes search based on the last name of the
member. Withoutan index, MySQL will search the last_name column sequentially. Let’s
confirm that by using the EXPLAIN statement, coupled with the SELECT statement. This
will return information on how the SELECT statement searches the table and on what
basis. It will explain what the server did when executing the SELECT statement—so it

Indexes | 81

won't return any rows from the table, but information on how the index would be used
had you executed only the SELECT statement. Enter the following in mysql:

EXPLAIN SELECT * FROM birdwatchers.humans
WHERE name_last = 'Hollar' \G

hhhkkkhhkkhkhkhhhkhhhdhkdhhhdhhhdkd 1. row khkkkkhkhhkhkdkhhhkddhhddhhdhdhhdd
id: 1
select_type: SIMPLE
table: humans
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 4
Extra: Using where

The EXPLAIN statement here analyzes the SELECT statement given, which is selecting all
of the columns in the humans table where the value for the name_last column equals
Hollar. What is of interest to us in the results is the possible_keys field and the key
field—a key is the column on which a table is indexed. However, the words key and
index are fairly interchangeable. The possible_keys field would show the keys that the
SELECT statement could have used. In this case, there is no index related to the name_last
column. The key would list the index that the statement actually used. Again, in this
case there were none, so it shows a value of NULL. There are only four names in this
table, so an index would not make a noticeable difference in performance. However, if
this table might one day have thousands of names, an index will greatly improve the
performance of look-ups on people’s names.

In addition to sometimes searching the humans table based on the member’s last name,
suppose that users sometimes search based on the first name, and sometimes based on
both the first and last names. To prepare for those possibilities and to improve perfor-
mance for a time when the table will have many records, let’s create an index that com-
bines the two columns. To do this, we will use the ALTER TABLE statement with the ADD
INDEX clause like so:

ALTER TABLE birdwatchers.humans
ADD INDEX human_names (name_last, name_first);

Now let’s run the SHOW CREATE TABLE statement to see how the index looks from that
perspective:

SHOW CREATE TABLE birdwatchers.humans \G

dhkhkhhkhhhhhkhhhhhhdhhhhrk 1_ row hhkhhkhhhhhhhhhkhhhhhrhhhhrx

Table: humans
Create Table: CREATE TABLE “humans® (
“human_id" int(11) NOT NULL AUTO_INCREMENT,
“formal_title’ varchar(25) COLLATE latini_bin DEFAULT NULL,

82 | Chapter5: Altering Tables

“name_first® varchar(25) COLLATE latini_bin DEFAULT NULL,
‘name_last® varchar(25) COLLATE latinl_bin DEFAULT NULL,
‘email_address’ varchar(255) COLLATE latini_bin DEFAULT NULL,
PRIMARY KEY (“human_id'),
KEY “human_names® ("name_last’, ‘name_first")

) ENGINE=MyISAM DEFAULT CHARSET=latinl COLLATE=latini_bin

The results show a new KEY after the list of columns. The key, or index, is called hu
man_names and is based on the values of the two columns listed in parentheses. Let’s use
another SQL statement to see more information about this new index. We'll use the
SHOW INDEX statement like so:

SHOW INDEX FROM birdwatchers.humans
WHERE Key_name = 'human_names' \G

dhkhhhkhkhhhhhhhhhhhhdhhhxd 1_

Table: humans
Non_unique: 1
Key_name: human_names
Seq_in_index: 1
Column_name: name_last
Collation: A
Cardinality: NULL
Sub_part: NULL
Packed: NULL
Null: YES
Index_type: BTREE
Comment:
Fhhkhkddrrrhhdddrrdhhdddrrhhdd 2'
Table: humans
Non_unique: 1
Key_name: human_names
Seq_1in_index: 2

row hhkkhhhhkhhhhhkhhhhhrhhhhrx

row khkkkkhkhkkkhkhkhkhkhkkhhkhkkrhkhkhkk*x

Column_name:
Collation:
Cardinality:
Sub_part:
Packed:
Null:
Index_type:

name_first
A

NULL

NULL

NULL

YES

BTREE

Comment:

This SQL statement shows the components of the human_names index. The results show
two rows with information on the columns that were used to create the index. There’s
plenty of information here about this index. It’s not important that you understand what
it all means at this point in learning MySQL and MariaDB. What I want you to see here
is that the name of the index is different from the columns upon which it’s based. When
there’s only one column in the index and the index for it has the same name, it doesn’t
mean that they are the same thing.

Indexes | 83

Let’s try the EXPLAIN. . .SELECT again to see the difference from earlier when we didn’t
have the human_names index:

EXPLAIN SELECT * FROM birdwatchers.humans
WHERE name_last = 'Hollar' \G

Khhkkhhhhkhkhkhhddhkhhhhdddhhdddixd 1. row Kkhkkhhkhhkhkhhhdhhkhhhddhdhdxdhdddx
id: 1
select_type: SIMPLE
table: humans
type: ref
possible_keys: human_names
key: human_names
key_len: 28
ref: const
rows: 1
Extra: Using where

As shown in the results, this time the possible_keys field indicates that the hu
man_names key could be used. If there were more than one possible key that could be
used, the line would list them here. In line with the index’s presence in possi
ble_keys, the key shows that the human_names index was actually used. Basically, when
a SELECT is run in which the user wants to search the table based on the person’s last
name, MySQL will use the human_names index that we created, and not search the
name_last column sequentially. That's what we want. That will make for a quicker
search.

Now that you hopefully have a better understanding of indexes in general and their
relation to columns, let’s go back to the earlier task of renaming the column in the
conservation_status table from status_idto conservation_status_1id.Because the
index is associated with the column, we need to remove that association in the index.
Otherwise, the index will be associated with a column that does not exist from its per-
spective: it will be looking for the column by the old name. So, let’s delete the index and
rename the column, and then add a new index based on the new column name. To do
that, enter the following SQL statement in mysql:

ALTER TABLE conservation_status
DROP PRIMARY KEY,
CHANGE status_1id conservation_status_id INT PRIMARY KEY AUTO_INCREMENT;

The clauses must be in the order shown, because the index must be dropped before the
column with which it’s associated can be renamed. Don’t worry about losing data: the
data in the columns is not deleted, only the index, which will be re-created easily by
MySQL. We don't have to give the name of the associated column when dropping a
PRIMARY KEY. There is and can be only one primary key.

At this point, you should have a better sense of indexes and the procedure for changing
them with the ALTER TABLE statement. The order in which you make changes to indexes

84 | Chapter5: Altering Tables

and the columns on which they are based matters. Why it matters should be clear now.
So that you can get more practice with these concepts and syntax, though, in one of the
exercises at the end of the chapter you will be asked to change some columns and indexes.
Be sure to complete all of the exercises.

Summary

Good planning is certainly key to developing an efficient database. However, as you can
see from all of the examples of how to use the ALTER TABLE statement, MySQL is malle-
able enough that a database and its tables can be reshaped without much trouble. Just
be sure to make a backup before restructuring a database, and work from a copy of a
table before altering it. Check your work and the data when you're finished, before
commiitting the changes made.

With all of this in mind, after having had some experience altering tables in this chapter,
you should feel comfortable in creating tables, as you now know that they don’t have to
be perfect from the beginning. You should also have a good sense of the options available
with columns and how to set them. And you should have a basic understanding of
indexes, how they’re used, and how they may be created and changed.

If you have found this chapter confusing, though, it may be that you need more expe-
rience using tables with data. In the next part of this book, you will get plenty of expe-
rience working with tables, inserting data into columns, and changing the data. When
you see how the data comes together, you’ll have a better understanding of how to
structure a table and how to set columns in preparation for data. You’ll have a better
appreciation of how multiple tables may be joined together to get the results you want.

Exercises

Besides the SQL statements you entered on your MySQL or MariaDB server while
reading this chapter, here are a few practice exercises to further strengthen what we've
covered. They're related to creating and altering tables. We’ll use these tables with the
modifications you’ll make in later chapters, so make sure to complete all of the exercises
here.

1. Earlier in this chapter, we created a table called birds_details. We created the table
with two columns: bird_id and description. We took these two columns from
the birds table. Our intention in creating this table was to add columns to store a
description of each bird, notes about migratory patterns, areas in which they can
be found, and other information helpful in locating each bird in the wild. Let’s add
a couple of columns for capturing some of that information.

Using the ALTER TABLE statement, alter the birds_detatils table. In one SQL state-
ment, add two columns named migrate and bird_feeder, making them both

Summary | 85

integer (INT) columns. These will contain values of 1 or 0 (i.e., Yes or No). In the
same SQL statement, using the CHANGE COLUMN clause, change the name of the
column, description to bird_description.

When you're finished altering the table, run the SHOW CREATE TABLE statement for
this table to see the results.

2. Using the CREATE TABLE statement, create a new reference table named, habi
tat_codes. Create this table with two columns: name the first column habi
tat_1id and make it a primary key using AUTO_INCREMENT and the column type of
INT. Name the second column habitat and use the data type VARCHAR(25). Enter
the following SQL statement to add data to the table:

INSERT INTO habitat_codes (habitat)

VALUES('Coasts'), ('Deserts'), ('Forests'),

('Grasslands'), ('Lakes, Rivers, Ponds'),

('Marshes, Swamps'), ('Mountains'), ('Oceans'),

('Urban');
Execute a SELECT statement for the table to confirm that the data was entered cor-
rectly. It should look like this:

T B +

| habitat_id | habitat |

T B +

| 1 | Coasts |

| 2 | Deserts |

| 3 | Forests |

| 4 | Grasslands |

| 5 | Lakes, Rivers, Ponds |

| 6 | Marshes, Swamps |

| 7 | Mountains |

| 8 | Oceans |

| 9 | Urban |

T B +
Create a second table named bird_habitats. Name the first column bird_id and
the second column habitat_1id. Set the column type for both of them to INT. Don’t
make either column an indexed column.
When you're finished creating both of these tables, execute the DESCRIBE and SHOW
CREATE TABLE statements for each of the two tables. Notice what information is
presented by each statement, and familiarize yourself with the structure of each
table and the components of each column.
Use the RENAME TABLE statement to rename the bird_habitats to birds_habi
tats (i.e., make bird plural). This SQL statement was covered in “Renaming a
Table” on page 77.

3. Using the ALTER TABLE statement, add an index based on both bird_id and the
habitat_id columns combined (this was covered in “Indexes” on page 80). Instead

86 | Chapter5: Altering Tables

of using the INDEX keyword, use UNIQUE so that duplicates are not allowed. Call the
index birds_habitats.

Execute the SHOW CREATE TABLE statement for this table when you're finished al-
tering it.

At this point, you should enter some data in the birds_habitats table. Execute
these two SELECT statements, to see what data you have in the birds and habti
tat_codes tables:

SELECT bird_1id, common_name
FROM birds;

SELECT * FROM habitat_codes;

The results of the first SELECT statement should show you a row for a loon and one
for a duck, along with some other birds. Both the loon and the duck can be found
in lakes, but ducks can also be found in marshes. So enter one row for the loon and
two rows for the duck in the birds_habitats table. Give the value of the bird_id
for theloon, and the value of habitat_id for Lakes, Rivers, Ponds. Then enter a row
giving the bird_1id for the duck, and the value again of the habitat_id for lakes.
Then enter a third row giving again the bird_id for the duck and this time the
habitat_id for Marshes, Swamps. If you created the index properly, you should
not get an error about duplicate entries. When youre done, execute the SELECT
statement to see all of the values of the table.

. Using the ALTER TABLE statement, change the name of the index you created for
birds_habitats in the previous exercise (this was covered near the end of this
chapter). The index is now called birds_habitats. Rename it to bird_habitat.

. Using the ALTER TABLE statement again, add three columns to the humans table in
the birdwatchers database. Use a single ALTER TABLE statement to add all three of
these columns. Add one column named country_1idto contain two-character codes
representing the country where each member is located. Add another column
named membership_type with enumerated values of basic and premium. Add a
third column named membership_expiration with a data type of DATE so that we
can track when the membership of premium members will expire. These members
will have special privileges on the site and discounts for items that we sell related
to bird-watching.

Exercises | 87

PARTIII
Basics of Handling Data

The main point of a database is data. In Part II, Database Structures, you learned how
to create and alter tables. As interesting as that may have been, the data that will go in
tables is essential. If you felt a little confused when creating and altering tables in the
previous chapters, it may be because it’s difficult to envision how tables and their col-
umns will come into play with data, without having more experience adding data.

In this part, we will explore some of the fundamental ways in which data may be entered
into a database and inserted into tables. This will be covered in Chapter 6, Inserting
Data. It primarily involves the INSERT statement. The SQL statement for retrieving data
from tables is the SELECT statement, which is covered extensively in Chapter 7, Selecting
Data. You've seen both of these SQL statements in use several times in the previous
chapters. However, in the next two chapters you will learn more about the various syntax
and options for each of them, and you will be given plenty of practical examples of their
use.

Data often needs to be changed and sometimes deleted, so in Chapter 8, Updating and
Deleting Data we'll take a look at how to update and delete data. This chapter will help
you to learn how to use the UPDATE and the DELETE statements to do these common
tasks. These are important for managing data in a database.

The final chapter of this part, Chapter 9, Joining and Subquerying Data, is an advanced
one. It’s not too difficult to follow, but you should definitely not rush through it. In it,
you will learn how to select data from one or more tables, and to use that data as a basis
for inserting, selecting, updating, or deleting data in other tables. Thus, you should make
sure that you've mastered the material in the previous chapters before skipping ahead
to Chapter 9.

In each chapter of this part, there are practical examples that are used to explain the
various SQL statements and related factors. You should enter those examples into your
server. Even if you are reading this book from a digital version on your computer, I
recommend highly that you manually type all of the SQL statements you are instructed
to enter. It may seem like a little thing, but the process of typing them will aid your
learning process and help you remember the syntax and the deviations of each SQL
statement. When you make a mistake and type something incorrectly, you’ll get an error
message. Deciphering error messages is part of being a good MySQL and MariaDB
developer. If you copy and paste everything as I present it to you, you will only confirm
the accuracy of the book’s examples, and you will learn only a little. It’s easy to learn
when you don’t make any mistakes. It's more difficult, but you will learn more when
you manually enter the SQL statements and get errors and then have to determine where
you went wrong.

At the end of each chapter of this part, as with almost all of the chapters in this book,
there are exercises. For the same reasons that you should enter the SQL statements in
the examples throughout the chapters, you should also complete the exercises. This is
not just a book to be read. It's meant to be a tool to help you to learn MySQL and
MariaDB. To accomplish that, you must do more than just read the chapters: you need
to participate, experiment, and research. If you make this kind of effort, you will benefit
greatly from this book. This is probably the most essential part of the book, so you should
fully engage with these concluding chapters.

CHAPTER 6
Inserting Data

After you have created a database and tables, the next step is to insert data. 'm inten-
tionally using the word insert because the most common and basic way to enter data
into a table is with the SQL statement INSERT. It’s easier to learn the language of MySQL
and MariaDB, if you use the keywords to describe what you are doing. In this chapter,
we will cover the INSERT statement, its different syntax, and many of its options. We'll
use the tables that we created in Chapter 4 and altered in Chapter 5. We'll also look at
some related statements on retrieving or selecting data, but they will be covered in
greater detail in Chapter 7.

When going through this chapter, participate. When examples are given showing the
INSERT statement and other SQL statements, try entering them on your server using the
mysql client. At the end of the chapter are some exercises—do them. They require you
to enter data in the tables that you created in Chapter 4. In doing the exercises, you may
have to refer back to the examples in this chapter and in Chapter 4. This will help to
reinforce what you've read. When you’re done, you should feel comfortable entering
data in MySQL and MariaDB.

The Syntax

The INSERT statement adds rows of data into a table. It can add a single row or multiple
rows at a time. The basic syntax of this SQL statement is:

INSERT INTO table [(column, ..)]
VALUES (value, ..), (.), ..;

The keywords INSERT INTO are followed by the name of the table and an optional list
of columns in parentheses. (Square brackets in a syntax indicate that the bracketed
material is optional.) Then comes the keyword VALUES and a pair of parentheses con-
taining a list of values for each column. There are several deviations of the syntax, but

91

this is the basic one. Commas separate the column names within the first list, and the
values within the second.

Lets go through some examples that will show a few of the simpler syntaxes for the
INSERT statement. Don’t try to enter these on your system. These are generic examples
using INSERT to add data to nonexistent tables.

Here’s a generic example of the INSERT statement with the minimum required syntax:

INSERT INTO books
VALUES('The Big Sleep', 'Raymond Chandler', '1934');

This example adds text to a table called books. This table happens to contain only three
columns, so we don’t bother to list the columns. But because there are three columns,
we have to specify three values, which will go into the columns in the order that the
columns were defined in CREATE TABLE. So in our example, The Big Sleep will be inserted
into the first column of the table, Raymond Chandler will go into the second column,
and 1934 will go into the third.

For columns that have a default value set, you can rely on the server to use that value
and omit the column from your INSERT statement. One way to do this is by entering a
value of DEFAULT or NULL, as shown in the following example:

INSERT INTO books
VALUES('The Thirty-Nine Steps', 'John Buchan', DEFAULT);

MySQL will use the default value for the third column. If the default value is NULL—
the usual default value if none is specified—that’s what the statement will put in the
column for the row. For a column defined with AUTO_INCREMENT, the server will put the
next number in the sequence for that column.

Another way to use defaults is to list just the columns into which you want to enter non-
default data, like so:

INSERT INTO books
(author, title)
VALUES('Evelyn Waugh', 'Brideshead Revisited');

Note that this example lists just two columns within parentheses. It’s also significant
that the statement lists them in a different order. The list of values must match the order
of the list of columns. For the third column (i.e., year) of this table, the default value
will be inserted.

When you have many rows of data to insert into the same table, it can be more efficient
to insert all of the rows in one SQL statement. To do this, you need to use a slightly
different syntax for the INSERT statement. Just add more sets of values in parentheses,
each set separated by a comma. Here’s an example of this:

INSERT INTO books
(title, author, year)

92 | Chapter6: Inserting Data

VALUES('Visitation of Spirits','Randall Kenan',b'1989'),
('Heart of Darkness','Joseph Conrad','1902'),
('The Idiot','Fyodor Dostoevsky','1871');

This SQL statement enters three rows of data into the books table. Notice that the set of
column names and the VALUES keyword appear only once. Almost all SQL statements
allow only one instance of each clause (the VALUES clause in this case), although that
clause may contain multiple items and lists as it does here.

Practical Examples

Let’s get back to the rookery database that we created and altered in Chapters 4 and 5
for more involved examples of inserting data into tables. If you haven't created those
tables yet, I recommend you go back and do that before proceeding with this chapter.

Your natural tendency when putting data into a database will be to start by adding data
to the main or primary table of the database first and to worry about ancillary or ref-
erence tables later. That will work well enough, but you may be creating more work for
yourself than needed. Starting with the main table is more interesting, and entering data
in reference tables is more tedious. But that’s the way of databases: they are tedious. It’s
inescapable.

Nevertheless, we don't have to create all of the tables we will need for a database before
entering data; we don’t need to enter data into all of the secondary tables before working
on the primary tables. It will be difficult to plan ahead for all of the possible tables that
will be needed. Instead, database development is generally always a work in progress.
You will often add more tables, change the schema of existing tables, and shift large
blocks of data from one table to another to improve performance and to make the
management of the database easier. That takes some of the tediousness out of databases
and makes database management interesting.

With that approach in mind, we’ll enter data in some of the tables, using some simple
logic to decide which table to work on first. Remember how we are categorizing birds:
a bird species is a member of a bird family, and a bird family is part of a bird order. The
birds table needs the family_1id to join with the bird_families table, and the
bird_families table needs an order_id from the bird_orders table to join with it. So,
we’ll add data to bird_orders first, then to bird_families, and then to birds.

Most people don’t know the scientific names of birds, bird families, and bird orders.
However, you can find this information on Wikipedia and sites dedicated specifically
to bird-watching and ornithology. But there’s no need for you to do research about birds
to participate in this book. I'll provide you with the information to enter a few rows for
each table, and you can download complete tables from my website.

Practical Examples | 93

http://mysqlresources.com/files

The Table for Bird Orders

Before entering data in the bird_orders table, let’s remind ourselves of the structure of
the table by executing the following SQL statement:

DESCRIBE bird_orders;

e LT TR ommmm- o ommmmna Fmmm e +
| Field | Type | Null | Key | Default | Extra
e LT TR ommmm- o ommmmna Fmmm e +
| order_id | int(11) | NO | PRI | NULL | auto_1increment

| scientific_name | varchar(255) | YES | UNI | NULL |

| brief_description | varchar(255) | YES | | NULL |

| order_image | blob | YES | | NULL |

R T T R R E R E R Fommmme e R T T +

As you can see, this table has only four columns: an identification number that will be
used by the bird_families to join to this table, a column for the scientific name of the
bird order, a column for the description of the order; and a column with an image
representing each order of birds. The order_id column starts with 1 for the first bird
order and is set automatically to the next number in sequence each time we add a bird
order (unless we told MySQL otherwise).

Before entering the orders of birds, let’s prime the order_1id by initially setting the
AUTO_INCREMENT variable to 100, so that all of the bird order identification numbers will
be at least three digits in length. The numbering means nothing to MySQL; it’s only a
matter of personal style. To do this, we’ll use the ALTER TABLE statement (covered in
Chapter 5). Enter the following in the mysql client:

ALTER TABLE bird_orders
AUTO_INCREMENT = 100;

This SQL statement alters the table bird_orders, but only the value set on the server
for the AUTO_INCREMENT variable for the specified table. This will set the order_1id to
100 for the first order that we enter in our bird_orders table.

Let’s now enter the orders of birds. We can quickly enter a bunch of orders using the
multiple-row syntax for the INSERT statement. Because there are only 29 modern orders
of birds, let’s enter all of them. The following gigantic SQL statement is what I used to
insert data into the bird_orders table; you can download the table from my site or enter
the SQL statement in mysql (perhaps by cutting and pasting it from an ebook):

INSERT INTO bird_orders (scientific_name, brief_description)
VALUES('Anseriformes', "Waterfowl"),
('Galliformes', "Fowl"),
('Charadriiformes', "Gulls, Button Quails, Plovers"),
('Gaviiformes', "Loons"),
('Podicipediformes', "Grebes"),
('Procellariiformes', "Albatrosses, Petrels"),
('Sphenisciformes', "Penguins"),

94 | Chapter6: Inserting Data

('Pelecaniformes', "Pelicans"),
('Phaethontiformes', "Tropicbirds"),
('Ciconiiformes', "Storks"),
('Cathartiformes', "New-World Vultures"),
('Phoenicopteriformes', "Flamingos"),
('Falconiformes', "Falcons, Eagles, Hawks"),
('Gruiformes', "Cranes"),
('Pteroclidiformes', "Sandgrouse"),
('Columbiformes', "Doves and Pigeons"),
('Psittaciformes', "Parrots"),
('Cuculiformes', "Cuckoos and Turacos"),
('Opisthocomiformes', "Hoatzin"),
('Strigiformes', "Owls"),
('Struthioniformes', "Ostriches, Emus, Kiwis"),
('Tinamiformes', "Tinamous"),
('Caprimulgiformes', "Nightjars"),
('Apodiformes', "Swifts and Hummingbirds"),
('Coraciiformes', "Kingfishers"),
('Piciformes', "Woodpeckers"),
('Trogoniformes', "Trogons"),
('Coliiformes', "Mousebirds"),
('Passeriformes', "Passerines");

As large as that statement was, it inserted only two of the four columns into each row.
I left out order_1id, which I know will be assigned by the server with a value that starts
at what I asked for, 100, and increments for each row. The default of NULL will be
assigned to the order_image column, and we can insert images later if we want. How-
ever, we can’t pretend the columns don’t exist. If we enter an INSERT statement and don’t
provide data for one or more of the columns that we specify, MySQL will reject the SQL
statement and return an error message like this one:

ERROR 1136 (21S01):
Column count doesn't match value count at row 1

This indicates that we didn’t give the server the number of columns it was expecting.

By now, I hope you see why I created a special table dedicated to orders and made it so
you have to enter each name only here, and not on every single bird in the main table.
Given the bird_orders table, you can use numbers in the order_id column to represent
a bird order in the bird_families table. This is one of the benefits of a reference table.
Typing in numbers is easier than typing in a scientific name each time, and should
reduce the frequency of typos.

The Table for Bird Families

Now that the bird_orders table is filled with data, let's next add some data to the
bird_families table. First, execute the following statement:

DESCRIBE bird_families;

Practical Examples | 95

This SQL statement will show you the layout of the columns for the bird_families
table. We also need to know the order_1id for the order of the families we will enter. To
start, we'll enter a row for the Gaviidae bird family. This happens to be the family to
which the Great Northern Loon belongs—a bird we entered already in the birds table.
The Gaviidae family is part of the Gaviiformes order of birds. So enter the following on
your server to determine the order_1id for that order:

SELECT order_id FROM bird_orders
WHERE scientific_name = 'Gaviiformes';

e +
| order_id |
e +
| 103 |
e +

Now let’s enter the Gaviidae family in the bird_families table. We'll do that like so:

INSERT INTO bird_families

VALUES(100, 'Gaviidae',

"Loons or divers are aquatic birds found mainly in the Northern Hemisphere.",
103);

This adds the name and description of the bird family, Gaviidae, into the bird_fami
lies table. You may have noticed that although the family_id column is set to incre-
ment automatically, I put a value of 100 here. That’s not necessary, but it’s another way
of instituting my style of starting with an identification number that has a few digits. A
family_1id of 1 for an elegant and ancient bird family like that of the loons sounds either
presumptuous or lame to me. By giving it a specific value, I'll not only give an ID of 100
to Gaviidae, but ensure that the server will give 101 to the next family I insert.

If we try to enter the INSERT statement with the correct number of columns, but not in
the order the server expects to receive the data based on the schema for the table, the
server may accept the data. It will generate a warning message if the data given for the
columns don’t match the column types. For instance, suppose we had tried to add an-
other row to the same table—this one for the bird family, Anatidae, the family for the
Wood Duck, another bird we entered already in the birds table. Suppose further that
we had tried to give the data in a different order from the way the columns are organized
in the table. The server would accept the SQL statement and process the data as best it
can, but it would not work the way we might want. The following example shows such
a scenario:

INSERT INTO bird_families
VALUES('Anatidae', "This family includes ducks, geese and swans.", NULL, 103);
Query OK, 1 row affected, 1 warning (0.05 sec)

Notice that in this SQL statement we put the family’s name first, then the description,
then NULL for the family_1id, and 103 for the order_id. MySQL is expecting the first
column to be a number or DEFAULT or NULL. Instead, we gave it text. Notice that the

96 | Chapter6: Inserting Data

status line returned by mysql after the INSERT statement says, Query OK, I row affected,
I warning. That means that one row was added, but a warning message was generated,
although it wasn’t displayed. We’ll use the SHOW WARNINGS statement like so to see the
warning message:

SHOW WARNINGS \G

kkkkhkhkhkkhhkhkhkkkhhkhkhkhkhkhkhkhkxk 1. row hhkkkkhkhkhkhkhkhkhkhkhhkhkhkkkhkhkhkk*x

Level: Warning

Code: 1366
Message: Incorrect integer value: 'Anatidae' for column 'family_id' at row 1
1 row in set (0.15 sec)

Here we can see the warning message: the server was expecting an integer value, but
received text for the column, family_1id. Let’s run the SELECT statement to see what we
have now in the bird_families table:

SELECT * FROM bird_families \G

khkkhkkkhkhkhhhkhkhhkhkhhhkdkdkx 1_ row *hkkhkkhkhkhkkhhkhhdhhkhkhhhkdkdkkx
family_id: 100
scientific_name: Gaviidae
brief_description: Loons or divers are aquatic birds
found mainly in the Northern Hemisphere.
order_1id: 103

khkkhkkkhkhkhkhkhkhhkhhhkhkdkdkx 2_ row *hkkhkkkhkhkhkhkhhdhhkhkhhhkdhdkkx
family_id: 101
scientific_name: This family includes ducks, geese and swans.
brief_description: NULL
order_id: 103

The first row is fine; we entered it correctly, before. But because MySQL didn’t receive
a good value for the family_1id column for the row we just entered, it ignored what we
gave it and automatically set the column to 101—the default value based on AUTO_IN
CREMENT. It took the description text that was intended for brief_description column
and put that in the scientific_name column. It put the NULL we meant for the fami
ly_1id column and put it in the brief_description column. This row needs to be fixed
or deleted. Let’s delete it and try again. We’ll use the DELETE statement like this:

DELETE FROM bird_families
WHERE family_id = 101;

This will delete only one row: the one where the family_id equals 101. Be careful with
the DELETE statement. There’s no UNDO statement, per se, when working with the data
like this. If you don’t include the WHERE clause, you will delete all of the data in the table.
For this table, which has only two rows of data, it’s not a problem to re-enter the data.
But on a server with thousands of rows of data, you could lose plenty of data—perma-
nently, if you don’t have a backup copy. Even if you do have a backup of the data, you're

Practical Examples | 97

not going to be able to restore the data quickly or easily. So be careful with the DELETE
statement and always use a WHERE clause that limits greatly the data that’s to be deleted.

Let’s re-enter the data for the duck family, Anatidae, but this time we’ll try a different
syntax for the INSERT statement so that we don’t have to give data for all of the columns
and so that we can give data in a different order from how it’s structured in the table:

INSERT INTO bird_families
(scientific_name, order_id, brief_description)
VALUES('Anatidae', 103, "This family includes ducks, geese and swans.");

To let us give only three columns in this SQL statement, and in a different order, we put
the names of the columns in parentheses before the set of values. Listing the names of
the columns is optional, provided data is in the correct format for all of the columns
and in order. Because we are not doing that with this SQL statement, we had to list the
columns for which we are giving data, matching the order that the data is given in the
VALUES clause in the set of values and in parentheses. Basically, we're telling the server
what each value represents; we’re mapping the data to the correct columns in the table.
Again, for the columns that we don't provide data or don’'t name in the SQL statement,
the server will use the default values. Let's see what we have now for data in the
bird_families table:

SELECT * FROM bird_families \G

khkkhkkkhkkhkhkhkhkhkhkkhkkhkkhkk*x 1. row khkkhkkhkkhkhkhkhkhkhkhkhkkhkdkx
family_id: 100
scientific_name: Gaviidae
brief_description: Loons or divers are aquatic birds
found mainly in the Northern Hemisphere.
order_1id: 103

Fhhkhhhhrrhhdddddrdhdddddrdhdd 2. row Khhkhhhrrdhhhdddddhddddrdhddd
family_id: 102
scientific_name: Anatidae
brief_description: This family includes ducks, geese and swans.
order_id: 103

That’s better. Notice that the server put the family name, Anatidae, in the scientif
ic_name column, per the mapping instructions stipulated in the INSERT statement. It
also assigned a number to the family_id column. Because the family_1id for the pre-
vious row was set to 101, even though we deleted it, the server remembers elsewhere in
MySQL that the count is now at 101. So it incremented that number by 1 to set this new
row to 102. You could change the value of this row and reset the counter (i.e., the
AUTO_INCREMENT variable for the column of the table), but it’s generally not important.

Let’s prepare now to enter some more bird families. We’ll keep the data simple this time.
We'll give only the scientific name and the order identification number. To do that, we
need to know the order_id of each order. We'll execute this SQL statement to get the
data we need:

98 | Chapter6: Inserting Data

SELECT order_id, scientific_name FROM bird_orders;

Fommm e R R +
| order_id | scientific_name |
Fommm e R R +
| 100 | Anseriformes

| 101 | Galliformes

| 102 | Charadriiformes |
| 103 | Gaviiformes

104	Podicipediformes
105	Procellariiformes
106	Sphenisciformes
107	Pelecaniformes
108	Phaethontiformes
109	Ciconiiformes
110	Cathartiformes
111	Phoenicopteriformes
112	Falconiformes
113	Gruiformes

114	Pteroclidiformes
115	Columbiformes
116	Psittaciformes
117	Cuculiformes

| 118 | Opisthocomiformes |
| 119 | Strigiformes

| 120 | Struthioniformes |
| 121 | Tinamiformes

| 122 | Caprimulgiformes |
| 123 | Apodiformes

| 124 | Coraciiformes |
| 125 | Piciformes

| 126 | Trogoniformes |
| 127 | Coliiformes

| 128 | Passeriformes |
Fommm e R R +

Now let’s enter one hefty INSERT statement to insert a bunch of bird families into the
bird_families table. We just list each set of data within its own parentheses, separated
by commas. After consulting our bird-watching guides, we determine which families
belong to which orders and then enter this in the mysql client:

INSERT INTO bird_families

(scientific_name, order_1id)

VALUES('Charadriidae', 109),
('Laridae', 102),
('Sternidae', 102),
('Caprimulgidae', 122),
('Sittidae', 128),
('Picidae', 125),
('Accipitridae', 112),
('Tyrannidae', 128),

Practical Examples | 99

('Formicariidae', 128),
('Laniidae', 128);

This statement enters 10 rows of data in one batch. Notice that we didn’t have to list the
names of the columns for each row. Notice also that we didn’t mention the family_1id
column in this SQL statement. The server will assign automatically the next number in
the column’s sequence for that field. And we didn’t give the statement any text for the
brief_description column. We can enter that later if we want.

If you want a heftier bird_family table with more rows and the brief descriptions, you
can download it later from my site. This is enough data for now. Let’s execute the SELECT
statement to get the family_id numbers. We’ll need them when we enter birds in the
birds table:

SELECT family_1id, scientific_name
FROM bird_families
ORDER BY scientific_name;

B B T +
| family_1id | scientific_name |
B B T +
109	Accipitridae
102	Anatidae
106	Caprimulgidae
103	Charadriidae
111	Formicariidae
100	Gaviidae
112	Laniidae
104	Laridae
108	Picidae
107	Sittidae
105	Sternidae
110	Tyrannidae
oo e +

I added an extra tweak to the previous SELECT statement: an ORDER BY clause, ensuring
that the results would be ordered alphabetically by the scientific name of the order. We’ll
cover the ORDER BY clause in more depth in Chapter 7.

We're now ready to enter data in the birds table. The table already has a Killdeer, a small
shore bird that is part of the Charadriidae family. Let’s prepare to enter a few more shore
birds from the same family as the Killdeer. Looking at the preceding results, we can
determine that the family_1id is 103, because the Killdeer is in the Charadriidae family.
Incidentally, the values for the family_1id column might be different on your server.

Now that we have the family_1id for shore birds, let’s look at the columns in the birds
table and decide which ones we’ll set. To do that, let’s use the SHOW COLUMNS statement
like this:

100 | Chapter 6: Inserting Data

SHOW COLUMNS FROM birds;

B T T B R tommm-- to---- R R +
| Field | Type | Null | Key |Default| Extra |
B T T B R tommm-- to---- R R +
| bird_1id | int(11) | NO | PRI | NULL | auto_increment |
| scientific_name | varchar(100) | YES | UNI | NULL | |
| common_name | varchar(255) | YES | | NULL | [
family_1id	int(11)	YES		NULL	
conservation_status_id	int(11)	YES		NULL	
wing_1id	char(2)	YES		NULL	
body_1id	char(2)	YES		NULL	
bill_id	char(2)	YES		NULL	
description	text	YES		NULL	
B T T B R tommm-- to---- R R +

The results are the same as for the DESCRIBE statement. However, with SHOW COLUMNS,
you can retrieve a list of columns based on a pattern. For instance, suppose you just
want a list of reference columns—columns that we labeled with the ending, _id. You
could enter this:

SHOW COLUMNS FROM birds LIKE '%id';

Fommeeeeeeeeeieeeaeaas oeenaenas eoeenne - ommeeaaan ommmemeaeaas +
| Field | Type | Null | Key | Default | Extra |
Fommeeeeeeeeeieeeaeaas oeenaenas eoeenne - ommeeaaan ommmemeaeaas +
bird_1id	int(11)	NO	PRI	NULL	auto_increment
family_id	int(11)	YES		NULL	
conservation_status_id	int(11)	YES		NULL	
wing_1id	char(2)	YES		NULL	
body_1id	char(2)	YES		NULL	
bill_id	char(2)	YES		NULL	
dmm e o P P o dmm e +

We used the percent sign (%) as a wildcard—the asterisks won’t work here—to specity
the pattern of any text that starts with any characters but ends with _id. For alarge table,
being able to refine the results like this might be useful. When naming your columns,
keep in mind that you can search easily based on a naming pattern (e.g., %_id). Inci-
dentally, if you add the FULL flag to this SQL statement (e.g., SHOW FULL COLUMNS FROM
birds;), you can get more information on each column. Try that on your system to see
the results.

The Table for Birds

That was interesting, but let’s get back to data entry—the focus of this chapter. Now that
we have been reminded of the columns in the birds table, let’s enter data on some of
shore birds. Enter the following in mysql:

Practical Examples | 101

INSERT INTO birds
(common_name, scientific_name, family_id)
VALUES('Mountain Plover', 'Charadrius montanus', 103);

This adds a record for the Mountain Plover. Notice that I mixed up the order of the
columns, but it still works because the order of the values agrees with the order of the
columns. We indicate that the bird is in the family of Charadriidae by giving a value of
103 for the family_id. There are more columns that need data, but we’ll worry about
that later. Let’s now enter a few more shore birds, using the multiple-row syntax for the
INSERT statement:

INSERT INTO birds

(common_name, scientific_name, family_id)

VALUES('Snowy Plover', 'Charadrius alexandrinus', 103),
('Black-bellied Plover', 'Pluvialis squatarola', 103),
('Pacific Golden Plover', 'Pluvialis fulva', 103);

In this example, we've added three shore birds in one statement, all of the same family
of birds. This is the same method that we used earlier to enter several bird families in
the bird_families table and several bird orders in the bird_orders table. Notice that
the number for the family_id is not enclosed here within quotes. That’s because the
column holds integers, using the INT data type. Therefore, we can pass exposed numbers
like this. If we put them in quotes, MySQL treats them first like characters, but then
analyzes them and realizes that they are numbers and stores them as numbers. That’s
the long explanation. The short explanation is that it doesn’t usually matter whether
numbers are in quotes or not.

Now that we have entered data for a few more birds, let’s connect a few of our tables
together and retrieve data from them. We'll use a SELECT statement, but we’ll give a list
of the tables to merge the data in the results set. This is much more complicated than
any of the previous SELECT statements, but I want you to see the point of creating dif-
ferent tables, especially the reference tables we have created. Try entering the following
SQL statement on your server:

SELECT common_name AS 'Bird’,
birds.scientific_name AS 'Scientific Name',
bird_families.scientific_name AS 'Family',
bird_orders.scientific_name AS 'Order’

FROM birds,

bird_families,

bird_orders
WHERE birds.family_id = bird_families.family_1id
AND bird_families.order_id = bird_orders.order_id;

Fomm e LT T TP Hommmmmmeaaan TP +
| Bird | Scientific Name | Family | Orders

Fomm e LT T TP Hommmmmmeaaan TP +
| Mountain Plover | Charadrius montanus | Charadriidae | Ciconiiformes |
| Snowy Plover | Charadrius alex... | Charadriidae | Ciconiiformes |

102 | Chapter 6: Inserting Data

| Black-bellied Plover | Pluvialis squatarola | Charadriidae | Ciconiiformes |
| Pacific Golden Plover | Pluvialis fulva | Charadriidae | Ciconiiformes |
e g Hommmmm e o +

In this SELECT statement, we are connecting together three tables. Before looking at the
columns selected, let’s look at the FROM clause. Notice that all three tables are listed,
separated by commas. To assist you in making sense of this statement, I've added some
indenting. The table names don’t need to be on separate lines, as I have laid them out.

MySQL strings these three tables together based on the WHERE clause. First, were telling
MySQL to join the birds table to the bird_families table where the family_1id from
both tables equal or match. Using AND, we then give another condition in the WHERE
clause. We tell MySQL to join the bird_families table to the bird_orders table where
the order_1id from both tables are equal.

That may seem pretty complicated, butifyou had a sheet of paper in front of you showing
thousands of birds, and a sheet of paper containing a list of bird families, and another
sheet with a list of orders of birds, and you wanted to type on your screen a list of bird
with their names, along with the family and order to which each belonged, you would
do the same thing with your fingers, pointing from keywords on one sheet to the key-
word on the other. It’s really intuitive when you think about it.

Let’s look now at the columns we have selected. We are selecting the common_name and
scientific_name columns from the birds table. Again, I've added indenting and put
these columns on separate lines for clarity. Because all three tables have columns named
scientific_name, we must include the table name for each column (e.g., birds.sci
entific_name) to eliminate ambiguity. I've added also an AS clause to each column
selected to give the results table nicer column headings. The AS clause has nothing to
do with the tables on the server; it affects only what you see in your output. So you can
choose the column headings in the results through the string you put after the AS
keyword.

Let’s take a moment to consider the results. Although we entered the scientific name of
each family and order referenced here only once, MySQL can pull them together easily
by way of the family_id and order_1id columns in the tables. That’s economical and
very cool.

As I said before, the SQL statement I've just shown is much more complicated than
anything we’ve looked at before. Don't worry about taking in too much of it, though.
We'll cover this kind of SQL statement in Chapter 7. For now, just know that this is the
point of what we're doing. The kind of inquiries we can make of data this way is so much
better than one big table with columns for everything. For each shore bird, we had to
enter only 103 for the family_1id column and didn’t have to type the scientific name for
the family, or enter the scientific name of the order for each bird. We don’t have to worry
so much about typos. This leverages your time and data efficiently.

Practical Examples | 103

Other Possibilities

A few times in this chapter, I mentioned that the INSERT statement offers extra options.
In this section, we’ll cover some of them. You may not use these often in the beginning,
but you should know about them.

Inserting Emphatically

Besides the basic syntax of the INSERT statement, there is a more emphatic syntax that
involves mapping individual columns to data given. Here’s an example in which infor-
mation on another bird family is inserted into the bird_families table; enteritin mysql
to see how you like the visceral feel of this syntax:

INSERT INTO bird_families
SET scientific_name = 'Rallidae’,
order_id = 113;

This syntax is somewhat awkward. However, there’s less likelihood of making a mistake
with this syntax, or at least it’s less likely that you will enter the column names or the
data in the wrong order, or not give enough columns of data. Because of its rigidity,
most people don't normally use this syntax. But the precision it offers makes it a pre-
ferred syntax for some people writing automated scripts. It's primarily popular because
the syntax calls for naming the column and assigning a value immediately afterwards,
in a key/value pair format found in many programming languages. This makes it easier
to visually troubleshoot a programming script. Second, if the name of a column has
been changed or deleted since the creation of a script using this syntax, the statement
will be rejected by the server and data won’t be entered into the wrong columns. But it
doesn’'t add any functionality to the standard syntax that we’ve used throughout the
chapter, as long as you list the columns explicitly in the standard syntax. Plus, you can
insert only one row at a time with this syntax

Inserting Data from Another Table

INSERT can be combined with a SELECT statement (we covered this briefly in Chap-
ter 5). Let’s look at an example of how it might be used. Before you do, I'll warn you that
the examples in this section get complicated. You're not expected to do the examples in
this section; just read along.

Earlier in this chapter, we entered data for a few bird families—13 so far. You have the
option of downloading the table filled with data from my site, but I had to get the data
elsewhere (or endure manually entering 228 rows of data on bird families). So I went
to Cornell University’s website. The Cornell Lab of Ornithology teaches ornithology
and is a leading authority on the subject. On their site, I found a table of data that’s
publicly available. I loaded the table into the rookery database on my server and named

104 | Chapter 6: Inserting Data

it cornell_birds_families_orders. Here’s how the table is structured and how the
data looks:

DESCRIBE cornell_birds_families_orders;

ommmmmeeaa ommmmm e ommnn- e omemeeea LT T T +
| Field | Type | Null | Key | Default | Extra
ommmmmeeaa ommmmm e ommnn- e omemeeea LT T T +
| fid | int(11) | NO | PRI | NULL | auto_1increment |
| bird_family | varchar(255) | YES | | NULL |

| examples | varchar(255) | YES | | NULL |

| bird_order | varchar(255) | YES | | NULL |

o o R PR oo o +
SELECT * FROM cornell_birds_families_orders

LIMIT 1;

ommn- T TSP e Fommmme e +

| fid | bird_family | examples | bird_order |

ommn- T TSP e Fommmme e +

| 1 | Struthionidae | Ostrich | Struthioniformes |

ommn- T TP e Fommmmm e +

This is useful. I can take the family names, use the examples for the brief description,
and use them both to finish the data in the bird_families table. I don’t need their
identification number (i.e., fid) for each bird family—TI'll use my own. What I need is
a way to match the value of the bird_order column in this table to the scientif
ic_nameinthe bird_orders table so that I can put the correct order_id in the bird_fam
ilies table.

There are a couple of ways I could do that. For now, I'll add another column to my
bird_families table to take in the bird_order column from this table from Cornell.
I'll use the ALTER TABLE statement, as described in Chapter 5, and enter the following
on my server:

ALTER TABLE bird_families
ADD COLUMN cornell_bird_order VARCHAR(255);

With this change, I can now execute the following SQL statement to copy the data from
the Cornell table to my table containing data on bird families:

INSERT IGNORE INTO bird_families

(scientific_name, brief_description, cornell_bird_order)
SELECT bird_family, examples, bird_order

FROM cornell_birds_families_orders;

Look closely at this syntax. It may be useful to you one day. It starts with the normal
syntax of the INSERT statement, but where we would put the VALUES clause, we instead
put a complete SELECT statement. The syntax of the SELECT portion is the same as we've
used so far in other examples in this book. It’s simple, but neat and very powerful.

Other Possibilities | 105

Conceptually, you can think of the embedded SELECT statement creating multiple rows,
each containing values in the order you specify in the SELECT. These values work just
like a VALUES clause, feeding values into the parent INSERT statement and filling the
columns I carefully specify in the right order.

One thing is different at the start of the previous INSERT statement. I've added the IGNORE
option. I used this because the bird_families table already had data in it. Because the
scientific_name column is set to UNIQUE, it does not permit duplicate values. If a
multiple-row INSERT statement like this encounters any errors, it will fail and return an
error message. The IGNORE flag instructs the server to ignore any errors it encounters
while processing the SQL statement, and to insert the rows that may be inserted without
problems. Instead of failing and showing an error message, warning messages are stored
on the server for you to look at later. When the server is finished, if you want, you can
run the SHOW WARNINGS statement to see which rows of data weren't inserted into the
table. This is a graceful solution if you just want the server to process the rows that aren’t
duplicates and to ignore the duplicates.

Now that the data has been inserted, I'll run the following SQL statement from mysql
to look at the last row in the table—the first rows contain the data I entered previously:

SELECT * FROM bird_families
ORDER BY family_id DESC LIMIT 1;

B R fommmm e B T T R B R +
| family_1id | scientific_name |brief_description| order_id | cornell_bird_order|
B R fommmm e B T T R B R +
| 330 | Viduidae | Indigobirds | NULL | Passeriformes |
B R fommmm e B T T R B R +

In the SELECT statement here, I added an ORDER BY clause to order the results set by the
value of the family_id. The DESC after it indicates that the rows should by ordered in
descending order based on the value of family_id. The LIMIT clause tells MySQL to
limit the results to only one row. Looking at this one row of data, we can see that the
INSERT INTO..SELECT statement worked well.

A Digression: Setting the Right ID

Our INSERT from the previous section helped me fill my table with data I took from a
free database, but it’s still missing data: the bird order for each bird. I defined my own
orders of birds in the bird_orders table, giving each order an arbitrary order_id.
However, the Cornell data had nothing to do with the numbers assigned when I created
my bird_orders table. So now I need to set the value of the order_id column to the
right order_id from the bird_orders table—and to figure out that value, I have to find
the order in the cornell_bird_order column.

This is a bit complicated, but I am showing my process here to illustrate the power of
relational databases. Basically, I'll join my own bird_orders table to the data I got from

106 | Chapter 6: Inserting Data

Cornell. I'loaded the bird orders from Cornell into a cornell_bird_order field. I have
the exact same orders in the scientific_name field of my bird_orders table. ButIdon't
want to use the scientific name itself when I label each individual bird: instead, I want
a number (an order_id) to assign to that bird.

I need to set the value of the order_1id column to the right order_1id from the bird_or
ders table. To figure out that value, I have to find the order in the cornell_bird_or
der column.

For that, I'll use the UPDATE statement. Before I change any data with UPDATE, though,
I'll construct a SELECT statement for testing. I want to make sure my orders properly
match up with Cornell’s. So I'll enter this on my server:

SELECT DISTINCT bird_orders.order_id,
cornell_bird_order AS "Cornell's Order",
bird_orders.scientific_name AS 'My Order'

FROM bird_families, bird_orders

WHERE bird_families.order_id IS NULL

AND cornell_bird_order = bird_orders.scientific_name

LIMIT 5;

dommmm e LT EEET TP EEPP +
| order_id | Cornell's Order | My Order |
dommmm e LT EEET TP EEPP +
| 120 | Struthioniformes | Struthioniformes |
| 121 | Tinamiformes | Tinamiformes

100	Anseriformes	Anseriformes
101	Galliformes	Galliformes
104	Podicipediformes	Podicipediformes
dommmm e LT EEET TP EEPP +

We're testing a WHERE clause here that we’ll use later when updating our bird_fami
lies table. It’s worth looking at what a WHERE clause give us before we put all our trust
in it and use it in an UPDATE statement.

This WHERE clause contains two conditions. First, it changes the bird_families table
only where the order_id hasn’t been set yet. That’s kind of a sanity check. If I already
set the order_id field, there is no reason to change it.

After the AND comes the second condition, which is more important. I want to find the
row in my bird_orders table that has the right scientific name, the scientific name
assigned by Cornell. So I check where cornell_bird_order equals the scientif
ic_name in the bird_orders table.

This shows how, if you want to change data with INSERT..SELECT, REPLACE, or UPDATE,
you can test your WHERE clause first with a SELECT statement. If this statement returns
the rows you want and the data looks good, you can then use the same WHERE clause
with one of the other SQL statements to change data.

Other Possibilities | 107

The SELECT statement just shown is similar to the one we executed in the previous
section of this chapter when we queried the birds, bird_families, and bird_orders
tables in the same SQL statement. There is, however, an extra option added to this
statement: the DISTINCT option. This selects only rows in which all of the columns are
distinct. Otherwise, because more than five bird families are members of the Struthio-
niformes order, and I limited the results to five rows (i.e., LIMIT 5), we would see the
first row repeated five times. Adding the DISTINCT flag returns five distinct permutations
and is thereby more reassuring that the WHERE clause is correct.

Because the results look good, I'll use the UPDATE statement to update the data in the
bird_families table. With this statement, you can change or update rows of data. The
basic syntax is to name the table you want to update and use the SET clause to set the
value of each column. This is like the syntax for the SELECT statement in “Inserting
Emphatically” on page 104. Use the WHERE clause you tested to tell MySQL which rows
to change:

UPDATE bird_families, bird_orders

SET bird_families.order_id = bird_orders.order_id
WHERE bird_families.order_id IS NULL

AND cornell_bird_order = bird_orders.scientific_name;

This is fairly complicated, so let’s reiterate whats happening here: the UPDATE statement
tells MySQL to set the order_1id in the bird_families table to the value of the or
der_1id of the corresponding row in the bird_orders table—but thanks to the AND
clause, I do the update only where the cornell_bird_order equals the scientif
ic_name in the bird_orders table.

That’s plenty to take in, I know. We’ll cover this statement in more detail in Chapter 8.

Let’s see the results now. We'll execute the same SQL statement we did earlier, but limit
it to four rows this time to see a bit more:

SELECT * FROM bird_families
ORDER BY family_1id DESC LIMIT 4;

ommmeaeaas doemmmemeeneaaas Hemmmeeeeeeaeeaaaas R +
| family_1id | scientific_name | brief_description | order_id |
ommmeaeaas doemmmemeeneaaas Hemmmeeeeeeaeeaaaas R +
330	Viduidae	Indigobirds	128
329	Estrildidae	Waxbills and Allies	128
328	Ploceidae	Weavers and Allies	128
327	Passeridae	Old World Sparrows	128
oo Homm e oo oo +

That seems to have worked. The order_id column for the Viduidae bird family now
has a value other than NULL. Let’s check the bird_orders to see whether that’s the
correct value:

108 | Chapter 6: Inserting Data

SELECT * FROM bird_orders
WHERE order_id = 128;

ommmmaa o oo Fommmm e +
| order_id | scientific_name | brief_description | order_image |
ommmmaa o oo Fommmm e +
| 128 | Passeriformes | Passerines | NULL

ommmmaa o oo Fommmm e +

That’s correct. The order_id of 128 is for Passeriformes, which is what the Cornell table
said is the order of the Viduidae family. Let’s see whether any rows in bird_families
are missing the order_1id:

SELECT family_1id, scientific_name, brief_description
FROM bird_families
WHERE order_id IS NULL;

Fommm e T e L +
| family_1id | scientific_name | brief_description |
o o o +
136	Fregatidae	Frigatebirds
137	Sulidae	Boobies and Gannets
138	Phalacrocoracidae	Cormorants and Shags
139	Anhingidae	Anhingas
145	Cathartidae	New World Vultures

146	Sagittariidae	Secretary-bird
147	Pandionidae	Osprey
148	Otididae	Bustards
149	Mesitornithidae	Mesites
150	Rhynochetidae	Kagu
151	Eurypygidae	Sunbittern
172	Pteroclidae	Sandgrouse
199	Bucconidae	Puffbirds
200	Galbulidae	Jacamars
207	Cariamidae	Seriemas
o o o +

For some reason, the data didn’t match the 15 rows in the bird_orders table. I had to
determine why these didn’t match. Let’s look at how I resolved a couple of them.

I looked up the name of the order to which the Osprey belongs and found that there
are two possible names: Accipitriformes and Falconiformes. Cornell used the Accipitri-
formes, whereas my bird_orders table has the Falconiformes (i.e., order_id 112). T'll
use that one and update the bird_families table:

UPDATE bird_families

SET order_1id = 112
WHERE cornell_bird_order = 'Accipitriformes';

I could have used the family_id in the WHERE clause, but by doing what I did here, I
discovered two more bird families that are in the Accipitriformes order and updated all
three in one SQL statement. Digging some more, I found that four of these bird families

Other Possibilities | 109

are part of a new order called Suliformes. So I added that order to the bird_orders table
and then updated the rows for those families in the bird_families table. This method
of clean-up is common when creating a database or when importing large amounts of
data from another database.

Next, I'll do some clean-up by dropping the extra column I added (cornell_bird_or
der) to the bird_families table and the cornell_birds_families_orders table:

ALTER TABLE bird_families
DROP COLUMN cornell_bird_order;

DROP TABLE cornell_birds_families_orders;

That set of examples was complicated, so don’t be discouraged if you were confused by
it. In time, you will be constructing more complex SQL statements on your own. In fact,
you will come to look at what I did here and realize that I could have performed the
same tasks in fewer steps. For now, I wanted to show you the power of MySQL and
MariaDB, as well as their communities. I mention the communities because in the
MySQL and MariaDB communities, you can sometimes find tables with data like this
that you can download for free and then manipulate for your own use, thus saving you
plenty of work and taking some of the ever pesky tediousness out of database manage-
ment. There are other methods for bulk importing data, even when it’s not in a MySQL
table. They’re covered in Chapter 15.

Replacing Data

When youre adding massive amounts of data to an existing table and you’re using the
multiple-row syntax, you could have a problem if one of the fields you're importing gets
inserted into a key field in the table, as in the preceding example with the bird_fami
lies table. In that example, the scientific_name column was a key field, set to UNIQUE
so that there is only one entry in the birds_families table for each bird family. When
MySQL finds a duplicate key value while running an INSERT statement, an error is
generated and the entire SQL statement will be rejected. Nothing will be inserted into
the table.

You would then have to edit the INSERT statement, which might be lengthy, to remove
the duplicate entry and run the statement again. If there are many duplicates, you'd have
to run the SQL statement many times, watch for error messages, and remove duplicates
until it’s successful. We avoided this problem in the previous example by using the
IGNORE option with the INSERT statement. It tells MySQL to ignore the errors, not insert
the rows that are duplicates, and insert the ones that aren’t.

There may be times, though, when you don’t want to ignore the duplicate rows, but
replace duplicate rows in the table with the new data. For instance, in the UPDATE example
in the previous section, we have newer and better information, so we prefer to overwrite
duplicate rows. In situations such as this, instead of using INSERT, you could use the

110 | Chapter 6: Inserting Data

REPLACE statement. With it, new rows of data will be inserted as they would with an
INSERT statement. Any rows with the same key value (e.g., same scientific_name code)
will replace the matching row already in the table. This can be very useful, and not
difficult. Let’s look at an example:

REPLACE INTO bird_families

(scientific_name, brief_description, order_id)
VALUES('Viduidae', 'Indigobirds & Whydahs', 128),
('Estrildidae’', 'Waxbills, Weaver Finches, & Allies', 128),
('Ploceidae', 'Weavers, Malimbe, & Bishops', 128);

Query OK, 6 rows affected (0.39 sec)
Records: 3 Duplicates: 3 Warnings: 0

Notice that the syntax is the same as an INSERT statement. The options all have the same
effect as well. Also, multiple rows may be inserted, but there’s no need for the IGNORE
option because duplicates are just overwritten.

Actually, when arowis replaced using the REPLACE statement, it’s first deleted completely
and the new row is then inserted. For any columns without values, the default values
for the columns will be used. None of the previous values are kept. So be careful that
you don't replace a row that contains some data that you want. When you update a row
with REPLACE, you can't choose to replace some columns and leave the others un-
changed. REPLACE replaces the whole row, unlike UPDATE. To change just specific col-
umns, use the UPDATE statement.

There are a couple of things that you should notice about this REPLACE statement and
the content we entered. You can see something unusual in the results message. It says
that six rows were affected by this SQL statement: three new records and three dupli-
cates. The value of six for the number of rows affected may seem strange. What happened
is that because three rows had the same value for the scientific_name, they were de-
leted. And then three new rows were added with the new values, the replacements. That
gives a total of six affected rows: three deleted and three added.

The results contain no warnings, so all went well as far as MySQL knows. Let’s look at
the data for one of the bird families we changed in the bird_families table, the Vi-
duidae family:

SELECT * FROM bird_families
WHERE scientific_name = 'Viduidae' \G

Ihhkhhdhhkhdhddddddrdhddddrdhid 1_ row Khhhhhhkhhhhdddddddddddrdhddd
family_id: 331
scientific_name: Viduidae
brief_description: Indigobirds & Whydahs
order_id: 128

It may not be apparent, but everything was replaced. This row has a new value in the
family_id column. If you look earlier in this chapter at the row for this family, you'll

Other Possibilities | 111

see that the family_1d was 330. Because it was the last row in the table, when a new row
was created for its replacement, 331 was assigned to it. The brief_description has the
new value; it said before only Indigobirds.

The REPLACE statement is useful for replacing all of the data for a duplicate row and
inserting new rows of data for data that isn't already in a given table. It has the potential
problem of replacing all of the columns when you might want to replace only some of
them. Also, in the previous examples, if the scientific_name column was not UNIQUE
or otherwise a key column, new rows would be created for the three families we tried
to replace with the REPLACE statement.

Priorities When Inserting Data

On a busy MySQL or MariaDB server, there will be times when many people will access
the server at the same time. There will be times when SQL statements are entered si-
multaneously from different sources, perhaps many at the same instant. The server must
decide which statements to process first.

Statements that change data (INSERT, UPDATE, and DELETE) take priority over read state-
ments (SELECT statements). Someone who is adding data to the server seems to be more
important than someone reading data. One concern is that the one inserting data might
lose the connection and lose its opportunity. The user retrieving data, in contrast, can
generally wait. For example, on a website that uses MySQL to store purchases, a cus-
tomer entering an order will take priority over another customer who is just browsing
through the list of products.

When the server is executing an INSERT statement for a client, it locks the related tables
for exclusive access and forces other clients to wait until it’s finished. This isn’t the case
with InnoDB: it locks the rows, rather than the entire table. On a busy MySQL server
that has many simultaneous requests for data, locking a table could cause users to ex-
perience delays, especially when someone is entering many rows of data by using the
multiple-row syntax of the INSERT statement.

Rather than accept the default priorities in MySQL, you can instead set the priority for
an INSERT. You can decide which SQL statements need to be entered as soon as possible
and which can wait. To specify you preferences, the INSERT statement offers priority
options. Enter them between the INSERT keyword and the INTO keyword. There are
three of them: LOW_PRIORITY, DELAYED, and HIGH_PRIORITY. Let’s look at each of them.

Lowering the priority of an insert

For an example of LOW_PRIORITY, suppose that we've just received a file from a large
bird-watcher group with thousands of rows of data related to bird sightings. The table
is a MySQL dump file, a simple text file containing the necessary SQL statements to
insert the data into a table in MySQL. We open the dump file with a text editor and see

112 | Chapter 6: Inserting Data

that it contains one huge INSERT statement that will insert all of the bird sightings (i.e.,
bird_sightings) with one SQL statement into a table on our server. We haven’t created
a table like this yet, but you can imagine what it might contain.

When the INSERT statement in the dump file from the large bird-watcher group is run,
it might tie up our server for quite a while. If there are users who are in the middle of
retrieving data from the bird_sightings table, we might prefer that those processes
finish before starting our huge INSERT statement. The LOW_PRIORITY option instructs
MySQL to enter the rows when it’s finished with whatever else it's doing. Here’s an
abbreviated version of how we would do that:

INSERT LOW_PRIORITY INTO bird_sightings

Of course, a real INSERT will have all the column and value listings you want where I
left the ellipsis (three dots).

The LOW_PRIORITY flag puts the INSERT statement in a queue, waiting for all of the
current and pending requests to be completed before it’s performed. If new requests are
made while a low priority statement is waiting, they are put ahead of it in the queue.
MySQL does not begin to execute a low priority statement until there are no other
requests waiting.

The table is locked and any other requests for data from the table that come in after the
INSERT statement starts must wait until it's completed. MySQL locks the table once a
low priority statement has begun so it will prevent simultaneous insertions from other
clients. The server doesn’t stop in the middle of an insert to allow for other changes just
because of the LOW_PRIORITY setting. Incidentally, LOW_PRIORITY and HIGH_PRIORITY
aren’t supported by InnoDB tables. It's unnecessary because it doesn’t lock the table, but
locks the relevant rows.

One potential inconvenience with an INSERT LOW_PRIORITY statement is that your
mysql client will be tied up waiting for the statement to be completed successfully by
the server. So if you're inserting data into a busy server with a low priority setting using
the mysql client, your client could be locked up for minutes, maybe even hours, de-
pending on how busy the server is at the time. Using LOW_PRIORITY causes your client
to wait until the server starts the insert, and then the client is locked, as well as the related
tables on the server are locked.

Delaying an INSERT

As an alternative, you can use the DELAYED option instead of the LOW_PRIORITY option.
This is deprecated in 5.6.6 of MySQL. However, if you're using an older version, this is
how you would use it:

INSERT DELAYED INTO bird_sightings

Other Possibilities | 113

This is very similar to LOW_PRIORITY; MySQL will take the request as a low-priority one
and putit on its list of tasks to perform when it has a break. The difference and advantage
is that it will release the mysql client immediately so that the client can go on to enter
other SQL statements or even exit. Another advantage of this method is that multiple
INSERT DELAYED requests are batched together for block insertion when there is a gap
in server traffic, making the process potentially faster than INSERT LOW_PRIORITY.

The drawback to this choice is that the client is never informed whether the delayed
insertion is actually made. The client gets back error messages when the statement is
entered—the statement has to be valid before it will be queued—but it’s not told of
problems that occur after the SQL statement is accepted by the server.

This brings up another drawback: delayed insertions are stored in the server’s memory.
So if the MySQL daemon dies or is manually killed, the inserts are lost and the client is
not notified of the failure. You'll have to manually check the database or the server’s logs
to determine whether the inserts failed. As a result, the DELAYED option is not always a
good alternative.

Raising the priority of an INSERT

The third priority option for the INSERT statement isHIGH_PRIORITY. INSERT statements
by default are usually given higher priority over read-only SQL statements so there
would seem to be no need for this option. However, the default of giving write statements
priority over read statements (e.g., INSERT over SELECT) can be removed. “Post-
Installation” on page 23 touched on the configuration of MySQL and MariaDB. One of
the server options that may be set is - -low-priority-updates. This will make write
statements by default a low priority statement, or at least equal to read-only SQL state-
ments. If a server has been set to this default setting, you can add the HIGH_PRIORITY
option to an INSERT statement to override the default setting of LOW_PRIORITY so that
it has high priority over read statements.

Summary

At this point, you should have a good understanding of MySQL and MariaDB. You
should understand the basic structure of a database and its tables. You should now see
the value of having smaller multiple tables. You should no longer envision a database
as one large table or like a spreadsheet. You should have a good sense of columns and
how to enter data into them, especially if you have done all of the exercises at the end
of the previous two chapters. You should not be overwhelmed at this point.

Chapter 7 delves more deeply into how to retrieve data from tables using the SELECT
statement. We have already touched on this SQL statement several times. However, you
saw only a sampling of how you might use SELECT in this chapter and in previous ones,

114 | Chapter 6: Inserting Data

to give you a sense of why we were creating and adding data the way we did to tables.
The next chapter will cover the SELECT statement in much more detail.

The INSERT, SELECT, and the UPDATE statements are the most used SQL statements. If
you want to learn MySQL and MariaDB well, you need to know these statements well.
You need to know how to do the basics, as well as be familiar with the more specialized
aspects of using SELECT. You'll accomplish that in the next chapter.

Before moving on to the next chapter, though, complete the following exercises. They
will help you to retain what you've learned about the INSERT statement in this chapter.
Don't skip them. This is useful and necessary to building a solid foundation in learning
MySQL and MariaDB.

Exercises

Here are some exercises to get practice using the INSERT statement and a few others that
we covered in this chapter. So that these exercises won't be strictly mundane data entry,
acouple of them call for you to create some tables mentioned in this chapter. The practice
of creating tables will help you to understand data entry better. The process of entering
data will help you to become wiser when creating tables. Both inform each other.

1. In the exercises at the end of Chapter 4, you were asked to create a table called
birds_body_shapes. This table will be used for identifying birds. It will be refer-
enced from the birds table by way of the column called body_1id. The table is to
contain descriptions of body shapes of birds, which is a key factor in identifying
birds: if it looks like a duck, walks like a duck, and quacks like a duck, it may be a
goose—but it’s definitely not a hummingbird. Here is an initial list of names for
general shapes of birds:

Hummingbird
Long-Legged Wader
Marsh Hen

Owl

Perching Bird
Perching Water Bird
Pigeon

Raptor

Seabird

Shore Bird

Swallow

Tree Clinging
Waterfowl
Woodland Fowl

Exercises | 115

4.

Construct an INSERT statement using the multiple-row syntax—not the emphatic
method—for inserting data into the birds_body_shapes table. You'll have to set
the body_1d to a three-letter code. You decide on that, but you might base it some-
what on the names of the shapes themselves (e.g., Marsh Hen might be MHN and
Owl might be simply OWL). Just make sure each ID is unique. For the body_shape
column, use the text I have just shown, or reword it if you want. For now, skip the
third column, body_example.

. You were asked also in the exercises at the end of Chapter 4 to create another table

for identifying birds, called birds_wing_shapes. This describes the shapes of bird
wings. Here’s an initial list of names for general wing shapes:

Broad
Rounded
Pointed
Tapered
Long
Very Long

Construct an INSERT statement to insert these items into the birds_wing_shapes
table using the emphatic syntax—the method that includes the SET clause. Set the
wing_id to a two-letter code. You decide these values, as you did earlier for
body_1id. For the wing_shape column, use the text just shown. Don’t enter a value
for the wing_example column yet.

. The last bird identification table in which to enter data is birds_bil1l_shapes. Use

the INSERT statement to insert data into this table, but whichever multiple-row
method you prefer. You determine the two-letter values for bill_id. Don’t enter
values for bill_example. Use the following list of bill shapes for the value of
bil1l_shape:

All Purpose
Cone

Curved

Dagger

Hooked
Hooked Seabird
Needle
Spatulate
Specialized

Execute a SELECT statement to view the row from the birds_body_shapes table
where the value of the body_shape column is Woodland Fowl. Then replace that
row with a new value for the body_shape column. Replace it with Upland Ground

116

| Chapter 6: Inserting Data

Birds. To do this, use the REPLACE statement, covered in “Replacing Data” on page
110. In the VALUES clause of the REPLACE statement, provide the same value previ-
ously set for the body_1d so that it is not lost.

After you enter the REPLACE statement, execute a SELECT statement to retrieve all
the rows of data in the birds_body_shapes table. Look how the data changed for
the row you replaced. Make sure it’s correct. If not, try again either using REPLACE
or UPDATE.

Exercises | 117

CHAPTER 7
Selecting Data

Previous chapters discussed the important topics of organizing your tables well and
getting data in to them. In this chapter, we will cover a key objective that makes the
others pay off: retrieving the data stored in a database. This is commonly called a
database query.

The simplest way to retrieve data from a MySQL or MariaDB database—to select data—
is to use the SQL statement, SELECT. We used this SQL statement a few times in previous
chapters. In this chapter, we will cover it in greater detail. It’s not necessary to know or
use all of the may options, but some techniques such as joining tables together are basic
to using relational databases.

We'll begin this chapter by reviewing the basics of the SELECT statement, and then pro-
gress to more involved variants. When you finish this chapter, you will hopefully have
a good understanding of how to use SELECT for most of your needs as you start out as
a database developer, as well as be prepared for the many possibilities and special sit-
uations that may arise over the years of developing databases with MySQL and
MariaDB.

In previous chapters, especially in the exercises, you were asked to enter data into the
tables that we created and altered in the chapters of the previous part of this book.
Entering data on your own was good for training purposes, but we now need much
more data in our database to better appreciate the examples in this chapter. If you haven’t
done so already, go to this book’s website and download the dump files that contain
tables of data.

Download rookery.sql to get the whole rookery database, with plenty of data for use in
our explorations. Once you have the dump file on your system (let’s assume you put it
in /tmp/rookery.sql), enter the following from the command line:

mysql --user='your_name' -p \
rookery < /tmp/rookery.sql

119

http://mysqlresources.com/files

The command prompts for your password, logs you in using the username assigned to
you, and runs the statements in the rookery.sql file on the rookery database. If everything
goes well, there should be no message in response, just the command-line prompt when
it’s finished.

Basic Selection

The basic elements of the syntax for the SELECT statement are the SELECT keyword, the
column you want to select, and the table from which to retrieve the data:

SELECT column FROM table;

If you want to select more than one column, list them separated by commas. If you want
to select all of the columns in a table, you can use the asterisk as a wildcard instead of
listing all of the columns. Let’s use the rookery database you just loaded with data to
see a practical example of this basic syntax. Enter the following SQL statement in mysql
to get a list of all of the columns and rows in the birds table:

USE rookery;

SELECT * FROM birds;

This is the most minimal SELECT statement that you can execute successfully. It tells
MySQL to retrieve all of the data contained in the birds table. It displays the columns
in the order you defined them in the table’s CREATE or ALTER statements, and displays
rows in the order they are found in the table, which is usually the order that the data
was entered into the table.

To select only certain columns, do something like this:

SELECT bird_1id, scientific_name, common_name
FROM birds;

This SELECT statement selects only three columns from each row found in the birds
table. There are also many ways to choose particular rows, change the order in which
they are displayed, and limit the number shown. These are covered in the following
sections of this chapter.

Selecting by a Criteria

Suppose that we want to select only birds of a certain family, say the Charadriidae (i.e.,
Plovers). Looking in the bird_families table, we find that its family_1id is 103. Using
a WHERE clause with the SELECT statement, we can retrieve a list of birds from the birds
table for this particular family of birds like so:

SELECT common_name, scientific_name
FROM birds WHERE family_id = 103
LIMIT 3;

120 | Chapter7: Selecting Data

e
| common_name
e
| Mountain Plover

| Snowy Plover

| Black-bellied Plover
e

_________________________ +
scientific_name |
_________________________ +
Charadrius montanus |
Charadrius alexandrinus |
Pluvialis squatarola |
_________________________ +

+ ——— + — +

This SELECT statement requests two columns, in a different order from the way the data
is listed in the table—in the table itself, scientific_name precedes common_name. I also
added the LIMIT clause to keep the results down to the first three rows in the table. We’ll
talk more about the LIMIT clause in a little while.

Because we separated families into a separate table, you had to look
at the bird_families table to get the right ID before selecting birds
from the birds table. That seems round-about. There is a stream-
lined way to ask for a family name such as Charadriidae instead of a
number. They're called joins. We'll cover them later.

This is all fairly straightforward and in line with what we’ve seen in several other ex-
amples in previous chapters. Let’s move on and take a look at how to change the order
of the results.

Ordering Results

The previous example selected specific columns from the birds table and limited the
results with the LIMIT clause. However, the rows were listed in whatever order they were
found in the table. We've decided to see only a tiny subset of the birds in the Chara-
driidae family, so ordering can make a difference. If we want to put the results in al-
phabetical order based on the values of the common_name column, we add an ORDER
BY clause like this:

SELECT common_name, scientific_name
FROM birds WHERE family_id = 103
ORDER BY common_name

LIMIT 3;

R R T R +
| common_name | scientific_name |
R R T R +
Black-bellied Plover	Pluvialis squatarola
Mountain Plover	Charadrius montanus
Pacific Golden Plover	Pluvialis fulva
R R T R +

Ordering Results | 121

Notice that the ORDER BY clause is located after the WHERE clause and before the LIMIT
clause. Not only will this statement display the rows in order by common_name, but it will
retrieve only the first three rows based on the ordering. That is to say, MySQL will first
retrieve all of the rows based on the WHERE clause, store those results in a temporary
table behind the scenes, order the data based on the ORDER BY clause, and then return
to the mysql client the first three rows found in that temporary table based on the LIMIT
clause. This activity is the reason for the positioning of each clause.

By default, the ORDER BY clause uses ascending order, which means from A to Z for an
alphabetic column. If you want to display data in descending order, add the DESC option,
asin ORDER BY DESC. There’s also a contrasting ASC option, but you probably won’t need
to use it because ascending order is the default.

To order by more than one column, give all the columns in the ORDER BY clause in a
comma-separated list. Each column can be sorted in ascending or descending order.
The clause sorts all the data by the first column you specify, and then within that order
by the second column, etc. To illustrate this, we'll select another column from the birds
table, family_id, and we’ll get birds from a few more families. We'll select some other
types of shore birds: Oystercatchers (i.e., Haematopodidae), Stilts (e.g., Recurvirostri-
dae), and Sandpipers (e.g., Scolopacidae). First, we need the family_1id for each of these
families. Execute the following on your server:

SELECT * FROM bird_families
WHERE scientific_name
IN('Charadriidae', 'Haematopodidae', 'Recurvirostridae’,'Scolopacidae');

B R R B T B R EEEE R +
| family_1id | scilentific_name | brief_description | order_1id |
B R R B T B R EEEE R +
103	Charadriidae	Plovers, Dotterels, Lapwings	102
160	Haematopodidae	Oystercatchers	102
162	Recurvirostridae	Stilts and Avocets	102
164	Scolopacidae	Sandpipers and Allies	102
Fommmmee o B R R T T T R B +

In this SELECT statement, we added another item to the WHERE clause, the IN operator.
It lists, within parentheses, the various values we want in the scientific_name column.
Let’s use the IN operator again to get a list of birds and also test the LIMIT clause:

SELECT common_name, scientific_name, family_id
FROM birds

WHERE family_id IN(103, 160, 162, 164)

ORDER BY common_name

LIMIT 3;

122 | Chapter7: Selecting Data

dommm e o e e o +
| common_name | scientific_name | family_1id |
dommm e o e e o +
| | Charadrius obscurus aguilonius | 103

| | Numenius phaeopus phaeopus | 164 |
| | Tringa totanus eurhinus | 164 |
dommm e o e e o +

Notice that we didn’t put the numeric values in quotes as we did with the family names
in the previous SQL statement. Single or double quotes are necessary for strings, but
they’re optional for numeric values. However, its a better practice to not use quotes
around numeric values. They can affect performance and cause incorrect results if you
mix them with strings.

There is one odd thing about the results here: there aren’t any common names for the
birds returned. That’s not a mistake. About 10,000 birds in the birds table are true
species of birds, and about 20,000 are subspecies. Many subspecies don’t have a unique
common name. With about 30,000 species and subspecies of birds, with all of the minor
nuances between the subspecies bird families, there just aren't common names for all
of them. Each bird has a scientific name assigned by ornithologists, but everyday people
who use the common names for birds don’t see the subtle distinctions that ornithologists
see. This is why the scientific_name column is necessary and why the common_name
column cannot be a key column in the table.

Let’s execute that SQL statement again, but add another factor to the WHERE clause to
show only birds with a value for the common_name column:

SELECT common_name, scientific_name, family_id
FROM birds

WHERE family_id IN(103, 160, 162, 164)

AND common_name != "'

ORDER BY common_name

LIMIT 3;

e e dommm e +
| common_name | scientific_name | family_1id |
e e dommm e +
African Oystercatcher	Haematopus moquini	160
African Snipe	Gallinago nigripennis	164
Amami Woodcock	Scolopax mira	164
e e dommm e +

In the WHERE clause, we added the AND logical operator to specify a second filter. For a
row to match the WHERE clause, the family_1id must be one in the list given and the
common_name must not be equal to a blank value.

Nonprogrammers will have to learn a few conventions to use large WHERE clauses. We've
seen that an equals sign says, “The column must contain this value,” but the ! = construct

Ordering Results | 123

says, “The column must not contain this value” And in our statement, we used ' "' to
refer to an empty string. So we’ll get the rows where the common name exists.

In this case, we couldn’t ask for non-NULL columns. We could have set up the table so
that birds without common names had NULL in the common_name column, but we chose
to instead use empty strings. That’s totally different in meaning: NULL means there is
no value, whereas the empty string is still a string even if there are no characters in it.
We could have used NULL, but having chosen the empty string, we must use the right
value in our WHERE clause.

Incidentally, !=is the same as <> (i.e., less-than sign followed by greater-than sign).

Limiting Results

The birds table has nearly 30,000 rows, so selecting data without limits can return more
rows than you might want to view at a time. We've already used the LIMIT clause to
resolve this problem. We limited the results of the SELECT statement to three rows, the
first three rows based on the WHERE and ORDER BY clauses. If we'd like to see the subse-
quent rows, maybe the next two based on the criteria we gave previously, we could
change the LIMIT clause to show five rows. But an alternative, which is often a better
choice, is to do something like this:

SELECT common_name, scientific_name, family_id
FROM birds

WHERE family_id IN(103, 160, 162, 164)

AND common_name != "'

ORDER BY common_name

LIMIT 3, 2;

F R R R R T R +
| common_name | scientific_name | family_1id |
F R R R T T R +
| American Avocet | Recurvirostra americana | 162 |
| American Golden-Plover | Pluvialis dominica | 103 |
R L L R L +

This LIMIT clause has two values: the point where we want the results to begin, then the
number of rows to display. The result is to show rows 3 and 4. Incidentally, LIMIT 3
used previously is the same as LIMIT 0, 3:the 0 tells MySQL not to skip any rows.

Combining Tables

So far in this chapter we’ve been working with just one table. Let’s look at some ways to
select data