
MariaDB and
MySQL Common
Table Expressions
and Window
Functions Revealed

—
Daniel Bartholomew

MariaDB and
MySQL Common
Table Expressions

and Window
Functions Revealed

Daniel Bartholomew

MariaDB and MySQL Common Table Expressions and Window Functions Revealed

Daniel Bartholomew
Raleigh, North Carolina, USA

ISBN-13 (pbk): 978-1-4842-3119-7 ISBN-13 (electronic): 978-1-4842-3120-3
https://doi.org/10.1007/978-1-4842-3120-3

Library of Congress Control Number: 2017958968

Copyright © 2017 by Daniel Bartholomew

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Stefan Ardeleanu
Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484231197. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3120-3
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484231197
http://www.apress.com/9781484231197
http://www.apress.com/source-code
http://www.apress.com/source-code

For Amy, Ila, Lizzy, Anthon & Rachel.
I’m available to play more board games now, I promise.

v

Contents at a Glance

About the Author �� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

Syntax ��� xix

 ■Part 1: Common Table Expressions �������������������������������� 1

 ■Chapter 1: Basics of Common Table Expressions ��������������������������� 3

 ■Chapter 2: Non-recursive Common Table Expressions ����������������� 11

 ■Chapter 3: Recursive Common Table Expressions ������������������������ 19

 ■Part II: Window Functions �� 39

 ■Chapter 4: Basics of Window Functions ��������������������������������������� 41

 ■Chapter 5: Recognizing Opportunities for Window Functions ������ 57

 ■Chapter 6: Window Functions in Practice ������������������������������������ 71

 ■Chapter 7: Combining Window Functions and CTEs ��������������������� 89

Index �� 105

vii

Contents

About the Author �� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

Syntax ��� xix

 ■Part 1: Common Table Expressions �������������������������������� 1
 ■Chapter 1: Basics of Common Table Expressions ��������������������������� 3

Before We Begin �� 3

What Are Common Table Expressions? ��� 4

Basic CTE Syntax ��� 4

The Motivation for CTEs �� 6

Temporary ��� 6

Readable ��� 6

Using in One or Many Places �� 7

Permissions �� 7

Nesting ��� 7

Multiplexing �� 8

Recursion �� 9

Summary ��� 9

■ Contents

viii

 ■Chapter 2: Non-recursive Common Table Expressions ����������������� 11

Before We Begin �� 11

Using CTEs for Year-over-Year Comparisons ��� 12

Comparing Individuals Against Their Group �� 15

Translating Subqueries into CTEs �� 16

Summary ��� 18

 ■Chapter 3: Recursive Common Table Expressions ������������������������ 19

Before We Begin �� 19

Recursive CTE Syntax �� 20

Adding Numbers �� 21

Calculating Fibonacci Numbers ��� 24

Looking Up Ancestors in a Tree ��� 27

Finding All Possible Destinations �� 30

Finding All Possible Paths ��� 33

Summary ��� 38

 ■Part II: Window Functions �� 39

 ■Chapter 4: Basics of Window Functions ��������������������������������������� 41

What Is a function? ��� 41

Window Function Syntax ��� 42

Partition Definition Syntax �� 42

Order Definition Syntax ��� 42

Frame Definition Syntax ��� 43

WINDOW Clause Syntax �� 45

Window Functions Reference �� 47

AVG() ��� 47

BIT_AND() ��� 47

■ Contents

ix

BIT_OR() �� 48

BIT_XOR() �� 48

COUNT() �� 48

CUME_DIST() ��� 48

DENSE_RANK() ��� 49

FIRST_VALUE() �� 50

LAG() ��� 50

LAST_VALUE() ��� 50

LEAD() ��� 51

NTH_VALUE() ��� 51

NTILE �� 52

PERCENT_RANK()�� 53

RANK() �� 53

ROW_NUMBER()�� 54

SUM() �� 55

Summary ��� 56

 ■Chapter 5: Recognizing Opportunities for Window Functions ������ 57

Partitioning and Ordering Results ��� 57

Maintaining a Running Total �� 61

Ranking Rows in a Result Set ��� 65

Summary ��� 70

 ■Chapter 6: Window Functions in Practice ������������������������������������ 71

Before We Begin �� 71

Working with Time-Series Data ��� 72

Using Multiple Window Functions at Once ��� 73

Graphing Time-Series Results �� 77

■ Contents

x

Analyzing Fruit Sales ��� 82

Fruit Sales Within a Single Store �� 82

Comparing Fruit Sales Across All Stores �� 85

Summary ��� 87

 ■Chapter 7: Combining Window Functions and CTEs ��������������������� 89

Before We Begin �� 89

Compute the Average Time Between Days with Precipitation ��������������� 90

Adding a Primary Key Column ��� 93

Finding Gaps and Islands �� 96

Gaps �� 96

Islands �� 100

Summary ��� 104

Index �� 105

xi

About the Author

Daniel Bartholomew has been using Linux since 1997
and databases since 1998. In addition to this book, he
has written MariaDB Cookbook and Getting Started
with MariaDB (1st and 2nd editions), as well as dozens
of articles for various magazines, including The Linux
Journal, Linux Pro, Ubuntu User, and Tux. Daniel
became involved with the MariaDB project shortly after
it began in early 2009 and continues to be involved to
this day. He currently works for MariaDB, Inc., where
he splits his time between managing MariaDB releases,
writing new documentation, and maintaining the
various bits and pieces that keep the MariaDB project
running smoothly. Daniel is currently the official
release manager for the MariaDB database.

xiii

About the Technical
Reviewer

Stefan Ardeleanu was born in Bucharest, Romania, in
1967. He graduated with degrees in math and
philosophy, and he was a math teacher for ten years.
Afterward, he started a career in software development.
He felt attracted to databases from the beginning, so his
entire career in the software industry is related to
databases—especially database development and
design.

Stefan is a database specialist, a database architect,
and a developer, and he has been working for many
years under various systems, such as Oracle, SQL
Server, DB2, and PostgreSQL. He has experience in
OLTP and data warehouse and replication systems.

Stefan is a passionate SQL guy, and he was able to
develop and improve a specific style of development.

This style is reflected in his various projects, including replication systems and data-
migration systems, where this style is highly required.

Stefan is also a database trainer, and he delivered courses in Oracle Chain as a
partner, including database development courses and BI courses.

xvxv

Acknowledgments

I’d like to thank Sergey Petrunia, Vicențiu Ciorbaru, and others at MariaDB who were
very helpful with the examples in this book. I’d also like to thank Jonathan Gennick,
Jill Balzano, and the rest of the awesome people at Apress for shepherding this book from
concept to completion.

Lastly, I’d like to thank Monty, Rasmus, and the many developers and users of
MariaDB and MySQL. Working together, we’ve created something wonderful.

xviixvii

Introduction

In the software world, there are standards and implementations of those standards.
Sometimes, the implementations come first, features introduced by eager developers
trying to advance the state of the art, and they are formally standardized later. Other
times, the standard comes first, developed and agreed upon by vendors, developers, and
others, and then implementations of the standard—some faithful, others not so much—
make their way into production software later on.

Common Table Expressions (CTEs) and Window Functions have been in the ANSI
SQL standard for a long time. CTEs were introduced way back in the SQL99 version of
the standard, and Window Functions were introduced in the SQL2003 version. Other
database systems were quick(er) to implement both of them. Oracle, SQL Server,
PostgreSQL, and even SQLite have had implementations of these features for years.

MariaDB and MySQL were somewhat late to the game, but they now have standards-
compliant implementations of Window Functions and Common Table Expressions.
MariaDB added them with their MariaDB 10.2 release, which was declared stable (GA)
in May 2017. MySQL is introducing them as part of its upcoming 8.0 release, which as
I write this is in its Release Candidate phase. The implementations were developed
independently of each other, but they both stick close to the standard, so compatibility
between them is good. Generally speaking, a query that works in MariaDB will most likely
work in MySQL and vice versa. There are some differences, however, which this book
notes when they come up.

xix

Syntax

The syntax definitions in this book use the following conventions:
< > — Angle brackets surround elements, the name of which you provide. The

brackets themselves are not part of the syntax and should not be included.
[] — Square brackets surround optional elements. They may be included, or not,

depending on your choice. The brackets themselves are not part of the syntax and should
not be included.

| — The pipe, or vertical bar, character separates groups of elements. You choose
which of the elements you want to include in your statement. The pipe itself is not part of
the syntax and should not be included.

… — An ellipsis, or three periods in a row, indicates that the prior section can be
repeated. The ellipsis itself is not part of the syntax and should not be included.

() — Parentheses, where they appear, are part of the syntax and generally must be
included in your SQL statement.

Words written in UPPER CASE are key words. They may be written in either UPPER
or lower case, but must be written as shown. They also should not, and in some cases
cannot, be generally used as the names of tables, functions, and other elements that you
name.

Words written in lower case represent values that you provide. They may be integers,
statements, or other elements of a SQL statement, as appropriate for the SQL statement
being written.

PART I

Common Table
Expressions

3© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_1

CHAPTER 1

Basics of Common Table
Expressions

Common Table Expressions (CTEs) are one of the new SQL features introduced in
MariaDB 10.2 and MySQL 8.0. This chapter will introduce CTEs, describe the two types,
and explain the basic syntax. CTEs are named temporary result sets that only last for the
duration of the query they are in. In some respects, they are similar to derived tables, but
they are more powerful. They can refer to themselves recursively and can be referenced
multiple times in the same query. They also enable column grouping and can be used as
an alternative to views without our needing the CREATE VIEW permission. CTEs were first
introduced as part of the SQL99 standard.

Before We Begin
Before we get into more detail on what CTEs are and what they can do, the examples in
this chapter utilize sample data you can use to follow along with the text and experiment
with CTEs yourself. The table used in this chapter is called employees and it can be
created with the following query:

CREATE TABLE employees (
 id serial primary key,
 name VARCHAR(150) NOT NULL,
 title VARCHAR(100),
 office VARCHAR(100)
);

The data itself is in a CSV file called bartholomew-ch01.csv. It can be loaded with a
query similar to the following (assuming the file is on the computer running MariaDB or
MySQL server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch01.csv'
 INTO TABLE employees
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

https://doi.org/10.1007/978-1-4842-3120-3_1

Chapter 1 ■ BasiCs of Common taBle expressions

4

If you are using MySQL 8.0, then the secure_file_priv setting is on by default. In
this case, you will either need to move the file to the location specified in your config or
turn off the setting in your my.cnf or my.ini file.

On Linux, the default location for secure_file_priv is /var/lib/mysql-files/,
and on Windows it is C:\ProgramData\MySQL\MySQLServer 8.0\Uploads\; you’ll need to
move the files to that location before running the LOAD DATA command and then modify
the command to point at that location instead of at the /tmp/ folder.

You can find out what your local MySQL installation’s secure_file_priv setting is
with the following command:

SHOW VARIABLES LIKE 'secure_file_priv';

We’re now ready to begin.

 ■ Tip When using the mysQl command-line client on Windows, you can use linux-
style paths with the LOAD DATA command. it’s also worth mentioning that if you instead
choose to use Windows-style paths, you will need to use double backslashes (\\) because
the backslash character is used to escape other characters. for example, the following are
equivalent:

LOAD DATA INFILE '/ProgramData/MySQL/MySQL Server 8.0/Uploads/file.csv'

LOAD DATA INFILE 'C:\\ProgramData\\MySQL\\MySQL Server 8.0\\Uploads\\file.csv'

What Are Common Table Expressions?
Common Table Expressions are commonly referred to as CTEs. Think of them as the
result of a query that has a name you can refer to later on in your query. If a named
result set sounds a little like a view or a derived table, that’s because it is, but with some
significant differences. We’ll get to those in a second. First, what does a CTE look like?

Basic CTE Syntax
The general syntax for a Common Table Expression is as follows:

WITH <cte_name> AS (
 <cte_body>
)
<cte_query>

Chapter 1 ■ BasiCs of Common taBle expressions

5

The WITH and AS keywords are what distinguish a CTE from a normal query. If you
see a query that begins with WITH ... AS then you are looking at a CTE. The parts in
angle brackets <> are what you provide. Let’s go over the different parts now:

•	 <cte_name> is the name we will use to refer to the CTE later in
our query; it can be any valid name, i.e., not a reserved word or
function name.

•	 <cte_body> is just a SELECT statement that produces a result.
This part is wrapped in parentheses ().

•	 <cte_query> is where we reference the <cte_name> in a SQL
query. For example:

SELECT <select_criteria> FROM <cte_name> [WHERE ...]

•	 <select _criteria> is your normal SELECT query criteria with
optional WHERE and other clauses.

This might be a little difficult to visualize, so here’s a basic valid CTE where we define
a single <cte_name> and then SELECT from it. This CTE uses the sample data we loaded at
the beginning of the chapter, so feel free to run it on your MariaDB or MySQL server.

WITH emp_raleigh AS (
 SELECT * FROM employees
 WHERE office='Raleigh'
)
SELECT * FROM emp_raleigh
 WHERE title != 'salesperson'
 ORDER BY title;

Let’s break down what is happening here. Our <cte_name> is emp_raleigh, and it is
a simple SELECT statement that selects every row in the employees table WHERE the office
is Raleigh. You can think of this CTE as a view or filter of the employees table. Then, in the
<cte_query> section, we use the <cte_name> as part of a simple query that looks for every
entry where the employee is not a salesperson, and lastly it orders the results by their job
title. Because the <cte_query> uses our emp_raleigh <cte_name>, our results will only
come from records in the employees table WHERE office='Raleigh'.

Using our sample data, the result is:

+-----+-----------------+------------+---------+
| id | name | title | office |
+-----+-----------------+------------+---------+
73	Mark Hamilton	dba	Raleigh
77	Nancy Porter	dba	Raleigh
135	Pauline Neal	dba	Raleigh
68	Edmund Hines	manager	Raleigh
28	Marc Greene	programmer	Raleigh
96	Mary Walker	programmer	Raleigh
100	Freida Duchesne	programmer	Raleigh
+-----+-----------------+------------+---------+

Chapter 1 ■ BasiCs of Common taBle expressions

6

So, apart from any salespeople there might be, our Raleigh office looks to be quite
technical, just DBAs and programmers, apart from a single manager.

The Motivation for CTEs
The result from our simple example looks a lot like something you might use a derived
table (AKA an inline view) or a view to get, both of which have existed in MariaDB and
MySQL for years. Why would anyone ever want to use CTEs instead of the more familiar
views or derived tables? Here are some reasons.

Temporary
First off, CTEs are temporary. A CTE is defined and used in the same query. A view, on the
other hand, is more permanent and can be thought of as a somewhat permanent virtual
table. This temporary nature of CTEs can be a good thing. Because the CTE and the
query that uses it are all defined together, modifying it to keep up with updated business
requirements is easy. Contrast that with a view, which needs to be updated separately
from the queries that use it.

This temporary nature is part of the reason why derived tables are so popular; they
let you quickly generate a useful temporary result set that you can perform operations on.
CTEs build upon that usefulness with a more powerful set of features.

Readable
One big reason to use CTEs is because they are often more readable. Complex views
or nested derived table queries can be hard for mere mortals to parse, often requiring
reading the query inside-out, back-to-front, or some other unnatural order. Contrast that
with CTEs, which generally can be read from top to bottom.

For example, here’s our simple CTE example rewritten as a derived table:

SELECT * FROM (
 SELECT * FROM employees
 WHERE office='Raleigh'
) AS emp_raleigh
WHERE title != 'salesperson'
 ORDER BY title;

And so you don’t have to go back and find it, here is the CTE version again:

WITH emp_raleigh AS (
 SELECT * FROM employees
 WHERE office='Raleigh'
)
SELECT * FROM emp_raleigh
 WHERE title != 'salesperson'
 ORDER BY title;

Chapter 1 ■ BasiCs of Common taBle expressions

7

Unsurprisingly, the output of both queries, using our sample data, is the same.
However, when you compare them, the CTE can be understood by simply reading
it from beginning to end. To understand the derived table, on the other hand, you
need to first read the inner SELECT statement and then jump up to the outer SELECT
statement, and then back down to the end. On a simple example like this, the extra
difficulty compared to the CTE is minimal, but as a derived table query becomes
more complex, the difficulty in reading it goes up exponentially. For a CTE, however,
the difficulty goes up in a more linear fashion because you can always just read from
beginning to end, naturally.

Using in One or Many Places
Following on from the previous section, another reason to use CTEs is if you need
something complex for just one query as opposed to something that will be used many
times in many different queries. For example, if your underlying sales table stores
invoice dates using a Unix timestamp, but several of your applications expect YYYY-
MM-DD whenever they query the table, a view would be an excellent solution; just
define the view and have your applications call that. On the other hand, a complex view
only used once in a single application might be more maintainable if rewritten as an
easier-to-read CTE.

Permissions
When working on your own personal databases on your own workstation or server, your
database user generally has the ALL PRIVILEGES WITH GRANT OPTION permissions, which
means you can do anything you need or want to your tables and databases, including
CREATE, UPDATE, INSERT, DELETE, and so on. Or, you might regularly just log in as the root
database user, which automatically has all permissions. Databases used in production,
however, generally have more granular access defined. Some users are only able to
SELECT from tables in certain databases, while others can make inserts in some tables
but not in others, and yet other users are given more or fewer grants depending on their
various job functions.

You may find yourself in need of something like a view on a table that you do not
have the CREATE VIEW permission on. CTEs only require the SELECT permission, so in this
case using a CTE is a great way to get what you need without having to pester one of the
DBAs to either create the view you need for you or asking them to grant you the CREATE
VIEW permission on the table you need it on, which they may be unable to do because of
company policies.

Nesting
CTEs bring several new tricks to our DBA toolbox, one of which is that in each individual
<cte_body> we can refer to other CTEs. This solves a big problem with nested derived
tables where every level of nesting greatly increases the complexity.

Chapter 1 ■ BasiCs of Common taBle expressions

8

For example, let’s expand upon our simple CTE example and drill further into our
data by defining a second <cte_name> with its accompanying <cte_body> that selects just
the DBAs in the Raleigh office:

WITH emp_raleigh AS (
 SELECT * FROM employees
 WHERE office='Raleigh'
),
emp_raleigh_dbas AS (
 SELECT * from emp_raleigh
 WHERE title='dba'
)
SELECT * FROM emp_raleigh_dbas;

Looking at this code, we have our original <cte_name>, emp_raleigh, and its <cte_body>.
We then define a second <cte_name>, emp_raleigh_dbas, and its <cte_body>. emp_raleigh_
dbas builds upon emp_raleigh by only looking for records WHERE title='dba'. Lastly, in the
<cte_query> section we SELECT everything from emp_raleigh_dbas. Syntactically, this is much
more readable than the equivalent query written using a nested derived table.

Using our sample data, the result is as follows:

+-----+---------------+-------+---------+
| id | name | title | office |
+-----+---------------+-------+---------+
73	Mark Hamilton	dba	Raleigh
77	Nancy Porter	dba	Raleigh
135	Pauline Neal	dba	Raleigh
+-----+---------------+-------+---------+

Multiplexing
Building upon the ability to define multiple <cte_name>s in the same query with their
corresponding <cte_body>s, we have the ability to refer to a given <cte_name> multiple
times, either in a following <cte_body> section or in the <cte_query> section. As an
example of referring to a single <cte_name> multiple times, here is an anti-self-join that
looks for DBAs that are the only DBA at their particular office:

WITH dbas AS (
 SELECT * FROM employees
 WHERE title='dba'
)
SELECT * FROM dbas A1
 WHERE NOT EXISTS (
 SELECT 1 FROM dbas A2
 WHERE
 A2.office=A1.office
 AND
 A2.name <> A1.name
);

Chapter 1 ■ BasiCs of Common taBle expressions

9

Here, our dbas <cte_name> simply selects all of the DBAs in the company, then in
our ending <cte_query> we refer to dbas two times in order to filter out all DBAs except
those we are interested in.

Using our sample data, the result is as follows:

+----+---------------+-------+---------+
| id | name | title | office |
+----+---------------+-------+---------+
| 6 | Toby Lucas | dba | Wichita |
| 16 | Susan Charles | dba | Nauvoo |
+----+---------------+-------+---------+

I think management should make sure Toby and Susan visit other offices in the
company a few times every year, just so they don’t feel isolated from the other DBAs in
the company.

Recursion
The last reason why CTEs are so useful is that they can be recursive. Within their own
<cte_body> they can call themselves. This technique provides a lot of power. But let’s not
get ahead of ourselves—there’s a whole chapter devoted to these types of CTE queries, so
we won’t talk about it more here.

Summary
In this chapter, we covered the basic syntax of CTEs as well as some of the reasons why
this feature was added to the SQL standard and is now being added to MariaDB and
MySQL. We also went through a couple of simple examples of non-recursive CTEs.

We’ll dive deeper into non-recursive CTEs in the next chapter, then look at recursive
CTEs in Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-3120-3_3

11© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_2

CHAPTER 2

Non-recursive Common
Table Expressions

You already got a taste of non-recursive CTEs in the previous chapter. This chapter
will expand upon the previous examples and show more of the things you can do with
non-recursive CTEs. In this chapter, we’ll cover some common uses of CTEs and finish
with how to convert existing queries that use subqueries into queries that use CTEs.

Before We Begin
As with the previous chapter, the examples in this chapter utilize sample data. In addition
to the employees table we used previously, in this chapter we’ll use a table called
commissions. This table can be created with the following query:

CREATE TABLE commissions (
 id serial primary key,
 salesperson_id BIGINT(20) NOT NULL,
 commission_id BIGINT(20) NOT NULL,
 commission_amount DECIMAL(12,2) NOT NULL,
 commission_date DATE NOT NULL
);

The data is in a CSV file called bartholomew-ch02.csv. It can be loaded with a query
similar to the following (assuming the file is on the computer running MariaDB or MySQL
server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch02.csv'
 INTO TABLE commissions
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

https://doi.org/10.1007/978-1-4842-3120-3_2

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

12

 ■ Note see the “before We begin” section of Chapter 1 for extra information about
loading the files on Windows and working around issues with secure_file_priv.

We’re now ready to begin.

Using CTEs for Year-over-Year Comparisons
In the previous chapter, we introduced the ability to refer to a CTE multiple times in a
single query. Let’s explore a more substantial example.

One thing many companies like to track is how sales improve (or not) year-over-year.
In our sample commissions table, we track the commissions each of the company’s 55
salespersons have earned and when they earned them. One day, the CEO comes to us
and says that he wants to compare how the salespersons are doing from one year to the
next. A fairly straightforward traditional SQL query can easily get us the data we want,
grouped by salesperson and year:

SELECT
 salesperson_id,
 YEAR(commission_date) AS year,
 SUM(commission_amount) AS total
FROM
 commissions
GROUP BY
 salesperson_id, year;

Our sample data contains commissions data for the years 2016 and 2017, so this
query gives us 110 rows—two rows for each of our 55 salespersons. Here’s the truncated
result:

+----------------+------+----------+
| salesperson_id | year | total |
+----------------+------+----------+
3	2016	2249.93
3	2017	3449.67
7	2016	1088.32
7	2017	3197.25
8	2016	4514.73
8	2017	5178.19
10	2016	9433.58
10	2017	8479.05
...
+----------------+------+----------+

We could call this complete and send the data to the CEO, but by using a CTE we can
do much better.

http://dx.doi.org/10.1007/978-1-4842-3120-3_1

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

13

Using our initial query as our <cte_body>, we can select from the data twice, using a
WHERE clause to set up the condition to select a given year and the previous year together.
Here’s what it could look like:

WITH commissions_year AS (
 SELECT
 salesperson_id,
 YEAR(commission_date) AS year,
 SUM(commission_amount) AS total
 FROM
 commissions
 GROUP BY
 salesperson_id, year
)
SELECT *
FROM
 commissions_year CUR,
 commissions_year PREV
WHERE
 CUR.salesperson_id=PREV.salesperson_id AND
 CUR.year=PREV.year + 1;

After setting up the CTE, which we called commissions_year, we selected from
it twice—once as CUR and once as PREV. The WHERE clause is where we match the
salesperson_id fields from both and set up the condition that we’re comparing a year
with another year that is one more (+1) from it.

This time, the output looks like the following:

+----------------+------+----------+----------------+------+----------+
| salesperson_id | year | total | salesperson_id | year | total |
+----------------+------+----------+----------------+------+----------+
3	2017	3449.67	3	2016	2249.93
7	2017	3197.25	7	2016	1088.32
8	2017	5178.19	8	2016	4514.73
10	2017	8479.05	10	2016	9433.58
...
+----------------+------+----------+----------------+------+----------+

This presentation is better, but we could do without the duplicated salesperson_id
columns, and while we’re at it, we should JOIN with the employees table to get the
employee name in the output (something our CEO would appreciate).

We’ll add the JOIN to the FROM clause in our <cte_body>, then we’ll select just
the columns we want from the <cte_query> section to be in the output. With those
modifications, our complete CTE now looks like this:

WITH commissions_year AS (
 SELECT
 employees.id AS sp_id,

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

14

 employees.name AS salesperson,
 YEAR(commission_date) AS year,
 SUM(commission_amount) AS total
 FROM
 commissions LEFT JOIN employees
 ON commissions.salesperson_id = employees.id
 GROUP BY
 sp_id, year
)
SELECT CUR.sp_id, CUR.salesperson, PREV.year, PREV.total, CUR.year, CUR.
total
FROM
 commissions_year CUR,
 commissions_year PREV
WHERE
 CUR.sp_id=PREV.sp_id AND
 CUR.year=PREV.year + 1;

And our output now looks like the following:

+-------+---------------------+------+----------+------+----------+
| sp_id | salesperson | year | total | year | total |
+-------+---------------------+------+----------+------+----------+
3	Evelyn Alexander	2016	2249.93	2017	3449.67
7	John Conner	2016	1088.32	2017	3197.25
8	Leo Gutierrez	2016	4514.73	2017	5178.19
10	Ryan Fletcher	2016	9433.58	2017	8479.05
...
+-------+---------------------+------+----------+------+----------+

Now it is very easy for the CEO to see at a glance that while Evelyn, John, and Leo
increased their commissions from 2016 to 2017, Ryan’s commissions are down by around
$1,000 from 2016 to 2017. Maybe he needs some coaching from his manager?

And if the CEO comes back and wants a filtered list showing just those salespersons
whose sales went down from year to year, we can simply add the following to the end of
our <cte_query> section:

AND CUR.total < PREV.total;

An equivalent analytical query using derived tables would be much larger and not
nearly as readable and concise.

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

15

Comparing Individuals Against Their Group
One annoying issue with using subqueries is when you have to copy and paste them
multiple times in your query. These duplicated FROM (SELECT ...) statements are prime
locations for errors, especially when something changes and you need to update every
single one of them. CTEs provide a way to eliminate this duplication. A given <cte_body>
is defined once and tied to a single <cte_name>. Whenever you need it, you just reference
the <cte_name>, and if something needs to be updated, you just have to update the
<cte_body> in one place.

Using the same base CTE as from the previous example, we can modify the
SELECT statement after it to easily perform a different kind of analytical query, one that
traditionally would have used duplicated FROM (SELECT...) statements. This time,
instead of comparing salespersons to their own performance from one year to the next,
we’ll compare them to all salespersons. In particular, in his next company-wide email, the
CEO wants to give a shout-out to all of the salespersons who made at least 2 percent of the
total commissions earned by all salespersons in the entire company during 2017.

WITH commissions_year AS (
 SELECT
 employees.id AS sp_id,
 employees.name AS salesperson,
 YEAR(commission_date) AS year,
 SUM(commission_amount) AS total
 FROM
 commissions LEFT JOIN employees
 ON commissions.salesperson_id = employees.id
 GROUP BY
 sp_id, year
)
SELECT *
FROM
 commissions_year C1
WHERE
 total > (SELECT
 0.02*SUM(total)
 FROM
 commissions_year C2
 WHERE
 C2.year = C1.year
 AND C2.year = 2017)
ORDER BY
 total DESC;

The <cte_body> for commissions_year is unchanged from our previous example, so
there’s no need to go over it. The difference is all in the <cte_query> section. Our SELECT
statement looks at individual totals that make up at least 2 percent of the total of all
commissions for the 2017 year, then orders everything DESC so the top earner is on top.

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

16

Doing this sort of query in the traditional way would mean each FROM in the
<cte_query> section would be a copy-pasted FROM (SELECT...) statement.

If you’ve been following along with the examples, the output of the preceding code
looks like the following:

+-------+------------------+------+----------+
| sp_id | salesperson | year | total |
+-------+------------------+------+----------+
116	Christian Reeves	2017	13856.74
69	Luis Vaughn	2017	12570.95
128	Stephanie Dawson	2017	12253.44
38	Dorothy Anderson	2017	12010.91
78	Louis Santiago	2017	11423.48
131	Rene Gibbs	2017	11147.38
121	Christina Terry	2017	10979.07
53	Jennifer Moore	2017	10967.64
114	Veronica Boone	2017	10651.10
41	Terrance Reese	2017	10219.33
132	Alan Carroll	2017	10066.97
34	Bobby French	2017	9928.69
105	Alonzo Page	2017	9782.69
66	Kathryn Barnes	2017	9433.56
106	Bradley Black	2017	9387.77
118	Deborah Peterson	2017	9265.96
79	Rafael Sandoval	2017	9055.54
+-------+------------------+------+----------+

Let’s give a round of applause to the members of the 2017 2 Percent Club!

Translating Subqueries into CTEs
Let’s switch gears and talk about the process for taking an existing query and translating
it into a CTE. It is fairly simple. To illustrate this, here’s a query that is equivalent to our
query from the previous example, but instead of using a CTE, it uses subqueries in the
form of two identical FROM (SELECT...) statements:

SELECT *
FROM (
 SELECT
 employees.id AS sp_id,
 employees.name AS salesperson,
 YEAR(commission_date) AS year,
 SUM(commission_amount) AS total
 FROM
 commissions LEFT JOIN employees
 ON commissions.salesperson_id = employees.id

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

17

 GROUP BY
 sp_id, year
) AS C1
WHERE
 total > (SELECT
 0.02*SUM(total)
 FROM (
 SELECT
 employees.id AS sp_id,
 employees.name AS salesperson,
 YEAR(commission_date) AS year,
 SUM(commission_amount) AS total
 FROM
 commissions LEFT JOIN employees
 ON commissions.salesperson_id = employees.id
 GROUP BY
 sp_id, year
) AS C2
 WHERE
 C2.year = C1.year
 AND C2.year = 2017)
ORDER BY
 total DESC;

Because of the duplicated FROM (SELECT...) statements, this query is 33 lines
long, as opposed to the 25-line CTE that does the same thing. An eight-line difference
isn’t much, but more-complex queries could include five, seven, eleven, or even more
duplicated subqueries, causing an almost exponential increase in the size of the query.
This could quickly turn into a maintenance nightmare if something in the underlying
table(s) changes and we need to update the query.

To convert a query with duplicated subqueries into a CTE, there are only three steps
(four if you need to repeat the process for additional duplicated subqueries):

 1. Locate the first occurrence of the derived table query and
copy it above the SELECT line, wrapping it in WITH <cte_name>
AS (and then an ending).

 2. Replace that first occurrence of the subquery with whatever
we put as the <cte_name>.

 3. Go through the rest of the query and find the additional
identical subqueries and replace them with <cte_name>
as well.

 4. (Optional) Repeat the process for any other duplicated
subqueries in your query, if any.

Not every query will be a perfect fit for this process, but many queries are.

Chapter 2 ■ NoN-reCursive CommoN table expressioNs

18

Summary
In this chapter, we expanded upon the examples from the previous chapter and went
through a couple more-substantial examples that illustrated how CTEs are superior to
subqueries, particularly in how they help us avoid duplicated subqueries that are hard to
modify and maintain. We then finished with a discussion of how to take a query that uses
subqueries and convert it into a query that uses CTEs instead.

To round out the CTE section of this book, the next chapter will cover what I think is
the most exciting part of CTEs—recursion.

19© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_3

CHAPTER 3

Recursive Common Table
Expressions

Recursion is a very useful technique in computer science. Recursive algorithms are well
suited for navigating data structures such as trees, where items contain other items that
may also contain items, and graphs, which track connections or routes between items.
SQL has historically done a poor job with these.

Oracle attempted to add recursive support to SQL in the 1980s with their non-
standard CONNECT BY syntax, but this has now been superseded, improved upon,
and standardized in the official SQL standard, version SQL99, with recursive CTEs.
Implementations of this standard started appearing in various databases, such as Oracle
and SQL Server, starting around 2007, with MariaDB and MySQL finally catching up and
getting them about ten years after that.

In simple terms, a recursive CTE is a CTE that refers to itself in its <cte_body>. Having
a CTE refer to itself might seem complicated, but once you get the hang of it, it isn’t bad,
and by using recursion there are a lot of cool things you can do. This chapter will provide
examples showing some of the things you can do with recursive CTEs.

Before We Begin
As with the other chapters, the examples in this chapter utilize sample data. For this
chapter, we’ll be using two tables, one called tudors and another called routes. The
tudors table can be created with the following query:

CREATE TABLE tudors (
 id serial primary key,
 name VARCHAR(100) NOT NULL,
 father BIGINT(20),
 mother BIGINT(20)
);

https://doi.org/10.1007/978-1-4842-3120-3_3

Chapter 3 ■ reCursive Common table expressions

20

The data is in a CSV file called bartholomew-ch03-tudors.csv. It can be loaded with
a query similar to the following (assuming the file is on the computer running MariaDB or
MySQL server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch03-tudors.csv'
 INTO TABLE tudors
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

The routes table can be created with the following query:

CREATE TABLE routes (
 id serial primary key,
 departing VARCHAR(100) NOT NULL,
 arriving VARCHAR(100) NOT NULL
);

The data is in a CSV file called bartholomew-ch03-routes.csv. It can be loaded with
a query similar to the following (assuming the file is on the computer running MariaDB or
MySQL server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch03-routes.csv'
 INTO TABLE routes
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

 ■ Note see the “before We begin” section of Chapter 1 for extra information about
loading the files on Windows and working around issues with secure_file_priv.

We’re now ready to begin.

Recursive CTE Syntax
The syntax for recursive CTE queries is similar to that for non-recursive CTEs, with a
couple differences. Here’s the basic syntax:

WITH RECURSIVE <cte_name> AS (
 <anchor>
 UNION [ALL]
 <recursive>
)
<cte_query>

http://dx.doi.org/10.1007/978-1-4842-3120-3_1

Chapter 3 ■ reCursive Common table expressions

21

Right away, you’ll notice the introduction of the RECURSIVE keyword. This must be
included for recursive CTEs in MariaDB and MySQL. This keyword is not required for
recursive CTEs in other databases, such as Oracle and SQL Server.

The other difference from non-recursive CTEs is that the <cte_body> is split into two
parts, with a UNION or UNION ALL separating the two. The first part is the <anchor>. It is
a non-recursive query similar to the <cte_body> of a non-recursive CTE. Then, after the
UNION or UNION ALL, there is the recursive part. This part will contain references to the
<cte_name>, which is what makes the CTE recursive, so we’ll call this part <recursive> for
simplicity.

Adding Numbers
The biggest thing to keep in mind when getting started with recursive CTEs is that the way
recursion actually works might not be exactly how we would expect it to work.

We can illustrate this by working through a good, if artificial, example of how
recursive CTEs work: adding numbers together. Suppose we want to add all of the
numbers from 1 through 100 together. Figuring it out by hand with 1 + 2 + 3 + 4 + ...
+ 100 would be very tedious. It would be much better to have a recursive loop that does
the repetitive parts for me. This example has the benefit of not requiring us to create any
tables. Don’t worry, we’ll get to our tudors and routes tables later in the chapter.

To get us started adding our numbers together, we want a loop that does the
following:

 1. Takes the current number and adds it to the current total

 2. Adds 1 to the current number

 3. Repeats until the current number equals 100

To start things out, we’ll want to have two columns—one for the counter keeping
track of the current number and another for the total. We’ll call these Count and Total,
respectively, and we’ll start from zero. The simplest way to express this in SQL is like so:

SELECT
 0 AS Count,
 0 AS Total

This will be our <anchor>, the point we start from.
Now, we need to add 1 to Count and add the current Count to the Total. This will be

our <recursive> part. Here it is in SQL:

SELECT
 Count + 1,
 Total + Count

Chapter 3 ■ reCursive Common table expressions

22

By adding a WITH RECURSIVE TotalSum AS part to the front, a UNION ALL between
the two sample queries, a FROM to refer to our <cte_name>, a WHERE clause so we know
when the CTE will finish, and lastly a simple SELECT * FROM <cte_name> as our output,
we get a CTE query that looks like the following:

WITH RECURSIVE TotalSum AS (
 SELECT
 0 AS Count,
 0 AS Total
 UNION ALL
 SELECT
 Count + 1,
 Total + Count
 FROM TotalSum
 WHERE Count <= 100
)
SELECT * FROM TotalSum;

This looks reasonable, but when we run this query, things don’t look exactly right:

+-------+-------+
| Count | Total |
+-------+-------+
0	0
1	0
2	1
3	3
4	6
5	10
...	
96	4560
97	4656
98	4753
99	4851
100	4950
101	5050
+-------+-------+

The Count column looks fine, until we get to the end when it stops at 101 instead of
100 like we wanted. Also, while the Total column ends up with the correct answer, 5050,
it’s confusing because at the beginning when Count is 1, Total is still equal to 0, and at the
end when Count is 101, the total of 5050 is after adding the final 100, not after adding 101.

This behavior can be explained with an understanding of how the database
is performing the UNION ALL between the <anchor> and <recursive> parts of our
TotalSum CTE.

Chapter 3 ■ reCursive Common table expressions

23

First, when we begin, Count and Total are both set to 0, and the first line of our
output reflects that:

+-------+-------+
| Count | Total |
+-------+-------+
| 0 | 0 |
+-------+-------+

We then do a UNION ALL against this table with our Count + 1 and Total + Count
expressions. Count + 1 = 0 + 1 = 1, but Total + Count = 0 + 0 = 0, because when the
value of Count is calculated, the value of Count is being pulled from the previous output,
not the expression one line above that adds 1 to Count. The UNION ALL is only looking at
the previous row of output, and in that row, Count = 0. So, our second line of output may
look wrong, but from the database’s perspective, it is completely accurate:

+-------+-------+
| Count | Total |
+-------+-------+
| 1 | 0 |
+-------+-------+

The fix then, is pretty simple. When calculating the Total column, we add one
to it just like we do to the Count column. With this change, we should also change the
WHERE Count <= 100 to WHERE Count < 100 because by the time Count actually reaches
100 we’re already done. With those modifications, our recursive CTE now looks like the
following:

WITH RECURSIVE TotalSum AS (
 SELECT
 0 AS Count,
 0 AS Total
 UNION ALL
 SELECT
 Count + 1,
 Total + Count + 1
 FROM TotalSum
 WHERE Count < 100
)
SELECT * FROM TotalSum;

Chapter 3 ■ reCursive Common table expressions

24

The output of this version looks much better, exactly what we would expect:

+-------+-------+
| Count | Total |
+-------+-------+
0	0
1	1
2	3
3	6
4	10
5	15
...	
96	4656
97	4753
98	4851
99	4950
100	5050
+-------+-------+

The key takeaway from this exercise is to remember that the <recursive> part after
a UNION or UNION ALL is looking at the previously retrieved or calculated row, not the
current row, when making its calculations.

Calculating Fibonacci Numbers
Another interesting application of recursion is to calculate the Fibonacci sequence. In
this series of numbers, every new number in the sequence is calculated as the sum of the
previous two. Because the sequence relies on two numbers, we must define two; we can
choose either 0 and 1, or 1 and 1. For this example, we’ll go with the former and call them
Current and Next. A simple bit of SQL that does this for our <anchor> part is:

SELECT
 0 AS Current,
 1 AS Next

For our <recursive> part, our loop needs to do the following:

 1. Move Current to Next.

 2. Calculate the new Next by adding Current + Next.

 3. Repeat until we say stop.

The math part is straightforward:

SELECT
 Next AS Current,
 Current + Next AS Next

Chapter 3 ■ reCursive Common table expressions

25

Putting both together, with an upper limit set at 1000 and a simple SELECT * FROM
<cte_name> as our output, we get the following:

WITH RECURSIVE fibonacci AS (
 SELECT
 0 AS Current,
 1 AS Next
 UNION ALL
 SELECT
 Next AS Current,
 Current + Next AS Next
 FROM fibonacci
 WHERE Next < 1000
)
SELECT * FROM fibonacci;

The output of this recursive CTE looks like this:

+---------+------+
| Current | Next |
+---------+------+
0	1
1	1
1	2
2	3
3	5
5	8
8	13
13	21
21	34
34	55
55	89
89	144
144	233
233	377
377	610
610	987
987	1597
+---------+------+

As with the previous example, this result is probably not exactly what we want.
Instead of a simple Fibonacci sequence, we have parallel series, with the Current and
Next columns off by one in sequence order. The reason for this, again, relates to how the
<recursive> part is calculated.

Chapter 3 ■ reCursive Common table expressions

26

When we start, Current = 0 and Next = 1. That is the first row in our output:

+---------+------+
| Current | Next |
+---------+------+
| 0 | 1 |
+---------+------+

In our first run through the <recursive> part, we first move the value of Next (1) to
Current so that for the following row, Current will be equal to 1. We then set Next to
Current + Next of the initial row, or 0 + 1, or 1. So, for the second row, both Current
and Next are equal to 1:

+---------+------+
| Current | Next |
+---------+------+
| 1 | 1 |
+---------+------+

The loop now repeats, and in the <recursive> part we move the value of Next from
the second row to Current. So, for the third row it will still be 1. Then, we set the value of
Next to the second-row values of Current + Next, or 1 + 1, or 2. So, for the third row the
values are:

+---------+------+
| Current | Next |
+---------+------+
| 1 | 2 |
+---------+------+

This process repeats until our WHERE condition is met, which happens when the loop
looks at the 17th row, with the side effect being that we get output beyond our 1000 limit
because until that point the value of Next was always less than that.

To get the output we want—a single column containing a Fibonacci sequence where
the highest number is less than 1000—you can probably guess what we have to do: we
simply SELECT the Current column from our CTE instead of selecting all columns. We can
rename it to further improve the output:

WITH RECURSIVE fibonacci AS (
 SELECT
 0 AS Current,
 1 AS Next
 UNION ALL
 SELECT
 Next AS Current,
 Current + Next AS Next
 FROM fibonacci
 WHERE Next < 1000
)
SELECT Current AS fibonacci_series FROM fibonacci;

Chapter 3 ■ reCursive Common table expressions

27

Now, the output of our fibonacci CTE looks like this:

+------------------+
| fibonacci_series |
+------------------+
| 0 |
| 1 |
| 1 |
| 2 |
| 3 |
| 5 |
| 8 |
| 13 |
| 21 |
| 34 |
| 55 |
| 89 |
| 144 |
| 233 |
| 377 |
| 610 |
| 987 |
+------------------+

Some additional things we could do here include setting up a counter to track which
position of the Fibonacci sequence we are at, and maybe using that as our limiter instead
of the actual Fibonacci value we are at. For example, we could modify our CTE and
calculate the Fibonacci sequence to 100 places.

Looking Up Ancestors in a Tree
Using recursive CTEs to solve math problems, as in the previous two examples, or even
creating a recursive CTE Sieve of Eratosthenes, can be fun little diversions, but they aren’t
often practical in the real world. So, let’s move away from those and tackle some examples
that you might actually run into. We’ll start with using the tudors table.

This table contains data on the Tudor monarchs of England— you know, Henry
VIII, Elizabeth I, Bloody Mary, those guys. There are four columns: id, name, father, and
mother. The father and mother columns, if populated, point to the records for the father
and mother of the person in question, like you would expect.

The data starts with Elizabeth I and then contains several generations back, as well
as some of her cousins, aunts, and uncles. Conveniently, her id is 1. Here’s the SQL to pull
up her record:

SELECT * FROM tudors
WHERE id = 1;

Chapter 3 ■ reCursive Common table expressions

28

The result looks like this:

+----+------------------------+--------+--------+
| id | name | father | mother |
+----+------------------------+--------+--------+
| 1 | Elizabeth I of England | 2 | 3 |
+----+------------------------+--------+--------+

To find her parents without using a CTE, there are many things we could do; for
example, here is one way using a simple JOIN:

SELECT
 elizabeth.id, elizabeth.name, tudors.id, tudors.name
FROM
 tudors AS elizabeth
 JOIN tudors ON
 tudors.id = elizabeth.father
 OR
 tudors.id = elizabeth.mother
WHERE elizabeth.id=1;

This query isn’t the easiest to read, but it’s not too bad. The result looks like this:

+----+------------------------+----+-----------------------+
| id | name | id | name |
+----+------------------------+----+-----------------------+
| 1 | Elizabeth I of England | 2 | Henry VIII of England |
| 1 | Elizabeth I of England | 3 | Anne Boleyn |
+----+------------------------+----+-----------------------+

This result gives us Elizabeth’s parents, but what if we want to pull up all of
Elizabeth’s ancestors: parents, grandparents, great-grandparents, and so on? This is the
type of query that recursive CTEs were made for.

For the <anchor> part of our query, we can use the query that just retrieves
Elizabeth’s record, and for the <recursive> part, we can use something that resembles our
JOIN-based query but makes more sense, syntactically:

WITH RECURSIVE elizabeth AS (
 SELECT * FROM tudors
 WHERE id = 1
UNION
 SELECT tudors.*
 FROM tudors, elizabeth
 WHERE
 tudors.id = elizabeth.father OR
 tudors.id = elizabeth.mother
)
SELECT * FROM elizabeth;

Chapter 3 ■ reCursive Common table expressions

29

Using a <cte_name> of elizabeth both does and doesn’t make sense. It makes sense
because for the first run through the loop we actually are looking for Elizabeth’s father
and mother. It doesn’t make sense for future runs of the loop, because on the second
pass through the loop we are looking for the parents of Henry VIII and Anne Boleyn,
Elizabeth’s grandparents, and for the third loop her great-grandparents, and so on.

However, for me at least, the name helped when writing the <recursive> part.
Thinking recursively is hard enough, so any advantage that can be found in naming CTEs
is a good thing.

The (truncated) result of this query looks like this:

+----+---------------------------------------+--------+--------+
| id | name | father | mother |
+----+---------------------------------------+--------+--------+
1	Elizabeth I of England	2	3
2	Henry VIII of England	4	5
3	Anne Boleyn	6	7
4	Henry VII of England	8	9
5	Elizabeth of York	10	11
6	Thomas Boleyn, 1st Earl of Wiltshire	12	13
7	Elizabeth Howard	14	15
8	Edmund Tudor, 1st Earl of Richmond	16	17
9	Margaret Beaufort	18	19
10	Edward IV of England	20	21
...
+----+---------------------------------------+--------+--------+

You’ll notice that for this recursive CTE there is a WHERE clause, like our previous
ones, but it doesn’t have a set stopping point like WHERE tudors.id < 100. So, how does
the CTE know when it is done? To find out, let’s walk through what the query is doing step
by step.

First, there is our <anchor>, and during the first pass its result is output. Then, the
<recursive> part looks for records where the father or mother fields match the id. Those
that it finds are joined to the result table.

The CTE then loops back and does the same search again, this time incorporating
the previous results in the UNION and ignoring records it finds that are already in the result
table. This process repeats until no new results are returned. That is the trigger for the
CTE to stop looping.

For our sample data, looping until nothing new is returned is no problem, as it only
loops a handful of times. But what if we are navigating an enormous tree of data? What’s
to prevent our query from looping endlessly?

The answer depends on whether you are using MariaDB or MySQL.
In MariaDB, as a final safety measure, there is a @@max_recursive_iterations

variable that governs the maximum number of loops the server will make before
stopping. You can show its current value with:

SHOW VARIABLES LIKE '%recursive%';

Chapter 3 ■ reCursive Common table expressions

30

The default setting is very high, 4294967295, which should be fine for almost all
queries, but it can be changed, like any other variable, if needed. Setting it to 0 disables it,
which should be done cautiously.

As of right now, there is no corresponding variable in MySQL. There, the only current
protection is to set @@max_statement_time to the maximum amount of time you will
allow a query to run until it should be killed.

Finding All Possible Destinations
Our last two examples in this chapter use the routes table. This table contains a list
of hypothetical train routes between various cities in North America. Each route has a
departing city and an arriving city. Between some cities there are two routes—one in each
direction. In other cities, the route only goes in one direction. Figure 3-1 shows all of the
routes and cities.

As you can see from looking at the routes, there are some loops in the paths. For
example, Raleigh to Atlanta to Miami to Raleigh.

Figure 3-1. All routes between all cities

Chapter 3 ■ reCursive Common table expressions

31

Let’s say we want to find out all of the destinations we can get to from Raleigh. How
would we do that using a CTE? Here’s a proposed set of steps:

 1. Look up all destinations from Raleigh.

 2. Take those results and look up all their destinations.

 3. Repeat until all destinations are found.

Step one looks to be perfect to use as our <anchor> part, with the other two steps
being in the <recursive> part. The obvious <anchor> is to SELECT every route departing
from Raleigh:

SELECT arriving FROM routes
WHERE departing='Raleigh';

This query gives us the following output:

+------------+
| arriving |
+------------+
| Washington |
| Atlanta |
| Miami |
+------------+

For the <recursive> part of our CTE, we need to SELECT records with routes that have
those cities as departing cities. We can do this by looking for arrivals from cities returned
by our <anchor> as the initial departing cities and repeating the process until we have a
list of all possible destinations.

Here’s everything as a recursive CTE named destinations:

WITH RECURSIVE destinations AS (
 SELECT arriving
 FROM routes
 WHERE departing='Raleigh'
 UNION
 SELECT routes.arriving
 FROM destinations, routes
 WHERE
 destinations.arriving=routes.departing
)
SELECT * FROM destinations;

Chapter 3 ■ reCursive Common table expressions

32

The results returned by this CTE are:

+------------+
| arriving |
+------------+
| Washington |
| Atlanta |
| Miami |
| Chicago |
| Raleigh |
| New York |
| Toronto |
+------------+

As expected, the only city we can’t get to from Raleigh is Houston. In fact, nobody
can get to Houston by train because there’s no path to Houston, only a single path out of
Houston. We should lay some track and fix that.

Besides the absence of Houston, there are a couple things to note about this result.
First is that Raleigh itself appears in the output, and the second is how the CTE was smart
enough to not loop endlessly.

What provides closure to our CTE and prevents these loops from running until we
hit @@max_recursive_iterations or @@max_statement_time is our use of UNION instead
of UNION ALL. When UNION sees a duplicated result it ignores it, so once all possible cities
have been located, the only cities being returned will be ones it has already seen, and so
the CTE terminates.

What about the inclusion of Raleigh? Well, if you refer back to Figure 3-1, you’ll see
that from Raleigh there are several paths that lead back to Raleigh. All of the paths leaving
Raleigh have paths that return to Raleigh; for example, Raleigh to Miami to Raleigh. There
is also a big circle of Raleigh to Atlanta to Chicago to New York to Washington back to
Raleigh. Because Raleigh wasn’t in our list to begin with, it is included in the result like
any other valid destination, but only once. Any additional times Raleigh appears in new
results it will be ignored.

If we want to remove Raleigh from our result, we can simply change the final line to:

SELECT * FROM destinations WHERE arriving!='Raleigh';

We could, alternatively, move Raleigh to the first position of our results, which makes
a bit more sense logically. After all, the first location we can get to is where we are right
now. To do this, we need to cheat a little and tell the parser that we’re selecting Raleigh as
an arrival even though we’re actually selecting it as departing city. The SQL looks like this:

SELECT departing AS arriving
 FROM routes
 WHERE departing='Raleigh';

Chapter 3 ■ reCursive Common table expressions

33

Running this query by itself gives us the following:

+----------+
| arriving |
+----------+
| Raleigh |
| Raleigh |
| Raleigh |
+----------+

This result is expected because there are three routes from Raleigh to other cities. We
can now plug this into our CTE to get the following:

WITH RECURSIVE destinations AS (
 SELECT departing AS arriving
 FROM routes
 WHERE departing='Raleigh'
 UNION
 SELECT routes.arriving
 FROM destinations, routes
 WHERE
 destinations.arriving=routes.departing
)
SELECT * FROM destinations;

And the result is:

+------------+
| arriving |
+------------+
| Raleigh |
| Washington |
| Atlanta |
| Miami |
| Chicago |
| New York |
| Toronto |
+------------+

This still gives us Raleigh in the output, but at least it is the first result instead of it
confusingly showing up in the middle of the results.

Finding All Possible Paths
Finding all of the possible destinations we can get to from Raleigh is nice, but what about
finding all of the possible paths we could take to get from Raleigh to every city we can get
to from Raleigh?

Chapter 3 ■ reCursive Common table expressions

34

Here are the steps to do this:

 1. Look up destinations from our starting point.

 2. Find destinations from that point and add them; UNION will
prevent duplicates.

 3. Repeat until all possible paths are found.

Because we want to start from Raleigh, for our <anchor> we need to do something
similar to what we did in the previous section and issue our SELECT in such a way that it
starts from Raleigh. Here’s a possible <anchor> candidate:

SELECT departing, arriving
FROM routes
 WHERE departing='Raleigh';

This gives us what we would expect:

+-----------+------------+
| departing | arriving |
+-----------+------------+
Raleigh	Washington
Raleigh	Atlanta
Raleigh	Miami
+-----------+------------+

Our <recursive> part is going to be trickier. We want to show the complete set of every
possible path, not just a list of end points. So, we therefore want to add any additions,
if any, to a given path to the end of an existing path with a separator in between. The
CONCAT() function was made for this sort of thing, and the departing column looks like
the column we will want to concat on, because that’s where our starting point, Raleigh, is.

After the first run-through of our <recursive> part, we should concat the departing
and arriving columns together as our new departing column, and then also include our
arriving column to use for the next run through the loop. We should end up with a result
that outputs something that looks like this:

+----------------------+------------+
| departing | arriving |
+----------------------+------------+
Raleigh > Washington	Washington
Raleigh > Atlanta	Atlanta
Raleigh > Miami	Miami
+----------------------+------------+

Actually, the departing column name doesn’t make sense, because it is holding our
path, not the initial departure city, so let’s call it path in our actual CTE.

Chapter 3 ■ reCursive Common table expressions

35

Are we now ready to actually write our CTE? Actually, not quite! There’s one other
issue we should solve first. Look again at Figure 3-1; what can we do to prevent silly
results like the following?

Raleigh > Washington > New York > Washington > Raleigh > Miami

This is a perfectly valid path, but it isn’t one that any sane person would take. If
we want to go from Raleigh to Miami, we would take that route; we would never go to
New York first then back through Raleigh to Miami. What can we do to prevent this?
The LOCATE() function provides an easy way. It searches a string for a given substring,
returning 0 if the substring is not found. So, all we need to do is add something like the
following to the WHERE clause of our <recursive> part:

LOCATE(routes.arriving, <cte_name>.paths)=0

We will, of course, replace <cte_name> with the actual name of our CTE.
Let’s try putting everything together, finally, into a CTE named full_routes:

WITH RECURSIVE full_routes AS (
 SELECT departing AS path, arriving
 FROM routes
 WHERE departing='Raleigh'
 UNION
 SELECT
 CONCAT(full_routes.path, ' > ',
 routes.arriving),
 routes.arriving
 FROM full_routes, routes
 WHERE
 full_routes.arriving=routes.departing
 AND
 LOCATE(routes.arriving, full_routes.path)=0
) SELECT * FROM full_routes;

This CTE looks reasonable, but when we run it, the result is obviously wrong:

+---+------------+
| path | arriving |
+---+------------+
Raleigh	Washington
Raleigh	Atlanta
Raleigh	Miami
Raleigh > Chicago	Chicago
Raleigh > New York	New York
Raleigh > Miami	Miami
Raleigh > Chicago > New York	New York
Raleigh > New York > Washington	Washington
Raleigh > New York > Toronto	Toronto
Raleigh > Chicago > New York > Washington	Washington
Raleigh > Chicago > New York > Toronto	Toronto
+---+------------+

Chapter 3 ■ reCursive Common table expressions

36

What is going on here? Where are our expected Raleigh > Washington, Raleigh >
Atlanta, and Raleigh > Miami paths? And there’s no way to get directly from Raleigh to
Chicago, as you need to go through Washington first. Actually, the same is true with all of
the paths; they’re all missing one stop.

If we look closer at the logic of our recursive CTE, the reason becomes clear.
During the first run-through of our <recursive> part, our WHERE clause is looking for

cities in the arriving column that also appear in the departing column of the routes
table. During the initial loop through the result set, our recursive CTE has access to
only what was returned by our <anchor> part, the three cities Washington, Atlanta, and
Miami. As we asked it to, our recursive CTE first looks for a row in the routes table that
has Washington in the departing column, and the first result it finds is the Washington to
Chicago entry. It then dutifully concats Chicago to the value in the path column, which is
Raleigh, as a new result row. That’s why the fourth row of our output is:

+-------------------+----------+
| path | arriving |
+-------------------+----------+
| Raleigh > Chicago | Chicago |
+-------------------+----------+

To fix this, we need to somehow set our <anchor> so that our starting point is just
Raleigh. Then, during the first run-through it will correctly concat Washington, Atlanta,
and Miami to the path. What if instead of our <anchor> returning Raleigh’s actual
connections, we just select the departing column again and tell the CTE that it is the
arriving column? It seems a bit cheaty, but the SQL for it is perfectly valid:

SELECT departing AS path, departing AS arriving
 FROM routes
 WHERE departing='Raleigh';

Importantly, the result of this query contains a result that should work perfectly fine
as our <anchor>:

+---------+----------+
| path | arriving |
+---------+----------+
Raleigh	Raleigh
Raleigh	Raleigh
Raleigh	Raleigh
+---------+----------+

After putting our new <anchor> into our full_routes CTE, it now looks like this:

WITH RECURSIVE full_routes AS (
 SELECT departing AS path, departing AS arriving
 FROM routes
 WHERE departing='Raleigh'
 UNION

Chapter 3 ■ reCursive Common table expressions

37

 SELECT
 CONCAT(full_routes.path, ' > ',
 routes.arriving),
 routes.arriving
 FROM full_routes, routes
 WHERE
 full_routes.arriving=routes.departing
 AND
 LOCATE(routes.arriving, full_routes.path)=0
) SELECT * FROM full_routes;

And the result is what we would expect:

+---+------------+
| path | arriving |
+---+------------+
Raleigh	Raleigh
Raleigh > Washington	Washington
Raleigh > Atlanta	Atlanta
Raleigh > Miami	Miami
Raleigh > Atlanta > Chicago	Chicago
Raleigh > Washington > New York	New York
Raleigh > Atlanta > Miami	Miami
Raleigh > Atlanta > Chicago > New York	New York
Raleigh > Washington > New York > Toronto	Toronto
Raleigh > Atlanta > Chicago > New York > Washington	Washington
Raleigh > Atlanta > Chicago > New York > Toronto	Toronto
+---+------------+

The first result is a little silly, with both the path and arriving columns as Raleigh,
but the rest of the results are exactly what we would expect. And, actually, the next time I
need to take the train from Raleigh to Washington, I should take the scenic route and get
there via Atlanta, Chicago, and New York.

Just for fun, I removed the LOCATE part of the WHERE clause to see how many possible
non-duplicated combinations there were. On MySQL 8.0.2 DMR it returned an error:

ERROR 1406 (22001): Data too long for column 'path' at row 231

However, on MariaDB 10.2 it returned all of the possible combinations. There are a
lot. Appropriately, for Dragon Ball Z fans, it’s over 9000!

9117 to be exact.

Chapter 3 ■ reCursive Common table expressions

38

Summary
In this chapter, we explored how recursive CTEs differ from non-recursive CTEs. We
explored a few of their many uses:

•	 Solving recursive math problems

•	 Walking a genealogical tree to match children with their ancestors

•	 Finding all possible routes between two points

There are many more uses, but we’re going to switch gears for the next three
chapters so that we can explore the second major topic of this book, Window Functions.
We’ll then return to CTEs and combine them with Window Functions in Chapter 7,
because, why not?

http://dx.doi.org/10.1007/978-1-4842-3120-3_7

PART II

Window Functions

41© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_4

CHAPTER 4

Basics of Window Functions

The first three chapters have all been about CTEs. For this and the next two chapters,
we are switching gears and will be exploring Window Functions. Like CTEs, these were
introduced in MariaDB 10.2 and MySQL 8.0 (as of 8.0.2 DMR).

At its core, a Window Function is like any other function; it operates on the data
in the database to manipulate it in a useful way. The primary syntactic difference
is that Window Functions are used with a custom SQL keyword, OVER. Practically,
they can do things other functions can only dream of. This chapter will familiarize
you with the basic syntax and provide a quick overview of all the various Window
Functions.

What Is a function?
In general computer programming terms, a function can be thought of as a subprogram
of your main program. Its logic is isolated from the main program and is referenced or
called whenever it is needed.

MariaDB and MySQL contain many useful built-in functions that can do a variety
of things. There are functions like LOWER, CONCAT, SUBSTR, and others, which help
manipulate strings of text. There are functions such as ABS, LOG, ROUND, and others,
which help perform various mathematical operations. There are also aggregate
functions like SUM, AVG, MAX, and others, which help perform actions on groups of
rows. And there are other functions for working with dates, XML, JSON, GIS, and
other types of data.

Window Functions are a new class of function. When you use a regular function,
you have access to the data from the current row and produce one result for each row
in the result set. When you use an aggregate function, you can compute one result
from the group of rows in the result set. Window Functions can do both of these
tasks. They are computed over a range of rows, but they can also give you results for
each row.

https://doi.org/10.1007/978-1-4842-3120-3_4

Chapter 4 ■ BasiCs of WindoW funCtions

42

Window Function Syntax
As mentioned previously, the keyword to look for to identify Window Functions is OVER.
The basic syntax for calling a Window Function within a SELECT statement is:

<function_name>([<expression>]) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)
...
[<WINDOW_clause>]

Inside the OVER clause are three possible optional elements, <partition_definition>,
<order_definition>, and <frame_definition>. We’ll cover each of them separately.

The opening and closing parentheses after OVER are mandatory, unless the optional
WINDOW clause is used, even if no partition, order, or frame definitions are set. See the
“WINDOW Clause Syntax” section for more information.

Partition Definition Syntax
The <partition_definition> section syntax looks like the following:

PARTITION BY <expression>[{,<expression>}...]

The <partition_definition> section is supported by all Window Functions. Its
purpose is to restrict the rows a given function operates on to a specific set within the
full result set.

The <expression> part can be any valid expression such as would be used in the
GROUP BY section of a traditional query. Multiple expressions can be specified, separated
by commas.

Order Definition Syntax
The <order_definition> section syntax looks like the following:

ORDER BY <expression> [ASC|DESC] [{,<expression>}...]

The <order_definition> section is supported by all Window Functions. Its purpose is
to set the order of the results as seen by the function itself as the Window Function runs
prior to any outside ORDER BY clause in the full query.

The <expression> part can be any valid SQL expression as used in the ORDER BY
section of a traditional query. Results can also be ordered in ascending (ASC) or
descending (DESC) order. Multiple expressions can be specified, separated by commas.

Chapter 4 ■ BasiCs of WindoW funCtions

43

Frame Definition Syntax
The <frame_definition> section syntax looks like the following:

{ROWS|RANGE}
 {<frame_start>|<frame_between>}

The <frame_definition> section is not supported by all Window Functions. Its
purpose is to define a frame that is then used by the function to compute a result on the
rows in the frame. The frame moves with the current row. In addition to its own defined
boundaries, the frame is further bounded by the <partition_definition> section.

The <frame_definition> section is the most powerful feature of Window Functions.
The next chapter contains several fully worked examples that show how frame-moving
works.

There are two basic parts to a <frame_definition>. First, you specify either ROWS or
RANGE, and you then specify the boundary of your frame using a <frame_start> or <frame_
between> section.

A <frame_start> section contains one of the following:

•	 UNBOUNDED PRECEDING

•	 <expression> PRECEDING

•	 CURRENT ROW

A <frame_between> section is a little more complicated. It contains:

BETWEEN <frame_boundary1> AND <frame_boundary2>

The <frame_boundary1> and <frame_boundary2> sections can each contain one of
the following:

•	 <frame_start>

•	 UNBOUNDED FOLLOWING

•	 <expression> FOLLOWING

If this seems a little complicated, don’t worry. After a little experience with writing
<frame_definition> sections, it becomes second nature.

Another way of looking at the entire syntax of a <frame_definition> all at once is by
using Extended Backus Naur Form (EBNF) notation. In EBNF notation, the syntax looks
like this:

frame_definition ::= (ROWS | RANGE) (
 CURRENT ROW
 | (UNBOUNDED | 'value_expr') PRECEDING
 | (BETWEEN (
 UNBOUNDED PRECEDING
 | CURRENT ROW
 | 'value_expr' (PREDEDING|FOLLOWING)

Chapter 4 ■ BasiCs of WindoW funCtions

44

)
 AND (
 UNBOUNDED FOLLOWING
 | CURRENT ROW
 | 'value_expr' (PRECEDING | FOLLOWING)
)
)
)

There are online tools, such as those found at http://bottlecaps.de/rr/ui, that
can convert EBNF into a railroad diagram that even better visualizes the syntax. Figure 4-1
shows a railroad diagram for the complete <frame_definition> syntax.

Figure 4-1. Railroad diagram of the <frame_definition> syntax

http://bottlecaps.de/rr/ui

Chapter 4 ■ BasiCs of WindoW funCtions

45

Railroad diagrams are useful because you can just follow the paths from one element
to the next, like a train traveling along railroad tracks, choosing the branch you want to
follow when the path forks.

Putting it all together, here are some examples of valid <frame_definition> sections:

ROWS UNBOUNDED PRECEDING
ROWS CURRENT ROW
ROWS 3 PRECEDING
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
RANGE BETWEEN 1 PRECEDING AND CURRENT ROW
ROWS BETWEEN CURRENT ROW AND 5 PRECEDING

 ■ Tip some combinations may seem possible, based on the rules in the syntax definition,
but are not allowed. for example, using a <frame_definition> like this:

ROWS BETWEEN 3 FOLLOWING AND CURRENT ROW

will result in the following error:

ERROR 4014 (HY000): Unacceptable combination of window frame bound
specifications

the solution here is to just switch the two boundary definitions around and do this instead:

ROWS BETWEEN CURRENT ROW AND 3 FOLLOWING

See the entry on the SUM() function later in this chapter for a brief look at how
window frames work in practice. We’ll also be exploring them in greater depth in the
following chapters.

WINDOW Clause Syntax
An alternative to the OVER definition in a Window Function is to use a WINDOW clause
between the FROM and ORDER BY clauses of our SELECT statement. The syntax of a WINDOW
clause is as follows:

WINDOW <window_name> AS (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)[, <window_name> AS (...)]...

Chapter 4 ■ BasiCs of WindoW funCtions

46

When using a WINDOW clause, replace the () after OVER in your Window Function,
including everything that would have been inside it, with <window_name>.

Here’s a hypothetical example:

SELECT
 office, time, amount,
 SUM(amount)OVER window1
FROM my_table
 WINDOW window1 AS (
 PARTITION BY office
 ORDER BY time)
ORDER BY office,time;

The purpose of the WINDOW clause is to help keep the part of the SELECT statement
between SELECT and FROM cleaner and easier to read. It also helps avoid duplication in
cases where multiple Window Functions are used that have similar OVER clauses.

If multiple <window_name> sections are defined, the later ones are able to inherit
from previous ones. For example:

WINDOW
 window1 AS (PARTITION BY id),
 window2 AS (window1 ORDER BY office),
 window3 AS (window2 ROWS UNBOUNDED PRECEDING)

So window2 will effectively be:

(PARTITION BY id ORDER BY office)

And window3 will effectively be:

(
 PARTITION BY id
 ORDER BY office
 ROWS UNBOUNDED PRECEDING
)

The order of how you add <window_name> sections must follow the rules for OVER
clauses. First, the <partition_definition>, then the <order_definition>, and last of all the
<frame_definition>.

It’s also worth noting that a WINDOW subclause can only inherit a maximum of
one other WINDOW subclause in its definition. For example, you may logically think the
following would be valid:

WINDOW
 window1 AS (PARTITION BY id),
 window2 AS (ORDER BY office),
 window3 AS (window1 window2 ROWS UNBOUNDED PRECEDING)

Chapter 4 ■ BasiCs of WindoW funCtions

47

But trying to do it would give you an error message.
See Chapter 6 for an example of using the WINDOW clause to simplify a query.

Window Functions Reference
To familiarize you with all of the available Window Functions in MariaDB and MySQL,
the rest of this chapter will go over each of them and their syntax.

This section is meant to be used as a reference when looking up a specific Window
Function. It is not necessarily meant to be read straight through, though you can (and
probably should) do that at least once.

Some Window Functions don’t exist in any form as a non-Window Function, so they
are wholly new. Others already existed in MariaDB or MySQL prior to the introduction of
Window Functions as aggregate functions, like AVG. So, while you may have seen and used
them before, they have a special Window Function form when called with an OVER clause.
The functions are listed alphabetically to make them easier to look up.

Window Functions are available in MariaDB 10.2 and in MySQL 8.0 as of the MySQL
8.0.2 DMR.

AVG()
The AVG aggregate function can be used as a Window Function if the OVER clause is
included. The syntax is:

AVG(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)

The AVG function returns the average of <expres sion> as viewed by the OVER clause.

BIT_AND()
The BIT_AND aggregate function can be used as a Window Function if the OVER clause is
included. The syntax is:

BIT_AND(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)

The BIT_AND function returns the bitwise AND of the bits of <expression> as viewed by
the OVER clause.

http://dx.doi.org/10.1007/978-1-4842-3120-3_6

Chapter 4 ■ BasiCs of WindoW funCtions

48

BIT_OR()
The BIT_OR aggregate function can be used as a Window Function if the OVER clause is
included. The syntax is:

BIT_OR(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)

The BIT_OR function returns the bitwise OR of the bits of <expression> as viewed by
the OVER clause.

BIT_XOR()
The BIT_XOR aggregate function can be used as a Window Function if the OVER clause is
included. The syntax is:

BIT_XOR(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)

The BIT_XOR function returns the bitwise XOR (exclusive OR) of the bits of
<expression> as viewed by the OVER clause.

COUNT()
The COUNT aggregate function can be used as a Window Function if the OVER clause is
included. The syntax is:

COUNT(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)

The COUNT function returns a count of the number of non-NULL values of
<expression> as viewed by the OVER clause.

CUME_DIST()
The syntax for the CUME_DIST function is:

CUME_DIST() OVER (
 [<partition_definition>]
 [<order_definition>]
)

Chapter 4 ■ BasiCs of WindoW funCtions

49

The CUME_DIST function returns the cumulative distribution of a row. The value is
calculated using the following formula:

(number of rows <= current row) / (total rows)

For example, when using CUME_DIST on the values '1,2,2,3,4' the results would be
as follows:

+-------+--------------+
| value | cume_dist |
+-------+--------------+
1	0.2000000000
2	0.6000000000
2	0.6000000000
3	0.8000000000
4	1.0000000000
+-------+--------------+

DENSE_RANK()
The syntax for the DENSE_RANK function is:

DENSE_RANK() OVER (
 [<partition_definition>]
 [<order_definition>]
)

The DENSE_RANK function displays a number for a given row, beginning with 1, and
following the <order_definition> and <partition_definition> sections. Identical values are
given the same result. Unlike the RANK function, the DENSE_RANK function does not skip
numbers when it resumes numbering results following giving identical values to the same
result.

For example, when using DENSE_RANK on the values '1,2,2,3,4' the results
would be:

+-------+------------+
| value | dense_rank |
+-------+------------+
1	1
2	2
2	2
3	3
4	4
+-------+------------+

Chapter 4 ■ BasiCs of WindoW funCtions

50

Because DENSE_RANK doesn’t skip values, the result ends up being identical to the
value column.

FIRST_VALUE()
The syntax for the FIRST_VALUE function is:

FIRST_VALUE(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
)

The FIRST_VALUE function returns the first row of the results as viewed by the
OVER clause.

LAG()
The syntax for the LAG function is:

LAG(<expression>[,<offset>][,<default>]) OVER (
 [<partition_definition>]
 [<order_definition>]
)

The LAG function returns the value of <expression> offset by the given <offset>
amount before the current row. If the value is NULL, it can optionally return a <default>
value instead. If <offset> is not specified, it defaults to 1.

The <default> argument is only available on MySQL 8.0.2 or later; it is not yet
available in MariaDB as of MariaDB 10.2.8.

LAST_VALUE()
The syntax for the LAST_VALUE function is:

LAST_VALUE(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
)

The LAST_VALUE function returns the last row of the results as viewed by the OVER
clause.

Chapter 4 ■ BasiCs of WindoW funCtions

51

LEAD()
The syntax for the LEAD function is:

LEAD(<expression>[,<offset>][,<default>]) OVER (
 [<partition_definition>]
 [<order_definition>]
)

The LEAD function returns the value of <expression> offset by the given <offset>
amount after the current row. If the value is NULL, it can optionally return a <default>
value instead. If <offset> is not specified it defaults to 1.

The <default> argument is only available on MySQL 8.0.2 or later; it is not yet
available in MariaDB as of MariaDB 10.2.8.

NTH_VALUE()
The syntax for the NTH_VALUE function is:

NTH_VALUE(<expression>, <nth_expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
)

The NTH_VALUE function returns the value that is the nth row of the result as defined
in the OVER clause.

For example, if we have a table with two columns, key and a, which have the
following values:

+-----+------+
| key | a |
+-----+------+
1	0
2	0
3	0
4	1
5	1
6	1
7	2
8	2
9	2
10	2
11	2
+-----+------+

Chapter 4 ■ BasiCs of WindoW funCtions

52

if we call NTH_VALUE(key, a + 1) OVER (PARTITION BY a ORDER BY key)AS a1 the
result is as follows:

+-----+------+------+
| key | a | a1 |
+-----+------+------+
1	0	1
2	0	1
3	0	1
4	1	NULL
5	1	5
6	1	5
7	2	NULL
8	2	NULL
9	2	9
10	2	9
11	2	9
+-----+------+------+

Because we are partitioning on column a, the function evaluates based only on the
rows in that partition. So, at row 4, the offset a + 1 equals 2, but because the function
hasn’t processed row 5 yet there is no value for the second row of that partition, so the
value returned is NULL. The same thing happens with the third partition, only in that
case the <nth_expression> equals 3 so it takes until the third row is processed before a
non-NULL result is returned.

NTILE
The syntax for the NTILE function is:

NTILE (<ntile_expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
)

This function returns an integer indicating the group a certain row is in. The number
of groups is specified by the <ntile_expression> part, and the numbering starts at 1.
Ordered rows in the partition are divided into the specified number of groups, with each
group being as equal in size to the other groups as possible.

For example, when using NTILE(2) on the values '1,2,2,3,4' the results would be:

+-------+----------+
| value | ntile(2) |
+-------+----------+
1	1
2	1
2	1
3	2
4	2
+-------+----------+

Chapter 4 ■ BasiCs of WindoW funCtions

53

And the result using NTILE(3) on those same values would be:

+-------+----------+
| value | ntile(3) |
+-------+----------+
1	1
2	1
2	2
3	2
4	3
+-------+----------+

PERCENT_RANK()
The syntax for the PERCENT_RANK function is:

PERCENT_RANK() OVER (
 [<partition_definition>]
 [<order_definition>]
)

The PERCENT_RANK function returns the relative percent rank of a given row. The
formula used to calculate the percent rank is:

(rank - 1) / (number of rows in the window or partition - 1)

For example, when using PERCENT_RANK on the values '1,2,2,3,4' the results
would be:

+-------+--------------+
| value | percent_rank |
+-------+--------------+
1	0.0000000000
2	0.2500000000
2	0.2500000000
3	0.7500000000
4	1.0000000000
+-------+--------------+

RANK()
The syntax for the RANK function is:

RANK() OVER (
 [<partition_definition>]
 [<order_definition>]
)

Chapter 4 ■ BasiCs of WindoW funCtions

54

The RANK function displays a number for a given row, beginning with 1, and following
the <order_definition> and <partition_definition> sections. Identical values are given the
same result, with numbering resuming at the next non-identical result, skipping values.

For example, when using RANK on the values '1,2,2,3,4' the results would be:

+-------+------+
| value | rank |
+-------+------+
1	1
2	2
2	2
3	4
4	5
+-------+------+

Because RANK skips values, the result skips the third rank and jumps to the fourth
when it resumes ranking after the two rows where value=2.

ROW_NUMBER()
The syntax for the ROW_NUMBER function is:

ROW_NUMBER() OVER (
 [<partition_definition>]
 [<order_definition>]
)

The ROW_NUMBER() function is similar to the RANK() and DENSE_RANK() functions, but
where those functions will assign the same number to matching rows based on ORDER BY,
the ROW_NUMBER function always increases the count for every row.

For example, when using ROW_NUMBER on the values '1,2,2,3,4' the results
would be:

+-------+------------+
| value | row_number |
+-------+------------+
1	1
2	2
2	3
3	4
4	5
+-------+------------+

Chapter 4 ■ BasiCs of WindoW funCtions

55

SUM()
The SUM aggregate function can be used as a Window Function if the OVER clause is
included. The syntax is:

SUM(<expression>) OVER (
 [<partition_definition>]
 [<order_definition>]
 [<frame_definition>]
)

The SUM function returns the sum of the rows from <expression> as viewed by the
OVER clause.

As an example of how Window Functions like SUM work with <frame_definition>
sections, here is a brief example. Given a table, my_table, with a column, value, that
contains the values 1,2,2,3,4, we can use the SUM function to easily add the current row
with the previous two rows, if any, like so:

SELECT value,
 SUM(value) OVER (
 ORDER BY value
 ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW
) AS sum
FROM my_table
ORDER BY value;

The result of the preceding query is:

+-------+------+
| value | sum |
+-------+------+
1	1
2	3
2	5
3	7
4	9
+-------+------+

Let’s step through the result line by line.
For line 1, the value is 1, and there are no previous rows, so the frame the SUM function

is looking at only contains the first line of the result, which is 1.
For line 2, the value is 2, and there is one previous row, so the frame the SUM function

is looking at only contains lines 1 and 2, or (1+2), or 3.
For line 3, the value is 2, and there are two previous rows, so the frame the SUM function

is looking at contains lines 1, 2, and 3 of the result, or 1+2+2, or 5.

Chapter 4 ■ BasiCs of WindoW funCtions

56

For line 4, the value is 3, and there are three previous rows, but the frame only
contains the current row and the previous two rows, so the lines the SUM function is
looking at contains lines 2, 3, and 4, or (2+2+3), or 7.

Line 5 is calculated the same way as for line 4, but the values being added together
are (2+3+4), or 9.

Summary
In this chapter, we covered the basic syntax of Window Functions, breaking them down
into their component parts and then going through each part separately. We also went
through all of the available Window Functions, describing each one and what they are
used for, with simple examples where appropriate to illustrate how they work. We’ll cover
more examples in the following chapters, including demonstrating frames and how they
are used.

57© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_5

CHAPTER 5

Recognizing Opportunities
for Window Functions

The previous chapter was an overview of what Window Functions are, with details on the
syntax. It’s time to put that knowledge into practice. This chapter expands upon that with
some simple yet practical examples that illustrate some of the types of problems Window
Functions are good at solving. We’ll cover organizing results, maintaining running totals,
and ranking results.

 ■ Caution If you are using MySQL 8.0, you must be on at least version 8.0.2. This was
the version that introduced Window Functions. Previous versions of MySQL, including MySQL
8.0.0 and 8.0.1, do not have Window Functions.

All versions of MariaDB 10.2 and higher have Window Functions.

Partitioning and Ordering Results
One of the most important purposes of a database is to organize the mountains of data
that surround us. The <partition_definition> and <order_definition> sections of the OVER
clause exist to help us do just that. We covered their syntax in the previous chapter, but
some practical demonstrations of how these sections work is probably more useful than a
dry syntax diagram on the path to mastering Window Functions.

Using the employees table from Chapter 1, here is a simple example of the ROW_
NUMBER Window Function. First, we’ll call the function with none of the optional sections
in the OVER clause:

SELECT
 ROW_NUMBER() OVER() AS rnum,
 name, title, office
FROM employees
WHERE office='Cleveland' OR office='Memphis'
ORDER BY title;

https://doi.org/10.1007/978-1-4842-3120-3_5
http://dx.doi.org/10.1007/978-1-4842-3120-3_1

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

58

The result is a little unexpected:

+------+------------------+-------------+-----------+
| rnum | name | title | office |
+------+------------------+-------------+-----------+
1	Eileen Morrow	dba	Cleveland
3	Douglas Williams	dba	Memphis
8	Carol Monreal	dba	Cleveland
14	Elva Garcia	dba	Memphis
5	Rosemary Bowers	manager	Cleveland
12	Richard Delgado	manager	Memphis
2	Julius Ramos	salesperson	Cleveland
7	Tammy Castro	salesperson	Memphis
9	Joyce Beck	salesperson	Memphis
10	Alonzo Page	salesperson	Cleveland
11	Tina Jefferson	salesperson	Cleveland
13	Leo Gutierrez	salesperson	Cleveland
15	Joann Smith	salesperson	Memphis
4	Janet Edwards	support	Memphis
6	Louise Lewis	support	Cleveland
+------+------------------+-------------+-----------+

Looking at this result, you might be confused as to why the rnum column is out of
order. In fact, your result may have a different rnum column entirely. It may be in order
from 1 to 15, or it may have a completely different order. What is going on? The out-of-
order rnum column happens because Window Functions are computed after the other
parts of the SELECT statement have been fetched (the name, title, and office columns
in our example) and after any WHERE, HAVING, or GROUP BY clauses, but before the final
ORDER BY title clause. In fact, without an <order_definition> section in the OVER clause,
Window Functions do not guarantee any particular ordering.

Ideally, we want the rnum column to always match the end output of the ORDER BY
title clause. To ensure this happens, we add an <order_definition> section to the OVER
clause like so:

SELECT
 ROW_NUMBER()
 OVER (
 ORDER BY title
) AS rnum,
 name, title, office
FROM employees
WHERE office='Cleveland' OR office='Memphis'
ORDER BY title;

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

59

Now both the rnum column and the final output are guaranteed to be ordered by the
contents of the title column, so the result will always make logical sense:

+------+------------------+-------------+-----------+
| rnum | name | title | office |
+------+------------------+-------------+-----------+
1	Eileen Morrow	dba	Cleveland
2	Douglas Williams	dba	Memphis
3	Carol Monreal	dba	Cleveland
4	Elva Garcia	dba	Memphis
5	Rosemary Bowers	manager	Cleveland
6	Richard Delgado	manager	Memphis
7	Julius Ramos	salesperson	Cleveland
8	Tammy Castro	salesperson	Memphis
9	Joyce Beck	salesperson	Memphis
10	Alonzo Page	salesperson	Cleveland
11	Tina Jefferson	salesperson	Cleveland
12	Leo Gutierrez	salesperson	Cleveland
13	Joann Smith	salesperson	Memphis
14	Janet Edwards	support	Memphis
15	Louise Lewis	support	Cleveland
+------+------------------+-------------+-----------+

Between the Cleveland and Memphis offices there are 15 employees. What if we
want to number employees in separate offices, well, separately?

This is the purpose of the <partition_definition> section. It allows us to group our
results. With a <partition_definition> section in the OVER clause, the ROW_NUMBER function
will do its thing to each group independently. So, we’ll add PARTITION BY office to the
OVER clause like so:

SELECT
 ROW_NUMBER() OVER (
 PARTITION by office
 ORDER BY title
) AS rnum,
 name, title, office
FROM employees
WHERE office='Cleveland' OR office='Memphis'
ORDER BY title;

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

60

Unfortunately, the output is not as useful as we might have supposed:

+------+------------------+-------------+-----------+
| rnum | name | title | office |
+------+------------------+-------------+-----------+
1	Eileen Morrow	dba	Cleveland
1	Douglas Williams	dba	Memphis
2	Carol Monreal	dba	Cleveland
2	Elva Garcia	dba	Memphis
3	Rosemary Bowers	manager	Cleveland
3	Richard Delgado	manager	Memphis
4	Julius Ramos	salesperson	Cleveland
4	Tammy Castro	salesperson	Memphis
5	Joyce Beck	salesperson	Memphis
5	Alonzo Page	salesperson	Cleveland
6	Tina Jefferson	salesperson	Cleveland
7	Leo Gutierrez	salesperson	Cleveland
6	Joann Smith	salesperson	Memphis
7	Janet Edwards	support	Memphis
8	Louise Lewis	support	Cleveland
+------+------------------+-------------+-----------+

As with other results in this chapter, yours may be slightly different from this. But
the <partition_definition> section is working perfectly here. The first Cleveland and first
Memphis employees in the result are both given a row number of 1. The second ones 2,
and so on. There’s a little confusion further down in the results because Cleveland has
more salespersons than Memphis, but the correct row numbers are all there. We just need
to fix the output so that it is more understandable.

This is another instance that plainly shows that Window Functions do not guarantee
ordering. The solution in our case is to just add the office column, not in the OVER
clause, but to the final ORDER BY clause, before title, like so:

SELECT
 ROW_NUMBER() OVER (
 PARTITION by office
 ORDER BY title
) AS rnum,
 name, title, office
FROM employees
WHERE office='Cleveland' OR office='Memphis'
ORDER BY office,title;

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

61

The output now looks like this:

+------+------------------+-------------+-----------+
| rnum | name | title | office |
+------+------------------+-------------+-----------+
1	Eileen Morrow	dba	Cleveland
2	Carol Monreal	dba	Cleveland
3	Rosemary Bowers	manager	Cleveland
4	Julius Ramos	salesperson	Cleveland
5	Alonzo Page	salesperson	Cleveland
6	Tina Jefferson	salesperson	Cleveland
7	Leo Gutierrez	salesperson	Cleveland
8	Louise Lewis	support	Cleveland
1	Douglas Williams	dba	Memphis
2	Elva Garcia	dba	Memphis
3	Richard Delgado	manager	Memphis
4	Tammy Castro	salesperson	Memphis
5	Joyce Beck	salesperson	Memphis
6	Joann Smith	salesperson	Memphis
7	Janet Edwards	support	Memphis
+------+------------------+-------------+-----------+

Success! Each office’s employees are numbered independently, and the numbering
is all in order.

Maintaining a Running Total
Another common database task is to maintain a running total of something. This could
be an account balance, the number of items sold over a period of months, or a host of
other numeric values.

The commissions table we used back in Chapter 2 can be used to demonstrate this.
It tracks commissions from salespersons in our fictional company. The table records the
salesperson’s ID number, an ID number for the commission, the commission amount,
and the date of the commission.

A brief sample of the data can be seen with the following query:

SELECT
 commission_date AS date,
 salesperson_id as sp,
 commission_id as id,
 commission_amount as amount
FROM commissions
ORDER BY sp,date;

http://dx.doi.org/10.1007/978-1-4842-3120-3_2

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

62

The complete output is quite long, but here’s the first ten rows of output:

+------------+----+-------+--------+
| date | sp | id | amount |
+------------+----+-------+--------+
2016-01-21	3	15165	429.50
2016-02-09	3	15231	142.37
2016-02-12	3	15253	184.74
2016-03-22	3	15428	169.62
2016-04-01	3	15476	363.53
2016-05-10	3	15644	358.49
2016-07-11	3	15901	149.64
2016-11-25	3	16465	452.04
2017-01-25	3	16726	145.68
2017-03-10	3	16927	216.16
...
+------------+----+-------+--------+

To create a running commissions total, we need to take the first amount for a
row matching a given salesperson and output it in a column. We’ll call this column
total. Then, for each subsequent row we add the previous total to the current row’s
commission and make that the new total and so on until we come to a new salesperson_
id, whereupon we will start the process over. At least, that’s my way of thinking through
the problem. Actually solving this using traditional SQL is a bit different. For example, one
traditional SQL way of solving the problem is to use a self-join and the SUM function like
so:

SELECT
 commission_date AS date, salesperson_id as sp,
 commission_id as id, commission_amount as amount,
 (SELECT SUM(commission_amount)
 FROM commissions AS c2
 WHERE c2.salesperson_id = c1.salesperson_id AND
 c2.commission_date <= c1.commission_date) AS total
FROM commissions AS c1
ORDER BY sp,date;

Inside our main query we have a subquery that looks for every row where the
salesperson matches and the date is less than or equal to the date of the current row.
For those rows that match the criteria, it sums them all up and outputs the answer in
the total column. So, for the row with the oldest date stamp the only other row that it
will match is itself, so the total column is the same as the commission_amount column
for that row. For the row with the second oldest date stamp, the rows that match will be
the oldest row and itself, so those are what are summed together into the total column.
The process continues until all the rows that match a given salesperson_id have been
fetched, and then the process restarts with the next salesperson.

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

63

The result is several thousand lines long, but here’s the first few rows:

+------------+-----+-------+--------+----------+
| date | sp | id | amount | total |
+------------+-----+-------+--------+----------+
2016-01-21	3	15165	429.50	429.50
2016-02-09	3	15231	142.37	571.87
2016-02-12	3	15253	184.74	756.61
2016-03-22	3	15428	169.62	926.23
2016-04-01	3	15476	363.53	1289.76
2016-05-10	3	15644	358.49	1648.25
2016-07-11	3	15901	149.64	1797.89
2016-11-25	3	16465	452.04	2249.93
2017-01-25	3	16726	145.68	2395.61
2017-03-10	3	16927	216.16	2611.77
2017-04-05	3	17046	277.36	2889.13
2017-04-11	3	17072	151.36	3040.49
2017-05-29	3	17272	368.20	3408.69
...
+------------+-----+-------+--------+----------+

All in all, it works, and you could even say it works well. It’s easy to confirm that the
total column is accurately keeping a running total and that when the salesperson_id
changes the count starts over.

But the process for how we get at the total is awkward. If this were a paper ledger, we
wouldn’t continuously re-add everything that came before; we would simply add the new
value to the old total.

Also, all of the adding and re-adding our query is doing means we’re constantly
going out and fetching new groups of rows to sum together. All of this fetching and re-
fetching takes time. Indexes can help, especially on large tables, but using a subquery like
this doesn’t seem like the right way to go about solving our original task of displaying a
running total.

A Window Function can do this job much better, and it does it in a more natural
way. First off, like our previous Window Function example where we were numbering
employees, we need to use both the <partition_definition> and <order_definition>
sections in our OVER clause. We’ll PARTITION BY salesperson_id and ORDER BY
commission_date to match the final ORDER BY clause of the query.

We then need to tell the Window Function what rows to add together for our total
column. Aggregate Window Functions, like SUM, can use moving window frames to
quickly identify the data they need to process. For this we’ll use a <frame_definition> that
goes from the beginning of our result set, or UNBOUNDED PRECEDING, to the CURRENT ROW,
so our full <frame_definition> section will be:

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

64

To put all of this in place, we take the previous query and replace the subquery part
with our SUM Window Function, like so:

SELECT
 commission_date AS date, salesperson_id as sp,
 commission_id as id, commission_amount as amount,
 SUM(commission_amount)
 OVER (
 PARTITION BY salesperson_id
 ORDER BY commission_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS total
FROM commissions AS c1
ORDER BY sp,date;

The result of this query is the same as we saw for the subquery version, so there’s no
need to show it again.

When this query is run, on the first row the window frame is just the first row. As the
query continues, the frame expands, and unlike subqueries, it doesn’t need to refetch any
data; it just looks at the data that is already there. Then, when the frame crosses our partition
boundary, it resets to just the current row and starts growing again. Instead of hundreds or
thousands of trips back and forth to the database to fetch the information, which is what
happens with a subquery, the Window Function only needs to make one pass.

This performance difference is so dramatic it can even be seen on the relatively small
commissions table. On my laptop, processing the whole 3,000+ rows in the table takes
2.56 seconds to run the self-join version of the query. Contrast that with the Window
Function version, which completes instantly. Two and a half seconds isn’t much, but as
table size increases the speed advantage of Window Functions keeps growing. One of
the MariaDB engineers performed some tests on similar, but much larger, tables using a
similar query. Table 5-1 shows the results. All times are in seconds.

Without an index on the table, the Window Function version of the query always
wins by an order of magnitude over the self-join version. With an index on the table, the
self-join version of the query can keep up with the Window Function version for a while,
but after the table gets above a million rows, the Window Function takes the lead and is
almost twice as fast.

Table 5-1. Window Functions Versus Self-joins

Rows in Table Self-join Self-join with Index Window Function

10,000 0.29 0.01 0.02

100,000 2.91 0.09 0.16

1,000,000 29.10 2.86 3.04

10,000,000 346.30 90.97 43.17

100,000,000 4357.20 813.20 514.24

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

65

 ■ Note Window Functions, because of how they operate, don’t use indexes at all. They
don’t even look for them. This can be considered a side benefit to using Window Functions. If
you can eliminate expensive self-joins and subqueries by using Window Functions, you may
not need to go through the time, effort, and overhead of creating and maintaining indexes.

Ranking Rows in a Result Set
Another common analytical query is to find the top N numbers of something, be it the top
five selling items, the top ten salaries, or the top three scorers in the youth basketball league.

Using our commissions table again, it is trivial to use SQL to find the top five
commissions earned. One way to do it is with the following SQL (with LIMIT 5 to keep the
output small):

SELECT
 id, salesperson_id AS sid,
 commission_id AS cid,
 commission_amount AS amount,
 commission_date AS date
FROM commissions
ORDER BY commission_amount DESC
LIMIT 5;

The result of this query looks like this:

+------+-----+-------+--------+------------+
| id | sid | cid | amount | date |
+------+-----+-------+--------+------------+
2897	121	17970	499.97	2017-11-03
2269	105	17340	499.90	2017-06-15
1916	131	16987	499.55	2017-03-22
2680	66	17756	499.43	2017-09-18
1610	40	16688	499.41	2017-01-16
+------+-----+-------+--------+------------+

We could improve upon this by doing a JOIN with the employees table to display the
name of the employee and their office alongside the commission amount. The following
SQL does just that:

SELECT
 commissions.commission_date AS date,
 commissions.commission_id AS cid,
 employees.name AS salesperson,
 employees.office AS office,
 commissions.commission_amount AS amount

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

66

FROM commissions LEFT JOIN employees
 ON (commissions.salesperson_id = employees.id)
ORDER BY amount DESC
LIMIT 5;

The result looks like the following:

+------------+-------+-----------------+-----------+--------+
| date | cid | salesperson | office | amount |
+------------+-------+-----------------+-----------+--------+
2017-11-03	17970	Christina Terry	Wichita	499.97
2017-06-15	17340	Alonzo Page	Cleveland	499.90
2017-03-22	16987	Rene Gibbs	Dallas	499.55
2017-09-18	17756	Kathryn Barnes	Dallas	499.43
2017-01-16	16688	Joyce Beck	Memphis	499.41
+------------+-------+-----------------+-----------+--------+

This is all well and good, and we now know who received the top commissions
company-wide, but what if we want to find out the top two commissions from each office?
It seems like a reasonable extension of the previous query, but it causes the complexity
of our query to jump by quite a bit. There are probably other ways to do this, but here’s a
query that does it:

SELECT * FROM (
 SELECT
 commissions.commission_date AS date,
 commissions.commission_id AS cid,
 employees.name AS salesperson,
 employees.office AS office,
 commissions.commission_amount AS amount
 FROM commissions LEFT JOIN employees
 ON (commissions.salesperson_id = employees.id)
) AS c1
WHERE (
 SELECT count(c2.amount)
 FROM (
 SELECT
 commissions.commission_id AS cid,
 commissions.salesperson_id AS sp_id,
 employees.office AS office,
 commissions.commission_amount AS amount
 FROM commissions LEFT JOIN employees
 ON (commissions.salesperson_id = employees.id)
) AS c2
 WHERE

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

67

 c1.cid != c2.cid
 AND
 c1.office = c2.office
 AND
 c2.amount > c1.amount) < 2
ORDER BY office,amount desc;

There’s a lot going on here, but basically we have our original query, some derived
tables, and a subquery in our WHERE clause that uses the COUNT function to count the
number of commissions in the commissions table that are from the same office AND where
the commission amount is greater than the current row, and then limits those results to
the top two. That probably stretches the definition of the word basically a bit too far. It’s
quite frankly a bit of a mess, and it’s hard for mere humans to read and parse it. On the
positive side, it does work. The result of this convoluted query is as follows:

+------------+-------+------------------+-------------+--------+
| date | cid | salesperson | office | amount |
+------------+-------+------------------+-------------+--------+
2017-09-22	17776	Jack Green	Chicago	497.83
2017-05-12	17215	Deborah Peterson	Chicago	497.29
2017-06-15	17340	Alonzo Page	Cleveland	499.90
2017-05-25	17261	Alonzo Page	Cleveland	499.29
2017-03-22	16987	Rene Gibbs	Dallas	499.55
2017-09-18	17756	Kathryn Barnes	Dallas	499.43
2017-01-16	16688	Joyce Beck	Memphis	499.41
2017-03-02	16890	Tammy Castro	Memphis	497.58
2017-12-11	18116	Terrance Reese	Minneapolis	499.31
2017-04-05	17047	Ruby Boyd	Minneapolis	495.98
2017-08-30	17674	Dorothy Anderson	Nauvoo	497.91
2017-12-11	18115	Dorothy Anderson	Nauvoo	468.99
2017-01-20	16706	John Conner	Raleigh	499.33
2016-08-26	16082	Randal Hogan	Raleigh	499.07
2017-11-03	17970	Christina Terry	Wichita	499.97
2016-10-31	16345	Christina Terry	Wichita	497.83
+------------+-------+------------------+-------------+--------+

Apart from the aforementioned readability issues, the primary downside to this
query is that it is slow, especially if there are no indexes on the table. On my laptop, for
example, this query takes over ten seconds to run. And even if there were indexes in
place, there would be the overhead of creating and maintaining the indexes, which could
be problematic if our tables are updated frequently.

A much better and faster way to get at the result we’re after is to use Window
Functions, specifically the RANK function. To start things off, we can simply take our
original query with the JOIN and add the RANK function to it.

Because we want to find out the top two commissions per office, inside the OVER
clause we will ORDER BY the commission_amount column from the commissions table and
PARTITION BY the office column from the employees table. We’ll call the result of the
RANK function rnk, to keep things simple.

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

68

Lastly, to get the ordering correct, we’ll ORDER BY office and our new rnk column.
Putting all of that together, we end up with some SQL that looks like the following:

SELECT
 RANK() OVER (
 PARTITION BY employees.office
 ORDER BY commissions.commission_amount DESC
) AS rnk,
 commissions.commission_date AS date,
 commissions.commission_id AS cid,
 employees.name AS salesperson,
 employees.office AS office,
 commissions.commission_amount AS amount
FROM commissions LEFT JOIN employees
 ON (commissions.salesperson_id = employees.id)
ORDER BY office,rnk;

I’ve removed the LIMIT from this query, so it will output every row in the
commissions table, which isn’t what we want, but by showing everything we can verify
that each row is ranked and partitioned by office correctly. So, we’re close.

Here’s what the first few rows of the output look like:

+-----+------------+-------+------------------+---------+--------+
| rnk | date | cid | salesperson | office | amount |
+-----+------------+-------+------------------+---------+--------+
1	2017-09-22	17776	Jack Green	Chicago	497.83
2	2017-05-12	17215	Deborah Peterson	Chicago	497.29
3	2016-11-09	16394	Jack Green	Chicago	496.97
4	2016-04-05	15486	Donald Carter	Chicago	496.60
5	2017-08-03	17566	Jason Wright	Chicago	494.83
6	2016-04-19	15549	Deborah Peterson	Chicago	494.42
7	2016-10-18	16285	Jack Green	Chicago	493.74
8	2017-06-13	17324	Jason Wright	Chicago	490.94
9	2016-03-24	15441	Frances Griffin	Chicago	488.31
10	2017-10-19	17900	Evelyn Alexander	Chicago	488.17
...
+-----+------------+-------+------------------+---------+--------+

Our task now is to limit the output to the top two results from each office. A simple
solution would be to add a WHERE rnk <=2 clause that looks for a rank of 2 or less. A quick
modification of our query and we get:

SELECT
 RANK() OVER (
 PARTITION BY employees.office
 ORDER BY commissions.commission_amount DESC
) AS rnk,
 commissions.commission_date AS date,

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

69

 commissions.commission_id AS cid,
 employees.name AS salesperson,
 employees.office AS office,
 commissions.commission_amount AS amount
FROM commissions LEFT JOIN employees
 ON (commissions.salesperson_id = employees.id)
WHERE rnk <= 2
ORDER BY office,rnk;

However, when we try to run this new query we get the following error:

ERROR 1054 (42S22): Unknown column 'rnk' in 'where clause'

On the surface, this error is very confusing. We are referencing the rnk column in
both the WHERE and ORDER BY clauses, and they’re right next to each other. So, why does it
work in the ORDER BY clause and not in the WHERE clause? The reason is the same one we
saw before in the ROW_NUMBER example. It bears repeating here: Window Functions aren’t
computed until after any and all WHERE, HAVING, and GROUP BY clauses are finished. Once
they are, the function will run, and only then will the rnk column exist, so with the way
our query is written, only the ORDER BY clause can see it.

To solve our problem, we want the WHERE clause to be able to see the rnk column. So,
we need to somehow force the RANK function to run prior to our WHERE clause. A simple way
to do this is to use a derived table by taking our original query, everything from the initial
SELECT down to just before the WHERE clause, and stuff it all into a simple SELECT like so:

SELECT * FROM (
<original_query>
) AS ranks

For the AS ranks part, we could have used any name, since we don’t use or refer to
our derived table anywhere else. In this case, the name ranks seemed logical enough.

After adding our derived table wrapper, here’s our final query:

SELECT * FROM (
 SELECT
 RANK() OVER (
 PARTITION BY employees.office
 ORDER BY commissions.commission_amount DESC
) AS rnk,
 commissions.commission_date AS date,
 commissions.commission_id AS cid,
 employees.name AS salesperson,
 employees.office AS office,
 commissions.commission_amount AS amount
 FROM commissions LEFT JOIN employees
 ON (commissions.salesperson_id = employees.id)
) AS ranks
WHERE rnk <= 2
ORDER BY office,rnk;

ChAPTer 5 ■ reCognIzIng oPPorTunITIeS For WInDoW FunCTIonS

70

Now that our main query is operating as a derived table, the WHERE clause is able to
see the rnk column, and our output is as follows:

+-----+------------+-------+------------------+-------------+--------+
| rnk | date | cid | salesperson | office | amount |
+-----+------------+-------+------------------+-------------+--------+
1	2017-09-22	17776	Jack Green	Chicago	497.83
2	2017-05-12	17215	Deborah Peterson	Chicago	497.29
1	2017-06-15	17340	Alonzo Page	Cleveland	499.90
2	2017-05-25	17261	Alonzo Page	Cleveland	499.29
1	2017-03-22	16987	Rene Gibbs	Dallas	499.55
2	2017-09-18	17756	Kathryn Barnes	Dallas	499.43
1	2017-01-16	16688	Joyce Beck	Memphis	499.41
2	2017-03-02	16890	Tammy Castro	Memphis	497.58
1	2017-12-11	18116	Terrance Reese	Minneapolis	499.31
2	2017-04-05	17047	Ruby Boyd	Minneapolis	495.98
1	2017-08-30	17674	Dorothy Anderson	Nauvoo	497.91
2	2017-12-11	18115	Dorothy Anderson	Nauvoo	468.99
1	2017-01-20	16706	John Conner	Raleigh	499.33
2	2016-08-26	16082	Randal Hogan	Raleigh	499.07
1	2017-11-03	17970	Christina Terry	Wichita	499.97
2	2016-10-31	16345	Christina Terry	Wichita	497.83
+-----+------------+-------+------------------+-------------+--------+

The only task left now is to try to find out how best to reward these hardworking
salespeople. Maybe a gift certificate?

Summary
In this chapter, we explored how <partition_definition>, <order_definition>, and <frame_
definition> sections are often used in the OVER clause. We also got to see the ROW_NUMBER
and RANK Window Functions in practice, including how to work around some common
issues that arise when using them and other Window Functions.

In the next chapter, we’ll continue our exploration of Window Functions with a
deeper dive into using them to parse and generate graphs of real-world time-series
temperature data and analyze fruit sales across a chain of stores.

71© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_6

CHAPTER 6

Window Functions in Practice

This chapter contains several examples that demonstrate using Window Functions in
the real world. We’ll start with a demonstration of using them multiple times in the
same query to see how the WINDOW clause makes this simple and easy to read. Next, we’ll
explore using Window Functions to help us when we graph time-series data. Lastly, we’ll
use Window Functions to analyze sales data.

Before We Begin
The examples in this chapter utilize sample data you can use to follow along with the text
and experiment with. The first table used in this chapter is called beach, and it can be
created with the following query:

CREATE TABLE beach (
 day DATE,
 hour TIME,
 temp FLOAT
);

The data itself is in a CSV file called bartholomew-ch06-beach.csv and comes
from NOAA’s Automated Weather Observing System (AWOS). Lots of data is available
from them, and it can be accessed from https://www.ncdc.noaa.gov/data-access/
land-based-station-data/land-based-datasets/automated-weather-observing-
system-awos.

The data can be loaded with a query similar to the following (assuming the file is on
the computer running MariaDB server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch06-beach.csv'
 INTO TABLE beach
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

https://doi.org/10.1007/978-1-4842-3120-3_6
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-weather-observing-system-awos
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-weather-observing-system-awos
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-weather-observing-system-awos

Chapter 6 ■ WindoW FunCtions in praCtiCe

72

The second section of this chapter utilizes a table called fruitmart, which can be
created with the following query:

CREATE TABLE fruitmart (
 store TEXT,
 month DATE,
 fruit TEXT,
 sold INT
);

The data itself is in a CSV file called bartholomew-ch06-fruitmart.csv. It can
be loaded with a query similar to the following (assuming the file is on the computer
running MariaDB server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch06-fruitmart.csv'
 INTO TABLE fruitmart
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

 ■ Note see the “Before We Begin” section of Chapter 1 for extra information about
loading the files on Windows and working around issues with secure_file_priv.

We’re now ready to begin.

Working with Time-Series Data
The beach table contains temperature records for the year 1984 from Wrightsville Beach
in North Carolina, USA. The temperatures are in degrees Celsius.

We can SELECT a sample of this data, say from the first six days of June, to keep the
output brief, with the following query:

SELECT day, hour, temp
FROM beach
WHERE day BETWEEN '1984-06-01' AND '1984-06-06'
ORDER BY day,hour;

http://dx.doi.org/10.1007/978-1-4842-3120-3_1

Chapter 6 ■ WindoW FunCtions in praCtiCe

73

Figure 6-1 shows the output.

What’s missing from this result is any sort of analysis. We could rely on an external
package to take our raw data and do the analysis for us, but Window Functions allow us to
do a lot of the analyzing inside the mysql client.

Using Multiple Window Functions at Once
There are several Window Functions that can assist us in analyzing our data as we look for
trends. The AVG function can give us the average temperature over a set time period, the
MIN function can tell us what the lowest recorded temperature was, and the MAX function
can tell us what the maximum temperature was. If we PARTITION BY day to set our
frame to each whole day, our output will tell us the information we’re looking for, while
still showing us all of the individual temperatures (a trick that can’t be done easily using
regular aggregate functions).

Here’s a first attempt at the query:

SELECT day, hour, temp,
 AVG(temp) OVER (
 PARTITION BY day
 ORDER BY hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
) AS day_avg,
 MIN(temp) OVER (
 PARTITION BY day
 ORDER BY hour

Figure 6-1. Temperatures from June 1–6, 1984

Chapter 6 ■ WindoW FunCtions in praCtiCe

74

 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
) AS day_min,
 MAX(temp) OVER (
 PARTITION BY day
 ORDER BY hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
) AS day_max
FROM beach
WHERE day BETWEEN '1984-06-01' AND '1984-06-06'
ORDER BY day,hour;

This query works, but there are some issues, the first of which is the output. We’re
looking at temperatures, so there’s no need for us to have precision on our calculations
to 15 decimal points, but that is exactly what each of these functions does by default.
Figure 6-2 shows the output.

Apart from the averages for June 3, the rest of the results are too precise for our
needs, so as a first optimization of our query, let’s wrap our functions inside the ROUND
function, to round to just one decimal of precision, since that matches our original data.
Here’s our modified query:

SELECT day, hour, temp,
 ROUND (AVG(temp) OVER (
 PARTITION BY day
 ORDER BY hour

Figure 6-2. Output with default precision

Chapter 6 ■ WindoW FunCtions in praCtiCe

75

 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
),1) AS day_avg,
 ROUND (MIN(temp) OVER (
 PARTITION BY day
 ORDER BY hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
),1) AS day_min,
 ROUND (MAX(temp) OVER (
 PARTITION BY day
 ORDER BY hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
),1) AS day_max
FROM beach
WHERE day BETWEEN '1984-06-01' AND '1984-06-06'
ORDER BY day,hour;

Our query is getting a little too complicated for easy parsing by humans, but the
output, shown in Figure 6-3, looks much better.

Figure 6-3. Rounded results

Chapter 6 ■ WindoW FunCtions in praCtiCe

76

Now that we’ve dealt with the output, it’s time to see if we can make the query itself
look as nice. Luckily, we have the WINDOW clause to help us clean our query up. This clause
was introduced back in Chapter 4, but we haven’t used it yet. This is the perfect time to do
so. All of our OVER clauses are identical, so we can create one WINDOW clause and have all of
the OVER clauses just refer to it, like so:

SELECT day, hour, temp,
 ROUND (AVG(temp) OVER w1,1) AS day_avg,
 ROUND (MIN(temp) OVER w1,1) AS day_min,
 ROUND (MAX(temp) OVER w1,1) AS day_max
FROM beach
WHERE day BETWEEN '1984-06-01' AND '1984-06-06'
WINDOW
 w1 AS (
 PARTITION BY day
 ORDER BY day,hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
)
ORDER BY day,hour;

With the WINDOW clause in place the query is instantly more understandable. It is
especially easy now to see how the ROUND function wraps around our Window Functions.
And the output is the same. Win-win!

A side benefit of making the query more readable is that it becomes easier to extend
it by adding a second window definition to our WINDOW clause. For example, we can define
additional columns that give the min, max, and average temperatures over our entire
result set, like so:

SELECT day, hour, temp,
 ROUND (AVG(temp) OVER w1,1) AS day_avg,
 ROUND (MIN(temp) OVER w1,1) AS day_min,
 ROUND (MAX(temp) OVER w1,1) AS day_max,
 ROUND (AVG(temp) OVER w2,1) AS all_avg,
 ROUND (MAX(temp) OVER w2,1) AS all_max,
 ROUND (MIN(temp) OVER w2,1) AS all_min
FROM beach
WHERE day BETWEEN '1984-06-01' AND '1984-06-06'
WINDOW
 w1 AS (
 PARTITION BY day
 ORDER BY day,hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING

http://dx.doi.org/10.1007/978-1-4842-3120-3_4

Chapter 6 ■ WindoW FunCtions in praCtiCe

77

),
 w2 AS (
 ORDER BY day,hour
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
)
ORDER BY day,hour;

Keeping in mind that our result set is only six days, and that a month would be more
meaningful, the result is shown in Figure 6-4.

It would be nice if we could optimize our query to get rid of the duplicated <frame_
definition> sections in our w1 and w2 WINDOW definitions, but the syntax rules of ordering
in WINDOW definitions make this impossible.

Graphing Time-Series Results
The analysis that we’ve done so far is pretty good, but we’re still just looking at
numbers. This makes it hard to visualize trends over time. Maybe not so much when
we’re just looking at six days, but if we expand our query to cover a whole month, all
the numbers start to blur together, at least they do for me. A graph is a good way to
condense a large amount of data into something that can be understood at a glance.
The mysql command-line client program doesn’t have any graphing capabilities of
its own, but there are many external tools that can help us do this. One popular tool
is called gnuplot. It is readily available on Linux from your distribution’s package
repository, or for those on Windows it can be downloaded from the main gnuplot
website at http://gnuplot.info/.

Figure 6-4. Adding additional columns to the output

http://gnuplot.info/

Chapter 6 ■ WindoW FunCtions in praCtiCe

78

Before running the following examples, test your gnuplot installation to ensure it is
working properly. Refer to the gnuplot documentation for help, if needed.

The gnuplot program expects data to be in columns separated by whitespace (tabs
and/or spaces). To export our data to a file that gnuplot can read, we could simply add the
following line to any of our previous queries before the semicolon (;) :

INTO OUTFILE '/tmp/out.dat'

However, there are some downsides to this. One is if the secure_file_priv option
is enabled on your MariaDB or MySQL server, in which case you’re limited to writing files
to the directory configured. If you add the preceding line to a query and get the following
error, you’re affected:

ERROR 1290 (HY000): The MySQL server is running with the --secure-file-priv
option so it cannot execute this statement

In such a case you can either disable the option in your my.cnf or my.ini file and
restart your MySQL or MariaDB server, or direct your output to the configured directory.
You can see what directory is configured with the following command:

SHOW VARIABLES LIKE 'secure_file_priv';

Another issue with using INTO OUTFILE is that MySQL or MariaDB will refuse to
overwrite a file if it already exists. This is a safety measure, but it can be annoying to deal
with when you just want to quickly rerun a query after tweaking it a little.

A way around both of these limitations, and one which is especially helpful when
querying a database on an automated basis, is to call the mysql command-line client
from the shell, wrapping the query like this:

mysql -p --column-names=0 <database_name> -e "<query>" > /tmp/out.dat

Replace <database_name> with the name of the database the table is in, and replace
<query> with the actual query. In this example, we’re exporting our data to the file
/tmp/out.dat, but we could put it anywhere that is convenient on our server. It also has
the benefit, and also the danger, that every time it is run, the file we’re outputting to is
overwritten with the new result.

If you’re not familiar with it, the --column-names=0 flag removes the column
headings from the output. We don’t need them, and they will confuse gnuplot if they’re
included.

Let’s plot the data from our beach table. Here is a simple query that outputs all of the
temperatures from every day in our beach table:

SELECT day, hour, temp
FROM beach
ORDER BY day,hour
INTO OUTFILE '/tmp/out.dat';

Chapter 6 ■ WindoW FunCtions in praCtiCe

79

And here’s the same query as it might be run from the shell using the mysql
command-line client. It assumes the database, where all of the sample tables are, is
named apress:

mysql -p --column-names=0 apress -e "
 SELECT day, hour, temp
 FROM beach
 ORDER BY day,hour;
" > /tmp/out.dat

To keep the queries consistent, for the rest of this section we’ll use this variant of the
query in our examples.

Whichever method we use to get the results of our query into a file, we are now ready
to plot our data using gnuplot. After being started from the command-line shell, gnuplot
will show a gnuplot> prompt and will be ready to accept commands. We can enter the
following commands to create a graph:

set xdata time
set style data lines
set timefmt "%Y-%m-%d %H:%m:%s"
set format x "%b"
set xlabel "1984 Wrightsville Beach Temperatures"
set ylabel "Temperature in Degrees C"
set autoscale y
set xrange ["1984-01-01":"1984-12-31"]
plot "/tmp/out.dat" using 1:3 title "Temperature" with lines

Some of these commands, like xlabel and ylabel, which set the labels for the x- and
y-axes, are self-explanatory, others not so much. Documentation is built into gnuplot,
so if you are wondering about what any of the commands do, you can look them up. For
example, the following will show you the documentation for the set xrange command:

help set xrange

After the plot command, gnuplot will open a window with a graph of the data. It
should look similar to Figure 6-5.

Chapter 6 ■ WindoW FunCtions in praCtiCe

80

 ■ Note if we are running gnuplot on a remote server, we will need to tell it to export
our graph directly to a file. to do this, we can add the following two lines to our gnuplot
commands, before the plot line:

set terminal png size 640,480 enhanced

set output 'output.png'

With these two lines entered, after we run the plot line our graph will be output to a file
called output.png in our current working directory.

an alternative on Linux is to ssh to the remote database server with X11 forwarding enabled
using the -X flag, e.g., with ssh -X <remote_host>. this way, when running the plot
command, gnuplot will open the graph in a window.

Figure 6-5. 1984 Wrightsville Beach Temperatures

Chapter 6 ■ WindoW FunCtions in praCtiCe

81

Looking at the graph, there are a few interesting things to see. One is how in February
and October we’re missing some data, causing gaps in the graph. It is also easy to see
how temperatures from morning to evening vary, sometimes by quite a bit. However,
with all of the up and down movement of the lines, it’s hard to get a sense of the average
temperature at Wrightsville Beach over the course of the year. This is easy to do by using
the AVG Window Function to generate a smoother line. We can modify the original query
to include a new column, average, that looks at the current row, the previous ten rows,
and the following ten rows. The effect of this will smooth things out, like so:

mysql -p --column-names=0 apress -e "
SELECT day, hour, temp,
 AVG(temp) over (
 ORDER BY day,hour
 ROWS BETWEEN
 10 PRECEDING
 AND
 10 FOLLOWING
) AS average
FROM beach
ORDER BY day,hour;
" > /tmp/out.dat

We can then launch gnuplot and run the following commands to generate our new
plot:

set xdata time
set style data lines
set timefmt "%Y-%m-%d %H:%m:%s"
set format x "%b"
set xlabel "1984 Wrightsville Beach Temperatures"
set ylabel "Temperature in Degrees C"
set autoscale y
set linetype 2 linewidth 4
set xrange ["1984-01-01":"1984-12-31"]
plot "/tmp/out.dat" using 1:3 title "Temperature" with lines, \
 "/tmp/out.dat" using 1:4 title "Average" with lines

These commands are mostly identical to the previous gnuplot commands, with a
couple of key additions. First, the plot command (now split over two lines to make it
more readable) has an additional data line defined, the average column from our output.
And second, there is a set linetype command that makes the line on the graph that
shows the Average as thicker than the Temperature line to make it stand out better. The
gnuplot output should look similar to Figure 6-6.

Chapter 6 ■ WindoW FunCtions in praCtiCe

82

If the average line is still too rough, we can just change the tens in our query to higher
numbers and then rerun the gnuplot commands.

Being able to efficiently analyze time-series data like this is becoming more
important with the rise of the Internet of Things. More and more sensors, all collecting
their various bits of data, surround us every day. Aggregate Window Functions like AVG
provide new tools to help analyze and work with this data.

Analyzing Fruit Sales
The rest of this chapter will focus on an imaginary fruit company named FruitMart. The
company has ten stores scattered around North Carolina, USA, and they sell five different
kinds of fruit. Our task is to analyze the sales data so we can effectively run the business.

Fruit Sales Within a Single Store
One very useful bit of analysis to perform is to compare how fruit sales change from
month to month. The LEAD and LAG functions let us compare a value to the next and
previous months’ sales directly.

Figure 6-6. 1984 Wrightsville Beach Temperatures, with average

Chapter 6 ■ WindoW FunCtions in praCtiCe

83

Learning from previous examples, we’ll define a WINDOW clause that contains
our PARTITION BY and ORDER BY clauses. For this example, we’re only interested in
comparing sales in a given store to sales in the same store, so we’ll PARTITION BY store.
We’ll also add fruit to the partition so that we don’t compare apples to oranges (sorry, I
couldn’t resist).

Next, we’ll ORDER BY both store and month to keep our output sane. In our final
ORDER BY clause we’ll switch this up and ORDER BY fruit,store. This has the effect of
showing us all of the apples results for all stores, then all of the bananas, and so on.

Unfortunately, the complete output is quite large, so to keep the output brief we’ll
add a WHERE clause that restricts our query to a single store, Durham, and a single fruit,
oranges.

Here’s our completed query:

SELECT store, month, fruit, sold,
 LAG(sold) OVER w1 AS prev,
 LEAD(sold) OVER w1 AS next
FROM fruitmart
WHERE fruit = 'oranges'
 AND store = 'Durham'
WINDOW w1 AS (
 PARTITION BY fruit,store
 ORDER BY store,month
)
ORDER BY fruit,store;

Figure 6-7 shows the output.

The first prev column is NULL because there are no previous entries for the LAG
function to view. The same is true for the last next column, where there are no additional
entries for the LEAD column.

Figure 6-7. Oranges sold from the Durham store

Chapter 6 ■ WindoW FunCtions in praCtiCe

84

If we want to view the complete results for all stores, we just need to remove the
following two lines from the query and rerun it:

WHERE fruit = 'oranges'
 AND store = 'Durham'

Viewing our results chronologically like this is useful, but you may wonder what
the point is; after all, the prev and next values can be easily seen by just looking at the
previous and next rows.

Having them on one line comes in handy when ranking sales. We can add the RANK
function to our query and then sort by the rank in our final ORDER BY clause. It needs
a slightly different OVER clause, so we won’t use the w1 WINDOW the other two Window
Functions use. Instead, we’ll define a w2 WINDOW to use with it.

While we’re at it, we can extend the new w2 WINDOW to create a w3 WINDOW we can use
to get the average sales for a given fruit at a given store.

Here’s the full query:

SELECT store, month, fruit, sold,
 LAG(sold) OVER w1 AS prev,
 LEAD(sold) OVER w1 AS next,
 ROUND(AVG(sold) OVER w3) AS avg,
 RANK() OVER w2 AS rnk
FROM fruitmart
WHERE fruit = 'oranges'
 AND store = 'Durham'
WINDOW
 w1 AS (
 PARTITION BY fruit,store
 ORDER BY store,month
),
 w2 AS (
 PARTITION BY fruit,store
 ORDER BY sold DESC
),
 w3 AS (w2
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
)
ORDER BY fruit,store,rnk;

Chapter 6 ■ WindoW FunCtions in praCtiCe

85

The results, shown in Figure 6-8, are obviously more interesting than before.

For starters, our highest sales were 930 in June, but thanks to the prev and next
columns we can see that it wasn’t really part of a broader trend; in fact, in the previous
month we had our lowest sales of the year for oranges in Durham, 16, and in the following
month we dropped down almost exactly to our average number of sales, 323.

It might also be worth investigating why our three lowest months were all preceded
by lower-than-average months.

As with the previous query, we can remove the WHERE clause to look at the results for
all fruit sales at all of our stores, or simply modify it to select a different store and/or fruit.

Comparing Fruit Sales Across All Stores
Analyzing a single store’s sales performance is good, but it would also be useful to do
additional analysis comparing all our stores.

The changes needed to alter our query to compare fruit sales from all stores are
actually quite minimal.

First, we need to have the rnk column apply across a given fruit for all stores. This
can be done by simply removing store from the PARTITION BY clause in the w2 WINDOW.

With the change to w2 in place, our avg column will now compute the average for
all sales of a given fruit. But it might be useful to still list the store sales average. For that
we will define a new WINDOW, w4, which re-creates what the w2 + w3 combination used to
be. We’ll call this new column s_avg for store average, and for good measure we should
change the avg column to a_avg for all average.

The last change is to remove store from the final ORDER BY clause. This is just to get
the rankings to line up properly.

Here’s the query:

SELECT store, month, fruit, sold,
 LAG(sold) OVER w1 AS prev,
 LEAD(sold) OVER w1 AS next,

Figure 6-8. Oranges sold from the Durham store with averages and ranks

Chapter 6 ■ WindoW FunCtions in praCtiCe

86

 ROUND(AVG(sold) OVER w4) AS s_avg,
 ROUND(AVG(sold) OVER w3) AS a_avg,
 RANK() OVER w2 AS rnk
FROM fruitmart
WHERE fruit = 'oranges'
WINDOW
 w1 AS (
 PARTITION BY fruit,store
 ORDER BY store,month
),
 w2 AS (
 PARTITION BY fruit
 ORDER BY sold DESC
),
 w3 AS (w2
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
),
 w4 AS (
 PARTITION BY fruit,store
 ORDER BY sold DESC
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND
 UNBOUNDED FOLLOWING
)
ORDER BY fruit,rnk;

As before, the WHERE clause can be removed to show all fruits. It’s just in our query
to lessen the amount of output. Of course, now that we’re looking at oranges across all
stores, there’s ten times more output than before, but Figure 6-9 shows the first five and
last five rows of the result.

Figure 6-9. Orange sales from all stores

Chapter 6 ■ WindoW FunCtions in praCtiCe

87

One very odd but potentially useful thing from our results is that the bottom three
sales months are all from May. But May was also when Kinston had its highest sales of the
year. How did this happen? Were there shipping issues? Something in Kinston that pulled
oranges away from the other stores? Something else? Definitely something to investigate.

Summary
In this chapter, we explored some examples of using Window Functions in the real world.
We used multiple Window Functions in a single query, plotted results for when we are
dealing with lots of data, and then used Window Functions to analyze sales in various
ways at a fictional fruit company. For the next chapter, we’ll tie the first and second half of
the book together by using both CTEs and Window Functions together.

89© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3_7

CHAPTER 7

Combining Window
Functions and CTEs

Window Functions and CTEs are great in isolation, but they can also be very useful
together. This chapter will walk through some examples that demonstrate how Window
Functions and CTEs can be used together. We’ll start with a simple averaging of rainfall
data, then move on to how to use CTEs and Window Functions together to fix a common
schema issue. Lastly, we’ll use them to do some deeper analysis on our rainfall data to
find gaps and islands in our data set.

Before We Begin
The table used for the examples in this chapter is called precip and can be created with
the following query:

CREATE TABLE precip (
 location TEXT,
 day DATE,
 precip FLOAT
);

The data is in a CSV file called bartholomew-ch07-precip.csv. It can be loaded with
a query similar to the following (assuming the file is on the computer running MariaDB or
MySQL server in the /tmp/ folder):

LOAD DATA INFILE '/tmp/bartholomew-ch07-precip.csv'
 INTO TABLE precip
 FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"';

 ■ Note See the “Before We Begin” section of Chapter 1 for extra information about
loading the files on Windows and working around issues with secure_file_priv.

https://doi.org/10.1007/978-1-4842-3120-3_7
http://dx.doi.org/10.1007/978-1-4842-3120-3_1

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

90

We’re now ready to begin.

Compute the Average Time Between Days with
Precipitation
The precip table contains data on when it rained, and how much, for the year 1976 for
three cities in North Carolina, USA: Asheville, Raleigh, and Wilmington. The data comes
from the National Oceanic and Atmospheric Administration (NOAA) website at https://
www.ncdc.noaa.gov/cdo-web/search.

One common query when analyzing precipitation or other time-based data is to
compute what the average time is between events, which for our data means the average
number of days between when it rains.

By using a CTE without a Window Function we can, in a slightly convoluted way, select
from the precip table, and then as we walk through our results we use the DATEDIFF function
to determine the number of days between the current date and the largest previous date we
looked at, using a self-join to ensure that we’re looking at the correct data.

Our completed <cte_body> section looks like this:

SELECT
 p1.location,
 p1.day, MAX(p2.day),
 DATEDIFF(p1.day, MAX(p2.day)) AS diff
FROM precip AS p1,
 precip AS p2
WHERE
 p1.location = p2.location
 AND
 p2.day < p1.day
GROUP BY p1.day,p1.location
ORDER BY location;

The first ten rows of the output of this query look like this:

+------------+------------+-------------+------+
| location | day | MAX(p2.day) | diff |
+------------+------------+-------------+------+
Asheville	1976-01-07	1976-01-03	4
Asheville	1976-01-13	1976-01-07	6
Asheville	1976-01-16	1976-01-13	3
Asheville	1976-01-17	1976-01-16	1
Asheville	1976-01-26	1976-01-17	9
Asheville	1976-01-27	1976-01-26	1
Asheville	1976-02-01	1976-01-27	5
Asheville	1976-02-02	1976-02-01	1
Asheville	1976-02-15	1976-02-02	13
Asheville	1976-02-18	1976-02-15	3
...
+------------+------------+-------------+------+

https://www.ncdc.noaa.gov/cdo-web/search
https://www.ncdc.noaa.gov/cdo-web/search

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

91

For our <cte_query> section, we want to GROUP BY our location column and use the
AVG function to compute the average of the diff column. Calling our CTE precip_avg,
here is our completed query:

WITH precip_avg AS (
 SELECT
 p1.location,
 p1.day, MAX(p2.day),
 DATEDIFF(p1.day, MAX(p2.day)) AS diff
 FROM precip AS p1,
 precip AS p2
 WHERE
 p1.location = p2.location
 AND
 p2.day < p1.day
 GROUP BY p1.day,p1.location
 ORDER BY location
)
SELECT
 location,
 AVG(diff) AS avg_days
FROM precip_avg
GROUP BY location
ORDER BY location;

The results are:

+------------+----------+
| location | avg_days |
+------------+----------+
Asheville	3.3611
Raleigh	3.7423
Wilmington	3.3645
+------------+----------+

This query is good, but we can simplify it by using the LAG Window Function to
eliminate the need to do a self-join.

As before, we’ll start with the <cte_body> section, where instead of the self-join we
just call the LAG function with the day column as the value, partitioning by location and
ordering by the day column. This query looks like this:

SELECT
 location,day,
 LAG(day) OVER (
 PARTITION BY location
 ORDER BY day
) AS prev_day
FROM precip;

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

92

The output of this query is different than what we got from our self-join version:

+------------+------------+------------+
| location | day | prev_day |
+------------+------------+------------+
Asheville	1976-01-03	NULL
Asheville	1976-01-07	1976-01-03
Asheville	1976-01-13	1976-01-07
Asheville	1976-01-16	1976-01-13
Asheville	1976-01-17	1976-01-16
Asheville	1976-01-26	1976-01-17
Asheville	1976-01-27	1976-01-26
Asheville	1976-02-01	1976-01-27
Asheville	1976-02-02	1976-02-01
Asheville	1976-02-15	1976-02-02
...
+------------+------------+------------+

The main difference is the addition of the first row with the NULL result for the prev_
day column. The other main difference is that we don’t have a diff column, because we
removed the DATEDIFF function.

Because the output is different, we need to change the <cte_query> section a bit.
We’ll start by adding back the DATEDIFF function, this time inside of the AVG function, and
because it is now outside of the <cte_body> we can simply call it with the day column and
the new prev_day column generated by the LAG function.

Our much simpler query now looks like this:

WITH precip_avg AS (
 SELECT
 location,day,
 LAG(day) OVER (
 PARTITION BY location
 ORDER BY day
) AS prev_day
 FROM precip
)
SELECT location,
 AVG(DATEDIFF(day, prev_day)) AS avg_day
FROM precip_avg
GROUP BY location;

Our query has only gone from 19 lines to 13, but the readability is much better
without the confusing self-join in place. More importantly, the result is the same, and a
by-product of removing the self-join is a nice performance boost. Or at least we would see
a performance boost if our table were larger; our data set is simply too small to see much
of a difference.

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

93

Adding a Primary Key Column
Not all tables are perfect. Some would say that no tables are ever truly perfect. It’s a fact
of life that tables are modified periodically due to updated requirements, maintenance,
errors, and a host of other reasons.

Let’s say a request comes in while you’re away on vacation to add a precip_id
column to the precip table, but instead of adding the column as an auto-incrementing
primary key, a junior DBA adds it as an INT with a default value assigned as hexadecimal
number 1a for some unknown reason. Here’s the code the junior DBA ran that does this:

ALTER TABLE precip
 ADD COLUMN precip_id INT DEFAULT 0x1a FIRST;

Because this is a new column, when the ALTER TABLE goes through, the precip_id
column gets assigned the value 26, the decimal equivalent of hexadecimal 1a, on every
row. Sometime later, you discover this error, and your task is to now fix the mess and
ALTER the precip table so that the precip_id column is an auto-incrementing primary
key, like it was originally supposed to be.

We could try to do the following:

ALTER TABLE precip
 MODIFY COLUMN precip_id SERIAL PRIMARY KEY FIRST;

But because the service_id columns for every row already have values in them,
we’ll get the following error instead of what we want:

ERROR 1062 (23000): ALTER TABLE causes auto_increment resequencing,
resulting in duplicate entry '26' for key 'PRIMARY'

Another option would be to drop or rename the current precip_id column and
then add it back with the correct definition. For the sake of this example, let’s assume this
solution is not an option.

So, what do we do? Thanks to Window Functions and Common Table Expressions,
there is a third option we can use. The idea is to combine a Common Table Expression
with the ROW_NUMBER Window Function to produce a table that looks like how we want the
precip table to end up. We then use this CTE-derived table as the source for updating the
actual precip table.

Unfortunately, this trick only works on MySQL right now, but the MariaDB
developers will probably add support for it before too long.

We start by defining our <cte_body>. This will be a simple SELECT statement, ordered
by the service_date column, with the ROW_NUMBER Window Function there to give each
row of output a unique number. The code looks like this:

SELECT
 ROW_NUMBER() OVER(
 ORDER BY day
) AS rnum,

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

94

 location, day, precip
FROM precip
ORDER BY day;

The first few rows of output for this query, when run by itself, look like the following:

+------+------------+------------+--------+
| rnum | location | day | precip |
+------+------------+------------+--------+
1	Asheville	1976-01-03	0.2
2	Wilmington	1976-01-03	0.01
3	Raleigh	1976-01-03	0.09
4	Wilmington	1976-01-04	0.11
5	Asheville	1976-01-07	0.36
6	Wilmington	1976-01-07	0.07
7	Raleigh	1976-01-07	0.47
8	Wilmington	1976-01-08	0.16
9	Raleigh	1976-01-08	0.1
10	Wilmington	1976-01-11	0.01
...
+------+------------+------------+--------+

For a <cte_name>, let’s use precip_update, so we’ll wrap our <cte_body> with a WITH
precip_update AS clause.

We now come to the <cte_query> section. Instead of a SELECT statement like we’ve
used with previous CTE examples, this time we’ll use an UPDATE statement. In this
statement, we first need to refer to both our CTE and our original precip table. Then,
we SET the precip.precip_id to the value of precip_update.rnum wherever both the
location and day match between these two tables.

The final code looks like this:

WITH precip_update AS (
 SELECT
 ROW_NUMBER() OVER(
 ORDER BY day
) AS rnum,
 location, day, precip
 FROM precip
 ORDER BY day
)
UPDATE precip, precip_update
 SET precip.precip_id = precip_update.rnum
 WHERE
 precip.location = precip_update.location
 AND
 precip.day = precip_update.day;

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

95

As is usual with UPDATE commands, the output will simply tell us how many rows
were matched and changed and if there were any warnings.

 ■ Note if you try running this query using a graphical client, such as mySQL Workbench,
you may get an error about safe update mode being enabled. if that happens, either switch
to using the command-line mysql client or disable safe mode in Preferences > SQL editor
and reconnect.

To view the change, we can issue a simple SELECT:

SELECT * FROM precip ORDER BY precip_id;

The first few rows of output look like this:

+-----------+------------+------------+--------+
| precip_id | location | day | precip |
+-----------+------------+------------+--------+
1	Asheville	1976-01-03	0.2
2	Wilmington	1976-01-03	0.01
3	Raleigh	1976-01-03	0.09
4	Wilmington	1976-01-04	0.11
5	Asheville	1976-01-07	0.36
6	Wilmington	1976-01-07	0.07
7	Raleigh	1976-01-07	0.47
8	Wilmington	1976-01-08	0.16
9	Raleigh	1976-01-08	0.1
10	Wilmington	1976-01-11	0.01
...
+-----------+------------+------------+--------+

We’re not done at this point, but the final step is pretty simple. If we DESCRIBE
precip, we’ll see that our precip_id column is still not a primary key, nor does it
auto-increment:

+-----------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+---------+------+-----+---------+-------+
precip_id	int(11)	YES		26	
location	text	YES		NULL	
day	date	YES		NULL	
precip	float	YES		NULL	
+-----------+---------+------+-----+---------+-------+

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

96

However, now that every row of our precip_id column is a unique number, thanks
to the ROW_NUMBER Window Function, we can issue the ALTER TABLE command that failed
before:

ALTER TABLE precip MODIFY COLUMN precip_id SERIAL PRIMARY KEY FIRST;

This time, ALTER TABLE succeeds, and if we DESCRIBE precip, again, we’ll see that
our precip_id column is exactly what we want:

+-----------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+---------------------+------+-----+---------+----------------+
precip_id	bigint(20) unsigned	NO	PRI	NULL	auto_increment
location	text	YES		NULL	
day	date	YES		NULL	
precip	float	YES		NULL	
+-----------+---------------------+------+-----+---------+----------------+

Finding Gaps and Islands
Serialized and time-based data generally arrives at a pre-determined time, such as every
time a polling process kicks off. But sometimes there are unexpected gaps in the data, or
like in the case of weather data such as in our precip table, gaps are expected. It doesn’t
rain every day, after all.

When analyzing such data, finding these gaps and islands of data can be very useful.

Gaps
To find gaps in our data, we basically have to look at times when our expected interval
is skipped. In the case of our precip table, the expected interval is one day. Every day, if
there was precipitation, a row was added to the table.

The LEAD Window Function is perfect for looking at a given row and finding out
what the next row is, so it makes sense to include that function in our <cte_body>. Other
elements we should include are a column with the current day we are on, using the
DAYOFYEAR function to make the math simpler. We’ll need the same thing with the column
we use to hold the next day in the series, using LEAD inside of the DAYOFYEAR function
to get the correct number. Lastly, we should select the basic columns so we can see the
actual days.

Here’s our <cte_body> query:

SELECT
 location, day,
 DAYOFYEAR(day) AS current,
 LEAD(day) OVER w1 AS day_next,
 DAYOFYEAR(LEAD(day) OVER w1) AS next

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

97

FROM precip
WHERE location='Raleigh'
WINDOW w1 AS (
 PARTITION BY location
 ORDER BY day
);

Here is what the first few rows of the result look like:

+----------+------------+---------+------------+------+
| location | day | current | day_next | next |
+----------+------------+---------+------------+------+
Raleigh	1976-01-03	3	1976-01-07	7
Raleigh	1976-01-07	7	1976-01-08	8
Raleigh	1976-01-08	8	1976-01-11	11
Raleigh	1976-01-11	11	1976-01-14	14
Raleigh	1976-01-14	14	1976-01-16	16
Raleigh	1976-01-16	16	1976-01-17	17
Raleigh	1976-01-17	17	1976-01-26	26
Raleigh	1976-01-26	26	1976-01-27	27
Raleigh	1976-01-27	27	1976-02-01	32
Raleigh	1976-02-01	32	1976-02-02	33
...
+----------+------------+---------+------------+------+

Moving on to the <cte_query> section, let’s keep things somewhat simple by first
selecting our basic columns and then doing some simple math on the current and next
columns to define where the gap is. The start of a gap is whatever is current plus one, and
the end of a gap is whatever is next minus one.

Gaps that are equal to 1 aren’t all that interesting, because they’re not gaps. A gap of
1 indicates a contiguous section of data—not what we’re looking for here. So, one thing
we need to do is ensure that gaps are larger than 1.

Here’s our completed Gaps CTE:

WITH gaps AS (
 SELECT
 location, day,
 DAYOFYEAR(day) AS current,
 LEAD(day) OVER w1 AS day_next,
 DAYOFYEAR(LEAD(day) OVER w1) AS next
 FROM precip
 WINDOW w1 AS (
 PARTITION BY location
 ORDER BY day
)
)

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

98

SELECT
 location,day,day_next,
 current + 1 AS gap_start,
 next - 1 AS gap_end
FROM gaps
WHERE
 next - current > 1
 AND
 location = 'Raleigh'
ORDER BY day;

The first few rows of output from this are:

+----------+------------+------------+-----------+---------+
| location | day | day_next | gap_start | gap_end |
+----------+------------+------------+-----------+---------+
Raleigh	1976-01-03	1976-01-07	4	6
Raleigh	1976-01-08	1976-01-11	9	10
Raleigh	1976-01-11	1976-01-14	12	13
Raleigh	1976-01-14	1976-01-16	15	15
Raleigh	1976-01-17	1976-01-26	18	25
Raleigh	1976-01-27	1976-02-01	28	31
Raleigh	1976-02-02	1976-02-06	34	36
Raleigh	1976-02-06	1976-02-14	38	44
Raleigh	1976-02-14	1976-02-18	46	48
Raleigh	1976-02-18	1976-02-22	50	52
...
+----------+------------+------------+-----------+---------+

We don’t really need the gap_start and gap_end columns, since what we’re really
interested in is the size of the gap. In our case, since every row in our table means it rained
that day, a gap represents the number of days without rain. So, we should modify our
query to take out the start and end columns and instead calculate the size of the gap.

The size is equal to the following:

next - current - 1

The - 1 looks a little funny on the surface, but is needed because we’re counting
for the number of days between day and day_next, not between the next and current
columns.

While we’re tweaking things, we might as well modify our WHERE clause to only show
periods of no precipitation that last longer than a week.

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

99

Here’s our final query for showing the gaps:

WITH gaps AS (
 SELECT
 location, day,
 DAYOFYEAR(day) AS current,
 LEAD(day) OVER w1 AS day_next,
 DAYOFYEAR(LEAD(day) OVER w1) AS next
 FROM precip
 WINDOW w1 AS (
 PARTITION BY location
 ORDER BY day
)
)
SELECT
 location,day,day_next,
 next - current - 1 AS size
FROM gaps
WHERE
 next - current - 1 >= 8
 AND
 location = 'Raleigh'
ORDER BY day;

The result looks like the following:

+----------+------------+------------+------+
| location | day | day_next | size |
+----------+------------+------------+------+
Raleigh	1976-01-17	1976-01-26	8
Raleigh	1976-02-22	1976-03-06	12
Raleigh	1976-03-16	1976-03-25	8
Raleigh	1976-04-01	1976-04-30	28
Raleigh	1976-06-04	1976-06-16	11
Raleigh	1976-07-07	1976-07-28	20
Raleigh	1976-09-16	1976-09-26	9
Raleigh	1976-10-31	1976-11-12	11
Raleigh	1976-11-15	1976-11-26	10
+----------+------------+------------+------+

One thing is clear: April 1976 was a very dry month in Raleigh, and July was dry for
almost as much time.

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

100

Islands
The opposite of looking for gaps in our data is to look for islands. In the case of our precip
table, this means consecutive days of precipitation.

In some ways, looking for gaps is a much easier problem to solve, but thanks to CTEs
and Window Functions, we have the tools we need to identify islands in our data.

The DENSE_RANK function has a property that is perfect for this task. Unlike the RANK
function, which skips numbers if there are multiple matching values, DENSE_RANK never
skips. For example, given the values 1,2,2,3,4, the results for RANK and DENSE_RANK
would be:

+-------+------+--------+
| value | rank | d_rank |
+-------+------+--------+
1	1	1
2	2	2
2	2	2
3	4	3
4	5	4
+-------+------+--------+

So, if we have the numbers 2,3,4,8,9,12 and we DENSE_RANK them, we get the
following:

+-------+--------+
| value | d_rank |
+-------+--------+
2	1
3	2
4	3
8	4
9	5
12	6
+-------+--------+

If we then subtract the DENSE_RANK from the value, a useful pattern emerges:

+-------+--------+-----+
| value | d_rank | v-d |
+-------+--------+-----+
2	1	1
3	2	1
4	3	1
8	4	4
9	5	4
12	6	6
+-------+--------+-----+

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

101

Any sequence of consecutive numbers will have the same value - dense_rank
 (or v-d) number. This number effectively becomes our island identifier.

You may think the RANK and ROW_NUMBER functions would also be useful for this
purpose, but they both have issues if values in our table are allowed to repeat. Here’s the
same table from before, but this time including RANK and ROW_NUMBER columns, and how
they would calculate it.

+-------+--------+-----+------+-----+-------+------+
| value | d_rank | v-d | rank | v-r | r_num | v-rn |
+-------+--------+-----+------+-----+-------+------+
2	1	1	1	1	1	1
3	2	1	2	1	2	1
4	3	1	3	1	3	1
8	4	4	4	4	4	4
8	4	4	4	4	5	3
9	5	4	6	3	6	3
12	6	6	7	5	7	5
13	7	6	8	5	8	5
13	7	6	8	5	9	4
14	8	6	10	4	10	4
+-------+--------+-----+------+-----+-------+------+

With both value - rank (v-r) and value - row number (v-rn), islands get split
when a value repeats.

Because we’re dealing with dates and not simple integers, we’ll use the DAYOFYEAR
function to keep the math simple. Here’s a query that limits itself to the Raleigh records
and calls the day - DENSE_RANK result island:

SELECT
 location, day,
 DENSE_RANK() OVER w1 AS d_rank,
 DAYOFYEAR(day) - DENSE_RANK() OVER w1 AS island
FROM precip
WHERE location = 'Raleigh'
WINDOW w1 AS (
 PARTITION BY location
 ORDER BY day
)
ORDER BY day;

To keep the DENSE_RANK in proper order, we PARTITION BY location and ORDER
BY day.

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

102

The results look like the following:

+----------+------------+--------+--------+
| location | day | d_rank | island |
+----------+------------+--------+--------+
Raleigh	1976-01-03	1	2
Raleigh	1976-01-07	2	5
Raleigh	1976-01-08	3	5
Raleigh	1976-01-11	4	7
Raleigh	1976-01-14	5	9
Raleigh	1976-01-16	6	10
Raleigh	1976-01-17	7	10
Raleigh	1976-01-26	8	18
Raleigh	1976-01-27	9	18
Raleigh	1976-02-01	10	22
Raleigh	1976-02-02	11	22
Raleigh	1976-02-06	12	25
...
+----------+------------+--------+--------+

This query works perfectly as our <cte_body>. Moving on to our <cte_query> section,
we can group our results by the island column and use the MIN and MAX functions to
easily pull out where our islands start and stop. The only other part of our CTE to define is
the <cte_name>, and islands seems reasonable. Here’s the query:

WITH islands AS (
 SELECT
 location, day,
 DENSE_RANK() OVER w1 AS d_rank,
 DAYOFYEAR(day) - DENSE_RANK() OVER w1 AS island
 FROM precip
 WHERE location = 'Raleigh'
 WINDOW w1 AS (
 PARTITION BY location
 ORDER BY day
)
 ORDER BY day
)
SELECT
 location,
 MIN(day) AS beginning,
 MAX(day) AS ending
FROM islands
GROUP BY island;

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

103

The partial result of this query is:

+----------+------------+------------+
| location | beginning | ending |
+----------+------------+------------+
Raleigh	1976-01-03	1976-01-03
Raleigh	1976-01-07	1976-01-08
Raleigh	1976-01-11	1976-01-11
Raleigh	1976-01-14	1976-01-14
Raleigh	1976-01-16	1976-01-17
Raleigh	1976-01-26	1976-01-27
Raleigh	1976-02-01	1976-02-02
Raleigh	1976-02-06	1976-02-06
Raleigh	1976-02-14	1976-02-14
Raleigh	1976-02-18	1976-02-18
...
+----------+------------+------------+

Things are starting to come together, but there is one final optimization we should
make at this time. Looking at our results, there are a lot of islands that begin and end on
the same day, meaning it didn’t rain one day, then it rained the following day, but it didn’t
rain the day after that. We should filter out these single-day islands, and while we’re at it
we might as well filter out the two-day islands, leaving just three and above in our results.

Our first step toward doing this is to add a new column where we calculate the size of
the island, like so:

MAX(DAYOFYEAR(day)) - MIN(DAYOFYEAR(day)) + 1 AS size

The only issue is the same one we ran into back in Chapter 5. We need to use a WHERE
clause to limit output to just those islands greater than or equal to 3, but inside our CTE
the WHERE clause can’t see our new size column. So, as a final step, we wrap our CTE in a
derived table wrapper. Here’s the final query:

SELECT * FROM (
 WITH islands AS (
 SELECT
 location, day,
 DENSE_RANK() OVER w1 AS d_rank,
 DAYOFYEAR(day) - DENSE_RANK() OVER w1 AS island
 FROM precip
 WHERE location = 'Raleigh'
 WINDOW w1 AS (
 PARTITION BY location
 ORDER BY day
)
 ORDER BY day
)
 SELECT

http://dx.doi.org/10.1007/978-1-4842-3120-3_5

Chapter 7 ■ ComBining WindoW FunCtionS and CteS

104

 location,
 MIN(day) AS beginning,
 MAX(day) AS ending,
 MAX(DAYOFYEAR(day)) - MIN(DAYOFYEAR(day)) + 1 AS size
 FROM islands
 GROUP BY island
) AS islands_wrapper
WHERE
 size >= 3;

The output is as follows:

+----------+------------+------------+------+
| location | beginning | ending | size |
+----------+------------+------------+------+
Raleigh	1976-03-30	1976-04-01	3
Raleigh	1976-05-14	1976-05-18	5
Raleigh	1976-06-02	1976-06-04	3
Raleigh	1976-06-19	1976-06-22	4
Raleigh	1976-11-26	1976-11-29	4
Raleigh	1976-12-06	1976-12-08	3
+----------+------------+------------+------+

One thing is certain: that was certainly a soggy Black Friday weekend back in 1976.
But at least Thanksgiving was precipitation-free.

Summary
In this chapter, we explored combining Window Functions and Common Table
Expressions. We analyzed our precipitation data in various ways, averaging the days
between rainfall, looking for gaps and islands of data, and even exploring how to turn a
static column into a primary key column.

CTEs and Window Functions are the two most exciting things to be introduced to
MariaDB and MySQL in the past several years. Now you know the basics and can start
using them in your applications on your data.

105© Daniel Bartholomew 2017
D. Bartholomew, MariaDB and MySQL Common Table Expressions and
Window Functions Revealed, https://doi.org/10.1007/978-1-4842-3120-3

��������� A
AVG() aggregate function, 47

��������� B
BIT_AND aggregate function, 47
BIT_OR aggregate function, 48
BIT_XOR aggregate function, 48

��������� C
Commissions, 11
Common Table Expressions (CTEs)

addition, numbers, 21–24
CTE syntax, 4–6
data permissions, 7
destination possibilities,

32, 34–38
employees, 3
Fibonacci numbers, 24–27
inclusion, 32
MariaDB/MySQL server, 20
multiplexing, 8–9
MySQL 8.0, 4
nesting, 7–8
recursion, 9
routes table, 19, 31, 33
secure_file_priv setting, 4
SELECT statement, 7
SQL, 33
syntax, 20
temporary nature, 6
trees, 19, 27–30
tudors, 19
Unix timestamp, 7

COUNT aggregate function, 48
CUME_DIST function, 48

��������� D, E
Data analysis

gaps, 96
islands, 100

DENSE_RANK function, 49
Duplicated subqueries, 17

��������� F
Fibonacci sequences, 24–27
FIRST_VALUE function, 50
Fruit sales data

within single store, 82
store comparison, 85

��������� G, H
Gaps in data, 96

��������� I, J, K
Islands in data, 100

��������� L, M
LAG function, 50
LAST_VALUE function, 50
LEAD function, 51

��������� N, O
Non-duplicated combinations, 38
Non-recursive CTEs

commissions data, 12
commissions_year, 13
comparison, 15–16
filtered list, 14

Index

■ INDEX

106

MariaDB/MySQL server, 11
modifications, 13–14
query, 11
salesperson_id columns, 13
sample data, 11
subqueries translation, 16–17
WHERE clause, 13

NTH_VALUE function, 51
NTILE function, 52

��������� P, Q
PERCENT_RANK function, 53
Preceding code, 16
precip table, 90

adding primary key column, 93
gaps, 96
islands, 100

��������� R
RANK function, 53
ROW_NUMBER function, 54

��������� S
salesperson_id fields, 13
Self-joins vs. Window functions, 64
Subqueries translation, 16–17
SUM aggregate function, 55

��������� T, U, V
Time series data, 72

graphing results, 77
multiple Window functions, 73

��������� W, X, Y, Z
Window functions, 41, 47

AVG() aggregate function, 47
BIT_AND aggregate

function, 47
BIT_OR aggregate function, 48
BIT_XOR aggregate

function, 48
COUNT aggregate

function, 48
CUME_DIST function, 48
DENSE_RANK function, 49
FIRST_VALUE function, 50
LAG function, 50
LAST_VALUE function, 50
LEAD function, 51
NTH_VALUE function, 51
NTILE function, 52
PERCENT_RANK function, 53
problem solving

maintenance, 61
partitioning and ordering

results, 57
ranking rows in result set, 65

RANK function, 53
ROW_NUMBER function, 54
vs. self-joins, 64
SUM aggregate function, 55
syntax, 42

<frame_definition>, 43
<order_definition>, 42
<partition_definition>, 42
WINDOW clause, 45

time series data, 72
graphing results, 77
multiple functions, 73

Non-recursive CTEs (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Syntax
	Part I: Common Table Expressions
	Chapter 1: Basics of Common Table Expressions
	Before We Begin
	What Are Common Table Expressions?
	Basic CTE Syntax
	The Motivation for CTEs
	Temporary
	Readable
	Using in One or Many Places
	Permissions
	Nesting
	Multiplexing
	Recursion

	Summary

	Chapter 2: Non-recursive Common Table Expressions
	Before We Begin
	Using CTEs for Year-over-Year Comparisons
	Comparing Individuals Against Their Group
	Translating Subqueries into CTEs
	Summary

	Chapter 3: Recursive Common Table Expressions
	Before We Begin
	Recursive CTE Syntax
	Adding Numbers
	Calculating Fibonacci Numbers
	Looking Up Ancestors in a Tree
	Finding All Possible Destinations
	Finding All Possible Paths
	Summary

	Part II: Window Functions
	Chapter 4: Basics of Window Functions
	What Is a function?
	Window Function Syntax
	Partition Definition Syntax
	Order Definition Syntax
	Frame Definition Syntax
	WINDOW Clause Syntax

	Window Functions Reference
	AVG()
	BIT_AND()
	BIT_OR()
	BIT_XOR()
	COUNT()
	CUME_DIST()
	DENSE_RANK()
	FIRST_VALUE()
	LAG()
	LAST_VALUE()
	LEAD()
	NTH_VALUE()
	NTILE
	PERCENT_RANK()
	RANK()
	ROW_NUMBER()
	SUM()

	Summary

	Chapter 5: Recognizing Opportunities for Window Functions
	Partitioning and Ordering Results
	Maintaining a Running Total
	Ranking Rows in a Result Set
	Summary

	Chapter 6: Window Functions in Practice
	Before We Begin
	Working with Time-Series Data
	Using Multiple Window Functions at Once
	Graphing Time-Series Results

	Analyzing Fruit Sales
	Fruit Sales Within a Single Store
	Comparing Fruit Sales Across All Stores

	Summary

	Chapter 7: Combining Window Functions and CTEs
	Before We Begin
	Compute the Average Time Between Days with Precipitation
	Adding a Primary Key Column
	Finding Gaps and Islands
	Gaps
	Islands

	Summary

	Index

